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1. USAGE AND PHYSICO-CHEMICAL PROPERTIES OF POLYCHLORINATED 
BIPHNEYLS (PCBS) 

Polychlorinated biphenyls (PCBs) were first synthesized in the early 1880s by Schmidt and Schultz 
(1881) and their commercial production began in 1929.  Commercial PCB formulations were sold 
under a variety of trade names; for example, in the United States and the Great Britain, Aroclor was the 
most common trade name for PCBs. PCB mixtures were named according to their chlorine content. 
Core structure and predominant PCBs that exist in the environment are shown in Figure 1.  The phenyl 
rings may have a variable number of chlorines, from 1-10, in 209 possible combinations.  The letters 
(o), (m), and (p) indicate ortho, meta, and para substitutions for chlorines.  The numbers indicate 
position of chlorines (Figure 1). For instance, Aroclor 1254 contains 54% chlorine by weight, and 
Aroclor 1260 contains 60%. The PCB mixture formulations were different depending on the country of 
origin, and were produced in Germany (Clofen), France (Phenoclor and Pyralene), Japan (Kanechlor), 
Italy (Fenclor), Russia (Sovol) and Czechoslavakia (Delor). PCB mixtures were produced for a variety 
of uses such as hydraulic and health transfer fluids in electrical transformers and capacitors, lubricating 
and cutting oils, and as additives in plastics, paints, carbonless copy paper, printing inks, adhesives and 
sealants.  Millions of tons of PCBs were produced worldwide (around 700,000 tons in USA) before 
they were banned in the US after two major poisoning incidents in Japan in 1968 and ten years later in 
Taiwan (Kodavanti and Ward, 2005).  In the US alone, nearly 382,000 tons of PCBs have been  
estimated to have contaminated the environment thus far (Hopf et al., 2009; Topfer, 1998).    

      Man-made organochlorine compounds such as PCBs possess unique properties that render them 
highly persistent in the global environment causing chronic toxicity to wildlife and humans.  The 
physico-chemical properties of PCBs vary widely and depend on the number and positions of chlorine 
atoms in the biphenyl rings.  Generally, water solubility, vapor pressure and biodegradability decrease 
with increasing number of chlorine atoms, while lipophilicity and adsorption capacity show a reverse 
trend. 
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Figure 1. Core structure and predominant polychlorinated biphenyls (PCBs) in the environment.  The 
phenyl rings may have a variable number of chlorines, from 1-10, in 209 possible combinations.  The 
letters (o), (m), and (p) indicate ortho, meta, and para substitutions for chlorines.  The numbers indicate 
position of chlorines. 

2.  ENVIRONMENTAL CONTAMINATION AND HUMAN EXPOSURE TO PCBS 

Despite being banned from production since 1977, PCBs are continually being released into the 
environment via accidental spillage, storm water induced overflows, water runoff, leaching from 
uncontrolled landfills and hazardous waste sites, incomplete incineration of certain wastes, leakage 
from old discarded equipment, and illegal dumping of wastes or parts containing the chemical 
(Silberhorn et al., 1990). Once in the environment, PCBs cycle between water, soil, and air, and are in 
fact found everywhere in the environment from all the depths of the temperate oceans to the aerial and 
polar regions (Loganathan and Kannan, 1994). These compounds are particularly concentrated in 
surface soils and in lacustrine, riverine and estuarine sediments due to the location of their release and 
their strong adsorption to organic materials, which serves as a reservoir for continual release into the 
biosphere (Carpenter, 1998; McFarland and Clarke, 1989; Weber et al., 2008).  Their solubility in 
organic solvents, oils, and fats makes them easily absorbed into virtually any organisms, from 
invertebrates to mammals.  While the physical and chemical properties of each congener may vary 
according to the number and position of the substituted chlorine atoms, PCBs are generally colorless, 
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oily liquids with a high dielectric constant, heat transfer coefficient, soluble in hydrocarbons, and least 
soluble in water. In ecosystems, PCBs have low volatility and are chemically inert substances that fail 
to undergo significant oxidation, reduction, addition, elimination or electrophilic substitution reactions, 
except under extreme conditions or as catalyzed by a few species of aerobic and anaerobic 
microorganisms (Hardy, 2002; Huang et al., 2004; Wang et al., 2003).   

      The primary route of human exposure to PCBs was through consumption of contaminated foods 
such as dairy products, meat, and fresh water fish (Kannan et al., 1997).  High levels of PCBs are 
found in human adipose tissue, blood, and milk (Loganathan et al., 1997). 

3.  BIOMAGNIFICATION AND HEALTH EFFECTS OF PCBS 

PCBs, owing to their recalcitrant property of resisting bacterial and chemical breakdown, are readily 
adsorbed from water into the lipid depots of plankton, thereby enter the aquatic food chain.  
Bioaccumulation of PCBs in plankton leads to their biomagnification via various trophic levels 
including, fish, reptiles, birds, aquatic and terrestrial mammals including humans.  Toxic effects of 
PCBs in birds varied from reproductive impairment, which is characterized by high embryonic and 
chick mortality, edema, growth retardation, developmental abnormalities (bill deformity, club feet, 
defective feathering, pericardial, peritoneal edema, liver enlargement and liver necrosis) and other 
deformities.  Congenital deformities attributed to PCB contaminations were found in gulls, terns, 
herons and cormorants.  Endocrine disruption and Ah-receptor (arylhdrocarbon hydroxylase enzyme) 
mediated toxicity were attributed to exposure to PCBs (Giesy and Kannan, 1998). PCB exposures have 
been associated with low birth weight and learning- and behavioral- deficits in children of women who 
consumed PCB-contaminated fish. Further, coplanar PCBs (chlorine substitutions in para and meta 
positions in the biphenyl molecule), elicits dioxin-like toxicity via AhR-mediated mechanism, which 
can lead to the development of cancer. However, non-dioxin like PCBs seems to exert neurotoxicity 
through effects on thyroid hormones and intracellular signaling processes (Faroon and Olson, 2000; 
Kodavanti and Tilson, 1997; Lein et al., 2007; Tilson et al., 1998).  

      Biomagnification of PCBs and their accumulation in species such as fish, consumed by humans, is 
well known and the transport mechanisms relevant to the aquatic environment are well understood 
(Beyer and Biziuk, 2009; Letcher et al., 2009).  PCBs pose significant hazards and have been shown to 
be toxic to aquatic fauna causing tumor formation, reproductive failure, developmental defects, 
immune system deficiencies, and neurological problems (Ohe et al., 2004; Reijnders, 1994).  Similar 
deleterious effects are also suspected or demonstrated to occur in humans (Carpenter, 2006; Domingo, 
2006; Engel et al., 2007; Korrick and Sagiv, 2008; Tilson and Kodavanti, 1998). While the exposure-
response relationship in terms of human cancer is still unclear, the U.S. Environmental Protection 
Agency (EPA) has classified PCBs as probable human carcinogens and some studies have shown 
exposure related increases in digestive system cancers and malignant melanomas (Knerr and Schrenk, 
2006). Studies on humans exposed to PCBs have also shown reduced reproductive capacity (sperm 
motility, fetal development) (Younglai et al., 2007), immune deficiencies (Tryphonas, 1994), 
dermatological changes (chloracne, pigmentation changes) (Kitchin et al., 1994), and neurological 
abnormalities (in exposed fetuses/infants) (Hertz-Picciotto et al., 2005; Jacobson and Jacobson, 2002; 
Korrick and Sagiv, 2008).  Moreover, because of biomagnification in aquatic organisms, many species 
now contain significant levels of PCBs resulting in significant concern about the long term, deleterious 
effects to the general population.  
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4.  BIOREMEDIATION OF PCBS 

Bioremediation is a process of using microorganisms to degrade contaminants in place with the goal 
of converting harmless chemicals as end products.  Most often in situ bioremediation (ISB) is applied 
to the degradation of contaminants in saturated soils and groundwater, although bioremediation in the 
unsaturated zone can occur (Abraham et al., 2002; Bedard, 2008; Haglund, 2007).  The technology 
was developed as a less costly, more effective alternative to the standard pump-and-treat methods 
used to clean up aquifers and soils contaminated with chlorinated solvents, fuel hydrocarbons, and 
toxic metals.  ISB has advantages such as complete destruction of the contaminant(s), lower risk to 
site workers, and lower equipment/operating costs.  ISB can be categorized by metabolism or by the 
degree of human intervention.  The organisms degrading these contaminants can be divided into 
aerobic and anaerobic.  The type of organism for an ISB system will depend on the contaminants of 
concern and their location.  Some contaminants (e.g., fuel hydrocarbons) are degraded via an aerobic 
pathway (Field and Sierra-Alvarez, 2008a; Martin et al., 1999), some anaerobically (e.g., carbon 
tetrachloride) (Magar et al., 2005), and some contaminants can be biodegraded under either aerobic 
or anaerobic conditions (e.g., trichloroethene and PCBs) (Teuten et al., 2009). Accelerated ISB is 
where substrate or nutrients are added to stimulate the growth of a target consortium of bacteria.  
Usually the target bacteria are indigenous; however enriched cultures of bacteria (from other sites) 
that are highly efficient at degrading a particular contaminant can be introduced.  Accelerated ISB is 
used where it is desired to increase the rate of contaminant biotransformation, which may be limited 
by lack of required nutrients.  The type of amendment required depends on the target metabolism for 
the contaminant of interest.  Aerobic ISB may only require the addition of oxygen (Adebusoye et al., 
2008b; Field and Sierra-Alvarez, 2008a; Pieper, 2005), while anaerobic ISB often requires the 
addition of both an electron donor (e.g., lactate, benzoate) (Abraham et al., 2005; Baba and 
Katayama, 2007; Martinez et al., 2007; Stratford et al., 1996) as well as an electron acceptor (e.g., 
nitrate, sulfate)  (Lambo and Patel, 2006; Rysavy et al., 2005; Wu et al., 2002).   

4.1 Advantages of in situ bioremediation (ISB) 

Accelerated ISB can provide total volumetric treatment, thereby removing both dissolved and sorbed 
contaminants. ISB often costs less than other remedial options. Contaminants may be completely 
transformed to innocuous substances (e.g., carbon dioxide, water, and ethane). The time required to 
treat subsurface pollution using ISB can often be faster than pump-and-treat processes alone (Sayler  
et al., 1995).  

4.2 Limitations of ISB 

Depending on the site, some contaminants may not be completely transformed to innocuous products. 
If biotransformation halts at an intermediate step, the intermediate may be more toxic and/or mobile 
than the parent compound. Some contaminants cannot be biodegraded (i.e., they are recalcitrant). 
When inappropriately applied, injection wells may become clogged from profuse microbial growth 
resulting from the addition of nutrients, electron donor, and/or acceptor. Accelerated ISB is difficult to 
implement in low-permeability aquifers because advective transport of nutrients is limited. Heavy 
metals and toxic concentrations of organic compounds may inhibit activity of indigenous 
microorganisms. ISB usually requires an acclimated population of microorganisms which may not 
develop for recent spills or for recalcitrant compounds (Braeckevelt et al., 2007; Spanoghe et al., 
2004). 
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4.3 Microorganisms in Bioremediation of PCBs 

Bioremediation of PCB contaminated soil is a difficult task due to the structure and level of 
chlorination of the compounds and occurs primarily by co-metabolic means (Abramowicz, 1995; Fedi 
et al., 2005; Han et al., 1995; Natarajan et al., 1999; Xu et al., 2010). Only a few microorganisms have 
been used to aerobically reduce the toxicity and quantity of PCBs (Bedard, 2008; Bedard et al., 2006; 
Lee and He, 2010; Luo et al., 2008; Robrock et al., 2009; Xu et al., 2010) .  There is also a bias in the 
process in that, PCB degrading microorganisms tend to breakdown the less chlorinated congeners 
faster than the highly chlorinated ones (Bokvajova et al., 1994) .  

      Two distinct classes of bacteria have now been identified that biodegrade PCBs by different 
mechanisms (Evans et al., 1996; Field and Sierra-Alvarez, 2008b; Furukawa, 2000; Natarajan et al., 
1999). These two PCB-degradative systems are divided into aerobic and anaerobic bacteria. The 
aerobes attack PCBs oxidatively, breaking apart the aromatic rings and substantially diminishing their 
toxicity (Furukawa, 2000). Anaerobes, on the other hand, leave the biphenyl rings intact while 
removing the chlorines (Tiedje et al., 1993).  These two naturally occurring processes can be 
complementary, and a two step treatment may permit the biological destruction of nearly all of the 
PCB mixtures commonly used. 

      PCBs, being one of the most widely distributed classes of chlorinated chemicals in the 
environment; bioremediation seems to be a promising approach for cleanup of large areas of PCB-
contaminated environments. However, the multitude of PCB congeners, their low bioavailability  and 
high toxicity, and the choice of organism (Chavez et al., 2006) are important factors that affect the 
cleanup progression. The genetic organization of biphenyl catabolic genes has been elucidated in 
various groups of microorganisms, their structures have been analyzed with respect to their 
evolutionary relationships, and new information on mobile elements has become available (Capodicasa 
et al., 2009; Pieper, 2005). Key enzymes, specifically biphenyl 2,3-dioxygenases, have been 
intensively characterized, structure/sequence relationships have been determined and enzymes 
optimized for PCB transformation (Pieper, 2005). However, due to the complex metabolic network 
responsible for PCB degradation, optimizing degradation by single bacterial species is necessarily 
limited. As PCBs are usually not mineralized by biphenyl-degrading organisms, and co-metabolism 
can result in the formation of toxic metabolites, the degradation of chlorobenzoates has received 
special attention (Martinez et al., 2007). A broad set of bacterial strategies to degrade chlorobenzoates 
has recently been elucidated, including new pathways for the degradation of chlorocatechols as central 
intermediates of various chloroaromatic catabolic pathways. To optimize PCB degradation in the 
environment beyond these metabolic limitations, enhancing degradation in the rhizosphere has been 
suggested (Pieper, 2005), in addition to the application of surfactants to overcome bioavailability 
barriers.    

     Since 1973, an increasing number of microorganisms that degrade PCBs have been isolated and 
characterized (Adebusoye et al., 2008a; Bedard, 2008; Bedard et al., 2006; Bedard et al., 2005; Bedard 
et al., 2007; Bedard et al., 1987b; Di Toro et al., 2006; Fish and Principe, 1994; Furukawa, 2000; Levin 
et al., 2007; Oh et al., 2008; Pieper, 2005; Seeger et al., 1999; Ye et al., 1992). The major 
biodegradation pathways of PCBs in these microorganisms have also been established. In general, 
there are four specific enzymes, biphenyl dioxygenase, dihydrodiol dehydrogenase, 2, 3-
dihydroxybiphenyl dioxygenase and 2-hydroxyl-6-oxo-6-phenylhexa-2, 4-dienoic acid hydrolase that 
are sequentially involved in the oxidative degradation of PCBs into chlorobenzoates and 2-
hydroxypenta-2, 4-dienoate (Furukawa and Miyazaki, 1986; Taira et al., 1988). 
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      Numerous soil bacteria break down PCBs via the dioxygenase pathway. Some of the identified 
organisms belong to the genera: Pseudomonas (Adebusoye et al., 2008c; Barton and Crawford, 1988), 
Achromobacter (Ahmed and Focht, 1973), Acinetobacter, (Furukawa et al., 1983) Alcaligenes (Bedard 
et al., 1987a), Arthrobacter (Gilbert and Crowley, 1997), Corynebacterium (Bedard et al., 1987a), 
Rhodococcu (Asturias and Timmis, 1993) , Burkholderia (Rehmann and Daugulis, 2008). In general, 
the more highly chlorinated the PCB is, the fewer species that are able to degrade it aerobically. 
Consequently, the possible complete biodegradation of the PCBs have been intensively pursued, 
though this goal has yet to be achieved. To utilize these microorganisms optimally, improvement of the 
PCB-degradation pathway is required, because the PCB-degradation pathways exhibit narrow substrate 
specificities. 

       PCB degradation rates can be increased when biphenyl itself is added to contaminated soils (Fava, 
1996). Biphenyl enhances degradation because the microorganisms that degrade the biphenyl also co-
metabolize the more recalcitrant PCBs. Certain organic compounds, including salicylic acid, also 
stimulate PCB degradation by microorganisms in some environments (Borrione et al., 2008; Singer  
et al., 2000). However, the usefulness of these amendments for improving PCB removal by 
microorganisms from diverse habitats has not been extensively explored.  

      Current efforts to remove PCBs and other hydrocarbon contaminants from aquatic sediments 
through bioremediation have been disappointing, thus far.  When most effectively applied, they have 
involved dredging of contaminated sediments, and off-site treatment.   

5.  PCB DESORPTION 

Previous studies have suggested that cyclodextrins accelerate removal of hydrophobic compounds 
through direct collisional interactions with the surface adsorbed guest molecule (Edwards and Shamsi, 
2000; Edwards and Shamsi, 2002; Lein et al., 2007).   Cyclodextrins are a group of homologous cyclic 
oligosaccharides produced from enzymatic breakdown of starch.  They are classified as alpha, beta, 
and gamma cylcodextrins and consist of six, seven, or eight glucose rings respectively. In each of these 
groups there can be many different modifications of the molecule particularly at the 2 and 6 position 
hydroxyl group, or even as with randomly-methylated-beta-cyclodextrin can contain a mixture of 
cyclodextrins with methyl groups attached at varying positions.  While water soluble, the inner 
hydrophobic cavity has the ability to form inclusion complexes with a wide variety of guest molecules 
(Li et al., 1992).  Our molecular    modeling studies show that cyclodextrin can accommodate PCB in 
its inner core. The alpha group with six carbons was predicted to be too small to sequester the Aroclor, 
while the gamma group with eight carbons was predicted to be too large. The beta group was chosen 
because it seemed the correct size for the encapsulation of the Aroclor 1254 (Figure 2).  

       Geometric factors rather than chemical factors seem to be the only requirement for this process to 
occur.  If the guest molecule is too small, it will easily pass through the hollow cylindrical center of the 
cyclodextrin, and conversely of the guest molecule is too large it will not fit within the cavity and 
therefore not bind effectively.  

      Over the past decade there have been a series of investigations using cyclodextrins that test their 
binding capacity and found that they enhance the bioavailability and biodegradation of hydrophobic 
organic pollutants such as PCBs.  One such study conducted by Fava et al. found in particular 
randomly-methylated-beta-cyclodextrin (RMBCD) improves the aerobic biodegradation of PCBs in 
soil contaminated with PCB containing transformer oil (Fava et al., 2003).  However their studies did 
not address which cyclodextrins may bind the best to PCBs or to what affinity.  We performed a visual 
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clarity experiment to show that randomly methylated beta-cyclodextrin can clear Aroclor 1254 in 
solution Figure 3.  While there are several microbial, physical, and chemical methods available for 
disposal and remediation of PCBs they are all relatively inefficient and expensive.  As relatively inert 
and extremely safe molecules, cyclodextrins seem to be the best answer for this persisting 
environmental problem if developed properly.  

Figure 2: Molecular modeling ‐
Aroclor inside a methyl beta‐cyclodextrinmolecule

 

Before addition of RMBCD
2mL of  0.75mM AROCLOR

After addition of RMBCD
2mL of 0.75mM AROCLOR

+ 400uL of 300mM RMBCYCLODEXTRIN

Figure 3: PCB clearing by Cyclodextrin‐
Visual clarity experiment

 

Figure 2. Molecular modeling of pcb core 
structure inside a methyl beta-cyclodextrin 
molecule. This modeling clearly shows that 
cyclodextrin can accommodate pcb molecule in 
its inner core. 

 
Figure 3. Clearing of PCB mixture, aroclor 
1254 (aroclor) by randomly-methylated-beta-
cyclodextrin (RMBCD) in a cuvette. This is a 
visual clarity experiment demonstrating the 
clearance of aroclor 1254 emulsion in water 
by RMBCD. 

     The question that we are faced with is whether cyclodextrins increase the rate of desorption of 
PCBs from sediments or simply increases their solubility in water.  While cyclodextrins have been 
used to solubilize PCBs in contaminated soils, the key step that ultimately limits bioavailability is 
slow. Previous work with various hydrocarbon contaminants has shown that small portions can be 
removed using surfactants (Edwards and Shamsi, 2000; Edwards and Shamsi, 2002; Forgacs and 
Demnerova, 1996), but that significant amounts remain bound that exhibit extremely slow desorption 
rates.  These fractions increase with the age of the contaminated soil or sediment samples (Fava et al., 
2003).  The other question is if cyclodextrins actually improve bioavailability of PCB’s to bacteria 
bound to a matrix.   Biodegradation in a sediment/water system can be described by the following 
equation dC/dt = -Bf*kb*C where C is the aqueous concentration of contaminant, Bf is the 
bioavailability factor; kb is the first order biodegradation rate constant (for irreversible reactions).  Thus 
increasing Bf, kb or C will enhance removal of aqueous contaminant.  It can be shown that Bf = 
1/1+Rs/w*dS/dC.   Where Rs/w is the sediment/water m/V ratio and dS/dC is the changes of sediment 
bound and aqueous phase contaminant.  Under conditions where desorption of the contaminant from a 
sediment is very slow and limits it biodegradation, Bf = 1/1+Kd*Rs/w(kb/km*Kd*Rs/w), where km is the 
mass transfer coefficient.  The relationship of time to biodegradation and removal from the aqueous 
phase of PCB, to the mass transfer coefficient km (h-1) is modeled in Figure 4.  Here we used literature 
Kd, km and kb values and related to t1/2 to km.  t1/2 is calculated from the relationship t1/2 = Ln2/Bf*kb 
where Bf and kb were based on  endogenous aerobic soil organisms (Cho et al., 2009).  The relevant km 
for PCBs is likely to be < 0.02 h-1 (Hope, 2008), which is in the range of previously measured 
desorption rates for PCBs from contaminated soil samples (Konwick et al., 2006).  Thus, cyclodextrin-
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enhanced desorption could theoretically increase PCB biodegradation rates considerably.  Indeed, 
positive effects of cyclodextrin on the extents of PCB degradation have been reported in soil reactor 
systems with aerobic bacterial mixtures, where enhanced desorption was suggested as the underlying 
mechanism (Fava et al., 2000). 

 

Figure 4.  Model demonstrating the relationship of time to biodegradation and removal from the 
aqueous phase of PCB, to the mass transfer coefficient km (h-1). 

     Now, we want to address the conditions where PCB-degrading aerobic bacteria thrive on simple 
artificial matrices.  Previous remediation work has involved injection of significant biomasses of 
microorganisms which degrade PCBs in soils (Bedard, 2008; Francova et al., 2004; Mackova et al., 
2009).  This older method releases huge numbers of otherwise scarce species of bacteria into the 
environment, thereby disturbing the local ecosystem. Moreover, it is difficult to monitor their condition 
beyond measuring the continued degradation of the PCBs themselves.  Concerns are further heightened 
when genetically modified organisms are used. Interestingly, after growth with biphenyl, many 
bacteria can oxidize PCBs (Chavez et al., 2004). It has been shown that PCBs follow the same 
catabolic pathway as biphenyl and use the same enzymes. Biphenyl dioxygenase plays a critical role in 
PCB degradation by catalyzing the first step. Its activity varies depending on the number of chlorines 
and their positions on the aromatic ring (Seeger et al., 1995).  On the other hand, CMB1 bacteria has a 
strong ability to degrade di-para-chlorine-substituted PCBs (Williams et al., 1997). CMB1 degrades a 
spectrum of PCB congeners consistent with the expected substrates for a 2, 3-dioxygenase. There are a 
few comprehensive studies that evaluate the conditions affecting the growth and PCB degrading 
capacity of these bacteria (Adebusoye et al., 2008c; Fava et al., 2003; Rehmann and Daugulis, 2008; 
Rysavy et al., 2005).  

6.  CONCLUSIONS 

Current efforts to remove PCBs and other hydrocarbon contaminants from marine sediments through 
bioremediation have not reached the full potential.  The in situ methods are relatively ineffective, 
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requiring the dredging of contaminated sediments, which damages the marine ecosystem’s integrity 
and requires extraction or sequestration of toxins once the sediment is deposited on land. 
Bioremediation technologies should be developed that would prove effective yet relatively low cost 
and low maintenance that will have a minimal impact on the ecosystem. Some of the limitations in the 
development and usage of bioremediation technologies are:  (1) Under what conditions can aerobic 
PCB-degrading bacteria thrive on simple artificial matrices in field conditions?; (2) Do cyclodextrins 
increase the rate of desorption of PCBs from sediments or simply increase their solubility in water?; 
(3) Do cyclodextrins improve bioavailability of PCBs to bacteria bound to a matrix in field conditions?  
These are the limitations that can be verified with experimental results before they are considered as 
disadvantages and hence efforts have to be made to understand the basic principles underlying the 
bioremediation process before applying these principles to field use. 

FOOTNOTE   
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