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Abstract — A prior work established the existence of an operating point for a transfinite
nonlinear electrical network having the first rank of transfiniteness. This work inductively
extends that result to all natural-number ranks of transfiniteness and then to the first
transfinite-ordinal rank w. It can also be extended to still higher ranks in the same way.
As before, it is assumed that every branch characteristic is maximal monotone, and thus
this paper presents a further extension of a classical result of Minty. Moreover, the idea
of transfinite ends is developed and used to define transfinite nodes as finite combinations
of transfinite ends. The network is so constructed that such ends are limits under certain
metrics on the nodes, and as a result all ends of all ranks are “permissive” in the sense that
currents are able to flow through them. All this yields a transfinite network more amenable
to an electrical network theory and empowers the theory of monotone networks presented
herein. Furthermore, “no-gain” bounds are established for the operating point. Finally, the
uniqueness of the operating point is established when branch characteristics are restricted

to continuous, strictly monotonic curves.

1 Introduction

This paper extends some of the results of [2] to higher ranks of transfiniteness. That prior
work established the existence and uniqueness of operating points for nonlinear electrical
networks possessing the simplest kind of transfiniteness, that is, in the terminology of [14]

and [15], for 1-networks. It also established bounds on the branch currents and branch

* 19938 Mathematics Subject Classification. Primary: 31C20, 94C05.
Key Words and Phrases. Infinite networks, transfinite networks, monotone networks, ends, Kirchhoff’s laws,
operating points.
This work was supported by the National Science Foundation under Grants MIP-9423732.



im

voltages much like those established by Wolaver [13] and sharpened by Calvert [1]. By
an “operating point” we mean a set of branch currents and branch voltages that satisfy
Kirchhoff’s laws and conform with the branch characteristics, which we take to be maximally
monotone curves in the current-voltage plane. The basic idea for obtaining an operating
point for a v-network, where the transfiniteness rank v is a natural number no less than 2,
is to let the role played by branches in [2] be taken over by v-sections, where 0 <y < v —-2.
(Branches can be taken to be (—1)-sections.) y-sections are maximal subnetworks of rank ¥
whose branches and nodes are connected by transfinite paths of ranks no larger than v. This
extension necessitates a more complicated analysis than that of [2], but the general strategy,
when dealing with a single rank of transfiniteness, is like that of [2]. We will present an
inductive argument to obtain results for all the natural-number ranks. Then, changes in our
arguments enable a construction of an operating point for an w-network, where the rank w
is the first transfinite ordinal. Operating points for networks of still higher ordinal ranks
can be obtained by repeating this two-step approach, the first for successor-ordinal ranks
and the second for limit-ordinal ranks. How far repetitions of this two-step procedure will
carry through the coﬁntable ordinal ranks is not answered in this paper.

Not all the results of [2] are extended herein. Only end-generated transfinite networks
are considered. The idea of an “end” for a conventionally infinite graph has been quite
useful; see, for example, [3], [4], [5], [6], [9], [11], [12]). In this paper, we extend the idea
of an end transfinitely. Later on, we impose an additional restriction; namely, the ends
of a conventionally infinite graph or of a transfinite graph are taken to be isolated from
each other in the sense that the deletion of a sufficiently large finite set of branches in the
conventional case or of sections in the transfinite case will leave different ends in separate
components.

This paper is based upon the theory of transfinite graphs and networks presented in
[14] and [15] and uses the terminology explicated in those books. The unconventional terms
regarding transfiniteness used herein are provided with references to those sources. (For
brevity, we often say “in” in place of “embraced by” [14], [15]; the context in which ‘in” is

used should dispell any confusion.) Furthermore, the more specialized transfinite structure



developed in [16] is also used, and we summarize the needed ideas in Section 2. Thus,
this paper can be read independently from {16]. In Section 3 we specify the assumptions
(Conditions 3.2) imposed upon our network. Section 4 presents the first step of our inductive
argument; it shows how a finite 0-network N° satisfies Conditions 3.2 and then invokes a
classical theorem of Minty [7] to establish an operating point for N° satisfying certain
bounds. The inductive argument from v-networks to (v + 1)-networks, » being a natural
number, is presented in Sections 5 through 7. Section 5 examines the flow of current toward
the extremities (i.e., “u-ends”) of a p-section (0 < p < v) and explains what Kirchhoff’s
current law means for a (4 + 1)-node. Section 6 derives the existence of a potential function
on all the nodes of a (v + 1)-network; it does this by invoking the Arzela-Ascoli theorem as
applied to a sequence of potential functions on the nodes of a sequence of v-networks that
fill out a given (v + 1)-network. The obtained limiting potential function will be continuous
at all nodes of ranks greater than 0 and therefore will generate branch voltages that satisfy
Kirchhoff’s voltage law around all y-loops, where y = 1,...,u+1. (All 0-nodes are isolated,
and therefore the continuity of the potential function is not an issue for them.) These results
are then combined in Section 7 to obtain an operating point for the (v + 1)-network, and
bounds on the branch currents and branch voltages are also established. The uniqueness
of that operating point is established in Section 8 under an additional restriction on the
monotone branch characteristics, namely, that they have neither horizontal nor vertical
segments. w-networks are then considered. Current flows and Kirchhoff’s current law are
examined again in Section 9. Potentials and finally the existence and uniqueness of an

operating point are discussed in Section 10.
PART I: PRELIMINARIES

2 Permissively Structured Transfinite Networks

We use the terminology and notation defined in either [14] or [15]. N will denote a
transfinite network of rank v, and (B,N° N',...,AV¥) will denote its transfinite graph,
where B is its set of branches, and A7 is its set of nodes of rank v (0 < v < v). In this

paper, v will be either a natural number or w, and g will be a rank such that -1 < p < »v.



When v = w, v — 1 denotes the arrow rank & {15, pages 4 and 36], and, when u =&, p + 1
denotes w. When 0 < p < v, we take a u-section to be a subgraph of the u-graph of N¥, in
accordance with [15, pages 32-33] (but we refer to all graphs and subgraphs as networks and
subnetworks). Thus, a p-section embraces nodes of ranks u or less but does not embrace
its incident (4 + 1)-nodes. Furthermore, for p = -1, a (—1)-section is taken to be a branch,
and its two (—1)-tips are then its two “(—1)-terminals” — analogous to the “u-terminals”
defined below for u > 0. Also, N¥ is itself a v-section.

R™ denotes n-dimensional Euclidean space with R! replaced by R. R, is the set of
positive numbers in R. The adjective “nonlinear” is used inclusively, with “linear” being a
special case of it. The notation z 4 () means that the entity z is embraced by the entity Q.
Every branch b of our transfinite network N will relate current and voltage nonlinearly.
Nonetheless, in Section 3 we shall also assign to b a linear positive resistance Ry derived from
that nonlinearity in order to treat the nodes of N¥ as the elements of a metric space. The
resistive length | P| of a path P of any rank is the sum of all the R, values of its embraced
branches; in symbols, |P| = Y_,4p Rs. We say that P is permissive if |P| < oo; otherwise,
nonpermissive. Similarly, a tip of any rank [14, page 140}, [15, page 30] is permissive (resp.
nonpermissive) if it has a permissive representative path (resp. all its representative paths
are nonpermissive). Every nonpermissive tip will be assigned to a singleton node, and that
node will also be called nonpermissive. The remaining nodes will be permissive in the sense
that all their tips are permissive.

We henceforth assume that our transfinite network N” is permissively structured [16].
Thus, it has the following properties: No node embraces a node of lower rank. Therefore,
sections [15, page 49] and subsections [15, page 81] coincide. Also, there are no &-nodes
when v = w [15, page 37]. Now, let S# be any u-section of N¥, where now 0 < p < v — 1.
(As noted above, v — 1 = & when v = w.) Let Ngu. denote the set of all permissive nodes of
ranks no larger than u embraced by S#. With m,n € Ngu, let P(S#, m,n) denote the set
of all two-ended permissive paths of all ranks no larger than x that terminate at m and n.
(The trivial path consisting of only a single node is included.) There will be at least one

such path for every m and n [16, Proposition 5.3]. Define the mapping d*: Ngu X Ngu — R



by
d*(m,n) = inf{|P|: P € P(S*,m,n)}. (1)

Then, d* is a metric on Ngu [16, Proposition 5.6 and Section 6]. This same definition works
when g = w, in which case d“ is a metric on the set Ayw of all nodes in N¥,

Returning to the case where 0 < u < v — 1, take the completion 7\75,‘ of Ng. under
d*. The obtained limit points having the property that they are not the limit points of any
p-section S? embraced by S* (p < u) are called the u-terminals of S#. It is a fact that the
nodes of every representative of any permissive u-tip of S# converge to some p-terminal
[16, Propositions 5.10 and 6.4]. Thus, éach u-terminal of S# can be identified with a set of
permissive u-tips of S#, and thereby the u-terminals of S# partition the set of permissive
u-tips of S¥. It is an assumed property of a permissively structured network N“ that every
p-section of N has only finitely many p-terminals. Moreover, each permissive (u+ 1)-node
of N¥ is also assumed to consist of all the permissive p-tips in only finitely many of the
pi-terminals of the various p-sections of N¥. Thus, each (u + 1)-node is incident to only
finitely many p-sections of N¥. All these properties are also assumed to hold for branches
as well; indeed, branches can be viewed as sections of rank —1. Thus, every 0-node is of
finite degree. On the other hand, every nonpermissive u-tip (g > 0) is open; this means
that it is the sole member of a nonpermissive (¢ + 1)-node. Consequently, no path or loop
can pass through a nonpermissive node; it can only terminate there.

We can summarize all this by saying that a permissively structured v-network is defined
by the following conditions, where as always p denotes an arbitrary rank less than v, that
is, -1 <u<w.

Conditions 2.1.

(a) No node of N¥ embraces a node of lower rank.
(b) Every section of every rank u has no more than finitely many p terminals.

(¢) Every node is either permissive or nonpermissive. If u is a natural number (resp. if
p = @), then every nonpermissive (u + 1)-node (resp. nonpermissive w-node) is a

singleton consisting of ezactly one nonpermissive pu-tip (resp. nonpermissive J-tip).
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If u is =1 or a natural number (resp. if u = &), every permissive (u + 1)-node (resp.
w-node) consists of all the p-tips (resp. T-tips), perforce permissive, in only finitely

many p-terminals (resp. &-terminals).

As an immediate consequence of Conditions 2.1(b) and (c), we have

Lemma 2.2. Every p-section has only finitely many incident permissive (u + 1)-nodes,
and every permissive (u+1)-node is incident to only finitely many u-sections. (When p = &,
i+ 1 denotes w.)

With a branch b being taken as a (—1)-section with exactly two (—1)-terminals, which we
identify with the two (—1)-tips of b, Condition 2.1(c) asserts that every 0-node is permissive
and of finite degree. There are no nonpermissive 0-nodes.

Henceforth, we discuss only permissive nodes and ignore the nonpermissive nodes. So,
we often drop the adjective “permissive.” Thus, it will always be tacitly understood that
any node we refer to is permissive.

Because every nonpermissive tip is open (Condition 2.1(c)), we have

Lemma 2.3. Fvery two-ended path and every loop is permissive.

3 Conditions Assumed on the Transfinite Network

Each branch b € B is assigned an electrical parameter characterized by a nonlinear curve
in the current-voltage plane as follows. The current i, and voltage v, for branch b will
always be measured with respect to an orientation assigned to b, with the flow of ¢, and
the potential drop of v, being in the direction of that orientation. We will freely switch
the orientation of b depending on whether we want to measure current flow and potential
drop toward or away from a node; i, and v, are replaced by their negative values when the
orientation is switched. A potential p is a function defined on the node set N® U ...UN¥
with values in R such that, for each b with incident nodes n? and n3, v, = p(n?) — p(n3),
where b is oriented from n9 to nJ. We shall seek a potential that is continuous at permissive
nodes of ranks higher than 0. As a consequence, the values of p on A/° determine its values
on the permissive nodes in N1 U...,A'¥ through continuity.

For each b € B, M, will denote a characteristic curve in the current-voltage plane. We



let z denote current and y denote voltage. M, is assumed to be a maximal monotone
characteristic mapping a subset of (possibly all of) R into 2% [7]. In particular, M, is a

set-valued function of z that is monotone in the sense that
(My(z)" = My(e'))(z = o) 2 0

where M(z)* denotes a point in the set My(z). We also view M, as being a subset of
R? and treat (z,y) € M, and y € M,(z) as being equivalent expressions. M;! denotes
the inverse of My: (y,z) € M; ' if and only if (z,y) € M. We also write z € M, '(y).
Furthermore, M, is mazimal monotone in the sense that the two conditions (z,y) € R? and
(z —2')y—y') > 0 for all («/,y) € M, imply that (z,y) € M,. Note that M, serves as
a resistance function in that it maps each current into a set of voltage values, but it may
implicitly contain a source; the latter occurs when M, does not contain the origin of R2.
We assume that there is at least one such M, not containing that origin. (Otherwise, a
“solution,” as defined below, would be the trivial one where all branch voltages and currents
are 0.
We assume still more conditions on every M, namely:

Conditions 3.1.

(a) There is at least one y with (0,y) € M, (i.e., the origin of the current azis is in the

domain of My). Thus, we can set

§"(0,0, Mp) = min{|y|: (0,y) € My}.

(b) There is at least one z with (z,0) € M, (i.e., the origin of the voltage azis is in the

range of My). Thus, we can set
50,0, My) = min{|z|: (z,0) € My}.

(¢) Finally,

~
I

= ) 6(0,0,My) < o0
beB
and

V =) 6"0,0,M) < oo.
beB



Now, to each b € B we assign a real positive number R, as follows: If M, is a Lipschitz
continuous function on [-I,I], R, is the Lipschitz constant of M, on [—1,I] so long as
Ry > 0. If that Lipschitz constant is 0, we assign a positive value R to b in such a way
that Y",cp, Ry < 00, where B, is the subset of B consisting of all branches for which those
Lipschitz constants equal 0. On the other hand, if M, is not Lipschitz continuous on [-I, I,
we set Ry = 1. R, plays the role that the linear resistances ry played in [16].

We now turn to some strictly graph-theoretic ideas. They are independent of the values
R;. Nonetheless, we continue to speak in terms of networks. By a subnetwork of N¥, we
mean a branch-induced subgraph [15, page 32} of N” with the same assignment M, to each
branch b € B. N(B;) denotes the subnetwork induced by the subset B; of B. Let N(B,)
and N(B;) be subnetworks of N¥. We say that N(B;) is a subnetwork of N(B,) if B; C B,.

Let us now define the “transfinite ends” of any u-section S* (0 < p < v — 1) for the
case where v is a natural number. (We consider the case where v = w later on.) First of
all, when u = 0, we have the customary definition for an end of a 0-section S°, which we
now refer to as a “0-end.” With £ denoting any finite subset of the branch set B~1(S®) of
SO, we let S%\& denote the 0-subnetwork of SO induced by all the branches of S° that are
not in £. Then, a 0-end €° of S° is a mapping that takes every finite subset £ of B~1(S°)
into an infinite component €%(£) of S°\& in accordance with the following rule: If £ and F
are finite subsets of B~1(S°) with £ C F, then €¢°(F) is a 0-subnetwork of €°(&).

Proceeding transfinitely, consider the case where u is a positive natural number. Since
no node embraces a node of lower rank, a p-section S¥ must have infinitely many (u — 1)-
sections. We now let £¢~! denote any finite subset of the set B#~1(S#) of (u — 1)-sections
in S#, and let S#\E#-! denote the u-subnetwork of S# induced by all the branches of all
the (u — 1)-sections of S# that are not in £#7!. (See [15, page 32] for “branch-induced
subgraphs”; here, we refer to them as “subnetworks.”) A u-end e* is a mapping that takes
every finite subset £#~1 of B#~1(S*#) into a component of S#¥\E#~! having infinitely many
(4 — 1)-sections, in accordance with the following rule: If £#~! and F*~! are finite subsets
of B#~1(S*) with £#~1 € F#~1, then e#(F*~1) is a pu-subnetwork of e#(£#71). Later on,

we will identify p-ends with u-terminals bijectively and will construct the (¢ + 1)-nodes out



of the u-ends.

Finally, let us prepare for a definition of an “G-end” of an &-section S®. The construction
in this case is quite a bit different from that for the u-ends given above. First, note that,
given any 0-node n° in S, there is a unique sequence {Sh0}5%o of p-sections Sy, each
containing #°. In fact, S¥, C SZI,H for every pu. We call {S/,}52, a nested sequence of
sections induced by n°.

Lemma 3.2. {SZ°}Z°=0 fills out S¥ in the sense that, given any node m” of any rank v
embraced by S?, there will be some rank u, such that Sk embraces m?, and similarly for
any branch embraced by S°.

Proof. Since S? is G-connected, there is a two-ended py-path P* (y < uy < &)
embraced by S? that terminates at n® and m”. P*', and therefore m” too, will be embraced
by Sk, one of the sections in {S%,}52,. The same argument works for any branch of s,
(W]

Lemma 3.3. Two nested sequences {St,}52, and {Sh,}52, induced by two different
0-nodes n® and m® in S are eventually identical.

Proof. By Lemma 3.2, n° and m® are both in Sf:{, and also in Sf::o for some p,.
Therefore, St = S',. Hence, S¥, =S¥, for all 4 > ;. O

Lemma 3.4. Given any v-section S” in S¥, where v is a natural number, and given a
nested sequence of sections induced by any 0-node {S:: o Yoo, S7 is eventually embraced by
{84130 (i.e., there is a rank py such that SY C Sty for all p > py.)

0 asin

Proof. Choose any 0-node m® of S” and then p; such that S!§ embraces m!
Lemma 3.2. O

We are now ready to define an &-end of S¥. With S* being any u-section in S%, we now
let S9\S# denote the &-subnetwork of S° induced by all the branches of S¥ that are not in

S#. An &-end is a mapping that takes every u-section S* of S¥ (of every natural number

rank p) into a component of S¥\S¥ in accordance with the following two rules:

e That component is an J-network (i.e., has nodes of all natural number ranks).

e If S# and S” are a p-section and a y-section respectively in S¥, where 0 < u < v and

where S* is a p-subnetwork of S7, then S?\S” is an &-subnetwork of S¥\S*.



Here too, we will identify &-ends with the &-terminals bijectively and will construct w-nodes
out of the &-ends.

Here are the assumptions we shall impose throughout this work upon any transfinite
'network NY. As before, we restrict the rank » to being either a natural number or w; also,
when v = w, v — 1 denotes &.

Conditions 3.5.
(a) NY is v-connected and has only finitely many (permissive) v-nodes.
(b) N is permissively structured (i.e., Conditions 2.1 are fulfilled).

(¢) For each p-section S*, where 0 < pu < v -1, the set Ngu of all nodes of all ranks in S#

(and thus of ranks no larger than u) is a totally bounded set under the metric d*.

(d) Every p-end of every u-section (where again 0 < p < v — 1) is isolated and coincides
with a unique p-terminal, and there is a bijection in this way between the u-ends and

u-terminals.

(e) Every branch of N¥ is characterized electrically by a mazimal monotone curve in the

current-voltage plane satisfying Conditions 3. 1.

Let us be more explicit about Condition 3.5(d). First, consider the case where p is a
natural number. That a u-end e* of a p-section S* is isolated means that there is a finite
set £#~1 of (u — 1)-sections (e.g., of branches if 4 = 0) in S¥ such that e#(£#~!) has exactly
one p-end; that is, for no other finite set F#~! of (u — 1)-sections in S# with F#=1 5 £#-1
will e#(£#~1)\F#~! have two or more components with infinitely many (4 — 1)-sections.
That end is said to coincide with a p-terminal T# of S¥ if, for all £#~1 sufficiently large,
e#(£#~1) has exactly one u-terminal, namely, T#; that is, the set of all u-nodes of e#(£#~1)
has only T* as its unique limit point under d¥ whenever £#~1 is chosen large enough. In
this way we can identify the terminal 7* with the end e*.

Now, consider an J-end €® of an &-section S?. That it is isolated means that there is
a p-section in S®, where u is a natural number, such that €“(S*) has exactly one J-end;

that is, for no other y-section S” in S% with S” O S* will e?(S#)\S" have two or more

10



components that are each @-subnetworks of S¥. That J-end is said to coincide with an
&-terminal T¢ of S¥ if, for all u-sections with sufficiently large natural-number ranks p,
e?(S*) has exactly one J-terminal, namely, 7%,

Lemma 3.6. NY has only finitely many (v — 1)-sections.

Proof. This follows directly from Conditions 2.1(c) and 3.5(a) and the fact that each
(v — 1)-terminal belongs to exactly one (v — 1)-section. O

Finally, let us state what we mean by .an operating point of N¥. This is synonymous
with a solution for N*.

Definition 3.7. An operating point for a transfinite network N¥ is a pair (7, v) consisting
of a set ¢ = {ip}pen of branch currents satisfying Kirchhoff’s current law at every node of
every rank in N” and a set v = {vs}ses of branch voltages derived from a potential p on
all the nodes of N¥ with p being continuous at every node of rank greater than 0 such that
(%, vp) € M, for every b € B.

We have yet to define what we mean by the satisfaction of Kirchhoff’s current law by i
at every node. Since every 0-node is of finite degree, this has the usual meaning at 0-nodes.
This was also defined for 1-nodes in [2, Section 3]. We shall define it for all u-nodes for all
natural-number ranks g in Section 5 and for w-nodes in Section 9. On the other hand, each
branch voltage v, will be obtained from the potential p in the usual way as the oriented
difference in the potentials at the two 0-nodes incident to b. The fact that p is continuous at
all nodes of positive ranks insures that v = {v,}sep satisfies Kirchhoff’s voltage law around

every loop of every rank, as we shall note again in Sections 7 and 10.

PART II: NETWORKS WITH NATURAL-NUMBER RANKS

4 The First Inductive Step and a Summary of Subsequent
Steps

We shall argue by induction on the ranks of transfinite networks. The first step, the existence
of an operating point for a finite 0-network, is a known result, which we now restate in a

form more suitable for generalization.

11



Let N° be a finite 0-connected network whose branch characteristics are maximal mono-
tone and satisfy Conditions 3.1. It follows that N° satisfies all of Conditions 3.5 so long
as “(—1)-sections” and “(—1)-terminals” are interpreted appropriately. Indeed, part (a) of
Conditions 3.5 is obviously satisfied. For 3.5(b), turn to Conditions 2.1. Condition 2.1(a) is
fulfilled because there are no nodes of ranks less than 0. Furthermore, every branch b can be
taken to be a section of rank —1, and its two elementary tips (i.e., its two (—1)-tips) can be
taken to be its two permissive (—1)-terminals and also its two isolated (—1)-ends, in which
case Conditions 2.1(b), 2.1(c), and 3.5(d) are fulfilled. Furthermore, b as a (—1)-section
has no, sections of lower rank and no nodes, and so Condition 3.5(c) is fulfilled trivially.
Conditions 3.5(e) has already been assumed. Conversely, we can also start with Conditions
3.5 and reverse these arguments. In summary, we have

Lemma 4.1. Under the stated interpretation of any branch as a (—1)-section with
the branch’s two (—1)-tips taken to be two permissive (—1)-terminals and also two isolated
(=1)-ends, a 0-network N° is finite, 0-connected, and has mazimal-monotone branch char-
acteristics satisfying Conditions 3.1 if and only if N° satisfies Conditions 3.5 (that is, with
v=0andu=-1).

By virtue of this lemma, we can invoke [7, Theorem 8.1] (see also [1] for a simpler
derivation and an extension to conventionally infinite networks) to conclude that N° has
an operating point satisfying certain bounds. In particular, we have

Theorem 4.2. Let N° be a O-network satisfying Conditions 3.5. Then, N° has an
operating point (¢,v), and, for each branch b, |is] < I and |vy| < V.

The aim of our inductive argument is to show that, if an extension of Theorem 4.2 to
any arbitrary natural-number rank v (resp. to all natural-number ranks ») holds, then it
also holds for the rank v + 1 (resp. for the rank w). We start by positing the following.

Assertion 4.3. Let N¥ be a v-network satisfying Conditions 3.5, where v is any ar-
bitrary natural number. Then, N” has an operating point (¢,v), and, for each branch b,
lis] < T and |vp| < V.

In the next three sections, we shall prove that, if a (¥ + 1)-network N¥*!, where v is

a natural number, satisfies Conditions 3.5 with v replaced by v + 1, then it too has an

12



operating point satisfying the stated bounds. This will establish the truth of Assertion 4.3
for every natural-number rank v. The case where v + 1 is replaced by w is taken up in

Sections 9 and 10.

5 Current Flows through Transfinite Nodes

Eventually, we will assert Kirchhoff’s current law at permissive transfinite nodes (that is,
at permissive nodes of ranks higher than 0), and for this purpose we need to identify what
is the total current incident at such a node. How we will do the latter recursively in this
section can be summarized as follows. Under Conditions 3.5 every (u + 1)-node (u being
a natural number now) can be separated from all other (x + 1)-nodes by selecting a finite
number of (i — 1)-sections, as we shall see. Moreover, if Kirchhoff’s current law is satisfied
at every a-node for all ranks a with 0 < a < p, the current flow through each (p—1)-section
can be determined, and the sum of those currents through the selected (u — 1)-sections can
be identified as the total current incident at the (u + 1)-node because that total current
will be shown to be independent of the choice of the separating set of (u — 1)-sections.
This allows us to assert Kirchhoff’s current law at the (4 + 1)-node. That this law is truly
satisfied when currents correspond to an operating point will be shown in Section 7.

The first step of our recursive development concerns the satisfaction of Kirchhoff’s cur-
rent law at 0-nodes, the conventional case, and this we have from Theorem 4.2. The second
step concerns Kirchhoff’s current law at 1-nodes, that is, when g + 1 = 1; in this case,
(p — 1)-sections are branches, and the currents in them are immediately identified. This
second step has already been considered in [2]. Our present discussion of Kirchhoff’s current
law at (u + 1)-nodes, where p + 1 > 1, subsumes the second step as a special case, but
some of our present terminology is different from that of [2]. For instance, a (—1)-section is
simply a branch, and the branch’s two (—1)-tips comprise its two (—1)-terminals. Quite a
bit more is involved when x + 1 > 1. So, let us proceed directly to this general case, since
what we say for it will indeed hold when p+ 1 = 1.

By Condition 2.1(c), every (u + 1)-node consists of only finitely many p-terminals. In

order to analyze the currents incident at that (u+1)-node, we have to consider the p-sections
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to which its u-terminals belong. So, consider any y-section S#, and let T{ (k = 1,..., K) be
its incident u-terminals — also finite in number according to Condition 2.1(b). S# consists
of infinitely many (p — 1)-sections.

Let D#(T}',€x) denote the pu-subnetwork of N¥ (v a natural number and 0 < g < v)
induced by all the branches of all the (u — 1)-sections whose incident p-nodes are all no
further than €; > 0 from Tf, as measured by d* restricted to S#. (Thus, the incident u-
nodes of such (4 — 1)-sections are in D#(T}, €x).) That the pu-terminals and p-ends coincide
(Condition 3.5(d)) implies that the €, can be chosen so small that there does not exist any
(@ — 1)-section having one incident p-node in D#(T}’, ;) and the same or another incident
p-node in D#(T/, ¢;), where k # l. Indeed, if there are any such (p — 1)-sections, they will
be finite in number, for otherwise the removal of only finitely many (u — 1)-sections would
not separate all the u-terminals, in violation of the coincidence between u-terminals and
u-ends. Moreover, each (g — 1)-section has only finitely many incident p-nodes according
to Lemma 2.2. So, we can decrease the ¢, sufficiently to eliminate all such (x — 1)-sections.
When this is so, we shall refer to each D#(T}, ¢) as an e-vicinity of T} . ‘

Lemma 5.1. There are only finitely many p-nodes lying outside all the D*(T(, ¢x) for
all the p-terminals T} (k =1,...,K) of S*.

Proof. Suppose this is not so. Then, the set of y-nodes lying outside of all the ¢-
vicinities is an infinite set M in the complete metric space consisting of all the u-nodes of
S# along with the p-terminals of S¥. M has no limit point because the only limit points in
that metric space are the pu-terminals and these reside only in the D#(TF,¢x). Therefore,
M is not relatively compact and thus not totally bounded, in contradiction to Condition
3.5(c). O

Now, let us drop the subscript k& and consider an arbitrary e-vicinity D#(T#,¢) for a
given u-terminal T# of a u-section S#. Any (p—1)-section in S* that is incident to a y-node
in D#(T*,€) and also incident to a yu-node not in D#(T*#,¢) will be called a surface (u— 1)-
section of D#(T*,€). Such surface (pu — 1)-sections are not in D#(T#,¢€). A p-node that is
incident to a surface (s — 1)-section and also to a (u — 1)-section of D#(T#, €) will be called

a surface p-node of D#(T#,¢). (Surface u-nodes do belong to D#(T*,¢).) Furthermore, we
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partition the (4 — 1)-terminals of a surface p-node into two sets, those (x4 — 1)-terminals
belonging to surface (u — 1)-sections and those not doing so (that is, those belonging to
(u—1)-sections of D#(T*#,¢)). The former (¢ —1)-terminals are called ezterior and the latter
interior surface (u — 1)-terminals of D#(T*#,¢). By Conditions 2.1(a) and (b) and Lemmas
2.2 and 5.1, D¥(T*, ¢) has only finitely many surface (x — 1)-sections, surface u-nodes, and
exterior and interior surface (4 — 1)-terminals.

These definitions are illustrated in Fig. 1, which shows some of the infinitely many
(pu — 1)-sections of a p-section S#. T*, shown on the right, is a u-terminal for S#, and
that diagram illustrates two ex-vicinities D#(T*#, ¢;) and D#(T#, ¢;), where 0 < €2 < €. Of
all the indicated (u — 1)-sections only S47', $471 and S4™! are surface (u — 1)-sections
for D#(T*#,¢;), and only sg“‘ and Sf{'1 are surface (p — 1)-sections for D#(T#,¢;). The
p-nodes are denoted by heavy dots and connect adjacent (u — 1)-sections. Some of the
p-nodes incident to the shown surface (u — 1)-sections are labeled 1 and/or 2 to indicate
that they are respectively surface y-nodes for D#(T*,¢;) and D#(T*,¢3). S§71 is a surface
( — 1)-section for both D#(T*,¢;) and D#(T*,¢3), and therefore some of its incident p-
nodes have both labels accordingly. Note that, among all the nodes of all ranks within
or incident to a given (u — 1)-section, the nodes closest to T# must be p-nodes because
the only way a path can enter a (u — 1)-section is through an incident g-node. Also, a
(1 — 1)-section of D#(T*#, ¢) (which therefore is not a surface (u — 1)-section of D#(T#, €1))
may have some internal nodes (of ranks less than u) that are further away from T# than
€1; one such (g — 1)-section is shown in Fig. 1.

Our next objective is to define recursively the idea of current flowing through a u-
terminal and thereby through a (u + 1)-node. This will allow us assert Kirchhoff’s current
law at a (4 + 1)-node. To this end, let us take as true the following recursive assumptions
for all ranks p = -1,0,1,...,2 — 1.

Properties 5.2.

(a) For each p-terminal T? there is a current iTo leaving T? through the p-section S* to
which T? belongs. (Thus, upon changing the orientation, we get —ir, as the current

entering 7% through S*.)
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(b) Let Tf (k = 1,...,K) be the finitely many p-terminals belonging to a p-section S*
(Condition 2.1(b)), and let i) be the current leaving T through S as in (a). Then,

lec(zl ik =0.

(¢) Kirchhoff’s current law holds at every (p + 1)-node in the following way: Let TS, (m =
1,..., M) be the finitely many p-terminals in a (p + 1)-node n**!, and let i,, be the

current leaving T?, as in (a). Then, ¥M_ i, = 0.

Fig. 2 illustrates Properties 5.2(a) and (b) for p = u— 1. Fig. 3 illustrates Properties 5.2(a)
and (c) for p = pu — 1.

Under Property 5.2(b) we can partition the p-terminals of S arbitrarily into two sets
with index sets K and Kp; then, ek, %k = Liek,(—ik). We can view 37, ik as the
current passing through S? from all the T (k € Ki) to all the T{ (k € K3). (Of course,
any i; may be positive, negative, or 0.)

Properties 5.2(a) and (b) clearly hold when p = —1, for then S~! is a branch with two
(—1)-terminals; moreover, Property 5.2(c) then asserts Kirchhoff’s current law at a 0-node.

Our next step is to show that Property 5.2(a) can be defined in a consistent way for
a p-terminal T#. Having chosen two vicinities D#(T*,¢;) and D#(T*,e2) of T#, where
0 < €2 < €, let N¥ denote the set of all p-nodes of D#(T#,¢;) that are not in D*(T*, ¢3)
and also all surface p-nodes of D#(T*,€;). (Such p-nodes are labeled by an asterisk * in
Fig. 1.) Then, let I, be the sum of all the (u — 1)-terminal currents leaving the p-nodes
of N¥. By Property 5.2(c), I. = 0. Furthermore, by Property 5.2(b), the (x ~ 1)-terminal
currents entering a (s — 1)-section, all of whose incident p-nodes are in V', cancel out of I,.
What is left is the sum of the exterior surface (u — 1)-terminal currents leaving D#(T*, ¢;)
and the interior surface (u — 1)-terminal currents entering D#(T*, ¢;), that sum being equal
to 0. By Kirchhoff’s current law applied to the surface u-nodes of D#(T*, ¢;), we can
conclude that the total current leaving D#(T*#,¢) through its exterior (4 — 1)-terminals
(equivalently, through its surface u-nodes) is equal to the total current leaving D#(T*,¢;)
through its exterior surface (4 — 1)-terminals (equivalently, through its surface p-nodes).
All this remains true no matter what the values of €; and ¢; are so long as 0 < €2 < €; and

D#(T*,€e;) and D#(T*, €2) are e-vicinities. Because of this, we are justified in treating the
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current leaving D#(T*, ¢;) through its exterior surface (u — 1)-terminals (or, equivalently,
through its surface p-nodes) as the current ir. leaving T# through S#. In this way, we
obtain Property 5.2(a) with p replaced by pu.

The extension of Property 5.2(b) to the rank g is much like that for Property 5.2(a).
Given a p-section S* with the p-terminals Ty, ..., Tk, choose an €g-vicinity D*(Tf, €) for
each Tf. Consider the pu-subnetwork M# = S¥\UK_ | D#(T%, ¢;) induced by all the branches
of S# not in every D#(T{,ex). M* has only finitely many p-nodes. Apply Kirchhoff’s
current law (Property 5.2(c)) at all the y-nodes of M* and sum all those equations. That
sum equals 0. Then, apply Property 5.2(b) to all the (x—1)-sections in M¥ to cancel terms.
It follows that the sum of all (x4 — 1)-terminal currents leaving all the e-vicinities through
their interior surface (u— 1)-terminals (or equivalently through their exterior surface (u—1)-
terminals) equals 0. The latter is the sum of the currents leaving all the u-terminals T} of
S# according to our extension of Property 5.2(a) obtained above. Thus, we have Property
5.2(b) extended to the rank u.

On the other hand, Kirchhoff’s current law, as expressed by Property 5.2(c), cannot as |
yet be established for a (uz+1)-node. This will be accomplished when we derive the operating
point for our transfinite network N#+1. When doing so, we shall employ a different but
entirely equivalent form of Kirchoff’s current law than the one indicated in Property 5.2(c)
(with p replaced by p). Let us derive it here. We shall show that the current iru leaving
a p-terminal through the exterior surface (u — 1)-terminals of D#(T#,¢€) is equal to the
sum of the currents in a finite set of branches contained in the surface (u — 1)-sections for
D#(T#,¢). That finite set of branches will be called a branch-cut for T#. It will separate
T* from all the other u-terminals of the u-section to which T# belongs.

We have that iTu is by definition the current leaving an e-vicinity D#(T*, ¢) through its
exterior surface (g — 1)-terminals. These terminals are finite in number. We can choose an
e-vicinity (in general, a different €) of rank u — 1 for each of them. Consider the exterior
surface (g — 2)-terminals for all the latter e-vicinities. These too are finite in number. By
virtue of Properties 5.2, that is, by virtue of how currents leaving terminals have been

defined recursively, we have that ipu is equal to the sum of the currents leaving those
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exterior surface (p — 2)-terminals.

Continuing in this fashion through decreasing ranks, we eventually arrive at currents
leaving finitely many (—1)-terminals; these currents also sum to irw. But, the currents
leaving those (—1)-terminals are simply branch currents oriented away from T#. In this
way, we obtain a finite branch-cut for T#, whose branch currents oriented away T# sum to
iru. The branch-cut resides within the surface (1 — 1)-sections of D#(T#, ¢).

Now, consider any (u + 1)-node n#t1. It has finitely many p-terminals, each of which
has a finite branch-cut. Upon taking the union of those branch-cuts, we obtain a finite
branch-cut Cpu+1 for n#*!, which separates n#*! from all other (u + 1)-nodes of N“*! in
the sense that any path connecting n#*! to any other (4 + 1)-node must pass through a
branch of Cu+:.

Thus, Kirchhoff’s current law for a (u + 1)-node n**! can be stated as follows: The
sum of the currents in the branches of C,.+: all oriented the same way (either away from
or toward n#*1) is equal to 0. This version of Kirchhoff’s current law will be established
in Section 7 for the nodal rank g 4+ 1 and thereby inductively for all natural-number nodal

ranks.

6 Potentials on the Nodes of N**!

Our objective now is to show that, if Assertion 4.3 holds for the natural-number rank v,
then a (v + 1)-network N“*! satisfying Conditions 3.5 (with v replaced by v + 1) has a
potential p that is continuous at all nodes of all ranks from 1 to v+ 1. That potential p will
be obtained as the limit of potentials for a sequence of v-networks obtained by shorting e-
vicinities of the (v + 1)-nodes of N“*! and then contracting those e-vicinites. Our argument
will proceed through a series of five steps, which we display below. We assume henceforth
that N¥*! satisfies Conditions 3.5 with v replaced by v 4+ 1. We will need

Lemma 6.1. For every two nodes m and n of N“*! there is a path terminating at
them, and every such path is permissive.

Proof. There is a two-sided path terminating at m and n by virtue of the connectedness

of N” (Condition 3.5(a)). Therefore, this lemma follows from Lemma 2.3. O
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6a. The set of all permissive nodes in N“*! is a compact metric space under d"*!:

Let Nnv+1 denote the set of all permissive nodes of all ranks in N¥*1. We first show
that Ayv+1 is a complete metric space under d“*!. Let {nx}32, be a Cauchy sequence in
Nnw+r under d*F1. If {ng}52, lies within some y-section S, where 0 < 7 < v, then every
nk is of rank no larger than v, and by [16, Proposition 5.7], {ni}72, is a Cauchy sequence
under d”. Therefore, {n;}$, converges to some A-node n* in or incident to S”, where
1 < A <7+ 1, because the union of Ng, and the set of terminals of S” is complete under
d" according to our recursive procedure of generating N¥. (If {nx}{2, converges under d”
to a 7-terminal of S7, it converges under d” to the (¥ + 1)-node containing the v-terminal.)
On the other hand, if {n,}{, contains nodes in two or more v-sections of N**! it can be
partitioned into two or more — but finitely many (Lemma 3.6) — subsequences where each
subsequence is contained in a v-section of N“*1, These subsequences will be Cauchy under
d¥ as well, again according to [16, Proposition 5.7]. They must converge to v-terminals, all
of which are in a single (v + 1)-node, for otherwise {n;}32,; would not be Cauchy under
d“*!. Thus, every Cauchy sequence under d“*! converges, and Nyv+1 is complete.

Now, Condition 3.5(c), as applied to N“*!, asserts that, for each v-section S¥, Ng. is
a totally bounded set under . Since d*'(m,n) < d“(m,n) for all m,n € Ng., Ng. is
also totally bounded under d“*!. (Indeed, any finite e-net for Mg under d" is a finite e-net
for Ng. under d“*1.) Moreover, since N“*! has only finitely many v-sections (Lemma 3.6),
Nnv+1 is totally bounded under d“+'. By completeness and total-boundedness, we have
that Mv+1 is compact under d“*1.

6b. Approzimating N“*t! by a sequence of v-networks:

Let n4*! (¢ = 1,...,Q) be the finitely many permissive (v+1)-nodes of N“+!. D*+1(ng*+1 ¢)
will denote the subnetwork of N“*! induced by all the branches of all the e-vicinities of all
the v-terminals in ny+!. We will call this an e-vicinity of n¥*!. D*+1(n¥t1,¢) has exactly
one (¥+1)-node, namely, ng“ , and infinitely many nodes for each nodal rank less than v+1.
Exactly as for vicinities of terminals, we can define surface (v — 1)-sections, surface v-nodes,
and ezterior and interior surface (v — 1)-terminals for D*1(n/*!, €). There are only finitely

many of these because n;"'l has only finitely many »-terminals, which in turn have only
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finitely many of these entities. Let us choose a null sequence {€;}2; with €x > €441 > 0
for all k and ¢ — 0, starting with a sufficiently small ¢ such that D**!(nf*1,¢;) is an
€x-vicinity for every n¥*! and every k. For each k, let us short every D**!(ni*!,¢;) to
obtain a v-network NY; with k fixed, this “shorting” is accomplished by replacing every
D**!(n¥*1,¢) by a v-node nY, consisting of all the external (v — 1)-terminals of all the
surface nodes of D“*1(ny*1,¢;). Every branch and every y-node (0 < 7y < v) of N¥+! will
eventually appear in the N (i.e., eventually lie outside all the ¢;-vicinities as k — c0). In
this way, the N¥ form an approximating sequence that fills out N**1; the (v + 1)-nodes
never appear in any N{.

Each NY satisfies Conditions 3.5. Indeed, Lemma 5.1 insures the fulfillment of the second
part of Condition 3.5(a). Condition 3.5(b) (i.e., Conditions 2.1) are also fulfilled because
each D¥+1(n4*!, ;) has only finitely many exterior surface (v — 1)-terminals. All the other
requirements are obviously fulfilled since N“+! fulfills Conditions 3.5 when v is replaced by
v+ 1. So, we can invoke Assertion 4.3, which is our inductive assumption, to affirm that,
for each k, N{ has an operating point (ix, vy) satisfying |k | < I and |vgs| < Vi for every
branch b in N¥, where Iy and Vj are the quantities of Condition 3.1(c) for N{. We will
argue in Section 7 that these operating points converge in a certain way to an operating
point for N¥*! as k — co. When doing so, we can replace I} and V) by the quantities T
and V for N¥+! because It < I and Vi < V for all k.

Next, choose and fix a ground node n, that lies outside every D"+1(n‘q’+1,61). Every
potential discussed below will be measured with respect to n, as ground; that is, it will
take the value 0 at n,.

By the definition of an operating point, there is, for each k, a potential p, that assigns
a real number to each node of any rank in N{. The branch voltages in N} are obtained
from {;, and P is continuous on NN;: (that is, at all permissive nodes of N} with positive
ranks). We extend p onto the nodes of all ranks within each D"*’l(n;""1 , €, ) by assigning to
each such node the value fx(nY), where n is the v-node in Ny that replaces D**!(n¥+!, ¢;)
when shorting the latter vicinity. Let p; be the resulting potential; p; is defined on the set

NnNv+1 of all the permissive nodes of all ranks in N¥*!, including its (v + 1)-nodes, and pj
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is constant on the nodes of each D**!(n¥+1 ¢;). Hence, it is continuous on NVw+: since it
is continuous on M.

We will invoke the Arzela-Ascoli theorem in order to show that a subsequence of {px}32,
converges uniformly to a continuous potential on Anv+1. Items 6¢ and 6d below constitute
the hypothesis of that theorem.

6¢c. {pr}i2, is pointwise (i.e., nodewise) relatively compact:

Consider any pi (k fixed). For any branch b embraced by a vicinity D¥tl(n¥tl, &),
its branch voltage is vk = 0 because p; is constant on that vicinity. Next, assume that b
lies outside every D**'(n¥*1,¢;), and apply Assertion 4.3 to N¥. (Recall the linear branch
resistances R, assigned just after Conditions 3.1.) If M, has a finite Lipschitz constant on
[=I, 1], then vk | < Re(|irs| + 6°(0,0, Mp)) < 2IRy. On the other hand, if M} does not
have a finite Lipschitz constant on [—~1, I], we can nonetheless write |vg| < W. Then, for
any node n € NNv+1, we may choose a permissive path P from n to ny according to Lemma
6.1. (It was with the Ry that permissive paths were defined.) Let B (resp. B;) be the
set of branches in P having (resp. not having) finite Lipschitz constants on [-1, I]. Recall
that, for b € B,, Ry, = 1. We may now bound branch voltages along P to write

o)l < D lvksl S 21D Ro+ D> ¥V < max(2I,V))_ R;.
b+P beB, beB; b-P
Since the right-hand side is finite and independent of k, we can conclude that {pi(n)}32,
is a bounded set in R and therefore that {p}72, is a pointwise relatively compact set of
potentials on Npv+1.

6d. {pr}32, is equicontinuous at each node of positive rank:

Consider any node n of positive rank in N“*!, Choose any ¢ > 0, and set § =
¢/ max(2I,V). Now, for any node m in N“*! such that d“*!(m,n) < §, take a path
P terminating at m and n such that 3", .p Ry < 6. Then, as above we have for all £

Ipe(m) — p(n)] < max(21,V) Z Ry, < e (2)
4P
This proves the assertion 6d.

6e. The eristence of a continuous potential p on Nnv+1:
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Let C be the complete metric space of all continuous functions mapping NN+ into R.

The metric for Nv+:1 is d¥T! as always, and the metric d¢ for C is taken to be

de(p1,p2) = sup{|pi(n) — p2(n)|: n € Nnv41}.

By virtue of 6a, 6c and 6d above and the Arzela-Ascoli theorem [8, page 149], we can
conclude that {p,}72, is a relatively compact subset of C. Thus, it contains a subsequence
that converges in C under the metric d¢c. Let p be its limit in C. Thus, p is a continuous

potential on Nnv+1.
7 The Existence of a Solution for N¥*!

So far, we have found a subsequence {pi,}2; of {pr}gZ,; that converges uniformly to a
continuous potential p on Ayv+1. Hence, for each branch b of N¥*!, the corresponding
subsequence of branch voltages {vk,5}52, converges to a voltage vector v for Nv+1 By
Assertion 4.3, |vk; s| < Vi < V for all k;, and therefore |vy| < V. Again by Assertion 4.3,
there is for each k; a current vector i, satisfying lik,,bl < I £ I. Thus, the corresponding
current vectors satisfy ix, € [-1,I]%. By Tychonoff’s theorem [10, page 119], [-1,I}% is
compact under the product topology. Therefore, we can choose a subsequence {p;}2, of
{Pk,}32, such that the current vectors corresponding to {p}}f2, converge in the product
topology to a current vector i € [—1, I8 and therefore converge branchwise as well.

At the end of Section 5 we noted that, for each (g + 1)-node n#*! (1< pu+1<v+1),
there is a finite branch cut Cu+1, which isolates n#*! from all other (u+1)-nodes; moreover,
the branch currents for C,.+1 measured, say, away from n#*! sum to the current incident
away from n#*1. By Assertion 4.3 again, the current vector ¢} corresponding to p} satisfies
Kirchhoff’s current law on C,u+:1 for all [ sufficiently large. By the branchwise convergence
noted above, i too satisfies Kirchhoff’s current law on C,,u+1 and thus at every (x4 + 1)-node.
Similarly, ¢ satisfies Kirchhoff’s current law at every 0-node as well.

Finally, by Assertion 4.3 once again, for each branch b the branch current and branch
voltage corresponding to p; comprise a point on M, again for all / sufficiently large. We
have shown that such points converge in R? as [ — oo. Since M, is a closed set, the limit

point (%, vp) is also a member of M.
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Altogether then, we have proven that N“*1 has a solution (i.e., an operating point) as
defined at the end of Section 3 and is bounded as stated above. By induction, this is true
for all natural-number ranks of our transfinite networks. We restate this as the following
one of two main theorems of this paper, where now v + 1 is replaced by v. (The second
main theorem is given in Section 10.

Theorem 7.1. Let NY be a transfinite electrical network of arbitrary natural-number
rank v, and let NY satisfy Conditions 3.5. Then, NY has an operating point (i,v), and, for
every branch b, |iy] < I and |vp] < V.

Finally, let us explicitly note the satisfaction of Kirchhoff’s voltage law. Let m and n
be any two nodes of any ranks in N¥, and let P be a path terminating at m and n; P is
permissive (Lemma 6.1). Orient P from m to n. By Theorem 7.1 and the definition of an
operating point, we have a potential p: A, ~ R with p being continuous at every node
of rank larger than 0. Then, as before, we have

p(m) - p(n) = 3 v,
b4P
where every branch b 4 P is oriented conformably with P.

By Lemma 2.3, every loop L of any rank in N” is permissive. Orient L. Since L is
the union of two oppositely oriented paths with common terminal nodes, it follows that, if
Theorem 7.1 holds, then Kirchhoff’s voltage law:

va =0 (3)
b4L

is satisfied around every loop L. (In (3), L and every b 4 L are oriented the same way.)

8 Uniqueness of an Operating Point for N”

We have established the existence of an operating point for N¥ according to Theorem 7.1,
but not its uniqueness. Indeed, that operating point need not be unique. For example,
suppose there is a 0-loop L° in NY such that, for every b 4 L® M, has a horizontal
segment with (¢, vs) being inside that segment, where (2, v3) is a branch voltage-current

pair corresponding to an operating point for N“. Then, for each b 4 L® we can shift (4, v3)
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on that horizontal segment without altering any v, and thereby the potential for that
operating point. If the shifts are all the same for every b 4 L% we have in fact introduced
a loop current around L°. The new branch currents will again satisfy Kirchhoff’s current
law. Moreover, the shifts may be small enough to satisfy the bounds |ip] < I. In this way,
we may find another operating point for N”.

Similarly, if there is a finite branch-cut C° that separates N” into two components and
if, for every b € C°, M, has a vertical segment with (45, vs) being inside that segment, where
again (i, vp) corresponds to an operating point for N¥, we can vertically shift (¢, vs) for
each b 4 C° by the same amount on each segment to find a new operating point for N,
and the bound |vs] < ¥ might still be satisfied. In this case, the potential for N¥ will
change, but by the same amount across C°. The new potential will still be continuous at
all transfinite nodes.

A sufficient condition for the uniqueness of the operating point can be stated. Specif-
ically, the requirement is that every branch characteristic M, have neither a horizontal
segment nor a vertical segment. This is equivalent to the hypothesis on M, in the next
theorem.

A branch-cut C,» for a p-node was defined at the end of Section 5. C,u is a finite set
of branches that separates n# from all other A-nodes (u < A < v) of N¥. We will need
the ideas of the “interior” and “exterior” of C,,» and of the corresponding “0-node-cut” for
n#. The interior of C,u is the set of all nodes of all ranks (perforce no larger than u) for
which there exist paths connecting those nodes to n# that do not pass through any branch

of Cu. The exterior of C,u is the set of all nodes of all ranks not in the interior of C,u.

0

Furthermore, the 0-node-cut C}]

u corresponding to C,» will be the set of all 0-nodes in the
interior of C,u that are incident to the branches of C,u. C2,. is also a finite set. When
saying that Kirchhoff’s current law is applied to C%., we will mean that it is applied to C,x
and that the sum of branch currents for C,.» oriented toward n* (i.e., oriented toward the
0-node-cut) is equal to 0. Note also that by the continuity of the potential p we can choose

C2, close enough to n* to make max{|p(n®) — p(n*)|: n® € C2.} as small as we wish.

Theorem 8.1. Under the hypothesis of Theorem 7./, assume furthermore that, for
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every branch b, M, is a continuous, strictly monotonically increasing function of iy. Then,
the operating point (i,v) for NY is unique.

Note. The domain and range of M, as a function of i, may be proper subsets of R.

Proof. Suppose that (i,v) and (¢ + A, v + Av) are two different operating points for
N¥. Orient every branch b such that A: > 0. Then, Av > 0 too. In fact, for every branch
b, either Aiy = Avy, = 0 or Aty > 0 and Avy, > 0. Furthermore, Ai satisfies Kirchhoff’s
current law, and Av is generated by a continuous potential Ap on Ny .

Suppose furthermore that there is a branch a with Ai, > 0 and Aw, > 0. Let n¢ and
nJ be the 0-nodes incident to a with Ap(nf) < Ap(n3). Let WY denote the open interval
(Ap(n?), Ap(n)). By virtue of the continuity of Ap and the fact that there are only finitely
many v-nodes in N¥, we can choose a 0-node-cut CJ, around each v-node n” of N” close

enough to n to satisfy the following condition: There is a nonvoid open subinterval W»~!

of W* such that, for each 0-node-cut C9,, either Ap(n°) < inf W*~! for all n° € C9, or

1

Ap(n®) > sup W¥~! for all n® € CO.. Ai satisfies Kirchhoff’s current law on every C2..

Now, consider the intersection A'“~! of all the exteriors of all the branch-cuts C,+ corre-
sponding to C2,. V"1 will contain nodes of rank v — 1 (otherwise, C,» would not separate
nY from all other v-nodes), and those (¥ —1) nodes will be finite in number (this follows from
Condition 3.5(c) and an argument just like the proof of Lemma 5.1). Choose a 0-node-cut
C9,-1 around each (v — 1)-node in X*~! close enough to n*~1 to satisfy the following con-
dition: There is a nonvoid open subinterval W*~2 of W“~! such that, for each 0-node-cut
Cgu_, , either Ap(n®) < inf Wv=2? forall u® € Cgu_l or Ap(no) > sup WY 2 forall n® € CS,,_X.
Again, At satisfies Kirchhoff’s current law on every Cg,,_,.

Next, we argue in the same way for the intersection ’*~2 of all the exteriors of all the
Cnv and C,u-1, where C,o—1 is the branch-cut corresponding to C2,_,. Again, X*~2 will
contain at least one and no more than finitely many (~ — 2)-nodes.

Continuing in this way, we can proceed through decreasing ranks to reach the rank
0. The resulting intersection X' of all exteriors will contain only finitely many 0-nodes.
Furthermore, there will be a nonvoid open subinterval W° with Wl c Wl c ...c Wv~! ¢

WY such that, for every rank v = 1,...,v and for every 0-node-cut C2,, either Ap(n®) <



inf WP for all n® € €%, or Ap(n®) > sup W° for all n® € C2,. Also, Kirchhoff’s current law
will be satisfied at every C2,. Note, moreover, that there are only finitely many 0-node-cuts
C% of all tanks y = 1,...,».

Next, let } denote the union of the set of all 0-nodes n° of 10 satisfying Ap(n°) < inf W°
and all 0-node-cuts C2, of all ranks v satisfying max{Ap(n®): n° € €%} < inf W, Now,
sum the equations obtained by applying Kirchhoff’s current law to all members of . That
sum [y of branch currents will equal 0.

On the other hand, every branch having both of its 0-nodes in Y will contribute two
current terms to [y, one the negative of the other. Therefore, Iy is also equal to the sum of
branch currents for all branches having one node in Y and the other node with a potential
value greater than sup W% The branch a in one of them. Since every branch has been
oriented from its node of higher potential value to its node of lower potential value, we have

that Iy > Ai, > 0. This is a contradiction. The theorem is proven. O

PART III: w-NETWORKS

We now extend our results to an w-network N“ satisfying Conditions 3.5 with » = w.
Much of the needed arguments are the same as those of Part II with merely changes of
notations and wording, but there are significant differences. So, in this Part III we shall
explicate the arguments that are substantially different from the preceding and will merely

summarize the arguments that are essentially the same.

9 Current Flows through w-Networks

Consider an &-section S¥ in N“, and let 7% = {TF}_ | be the finite set of w-terminals T¢

of S%. Also, choose any p-node n# embraced by S¥, where g is a natural number, and set
d%(n*, T%) = min _d°@n*, T
( ’ ) 1<k<K ( vtk )’

where as always d“ is the metric (1) (with x4 = &) on the nodes and G-terminals of S%.

d®(n*,T?) is a positive number. Finally, set
z, = sup{d®(n*,T): n* 4 59},
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Lemma 9.1. z, — 0 as g — oo (t.e., as p increases through all the natural numbers).

Note: This lemma says that all the g-nodes of S® are contained in smaller and smaller
d®-spheres around the T,‘f’ as y4 — oo,

Proof. Suppose this lemma is not true. Then there exists an € > 0 and a subsequence
{u;}52, of the sequence {u}72; such that z,; > € for all j. Therefore, for each j, there is a
pt;-node n#i for which d%(n#1,7%) > e. Now, {n#: }$2, is an infinite subset of the complete
metric space consisting of all nodes of all ranks in S¥ along with the J-terminals of S¥. By
Condition 3.5(c) (with u replaced by &), {n#s}32, has a limit point in that metric space.
That liinit point must be an &-terminal T¥ of S® because the ranks of the n#’ increase
indefinitely and no node of natural-number rank can be the limit of such a sequence under
Condition 2.1(a). (If {n*s1}52, were to converge to a node n* of natural-number rank A,
{n*i}32, would have to be contained eventually in a (A + 1)-section; the nodes incident to
S*1 are of ranks no larger than A + 2, and this violates the fact that u; — 00.) Thus, T¥
must be different from all the &-terminals of 8%, a contradiction. O

Let us now define “vicinities” for the &-terminals of S%. The construction here is
substantially different from that of an e-vicinity of a terminal with a natural-number rank.
Instead of depending upon a choice of € > 0 as before, the present vicinity will depend upon
a choice of a section of sufficiently large rank in a chosen nested sequence of sections (recall
the construction given in Section 3).

So, choose any 0-node n°, and let S,o = {S%}52 be the resulting nested sequence of
sections induced by n°. Next, let u be so large that S, isolates all &-terminals of S%. (This
can always be done; see Condition 3.5(d) and Lemma 3.4.) Also, let S“—’\Sﬁ0 denote the
&-subnetwork of S? induced by all branches of S% not in SZO. Thus, every &-component
of S“"\SZ0 has exactly one &-terminal and therefore exactly one &-end (Condition 3.5(d)).
For each &-terminal 79 of S?, the &-component of S“*’\Sf:0 having T% as its &-terminal
will be called an (n®, u)-vicinity of T and will be denoted by DP(T9, 00, u). It will always
be understood that the isolation of all the @-terminals of S¥ occurs whenever we refer to
vicinities of the &-terminals of S%.

Note also that, if ¥ is the @-end of S® corresponding to T, then e‘:'(S::o) = D%(T%,n0, u).
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By virtue of Lemma 3.3, given any two 0-nodes n§ and nd, D(T%, n, 1) and D?(T%, n3, u)
eventually coincide for all p sufficiently large, this being true for every J-terminal 7% of
S¥. However, there will not be any g for which the (n?, u)-vicinities of 7% coincide for all
the 0-nodes n° in S°.

These vicinites for J-terminals induce vicinities for w-nodes. Given any w-node n*“, let
T¢ (m =1,..., M) be its finitely many G-terminals. Choose a 0-node 22, in each &-section
incident to n“. Thus, nd, = nJ _ if T,‘;'fl and T,‘;’:2 belong to the same &-section. Then,

choose u sufficiently large to isolate each T within the J-section to which it belongs. We

now define a vicinity D(n“, u) of n as the w-subnetwork of N* induced by all the branches

in all the D?(T%, n® u), where m = 1,..., M. Thus, D¥(n*, 1) embraces n*, in contrast

to the D¥(T¥

m?

n%, 1)), which do not embrace n“. (Note that we have suppressed the n%, in
the notation for D¥(n*, u). That D¥(n¥, 1) depends upon the choice of {n% }M_, will be
understood. For two different choices, the D“(n*, u) will be the same for all p sufficiently
large, by virtue of Lemma 3.3.)

Having chosen the u-section S¥, that determines the (n°, u)-vicinities of all the &-
terminals of S¥, consider the (i + 1)-nodes incident to S's. These are finite in number.
Given an @-terminal T of S¥, the (i + 1)-nodes incident to both S¥; and D (T, 00, 1)
will be called the surface nodes of D“’(T“’, n% u). Those surface nodes belong to (i.e., are
embra?:ed by) D®(T%,n®, u) and are incident to both SZO and to one or more p-sections in
D?(T%,n° p). Consider any surface node n#*! of D?(T¥ n%, 1) and its u-terminals; such a
p-terminal belonging to (resp. not belonging to) a u-section in D?(T¥, n%, 1) will be called
an interior (resp. exterior) surface p-terminal of n#+' and also of D¥(T%, n° u). There are
only finitely many interior and exterior surface y-terminals of D?(T9, n®, 1) by virtue of
Lemma 2.2 applied to S*, and of Condition 2.1(c).

Fig. 4 illustrates these ideas. S%; and SﬁOH are two successive sections in a nested
sequence of sections for the @-section S¥. Thus, S:o C S::;H C S9. DP(T9,n°, 1) and
DZ(T9, 2% u + 1) consist of all the sections to the right of S¥, and of SZ;H respectively.
The indicated Si (k = 1,...,5) are some of the yu-sections in De(T9, 2% u). nf“ and

) - : . 1 2
ny*! are the surface nodes of DZ(T?,n%, 11). The exterior terminals of n#*! and n4** (and



also of D%(T%,n°, 1)) belong to S*;. Each interior terminal of n#*' and n4*! (and also

‘3‘+2 and nf{*’2 for

of D¥(T%,n% u)) belongs to one of S, S5, and S4. The surface nodes n
D%(T9,n% u + 1) are also shown.

Let us now discuss the flow of current at an &-terminal T. It is now assumed that
Kirchhoff’s current law holds at every node of every natural-number rank p. We have
already defined the currents incident away from u-terminals. We now define the current
incident away from T® as the sum of the currents incident away from the (finitely many)
exterior surface y-terminals of D?(T%, n°, u). Since Kirchhoff’s current law holds at every
surface node of D¥(T¥, n®, 1), the current incident away from T is also equal to the sum
of the currents incident toward the interior surface u-terminals of D#(T%, n% u). (We can
also interchange “away from” and“toward” throughout the last three sentences.)

We check that this definition is consistent for various choices of n® and u as fol-
lows. First, let n® be fixed. Let F* be any finite subset of the set of u-sections in
D%(T%, 0% u)\D®(T?, 2% p + 1). Sk is not a member of F*. Consider the set M+*1
of (u + 1)-nodes that are either incident to u-sections of F* or are surface p-nodes of
D®(T?,u°, i), or both. Any p-terminal of a (z + 1)-node in M**! that does not belong to
any p-section in F#* U {S%} will be called an adjoining pu-terminal of F# U {S%,}. Apply
Kirchhoff’s current law to all the (u + 1)-nodes in M*#*1| and then sum those equations.
The result equals 0. By the cancellation of u-terminal currents within each u-section of F*
(Property 5.2(b)), we are left with the currents incident away from the exterior u-terminals
of D?(T%,n% 1) and also the currents incident away from the adjoining u-terminals of
F* U {85}, and these currents sum to 0 too. Since this is true for every choice of F*,
we can take the sum of the currents incident away from the exterior surface y-terminals
of D¥(T¥,n% u) as being the sum of the currents incident away from the exterior surface
(i + 1)-terminals of D¥(T?,n% u + 1). By recursion, we get that sum as being the sum of
the currents incident away from the exterior surface A-terminals of D¥(T% n° )) for every
A > p. This in turn allows us to define the current incident away from 79 as that sum
again. We have consistency with respect to different choices of 4.

With regard to different choices of n°, we get consistency directly from the foregoing
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result and Lemma 3.3.

We can now state Kirchhoff’s current law for an w-node n in N¥. Let T9 (m =
1,..., M) be the finitely many &-terminals of n“, and let ¢, be the current flowing away
from T%. Kirchhoff’s current law asserts that S"M_, 4, = 0. That this law is truly satisfied
at every w-node will be established when we establish the existence of a solution for N“

We will also need to state Kirchhoff’s current law in terms of a branch-cut for n*. For
each m, consider D?(T%,n% 4) and then consider its (finitely many) exterior u-terminals

T:z,k (k=1,...,K). These belong to the pu-section S;,nu that induces D?(T?,n%, u). Now,

exactly as was done at the end of Section 5, we can find a finite branch-cut within S; for

0

u

+.n0- Lhe union of those

every T, , that separates T , from every other p-terminal of S
branch-cuts for all k = 1,..., K is a branch-cut of finitely many branches that separates
TS from all other &-terminals of S¥. In this way, we have a finite branch-cut for each T%
in n%, and the union of those latter branch-cuts for all mn is a finite branch-cut C,« that
separates n“from all the other w-nodes of N“. We shall simply refer to C,,«» as a branch-cut
for n¥. Finally, the sum of the currents in the branches of C,» is the same as the total
current incident at n“ (with — as always — all the branches oriented the same way with
respect to n*). Thus, an equivalent version of Kirchhoff’s current law for n“ asserts that

the sum of the currents in (the branches of) C,v is equal to 0. It is this form of Kirchhoff’s

current law that will be used when we discuss an operating point for N“.

10 A Solution for N¥

The remaining arguments are much like those in Sections 6 through 8. We start by assuming
that Assertion 4.3 holds for every natural number ». Lemma 6.1 remains true when N**!
is replaced by N“. Then, as in Subsection 6a, the set AN of all nodes of all ranks in N¥
can be shown to be a compact metric space under the metric d¥, which is defined as in
(1) with p replaced by w and P(S#,m,n) replaced by the set P(N“,m,n) of all two-ended
paths (perforcé permissive) in N“ terminating at the nodes m and n of Ayw.

As for the extension of Subsection 6b, we now approximate N“ with an expanding

sequence {N#}2  ~ of u-networks constructed as follows. We start by choosing a 0-node in
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each of the finitely many &-sections of N“, and then choosing ug so large that we obtain
vicinities D¥(T9, 09, o) for all the &-terminals 79 and thereby vicinities D“’(n‘;,,uo) for
all the w-nodes ny (¢ = 1,...,Q) of N¥. Upon shorting those vicinites of the w-nodes
(i.e., by replacing the vicinity D¥(ny, po) of each w-node ny by a po-node nh® consisting
of all the exterior surface po-terminals of all the DG(Ta,no,uo) in each D¥(n{, uo)), we
obtain a pp-network N#e. (N#° depends of course on our initial choices of the 0-nodes in
the &-sections, but Lemma 3.3 assures us that this is of no consequence.) We perform the
same construction for each u > po to get N#. Then, as p — oo, {N*#}52  fills out N“ in
the sense that each branch and each node of finite rank in N is eventually in some N# and
in all subsequent N* (A > p) as well. (This is a consequence of Lemma 3.2.) Each such N#
satisfies Conditions 3.5 with v replaced by p. So, by Assertion 4.3, N* has an operating
point (¢,v) with |iy] < I, < I and |v| < WV, < V for each branch b in N#, where I and
V are the quantities of Condition 3.1(c) for B being the set of all branches in N“. We now
choose a ground 0-node for N* that lies outside the vicinity D“(n¥, uo) of every w-node n;/
(¢g=1,...,Q) in N¥. This yields a unique continuous potential p, on the nodes in N* for
each u > po. We then extend p, onto all nodes of all ranks in each D“(n{, ) by continuity
and constancy to obtain a potential p, on AMNw.

The rest of the argument requires no changes other than for notation. We can show that
{Pu}S%,, is pointwise relatively compact and pointwise equicontinuous as in Subsections 6c
and 6d (just replace D**!(n¥*!, ;) by D¥(n¥, u). This allows us to invoke the Arzela-
Ascoli theorem to assert the existence of a continuous potential p on Myw as the limit of a
subsequence of {p,}5% , .

Next, we can establish the existence of a bounded solution for N“ as in Section 7. Just
replace {px}72; by {p.}%,,, and then select subsequences as before. In the present case,
we use the finite branch-cut for each w-node in N“| specified at the end of Section 9, when
establishing Kirchhoff’s current law at each w-node. Thus, we have arrived at the following,
which is the second main theorem of this paper. -

Theorem 10.1. Let the w-network N“ satisfy Conditions 3.5 with v = w. Then, N¥

has an operating point (i,v), and, for every branch b, |tp] < I and |vp| < V.
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Moreover, v will satisfy Kirchhoff’s voltage law as before.

Finally the argument establishing the uniqueness of the operating point when every
branch characteristic M}, has neither horizontal nor vertical segments requires only one
additional step as follows. We define the interior, ezterior, and 0-node-cut of a branch-cut
for each w-node as in Section 8. We then choose a finite branch-cut and thereby a finite
0-node-cut C2. around each w-node n¥ to satisfy the requirements that CO, fulfilled in the
proof of Theorem 8.1. The important point here is the following: Since there are only
finitely many w-nodes in N“, there will be a minimum natural-number rank » such that
the intersection A'“~! of all the exteriors of all the chosen branch-cuts for all the w-nodes
does not contain any nodes of ranks v or larger. In fact, v = po + 1, where o + 1 is the
rank of all the surface nodes of all the vicinities of all the w-nodes corresponding to which
the branch-cuts are chosen. The argument then proceeds with A»=1, ¥*=2 . . X0 asin
the proof of Theorem 8.1. We thus obtain

Theorem 10.2. Under the hypothesis of Theorem [0.1, assume furthermore that, for
each branch b, My is a continuous, strictly monotonically increasing function of i,. Then,

the operating point (i,v) for N“ is unique.
11 Final Remarks

(1) We have presented a theory for the operating points of end-generated transfinite mono-
tone networks of all ranks up to and including w. We can continue to do so for ranks higher
than w, needing only changes in notation, by following the arguments of Sections 5 through
8 for successor-ordinal ranks and the arguments of Sections 9 and 10 for limit-ordinal ranks.
However, we cannot assert that our rank-by-rank extensions will carry through all the count-
able ordinals because we have not presented a transfinitely inductive argument. It is not
clear how to make an inductive assumption for any arbitrary countable-ordinal rank.

Furthermore, how to define transfinite graphs and networks of ranks R; and higher
remains an open problem.

(ii) When N¥ is a linear network, we can relate the operdting point found in this paper

to that given in {14, Chapter 5], [15, Chapter 5] as follows. Let M, be a straight line with
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positive slope 7y for every b. Thus, ry is the linear resistance of branch 6. M, intersects the
current axis at, say, —hs and the voltage axis at e, = hprp. hip is the value of the current
source when b has the Norton form, and e, is the value of the voltage source when b has the
Thevenin form. Under Conditions 3.1, é'(0,0, M) = |hs|, 67(0,0, My) = |es], 3 |hs| < 00,
and 3" |es] < oo, where 3~ denotes a summation over all b € B. Consequently, 3" e? < oo

and 3 h? < 0o, and we have

2 ’
T2 = Clelinl < (e 318" < oo,

Thus, the hypothesis of the fundamental theorem [14, Theorem 5.5-1], [15, Theorem 5.2-8]
is fulfilled. We can conclude that the unique operating point given by Theorems 7.1 and
10.1 herein is the same as that dictated by the fundamental theorem given in [14] and [15].

Note that, in the linear case, Condition 3.1(c) herein is stronger than the condition

Y_e}/ry < oo assumed in the prior fundamental theorem.

References

(1] B.D. Calvert, Infinite nonlinear resistive networks, after Minty, Clircuits, Systems, and

Signal Processing, 15 (1996), 727-733.

{2] B.D.Calvert and A.H.Zemanian, Operating points in infinite nonlinear networks ap-

proximated by finite networks, Trans. Amer. Math. Soc., in press.

[3] D.I. Cartwright, P.M.Soardi, and W.Woess, Martin and end compactifications for non-
locally finite graphs, Trans. Amer. Math. Soc., 338 (1993), 679-693.

(4] H. Freudenthal, Uber die Enden diskreter Riume und Gruppen, Comment. Math.
Helv., 17 (1944), 1-38.

[5] R. Halin, Uber unendliche Wege in Graphen, Math. Ann., 157 (1964), 125-137.

(6] H.A. Jung, Connectivity in infinite graphs, in Studies in Pure Mathematics (L. Mirsky,
Ed.), Academic Press, New York, 1971.

[7] G. Minty, Monotone networks, Proc. Royal Soc. London, 257 (1960), 194-212.

33



[8] A.W. Naylor and G.R. Sell, Linear Operator Theory in Engineering and Science,
Springer- Verlag, New York, 1982.

[9] N. Polat, Aspects topologiques de la séparation dans les graphes infinis. I, Math. Z.,
165 (1979), 73-100.

[10] G.F. Simmons, Topology and Modern Analysis, McGraw-Hill Book Co., New York,
1963.

[11] P.M. Soardi, Potential Theory on Infinite Networks, Lecture Notes in Mathematics
1590, Springer Verlag, New York, 1994.

(12] W. Woess, Random walks on infinite graphs and groups — a survey on selected topics,

Bull. London Math. Soc., 26 (1994), 1-60.

[13] D.H.Wolaver, Proof in graph theory of the “no gain” property of resistor networks,

IEEFE Trans. Circuit Theory, CT-17 (1970), 436-437.

(14] A.H. Zemanian, Infinite Electrical Networks, Cambridge University Press, Cambridge,
England, 1991.

[15] A.H. Zemanian, Transfiniteness for Graphs, Electrical Networks, and Random Walks,
Birkhauser, Boston, 1996.

(16] A.H.Zemanian and B.D.Calvert, Permissively Structured Transfinite Electrical Net-
works, CEAS Technical Report 729, University at Stony Brook, Stony Brook, N.Y.,
August 8, 1996. k

34



Figure Captions

Fig. 1. Ilustration of some (u — 1)-sections related to an ¢;-vicinity D#(T*#,¢;) and
an €y-vicinity D#(T*#, €;) for a p-terminal T# (T* is indicated at the right of the figure).
Here, 0 < €; < €1. The singly crosshatched areas denote (pu — 1)-sections of D#(T*, ¢;).
The doubly crosshatched areas denote (u — 1)-sections of D#(T#,¢3) — and therefore of
D#(T*#,¢1) too. The heavy dots denote u-nodes. They are labeled as follows. The label 1
indicates a surface pu-node of D#(T*,¢,), 2 indicates a surface y-node of D#(T*,¢;), and
the asterisk * indicates either a u-node in D#(T#,¢;)\D#(T*,¢z) or a surface p-node of
DH(T*,¢;). The areas labeled S¥7', $471, and S47! indicate surface (u — 1)-sections of
D*(T*, ¢;) (these are not crosshatched), and 847! and Sf{-l indicate surface (. — 1)-sections

of D#(T*, ¢;).

Fig. 2. Illustration of the terminal currents iT‘t;x (k = 1,2,3) entering-a (u — 1)-section
S#=1 through its incident u-nodes n}. The apex of each “horn-like” shape denotes a (u—1)-
terminal (and therefore a (g — 1)-end too, by Condition 3.2(d)). iT;f-‘,,-l is the current leaving
the jth (u — 1)-terminal T,f,‘;l belonging to both nf and S#~1. Property 5.2(b) asserts that
it Fippp g g =0

Fig. 3. [lustration of the terminal currents Ipu-t (m = 1,2,3,4) leaving a p-node n*

through its (u — 1)-terminals T%~!. Kirchhoff’s current law asserts that "% _, -1 = 0.

Fig. 4. Dlustration of two sections S¥; and S::[,H in a nested sequence of sections within
an @-section S¥. T¢ is an &-terminal for S¥, and n“ is an w-node containing 7¢. St is to
the left of the (u + 1)-nodes n{*" and n4*'. S*¥' contains everything shown to the left of

the (i + 2)-nodes n4+? and n4*2,
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