A LOCALLY COUNTABLE, CONVENTIONAL OR
TRANSFINITE, TREE HAS UNCOUNTABLY MANY
EXTREMITIES IF AND ONLY IF IT CONTAINS A
BINARY TREE
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Abstract — A tree 7" is a connected graph of transfiniteness rank » having no loops
(i.e., circuits), where » = 0 for a conventional tree and v > 0 for a transfinite tree. Its
extremities are its end nodes of all ranks no larger than v and also its infinite extremities
of rank v; the latter are designated by one-way infinite paths of rank v. A section of rank
B (0< B <v)inT"is a subtree induced by a maximal set of branches that are connected
through paths of rank 3, and its external tips are essentially the connections it has to the
rest of T¥. A section of rank —1 is simply a branch. TV is called locally countable if each
section of every rank has only countably many external tips. It is shown that a locally
countable tree T has uncountably many extremities if and only if it contains a binary tree,

whose rank is any natural number up to v.
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1 Introduction

Let an eztremity of a conventionally infinite, locally countable tree be either an end node or
a 0-tip (i.e., the latter being an equivalence class of one-way infinite paths where two such
paths are taken to be equivalent if they are identical except for finitely many branches). We
show that such a tree has uncountably many extremities if and only if the tree contains a

binary tree or a subdivision of a binary tree. We then extend this result to locally countable



transfinite trees. As is usual in transfinite graph theory, the needed arguments for the latter
task are rather more complicated, and many more definitions are needed. Those definitions
that are not presented herein, appear in [5], to which we refer with specific page references.

Transfinite graph theory was initially developed to attack certain problems in electrical
network theory and therefore used conventional electrical terminology. We continue to do
so in order to conform with all the prior works on transfinite graphs. Thus, we say “branch”
instead of “edge” and “node” instead of “vertex.”

N will denote the set {0,1,2,...} of all natural numbers. By a countable set, we will
mean either a finite set or a denumerably infinite one. Rg denotes the cardinal number of a
denumerably infinite set,! and X denotes the cardinal number of the continuum.

Let us indicate how we came upon the problem attacked herein. The number F of end

nodes of a finite tree is given by the formula

E=2+) (d-2) (1)

where d, is the degree of the non-end node z and the summation is over all the non-end
nodes. This formula is easily established by starting with a path and appending branches
one at a time in a connected fashion to create a tree. The formula holds at each step.

It also holds for a conventionally infinite, locally countable tree 7 having at most count-
ably many O-tips, where now F is the cardinality of the set of extremities of 7. Indeed,
the set of nodes in 7 is countable [2, page 39]. This fact coupled with the countability
of all the 0-tips yields £ = Rg. On the other hand, with z still denoting a non-end node,
the summation in (1) consists of a countable set of terms each of which is either a natural
number or Rq. Therefore, the right-hand side of (1) also equals Rg [5, pages 380-381].

However, the formula can fail if no restriction is placed on the cardinality of the set of
0-tips for the locally countable tree. The binary tree provides an example. The set of 0-tips
for the binary tree has the cardinality R of the continuum. Thus, £ = X. On the other

hand, the summation on the right-hand side of (1) has countably many terms, and each

'Ro is the same as the first transfinite ordinal w, but it is conventional to use Ro when dealing with the
size of a denumerable set. Furthermore, the first transfinite ordinal w has the same elements as the set NV
but has in addition the natural ordering explicitly imposed.



term is 1 except for a single 0 for the root node of the binary tree. Hence, that right-hand
side equals Ng.

Question: Is an embedded binary tree or a subdivision of it needed in order for a locally
countable, conventionally infinite tree to have uncountably many 0-tips? The answer is
“yes” (see Theorem 2.3 below). It follows that, if a locally countable tree has uncountably

many 0-tips, it has at least R-many of them. “Yes” remains the answer for transfinite trees

as well, as is shown in Secs. 3 and 4.

2 Conventionally Infinite Trees

A O-tree T° is a connected conventional graph having no loops (i.e., circuits). It is locally
countable if the degree of each of its nodes is either a positive natural number or Ro. Its
eztremities are its end nodes and its 0-tips, the latter occurring whenever 7° contains one-
ended paths (i.e., one-way infinite paths). For infinite trees a 0-tip and an “end” [3, pages
62 and 230] are the same thing, but for infinite graphs in general they are different concepts.

Lemma 2.1. Given any node = and any extremity of T°, there is a unique path starting
at z and reaching that extremity.

Proof. If the extremity is an end node, this is a standard property of trees. If the
extremity is a 0-tip t°, choose any representative path Q for t°. If z is in @, the sought-for
path starts at = and follows @ toward t°. If = is not in @, choose any node y of @, and let
P be the unique path in 7° terminating at = and y. Then, the sought-for path starts at z,
follows P until the first node of Q is reached, and then follows @ toward t°. There is no
other such path because 7° contains no loops. O

Now let z and y be any two nodes of 7°, with y being a non-end node. Consider all
the paths that start at z, pass through y, and reach extremities of 7°. We say that, with
respect to ¢ and with the exception of y, the branches and nodes in the path betwéen z and
y are before y and all the other branches and nodes of those paths are after y. Moreover, any
branch or node other than z is said to lead to (again with respect to z) all the extremities
reached by the paths starting at z and passing through that branch or node.

We will also be dealing with binary 0-trees or subdivisions of them as subgraphs of



0-trees. It turns out to be inconvenient to reduce those subdivisions to binary 0-trees,
especially when dealing with transfinite trees later on. For this reason, we shall use a more
general definition of a binary 0-tree, one that encompasses those subdivisions. One of the
properties imposed is that every node be of degree 2 or 3 with at least one node of degree
2. Moreover, a node of degree 3 will be called a fork. Given any node z of degree 2, which
we shall call the root, the kth fork from x (k € N,k # 0) is a fork that is reached by a path
starting at z and meeting exactly & forks (counting the kth fork as well).

A binary 0-tree is a 0-tree having the following three properties:
1. Each of its nodes is of degree 2 or 3.
2. There is at least one node of degree 2.
3. From any node z of degree 2, the number of kth forks from z is exactly 2%.

In a binary 0-tree, condition 3 will hold for any choice of a node of degree 2 as the root.
Moreover, the extremities of a binary 0-tree are all 0-tips; there are no end nodes.

It is also a fact that the cardinality of the set of 0-tips of a binary 0-tree is the cardinality
X of the continuum. This can be seen as follows. Choose a root z, and for each fork consider
the two incident branches coming after that fork with respect to z; label one of them 0 and
label the other 1 . Then, any one-ended path starting at z can be identified by a sequence of
0’s and 1’s determined by its passage through forks. Moreover, that sequence of 0’s and 1’s
can be identified with a real number in binary form lying in a unit interval. Furthermore,
there is a bijection between the set of 0-tips and the set of such paths, and there is another
bijection between the set of such paths and the numbers in the said interval, whence our
assertion.

Theorem 2.2. Let 7° be a locally countable 0-tree. T has uncountably many extrem-
ities if and only if T° contains a binary O-tree as a subgraph.

Note. Since a locally countable 0-tree has only countably many end nodes [2, page 39],
“extremities” can be replaced by “0-tips” in this theorem.

Proof. If: Every 0-tip of the binary 0-tree is a 0-tip of 7°. Since a binary 0-tree has

N-many 0-tips, our conclusion follows.



Only if: Choose any node zo of 7°. Suppose all but one of the branches incident to
zo together lead to at most countably many extremities of 7°. Let by be that exceptional
branch. (There may be no other branch incident to z.) Let z; be the other node of b.
Suppose in additioch that all but one of the branches incident to z; other than by together
lead to at most countably many extremities of 7°. Let that exceptional branch be b;, and
let 2 be the other node of b;. Again suppose that all but one of the branches incident to
z9 other than by together lead to at most §011ntab1y many extremities of 7°. Continue in
this way to get a path

{(Eo,bo,l'],bl,..-,fl'k,bk,~--}, (2)

and make the same supposition at each step, namely, other than the incident branch by
just after z; all the branches incident to and after z; lead to (with respect to zo) at most
countably many extremities of 7°.

Two possibilities arise: Either the path (2) terminates at an end node of 79, or it
continues indefinitely reaching toward a unique O-tip of 7°. In either case, we have to
conclude that all the extremities mentioned above comprise a countable set. But, every
extremity of 7° will be so mentioned because every extremity of 7° will be reached by a
unique path starting at zo (Lemma 2.1). This violates the hypothesis of the “only if” part
of Theorem 2.2.

We must conclude that, at some node z; in (2), all the branches incident to z; together
lead to uncountably many extremities of 7°. Since the degree of zj is either finite or Rg
and since the union of a countable collection of countable sets is countable, at least one
of the branches incident to z; leads to uncountably many extremities of 7°. However, we
have eliminated the possibility that all but one of the branches incident to each z together
lead to at most countably many extremities, whatever be z; in (2). Therefore, there will
be a first node z4 in (2) at which (at least) two branches incident to and after z; each lead
to uncountably many extremities of 7°.

Let those two branches be by; and by;. Also, let 79 (resp. 7.3) be the subtree of
T° induced by all the branches in all the paths starting at z; and passing through by,

(resp. biz). Thus, T (resp. 7,3) is locally countable with uncountably many extremities.



Therefore, we can apply to it the same argument as that applied to 7°. Thus, in 73 (resp.
73) we can find a path starting at zj, passing through b1y (resp. b12), and reaching a
first node y;1 (resp. yi2) at which there are two branches b2; and by; (resp. bz and bay)
incident to and after y;; (resp. y12), each branch leading to uncountably many extremities
of 7° through two subtrees 7,3 and 753 (resp. 7,3 and 7,3). This construction continues
indefinitely, and we can thereby find the following structure in 7°:

Let P, denote a path terminating at the nodes z and y. Set yo = zx. We find two paths
P(y0,y11) and P(yo, y12), then four paths P(‘yll,ym), P(y11,922), P(v12,923), P(¥12,Y24),
then eight paths, and so forth. With respect to the subtree induced by those paths, each of
those paths has terminal nodes of degree 3 except for yp; yo and all internal nodes (if such
exist) of those paths are of degree 2. We have indeed found a binary 0-tree as a subtree of
7° 0O

Corollary 2.3. If a locally countable 0-tree has uncountably many extremities, then it

has at least R-many 0-tips.

3 Transfinite Trees Having Natural-Number Ranks

The idea for extending Theorem 2.2 transfinitely is to let “sections” play at times the role
that branches did previously and at other times the role that 0-nodes played. For this
purpose, we need to explicate some preliminary concepts. Henceforth, a, 3, v, and u will
denote natural numbers with a, 8,7, < p and g > 0. They will represent ranks of graphical
transfiniteness, with the rank 0 being for conventional graphs. A transfinite p-tree T is
a connected p-graph having no loops. See [5, page 48] for the definition of “transfinite
connectedness,” [5, page 31] for a “u-graph,” and [5, page 35] for a “loop.” See also [5,

”

page 30] for the definitions of a “transfinite tip” and a “transfinite node,” and see [5, page
31] for an “embraced tip.” Unless the opposite is stated, every node we mention herein is
understood to be “maximal” [5, page 32], that is, it is not contained in a node of higher
rank.

It should be noted here that “nondisconnectable tips” [5, page 58] do not exist in 7#

because the presence of such tips implies the presence of loops. As a result, Condition 3.5-1



of [5, page 71] is trivially satisfied, and all the results of [5, Section 3.5] hold for 7*.

The degree of a transfinite node is the cardinality of the set of its embraced tips. An end
node is a node of degree 1, and a fork is a node of degree 3. The extremities of a u-tree are
its end nodes and its p-tips. Unlike the tips of lower ranks in 7#, which are all embraced in
nodes, the u-tips of 7# are not so bembraced because nodes of ranks higher than u do not
exist in 7# by definition.

Lemma 3.1. Given any node x and any eztremity of TH, there is a unique path in T#
starting at x and reaching the eztremity.

The proof of this lemma is the same as that of Lemma 2.1, but now we need to invoke
[5, Corollary 3.5-5] to assert the existence of a first node at which the path P meets the
path Q.

With 8 < p, a 3-section SP of T# is a subtree (i.e., a subgraph?) induced by a maximal
set of branches that are pairwise §-connected [5, page 49]. The (-sections partition 7# in
the sense that each branch of 7# resides in one and only one f-section [5, Corollary 3.5-6].
An a-tip t* (a < ) is said to be in a B-section SP and S” is said to have ¢ if the branches
of any representative path of t are in SP; t* is then said to be an internal tip of S#. A
boundary node x” (y > ) of S” is a node that embraces a tip in S# and a tip not in S¥.
A tip embraced by z7 that is not in S is called an external tip of SP. Also, 27 and S” are
said to be incident to each other.

Let 27 be a boundary node of the g-section S? (thus, 8 < v)in 7#. Remember that z”
is a maximal node. All the tips embraced by z” will reside in (y — 1)-sections incident to z”,
and, if § < y—1, a fI-section containing a tip of 27 will reside within such a (v — 1)-section.

Lemma 3.2. Let 7 be a (mazimal) node in the p-tree T*, and consider all the (y—1)-
sections incident to x7. Ezcept possibly for one such (y—1)-section, each such (y—1)-section
will contain as an internal tip exactly one tip embraced by =, and that tip will be of rank
vy — 1. The exceptional (v — 1)-section S)~', if it exists, may contain one or many tips

embraced by =7, but then those tips will all be of ranks less than v — 1 and will reside in a

2In general, a subgraph of a transfinite graph is not a transfinite graph by itself, but it can be reduced to
a transfinite graph by removing all the tips embraced by all the nodes of the subgraph whose representative
paths do not lie in the subgraph. This yields the “reduced graph” of [4, page 143]. This reduction will be
understood when referring to a subtree.



(-section within S)~!, where B is the largest of the ranks of those tips.

Proof. Suppose a (y — 1)-section $7~! contains two or more (y — 1)-tips embraced
by z”, then a branch of a representative path of one such (y — 1)-tip and a branch of a
representative patl of another such (y — 1)-tip will be (7 — 1)-connected through some path
P of rank less than v lying within $Y~!. But, there will also be a y-path connecting those
branches and passing through z” by means of the said (y — 1)-tips. The union of those two
paths will contain a loop [5, Corollary 3.5-5], in violation of the fact that 7# is a tree.

On the other hand, 27 may embrace one or more tips of ranks less than v — 1, and, if
there are two or more, those tips will be connected through paths that pass through z” by
means of an embraced node of z7 of rank less than . Thus, those tips will all lie in a single
(7 — 1)-section SY~!. However, SY~! cannot contain a (y — 1)-tip, for that would again
imply the presence of a loop in 7#. O

A p-tree will be called locally countable if every 0-node is of countable degree and if, for
every B (0 < f < u), every f-section has only countably many external tips. As a special
case, we can view each branch as being a section of rank —1; then, the countable degree of
each 0-node will follow from the next lemma for the case where ¥ = 0.

Lemma 3.3. Assume T* is a locally countable pu-tree. Then, every node z¥ of T* has
a countable degree.

Proof. If 27 is an end node, it contains exactly one tip. If 7 is not an end node, it
embraces two or more tips, at least one of which is of rank v —1. Thus, by Lemma 3.2, it has
at least two incident (y — 1)-sections. By local countability, every one of the (y — 1)-sections
incident to z7 will have at most countably many external tips, and every tip embraced by
z” will be an external tip of at least one of those (7 — 1)-sections. Furthermore, by Lemma .
3.2, there can be only countably many (y — 1)-sections incident to z7, for otherwise any
one of those (7 — 1)-sections would have uncountably many external tips. Thus, the tips
embraced by 27 lie in the union of the countable sets of external tips of countably many
(7 — 1)-sections. This yields our lemma. O

Given any any two nodes  and y of 7#, consider all the paths starting at z, passing

through y, and reaching extremities of 7#. We refer to branches and nodes in those paths as



occurring before or after y exactly as in the preceding section, and we say that, with respect
to z, y leads to all the branches, nodes, and extremities that occur after y. Similarly, any
tip t of y whose representative-path branches occur after y is said to lead away from x and
(again with respeét to z) to lead to all branches, nodes, and extremities after y that are
reached by paths that start at z and pass through t. Furthermore, given any f-section S
of T# with an external tip t, we can choose any node z of S to state in the same way what
entities t leads to with respect to S#; this assertion will not depend upon the choice of z in
S? (Lemma 3.1). We also say that t leads away from SP.

More generally, given any external tip 4 (resp. t5) of S?, let 7; (resp. T3) be the subtree
induced by all the branches to which ¢ (resp. t5) leads with respect to S°. Then, 7; and T,
do not meet or share extremities except possibly when t‘f and t5 are embraced by the same
boundary node z” of SP (otherwise, 7# would contain a loop). In the latter case, 7; and
T, meet only at z7. Because any end node outside of S® or any p-tip of 7# is an extremity
of exactly one subtree such as 7; for the given §?, we have part (a) of the following lemma.
Part (b) is an immediate consequence of the fact that any path starting through an external
tip of S® and extending away from SP as far as possible will either terminate at an end
node or will become a representative one-ended path of a u-tip.

Lemma 3.4. Let SP be any B-section in T*, where 0 < 3 < p.

(a) Given any end node outside S® or any p-tip of T*, there is a unique external tip of SP

that leads to that end node or p-tip.

(b) Each external tip of SP leads to at least one extremity of T*.

We also need the definition of a binary f-tree (0 < 8 < p). It is much like that of a
binary 0O-tree, but let us be specific. Consider now a f-tree 7? in which every node is of
degree 2 or 3 and there exists at least one node z of degree 2.3 Recall that a fork is a node
of degree 3. For each positive natural number &, the kth fork from z is a fork that is reached
by a path starting at  and meeting k forks (counting the kth fork as well). Here too, z is

called the root node or simply the root.

3Later on, 77 will be a subtree of 7" whose rank is 3, where B < p. In that case, when 8 < g, the nodes
of ranks greater than B in 7" that embrace S-tips of 7# will not be considered to be part of 77 simply
because, 77 being of rank @3, has no such nodes.



A binary B-tree TP is a [-tree satisfying the following three conditions:
1. Each of its nodes is of degree 2 or 3.
2. There exists at least one node of degree 2.
3. From any node of degree 2, theA number of kth forks is 2F.

Here too, in a binary tree Condition 3 will hold for any choice of a node of degree 2 as
the root. Also, every extremity of a binary g-tree is a (-tip, there being no end vnodes.
Moreover, the cardinality of the set of §-tips is equal to the cardinality X of the contin-
uum. Furthermore, any tracing of a path that is extended as far as possible (i.e., does not
terminate at any node) will trace a representative of a 3-tip.

Next, we restrict our attention to the (x — 1)-sections in 7# to get some more needed
results. The (pu—1)-sections of T# partition 7# (5, Corollary 3.5-6], and the boundary nodes
between (u — 1)-sections are all of rank p. Two (u — 1)-sections that share a boundary node
share only that boundary node, and they are said to be adjacent.

Lemma 3.5. A locally countable p-tree has only countably many (p — 1)-sections, and
each (p — 1)-section has only countably many adjacent (u — 1)-sections.

Proof. Let S*~! be a (u — 1)-section in 7*. By Lemma 3.2, each of the external
(1 — 1)-tips of S#~! lies in an adjacent (u — 1)-section, which in turn does not contain
any other external or internal tips of S#¥~! (again because a loop would otherwise exist).
On the other hand, if an external tip t” of S#¥~! is of rank v less than u — 1, then all the
external tips of S¥~! of ranks less than u— 1 embraced by the boundary node that embraces
t? will lie in the same adjacent (x — 1)-section, which again will not contain any external
(1 — 1)-tips of S#~1. In particular, the number (i.e., the cardinality of the set) of adjacent
(1 — 1)-sections for $#~1 cannot be greater than the number of external tips of S*~!. By
the local countability of 7#, we can conclude that S#~! has only countably many adjacent
(p — 1)-sections. This is the second conclusion of our lemma.

Next, note that, given two nonadjacent (u — 1)-sections, there is a two-ended u-path P
terminating at a node in each of those (p—1)-sections because of the u-connectedness of 7#.

That path will pass through at least one and at most finitely many (u — 1)-sections. Now,

10



choose any (¢ — 1)-section S(‘)"l. Let Co be the countable set of (1 — 1)-sections adjacent
to S47'. Recursively, let Cy (k € N,k # 0) be the countable set of (1 — 1)-section adjacent
to the (1 — 1)-sections in Ci_1. Thus, UrenCi is the set of all (u — 1)-sections in 7#, and
the first conclusiod of our lemma follows. O

Theorem 3.6. Let T# be a locally countable p-tree. T* has uncountably many extrem-
ities if and only if T# contains a binary (-tree for some B with 0 < 8 < p.

Proof. If: By Theorem 2.2, the “if” statement is true when g = 0. Now, consider a
locally countable pu-tree 7# containing a J-tree (0 < 3 < u). When 8 = pu, the uncountably
many p-tips of the binary u-tree are also extremities of 7# as well.

So, now assume that 7# contains a binary 3-tree ’Z;ﬂ for some § with 0 < f < u. Each
of the uncountably many g-tips of 7? either will be the sole member of an end (3 + 1)-node
of T# or will be embraced by a nonsingleton y-node (8 + 1 < < u) which will lead (with
fespect to any node of 7;‘3) to at least one extremity of 7#. Moreover, that y-node will
embrace just one of those §-tips. So again, 7# has uncountably many extremities.

Only if: We now use strong induction on ranks, the first step (¢ = 0) having been
established by Theorem 2.2. Assume our present theorem is true for all ranks up to p — 1.
and consider a locally countable p-tree 7# having uncountably many extremities. Two
possibilities arise:

1. There is a B-section S in 7# (0 < § < p) having uncountably many extremities
as a locally countable subtree of 7# with its 3-tips serving as extremities: Then, by our
inductive assumption applied to §?, there is a binary a-tree T in SP (0 < a < B) and
therefore in 7* too.

2. Every f-section SP in 7# (0 < 8 < ) has at most countably many extremities: In
particular, every (u— 1)-section has only countably many extremities. By Lemma 3.5, there
are only countably many (p — 1)-sections. Therefore, there are only countably many such
extremities for all the (1 — 1)-sections taken together. The only extremities of T* that are
not extremities of its (u — 1)-sections are its p-tips. We conclude that 7* has uncountably
many p-tips.

Now, choose any (u — 1)-section S&™" of T#. By Lemma 3.4(a), each pu-tip of T* is
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reached through a unique external tip of 86‘—1. Suppose that éll but one of its external tips
lead to at most countably many pu-tips of 7#. Let {g be that external tip, and let S{‘-I be
the unique (u — 1)-section containing to as an internal tip. Suppose that all but one of the
external tips of S{""l lead to at most countably many u-tips of 7#. Let ¢; be that external
tip of $#7'; ¢; cannot be an internal tip of S5~'. Also, let S57" be the unique (12— 1)-section
containing ¢ as an internal tip. Suppose again that all but one of the external tips of S;‘_l
lead to at most countably many u-tips of 7#. Continue this way to get a unique sequence
of (u — 1)-sections S(‘,‘_l, S{‘—l, S.f_l, ... and a unique sequence of tips tg,t1,t9,.... If
either sequence terminates, so too will the other. Assume they do. By local countability,
every (u— 1)-section has only countably many external tips. By virtue of Lemma 3.4(a), we
thus have a countable collection of countable sets of u-tips whose union is the set of u-tips
of T#. This contradicts the fact that 7# has uncountably many u-tips.

The only other possibility is that the sequences of (1 — 1)-sections and external tips
continue indefinitely. But now, the sequence of external tips defines a unique one-ended
p-path reaching a unique p-tip of 7%, and we conclude again in the same way that 7# has
only countably many u-tips—a contradiction once more.

So, at least one of our suppositions is false. This means that there is some (u — 1)-
section S#~! whose external tips lead to uncountably many p-tips, and more than one of
them together lead to uncountably many p-tips. Moreover, S#~! has only countably many
external tips by local countability. Therefore, (at least) two external tips t1; and t12 of
S#=1 each lead to uncountably many pu-tips.

Now, as the second step of our construction, let 7}] be the u-subtree of 7* induced
by all the branches that t;; leads to (with respect to S#~1). T/ is a locally countable
p-tree having uncountably many p-tips. Let S{‘l_l be the (u — 1)-section having t; as an
internal tip. Upon repeating the above argument with S{‘l—l replacing S =1 we find the
first (4 — 1)-section Sg‘—l with two external tips t3; and t22, each leading to uncountably
many p-tips. Similarly, starting with ¢y, and defining the p-subtree 7}, using t;, in place
of ¢11, we find the first (u — 1)-section S¥~! with two external tips #,3 and t54, each leading

to uncountably many u-tips. This ends the second step of our constructions.
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In the same way, the four tips t;1, 22, t23, t24 lead to eight tips, each of the latter leading
to uncountably many u-tips. This completes the third step of our construction. Continuing
onward, for each k € N,k # 0 we find 2* tips at the kth step of this construction.

Now, consider dgain the first two tips t;; and ¢;2. Either they are embraced by the same
boundary node z* of S#~! or there will be a path in S#~! connecting the two boundary
nodes of S¥~! that embrace ¢;; and t;, respectively. In the first case, we can take z# to be
the root of the binary tree we seek. In the second case, any internal node of S¥~! on the
said path can be taken as the root.

Next, from t;; we progress to ?3; and ty; as external tips of S;‘_I. If t3; and ty, are
embraced by the same boundary node y% of Sg‘_l , there is a path starting through ¢;; and
ending at y¥, and moreover y¥ will be a fork. (That path may pass through one or many
(# — 1)-sections.) On the other hand, if ¢5; and ?3; are in different boundary nodes y{' and
yy of S;‘—l, there will be two paths starting through t;; and ending at y;' and y5. The
subtree induced by the branches of those two paths will have a single fork, and all other
nodes of the subtree will be of degree 2.

This construction can be continued indefinitely and will thereby yield the binary p-tree
we seek. O

Since a binary tree has R-many extremities, we also have the following.

Corollary 3.7. A locally countable p-tree with uncountably many extremities has at

least R-many extremities.

4 O-Trees

& denotes the arrow rank immediately preceding the first transfinite-ordinal w [5, page 36].
An &-tree T% is a connected J-graph [5, page 38] having no loops. This time, connectedness
means that any two branches are y-connected for some p € IV depending upon the branches.
T% has sections of all natural-number ranks, with any p-section being partitioned by the
-sections within it for each 8 < p. Moreover, 7% is also partitioned by p-sections for each
p € N. Because there is no highest natural-number rank for the u-sections, we have to

alter the arguments of the preceding section substantially.
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Let us first review and change were needed some prior definitions. The degree of a node
is again the cardinality of the set of its embraced tips, where now we also have &-nodes {5,
page 37]; &-nodes are perforce of degree Xo and thus cannot be end nodes. As before, end
nodes and forks are nodes of degrees 1 and 3 respectively and can have any ranks other
than arrow ranks. The extremities of an &-tree are now its end nodes of any natural-number
ranks and its J-tips [5, page 42]. With u replaced by &, Lemma 3.1 holds again with this
new idea of an extremity.

The boundary nodes, the internal tips, and the external tips of a p-section are defined
as before. Lemma 3.2 also continues to hold when a (y — 1)-section $”~! has a maximal
v-node as a boundary node. Now, however, ST~! may have an &-node as a boundary node.
We will also need the case where $”~! has a boundary node of rank u where u > v. In
either case, the boundary node will embrace a nonmaximal y-node z7 that will serve the
same role as it did in Lemma 3.2, but now the external tips of the (y — 1)-section may be of
ranks greater than y. Virtually, the same proof as before yields the following alteration of
Lemma 3.2. Remember that all the internal tips of $7~! have ranks no greater than v — 1.

Lemma 4.1. Let S”7! be a (v — 1)-section having a mazimal boundary node z¥, where
the rank v either is a natural number no less than v or is &. Then, z¥ embraces a y-node
z7 such that 7 = ¥ if v = v, and 27 is a nonmazimal node if v > v. Moreover, one of
the two following cases holds.

1. If 87! is incident to ¥ through a (y — 1)-tip, it will do so only through that one
internal tip, and the external tips of SY~! at £V may have any natural-number ranks.

2. If 877! is incident to z¥ through a B-tip (8 < v — 1), it may do so through one or
many internal tips, but their ranks will all be less than v — 1; moreover, the external tips of
8771 at 2¥ will all be of ranks no less than v — 1,

Now, choose any 0-section SC in the &-tree 7%. Let S! be the 1-section whose branches
are 1-connected to the branches of S°. Thus, S® C S! in the sense that S° is a subgraph
of S!. Recursively, let S* (1 > 0) be the u-section whose branches are p-connected to the

branches of $#~!. Continue this construction through all the natural-numbers u. We get a
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nested sequence

Slcs'c...cs*c... (3)

Since every two branches are pi-connected in 7% for some u depending on the choice of the
two branches, the); will reside in the same u-section. This implies that 7% is the union? of

the sections in (3):

T% = UuenS* (4)

Lemma 4.2. Given any two 0-sections S and S in T, the corresponding nested se-
quences (3) will eventually be identical in the sense that there will be some rank p (depending
on the choices of 8Y and S) beyond which the sequences will be the same.

Proof. A branch of 8§ and a branch of S will be p-connected for some positive
natural number p. By the transitivity of u-connectedness [5, Theorem 3.5-2], the same is
true with the same g for every choice of those two branches in those 0-sections. Thus, the
branches of SY and S2 will all lie in some p-section S*. Moreover, u-connectedness implies
v-connectedness for every » > u. This implies the conclusion. O

An internal node of a p-section S* is a node of rank less than or equal to u whose
embraced tips are all internal tips of §*. Thus, it is not a boundary node of S¥.

Lemma 4.3. With the nested sequence being fized for some choice of S°, every (mazi-
mal) end node of T is an internal node of S* for some sufficiently large.u.

Proof. Since no J-node can be an end node, each end node z® of 7% has some natural-
number rank «, and so its one and only tip has the rank a — 1. Choose a representative
path P*~! for that tip. The branches of P*~! will be (a — 1)-connected and will therefore
lie in an (a — 1)-section S*~!. Moreover, there will be a (4 — 1)-section $¥~! in (3) with
g — 1> a whose branches are (u — 1)-connected to the branches of P*~1. Thus, §* in (3)
will contain not only P*~! but also z* as an internal node. O

An G-tree 7¢ will be called locally countable if every maximal 0-node is of countable
degree and if every pu-section of every natural-number rank p has only countably many

external tips.

*The union of subgraphs is the subgraph induced by the branches in the union of the branch sets of the
subgraphs.



Lemma 4.4. Every node z° (0 < p < &) in a locally countable &-tree T has a countable
degree.

Proof. If p is a natural number, the proof of Lemma 3.3 can be applied again. So, let
p = &, and consider any one of the embraced nonmaximal nodes z” in z%, where 7 is a
natural number. 27 is a maximal node in the y-graph of 7%; this y-graph [5, page 38] is
the graph obtained by disallowing all nodes of ranks greater than y. With respect to that
v-graph, Lemma 3.3 holds again, and we can conclude that z” embraces only countably
many tips—even as a nonmaximal node of 79, Furthermore, % embraces only countably
many nodes of natural-number ranks. Therefore, 2% embraces only countably many tips.
a

The words before, after, leads away from, and leads to will be employed precisely as
in the preceding section, where now an extremity to which a tip leads may be an &-tip.
Virtually, the same arguments as those used for Lemma 3.4 establishes the following lemma.

Lemma 4.5. Let S* (u € N) be any p-section in 7%,

(a) Given any end node outside of S* or any &-tip of T, there is a unique external tip of

S* that leads to that end node or o-tip.

(b) Each external tip of S* leads to at least one extremity of T.

A binary &-tree ’[b‘;’ is defined much as before. We start with an &-tree in which every
node is of degree 2 or 3 and there is a node z of degree 2. We designate z as the root. That
tree has no @-node because the degree of an &-node is Rg. On the other hand, nodes of all
natural-number ranks appear in that &-tree. We also define a kth fork from z as before.

A binary &-tree 7;‘3 is an W-tree satisfying the following three conditions:

1. Each of its nodes is of degree 2 or 3.

2. There exists at least one node of degree 2.

3. From any node of degree 2, the number of kth forks is 2¥.

The properties listed just after the definition of a binary fS-tree also hold for 7,7 when
“B” is replaced by “w”.

Theorem 4.6. Let T% be a locally countable &-tree. T has uncountably many extrem-

ities if and only if T® contains a binary 3-tree for some 5 with 0 < A < &.
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Proof. If: If 7% contains a binary &-tree 'Tb‘z, each of the uncountably many J-tips of
7;‘7’ will be extremities of 7, which implies the desired conclusion. If T contains a binary
P-tree 7;'6 with 8 < &, each of the uncountably many B-tips of 7;" will be embraced by
a y-node z7 of 7% with 7 greater than # and depending in general on the §-tip and with
27 embracing just one of those §-tips. If z” is a singleton, it is an end node and thus an
extremity of 7%. If z” is a nonsingleton, it will lead (with respect to any node of ’];f’) to at
least one extremity of 7%. This yields the desired conclusion again.

Only if: We now hypothesize that 7% has uncountably many extremities. Two possi-
bilities arise:

1. There is a p-section S* for some p € N having uncountably many extremities as a
locally countable subtree of 72. (Those extremities are its end nodes, which will also be
end nodes of 7%, and its p-tips.) By Theorem 3.6 applied to S¥, there is a binary (-tree
(0 < B < p) in S* and therefore in 77 too.

2. For every pu € NN, every p-section of 7 has at most countably many extremities
(again counting its p-tips as extremities). Choose arbitrarily any 0-section S° in 7%. By
Lemma 4.5(a), all the external tips of SO together lead to all the extremities of 7% other
than the end nodes of S°. There are only countably many of the latter. Suppose all but one
of the external tips of S® each lead to only countably many extremities of 7% and therefore,
by local countability, together lead to only countably many extremities of 7%. Let that
exceptional tip be t*. By Lemma 4.5(b), t* leads to at least one extremity of 7%. (We
presently make no assertion about the cardinality of the set of extremities to which t*°
leads.)

Now, consider the representation (4) of 7% as the union of the y-sections (1 = 0,1,2,...)
in the expanding sequence (3). Let S! by the 1-section in (3) containing S°, and let T} be
the set of external tips of S? to which % leads. Tj is either the singleton {t*°} (we say in
this case that t* leads to itself), or T} is a set all of whose elements are different from ¢*.
Suppose all but one of the tips in T together lead to at most countably many extremities
of T%. (If Ty = {t*°}, there are no such tips different from t*°.) Let t™! be that exceptional

tip. (The rank a; can be equal to, or greater than, or less than «ap.) Either t*1 = t* or
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there is a unique path starting through ¢t*° and reaching t®1. Also, t*! leads to at least one
extremity of 7% (Lemma 4.5(b) again).

Recursively, let $#~! and S* be consecutive sections in (3) with ¢ > 0. As our recursive
supposition, we take it that all but one of the external tips of S#~! together lead to at
most countably many extremities of 79, Let t®#-! be the exceptional external tip of S#~!
that may or may not lead to uncountably many extremities of 7%. Let T} be the set of
external tips of §* to which t*#—1 leads. Here too, T, is either the singleton {t*»-1}, or T,
is a set all of whose elements are different from t*#»-1. Suppose all but one of the tips in T},
lead to at most countably many extremities of 7%. Let t*# be that exceptional tip. Either
t* = t*s-1 or there is a unique path starting through t“#-! and reaching t*+. Also, t*»
leads to at least one extremity of 7%,

In this way, we get a sequence of tips t*°, t®1 t*2, .. .. These tips determine a unique
path that passes through all of them. That path may either terminate in 7% at an end
node of natural-number rank, or it may be one-ended with an &-tip. In either case, we will
have altogether a sequence of countable sets of external tips for the S* (x = 0,1,2,...),
with each tip leading to only countably many extremities of 7%. Other than the countably
many end nodes in SO, every extremity of 7% is one to which an external tip of one of the
S* leads (Lemma 4.5(a)). Altogether then, this violates the “only if” hypothesis that 7%
has uncountably many extremities.

Thus, at least one of our suppositions is false. This means that there is a section, say
S*0 in (3) whose external tips together lead to uncountably many extremities. Moreover,
since $#° has only countably many external tips and since it is not true that all but one of
them lead to only countably many extremities, there must be (at least) two tips t;; and t12
of §#0_ each leading to uncountably many extremities.

Each end node resides in a p-section in (3). Thus, by possibility 2 above, there can be
only countably many end nodes in 7%. Therefore, each of t1; and t12 lead to uncountably
many &-tips.

Now, consider the union of the set of paths starting through ¢;; and proceeding away

from S#0. That union will be an &-tree 735 having uncountably many &-tips with the
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node containing #;; being a singleton. Therefore, we can repeat our argument as applied
to ’Tl“;’ to conclude that we can find two tips t3; and t,, different from t;,, each leading to
uncountably many &-tips. Similarly, we have an J-tree 73 obtained as the union af all
possible paths starting through t;2 and proceeding away from §#°. By the same argument,
we can find in l‘g two tips ty3 and ty4 different from ¢, each leading to uncountably many
J-tips. From these four tips, we get eight tips with the same property—and so on for 2%
tips, k =1,2,3,....

Now, if t;; and ¢, are incident to two different boundary nodes of $#°, there will be a
unique internal node z in $*#° from which two paths in $#° can be found that are disjoint
except at z and which meet the two boundary nodes respectively. On the other hand, if ¢,
and t;, are incident to the same boundary node of S#o, we let = be that boundary node.
In either case, 2z will be the root of the binary J-tree we seek. That tree is defined by
the set of paths starting at z and passing along the tips mentioned above. Indeed, at z a
binary choice can be made as to which of t;; and t;5 to proceed through. Having made
that choice, another binary choice can be made as to which of ¢y, and 35 or of t33 and t94
to proceed through. This implies that there is a fork between t;; (resp. t;2) and t»; and to2
(resp. t23 and ty4) through which the chosen path proceeds. In general, each such path is
defined by making a binary choice between which of two tips to follow at each fork between
the kth set of 2% tips and the (k + 1)st set of 2%*! tips. Each fork will either lie between
sets of tips or will be a node incident to two tips. Moreover, the paths so generated will
be one-ended &-paths because they pass through all of the u-sections in (3) and thereby
through boundary nodes of ever-increasing natural-number ranks. We have indeed found a
binary @-tree in 7¢. O

Here too, Corollary 3.7 holds with u replaced by &.

5 'Transfinite Trees of Higher ranks

The definitions of a locally countable tree and of a binary tree can be extended to ranks
higher than & in obvious ways. Then, Theorem 3.6 can be extended to locally countable

trees 7¥t# of ranks w + u, where u € N, using much the same arguments as those of Secs.

19



2 and 3. For example, 7% now takes the role that 7° played before in Sec. 2; w — 1 now
represents the rank o, whereas 0 — 1 was the rank of an elementary tip of a branch [5, page
9]. Next, Theorem 4.6 can be extended to an (w~2)-tree by repeating the arguments of
Sec. 4 in virtuallysthe same way using S* in place of $°. This inductive procedure can be
continued to still higher ranks using the arguments of Sec. 3 for trees of ordinal ranks and
the arguments of Sec. 4 for trees of arrow ranks. However, as is the case for transfinite
graphs in general, we make no claim as to how far through the countable-ordinal ranks and
their accompanying arrow ranks our proofs can be extended because it is unclear whether

the needed assumptions for a general transfinite induction can be made.
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