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Abstract—This paper continues a series of review papers devoted to the physics of complex plasmas. The
review contains a description of elementary processes in complex plasmas. The elementary processes are
described in the simplest way and in a form useful for applications and estimates for existing experiments. The
paper describes (i) the processes related to the charging process, including the dust charge fluctuations, absorp-
tion of plasma particles on dust grains, and friction of ions in collisions with grains; (ii) the forces acting on
dust grains in complex plasmas, including ion drag force, thermophoretic force, and dust friction on neutral gas;
(iii) dust–dust noncollective interactions, including the attraction related to the nonlinearity of screening and
the shadow attraction related to ion and neutral particle bombardment; and (iv) dust–dust collective attraction
in the absence and presence of an ion flow and a strong magnetic field. First experiments on the detection of
dust–dust interactions are described. Elementary processes in complex plasmas can be used to explain existing
experiments on dust-plasma crystals, dust clusters, and waves and instabilities in complex plasmas, as well as
to discuss the trends in theoretical research, laboratory experiments, and in astrophysical and industrial appli-
cations. © 2003 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

In our previous paper [1], we demonstrated the
newly observed phenomenon of condensation [2–67]
of a system of highly charged dust grains in plasmas in
a state of complex plasma, where the dust grains are
strongly correlated, and in a plasma crystal state [2–7].
This strongly correlated state of matter is used in indus-
trial and technological applications, such as material
coating and etching [8–11], and in thermonuclear
fusion devices [12]. The physics of a system of highly
charged dust grains in a plasma is shown to be different
from both a pure Coulomb system [13, 14] and a system
of Yukawa screened charged particles [15] due to strong
nonlinearities [16, 17] in screening and the presence of
a long-range and nonscreened part of the potential [18,
19] (see also [1]). Different models of grain charging
proposed so far, including the orbit motion limited
(OML) approach [20], radial drift (RD) approach [21,
22], and diffusion limited (DL) approach [1], predict
large grain charges with nonlinear screening and a
weak nonscreened part of the potential [1]. The values
of grain charges are sufficiently large for plasma con-
densation to occur. The phenomenon of plasma con-
densation was observed in many laboratory experi-
ments [2–7]. The interpretation of observations of com-
plex plasmas includes elementary processes related to
large dust charges, absorption of plasma particles on

1 This article was submitted by the authors in English.
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dust grains, collective phenomena, and dust–dust inter-
actions. In this paper, we describe elementary processes
in complex plasmas using a simple model and give
exact values for the coefficients determining the
strength of the elementary processes. These results can
be used not only to estimate the existing experiments or
those being planned, but also to formulate the simplest
force balance relations that can describe the structures
often formed and observed in complex plasmas.

2. PROCESSES RELATED 
TO THE CHARGING OF DUST GRAINS

There are several processes related to dust charging,
including time-varying charging, charge fluctuations,
the friction of ions and electrons on dust, and the
absorption of ions and electrons by dust distributed
with a certain average dust density in a complex sys-
tem. Speaking about the collection of dust grains and
the effects that appear for a certain dust density, we will
consider only the effects that appear when summing the
effects existing on individual dust grains. The collective
effects mean that one of the grain influences the pro-
cesses on other grains. The effects that we will consider
here are more simple; we will assume that such a
mutual influence can be neglected and the effects on
many grains can be summed up. The collective effects
will be discussed in detail later.
003 MAIK “Nauka/Interperiodica”
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2.1. Charging Time and Charging Frequency

Equation (16) of [1] (below, references to formulas
of [1] are given as (1.N), where N is the number of a for-
mula; i.e., in the case at hand, we have (1.16)) for grain
charging describes the dynamics of grain charges. It
can be used to investigate the time scales of charging in
different charging models. For the simplest OML
model, it can be used in the general form. We multiply
(1.16) by e2/aTe and use OML charging currents to
write the equation for the time evolution of the dimen-
sionless grain charge z = Zde2/aTe:

(1)

Here, a is the grain size, Te is the electron temperature,
Zd is the grain charge (in units of the electron charge),
τ = Ti /Te, m = mi /me, and λDi is the ion Debye length.

For small deviations δz from the equilibrium dust
charge zeq (δz ! zeq), we find

(2)

where τch is the characteristic time of charging and νch
is the charging frequency;

(3)

The charging frequency is proportional to the dust size,
which means that the charging is faster for larger dust
grains. When the charging process starts with charges
that are far from equilibrium, one can distinguish two
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Fig. 1. Charging of a grain in time (here, z is the grain
charge normalized to the equilibrium charge). The charging
time corresponds to the rate of charging in its final stage
where the electron and ion currents becomes almost equal
to each other.
stage of charging: the first, faster stage is determined by
the electron capture by a grain and is simply related to
the time needed for electrons to reach the grain and the
second, longer stage is determined by ion capture and
the time needed to reach the equilibrium charge value
(it is on the order of tch = 1/νch). Figure 1 shows the
solution to the charging equation; here, time is normal-

ized to (vTia/ )–1 (t  /vTia) and z is
normalized to zeq (z  z/zeq). The calculations were
performed for argon at τ = 0.02, Ti = 300 ä, and ni =
109 cm–3; in this case, zeq = 2.63.

Estimates of the charging frequency in typical
experiments show that it is very short; i.e., the charging
is extremely fast. For example, for Ti ≈ 300 K, ni ≈
109 cm–3, a = 10 µm, and z = 3, we have νch ≈ 1 MHz. A
consequence of the charging process is very drastic: all
the modes with frequencies less than the charging fre-
quency are modified by charging (this problem will be
considered in more detail in our subsequent paper
devoted to collective effects in complex plasmas).

An important quantity is the charging length λch,
which is defined as the distance traveled by a thermal
ion during the charging time,

(4)

and which is always larger than the ion Debye screen-
ing length for a ! λDi.

In the presence of superthermal ion drift, the charg-
ing frequency can be expressed through the Mach num-
ber M; for τ ! 1, it is

(5)

For τ ! 1 and M on the order of unity (as is in the
plasma sheath), the charging time is τ–1/2 times longer
than for subthermal drift.

2.2. Fluctuations of Dust Charges

It is well known that phase transitions are accompa-
nied by large fluctuations of all the parameters. Such
fluctuations should also be present and measured dur-
ing plasma condensation in complex dusty plasmas.
The new effect for complex plasmas is the variability of
dust charges, which will lead to fluctuations of charges.
Obviously, these fluctuations should be taken into
account in any approach to phase transitions in com-
plex plasmas. Also, it is probable that these fluctuations
can play a dominant role in phase transitions for a cer-
tain range of parameters. The dust charge fluctuations
are of a collective nature, being in the first approxima-
tion proportional to the dust density. They were investi-
gated only recently, and there are still some problems
concerning noncollective dust fluctuations. Collective
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COMPLEX PLASMAS: II. ELEMENTARY PROCESSES 3
fluctuations should exceed noncollective ones in phase
transitions, and one needs to know the conditions at
which collective fluctuations dominate noncollective
fluctuations. We will start with noncollective fluctua-
tions and, then, will give only the result and a reference
to the collective fluctuations. This field is now fast
developing, and we will able to touch only the first
results on collective fluctuations. So far, different
approaches have been used to describe noncollective
fluctuations, and this point should also be clarified,
because the links with very developed usual plasma
fluctuation approaches (in the absence of dust) can be
established and the methods of plasma fluctuations can
be used to further develop the theory of dust fluctua-
tions.

Noncollective dust charge fluctuations can be
treated as a result of the discreteness of the charging
process, i.e., as being due to the fact that the change in
the dust charge is discrete: it is equal either to the elec-
tron charge –e for the absorption of a single electron
or to +e for the absorption of a singly ionized ion. In
plasma physics, the discreteness is usually treated as
fluctuations of the electron and ion distribution func-
tion. These fluctuations should lead to fluctuations of
the currents on dust grains and, therefore, should lead
to fluctuations of the dust charges. An important ques-
tion is whether these two possible treatments of dust
charge fluctuations are identical or not. The answer is
that the treatment of dust charge fluctuations as due to
fluctuations of currents on a dust grain is more general
and includes, in a certain limit, the effect of the dis-
creteness of the charging process. In the available liter-
ature, the discreteness of the charging process was first
considered in [23] (see also [24]), and the fluctuations
of currents on dust grains were first treated in [25]. We
intend to show here that the result of [24] coincides
with a result that can be obtained from the fluctuations
of the electron and ion distributions due to their dis-
creteness [25] only in the limit where the electron and
ion fluctuations can be regarded as independent particle
fluctuations, i.e., as a part of noncollective fluctuations.
In plasma physics, this type of fluctuations is known as
free particle fluctuations, and another important type of
plasma particle fluctuation is known as induced fluctu-
ations [26]. The role of induced electron and ion fluctu-
ations in dust charging has not yet been investigated in
detail, but the role of fluctuations induced by dust (col-
lective dust component of fluctuations, which is the
most important for the problem of condensation in
complex plasmas) was considered in [27]. The impor-
tance of the latter process is obvious, because the elec-
tron and ion fluctuations in the charging process can be
induced by dust grains, which absorb electrons and
ions, and therefore can depend on dust fluctuations.
Thus, such a more detailed treatment [27] allows one to
consider the problem self-consistently, which in turn
can allow one to treat collective dust fluctuations as
related to long-range correlations in strongly correlated
states. At the end of this section, we will give the main
PLASMA PHYSICS REPORTS      Vol. 29      No. 1      2003
results of [27]. Here, we start with the problem of elec-
tron and ion fluctuations as fluctuations of independent
particles and neglect induced fluctuations related to
both plasma particles and dust. Note that this problem
was considered in [24, 28]; here, we compare the
results obtained by the method of fluctuations of cur-
rents on dust grains [25] with that given in [24]. The
distribution of fluctuations considered in [24] is a Gaus-
sian distribution with the spectral width equal to the
charging frequency. Induced fluctuations can have fre-
quencies much higher or much lower than the charging
frequency. In the low-frequency range, the spectral
width of these fluctuations depend on the dust density
[27]. The appearance of long-range correlations leading
to strong coupling is related to low-frequency fluctua-
tions and collective processes of dust grain charging.
Giving here, for the first time, proof that the results of
an analysis of charge fluctuations due to the discrete-
ness of the charging process [24] coincide with those
for current fluctuations due to the discreteness of elec-
tron and ion distributions [25], we hope that such an
approach can be used to further develop the theory of
dust charge fluctuation using the known results from
plasma physics [26] or the results of the kinetic theory
of dusty plasmas, which have been developed recently
[27, 29, 30].

We start here with noncollective fluctuations of dust
charges. When the collective effects are neglected, the
charge of each dust grain is considered to fluctuate
independently. The dust density affects these fluctua-
tions via the quasineutrality condition. First, we will
consider an approach treating fluctuations as being due
to the discreteness of the charging process. Then, we
will consider the effects related to the discreteness of
the electron and ion distributions leading to current
fluctuations caused by electron and ion fluctuations.

2.2.1. Charge fluctuations due to the discreteness
of the charging process. Dust grains embedded in a
plasma are generally multiply charged with Zd @ 1. Due
to normal statistical fluctuations associated with dis-
crete impacts of individual electrons and ions, the
charge Q and, in turn, the surface potential φs of the dust
grain will fluctuate.

A Fokker–Planck description of grain charging due
to the discreteness of the charging process was devel-
oped in [24], where charge fluctuations resemble a
Markov process: the charge varies in steps of ±e with
the probability per unit time for a positive change given
by Ii and, for negative change, by Ie (remember that, by
definition, Ii and Ie are, respectively, the ion and elec-
tron currents on the total dust surface per the absolute
value of the electron charge e > 0). The probability fQ of
the grain to have the charge Q at time t is then given by
[24]

(6)
∂ f Q

∂t
--------- Ii f Q e– Ie f Q e+– Ii Ie–( ) f Q.–=
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Equation (6) assumes that both the charging cur-
rents and the probability depend on the instantaneous
charge (Q – e, Q, Q + e), but not on the previous history
of charging. This is reasonable, provided that plasma
fluctuations occurs on much longer time scales than
dust charge fluctuations.

Treating Q as a continuous variable and using the
normalization condition

(7)

we linearize the charging current around the steady
state 〈Ie 〉  + 〈Ii 〉  = 0,

(8)

and neglect the fluctuating currents δIe and δIi . This
yields the diffusion–convection equation

(9)

where δQ = Q – 〈Q〉;

(10)

τch is the steady-state charging time, coinciding with
Eq. (1.82) for the OML model; and

(11)

is the mean square of dust charge fluctuations, as can be
seen from a stationary solution to Eq. (9):

(12)

For the OML model, a simple substitution of cur-
rents in the last expression yields

(13)

where Zd, as previously, is the equilibrium dust charge
in units of the electron charge and the last approximate
equality is written in the limit τ ! 1. As could be
expected, the root mean square fluctuation of the dust
charge is on the order of the equilibrium dust charge,
although lower than it.

The temporal evolution of the dust grain charge can
also be written as a Langeven equation

(14)

where eIi – eIe = –(Q – 〈Q〉)/τch + (higher order terms)
is the linearized net current on the grain and g(t) is a
stochastic forcing function with zero mean. For noncor-
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related fluctuations, as is assumed in Eq. (6), the forc-
ing function should satisfy the relationship

(15)

where δ(t) is the Dirac delta function.
In this approach, it is possible to calculate the “life-

time” of a given charge fluctuation |δQ | (i.e., the growth
and dissipation times), as well as the charge autocorre-
lation function, power spectrum, etc. For instance, the
autocorrelation function of charge fluctuations is

(16)

and the power spectrum is Lorentzian with the charac-
teristic frequency 1/τch.

The time required for a charge fluctuation to grow
from 〈Q〉  to 〈Q〉  + |δQ | is given by

(17)

accordingly, the time required for a charge fluctuation
to dissipate back from 〈Q〉  + |δQ | to 〈Q〉  is

(18)

This kind of theoretical derivation can be compared
with Monte Carlo simulations (see [28]) and compared
with OML result (13) for Maxwellian (nonfluctuating)
distributions of electrons and ions. The result of such a
comparison shows good agreement between the Monte
Carlo calculations and the theoretical fits based on the
Fokker–Plank model. The numerical values were
obtained for argon at Te = 1 eV, Ti = 500 K, and ni = ne =
109 cm–3. Note that both the theory and the simulations
take into account only the discreteness of the charging
process.

2.2.2. Charge fluctuations due to the discreteness
of the electron and ion distributions. In principle, it is
obvious that if the electron and ion distributions fluctu-
ate, the current on a dust grain will also fluctuate. For
instance, in the OML approach, the fluctuating currents
δIi, e are given by

(19)

where δfi, e is the fluctuating distribution function of
ions or electrons. Nevertheless, the direct use the OML
approach to calculate dust charge fluctuations is ques-
tionable. As will be shown, the OML approach needs to
be generalized to properly treat the fluctuation currents.
Indeed, one can use Eq. (19) to estimate characteristic
spatial scales that will contribute to the current fluctua-
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tions if the electrons and ions fluctuate as independent
noncorrelated particles. Present-day plasma theory pro-
vides a simple relation for noncorrelated fluctuations,
which mathematically expresses the known statistical
relation for the independent fluctuations of the number
of particles N in a volume V, namely,

(20)

Applying this expression to particles with a momentum
p in an interval dp leads to an expression for the mean
square fluctuation of the particle distribution function
〈(δfp)2〉 . Since the fluctuations describe the time and
space variations of the particle distributions, δfp
depends both on r and t. The best way to find spatial
and time scales that contribute to these fluctuations is to
expand the fluctuation function in Fourier components,

(21)

Then, Eq. (20) reads (see [26])

(22)

Delta function δ(k + k') expresses that the correlation
function of fluctuations depends only on the difference
between the spatial coordinates, δ(ω + ω') expresses
that the correlation function depends only on the differ-
ence between the times, and δ(ω – k · v) expresses that
the independent free particles move along straight
lines.

Then, an important question arises as to whether we
can use this simple expression for independent particle
fluctuations in the expression for the flux on dust grains
obtained from the OML model. For the following rea-
sons, the answer is that it is impossible. The OML
model relates the electron and ion distributions at the
grain surface to those at infinity, and the expressions for
fe, i in Eq. (19) are the distributions at infinity. “Infinity”
physically means sufficiently far from the grain,
namely, at distances much larger than the charging dis-

tance λch ≈ . In the OML approach, the ion and
electron densities can depend on the local position, but
they should be almost homogeneous at distances on the
order of the charging distance (only in this case, the
electron and ion densities at distances on the order of
the charging distance can be attributed to the grain posi-
tion, being almost the same as those at the position of
the grain). Applying expression (22) to Eq. (19), we can
find the mean square of the OML fluctuation current.
As a result, we obtain that the corresponding equation
is described as an integral with respect to k (2π/k is the
characteristic fluctuation scalelength) and that this inte-

gral diverges at large k as , which shows that the

size of the fluctuations that give the largest contribution
is much less than the charging length, in contradiction
with the assumption used in the OML approach.
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Thus, we cannot use the OML approach in the exist-
ing form and need to calculate the currents taking into
account the inhomogeneity of fluctuations of the elec-
tron and ion distributions. We will use the expansion in
Fourier series and find the cross section for each spec-
tral harmonic (see the Appendix of [27]):

(23)

where pmax is the maximum impact parameter,

(24)

and k⊥  is the absolute value of the component of k per-
pendicular to v. With this cross section, the fluctuating
current is found to be

(25)

Further, we take into account only the plasma parti-
cle fluctuations related to the discreteness of their dis-
tributions. Therefore, we will write the linearized
charging equation for the time Fourier components in
the form

(26)

Both the mean square of dust charge fluctuations
and the autocorrelation function can be easily found
from this expression through the Fourier component of
the current correlation function |Ie, i, ω|2 defined by the
relation

(27)

Taking into account that the electrons and ions fluctuate
independently yields

(28)

Substituting here expression (25) for the fluctuating
current and using formula (22) to find its mean square
value, we obtain for the fluctuations related to the ion
discreteness
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In obtaining this result, we used the relationship

(30)

The first equality in expression (29) shows that the fre-

quency spectrum is of the Lorentz type, ∝ 1/(ω2 + ).
Although the cross sections for electrons and ions differ
from each other, the contribution from the electron dis-
creteness to dust charge fluctuations is equal to the con-
tribution from ion fluctuations (29). Indeed, we find

(31)

To obtain final expression (31), we used the balance
of average currents described by the dust charging
equation.

The sum of expressions (29) and (31) coincides with
result (13), obtained in [24] by a quite different method
exploiting the discreteness of the charging process
(although the final result in form (13) was not given in
[24], one can easily obtain it from expression (32) of
[24] by using relations from the OML charging equa-
tion). The coincidence seems to be natural because the
method of fluctuating current also uses the discreteness
of the electron and ion distributions. The new result that
cannot be seen so clearly from the previous approach is
that the contributions from electrons and ions to dust
charge fluctuations are equal to each other. However,
more important is the possibility of generalizing cur-
rent fluctuation by taking into account induced fluctua-
tions through the plasma and dust responses and the
possibility of a self-consistent treatment of dust charge
fluctuations taking into account the dependence of elec-
tron and ion fluctuations on dust charge fluctuation and
other dust and plasma parameters, such as induced fluc-
tuations of both dust and plasma particle densities. This
way makes it possible to find the role of dust fluctua-
tions both in long-range interactions in strongly corre-
lated systems and in transitions to and from strong cor-
related states.

2.3. Collective Dust Fluctuations

Collective dust fluctuations were obtained only
recently by using a new kinetic theory of dusty plasma,
which we are not able to present here in short terms.
Here, we will give only the final result in which all non-
collective fluctuations and also the effects of induced
fluctuations of electrons and ions are neglected (esti-
mates show that these effects are small when the num-
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bers of electrons and ions in their Debye spheres are
large) [27]:

(32)

Let us take some typical data of existing experi-
ments: a = 3 µm, λDi = 30 µm, nd = 3 × 103, and τ/z =
102. Then, for collective fluctuations, we find

〈(δZd)2〉/  ≈ 4 × 10–3, while for noncollective fluctua-

tions, we have 〈(δZd)2〉/  = (1 + z)–1 = 3 × 10–5; i.e.,
the latter is two orders of magnitude lower, which
means that under laboratory conditions, collective dust
charge fluctuations can be much larger than were
expected earlier for noncollective fluctuations. This is
an important point for further developments related to
dust charge fluctuations in the course of plasma con-
densation to a strongly coupled state.

2.4. Absorption of Ions and Electrons on Grains

We consider here only the noncollective absorption
of ions and electrons on dust grains with the grain num-
ber density nd. The term noncollective means that each
grain absorbs independently of the presence of other
grains and the total absorption is a sum of absorptions
on individual grains. Since any ion on its path through
a dust-containing region subsequently reaches other
grains and has a probability to be absorbed by one of
them, the average ion density will decrease. To calcu-
late this effect, we can sum the absorption on individual
grains and find the corresponding dissipation term in
the ion continuity equation. The flux of ions onto an
individual grain is determined by the current Ii (remem-
ber that above we introduced Ii as the current on an indi-
vidual grain per unit charge e > 0 and, therefore, Ii coin-
cides with the ion flux onto the grain). We can write this
flux for the general case in the presence of ion drift (this
case, which was regarded in [1] as anisotropic charging,
is of practical interest in sheath regions). We introduce
the charging coefficient αch given by expression (1.75).
Then the ion flux onto an individual grain can be writ-
ten as

(33)

In the limit of low ion drift velocities, u ! 1, where

(34)

(35)

we return to expression (1.24) for the ion flux. With
expression (33), we will be able to find the absorption
of ions on grains for any ion drift velocity. The continu-
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ity equation for ions that takes into account the effect of
absorption of ions on grains will be

(36)

Here, the subscript “ac” is introduced to distinguish the
actual spatial coordinates and time from their normal-
ized values, for which it is convenient to use notation
without any subscript. Equation (36) takes a very sim-
ple form if we write it in a dimensionless form, using
for the normalization of distances and time the charac-
teristic charging length and the characteristic charging
time, respectively. More exactly, for normalization we
will use these quantities, excluding the parameters that
can, in fact, be time or space dependent. Instead of λch =

/a(1 + τ + z) for the normalization of distances,
we will use simply

(37)

and for the normalization of time, we will use L/vTi .
Here, n0 is a constant density that can naturally be the
plasma density outside the dust-containing region or
some other density relevant to the problem under con-
sideration. This density should be constant in order to
exclude time or space dependent coefficients from nor-
malization. For the same reason, we excluded the factor
1 + z + τ from normalization because the dust charge
can vary in space and time. Thus, we have

(38)

For the ion density and drift velocity, we use the natural
normalization

(39)

Multiplying Eq. (36) by /an0 vTi, we convert
it to a very simple dimensionless form

(40)

where P = ndZd/n0 is the parameter characterizing the
relative dust charge density [see expression (1.2)].
Here, we normalize the dust charge density to a con-
stant ion charge density (e.g., to the ion density outside
the dust region).

Equation (40) has no small parameters and shows
that, for P on the order of unity, complex plasma will
disappear on the time scale of the charging process if
there is no source supporting the ion density. In experi-
ments, such a source is often volume ionization. A rea-
sonable model for this source is one where the number
of the ions created is proportional to the electron den-
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sity. For instance, this can be expressed as an additional
term on the right-hand side of Eq. (40):

(41)

where ne = ne, ac /n0 is the normalized electron density
and τi is the characteristic time of creating an ion by
ionization (in units of L/vTi). Equation (40) with addi-
tional term (41) will have a steady-state solution when
ionization is balanced by absorption on dust grains.

As concerns electron dissipation, we note that the
electron flux should be almost equal to the ion flux and
the sink term in the electron continuity equation is the
same as the source term because the electrons and ions
are created by an ionization source in pairs (for usual
weakly ionized laboratory plasma). On the other hand,
the behavior of electrons and ions is usually different
because, in most cases of interest, the electron drift
velocity is small as compared to the electron thermal
velocity and often does not enter in the equations for
the electron component. Therefore, one does not need
to consider the electron continuity equation to find the
electron drift velocity. The electron density can be
determined from the distribution of the electrostatic
potential because the electrons behave almost adiabati-
cally. Models different from the OML charging model
give another value for the charging coefficient αch;
therefore, the theoretical description of the mentioned
balance is model dependent. We note that experiments
on this balance for a known ionization source can check
different models of charging. This may be important
issue for future experiments.

2.5. Noncollective Friction of Ions
in a Gas of Grains

The ions are not only absorbed by grains but also
transfer their momentum to the grains. There are two
mechanisms for this transfer: one is related to ion
absorption by grains and another is related to the scat-
tering of ions by the Coulomb field of the grains. The
second mechanism conserves the number of ions and
does not contribute to the continuity equation. Under
the condition z/τ @ 1, the second mechanism is domi-
nant for low ion drift velocities, while for superthermal
velocities and Mach numbers on the order of unity, both
mechanisms are comparable and neither of them is neg-
ligible. As in the previous section, we will consider here
only noncollective effects, by summing the momentum
transferred in the interactions with individual grains. In
the limit of low drift velocities, the friction of ions in
the interaction with grains is proportional only to the
drift velocity. An estimate of the capturing friction
force Fc and the capturing friction frequency νc related
to ion absorption (capture) for small drift velocities is
very simple:

. (42)

Qi ne/τ i,=

Fc νcmivi, νc– ndv Tiσi ndv Tiπa
2z
τ
--≈ ≈=
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The last approximate equality in the second of expres-
sions (42) is found from the OML approach in the limit
z/τ @ 1. We note that the last formula can be also
expressed through the parameter P if we use as a unit
for the friction force the value of the force that
decreases the energy of ions by Ti on the distance L =

, which is on the order of the charging length λch;
i.e., we extract from expression (42) the factor Ti /L,

(43)

For P on the order of unity and for an ion drift veloc-
ity on the order of the ion thermal velocity, this force
decreases the ion momentum by the thermal ion
momentum on the distance equal to the charging length
and, since this force is completely inelastic, it decreases
the directed ion energy by the ion thermal energy. The
other force Fsc, related to elastic scattering of ions in the
dust Coulomb field can be estimated as follows:

(44)

The last estimate is found by assuming that

(45)

Scattering force (44) can be expressed through P by
extracting the factor Ti /L:

(46)

The last expression shows explicitly that the scattering
force is z/τ times larger than the capture force if z/τ @ 1.
This force changes the energy by an amount on the
order of electron thermal energy on the distance equal
to the charging length.

To find the general expression for the friction force
for any values of the ion drift velocity due to both Cou-
lomb scattering and the capturing of ions, one can inte-
grate the change of the ion momentum described by
both the known Coulomb collision integral and the cap-
turing OML cross section over the drifting Maxwellian
distribution and express the result through the so-called
drag coefficient αdr:

(47)
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It is natural to normalize the friction force to F0 =

Tea/ ,

(48)

In the general case, the coefficient αdr can be
expressed through the error function

(49)

where lnΛ is the Coulomb logarithm equal in the first
approximation to ln(λDi /a). In the drag coefficient, one
can easily distinguish between the terms that appear
due to the ion capture by the grain and the terms that
appear due to Coulomb scattering by the grains: all
terms containing the Coulomb logarithm are due to
Coulomb scattering, while all terms that do not contain
the Coulomb logarithm are due to capturing. In the
limit z/τ @ 1, the effect of Coulomb scattering is dom-
inant if the drift velocities are low as compared to the
ion thermal velocity. In this case, we find

(50)

For superthermal ion drift velocities, it is possible
to express the drag coefficient through the Mach num-
ber M:

(51)

The coefficient τ on the right-hand side of this expres-
sion is usually included in the normalized length; there-
fore, in this case, the effective drag depends only on the
Mach number. For M on the order of unity, the terms
with the Coulomb logarithm and the terms without it
are of the same order of magnitude, which means that
the contributions from Coulomb scattering and captur-
ing are of the same order of magnitude. Expression (51)
is important for treating dusty plasma in sheaths.

The question then arises as to why we called the
total friction coefficient the drag coefficient. The reason
is simple: due to momentum conservation, the loss of
the ion momentum is transferred to dust grains and any
ion drift creates the drag force for grains. The ion drag
force is one of the most important forces acting on dust
grains. In a similar way, it can be also shown that fric-
tion on electrons is always small as compared to other
forces acting on electrons if τ ! m1/3, which is always

λDi
2

F
Ffr

F0
------≡ zPαdru.–=

αdr
erf u( )

8u
3

-------------- τ
z
-- 1– 4u

2
4u

4
+ +( )=

+ 2
τ2

z
2

---- 1– 2u
2

+( ) 4 Λln+

+
u

2
–( )exp

4 πu
2

---------------------- τ
z
-- τ

z
-- 1 2u

2
+( ) 2+ 

  4 Λln– ,

αdr
2

3 π
---------- Λ .ln=

αdru
τ

M
2

------- Λln M
2

2z
------- M

4

4z
2

-------+ + .≈
PLASMA PHYSICS REPORTS      Vol. 29      No. 1      2003



COMPLEX PLASMAS: II. ELEMENTARY PROCESSES 9
satisfied when τ ! 1. Because of the small electron
mass, the drag of electrons on grains is of minor impor-
tance.

The ion momentum losses are also model depen-
dent, because both the absorption on grains and the
scattering are model dependent (here, we used only the
OML model for estimates) and because we assumed a
multiple scattering approach (estimates show that tak-
ing into account the scattering by large angles gives
nearly the same contribution as the multiple scattering
by small angles). Both models can be checked by
experiments on injecting ions into a dusty plasma and
measuring the depletion of the ion density (these exper-
iments are being developed now).

2.6. Characteristic Electric Fields 
in Complex Plasmas

High dissipation rates in complex plasma can create
rather large fields even in quasineutral regions. These
fields can easily be estimated in the case where ion–
neutral collisions are negligible and in the case where
they are dominant. In the first case, we can equate the
friction force acting on ions to the electric field force. If
the drift velocity is on the order of the thermal velocity
and P is on the order of unity, then we obtain the fol-
lowing estimate for the effective electric field:

(52)

For typical ion densities on the order of ni ≈ 109 cm–3,
a ≈ 30 µm, and Te ≈ 2 eV, we obtain E ≈ 103 V/cm.
When the ion friction is determined by ion–neutral col-
lisions, in this estimate, we should use the mean free
path for ion–neutral collisions λin instead the charging

length /a. In this case, estimates also give a large
value of the electric field.

When the characteristic length is determined by the
charging length, the usual estimate obtained from the
quasineutrality condition changes. In this case, we nor-

malize the length to L = /a and introduce the dimen-
sionless field as

(53)

Then, Poisson’s equation takes the form

(54)

The quasineutrality condition means that we can
neglect the left-hand side of Eq. (54) and equate the
right-hand side to zero. When the dimensionless elec-
tric field is on the order of unity and its gradient (or the

E0 id,
Tea

eλDi
2

-----------.≈

λDi
2

λDi
2

E
Eac

E0 id,
-----------.≡

∂E
∂r
------- τ

λDi
2

a
2

-------- n ne– P–( ).=
PLASMA PHYSICS REPORTS      Vol. 29      No. 1      2003
characteristic dimensionless length) is also on the order
of unity, this condition is determined by the relation

(55)

This relation is a consequence of the large influence of
dust on electrostatic phenomena in a complex plasma.
It is unusual only at first glance and follows from Pois-
son’s equation. Note that, in ordinary plasmas, the
quasineutrality condition means that the characteristic
inhomogeneity length should be larger than the Debye
length. There is no contradiction between these two
statements because the latter condition is usually
obtained from linearized Poisson’s equation, whereas
the condition in which the characteristic length is the
charging mean free path (or the mean free path for ion–
dust collisions) it is related to the self-consistent non-
linear behavior of the total complex system. Numerical
solution of the set of self-consistent nonlinear balance
equations confirms that, in dust-containing regions,
relation (55) is really the quasineutrality condition [31].
In regions where dust does not play a crucial role, the
quasineutrality condition takes the usual form. The
only important restriction to apply relation (55) is that
the ion–neutral friction force is negligible as compared
to the friction on dust grains. When ion–neutral colli-
sions dominate and the electric field in a quasineutral
plasma is determined by self-consistent nonlinear inter-
action with dust, we find the following estimate for the
characteristic electric field E0, in:

(56)

where

(57)

Estimate (56) is obtained by equating the ion–neu-
tral collision friction force to the electric field force. In
this case, the characteristic length differs from that
introduced above by the same factor R; i.e., it is equal
to the ion–neutral mean free path divided by τ. The
dimensionless ion and electron densities and the
parameter P should be defined in this case by dividing
not by n0 as above but by the product n0R, which does

not in fact depend on n0 because  ∝  1/n0. This fol-
lows from the normalization of the whole set of balance
equations and is confirmed by many numerical results.
Under conditions where the ion–neutral collisions are
dominant, instead of quasineutrality condition (55), we
obtain

(58)

This condition seems to be quite natural and is also con-
firmed by self-consistent numerical simulations of dust
structures [69–71]. Remember that expression (56) is
correct only when, due to self-consistent nonlinear
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behavior of the complex system, the characteristic
length turns out to be λin/τ.

3. FORCES ACTING ON GRAINS
IN COMPLEX PLASMAS

The most important forces acting on dust grains are
the drag force created by an ion flow, the electric field
force, the dust pressure force, the thermophoretic force,
the friction force in a neutral nonmoving gas or a neu-
tral drag force in a moving neutral gas, and the dust
inertia force. We will describe all these forces and esti-
mate their values under conditions of existing experi-
ments.

3.1. Ion Drag and Electric Field Forces

The drag force was first addressed in [32, 33]. The
drag by an ion flow exists for both low and high ion drift
velocities (much lower and much higher than the ion
thermal velocity). In existing experiments, the ion drift
velocity can be on the order or somewhat higher than
the ion sound velocity (the Mach number is on the order
of unity); it is, however, always still lower than the elec-
tron thermal velocity. Physically, dust drag by an ion
flow appears due to the loss of the ion momentum in the
interaction with dust grains and is a direct consequence
of momentum conservation. One can obtain the same
estimate as formula (42) for the momentum transfer
due to the capturing process in a subthermal ion flow. In
this case, the collision frequency should be determined
by the ion number density, rather than the dust number
density as in formula (42). The same change should be
made in estimate (44) for the drag force due to Cou-
lomb scattering. Certainly, the force will be determined
by the difference between the ion and dust velocities;
however, the dust velocity in the expression for the drag
force can usually be neglected because, almost in all
cases of interest, it is much smaller than the ion drift
velocity. As a result, instead of the parameter P entering
into formula (46), we have Zdni /n0. In the general case
of an arbitrary ion drift velocity, we find the same coef-
ficient αdr but multiplied by Zdn instead of P. If we use
the same normalization as in expression (48), then for
the drag force we obtain

(59)

where Fdr, ac is the actual (nonnormalized) drag force.
Note that, as could be expected, the drag force is pro-
portional to the square of the dust charge [one factor, Zd,
enters into normalized dust charge z, and the other fac-
tor Zd enters directly into expression (59)].

The presence of the large factor Zd is also a conse-
quence of the momentum conservation law. Indeed,
expression (59) is written for a single dust grain. To find
the momentum transferred per unit volume, we should
multiply expression (59) by nd; as a result, the addi-

Fdr
Fdr ac,

F0
------------ Zdznαdru,= =
tional factor Pn0 appears. On the other hand, to find the
momentum lost by ions per unit volume, we should
multiply expression (48) by ni = n0. If we sum these
expressions for the change of the momentum per unit
volume, we will obtain exactly zero.

The presence of the large factor Zd in front of the
expression for the drag force is very important because
all other dimensionless parameters are usually on the
order of unity and the presence of the large factor Zd in
expression (59) shows that the drag force is usually
large. However, due to the large value of Zd, the electric
field force Fel acting on dust grains is also large. Nor-
malizing the electric field in the same manner as when
deriving expression (53) for the force acting on ions, we
obtain

(60)

For the sum of the electric field force and the drag force,
we have

(61)

i.e., the factor Zd appears as a common factor in the
expression for the total force. Thus, if we find the force
balance of these two forces by equating the left-hand
side of Eq. (61) to zero, then the balance condition will
not be determined by the common factor Zd [34–36].
This, however, does not mean that the presence of Zd in
the expressions for the electric field force and the drag
force has no physical consequences. In fact, it has a
very important consequences if other forces are added
in the total force and if these forces do not contain the
large factor Zd. In this case, these other forces can be
neglected. For instance, the normalized dust pressure
force Fpr, ac = –(Td/nd)(∂nd/∂rac) is equal to

, (62)

where τd is the effective dimensionless dust tempera-
ture,

(63)

which, for any real experiment, is very small (τd ! 1)
due to the presence of the factor Zd in the denominator.
Then, the total force Ftot, including the electric force,
the drag force, and the pressure force, can be written as

(64)

If we neglect the term with a very small parameter
τd in the force balance equation, we get

(65)

This equation has two solutions. One of them corre-
sponds to the balance between the electric field force
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and the drag force, and the other one is P = 0. In a spa-
tial region where the electric field force is balanced by
the drag force, P is usually nonzero. This means that
there should be a boundary with a jump in the parame-
ter P. Since z is continuous, the dust density should have
a jump at this boundary. The term with the dust gas
pressure allows one to describe the fine structure of this
jump as a continuous but steep change in the dust den-
sity, probably with small oscillations on spatial scales

that are  times smaller than the other characteristic
spatial scales of the problem.

Thus, we can conclude that, due to the presence of
the large factor Zd in both the electric field force and the
drag force (which allows one to neglect the dust pres-
sure force, proportional to the small parameter τd), a
new type of boundary can be created with all the param-
eters being continuous, except for the dust density.
Note that this is not only a theoretical possibility. In the
experiments of [37, 38], dust distributions with sharp
boundaries were observed (see also theoretical papers
[39, 40]). In [37], the boundary observed was very
sharp and, outside the dust cloud, the dust was practi-
cally absent. In [38], several interesting structures with
sharp dust boundaries separating regions with dust
grains of different size (grains with the sizes a and 2a
were injected simultaneously) were observed. This
phenomenon requires future detailed investigations.
Also, the convection of dust was observed in [38].

The above relationships were obtained under the
assumption that ion–dust collisions are the most impor-
tant. Formally, these expressions survive in the case
where ion–neutral collision are dominant. In this case,
it is only necessary to change the normalization accord-
ing to the expressions given in the previous section.

3.2. Temperature Gradients
and the Themophoretic Force

The thermophoretic force is proportional to the tem-
perature gradient of a neutral gas and becomes impor-
tant when ion–neutral collisions dominate over ion–
dust collisions. This well-known phenomenon was con-
sidered for dust grains in [41, 42]. The ratio of the cor-
responding friction forces depends on the gas pressure.
In experiments, this ratio is often on the order of unity.

The thermophoretic force Ftp, ac is determined by the
neutral gas density nn and by the gradient of the neutral
gas temperature Tn [41],

(66)

The main problem is the question of what processes
in a neutral gas determine the temperature gradient. It
can be some external heat sources or the difference in
the electrode temperatures in a particular experimental
device. A question we need to answer is what kind of
temperature gradients in a neutral gas can be created by

τd
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the presence of dust. We exclude from consideration
externally created temperature gradients, because in
this case, the thermophoretic force is completely deter-
mined by Eq. (66). In the general case, the temperature
gradient is determined by heat conduction, which,
under conditions where ion–neutral collisions are dom-
inant, is described by a diffusion equation with heat
sources. We consider only sources related to the pres-
ence of dust and steady-state heat transfer.

Let us first consider the heat balance at the surface
of a dust grain. The flux of electrons and ions related to
the charging process continuously supply the surface
with the energy that is the energy of the captured ions
and electrons. This energy flux onto the grain surface
can easily be calculated using the OML cross sections.
Each ion is accelerated by the dust field almost to the
energy corresponding to the electron temperature.
Therefore, the electron and ion contributions to the heat
flux onto the dust surface are almost equal to each other
(the direct calculations show that these fluxes differ by
only a factor of z/2). The energy deposited on the dust
surface cannot stay there because, for a low degree of
ionization, the neutral density is much higher than the
ion density (in typical experiments, nn/ni ≈ 106) and the
rate of dust collisions with neutral gas atoms is
(nn/ni)(τ/z) ≈ 104 times larger than the rate of collisions
with ions (the ion and neutral thermal energies in this
estimate are assumed to be approximately the same). In
this estimate, the factor τ/z is the ratio of the cross sec-
tion for neutral–dust collision (which is the geometrical
cross section πa2) to the cross section for ion–dust col-
lisions (z/τ)πa2. In neutral dust collisions, the neutral
atoms are attached to the dust surface for a rather short
time (called the resident time), which is sufficient to
equalize the thermal energy of the attached neutral
atoms to the dust surface temperature. Then, the neutral
atoms take the excess of energy that was deposited by
ions and reemitted from the dust grain. As a result, the
surface dust temperature becomes almost equal to the
neutral gas temperature. Heat transfer from the dust
surface to the neutral atoms is very fast, and the surface
temperature of the dust grain is larger than the temper-
ature of the neutral gas (this determines the direction of
heat transfer); however, this difference is very small. In
the above numerical example, the relative difference
between the dust surface temperature and the neutral
gas temperature is as low as [36]

(67)

Thus, the energy deposited on the dust grain in the
charging process is a source of the local heating of neu-
tral atoms (the heat source qd), which produces the tem-
perature gradient and thus creates a self-consistent ther-
mophoretic force that is not related to external heating.
Of course, the external source creates the ion flow
which also deposits energy in the neutral gas (the heat
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source qi) via ion–neutral collisions and ion–neutral
friction.

The best way to write the heat conduction equation
with these heat sources on the right-hand side is to nor-
malize the distance to λnn /τ ≈ λinτ and the thermo-
phoretic force to Tn/λnn (note that, above, the force was
normalized to Ti /λin):

(68)

where Ftp is the thermophoretic force divided by Zd in
order to extract the factor Zd, which is common for all
forces acting on a dust grain (this simplifies the com-
parison of different forces). Then, according to expres-
sion (66) for the thermophoretic force, which contains
the first derivative with the respect to the neutral tem-
perature, we obtain the heat conduction equation for a
neutral gas in a form containing only the first derivative
of the thermophoretic force with respect to the dimen-
sionless distance. For simplicity, we will write this
equation in the one-dimensional form, assuming that
the temperature depends only on the x coordinate [36]:

(69)

where αtp is a numerical coefficient on the order of
unity (when ion–neutral collisions are dominant, it is
0.8). The OML approach gives

(70)

and simple calculations with the friction force deter-
mined by ion–neutral collisions give for u ! 1 (in this
case, the friction force is proportional to u and the ion
mobility is proportional to the electric field)

(71)

For u @ 1 (when the ion–neutral friction force is
proportional to the square of the drift velocity and, cor-
respondingly, the ion mobility is proportional to the
square of the electric field), we obtain an estimate for
qi, which differs from expression (71) by the additional
factor u.

The appearance of the small factor τ in Eq. (69) for
the thermophoretic force is very important. When all
the dimensionless parameters are on the order of unity,
the presence of the factor τ on the right-hand side of
Eq. (69) shows that, in most cases of interest, the self-
consistent thermophoretic force is fairly small and can
be neglected. The only exception is the case of high ion
drift velocities, where the heat source (71) can be large.
This can occur only if the ion drift velocity substan-
tially exceeds the ion thermal velocity, namely, if τu3 is
on the order of unity or if M > τ1/6, which means M >
0.5 for existing experiments, where τ ≈ 0.02. Thus, the
thermophoretic force can be important in sheaths,
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where M is on the order of unity. However, this also
requires high pressures in order that the characteristic
length of the problem be determined by ion–neutral (or
neutral–neutral) collisions, when the above expression
for the thermophoretic force is valid. In existing exper-
iments, where ion–neutral collisions are dominant, u is
on the order of unity and M ! τ1/6. Under these condi-
tions, the thermophoretic force is small. The possible
presence of sharp dust boundaries does not change this
conclusion because Eq. (70) contains the parameter P,
but not its derivatives with respect to the distance.

If the characteristic length is not determined by the
nonlinear balance and is not directly related to the col-
lisional mean free path of neutral gas atoms, then the
thermophoretic force can be rather important. In partic-
ular, it is important in the interaction of two dust grains
when the distance between them is larger than the col-
lisional mean free path (below, we will consider this
problem in more detail). The thermophoretic force can
be used to remove dust from a system by an externally
applied temperature gradient [43].

3.3. Neutral Gas Drag Force, Gravity Force,
and Dust Inertia

The neutral drag (or neutral friction force) appears
when a dust grain moves with a certain drift velocity vd

through a neutral gas. When the neutral gas is moving,
this force can cause dust to move. Dust motion can also
appear when the gas is not moving and when the bal-
ance of the other forces acting on dust grains require
that the neutral gas drag to be included. For example,
when the ion drag force and the electric field force are
not acting in the same direction, they can be compen-
sated in one direction but cannot be compensated in the
other direction without taking into account the neutral
drag force. Then, the electric and ion drag forces create
dust motion in the direction where the force balance
cannot be established without the neutral drag force.
This leads to the dust convection observed in many
experiments. The role of the neutral drag force in creat-
ing dust convection was first considered in [38, 44]. In
the presence of gravity, the neutral drag force can bal-
ance the gravity force and can lead to a constant-veloc-
ity fall of dust grains injected in the gas discharge. The
physical reason for the appearance of the neutral drag
force, which is also known as the Epstein drag force
[45], is that the impact rate of neutral atoms on the front
side of a dust grain is larger than that on the rear side.
The difference in these impact rates, multiplied by the
average momentum transferred by impacts of gas atom,
is equal to the momentum transferred to the grain per
unit time, which is the neutral drag force:

(72)

where, as before, the index “ac” stands for the actual
value and νnd, Ep is the Epstein collision frequency of

Fnd ac,
4
3
---nnTnπa

2vd ac,

v Tn

----------– mdνnd Ep, vd ac, ,–= =
PLASMA PHYSICS REPORTS      Vol. 29      No. 1      2003



COMPLEX PLASMAS: II. ELEMENTARY PROCESSES 13
momentum exchange between the dust and the neutral
gas atoms.

We will also introduce the normalized drag force.
The neutral drag force is important both when ion–dust
collisions are dominant (in this case, normalization is
related to ion–dust collisions) and when ion–neutral
collisions are dominant (in this case, normalization is
related to ion–neutral collisions). In the first case, when
ion–dust collisions are dominant, we have

(73)

where we intentionally extracted the factor Zd, which is
the common factor for all forces acting on dust grains,

and  is the normalized dust velocity,

(74)

with

(75)

This expression can be used to estimate the charac-
teristic dust velocities that can appear due to the disbal-
ance of other forces acting on dust grains. For Tn = Ti ,
τ = Ti /Te ≈ 0.02, and nn/ni ≈ 106, we find v d, ∗  = 7.5 ×
10–3vTn ≈ 120 cm/s for krypton. Note that this charac-
teristic velocity does not depend on the dust size.

When ion–neutral collisions are dominant, we have
another normalization:

(76)

where

(77)

(78)

This velocity depends strongly on the dust size a
(vd, ∗∗  ∝  1/a, because Zd ∝  a). For Zd ≈ 104, Tn ≈ Ti, σin ≈
5 × 10–15 cm–3, and a ≈ 3 µm, we find vd, ∗∗  ≈ 1.3 × 10–4

vTn = 2 cm/s in krypton.
When the neutral drag force is taken into account in

the force balance equation, we have

(79)

This equation has the same form both when ion–dust
collisions are dominant and when ion–neutral colli-
sions are dominant. The only difference is in the nor-
malization of n, E, and vd. In Eq. (79), dust inertia is
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neglected, which is possible under steady-state condi-
tions when the drag friction force exceeds the inertia

force md( )/2∂xac or when ion–dust collisions are
dominant and the condition

(80)

is satisfied, where

(81)

For v d, i  0, according to condition (80), dust
inertia can be neglected; however, for v d, i ≈ 1, dust iner-
tia can be neglected only for sufficiently light dust
grains, md ! md, ∗ . For nn /ni ≈ 106, Zd ≈ 104, τ ≈ 0.02,

Tn ≈ Ti , and z ≈ 3, we find md, ∗ /mn ≈ 3 × 109. This large
value appears because all other forces, except for the
inertia force, are proportional to Zd and, therefore, Zd

appears in the expression for the critical mass. When
ion–neutral collisions are dominant, we obtain a condi-
tion for neglecting dust inertia similar to condition (80)
with a substitution of v d, n for v d, i and md, ∗∗  for md, ∗ .
For v d, n on the order of unity, we find

(82)

which, in contrast to the previous relation, contains Zd

in the denominator. For Tn ≈ Ti, σin ≈ 5 × 10–15, and a ≈
3 µm, we find md/mn ! 1018. This relation is usually ful-
filled in existing experiments. Note that condition (82)
is independent of the dust size if md ∝  a3 and Zd ∝  a,
which is valid when dust grains are not hollow.

If there is a potential well for dust grains, then a
grain can reach the bottom of the well with a zero
velocity; in this case, the neutral drag force vanishes.

In the presence of gravity, the balance equation
should include the gravity force Fg, ac = gmd, where g is
the free-fall acceleration. The neutral drag force, being
balanced by the gravity force Fg = gmd ∝  a3, leads to a
constant dust drift velocity proportional to a.

4. NONCOLLECTIVE DUST–DUST 
INTERACTIONS

4.1. Electrostatic Energy of Two Charged Grains

Let us consider two charged grains of equal size
embedded in a plasma with a fixed electron temperature
Te . Then, the grain charge will be a function of the dis-
tance r1, 2 between the grains. We will consider dis-
tances at which the field of each grain is a nonlinearity
screened field (including the nonscreened long-range
field) and the total potential is described by
ZdeV(r1, 2)/r1, 2, where r1, 2 = |r1 – r2 | is the relative dis-
tance between the two dust grains and V(a) = 1. Quali-

∂v d ac,
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tatively, the dependence of the dust charge on the dis-
tance between the two grains follows from the condi-
tion that the total potential on each grain be
approximately equal to the electron temperature,
(Zde2/a) + (Zde2V(r1, 2)/r1, 2) ≈ Te or [46]

(83)

where Zd, ∞ is the dust charge when the distance
between the grains is infinite. Thus, the charge on each
dust grain decreases as the intergrain distance
decreases. In this case, the Coulomb interaction energy
increases; however, the total electrostatic energy
decreases because the Coulomb energy is added by the

intrinsic energy of two dust grains, 2 × /2a ≈

( /2a)(1 – 2aV/r). The total change in the electro-
static energy when the grains are displaced from ∞ to

r1, 2 will not be /r1, 2, as for the case where the dust
charges does not change with distance, but it will be

− /r1, 2, as if the dust grains were attracting, rather
than repelling each other, as could be expected in the
case of two charges with the same sign [46].

This contradiction is well known in electrostatics.
The electrostatic energy of two charged conducting
spheres changes its sign if the potential of the spheres
is kept constant. The potential can be kept constant by
external sources that under equilibrium conditions pro-
duce a work on the charges; as a result, the total force
should be calculated as the derivative of the total elec-
trostatic energy with an opposite sign [47, 49], which
leads to the repulsion of charges with the same sign.

There exists a large doubt as to whether this state-
ment, proven only for systems that are in thermal equi-
librium, can be applied to a complex dusty plasma as an
open system [48]. We will demonstrate by explicit cal-
culations that it is not applicable. The openness of the
system assumes the presence of not only two dust
grains, but of many dust grains, which results in collec-
tive effects. These dust grains create a constant sink of
energy (a homogeneous one if they are distributed ran-
domly) and lead to a decrease in the electron energy (or
the electron temperature when the distributions are
approximated by thermal distributions), which should
be compensated by external sources. Thus, attraction in
an open system could be of collective nature: many dust
grains are needed as a sink of energy to produce attrac-
tion between two probe grains (see below). The only
conclusion that could be made from the present consid-
eration is that the electrostatic energy of two dust grains
decreases when they come closer to each other; as a
result, electrostatic energy is gained. How this will be
compensated by the work of an external source is a sep-
arate problem. However, the concept of minimum

Zd

Zd ∞,

1
aV r1 2,( )

r1 2,
--------------------+ 

 
-----------------------------------,=

Zd
2

Zd ∞,
2

Zd
2
V

Zd
2
V

energy does not work in open systems and we cannot
conclude from the decrease in the electrostatic energy
that two dust grains attract each other. The presence of
a reservoir of energy creates the possibility of the
attraction of grains with equal-sign charges with the
same sign. The realization of this possibility depends
on the type of external sources that make the system
open. Therefore, it is necessary to know the specific
properties of the sources to explicitly find the actual
forces between the grains. As we will see, these forces
can be attractive starting from a certain distance
depending on the type of the external source. Expres-
sion (83) [46] for the decrease in the dust charges when
the grains come closer to each other was confirmed by
numerical simulations [50]. For a distance source, the
time during which information on the produced work
reaches the source is determined by the speed of sound.
In this case, the grains will be able to attract each other
or even agglomerate before this information will reach
the source. Thus, for open complex dusty systems, the
condition of thermodynamic equilibrium cannot be
used and the result of interaction depends on the exter-
nal source structure. However, we will show that, even
for a homogeneous external source, there exists an
attraction force related to plasma production by ioni-
zation.

4.2. Dust Attraction and Nonlinear Screening

Screening is often nonlinear. Due to nonlinearity,
the screenings of two dust grains cannot be superposed
on each other. The simplest way to treat this nonlinear-
ity is to consider large distances between the dust grains
where the screening of each of them is approximately
linear and the nonlinearity can be considered weak.
Nevertheless, it can be important when the field of each
grain is screened exponentially as it should be in the
case of weak nonlinearity. We will show that two dust
grains with charges of the same sign can create a non-
screened potential in the direction perpendicular to the
line connecting their centers, i.e., to r1, 2. This potential
can act as a potential well for the third negatively
charged dust grain. This means that, in this perpendic-
ular direction, the nonlinearity of the fields of two dust
grains can create a bunch of positive polarization
charges that can serve as a well for another dust grain.
This property is completely determined by nonlinearity
and is absent in the linear approach. We start with the
equation neglecting electron screening and electron
nonlinearities:

(84)
∆φ 4πeni e

eφ
Ti
------–

1–
 
 
 

– 4πZd 1, δ r r1–( )+=

+ 4πZd 2, δ r r2–( ).
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The last two terms describe the charge densities of two
point charges at positions r1 and r2. The linear potential
of each of them is given by

(85)

which leads to the screened Coulomb interaction

(86)

The nonlinearity on the right-hand side of Eq. (84)
can be found by expanding the exponent and taking into
account the term with the product of potentials (85) of

each dust grain, ∝φ 1φ2 (the terms ∝  or ∝ , which
describe small corrections to screening, were discussed
in [1] when considering the nonlinear screening of a
single dust grain). We consider the line connecting two
dust grains, r1, 2; the distance r is counted from the cen-
ter of this line or from any other point on this line. The
latter makes no difference because we assume that r @
r1, 2 = |r1 – r2|. Then, simple calculations lead to an addi-
tional potential φnonl , created by two dust grains, and to
an additional energy for the third dust grain; in contrast
to expression (86), this energy appears to be negative:

(87)

This energy does not contain the exponential term
exp(–r/λDi); therefore, the interaction is nonscreened.
Of course, the use of the linear approximation as a first
approximation assumes that the distances are large as
compared to λDi. Thus, the exponent with r1, 2 in expres-
sion (87) is acting; the only restriction is that the linear
approximation for the potential be applicable and the
nonlinearity be weak. We also assume r @ r1, 2 and,
therefore, r @ λDi . We can therefore expect that this
attraction, which increases with decreasing r, will have
a maximum at r ≈ r1, 2. We can estimate that, at these
distances, the ratio of the attraction energy V3 to V1, 3 (or
V2, 3) will be on the order of

(88)

where z3 = Zd, 3e2/aTe . Obviously, this ratio can be
larger than unity. This result seems to be important for
the attraction of grains in the plane perpendicular to the
line between two other grains. Therefore, nonlinear
screening can be accompanied by the appearance of an
“overshooting” of the screening charge and, accord-
ingly, the creation of regions with a positive space
charge. A similar effect can occur in the presence of an
ion flow when the ions can be concentrated behind the
grain forming the potential well for other grains, as was
discussed in [1]. This effect can also appear due to the
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work done by an external source, as will be discussed
below.

4.3. Shadow Noncollective Attraction Force Created
by Ion Flux

We consider here the so-called noncollective
shadow effect [50–54], which occurs in the interaction
of two isolated dust grains in the absence of other
grains (P = 0). We assume that the distance between
two dust grains is larger than the ion Debye length (fur-

ther, this distance is set to be on the order of /a) and
is much less than the ion–neutral mean free path λin.

The physics of shadow attraction is very simple: the
plasma flux onto one of the grains is shadowed by
another grain, and, therefore, the ram pressure from the
outer sides of dust grains is larger than from the inner
side. The force arising due to the shadowing of the ion
flux can be easily estimated when the distance between
the grains is large compared to the grain size, which
corresponds to the case where the shadow solid angle is

small, a2/  ! τ/z. In this case, the shadowing force
Fsh, i is determined by the product of the shadow solid
angle [see (1.41)] and the transfer of the ion momentum
mivTiIi through the midplane between two dust grains
(here, according to [54], we take into account momen-
tum conservation in the grain interaction); i.e., it is

approximately equal to niTi ). The force is
directed along the line connecting the two dust grains;
i.e., it is aligned with r1, 2 /r1, 2:

(89)

The last expression corresponds to the case where
z/τ @ 1. This calculation oversimplifies the problem,
because it takes into account only the flux of the cap-
tured ions, whereas the flux related to ion scattering by
a dust grain is ignored. In the absence of the second
dust grain, the latter flux is scattered isotropically from
all sides of the grain and the net momentum transferred
to the grain is zero. In the presence of another grain, this
symmetry is violated. Thus, the shadow effect has two
parts: one is related to the capture flux and another is
related to the scattering by the grain field (which can
also include the effect of nonlinear screening and long-
range nonscreened field). We will discuss these pro-
cesses quantitatively. Nevertheless, the we will refer to
the simplest expression (89) as a standard one and will
find additional coefficients that mathematically
describe the mentioned effects. Expression (89) has
some general features:

(i) The force is attractive and has the same depen-
dence on the intergrain distance as the nonscreened

Coulomb force (∝ 1/ ).
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(ii) In contrast to the Coulomb force, this force is not
screened and should be dominant at distances larger
than the Coulomb field screening length.

(iii) The shadow force is smaller than the Coulomb
force at distances where the Coulomb field is not
screened (r1, 2 ! λscr). Indeed, by substituting one of the

factors a2 by / , we have

(90)

The first factor in this expression coincides with the
nonscreened Coulomb field (with the opposite sign);
the estimate of the second factor should be improved by
taking into account the shadow effect related to scatter-

ing. The most important factor is the last one a2/  ! 1,
which shows that the absolute value of the attraction
force is indeed much less than the absolute value of the
nonscreened Coulomb force. Thus, it can be dominant
only at distances larger than the screening distance,
where the Coulomb force is screened, whereas the
shadow force is not screened.

(iv) The shadow attraction is proportional to a4 and
increases rather sharply with increasing dust size. In
many existing experiments on etching, the grain size is
continuously growing; under these conditions, the role
of shadow forces increases with time.

(v) The shadow force appears only for finite-size
grains and is zero for point charges. For strong coupling
in complex plasmas, the grain size is not small and is
even a fraction of the screening length; hence, the
shadow effect is very important.

These general features are common to all attraction
forces, except for the fact that under certain conditions
the attraction force caused by neutral particle shadow-
ing can exceed the Coulomb force (see below). This is
related to the inequality nn /ni @ 1. Using the above esti-
mate, we will write the general expression for the
shadow force in the form [50]

(91)

where the shadow coefficient ηsh is the sum of the
shadow coefficients ηsh, ic, ηsh, is, and ηsh, n, related to ion
capture, ion scattering, and neutral flux shadowing (see
the next section), respectively:

(92)

First, we quantitatively consider the shadow effect
related to ion capture. We take into account exact
expressions (1.40) and (1.41) for the shadow angle. To
find the shadow force related to ion capture, we invert
the problem and calculate the capture force for the case
where the ions are present only in the shadow angle
cone, because, by virtue of zero momentum transfer in
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the absence of a shadow, the effect calculated in this
way is just opposite in sign and equal in magnitude to
the effect we are interested here. We will integrate the
expression for the momentum transferred by a single
ion over angles and velocities, assuming that the ion
distribution far from the grain is thermal. Taking into
account that the shadow flux far from the grain is
almost uniform and the cross section is πa2, we obtain

(93)

For z/τ @ 1 and r1, 2 @ , we have

(94)

Let us estimate the shadow effect related to ion scat-
tering. Note that the advantage of the OML approach
used to evaluate the shadow capturing force is that it
uses simple conservation laws that do not require the
knowledge of the potential distribution close to the
grain (the only requirement is that the potential far from
the grain should be much less than at the grain surface).
For shadowing related to scattering, we need to know
the potential profile. The potential is strongly nonlinear
for z/τ @ 1, and the Coulomb potential can be used
approximately only for z/τ on the order of unity. In the
latter case, calculations with a Coulomb potential [51]
showed that ηsh, is is approximately on the order of
ln(λDi /a). For existing experiments, the case where
z/τ @ 1 is more appropriate. In this case, due to strong
screening we can expect that ηsh, is will be less than that
obtained for the case of a pure Coulomb field. The exact
results for z/τ @ 1 can be obtained only numerically
with the use of an explicit expression for the nonlinear
screened potential; in the general case, the problem has
not yet been analyzed.

The shadow attraction potential is a long-range
potential operating at distances larger than the screen-
ing distance, where the nonscreened long-range repul-
sion potential also operates (this potential was calcu-
lated and discussed in detail in [1]). We remind that the
potential energy related to the latter is approximately

( /r1, 2)(a2/2r1, 2), while the potential energy related
to shadow attraction is on the order of

−ηsh( /r1, 2)(a2/ ). It follows from here that in
the long-range domain (at distances larger than the
screening distance), the attraction due to the shadow
effect becomes comparable with the repulsion at

(95)
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which is on the order of the charging length /a.
From the physical standpoint, the ion capturing attrac-
tion is directly related to the charging process; in this
context, the last important result seems to be natural.
The attraction due to neutral flux shadowing can be
larger, and the distances where it can dominate can be
shorter. Under conditions where the attraction due to
neutral atoms can be neglected, the whole potential
curve corresponding to the interaction of two dust
grains becomes similar to the usual molecular potential
curve: at short distances, the Coulomb repulsion domi-
nates, and at distances larger than the screening dis-
tance, there is a potential well with the minimum value

(96)

For typical experimental conditions (Zd ≈ 104, Ti ≈
0.02 eV, and a ≈ 10 µm), we find Vat ≈ 310  eV,
which corresponds to the characteristic binding energy.
Thus, two dust grains with equal sizes can form a dust
molecule, and several dust grains can form dust clus-
ters. Two-dimensional dust clusters (clusters on a
plane) were investigated in a number of experiments
[55–57] by using a small external confining potential.
Although the role of shadow attraction in the formation
of these clusters has not yet been investigated, it is obvi-
ous that the attraction plays an important role if the con-
fining potential is lower than estimate (96). The
shadow-force theory predicts that clusters can exist
without any external confining potential, which can be
verified experimentally. Experiments can also be per-
formed in the presence of an external transverse confin-
ing potential to measure the value of ηsh and to check
the shadow force physics (existing and planned experi-
ments of this type will be discussed below). The general
theory of modes, oscillation frequencies, and stability
of two-dimensional clusters recently developed in [58]
can be used for the experimental detection of attraction
forces.

4.4. Shadow Attraction Force Created
by Neutral Flux

In low-temperature plasmas, the flux of neutral
atoms on the dust grain surface substantially exceeds
the ion flux. This flux is not related to the charging and,
for the most part, is usually returned back. The neutral
atoms are absorbed by the dust surface, are kept at it for
a rather short resident time, and then are reinjected into
plasma. Nevertheless, the resident time is sufficient to
exchange energy and almost equalize it to the surface
temperature. Thus, in the presence of a small difference
between the temperatures of the neutral gas and the dust
surface, there can exist a net transfer of energy and
momentum, which can result in a shadow force. One
can rigorously prove that, if the collisions of neutral
atoms with the dust surface are completely elastic, then
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the net force due to the neutral atom flux is exactly zero.
If all of the neutral atoms are absorbed by the surface,
then this force can easily be calculated when the dis-
tance between the grains is less than the mean free path
in the neutral gas λg, which is on the order of λin [52,
53]. In this case, one need to calculate the momentum
transferred to the dust surface, assuming that neutral
atoms reaching the grain move along straight trajecto-
ries. Then, the attraction force is [52, 53]

(97)

This expression corresponds to the previous qualitative
estimate; however, since nn/ni ≈ 106 in the existing
experiments, force (97) is many orders of magnitude
larger than that related to the ion flux. We emphasize
that the attachment coefficient κat in expression (97) is
taken to be equal to unity, while the detachment coeffi-
cient κdet is taken to be zero, which is incorrect.
Actually, the difference between them is very small
(δκ = κat – κdet ! κat), and the temperature of the dust
surface Ts is not equal to the neutral gas temperature Tn.
Taking into account these differences, we find instead
of expression (97)

(98)

As was already noted, the dust surface temperature
is usually higher than the neutral temperature and when
the they differ substantially force (98) describes the
repulsion. However, under certain conditions, the dust
can be cooled quickly (this happens under astrophysi-
cal conditions where the radiative cooling is very effi-
cient). Under laboratory conditions, both the tempera-
ture difference and the difference between the attach-
ment and detachment coefficients is very small. Thus,
the sign of the force is determined by the interplay of
two small parameters, δκ/κ and δT/T. The latter, as was
discussed above, is on the order of 10–3. The relative
difference between the attachment and detachment
coefficients [59, 60] can be larger than this value, espe-
cially for rough dust surfaces (e.g., for fractal dust). In
this case, an attraction appears that depends on the
structure of the dust surface and other delicate prob-
lems of surface physics; however, the attraction force
will be two to three orders of magnitude weaker than
that described by estimate (97). Since estimate (97) is
larger than the ion capturing shadow force by the large
factor nn/ni, the neutral shadow force can exceed the ion
shadow force by several orders of magnitude. Neglect-
ing the temperature difference, we obtain the estimate
[53]

(99)

Fsh, dn

r1 2,

r1 2,
3

--------3
4
---πa

4
nnTn.–=

Fsh, dn

r1 2,

r1 2,
3

--------3
4
---πa

4
nnTn κ at κdet

Ts

Tn

-----– 
  .–=

η sh, nd
3
16
------τ2

z
2

----
nn

ni

-----δκ.≈



18 MORFILL et al.
When the temperature of the dust surface is substan-
tially lower than the neutral gas temperature and,
accordingly, δT/T is on the order of unity, the attraction
force is much larger because, in this case, the small fac-
tor δκ/κ is absent.

When the distance between the grains is larger than
the mean free path of atoms in the gas, the physics of
interaction changes and the main role is played by the
thermal flux q equal to the difference between the ther-
mal fluxes onto and from the dust surface. The thermal
flux created by one dust grain at the position of another
dust grain is

(100)

This leads to a temperature gradient in the place of the
other dust grain,

(101)

where κT is the thermal conductivity of the gas. A dust
grain situated in this temperature gradient experiences
a thermophoretic force, which can be expressed
through the thermal conductivity as

(102)

Thus, the thermal conductivity cancels and we again
find expression (98) for the neutral flux shadow force
with the additional numerical coefficient 64/45π ≈ 0.45
[53].

For high gas pressures or large dust sizes, the neutral
shadow attraction can obviously be stronger than the
Coulomb repulsion even at distances shorter than the
Coulomb field screening length. This means that if the
grains are continuously growing in a gas discharge,
then they should eventually reach the stage at which
they will only attract each other and, therefore, will
agglomerate. The phenomenon of dust agglomeration
is the common phenomenon in most etching devices
operating for a long time sufficient for dust grains to
grow [8–12]. Observations show that dust grains grow
up to sizes on the order of few fractions of a millimeter
[8] and that many of them finally take the form of cau-
liflower agglomerates. Theoretically, the criterion for
dust agglomeration due to neutral shadow attraction
was first obtained in [12, 59, 60]. Dust grain agglomer-
ates that were observed in tokamak plasmas [12] are a
big issue in fusion research (see [61, 62]). This phe-
nomenon can also be applied to interpret new observa-
tions of fast dust creation in H-stars and behind super-
nova shocks [63].

It is expected that the further development of the
physics of shadow forces can provide a natural explana-
tion of the observed phenomenon of dust agglomera-
tion in both space and laboratory plasmas.
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5. COLLECTIVE DUST ATTRACTION

In this section, we consider collective dust attraction
in a simple model, assuming that at large distances
between the grains (such that the collective effects are
important), the linear approximation for the responses
is valid. We will self-consistently consider the basic
state in which many dust grains are present with the
dust number density nd. We will find the electrostatic
potential created by a test grain and the pair interaction
of two test grains at large distances. This linear assump-
tion is reasonable because, as we have already demon-
strated, the attraction mainly occurs at large distances
between the grains. The assumption that the collective
effects also occur at large distances can be checked
from the final result, assuming that the parameter P0 is
not extremely small (see below). Denoting by φ1(r) the
potential of one of the two test grains (grain 1) in the
presence of many others grains, the potential of the
interaction of the two grains can be written as
eZ2φ1(r1, 2). Since, in the linear approximation, the
potential of grain 1 can be described by a static dielec-
tric constant ek, we have

(103)

The collective effects change the usual interactions
and open the possibility of the existence of new collec-
tive attraction forces. The possibility of attraction
appears when the dielectric constant ek is negative in a
certain range of wavenumbers k, which denotes the
possibility of changing the sign of V1, 2. As was dis-
cussed at the beginning of the previous section, such a
possibility exists in an open system in which the energy
is gained with decreasing distance between two grains,
which can result in their attraction. The openness of the
system can be provided by the presence of many dust
grains that create a plasma sink balanced by ionization.
Thus, we assume that many grains are present in the
unperturbed state with a certain average dust charge
density P equal to P0. The two grains that we will con-
sider here can be any two probe grains in the “sea” of
dust grains; in this sense, we will consider collective
effects in the dust–dust interaction as functions of the
parameter P0. The latter will be considered constant (a
homogeneous distribution of the “sea” grains), and the
two probe dust grains will be considered at rest, so that
their interaction is described only by the static dielec-
tric constant. Ionization will also be assumed to be
homogeneous. Thus, in the ground state, there is a bal-
ance between plasma production by ionization and
plasma absorption by dust grains. This balance creates
a difference in the basic state of a complex dusty
plasma from the basic plasma state in the absence of
dust, when only the condition of charge neutrality is
used. In the perturbation of the basic state, both the ion-
ization source and the “sea” of dust grains are per-
turbed. These perturbations are reflected in the dielec-
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tric response, which creates the possibility of attraction
between two test dust grains. The presence of ioniza-
tion is an important property of complex dusty plasmas
because, in the absence of ionization, the dusty plasma
disappears due to the absorption of plasma particles by
the grains on the time scale of dust charging. Experi-
ment proves the latter statement. Thus, collective inter-
action can be quite different from the interaction of two
individual grains in the absence of the “sea” of other
grains. Of course, such an approach is a rather rough
approximation of the more realistic conditions where
the interaction of all the grains should be considered.
However, this approach gives certain information about
collective interactions and the new physics introduced
by them in complex plasmas.

5.1. Collective Attraction (Isotropic Case)

First, we will consider the case of a completely iso-
tropic basic state and will show that there exists collec-
tive attraction between the grains. For sufficiently large
P0 values, this attraction can be substantially stronger
than noncollective attraction and can substantially
affect screening [64]. For the first time, collective
attraction was studied in [27] for a source that was
assumed to be independent of the plasma parameters.
Here, we consider the case that is closer to the condi-
tions of the existing experiments; namely, we assume
that the ionization source power is proportional to the
electron density [64]. This is the case in most of the
existing experiments with RF plasmas, where ioniza-
tion is permanently produced by an RF source. The
case where the ionization power is proportional to the
electron density turns out to be simpler for consider-
ation than that with a constant source [27].

First, we consider the case where the distance
between the two dust grains is shorter than the ion–neu-
tral mean free path. Remember that, in this case, the
friction of ions is determined by ion–dust collisions.
The rate of ion–dust collisions is on the order of νchP0 ≈
vTiP0a/ , and the characteristic mean free path for

ion–dust collisions is on the order of λid ≈ /aP0. The
latter estimate is of importance because one can expect
that the attraction will be somehow related to this mean
free path, which differs by a factor of 1/P0 from that
previously obtained for noncollective attraction. For
P0 ! 1, this mean free path is much longer than the pre-

viously found distance /a, at which noncollective
attraction can be found. For P0 on the order of unity,
one should take into account collective effects even at

distances on the order of /a.

Then, we can define the basic state as a state in
which the ionization the balances plasma absorption by

λDi
2

λDi
2

λDi
2

λDi
2
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dust. In this case, the dimensionless electron density
[see Eqs. (40) and (41)] is

(104)

where τi is the ionization time in units of the character-

istic charging time /avTi . For given ratio (104), the
charging equation determines the dust charge z0 in the
basic state. The dielectric constant describes the
response of the system to linear perturbations of the
basic state. We use the static balance equations to deter-
mine the static dielectric constant; continuity equation
(40) with ionization source (41); and the ion force bal-
ance equation with the electric field force eE, friction
force (48), and ion pressure force (Ti /ni)(∂/∂r), which,
in the dimensionless units used in Eq. (48), is τ(∂/∂r).
We also use the electron force balance equation with
the electric field force balanced by the electron pres-
sure. Then, in dimensionless units, the linearized sys-
tem of equations takes a simple form:

(105)

(106)

where the drag force and charging coefficients are taken
for u = 0 and, in Eq. (105), an account is made of dust
charge variations δz, which depend on the wavenumber
k (i.e., it is taken into account that the dust charge
changes with the intergrain distance). To make the
description as simple as possible, we will first consider
only the changes of the ion and electron densities by the
two probe charges. Of course, in this case, we also take
into account variations in the dust charges. The dust
charge density also changes; however, this effect affects
the final result only slightly (by a factor on the order of
unity). Later, we will also give the result that takes into
account the changes in the dust charge density. Varia-
tions in the dust charge when varying the electron and
ion densities are taken into account exactly. We will see
that the openness of the system due to the charging
effect is the most important and that the change of the
dust charge with the intergrain distance quantitatively
(but not qualitatively) changes the attraction forces.
From Eq. (106), we obtain for the dielectric constant

(107)

We note that dielectric constant (107) can indeed be

negative for k ! aP0z0/ (1 + z0) ≈ 1/λin. In the limit
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P0  0, expression (107) corresponds to the usual
sum of the permittivity of a vacuum (unity) and two
terms corresponding to electron screening (the first
term in parentheses) and ion screening (the second term
in parentheses). We note that, according to the
quasineutrality condition, (1 – P0) = ne0, ac/ni0, ac. Taking
into account variations in the dust charge density gives
a contribution proportional to the electron density; in
this case, one should substitute into Eq. (107) 1 – P0 +
P0/(1 + z0) for 1 – P0 and, in front of the second term in
parentheses in Eq. (107), one should introduce the coef-
ficient 1 + P0/(1 + z0). For P0 on the order of unity, these
changes result in a factor on order of unity, and, for
P0 ! 1, they are negligible. Therefore, keeping in mind
these corrections, we will still analyze the simplest
expression (107).

Integration of expression (103) with respect to k can
easily be performed by calculating the residues of the
poles determined by the quadratic equation for k2. The
result contains two terms with the factor 1/r1, 2 in front
of them. One of them corresponds to the exponential
screening and another one corresponds to cosinusoidal
variations of the potential energy, which changes its
sign with distance (i.e., the potential contains a series of
attraction minima). In a general form, the interaction
energy can be written as
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Fig. 2. Screening factors for collective dust attraction. The
regions where the screening factors are negative correspond
to dust attraction. The solid line describes the case of the rel-
atively small value of the collective parameter (ηcoll = 1/3),
and the dotted line describes the case of the relatively large
value of the collective parameter (ηcoll = 3). The Debye
screening can be seen at the beginning of the solid line and
is less pronounced at the beginning of the dotted line.
with the coefficients v a , sa , v b, and sb depending on τ,
P0, and ηcoll ,

(109)

We will consider here only the limiting cases that
seem to be the most interesting, namely, the limits
ηcoll ! 1 and ηcoll @ 1. Note that both the numerator and
the denominator of ηcoll are small: the denominator is
small because τ ! 1, and the numerator is small
because the ratio a/λDi is small. Of course, for very
small values of P0, the second limit is not possible to

satisfy. We assume here that P0a/λDi > , which is the
case of experiments with large dust grains and is almost
satisfied in existing experiments, where τ ≈ 0.02, P0 ≈
0.5, and a/λ ≈ 1/5. It is clear that for complex plasma
condensation experiments, it is desirable to operate
with largest available dust size in order to satisfy the
condition ηcoll > 1, which is the case where the collec-
tive effects are the largest. For ηcoll ! 1, we obtain

(110)

and for ηcoll @ 1, we have

(111)

We see that the collective attraction changes sub-
stantially from expression (110), where it plays a rela-
tively marginal role, to expression (111), where collec-
tive effects are large. In expression (110), the collective
attraction is similar to the noncollective one, for which
the usual Coulomb screening is dominant at small dis-
tances and the attraction begins to be dominant at large
distances at which the Coulomb repulsion is screened.
The difference is that the collective attraction coeffi-
cient is proportional to P0 and is absent as P0  0.
However, in real experiments, P0 is often on the order

of unity. The other factor, a2/ , is the same as in non-
collective attraction. The coefficient ηcoll depends also
on the product of the drag and charging coefficients, as
well as on z0. This dependence is also important; how-
ever, in the absence of ion drift, these coefficients are on
the order of unity (in the presence of ion drift, the above
expressions are not valid because, in this case, addi-
tional terms proportional to the ion drift velocity and
derivatives of the drag coefficient appear). An impor-
tant feature of the collective attraction term is the
appearance of the small parameter τ in the denominator
in front of the cosinusoidal term, which is absent for
noncollective attraction. This makes the amplitude of
collective attraction larger (provided of course that P0 is
on the order of unity). The parameter τ in expression
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(110) also determines the distance corresponding to the
first attraction minimum; for P0 on the order of unity,
this distance is shorter than that for noncollective
attraction. Due to the condition ηcoll ! 1, the coefficient
in front of the collective term in expression (110) is
small and the attraction operates only at distances at
which the Coulomb potential is screened, as is the case
of noncollective attraction. Thus, we see that, in the
limit ηcoll ! 1, collective attraction has some similari-
ties with noncollective attraction. Figure 2 shows the

screening factor W = V1, 2/( /r1, 2) as a function of
the distance normalized to the ion Debye length, r =
r1, 2 /λDi, for τ = 0.2 and P0 = 0.5 for two cases: ηcoll =
1/3 [solid curve calculated from expression (110)] and
ηcoll = 3 [dotted curve calculated from expression
(111)].

An opposite situation occurs in the limit where the
collective effects are large and ηcoll @ 1. In this case, the
screened part of the potential is much smaller in ampli-
tude than the Coulomb potential and the screening
length is much shorter than in the previous case; how-
ever, the amplitude of the cosinusoidal part becomes
equal to the Coulomb potential amplitude, and the first
attraction minimum appears at much shorter distances.
At small distances, the cosinusoidal part still describes
repulsion. The cosinusoidal-type attraction force was
first found in [27] for a plasma source independent of
the electron density; therefore, the results of [27] differ
in the attraction length and the strength of attraction
force from that given here. No substantial change in the
shape of the potential was found in [27]. According to
[64], our model, in which the ionization source is pro-
portional to the electron density, is the most appropriate
one for the RF plasma used in the existing experiments.
In this case, collective effects substantially change
screening and lead to the enhancement of collective
attraction.

A similar type of attraction can be obtained when
the distance between the two dust grains is larger than
the ion–neutral mean free path. In this case, ion–neutral
friction should be substituted for ion–dust friction and
the effect of diffusion should be taken into account in
the continuity equation [36]. It appears that, for τ ! 1,
diffusion can be neglected (it contributes τ–1 times less
than the ion pressure); in this case, the balance between
the plasma sink and ionization is determined by the
charging process, as was described in [1]. Then, the
only difference is the change of the value of the collec-
tive parameter ηcoll, which now depends on the ion–
neutral mean free path λin. We denote the new parame-
ter ηcoll, in. Simple calculations yield

(112)

Since a ! λin, the coefficient ηcoll, in is always less
than unity. This means that in the case where ion–neu-
tral collisions are dominant, the collective effects are
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described by expression (110) and the attraction occurs
at distances where the screened part of the potential is
small. Since ηcoll, in does not depend on τ, the attraction
can dominate for exp(–r1, 2 /λDi) ! aP0/λin, although
the distance corresponding to the first minimum
(≈λDiλin/aP0τ) depends strongly on τ.

5.2. Role of Dust Pressure

In the previous simplified consideration, we
neglected the effect of dust density perturbation. Here,
we briefly discuss the dust pressure effects. We present
here the final result in the form of an additional term in
dielectric function (107) that appears when we take into
account the change in the dust charge density. We also
assume P0 @ τ. As a result, we find

(113)

where

For high dust pressures, the role of the dust pressure is
negligible; however, for low pressures, it plays a stabi-
lizing role. Note that, in the general case, it is necessary
to take into account the effects of ion–neutral and dust–
neutral collisions.

5.3. Collective Attraction in the Presence
of an Ion Flow

In the presence of ion drift, which usually exists in
the plasma sheath, the distribution of all the parameters
is inhomogeneous and the definition of the basic state is
much more complicated. We will consider here a
homogeneous state with ion drift in a model approach.
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When the friction of ions on dust is balanced by other
forces (e.g., by some neutral flux), a homogeneous ion
drift can arise. If the external force that creates the drift
does not depend on the plasma parameters, then this
force will not appear in the responses. Of course, such
a model can serve only for the qualitative illustration of
the problem. In this case, the static dielectric constant
can be found by taking into account small perturbations
of the basic state, as was done in the previous section.
Here, we note a very important point, namely, the large
rate of dissipation in complex dusty plasmas will even-
tually destroy the Mach cone and will destroy the wake
in the form in which it is usually expected to be present,
although the asymmetry of the interaction forces with
respect to the direction of the flow is naturally con-
served. As a result, we obtain the rather cumbersome
expression

(114)

where

(115)
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Fig. 3. Numerical results for the attraction well in the down-
stream direction in the presence of an ion flow with M = 1.
(116)

(117)

(118)

Here, kz is the component of the wave vector along the
ion flow and k⊥  is the absolute value of the component
of the wave vector perpendicular to the flow. The struc-
ture of the dielectric function is the same as before but
the coefficients have large imaginary parts, which
makes the response highly dissipative. This means that
the oscillations in the screening factor are decaying and
under certain conditions, only one attraction minimum
is even possible. This dissipation substantially
smoothes the Mach cone and modifies the interaction.
Although the attraction in the downstream direction is
maximum, there are still large attraction minima at
large angles to the downstream direction and also in the

upstream direction. For k ! 1 ! 1/ , when the last
term in formula (114) has a negative sign, the terms
with f and g are canceled and for Mach numbers on the
order of unity, one can use the asymptotic expressions
for αdr and αch:

(119)

The derivatives of the coefficients are negative for
Mach numbers somewhat less than unity and positive
for Mach numbers somewhat larger than unity. Esti-
mates show that, for M on the order of unity, αdr is on

the order of τ3/2 and αch is on the order of . In the

range τ, τ3/2 ! k ! 1 < 1/ , we have A/B ≈ 1 and the
attraction more weakly depends on the direction, as it
did in the previous case. Nevertheless, such a depen-
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dence exists, and detailed numerical calculations [65]
show that the attraction in the downstream direction
substantially exceeds the attraction in other directions.

We illustrate the result obtained by numerically cal-
culating the potential energy of a grain in the down-
stream direction, where the attraction is the strongest.
The computations were performed for the following
parameters: the grain size is 7 µm, the ion density is
109 cm–3, the electron temperature is 5 eV, τ = 0.02,
P0 = 0.6, and the Mach number is M = 1, which gives
Zd = 8 × 104. The results are presented in Fig. 3, which
shows the presence of a deep attraction potential well
for the other dust grain. Similar potential wells are
observed for rather large angles to the stream velocity;
however, the potential wells in the perpendicular
direction and in the upstream direction are not
so deep.

5.4. Dust Attraction in the Presence 
of a Magnetic Field

Recent experiments with a complex plasma in a
magnetic field showed interesting structures, dust rota-
tion, and the modification of dust motion [66, 67]. We
consider here the simplest effects of the influence of a
magnetic field on the collective dust–dust interaction;
namely, we assume that the basic state is the same as in
the absence of both a magnetic field and an externally
excited ion drift. Since, in the existing experiments, the
magnetic field is not so strong as to change the charging
and drag coefficients, we consider only the distur-
bances of the basic state related to the influence of the
magnetic field on the ion motion, while at the same time
the dust grains move according to the forces exerted on
them by ions. Since we are interested in the electro-
static forces acting between two test dust grains in the
presence of a magnetic field, we should take into
account that disturbances of the basic state should lead
to the appearance of ion drift caused by the grain field.
This drift will be changed by the magnetic field, which
in turn will affect the dust–dust interaction. In the pres-
ence of a magnetic field, the equilibrium conditions of
the force balance and quasineutrality are the same as in
the absence of a magnetic field because the Lorentz
force is zero in the absence of ion drift in the basic state.
A straightforward calculation of the static dielectric
constant is similar to that performed above; the only
additional term is the Lorentz force acting on ions. As
for electrons, the magnetic field changes their motion,
but does not change their contribution to the static
dielectric constant because, as in the absence of a mag-
netic field, they only contribute to Debye screening. We
introduce the dimensionless magnetic field H and the
dimensionless Lorentz force FL:
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where, as before, the index “ac” stands for the actual
magnetic field strength. Straightforward calculations
give the following expression for the static dielectric
constant in the form corresponding to formula (114):

(121)

where

(122)

For H  0, we obtain the previous result. There-
fore, the critical magnetic field strength at which the
magnetic field starts to influence the dust–dust interac-
tion corresponds to the value at which the Lorentz force
is equal to the force of ion friction on dust, which in
turn is completely determined by the drag coefficient.
Since both forces are proportional to the ion drift veloc-
ity, the latter does not enter into the expression for the
critical magnetic field. In dimensional units, we have

(123)

For practical applications, we can write the critical
field in Gauss units

(124)

where lnΛ is the Coulomb logarithm. Note that this crite-
rion depends strongly on the dust size a. Expression (122)
shows that the magnetic field introduces an anisotropy
in the attraction: as the magnetic field increases, the
attraction is enhanced both in the direction perpendicu-
lar to the magnetic field and along the magnetic field. In
the direction perpendicular to the magnetic field, the
distance to the first minimum of the potential decreases
with increasing magnetic field.

We conclude this section with the following
remarks:
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Fig. 4. Sketch of an experimental setup for measuring the dust–dust interaction potential in the dust collision experiments.
(i) The attraction of dust grains is a natural phenom-
ena in complex dusty plasmas and is related to the shad-
owing of the collective action produced by many dust
grains.

(ii) Noncollective attraction can serve for the dem-
onstration of the shadow effect; however, in complex
plasmas with many dust grains, the main attraction
effect is collective attraction.

(iii) The attraction force strongly increases with the
dust size, which is typical of all the shadow effects.

(iv) Ion–neutral collisions affect collective attrac-

tion for λin ! . The latter condition depends on
the gas pressure and the size of the grains. In the exist-
ing experiments, it is satisfied for a ! 1 µm.

(v) The presence of an attraction force is rather
important for the problem of transition to a strongly
correlated state. Although the attraction potential wells
usually appear at distances larger than the dust size and
on the order of or even much larger than the screening
length, the depth of the attraction potential well can be

relatively large because it is proportional to .

(vi) The presence of a molecular-type potential that
is repulsive at small distances, while attractive at large
distances, opens the real physical possibility of forming
a strongly correlated state with nonrigid requirements
on the coupling coefficient Γ.

(vii) Neutral–grain collisions cause only noncollec-
tive attraction, which can exceed Coulomb repulsion
even at small distances between the grains. It can cause
dust agglomeration and serves as one of the most prob-

λDi
2

/a

Zd
2

able explanation for the observed agglomeration of
large-size grains.

(viii) In order to reach a strongly coupled state, it is
desirable to operate in the range of parameters where
the agglomeration is inefficient. Therefore, a deeper
understanding of the phenomenon of dust agglomera-
tion (where the attraction force can exceed the Cou-
lomb force) is rather important for the problems of
plasma condensation.

6. MEASUREMENTS OF THE SCREENED 
POTENTIAL IN DUST–DUST COLLISIONS

The potential distribution around a charged grain in
a plasma can be measured by performing scattering
experiments similar to those already used many years
ago to determine nuclear potentials and by deriving the
force field from the measured trajectories of the inter-
acting grains. Such experiments were performed for the
first time in [68–70].

6.1. Experimental Technique

Scattering experiments conducted so far use RF dis-
charge plasmas. The plasma chamber is basically a
GEC reference cell [68–70], modified so that it is pos-
sible to view its interior from the side and from the top
through the upper (grounded) electrode (Fig. 4).

Depending on the research requirements, the work-
ing gases are helium, argon, or krypton. An RF dis-
charge is ignited using a 13.56-MHz signal applied to
the lower (powered) electrode. Previously, this experi-
mental technique was used in complex-plasma experi-
PLASMA PHYSICS REPORTS      Vol. 29      No. 1      2003
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ments that were not intended to take measurements of
the screened potential. The requirements for the studies
of complex plasmas in the strong coupling limit (espe-
cially to the investigations of phase transitions to the
liquid and crystalline states) imply the use of low RF
power and, hence, a low degree of ionization (typically,
from 10–7 to 10–6). This ensures that both ions and neu-
tral atoms are in collisional equilibrium at room tem-
perature. Let us briefly review this requirement. In
order to ignite an RF discharge with a 13.56-MHz sig-
nal, the electron–neutral collision time should be longer
than the time needed to accelerate an electron from zero
velocity to the first ionization potential of the working
gas (typically, about 10 eV). In practice, it is sufficient
that some electrons in the distribution reach the ioniza-
tion potential. The condition for this can be easily cal-
culated. We assume that the RF potential varies as
V(t ) = V0sinωt, where ω = 2πf and f = 13.56 MHz is
the signal frequency used. We also assume that the
instantaneous electron energy is Ee(t ) = eV(t ) and con-
sider only the initial (linear) phase of the cycle, at
which Ee(t) ≈ eV0ωt. This assumes ωt ! 1; however, in
any case, calculations can easily be repeated for the
sinusoidal dependence sin(ωt). Writing the kinetic
energy in the form Ee(t) = (me/2)(dx/dt)2 and integrating

(125)

yields 

(126)

for the electron–neutral collision time, where the elec-
tron–neutral collisional mean free path is λen = 1/nnσen
with nn being the neutral gas density and σen being the
electron–neutral collision cross section. After some
algebra, the condition Ee(tcoll, en) >  yields

(127)

For the frequency ω used and typical values of the
gas density (1016 cm–3) and cross section (10–15 cm2),
we obtain

eV0 > 36.7 ; (128)

in other words, a typical peak voltage on the order
100 V is sufficient to initiate the discharge. This also
implies that low-power RF devices can be used; in this
case, the gas and ion temperatures are essentially the
environment (room) temperatures, as is desired for
many applications.

xd

0

λen

∫
2eV0ωt

me

------------------ 
 

1/2

td

0

tcoll en,

∫=

tcoll

3me

4eV0ωnn
2σen

2
------------------------------- 

  1/3

=

Ee

eV0

Ee

---------
4Eenn

2σen
2

3meω
2

-----------------------
 
 
 

1/2

.>

Ee
PLASMA PHYSICS REPORTS      Vol. 29      No. 1      2003
6.2. Collision Experiments

An advantage of using microsphere grains for colli-
sion experiments is the possibility of visualizing their
trajectories by fast microscopy; a disadvantage is that
not all regions of the plasma are accessible for such
experiments because the microspheres have to be elec-
trically suspended against gravity. For instance, the
electrostatic field required to support a typical micro-
sphere of mass 10–10 g carrying a surface charge Q =
eZd ≈ 104e is about 10 V/cm, as can be calculated from
the force balance

QE = mg. (129)

This means that only the sheath regions of a plasma
[71] or striations in a DC discharge [2] (in other words,
substantially inhomogeneous plasma regions) can be
investigated in this way. Fortunately, the sheath regions
themselves are of great interest to plasma physicists,
because they mark a transition from subsonic to super-
sonic ion flow. From the standpoint of applications, the
sheath regions are important because they are sites for
many types of plasma processing, deposition, and
etching.

The collision experiment proceeds in two stages:
(i) In the first stage, a single grain is injected into the

plasma. Its trajectory is mainly governed by gravity,
electrostatic forces, and neutral drag and ion drag
forces. Under the low-pressure and low-power condi-
tions used in the pioneering experiments by Konopka et
al. [68], other forces related to thermophoresis, photo-
phoresis, pressure gradients, neutral convection, etc.,
were negligible. The neutral gas was at rest and pro-
vided the damping of grain motion. From the grain tra-
jectory, it is possible to derive the form of the electro-
static trapping potential φT(R) as a function of the dis-
tance R from the axis of the axisymmetric plasma
chamber.

(ii) In the second stage, a binary-collision experi-
ment is performed. From the trajectories of two collid-
ing grains, which both move in the known confining
potential φW(R), it is possible to derive their interaction
potential φI(r). The total potential is φT = φW + φI .

The mathematical derivation is the following. Since
in the first approximation the grain motion takes place
only in the horizontal plane, the vertical force balance
is assumed to be permanently satisfied. Grain observa-
tions taken from the side confirm this assumption.
Then, the equation of motion is

(130)

where the drag force by neutral atoms, FD, is given by
the Epstein drag law [see (72), (74)]. This description is
applicable when the neutral–neutral collisional mean
free path is much larger than the grain size. The force
FD is linearly proportional to the grain velocity vd. It is
also implicitly assumed in Eq. (130) that the charge of

m
dvd

dt
-------- Q∇φ T– FD,–=
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the microsphere does not vary either systematically or
stochastically. There are two possibilities of such vari-
ations: independent collisional variations of the charges
of each microsphere and the dependence of the charge
on the intergrain distance. The absence of the first type
of variation implies homogeneous plasma conditions
on the trajectory of each grain. The absence of the sec-
ond type of variation implies that the distance between
the colliding grains should be at least larger than their
size. From our previous discussion on charge fluctua-
tions, we may conclude that the constancy of charge is
a good assumption for micron-sized grains. Also,
because of the rapid charging that microspheres experi-
ence in a discharge, it is reasonable to assume that the
equilibrium charge is attained instantaneously as com-
pared to the dynamic scales involved. This means that
the experiments should be conducted with grains mov-
ing with velocities substantially lower than the ion ther-
mal velocity.

The experiments were performed with equal-size
grains; hence, both of them should experience nonlin-
ear screening, which does not obey the law of linear
superposition. Therefore, this experiment is dealing
with a new phenomenon that has been poorly investi-
gated theoretically. In experiments in which one of the
microspheres serves as a test grain with linear screen-
ing, it is necessary that this grain be small; in this case,
the detection of its trajectory can require methods other
than fast microscopy used in this experiment.

In the first stage of the experiment, it was found that
the grains injected without initial angular momentum
oscillate radially through the center of axial symmetry.

This fact considerably simplifies calculations
because, in this case, the one-dimensional equation of
motion can be used; i.e.,

(131)

Expanding the confining potential in powers series
and fitting the theoretical grain trajectory to the mea-
surements allows one to determine φT and the friction
constant η. It turns out that in almost all applications
the potential is fairly accurately described by a para-
bolic function

where x0 is the position of the center and b and φ0 are
constants.

At the second stage, experiments on collisions
between two grains showed the following. Without
angular momentum and in the case of central collisions,
both grains move purely radially and their motion, as

md
d

2
x

dt
2

-------- Q
∂φT

∂x
--------– ηdx

dt
------.–=

φT φ0 b x x0–( )2
,+=
with single grains, is again described by the one-dimen-
sional equation

(132)

for the jth grain interacting with the ith grain and a sim-
ilar equation for the ith grain interacting with the jth
grain. Using two identical grains (mi = mj = m and Qi =
Qj = Q), we can write the difference equation by sub-
tracting the equation for the ith grain from the equation
for the jth grain:

(133)

where xr = xi – xj . The sum of the ith and jth equations
leads to the differential equation for the center of mass,
xc = xi + xj:

(134)

Measuring the trajectories of both grains, we can
determine b and η from the last equation (the obtained
values can be compared with the corresponding values
determined using a single grain), and from Eq. (133), it
is possible to obtain the interaction potential between
the two grains as a function of the separation distance xr.

Figure 5 shows the trajectory of the center of mass
of two colliding microspheres. The solid line is the cal-
culated trajectory for a parabolic potential with allow-
ance for the friction damping due to collisions with
neutral gas atoms. The fitted values are in agreement
with the Epstein drag calculated from the known gas
pressure and temperature.

Figure 6 gives the derived interaction potential
between the grains. The solid line is calculated from the
grain motion in a parabolic potential and a Debye–
Hueckel interaction potential. Note that the grains
finally come to an equilibrium state corresponding to
the separation between them 〈xr 〉  = 2.2λD, where λD is
the screening length fitted to the measurements.

Figure 7 shows that the screening length depends
weakly on the pressure of the neutral gas (neutral parti-
cle density).

Summarizing the results of the experimental deter-
mination of the screened grain potential φI , we may
conclude the following:

(i) The experiments performed so far have probed a
region 0.5λD < r < 3λD, in which the interaction poten-
tial is described very well by the Debye–Hueckel
potential; no attraction potential is observed in this
region. According to the above theory, the screening is

still nonlinear in this region because r !  ≈
16λDi . The screening potential predicted by nonlinear
screening in the investigated range of distances can be
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Fig. 5. Trajectories of the center of mass xc of two colliding dust grains in the plasma sheath in an argon RF discharge at a pressure

of 2.1 Pa and a voltage of 145 V. The solid line is calculated for a harmonic oscillator with the damping constant η = 2.5 × 10–12 kg/s
and b = 1.1 × 10–11 kg/s2.
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Fig. 6. Interaction potential between two charged dust grains in a plasma sheath. The solid line shows the fit with an exponentially
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PLASMA PHYSICS REPORTS      Vol. 29      No. 1      2003



28 MORFILL et al.
approximated by an exponential dependence (Debye–
Hueckel potential), but with the screening length λD <
λDi . Experiments were performed for equal-size grains.
In this case, it is impossible to distinguish the nonlinear
screening of each grain, and new theoretical investiga-
tions are required to quantitatively compare the calcu-
lated screening length with experiments. The measured
value of λD is likely to be closer to the electron Debye
length.

(ii) The ratio λD/a in these experiments was large
(on the order of 100); in this case, the long-range attrac-
tion is weak. The relative value of the shadow attraction

potential is on the order of a2/  ≈ 10–3. This means
that the long-range shadow attraction should be very
weak and the associated attractive forces related to ion
flux are hard to detect. On other hand, the detection of
these forces at least needs r > 5λD, which was not the
case in those experiments. The shadow forces due to
neutral flux can be appreciable at higher gas pressures.
Experiments with bigger grains, larger distances, and
higher gas pressure are required to detect these new
forces.

(iii) The intergrain distance for closest collisions
was much larger than the grain size. Under these condi-
tions, it is hardly possible to detect the change in the
grain charges in collisions. Experiments with bigger
grains or smaller distances between colliding grains are
required.

(iv) The experiments have to be performed in a
plasma sheath. Being accelerated in the vertical direc-
tion in the sheath electric field, the ions acquire super-
thermal drift velocities. This means that the shielding is
quite different from that in the absence of ion drift (in
the linear approximation, it is determined by the elec-
tron Debye radius, rather than the ion Debye radius).
Nonlinear screening in this case is poorly investigated
both numerically and analytically. As was discussed in
the previous sections, ion drift also changes the shadow
attraction. Experiments with vertically interacting
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Fig. 7. Evaluated screening length of the grain field as a
function of the neutral gas pressure for a grain size of 6.9 ±
0.2 µm.
grains could be designed to investigate the wake field
and flow shadowing effects.

(v) So far, the estimates of the grain charge have not
been compared with the charging theories. Such a com-
parison is not simple due to the mutual influence of
charging and screening. This should be a task for future
experiments performed under different conditions and
with different plasmas (e.g., electronegative or photoe-
mission plasmas).

(vi) The binary collision technique is a novel tool for
investigating the basic physics of dust–plasma interac-
tions. This technique can be extended to answer a num-
ber of important questions, including the questions of
the absence of nonlinear interference in the interaction
of two grains with substantially different sizes, the
asymmetry of shielding in the presence of an ion flow,
and the existence of a long-range attractive potential
predicted by the theory.

(vii) It is rather important to investigate the interac-
tion of two grains in the presence of many other grains
in a complex plasma, e.g., the interaction of two dust
grains which differ from other grains by their size
(being smaller or larger than the “sea” grains). This
seems to be the way to investigate the collective inter-
actions in complex plasmas, which can be very impor-
tant for creating strongly correlated states.

7. CONCLUSIONS

Some points were already emphasized in each sec-
tion. Here we will only stress that the aim of this paper
was to present the main tools to be used in current
research in this very rapidly developed field, to list sim-
ple physical arguments and simple elementary physical
processes in complex plasmas, and to introduce the
reader to the atmosphere and new physical intuition
appearing in this field of research.

In summary, we can draw the following conclu-
sions:

(i) The material presented here for elementary pro-
cesses in complex plasmas can be used to analyze the
conditions for strong coupling and strong correlations,
to consider the transitions to a complex dusty plasma
state, and to discuss the effect of different types of dust–
dust interactions on the criteria for phase transitions.

(ii) The understanding of elementary processes in
complex plasmas is important for estimates in experi-
ments on strong coupling (including experiments in
which the plasma–dust crystals were observed), exper-
iments on melting and phase transitions, and experi-
mental investigations of waves and instabilities in the
crystalline and disordered states of a complex plasma.

(iii) The knowledge of elementary processes in
complex plasmas is important for technological, indus-
trial, environmental, and astrophysical applications.
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Abstract—Results are presented from experimental studies of the dynamics of dust grains charged via
photoemission under microgravity conditions. The experiments are performed with bronze grains exposed to
solar radiation on board the Mir space station. The velocity distribution, temperature, mean charge, and friction
and diffusion coefficients of dust grains are determined. An analysis of the data obtained shows that the polar-
ization caused by the separation of opposite charges can significantly affect the transport processes in a two-
component dusty plasma consisting of dust grains and the electrons emitted by them. © 2003 MAIK
“Nauka/Interperiodica”.
†1. INTRODUCTION

The dusty plasma is an ionized gas containing
micron-sized charged condensed grains (dust). The
combined action of the interaction between dust grains
and dissipative processes in a dusty plasma can lead to
the formation of both steady-state dusty structures
(similar to fluid or solid) and complex vibrational or
dynamic configurations associated with large-scale
transport processes [1–10].

Plasma–dust structures play an important role in the
processes occurring in the upper atmosphere, where the
main ionization agents are cosmic rays and solar radia-
tion [11–13]. Under these conditions, the charging of
atmospheric aerosols is governed by the two competing
processes: the absorption of the atmospheric ions and
electrons by grains and the emission of electrons from
the grain surface. Under the action of intense solar radi-
ation, the grains are mainly charged via photoemission.
Micron-size grains can acquire a positive charge of
102–105 elementary charges, which can result in the
formation of ordered structures [6, 14]. Moreover, the
emission processes make it possible for two-compo-
nent system consisting of positively charged grains and
the electrons emitted by them to exist.

Recently, experimental studies of dusty plasmas
under microgravity conditions have attracted great
attention [6–10]. These experiments allow one to inves-
tigate various phenomena (such as the charging of
atmospheric aerosols and the dynamics of large dust
grains ~100 µm in size) that cannot be studied on Earth
[6–8]. In recent experiments performed by the Rus-
sian–German scientific team on board the International
Space Station, a number of new phenomena (dust beat-

† Deceased.
1063-780X/03/2901- $24.00 © 20031
ing, the formation of complex lattices, the opposite-
sign charging of dust grains, etc.) were observed in RF-
discharge dusty plasmas [10]. Note that analogous phe-
nomena cannot be observed under ordinary laboratory
conditions.

The main process responsible for dust mass transfer
is diffusion, which determines the dynamic characteris-
tics of dust systems (such as the phase state, wave prop-
agation conditions, and instabilities) and governs the
energy losses (dissipation) in them. Both the dust grains
suspended in the buffer gas and the gas molecules or
charged plasma particles can undergo diffusion
(Brownian motion and self-diffusion, respectively).
The transport properties of a plasma–dust cloud con-
sisting of charged dust grains, ions, and electrons can
be significantly affected by the concurrent diffusion of
the oppositely charged particles (ambipolar diffusion).
A simple case of ambipolar diffusion in the absence of
a magnetic field was investigated by W. Schottky
(1924). However, direct experimental observations of
this phenomenon without attendant processes, like ion-
ization or eddy currents under the Earth’s gravity con-
ditions, are still lacking. The first results on the polar-
ization effects related to the separation of opposite
charges in a two-component system consisting of dust
grains and photoelectrons under microgravity condi-
tions are presented in [7, 8].

Most experimental methods for determining the dif-
fusion coefficients of ions and electrons are based on
indirect measurements of the particle mobilities in an
external electric field [15]. However, these methods
introduce significant perturbations in the system under
study and hence are inappropriate for diagnosing parti-
cles in a plasma. In order to determine the transport
properties of dust grains, spectroscopy and photon cor-
relation methods are traditionally used. The range of
003 MAIK “Nauka/Interperiodica”
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applicability of these methods is limited by the short-
range ordering related to the interaction between grains
[16]. The methods rely on different hydrodynamic
models; thus, the main problem is determining the con-
ditions under which these models are applicable.

Dusty plasma is a good object for experimentally
studying transport phenomena in a system of interact-
ing particles because dust grains can be shot with a
video camera, which greatly simplifies the use of per-
turbative and nonperturbative diagnostics. A weakly
ionized dusty plasma can be regarded as a dissipative
system of grains with the Yukawa interaction potential
ϕ = eZdexp(–l/λ)/l, where eZd is the dust grain charge, λ
is the screening length, and l is the intergrain distance.
In such systems, the correlation between grains is gov-
erned by the dimensionless coupling parameter Γn =

(1 + κ + κ2/2)exp(–κ)Γ, where Γ = (eZ)2 /Td, Td is
the kinetic temperature of the grains in energy units, nd

nd
1/3

Solar radiation

Video camera

Grains

Ampoule

Laser blade

Cylindrical
lens

Laser

Fig. 1. Schematic of the experimental facility.

Solar radiation

Viewing field 
 of the video

∅ 30 mm

60 mm

y

Fig. 2. Working ampoule.

 camera
is their number density, and κ = /λ. Numerical
simulations show that at Γn > 1, short-range ordering
arises in Yukawa systems, the critical value of the cou-
pling parameter Γn at the melting point being close to
106 [17, 18].

In this paper, we report the results of the first exper-
iments on the grain dynamics in a dusty plasma induced
by solar radiation under microgravity conditions. The
experiments were performed on board the Mir space
station. The photoemission charge, velocity distribu-
tion, and friction and diffusion coefficients of dust
grains, as well as the coupling parameter of the dust
system, are determined. The polarization effects related
to the separation of opposite charges in a two-compo-
nent system consisting of positively charged dust grains
and the electrons emitted by them are observed. The
experiments were briefly described in [7, 8]. Most of
the results reported here are being published for the
first time.

2. EXPERIMENTAL SETUP

A schematic of the experimental facility is shown in
Fig. 1. The main component of the working chamber
was a glass ampoule with bronze grains (with a specific
mass density of 8.2 g/cm3 and diameters of 50–100 µm,
the average radius being ad = 37.5 µm) covered with a
cesium monolayer (with a work function of W =
1.5 eV). The grains resided in a buffer gas (neon) at a
pressure of P = 40 torr. The ampoule was a cylinder,
one end of which was a flat uviol window for illuminat-
ing the grains with solar radiation (Fig. 2). The grains
in the ampoule were additionally illuminated with a rib-
bon laser beam (“laser blade”) with a thickness of
~500 µm. For this purpose, a 0.67-µm semiconductor
laser was used. The image recorded with a CCD video
camera was stored on a magnetic tape (with a frame fre-
quency of 25 s–1). The viewing field of the camera was
a rectangle 8 × 9 mm in size. The camera was focused
on the ampoule center. The depth of focus (at a chosen
iris value of 16) was ~9 mm (Fig. 2). The video record-
ing was treated with a special computer code enabling
the identification of the displacements of the individual
grains that reside in the viewing field of the video cam-
era. Under intense solar radiation, the number of the
observed grains was determined by the depth of focus
of the video system, which allowed one to monitor the

grain positions during the time t > 5  (where νfr is the
friction coefficient, determined by the collision fre-
quency of the dust grains with the buffer gas mole-
cules), long enough to analyze the transport properties
of the system. The number of the identified grains was
less than 40% of the total number of grains initially
recorded with the video camera.
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3. EXPERIMENT

At the first stage of the experiment, the grain behav-
ior under microgravity conditions in the absence of
solar radiation (dark regime) was investigated. The aim
of the experiment was to evaluate the characteristic
time it takes for the grains to lose the velocity acquired
with the initial shaking of the ampoule. Since direct
measurements of the damping rate of the initial pertur-
bations in the narrow cross section of the laser beam
were unfeasible, the grain dynamics was analyzed by
measuring the dependence of the grain number density
nd (determined by the number of grains inside the laser
blade) on time t. These measurements showed that 2–4 s
after shaking the ampoule, the grain density nd sharply
decreased from ~103 to ~250–350 cm–3. One can
assume that the fast loss of grains is related to their dep-
osition onto the ampoule wall due to the high adhesion
coefficient. Then, for time ~20 min, the number of
grains in the viewing field of the video camera changed
only slightly (nd ≈ const).

At the second stage of the experiment, the shaken
ampoule was exposed to solar radiation. During the first
10 s, the grain density remained almost equal to the ini-

tial density  = nd(0) ~ 900 cm–3. The time it took for
the grains to depart to the ampoule wall was ~5 min.
Comparing with the dark regime, it is reasonable to
assume that the electric field arising due to the irradia-
tion of the system somehow impedes the grain adhesion
on the ampoule wall. The time behavior of the grain
velocity V after the dynamic action on the system is
shown in Fig. 3 for different regions of the viewing
field. It can be seen that over the time t ≈ 5–10 s after
the dynamic action, the grains are involved in the vibra-
tional motion with a frequency ω ~ 4.5–5.2 s–1 (a period
of ~1.2–1.4 s) against the background of their transla-
tional motion toward the wall.

At the third stage of the experiment, the dynamics of
grains under the action of solar radiation was investi-
gated. Initially, the bronze grains resided on the
ampoule wall; hence, the experiments were carried out
as follows: (i) dynamic action (kick) upon the system at
the closed porthole curtain; (ii) aging in darkness for

the time t ≈ 4 s @  in order to reduce the grain veloc-
ities acquired with the initial kick; (iii) exposure to
solar radiation; and (iv) the relaxation of grains to the
initial state (return to the wall), after which the porthole
curtain was closed again. This procedure was repeated
several times. The kinetic temperature and the degree of
correlation of the dust grains increased for the first 3–
5 s after the beginning of solar illumination. The pair
correlation functions for the illuminated dust cloud
obtained by exclusion of the intergrain distances

shorter than ld/2 (where ld = ) are shown in Fig. 4.
Although these functions cannot be used for the quan-
titative analysis of the degree of grain correlation in a

nd
0
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dusty structure, they reflect the qualitative changes in
the system under study.

At the initial stage of illumination, the grain veloci-
ties are randomly directed. 1–3 s after the beginning of
illumination, the grain motion evidently develops into
ordered motion toward the ampoule wall. The time of
the grain migration to the ampoule wall is 3–4 min,
which is nearly five orders of magnitude shorter than
the characteristic time of the total diffusion losses due
to Brownian motion at room temperature. The grain
parameters measured at the instant ~5 s after the begin-
ning of illumination are shown in Figs. 5–9. Figure 5
shows the trajectories of 40 grains, and Fig. 6 demon-
strates the time behavior of the relative grain density

nd(t)/ . The initial grain density  varied in the
range 195–300 cm–3, which corresponded to the results
obtained at the first stage of the experiment. The spatial
distributions of the drift and thermal grain velocities,
the velocity distributions of dust grains, and the self-
diffusion coefficients during the first 10–15 s of the
experiment are shown in Figs. 7–9. An analysis of the
experimental results is presented in the next section; it
is mainly based on the data from the third stage of
experiments, which were repeated several times and
demonstrate the necessary repeatability.

4. DISCUSSION OF THE MEASUREMENT 
RESULTS

4.1. Temperature and Velocity Distribution 
of Dust Grains

Irregular variations in the magnitude and direction
of the velocities of individual grains against the back-
ground of their general drift motion (Fig. 5) can be
associated with the grain kinetic temperature, which in
the case of a Maxwellian distribution over the velocities
Vx and Vy can be expressed as

(1)

where the angular brackets stand for averaging over the
ensemble and time. During the first 10–15 s, the spatial
distributions of the mean (drift) velocities 〈Vx(y) 〉  of dust
grains toward the ampoule wall and the thermal veloci-

ties  = (  – 〈Vx(y) 〉2)1/2 changed only slightly
(Fig. 7). The recorded grain distributions over the Vx

and Vy velocity components turned out to be close to
Maxwellian with the temperatures calculated by for-

mula (1) (Fig. 8). At  = 195–300 cm–3, the tempera-
tures obtained by formula (1) for different regions of
the ampoule are Tx . (51 ± 5) eV and Ty . (22 ± 2) eV;
i.e., they are much higher than room temperature (T .
0.03 eV). We note that the kinetic energy of random
grain motion in plasma can be nonuniformly distributed
over the degrees of freedom (i.e., Maxwellian distribu-
tions with Tx ≠ Ty can occur) and the kinetic grain tem-

nd
0

nd
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T x y( ) md V x y( )
2〈 〉 V x y( )〈 〉 2
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perature can substantially exceed the temperature of the
surrounding gas. These effects can be related, for exam-
ple, to the grain charge fluctuations or the spatial inho-
mogeneity of the plasma–dust system [3, 5, 19, 20].
The anomalous heating of grains was repeatedly
observed in experiments on dusty structures in labora-
tory plasmas [3, 20–22].

4.2. Friction and Self-Diffusion Coefficients 
of Dust Grains

In the system under study, the grains reside in a vis-
cous medium; hence, dissipation due to collisions with
the buffer gas neutrals significantly affects the grain
motion. At room temperature, the mean free path of
neon atoms is determined by the relationship ln[µm] ≈
50/P[torr] [15] and, under the given experimental con-
ditions (P = 40 torr), it is ln ≈ 1.25 µm, which is much
less than the minimum radius of the bronze grains ad

(25 µm). In this case (ad @ ln), the friction coefficient
νfr for a round grain in the Stokes approximation [23]
can be written as

(2)

where ρ is the specific mass density of the grain mate-
rial and η ≈ 10−4 g/(cm s) is the neon viscosity at room

νfr 6πηad/md 4.5η ρad
2( )

1–
,≡=
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temperature. Thus, for bronze grains with the radius
ad = 37.5 µm, we have νfr ≈ 4 s–1.

The diffusion coefficient of the noninteracting
(Brownian) grains can be calculated by the measured
grain temperature as

(3)

Then, for νfr = 4 s–1, Tx . 51 eV, and Ty . 22 eV, we have

 . 10–5 cm2/s and  . 4.4 × 10–6 cm2/s.

The grain self-diffusion coefficients  can be
directly determined from the experimental data, taking
into account the regular grain drift velocities 〈Vx(y)〉  (see
Section 4.1):

(4)

where 〈∆r(t)2〉 is the mean square displacement of an
individual grain along either the x- or y-axis. When the
interaction between grains is negligible, the self-diffu-

sion coefficient  at t  ∞ should obey Einstein

relation (3); i.e., (t  ∞) = . Figure 9 illus-

trates the dependences (t) measured in some
regions of the ampoule and the results of averaging
these dependences over all the experiments. At t = 4 s,

the measured (t) values are equal to  ≈ 1.3 ×

10–5 cm2/s and  . 5.7 × 10–6 cm2/s; i.e., they are
higher than those obtained by formula (3) by ~30%. We
note that the value νfr ≈ 4 s–1, obtained for the grain
mean radius ad = 37.5 µm, may not correspond to the
effective friction coefficient for a polydisperse dusty
system. We also note that in the preliminary dark
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Fig. 4. Pair correlation functions g(x = r/ld) for an illumi-
nated dust cloud at different times t.
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regime, the probability of a grain departing to the wall
is higher for smaller and, hence, more mobile grains
(i.e., grains with relatively small values of νfrmd).
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x, mm

4

6

8
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Fig. 5. Grain trajectories after irradiation.
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respectively). The light curves show the calculations by
method of molecular dynamics, curves 1 and 2 correspond
to approximation (15), and curve 3 shows the function
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The time dependence of the self-diffusion coeffi-
cient for noninteracting grains can be represented as
[18]

(5)

Thus, one can evaluate both the friction coefficient νfr

and the diffusion coefficient  =  (t  ∞)

from the measured (t ) values. The approximation

of the experimental (t) dependences by formula
(5) for Tx . 51 eV and Ty . 22 eV (Fig. 9) gives the fric-
tion coefficient νfr . 3.1 s–1 and the diffusion coeffi-

cients  . 1.4 × 10–5 cm2/s and  . 6.2 × 10–6 cm2/s.
It can be easily seen that the measured behavior of

(t) is in good agreement with formula (5) for non-
interacting (Brownian) grains. Note that for grains in
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Fig.7. Spatial distributions of the drift velocity 〈V 〉  (open
diamonds and circles) and thermal velocity V T (closed dia-
monds and circles) of dust grains over the (a) x- and

(b) y-axes for  = 195 and 300 cm–3 (diamonds and cir-

cles, respectively). The dashed-and-dotted line shows the
minimum radial grain velocity for a dust cloud transparent
to the emitted electrons.

nd
0

strongly correlated dusty systems (Γn > 40–50), the
time dependence of the self-diffusion coefficient Dd is
nonmonotonic; in contrast to the experimental data
shown in Fig. 9, it has a pronounced maximum [18].

4.3. Grain Charge

Photoemission charging plays an important role
when irradiating grains with photons with energy hν
exceeding the photoelectron work function from the
grain surface. The number of the emitted electrons
(photocurrent) is proportional to the intensity of the
incident radiation. The maximum kinetic energy of
photoelectrons Kmax = hν – W increases linearly with
the incident radiation frequency ν and does not depend
on the radiation intensity. Thus, the maximum photoe-
mission grain charge Zmax can be found by equating the
surface potential φs = eZmax/ad to the quantity Kmax/e
[14]:

Zmax = (hνmax – W)ad/e2, (6)

where hνmax is the maximum photon energy, which, in
our case, is determined by the transmission coefficient
of the experimental chamber and corresponds to the
wavelength λmin . 0.35 µm [11]. Thus, for ad =
37.5 µm, we have Zmax ≈ 53000. Generally, the photo-
electron flux depends on the radiation source proper-
ties, the efficiency of radiation absorption Q, and the
quantum yield Y and temperature Tpe of the emitted
electrons. Moreover, the grain charge is affected by the
thermoemission properties of grains and the presence

20
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Fig. 8. Grain distributions over the Vx velocity component
(diamonds) in the region (x = 7–8 mm, y = 0–8 mm) and the
Vy velocity component (circles) in the region (y = 5–6 mm,

x = 0–9 mm) for  = 300 and 195 cm–3 (open and closed

symbols, respectively). The dashed lines show the approxi-
mation of the experimental data by Maxwellian distribu-
tions with temperatures Tx . 51 eV and Ty . 22 eV.
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of photoelectrons that return back to the grain surface.
The latter circumstance can significantly decrease the
equilibrium grain charge Zd as compared to its limiting
value Zmax [14].

Let us evaluate the charge of bronze grains exposed
to solar radiation. To calculate the photon flux J, the
solar radiation can be considered blackbody radiation
with the temperature Tc = 5800 K [13]:

(7)

where ftr ≈ 0.85 is the transmission coefficient of the
experimental chamber, λmin = 0.35 µm, and λ0 is the
boundary wavelength for the photoeffect. Thus, we
have J ≈ 3.4 × 1017 photon/(s cm2). Since the photons
with energies of ≤4 eV are incapable of ionizing the
buffer gas, the positive grain potential will be deter-
mined by the balance between the electron recombina-
tion on the grain surface and the flux of the emitted pho-
toelectrons. Assuming that the system is opaque to the
emitted electrons, their density ne in a dust cloud will
obey the quasineutrality condition ne = Zdnd. When the
electron mean free path lne in collisions with neutrals is
comparable with or exceeds the grain radius ad (lne > ad),
the electron balance equation can be written in the form
[24, 25]

(8)

where me is the electron mass, Te is the plasma electron
temperature, and Y* is the mean quantum yield of
cesium-covered bronze in the spectral range under
study. The temperature Tpe of the photoemission elec-
trons depends on the grain material and, in most cases,
lies in the range 1–2 eV [12, 13]. Then, under the
assumption Te ≈ Tpe = 1.5 eV, we obtain from Eq. (8)
that for the grain radius ad = 37.5 µm, the limiting
charge Zmax ≈ 53000 is attained at the densities nd ≈
400–2000 cm–3 (which corresponds to Y* ≈ (0.8–4) ×
10–2). Thus, at nd < 400 cm–3, the electrons returning to
the grain surface will not significantly affect the equi-
librium grain charge. The higher nd, the lower the equi-
librium charge; thus, at nd ≈ 900 cm–3 (Y* ≈ 8 × 10–3),
we have Zd ≈ 40000.

The electron temperature in the system under study
may be different from the temperature Tpe of the photo-
electrons leaving the grain surface. Thus, in the absence
of an electric field, the characteristic time of the elec-
tron energy relaxation (the time during which the elec-
tron energy falls by a factor of ~2.7) is determined as

J f trc1λ
4–
/ c2/λTc( )exp 1–{ } hc[ ] λ ,d

λmin

λ0
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πme
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τu ≈ τδ–1 (where τ = , νne is the electron–neutral col-
lision frequency, and δ–1 is the number of effective col-
lisions for electron–neutral energy transfer) and the
effective relaxation length is Λu ≈ lneδ–1/2 [15]. For neon,
δ ≈ 10–4 and the relaxation length is Λu[cm] ≈
12/P[torr]. At the given pressure, this length is ~0.3 cm;
i.e., it is longer than the mean distance ld ~ 0.15–
0.18 cm between the dust grains, which are the sources
of background electrons. Hence, the emitted electrons
loose about 30% of their initial energy over a distance
of ~ld/2. Such an insignificant energy loss can readily
be balanced by the stochastic energy input due to the
presence of electric fields in the system [15].

The electron energy loss can be estimated by com-
paring the electron–neutral thermal equilibration rate
νE ≈ (Ve/lne)me/mn with the electron–dust grain collision

rate νed ≈ 2π ndVe (at eφs ≈ Te), where Ve is the electron

velocity [14]. If νed @ νE (i.e., 2π ndlnemn/me @ 1),
then the rate of electron recombination at the grains is
much higher than the rate of thermal losses due to elec-
tron–neutral collisions; consequently, the electron tem-
perature Te in the system should be equal to the temper-
ature Tpe of the emitted electrons. For neon, we have
me/mn ≈ 2.7 × 10–5 and lne ≈ 30 µm (at P = 40 torr); hence,
for ad = 37.5 µm and nd > 200 cm–3, we obtain νed/νE > 2.
It should also be taken into account that for the elec-
trons with energies Te = 0.5–2 eV, the electron mean
free path is 2–4 times longer than the table value

νne
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ad
2

ad
2

10 × 10–6

10 2 3 4
t, s
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Dd
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Fig. 9. Time dependences of the diffusion coefficients 

and  (dashed curves) measured in one experiment in the

regions (x = 7–8 mm, y = 0–8 mm) and (y = 5–6 mm, x = 0–

9 mm), respectively, and the values of  averaged over

several experiments (circles) and their fits by formula (7)
(solid curves).

Dd
x

Dd
y

Dd
x y( )
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le[cm] ≈ 0.12/P[torr], which is commonly used for the-
oretical estimates. This is because at energies of ~1 eV,
the cross section for the electron–neutral collisions in
neon has a pronounced minimum (Ramsauer effect)
[15]. Accordingly, in further calculations, we assume
that Tpe . Te.

The theoretical estimates of Zd by formulas (6) and
(8) can only provide the order of magnitude of the pho-
toemission charge acquired by a grain because they
strongly depend on the accuracy with which the grain
parameters and the spectrum of inducing radiation are
determined; in turn, this accuracy depends on the spe-
cific experimental conditions. To measure the charges
of individual grains moving with velocity V in the
known electric field E, one can use the equation of
motion [6]

dV/dt = –νfrV + EeZd/md . (9)

To solve Eq. (9), one needs a priori data on the electric
field E, which (as well as theoretical estimates of the
grain charge) depends on the transparency of the dust
cloud to the emitted photoelectrons. Let us suppose that
at t > 100 s, all the emitted electrons have already left
the dust cloud and the electric field E is equal to the
field of a uniformly charged cylinder: E ≈ 2πeZdndxR,
where xR is the distance from the tube axis. In this case,
estimating the grain charge from Eq. (9) with the use of
the measured values of dV/dt and V for individual
grains [6] gives charges ranging from Zd ≈ 4 × 104

(νfr = 3 s–1) to Zd ≈ 3 × 104 (νfr = 4 s–1), depending on
the chosen value of the friction coefficient νfr .

In a cloud transparent to photoelectrons (ne = 0), the
grain charge Zd can also be evaluated from the mea-
sured time dependence of the grain density nd(t), which
characterizes the rate with which like-charged dust
grains escape from the measurement volume due to
electrostatic repulsion. If the electric forces acting on
an individual grain from all the other grains are bal-
anced by the friction forces, then the dependence nd(t)
can be approximated by the function [6]

(10)

where ω0 = eZd{ /md}1/2,  is the dust grain density
at a certain time t = t0, and ∆t = (t – t0). Approximation
(10) allows one to determine ω0 by fitting the calculated
results to the experimental data; the result obtained
makes it possible to find the grain charge. Figure 6 pre-
sents the results of approximating the experimental data
by formula (10) under the assumption that the system
becomes transparent as the grain density decreased to

values lower than n(t) = 90 cm–3 (t > 45 s) and  ≡ nd

(t0 = 45 s). Hence, it follows that 3 /νfr ≈ 0.0023 s–1

for  = 195 cm–3 and  = 0.37  and that 3 /νfr ≈

nd ∆t( ) nd

t0 1 3ω0
2∆t/νfr+( )

1–
,=

nd

t0 nd

t0

nd

t0

ω0
2

nd
0

nd

t0 nd
0 ω0

2

0.0033 s–1 for  = 300 cm–3 and  = 0.3 . There-
fore, the grain charge is Zd = (4.3 ± 0.2) × 104 at νfr ≈
3 s–1. At νfr ≈ 4 s–1, Zd is larger by ~15%.

Figure 6 also presents the results of calculations of

the dependence nd(t)/  by the method of molecular
dynamics for the parameters close to the experimental
ones under the assumption that the system is transpar-
ent to the emitted electrons. A set of three-dimensional
equations of motion was solved for a cylindrical
ampoule (Fig. 2) with allowance for the random (Lan-
gevin) force Fbr, assuming that the grains have zero ini-
tial velocities and are absorbed on the cylinder wall:

(11)

Here, Φ(r) ≈ (eZ)2/r2 and r is the distance between the
two interacting grains. It can be easily seen that the
assumption of the system transparency (Coulomb
repulsion) allows one to describe the experimental data
within the applicability range of formula (10) for t > 45 s.
At t < 20 s, the rate at which grains escape from the mea-
surement volume is significantly lower. This effect man-
ifests itself in the magnitude of the recorded drift veloc-
ities of dust grains, which are lower than those expected
for a transparent cloud: V ≈ 2π(eZd)2ndxR/(νfrmd) [see
(9)]. The estimated minimum drift velocity V ≈ 0.1xR s–1

for this case is shown in Fig. 7a by the dashed-and-dot-
ted line for Zd = 4.3 × 104 and nd = 200 cm–3. This phe-
nomenon can be related to the presence of the polariza-
tion electric field, whose magnitude is lower than the
electric field in a transparent system of charged grains
by a factor of ~(λ/R)2, where λ is the electron Debye
radius [15] (λ2 = Te/4πe2n). The possibility of polariza-
tion caused by the separation of opposite charges is
determined by the requirement that the dust cloud is
opaque to the emitted electrons (see the last section for
details).

In a two-component system consisting of grains and
electrons, the approximation of the dust cloud opacity
corresponds to the quasineutrality condition

For a cylinder of radius R, this is true when [15]

δn/n ≈ (λ/R)2 ! 1. (12)

Thus, for a dust cloud in a 1.5-cm-radius tube, condi-
tion (10) is met at ne ≈ Zdnd @ (2.5–4.9) × 105 cm–3 (for
Te . 1–2 eV).
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The other limiting case is that where all the emitted
electrons freely escape from the system (ne ≈ 0):

e∆ϕ ≤ Te , 

where ∆ϕ = πZdndR2 is the potential difference in the
electric field of a uniformly charged cylinder of radius
R. Hence, the criterion for the dust cloud to be transpar-
ent to photoelectrons can be obtained from the condi-
tion

λd/R > 0.5, (13)

where  = Te/(4πe2Zdnd) is a quantity equivalent to the
Debye radius squared of an opaque system. Thus, the
condition that the system is transparent to the emitted
electrons is determined by the parameter λ/R, where
λ2 = Te/(4πe2Zdnd) both in the case of ne ≈ Znd (when this
quantity can be associated with the screening length in
a two-component system) and at ne ≈ 0. The experimen-
tal time dependence of λ/R is shown in Fig. 6 for the
grain parameters (Zd, nd) measured at Te = 2 eV. Here,
the dashed-and-dotted lines show the margins λ/R = 0.5
and λ/R = 0.33 corresponding to the limiting cases of a
transparent and an opaque dust clouds [see (12) and
(13)]. It can be seen that the region λ/R > 0.5, in which
the system can be assumed to be transparent (t > 60 s),
approximately corresponds to the time domain in
which the grain charges were measured by using this
assumption.

4.4. Estimated Characteristic Times
for Different Dynamic Regimes

The data on the grain charges and friction coeffi-
cients allow us to estimate the characteristic times and
frequencies in a dusty system for different dynamic
regimes. Since in our experiments ωd = Zde(nd/md)1/2 !
νfr , the time τMaxw during which dynamic equilibrium in
a system of charged grains is established is determined
by [6, 15]

τMaxw . νfr /4π . (14)

At nd = 195–300 cm–3, we have τMaxw ~ 4–6 s, which is
close to the relaxation times for the temperature and
intergrain correlation observed in our experiments (see
Section 4.1). The minimum value of the coupling

parameter  in the state of dynamic equilibrium can
be estimated by choosing the maximum temperature

(Td ≡ Tx = 51 eV) and minimum grain density (  =
195 cm–3). Since in our experiments κ < 0.5–0.7 (Te =
1–2 eV), we have Γn ≡ (1 + κ + κ2/2)exp(–κ)Γ . Γ ≡
(eZd)2/ldTd. Consequently, at Zd ≈ 4.3 × 104 (νfr = 3 s–1),

we have  ≈ 32.

In the experiments performed under solar irradiation
(see Section 4.1, second stage of the experiment), the

λd
2

ωd
2

Γn
min

nd
0

Γn
min
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time τMaxw during which the dynamic equilibrium in a
dusty system is established can be measured by moni-
toring the decay of the initial grain velocity V(t)
acquired with the shaking of the ampoule. This velocity
should behave as ~exp(–t/τMaxw) [15]. The approxima-
tion of the V(t) dependence by the curves V(t) =
V(0)exp(–t/τMaxw) at τMaxw . 1 s is shown in Fig. 3. The
obtained value of τMaxw is in excellent agreement with a
value of ~1 s, calculated by formula (14) for the mea-
sured parameters nd ≈ 900 cm–3, Zd ≈ 4.3 × 104, and
νfr = 3 s–1.

We note that the high-frequency (ω ~ 4.5–5.2 s–1)
dust grain oscillations (Fig. 3) during the relaxation to
dynamic equilibrium can also be due to the polarization
effects related to the separation of opposite charges.
Thus, for charged particle oscillations with frequency ω
and amplitude A, which is close to one-half of the char-
acteristic spatial scale for charge separation (2A = λ), in
the polarization electric field (which is proportional to

~Te), we can write md(ωλ/2)2/2 ≈ 4πe2 ndλ2 ≡ ZdTe .
Hence, at nd ≈ 900 cm–3 and Zd ≈ 4.3 × 104, the oscil-
lation frequency is ω = eZd(32πnd /md)1/2 ≈ 4.6 s–1.

4.5. Ambipolar Diffusion

Let us consider a two-component system consisting
of positively charged grains and the photoelectrons
emitted by them. Because of a significant difference in
the electron mobility µe and the dust grain mobility µd,
the components of this system will be separated in the
entire ampoule volume and a negative surface charge
will arise on the wall. The arising polarization electric
field will impede the further separation of the charged
components; consequently, the electrons will diffuse
together with heavy grains with a certain effective coef-
ficient of ambipolar diffusion Da. The Da value is deter-
mined by the diffusion coefficient of the less mobile
component; in the absence of external magnetic and
electric fields, it can be written as [15]

(15)

where De is the coefficient of free diffusion,

De = Te/νenme , (16)

and D0 is given by formula (3). Since µe @ µd, the coef-
ficient of ambipolar diffusion can be written as Da ≈
D0 + Deµd/µe . Then, with allowance for formulas (3)
and (16), we have

Da ≈ (1 + ZdTe/Td)D0. (17)

We note that formulas (15)–(17) are valid only in the
case of a weakly ionized plasma–dust system, in which
dissipation is determined by the buffer gas neutrals,
whereas the collisions between charged particles are

Zd
2

Da Deµd D0µe+{ } / µd µe+{ } ,=



40 NEFEDOV et al.
unimportant. On the other hand, the coefficient of
ambipolar diffusion describes the polarization effects,
which are absent in a rarified plasma with low densities
of the charged components. In such a plasma, the parti-
cle diffusion is determined by coefficients (3) and (16).
Diffusion is ambipolar when the plasma is quasineutral
and condition (12) is met. Hence, the regime of ambi-
polar diffusion is determined by the inequality λ/R <
0.33 (i.e., δn/ne < 10). Thus, for t < 10 s (Fig. 6), the
polarization effects related to the separation of opposite
charges are feasible in the system under study.

Assuming that at t < 10 s, the charge loss in our
experiment is related to the ambipolar diffusion toward
the wall, the mean diffusion loss rate for dust grains can
be written as [15]

(18)

where νdif is the effective diffusion loss rate,

(19)

and Λdif is a characteristic scale length. For a cylinder

of radius R = 1.5 cm and length L = 4R, we have  ≈
((2.4/R)2 + (π/L)2)–1 = 0.6 cm (Fig. 2) [15]. The diffu-
sion loss rate νdif can be estimated by the rate at which
the relative grain density changes. The experimental

curve nd(t)/  is in good agreement with the exponen-

tial solution nd = exp(–νdift) to Eq. (19) with νdif ≈
0.035 s–1 at t < 10 s (Fig. 6). Hence, the estimated coef-

ficient of ambipolar diffusion is Da = νdif . 1.3 ×
10–2 cm/s, which is much larger than the measured coef-

ficients  of grain self-diffusion (see Section 4.2). To
compare the obtained coefficient Da with its theoretical
value Da ≈ ZdTeDd/Td [see Eq. (17)], we use the
obtained values Zd ≈ (4.3 ± 0.2) × 104 and Dd/Td ≈ 2.8 ×
10–7 cm2/(s eV) and assume that Te = 1–2 eV. Then, we
have Da ≈ (1.2–2.4) × 10–2 cm2/s, which agrees with the
coefficient of ambipolar diffusion measured by the rate
at which the grains depart to the wall [see Eqs. (18),
(19)] to within the accuracy in determining the charac-
teristic length Λdif and the grain parameters and the
validity of the assumption Te = 1–2 eV.

5. CONCLUSION

We have presented the experimental results on the
dynamics of dust grains charged via photoemission
under microgravity conditions. The velocity distribu-
tion, temperature, mean charge, and diffusion coeffi-
cient of the dust grains are determined. An analysis of
the experimental data shows that in the initial stage
(t < 10 s), the particles undergo ambipolar diffusion;
i.e., the densities of the charges of both signs are so high
that the charge separation leads to the formation of a

dnd/dt ndνdif ,–=

νdif Da/Λdif
2

,–≡

Λdif
2

nd
0

nd
0

Λdif
2

D0
x y( )
significant space charge, which induces the polarization
electric field. The polarization caused by the separation
of opposite charges decreases the drift velocities of the
dust grains with respect to their velocities in a system
transparent to photoelectrons and affects the excitation
of high-frequency oscillations observed after the
dynamic action on a dust system exposed to solar radi-
ation. We emphasize that direct experimental observa-
tions of the phenomena related to charge separation in
a two-component dusty plasma are hardly possible
under the Earth’s gravity conditions.

To conclude, the experiments show that the interac-
tion between dust grains only slightly affects both the
grain self-diffusion coefficient, which remains close to
the Brownian one (D0), and the ambipolar dust transfer,
whose theory is based on neglecting Coulomb colli-
sions between oppositely charged particles. Thus, we
can suggest that if the coupling parameter Γ is no
higher than 30–35 (see Section 4.4), then the transport
properties of strongly dissipative systems of dust grains
(ωd/νfr ! 1) with a weak screening of the grain charges
(κ < 1) can be described with good accuracy in the gas-
dynamic approximation.
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Abstract—A study is made of the influence of large-scale plasma turbulence on the results from a diagnostic
method that is based on enhanced scattering of microwaves near the upper hybrid resonance and is highly sen-
sitive to small-scale fluctuations. The resolution in radial wavenumbers that is provided by an enhanced-scat-
tering correlation analysis of small-scale fluctuations with allowance for multiple small-angle scatterings of the
probing and scattered waves along their paths is determined. The frequency spectrum of a wave that is back-
scattered by the small-scale fluctuations involved in large-scale turbulent motion and undergoes multiple small-
angle scatterings is analyzed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At first, the diagnostics based on measuring the sig-
nals from microwaves that undergo enhanced scattering
in the vicinity of the upper hybrid resonance (UHR)
was used to study small-scale oscillations and waves in
quiescent plasmas of linear laboratory devices [1]. In
recent years, this diagnostic technique has been widely
applied to investigate plasma turbulence and the propa-
gation of microwaves in tokamak plasmas. Thus, in
experiments carried out in the FT-1 tokamak [2], in
which this method was used to study spontaneous
plasma density fluctuations, a substantial broadening of
the frequency spectra of the backscattered signal was
observed and was found to increase in proportion to the
wavenumber of the fluctuations by which the probing
wave is backscattered. In our recent paper [3], it was
shown that such behavior of the frequency spectrum
may stem from the fact that in a tokamak, a probing
wave propagating in a turbulent plasma is scattered pri-
marily by predominant large-scale plasma density fluc-
tuations. The frequency shift and spectrum broadening
may be associated not only with the frequency of the
small-scale density fluctuations responsible for back-
scattering, but also with the effects of multiple small-
angle scatterings of the probing and scattered waves by
large-scale plasma turbulence along their paths. In the
enhanced-scattering diagnostics, these effects may also
influence the resolution in radial wavenumbers that is
provided by a correlation analysis of the backscattered
signals from two probing waves with different frequen-
cies [4].
1063-780X/03/2901- $24.00 © 20042
In [3], we considered the evolution of the frequency
spectrum of a plane extraordinary probing wave during
its multiple small-angle scatterings in a turbulent
plasma. In the present paper, which is a logical contin-
uation of [3], we examine the influence of multiple
small-angle scattering on the resolution of the
enhanced-scattering correlation diagnostics with allow-
ance for the directional pattern of the antenna generat-
ing a probing wave. The analysis is performed by the
eikonal method; however, in the UHR region, the prob-
lem is investigated exactly. These two approaches are
shown to yield the same results in the spatial region
where both of them are applicable.

In this paper, we also analyze the frequency spec-
trum of the backscattered wave recorded by the
enhanced-scattering diagnostics. This spectrum may
form as a result of multiple small-angle scatterings of
the wave along its path or as a result of the Doppler
broadening, when small-scale fluctuations responsible
for backscattering are involved in turbulent motions.

2. CORRELATION ANALYSIS OF ENHANCED 
BACKSCATTERING IN THE EIKONAL 

APPROXIMATION

We consider a cold collisionless plasma in a mag-
netic field directed along the z-axis. Let an extraordi-
nary wave be emitted by an antenna in the x direction,
in which the plasma density is nonuniform, and let the
signal of the same polarization, backscattered by small-
scale fluctuations near the UHR, be received by the
same antenna. In the eikonal approximation, the elec-
003 MAIK “Nauka/Interperiodica”
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tric field of the emitted extraordinary wave can be writ-
ten as (see, e.g., [5])

In deriving this expression, we omitted the harmonic

dependence on time and used the relationship (x) =

− /ε(x) –  – A(x)  (with A(x) ≈ –η/ε(x) and kc =
g(xUH)/c), which holds near the UHR in the paraxial
approximation. Here, ε, g, and η are the elements of the
dielectric tensor; the plasma density profile is assumed
to be linear, ε = (x – xUH)/, with xUH the position of the
UHR; k0 = ωi /c is the wave vector of the probing wave
in a vacuum; and  is the wavenumber (over ky and
kz) spectrum of the field generated by the antenna.

Following [3], in the expression for the phase of the
electric field of the probing wave, we take into account
large-scale plasma density fluctuations, which give rise
to the wavenumber perturbations

In this case, the fluctuation-related phase increment can
be obtained by integrating the density fluctuations with
the corresponding weighting factor along an unper-
turbed path of the ray [3]:

where the functions y(x') and z(x') describe the ray tra-
jectory. Taking into account that the ray passes in the
axial region and that the main contribution to the fluc-
tuation-related phase increment comes from the UHR
region, in which the small-angle scattering is enhanced
[5] and the wave propagates predominantly in the direc-
tion in which the plasma is nonuniform, we set y(x) ≈ y
and neglect the dependence of the fluctuations on z,
assuming that they are very long-wavelength in the
direction of the magnetic field.

In this way, we can readily calculate the extinction
of the averaged electric field by multiple small-angle
scattering:

Under the assumption that the distribution of the fluctu-
ation-related change in the eikonal ξ is normal, we
obtain
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which yields the following expression for the Poynting
vector of the probing wave:

(1)

The expression for 〈ξ 2〉  was obtained in [3]:

where ,c is the correlation length of the large-scale
plasma density fluctuations.

Note that the approach used here agrees with the
approach developed in our earlier paper [5] for a
description of the small-angle scattering. In that paper,
using the Born approximation, we obtained the depen-
dence of the total Poynting vector of the probing wave
that had undergone multiple small-angle scatterings on
the coordinate measured from the plasma boundary to
the UHR. This dependence can readily be reduced to
the form

(2)

where the Poynting vector Si of the probing wave in the
Born approximation is assumed to be constant. In actu-
ality, however, small-angle scatterings weaken the
probing wave; this weakening can be taken into account
by means of formulas (2). In order to determine the law
by which the Poynting vector of the probing wave
changes, we write

which yields

(3)

Since formulas (1) and (3) coincide, we can conclude
that a more convenient phase approach, which makes it
possible to determine the spectral properties of a multi-
ply scattered wave, does not contradict a more sophis-
ticated energy approach.

We consider the backscattering of a probing wave
with the frequency ωi by plasma density fluctuations
with the radial wavenumbers satisfying the condition
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where vTe is the electron thermal velocity. This condi-
tion indicates that the wave is backscattered far from
the conversion point [6]; moreover, the probing and
backscattered waves are both extraordinary modes
(X  X). Following [1], we use the reciprocity theo-
rem, according to which the power in the receiving
antenna is Ps = |A|2, where

Here, the integration is performed over the entire
plasma volume and E+(r) is the electric field of the
antenna for an oppositely directed magnetic field. The
nonlinear current

with  = iωi(  – )/(4π) being the plasma conductiv-
ity tensor, is determined by small-scale plasma density
fluctuations

where it is assumed that Θ = ω – ωi ! ω. Here and
below, Θ and Q denote the frequency and wave vector
of small-scale fluctuations, and Ω and q denote the fre-
quency and wave vector of large-scale fluctuations.

The amplitude of the backscattered signal depends
parametrically on time:

In the enhanced-scattering diagnostic method, the
radial-wavenumber spectrum of small-scale turbulence
is determined by calculating the correlation function of
the signals from two scattered probing waves with dif-
ferent frequencies [4]. With allowance for multiple
small-angle scatterings of the probing and scattered
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waves along their paths, the correlation function in the
eikonal approximation has the form

(4)

Here, we have introduced the following notation: As1
and As2 are the amplitudes of the signals from the scat-
tered probing waves with the frequencies ω1 and ω2,
respectively,

k1(x) and k2(x) are the projections of the wave vectors of
the waves with the corresponding frequencies onto the
direction in which the plasma is nonuniform; and x1 and
x2 are the positions of the UHR for waves with the cor-
responding frequencies. The influence of large-scale
fluctuations can be described by introducing the ran-
dom quantities

in which small- and large-scale fluctuations are
assumed to be statistically independent. In formula (4),
the averaging over small-scale fluctuations has been
carried out under the assumption that the fluctuations
are statistically uniform in both space and time:

In order to investigate the influence of large-scale
fluctuations on the correlation function of the scattered
waves, we follow the approach developed in [3]; specif-

As1 t( )As2* t τ+( )〈 〉
ω1ω2

16πnUH( )2
-------------------------- r r'dd

∞–

∞

∫=

× 1

2π( )8
------------- ky kz ky' kz' κ y κ z κ y' κ z'dddddddd

∞–

∞

∫

× Eky kz, E
ky' kz',
+

Eκ y κ y,* Eκ y' κ z',

+* i ky ky'+( )y i kz kz'+( )z+[exp

– i κ y κ y'+( )y' i κ z κ z'+( )z'– ]
k1

3
x( )k2

3
x'( )

k0
2
kc

4
---------------------------

× Qd

2π( )3
------------- δnQ Θ,

2

∞–

∞

∫
× iQx x1 x2–( ) iQy y y'–( ) iQz z z'–( )+ +{ }exp

× 2i k1 χ( ) χd

0

x

∫ iQx x x1–( )+




exp

– 2i k2 χ'( ) χ'd

0

x'

∫ iQx x' x2–( )–




2iξ1 2iξ2–[ ]exp〈 〉 .

Asi〈 〉 0, i 1 2;,= =

ξ1 δk1 χ y t, ,( ) χ , ξ2d

0

x

∫ δk2 χ' y' t τ+, ,( ) χ',d

0

x'

∫= =

δnQ Θ, δnQ' Θ',*〈 〉 2π( )4 δnQ Θ,
2δ Q Q'–( )δ Θ Θ'–( ).=
PLASMA PHYSICS REPORTS      Vol. 29      No. 1      2003



MICROWAVE ENHANCED-SCATTERING CORRELATION DIAGNOSTICS 45
ically, we assume that the distribution of the fluctua-
tion-related phase increments is normal and analyze the
correlation function

(5)

The integrals over dx and dx' in expression (4) can
be evaluated by the stationary-phase method. This
yields the Bragg condition, which determines the points
of backscattering in a nonuniform plasma. Probing
waves with frequencies ω1 and ω2 are backscattered at
the points x = xs1 and x' = xs2, satisfying the conditions

in which case we have

(6)

where δnq, Ω is the spectral density of large-scale fluctu-
ations.

Let us consider this correlation function for the case
when the distances from the UHR at which the probing
waves are backscattered,

(7)

are much longer than the correlation length of large-
scale fluctuations, |x1 – xs1 | @ ,c.

To calculate the integrals, we introduce the variables
u2 = x1 – χ and u'2 = x2 – χ' and make the following two
assumptions. First, the small-angle scattering is nonlin-
ear; i.e., the correlation length and time of the wave
field are much longer than those of the plasma density
fluctuations. Second, the distance between the reso-
nances, x1 – x2, and the corresponding time delay τ,
which are both necessary for correlation analysis, are
on the order of the correlation length and time of the
wave field. This latter assumption makes it possible to
expand the exponentials in the integrands in formula
(6). Neglecting small terms in this formula, we find

In order to obtain the sought-for asymptotic expression
at x1 – xs1 @ ,c, we use the relationship qx(x1 – xs1) @ 1.
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The coefficient in the term with x1 – x2 can be calculated
from the approximate relationship

To evaluate the coefficients in the terms with y–y' and
Ω , we can use a simpler estimate:

Taking into account relationship (7), we obtain

(8)

Introducing the corresponding notation, we arrive at the
following estimate:

In the opposite limit x1, 2 – xs1, 2 ! ,c (which indi-
cates that the waves are backscattered near the UHR),
correlation function (6) can also be simplified. In this
case, we have
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Assuming again that ∆xUH ! ,c and expanding the
right-hand side of the last expression in a series, we
obtain

(9)

Hence, the expression describing the breaking of
correlations by multiple small-angle scatterings,

(10)

contains the effective correlation lengths and times,
which can be estimated as follows:

For /(4 ) ! 1, the estimates are given by

and, for /(4 ) @ 1, the estimates have the form

(11)

Here,  = ,  = , and  = .

For kx ~ ω/c , an extraordinary wave converts
near the UHR into a Bernstein mode [6], which propa-
gates from the UHR toward the plasma boundary. Near
the conversion point, the Wentzel–Kramers–Brillouin
(WKB) approximation fails to hold, as does the cold
plasma approximation, in which the dispersion relation
has been derived. However, behind the conversion
point, the Bernstein mode at sufficiently long distances
from the UHR can be described in the eikonal approxi-
mation. Near the conversion point, the wavenumber of
the mode has the form

(12)
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where the parameter ,T accounts for the thermal parti-

cle motion and  = 3 /(3  – . For a

linear plasma density profile, (ε = (x – xUH)/,), the spa-
tial region in which the eikonal approximation and rela-
tionship (12) are both applicable is determined by the
conditions ,T/, ! (–ε)3/2 ! 1.

Let us consider the backscattering in the part of the
region of applicability of the eikonal approximation
where the probing and backscattered waves are Bern-
stein modes (B  B), which indicates that the follow-
ing condition on the radial wavenumber of the fluctua-
tions responsible for backscattering is satisfied:

For Bernstein modes with the frequencies ω1 and ω2,
the fluctuation-related changes in the eikonal have the
form

For a Bernstein mode backscattered at distance from
the UHR that is shorter than the correlation length of
large-scale fluctuations, we obtain the following
expression for the exponential index in correlation
function (5):

which exactly coincides with expression (9). In this
case, the effective correlation lengths and times in
expression (10) for the correlation function K are given
by formulas (11).

In order to evaluate correlation function (5) far from
the UHR, when both of the probing waves are scattered
behind the conversion point at distances from the UHR
that are much larger than the correlation length of large-
scale fluctuations (x1, 2 – xs1, 2 @ ,c), we again introduce
the variables u2 = x1 – χ and u'2 = x2 – χ'. As a result, we
obtain

,T
2

v Te
2 ωce

2 ωpe
2

)|x xUH=

Qx 2
ωi

c
----- c

v Te

--------.>

ξ1
,

2nUH,T

------------------ δn χ y t, ,( )
x1 χ–

------------------------- χ ,d

x1

x

∫=

ξ2
,

2nUH,T

------------------ δn χ y' t τ+, ,( )
x2 χ–

----------------------------------- χ .d

x2

x'

∫=

Kln 4 ξ1ξ2〈 〉 2 ξ1
2〈 〉– 2 ξ2

2〈 〉–=

≈
,

2
Qx

2

2nUH
2

------------
qx qy Ωddd

2π( )3
------------------------ δnq Ω,

2

∞–

+∞

∫–

× qx
2 ∆xUH( )2

qy
2

y y'–( )2 Ω2τ2
+ +[ ] ,

Kln
2,

nUH
2 ,T

2
---------------

qx qy Ωddd

2π( )3
------------------------ δnq Ω,

2

∞–

+∞

∫–=
PLASMA PHYSICS REPORTS      Vol. 29      No. 1      2003



MICROWAVE ENHANCED-SCATTERING CORRELATION DIAGNOSTICS 47
The integral over u in this expression can be evaluated
by the stationary-phase method:

This yields

The integral over qx is taken over the region Γ =

(− , −q*) ∪ (q*, ), where q* ~ 4/( ) ! .
In the limit in question, the contribution of the closed
interval [–q* , q*], in which the stationary-phase method
fails to hold, is as small as ,cq*. This allows us to esti-
mate the integral over qx with logarithmic accuracy:

which gives
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lengths and times can be estimated as
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Under the condition

the backscattering of the modes in the vicinity of the
UHR can be accompanied by their mutual conversion:
B  X and X  B. When such scattering occurs at
distances from the UHR that are much larger than the
correlation length of large-scale fluctuations, the analy-
sis is far more complicated than for the X  X and
B  B processes. However, it can be easily seen that
in this case, the behavior of the correlation function is
governed completely by the fluctuation-related incre-
ment of the phase of the Bernstein wave and is
described by expression (13) under the Bragg condition
kx(xs) ≈ –Qx for backscattering. Below, the correlation
function in the UHR region will be considered with
allowance for all possible backscattering processes.

3. CORRELATION ANALYSIS 
IN THE UHR REGION

Expressions (10) and (13) describe the influence of
multiple small-angle scattering on correlations between
the signals from two backscattered probing waves at
different frequencies in the region in which the eikonal
approximation is applicable. The backscattering in the

UHR region (at Qx ~ ωi /c ), in which the eikonal
approximation fails to hold, should be described by an
exact expression for the electric field of the probing
wave [1]:

where we have introduced the dimensionless parame-
ters

(15)

and the factor D(y, z) takes into account the directional
pattern of the antenna. In expressions (15), the change
in the position of the UHR is determined by the influ-
ence of large-scale density fluctuations. We assume that
the scales on which the plasma density fluctuates are
sufficiently large for both their dependence on the coor-
dinates and their influence on the density gradient to be
neglected:
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Using the reciprocity theorem, we write out the
amplitude of one of the signals from the backscattered
waves [1]:

where p ≡ γ,Qx . We integrate over ξ and perform the
necessary manipulations to obtain

(17)

where

Without allowance for large-scale density fluctuations,
the asymptotics of expression (17) in the WKB approx-
imation coincide with the corresponding expressions
that were derived in [1] for the amplitudes of the signals
from extraordinary and Bernstein backscattered waves.

In the approximation at hand, in expression (17) for
the amplitude, the time dependence, which reflects the
influence of multiple small-angle scattering, is given by
the exponential factor exp[– iQxx1(t )] alone. With this
circumstance in mind, we can readily obtain the corre-
lation function of the signals from backscattered prob-
ing waves at two different frequencies. Using relation-
ship (16), we can write
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Assuming that the distribution of the density fluctua-
tions is normal, we find

(19)

Together with expressions (8) and (9), relationship (19)
is valid in the limit of intense small-angle scattering.
This relationship coincides with expression (9), which
was obtained for the backscattering of extraordinary
and Bernstein waves near the UHR using assumptions
that are far less restrictive than those made for the UHR
region. It is easy to see that in the WKB approximation,
asymptotic expression (18) for the correlation function
of the backscattered signals can be matched with the
expressions for an extraordinary wave and for a Bern-
stein mode.

Generally, attempts to take into account the depen-
dence of large-scale density fluctuations on y in the
UHR region run into mathematical difficulties similar
to those arising when constructing the hybrid-reso-
nance theory in a plasma that is inhomogeneous in two
directions [7]. However, the approach in which large-
scale fluctuations are assumed to parametrically depend
on the y coordinate makes it possible to evaluate corre-
lation function (19), and the resulting expression will
be precisely the same as expression (9).

Presumably, for a weakly inhomogeneous warm
tokamak plasma, for which the geometrical-optics
approximation is valid up to the linear conversion point
and in which, strictly speaking, the field does not grow
in a resonant fashion, expression (9) exhaustively
describes the influence of large-scale turbulence on the
propagation and backscattering of waves in the vicinity
of the UHR.

When analyzing small-angle scattering in the UHR
region, we neglected the influence of large-scale
plasma density fluctuations on the plasma density gra-
dient and took into account only the change in the UHR
position. Let us derive the criterion for the validity of
this approximation. In the presence of large-scale fluc-
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tuations, the spatial scale of the density inhomogeneity
is equal to

According to [1], the function |U(p)|2, which deter-
mines the backscattering efficiency in formula (18), has
a narrow peak at p = p∗  ≡ 2b1/4 in the UHR region, the

peak width being about  & .

With allowance for large-scale plasma density fluc-
tuations, we have

It is natural to write the criterion for the validity of the
approximation at hand in the form

which gives

This criterion reduces to the inequality

which ensures the existence of only one UHR point and
is not too strong.

Hence, in the correlation function of the backscat-
tered signals, large-scale turbulence is accounted for by
the additional factor K(Qx, ∆xUH, τ), which is deter-
mined by formulas (10), (11), and (14):

(20)

In the method of correlation analysis, first, the
dependence of correlation function (20) on the distance
∆xUH between the upper hybrid resonances for two
probing waves is calculated from the experimental data
and, then, the inverse Fourier transform of the correla-
tion function is taken:
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As may be seen, in measurements of the radial-wave-
number spectrum of small-scale plasma density fluctu-
ations, multiple small-angle scattering limits the reso-
lution of the correlation diagnostics to the level

Let us turn to the case of small-scale density fluctua-
tions with wavenumbers at which the backscattering is
most intense (γ,Qx ~ p∗ ) and compare the resolution

∆Qx of the diagnostics with the width δQU of the peak
of the function |U(p)|2. Under the condition

/nUH ! 1, it is easy to obtain the relationship
∆Qx ! δQU. When this condition holds, multiple small-
angle scattering merely limits the resolution provided
by the diagnostics in measurements of the radial-wave-
number spectra, while in the opposite case, the diagnos-
tics always fails to reliably determine the radial-wave-
number spectra of small-scale plasma density fluctua-
tions.

4. BACKSCATTERING BY SMALL-SCALE 
FLUCTUATIONS INVOLVED IN LARGE-SCALE 

TURBULENT MOTIONS

The multiple small-angle scattering of the probing
and scattered waves along their paths is one of the
mechanisms responsible for the broadening of the fre-
quency spectrum of the scattered wave. For a probing
wave, this mechanism was analyzed in [3]. In that
paper, for the backscattered wave, we obtained expres-
sion (10), which describes the breaking of correlations
(in particular, the breaking of time correlations) and,
accordingly, the broadening of the frequency spectrum.

Another possible mechanism for the broadening of
the frequency spectrum from collective scattering is
associated with turbulent motions of the volume ele-
ments of the medium in which the wave responsible for
scattering propagates [8]. When the turbulent motion in
the medium occurs on a scale much larger than that of
the fluctuations giving rise to scattering, the broadening
of the scattering spectrum can be described in terms of
the Doppler effect. Assuming that the small-scale fluc-
tuations are completely frozen into the large-scale fluc-
tuations in the medium and thus have to move as the
large-scale fluctuations move across the magnetic field
(in particular, in the radial direction), we write the
plasma density perturbation in the form

× πLx
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where the time t* is chosen to be sufficiently close to
the current time. Expanding δn0 into a Fourier integral,

we obtain

As a result, in the WKB approximation, the parametric
dependence of the amplitude of the backscattered sig-
nal on time is described by the expression

(21)

Let us consider the frequency spectrum of the back-
scattered wave. To do this, we analyze the correlation
function

(22)

where the average is taken under the assumption that
small- and large-scale fluctuations are statistically inde-
pendent. We use the representation

(23)

which is valid under the conditions t – t* ! tc and τ ! tc,
where tc is the correlation time of large-scale turbulent
fluctuations. We also take into account the large-scale
character of turbulent motions and on the right-hand
side of expression (23), neglect the first term, which is
proportional to the gradient of the fluctuation velocity
and thus is small in comparison with the second term.
In addition, we employ the fact that the Bragg condition
determines the scattering point x = x' = xs in a nonuni-
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form plasma and annihilates the term with x – x'. In
order to check the validity of the approximation just
described, we estimate the terms in relationship (23).
The condition under which the remaining terms, which
are proportional to the fluctuation velocity gradient, can
be omitted has the form

where ,cy is the correlation length of the fluctuations
along the y-axis. This condition can be satisfied for
intense multiple small-angle scattering, when the corre-

lation length of the field is y – y' ~  ! ,cy. In this
case, the inequalities τ ! tc and t – t* ! tc , which were
used to derive expression (23), can also be satisfied.

We introduce the notation

and, taking into account the relationships Qx @ Qy, Qz,
we also introduce the notation

The contribution of the large-scale turbulence to corre-
lation function (22) is described by the expression

Assuming that the random quantities ξi obey normal
distributions, we obtain

The expression 4〈ξ 1ξ2〉 – 2  – 2  can be evalu-
ated from formulas (8) and (9) by setting ω1 = ω2. To
calculate the term 〈ξ 2ξ3〉  in the correlation function, we
perform integration over x in formula (21) by the sta-
tionary-phase method, which determines the scattering
points x = x' = xs. As a result, we arrive at the expression
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We consider the case in which scattering occurs at dis-
tances from the UHR that are much less than the corre-
lation length of large-scale fluctuations, xUH – xs ! ,c .
Assuming that the spectral density of large-scale fluctu-
ations is symmetric in qy and retaining terms up to sec-
ond order, we get

Then, we have

.

Introducing the corresponding notation, we finally
obtain

(24)

The density and velocity fluctuations are related by
the equation

We consider the drift fluctuations, for which we set
δv  = δv x and

(25)

By substituting this expression into formula (24), we
see that for a drift-related dispersion, there is no broad-
ening of the frequency spectrum in the approximation
at hand. This stems from the fact that the probing and
scattered waves undergo multiple small-angle scatter-
ings along their paths at distances from the backscatter-
ing point that are shorter than the correlation length;
i.e., they are scattered by the same fluctuations that are
responsible for the Doppler effect resulting from large-
scale turbulence motions.

During backscattering far from the UHR

(  @ ,c), the frequency spectrum is always
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broadened. In this case, assuming that the spectral den-
sity of the plasma-density and plasma-velocity fluctua-
tions are even in 

 

q

 

x

 

 and 

 

q

 

y

 

, we obtain

In the case of drift-related dispersion, the broadening of
the frequency spectrum occurs primarily owing to the
Doppler effect and is essentially insensitive to multiple
small-angle scatterings of the probing and scattered
waves along their paths.

It should be noted that during backscattering near
the UHR, the broadening of the frequency spectrum
may persist, at least for the following three reasons.
First, there remains the spectrum broadening associated
with scatterings far from the UHR. Second, the oscilla-
tions in the nonlinear stage of drift turbulence are
unlikely to satisfy the dispersion relation obtained in
linear theory and used in deriving formula (25). Finally,
one of the assumptions used in deriving this formula,
namely, the assumption that small-scale fluctuations
are completely frozen into the plasma and thus have to
move as the plasma moves in the radial direction, is
unduly restrictive, because it does not take into account
the fact that the regions where small-scale fluctuations
are generated are determined by the radial structure of
the magnetic configuration, in particular, by the posi-
tions of the rational magnetic surfaces.

We emphasize that according to the above formulas,
the frequency spectrum behaves in different ways in the
case of immobile small-scale fluctuations [3], in which
we can set 

 

v

 

Ω

 

 = 0 in expression (24), and in the case in
which small-scale fluctuations are assumed to be frozen
into large-scale turbulence fluctuations and thus have to
move as large-scale fluctuations move in the medium.
In the latter case, the broadening of the frequency spec-
trum of a signal backscattered far from the UHR should
depend linearly on the fluctuation wave vector. This
allows us to hope that the parameters of the large-scale
motions can be measured experimentally from the fluc-
tuation wavenumber.

The above analysis shows that the contribution of
the Doppler effect to the spectrum broadening during
backscattering near the UHR is comparable with the
contribution of multiple small-angle scatterings of the
probing wave along its path, whereas the contribution
from the Doppler effect far from the resonance is dom-
inant. For this reason, when using the assumption that
small-scale fluctuations are entrained in large-scale tur-
bulence motions, it is necessary to take into account the
associated broadening of the frequency spectrum.
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5. CONCLUSION
The correlation function of the signals from back-

scattered extraordinary probing waves at two different
frequencies have been examined theoretically with
allowance for multiple small-angle scatterings of the
probing and scattered waves along their paths. We have
considered the region far from the UHR (for an extraor-
dinary wave), the UHR region, and the region behind
the conversion point (for a Bernstein mode). The anal-
ysis of the region far from the UHR has been performed
by the approximate eikonal method, and the UHR
region has been investigated in the limit of large-scale
plasma density fluctuations. We have shown that these
two approaches yield the same results in the spatial
region where both of them are applicable.

We have derived expressions describing the break-
ing of the spatial and temporal correlations by multiple
small-angle scattering. For the enhanced-scattering
diagnostics, we have determined the resolution in radial
wavenumbers that is provided by a correlation analysis
of small-scale fluctuations with allowance for the influ-
ence of large-scale plasma turbulence.

We have investigated backscattering by small-scale
fluctuations involved in large-scale turbulent motion
and have derived expressions describing the frequency
spectrum broadening resulting from the Doppler effect.
The analysis has been carried out by taking into account
the influence of multiple small-angle scatterings of the
probing and scattered waves along their paths on the
frequency spectrum.

The results of our study will promote an adequate
interpretation of the experimental data obtained from
the microwave enhanced-scattering correlation diag-
nostics.
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Abstract—A scheme of tangential microwave launching is analyzed by using a weakly relativistic ray-tracing
code. The scheme makes it possible to minimize the thickness of the heated magnetic-flux tube. Numerical sim-
ulations show that with tangential launching, the attainable localization of the power deposition region well sat-
isfies the requirements for experiments on the stabilization of tearing modes in ITER-scale devices. © 2003
MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is well known that the tearing instability in toka-
maks can be stabilized by modifying the temperature
profile with the help of either local auxiliary heating or
noninductive current drive.

Numerous investigations (see, e.g., [1, 2] and the lit-
erature cited therein) have shown that both of these
methods impose strict constraints on the width of the
power deposition region. For ITER-scale devices, this
size must be no larger than several centimeters. The
scheme of tangential microwave launching studied in
this paper is one of the possible schemes satisfying this
strict limitation. Note that, by tangential launching, we
mean the method of microwave launching in which the
rays propagate along a tangent to a chosen magnetic
surface in the electron-cyclotron-resonance (ECR)
1063-780X/03/2901- $24.00 © 20053
region. A possibility of minimizing the heating volume
is seen from Fig. 1; of course, in this case, the aperture
of a microwave beam must be smaller than the charac-
teristic size of the absorption region for a ray crossing
the magnetic surface. We note that the possibility of
minimizing the width of the electron-cyclotron current-
drive (ECCD) profile (which is, in fact, determined by
the width of the power deposition profile) for an ITER-
scale tokamak in the tangential microwave launching
regime was discussed, e.g., in [3]. The calculations car-
ried out in [3] with the use of the “cold” ray-tracing
code demonstrated that for beams with an angular
divergence of nearly 2°, it is possible to achieve current
profiles of width no less than 5–10 cm. At first glance,
a further reduction of the width of the energy deposition
profile would always be possible with beams focused
into the tangency point on the magnetic surface. In this
w = wH w = wH

Ray

Ray

Fig. 1. Qualitative illustration of the dependence of the thickness of the heated magnetic-flux tube on the microwave propagation
direction: the ray propagates along a tangent to the magnetic surface (on the right) and crosses it (on the left). The dissipation region
is marked with a heavy line segment.
003 MAIK “Nauka/Interperiodica”
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Fig. 2. Toroidal device: surfaces Ψ = const (on the left), the temperature Te, and the density Ne (on the right).
paper, however, we will show that a substantially (sev-
eral times) narrower profile can only be achieved for an
optimally chosen tangency point on a given magnetic
surface (we have performed such an optimization for a
surface with the safety factor q = 2). We also use a ray-
tracing code that takes into account the influence of the
thermal and relativistic effects on the ray trajectories,
which improves the calculation accuracy.

In this paper, we present the results from numerical
simulations of the propagation and absorption of
microwave radiation in a toroidal device. The calcula-
tions were performed for the ITER parameters [4]. As
usual, the effective radius ρ = 1 – Ψ/Ψc was used as a
“label” of the surface of a constant magnetic poloidal
flux Ψ (magnetic surface).1 Here, Ψ is the poloidal field
flux through the circular contour that is perpendicular
to the symmetry axis of the torus and Ψc . 9.62 is the
value of the flux Ψ at the magnetic axis. Hence, we have
ρ = 0 at the magnetic axis and ρ = 1 on the separatrix
magnetic surface, separating the plasma from a vac-
uum. The temperature and density distributions [4] are
also specified as functions of the effective radius ρ of
the magnetic surface (Fig. 2).

The propagation of radiation in a plasma was calcu-
lated by using a ray-tracing code in a weakly relativistic
approximation in which the permittivity tensor is
expressed through the so-called Shkarofsky functions
[5, 6]. In particular, we considered the q = 2 magnetic
surface, in the vicinity of which one might expect the
onset of the tearing instability, playing a significant role

1 In the simplest case of a cylindrical plasma column with a circu-
lar cross section, where the magnetic surfaces in the cross section
constitute a set of concentric circles, the effective radius ρ is a
usual magnetic surface radius, normalized to the radius of the
plasma column.
in disruptions. The results of calculations demonstrate
a satisfactory efficiency of tangential launching. For
instance, on this surface, we have managed to obtain a
power deposition profile with a width less than one cen-
timeter, which satisfies the present requirements fairly
well.

The paper is organized as follows. In the first sec-
tion, we describe the procedure of numerical ray-trac-
ing calculations with allowance for the thermal and rel-
ativistic effects. In the second section, we discuss the
features of the method proposed that should be taken
into account when implementing it in practice. Finally,
the third section demonstrates the computation results.

1. It is well known that the dissipation and energy
transport of normal waves in the ECR region possess
some specific features (see [7–9]). The dispersion rela-
tion for a plasma with the permittivity tensor εpm has the
form

. (1)

For real-frequency electron-cyclotron (EC) waves
propagating at a nonzero angle to the magnetic field,
Eq. (1) has a solution corresponding to weakly damp-
ing waves,2

(2)

In this case, however, the imaginary and real parts of
the derivatives of the function D(ω, k, r) with respect to
k and r in the vicinity of the center of the cyclotron
absorption line at the first and second harmonics of the

2 This is related to the character of polarization of the normal elec-
tromagnetic waves propagating at a nonzero angle to the mag-
netic field [7–9].

D ω k,( ) det δpmk
2

kpkm–
ω2

c
2

------εpm– 
  0= =

Re k  @ Im k .
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electron gyrofrequency are of the same order of magni-
tude:

(3)

Hence, if we formally consider the function D(ω, k, r)
to be a ray Hamiltonian and take into account spatial
dispersion, then, in view of relationship (3), the ray tra-
jectories will be defined in complex space.

To avoid complexities of this kind, the ray trajecto-
ries are usually calculated in the cold-plasma approxi-
mation [7, 8]. In [10], it is shown that the influence of
the thermal effects on the ray trajectories can correctly
be taken into account by using the effective real Hamil-
tonian H(r, k) if the corresponding solution k(r) for
H = 0 coincides with the dependence Rek(r) obtained
in solving Eq. (1). It is important (see [10] for details)
that this effective Hamiltonian cannot be correctly
obtained by simply omitting non-Hermitian compo-
nents of the permittivity tensor.

Note that in some cases, taking into account kinetic
(thermal) corrections to the cold dispersion equation is
of fundamental importance. Thus, thermal corrections
can be important when solving the problem of the opti-
mum aiming of rays in the method of tangential launch-
ing. This is related to the fact that even a small differ-
ence between trajectories calculated in the cold and
warm approximations may become comparable to the
size of a magnetic island, which is on the order of sev-
eral centimeters (see Fig. 3). When qualitatively dem-
onstrating the advantages of tangential launching, it is
quite sufficient to restrict oneself to the cold-plasma
approximation (see [3]); however, in detailed calcula-
tions, taking into account thermal corrections is of cru-
cial importance.

In this paper, we restrict ourselves to the weakly rel-
ativistic description. This is explained by the fact that
gaining the computation time, the results of calcula-
tions in the weakly relativistic approximation usually
(see review [11]) well coincide with the results of fully
relativistic calculations (at least, in the temperature
range Te & 30 keV, typical of most of the existing
devices).

1.1. We consider dispersion relation (1) with the per-
mittivity tensor in the form [12]
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is the qth-order Shkarofsky function (see [5, 6, 13]) of
the arguments ψ and φ, the z-axis is directed along the
field B, the y-axis is directed along the vector product
B × k, N|| and N⊥  are the parallel and perpendicular
(with respect to the magnetic field B) components of

the refractive index N = kc/ω, µ = c2/  is the squared
ratio of the speed of light to the thermal electron veloc-
ity, ωH = |e |B0/mc is the nonrelativistic gyrofrequency,

and λ =  is the squared ratio of the Lar-
mor radius to the wavelength. The other notation is
standard.

Since the contribution from the nth harmonic to the
components of the tensor ε is proportional to λ|n| – 1 ~
(vT /c)2(|n| – 1) and (vT /c)2 ! 1, in calculations, we restrict
ourselves to considering the harmonics corresponding
to n = 0, ±1, ±2, ±3.

Dispersion relation (1) can formally be considered a
biquadratic equation in N⊥ :

(5)

Here, the component of the dielectric tensor εzz is rep-
resented as a sum of two terms,

where ε0 is the component of εzz that is independent of
N⊥  (for the n = 0, it is equal to εzz) and, in the term

ε1(N⊥ ) , which is responsible for the thermal effects,

the factor  is separated out.

Near the ECR region, the factors A, B, and C in
Eq. (5), as well as the wave vector k, become complex.

The following considerations can be used to choose
the real ray Hamiltonian and calculate the wave absorp-
tion. Since the plasma parameters are homogeneous
along the magnetic field lines and the characteristic
width of a microwave beam is smaller that the charac-
teristic scale length of the magnetic field inhomogene-
ity, we can use an approximation in which the dissipa-
tive medium is considered to be locally plane-stratified.
Taking into account that in this approximation, the tan-
gential component of the wave vector is conserved, we
can choose the solution for which the imaginary part of

v T
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the complex vector N always lies in the plane perpen-
dicular to the magnetic field. Since the problem is
locally isotropic in this plane, we can assume that the
imaginary part of the wave vector is directed along the
real component of N⊥  (see [10] for details).

Then, we rewrite Eq. (5) in the form

(6)

Two solutions X(1, 2)(N⊥ ) to dispersion relation (6) cor-
respond to eigenwaves propagating in plasma. Choos-
ing one of these waves (with either index j = 1 or j = 2),
we reduce Eq. (6) to the form

(7)

In the dissipation region, the values N⊥  = Nr + iNc and
Xj(N⊥ ) = Xr + iXc are complex; however, under condi-
tions of weak [in the sense of inequality (2)] absorption,
the following approximation can be used:

Then, Eq. (7) takes the form

(8)

In view of Eq. (7) and approximate equality (8), the real
Hamiltonian discussed in Section 1 should have the
form

(9)

where N|| = N · B/|B| is the projection of the refractive

index N onto the B field direction and ( )j = 
is the approximate solution to dispersion relation (1) for
the real-frequency eigenwave under consideration.

Hamiltonian (9) was considered in [10], where the
corresponding ray trajectories were compared with the
propagation of wave beams in a layer medium. Numer-
ical analysis performed in [10, 14] showed that the
beam trajectories in a plane-stratified medium can
indeed be represented by a ray Hamiltonian in form (9),
in which case the trajectory direction coincides with the
direction of the energy flux. (We note that, in order to
obtain this result, one should take into account the fact
that in the case of a dissipative dispersive medium, the
standard expression for the wave energy flux is some-
what modified; see [14, 15] for details.)

For the imaginary part of the refractive index Nc, we
use the standard expression obtained under the assump-
tion that absorption is weak [7]:

(10)

The calculations show that the numerical values of the
absorption coefficient Nc coincide well with its values
calculated by well-known analytical formulas (see,
e.g., [7]). A comparison of the computation results with
analytical estimates from [7] is made in Appendix.
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1.2. As a characteristic of the spatial distribution of
the absorbed power, it is convenient to use the quantity

(11)

where τ is the plasma optical depth measured from the
entry into the plasma column to the running point s
(where s is the coordinate along the ray trajectory).

As an illustration, Fig. 4 presents several projections
(onto the xz plane) of ray trajectories (on the left) with
the corresponding calculated dependences U(ρ) (on the
right). We note that the broadening of the power depo-
sition profile for trajectories passing at smaller angles
to the vertical direction is explained by the longer path
of these trajectories along the z-axis; as a result, the
thickness of the heated magnetic-flux tube increases.

As a characteristic half-width of the function U(ρ),
we consider the quantity

(12)

where

2. The direction in which the microwaves are
launched into the plasma is optimized with respect of
minimizing the volume of the heated plasma layer. In
the first step, we choose the EC cutoff point r0 (which,
at the same time, is the ray tangency point on a mag-
netic surface) lying on the surface Ψ = Ψ0 inside the
plasma. At this point, we find the initial values of the
wave vector k0 by solving the set of nonlinear equations

(13)

(14)

(15)

We note that the solution k(r) to Eq. (13) coincides with
the dependence Rek(r) given by Eq. (1). Equation (14)
is the condition for a ray trajectory to be tangent to the
magnetic surface Ψ0 at the point r0 (here, NΨ is the nor-
mal to the chosen magnetic surface Ψ0 at the point r0).
Note that in this condition, it would be more correct to
use the scalar product of the group velocity by the nor-
mal. However, since the poloidal magnetic field com-
ponent is smaller than the toroidal one, the angle
between the projections of the group velocity and the
wave vector onto the poloidal cross section of the torus
is small (under our conditions, this difference is on the
order of 10–8 rad); hence, condition (14) is satisfied to a
high accuracy.
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Equation (15) is the condition of the EC cutoff in the
weakly relativistic approximation. Since it is the anti-
Hermitian part of the dielectric tensor that is responsi-
ble for absorption, the onset of absorption is character-
ized by the appearance of a nonzero anti-Hermitian part
in the tensor. In the case of a weakly relativistic tensor,
the equivalent condition is the appearance of imaginary
parts in the Shkarofsky functions [5, 6].

In the next step, we calculate the ray trajectory with
the initial conditions (r0, k0) up to the plasma–vacuum
boundary from the low-field side. After the trajectory
has passed through this boundary, we fix the coordi-
nates and wave vector of this test beam (rvac, kvac) at an
arbitrary point on the outside of the boundary. Then, a
ray with the wave vector –kvac is launched from the
point rvac back in the plasma. In this case, simulta-
neously with the ray trajectory, we calculate the absorp-
tion power, construct the profile U(ρ), and determine its
half-width ∆.

Because of errors in determining the initial value of
the wave vector k0 and in calculating the trajectory
itself, the ray returns into the close vicinity of the start-
ing point r0. The size of this region is smaller than one
millimeter. The relative error in the flux coordinate is
no larger than 10–3. A further improvement of the com-
putation accuracy (at the expense of a longer computa-
tion time) allows one to reduce this error, which, how-
ever, is not of fundamental importance in our case.

Let us return to relativistic cutoff condition (15).
This condition imposes a constraint on the parameters
ω and N||. Hence, two calculation versions of the
scheme with tangential launching can be proposed. In
the first version, for a given initial point r0, the fre-
quency ω in the ratio ωH(r0)/ω can be chosen such that
condition (15) is satisfied for a certain specified value
of N||. And vice versa, for a fixed frequency ω = ω0
(which is invariant at any choice of r0), the correspond-
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Fig. 4. Projections of ray trajectories onto the xz plane and
the corresponding power deposition profiles U(ρ) (for all
the trajectories, N|| ≈ 0 in the ECR region).
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ing values of N||, which are determined by condition
(15) and are unknown in advance, depend on the choice
of the point r0 and the value of k0.

In the subsequent discussion of the results obtained,
the first version will be referred to as the matched-fre-
quency scheme, whereas the second version will be
called the fixed-frequency scheme.

3. Let us consider the results of calculations by the
matched-frequency scheme (Fig. 5). The tangency
point r0 on different magnetic surfaces with the param-
eter ρ in the range from 0 to 1 is chosen such that the
characteristic half-width of the power deposition pro-
file ∆ is smallest among all possible values (i.e., the val-
ues of the half-width ∆) obtained for any of the points
lying on this magnetic surface and chosen to be the tan-
gency point r0).

To examine the efficiency of the tangential launch-
ing scheme, it is convenient to choose a certain criterion
(the upper bound) for the ∆ values. If the half-width of
the power deposition profile exceeds this bound, the
profile will be considered broad. As such a bound, we
use the quantity ∆crit = 0.005 (&1 cm); according to the
calculations of [1], this is a maximum permissible half-
width of the power deposition profile for the tearing
mode to be stabilized by correcting the temperature
profile with the use of an auxiliary local EC plasma
heating at magnetic surfaces3 corresponding to the

3 This stabilization scheme [1] imposes rigid constrains on the
localization of the power deposition region. For comparison, in
the scheme of tearing-mode stabilization by correcting the cur-
rent profile via ECCD, the allowable values of the half-width of
the power deposition region are one order of magnitude greater:
∆crit . 0.03 (&6 cm).
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0.008

0.012
∆

1
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Ψ = 2.85

∆crit ≈ 0.005

Fig. 5. Minimum width of the energy deposition region
∆ vs. parameter ρ for the heated magnetic surface at three
different values of N|| at the tangency point: (1) N|| = 0.3,
(2) N|| ≈ βT ≈ 0.1, and (3) N|| ≈ 0.
safety factor q ≈ 2. The effective radius of the q = 2 sur-
face is ρ . 0.7, and the value of the corresponding mag-
netic flux is Ψ . 2.85. In Fig. 5, the effective radius cor-
responding to Ψ . 2.85 (ρ . 0.7) is shown by the verti-
cal dashed-and-dotted line.

As can be seen in Fig. 5, over a broad range of N||
values and over almost the entire plasma volume (up to
Ψ ~ 2, depending on the value of N||), tangential launch-
ing does ensure the highly localized power deposition
with characteristic half-widths that are less than the
bound value ∆crit. For N|| & βt = v T /c (N|| at the tan-
gency point), the scattering in the half-widths ∆ is
insignificant. For large N|| values, the power deposition
profiles are broader; i.e., ∆ increases. We note that the
large N|| values are of interest because the ECCD effi-
ciency increases with increasing N|| [16–18]. For further
calculations, we chose an intermediate value of the lon-
gitudinal wavenumber: N|| ≈ βT .

A certain increase in ∆ near the magnetic axis (ρ = 0)
is explained by the fact that, here, the radii of the mag-
netic surfaces become comparable to the width of the
power deposition region.

The increase in ∆ near the plasma boundary (ρ  1)
is explained by the fact that the optical depth falls at the
periphery. If the dissipation region lies at the periphery
of the plasma column, where the optical depth is small
(τmax < 1, where τmax is the maximum optical depth on a
given trajectory), then the width of the power deposi-
tion region is determined, in fact, by the spatial distri-
bution of the absorption coefficient dτ(ρ)/dρ ~ Imk [see
(11)]. And vice versa, if absorption begins in the high-
temperature region (lying not too close to the plasma
boundary), then we have τmax @ 1, and the width ∆
depends on how rapidly the optical depth approaches
the value τ = 1.

Both these cases are presented in Fig. 6, where the
left plot compares the dependences dτ/dρ (dashed line)
and U(ρ) (solid line) for a trajectory passing through
the periphery of the plasma column. The right plot
shows the same dependences for a trajectory passing
through the plasma core.

Let us again consider the q = 2 magnetic surface. We
examine how the width of the power deposition region
depends on the choice of the tangency point r0 on this
surface. For this purpose, we calculate several trajecto-
ries with the tangency points r0 on the q = 2 surface that
are chosen as is shown in Fig. 7. As a label of each tra-
jectory (which characterizes the position of the point r0
on the magnetic surface), we use the angle θ =

 between the z-axis and the ray trajectory
at the chosen tangency point r0. Actually, the angle θ is
the deviation of the ray trajectory from the vertical near
the tangency point (θ = 90° corresponds to the horizon-
tal line, and θ = 0° corresponds to the vertical line). The
value of the longitudinal wavenumber at the tangency
point on each trajectory is taken as N|| . βT . 0.1.

kz/ k( )arccos
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The results of this calculation are presented in
Fig. 8. On the left, the characteristic half-widths ∆ are
plotted versus the angle θ. On the right, the values of
the frequency ω satisfying condition (15) (the relativis-
tic-cutoff condition) at the point r0 (for given θ and N||)
are shown. The numerical simulations were performed
for both an individual ray and a parallel microwave
beam 1 cm in diameter.

The beam was modeled by a set of rays with a Gaus-
sian power distribution over the distance from the beam
axis. It should be taken into account that in a real exper-
iment, the initially broad beam should be focused in a
small region near the tangency point (Fig. 9). We note
that for a transversely launched horizontal ray crossing
the q = 2 magnetic surface in the equatorial plane (in

this case, we assume Te ≈ 6 keV and /ω2 ≈ 0.2 in the
absorption region), the size of the power deposition
region along the ray amounts to ~6 cm. Hence, in the
case of tangential launching, the beam waist should be
no larger than 2 cm; otherwise, the use of tangential
launching make no sense.4 To estimate the role of dif-
fraction, we use the following expressions5 for the
Gaussian beam parameters (the width D and the radius
of curvature R of the beam phase front) at the distance
z (see [20]):

(16)

4 For a beam width of nearly 2 cm, we have ∆ ≈ ∆crit.
5 For more accurate estimates of the beam parameters until the

beam reaches the ECR region, it is possible, in principle, to use
the method of [19], which allows one to take into account diffrac-
tion and, thus, to go beyond the limits of vacuum estimates (16).
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Fig. 6. Influence of the position of the dissipation region
with respect to the axis of the plasma column on the width
of the power deposition region for ray trajectories passing
through the plasma periphery (on the left) and through the
plasma core (on the right). The dashed lines show the pro-
files of dτ/dρ, and the solid lines show the profiles of U(ρ).
The corresponding trajectories, the boundary of the ECR
region, and the value of τmax are shown in the insets. Arrows
indicate the microwave propagation direction, and the
crosses indicate the position of the magnetic axis (ρ = 0).
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Let us consider a parallel beam with a small diame-
ter (e.g., with D = 1 cm) in the ECR region. Such a
beam complies with an actual focused beam near its
waist (in Fig. 9, this region is enclosed by an oval con-
tour). In this case, the applicability condition for the
ray-tracing method consists, in fact, in that the beam
should not broaden strongly, at least over the length of
the absorption region (z ≈ ∆lr). It is seen from formulas
(16) that, in this case, the following condition must be
satisfied:

(17)

Our estimates show that the length of the absorption
region ∆lr is in the range from 5 to 8.5 cm;6 i.e., for
wavenumber of k ≈ 30 cm–1 and a beam-waist diameter
of D ≈ 1 cm, condition (17) (∆lr & 15 cm) can easily be
satisfied.

6 The absorption length about 8 cm is achieved for almost vertical
rays, whereas for rays close to horizontal, the absorption length
amounts to 5–6 cm.
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Fig. 7. Trajectories tangent to the q = 2 surface (which is
shown with a dashed line) in the ECR region. The plasma
boundary is depicted with dotted line. The angle θ =
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Fig. 8. Half-width of the power deposition region ∆ as a function of the angle between the z-axis and the ray trajectory at the tan-
gency point r0 for a test ray and a 1-cm-diameter beam at N|| . βT . 0.1 (on the left): (1) beam (D = 1 cm) and (2) test ray. The
corresponding angular dependence of the microwave frequency is shown on the right.
Let us return to the discussion of Fig. 8. It is seen in
the figure that as the angle θ decreases (the ray trajecto-
ries near the tangency point become closer to vertical),
the width of the power deposition region increases. And
vice versa, the width of the power deposition region is
minimum for trajectories that are closer to horizontal.
The reason is that the path length through the region
where absorption is weak increases as the trajectory
becomes closer to vertical. As a result, the optical depth
τ ~ 1 is accumulated as the ray crosses a distance that is
longer than in the case of horizontal launching. In the
latter case, the ray reaches the strong-absorption region

ECR

Plasma

∆lr ∆lr

Plasma

ECR

Fig. 9. Assessment of the role of diffraction: a real focused
beam (on the left) and a model parallel beam (on the right).
after crossing the shortest distance and the optical depth
τ is accumulated more rapidly.

Finally, the results obtained with the matched-fre-
quency scheme (for the q = 2 magnetic surface and
N|| * βT at the tangency point) allow us to conclude that
for moderate deviations of the ray trajectory near the
tangency point r0 from horizontal (our calculation show
that, in this case, the angle θ takes on values in the range
40° ≤ θ ≤ 90°), the tangential launching ensures the
highly-localized power deposition.

In conclusion of this section, we consider the fixed-
frequency scheme. We chose the same tangency points
r0 on the q = 2 magnetic surface as in Fig. 7. The calcu-
lated half-width of the power deposition region ∆ is
shown in Fig. 10a. We emphasize that the microwave
frequency ω is fixed in this case. As a result, the N||
value satisfying condition (15) increases as the tan-
gency point r0 shifts toward the greater values of x (or,
equivalently, as the angle θ decreases; see Fig. 10b).
The corresponding angular dependence of the optical
depth is shown in Fig. 10c.

Hence, we can conclude that, in order to suppress
the tearing mode with the use of the fixed-frequency
scheme, we should restrict ourselves to trajectories sat-
isfying inequalities 55° ≤ θ ≤ 90° near the tangency
point.

On the whole, based on the results numerical simu-
lations, we can draw a general conclusion that, for the
configuration of magnetic surfaces under consider-
ation, the minimum width of the power deposition
region is provided by the launching geometry in which
a horizontal ray is tangent to the magnetic surface.7 

7 In this paper, we restrict ourselves to the consideration of only the
lower part of the chosen magnetic surface. Results that can be
obtained for the upper part are generally the same.
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Fig. 10. Half-width of the power deposition region ∆, the longitudinal wavenumber N||, and the optical depth τ as functions of the
angle θ between the z-axis and the ray trajectory at the tangency point for a fixed frequency ω/2π = 148.93 GHz.
CONCLUSION

A numerical code taking into account the influence
of the thermal effects on the ray trajectories has been
developed. Computer simulations have demonstrated
the possibility of minimizing the width of the power
deposition region in the proposed launching scheme, in
which the rays propagate at a tangent to the chosen
magnetic surface in the ECR region. For the parameters
of a large toroidal device, numerical simulations carried
out for the case of a weakly relativistic plasma have
shown that, with this launching geometry, it is possible
to obtain a power deposition profile with a width of less
than one centimeter. This meets both the possible
requirements for experiments on the stabilization of
tearing modes by noninductive current drive and the
more stringent requirements for the plasma stabiliza-
tion by ECR heating of a local plasma region. It is clear
that this result can be refined by self-consistently taking
into account the diffraction and scattering of the micro-
wave beam.
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APPENDIX

The weakly relativistic ray-tracing code described
in this paper was tested by using analytical relation-
ships for the absorption coefficients and the optical
depth (see, e.g., [7]). A comparison of the calculated
and analytical results is presented in Figs. 11–13.

Thus, for the transverse propagation across the mag-
netic field (the angle ϑ between the wave vector and the
field B is close to π/2, so that the inequality βT @ N|| is
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satisfied), the O-mode absorption coefficient is
described by the well-known expression

(18)

where ζ = 2(sωH – ω)/sωH , N2 = 1 – q/s2 is the refrac-

tive index, q = s2 /ω2, and s is the harmonic number.
The calculated and analytical results are compared in
Fig. 11.

Let us consider another example. In the “classical”
interval of propagation angles

(19)

in which the relativistic dependence of the electron
gyrofrequency on the velocity can be neglected, the
cyclotron absorption coefficients for the fundamental
harmonics of the O- and X-modes can be represented in
the form

(20)
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Fig. 11. Absorption coefficients Imk/k0 calculated by formula (18) (dashed line) and by numerically solving the dispersion equation
(solid line) in the case of transverse microwave propagation for the fundamental (on the left, N|| ≈ 0.037 and βT ≈ 0.1) and second

(on the right, N|| ≈ 0.038 and βT ≈ 0.1) harmonics of the O-mode vs. parameter ωH/ω at /ω2 . 0.3.ωpe
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Fig. 12. Absorption coefficients calculated by formula (20) (dashed line) and by solving the dispersion equation (solid line) in the
“classical” interval of angles for the fundamental harmonics of the O-mode (on the left, N|| ≈ 0.53 and βT ≈ 0.044) and X-mode (on
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where the refractive index Nj and the polarization coef-
ficients Kj and Γj are defined by the well-known expres-
sions for a cold plasma [21]:
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Here, u = /ω2, v  = /ω2, the upper sign stands for
the X-mode, and the lower sign stands for the O-mode.
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Figure 12 compares the computation results with calcu-
lations by analytic formula (20). Note that the certain
asymmetry of the absorption coefficient calculated
from the dispersion relation (Fig. 12, solid curves) and
the appreciable (in particular, for the second harmonic;
see Fig. 13, solid curves) shift of the point at which
absorption begins are caused by the contribution from
relativistic effects that are ignored in formula (20). In
particular, the beginning of absorption is determined by
the condition of ECR cutoff in weakly relativistic
approximation (15).

For the s ≥ 2 harmonics in the angular range under
consideration (see [7]), we have

(22)

The results of comparison for the second harmonic are
shown in Fig. 13.

Finally, Fig. 14 demonstrates the presence of reso-
nant oscillations of the squared refractive index N2 for
the fundamental harmonic of the O-mode in the vicinity
of the absorption region. Calculations were performed
for different temperatures. The figure also shows the
values of N2 calculated in the cold-plasma approxima-
tion by formula (21). As could be expected, the differ-
ence from the results obtained with formula (21) is
most pronounced near the ECR region and increases
with increasing temperature.
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Abstract—Self-consistent steady-state axisymmetric configurations of a plasma envelope with a uniform
anisotropic conductivity around a rotating magnetized spherical body are considered. A set of electrodynamic
and magnetohydrodynamic equations is analyzed under the assumption that the mass velocity of a moving
weakly ionized plasma has only the azimuthal component. The equations describing the profile of the angular
frequency of the rotating plasma envelope, the magnetic field, the conduction currents, and the plasma density
distribution are solved in the limit of a strong anisotropy of the conductivity of a weakly ionized gas. The appli-
cability of the results obtained to a qualitative interpretation of the phenomena occurring in the plasmaspheres
of magnetized planets is discussed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The familiar problem of a unipolar inductor [1, 2]
has recently attracted renewed interest in connection
with the development of the theory of the rotating plas-
maspheres of astrophysical objects such as neutron
stars [3, 4] and magnetized planets [5–11]. In the plas-
maspheres of neutron stars, a dominant role in the co-
rotation of the plasma envelope is played by relativistic
effects because at a certain magnetic field line, the co-
rotational velocity may be close to the speed of light.

In the nonrelativistic models that are referred to as
the models of the planetary electric generator [8, 9, 11],
an important role is played by the nonrigid rotation of
the plasma envelope (i.e., by the dependence of the
angular rotation frequency on the coordinates). The
nonrigid rotation gives rise to a number of phenomena
that may be significant in considering the structures of
the plasmaspheres of magnetized planets and other
astrophysical objects. These are, on the one hand, elec-
trodynamic phenomena associated with the generation
of electric fields, electric currents, and magnetic field
perturbations and, on the other hand, magnetohydrody-
namic phenomena responsible for the establishment of
the quasi-steady distributions of the field of the rotation
velocities of an ionized medium, the distributions of the
particle densities and particle temperatures, and the dis-
tributions of other parameters of the plasma envelope.
In the general steady-state case, the problem reduces to
solving a self-consistent set of hydrodynamic equations
and the electrostatic equations for the current in a con-
ducting medium with allowance for its motion. Among
the factors responsible for the variety and complexity of
the processes occurring in systems of this kind, there
1063-780X/03/2901- $24.00 © 0065
are the possible nonuniformity of the angular frequency
distribution of a rotating medium, the existence of cur-
rent structures, and the anisotropy of the conductivity
of the medium.

In this paper, we solve a self-consistent problem of
the steady-state axisymmetric rotation of a plasma
envelope with a uniform conductivity around a magne-
tized spherical body. We assume that the conductivity
of the envelope is anisotropic and consider a weakly
ionized plasma. The corresponding set of electrody-
namic and magnetohydrodynamic equations is ana-
lyzed under the assumption that the mass velocity of the
moving plasma has only the azimuthal component. In
the model chosen for further analysis, the conductivity
of a weakly ionized gas is described under the assump-
tion that its longitudinal component is governed by the
magnetized electrons, whereas the ions are assumed to
be unmagnetized. We look for a class of solutions that
describe possible axisymmetric configurations of a
rotating plasma envelope (the angular frequency distri-
bution of the rotating envelope and the distributions of
the plasma density, currents, and magnetic field pertur-
bations over the height and azimuthal angle). The ana-
lytic solution obtained in this work, being of interest in
its own right, may, on the one hand, provide additional
information about the possible ways of finding some
other solutions and, on the other hand, may be used as
a starting point for a more adequate formulation of the
problem in numerical modeling.

At the end of the paper, we discuss the possibility of
using the results obtained to describe and interpret var-
ious phenomena occurring in the plasmaspheres of the
Earth and other magnetized planets.
2003 MAIK “Nauka/Interperiodica”
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2. FORMULATION OF THE PROBLEM

We consider a plasma envelope that is corotating
with a magnetized spherical body of radius R. In order
to construct a simple model of the envelope, we make
the following basic assumptions. We consider a steady-
state (∂/∂t = 0) axisymmetric (∂/∂ϕ = 0) problem in
which the mass velocity V of the moving medium has
only the azimuthal component; hence, in spherical
coordinates (r, Θ, ϕ) (Fig. 1), it can be expressed in
terms of the angular rotation frequency ω:

The parameters of the plasma envelope, as well as
the fields and the currents, can be described by Max-
well’s equations and magnetohydrodynamic equations.

For simplicity, we assume that the medium consists
of electrons, ions of one species, and neutrals, the cor-
responding densities being Ne , Ni, and Nn, respectively.
We also assume that the plasma is weakly ionized:

(1)

Under condition (1), the plasma electrons and ions
should have an insignificant impact on the density dis-
tribution of neutral particles, which substantially sim-
plifies the problem. However, condition (1) does not
rule out the influence of charged particles on the veloc-
ity of the neutral plasma component in a steady state. It
seems natural to assume that the velocities of the
plasma electrons and ions in steady motion differ only
slightly from the mass velocity:

(2)

where ue and ui are the electron and ion velocities. Here
and below, the subscripts e, i, and n refer to electrons,
ions, and neutrals, respectively.

We introduce the density of the charged plasma parti-
cles, ρp = MiNi + meNe. The viscosity coefficient is intro-
duced as a sum of the dynamic viscosity coefficients of
the electrons, ions, and neutrals: η = ηe + ηi + ηn. Then,

V 0 0 ωr Θsin, ,( ).=

Ne Ni ! Nn.,

ue V δVe, ui+ V δVi, δVe δVi ! V ,,+= =

⊗ j°

w

Θ
σA

r°

σE

M

RR1

Q°

Fig. 1. Geometry of the system.
using the equations of motion of the plasma compo-
nents [12] and taking into account conditions (2), we
can obtain the following analogue of the Navier–Stokes
equation for the charged plasma component:1 

(3)

where ρ' = e(Ni – Ne ) is the space charge density, j =
e(NiδVi – NeδVe) is the conduction current density,
pp = pe + pi is the pressure of the plasma electrons and
ions, and c is the speed of light. Equation (3) takes into
account the effects of the gravitational attraction of a
spherical body on the plasma particles (the free-fall
acceleration being g), as well as the presence of the
electric (E) and magnetic (B) fields. In what follows,
the last term in Eq. (3), which is associated with the vio-
lation of plasma quasineutrality, will be omitted,
because it is of the next order of smallness in relativistic
effects as compared to Ampére’s force. Since, at low
altitudes (in comparison with the radius of the spherical
body), the centrifugal force is much weaker than the
gravitational force ρpg, the first term in Eq. (3) can also
be discarded. On the other hand, we stress that, in the
plasma flow geometry under consideration, the viscous
force η∆V, which is orthogonal to both the gravitational
and centrifugal forces, plays an important role and thus
should be retained in the equation.

The Navier–Stokes equation should be supple-
mented with the equation of state and the heat balance
equation. However, at this step, we are not considering
heat sources corresponding to the sought-for plasma
flow and close the set of equations by the condition that
the mixed derivatives of the pressure be the same:

(4)

This condition is valid under the above assumption that
the pressure is isotropic. In turn, this assumption is jus-
tified under weak ionization condition (1), when the
isotropy of the plasma pressure can be maintained by
the neutral component, which plays the role of a ther-
mostat in the approximation at hand.

The fields, currents, and charges satisfy Maxwell’s
equations

1 It turns out that the viscosity coefficient in Eq. (3) is essentially
determined by the neutral component. This reflects the effect of
neutrals on plasma electrons and ions in a weakly ionized plasma
under the assumption of a quasi-azimuthal motion of the plasma
components.
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which should be supplemented with the following
familiar Ohm’s law for a moving medium with an
anisotropic conductivity [12]:

(5)

where Σ is the conductivity tensor of the medium.

3. BASIC EQUATIONS

It is convenient to describe the magnetic field by the
vector potential A in the Coulomb gauge:

The current density component jϕ is related to Aϕ by

(6)

where  =  +  is a second-

order differential operator.

Using Ohm’s law (5), we can algebraically obtain
the following local expression for the electric field in
terms of the magnetic field, conduction current density,
and mass velocity:

Here, σ||, σ⊥ , and σH are, respectively, the longitudinal,
transverse, and Hall conductivities, which all depend
on the magnetic field strength. The quantity

is the effective Cowling conductivity. In the steady-
state axisymmetric problem, the azimuthal component
of the electric field is equal to zero, which yields the
following algebraic relationship:

(7)

Combining Maxwell’s equations, assuming that the
Cowling conductivity  is constant,2 and taking into

2 In the limit of a strong anisotropy of the conductivity of an ion-
ized gas (see below), the Cowling conductivity is equal to the lon-
gitudinal conductivity, which is, in turn, assumed to be constant.
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account the expression for the electric field, we arrive at
the equation

where  is the magnetic viscosity. The r and Θ compo-
nents of this equation reduce to the condition Eϕ = 0,
which has already been used above. The ϕ component
of the equation has the form

(8)

where  =  –  is the Jacobian.

Let us consider Eq. (3). On the right-hand side of
this equation, we omit the term that accounts for the
centrifugal force. Then, turning to the above assump-
tions, we reduce the r and Θ components of the equa-
tion to the form

Since the gravitational attractive force only has the
radial component, it is natural to write the density in the
form

where (r) is the barometric density distribution at a
constant plasma temperature Tp,

and κ is Boltzmann’s constant.
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Using condition (4), which implies that the mixed
derivatives of the pressure are the same, we can easily
obtain the following equation for the term (r, Θ):

(9)

The ϕ component of Eq. (3) has the form

(10)

We thus arrive at the set of equations (6)–(10),
which can be regarded as equations for the five
unknown functions jϕ, Aϕ, Bϕ, ω, and  because the
meridional components of the magnetic field and con-
duction current are obtained by differentiating Aϕ and
Bϕ, respectively. Hence, this set is closed and deter-
mines the unknown parameters of the plasma flow,
magnetic field, and conduction current.

An analysis of Eqs. (6)–(10) shows that the current
structure forming in the envelope distorts the magnetic
self-field of the spherical body; in particular, it gener-
ates the magnetic component Bϕ. Also, the anisotropy
of the conductivity gives rise to the current component
jϕ. As a result, the electrodynamic processes (the cur-
rent and field generation) and the magnetohydrody-
namic phenomena (the steady-state distributions of the
angular frequency of the rotating envelope and the
plasma density in it) are mutually coupled to each other.

It is convenient to switch from Aϕ to the quantity Φ,
which has the meaning of the magnetic flux through a
spherical surface of radius r in the angular interval from
0 to Θ, and to introduce the quantity I, which is propor-
tional to the total current through the same part of the
surface:

In what follows, we will work in dimensionless vari-
ables f = f DIMENSIONAL/f0. The corresponding normaliz-
ing factors are the radius r0 = R of the spherical body,
the angular rotation frequency ω0 = Ωp, the magnetic
field strength B0 = |B(R, 0)| at the pole of the body, and
the neutral density r = R1 at the lower boundary ρ0 of the
plasma envelope. The remaining normalizing factors
are expressed in terms of the factors just given: Φ0 =

, I0 = r0B0, j0 = cB0/4r0, and E0 = ω0r0B0/c.
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4. LIMIT OF A STRONG ANISOTROPY 
OF THE CONDUCTIVITY OF AN IONIZED GAS

The set of equations constructed under the basic
simplifying assumptions turns out to be extremely com-
plicated. Without additional assumptions limiting the
applicability range of the sought-for solution, further
analysis of the equations runs into serious difficulties.

In order to solve the equations, we develop the fol-
lowing model of the conductivity of an ionized gas. For
simplicity, we assume that the electron and ion collision
frequencies, νe and νi, are independent of altitude. We
also make the following assumptions:

(i) the longitudinal conductivity σ|| is determined by

the electrons,  ! 1;

(ii) the electrons are magnetized, ωHe @ νe;

(iii) the ions are unmagnetized, ωHi ! νi; and

(iv) the following inequality is satisfied: ωHeωHi !
νeνi .

Here, the electron and ion gyrofrequencies, ωHe and
ωHi, depend on the magnetic field. Accordingly, in this
approximation, which will be referred to as the strongly
anisotropic conductivity approximation, the expres-
sions

do not contain the magnetic field. This allows the equa-
tions to be substantially simplified:
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The simplified set of equations involves the follow-
ing dimensionless parameters: the magnetic Reynolds

number ReM = , the Hall parameter β = , the

gravitational parameter G = , and the viscos-

ity parameter χ = ηω0.

The Hall parameter is the ratio of the electron gyrof-
requency to the electron collision frequency and thus
characterizes the anisotropy of the conductivity. In the
model of conductivity developed here, the transverse
conductivity σ⊥ (B0), the Hall conductivity σH(B0), and
the Cowling conductivity (B0) at the magnetic field
strength B0 are related to the longitudinal conductivity
by the formulas

(16)

The gravitational parameter is the ratio of the character-
istic potential energy density of the medium in the grav-
itational field of a spherical body to the magnetic field
energy density. The parameter χ, which will be called
the viscosity parameter of the medium, is proportional
to the hydrodynamic viscosity coefficient and deter-
mines the ratio of the work done by the viscous force in
one period of rotation to the magnetic field energy
within the envelope. Formally, the parameter χ can be
expressed in terms of the interaction parameter S
(known from the theory of MHD generators [13, 14]),
the magnetic Reynolds number, and the Reynolds num-
ber Re obtained from dimensionality considerations:

,

where S =  and Re = . The interaction

parameter S is the ratio of the internal force from the
magnetic field to the kinetic gas pressure.

The approach used here has much in common with
the method based on the Grad–Shafranov equation [1]
and can be regarded as a generalization of this method
to the case of a viscous plasma in a gravitational field
(in a geometry with the corresponding symmetries).

In the conductivity model in question, the current
density component jϕ is nonzero, and, accordingly, the
related magnetic field perturbations come into play
only in a plasma flow with nonzero hydrodynamic vis-
cosity. This circumstance signifies that it is important to
describe the processes occurring in a plasma envelope
in a self-consistent manner, by allowing for both elec-
trodynamic and magnetohydrodynamic forces.
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In the approximation at hand, the set of equations
has a first integral that relates the angular frequency ω
of a rotating plasma envelope and the magnetic flux Φ
to the known solution Ψ to the equation (Ψ) = 0.
Combining Eqs. (11), (12), and (15), one can obtain

5. LINEARIZATION OF EQUATIONS 
AND THEIR FURTHER SIMPLIFICATION

We linearize the set of equations assuming that the
magnetic flux Φ is a sum of the unperturbed flux ΦH of
the magnetic self-field of a spherical body and the small
perturbation Φ1:

Φ = ΦH + Φ1, where  = 0, 

We also assume that the quantity I (or, in other
words, the magnetic field component Bϕ) is a small per-
turbation such that in Eq. (13), the terms quadratic in I

and the term (I/rsinΘ) can be neglected. The condi-
tions for this neglect will be discussed below.

The set of equations simplified by this linearization
procedure has an additional first integral that relates ω
to jϕ through an arbitrary function Ω(ΦH) of the unper-
turbed magnetic flux:

(17)

in which case the simplified set of equations takes the
form
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These equations contain two arbitrary functions, Ω(ΦH)
and Ψ(r, Θ). Clearly, the sought-for quantities jϕ, I, ω,

, and Φ1 corresponding to the chosen functions
Ω(ΦH) and Ψ(r, Θ) can easily be determined from
Eqs. (18)–(22), respectively.

The solution is largely determined by the form of the
arbitrary functions. Below, we will choose their partic-
ular forms and, in this sense, will obtain a particular
solution to the linearized problem. For simplicity, we
assume that the function Ω(ΦH) is constant and choose
the value of this constant from the conditions at infi-
nitely large values of r. Under the assumptions jϕ  0
and ω  ω∞, Eq. (20) yields Ω(ΦH)  ω∞. Thus,
we fix the function

(23)

Note that since (ΦH/rsinΘ) = 0 and (rsinΘ) = 0,
the combinations ΦH/rsinΘ and ω∞rsinΘ in Eq. (22)
can be included in Ψ. As a result, we obtain

Since the quantities Φ1 and ω – ω∞ are small perturba-
tions, we can set Ψ1(r, Θ) = 0 by choosing

(24)

Under condition (23), the solution to Eq. (18) has
the form

(25)

Pn are Legendre polynomials; and the coefficients 
are connected through a recurrence relation. Using
expression (25), the integrals of the equations, and the
equations themselves, we can determine the remaining
sought-for quantities:
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(29)

where (r) and (ΦH) are arbitrary functions of their
arguments. The integrand in expression (26) should be
written as a function of r and ΦH , in which case the
integration should be carried out only over r.

An important point is that the expressions contain
the dimensionless parameter

(30)

which determines the characteristic dimension δh =
r0/ε of the region where the plasma rotation in the enve-
lope is nonrigid and where the azimuthal current jϕ
flows and the perturbations of the plasma density and
magnetic field are localized.3 

The particular form of the solution is determined by
the boundary conditions. It is clear that based on the
symmetry of jϕ with respect to Θ = π/2 (i.e., to the equa-
torial plane), the solutions may be divided into two
classes: symmetric solutions, constructed from har-
monics with odd numbers n, and antisymmetric solu-
tions, constructed from harmonics with even numbers
n. For a prescribed form of the unperturbed magnetic
flux ΦH, each class of solutions is characterized by a
certain symmetry of the physical quantities. Let us con-
sider the symmetry properties of Eqs. (18)–(22) with
arbitrary functions chosen in forms (23) and (24). One
can see that the following possible changes of variables
leave the set of equations invariant:

Θ  π – Θ, jϕ  jϕ, ΦH  ΦH,

ω  ω, Φ1  Φ1,   , I  –I;

Θ  π – Θ, jϕ  jϕ, ΦH  –ΦH,

ω  ω, Φ1  Φ1,   – , I  I;

Θ  π – Θ, jϕ  –jϕ, ΦH  ΦH,

ω  –ω, Φ1  –Φ1,   – , I  I;

Θ  π – Θ, jϕ  –jϕ, ΦH  –ΦH,

ω  –ω, Φ1  –Φ1,   , I  –I.

3 Using the first of relationships (16), we can rewrite expression

(30) as δhB0c–1 . Then, we can see that the charac-

teristic scale on which the plasma flow is nonuniform follows
from the condition that the Hartman parameter corresponding to
the conductivity σ⊥ (B0) be equal to unity [1]. In turn, this condi-
tion can be interpreted as reflecting the balance between the mag-
netic force acting on the medium and the viscous forces in the
medium in the established equilibrium state.
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Regardless of the form of jϕ, the symmetry of ΦH with
respect to the equator is of the same kind as the symme-
try of the angular frequency distribution ω and mag-
netic flux perturbation Φ1. At the same time, the sym-
metries of the distributions of the density  and quan-
tity I with respect to the equatorial plane are determined
by the form of the unperturbed magnetic flux: when jϕ
and ΦH are symmetric with respect to the equator, the
function  is symmetric, while the function I is anti-
symmetric.

We point out the following important consequence
of the symmetry conditions in our problem. For sym-
metric distributions of jϕ and ΦH, the distributions of
the angular frequency and density  may remain sym-
metric during nonrigid rotations even under appropriate
boundary conditions only if the distribution of I is anti-
symmetric with respect to the equator, in which case the
azimuthal component Bϕ of the magnetic field should
be antisymmetric. In this case, it is necessary to impose
the condition Bϕ = 0 in the equatorial plane; or to intro-
duce an external current that flows, e.g., in the equato-
rial plane and closes the current system under consider-
ation [15]

(introducing this current goes beyond the scope of mag-
netohydrodynamic description); or to choose another

appropriate form of the function (ΦH).

6. THE SIMPLEST SYMMETRIC SOLUTION
As an example of the simplest solution, we consider

a symmetric solution constructed solely from the n = 1
harmonic. One can readily see that under the above
conditions jϕ  0 and ω  ω∞, this solution cor-
responds to the boundary condition

It is also necessary to impose the additional condi-
tion Bϕ(r, 0) = Bϕ(r, π/2) = Bϕ(r, π) = 0 in order to not
go beyond the limits of hydrodynamic description, i.e.,
not to introduce the external localized radial current
that closes the current system under consideration.

The geometry of the configuration in question is
illustrated in Fig. 1. Supposing that all of the above
assumptions are satisfied in the region r > R1, we con-
sider the solution only in this region and impose the
corresponding conditions at its boundary r = R1. We can
consider the region r > R1 separately, neglecting the
interaction between a plasma envelope and a spherical
body and assuming that the following condition is sat-
isfied: σA ! σE ! σ||, where σA is the conductivity of
the isotropic interlayer and σE is the conductivity of the
body. The corrections to the solution that come from the
current system in the body should be proportional to the

ρ̃p
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ratio of the conductivities of the ball and of the enve-
lope. Under the conditions in question, these correc-
tions are certainly small.

We adopt a dipole field as an unperturbed magnetic
field; moreover, to be specific, we assume that the mag-
netic moment M of the spherical body and the vector of
its angular rotation velocity are oppositely directed
(Fig. 1). Then, the unperturbed magnetic flux has the
form

We consider the simplest symmetric solution under
the assumption that the localization parameter is large
(ε @ 1), because it is the assumption that is consistent
with the applicability range of the solution:

We determine the function I in the upper and lower
hemispheres separately, by choosing the arbitrary func-

tion (ΦH) in such a way that the current density is
finite everywhere and the function I itself vanishes at
Θ = π/2:

Here and below, the plus sign refers to the upper hemi-
sphere (0 < Θ < π/2) and the minus sign refers to the
lower hemisphere (π/2 < Θ < π). It is easy to show that
at small angles Θ, the solution I so constructed is pro-
portional to Θ2; hence, taking into account the antisym-
metry of the function I, we see that the condition
Bϕ(r, 0) = Bϕ(r, π) = 0 is satisfied.

The meridional component of the magnetic field and
the meridional current density are determined by
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differentiating the magnetic flux:

The plasma density component  is obtained by
integration:

Since we have incorporated the plasma density compo-
nent that depends only on r into the barometric density
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Fig. 2. Simplest symmetric solution to the linearized prob-
lem for M ↑↓  w and ω∞ > ω1. The distributions of the angu-
lar frequency of a rotating plasma envelope are shown.
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Fig. 3. Simplest symmetric solution to the linearized prob-
lem for M ↑↓  w and ω∞ > ω1. The lines of the meridional
component of the perturbed dipole magnetic field and the
profiles jϕ(R1, Θ) and jϕ(R1 + ε–1, Θ) of the azimuthal com-
ponent of the conduction current are shown.
distribution (r), we can set the free function equal

to zero, (r) = 0, taking into account, in particular, the
boundary condition

ρp  0.

In this case, the plasma density has the form

This expression implies that if the magnetic moment of
the body is directed opposite to the angular velocity of
the rotating envelope, then, for Hp < 1/ε, the conditions
ρp > 0 and ρp  0 can be satisfied simultaneously
only when ω∞ > ω1, which, in turn, indicates that the
plasma envelope should undergo super-rotation, i.e.,
the upper layers of the envelope should rotate at higher
angular speeds than the lower layers. Depending on the
ratio between the parameters Hp and 1/ε, the rotation in
the chosen altitude range is dominated either by a
spherically symmetric barometric density distribution
or by electromagnetic forces, which are accounted for
by the second term in the expression for the plasma
density. In the latter case, we have ρp > 0; consequently,

the quantity  should be positive. The amplitude 
of the barometric density distribution is determined by
external factors, e.g., by ionization sources in the cho-
sen altitude range.
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Fig. 4. Simplest symmetric solution to the linearized prob-
lem for M ↑↓  w and ω∞ > ω1. The lines of the meridional
component of the conduction current and the profiles
Bϕ(R1, Θ) and Bϕ(R1 + ε–1, Θ) of the azimuthal component
of the magnetic field shown are shown.
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The results obtained are illustrated in Figs. 2–5. For
definiteness, the plots were calculated for the following
parameter values, which are consistent with the appli-
cability range of the solution and refer to altitudes of 80
to 100 km in the Earth’s ionosphere:

(31)

Figure 2 shows the angular frequency profile. The
angular frequency distribution is spherically symmet-
ric; in accordance with the above analysis, it is neces-
sary that ω∞ > ω1. At distances of about several δh, the
angular rotation frequency becomes constant. Note
that, at these distances, the corresponding kinetic
energy density ρpω2r2/2 exponentially decreases to
zero.

Figure 3 shows the pattern of the lines of the merid-
ional component of the perturbed magnetic field and
the profiles of the azimuthal current component jϕ at
constant r (the direction of the ϕ-axis is indicated).4

In the case ε @ 1, which we are considering here, the
meridional component of the magnetic field perturba-
tion is strongly localized, unlike the unperturbed dipole
magnetic field of a spherical body. The figure displays
two patterns of the lines of the meridional component
of the magnetic field perturbation: shown on the left are
the lines in the region r > 1 on a scale enlarged by a fac-
tor of 30 in the r direction, and the inset in the upper
right corner of the figure shows the lines on an ordinary
radial scale. The dashed line in the larger scale image
indicates the position of the boundary r = R1 + ε–1. The
current with the density jϕ is seen to form a jet, which is
slightly localized in the angular coordinate and in
which, at M ↑↓  w and ω∞ > ω1, the current flows in the
direction opposite to that of the mass velocity of the
moving medium. A comparison between the profiles of
the azimuthal component of the conduction current
density, jϕ(R1, Θ) and jϕ(R1 + ε–1, Θ), illustrates how the
azimuthal current density distribution changes with
altitude.

Calculation of the total azimuthal current density in
the system for ε @ 1 yields

(32)

Figure 4 shows the structure of the lines of the
meridional component of the conduction current den-
sity and the profiles Bϕ(R1, Θ) and Bϕ(R1 + ε–1, Θ) of the
azimuthal component of the perturbed magnetic field.
The figure displays two patterns of the lines of the
meridional component of the conduction current:
shown on the left are the lines in the region r > 1 on a

4 The conduction current in the form of a delta function at the ori-
gin of the coordinates, which is generated by the dipole compo-
nent of the magnetic field perturbation, is not shown in the figure.
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scale enlarged by a factor of 30 in the r direction, and
the inset in the upper right corner of the figure shows
the lines on an ordinary radial scale. The dashed line in
the larger scale image indicates the position of the
boundary r = R1 + ε–1.

We can see that the azimuthal component of the
magnetic field is localized near the equatorial plane.
The localization results from an intense quasi-radial
current that flows in the equatorial plane and forms a
closed circuit between the current loops in the upper
and lower hemispheres. The reasons for the onset of
this current are twofold. On the one hand, in the case in
question, specifically, in the strongly anisotropic con-
ductivity approximation (β @ 1), in which the longitu-
dinal conductivity is much higher than the transverse
and Hall conductivities, the current should flow along
the magnetic field. On the other hand, in the system
under consideration, the current cannot flow along the
magnetic field lines in the equatorial plane because of
the symmetry properties of the problem: the current
loops in the upper and lower hemispheres should be
closed in a circuit through the equatorial plane.
Because of these two circumstances, the current lines
should concentrate in the equatorial region, in which
the current should flow perpendicular to the magnetic
field lines. In [5], such considerations led us to the sug-
gestion that the generation of electric fields and cur-
rents in a system in which the conductivity of a plasma
envelope is anisotropic can be described at a qualitative
level by using an isotropic conductivity profile corre-
sponding to a transverse conductivity in an actual
anisotropic envelope, because it is the transverse con-
ductivity of the medium that ensures the closing of the
current loops. The present analysis of the solution in the
case of a highly anisotropic conductivity of the medium
shows that this suggestion appears to be justified. First,
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ρp
bar
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bar + ρ~ p

Θ = π/2
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0 Θ

Fig. 5. Simplest symmetric solution to the linearized
problem for M ↑↓  w and ω∞ > ω1. The density distribution
ρp of the charged plasma component in the equatorial plane

at  = 4  and the boundaries r = R1 + Hp and r = R1 +

ε–1 (on the left) and the corresponding density profiles
ρp(R1, Θ), ρp(R1 + Hp, Θ), and ρp(R1 + ε–1, Θ) of the
charged plasma component (on the right) are shown.
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it is the transverse conductivity that enters into the
expression for the parameter ε, which determines the
form of the solution. Second, let us consider the ampli-

tude  of the meridional conduction-current density
component, which has been calculated above. We intro-
duce the dimensionless coefficient ∆ = |ω∞ – ω1| (char-
acterizing the degree to which the rotation of the
plasma envelope is nonrigid) and write the amplitude

 in dimensional form:

(33)

From this expression, we can see that, in the system
under discussion, the transverse conductivity indeed
predominates in the meridional current, which was con-
sidered in [5].

It is also of interest to consider the amplitude  of
the meridional current density. In dimensional form, we
obtain

(34)

and, consequently, arrive at the relationship

which indicates that the meridional current is far less
intense than the azimuthal current. The expression for

the total current  circulating in meridional loops is
fairly difficult to analyze. However, based on the above
relationship for the ratio of the amplitudes of the total
currents, we can conclude that the following condition
is satisfied:

The question then arises of how to close the mag-
netic field lines and how to form closed current loops in
the upper and lower hemispheres. In principle, it might
be possible to consider a layer r < R1 with isotropic con-
ductivity, to find a solution for this layer, and to join it
with the solution for the outer layer using the conditions
at the boundary between the layers. However, since the
inhomogeneous problem is very difficult to solve, we
restrict ourselves to considering only one layer, assum-
ing that it is, in principle, possible to close the current
system and magnetic field lines through the lower lying
layers.

The left half of Fig. 5 shows the density distribution
ρp of charged plasma particles in the equatorial plane
(at Θ = π/2). For definiteness, we present the distribu-

tion calculated for  = . The positions of the
boundaries r = R1 + Hp and r = R1 + ε–1 are indicated by
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the dashed lines. We can assert that at distances from
the boundary r = R1 that are several times longer than

Hp, the quantity  plays a minor role. The right half
of Fig. 5 shows the density profiles ρp(R1, Θ), ρp(R1 +
Hp, Θ), and ρp(R1 + ε–1, Θ) of the charged plasma com-
ponent. One can see that the spherically symmetric part
of the density distribution decreases fairly rapidly.

To conclude this section, we present the expression
for the total power of Ohmic losses as a function of the
integral of the product j · (E + c–1[V × B]). In dimen-
sional form, the expression is as follows:

(35)

The fact that the quantity  is the volume of a
narrow spherical layer of thickness δh clarifies the
physical meaning of expression (35).

The electric field and current are generated at the
expense of the energy of rotation of a central body. The
formulation of the steady-state problem implies that
this energy is infinitely high, in which case it is neces-
sary that the energy of Ohmic losses during the time
interval T under consideration be less than the energy
KE of rotation of a spherical body: QT ! KE . The
amount by which the effect in question changes the
angular frequency ΩP of the rotating body during the
time T is easy to estimate:

7. APPLICABILITY CONDITIONS 
OF THE SOLUTION OBTAINED

In the problem as formulated, an important assump-
tion is that the medium is weakly ionized; this corre-
sponds to the condition ρp ! ρn. Of course, for Hn < 1/ε,
the density of the neutral component decreases more
rapidly with increasing altitude than does the density of
the charged plasma component; hence, this condition is
satisfied only in a certain altitude range. However,
under the conditions

(36)

the altitude range over which the medium remains
weakly ionized can be considered to be sufficiently
large.

Above, we have analyzed the conditions underlying
the conductivity model and imposed restrictions on the
ratios of the collision frequencies to the electron and
ion gyrofrequencies. By substituting the above solution
to the simplified set of equations (18)–(22) into the set
of equations (11)–(15), we can show that the solution is
valid under the following conditions:

ε @ 1, (37)
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(38)

(39)

In other words, inequalities (37)–(39) are applicability
conditions for the above procedures of linearizing and
simplifying the set of equations (11)–(15). Condition
(37) implies that the perturbations are strongly local-
ized, and condition (38) indicates that the conductivity
should be highly anisotropic. Finally, condition (39)
can be regarded as providing upper limits on the viscos-
ity of the medium and the kinetic energy density in it in
comparison, respectively, with the magnetic viscosity
and with the magnetic field energy at a given degree to
which the rotation of a envelope in the plasmasphere is
nonrigid (∆ = |ω∞ – ω1|).

Clearly, the applicability conditions for the solu-
tions constructed from any harmonics of jϕ that are
symmetric with respect to the equator do not differ
from the above applicability conditions for the solution
constructed solely from the n = 1 harmonic. The reason
for this is twofold: first, for ε @ 1, the radial parts of the
solutions depend only weakly on the harmonic number
n, and, second, in the equatorial region, all symmetric
solutions behave in the same manner.

In contrast, near the equator, the behavior of the
solutions that are antisymmetric in jϕ differs radically
from that of the symmetric solutions. Thus, in an anti-
symmetric solution, the meridional component of the
magnetic field perturbation is antisymmetric; i.e., the
radial magnetic field component in the equatorial plane
is nonzero. On the other hand, in this plane, the unper-
turbed magnetic field does not have a radial component.
Consequently, for a solution antisymmetric in jϕ, it is,
in principle, impossible to satisfy one of the conditions
used in the linearization procedure, namely, the condi-
tion that the magnetic field perturbation near the equa-
torial plane is small. Hence, it is clear that the equato-
rial region in a narrow angular range should be
described by the nonlinear equations.

8. APPLICABILITY OF THE RESULTS OBTAINED 
TO A DESCRIPTION OF THE PLASMASPHERES 

OF MAGNETIZED PLANETS

Above, we have obtained a particular solution to the
self-consistent set of equations describing the steady-
state axisymmetric configurations of a plasma envelope
with an anisotropic conductivity in the field of a rotat-
ing spherical body. We have developed a model of the
conductivity of the envelope and have imposed a num-
ber of conditions on the parameters of the problem. In
this section, we consider the possibility of applying the
results obtained from the model to a description of the
plasmaspheres of magnetized planets.

The description of a real plasmasphere by the above
model of the steady-state corotation of a magnetized

ε
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1
8π
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spherical body and a plasma envelope should be care-
fully applied to a direct comparison of the calculated
results with experimental data. Being intrinsically non-
uniform and unsteady, real systems are subject to
numerous effects that were not taken into account in the
model. On the other hand, the analysis of greatly sim-
plified models often makes it possible to reveal the reg-
ular features of the processes in question, to obtain the
averaged values of some parameters, and to qualita-
tively explain some of the global physical effects.
Although we are making no claim that our model yields
results exactly corresponding to the experimental data,
we think that the solution derived can provide a basis
for understanding a number of important problems in
the physics of the plasmaspheres of magnetized plan-
ets. It is in this context that we will test our model
against experiment.

We begin by noting that the steady-state approxima-
tion is unlikely to cause fundamental errors in a
description of the plasmaspheric phenomena we are
considering in this section. When the illumination of
the envelope changes in the course of rotation, the only
parameters that change to any essential degree are the
local electrodynamic and thermodynamic parameters,
first of all, the conductivity of the plasma envelope.
Applying the steady-state model to the analysis of dif-
ferent conditions should give information about the
processes that can occur in a given range of longitudes
at different times. On the other hand, the above simpli-
fying assumption that the particle collision frequencies
and conductivity are both uniform is more relevant for
comparing theory with experiment. Thus, for Earth
conditions, formula (30) formally implies that the
localization parameter ε depends strongly on altitude.
Hence, the results obtained above may serve merely to
provide a qualitative interpretation of the actual phe-
nomena, as will be done in this section.

In the Earth conditions, our model of conductivity
applies to the ionospheric layer at altitudes of 80 to
100 km. The longitudinal conductivity in this layer is
approximately equal to

σ|| (90 km) ≈ 10–2 S/m.

By performing calculations for the experimental data
averaged over time, the Earth’s surface, and the height
of the ionospheric layer under consideration, we can
see that parameter values (31) satisfy all of the above
assumptions. Using these values, we can find, first, the
values of the normalizing factors, r0 = R ≈ 6.4 × 106 m,
ω0 = Ωp ≈ 7.3 × 10–5 s–1, B0 ≈ 6.0 × 10–5 T, Φ0 ≈ 8.0 ×
109 T m2, I0 ≈ 4.0 × 102 T m, j0 ≈ 2.4 × 10–5 A/m2,
E0 ≈ 3.0 × 10–2 V/m, and ρ0 ≈ 10–6 kg/m3, and, second,
the unperturbed magnetic field (6.0 × 10–5 T), the
meridional perturbation of the magnetic field (6.0 ×
10−8 T), the azimuthal component of the magnetic field
(3.6 × 10–6 T), the meridional current density (3.0 ×
10−8 A/m2), the azimuthal current density (1.3 ×
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10−6 A/m2), and the density  of the charged plasma

component (  ≈ 8 × 10–10 kg/m3). The total current

flowing in the azimuthal jet is  = 1.0 × 106 A, the

total current in the meridional loop is  ~ 1.1 × 105 A,
and the total loss power is about Q ~ 10 GW. The width
of the layer in which the perturbations are localized is
δh = r0ε–1 ≈ 64 km. It is of interest to note that, for these
parameter values, the interaction parameter S is on the
order of unity. This indicates that, if we treat a planetary
envelope moving in a magnetic field as an MHD gener-
ator, then, under the conditions in question, the energy
of motion of a medium is efficiently converted into
electromagnetic energy.

The estimated relative slowing of the angular fre-
quency of the Earth’s rotation in one year due to the
electric currents circulating in the ionosphere is negli-
gibly small, δΩp/Ωp ~ 4 × 10–13. Therefore, the assump-
tion of the steady-state rotation of a plasma envelope is
valid to a very high degree of accuracy. On the other
hand, the Earth’s rotation is actually slowed; for certain
values of the parameters of the model, the rate of slow-
ing over long time intervals may be relatively high.

Let us consider the most important results of those
obtained from the analysis of the problem in the context
of their possible application to explaining the actual
phenomena in plasmaspheres.

(i) We have shown that the characteristic spatial
scale δh, which appears in the approximation under dis-
cussion, is much smaller than the radius of a spherical
body (planet). This scale determines the dimension of
the envelope in which the plasma rotation is nonrigid
and in which the azimuthal current jϕ, the meridional
current, the perturbations of the dipole magnetic field,
and the charged plasma component are all localized.
The application of this result to Earth conditions is
restricted by the fact that the nonuniformity of the con-
ductivity is not taken into account in the model; hence,
formally, the scale δh depends on altitude and, more-
over, the amount by which δh changes can be smaller
than its magnitude. Nevertheless, it is clear that the pro-
cesses responsible for the peculiar skin effect when the
conduction current and magnetic field perturbations are
localized (see the small-scale insets in Figs. 3 and 4)
should operate in actual plasmaspheres.

(ii) It has been established from measurements of
the deceleration of satellites in the Earth’s atmosphere
[16] that, in a fairly wide range of azimuthal angles in
the Earth conditions, the angular frequency of the rotat-
ing plasma envelope coincides with the angular fre-
quency ΩE of the Earth’s rotation in the near-surface
layer at altitudes below 150 km and increases linearly
to 1.4ΩE at altitudes of 150 to 350 km. Super-rotation
was also recorded in the atmospheres of Venus, Jupiter,
and Saturn. To explain the causes of this phenomenon,
a number of hypotheses have been advanced. As a rule,
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ρ̃1
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sum
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sum
the super-rotation of a planetary envelope is attributed
to unsteady processes driven by the nonuniform heating
of the planet by solar radiation [17, 18]. However, there
is, as yet, no final explanation for the super-rotation
and, in particular, no satisfactory agreement between
the calculated results and experimental data. Conse-
quently, the fact that the above self-consistent model
demonstrates the possibility of a steady-state super-
rotation of a viscous plasma envelope of a planet
appears to be important. The nonrigid rotation of a con-
ducting envelope in a magnetic field results in the gen-
eration of a meridional conduction current at the
expense of the unipolar induction effect [5–7]. The
balance between the Ampére’s force, the pressure
gradient, the gravitational force, and the viscous forces
self-consistently governs the density distribution of
the charged plasma component. It has been found that,
for the given configuration of the planetary magnetic
field (M ↑↓  w), it is just in the case of super-rotation
that the charged-particle density profile decreases with
increasing altitude. Hence, we have shown that the
super-rotation of a plasma envelope can be largely
explained as being due to the action of electromagnetic
forces.

(iii) Among the phenomena known to occur in the
equatorial region of the Earth’s plasmasphere is the
equatorial electrojet. Measurements of the magnetic
field perturbations [19–21] revealed a fairly intense
conduction current flowing along the geomagnetic
equator.5 The maximum current density on the order of
10–5 A/m2 is reached at altitudes of about 105 km, the
half-height and half-width of the current density distri-
bution being about 10 and 300 km, respectively. There-
fore, the total current can be roughly estimated as 4 ×
104 A. The parameters of the equatorial electrojet
undergo substantial daily and seasonal oscillations. The
current density distribution with these mean parameters
is established in the daytime, in which case the current
is flowing eastward. At night, a very weak current is
sometimes recorded that flows in the opposite (west-
ward) direction [20]. It is clear that, in constructing a
systematic theory of the equatorial electrojet, it is nec-
essary to take into account the effect revealed by solv-
ing the steady-state problem, specifically, the genera-
tion of the azimuthal current component at the expense
of the unipolar induction phenomenon. At least, in the
Earth’s ionosphere, the altitude interval where the
applicability conditions for the calculated distribution
of the azimuthal current density are satisfied coincides
with the altitude interval where the azimuthal current is
observed to be intense and the calculated current ampli-
tudes may be comparable with those measured experi-
mentally.

(iv) Explanations offered for the structure of the
meridional current in the ionospheric E layer were pri-
marily based on the dynamo theory [12, 22]. The exist-
ence of an additional mechanism for generating the

5 This concerns the periods of normal geomagnetic activity.
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meridional current in the plasmasphere—a planetary
electric generator produced by the unipolar induction
effect because of the nonrigid rotation of a plasma
envelope in the magnetic field of the planet—was justi-
fied in recent papers [8–11]. The electric field and con-
duction current estimated in [5] from the latitude- and
longitude-averaged values of the conductivity at differ-
ent altitudes were found to be of the same order as the
conductivity values known in the physics of the Earth’s
ionosphere. In this context, it is important to note that
the estimate obtained in [5] for the total current in the
loop (105 A) coincides with the total meridional current

 calculated from our model, which self-consis-
tently takes into account the unipolar induction effect.
Hence, we emphasize that self-consistent and non-self-
consistent descriptions provide estimates of the same
order of magnitude. On the other hand, the calculated
total power of Ohmic losses, Q ~ 10 GW, is on the order
of the estimated power (5 GW) of such a source of the
electric field as the ionospheric dynamo [23].

Hence, although it cannot be claimed that our model
yields results exactly corresponding to the experimen-
tal data, we can state that the planetary rotation mecha-
nism for generating the electric field and conduction
current plays an important role in the electrodynamics
of the Earth’s plasmasphere.
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Abstract—Results are presented from computer simulations of the dynamics of an electron beam injected into
the drift space between two parallel conducting planes. The specific features of the competitive coexistence of
states with and without a virtual cathode are investigated. © 2003 MAIK “Nauka/Interperiodica”.
In the past decade, the virtual cathode (VC), first
described in [1, 2], has been addressed in the literature
as a possible cause for the appearance of accelerated
ions in high-current electron-beam devices [3]; it has
also attracted interest in connection with practical
applications. Thus, in [4] a device was described in
which record ion accelerating gradients of 40 MeV/m
were attained with the help of a VC in a high-current
electron beam. A number of different types of vircators
(high-power VC-based microwave oscillators) have
been proposed (see, e.g., [5]). However, the implemen-
tation of VCs encounters difficulties because VC phys-
ics is still poorly understood even at a qualitative level.

For both of the above examples of VC implementa-
tion, it is of interest to study the competitive coexist-
ence of states with and without a virtual emitter. This
process was observed for the first time in [6], where a
virtual emitter was produced in an ion beam.1 

In this paper, the specific features of the coexistence
of different states of a high-current charged-particle
beam are investigated numerically. A schematic of the
model device is shown in Fig. 1.

Electrons are accelerated in the gap between cath-
ode 1 and grid 2 and then enter the drift space between
the grid and collector 3. The potential difference
between the cathode and the grid is Uk; the grid and the
collector are short-circuited.

According to the theory of [1, 2], the beam state in
the drift space between the grid and the collector is
determined by the dimensionless quantity J = Jinj/Jd,
where Jinj is the injected current density and

1 If the state of a charged-particle beam of any kind is analogous to
a VC in an electron beam, then it is natural to call it a “virtual
emitter.”
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As J increases from zero to J ≤ 8, all the electrons
injected into the drift space cross it and are absorbed by
the collector. At J = 8, the beam undergoes an irrevers-
ible transition into a state in which a fraction of the
injected electrons return to the grid as if they were emit-
ted by a cathode located in the drift space. This state is
referred to as the state with a VC. After the state with a
VC has appeared, it exists in the range J > 4. At J = 4,
the state with a VC is irreversibly converted into a state
without a VC.2 

It follows from the above-mentioned that there is a
hysteresis of states. For each value of J in the hysteresis
interval (Jmin < J < 8), the beam can exist in a state either
with or without a VC, depending on the previous his-
tory. Each of these states is stable against small pertur-
bations.

So far, we have considered the behavior of a system
that is uniform in the x and z directions. Let now assume
that, in a system that is in one of the possible states with
Jmin < J < 8, the quantity J changes at some instant over
a certain interval xl < x < xr so that the beam in this inter-
val passes over to another possible state, and, after the
transition has occurred, the quantity J takes its previous
value. As a result, in neighboring regions, the system
can occur in two different states, which can simulta-
neously occur at the given value of J. Since each of
these states itself is stable, far from boundary between
these states, the system behaves as if there were no
boundary at all. Therefore, all the changes can only
happen near the boundary as a result of “the competi-
tion of the stabilities of the neighboring states.”

The results of computer simulations presented
below demonstrate how the system shown in Fig. 1
evolves in the drift space from the two neighboring
states.

2 Numerical simulations of the state with a VC [7] show that the
theoretical predictions of [1, 2] should be refined because the
state with a VC is oscillating; as a result, the VC disappears at 4 <
Jmin . 5.8.
003 MAIK “Nauka/Interperiodica”
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The simulations were performed by the particle-in-
cell method. The particles moved within a rectangular
domain. The numbers of meshes along the axes were
certain powers of 2, the typical values being 1024
meshes along the x-axis and 128 meshes along the
y-axis. The potential was calculated by means of the
fast Fourier transform. The initial conditions were cho-
sen such that, in the planes x = x0 and x = x1, the x-com-
ponent of the electric field was zero; i.e., there was an
even periodicity along the x-axis with a period of 2(x1 –
x0). The particles were injected at each time step with
an initial velocity directed along the y-axis at each mesh
point of the x-axis. The initial velocity and the time step
were equal to unity. It was assumed that the magnetic
field applied along the y-axis was sufficiently strong for
the x-component of the particle velocity to be
neglected. The equations of motion were nonrelativis-
tic. It was also assumed that the particles arriving at the
grid or the collector were absorbed there.

Numerical simulations show that it is possible to
form a system consisting of two neighboring states, as
was described above. However, the computation time
can substantially be reduced by preparing the initial
state as follows:

(i) First, by calculating the particle motion in a one-
dimensional drift space (the system is uniform along
the x-axis), a state with a certain value of J = Jcalc < 8
from the hysteresis region of states is determined. After
a steady state has been established, this state (i.e., the
coordinates and velocities of all the particles in the gap)
is stored in the computer memory.

(ii) Then, with the help of the same program, the cal-
culations for J > 8 are performed. After the formation
of a VC in the gap, J is gradually decreased to Jcalc and
retains this value until the oscillatory mode is estab-
lished. A certain instantaneous state of this mode is also
stored.

(iii) A part of the spatial period (x0 < x < xg) is filled
with particles whose coordinates and velocities corre-
spond to the state with a VC, and the remaining part of
the period (xg < x < x1) is filled with particles whose
coordinates and the velocities correspond to a state
without a VC. Then, two-dimensional simulations with
such initial conditions are performed.

Figure 2 illustrates the results of one-dimensional
simulations. The figure presents the given time depen-
dences of J and the calculated time dependences of the
potential at the midplane of the drift space (at yc = y0 +
(y1 – y0)/2). In case (a), we have Jcalc = 6 < 8, and no VC
is formed. In case (b), for a certain time in the begin-
ning of the process, we have J = 8.5 > 8. After the for-
mation of a VC, J is gradually reduced to Jcalc = 6; in
this case, the VC is conserved.

Figure 3 shows the time evolution of the boundary
between the states with and without a VC for different
values of the injected current density. Each curve in the
PLASMA PHYSICS REPORTS      Vol. 29      No. 1      2003
figure presents the spatial profile of the potential in the
midplane of the drift space at some instance.

Figure 3a illustrates the process of absorption of a
state without a VC by a state with a VC, Fig. 3b corre-
sponds to an essentially fixed boundary between the
states, and Fig. 3c demonstrate the absorption of a state
with a VC by a state without a VC. For case (c), the
value of (x1 – x0) was chosen to be 2048, which was
twice as long as for cases (a) and (b).

In case (c), the character of oscillations in the state
with a VC changes qualitatively as time elapses. The
period of oscillations becomes shorter, and their ampli-
tude decreases. We can assume that, in this case, we
observe one more state with a VC, which was described
in [8, 9]. In this state, which is referred to as the high-
frequency VC (HFVC) mode [8], the amplitude of
oscillations is lower and the frequency is three times
higher than those in the usual low-frequency VC
(LFVC) mode. In [8], the HFVC state arose when the
space charge in the drift space dropped rapidly due to
the sharp decrease in the injection current. In our case,
the appearance of an HFVC state can be provoked by
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1 2
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Fig. 1. Schematic of the modeled device: (1) cathode,
(2) grid, and (3) collector.
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Fig. 2. Functions (1) J(t) and (2) U(t, yc): (a) no state with a
VC and (b) a state with a VC is formed.
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Fig. 3. Electric potential in the midplane of the drift space as a function of x and t for different values of the injection current density:
J = (a) 7.88, (b) 7.4, and (c) 5.85; the number of injection cycles for plots (a), (b), and (c) is 4096, 4096, and 8192, respectively.
the drop in the space charge that takes place near the
boundary between the states with an LFVC and without
a VC. It can be seen in Fig. 3c that, after the formation
of an HFVC state, all of the three states (the HFVC
state; absorbing the LFVC state; and the state without a
VC, absorbing the HFVC state) coexist for a certain
period of time.

In view of the occurrence of an HFVC state, it is of
interest to examine its interaction with an LFVC state
and a state without a VC.

One-dimensional simulations show that the HFVC
state transforms into the LFVC state if the velocities of
the injected particles are varied by the law

Vi = 1 + Asin(3.14n/T),

–0.10

6.05.5 6.5 7.0 7.5 J

–0.05

0

0.05

0.10

V/Vi

1
2

Fig. 4. The propagation velocity of the boundary between
different states vs. injected current density: (1) states with
an LFVC and without a VC and (2) states with an HFVC
and without a VC.
where n is the number of the injected particle. The val-
ues of A and T can be rather arbitrary. In our calcula-
tions, we set A = 0.009 and T = 5. After the formation
of an HFVC, the value of Ä was gradually decreased to
zero. If, in this case, the HFVC state is conserved, we
can conclude that the HFVC can exist at this value of
the injection current. The results obtained show that the
HFVC state can only exist within the above hysteresis
range of the injection current densities (at Jmin < J < 8).

We have also performed two-dimensional simula-
tions of the evolution of a system consisting of states
with an HFVC and without a VC, as well as a system
consisting of an LFVC and an HFVC state.

Figure 4 shows the quantity V/Vi (where V is the
velocity of the boundary between the states and Vi = 1
is the particle injection velocity) as a function of the
injection current density J (the positive boundary
velocity corresponds to the direction of propagation
from left to right). It can be seen from the figure that the
dependence of the boundary velocity on J for a system
consisting of states with an LFVC and without a VC is
almost the same as for a system consisting of states
with an HFVC and without a VC. The evolution of a
system consisting of states with an HFVC and without
a VC for J = 7.85 is shown in Fig. 5a.

In the interaction between the LFVC and HFVC
states, the former state is absorbed in the entire hyster-
esis range of the injection current densities. The lower
J, the higher the absorption rate, which, however, is
rather difficult to estimate because there is no pro-
nounced boundary between these states. The evolution
of an LFVC–HFVC system for J = 6.0 is shown in
Fig. 5b.
PLASMA PHYSICS REPORTS      Vol. 29      No. 1      2003



WAVES OF STATES IN AN ELECTRON BEAM 81
x0 x1

U(x, t)
x

t

(a) (b)

x0 x1

U(x, t)
x

t

Fig. 5. Electric potential in the midplane of the drift space as a function of x and t for different values of the injection current density
and different interacting states: (a) J = 7.85 (states with an HFVC and without a VC; the number of the injection cycles is 4096) and
(b) J = 6.0 (states with an LFVC and HFVC; the number of the injection cycles is 8192).
The main results of this study can be summarized as
follows:

(i) The competitive coexistence of states with an
LFVC and without a VC, first observed and qualita-
tively described in [6], has been confirmed.

(ii) The possibility of a competitive coexistence of
the states with an HFVC and without a VC, as well as
the states with an HFVC and an LFVC, has been dem-
onstrated.

(iii) It has been found that, as time elapses, a third
state can occur at the boundary of the competing states
and one more boundary between the states can appear.
First, the states with an LFVC and without a VC com-
pete; then, between these states, an HFVC state appears
and, accordingly, the boundaries between the LFVC
and HFVC states and the boundary between the states
with an HFVC and without a VC arise.

(iv) Some quantitative characteristics of the change
of states have been determined.

One of the possible applications of electric fields
arising at a moving boundary between the states with
and without a VC is collective ion acceleration [10]. If
we assume that protons can be accelerated to the maxi-
mum wave velocity obtained in the present study, then
the proton energy will be 20 times higher than the
energy of the injected electrons. Approximately the
same values were obtained in the best experiments on
the collective acceleration of ions in high-current elec-
tron beams [4, 11].

We note that the distribution of the electric potential
at the boundary between the states with an HFVC and
PLASMA PHYSICS REPORTS      Vol. 29      No. 1      2003
without a VC (see Fig. 5a) allows ion acceleration for
any propagation direction of the boundary.
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Abstract—Results are presented from experimental studies of ac corona discharges between a point electrode
and a dielectric-coated plate in nitrogen, argon, helium, and air in the voltage frequency range f = 50 Hz–50 kHz.
The characteristic features of this type of discharge are compared with the well-known features of dc positive
and negative coronas and a barrier discharge between plane electrodes. It is shown that the presence of a dielec-
tric barrier on the plane electrode significantly changes the electric characteristics and spatial structure of the
corona, whereas the main phases of the discharge evolution remain unchanged as the voltage increases. With a
point electrode, the breakdown voltage of the barrier corona decreases substantially as compared to the break-
down voltage of a barrier discharge with plane electrodes. This leads to softer conditions for the streamer for-
mation in a barrier corona, which becomes more stable against spark generation. © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Low-current ac discharges between a point (or an
edge) and a dielectric-coated plane are widely used in
practice, e.g., to modify dielectric surfaces [1]. Typi-
cally, the interelectrode distance and applied-voltage
frequency do not exceed several millimeters and tens of
kilohertz, respectively. Under these conditions, the
characteristic time of the ion drift between electrodes is
short as compared to the half-period of the ac voltage;
as a result, in every half-period, the gap gets filled with
space charge and a quasi-steady corona discharge
forms in the gap.

This type of discharge will be referred to as an ac
barrier corona (BC), because it combines the features
of the familiar barrier and corona discharges. Indeed,
the dielectric layer on the plane electrode is a barrier for
the conduction current, as is the case in a usual barrier
discharge [2], whereas the point leads to the formation
of a positive or negative corona in the gap during the
corresponding periods of the applied voltage.

Although various BC modifications have long been
applied in technology, the physics of this type of dis-
charge is still poorly understood. From the physical
standpoint, it is of interest to distinguish between the
features of the barrier and corona discharges that are
present in BC and those characteristic of BCs only. In
this context, it is expedient to briefly remind the basic
properties of a barrier discharge between plane elec-
trodes and dc positive and negative coronas in the
point–plane geometry.

The barrier discharge is an ac discharge between
two closely spaced (d ≤ 3 mm) metal plates, of which at
least one is coated with a dielectric. Depending on the
1063-780X/03/2901- $24.00 © 20082
amplitude of the applied voltage, two main modes of
the barrier discharge can be distinguished: a diffuse
mode and a streamer mode.

In narrow gaps (with lengths of d ≤ 1 mm) at volt-
ages only slightly exceeding the Townsend breakdown
voltage (i.e., at very low initial currents), the barrier dis-
charge is uniform in the transverse (with respect to the
current) direction [3–6]. This mode is referred to as a
diffuse mode. In recent years, it has been established
that the diffuse mode corresponds to a glow discharge
in the highly subnormal and hampered regime, in which
the current density at electrodes is low compared to the
normal current density in a glow discharge and the
cathode layer occupies the entire interelectrode gap.

As the amplitude of the applied voltage increases,
the degree to which the glow cathode layer is subnor-
mal becomes smaller; as a result, at a certain voltage
amplitude, the cathode-layer thickness dc becomes
smaller than d. Under these conditions, the glow dis-
charge is no longer hampered, but it still remains sub-
normal. It is well known [7] that the subnormal cathode
layer has a negative differential resistance and is unsta-
ble against transverse perturbations and that the insta-
bility growth rate increases with increasing deviation
from the normal regime. For this reason, the subnormal
cathode layer in nitrogen or air contracts into current
spots and the diffuse mode transforms into the streamer
one. In this mode, in every half-period of the applied
voltage, the discharge gap gets filled with many fine
unsteady current filaments (streamers), which are ran-
domly distributed in space. Near the barrier surface,
each streamer branches out, covering a small area with
a diameter no larger than the interelectrode distance.
003 MAIK “Nauka/Interperiodica”
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Note that in a barrier discharge in helium, the devi-
ation from the normal regime of the cathode layer is
much smaller than in the case of nitrogen or air; there-
fore, the diffuse mode in He can also occur at dc < d.
However, the negative dynamic resistance of the sub-
normal cathode layer results in regular pulsations of the
current in each half-period, although the barrier dis-
charge remains uniform in the transverse direction [6].
Since the barrier-discharge current is proportional to
the frequency and amplitude of the applied voltage, the
diffuse mode is limited to low frequencies and small
amplitudes slightly exceeding the Townsend break-
down voltage.

In this study, we are only interested in dc corona dis-
charges excited on point electrodes (with a radius of
curvature of r0 ≤ 0.5 mm) and in gaps a few centimeters
in length (d ≤ 30 mm). We begin with a positive corona.
The discharge in a point–plane gap (the point being at a
positive potential) becomes visible even at voltages U
lower than the corona ignition voltage U∗ . The value of
U∗  is determined from the condition for a self-sus-

tained corona [8–10]: (x)dx . , where α is the

ionization multiplication constant for an electron ava-
lanche and γ is the effective coefficient of secondary
electron generation by various processes (including
volume photoionization, surface photoemission, and
surface emission caused by positive ions and metasta-
ble particles). Up to the ignition voltage, the positive
corona is unstable and exists in a bursty regime [9], in
which rare and random individual bursts on the point
occur, giving rise to fine and weak streamers originat-
ing from the point.

After ignition (U ≥ U∗ ), the positive corona usually
remains in the diffuse mode, in which the point is cov-
ered with a uniform glow [11–13] (actually, it is pulsed
[14]) and the average corona current increases as the
discharge voltage squared. Typically, the diffuse mode
of the positive corona in all gases exists at low currents
(lower than several tens of microamperes); as the cur-
rent increases, rather regular and intense streamers
arise in the gap. As U increases, the streamer repetition
rate rises to several tens of kilohertz and the amplitude
of the related current spikes increases to several tens of
milliamperes [15]. As the voltage increases further, the
streamer mode transforms into a spark.

In a negative corona, no bursts are observed as the
applied voltage approaches U∗ , and the evolution of the
corona after ignition (at U ≥ U∗ ) depends on the sort of
gas. In electronegative gases (air), the negative diffuse
corona occurs in a pulsed mode (the so-called Trichel
pulses [9], whose repetition rate increases linearly with
the average corona current). At characteristic currents
of I ≈ 130 ± 10 µA, the pulsed mode changes abruptly
to a steady-state mode, which occurs at currents of up
to I ≈ 200–250 µA.

α
0

d∫ 1
γ
---ln
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The streamer mode does not occur in a negative
corona; therefore, without special measures for dis-
charge stabilization (the use of a gas flow, resistive
anode, etc.), the diffuse corona transforms into a spark.
Stabilization can substantially increase the spark
threshold; in this case, an intermediate mode between
the diffuse corona and the spark (a steady-state diffuse
glow discharge [16], in which the interelectrode gap is
filled with plasma) can occur.

In electropositive gases (N2, He, and Ar), the igni-
tion voltage of the negative corona is substantially
higher than the sustaining voltage. For this reason, after
ignition, the corona current jumps to a steady-state
level of several hundred of microamperes, which is
determined by the current–voltage characteristic of the
discharge and by the ballast resistance in the external
circuit. At such currents, the corona is diffuse and does
not pulsate. The current range of the diffuse mode in
electropositive gases is significantly wider than that in
electronegative gases and extends up to several milli-
amperes. For example, with gaps of about 15 mm, the
negative diffuse corona in N2, Ar, or He transforms into
a spark at currents of up to 10 mA. An interesting fea-
ture of the negative corona in electropositive gases is
that the corona possesses a hysteresis; i.e., after igni-
tion, the voltage can be reduced to a level below U∗
without corona quenching. It is in this range that the
pulsed mode of a negative corona in N2, Ar, or He
occurs [17].

Thus, the diffuse mode of a barrier discharge is
observed only in short gaps. In contrast, the diffuse
mode of a corona discharge is observed in longer gaps,
because the current density at the plane electrode
increases sharply for small values of d; as a result, the
corona transforms into a spark at very low currents. The
streamer mode is predominant for both the barrier dis-
charge and a positive corona. The streamer branching
on the electrode surface is insignificant. In a negative
corona, the streamer mode is absent.

In this paper, in order to determine the position of
the ac BC among the above discharges, we compare the
features of BC in the point–plane geometry with those
of a barrier discharge in a plane gap and steady-state
(positive and negative) coronas in a point–plane gap.

2. EXPERIMENT

Experiments with an ac BC were carried out in a
150 × 150 × 50-mm organic-glass discharge chamber
with a point and a plane electrode mounted in it (Fig. 1).
The point electrode was nearly paraboloidal in shape
with a radius of curvature r ≈ 0.1 mm. The interelec-
trode distance was varied within the range d = 1.5–
30 mm. The plane electrode was a 100-mm-diameter
metal disk. To avoid edge effects and provide a mono-
tonically decreasing electric field at the boundary of the
disk, its edges were rounded to a Rogowski profile. The
metal surface was entirely covered with a polymer
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(polyethylene, polypropylene, teflon, etc.) film with a
thickness of 15–75 µm, which was 30–100 times
smaller than the thickness of the dielectric coating in
usual barrier discharges. Such a small film thickness
ensured the large specific capacity of the barrier and,
accordingly, the high current density in the BC as com-
pared to usual barrier discharges, all other parameters
being the same. In some experiments, we used a plane
resistive electrode with an isotropic resistivity.

In experiments, we used ambient air, high-purity
99.999% nitrogen, 99.99% argon, and 99.99% helium.
All of the experiments were performed at atmospheric
pressure; for air, additional experiments were carried
out at a reduced pressure (P = 380 torr). Before the
experiments, the gas-discharge chamber was evacuated
to a pressure of P = 10–3 torr and then was filled with a
working gas. To ensure the certificate gas purity, the
experiments were carried out with slow gas circulation
through the discharge chamber.

The sinusoidal electric voltage was applied to the
point electrode from a generator through a ballast resis-
tor with Rb = 300 kΩ . Two types of high-voltage gener-
ators were used in the experiments. In one of them, the
frequency f and the voltage amplitude Ua were
smoothly varied from 50 Hz to 50 kHz and from 0 to
4.5 kV, respectively. Higher voltages (up to 35 kV)
were produced by the second generator—a 3NOM-

1

2

3

45

6

7

U(t)
Q(t) I(t) ~Uacosωt

Fig. 1. Experimental setup for studying BCs: (1) point elec-
trode, (2) plane electrode, (3) dielectric barrier (polymer
film), (4) low-inductance current shunt, (5) capacitor for
measuring the charge carried across the discharge gap, (6)
voltage divider, and (7) ballast resistor.

Fig. 2. Photograph of a BC in Ar (side view). The barrier is
a polyethylene film, d = 6 mm, f = 400 Hz, and Ua = 3.5 kV.
35/1 transformer operating at a fixed frequency of f =
50 Hz. The shape and amplitude of the discharge volt-
age were recorded with a compensated voltage divider,
the signal from which was fed to a storage oscillograph.
The rms voltage was measured by an S-96 electrostatic
voltmeter. The shape and amplitude of the discharge
current were recorded with the help of a low-induc-
tance current shunt. The charge carried through the dis-
charge gap during one half-period and the active dis-
charge power (i.e., the electric power deposited in the
discharge) were determined from the charge–voltage
characteristic (CVC) of the barrier corona. The dis-
charge was photographed with an Olympus E-100RS
digital camera.

3. EXPERIMENTAL RESULTS
3.1. Visual Observations of a BC

We begin with the description of visual observations
demonstrating the evident distinctions of BC from a
barrier discharge or usual corona. It is well known [18]
that the current channel of a usual point–plane corona
broadens away from the point. The effective radius (at
a level of 0.5) of the current channel increases with dis-
tance and can be approximated by the function R ~
RW(x/d)1/2 (where x is the distance from the point and
RW . 0.7d is the Warburg radius); i.e., the current chan-
nel of a usual corona is convex. At the plane electrode,
the corona current is concentrated within a circle of
radius RW. In the first approximation, the Warburg
radius is independent of the mode (diffuse or streamer)
and polarity of the corona.

It turns out, however, that in the case of BC, the sim-
ple relation RW . 0.7d between its longitudinal and
transverse sizes is only applicable for the diffuse mode
(i.e., at small amplitudes of the applied voltage Ua) and
is inapplicable for the streamer mode. The reason is that
the BC streamers (which begin to be generated at the
point electrode at voltages lower than those in a barrier
discharge) behave in a different manner than in a barrier
discharge or usual corona. After reaching the barrier,
the BC streamers intensely branch out on its surface
(especially in the case of electropositive gases) and
propagate (“slip”) along the dielectric surface over a
long (in comparison with d) distance from the dis-
charge axis.

In the presence of a barrier, not only does the area
occupied by a BC on the plane electrode increase sub-
stantially, but also the shape of the current channel in
the discharge gap is modified. Instead of being convex,
the time-averaged BC current channel is concave,
which is clearly seen in the photograph of a BC in argon
(side view) presented in Fig. 2. It follows from this fig-
ure that the visual BC radius near the plane electrode is
approximately equal to 1.5d, which is more than twice
as large as the Warburg radius RW.

The broadening of the current channel at the barrier
depends on the BC mode and the sort of gas. The broad-
PLASMA PHYSICS REPORTS      Vol. 29      No. 1      2003
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ening is strongest for argon, in which case the surface
streamers readily branch out and propagate over a long
distance from the discharge axis. At large voltage
amplitudes Ua, the radius of the region occupied by sur-
face streamers amounts to several tens of d. The next in
this line are helium and nitrogen. BCs in air broaden
only slightly; in this case, like in usual barrier dis-
charges, the branching surface streamers propagate
over a distance no longer than d.

The experiment has shown that in electropositive
gases, the visual BC radius Rc at the dielectric barrier
increases with increasing Ua (Fig. 3) and does not
depend on the interelectrode distance d. In contrast, for
air, this radius behaves as the Warburg radius of a usual
corona; i.e., it depends only slightly on Ua and increases
with increasing gap length d.

The increase in the BC area due to the spread of
streamers over the dielectric surface prevents (or
strongly hampers) an increase in the average current
density through the barrier as the total BC current
increases. For example, in the case of argon, the aver-
age current density remains at a level of 20–30 µA/cm2.
This feature distinguishes BC from a usual corona, in
which the average current density usually increases
with increasing total current.

In a usual corona, the increase in the average current
density at the metal plate leads to the onset of instability
and the conversion of the corona into a spark. In BC, the
spread of the streamers impedes the formation of a
spark and, thus, allows one to substantially extend the
BC current range. For example, in electropositive gases
at gap lengths of d . 1–10 mm, it is possible to obtain
the average BC currents through the point electrode as
high as 2–3 mA without spark generation. (In these
experiments, the maximum attainable current was lim-
ited not by the processes on the point electrode, but by
the properties of the polymer film, which undergone
thermal destruction at high currents.)

The above currents are tens of times higher than the
threshold current for spark generation in a usual posi-
tive corona and are several times higher than those in a
negative corona at the same value of d. The difference
between the threshold currents for spark generation in
BC and usual corona is most pronounced at small d.
Thus, at small gap lengths (d ≤ 3 mm), the streamer
mode of a dc positive corona in argon cannot be real-
ized at all, because after breakdown the discharge trans-
forms immediately into a spark, whereas BC exists up
to currents of several milliamperes without transfor-
mating into a spark.

3.2. Waveforms of the BC Current

It is well known that the waveforms of the barrier
discharge current are the same for both half-periods.
Figures 4 and 5 illustrate the typical oscillograms of the
BC current for different gases and discharge modes. It
can be seen that the waveforms of the BC current are
PLASMA PHYSICS REPORTS      Vol. 29      No. 1      2003
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Fig. 3. Visual BC radius at the barrier surface vs. amplitude
of the applied voltage for d = 1.5 mm; f = 0.4 kHz for a BC
in He and f = 1 kHz for a BC in Ar.
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Fig. 4. Oscillograms of the voltage (upper curves) and cur-
rent (lower curves) in different BC modes: (a) the diffuse
mode in both half-periods (Ar, d = 6 mm, f = 400 Hz, the
current scale is 0.1 mA/division, the voltage scale is
4 kV/division, and the time scale is 0.5 ms/division) and
(b)  the diffuse mode in the negative half-period and the
streamer mode in the positive half-period (N2, d = 1.5 mm,
f = 3 kHz, the current scale is 2 mA/division, the voltage
scale is 4 kV/division, and the time scale is 0.1 ms/division).
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asymmetric, which indicates that the BC properties are
different in the positive and negative half-periods.
Therefore, it is expedient to describe the BC evolution
with increasing Ua for each half-period individually.

In the positive half-period, BCs in all gases exist in
diffuse and streamer modes that are similar to those of
usual positive coronas. The diffuse mode is character-
ized by the absence of spikes in the current oscillogram
(Fig. 4a); this mode occurs in a narrow range of the ini-
tial currents (no higher than tens of microamperes). The
main BC mode is the streamer mode, which is observed
visually as a variety of unsteady branching streamers,
which spread randomly over the dielectric surface. In
the current oscillograms, this mode manifests itself by
spikes with amplitudes of tens (or even hundreds) of
milliamperes (Fig. 4b). The number of spikes during
one half-period increases with increasing voltage
amplitude. At a fixed value of Ua, the number of spikes
depends on the sort of gas. The number of spikes is
maximum for a BC in helium (Fig. 5a), which corre-
lates with the observed high density of the surface
streamers in this gas.

In the negative half-period, BCs in all gases and at
all currents exist only in the diffuse mode, which is con-
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(a)

(b)

I II

Fig. 5. Oscillograms of the voltage (upper curves) and cur-
rent (lower curves) in the diffuse BC mode in the negative
half-period and the streamer mode in the positive half-
period: (a) He, d = 1.5 mm, f = 1 kHz, the current scale is
4 mA/division, the voltage scale is 2 kV/division, and the
time scale is 0.2 ms/division and (b) air, P = 380 torr, d =
5 mm, f = 3 kHz, the current scale is 0.4 mA/division, and
the voltage scale is 4 kV/division (the time scales on oscil-
lograms I and II are 100 and 20 µs/division, respectively).
firmed by the fact that there are no large-amplitude
spikes in the current oscillograms. The absence of
streamers in BC corresponds to a similar property of a
usual negative corona, in which the streamer mode is
not observed.

The current spike at the beginning of the negative
half-period is related to the formation of a glow cathode
layer on the point electrode. The amplitude of this spike
is much smaller than the amplitudes of the current
spikes related to the streamer generation in the positive
half-period. The initial spike is followed by the current
minimum, whose depth decreases with increasing fre-
quency. Then, a quasisteady diffuse mode is estab-
lished, which, for small BC radii, is similar to usual
negative coronas (Fig. 5b).

Seemingly, at large voltage amplitudes Ua (i.e., in
the presence of widely spread streamers in the positive
half-period), the BC conductivity in the negative half-
period is no longer provided by the space charge of the
corona discharge. In our opinion, in this case, the con-
ductivity is provided by a decaying plasma produced by
the surface streamers in the preceding positive half-
period.

In BCs, as in usual low-current negative coronas,
high-frequency current pulses (Trichel pulses) are
observed at the beginning and the end of each negative
half-period. Characteristically, the amplitude of the
Trichel pulses in a BC is greater than in a usual negative
corona with the same point radius. In this respect, a BC
is similar to a negative point–plane corona with a resis-
tive anode, for which the amplitude of Trichel pulses is
also larger as compared to a usual corona with a metal
anode [19].

A sequence of regular current spikes was also
observed in argon. The repetition rate of regular pulses
in N2 and He is rather low as compared to the ac voltage
frequency f [19]; that is why such pulses were absent in
experiments carried out at f ≥ 1 kHz.

3.3. Charge and Energy Characteristics of BC

The charge Q carried across the BC gap during one
half-period can be determined from the discharge CVC.
Typical CVCs at low and high average currents (or at
large and small voltage amplitudes Ua) are shown in
Figs. 6a and 6b, respectively. The charge Q is equal to
the CVC spread along the abscissa. It can be seen from
these figures that, at small Ua, the CVC is smooth and
symmetric, which corresponds to the diffuse BC mode
for both half-periods. At large voltage amplitudes, the
CVC remains smooth in the negative half-period and
has many spikes in the positive half-period, which cor-
responds to the diffuse BC mode in the negative half-
period and to the streamer mode in the positive half-
period. The charge Q increases with increasing Ua and
depends weakly on f (Fig. 7).

A comparison of the current oscillograms and the
CVCs shows that the range of the voltage amplitudes at
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which the carried charge does not exceed the value Q ≤
10 nC corresponds to a diffuse BC, whereas the voltage
range corresponding to the larger values of Q and large
derivatives ∂Q/∂Ua is related to the streamer BC mode
in the positive half-periods. The density of streamers on
the barrier surface is also of great importance. Thus,
although the visual radii of BCs in He and Ar at large
voltage amplitudes Ua differ strongly, the carried
charges Q in these discharges are nearly the same,
which can be attributed to the higher density of the sur-
face streamers in He.
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(a) (b)

Fig. 6. Charge–voltage characteristics of a BC at f = 0.4 kHz
in different modes: (a) diffuse mode in both half-periods,
the voltage amplitude Ua = 3 kV, d = 6 mm, the vertical
scale is 1 kV/division, and the horizontal scale is 1 nC/divi-
sion and (b) diffuse mode in the negative half-period and the
streamer mode in the positive half-period, Ua = 3 kV, d =
1.5 mm, the vertical scale is 1 kV/division, and the horizon-
tal scale is 200 nC/division.
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Fig. 8. Energy ε deposited in a discharge per one period vs.
frequency f of the applied voltage for dac = 1.5 mm and Ua =
2.5 kV (Ar, He), 4 kV (N2), and 4.6 kV (air). The barrier is
a polyethylene film.
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The area enclosed by the CVC on the (Q, U) plane
determines the energy ε released by a BC during one
half-period. The experiments show that, at a fixed volt-
age amplitude Ua, the value of ε depends strongly on
the sort of gas and depends only slightly on the voltage
frequency f (Fig. 8). The value of ε is maximum for
argon and minimum for air. In a streamer BC, the bulk
of the Joule energy is released near the surface (this is
particularly true for BCs at small d). The average power
density released in a BC near and on the surface, w =
εf/Sc , depends on the voltage frequency. Indeed, since
the visual corona area Sc in each gas is primarily a func-
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Fig. 7. Charge carried across the BC discharge gap vs.
amplitude of the applied voltage for d = 1.5 mm and F =
(1) 0.4, (2) 1, (3) 3, and (4) 10 kHz. Open symbols corre-
spond to Ar, and closed symbols correspond to He.
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Fig. 9. Power density w released on the barrier surface
(polyethylene film) vs. frequency f of the applied voltage for
dac = 1.5 mm and Ua = 2.5 kV (Ar, He), 4 kV (N2), and
4.6 kV (air).
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tion of Ua (Fig. 3), an increase in the frequency at a
fixed voltage amplitude should lead to a liner increase
in w, which is observed in the experiment (Fig. 9).

An analysis of the dependence of the visual BC
radius at the plane electrode on the sort of gas leads to
interesting results. Thus, although the value of ε for a
strongly broadened BC in argon is maximum as com-
pared to other gases, the surface power density in this
gas is minimum. In contrast, in air, the value of ε is min-
imum; however, the surface power density at a given
voltage frequency is maximum, because, in this gas, the
BC broadens only slightly.

4. NUMERICAL RESULTS

Numerical simulations of a BC were performed in
an electric-circuit model in which the discharge gap
was assumed to be a nonlinear resistance with given
(see below) current–voltage characteristics for the pos-
itive and negative half-periods. The equivalent electric
circuit including a BC is shown in Fig. 10. The BC usu-
ally occupies only a fraction of the full area of the
dielectric-coated plane electrode. Depending on exper-
imental conditions, the capacitance of the part of the
dielectric barrier through which the current flows is rel-
atively low and amounts to several tens or hundreds of
picofarads. In this case, it is important to take into
account the parasitic capacitances of various elements
of the external circuit (between the generator output
and the corona point and between the point and
ground), which are of the same order of magnitude.
These parasitic capacitances cause (both in simulations
and experiments) current peaks with amplitudes that far
exceed the average current value. The parasitic induc-
tance of the circuit (L ≤ 100 nH) and the internal resis-
tance of the voltage generator were also taken into
account.

~

R
I

A

L

B

IR1

IC1
ICd

Id

R1

C1

Rd Cd

Cb
C2

I2I1

Fig. 10. Equivalent electric circuit used in numerical simu-
lations: R is the internal resistance of the generator, R1 =
300 kΩ is the ballast resistance, Rd is the nonlinear BC
resistance, C1 = 30 pF and C2 = 75 pF are the parasitic
capacitances of the external circuit, Cd = 2 pF is the capac-
itance of the BC discharge gap, Cb is the barrier capaci-
tance, and L is the parasitic inductance.
The equivalent circuit was described by the standard
set of Kirchhoff’s equations describing to the balance
of currents and voltages for different subcircuits:

where U(t) is the generator output voltage; I is the total
circuit current; R is the internal resistance of the gener-
ator; UR1 = qC1/C1 is the voltage across the ballast resis-
tor R1, which depends on the charge qC1 on the parasitic

capacitance C1 (between points A and B);  is the
voltage across the BC gap in the positive and negative
half-periods; Id is the conduction current across the BC
gap; Ub = qb/Cb is the barrier voltage; qb is the barrier
charge; Cb is the barrier capacitance; and qC2 is the
charge on the parasitic capacitance C2 (between point B
and the ground).

The other equations are

where Cd is the capacitance of the discharge gap.

Simulations were performed for the following two
cases. The first case corresponds to the voltage ampli-
tudes at which the visual BC radius only slightly
exceeds the length of the interelectrode gap. This situa-
tion is more typical of BCs in nitrogen and air. In this
case, we assumed that the barrier capacitance was inde-
pendent of the amplitude of the applied voltage. Taking
into account the above properties of BCs, we assumed
that the BC current–voltage characteristics in the dif-
fuse modes of the positive and negative half-periods
were described by parabolic dependences similar to
those for usual positive and negative coronas:

where k is the dimensional factor depending on the
mobilities of the current carriers and on the length of
the discharge gap. For He, Ar, and N2, the current of the
positive corona is carried by ions, whereas the current
of the negative corona is carried by electrons; i.e.,
k+ ! k–. For air, we have k+ . k–, because the current in
the positive and negative coronas is carried by positive
and negative ions, respectively.

For the positive half-period,  coincides with the
corona ignition voltage U∗ ; for the negative half-

period, we take  < U∗  in the case of electropositive

gases and  . U∗  in the case of air. We also took into
account the effect of streamers that arose in the positive

U t( ) IR UR1 Ud
± Id( ) Ub,++ +=

I I1 I2 dqb/dt dqC2/dt,+≡+=

Ud
±

LdI2/dt qC2/C2+ qd/Cd qb/Cb,+=

dqCd/dt ICd I1 Id,–= =

dqC1/dt I qC1/R1C1,–=

Id
± k±Ud Ud U0

±–( ),=

U0
+

U0
–

U0
–
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half-period starting from a certain voltage Us > U∗ .
These streamers shunted the gap; as a result, the voltage

across the gap decreased abruptly to  ! Us. The val-

ues of , , Us, and U∗  were determined from the
experiment.

The second case corresponds to a strongly broad-
ened streamer BC (Rc @ d). This type of corona occurs
in helium and argon. In this case, the visual BC radius
increases with increasing amplitude of the applied volt-
age; as a result, the barrier capacitance also increases
with Ua:

where Sc is the effective BC area, which is not equal to

the visual area π ; θ is the fitting factor, taking into
account the density of the streamers filling a circle with
the visual radius Rc; and the dependence Rc(Ua) is taken
from the experiment.

The positive half-period of a strongly broadened BC
was calculated in the same way as in the previous case,
but with allowance for the dependence of the barrier
capacitance on the applied voltage, Cb = Cb(Ua). It was
assumed that the conductivity of the gap σ–(t) in the
negative half-period was provided by the plasma cre-
ated by the surface streamers in the preceding half-
period, rather than by the space charge of the negative
corona. By the time at which the glow cathode layer is
formed (a spike in the current oscillogram), the residual
conductivity of the recombining plasma remains at a
level of

U1
+

U0
+ U0

–

Cb Sc . θRc
2 Ua( ),∼

Rc
2

σ– T /2( ) . eµene . 2eµe/βT ,
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Fig. 11. Results of numerical simulations of a BC in N2: the
voltage across the gas gap Ud, the current I, and the charge
Qb on the barrier at a sinusoidal applied voltage U. The bar-
rier capacitance is 25 pF, d = 1.5 mm, and f = 3 kHz. The
amplitudes of the two current spikes in the positive half-
period are ~70 mA.
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where e, µe, and ne are the electron charge, electron
mobility, and electron density, respectively; T is the
period of the applied ac voltage; and β . 10–7 cm3/s is
the electron–ion dissociative recombination coefficient.
It was assumed that, after the breakdown of the cathode
layer, the plasma conductivity in the gap increased
again due to ionization:

where α is the dimensional factor characterizing the
intensity of ionization and t is the time counted from the
breakdown of the cathode layer. Then, we have

The set of differential equations as formulated is
stiff because of the substantial difference between the
values of the parameters characterizing the electric cir-
cuit. For this reason, the set of equations was solved by
the Gear method.

The typical results of numerical simulations are pre-
sented in Figs. 11–13. In spite of a rather simplified
numerical model, the calculated curves reflect all the
main experimental results. The simulations show one
more interesting property of BCs in N2, Ar, and He that
distinguishes them from usual barrier discharges. It
turns out that a nonzero negative charge is always main-
tained at the dielectric barrier in a BC (Fig. 11). The
average value of this charge increases with increasing
amplitude of the applied voltage. The physical reason
why the equilibrium between; the positive and negative
half-periods of BCs in electropositive gases is estab-
lished due to an excess of a negative charge on the bar-
rier is the strong difference of the BC properties in these

σ– t( ) . σ– T /2( ) α Ud t( ) U*–( )( ),exp

Id t( ) . σ– t( )E t( )Sc . σ– t( )Ud t( )Sc/d .
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Fig. 12. Results of numerical simulations of a broadened
BC in Ar: the voltage across the gas gap Ud, the current I,
and the charge Qb on the barrier at a sinusoidal applied volt-
age U. The barrier capacitance is Cb = 260 pF, d = 1.5 mm,
and f = 3 kHz.
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half-periods, in which we have k+ ! k– and Us > U∗  >

.

Keeping in mind this BC property and also the fact
that BCs are widely used to modify surfaces, we note
that the negative charge present on the surface can addi-
tionally activate it (see, e.g., [20]). This circumstance
may be very important and must be taken into consid-
eration when choosing the BC modes, as well as when
analyzing the properties of dielectric surfaces modified
with the help of BCs.

Simulations of a strongly broadened BC (with a
corona radius of Rc . 6d) in argon show that the number
of the current spikes in the positive half-period
increases with increasing amplitude of the applied volt-
age, as is observed in the experiment (Figs. 12, 13). The
charge Qs carried by streamers during each current
spike is nearly constant (Qs . (7.6 ± 0.2) × 10–8 C) and
depends only slightly on the applied voltage frequency.
A satisfactory agreement of the calculated current
waveforms with the experimental ones was achieved
for the degree of the barrier filling by the streamers θ =
0.6. In the negative half-period, the agreement between
calculations and experiment was achieved by assuming
the residual density of the decaying plasma to be at a
level on the order of 109–1010 cm–3, depending primarily
on the voltage frequency.

5. CONCLUSIONS

(i) A BC occurs at lower voltages as compared to the
barrier discharge and exists up to currents that far
exceed the current of a usual corona discharge in the
point–plane geometry.
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Fig. 13. Results of numerical simulations of a broadened
BC in Ar: the voltage across the gas gap Ud, the current I,
and the charge Qb on the barrier at a sinusoidal applied volt-
age U. The barrier capacitance is Cb = 145 pF, d = 1.5 mm,
and f = 400 Hz.
(ii) In the positive half-period of the applied voltage,
the BC exists in two modes: the diffuse mode and the
streamer mode. In the negative half-period, the BC
exists in the diffuse mode only.

(iii) The BC has asymmetric current profiles in the
positive and negative half-periods, which distinguishes
this type of discharge from usual barrier discharges.

(iv) The BC in electropositive gases occurs with an
excess of negative charge on the barrier, which is atyp-
ical of usual barrier discharges.

(v) Unlike usual barrier and corona discharges, the
BC spreads from the point over the dielectric surface.
The BC spreading is more pronounced in electroposi-
tive gases, in which the surface streamers branch out
intensely and propagate along the dielectric over large
distances.

(vi) In air, the branching of the surface streamers is
less pronounced; hence, we can conclude that in the
positive and negative half-periods, the BC is similar in
properties to usual dc positive and negative coronas.

(vii) In the diffuse modes of the positive and nega-
tive half-periods, BCs in N2, Ar, and He are similar in
properties to usual dc positive and negative coronas.

(viii) The limiting currents for the conversion of BC
streamers into a spark exceed the currents at which a
steady-state corona in the point–plane geometry con-
verts into a spark. This fact indicates that a necessary
condition for the conversion of a positive streamer into
a spark is the formation of a current spot on the cathode.

In conclusion, we note that the results obtained shed
light on the fundamental properties of BCs in the dif-
fuse and streamer modes in various gases. The results
obtained provide a general idea of the background
against which ionization instabilities develop. There-
fore, this paper is a necessary step in studying the
mechanisms for generation of streamers near a posi-
tively charged point and their propagation in a dis-
charge gap and over a dielectric surface, as well as the
mechanisms for conversion of streamers into a spark.
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The construction of the most complete class of exact
solutions to the hydrodynamic equations for an intense
charged-particle beam is an integral part of the problem
of developing adequate mathematical models in the
optics of dense particle flows. The main application of
this branch of physics is in microwave electronics
(including plasma microwave electronics [1]), high-
current accelerators, high-voltage switches, technolog-
ical systems, etc. In order to check the correctness of
the approximate and numerical models, it is necessary
to store a collection of test problems in such a way that
it would possess all distinctive properties of the general
formulation of the problem. These properties, which
cannot be adequately described by a particular solution,
include the following: nonsteady and relativistic
effects, nonuniform current extraction from a curved
emitter, a nonuniform external magnetic field, long cur-
vilinear space trajectories, the presence of an ion back-
ground, etc. In this context, it is relevant to search for
and interpret exact solutions that are described by ordi-
nary differential equations, no matter how exotic the
result obtained may be or whether it can ever be applied
in practice.

An attempt to contribute to the problem under discus-
sion was made by Naumov [2] by way of looking for and
describing the self-similar motion of charged particles in
nonsteady nonrelativistic flows. In the present note, the
current state of the problem is briefly reviewed and the
contribution of paper [2] to the problem is analyzed.

To begin with, it should be noted that the concept of
exact solutions acquired a new meaning when Ovsyan-
nikov [3, 4] introduced the notion of invariant solution
(H-solution). The complete family of invariant solu-
tions is constructed by analyzing the group properties
of the initial partial differential equations.1 The self-

1 Concerning the application of this method in many branches of
mathematical physics, see L. V. Ovsyannikov and N. Kh. Ibragi-
mov, General Mechanics (VINITI, Moscow, 1975), Vol. 2.
1063-780X/03/2901- $24.00 © 0092
similarity property was found to have much deeper
roots than the concepts of similarity and dimensionality
[5] and is closely related to the invariance of a system
(possibly dimensionless) under the group of transfor-
mations generated by dilatations. Self-similar solutions
are a particular (but important) subclass of invariant
solutions. Naumov [2] rightly noted that “among self-
similar motions, there is motion such that the velocities
are proportional to the distance from the center of sym-
metry.” However, the converse is not true: the motion
with such a property is not necessarily self-similar. The
erroneous interpretation of self-similar motion led Nau-
mov [2] to the conclusion that it is possible to speak of
the self-similarity property in the problem about a thin
curvilinear ribbon-shaped beam [6], for which the
sought-for solution is expressed through the linear frag-
ment of the Taylor expansion about the coordinate nor-
mal to the curved beam axis.

That new things are well-forgotten old things is true
in high fashion, but not in natural sciences. In research
on the construction and interpretation of exact solutions
to the equations for the beam, the following results
were obtained before the paper by Naumov [2] had
been published.

In [7], H-solutions were studied for a steady-state
nonrelativistic planar flow. The objectives of that paper
were to reveal the functional form of the solutions with
which it is possible to convert the basic partial differen-
tial equations into a set of ordinary differential equa-
tions, to give the first physical interpretation of the solu-
tions obtained, and to determine how the solutions
known from the literature are related to the group prop-
erties of the equations for the beam. In [8], an analysis
was made of steady-state beams, including relativistic
beams in 3D-space. H-solutions corresponding to non-
steady-state beams were studied in [9]. The objective of
[10] was to investigate the possibility of constructing
new exact solutions from the familiar solutions under
transformations involving arbitrary functions of time;
2003 MAIK “Nauka/Interperiodica”
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these transformations mean a transition to a noninertial
frame of reference whose origin moves arbitrarily in
space at a nonrelativistic velocity. It was shown that
these transformations leave invariant not only the
hydrodynamic equations for the beam but also the Vla-
sov equations. The case of an immobile ion background
and a multicomponent flow consisting of several
charged-particle species was investigated in [11]. Paper
[12] was devoted to interpreting some steady-state
flows, including relativistic conical flows of Brillouin
type, for which it was possible to express the solutions
in elementary functions. In Chapter 2 of [13], the
results obtained in [7–12] were summarized in the
tables that present the functional forms of H-solutions.

Paper [14] provided an analysis of the results
obtained in the theory of generalized non-steady-state
single-component flows. H-solutions for a non-steady-
state beam that are invariant under transformations with
arbitrary functions of time were analyzed in [15], and
steady solutions that are invariant under the same trans-
formations but with exponential functions of time
(instead of arbitrary functions) were examined in [16].
The group properties of a two-dimensional non-steady-
state solenoidal beam equations were considered in
[17].

Invariant solutions for two-dimensional steady-state
relativistic and nonrelativistic flows were interpreted in
[18, 19], and invariant solutions for non-steady-state
relativistic flows were interpreted in [20]. A careful
analysis of relativistic and nonrelativistic conical flows
of Brillouin type was given in [21].

In [22], a geometrized theory of dense beams [23]
was used to estimate the results obtained in theoretical
studies of single-component flows, in which attempts
were made to describe an arbitrary flow in space by an
ordinary differential equation for the potential of the
generalized momentum by choosing the coordinate
system in a special way.

The above review of the studies on the subject
shows that the problem of constructing as complete as
possible sets of exact solutions has been analyzed in
great detail (in the cited papers, one can find a full list
of the solutions reported in the literature). However,
these studies do not exhaust the subject. First, a large
number of exact solutions (especially nonsteady ones)
have not yet been interpreted, or, in other words, the
corresponding sets of ordinary equations have not yet
been examined in detail. Second, there has been no
study of the problems of constructing partially invariant
solutions [4]2 or of the group properties of the systems
consistent with H-solutions of ranks 3 and 2 (3- and
2-rank solutions satisfy partial differential equations, in
which the number of independent variables is one or

2 In [24], the investigation of partially invariant solutions to the
equations for a steady-state beam in space yielded versions of
solutions with an nonharmonic vector potential; this indicates
that, within the beam, there are currents that are not associated
with it.
PLASMA PHYSICS REPORTS      Vol. 29      No. 1      2003
two less than in the original three-dimensional time-
dependent set).

However, it is still unknown how some of the solu-
tions reported in the literature are related to the group
properties of the beam equations. These solutions may
be divided into two groups. The first group includes the
solutions for planar (∂/∂z = 0) potential solenoidal
flows, which are constructed by using a complex for-
malism [17, 25–28]. The solutions of the second group
are associated with the concept of degenerate flows [29]
and generalized Brillouin flows [30–32].3

Researchers interested in the problem under discus-
sion must work in the directions outlined above and
must take into account the results obtained previously.

Let us analyze the results obtained in [2] in the con-
text of the above brief review. The paper by Naumov
begins by considering one-dimensional non-steady-
state flows, which, to the best of my knowledge, were
first studied in [33]. The remark that planar and axisym-
metric flows can be expanded in the z direction using
Galilean transformations refers to a very particular case
in which transformations with arbitrary functions of
time [10, 13, 15] are applied with respect to the z-axis
under the assumption of a uniform magnetic field.

The functional form of solution determined by for-
mulas (5) in [2],

(1)

was given in [9]; the new result is the integrals that
describe the radial and azimuthal velocity components
(here, R, ψ, and z are cylindrical coordinates).

The solution to the problem of the motion of an
elliptically shaped beam in a magnetic field in the case
of uniform deformation of the beam cross section [34]
is not a self-similar one but belongs to the class of
H-solutions of rank 3, which are invariant under trans-
formations with arbitrary functions of time [15].

The last of the solutions considered in [2] is also
non-self-similar and is interpreted as describing oscil-
lations of a spherical bunch in a Penning trap. However,
this solution is a particular case of an H-solution of rank
3, whose functional form was presented in [15] and
which is described by the formulas [2]

(2)

3 Deserving special consideration are exact solutions constructed
in a paper by A. V. Malykhin and O. A. Ollo, Radiotekh. Élek-
tron. (Moscow) 35, 1928 (1990), by systematically applying the
Lagrange formalism.
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Here, x, y, and z are Cartesian coordinates and u, v ,
and w are the velocity components in these coordinates.
The formulas are written in terms of dimensionless
variables that make it possible to remove all physical
constants from consideration.

The interpretation given in [2] appears questionable.
To illustrate this, it is necessary to describe solution (2)
more carefully than it was done in [2]. Substituting for-
mulas (2) into the equations for the beam yields the
self-consistent potential

(3)

which is a sum of the Laplace potential ϕL of the Pen-
ning type and the potential ϕs of the spherically sym-
metric field of a space charge:

(4)

The interpretation given in [2] would be correct if
the particles distributed initially over a sphere were
always to lie on a sphere whose radius changes with
time. Let us show that this is not the case.

Formulas (2) for the velocity components are valid
only under the assumption that the particle coordinates
undergo a uniform deformation:

(5)

where x0, y0, and z0 are the initial Cartesian coordinates
and α, β, µ, ν, and κ are time-dependent trajectory func-
tions. In order to obtain the velocity components u, v ,
and w, it is necessary to take the time derivative of rela-
tionships (5) and to express the initial coordinates x0, y0,
and z0 in terms of x, y, and z using relationships (5)

(6)

A comparison of these velocity components with
those given by formulas (2) yields the following four
equations for the four trajectory functions, which thus
are completely determined by the function R(t) and
constant C in formulas (2)

(7)

R R t( ), ρ0 const.= =

ϕ 1
6
--- ρ C2+( ) x2 y2+( ) 1

6
--- ρ 2C2–( )z2,+=

ϕL
1
6
---C2 x2 y2 2z2–+( ), ϕ s

1
6
---ρ x2 y2 z2+ +( ).==

x α x0 βy0, y+ µx0 νy0, z+ κz0,= = =

u = 
1
δ
--- α̇ ν β̇µ–( )x β̇α α̇ β–( )y+[ ] , δ = αν βµ ,–

v
1
δ
--- µ̇ν ν̇µ–( )x ν̇α µ̇β–( )y+[ ] , w

κ̇
κ
---z.= =

α̇ ν β̇µ–
δ

-------------------- ν̇α µ̇β–
δ

--------------------
Ṙ
R
---,= =

β̇α α̇ β–
δ

-------------------- ν̇µ µ̇ν–
δ

------------------- C, κ R.= = =
It is easy to see that, under uniform deformation (5),

the unit sphere  +  +  = 1 transforms into an
object described by

(8)

In order for the object to remain a sphere, the following
three conditions should be satisfied:

(9)

However, we have no free functions to satisfy these
conditions. Consequently, the object that initially was a
sphere becomes an ellipsoid, which clearly contradicts
formulas (4).

In order to remove this contradiction, it is necessary
to abandon the assumption of a spherical bunch of finite
radius. The variations in the density of an electron flow
described by solution (2) are such that the particles
originally distributed over the sphere start moving
along the surface of an ellipsoid without breaking the
spherical symmetry of the potential of an infinite uni-
form beam.

To conclude, note that paper [2] does not provide
new exact solutions and its contribution to the subject is
twofold: first, the investigation of self-similar solutions
(1), possessing cylindrical symmetry [see formulas (5)
in that paper], and, second, the integration of the equa-
tions describing solution (2). However, the physical
meaning of these results should be revised in the above
manner. As for the first contribution, the integrals in the
equations of motion are written out and a qualitative
analysis of the solution is given. The incompleteness of
the study by Naumov [2] is partially compensated for
by the data obtained from numerical calculations rele-
vant to this solution (in particular, for the case with a
neutralizing background) [35].
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