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The Boltzmann equation considered by Bobylev, and Krook and Wu (BKW) is rewritten 
in the form of a stochastic equation, similar in form to the kinetic equations of Tjon and 
Wu, and E r a t .  A new class of models, which reflects the transformation of the B m  
model to other dimensionalities, is constructed, and i t s  equilibrium distributions, non- 
equilibrium solutions (corresponding to the BKW mode), and H theorems a re  found. 

PACS numbers: 05.20.Dd. 02.50.+s, 51.10.+y 

Folluwing the discovery by Kr& and Wu' and by Bobyld of an exact solution to the Boltzmann equa- 
tion for a spatially uniform system, other authors, including Tjon and Wug and Ernst and co-~orkers,4'~ 
have found related kinetic models that also allow exact solutions. These latter models are defined by 
kinetic equations in the form of a stochastic equation which may be written 
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where F(x,t) is the energy distribution function, In this discussi~n,  We will always assume t& 
x = u2/2 is the kinetic energy, o is the velocity, the units are chosen such that M, = 1, while the 
and t is time. F does not depend upon direction value of M, will vary with the model. 
or position because the system is assumed to be The work of Bobylev and of Krook and Wu 
isotropic and spatially uniform. Pb,z ; x )  is the (BKW) concerned the Boltzmann equati on itself, 
transition or collision probability for  the collision describing an isotropic system of M~iaxwell-lik~ 
y +z - x  [the other particle having energy O, + z  molecules in which the scattering cross section 
- x ) ] ,  and characterizes the particular model. a is inversely proportional to the relative ve]ioci- 
For example, the Tjon-Wu (TW) model corre- ty, and independent of the scattering angle SZ: 

sponds to (1) with P given by 

pW(y,z;x)=(y  +z)", X < y  +Z. 

Note that for all models P must be zero when x  ere f (a )  =f(o ,t) is the velocity distribution func- 
>y +z in order to conserve energy. The class of tion, related to F by F(x ,t)= 4nvf(u,f), x =u2/2. 
models discussed by ~ r s t '  corresponds to In terms of F, the nonequflibrium solutton to (6) 

- . . \ T ~ - I  found by  BKW is given by 

and Ernst and Hendriks6 also considered the mod- 
el P(y , z ; x )  = 1. Note that, in general, P has the where K E  1 - exp(- ~/6). The ?W equation, al- 
symmetry thaugh much simpler in appearance, is intimate- 

ly related to the BKW equation, such that solu- 
~ ( y  , z ;x)=P(z ,y  ;x)=P(y ,z;y + z  - x )  (4) tions of one can be transformed directly into solu- 

and that consequently (1) has two constants of mo- tions to the othere8 
t icn, M, and M, (mass and energy), where I have found that the BKW aquation, (61, may al- 

~ , ( t ) = J ~ ~ x ~ ( x , t ) d r .  so be written in the form cB: (I), and that P is giv- 
( 5 ) ~  enbg 

(for y <z). A derivation of (8) will be given in a 
later paper: while a method af verifying i t  will 
be indicated below. Note that (1) with (8) is a 
much simpler equation for P(x , t )  than (6), since 
the former contains two one-dimensional inte- 
grals, while the latter involves two- and three- 
dimensional integrals, and implicitly, the scat- 
tering dynamics. The BKW model can be stated 
in (almost) a s  simple a form as the other models 
above. 

p B K W  clearly contains much more structure 
than the P of the other models. I t  depends upon 
the energies y and z of each particle entering the 
collision, rather than upon just their sum (y +z) 
a s  in (3)-(5). pBKW is discontinuous (in the deri- 
vative) at x =y and z ,  and is constant in between 
these two values. In this interval, particles 
leave the collisions with equally probable energy. 
The integral of pBKW with respect to x equals uni- 

the same as in models (2) and (3), implying that 
the loss term of (1) is simply F(x,t) .  

Inspired by some of the above properties of 
pBKW , I construct a model in which P is defined 
by 

In this model, the energy of the outgoing parti- 
cles is restricted to l ie in the interval bounded 
by the incoming particlesy energy, Using (I), we 
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find that the moments satisfy the same equation, 

as the renormalized moments of the BKW model,' 
[2"n I /(?a + 1) !]iUnBKW, md also satisfied by the 
renormalized TW moments, kfnTW/n I By virtue 
of this relation between moments, I have derived 
(using a Laplace- transform technique) the follow- 
ing relation between the distribution functions of 
these models: 

and 

Thus, any solution F * (x  ,t) of the model defined 
by (10) can be transformed to a solution of the 
TW and BKW models. These formulas are con- 
sistent with the relation between FBKW and F~~ 
that has been given by Barnsley and Turchetti.' 

It turns out that the transformation (13) has 
been put forth by Alexanian1° in a different con- 
text, in which (13) reflects the representation of 
F' KW as a superposition of Maxwell-Boltzmann 
distributions of temperature z , 2 ( ~ / n ) ~ / ~ z ' ~ / ~ e  'x's. 

This provides a physical interpretation of F *(z ,t) 
a s  the "temperature" distribution of the system. 
Alexanian also derived a kinetic equation for I.' *, 
Eqs. (2)-(3) in Ref. 10, and although his equation 
is of a form much different from (1) and (10) 
&me, they can be shown to be equivalent. 

The equilibrium distribution of this model is 
given by 

Evidently, the restriction that P* imposes on the 
outgoing particles causes the distribution func- 
tion to sharpen and evenkally turn into a 6 func- 
tion, at which time all particles have the same 
energy or  speed. By virtue of (5131, the BKW 
mode, (7), translates into the noneq~librium so- 
lution (also given by ABexanian) 

for this model. Note that ((15) is negative at x =K- 
for aP1 finite time. Even though this model exhib- 
i t s  singular behavior, i t  might prove useful for 
numerical studies, similar to those undertaken 
on the TW model: to investigate the significance 
of the BKW mode in the general approach to q u i -  
librium. The advantage of this model for numeri- 
cal studies over the other models is Lbt the dis- 
tribution function here does not spread in energy 
space as time increases, thus eliminating the 
need to impose numerical cutoffs. 

For the present purposes, the major s 
eance of the above model is that it can be used 
to generate an infinite class d new models. We 
observed that (12) and (13) can botb be obtained 
from the general equation 

with m = 1 and m=% , respectively. Considering 
(16) for all m > 8 definds the new class. Using 
(14) I find that the general eqa ib r ium distribu- 
tion is given by 

FeqYx)  = b ( ~  - 1). (14) and using (15) I find the generalization of the 
I BKW mode: 

The moments of this class a re  related to that of (10) by 

To complete the description of these models, the corresponding pQ) must be found. The moment equa- 
tion for MA") follows from (19) and (11), and assuming F ( ~ ) ( X  ,t) satisfies an equation in the form of (13, 
with @m) satisfying (9), a general moment equation can also be written. Equating these two, I firad that 
P") must satisfy 

[wbich is consistent with (9)). By various techniques, including the use of a Laplace transform, 1 
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have found that the pb) are given by the following expresssions. The P ( ~ )  are generally of the form 

for y < z , in which P ( ~ )  is constant for y <x < z , and qb) depends only upon x/b +z ). Note that (2) and 
(8) are in this form, with qQ) = 1 and q(s'2) = arcsinJu. In general, the qCm) are given by 

qw(u) = (m- ~ ) ~ ~ ~ [ u ( l  -u)lrn-'du (22) J 

(for m>l ) ,  or 

for m nonintegral. Explicit expressions for m=4, 
1, i, 2, $, 3 are given in Table I. For example, 
P") is in the form of a trapezoid. @1/2) has the 
unusual behavior that it goes to .o at x = 0 and y 
+ z ;  the increased production of particles at zero 
ener leads to an equilibrium distribution 
Peg&) =e-x/(nx)lh which goes to m at x = 0. It 
can be verified directly that (21)-(23) satisfy (20). 
Incidentally, this serves as a way to verify that 
(8) truly represents the BKW model, for in veri- 
fying (20) for m =Q, one proves that (8) implies 
the Krook-Wu moment equation, (11) and (19). 

Finally, an H theorem can be derived for these 
models. With use of the fact that 

has the inverse collision symmetry 

one can readily show that the function 

satisfies &/dt -( 0, thus proving the monotonic 
approach to the equilibrium distribution (17). 

This new class of models is very closely relat- 
ed to the class considered by Ernst. According 
to (22), q(m) is the incomplete S-function while 

TABLE I. Some explicit expressions for q(m) (u ) . 

I Ernst's probability, (3), is the related B distribu- 
tion. Of course, Ernst's model has none of the 
discontinuities exhibited by (2 1). The equilibrium 
distribution of Ernst's class is identical to (17) 
and the H theorem goes through the same way, 
since ( y ~ ) ~ - ' p ~ ( ~ )  also shows the symmetry of 
(25). The generalization of the BKW mode is 
identical to (18), except that now K = 1 - exp(-M), 
where X = m / [ 2  (2m + 2)]. When m = 2, the two 
classes coincide and both become the TW model. 

Ernst derived his class of models a s  a repre- 
sentation of "diffuse" scattering in a 2m -dimen- 
sional system of Maxwell-like molecules. Note 
that the energy distribution in a d-dimensional 
system is related to the velocity distribution by 
F(x,t) ccvd'2f(v, t )  and therefore F,&) aXd'2-1e-x, 
in agreement with the equilibrium distribution 
(17). In no way can a member of either class of 
models P ( ~ )  o r  pKm) represent a three-dimen- 
sional model when m + 2, in the sense that the 
model follows froni a three-dimensional Boltz- 
manu equation, since the latter always gives, for 
any expression for a, the equilibrium energy dis- 
tribution F,&) a ~ ' ' ~ e ' ~ .  The present class can 
also be thought of a s  representing a 2m-dimen- 
sional system, giving the TW model in two di- 
mensions and the BKW model in three. The q(m) 
listed in Table I therefore represent the dimen- 
sionalities 1 through 6. 

It should be noted that in a very recent paper, 
Futcher and Hoarell have discussed a class of 
kinetic models (describing a two-step collision 
process) in which P is given by products of in- 
complete functions. Like the class of models 
discussed here, their model is nondiffusive in 
that P(y ,z ;x) depends upon the individual values 
of y and z rather than just y + z. 

Ikrther areas of research include the study of 
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models for which (9) does not hold and instead 
the integral of P with respect to x depends upon 
y and z .  The model studied by Ernst and Hend- 
riksB is one such model. For these so-called 
non-Maxwell models, the loss term of (1) will 
not be simply F ( x ,  t )  as  in the models we have 
discussed. In principle, the isotropic Boltzmann 
equation can always be written in the form of (1) 
with P represented by a certain integral of a. It 
would be useful if a practical form of this expres- 
sion for P can be found. 
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