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Abstract—It is shown that the adequate mapping of the symmetry of determined crystalline and noncrystalline
diamond-like structures requires a change in the Euclidean basis of the structural crystallography to a more gen-
eral basis of projective (algebraic) geometry. It is established that the incidence graphs of specific subconfigu-
rations of a finite projective plane PG(2, q) with q = 2, 3, 4 are isomorhic to the graphs of specific clusters of
diamond-like structures. The clusters thus determined are invariant with respect to the groups of projective
geometry that have orthogonal groups as subgroups and, in fact, are set by the subtables of the incidence tables
PG(2, q) with q = 2, 3, 4. As an example, the a priori derivation of clusters, which are not traditional crystallo-
graphic objects, is considered, namely, the parallelohedron of the diamond structure, the combination of two
Bernal polyhedra Z8 and clusters containing icosahedra. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The importance of determined diamond-like struc-
tures for fundamental crystallography and their appli-
cation can hardly be overestimated. Diamond-like
structures are formed in high-pressure crystalline
phases, crystals with linear defects, thin films, nanoma-
terials, etc., whose structure types are determined by a
tetrahedrally coordinated graph consisting of a set of
vertices and edges. For several decades, the a priori
derivation of the structure types of crystals was based
on the empirical and intuitive construction of such
graphs, and only in 1999, the efforts of mathemati-
cians (a group headed by A. Dress) and crystallogra-
phers (A. Mackay) were crowned with the determina-
tion of all the crystalline tetrahedrally coordinated
combinatorially and topologically different graphs of
the divisions of the three-dimensional Euclidean space
E3 into convex polyhedra with vertices of one, two, or
three different types [1]. In fact, the mathematical appa-
ratus used in [1] is based on the algebraic constructions,
which are more general than discrete groups of motion
in E3. Thus, the adequate mapping of the symmetry of
a crystalline structure (to say nothing of the determined
noncrystalline structures) cannot be made in terms of
the classical crystallography limited by space groups
defined in E3.

Lifting the main restrictions of classical crystallog-
raphy requires a transition to En at n > 3 and to non-
Euclidean geometries. The most important examples
here are the studies of quasicrystals [2–4], regular divi-
sions of three-dimensional Riemann and Lobachevski
1063-7745/02/4704- $22.00 © 20527
spaces, S3 and H3 [5, 6], the theory of stratified spaces
[7], and the lattices of roots [8]. However, up to now, no
mathematical apparatus for adequate mapping of the
symmetry of the determined (not only crystal) dia-
mond-like structures has been developed within all
the mentioned extensions of classical crystallogra-
phy, either because the mathematical basis was
developed insufficiently or, on the contrary, because
the most complicated mathematical apparatus was
confirmed only by a few rather abstract two-dimen-
sional examples.

We believe that the necessary mathematical appara-
tus for the adequate mapping of the symmetry of a dia-
mond-like structure should be similar to that of the
space groups and represented in the form of a clear but
mathematically rigorous basis. The results obtained in
our earlier studies [2, 9–11] show that all these require-
ments are met by the projective (in a wider sense, alge-
braic) geometry whose joint scheme includes Euclidean,
Lobachevski, and Riemannian geometries and deals
with the objects whose consideration in E3 uniquely
determines diamond-like structures [12].

The aim of the present study is to construct the gen-
eralized crystallography of diamond-like structures as a
specific structural application of algebraic geometry,
which includes, as the limiting cases, also the corre-
sponding sections of classical crystallography.

The construction of the generalized crystallography
of diamond-like structures allows one to derive a priori
defined diamond-like structures and determine possible
phase transitions in these structures. The criterion of the
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Projection of a sphere onto Euclidean and projective planes. (a) The sphere S2 is uniquely projected from the North pole N
onto the plane E2 and (b) a pair of points lying on the opposite ends of the diameter of the sphere S2 are projected from the center
of the sphere onto one point of the projective plane PG(2, K).
correctness of this generalized crystallography is the
independent reproduction of the results obtained in [1,
3–6, 13–17] within the framework of this generalized
theory. The inefficiency of the synthesis and the study
of crystals without the use of classical crystallography
leads to the conclusion that the application of the gen-
eralized crystallography of diamond-like structures in
these studies and the synthesis of the determined dia-
mond-like structures would facilitate the efforts of
chemists, physicists, and scientists working in materi-
als and other sciences in their labor-consuming empiri-
cal and intuitive structural constructions. In virtue of
the tetrahedral coordination the characteristic of zeo-
lites, silicates, gas hydrates, fullerites, etc., certain sec-
tions of the generalized crystallography of diamond-
like structures can also be successfully used in the stud-
ies of these materials [17]. For mathematicians, the
generalized crystallography of diamond-like structures
can be an interesting example of mathematical applica-
tions.

The present article is of an introductory nature and
considers examples that clearly show that, at least, for
diamond-like structures, the Euclidean basis of the
structural crystallography should be substituted by a
more general basis of projective (algebraic) geometry.
We consider the examples of clusters of diamond-like
structures whose symmetry can be adequately mapped
only at the level of the groups of projective geometry
including the orthogonal groups as their subgroups. In
many instances, mathematical rigor was often sacri-
ficed for the sake of a clearer representation, and pro-
vided the reader with numerous illustrations that
allowed a direct comparison of the constructions of the
projective geometry with the clusters of the diamond-
like structure uniquely defined by these structures. In
other words, to show the great possibilities of the gen-
eralized crystallography of diamond-like structures one
should not necessarily read the whole article; it is suffi-
cient to get acquainted with the figures showing that the
real and hypothetical clusters of diamond-like struc-
C

tures are uniquely defined by certain mathematical con-
structions represented in tabulated form.

DEFINITIONS AND TERMINOLOGY

A projective plane PG(2, K) consists of a Euclidean
plane E2 = EG(2, K) and one added point at the infinity
for each pencil of straight lines parallel in E2 . The
model of PG(2, K) is shown in Fig 1b.

The straight line in the general position in E3 pass-
ing through the center of a sphere does not lie in the
plane z = 0, and, thus, intersects the plane z = 1 only at
one point. The straight lines lying in the plane z = 0 do
not intersect the plane z = 1, and, therefore, they corre-
spond not to the points from E2, but to the pencils of
parallel straight lines from E2. The structure containing
n points P1, P2, …, Pn and n straight lines l1, l2, …, ln in
which each point is intersected by the q + 1 “straight
line” (n = q2 + q + 1) consisting of q + 1 points is called
a finite projective plane PG(2, q) of order q (Fig. 2a).
The plane PG(2, q) is uniquely defined by its incidence
table in the form of a square n × n table in which the col-
umns P1, P2, …, Pn are called the points, and the rows
l1, l2, …, ln, the straight lines. The incidence of the point
Pj and the straight line li in this table are defined by
placing a black circle into the cell ij; the empty cell sig-
nifies the absence of incidence (Fig. 2). For PG(2, q),
the incidence table (IT(q)) can be constructed using the
summation and multiplication tables of the Galois field
GF(q), of order q [8, 18, 19].

The set of m points and n straight lines (planes) in
which f straight lines (planes) pass through each point
and d points lie on each straight line (plane) is called a
configuration. The configuration is denoted as (mf , nd);
if m = n, the configuration is self-dual and is denoted as
nd (Figs. 2a and 3a). The configuration is defined by its
incidence table (IT(mf , nd)) consisting of m rows and n
columns and containing m · f = n · d incidence signs.
The configuration can be implemented in various (finite
or infinite) spaces; if it is implemented on a certain pro-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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Fig. 2. Finite projective plane PG(2, 2). (a) A graphical model of the finite projective plane PG(2, 2); (b) the incidence table PG(2, 2);
(c) the incidence graph of subconfiguration {73}3; (d) the incidence graph PG(2, 2) as a regular bichromic map {6, 3}2, 1 on a torus
and its representation by a sphere with a handle in the shape of a bent triangular prism; (e) the stereographic projection of a 14-
vertex division of a sphere into hexacycles obtained as a result of the removal of the torus handle; triangulation of a sphere is indi-
cated by thin lines, the hexacycles consisting of four triangles are indicated by solid lines.

Fig. 3. Self-dual Arguesian configuration 103. (a) The Arguesian configuration 103. The triangles P5, P6, P7 and P8, P9, P10 possess
a center of perspective, P1, and the axis of perspective, l1 = {P2, P3, P4}; (b) incidence table 103; and (c) a 20-vertex diamond cluster
determined by the subconfiguration {103}6; the “nondiamond bonds” in the cluster are shown by dashed lines.
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jective plane, it should be geometric, i.e., incidence
table IT(mf , nd) should have at least one empty cell in
each of its subtable 2 × 2 (Figs. 2b and 3b). If the addi-
tion of several incidence signs to the IT(mf , nd) does not
change the geometric configuration, the configuration
is extended [18, 19].

The automorphism or the one-to-one mapping of
PG(2, q) onto itself is such a transformation in which
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
the images of three points belong to one straight line
then and only then, if these points themselves belong to
one straight line. These automorphisms are called col-
lineations and, in the general case, are determined by
the reversible 3 × 3 matrices of the linear-fractional
transformations. All the permutations of the set consist-
ing of n elements form the complete group of permuta-
tions Sn of the order n!. The set of all the collineations
PG(2, q) makes the subgroup Pcol(2, q) of the group Sn;
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the order is Pcol(2, q) = m(q2 + q + 1)(q + 1)q3(q + 1)2,
where q = pm and p is a prime number [18, 19].

The separation of the subgroups of the symmetry
group Sn with n = q2 + q + 1 implemented by PG(2, q)
is also possible within the framework of the graph the-
ory. Each graph edge connects two different points; two
points are connected by only one edge; if k edges are
converged at a vertex, this vertex is of the power k. If all
the vertices of the graph are of the same power k, then
the graph is a regular graph of the power k. The path of
the shortest graph cycle is called its girth, and the cycle
passing through each point of the graph is called the
Hamiltonian path. (The graph with the Hamiltonian
path is the Hamilton graph.) If the set of the graph ver-
tices can be divided into two nonintersecting subsets (of
black and white points) in such a way that any edge
would connect the points of different subsets (white and
black), then the graph is called bichromatic. The regular
graph of power k and girth l with the minimum number
of vertices n is denoted as Γ(n, k, l) [18].

If one brings into coincidence the points P1, P2, …,
Pn and the straight lines l1, l2, …, ln of the finite projec-
tive plane PG(2, q) to the white and black vertices of
the graph and connects by the edges those and only
those pairs of white and black points for which the
intersection of the corresponding row li and column Pj

contains the incidence sign, then the incidence graph
PG(2, q) consisting of 2(q2 + q + 1) vertices and (q +
1)(q2 + q + 1) edges is formed. The incidence graph
PG(2, q) is a regular bichromatic Hamilton graph of
power q + 1 and girth 6 with the minimum possible
order [18]. The incidence graph PG(2, 2) or a Levi
graph of the self-dual configuration 73 is shown in
Fig. 2c.

GRAPH OF A DIAMOND CLUSTER 
AS AN IRREGULAR BICHROMATIC 

MAP 

Let Γ(N0, k, 6), N0 ≤ 2(q2 + q + 1), and k ≤ q + 1 be
the maximum regular subgraph of the incidence graph
Γ(2(q2 + q + 1), q + 1, 6) of the finite projective plane
PG(2, q) that can be represented in the form of a regular
map {6, k}r on the surface S. In accordance with parity
or odd parity r, the surface S is either orientable (a
sphere with handles) or nonorientable (a sphere with
crossed caps). The symbol {6, k}r signifies that the map
is composed of hexagons, with k hexagons converging
at each vertex. The map is obtained from the primitive
mosaics {6, k} by identifying those pairs of its vertices
which are separated by r steps along Petrie’s polygon—
a zigzag of h edges in which any two (and not three suc-
cessive) sides belong to one face [18–21]. In each ori-
ented map, one can single out handles [19, 21, 22].
Thus, in a regular map on a torus, one can single out a
handle in the shape of a bent k-gonal prism (Fig. 2d)
which complements this sphere to a torus [19]. The

6 3,{ } q 1,
3

C

removal of this handle (i.e., of k edges in the regular
map on the torus) results in the formation of an irregu-
lar map on the remaining sphere.

Among the subconfigurations of the plane PG(2, q),
one can find configurations whose incidence graphs can
be represented only by irregular maps providing such a
division of the sphere that the number of hexagons at
each vertex would be different. In particular, such an

irregular map  is obtained from the regular
map {6, 3}b, c on a torus, which contains, upon the
removal of k = 3 edges (Figs. 2d, 2e), N2 = b2 + bc + c2

hexacycles, N1 = 3N2 edges, and N0 = 2N2 vertices. The

irregular map  possesses the following Eule-
rian characteristic typical of a sphere [19, 21, 22]:

(1)

where 2N2, 3(N2 – 1), and (N2 – 1) are the numbers of

vertices, edges, and hexacycles of the map 
(Fig. 2e).

An fcc lattice coincides with the root lattice D3,
and, therefore, the diamond structure as a combination

of two fcc lattices can be denoted as  [8] and is a

regular bichromatic graph Γ( ) of power 4 and girth
6. The edges of this graph do not intersect each other

and, therefore, the general subgraph Γ( ) and
Γ(2(q2 + q + 1), q + 1, 6) (in the combinatorial–topolog-
ical sense, i.e., with no regard for the metric relation-

ships) should coincide with the irregular map 
determined by Eq. (1). A diamond is an object of
Euclidean geometry, whereas PG(2, q) is an object of
finite projective geometry, and, therefore, a diamond
cluster with the graph

(Γ(2(q2 + q + 1), q + 1, 6) ∩ Γ( )) = (2)

is an object of finite projective geometry that is consid-
ered in Euclidean geometry. A priori, the number of
bonds at the cluster vertex at q = 2, 3 does not exceed
four, and, therefore, taking into account Eq. (2), one
can state that diamond clusters with the graphs

, q = 2, 3, possess additional super-Euclidean
symmetry in E3 that remains from PG(2, q) and that the
adequate mapping of this additional symmetry is possi-
ble only at the level of collineation and correlation
groups [19, 20].

PARALLELOHEDRON GRAPH OF DIAMOND 

 AS AN INCIDENCE GRAPH 
OF SUBCONFIGURATION {73}3 

Now, consider the transition from Fano’s configura-
tion 73 or PG(2, 2) to its self-dual subconfiguration
{73}3 formed upon the removal of three edges from the

6 3,{ } b c,
3

6 3,{ } b c,
3

χ 6 3,{ } b c,
3( ) 2N2 3 N2 1–( )– N2 1–( )+ 2,= =

6 3,{ } b c,
3

D3
+

D3
+

D3
+

6 3,{ } q 1,
3

D3
+

6 3,{ } q 1,
3

6 3,{ } q 1,
3

6 3,{ } 2 1,
3
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incidence graph PG(2, 2). Ideal points 0, 1, and ∞ in
Fig. 2a compose an ideal straight line; 0 and Euclidean
points (0,0), (1,0) and (0,1), (1,1) form two straight
lines of the first family; ∞ and Euclidean points (0,0),
(0, 1) and (1,0), (1,1) form two straight lines of the sec-
ond family; and 1 and Euclidean points (1,0), (0,1) and
(1,1), (0,0) form two “straight lines” of the diagonal
family. According to the axiomatics of PG(2, q), the
straight lines of each family are parallel and converge at
the points of the ideal straight line which lie at infinity.
Since three points are located on each line, the straight
line consists of two segments to each of which there
correspond individual edges of the incidence graph
(Fig. 2c) and an individual incidence sign in the inci-
dence table (Fig. 2b). The graph edges shown by
dashed lines and the incidence signs indicated by empty
circles indicate the absence of the corresponding seg-
ments of straight lines and the transition to a subgraph
of the incidence graph or a subtable of the incidence
table. Thus, to the subconfigurations {73}3 there corre-
sponds the removal of the segments between the points
P1 and P2, P3, P4 on the straight lines l2, l3, and l4
(Fig. 2a), the incidence graph without 3 dashed edges
(Fig. 2c), and the incidence table without 3 empty cir-
cles (Fig. 2b). However, in this case the parallel lines l2
and l5, l4, and l7, and l3 and l6 do not intersect (at the
ideal points P2, P4, and P3), which signifies the transi-
tion from projective to Euclidean geometry, where the
parallel lines are intersected. In other words, the transi-
tion from 73 to {73}3 is the transition to the Euclidean
representation PG(2, 2),

If 73 is mapped onto itself by the collineation and
correlation group PGL2(7) of order 336 [19, 21], then
{73}3 is mapped onto itself by the isomorphic group of

loaded collineations (7). Within the framework
of the apparatus of the color W-symmetry groups

[23, 24], (7) is the junior group and, therefore,
by virtue of Eq. (2), we have

(3)

where the orthogonal group  is its symmetry sub-
group, which, in the general case, is not a normal sub-
group. Relationships (3) specify the well-known state-
ment that the finite groups of sphere motion are the sub-
groups of the group of linear–fractional
transformations [25]. If the intersection PGL2(7) ∩

(7) was the normal subgroup of index 2, then

(7) would be a Shubnikov antisymmetry group
[23, 24]. Thus, to the transition from 73 to {73}3 there
corresponds the transition from PGL2(7) to the isomor-

phic group (7) specifying the principle accord-

PGL2
W

PGL2
W

PGL2 7( ) PGL2
W

7( )

PGL2 7( ) PGL2
W

7( )∩⊃ 3m,=

3m

PGL2
W

PGL2
W

PGL2
W
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ing to which the symmetry does not disappear; indeed,
in the transition from PG(2, 2) in E3, the symmetry does
not disappear but only changes its form [23].

The Arguesian configuration 103 (a pair of triangles
perspective with respect to the center and the axis of
perspective, Fig. 3a) is a subconfiguration PG(2, 3) = 134
not containing PG(2, 2), but probably containing its
subconfigurations. Any Arguesian projective plane
(i.e., the plane where the Desargues theorem is valid) is
a plane of translations in which any pair of points can
be related by a translation [26].

The incidence table 103 defines a 20-vertex diamond
cluster (Figs. 3b, 3c) divided into two diagonal blocks,
(1–7) × (1–7) and (8–10) × (8–10), and two nondiago-
nal blocks, (8–10) × (1–7) and (1–7) × (8–10), symmet-
ric with respect to the diagonal. The diagonal block is
an incidence table of the subconfiguration {73}3 (Fig. 2b)
and defines a 14-vertex diamond cluster with the graph

 (Figs. 2c, 2e) indicated by solid lines in
Fig. 3c. For the first time, this cluster was separated
from the diamond structure in [13]. It is a diamond par-
allelohedron described in detail in [10, 11] and defined
by the specifying relationships (2) as

(4)

which provide its formation in E3 under the condition of
equality of the edges (without their intersection) and
the angles formed by these edges. Indeed, the fact that
{73}3 belongs to 103 (defining the plane of translations)
and the existence of nonintersecting parallel lines
(unlike 73) in {73}3 signifies the possible division of the

diamond structure  into translationally equivalent

parallelohedra with the graphs .

The blocks (8–10) × (1–7) and (1–7) × (8–10) cor-
respond to six singly coordinated vertices complement-

ing each doubly coordinated vertex in  to a
triply coordinated one. To the connection of these six
vertices into a hexacycle there corresponds the block
(8–10) × (8–10) (Fig. 3b), but the edges of this hexacy-
cle (dashed lines in Fig. 3c) do not correspond to the
bonds of the diamond structure, and, therefore, a 20-ver-
tex diamond cluster with 24 bonds is defined by inci-
dence table {103}6, i.e., by incidence table 103 without
six empty circles.

GRAPHS OF SPECIFIC CLUSTERS 
OF DIAMOND-LIKE STRUCTURES AS 

INCIDENCE GRAPHS OF 
SUBCONFIGURATIONS PG(2, 3)

The finite projective plane PG(2, 3) contains self-
dual Möbius–Cantor configuration 83 whose incidence

6 3,{ } 2 1,
3

6 3,{ } 2 1,
3 Γ 73( ) Γ D3

+( )∩ Γ 73( ) Γ 103( )∩= =

=  Γ 73 103∩( ) Γ 73{ } 3( ),=

D3
+

6 3,{ } 2 1,
3

6 3,{ } 2 1,
3
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graph is a bichromatic graph {8} + {8/3} of power 3
and girth 6 (Fig. 4a) coinciding with the regular map
{4 + 4, 3} [20] consisting of N2 = 6 octagons on a
sphere S2 with two handles. The Eulerian characteris-
tic χ of this map with N0 = 16 vertices and N1 = 24
edges equals 2 – 2p = –2, where p = 2 is the number
of handles on the surface Sp (the sphere S0 with p han-
dles) [19, 21, 22].

Dividing each octagon in {4 + 4, 3} by two edges
into three tetragons, one obtains 6 × 3 = 18 tetragons
separated by 24 + 6 × 2 = 36 edges on S2. The map {4 +

4, 3} divided into tetragons is denoted as .
The removal of the handle in the map {4, 4}b, c on the
torus S1 reduces the number of edges by four, and the
number of tetragons by 2 [12]. Thus, the removal of two
handles of S2 divided into tetragons should result in the

formation of the map  on the sphere S0
divided into tetragons, where the numbers of edges and
tetragons are less by 8 and 4, respectively, than on

. The removal of the edge shared by two tet-
ragons results in the formation of a hexagon, which
allows one to pass from the sphere division into tet-
ragons to its division into hexacycles. Thus, the division
of octagons into tetragons on {4 + 4, 3}8, the removal

of two handles of , and the connection of tet-

ragons into hexacycles on 8 yields the graph
Γ(2Z8) defining the irregular division of the sphere into
hexacycles and containing 16 vertices, 21 edges, and
7 hexacycles (Fig. 4c),

(5)

where –2 and +2 are the Eulerian characteristics of S2
and S0.

4 4 3,+{ }

4 4 3,+{ } 8

4 4 3,+{ }

4 4 3,+{ }
4 4 3,+{ }

χ 4 4 3,+{ }( ) χ 4 4 3,+{ } :( )=

: 16 24– 6+ 2– 16 36– 18,+= =

χ 4 4 3,+{ } 8( ) χ Γ 2Z8( ):( )=

16 36 8–( )– 18 4–( )+ 2 16 28 7–( )– 14/2,+= =
C

Of the total twelve edges dividing the octagons into

tetragons on  and not belonging to the graph
{8} + {8/3}, the Γ(2Z8) retains only two edges, 6–1'
and 7–6' (where the primed numerals enumerate the
black vertices), with the corresponding incidence signs
not belonging to the incidence table 83 being denoted
by crosses (Fig. 4b). The edges 6–1' and 7–6' belong to

the map , and, therefore, the incidence table
of the subconfiguration {83}5–2, formed upon the
removal of five empty circles from the incidence table
83 and the introduction of two crosses, will be geomet-
ric. In other words, the removal of empty circles allows
one to introduce the crosses into the incidence table 83
without the formation in this table of forbidden rectan-
gles of incidence signs corresponding to the cycles of
four edges (Fig. 4b). The graph Γ(2Z8) defined by the
incidence table {83}5–2 is a graph of the combination of
two Bernal polyhedra Z8 (black and white) [15] related
by a twofold axis (Fig. 4c). Thus, a Bernal polyhedron
Z8 can be obtained from the graph Γ(2Z8) defined by
Eq. (5) under the condition that the edges are equal but
not intersecting and the angles between the edges in this
graph are also equal.

For all (ideal) diamond-like structures, the second
coordination sphere consists of combined four centered
tetrahedra, and therefore the diamond-like structures
have different torsion angles determined by the rotation
of triads of atoms from the second coordination sphere.
If these 12 vertices form an Archimedian cuboctahe-
dron, the diamond-like structure is a diamond (θ = 60°);
if they form a hexagonal cuboctahedron, then the dia-
mond-like structure is lonsdaleite (θ = 60°, 0°); if both
these 12-vertex polyhedra are formed, the diamond-like
structure is a polysynthetic twin [14]. If four triads of
the Archimedian cuboctahedron are synchronously
rotated by an angle of ψ, the cuboctahedron is rear-
ranged into the oblique icosahedron described by the
symmetry group 23, whereas the torsion angle θ
becomes equal to 60° – ψ. The variation of the distances
from the vertex of an oblique icosahedron to the remain-
ing 11 vertices as functions of the angle θ = 60° – ψ was

4 4 3,+{ }

4 4 3,+{ }
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Fig. 5. Incidence table of a finite projective plane PG(2, 3) and the determination of specific 26-atom clusters of diamond-like struc-
tures with the aid of the table subtables. (a) Without the incidence signs shown by empty circles, the incidence table PG(2, 3) deter-
mines the cluster of the diamond-like structure in which the white vertices 2–13 form an icosahedron; (b) without empty circles but
with crosses, the incidence table PG(2, 3) determines a 26-vertex cluster in lonsdaleite in which 12 white vertices 2–13 form a hex-
agonal cuboctahedron of the second coordination sphere. The subtable separated by a solid line 4 × 13 of the incidence table of
PG(2, 3) determines the 17-vertex association of four sharing-vertex centered tetrahedra.
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considered in [16] and it was shown that, at ψ = 22°,
24° (θ = 37.76°), the oblique icosahedron is the closest
to an icosahedron. Obviously, the appropriate general-
ized crystallography of diamond-like structures should
provide an adequate description of diamond-like struc-
tures so that all the specific clusters can be derived
within the framework of this theory.

In all the diamond-like structures, a 17-vertex poly-
hedron of the second coordination sphere is defined by
incidence table 4 × 13, which is the subtable of PG(2,
3) = 134 (Fig. 5a). Thus, the maximum subconfiguration
PG(2, 3), whose incidence graph defines a specific clus-
ter of the diamond-like structure, should be obtained
from a certain regular 26-vertex map. Such a map is the
{6, 3}3, 1 map on a torus with 39 edges and 13 hexacy-
cles. Removing the handle from this map (as in the
above-described removal of the handle in {6, 3}2, 1), we
arrive at the irregular division of a sphere into 13 – 1 =
12 hexagons separated by 39 – 3 = 36 edges. In the sub-
table 4 × 13 of the incidence table PG(2, 3), the point P1
is tetrahedrally coordinated. Thus, the incidence table
of the subconfiguration to be determined should con-
tain 36 + 1 = 37 incidence signs, and the sign in the first
column of the first row should correspond to the inter-
nal 37th edge of the cluster in the diamond-like struc-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
ture. Thus, singling out the subtable 4 × 13 in the inci-
dence table PG(2, 3), and rejecting in the remaining
part (9 × 13) of this table the incidence signs, we arrive
at the incidence table which is a subconfiguration of
PG(2, 3) determining a certain specific cluster of the
diamond-like structure built by hexacycles. The condi-
tion necessary for the assembly of this cluster from
hexacycles (i.e. the condition of the absence of dan-
gling bonds and singly coordinated vertices) requires
that not more than two incidence signs (empty circles)
be removed from each row (column) of the subtable
9 × 13. There is only one subconfiguration satisfying
all the above conditions {134}15 of the plane PG(2, 3)
that uniquely defines the 26-atomic cluster of the dia-
mond-like structure containing an icosahedron formed
by the vertices of the second coordination sphere of the
cluster center (Fig. 5a).

In addition to subconfiguration {134}15, one can also
single out in the plane PG(2, 3) some other subconfig-
urations that also define a specific 26-atom clusters in
the diamond-like structure [11]. Thus, the 26-atom
cluster in lonsdaleite (Fig. 5b) is determined by the sub-
configuration {134}21–3 of PG(2, 3) formed upon the
removal of 21 (empty circles) and the addition of 3
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(crosses) incidence signs in the incidence table 134.
Thus, it is possible to single out in PG(2, 3) the subcon-
figurations that would provide the divisions of a sphere
into 26-vertex hexacycles, which uniquely define spe-
cific clusters of the diamond-like structure. Among all
these subconfigurations, there is only one maximum
configuration, {134}15, which can be completely
included into the incidence table PG(2, 3) by rejecting
the minimum number of the incidence signs. The clus-
ter of the diamond-like structure determined by this
subconfiguration contains an icosahedron formed by
the vertices of the second coordination sphere of the
cluster center. Obviously, this is the solution of the
problem stated in [16] but at a higher level of the gen-
eralized crystallography of diamond-like structures.

FINITE PROJECTIVE PLANE OF PG(2, 4) 
AND CLUSTERS DEFINED BY THIS PLANE

By virtue of the tetrahedral coordination character-
istic of the diamond-like structure, a subgraph of the
incidence graph PG(2, q) q > 3 can define the cluster of
the diamond-like structure only upon the removal of at
least q – 3 edges from each vertex. The total number of
the removed edges drastically increases with an
increase in q, and, therefore, there should exist a certain
maximum value of q appropriate for the generalized
crystallography of diamond-like structures. We deter-
mine this q value as a result of a rather qualitative con-
sideration which will be strengthened in our further
studies.

Like the separation of specific subconfiguration
{134}15 in PG(2, 3) determining a 26-atom cluster of
the diamond-like structure (Fig. 5a), we can reject
49 incidence signs in the incidence table PG(2, 4) and
single out the configuration defining a 40-atom cluster
of the diamond-like structure containing two icosahe-
dra (of white and black atoms) with the centers at points 1
and 6' (Fig. 6a). Complementing this cluster with three
white and three black atoms (I, II, III, and I', II', III'), we
arrive at a 46-atom combination of four icosahedra
(with the centers at points 4', 1, 6', and 14) along the
common threefold axis. The location on this axis of
atoms 5' and 18, whose bonds with atoms 5, 9, 13 and
9', 18', 21' do not correspond to the incidence signs of
the incidence table PG(2, 4), allows one to obtain a
48-atom cluster of the diamond-like structure (Fig. 6a)
defined by the subconfiguration of the unique combina-
torial object, MOG (magic octad generator) [8]. The
MOG generalizes PG(2, 4) and is defined by the
table 6 × 4 (Fig. 6b), whose points I, II, and III corre-
spond to atoms I, II, and III, and the point ∞, to atom 18
in Fig. 6a.

The incidence table PG(2, 4) with 52 incidence
signs removed also defines a 40-atom cluster of the dia-
mond-like structure containing two icosahedra of white
and black atoms (with centers at points 1 and 4')
(Fig. 6c). Complementing this cluster with six black
C

atoms ( ) not corresponding to the rows of the inci-
dence table PG(2, 4) and white atom 18, whose bonds
with atoms 9', 18', and 21' do not correspond to the inci-
dence signs of the incidence table PG(2, 4), we arrive
at a 47-atom cluster of the diamond-like structure
(Fig. 6c). The white atoms of this cluster form a cen-
tered cube with an inscribed ideal icosahedron whose
deformation yields the unit cell of the Frank–Kasper
phase A15 described by the sp. gr.  [4, 27]. Black
atoms form a 26-atom combination of four icosahedra
(with the centers at points 1', 2', 3', and 4') which
belongs to the Frank–Kasper phase C15 described by

the sp. gr.  [27]. On the whole, this 47-atomic
cluster, defined by the subconfiguration PG(2, 4), can
be enclosed into the unit cell of a hypothetical dia-

mond-like structure [4] described by the sp. gr.  =
 ∩ . The removal of other combinations of

not less than 52 incidence signs from the incidence
table PG(2, 4) allows one to determine other energeti-
cally advantageous clusters of the diamond-like struc-
ture [11].

The subconfiguration PG(2, 4) defining the most
symmetric cluster of the diamond-like structure
(Fig. 6a) contains the maximum number (56) of the
incidence signs of PG(2, 4). The minimum specific
subconfiguration of PG(2, 4) is the extended Arguesian

configuration , whose incidence table contains three
more incidence signs than the incidence table of the
Arguesian configuration 103 (Fig. 3) and can be
enclosed only in the incidence table PG(2, 4) [18]. A

cluster of the diamond-like structure determined by 
(20 vertices and 24 edges) is contained in the clusters of
the diamond-like structure defined by the subconfigura-
tions of PG(2, 4) (Figs. 6a, 6c) that can be considered
as different variants of its growth. Comparing the data
obtained with the earlier results, one can draw the con-
clusion that the specific subconfigurations PG(2, q),
q = 2, 3, 4 determine the specific clusters of the dia-
mond-like structure according to the same algorithm.

Since it is impossible to divide E3 into ideal icosahe-
dra, the clusters with icosahedral order can only be of
relatively small dimensions [5] and are energetically
favorable only to a certain extent that is determined by
the possibility of dividing E3. Thus, the enclosure of the
unit cell of the crystalline diamond-like structure [4] in
the cluster defined by PG(2, 4) (Fig. 6c) signifies that
this 47-atom cluster is the maximum possible one. In
other words, the clusters of the diamond-like structure
determined by PG(2, q), q ≥ 5 are either energetically
disadvantageous or are the combinations of the clusters
defined by PG(2, q), q ≤ 4. Within the framework of
algebraic geometry, the limited character of PG(2, 4) in
the generalized crystallography of diamond-like struc-
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Fd3m

P43n

Pm3n Fd3m

103
3
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Fig. 6. The incidence table PG(2, 4), its extension to the MOG (the magic octad generator) and the specific clusters of the diamond-
like structure thus determined. (a) A 40-vertex cluster of the diamond-like structure which, together with vertices I, II, III and I', II',
III' corresponding to the roman points of MOG, is the combination of four icosahedra with the centers at points 14, 6', 1, and 4';

(b) summation (+) and multiplication (×) tables of the Galois field, GF(4) = {0, 1, ω, }, ω =  – 1), and MOG as an extension

of PG(2, 4); (c) a 40-vertex cluster of the diamond-like structure whose 20 white vertices together with vertex 18 are isomorphic to
the unit cell of the Frank–Casper phase A15. Together with 6 black vertices , twenty black vertices of this cluster form a 26-
vertex Pauling polyhedron of the Frank–Kasper phase C15. A 20-vertex cluster of the diamond-like structure determined by the

extended Arguesian configuration  is shown by solid lines.
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tures follows from its enclosure in the MOG (Fig. 6b),
which, in the final analysis, is determined by the limit-
ing lattice E8, a root lattice in the simplest specific Lie
algebra e8 [8, 21, 25].
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CONCLUSION
The separation of diamond-like structures, the

Frank–Kasper phases, the Bernal structures, gas
hydrates, etc. into a specific class of diamond-like
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structures [1–6] indicates the failure of the adequate
mapping of their symmetry within the framework of
classical crystallography. The main result obtained in
this study is the determination of the specific clusters of
diamond-like structures as the Euclidean implementa-
tions of the incidence graphs of specific subconfigura-
tions PG(2, q), q = 2, 3, 4 uniquely determined by their
incidence tables. Somewhat prematurely, we indicate
here that the number of specific subconfigurations
PG(2, q), q = 2, 3, 4 is relatively small, and, therefore,
like the simple forms, all the possible clusters of the dia-
mond-like structures can a priori be enumerated. The
symmetry of these clusters (including super-Euclidean
symmetry) is adequately mapped within the framework of
the generalized crystallography of diamond-like struc-
tures, which is an extension of some sections of the alge-
braic geometry to the structural level. The concrete results
obtained in this study can be formulated as follows:

(1) The diamond structure, being a combination of
two fcc lattices, is a regular bichromatic graph of power 4
and girth 6 and, therefore, the subconfigurations PG(2, q),
q = 2, 3, 4 (which have incidence graph as a regular
bichromatic graph of power q + 1 and girth 6) define the
graphs of specific clusters of the diamond-like structure.

(2) The specific clusters of the diamond-like structure,
being the objects of the higher (projective) geometry con-
sidered in the lower (Euclidean) geometry [12], possess
supersymmetry with respect to the latter geometry, which
can adequately be reflected only within the framework of
the generalized crystallography of diamond-like struc-
tures. For instance, the cluster  determined by
the subconfiguration {73}3 of the finite projective plane
PG(2, 2) is a diamond parallelohedron described by a lin-

ear–fractional symmetry group (7) of order 336

containing the orthogonal subgroup  of order 12.
(3) The mathematical apparatus of the generalized

crystallography of diamond-like structures allows one
to determine a priori the specific clusters of the real and
hypothetical diamond-like structures, which are not tra-
ditional crystallographic objects. For instance, the clus-
ter of the diamond-like structure combining two Bernal
polyhedra Z8 and the cluster of the diamond-like struc-
ture containing the icosahedron in the second coordina-
tion sphere are determined by the subconfigurations
PG(2, 3), whereas the cluster of the diamond-like struc-
ture combining the clusters of two Frank—Kasper phases
(the unit cell A15 and a Pauling 26-atom cluster C15) is
determined by the subconfiguration PG(2, 4).
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Abstract—The wave amplitudes in the vicinity of the focus in monochromatic focusing are calculated in the
approximation where each point of the surface of a weakly bent single crystal reflects an X-ray wave as a planar
crystal, while the reflection coefficient is a coordinate function of the deviation from the exact Bragg condition.
These amplitudes are calculated for all the meridional diffraction geometries (those for plane and spherical
waves and the Johann and aberration-free schemes). For all these schemes, the quantitative characteristic of the
process of polychromatic focusing—the intensity integrated over the pass band—is introduced and calculated.
The analytical expressions of polyprofiles necessary for the consideration of these schemes are also derived.
© 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

When one describes the properties of X-ray image
obtained in the focus of a Bragg spectrometer with a
weakly bent crystal, some useful results can be
obtained in the approximation of local reflection [1]. In
this case, it is assumed that each point of the surface of
a bent crystal reflects an incident X-ray wave as a pla-
nar crystal with the reflection coefficient being the
function of only the deviation from the exact Bragg
angle. Since the reflection vector h(x) for a bent crystal
becomes the function of the coordinate measured along
the crystal surface (Fig. 1), the amplitude of the wave
diffracted at the symmetric reflection has the form

(1)

In the general case, the direction of the vector k(x) of
the incident wave is assumed to be varying. In Eq. (1),
ϕ(x, y) is the phase of the incident wave, χ and χ0 are
the X-ray susceptibilities of the given reflection, and
the y-axis coincides with the generatrix of the cylindri-
cally bent crystal, whereas the function

is the Darwin amplitude of the diffraction reflection of
a monochromatic wave from an ideal thick crystal.
Using the value of the amplitude at the crystal surface
given by Eq. (1), one can obtain the field of the reflected

Eh x y,( ) iϕ x y,( )D χ0 α x( )–( )/χ[ ] ,exp=

α x( ) k x( ) h x( )+[ ] 2
/k
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1.–=

D η( )
iη 1 η2

–( )
1/2

, η 1<+

i η η( ) η2
1–( )

1/2
sgn–[ ] , η 1>




=

1063-7745/02/4704- $22.00 © 20537
wave using the Huygens–Fresnel principle [2],

(2)

where r(x, y, ξ, z) is the distance from the crystal point
with the coordinates (x, y) to the point of observation
(ξ, z) and s is the sine of the diffraction angle. Later, we
shall show that, irrespectively of the reflection scheme,
the integral in Eq. (2) will have a maximum—the focal
image of the radiation source. The behavior of the wave
amplitude in the vicinity of the focus can be described

E ξ z,( ) iks Eh x y,( )∫=

× ikr x y ξ z, , ,( )/r x y ξ z, , ,( )dxdy/ 2π( ),exp
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Phase = 0

x

Fig. 1. Typical scheme of meridional focusing. The ampli-
tude of the reflected wave is set in the ray coordinates with
the origin being located at the focus, the ξ-axis coinciding
with the k + h(0) direction, and the z-axis being normal to
it. The reflection vector h is the function of the coordinate x.
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in the system of ray coordinates with the origin at the
focus point, with the ξ-axis coinciding with the direc-
tion k + h and the z-axis being normal to it. (Fig. 1). The
condition of the applicability of the local approxima-
tion is given below.

Now, consider the geometry of meridional focusing.
The diffraction plane of a cylindrically bent crystal
coincides with the bending plane. We distinguish
between two types of focusing. Focusing of a mono-
chromatic wave in which a wave with fixed k is
reflected from the surface region within which the Dar-
win amplitude in Eq. (1) has a non-zero value. In this
case, one focus is formed, and the squared modulus of
Eq. (2) determines the spatial intensity distribution in
the vicinity of this focus. Polychromatic focusing is
considered as a reflection of the radiation with a white
spectrum. Each ray from the pass band has its individ-
ual energy [3] and is reflected with the formation of a
focus by the monochromatic mechanism. The waves
from the spectral band reflected by a bent crystal form
the polychromatic (dispersion) curve, a set of monofoci
of the diffracted waves. This curve is an envelope of the
system of reflected rays from the pass band. The inten-
sity of the focused band—the polyfocus profile—is
concentrated in the vicinity of the dispersion curve. The
dispersion curve and the profile function are set in the
ray coordinates (ξ, z) of the central ray (Fig. 2). The
“color” of the X-ray intensity maximum varies along
the polychromatic curve.

Below, we study the spatial behavior of the wave
amplitude in monochromatic focusing and the wave
intensity in polychromatic focusing for all the meridi-
onal reflection schemes, namely, those of plane and
spherical waves and the Johann [4] and aberration-free
schemes. Each of these schemes is characterized by a
specific form of the function α(x), the function of a
monochromatic amplitude, the shape of the dispersion
curve, and the polyfocus profile, which is determined as
the sum of monoprofiles of the pass band with due

ξ

z

q

θ

x

Fig. 2. Dispersion curve and polyprofile set in the ray coor-
dinate system (ξ, z) of the central beam.
C

regard for the varying position of the profile maximum
on the dispersion curve.

PLANE WAVE

In the scheme of a plane wave, the deviation has the
form α(x) = –4csx/R. The focus is located at a distance
of q = Rs/2 along the direction of the diffracted wave,
and the amplitude in the vicinity of the focus has the
form

(3)

Hereafter, Jν(z) is the Bessel function and c is the cosine
of the diffraction angle. It can be shown [5] that the dis-
persion curve in this case is a parabola 2ξ2 + 3Rcz = 0
and the polychromatic intensity in the vicinity of this
curve is described by the equation

(4)

where the amplitude E is given by Eq. (3) and l is the
crystal length in the scattering plane. The squared mod-
ulus of the function H(x, y) and the profile described by
Eq. (4) are shown in Figs. 3 and 4. Since the amplitude
with respect to the variable ξ in Eq. (3) decreases more
slowly (by a factor of 1/χ) than in the transverse direc-
tion, the variation in the first argument of the integrand
in Eq. (4) can be ignored. Then, using Eq. (3) and per-
forming integration, we can rewrite Eq. (4) in the region
determined by the following inequalities (Fig. 5):

(5)

and the polyprofile in the form

(6)

where mFn(α1, …, αm; β1, …, βn; z) is the generalized
hypergeometrical function [6]. The region described by
inequalities (5), where the polyprofile is expressed ana-
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lytically, is, in fact, the working space of the energy-
dispersive exposure; in this region, the specimen in the
absorption experiment is located in the vicinity of the
dispersion curve.

For monochromatic focusing, we calculated the
amplitudes without using the approximation of a weak
bending (local reflection) [2]. In this case, the ampli-
tude has the integrated form (3), where the Darwin
amplitude is substituted by the expression

(7)

Here, Dµ(z) is the function of a parabolic cylinder, ν =
kRχ2β, and β is a certain function of elastic constants of
the crystal. For a weak bending (ν @ 1), the following
transition is known to take place [7]:

i.e., at R @ 1/(kχ2), we pass to the region of the local
approximation, which adequately describes the image
of a very distant X-ray source created by reflection
from a weakly bent crystal. This speculation justifies
the approximation of the local reflection. Using Eq. (1),
we can obtain the amplitudes in other geometries of
meridional focusing.

SPHERICAL WAVE

If the source–crystal p and crystal–image q dis-
tances are different, the monoamplitude is described by
an expression similar to Eq. (3),

with the term indicating the position of the focus under
the condition that 1/p + 1/q = 2/Rs. Then, the dispersion
curve is again a parabola,

whose minimum curvature is attained if p = 3q. The
polychromatic profile in this scheme is described by the
relationship similar to Eq. (4).

JOHANN SCHEME

The condition p  q = Rs provides the imaging of
a point source into a point. For such a scattering geom-
etry, the deviation from the Bragg condition has the
form

(8)

and the amplitude in the monochromatic focus is
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expressed as

(9)

Since kRχ2 @ 1, then, at p = Rs, the E can be approxi-
mately written as

(10)

The latter expression is, in fact, the Piercey function [8]
showing “longitudinal behavior”

(11)
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Fig. 3. Microprofile function (view from above), which
describes the focusing schemes of a plane and spherical
(p ≠ q) waves and the aberration-free scheme (p ≠ ae).
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where (z) is the Hankel function. In the transverse
direction, the Piercey function is determined, based on
Eq. (11), as

The first term in (10) describes the amplitude in the
vicinity of the caustic if a wave of the optical frequency
is reflected from a bent interface [9]. For the X-ray
range, the focus has a smaller size because of the short-
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Fig. 5. Region of determination of the polychromatic inten-
sity (6), the part of the polyfocus within which all the rays
of the pass band propagate.
C

ened wavelength. Moreover, Eq. (10) includes the cor-
rection for the nonoptical X-ray diffraction mechanism
of reflection from a weakly bent interface. Using
Eq. (11), one can also obtain the longitudinal mono-
chromatic profile at ξ > 0 with the same accuracy,

(12)

At the intermediate values of the argument t, the fol-
lowing approximate expression is obtained for the
function K(0, 0, t) that describes the amplitude at the
maximum:

Moreover, K(0, 0, t) = 1/(4t) at t @ λ1/4.
Constructing the envelope for the system of specu-

larly reflected rays from the source, we arrive at the
parametric form of the dispersion curve

(13)

whereas summing up the profiles of the reflected rays of
the pass band with due regard for the positions of all the
maxima on this curve, we arrive at the intensity distri-
bution in the polyfocus

(14)

where x, y are taken from Eq. (10). The monochromatic
intensity obtained with the use of Eq. (10) is shown in
Fig. 6.

ABERRATION-FREE SCHEME

The previous scheme cannot provide rigorous
“point to point” imaging—with the varying energy of
the fixed source, the monofocus is displaced along the
curve described by Eq. (13). If a crystal is bent along
the ellipse arc and the pointlike source is located in one
of its foci, the image of the source coincides with
another focus of the ellipse irrespectively of the radia-
tion energy. In the kinematic approximation, this
scheme is characterized by the following relationships
(Fig. 7):

(15)

where e and a are the eccentricity and the semimajor
axis of the ellipse. In all cases where p ≠ ae, the ampli-
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tude of the monofocus is described in terms of the func-
tion H(x, y) from (3),

(16)

where the coordinate x is given in units of a. The poly-
focus of the aberration-free scheme is pointlike (disper-
sion free). In this case, the spatial distribution of poly-
intensity has the form
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This function is shown in graphical form in Fig. 8. Cal-
culating Eq. (17) in a way similar to that used for calcu-
lating Eq. (4), we obtain for a not too small value of ξ

(18)
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At small values of ξ and b2 ! 1, the polyprofile
(u = A2kχz) equals

In the particular case of aberration-free monofocusing
at the minimum diffraction angle (p = q = ae),
we obtain, as in the Johann scheme, the quadratic devi-
ation α(x) = –2e2(1 – e2)(x/a)2. For the amplitude,
we have

(19)

(20)

whereas the argument x in Eq. (19) describes the devi-
ation from the conditions p = q in units of the coordi-
nate. For the maximum of the amplitude (the function
of this deviation), we obtain

where K(k) and E(k) are the complete first- and second-
order elliptic integrals. The pointlike polychromatic
focus, based on Eq. (19) for the amplitude, has the fol-
lowing intensity distribution

(21)

The squared modulus of the function described by
Eq. (20) and the function described by Eq. (21) are
shown in graphical form in Figs. 9 and 10, respec-
tively.

CONCLUSIONS

The case of meridional focusing is typical of X-ray
spectral devices in which the beam incident onto the

I ξ z,( )
πkaχ2

1 ex+( )J1 u( )

192e
4
x

2
1 e

2
–( )u

2
-------------------------------------------------=

× 3J1 u( ) b
2
uJ2 u( ) b

2ξ2
J1 u( ) J2 u( )– J3 u( )+[ ]+ +{ } .

E ξ z x, ,( ) πkaχ( )1/2
/ 2e( )L kχξ / 4e

2( ),[=

χ/2( )1/2
kz/e 2e 2 1 e

2
–( )/χ( )

1/2
x/a, ] ,

L ξ z t, ,( )

=  D x
2

2tx+( ) i ξ x
2

zx+( ) x/ 2π( ),d–exp

∞–

∞

∫

3πL 0 0 t, ,( ) =

i 1 t
2

+( )
–3/2

1 1 t
4

–( ) 3 2t
2

+( )+[ ]

+ 2
1/2

Q1 t
2( ) iQ1 t

2
–( )+[ ] ,

t 1<

2
1/2

Q2 2
1/2

1 t
2

+[ ]
–1/2

( ), t 1,>







Q1 u( ) 1 u–( )K 2
–1/2

1 u+[ ] 1/2( )=

+ 2uE 2
–1/2

1 u+[ ] 1/2( ),

Q2 u( ) 4 E u( ) 1 u
2

–( )K u( )–( )/u
3
,=

I ξ z,( ) π2
–1/2

ka
2χ3/2

/ 8e
3

1 e
2

–( )
1/2

l[ ]=

× L 0 k χ/2( )1/2
z/e kχξ t/ 4e

2( )– t, ,[ ]
2

t,d

b–

b

∫
b e 2 1 e

2
–( )/χ[ ]

1/2
l/a.=
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
crystal is characterized by a narrow collimation along
the direction parallel to the generatrix of the cylindri-
cally bent surface. The focal distances and the radius of
crystal bending are usually selected to be rather large.
Under the condition kRχ2 @ 1, each point of the surface
reflects with the reflection coefficient characteristic of a
planar crystal and which is a function of the coordinate
of this point. In this study, we obtained quantitative
expressions for the amplitudes of the reflected wave in
the vicinity of the focus for four different schemes of
meridional focusing—those of plane and spherical
waves and in the Johann and the aberration-free
schemes. The first two schemes are described by the
parabolic dispersion curves, the Johann scheme corre-
sponds to the semicubic dispersion curve, and the aber-
ration-free scattering geometry, to the point curve. We
also constructed the functions of semiprofiles for the
focusing of a white beam.

The polychromatic mode is discussed in connection
with the fact that the focusing of the pass band is a par-
ticular property of an X-ray optical system based on a
bent crystal and also in connection with its use in
energy-dispersive spectral devices. To characterize the
first aspect, we introduced and then calculated the
intensity integrated over the pass band for all the reflec-
tive configurations. As to the second aspect, we can
state that there always exists a certain neighborhood of
the dispersion curve within which all the rays of the
pass band propagate. The dimensions of this exposure
region and the localization of the intensity within this
region determines the minimum diameter of the speci-
men and the efficiency of the instrument in the experi-
ments in energy-dispersive spectrometry.

The amplitude in monofocusing by the Johann
scheme differs from the amplitude in the optical case by
the correction described by Eq. (12), whereas for all the
other focusing geometries, the X-ray amplitudes are the
functions that are essentially different from the ampli-
tudes in the vicinity of the optic caustics in the same
scattering geometries. In the local approximation, the
amplitudes in Bragg focusing are certain integral trans-
formations of the Darwin amplitude. One more distinc-
tion of the focusing of waves from the wavelength
ranges considered above is the fact that the optical
white light yields a white caustic, whereas the X-ray
white spectrum is dispersed into geometrically the
same caustic, with the pass-band monofoci being dis-
tributed along this caustic in accordance with their
“colors.”
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Abstract—The characteristic features of the crystal structures of alkali calcium silicates from various deposits
are considered. The structures of these minerals, which were established by single-crystal X-ray diffraction
methods, are described as the combinations of large construction modules, including the alternating layers of
alkali cations and tubular silicate radicals (in canasite, frankamenite, miserite, and agrellite) and bent ribbons
linked through hydrogen bonds in the layers (in tinaksite and tokkoite). The incorporation of impurities and the
different ways of ordering them have different effects on the structures of these minerals and give rise to the
formation of superstructures accompanied by a change of the space group (frankamenite–canasite), leading, in
turn, to different mutual arrangements of the layers of silicate tubes and the formation of pseudopolytypes (agr-
ellites), structure deformation, and changes in the unit-cell parameters (tinaksite–tokkoite). © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Alkali calcium silicates, which contain tubular radi-
cals such as tinaksite, tokkoite, frankamenite, and agr-
ellite-Sr, with the structures that have been established
in recent years, are exotic minerals are among wide-
spread silicates (Table 1) [1–9]. All these minerals were
found at the Murun massif (Yakutia), unique not only
because of the discovery there of a very beautiful min-
eral charoite at the Sirenevyœ Kamen’ deposit, but
also  because of ultrapotassium specialization. Many
unusual rocks found in this massif are used as ornamen-
tal raw materials, of which charoitites are the most
well-known ones [10].

Close concretions, intergrowth, and gradual trans-
formations of these minerals into other minerals are
indicative of their constitutional relation and metaso-
matic genesis. The studies of these minerals demon-
strated that, despite different compositions and struc-
tures, they can be considered from a unified standpoint
within the framework of modern modular theory [11, 12]
as layered structures consisting of alternating large con-
struction modules.

Silicon, calcium, alkali metals (potassium and
sodium), oxygen, fluorine, and hydroxy groups are the
major components of these minerals. The ratio between
the fluorine atoms and the hydroxy groups determines the
fine characteristics of their structures, which involve
silicon–oxygen radicals as the major components found
exclusively in these minerals. The radicals form either
tubes or bent ribbons with broad channels along two
crystallographic axes. Silicate radicals are located
between the walls of the Ca- and Ca,Na-polyhedra.
1063-7745/02/4704- $22.00 © 20545
ALKALI CALCIUM SILICATES WITH TUBULAR 
[Si12O30]12– RADICALS

The presence of the tubular radicals [Si12O30]12– is
common to several minerals—frankamenite, canasite,
and miserite (Table 2).

The crystal structures of frankamenite [1] and cana-
site [2] may be considered as a set of infinite zigzag lay-
ers (walls) formed by the Ca,Na-octahedra (Figs. 1, 2)
and linked via layers of the one-dimensionally infinite
silicon–oxygen radicals [Si12O30]12–.

The minimum structure fragment containing one
silicate tube and a minimum number of independent
octahedra of the zigzag wall linked with this tube can be
chosen as the unit cell. Then, the choice of the direc-
tions of the crystallographic axes and unit-cell parame-
ters is apparent. This minimum fragment is exemplified
by the unit cell of frankamenite (sp. gr. P1) (Fig. 2).

Monoclinic canasite with the same structural motif
is characterized by the ordered arrangement of the octa-
hedral cations dictating an alternative choice of crystal-
lographic axes (Fig. 2). The unit-cell volume of the can-
asite structure is doubled compared to that of franka-
menite (Table 2). The monoclinic unit cell of canasite is
related to the triclinic unit cell of frankamenite by the fol-
lowing transformation matrix: atr = (1/2am + bm); btr = cm;
ctr = –bm [1].

Like the frankamenite and canasite structures, the
miserite structure [3, 4] contains the tubular silicate
radical [Si12O30]12– (Fig. 3). The tubes are linked to
form layers located between the octahedral walls that
have a structure that is more complicated than the walls
002 MAIK “Nauka/Interperiodica”
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Table 1.  Crystallochemical formulas and localities of the minerals

Mineral name Crystallochemical formula Locality, reference

Frankamenite K3Na3Ca5[Si12O30](OH)F3 · H2O Murun massif, Yakutia, [1]

Canasite K3Na3Ca5[Si12O30](OH, O)2.5F1.5 Khibiny massif, the Kola Peninsula, [2]

Miserite K3Ca10(Ca, M3+)2[Si12O30][Si2O7]2(O, F, OH)2 · H2O,
where M3+ – Y, REE, Fe

Quebec, Canada, [3]; Dara-i-Pioz,
Pamirs, [4]

Agrellite-Sr Na2(Ca, Sr)4[Si8O20]F Murun massif, Yakutia, [5]

Agrellite-RE Na2(Ca, REE)4[Si8O20]F Quebec, Canada, [6]

Tokkoite K2Ca4[Si7O18(OH)](F, OH) Murun massif, Yakutia, [7]

Tinaksite K2Ca2NaTi[Si7O18(OH)]O Murun massif, Yakutia, [8]

Charoite (K, Na)5(Ca, Ba, Sr)8[Si12O30][Si2O7][Si4O9](F, OH)2 · nH2O Murun massif, Yakutia, [9]
in the frankamenite and canasite structures. The unit
cell is the minimum structure fragment and contains
one silicate tube.

The octahedral wall of frankamenite may be con-
ceived as a layer composed of four edge-sharing octa-
hedral columns (Fig. 2). The structure of the walls was
described in detail elsewhere [1, 2].

The octahedral positions in the frankamenite struc-
ture are filled differently than in canasite, despite the
fact that in both structures the positions are occupied
predominantly by Ca2+ and Na+ cations. Of the eight
positions in the triclinic structure of frankamenite, one
position (M1) is completely occupied by Na+ cations and
one more position (M2), by Ca2+ cations (Fig. 2, Table 3).
These octahedral positions alternate in one of the octa-
hedral columns along the z-axis. In all other columns,
the octahedral positions are isomorphously occupied by
Ca2+ and Na+ cations. The M3 and M4 positions are
occupied by approximately equal numbers of these cat-
ions, whereas the M5–M8 positions are filled with by
Ca2+ and Na+ cations in a ratio of approximately 2 : 1.
The composition of the octahedral wall is Na3.14Ca4.86 [1].

The monoclinic structure of canasite contains only
six independent octahedral positions. The ordered

Table 2.  Crystallographic data for minerals with tubular
radical [Si12O30]12–

Data Frankamenite Canasite Miserite

a, Å 10.094(3) 18.836(4) 10.120(3)

b, Å 12.692(3) 7.244(1) 16.077(3)

c, Å 7.240(1) 12.636(2) 7.378(2)

α, deg 90.00(2) 90.0 96.62(2)

β, deg 111.02(2) 111.76(2) 111.15(2)

γ, deg 110.20(2) 90.0 76.33(2)

V, Å3 804.5(7) 1601.3(8) 1087.4(5)

Z 1 2 1

Sp. gr. P1 Cm P1
C

arrangement of the cations in these positions is more
obvious. One of the octahedral positions in each of two
vertex-sharing columns (M1, M2 and M3, M6) is occu-
pied by the Ca2+ cations, and the other position is occu-
pied by the Na+ cations. In the adjacent vertex-sharing
columns, two calcium octahedra and two sodium octa-
hedra alternate (Fig. 2). The octahedra on the opposite
sides of the columns are filled differently (Table 3).
Hence, the cationic composition of the sides of the
octahedral wall are nonequivalent. The general atomic
composition of the octahedral positions in the canasite
structure is Na2.96Ca4.69R0.38 (where R = Fe, Mn, Mg,
Al, Ti) and is similar to the composition of the octahe-
dral positions in the frankamenite structure. However,
the octahedral positions in the canasite structure are
occupied in a more ordered way, which results in a dou-
bling of the a parameter and a change in the space
group (Table 2).

In the miserite structure, the octahedral walls are
two times thicker than in the frankamenite and canasite
structures, because they are formed by two zigzag lay-
ers of edge-sharing octahedra and seven-vertex polyhe-
dra (Fig. 3). The isolated silicate diortho groups
[Si2O7]6– are located between these layers and alternate
with vacancies along the z-axis. Generally, five of the

Table 3.  Distribution of Na and Ca atoms in the frankame-
nite and canasite structures

Position Frankamenite Canasite

M1 Na Na

M2 Ca Ca

M3 Na0.52Ca0.48 Ca

M4 Na0.46Ca0.54

M5 Na0.30Ca0.70 Ca

M6 Na0.31Ca0.69 Na

å7 Na0.27Ca0.73

å8 Na0.28Ca0.72 Ca

Note: R = Fe, Mn, Mg, Al, Ti.

Na0.44Ca0.43R0.13
1

Na0.44Ca0.43R0.13
1
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six octahedral positions are occupied mainly by Ca2+

cations, whereas one position is filled with a large num-
ber of trivalent Y3+ and REE3+ cations (Fig. 3).

Belov proposed [13] to consider a [Si12O30]12– sili-
cate radical as a one-dimensionally infinite tube formed
due to the condensation of four wollastonite chains or
two xonotlite ribbons (Fig. 1). However, comparing the
Si–O–Si angles in the silicate radical in the minerals
considered in our works with the analogous angles in
wollastonite and pectolite, we concluded that the tube
of the [Si12O30]12– silicate radical should be treated as a
combination of four pectolite chains. This is all the
more true if one takes into account the mixed Ca,Na
composition of the octahedral walls in the frankamenite
and canasite structures [1, 2].

Positions of the K+ cations and H2O molecules. The
vertex-sharing tetrahedra of the silicate tube form
eight-, six-, and four-membered windows. The eight-
membered windows inside the silicate tube are occu-
pied by potassium atoms. The charges of these cations
are compensated not only with six oxygen atoms
located inside the same tube, but also with three oxygen
atoms of the adjacent tube, thus linking the radicals
in the layer (Figs. 1, 3). The centers of the silicate radi-
cals are occupied by alternating potassium atoms and
H2O molecules separated by half a translation along the
tube axis.

Special positions of the anions. In this group of min-
erals, F–, OH–, and O2– anions not bonded to the silicate
radical take part in the formation of octahedral walls.
Although these anions were not distinguished by the
X-ray diffraction methods, some assumptions can be
made on their distribution over the positions with due
regard for the sums of valence strength obtained in the
calculations of the local valence balance by the method
suggested by Pyatenko [14].

The charges of F–, OH–, and O2– anions in the posi-
tions within the octahedral walls are compensated with
~1/6 of the charges of each of the four cations of the
coordination spheres about these anions. Consequently,
the compensation of the charge of the F– anion requires
that two Na+ and two Ca2+ cations should be included
into its coordination sphere, one Na+ and three Ca2+ cat-
ions are necessary for the compensation of the charge
of an OH– anion, and four Ca2+ cations are required in
the case of O2–.

Hence, the distribution of cations over the octahe-
dral positions correlates with the distribution of anions
over the positions within the octahedral wall that are
not bonded to the silicate radical. The proposed cation
and anion distribution agrees well with the results of
calculations of the valence strengths Va and the total
charge of the Z cations in four octahedral positions
(Tables 3, 4).
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A comparison of the crystallochemical formulas of
(a) canasite from the Khibiny massif and (b) franka-
menite from the Murun massif:

(a) K2.94(Na2.96Ca4.69Fe0.17Mn0.07Mg0.08Al0.05Ti0.01) 

· [Si12O30][O0.25(OH)2.27F1.48]

(b) K2.93(Na2.94Ca4.93Mg0.04Mn0.01Fe0.02) 

· [Si12O30][O0.04(OH)1.14F2.82]0.78H2O

reveals the difference in the amount of F– and OH– for
virtually identical cationic composition. The presence

M4

M7

M2M2M2

M1M1M1
M3M3M3

M8M8M8

M5M5M5

M6M6M6
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xtr
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Fig. 1. Frankamenite and canasite structures projected
along the elongation axis. The triclinic unit cell is shown by
bold lines.

Fig. 2. Octahedral wall in the frankamenite and canasite
structures. The columns of the octahedra are hatched. In
both structures, the M1 and M2 octahedra are occupied by
the Na+ and Ca2+ cations, respectively, and the other octa-
hedra have different compositions. The chosen axes in the
monoclinic and triclinic unit cells are shown; the common
origin of coordinates is located in the M1 position.
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y

z

Fig. 3. Miserite structure projected onto the yz-plane; Si2O7 diortho groups are hatched.
of OH– groups in the positions within the octahedral
wall in canasite leads to the stabilization of the structure
via hydrogen bonds with tubular radicals, whereas the
incorporation of F– anions into these positions in
frankamenite impairs the stability of the structure. In
addition, the mode of the distribution of cations over
the octahedral positions is indicative of the presence of
a larger number of mixed (Ca,Na) positions in the
frankamenite structure, which gives rise to microtwin-
ning and deteriorates the quality of single crystals.

The general structural formula of canasite and
frankamenite may be written as follows:

[K2K1 – yhy][NaxCa8 – x][Si12O30] 

· [O3 – x – y(F,OH)1 + x + y]nH2O,

where 0 ≤ x ≤ 3, 0 ≤ y ≤ 1, h are vacancies in the K+ cat-
ionic positions located on the axis of the silicate radical,
n ≤ 1.0.

In miserites, whose crystal structures involve triva-
lent cations compensating for an excessive negative
charge of the anionic radical, the REE content is gener-
C

ally not higher than one atomic unit per formula. As a
rule, the K+ content in the structure is lower than three
atomic units per formula, which suggests that some
oxygen atoms of the anionic radical are replaced by the
OH– groups. The structural formula of miserite may be
represented as follows: 

[K2K1 – yhy][Ca11 + x ][Si12O30] 
· [Si2O7]2é2 – x – y(F,OH)x + y nH2O,

where 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, h are vacancies in the K+ cat-
ionic positions located on the axis of the silicate radical,
n ≤ 1.0.

STRUCTURAL FEATURES OF AGRELLITES

Strontium and rare-earth agrellites (Table 1) have
close unit-cell parameters (Table 5). These minerals
differ primarily in their chemical compositions. Thus,
calcium atoms are partly replaced by strontium and
rare-earth atoms in the agrellite-Sr and agrellite-RE
structures, respectively. However, this seemingly insig-

M1 x–
3+
Table 4.  Octahedra coordinating the special anionic positions, the total charges of the cations (Z), and the sums of the valence
strength of anions (Va)

Anionic
position Cationic position*

Canasite Frankamenite

anions Z anions Z

F1 M1, M3, M4, M7 F, OH 6.12 1.27 F 5.91 1.04

F2 M2, M4, M6, M7 F, OH 6.12 1.18 F, OH 6.97 1.17

F3 M2, M3, M5, M8 O, OH 8.00 1.33 F, OH 6.89 1.17

F4 M1, M5, M6, M8 F 6.00 1.01 F 5.95 1.04

* Occupancies of octahedra by the Ca2+ and Na+ cations are indicated in Table 3.
** Calculated according to Pyatenko (1972).

Va
2 Va

**
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nificant change in composition leads to substantial dif-
ferences in their structures.

In the crystal structure of agrellite, the walls of the
Ca-polyhedra (octahedra and seven-vertex polyhedra),
which are parallel to the (010) plane, are linked to each
other through silicate tubes of the composition
[Si8O20]8– along the z-axis (Fig. 4). The eight-mem-
bered boat-like windows of the tubes are occupied by
the Na+ cations. Each unit cell contains two layers of
Ca-polyhedra and two silicate–sodium layers [5, 6].
The agrellite-RE structure is characterized by the pres-
ence of a C-pseudo-centered cell, which is well seen
from the coordinates of all atoms, except for the F
atoms. As a consequence of the violation of the C-cen-
tered arrangement by fluorine atoms, two types of coor-
dination polyhedra (octahedra and seven-vertex poly-
hedra) are formed about the Ca atoms. All the atoms,
except for F, and also silicate tubes and pairs of the Ca-
polyhedra related by the pseudotranslation [1/2 1/2 0]
were denoted by A and B in the original study [6]. In a
similar way, only F atoms violate the centered packing
of the agrellite-Sr structure, whereas Ca atoms are
arranged so as to satisfy both the C- and I-centered
arrangements [5].

These agrellite species differ primarily because of
the arrangement of silicate tubes and alkali cations
bonded to these tubes. The mutual arrangement of the
A and B silicate layers can be characterized by the vec-
tor equal to half a diagonal in the (001) plane (condi-
tionally, the C-centered packing) in the agrellite-RE
structure and by the vector equal to half a body diago-
nal of the unit cell (conditionally, the I-centered pack-
ing) in the agrellite-Sr structure. In other words, the
arrangements of the octahedral walls and the A silicate
tubes are the same in both structures, whereas B silicate
tubes and Na+ cations bonded to these tubes are shifted
by half a translation along the c-axis in the agrellite-Sr
structure in comparison with their arrangement in the
agrellite-RE structure (Fig. 5) [5].

The [Si8O20]8– silicate radical can be considered as
a tube consisting of two chains related by a center of
symmetry, with each chain being formed by the four-
membered rings of vertex-sharing Si-tetrahedra [5, 6].
The tube has four-, six-, and eight-membered windows
(Fig. 5).

Characteristic features of Ca-walls. Calcium poly-
hedra are formed by terminal oxygen atoms of the sili-
cate tubes and F atoms. The cations in the Ca2A and
Ca1B positions have an octahedral environment. The
sharing-edge octahedra alternate along the z-axis to
form chains. The coordination environment about the
cations in the Ca1A and Ca2B positions are seven-ver-
tex polyhedra also linked into chains along the z-axis.
Chains of the octahedra and seven-vertex polyhedra
share vertices and edges to form a wall parallel to the
(010) plane. There are two polyhedra in each chain per
c-period of the unit cell. The A and B silicate tubes are
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
bonded to the lateral edges of these polyhedra formed
by the oxygen atoms alternating along the z-axis.

In both structures under consideration, the major
impurity atoms (Sr and REE) are located in the Ca1A
polyhedra (Table 6). Other positions in the agrellite-RE
structure incorporate only insignificant amounts of
rare-earth elements. In the agrellite-Sr structure, the
Ca2B position is occupied by Ca atoms, and the Ca1B
and Ca2A positions are isomorphously occupied by Ca
and Na atoms. Hence, these structures have a different

Na ANa ANa A

O 10AO 10AO 10A

O 5AO 5AO 5A
Na BNa BNa B

Ca 1BCa 1BCa 1B

Ca 2ACa 2ACa 2A

Ca 2BCa 2BCa 2B

Ca 1ACa 1ACa 1A O 5BO 5BO 5B

O 10BO 10BO 10B

A

x

B

y

Fig. 4. Agrellite-Sr structure projected onto the (001) plane.

Table 5.  Crystallographic data for agrellites, sp. gr. ê

Data Agrellite-Sr* Agrellite-RE**

a, Å 7.788(4) 7.759(2)

b, Å 18.941(2) 18.946(3)

c, Å 6.995(4) 6.986(1)

α, deg 90.17(9) 89.88(2)

β, deg 116.78(8) 116.65(2)

γ, deg 94.16(4) 94.32(2)

V, Å3 918.0(3) 914.7(4)

Z 4 4

* Crystallochemical formula of agrellite-Sr: 
     (Na0.94K0.03)(Ca1.75Sr0.16)[Si4O10][F0.78(O, OH)0.22] · 0.24H2O.
** Crystallochemical formula of agrellite-RE: 
     (Na1.01K0.02)(Ca1.82REE0.12M0.04)[Si3.90Al0.01O9.92][F0.93(OH)0.18].

1

Table 6.  Occupancies of the cationic positions in the agrel-
lite structures

Polyhedron Agrellite-Sr Agrellite-RE

Ca2A Ca0.90Na0.10 Ca0.993REE0.007

Ca1A Ca0.70Sr0.30 Ca0.853REE0.147

Ca1B Ca0.86Na0.14 Ca0.978REE0.022

Ca2B Ca1.0 Ca0.985REE0.015
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order of cations in the two adjacent Ca-walls, which
results in the doubling of the unit-cell parameter b.

Characteristic features of the junction of Ca-walls
and Si radicals. The role of the geometric factor. It is of
interest to compare the lengths of the O5–O10 edges
adjacent to four-membered rings and the lengths of the
corresponding edges between the rings in the A and B
tubes. In both structures, the O5–O10 edges adjacent to
the four-membered rings of the A and B tubes are larger
than the O5–O10 edges between the rings. In the agrel-
lite-RE structure, the O5B–O10B edge of the Ca1A-
seven-vertex polyhedron containing the largest amount
of rare-earth elements is the shortest one (3.356 Å) and
is located between the four-membered rings. In the agr-
ellite-Sr structure, the O5A–O10A edges of the Ca2A
and Ca1B octahedra isomorphously occupied by the Ca
and Na atoms have close lengths (3.51 and 3.49 Å,

(a)

(b)

z

A

B

y

A
B

Fig. 5. Mutual arrangement of the A and B silicate tubes in
the (a) agrellite-Sr and (b) agrellite-RE structures projected
onto the (100) plane. In both structures, the B tube is shifted
by a/2 with respect to the A tube.
C

respectively). These edges are adjacent to the A silicate
tube. The longest O5B–O10B edge (3.75 Å) belongs to
the Ca1A-seven-vertex polyhedron occupied by the Sr
and Ca atoms, and it borders on the four-membered
ring of the B tube.

The attachment of four-membered rings of the vlas-
ovite chain to the longer edges of Ca-polyhedra
accounts for the difference in the mutual arrangement
of the A and B silicate radicals in the agrellite-Sr and
agrellite-RE structures (Fig. 5). Consequently, in terms of
the arrangement of silicate radicals, these structures can be
considered as polytypes with geometric factors (the
lengths of the O5–O10 edges in the Ca-polyhedra) playing
an important role in the formation of these polytypes.

The choice of unit cells in structures containing the
[Si8O20]8– tubular radical and the description of the
agrellite polytypes. The silicate tubes and the Na+ cat-
ions bonded to these tubes form corrugated layers (T)
alternating with the cationic layers (K) parallel to the
(010) plane (Fig. 6a). In the case of the identical com-
positions of the positions in the cationic layers, the unit
cell of agrellite can be chosen as the minimum structure
fragment (the amin and bmin parameters) consisting of
one silicate tube and one cationic layer. In Fig. 6b, this
fragment is shown by dashed lines. This fragment was
taken as a unit cell in the structures of litidionite
K2Na2Cu2(Si8O20) and fenaksite K2Na2Fe2(Si8O20) (dif-
ferent notation of the axes) [15].

This structure may be considered as a one-layer
polytype with the triclinic unit cell A(aminbminc) or 1A
(the Gard notation [16]). In the case of the ordered
arrangement of cations in each second layer, the unit
cell is doubled (the parameters a2, b2 = 2bmin, c). In Fig. 6b,
this unit cell is shown by dashed lines and contains two
layers of tubes and two layers of cations. However, the
pseudo-centered triclinic unit cell with angles close to
90° (the parameters a, b, c) can be chosen proceeding
from crystallochemical considerations, which does not
change the character of layer alternation.

In the latter case, the agrellite-RE structure can be
regarded as a two-layer triclinic polytype with the C-
pseudo-centered cell. In the agrellite-Sr structure, the
unit-cell axes are chosen as in the agrellite-RE struc-
ture, but each second silicate layer is shifted by half a
translation along the z-axis compared to the positions of
Table 7.  Crystallographic data for tokkoite and tinaksite, sp. gr. ê

Data Tokkoite* Tinaksite** Data Tokkoite* Tinaksite**

a, Å 10.438(3) 10.361(2) β, deg 99.75(2) 99.22(2)
b, Å 12.511(3) 12.153(2) γ, deg 92.89(2) 92.83(2)
c, Å 7.112(2) 7.044(2) V, Å3 914.2(4) 874.2(7)
α, deg 89.92(2) 90.79(2) Z 2 2

* Crystallochemical formula of tokkoite: K1.85(Ca0.87Ti0.13)(Ca0.85Na0.15)(Ca1.71Fe0.15Mn0.08Mg0.06)[Si7O18(OH)][F0.61(OH)0.39].
** Crystallochemical formula of tinaksite: K2.06(Ti0.95Fe0.05)(Na1.0)(Ca1.87Fe0.06Mn0.11Mg0.02)[Si7O18(OH)]O1.02.

1
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Fig. 6. Schematic representations of (a) the structures and (b) relations between the axes of the minimum fragment, the doubled unit
cell, and the pseudo-centered unit cell of the agrellite structure. Solid and empty circles represent the atomic positions at the heights ±z.
The sections of the tubular silicate radicals are represented by tetrahedra.

x

y

Fig. 7. Tokkoite and tinaksite structures projected onto the xy-plane. Hydrogen bonds are indicated by dashed lines.
the analogous layer in the agrellite-RE structure.
Hence, the agrellite-Sr structure can be considered as a
two-layer triclinic polytype with an I-pseudo-centered
cell. As was mentioned above, the pseudo-centered
packing is associated with the fact that F atoms in both
structures violate the centered arrangement.

Following the recommendations of [16], one can
attribute the identical modified Gard symbols Aabc to
these polytypes. However, taking into account the dif-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
ference in the arrangements of the silicate layers in
these polytypes, the agrellite-RE and agrellite-Sr struc-
tures can be denoted as agrellite-2AC and agrellite-2AI ,
respectively, where the coefficient 2 indicates the two-
layer polytype, A signifies the triclinic system, and the
C and I indices indicate the C- and I-pseudo-centered
packings, respectively.

The above-mentioned structural features of the agr-
ellite polytypes clearly manifest themselves in the
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Fig. 8. Corrugated octahedral wall containing columns of the M1-, M2-, M3-, and M4-octahedra.
X-ray powder diffraction patterns. Thus, the stronger
general-type reflections correspond to the C-pseudo-
centered packing (h + k = 2n) and to the I-pseudo-cen-
tered packing (h + k + l = 2n) of the agrellite-RE and
agrellite-Sr structures, respectively [17].

MINERALS WITH THE [Si7O18(OH)]9– SILICATE 
RADICAL

A [Si7O18(OH)]9– silicate radical exists in the struc-
tures of isostructural minerals tokkoite [17, 18] and
tinaksite [8, 19, 20] (Tables 1, 7).

Numerous chemical analyses of the specimens from
the rocks of the Murun massif did not reveal any min-
erals with intermediate compositions. The observed
insignificant replacement of titanium and calcium by
other elements in the tinaksite and tokkoite structures,
respectively, shows the limited isomorphism between
these isostructural minerals (Table 8). The incorpora-
tion of a small Ti4+ cation into one of four octahedral
positions in the tinaksite structure leads to a decrease in
all the unit-cell parameters in comparison with those of
tokkoite (Table 7).

Table 8.  Occupancies of the octahedral positions in the
tokkoite and tinaksite structures

Position Tokkoite Tinaksite

M1 Ca0.87Ti0.13 Ti0.95Fe0.05

M2 Ca0.85Na0.15 Na1.0

M3 Ca0.79Fe0.15Mg0.06 Ca0.95Fe0.06

M4 Ca0.92Mn0.08 Ca0.92Mn0.11Mg0.02
C

In the crystal structures of tokkoite and tinaksite, the
layers of corrugated octahedral walls parallel to the
(100) plane alternate with layers of silicon–oxygen rad-
icals (Fig. 7) [7, 8, 19, 20].

The [Si7O18(OH)]9– silicate radical. Unlike the
above-considered radicals, this radical exists as a bent
ribbon rather than as a closed tube. The [Si7O18(OH)]9–

silicate radical is unique because one of its terminal
anions is not bonded to the octahedral wall but is “sus-
pended” in a Z-like cavity formed by two radicals
(Fig. 7). This anionic position is occupied by an OH–

group involved in hydrogen bonding between two sili-
con–oxygen radicals. The ribbon may form as a result
of condensation of two wollastonite chains with an
additional tetrahedron or of wollastonite and vlasovite
chains. Condensation of these chains gives rise to the
formation of eight- and four-membered windows. The
silicate radical is bent to form a semiring in such a way
that the vlasovite chain is linked to one octahedral wall
via the terminal oxygen atoms, whereas the wollasto-
nite chain is attached to another octahedral wall
(Fig. 7). There are three tetrahedra bonded to the lateral
edges of two octahedra per c-period along the elonga-
tion axis of the crystals.

Octahedral walls in the tinaksite and tokkoite struc-
tures are formed by two infinite ribbons along the [001]
direction. These ribbons consist of edge-sharing col-
umns of octahedra related by a center of symmetry. The
ribbons share vertices, so that the octahedral wall
formed is corrugated (Fig. 8).

The ribbons in the tinaksite structure have differ-
ent compositions. In one of these ribbons, the Ti- and
Na-octahedra (M1 and M2, respectively) alternate. In
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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another ribbon, both octahedra (M3 and M4) are occu-
pied mainly by Ca2+ cations (Table 8). In the tokkoite
structure, all four octahedral positions are occupied
mainly by Ca2+ cations, whereas a small amount of Ti4+

and Na+ cations are also in the M1 and M2 positions (as
mentioned above, the Ti4+ and Na+ cations prevail in
these positions of the tinaksite structure). The fact that
one of the four octahedral positions is favorable for
incorporating smaller cations, whereas another position
is occupied predominantly by larger cations, is not acci-
dental and, apparently, is associated with the mode of
the attachment of the wollastonite chain to the octahe-
dral wall (Fig. 8). The vertical diortho group [Si2O7]6–

with the largest Si–O–Si angle borders on the vertical
edge of the largest M2 octahedron, whereas the vertical
edge of the smallest octahedron is parallel to the verti-
cal edge of the tetrahedron linking diortho groups
[7, 8].

The K+ cation and the hydrogen atom of the (OH)–

group are located in large zigzag channels between the
silicate radicals. As in the case of the (Si12O30)12– radi-
cals, the tinaksite and tokkoite structures have two posi-
tions suitable for K+ cations (Fig. 7). One of these posi-
tions is in the eight-membered window at the bend of
the silicate radical. The K+ cation in this position is also
bonded not only to the oxygen atoms of the ribbon con-
taining the above silicon-radical bend but also to three
oxygen atoms of the adjacent ribbon. Another position
is located approximately at half the height between the
terminal OH– groups.

Like the canasite and frankamenite structures, the
structures of the group of minerals under consideration
contain a special anionic position within the octahedral
wall which is not bonded to the silicate radical (Fig. 8).
Its composition corresponds to the compositions of the
three surrounding octahedra.

Obviously, the mineral tokkoite is isostructural to
tinaksite. These minerals are the end members of the
tokkoite–tinaksite series with the replacements in the
cationic and anionic positions proceeding according to
the scheme 2Ca2+ + (F, OH)– ⇐  Ti4+ + Na+ + O2–, so
that the general formula of the minerals of this series
may be written as follows:

K2 – yCa4 – 2xTixNax[Si7O18(OH)]Ox – y(F,OH)1 – x + y,

where 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

CONCLUSIONS

The comparison of the crystallochemical character-
istics of rarely occurring alkali calcium silicates discov-
ered in the Murun charoite deposit with those of analo-
gous minerals from other deposits shows that they pos-
sess unique features. First, they contain a large amount
of fluorine and hydroxy groups in the positions that are
not incorporated into the silicate radical. The ratio
between the F–, OH–, and O2– anions in these positions
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
correlates with the cationic order within the polyhedral
walls. Second, the structures of these minerals gener-
ally contain no trivalent cations. Third, the position and
role of the K+ cation in the structures of these minerals
differ from those of the Na+ cations. The K+ cations link
the tubes to form silicate layers, due to which these
minerals can be considered as layered structures. The
Na+ cation acts as a partner of the Ca2+ cation in the
polyhedral walls.

In spite of insignificant variations in the chemical
composition, the character of the impurity distribution
influences the fine structural characteristics of this min-
eral group. Thus, the distribution of Na+ and Ca2+ cat-
ions (order–disorder) determines the choice of the unit
cell and the symmetry of the structure (frankamenite–
canasite). The ordered incorporation of particular-type
cations into one of the positions in the structure gives
rise to the formation of pseudopolytypes (agrellites-RE
and -Sr).

It should also be noted that the selected large con-
struction modules in the form of polyhedral walls and
layers of silicate radicals in the minerals under study
does not result in prognostic constructions, because the
shift of the silicate radicals along the polyhedral walls
is always limited by the shift by half a translation along
the elongation axis (the period c is about 7 Å). More-
over, polysomatic reactions of pyriboles are readily
controlled by chemical means, namely, by constructing
linear combinations of compositions (for example, P +
M = PM, amphiboles; PMMPMMP, jimthompsonite;
etc.) or by combining the modules of the olivine and
brucite structures for a series of silicates of the forster-
ite–humite group [10, 11], in the case under consider-
ation, those reactions cannot be designed with suffi-
cient confidence. This is the fundamental characteristic
of the crystal chemistry of silicates with large cations
(in our case, Ca2+ and Na+), in which the size effect
plays a decisive role in the complication of the struc-
tural motifs. Instead of the pyroxene chain (the period
along the elongation axis is ~5 Å), the silicate radical
of  these minerals consists of the pyroxenoid chains
typical of the wollastonite Ca3[Si3O9] and pectolite
Ca2Na[Si3O8]OH (period ~7 Å) structures.

In conclusion, it should be noted that although the
charoite structure is still unknown, there is no doubt
that this mineral belongs to the alkali calcium silicates
with tubular radicals and that its structure consists of
construction modules analogous to those considered
above.
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Abstract—An amorphous sediment was prepared by the decomposition of potassium oxofluoroniobate
K2 − xNb4O3(O, F)3F in water. For this sediment, the atomic radial distribution function was analyzed with the
use of a fragment model, which allows one to interpret expanded coordination spheres as being formed by first
several strongest diffusion maxima. These spheres carry the most reliable information on the structure. It is
shown that the amorphous sediment consists of the randomly packed Nb(O,F)6-octahedra with interatomic dis-
tances close to those observed in the ordered region in the N-Nb2O5 structure. During decomposition in water,
the initial K2 – xNb4O3(O, F)3F phase loses KF-layers, whereas Nb6 clusters with metal bonds are destroyed.
© 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

New niobium-containing phases of the general for-
mula [Nb4O3(O,F)2] [K1 – x(F, O)]n, where n = 1, 2, or 3,
were first prepared by electrolysis of a salt melt with the
composition K2NbOF5 + (KF + NaF + LiF) and ana-
lyzed elsewhere [1, 2]. Single-crystal studies showed
that these phases have composite structures consisting
of alternating nK(F, O) layer blocks with the NaCl
structure and the layer fragments of niobium monoxide
(Fig. 1). In different phases, the number (n) of the KF-
type layers incorporated into niobium oxide varies from
one to three [2]. Crystals taken out of an electrolytic
bath are contaminated with alkali fluorides and so they
are washed for one to three hours in an HCl solution.
Being kept in this solution over a longer period of time,
the phase K2 – xNb4O3(O, F)3F corresponding to n = 2
proved to be unstable and completely decomposed to
form an amorphous sediment. Earlier [2], it was pro-
posed that the amorphous phase consisting of disor-
dered blocks of NbO oxide remained after “washing-
off” KF blocks from the structure. To test the validity of
this assumption, we analyzed the experimental atomic
radial distribution function (ARDF) for the amorphous
sediment based on the fragment model [3], which
allows us to interpret multicomponent amorphous com-
pounds in the ordered region.

EXPERIMENTAL

The experimental X-ray scattering curve from an
amorphous sediment was measured on a DRON-3M
diffractometer (CuKα radiation, graphite monochroma-
tor) in the range of θ-angles from 2.5° to 50° at a step
1063-7745/02/4704- $22.00 © 20555
of 0.025°. Although the exact chemical composition of
the sediment was unknown, it was indicated [2] that the
transformation into the amorphous state was accompa-
nied by a substantial decrease in the potassium and flu-
orine content in comparison with their content in the
initial crystal. The intensity curve I(s), where s =
4πsinθ/λ, revealed the presence of a small amount of
the modified crystalline phase corresponding to n = 3.
Processing the experimental curve, we excluded from
consideration the weak diffraction lines attributed to
this phase. The experimental data were corrected for
polarization and then were processed by the Nabitov-
ich–Stetsiv method [4]. The starting value of the nor-
malization factor k and the relative scattering powers of
the atoms Ki were determined according to the well-
known equations [5]. The Nabitovich–Stetsiv method
enables one to find the interference function i(s)
directly from the experimental curve without using the
analytical functions to account for the background and
incoherent scattering. As a result, no additional errors
are introduced into the calculations of i(s), which
makes it possible to obtain reliable results even using
rather crude experimental data. The interference func-
tion was calculated according to the formula

The summation was carried out over the formula com-
position; Ic(s) is the average line or the average inten-
sity which would be obtained under similar conditions
of X-ray scattering on the same system of independent
atoms. The average line was extrapolated when opti-
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mizing of the background curve. The normalization
factor j was chosen in the range between jmin and jmax,

,

so that the atomic radial distribution function had no
high negative values. In this case, the coefficient j was
close to its maximum value.

The radial distribution function was calculated by
the formula proposed in [5],

where d is the density of the amorphous material (it was
taken to be not higher than 0.8 of the initial-crystal den-
sity), M is the molar weight of one formula unit, smax =
6.24 Å–1, and ∆s = 0.01 Å–1. The atomic radial distribu-
tion function was calculated in the range 0 < r < 10 Å
at a step ∆r = 0.04 Å. The maxima were localized more
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Fig. 1. Idealized model of the K2 – xNb4O3(O, F)3F struc-
ture. The Nb6-cluster is shown by thick lines at the top of
the figure.
C

precisely at a step decreased to 0.01 Å. Six maxima
were clearly seen in the experimental radial distribution
function in the range 0–10 Å. These maxima corre-
spond to the coordination spheres with the average
interatomic distances of 2.07, 4.05, 5.4, 6.6, 7.71, and
9.01 Å (curve 1 in Fig. 2). It is also evident that the sec-
ond maximum is doubled.

RESULTS AND DISCUSSION

The experimental atomic radial distribution func-
tion was interpreted based on the fragment model in the
ordered region. The fragment model proposed earlier
[3] allowed us to analyze the multicomponent amor-
phous compounds and is one of models based on the
crystal structures of chemical analogues. Within the
framework of this model, the structure of an amorphous
material is represented as a mosaic consisting of struc-
tural fragments of the crystalline phases, whose forma-
tion does not contradict the elemental composition of
the compound under study. The use of this model is
advantageous because the arrangement of the atoms in
the crystal always corresponds to the deepest energy
minimum of the system in comparison with that of any
random packing. The most probable interatomic dis-
tances and angles in the amorphous phase retain values
close to the analogous characteristics of a particular
crystalline phase. Hence, the fragment model allows
the interpretation of the average coordination spheres
making the major contribution to the several first stron-
gest diffuse maxima of the intensity curve.

The model radial distribution functions for the
structure fragments were constructed using complete
structure data on the corresponding analogues and the
method of atom–atom correlation functions developed
by Warren [6]. The model atomic radial distribution
functions were calculated by the formula

Here, rij are the interatomic distances calculated from
the structure data for the chosen compound and sorted
according to their types, Nb–O, Nb–F, Nb–Nb, etc.;
2Nij is the number of interatomic distances rij of a given
type per formula unit; α is the attenuation coefficient
generally equal to the thermal factor; and σij is the dis-
persion of the bonds of the same type, having close
lengths and related by the Gaussian function. When com-
bining the bonds, the following condition was fulfilled:
α2 @ . Physically, the model radial distribution func-
tion for a structure fragment is a spherically symmetri-
cal Patterson function of its crystal analogue. To inter-
pret reliably the coordination spheres with the radii
ranging from 3 to 9 Å, the model radial distribution
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Fig. 2. (1) Experimental atomic radial distribution function and
(2) the ARDF model for the crystalline K2 – xNb4O3(O, F)3F
specimen.

Fig. 3. (1) Experimental atomic radial distribution function
and (2) the ARDF model for the (2) N-Nb2O5 and
(3) Nb3O7F crystal structures.

(a)

(b)

Fig. 4. Schematic representations of the (a) Nb3O7F and (b) N-Nb2O5 structures. The vertex-sharing NbO6-octahedra linked into
blocks that have an ReO3-type structure are shown. The adjacent blocks sharing the octahedron edges are located at different heights
and are hatched.
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function was calculated up to 15 Å; i.e., the model con-
sisted of more than 6000 atoms.

To find out whether the amorphous sediment is an
ultradispersed phase of the starting potassium oxofluo-
roniobate or not, the model radial distribution function
for the crystal analogue K2 – xNb4O3(O, F)3F was con-
structed (Fig. 2, curve 2). The model function had a
maximum at r = 2.92 Å corresponding to the Nb–Nb
interatomic distance along the edge of the octahedral
Nb6-cluster (Fig. 1), whereas the experimental radial
distribution function has a deep minimum in this
region. This indicates that the octahedral Nb6-clusters
with the metal bonds were destroyed upon the decom-
position of the initial phase in an aqueous solution of
HCl and argues against the assumption that the amor-
phous sediment consists of randomly packed layers of
NbO oxide typical of the initial crystal.

To reveal the structures whose fragments were
present in the amorphous phase, we calculated the
model radial distribution functions for 37 crystalline
analogues containing the Nb, K, F, and O atoms in dif-
ferent ratios, for example, K2NbO2F5(H2O), K2NbO3F,
K3(NbF5O)(HF2), etc. Most of the model radial distri-
bution functions were inconsistent with the experimen-
tal data. Many of these curves had maxima in the region
of 2.8–3.0 Å resulting from the interatomic Nb–Nb,
K−F, and K–O distances, whereas the experimental
curve had a deep minimum in this region. Some model
curves, for example, those constructed for the Nb4O5,
NbKF6, etc. structures, show a maximum between 4
and 5 Å, which also corresponds to a deep minimum in
the experimental curve. In some cases, the positions of
the minima in the model curves coincide with the posi-
tions of the maxima in the experimental curve. All these
models were excluded from subsequent consideration.

The models constructed for the NbK0.3F3 [7], N-
Nb2O5 [8], and Nb3O7F [9] (Fig. 3) structures best fitted
the experimental curve. It is unlikely that the amor-
phous phase contained structure fragments of the
NbK0.3F3 crystal, because the K and F content in the
sediment was decreased upon the decomposition of
K2 − xNb4O3(O, F)3F in water. Hence, this curve is not
shown in Fig. 3. Both Nb3O7F and N-Nb2O5 crystal
structures (Fig. 4) consist of the vertex-sharing dis-
torted Nb(O,F)6-octahedra, linked into blocks with the
ReO3-type structure [10]. The blocks of these structures
have different sizes and are differently packed. It can be
assumed that the amorphous phase under study is com-
posed of the vertex-sharing Nb(O,F)6-octahedra, which
form a disordered packing, but the interatomic Nb–Nb
and Nb–O distances corresponding to the crystalline
phases are retained. It should be mentioned that of all
the Nb2O5 polymorphs, only a needle-like N modifica-
C

tion appeared to be a crystal analogue, with the model
radial distribution function being consistent with the
experimental data.

CONCLUSIONS

The results obtained lead to the following conclu-
sions. The assumption [2] that the KF-type layers are a
“weak link” of the K2 – xNb4O3(O, F)3F structure is con-
firmed. These layers are “washed-out” upon prolonged
storage in an aqueous solution of hydrochloric acid.
The layer fragments of the niobium monoxide are
destroyed because of the rupture of the metal bonds in
the NbO6-octahedra. The amorphous phase consists of
randomly arranged NbO6-octahedra with the inter-
atomic distances typical of the N-Nb2O5 structure in the
whole ordered region. The structure feature common to
the starting phase and the amorphous sediment is the
presence of the NbO4-squares. As was assumed in the
earlier study [11] of low-valence niobium oxides, these
squares, apparently, are the most stable atom associates
in the Nb–O system.
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Abstract—The impurities in single crystals of the low-temperature β modification of BaB2O4 grown from flux
in the BaB2O4–Na2O system have been studied. The β-BaB2O4 compound was examined by X-ray powder dif-
fraction analysis. The appearance of scattering centers in the crystals correlates with the high content of sodium
whose critical concentration is about 0.021 wt %. The effective distribution coefficient of sodium is 2.5–4.4 ×
10–3. The conditions for constitutional supercooling at the crystallization front are considered. © 2002 MAIK
“Nauka/Interperiodica”.
Barium metaborate, BaB2O4, is known to have two
polymorphs—a high-temperature α polymorph stable

above 925°C and crystallizing in the sp. gr.  and a
low-temperature β modification crystallizing in the
noncentrosymmetric sp. gr. R3c. The crystals of the
β-BaB2O4 modification (BBO) are widely used in non-
linear optics for the transformation of the laser fre-
quency in the visible and UV regions. In spite of the
fact that the growth conditions of these crystals and
their properties have been repeatedly studied [1–11], a
number of questions remained unsolved. The scattering
in some β-BaB2O4 crystals and variations in their trans-
mission spectra are still unclear. In the crystals grown
under unfavorable conditions, the loss in crystallization-
front stability, the formation of a porous substructure, and
the incorporation of inclusions are observed [4, 5, 8].

The typical mechanism of the formation of a cellular
substructure involves constitutional supercooling [4],
which can result in the formation of solid solutions. The
unstable BBO composition is indirectly indicated by
small but significant variations in the unit-cell parame-
ters of single crystals observed in different studies—
from a = 12.547(6) Å, c = 12.736(9) Å [2] to a =
12.5000(3) Å, c = 12.6875(9) Å [12]. However, no sys-
tematic studies of possible nonstoichiometry postulated
in [13], the types of point defects, and the incorporation
of impurities and their distribution coefficients in the
BBO crystals have been done as yet. The BBO crystals
are usually grown from flux in the BaO–B2O3–Na2O
system, and sodium is a natural impurity inherited from
the flux. Moreover, additional impurities present in the

R3c

† Deceased.
1063-7745/02/4704- $22.00 © 20559
starting reagents can also be incorporated into the crys-
tals. Below, we examine the incorporation of such
impurities into the BBO crystals.

EXPERIMENTAL

The BBO crystals were grown from flux in the
BaB2O4–Na2O system containing 20 mol % of Na2O
[10]. The starting reagents were BaCO3, Na2CO3, and
B2O3 oxides of special purity grade. Barium metaborate
BaB2O4 was synthesized by sintering thoroughly pre-
mixed reagents at 700°C. The synthesis was performed
until the complete removal of CO2 and H2O, which took
from 5 to 16 h depending on the weight of the initial
charge. The crystals were grown by the modified Czo-
chralski method on [001]-oriented seeding crystals.
The rates of the lowering of temperature, rotation, and
pulling were 0.5–3 K/day, 1–7 rpm, and 0.2–
0.7 mm/day, respectively. The length of the synthesized
crystals ranged within 25–30 mm and had up to 50% of
the useful volume suitable for preparation of nonlinear
optical elements.

The X-ray phase analysis was made on an HZG-4
diffractometer (CuKα radiation) with the Si external
standard. The X-ray data were processed using the
Profit and Powder 2 (Moscow State University) pro-
gram packages. The theoretical X-ray pattern was mod-
eled using the Powder Cell 1.8 program (Berlin).

Microprobe analysis of the impurity content made
in a JXA-8600S scanning electron microscope–
microanalyzer (25 kV voltage, 10–8 A current). The
standards were purchased from Microanalysis Consult-
ants LTD (jadeite with 10.94 wt % of Na and orthoclase
with 9.46 wt % of K). The specimens were coated with
002 MAIK “Nauka/Interperiodica”
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Fig. 1. X-ray powder diffraction patterns (λ = CuKα) for (a) α-Ç‡Ç2é4 and (b) β-Ç‡Ç2é4.
an aluminum conducting coating. In addition, the pres-
ence of Na and K impurities was checked by atomic
emission spectroscopy on a Z-8000 Hitachi spectrome-
ter (the relative standard deviation S ≤ 0.05).

RESULTS AND DISCUSSION

The experimental X-ray diffraction pattern of
β-BaB2O4 is shown in Fig. 1 together with the X-ray
diffraction pattern of the α modification. The results of
indexing of the X-ray pattern are given in Table 1. We
failed to find a reliable X-ray diffraction pattern of this
compound in the literature. The interplanar distances of
the low-temperature modification, β-BaB2O4 (without
indexing), were first reported in [14]. In [13], this mod-
ification was mistakenly assigned the monoclinic sp. gr.
C2/c (within which the diffraction pattern was indexed).
More recently, it was demonstrated [12, 15, 16] that
the crystal structure of this compound is described
by  the trigonal sp. gr. R3c (no. 161), despite the fact
that the X-ray pattern was also indexed within the
monoclinic system [17]. The reference JCPDS card
(no. 38-0722) includes an incomplete set of observed
reflections. Some weak reflections were assigned
wrong indices in [18, 19]; some reflections remained
unindexed [20].
C

Microprobe analysis of the crystal exhibiting strong
scattering (crystal no. 5-5, Table 2) revealed only two
impurities—sodium and potassium. The quantitative
measurements using 5 points gave a very high impurity
content (1.068 ± 0.165 wt % of Na and 0.281 ± 0.78 wt %
of K). It was assumed that under the conditions of the
X-ray diffraction (the electric-field intensity of the
order of 105 V/cm), Na and K atoms diffuse and they
are accumulation at the sample surface. Earlier [21],
sodium diffusion and its accumulation into surface
clusters were observed in the electron microscopy
study of the SiO2–Si structures under conditions of
thermal-field stress. To confirm this assumption, the
presence of impurities was analyzed under electron-
beam defocusing. With an increase in the dimensions of
the surface under study up to 20 × 20 µm, we obtained
0.462 ± 0.121 and 0.210 ± 0.064 wt % of Na and K,
respectively, whereas at the dimensions 50 × 50 µm, we
obtained 0.418 ± 0.086 and 0.192 ± 0.045 wt % of Na
and K, respectively. The subsequent analysis of the
impurity content was made by atomic emission spec-
troscopy. The results of this analysis are given in Table 2.

As is seen from Table 2, the appearance of the scat-
tering centers correlates with a high Na content in the
crystals. The critical concentration is 0.021 wt %. The
effective distribution coefficients keff (Table 2) were cal-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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Table 1.  Indexing of X-ray diffraction patterns of β-BaÇ2O4. Parameters of the trigonal unit cell: a = 12.527(3) Å,
c = 12.722(4) Å, V = 1728.8(9) Å3

2θ, deg d, Å Q = 104/d2, Å–2 I/I0, % h k l Qcalcd ∆Q

14.140 6.2581 255.34 16 1 1 0 254.91 0.43

16.164 5.4787 333.15 8 1 0 2 332.12 1.03

21.531 4.1236 588.08 4 2 0 2 587.03 1.05

22.813 3.8947 659.24 1 2 1 1 656.55 2.69

24.613 3.6138 765.72 18 3 0 0 764.72 1.01

25.350 3.5104 811.50 100 1 1 3 811.00 0.49

28.499 3.1293 1021.19 12 2 2 0 1019.62 1.56

29.248 3.0508 1074.42 41 0 1 4 1073.59 0.83

30.452 2.9329 1162.53 11 3 1 1 1166.38 –3.85

33.030 2.7096 1362.01 1 3 1 2 1351.75 10.26

35.614 2.5187 1576.33 40 2 2 3 1575.72 0.61

37.978 2.3672 1784.56 9 4 1 0 1784.34 0.21

38.911 2.3126 1869.82 1 2 3 2 1861.56 8.26

41.778 2.1602 2142.95 1 2 1 5 2139.49 3.46

42.609 2.1200 2224.99 20 0 0 6 2224.39 0.60

43.761 2.0668 2341.01 38 4 1 3 2340.44 0.57

44.712 2.0251 2438.41 3 4 2 1 2440.91 –2.50

45.107 2.0082 2479.63 9 1 1 6 2479.29 0.33

49.819 1.8288 2989.98 25 3 0 6 2989.11 0.87

52.034 1.7560 3243.03 2 2 2 6 3244.01 –0.98

56.006 1.6405 3715.76 1 6 1 1 3715.44 0.32

57.225 1.6084 3865.56 3 5 2 3 3869.88 –4.32

58.350 1.5801 4005.26 7 4 1 6 4008.73 –3.47

Table 2.  Impurity content in the BBO crystals and the initial reagents

Specimen Na, wt % keff Na K, wt % Note

Na2CO3 0.0015 Reagent of special purity grade 5–4

BaB2O4 0.016 0.016 Synthesized

Crystal 5-5 0.160 3.3 × 10–2 0.018 With scattering

Crystal 29-3 0.021 4.4 × 10–3 0.018 Without scattering*

Crystal 29-7 0.022 4.6 × 10–3 0.012 Traces of scattering

Crystal 26-13 0.012 2.5 × 10–3 0.011 Without scattering

* Several percent of K2O in the melt.
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(a) (b)

Fig. 2. (a) β-Ç‡Ç2é4 (trigonal system, sp. gr. R3c, a = 12.500 Å, b = 12.69 Å) [12] and (b) NaBO2 (trigonal system, sp. gr. ,
a = 11.875 Å, c = 6.4375 Å) [22] structures; the projections along and normal to the c-axis. Small spheres represent boron atoms;
large spheres denote (a) Ba and (b) Na atoms; BO3 groups are shown by triangles.

R3c

ˆ

culated at the Na concentration in the starting melt C =
4.82 wt %.

Crystallochemical analysis showed that alkali impu-
rities can be incorporated into the β-BaB2O4 structure.
As is seen from Fig. 2, the crystal structure of barium
metaborate is similar to the structure of sodium metab-
orate (NaBO2). Both structures have identical structure
elements—ring [Ç3é6]3– anions packed into layers nor-
mal to the c-axis of the trigonal lattice. The structures
have different arrangements of cations. The number of
Na ions electrostatically compensating the charge is
twice as large as that of Ba ions. The corresponding
parameters of the trigonal unit cells have rather close
values (Fig. 2). This gives grounds to believe that the
Ba ⇔ 2Na heterovalent isomorphism with the incorpo-
ration of additional Na ions into the lattice is possible.
Hence, the major type of intrinsic point defects in the
β-BaB2O4 structure seems to be Frenkel defects with
C

the Ba ions being displaced from their ideal positions
into interstitial sites. The close values of the unit-cell
parameters can also result in the epitaxial growth of
NaBO2 on β-BaB2O4 crystals.

The metrics of β-BaB2O4 is even closer to the met-
rics of isostructural potassium metaborate. (For KBO2,
a = 12.76 Å, c = 7.34 Å [23].) As follows from Table 2,
the K content in the BBO crystals without scattering is
approximately equal to the Na content, despite the fact
that K is only an impurity of the starting reagents (in
our case, Na2CO3). It can be concluded that the effec-
tive distribution coefficient keff of potassium is consid-
erably higher than that of sodium. For crystals nos. 5-5,
29-7, and 26-13, this coefficient is of the order of unity.
However, the purposeful introduction of K (in the form
of carbonate) into the starting flux (crystal no. 29-13)
led to neither a substantial increase in its concentration
in the crystal nor the formation of scattering centers.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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However, the effect produced by this impurity on the
quality and properties of the BBO crystals calls for their
further study.

Now, consider the results obtained in other studies
on the impurity content in BBO crystals. Cheng et al.
[3] evaluated the Na content at 0.01 ± 0.005%, which is
in agreement with the data reported by other Chinese
researchers. In study [7], Na was not detected, and Sr
was the major impurity (0.028%). According to [20],
the Na content in the β-BaB2O4 crystals grown from
flux and by the Czochralski method from the stoichio-
metric melt varied from 0.012 to 0.068%. The transpar-
ent crystals having no inclusions contained from 0.012
to 0.023 wt % of Na. At Na content exceeding 0.035 wt %,
the crystals had inclusions that varied from semitrans-
parent to milk-white, which is consistent with our
results.

It was indicated [16] that a very large amount of Sr
atoms (tens of percent), isovalently replacing the Ba
atoms, can be isomorphously incorporated into the
BBO lattice. Apparently, in our experiments, the con-
centrations of Sr impurities in the starting reagents
were very low. The K atoms were readily incorporated
into the BBO lattice [6] if the melt of potassium fluo-
ride was used as the flux.

The low values of the Na distribution coefficient in
the BBO structure are consistent with the high effi-
ciency of purification from this impurity by the zone
melting method [18]. On the other hand, this method
was inefficient in purification from Sr impurities [24],
which indicates that the distribution coefficient of Sr is
close to unity.

Now, consider the distribution of the concentrations
of the major components in the course of the BBO-
crystal growth in more detail. Figure 3 presents the
qualitative distribution of the component concentra-
tions in the vicinity of the crystallization front in the
steady-state growth of the BBO crystals from the Na2O
flux at a rate of R. Since only a small amount of Na atoms
are incorporated into the crystal, they are pushed away
by the growing crystal, and we observe a jump in the
concentration at the crystallization front. As a result,
the diffusive flux of Na ions from the crystallization
front is directed to the melt. The reduced Ba and B con-
centrations in the melt in comparison with the concen-
trations in crystal give rise to the capture of these com-
ponents in the crystal and the formation of a zone
depleted of these components before the crystallization
front and diffusive flows directed from the melt bulk to
the crystallization front. An excessive accumulation of
sodium must decrease the equilibrium liquidus temper-
ature. The integrated curve is shown in Fig. 3c. The
possible shift of the figurative point corresponding to
real crystallization is displayed in the schematic phase
diagram (Fig. 3d). According to our data [25], the
BaB2O4–Na2O section is unstable, but it passes in the
immediate vicinity of the eutectic point in the BaB2O4–
NaBO2–NaBaBO3 concentration triangle.
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
A more detailed consideration should necessarily
take into account different forms of boron presence in
the melt. High-temperature Raman spectroscopic stud-
ies [26–28] showed that the metaborate [B3O6]3–-rings,
the structural elements of the BBO crystal, are not typ-
ical of the BaB2O4 melt. Here, the polymer [BnO2n]n–

chains built by [BO3]-triangles prevail. Only in a super-
cooled melt is there a noticeable amount of [BO3]3−-
rings along with broken rings (chains of three-mem-
bered boron–oxygen chains with one B=O double bond
per unit) and [BO4]5–-tetrahedra. The molecular-
dynamics calculations [29] showed that the introduc-
tion of Na2O into the melt decreases the chain length
and increases the proportion of the isolated [BO3]3−-tri-
angles, the two-[B2O5]4– fragments and the three-mem-
bered [B3O7]5– fragments, and the metaborate [B3O6]3–-
rings. Nevertheless, it can be stated that it is the low con-
centration of the metaborate rings before the crystalliza-
tion front that is the limiting factor in BBO-crystal growth.
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Fig. 3. Qualitative patterns of (a) the crystal–melt system at
the steady-state directed crystallization at a rate of R; (b) the
distribution of the B, Ba, and Na concentrations and metab-
orate [B3O6]3–-rings; (c) the temperature of the beginning
of the equilibrium crystallization of β-Ç‡Ç2é4 (solid line)
and the actual change in the temperature (dashed-and-dotted
line), the region of constitutional supercooling is hatched in
the vicinity of the crystallization front; (d) phase equilibria
in the BaB2O4–Na2O section according to [25].
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The changes in the melt concentrations normal to
the crystallization front because of independent diffu-
sion in the steady-state process obeys the exponential
law with the characteristic length R/D (the distance
within which an excessive content is decreased by a
factor of e), where D is the diffusion coefficient of the
corresponding component [30]. Apparently, the sodium
mobility is substantially higher than the mobility of Ba,
and the mobility of B atoms diffusing as anionic com-
plexes is lower by several orders of magnitude than the
mobility of cations. The Coulomb interactions between
these components of the melts and various chemical
transformations between boron–oxygen anions give
rise to cooperative processes and, also, cause substan-
tial changes in the impurity distributions in the vicinity
of the crystallization front. This melt should be consid-
ered to be multicomponent [31].

It should be noted that the steady-state growth of
BBO-crystals from flux can be performed either by the
Czochralski technique with melt replenishment [32] or
by the floating-zone technique [33]. In our experiments
based on the Kyropoulos method (slow cooling of the
system), a nonsteady-state process occurs. During
growth, Na ions are accumulated before the growth
front. Once the supersaturation with sodium before the
crystallization front reaches the critical value, the front
becomes unstable, and the cellular structure is formed
with the incorporation of impurities.

It is obvious that the simplest Tiller–Chalmers crite-
rion for constitutional supercooling and stability of the
crystallization front,

G/R < mC0(1 – k)/Dk,

(where G is the temperature gradient at the crystalliza-
tion front in liquid, R is the growth rate, m is the slope
of the liquidus curve, C0 is the solvent concentration in
the solution, k is the distribution coefficient, and D is
the diffusion coefficient of the solvent) cannot be
applied to our case, although this criterion has been
used, e.g., in [5]. The nonstationarity can be taken into
account if one rewrites the criterion in the form

GD/R < m∆C,

(where ∆C is the jump in the concentration at the crys-
tallization front [34]) whereas there is no way to take
into account the multicomponent composition of the
system.

Nevertheless, on the whole, the integrated curve of
the increase in the temperature of the equilibrium crys-
tallization (liquidus) in the direction from the crystalli-
zation front is similar to that observed for binary sys-
tems. In all cases, the stability of the crystallization
front with respect to constitutional supercooling is
favored predominantly by an increase in the tempera-
ture gradient at the crystallization front and a decrease
in the growth rate. Because of the nonstationarity of the
BBO growth, not only the control over thermal convec-
tion [8] but also the stirring of the melt are of particular
importance [10, 11] for leveling the melt composition.
C

It can be seen from Fig. 3 that the equilibrium distri-
bution coefficient k of sodium is lower than keff.
According to the phase diagram of the BaO–B2O3–
Na2O system [25], an increase in the Na content before
the crystallization front by a factor of 1.5 should give
rise to crystallization of the second phase, NaBaBO3.
These melts are characterized by considerable super-
cooling, and, therefore, the actual sodium accumulation
can be more pronounced. Apparently, it can be assumed
that the equilibrium distribution coefficient k of sodium
during BBO crystallization is about (1–2) × 10–3.
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Abstract—In the process of studying the phase formation in the Li2CO3–CaO–B2O3–NaCl system,
new Ca,Na,Li-carbonate-borate has been synthesized under hydrothermal conditions. The crystal
structure               of carbonate-borate with the crystallochemical formula

Ca4(Ca0.7Na0.3)3(Na0.7h0.3)Li5[ O36(O,OH)6](CO3)(OH) · (OH,H2O) was refined to Rhkl = 0.0716 by the
least squares method in the isotropic approximation of atomic thermal vibrations without the preliminary
knowledge of the chemical composition and the formula (sp. gr. R3, arh = 13.05(2) Å, α = 40.32(7)°, V = 838(2) Å3,

ah = 8.99(2), ch = 35.91(2) Å, V = 2513(2) Å3, Z = 3, dcalcd = 2.62 g/cm3, Syntex  diffractometer, 3459 reflec-

tions, 2θ–θ method, λMo). The structure has a new boron–oxygen radical [ O36(O,OH)6 , a double

layer of nine-membered [ O15(O,OH)3]7.5–-rings bound by BO3-triangles, and twelve-membered

[ O19.5(O,OH)3]7.5– rings. This allows one to relate this compound to megaborates with complex boron–
oxygen radicals. The structure is built from two types of blocks consisting of Ca,Na,B- and Li,B-polyhedra
alternating along the c-axis, which explains the perfect cleavage of the crystals along the (0001) plane. © 2002
MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The ever increasing attention paid to boron-contain-
ing compounds is associated with the possible practical
application of their physical, in particular, ferroelectric,
ferromagnetic, nonlinear optical, semiconductor, and
other specific properties in various devices. The
unusual crystal chemistry of these compounds is
explained by the different coordination of boron atoms
resulting in various structural rearrangements whose
study allows a better understanding of the genesis of
these compounds and the establishment of the relation
between their composition, structure, and properties.
At  present, no Ca,Na,Li-carbonate-borates have been
found in the group of well-studied carbonate-
borates  with mixed cationic composition such as
gaudefroyite Ca4Mn[(BO3)3](CO3)O3 [1], sakhaite
Ca3Mg[BO3]2(CO3) · H2O [2], carboborite
Ca3Mg[B(OH)4]2(CO3)2 · 4H2O [3], moydite
(Y,REE)[B(OH)4](CO3) [4], and borcarite
Ca4Mg[B4O6(OH)6](CO3)2 [5].

Below, we describe the structural investigation of
new synthetic Ca,Na,Li carbonate-borate whose single
crystals were synthesized while studying the phase for-
mation in the Li2CO3–CaO–B2O3–NaCl system. The
mechanical mixture of the components (analytical-
grade reagents) were placed into an autoclave prelimi-
narily filled with water. The experiments were per-
1063-7745/02/4704- $22.00 © 20566
formed in standard 4-cm3 Teflon-futerated autoclaves at
t = 250°C. The lower temperature was limited by the
kinetics of the hydrothermal reactions, whereas the
upper temperature, by the possibilities of the apparatus
used. The filling coefficient of the autoclave was calcu-
lated so as to provide a constant pressure (100 atm).
The duration of the experiment (18–20 days) was
selected to ensure the completion of the reaction. The
phase thus synthesized consisted of colorless transpar-
ent trigonal crystals with a plane prismatic habit. Some
crystals attained a size of 0.5–1.0 mm.

EXPERIMENTAL: DETERMINATION 
AND REFINEMENT OF THE STRUCTURE 

MODEL

We studied a specially selected single crystal with
the linear dimensions indicated in Table 1. The param-
eters and the symmetry of the trigonal unit cell were
determined by the Laue method in a RKOP chamber

and then were refined on an automated Syntex  dif-
fractometer. The intensities of 8443 experimental
reflections were recorded on the same diffractometer.
The main characteristics of the experimental data are
listed in Table 1. In order to use the AREN complex of
programs [6], the set of experimental reflections
obtained in the rhombohedral setting was transformed

P1
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into the reflections in the hexagonal setting (the transi-

tion matrix / /111). The analysis of the trans-

formed set of reflections indicated the diffraction class ,
and the extinction law –h + k + l = 3n indicated two pos-

sible space groups—  and R3. At the first stage of the
study, the computations were made within the sp. gr. R3
with the use of the averaged set of reflections (Rav =
0.044).

The insufficient amount of material did not allow us
to obtain the powder diffraction pattern and to perform
the quantitative chemical analysis, and, as a result, to
correctly identify the compound. The qualitative X-ray
spectral analysis made on a scanning CAMSCAN/4DV
microscope with the LINK energy-dispersion attach-
ment (analyst E.V. Guseva) and, independently, on a
CAMECA SX-50 X-ray microanalyzer (analyst
I.A. Bryzgalov) showed the presence of Ca atoms and a
small amount of Na. The comparison of the habit of
grown Ca,Na,Li-carbonate-borate crystals and their
unit-cell metrics with the habit and unit-cell metrics
of   recently studied lead dodecaborate Pb6B12O24

(ah = 11.436 Å, ch = 17.385 Å, sp. gr. , Z = 3 [7])
allowed us to assume their structural similarity, and,
therefore, the presence of 12 Ca atoms, 24 B atoms, and
48 O atoms in the double unit cell of this compound.
The structural model was determined by the direct
method. From 12 variants, we selected the E-synthesis
with the minimum reliability factor, Rhkl = 0.39, which
allowed us to analyze the coordination environment
and heights of the maxima and, thus, to establish the
positions of all the Ca atoms and some of the O and B
atoms. The additional maxima determined by the
method of successive approximations were identified
with O, B, and Li atoms, with the possible presence of
Li atoms assumed on the basis of the charge composi-
tion. The model found was refined by the least-squares
method to Rhkl  = 0.1149 in the isotropic approximation
and to Rhkl = 0.0862 in the anisotropic approximation.

The high value of the isotropic thermal correction
(Biso ≈ 4.5 Å2) for one of the Ca-positions led to the
assumption that it is filled with Na+-cations. The refine-
ment of the occupancy of this position (with the use of
the atomic scattering curve of Na) and also of the
remaining Ca-positions showed that the former position
is statistically filled by Na-cations (~70%), whereas
one  of the latter Ca-positions, Ca(2), is statistically
filled by 70% Ca and 30% Na. The division of the
anionic part of the structure into O2–

 ions and OH–

hydroxyl groups was made based on the calculation of
the local balance of valence strengths with due regard
for the cation–oxygen distances [8] (Table 2). The pres-
ence of isolated CO3-groups was assumed upon the
analysis of the average cation–oxygen distances
slightly shorter in CO3-groups (1.302 Å) than the value

of 1.372 Å in BO3-triangles. The presence of -

011 101

3

R3

R3

CO3
2–
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and OH–-groups and also of H2O molecules in
Ca,Na,Li-carbonate-borate was confirmed by the IR-
spectroscopy data. The IR spectrum was obtained by
N.V. Chukanov on a Specord 75 IR spectrophotometer
(Fig. 1) (pressing with KBr, polystyrene and gaseous-
ammonia standards). The frequencies were measured
with an accuracy of ±1 cm–1 at the Institute of Chem-
ical Physics of the Russian Academy of Sciences

Table 1.  Main crystallographic characteristics and experi-
mental data

System Trigonal

Sp. gr. R3

Z 3

arh, Å 13.05(2)

α, deg 40.32(7)

V, Å3 838(2)

ah, Å 8.99(2)

ch, Å 35.91(2)

V, Å3 2513(2)

dcalcd, g/cm3 2.62

µ, cm–1 13.4

Linear dimensions of crystal, mm 0.350 × 0.350 × 0.200

Radiation, wavelength Mo-Kα, 0.71069

Diffractometer Syntex P

Scanning mode 2θ : θ

Maximum sinθ/λ 1.08

Scanning rate, deg/min 4–24

Number of measured reflections
(I ≥ 1.96 σ(I)) within the half 
of the reciprocal space

8443

Number of reflections in the
independent region

3459

Number of reflections used at the 
concluding stage of the least 
squares refinement

3281

Complex of computational
programs used

AREN

Final reliability factor

Rw 0.1018

R 0.0716

The weighting scheme in the least 
squares procedure

w = 1/(A + F + BF2)

A = 2Fmin, B = 2/Fmax

The number of parameters to
be refined

272

1
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B(5) B(6) B(7) B(8) Total

9 – – – – 2.014

– – – 0.859 1.744

– – – 0.841 1.943

5 0.644 – – – 1.984

– – – – 2.095

0.667 – – – 1.961

– – – – 1.873

0.834 0.724 – – 1.991

– – – 1.303 2.027

8 – 0.762 – – 1.830

0.857 0.814 – – 2.025

– – 1.003 – 2.029

↓ × 3

– – – – 1.981

– – – – 1.025

– 0.701 – – 1.602

– – – – 1.916

– – – – 0.750

2 3.002 3.001 3.009 3.003
Table 2.  Local balance of valence strengths at anions

Anion
Cation

Ca(1) Ca(2) Ca(3) Na Li(1) Li(2) Li(3) C B(1) B(2) B(3) B(4)

O(1) 0.271 – – 0.114 – – – – – 0.690 – 0.93

↓ × 3

(O,OH)(2) – – – 0.119 – – – – – 0.766 – –

↓ × 3

O(3) – 0.408 – – – – – – 0.694 – – –

O(4) 0.161 – – – – 0.184 – – – – – 0.99

↓ × 3

O(5) 0.260 0.250 – – – – – – 1.585 – – –

O(6) – – 0.170 – – 0.149 – – – – 0.975 –

↓ × 3 ↓ × 3

O(7) – 0.260 0.227 – 0.264 – – – – – 1.122 –

↓ × 3

O(8) 0.271 – – – – – 0.162 – – – – –

↓ × 3

O(9) – 0.273 0.270 – 0.181 – – – – – – –

↓ × 3

O(10) – – – – – – – – – – – 1.06

O(11) – – – – 0.232 – 0.122 – – – – –

↓ × 3

O(12) 0.260 – – – – – – – – 0.766 – –

O(13) 0.483 – – – – – – – 0.717 0.781 – –

(OH)(14) 0.292 – – – – – 0.149 – – – – –

→ × 3

(O,OH)(15) – – – – – – – – – – 0.901 –

O(16) – 0.258 – – 0.322 – – 1.336 – – – –

↓ × 3

(OH,H2O)(17) – 0.250 – – – – – – – – – –

→ × 3

Total 1.998 1.699 2.001 0.699 0.999 0.999 1.001 4.008 2.996 3.003 2.998 3.00
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Fig. 1. The IR spectrum of synthetic Ca,Na,Li-carbonate-borate.
(Chernogolovka). An analysis of the absorption bands
showed the presence of condensed radicals of B-tetra-
hedra (1130–886 cm–1) and [BO3]3–-radicals (1359–
1242 cm–1). We failed to identify the absorption bands
of Li–O vibrations against the background of a large
number of absorption bands due to deformation vibra-
tions associated with the presence of BO4-tetrahedra.
Four absorption bands in the vicinity of 2870 and
3370 cm–1 indicated the existence of strong hydrogen
bonding in water molecules, whereas the absorption
band in the vicinity of 3625 cm–1 indicated the exist-
ence of free OH–-groups. The bright absorption bands
in the vicinity of 861 and 1456 cm–1 in the IR spectrum
confirmed our assumption regarding the presence of
isolated (CO3)2– groups. As a result, at the final stage
of   our study, we obtained the following structural
and     general formulas for the compound:

Ca4(Ca0.7Na0.3)3(Na0.7h0.3)Li5[ O36(O,OH)6](CO3) ·
(OH) · (OH,H2O) and Ca6Na(2 – x) ·

Li5[ O36(O,OH)6](CO3)(OH)(OH)(1 – x) · xH2O
(Z = 3, dcalcd = 2.62 g/cm3). With due regard for the sta-
tistical filling of the Ca(2) and Na positions, the refined
extinction parameters, and the layer coefficients, the
reliability factor was Rhkl = 0.0716. The concluding
coordinates of the basis atoms are listed in Table 3.

B12
t

B10
∆

B12
t

B10
∆
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DESCRIPTION OF THE STRUCTURE

The Ca(1) and Ca(2) atoms occupy the seven-vertex
polyhedra with average Ca–O distances 2.412 and
2.429 Å, respectively; the Ca(3) atom is located in ten-
vertex polyhedron with average Ca–O distance
2.538 Å, whereas the Na atom statistically occupies the
trigonal prism with average Na–O distance 2.624 Å.
The Li(1) atom is located in a considerably distorted
tetrahedron with Li–O distances ranging within 1.88–
2.28 Å and average Li–O distance 2.07 Å, whereas the
Li(2) atom is located in an octahedron with average Li–
O distance 2.15 Å and the Li(3) atom, in a seven-vertex
polyhedron with the average Li–O distance 2.15 Å.
This coordination of the Li(3) atom is explained by its
location in the plane of the tetrahedron face formed by
the four closest ligands spaced ~2.06 Å from the
anions. This explains the necessity of also including in
the environment of the Li(3) atom three O2–-ions from
the second coordination sphere located at a distance of
2.27 Å from Li(3). The unusual Li coordination (c.n. 5
and 6) was also observed earlier in the structure of syn-
thetic Li-borate, Li3[B5O8(OH)2] [9]. Eight indepen-
dent B atoms are characterized by tetrahedral and trian-
gular coordination with the average cation–oxygen dis-
tances in the B(1)-, B(2)-, B(5)- and B(6)-tetrahedra
equal to 1.481, 1.474, 1.473, and 1.470 Å and in the
B(4)-, B(3)-, B(7)-, and B(8)-triangles, 1.374, 1.373,
1.361, and 1.378 Å, respectively. Carbon atoms center



570 YAMNOVA et al.
Table 3.  Coordinates of basis atoms and the equivalent thermal corrections

Atom x/a y/b z/c Biso (Å2)

Ca(1) 0.7630(1) 0.7353(1) 0.9100(1) 0.76(2)

Ca(2)* 0.3231(1) 0.9182(1) 0.7009(1) 0.84(2)

Ca(3) 0.0000 0.0000 0.4067(6) 0.79(3)

Na* 0.0000 0.0000 0.2673(6) 2.2(3)

C 0.0000 0.0000 0.7275(3) 1.2(1)

B(1) 0.3558(5) 0.5099(5) 0.6378(1) 0.6(1)

B(2) 0.4211(5) 0.3938(5) 0.9375(1) 0.5(1)

B(3) 0.5907(6) 0.5791(6) 0.7830(1) 0.6(1)

B(4) 0.5877(6) 0.9862(6) 0.8708(1) 0.70(9)

B(5) 0.8434(6) 0.6730(6) 0.8262(1) 0.68(9)

B(6) 0.6672(6) 0.8293(6) 0.8257(1) 0.84(8)

B(7) 0.0000 0.0000 0.6048(8) 0.8(2)

B(8) 0.8834(7) 0.6111(6) 0.6705(1) 0.80(9)

Li(1) 0.295(2) 0.255(2) 0.7517(5) 2.1(3)

Li(2) 0.0000 0.0000 0.5009(9) 1.1(3)

Li(3) 0.0000 0.0000 0.8377(4) 1.78(3)

O(1) 0.4981(4) 0.9748(4) 0.9031(1) 0.80(7)

(O,OH)(2) 0.4867(4) 0.9591(5) 0.9691(1) 1.09(8)

O(3) 0.5827(4) 0.9504(4) 0.6714(1) 0.74(8)

O(4) 0.8567(4) 0.5646(4) 0.8567(1) 0.90(8)

O(5) 0.8553(3) 0.8342(3) 0.9727(1) 0.57(6)

O(6) 0.7167(4) 0.5529(4) 0.7981(1) 0.91(7)

O(7) 0.5059(4) 0.4892(4) 0.7524(1) 0.84(7)

O(8) 0.7752(5) 0.7701(5) 0.8441(1) 1.02(9)

O(9) 0.7888(3) 0.5770(5) 0.7009(1) 1.13(9)

O(10) 0.5573(5) 0.8359(4) 0.8551(1) 1.07(8)

O(11) 0.7733(5) –0.0055(4) 0.8080(1) 1.08(8)

O(12) 0.7853(4) 0.5039(4) 0.9389(1) 0.88(7)

O(13) 0.2351(4) 0.2771(4) 0.9363(1) 0.67(6)

(OH)(14) 0.0000 0.0000 0.8955(1) 0.8(1)

(O,OH)(15) 0.5539(5) 0.7005(5) 0.7977(1) 1.04(8)

O(16) 0.8335(6) 0.9081(6) 0.7304(2) 2.13(7)

(OH,H2O)(17) 0.0000 0.0000 0.0519(2) 0.7(1)

* The Ca(2) position is filled statistically with 0.7Ca + 0.3Na and the Na position is filled statistically with 0.7Na.
the isolated CO3-triangles. In the hexagonal twice
body-centered R cell of Ca,Na,Li-carbonate-borate
with the unit-cell parameters c = 35.91 Å (exceeding
the a- and b-parameters by a factor of 3.5), one can sin-
gle out two alternating fundamental building blocks
C

parallel to the basis plane (0001) [10]. One unit cell
contains three pairs of blocks related by the R-transla-
tion (Fig. 2).

The first block consists of original Ca-B-clusters
forming a double layer. Each cluster is formed by two
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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Fig. 2. The Ca,Na,Li-carbonate-borate structure projected onto the (110) plane. The Ca and Na atoms are denoted by spheres.
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triads of seven-vertex Ca(1)- and Ca(2)-polyhedra
“wound” around the threefold axis (Fig. 3a). The triads
of Ca-polyhedra are located one under another and
share the oxygen vertices; they are rigidly “cemented”
by three-membered rings of Bi(1)-tetrahedra sharing
edges with Ca-polyhedra. Moreover, the additional
B(2)-tetrahedra and B(8)-triangles and the B(1) tetrahe-
dron form a three-membered “inderite ring” (Fig. 3a).
Three inderite rings form a ten-membered boron–oxygen

anion described by the formula [ O15(O,OH)3]7.5–B6
t
B3

∆
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(Fig. 3b). Some translationally identical B,O-anions
(along the a- and b-axes) are connected by B(7) trian-
gles parallel to the (0001) plane into the

{[ O15(O,OH)3] · [B∆O1.5]  layers (Fig. 4a). In
turn, the Ca(1,2),B-clusters form a double layer via
Ca(3)- and N-polyhedra (Fig. 3c). The lower triads of
seven–vertex Ca(1)-polyhedra form the layer via trigo-
nal Na-prisms sharing the O-vertices (Fig. 4a). In this
case, Na-atoms are located along the threefold axes.
Each Na-prism share the vertical edges with three B(2)-

B6
t
B3

∆
}∞∞

7.5–
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Fig. 3. Fragments of the Ca,Na,Li-carbonate-borate structure: (a) the clusters of seven-vertex Ca(1)- and Ca(2)-polyhedra bound to
the nine-membered boron–oxygen anion consisting of three inderite rings; (b) boron–oxygen lantern consisting of nine- and twelve-
membered boron–oxygen rings projected onto the (110) plane; and (c) a double layer of Ca,Na-polyhedra and its relation to a thick
boron–oxygen layer.
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CO3
tetrahedra of the inderite rings from three adjacent nine-
membered B,O-anions. The nine-vertex Ca(3)-polyhe-
dra are located above the Na-prisms and form the layer
of triads of seven-vertex Ca(2)-polyhedra and share
edges with these polyhedra (Fig. 4b). Moreover, the tri-
ads of Ca(2) polyhedra share the O-vertices with the
isolated CO3-triangles “beaded” onto the axes 3. As a
result, a two-layer Ca,Na,B-block is formed (Figs. 2
and 3c).

The second block has different chemical composi-
tion and is formed by B- and Li-polyhedra (Fig. 2).
A six-membered ring is “wound” around the seven-ver-
tex Li(3)-polyhedron composed by alternating B(5)-
and B(6)-tetrahedra whose upper and lower parts are
inlaid with B(3)- and B(4)-triangles. As a result,
twelve-membered rings described by the formula

[ O19.5(O,OH)3]7.5– are formed (Fig. 4c). These
rings are similar to those found in the structures of new
lead dodecaborate Pb6B12O24 [7] with the anion

described by the formula [ O24]12– and Na-borate
Na8[B12O20(OH)4] [11] with the anion described by the

B6
t
B6

∆

B6
t
B6

∆

C

formula [B12O20(OH)4]8–. However, in Pb- and Na-
dodecaboratates, the twelve-membered rings are iso-
lated, whereas in Ca,Na,Li-carbonate-borate, they are
bound to three B(2)-tetrahedra of the inderite rings
located above (Fig. 3b). This leads to the formation of
three-dimensional “lanterns,” with triads of Ca(1)-
polyhedra of the first block being located inside these
lanterns (Fig. 3c). The translationally identical boron–
oxygen lanterns (along the a- and b-axes) are bound by
B(7)-triangles to form rather thick (0001)-layers described

by the formula {[ O15(O,OH)3] · [B∆O1.5] ·

[ O19.5(O,OH)3]  = [ O36(O,OH)6 ,
which, in turn, form the mixed B,Li-framework bound
by the distorted Li(1)-tetrahedra and Li(2)-octahedra
also located in the second block (Figs. 2, 4c). Thus, the
Li-polyhedra play the role of binders and form the
mixed B,Li-framework and bind the Ca,Na,B-blocks
into the crystal structure. It is the presence of Li-inter-
layers that can explain the perfect cleavage along the
(0001) plane of carbonate-borate.
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∆
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Fig. 4. Fragments of the Ca,Na,Li-carbonate-borate struc-
ture projected onto the (0001) plane: (a) a layer built by tri-
ads of seven-vertex Ca(1)-polyhedra and trigonal Na-
prisms and nine-membered boron–oxygen rings [3B(1)t,
3B(2)t, and 3B(8)∆] connected via B(7) triangles; (b) a layer
formed by triads of seven-vertex Ca(2)-polyhedra and nine-
vertex Ca(3)-polyhedra and CO3-triangles; (c) the combina-
tion of translationally related identical twelve-membered
boron–oxygen rings [3B(5)t, 3B(6)t, 3B(3)∆, and 3B(4)∆],
Li(2)-octahedra, and seven-vertex Li(3)-polyhedra.
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CONCLUSIONS

The structure of Ca,Na,Li-carbonate-borate has no
analogues among the well-known carbonate-borates
and borates. The complexity of the crystal structure
allows one to characterize this compound as megabo-
rate (according to the Strunz classification, [12]) con-
taining rather thick boron–oxygen layers. Until now,
only two megaborates have been described whose com-
plex boron–oxygen radicals can be compared with the
complexes in the compound studied here—pringleite
and its dimorphous modification ruitenbergite,
Ca9[B26O34(OH)24]Cl4 · 13H2O [13]. Their fundamental
building blocks consist of twelve-membered rings of
alternating B-tetrahedra and B-triangles, which,
together with three-membered inderite rings, form a
zeolite-like framework with voids filled with Ca, Cl,
and H2O molecules. The only difference between the
two structures is how their fundamental building blocks
are connected.
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Abstract—The structure of AlF3 · 9H2O was established by the methods of X-ray diffraction analysis. The
structure consists of isolated complex AlF3(H2O)3 molecules and molecules of crystal water linked via a net-
work of Al–F···HOH and Al–OH2···OH2 hydrogen bonds. © 2002 MAIK “Nauka/Interperiodica”.
Aluminum fluorides are important inorganic com-
pounds. In AlF3 · nH2O (n = 1 or 3) and anionic alumi-
num fluorides, the octahedral AlF6 fragments are linked
to each other through bridging ligands to form chain,
layer, or framework structures. As part of our current
studies of aluminum fluorides [1, 2], we investigated
the crystal structure of AlF3 · 9H2O.

EXPERIMENTAL

Colorless AlF3 · 9H2O crystals were synthesized by
the reaction of aluminum powder with a 15% aqueous
solution of HF according to the procedure described
earlier [3]. The chemical analysis, 19F and 27Äl NMR
spectroscopy (in solutions), DTA, and IR spectroscopy
data have been reported elsewhere [2].

The X-ray diffraction data for AlF3 · 9H2O were col-
lected on a Syntex P21 diffractometer (MoKα radiation,
graphite monochromator). The main crystallographic
data and the results of the structure refinement are given
in Table 1. Absorption was ignored. The structure was
solved by combined direct methods and Fourier tech-
niques using the SHELXS-97 [4] and SHELXL-97 [5]
program packages. The positions of all the hydrogen
atoms were established from difference Fourier synthe-
ses. The structure was refined by the least-squares
method in the anisotropic–isotropic approximation.
The atomic coordinates and the thermal parameters are
given in Table 2. In the model obtained, the aluminum
atom is surrounded by six crystallographically equiva-
lent ligands (the X position) at distances of 1.83 Å.
However, according to the chemical analysis, the Al/F
ratio in the compound under study is 1 : 3. The attempts
to refine two partly occupied (by the F and O atoms)
positions, artificially spaced by a distance of 0.2 Å (the
minimum distance between these atoms being fixed as
0.15 Å), gave unsound thermal parameters for fluorine
and oxygen atoms. The structure solution within the
noncentrosymmetric space group with due regard for
twinning did not lead to the separation of the X position
1063-7745/02/4704- $22.00 © 20574
into the oxygen atom of the coordinated water molecule
and the fluorine atom either. Analyzing the intermolec-
ular contacts and the data on different refined arrange-
ments of fluorine and oxygen atoms, we came to the
conclusion that the X position is statistically occupied
by the fluorine and oxygen atoms in a 1 : 1 ratio. The
statistical distribution of fluoride ions and hydroxy ions
in the coordination sphere of an aluminum atom is
unreasonable from both chemical (the simultaneous
presence of the hydroxy and oxonium ions in the struc-
ture) and crystallochemical standpoints (it is impossi-
ble to arrange all the hydrogen atoms so as to avoid

Table 1.  Main crystallographic data and details of the X-ray
diffraction experiment on AlF3 · 9H2O

System Rhombohedral

a, Å 6.9384(13)

α, deg 106.029(17)

Sp. gr. R

V, Å3 285.23(9)

Z 1

Temperature, K 255(3)

ρ, g/cm3 1.433

µ, mm–1 0.241

Crystal dimensions, mm 0.4 × 0.4 × 0.3

θmax, deg 37.6

Number of measured reflections 1131

Number of independent reflections 1013 [Rint = 0.0389]

Number of independent reflections
with I > 2(σ(I))

376

Number of refined parameters 47

R, wR (I > 2σ(I)) 0.0322, 0.0623

R, wR (all reflections) 0.1377, 0.0679

Gof 1.025

3
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Table 2.  Atomic coordinates and thermal parameters of AlF3 · 9H2O

Atom x y z Ueq/Uiso, Å2 Occupancy

Al(1) 0 0 0 0.0216(2)

X 0.25668(13) –0.01207(15) 0.14776(12) 0.0356(2)

O(2) 0.66904(16) 0.27155(18) 0.31387(17) 0.0369(2)

H(1)* 0.352(6) 0.060(6) 0.163(5) 0.046(10) 0.5

H(2)* 0.280(4) –0.114(6) 0.192(4) 0.044(8) 0.5

H(3)* 0.771(5) 0.227(4) 0.273(4) 0.033(6) 0.5

H(4)* 0.676(4) 0.396(7) 0.306(3) 0.041(11) 0.62(6)

H(5)* 0.536(6) 0.182(4) 0.245(4) 0.040(7) 0.5

H(6)* 0.679(7) 0.279(8) 0.456(17) 0.09(2) 0.38(6)

X = 0.5F(1) + 0.5O(1)

* Atoms were refined isotropically.

Table 3.  Geometry of hydrogen bonds in the AlF3 · 9H2O structure

D–H···A bond
Distance, Å

DHA angle, deg
D–H H···A D···A

O(1)–H(1)···O(2) 0.67(4) 2.04(4) 2.6840(18) 159(3)

O(1)–H(2)···O(2) (z, x – 1, y) 0.88(4) 1.79(4) 2.6715(13) 177(3)

O(2)–H(3)···F(1) (y + 1, z, x) 0.93(4) 1.76(4) 2.6715(13) 167(2)

O(2)–H(4)···O(2) (–y + 1, –z + 1, –x + 1) 0.87(4) 1.89(4) 2.7547(13) 171(2)

O(2)–H(5)···F(1) 0.86(3) 1.83(3) 2.6840(18) 169(2)

O(2)–H(6)···O(2) (–z + 1, –x + 1, –y + 1) 0.95(10) 1.81(11) 2.7547(13) 171(5)
short H···H contacts). The geometric characteristics of
the intermolecular F···O and O···O contacts indicate
that the occupancies of the H(1)–H(3) and H(5) posi-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
tions are equal to 0.5. The occupancies of the H(4) and
H(6) positions were also refined (the sum of the occu-
pancies equals unity).
H(4) O(2)

O(2B)
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O(2E) O(2D)
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H(4A) H(6A)
O(2A)
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O(1)

Al

H(4)

O(2)
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F
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H(3A)
O(2A)

Fig. 1. Scheme of hydrogen bonding in AlF3 · 9H2O.

O(2A)
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RESULTS AND DISCUSSION

The AlF3 · 9H2O structure consists of AlF3(H2O)3
complexes and molecules of crystallization water.
Since the aluminum atom occupies a particular point of
the threefold inversion axis, its octahedral environment
is close to ideal (the Al–X bond length is 1.8307(8) Å,
and the X–Al–X angles are 6 × 89.72(5)°, 6 × 90.28(5)°,
and 3 × 180°). Almost the same bond length (1.826 Å)
was found in [AlF((H2O)0.5F0.5)4](H2O) [6]. This Al–X
bond length is closer to the typical Al–F bond
length   than to the Al–O(H2O) bond length. In
[AlF5(H2O)][NH3CH2CH2NH2CH3] [1], these bond
lengths are 1.79 and 2.01 Å, respectively.

All the positions of hydrogen atoms in the
AlF3 · 9H2O structure were occupied only partly. In the
case of the H(1) and H(2) atoms, this is associated with
the fact that the mixed X position is only half-occupied by
a water molecule. The H(3)–H(6) atoms are disordered in
such a way that they form a tetrahedral environment
around an oxygen atom (the HOH angles range within
99°–114°). The disordered H(3) and H(5) positions also
arise because of the mixed X position. This position (or,
more precisely, the O(1) atom) plays the role of a donor
in the O(1)···O(2) hydrogen bonds (Table 3) and an
acceptor in the O(2)···F hydrogen bonds (Fig. 1). The
H(4) and H(6) atoms are involved in the hydrogen
bonds in the right and left forms of the (H2O)6 hexamer,
respectively. Due to the branched system of hydrogen

Al

X O(2)

Fig. 2. AlF3 · 9H2O structure projected along the [111]
direction.
C

bonds, the complex molecules and the molecules of
crystallization water are linked into a framework
(Fig. 2). The AlF3 · 9H2O structure is responsible for
the high solubility of the compound in water and polar
organic solvents [2].

An analogous arrangement of the structural units
was also observed in ërF3 · 9H2O (sp. gr. R3, a = 6.822 Å,
α = 105.17°) [7]. However, the ërF3 · 9H2O structure is
composed of complex [Cr(H2O)6]3+ cations, fluoride
anions, and molecules of crystallization water. The sep-
aration of the fluoride and oxygen positions in
ërF3 · 9H2O lowers its symmetry. Unlike AlF3 · 9H2O
containing six-membered (H2O)6 rings, the ërF3 · 9H2O
structure is characterized by the presence of (H2O···F)3
rings. In addition to ërF3 · 9H2O, the analogous crystal
structure was also observed for urotropine hexahydrate
(sp. gr. R3m, a = 7.30 Å, α = 105.4°) [8]. In the latter
structure, a urotropine molecule occupies the position
of AlF3(H2O)3, so that the general structural motif
remains unchanged. Thus, despite different composi-
tions and charges of the AlF3 · 9H2O molecular complex,
the ërF3 · 9H2O ionic complex, and (CH2)6N4 · 6H2O
organic hydrate, the crystal structures of these com-
pounds are similar.

ACKNOWLEDGMENTS

This study was supported by the Russian Founda-
tion for Basic Research, project no. 00-15-97432.

REFERENCES

1. S. P. Petrosyants, A. B. Ilyukhin, and Yu. A. Buslaev, Zh.
Neorg. Khim. 37 (7), 1551 (1992).

2. S. P. Petrosyants, A. M. Shpirt, and Yu. A. Buslaev, Zh.
Neorg. Khim. 46 (6), 983 (2001).

3. N. A. Matwiyoff and W. E. Wageman, Inorg. Chem. 9
(5), 1031 (1970).

4. G. M. Sheldrick, SHELXS97: Program for the Solution
of Crystal Structures (Univ. of Göttingen, Göttingen,
1997).

5. G. M. Sheldrick, SHELXL97: Program for the Refine-
ment of Crystal Structures (Univ. of Göttingen, Göttin-
gen, 1997).

6. F. Olmi, C. Sabelli, and R. Trosti-Ferroni, Eur. J. Min-
eral. 5, 1167 (1993).

7. M. Epple and W. Massa, Z. Anorg. Allg. Chem. 444 (7),
47 (1978).

8. T. C. W. Mak, J. Chem. Phys. 43, 2799 (1965).

Translated by T. Safonova
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002



  

Crystallography Reports, Vol. 47, No. 4, 2002, pp. 577–580. Translated from Kristallografiya, Vol. 47, No. 4, 2002, pp. 634–637.
Original Russian Text Copyright © 2002 by Sheleg, Zub, Yachkovski

 

œ

 

, Kirpichnikova.

                                                                                                                                                                                                                                 

STRUCTURES
OF INORGANIC COMPOUNDS
Low-Temperature X-ray Studies 
of a [(CH3)2NH2]2 · CuCl4 Crystal

A. U. Sheleg*, E. M. Zub*, A. Ya. Yachkovskiœ*, and L. F. Kirpichnikova**
* Institute of Solid State and Semiconductor Physics, National Academy of Sciences, 

ul. P. Brovki 17, Minsk, 220072 Belarus
e-mail: sheleg@ifttp.bas-net.by

** Shubnikov Institute of Crystallography, Russian Academy of Sciences, 
Leninskiœ pr. 59, Moscow, 117333 Russia

e-mail: luba@ns.crys.ras.ru
Received May 4, 2001

Abstract—The a, b, c lattice parameters of a [(CH3)2NH2]2 · CuCl4 crystal have been measured by the X-ray
diffraction method within the temperature range of 100–300 K. The temperature dependences of thermal expan-
sion coefficients αa = f(T), αb = f(T), and αc = f(T) along the principal crystallographic axes and thermal expan-
sion coefficient of the unit-cell volume αV = f(T) are determined. It is found that all the three parameters, a, b,
and c, vary with temperature in a complicated way and show jumplike anomalies in the a = f(T), b = f(T), and
c = f(T) curves at phase-transition temperatures Tc1 = 255 K and Tc2 = 279 K. An incommensurate phase with
the modulation wave vector qi = (1/2 + δ)(a* + c*) is revealed in the temperature range 279–296 K. It is shown
that the incommensurability parameter δ increases with an increase in temperature. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

A crystal of composition [(CH3)2NH2]2 ·
CuCl4DåÄ)2CuCl4 (I) belongs to the crystal family
described by the general formula A2BX4 and is also a
representative of the group of crystals described by the
general formula [(CH3)2NH2]2 · MeCl4 (Me = Cd, Co,
Cu, Zn, etc.), whose properties have not yet been ade-
quately studied. These crystals are of interest because
they undergo a number of phase transitions depending
on the temperature and the nature of metal ions. The
parameters of these phase transitions are very sensitive
to the degree of crystal perfection and to the type of
crystal irradiation, e.g., with gamma quanta or elec-
trons. It is well known that crystals I undergo two first-
order phase transitions at the temperatures Tc1 = 253 K
and Tc2 = 279 K and that between these temperatures
they exhibit ferroelectric properties [1]. Studying bire-
fringence, Vlokh et al. [2] revealed a second-order
phase transition at Tc3 = 296 K, most probably, with the
formation of an incommensurate phase.

The existence of two first-order phase transitions
and, possibly, of an incommensurate phase stimulated
X-ray studies of these crystals with the aim of establish-
ing the temperature variations in the unit-cell parame-
ters, the thermal expansion coefficients, and satellite
reflections indicative of the existence of a modulated
structure.
1063-7745/02/4704- $22.00 © 20577
EXPERIMENTAL

The unit-cell parameters of crystal I were deter-
mined on an Enraf-Nonius diffractometer (MoKα radi-
ation) at room temperature. X-ray patterns were pro-
cessed with the use of the standard K4 program. It was
found that, at room temperature, the crystal belongs to
the orthorhombic system and has the unit-cell parame-
ters a = 9.9685 ± 0.0005 Å, b = 11.3215 ± 0.0005 Å, and
c = 15.6460 ± 0.0005 Å. These parameters differ from
the data obtained in [3], a = 10.45 Å, b = 11.45 Å,
c = 15.77 Å.

The low temperature (100–300 K) X-ray diffraction
studies were performed on a TUR M 62 diffractometer
(CuKα radiation). The specimens were {001}-, {010}-,
and {101}-oriented single-crystal plates with dimen-
sions ~4 × 4 × 2 mm. The temperature dependences of
the unit-cell parameters were determined by measuring
the Bragg angle 2θ of the (808), (010.0), and (008)
reflections. The b- and c-parameters were measured on
crystal plates whose surfaces were oriented parallel to
the corresponding crystallographic planes with an
accuracy of ±4'–6'. The a-parameter was determined
from the temperature dependences of the interplanar
spacing d008 = f(T) and d808 = f(T). The diffraction spec-
tra were obtained by continuous θ–2θ scanning while
recording the intensity profiles of reflections. The 2θ
angles were determined using the centers of gravity of
the reflections. The specimen temperature was con-
trolled by a special block based on a VRT-3 device. The
temperature was measured by a copper–constantan
002 MAIK “Nauka/Interperiodica”
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thermocouple. Thus, the system allowed us to set the
temperature and maintain it with an accuracy of ±0.1 K
in the whole temperature range studied (100–300 K).
Prior to an X-ray experiment, each specimen was kept
for 10–12 minutes at a given temperature. The diffrac-
tion angles were measured at a step of 1–2 K.

The experimentally obtained temperature depen-
dences of the unit-cell parameters, a = f(T), b = f(T), c =
f(T), and unit-cell volume, V = f(T), provided the deter-
mination of the corresponding thermal expansion coef-
ficients αa = f(T), αb = f(T), αc = f(T) along the princi-
pal crystallographic axes and of the unit-cell volume,
αV = f(T), in the temperature range 100–300 K. Each of
these curves, a = f(T), b = f(T), c = f(T), and V = f(T),
was approximated by three appropriate power polyno-

mials of the type L = A +  in three tem-
perature ranges—100 K – Tc1, Tc1 – Tc2, and Tc2 –300 K.
The approximated temperature curves were divided
into the segments of the length 0.7–1.5 K within which
thermal expansion coefficients were calculated by the

formula αL = , where L is the unit-cell parameter

at the middle point of the given segment ∆T, T is the
temperature, and ∆L is the change of the parameter L
along this segment.

RESULTS

The temperature dependences of the unit-cell
parameters, the unit-cell volume, and also the thermal
expansion coefficients are shown in Figs. 1–4. The a-,
b-, and c-parameters and the volume V increase with an
increase in temperature up to the temperature of the
phase transition, Tc1 = 255 K. It should be noted that the
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Fig. 1. Temperature dependence of the unit-cell parameter a:
(1) experimental points, (2) approximated experimental
data, and (3) temperature variation of the thermal expansion
coefficient αa.
C

phase-transition temperature determined in our study
(Tc1 = 255) is higher by 2 K than that given in [1], which
can be explained by the use of different specimens. The
thermal expansion coefficients αa , αb, αc, and αV in this
temperature range change insignificantly: αa slightly
increases with temperature, the curve αb = f(T) goes
through a small maximum in the vicinity of T ≈ 209 K,
and the curve αc = f(T) shows two shallow minima at
T ≈ 145 and 238 K and a small maximum at T ≈ 196 K.
A more complicated behavior of the unit-cell parame-
ters and thermal expansion coefficients along the crys-
tallographic axes is observed at temperatures T > Tc1 =
255 K. At the phase-transition temperature Tc1 = 255 K,
the a-parameter abruptly increases by 0.03 Å, then
increases in the region of the ferroelectric phase, and
then abruptly drops by 0.01 Å at the phase-transition
temperature Tc2 = 279 K. The a-parameter increases
with a further increase in temperature. A sharp maxi-
mum at the phase-transition temperature Tc1 = 255 K
and a minimum at Tc2 = 279 K are observed on the
curve αa = f(T) (Fig. 1). As is seen from Fig. 2, similar
discontinuities were also observed for the b-parameter
at the phase-transition temperatures Tc1 = 255 K and
Tc2 = 279 K, but their magnitudes are more pronounced—
0.02 Å in the upward and 0.055 Å in the downward
directions. Within the existence range of the ferroelec-
tric phase and also at T > Tc2 , the b-parameter smoothly
decreases. Like the αb = f(T) curve, we observe a sharp
positive peak at Tc1 = 255 K on the αa = f(T) curve and
a negative peak at Tc2 = 279 K, and a small minimum in
the vicinity of ~271 K in the region of the ferroelectric
phase.

The inset in Fig. 2 shows the variation in the param-
eter b in the vicinity of the phase transitions at Tc1 and
Tc2 measured in the heating–cooling mode. It is seen
that the b-parameter has a hysteresis close to both phase
transitions—∆T ≈ 2 K at Tc1 and ∆T ≈ 1 K at Tc2 . The
existence of hysteresis confirms the assumption that the
observed transformations are first-order phase transi-
tions.

The temperature dependence of the parameter c in
the range of phase transitions is a “mirror reflection” of
the temperature dependence of the parameter b in the
same temperature range: b increases whereas c
decreases, and vice versa (Figs. 2, 3). With an increase
in the temperature, c on the curve c = f(T) dramatically
decreases (by 0.02 Å) at the phase-transition tempera-
ture Tc1 = 255 K. In the existence range of the ferroelec-
tric phase c increases. Then, at Tc2 = 279 K a jump in c
by 0.04 Å occurs. At T > Tc2 , the parameter c slightly
increases up to 300 K. The thermal expansion coeffi-
cient αc behaves in the same way: it has a sharp nega-
tive peak at Tc1 = 255 K and a sharp positive peak at
Tc2 = 279 K. Such an “antiphase” temperature behavior
of the b- and c-parameters explains the fact that the pro-
nounced changes in the lattice parameters (to 0.055 Å)
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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in the range of phase transitions do not lead to crystal
destruction. The changes in the unit-cell volume in the
phase transitions are still comparatively weak (Fig. 4).
As seen from Fig. 4, the thermal expansion coefficient
only weakly depends on temperature in the whole tem-
perature range studied except for the phase-transition
temperatures Tc1 and Tc2 , where some anomalies are
observed. However, the temperature dependence of αV

has a low minimum at T ≈ 136 K and a weak maximum
at T ≈ 200 K.

0.01
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286278 290 294 298
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Fig. 5. Incommensurability parameter δ as a function of
temperature.
C

The analysis of X-ray diffraction spectra obtained
from the (h0h) planes recorded at a step of 2 K in the
temperature range 279–296 K revealed superstructural
(1/2 + δ, 0, 1/2 + δ) reflections, which allowed us to cal-
culate the incommensurability parameter δ, whose tem-
perature dependence is shown in Fig. 5. It is seen that δ
increases with an increase in temperature. Thus, it has
been shown that in the temperature range 279–296 K an
incommensurate phase with the modulation wave vec-
tor qi = (1/2 + δ)(a* + c*) exists.
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Abstract—The results of X-ray structure investigations of crystalline compounds with a tricyanovinyl group
(individual substances, molecular complexes, and ionic salts) and related compounds are generalized. The most
interesting geometric and conformational characteristics of the molecules and ions are discussed. Consideration
is given to the crystal chemical features of the compounds involved. The structural formulas of 73 compounds
and the reliability factors (R factors) of crystal structure determination are given in the tables. © 2002 MAIK
“Nauka/Interperiodica”. 
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1. INTRODUCTION
The design of new chemical compounds with

important physicochemical properties necessitates the
determination of their crystal and molecular structures
with the aim of revealing a correlation between struc-
ture and properties.

The accumulation of experimental data at a very
rapid pace has been in progress for the last few years
due primarily to the advent of modern equipment and
the development of applications software for diffrac-
tion methods. At present, research work that deals with
the generalization of a large amount of structural data
for different classes of compounds and, thus, provides
a better insight into the structural regularities and struc-
ture–property relations have taken on special signifi-
cance. In this respect, we continue a series of surveys
concerned with specific classes of organic compounds
1063-7745/02/4704- $22.00 © 20581
and their complexes that are of the greatest practical
interest owing to their unique physicochemical proper-
ties. Among these compounds are polycyano-substi-
tuted substances. The organic compounds with a tricy-
anovinyl fragment also belong to this class of sub-
stances and will be considered in the present work.

It is known that the introduction of cyano groups
into an acceptor molecule substantially enhances its
electron-acceptor properties. Among the organic accep-
tors, the high electron affinity is observed for 7,7,8,8-
tetracyanoquinodimethane (Ea = 2.8 eV) and tetracya-
noethylene (Ea = 2.75 eV) [1, 2]. These acceptors have
been used in the preparation of a great variety of
charge-transfer complexes and radical ion salts with
interesting electrical, magnetic, and other physico-
chemical properties. Structural data on the conducting
molecular complexes and radical ion salts based on
7,7,8,8-tetracyanoquinodimethane were generalized
earlier in the reviews [3, 4]. However, as far as we
know, structural data for tetracyanoethylene derivatives
have never been generalized. In the present work, we
analyzed the results of investigations into the structure
of tetracyanoethylene—the ancestor of a large class of
organic and organometallic compounds (Section 2).
These results were compared with the geometric
parameters of the tetracyanoethylene monosubstituted
derivatives discussed in Section 3.

Tricyanoethylenes and related compounds with a
tricyanovinyl group also belong to strong organic
acceptors. Their molecular complexes and ionic salts
with organic and inorganic donors are well known by
virtue of the unique combination of valuable properties,
such as photoelectric sensitivity, nonlinearity of optical
characteristics, etc. The derivatives of tetracyanoethyl-
ene in which one cyano group is replaced by an elec-
tron-donor fragment are typical donor–acceptor conju-
002 MAIK “Nauka/Interperiodica”
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Table 1.  Reliability factors (with the references) for two crystalline modifications of tetracyanoethylene

Cubic form, space group
Im3, Z = 6 (2/m 2/m 2/m) Monoclinic form, space group P21/n, Z = 2( )

R factor Reference R factor Reference R factor Reference R factor Reference 

0.059 [28] 0.091 [31] 0.074** (5 K) [34] 0.035 [30]

0.027* [29] 0.091 [32] 0.100** (150 K) [34] 0.034* (120 K) [30]

0.034 [30] 0.035 [33] 0.085** [34] 0.033* [30]

0.024* [30] 0.033* [33] 0.037 (120 K) [30] 0.030** [35]

* Neutron single-crystal diffraction data.
** Neutron powder diffraction data.

1

gated systems with intramolecular charge transfer. The
intramolecular charge transfer in these systems is
revealed by an analysis of the electronic absorption
spectra. The currently available spectral data on
intramolecular-charge-transfer transitions that are
treated as a special type of electronic transition are very
scarce, especially compared to the results of extensive
spectral investigations of charge-transfer complexes. In
order to reveal the specific geometrical features associ-
ated with intramolecular charge transfer in the mole-
cules involved and to compare these characteristics
with the physicochemical properties, we considered the
available data on organic compounds with a tricyanovi-
nyl group whose crystal and molecular structures were
determined earlier by X-ray diffraction analysis. For
this purpose, we used the results of structural investiga-
tions [5–21], bibliographic information from the Cam-
bridge Structural Database [22], and data taken from
scientific journals and reference books published up to
and including 1999.

2. MOLECULAR AND CRYSTAL STRUCTURES 
OF TETRACYANOETHYLENE 
FROM DIFFRACTION DATA

The synthesis of tetracyanoethylene
(CN)2C=C(CN)2 [23] and analysis of numerous reac-
tions of addition, substitution, and cyclization with its
participation (see, for example, [23–27]) provided a
way of preparing new dyes, strong acids, and new het-
erocyclic compounds. Tetracyanoethylene (also
referred to as ethylenetetracarbonitrile) is the strongest
π-acid and forms brightly colored molecular donor–
acceptor complexes. Tetracyanoethylene crystallizes in
two polymorphic modifications, namely, monoclinic
and cubic modifications. The crystal and molecular
structures of tetracyanoethylene were determined and
subsequently refined using X-ray single-crystal diffrac-
tion, neutron single-crystal diffraction [28–33], and
neutron powder diffraction [34, 35]. In the gas phase,
tetracyanoethylene was characterized by electron dif-
fraction analysis [36]. For two crystalline forms of tet-
racyanoethylene, the reliability factors (R factors) of
the structure determination with the corresponding ref-
C

erences are presented in Table 1. The tetracyanoethyl-
ene molecules in the cubic modification (space group
Im3, Z = 6) has a high symmetry (D2h–mmm), whereas
the tetracyanoethylene molecules in the monoclinic
modification (space group P21/n, Z = 2) retain only the
center of symmetry. The geometric parameters of the
tetracyanoethylene molecule in different phases are
listed in Table 2.

It can be seen from Table 2 that, in both crystalline
modifications, the bond lengths and angles of the tetra-
cyanoethylene molecules are close to each other. In the
cubic modification, the C≡N bond is slightly longer and
the C–C–C bond angle is slightly smaller compared to
those in the monoclinic modification. In the monoclinic
crystals, the C–C≡N cyano group has a more pro-
nounced linear configuration. In the gas phase, the cor-
responding bonds in the tetracyanoethylene molecule
are also close in length. As in unsubstituted ethylene,
the C=C bond length in crystalline tetracyanoethylene
(the mean value is 1.346 Å), according to the X-ray dif-
fraction data [28, 33], is somewhat shorter than that in
gaseous tetracyanoethylene (1.357 Å). For ethylene,
the C=C bond lengths are equal to 1.313 [37] and
1.337 [38] Å, respectively. On the other hand, the bond
lengths and angles obtained from the neutron diffrac-
tion data for tetracyanoethylene are close to those
observed in the gas phase; however, all the bond lengths
slightly exceed the standard value of the C(sp2) = C(sp2)
bond length (1.331 Å) [39]. The tetracyanoethylene
molecule has a strictly planar configuration in the cubic
modification and remains planar (to within 0.01 Å) in
the monoclinic form.

Druck and Guth [33] performed the precision struc-
tural investigation of tetracyanoethylene in the mono-
clinic modification and revealed a certain statistical dis-
order in its structure: 3.8% of the tetracyanoethylene
molecules in the X-ray diffraction experiment and 5.0%
of the molecules in the neutron diffraction experiment
were rotated by ~90° in the molecular plane with
respect to the midpoint of the double C=C bond.

Becker et al. [29] analyzed the X-ray diffraction and
neutron diffraction data and obtained the difference
(X – N) electron-density distribution for the cubic mod-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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Table 2.  Molecular geometry of tetracyanoethylene in different phases (bond lengths in Å and bond angles in degrees)

Cubic crystals Monoclinic crystals Gas phase

[28] [29]* [32] [33] [33]* [36]

C=C 1.344(3) 1.355(2) 1.339(3) 1.348(2) 1.354(1) 1.357(10)

C–C 1.439(2) 1.431(1) 1.442(5) 1.438(2) 1.425(1) 1.435(10)

1.441(5) 1.437(2) 1.426(1)

C≡N 1.153(2) 1.160(1) 1.135(6) 1.139(2) 1.146(1) 1.162(2)

1.133(5) 1.138(2) 1.146(1)

C=C–C 122.2(1) 121.94(8) 121.0(4) 121.2(1) 121.07(7) 121.1

120.9(4) 121.0(1) 121.11(6)

C–C–C 115.6(1) 116.11(8) 118.1(3) 117.8(1) 117.82(6)

C–C≡N 178.2(1) 177.93(7) 179.1(4) 179.3(8) 179.2(7)

179.4(4) 179.4(1.0) 179.0(5)

* Neutron diffraction data.

C C
C

C

C

C

N N

NN
ification of tetracyanoethylene. The electron densities
determined for the C–C, C=C, and C≡N bonds are
equal to 0.6, 0.4, and 0.9 e · Å–3, respectively. The
height of the peak assigned to the lone electron pair of
the nitrogen atom located on the extension of the C≡N
bond is equal to 0.4 e · Å–3.

The recent investigation of monoclinic tetracyanoet-
hylene was carried out by Chaplot et al. [35], who used
neutron powder diffraction with a higher resolution
than in their earlier work [34]. Analysis of the crystal
structure of tetracyanoethylene in both phases and the
molecular dynamics at different temperatures and pres-
sures can give a deeper insight into the mechanisms of
unusual reversible transitions from the cubic phase to
the monoclinic phase in this compound (see [35] and
references therein). The calculated charges at the atoms
of the tetracyanoethylene molecule are given in [40].

3. STRUCTURAL FEATURES 
OF TRICYANOETHYLENES AND RELATED 
COMPOUNDS FROM X-RAY DIFFRACTION 

DATA

3.1. Tricyanovinyl Compounds

1,2,2-Tricyanovinyl compounds of the general for-
mula (CN)2C=C(CN)R, where R is the aromatic or het-
erocyclic electron-donor substituent, have been investi-
gated by different physicochemical methods [23–27,
41–43]. The majority of tricyanovinyl derivatives are
widely used as dyes and materials with nonlinear opti-
cal properties [44].

A specific feature of the tricyanovinyl compounds is
that the electronic absorption spectra in the visible
range contain an intense band associated with the
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
intramolecular charge transfer [41, 45, 46]. Some of
these materials exhibit a substantial photoelectric sen-
sitivity and can be used as photoconductors and effi-
cient sensitizers in the manufacturing of electrophoto-
graphic polymer layers in electrophotography [47–49].

Table 3 presents tricyanovinyl compounds whose
crystal and molecular structures are characterized by
X-ray diffraction analysis. In this table, the column
“R factor” includes the temperature of the measure-
ments performed at low temperatures. For tricyanovi-
nylbenzene (compound 1), our earlier attempts
(Povet’eva, Chetkina, and Il’ina, 1981) to determine the
structure only on the basis of the experimental data col-
lected at room temperature have failed because of the
strong structural disorder. Recently, Bock et al. [50]
managed to solve the structure of this compound (by
using low-temperature experimental data) and the
structure of disubstituted benzene—1,4-bis(tricyanovi-
nyl)benzene (compound 2). Even at 150 K, structure 1
is disordered; more precisely, the molecule is disor-
dered over two positions with an occupancy of 0.5. The
molecule has a nearly planar configuration: the tricy-
anovinyl group deviates from the ring plane by 6° at
one position and by 11° at the other position. In cen-
trosymmetric molecule 2, the tricyanovinyl groups are
oppositely rotated with respect to the benzene plane
through an angle of 48°. Bock et al. [50] analyzed the
data available in the Cambridge Structural Database
and proved that this angle is maximum for tricyanoeth-
ylenes. In the related centrosymmetric molecule of 1,4-
bis(dicyanovinyl)benzene, the rotation angle is equal to
14° [57].

Tricyanovinylarylamines (compounds 3–7) belong
to compounds with a pronounced intramolecular
charge transfer. Tricyanovinylarylamines are brightly
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colored crystalline materials with a metallic luster.
According to [41], the tricyanovinylarylamine mole-
cules possess a large dipole moment. These properties
stem from the fact that the tricyanovinylarylamine mol-
ecules contain both the strong electron-acceptor tricy-
anovinyl group and electron-donor amino groups inter-
acting through the π-conjugated system. It is also
known that tricyanovinylarylamines exhibit photoelec-
tric sensitivity and, hence, can be used as sensitizers of
electrophotographic layers [47, 49].

Poly(tricyanovinylamides) were prepared by the
reaction of tetracyanoethylene with polyamides. The
structure of poly(tricyanovinylamides) was determined
using the specially synthesized model compounds,
including compounds 4 and 5 (Table 3). The UV spec-
tra of the tricyanovinyl polymers and their model com-
pounds show an intense broad absorption band attrib-
uted to the intramolecular-charge-transfer transition. A
number of tricyanovinyl polymers are characterized by
a considerable photoelectric sensitivity and have found
use as materials for high-strength polymer films [58].

The photoelectric properties of tricyanovinylary-
lamines (compounds 3–5) are reported in [5]. The tem-
perature dependence of the photoconductivity for tricy-
anovinylarylamine single crystals is analyzed in [49].
Investigation into the crystal structure of tricyanoviny-
larylamines is of particular interest for understanding
the generation and motion of charge carriers in these
and other compounds with intramolecular charge
transfer.

In crystals of p-tricyanovinyl-N,N-dimethylaniline
(compound 3), the molecular conformation is nearly
planar: the dimethylamino and tricyanovinyl groups are
rotated with respect to the phenylene ring through
angles of 7° and 2°, respectively. The planar molecular
geometry, the shortening of the bond between the Me2N
group and the phenylene ring to the sesquibond
(1.36 Å), and the quinoid-like structure of the ring sug-
gests a strong conjugation in the molecule and a consid-
erable shift in the electron density from the donor dim-
ethylamino group to the acceptor tricyanovinyl group.
This assumption is also confirmed by the UV spectro-
scopic data [58] and an unusually large dipole moment
(~10 D) [41, 44]. Analysis of the bond lengths in mole-
cule 3 allows us to assume that the intramolecular
charge transfer occurs in the ground state of the mole-
cule with the charge +δ at the N amine atom and the
charge –δ at the C(1) atom of the tricyanovinyl group.
In the crystal, the molecules form stacks with an alter-
nation of the acceptor and donor moieties of the neigh-
boring molecules. This packing of molecules in the
crystal and relatively short intermolecular distances
(the shortest distances C···C and C···N are equal to 3.48
and 3.27 Å, respectively), most likely, enhance a sub-
stantial photoelectric sensitivity caused by the charge
transfer between the molecules upon photoexcitation
[5]. Moreover, compound 3 possesses a high molecular
second-order nonlinear optical susceptibility and can
C

be used in the production of materials for nonlinear
optics [44].

Analysis of the spectral characteristics of p-tricy-
anovinyldiphenylamine (compound 4) revealed that an
appreciable charge transfer occurs even in the ground
state [58]. In the crystal, molecule 4 consists of three
planar fragments rotated with respect to each other: the
dihedral angle formed by the rings is equal to 39° and
the dihedral angle between the phenylene ring and the
tricyanovinyl group is 18°. Steric hindrances bring
about a considerable increase in the bond angles CNC
(127°) and CCN (123° and 127°). The amine nitrogen
atom lies in the planes of the adjacent rings. The molec-
ular layers with the shortest contacts between the N
atoms of the nitrile groups can be conventionally sepa-
rated in the crystal. A partial overlapping of the donor
and acceptor moieties of the neighboring molecules
leads to a decrease in the C···C distances to 3.40 Å due
to the π–π interaction. This is accompanied by the for-
mation of the NH···N intermolecular hydrogen bond
(3.04 Å) between the amino group and the N atom of
the cyano group (the mean-statistic length of this bond
is 2.98 Å [59]). Single crystals 4 are characterized by a
considerable photoelectric sensitivity in the visible
spectral range [5].

Single crystals of p-tricyanovinyltriphenylamine
(compound 5) in two modifications were prepared from
solutions in different solvents. The p-tricyanovinylt-
riphenylamine molecule has a nonplanar configuration
in both modifications, namely, the monoclinic (5a) and
orthorhombic (5b) modifications. The molecular con-
figuration is determined by steric factors and the conju-
gation of the donor triphenylamine and acceptor tricy-
anovinyl moieties of the molecule. The amine nitrogen
atom is characterized by a strictly planar configuration
of the C–N bonds in 5a and a nearly planar configura-
tion in 5b. The deviation from the plane of three C
atoms bonded to the N atom is equal to 0.056 Å. The
phenyl rings are rotated with respect to this plane
through angles of 52° and 54° in 5a and through angles
of 50° and 55° in 5b. The rotation angle for the phe-
nylene ring is equal to only 24° in 5a and 20° in 5b. The
molecular configurations in the monoclinic and orthor-
hombic modifications considerably differ in the angle
of rotation of the planar tricyanovinyl group with
respect to the plane of the phenylene ring (20° in 5a and
3° in 5b). The rotation of the tricyanovinyl group about
the C(2)–R bond is governed by both the molecular
packing in the crystal and the conjugation with the
amine fragment of the molecule. According to [5], the
monoclinic and orthorhombic crystals exhibit different
photoelectric sensitivities. It should be noted that, in
this case, the photocurrent multiplication upon illumi-
nation of the orthorhombic crystals is several orders of
magnitude larger than that of the monoclinic crystals.
This difference can be associated with a more flattened
molecular fragment consisting of the tricyanovinyl
group and the phenylene ring.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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Table 3.  Tricyanovinyl compounds of the general formula 

Compound no. Formula R factor References

1 0.062 (150 K) [50]

2 0.032 [50]

3 0.079 [7]

4 0.096 [8]

5 5a  0.056
5b 0.051

[5]
[6]

6 0.048 [51]

7 0.052 [11]

8 0.041 [10]

C(1) C(2)
C(3)

R

C(4)

C(5)

N N

N

C C

CNNC

NC

C C

CNNC

NC

C C
CN
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CNNC
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Ph

H
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CH Ph
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Table 3.  (Contd.)

Compound no. Formula R factor References

9 0.037 [13]

10 0.034 [12]

11 0.055 [15]

12 0.054 [9]

13 0.078 (–150°C) [52]

14 0.079 [53]

15 0.044 [54]

16 0.051 [55]

17 0.066 [56]

Note: Hereafter, the structural numbering of atoms differs from the chemical numbering.
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When synthesizing the tricyanovinyl derivatives of
substituted phenylhydrazones, Tosi et al. [51] prepared
compound 6. For this compound, the spectroscopic
properties were analyzed and the structure was deter-
mined by X-ray diffraction [51]. The dihedral angle
between the tricyanovinyl group and the phenylene ring
is equal to only 1.1°. This angle is minimum among
those observed in tricyanovinylarylamines. The non-
hydrogen atoms in the molecule are located in virtually
the same plane (the maximum deviation is 0.07 Å). In
molecule 6, the bond lengths are close to those observed
in the other tricyanovinylarylamines. Crystals 6 are elec-
tric insulators [51].

p-Tricyanovinyl-N-ethyl-N-(β-cyanoethyl)aniline
(compound 7) was synthesized according to the stan-
dard procedure used for the tricyanovinylation of
anilines [24]. In molecule 7, the geometry of the main
fragment composed of the phenylene ring and the tricy-
anovinyl group is similar to that observed in compound 3.
In the tricyanovinyl group, the C(1)=C(2) double
bond  (1.369 Å) is longer than and the C–C bridging
bond with the phenylene ring (1.428 Å) shorter than
both the normal bond [39] and those observed in the tet-
racyanoethylene molecule [28, 33]. These changes in
the bond lengths in the tricyanovinyl group, a pro-
nounced quinoid-like structure of the phenylene ring,
and the shortening of the C(sp2)–N bond in the amine
group to the sesquibond (1.356 Å) can be caused by the
intramolecular charge transfer. The main fragment of
the molecule is virtually planar (the dihedral angle is
equal to only 3.3°). This implies that single crystals of
compound 7 should possess a considerable photoelec-
tric sensitivity [11], as is the case with the other tricy-
anovinylarylamines (compounds 3, 4, 5a, 5b) studied
in our earlier works. The planes of the ethyl and cyano-
ethyl groups are almost perpendicular to the plane of
the main fragment of the molecule (the dihedral angles
with the ring plane are equal to 85.5° and 82.9°, respec-
tively). The bonds at the amine nitrogen atom have a
planar configuration. As in the other tricyanovinylary-
lamine crystals, the shortest intermolecular contacts are
formed by the nitrogen atoms of the nitrile groups. In
the aforementioned structures of tricyanovinylary-
lamine compounds, the geometric parameters of the tri-
cyanovinyl group are close to those determined for the
cubic [28, 29] and monoclinic [31, 32] modifications of
tetracyanoethylene with due regard for an asymmetric
substitution for one of the nitrile groups. In the tricy-
anovinyl fragment, the C(2)–C(3) bond of the cyano
group in the 1 position is longer than the two other
(approximately equal) bonds C–C(N) in the 2,2 posi-
tion.

There is a certain correlation between the photoelec-
tric properties and the crystal structures of compounds 3,
4, 5a, 5b, and 7. A comparison of the molecular geom-
etry with the photoelectric sensitivity of the single crys-
tals [5, 11] and the activation energy for photoconduc-
tion [49] shows that the photocurrent multiplication
factor k depends on the degree of planarity of the
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
molecular fragment involving the phenylene ring and
the tricyanovinyl group. In compounds 4 and 5a with a
small value of k (~2–5), the dihedral angles ω between
the phenylene ring and the tricyanovinyl group are
equal to 18° and 20°, respectively. A high photoelectric
sensitivity (k ~ 103) and a low activation energy of pho-
tocurrent are observed in compounds 3, 5b, and 7 (ω =
2°, 3°, and 3.3°, respectively). Therefore, the higher
degree of molecular planarity, which corresponds to a
more pronounced conjugation, facilitates the intramo-
lecular charge transfer from the donor to the acceptor
group in tricyanovinylarylamines and provides the geo-
metric prerequisites favorable to the photoelectric
effect. Certainly, this analysis should take into account
the molecular packing in crystals and the mutual
arrangement of the donor and acceptor fragments in the
neighboring molecules. The stacking packing of mole-
cules 3 with alternation of the donor and acceptor frag-
ments of the neighboring molecules encourages the
intermolecular charge transfer and increases the photo-
sensitivity. Crystal structures 5a and 5b have almost the
same molecular packing: no short contacts between the
donor and acceptor fragments of the neighboring mol-
ecules are observed, most likely, due to the screening of
the amine nitrogen atom by the strongly rotated phenyl
rings. The higher photosensitivity of the orthorhombic
modification can be associated primarily with the pla-
narity of the main fragment of the molecule (ω = 3°). It
can be assumed that the molecular conformation is
responsible for the initial stage of photoconduction,
i.e., for the transition of the molecule to the excited
state, and that the further process is governed by the
molecular packing in the crystal in the presence of the
intermolecular and intramolecular charge transfers.
According to Vozzhennikov et al. [49], the photocon-
duction kinetics is controlled by the conformation of
molecules and their packing in the crystal. A correla-
tion between the photoelectric properties and the
molecular planarity was also assumed earlier for accep-
tor compounds—dicyanomethylene derivatives of fluo-
rene (see [6] and references therein).

In compound 8 (1-tricyanovinylazulene), azulene—
a nonbenzenoid aromatic compound whose electron-
donor ability is characterized by an ionization potential
of 7.41 eV—serves as an electron-donor substituent
[60]. The main procedures of synthesizing azulene
hydrocarbons, their chemical properties, and practical
applications (such as drugs, dyes, optical sensitizers,
and photosemiconductors) were described in [42, 61,
62]. Structural studies of these compounds were carried
out by Kaftory et al. [63] and Nather et al. [64]. Inves-
tigations into the photoelectric properties of 1-tricy-
anovinylazulene demonstrated that single crystals of
this compound possess photoelectric sensitivity [10].
Molecule 8 has a nonplanar configuration: the tricy-
anovinyl group is rotated with respect to the azulene
moiety through an angle of 26.3°. In this molecule, the
azulene fragment is slightly distorted at the expense of
bending the seven-membered ring and adopts the con-
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formation of a strongly flattened boat. The changes
observed in the geometric parameters of the tricyanovi-
nyl group (an increase in the C=C double bond length
to 1.378 Å and others) are likely caused by the intramo-
lecular charge transfer. An interesting packing of mole-
cules in the crystal consists of well-defined molecular
stacks. Inside each stack, virtually parallel planar donor
and acceptor fragments of the neighboring molecules
overlap with each other, which can encourage the inter-
molecular charge transfer.

Now, we consider the tricyanovinyl derivatives of
nitrogen-containing heterocyclic compounds that
belong to a large family of conjugated dyes with
intramolecular charge transfer. A structure analysis of
3-tricyanovinyl-N-methylpyrrole (compound 9)
revealed that the tricyanovinyl group is in the 3 position
of the N-methylpyrrole fragment and not in the 2 posi-
tion, as was predicted earlier in [25, 42, 45]. This mol-
ecule is planar (to within 0.05 Å): the dihedral angle
between the pyrrole and tricyanovinyl fragments is
equal to only 0.7°. Substantial changes in the bond
lengths in the acceptor tricyanovinyl group and the
donor pyrrole ring suggest an intensive intramolecular
charge transfer. In the crystal, the molecules form lay-
ers with an interlayer spacing of 3.28 Å, thus inducing
an intermolecular change transfer.

Molecules of 3-tricyanovinylindole (compound 10)
exhibit a nearly planar configuration. The dihedral
angle between the indole and tricyanovinyl fragments
is equal to 3.5°. As in structure 9, changes in the bond
lengths indicates an intensive intramolecular charge
transfer. The crystal has a layered chain structure. The
molecules are linked together into chains through the
NH···N hydrogen bonds with a length of 2.953 Å,
which is close to the mean-statistic value (2.98 Å) [59].
3-Tricyanovinylindole was synthesized according to
the procedure described in [25, 65], This compound
possesses photosensitivity and can be used as a photo-
conductor and an efficient sensitizer in the production
of electrophotographic polymer films [47, 66].

Similar properties are revealed in 1-allyl-3-tricy-
anovinylindole (compound 11) [47, 66, 67]. In mole-
cule 11, the –CH2–CH=CH2 allyl group is disordered
over two positions with an occupancy of 0.5 for two ter-
minal carbon atoms. The geometric parameters of mol-
ecules 10 and 11 are close to each other. This indicates
that the attachment of the allyl group affects the molec-
ular geometry only slightly. The dihedral angle
between the planar tricyanovinyl group and the indole
fragment (planar to within 0.013 Å) is equal to 5.6°.
The disordered allyl group is considerably rotated
(through 72.4° and 68.8°) with respect to the indole
fragment. The intramolecular charge transfer in this
molecule is confirmed by spectral data.

Tricyanovinyl derivatives of N-alkylcarbazole [68],
for example, 3-tricyanovinyl-N-methylcarbazole (com-
pound 12), appeared to be highly efficient sensitizers of
polymer photoconductors widely used in electropho-
C

tography. The attachment of the acceptor tricyanovinyl
group breaks the symmetry of the donor fragment of
this molecule, unlike two independent N-methylcarba-
zole molecules [17]. The carbazole moiety of molecule 12
is slightly distorted: the angles between the planes of
the five-membered and six-membered rings are equal to
0.6° and 0.9°, respectively (for N-methylcarbazole, the
folding angles are equal to 1.4° and 1.7° for molecule A
and 1.2° and 1.3° for molecule B [17]). Molecule 12 as
a whole is nearly planar: a small angle (3°) of rotation
of the tricyanovinyl fragment with respect to the carba-
zole moiety does not disturb the conjugation between
the donor and acceptor molecular fragments, which
likely favors the intramolecular charge transfer. Mole-
cules of compound 12 in the crystal are packed in
stacks. Along any stack, the carbazole moiety of one
molecule faces the tricyanovinyl group of the neighbor-
ing molecule.

Compounds 16 and 17 belong to tricyanovinylth-
iophene derivatives. A number of new tricyanovinylth-
iophenes have been synthesized in recent years. These
compounds have attracted considerable interest
because they can be used both as acceptors in donor–
acceptor π-conjugated systems with nonlinear optical
properties [44, 55, 56] and as electron acceptors for
organic metals [55]. Molecule 16 has a nonplanar con-
figuration: the angle between the thiophene ring and the
tricyanovinyl fragment is equal to 9°. A series of non-
linear optical chromophores was prepared by a new
technique (tricyanovinylation of imidazolethiophenes)
[56]. Among these compounds, compound 17 was
characterized structurally. In the sterically strained
molecule 17, the Ph rings are rotated through different
angles (59.3° and 12.4°) with respect to the imidazole
ring [56].

3.2. Molecular Complexes and Ionic Salts 
of the Compounds with a Tricyanovinyl Group

Compounds with a tricyanovinyl group form molec-
ular complexes and a large number of ionic salts with
organic molecules, metal atoms, and organometallic
compounds. The compounds whose structure is deter-
mined by X-ray diffraction analysis are presented in
Table 4.

Crystals of 3-(tricyanovinyl)phenoxazine were
grown from a solution in dimethyl sulfoxide with the
formation of the 1 : 1 molecular complex with dimethyl
sulfoxide (compound 18) [14]. The phenoxazine frag-
ment adopts a butterfly conformation. The dihedral
angle between the tricyanovinyl group with a nearly
planar (to within 0.087 Å) configuration and the plane
of the nearest carbon ring of phenoxazine is equal to
16.5°. In the crystal, molecules of the complex are
linked by the strong intermolecular hydrogen bonds
NH···O, in which the N···O (2.76 Å) contact is shorter
than the mean-statistic length (2.89 Å) [59].
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002



STRUCTURES OF TETRACYANOETHYLENE AND ITS TRICYANOVINYL DERIVATIVES 589
Table 4.  Molecular complexes and ionic salts of the compounds containing the tricyanovinyl group

Compound no. Composition of the complex (salt) R factor* References

18 0.062 [14]

19 [69, 70]

20 [69–71]

21 0.157 [71]

22 [71]

23 0.060 (–160°C) [72]

24 0.048 [73]

25 0.072 [74]

26 0.066 [75]

27 0.0623 [76]
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Table 4.  (Contd.)

Compound no. Composition of the complex (salt) R factor* References

28 0.0561 [76]

29 0.069 [77, 78]

30 0.044 [79]

31 0.049 (120 K) [79]

32 0.075 [80]

33 0.051 [80]

* For compounds 19, 20, and 22, only the unit cell parameters and the space group are determined by X-ray powder diffraction.
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Upon the complex formation, the same molecule
can play the role of a donor and an acceptor. Sandman
et al. [69–71] were the first to reveal that p-tricyanovi-
nyl-N,N-dimethylaniline (compound 3) has an intermo-
lecular π-amphoteric nature. For example, this mole-
cule serves as an acceptor in complex 19 and as a donor
in complex 20. The p-tricyanovinylphenyldicyanome-
thide monoanion manifests the donor properties in ter-
nary complexes 21 and 22. Salt 21 is the first structur-
ally characterized π-complex of the donor monoanion
with the neutral acceptor [71].

In organometallic salt 23, the thallium atoms are
sandwiched between the cyclopentadienyl rings. The
anion is almost planar: the cyclopentadienyl ring (in
which the bonds are not delocalized) is rotated with
respect to the tricyanovinyl group through an angle of
8°. Freeman et al. [72] proposed to use compound 23 in
the synthesis of tricyanovinyl-substituted metallocenes.
In the structure of the [cyano(tricyanovinyl)ketiminato-
N]-tris(triphenylphosphine)silver salt (compound 25),
C

the ketimine group of the anion interacts with the silver
cation [74].

New carbocyanine dyes—four organometallic salts
(compounds 26–29) with the tetraphenylarsonium cat-
ion and new heterocyclic polycyanocarbanions with
one (compounds 26, 29) and two (compounds 27, 28)
tricyanovinyl groups—were synthesized by the con-
densation reactions [75–78], which are very unusual in
the chemistry of tetracyanoethylenes. The structures of
these compounds were characterized by X-ray diffrac-
tion analysis, and the structure of the carbanions was
confirmed by spectral data. Since these carbanions con-
tain a large number of cyano groups, they can be strong
electron acceptors and, hence, can be used in the syn-
thesis of new organic metals. According to Bonamico
et al. [76], the crystals of 1,3-bis(tricyanovinyl) deriva-
tives of the cyclopentadienyl (salt 27) and imidazolyl
(salt 28) anions are isomorphic and consist of isolated
cations and anions packed in stacks. In structure 28, one
of the tricyanovinyl groups is disordered over two posi-
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Table 5.  Ionic salts and organometallic complexes with tricyanoethenolate

Compound no. Composition of the complex (salt) R factor References

34 0.049 [81]

35 0.069 [82]

36 0.036 [83]

37 0.043 [84]

38 0.051 [84]

39 0.065 (–40°C) [85]

]+C C

CN

O

NC

NC

[ ]–   · C CH2

O

H2N

[ N

Me

C C

CN

O

NC

NC

[ ]–   · N

N N

H
N

NMe2

+
· 0.5C4H8O2

C C

CN

O

NC

NC

[ ]–   · [Fe(C5H5)2]+ · 0.5[Fe(C5H5)2]

C C

CN

O

NC

NC Mn

NO

O N

CMe2

CMe2

C C

CNNC

O

Mn

NO

O N

CH2

CH2

C

N · H2O

C C

CN

O

NC

NC

[ ]–   · Mn

N

N

N

N

OMe

OMeMeO

MeO

+
· 2PhMe
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002



592 CHETKINA, BEL’SKIŒ
Table 5.  (Contd.)

Compound no. Composition of the complex (salt) R factor References

40 0.046 [86]

41 0.046 [85]

42 0.072 [87]

43 0.105 [88]
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tions with occupancies of 0.56 and 0.44. In tetrapheny-
larsonium salt 29, the heterocyclic fragment of the
anion consists of three fused rings, namely, the pyrimi-
dine, imidazole, and pyrrole rings [78]. It seems likely
that, in their earlier work [77], Bonamico and cowork-
ers mistakenly assigned the sorts of nitrogen and car-
bon atoms in the N=C bond linking the tricyanovinyl
group and the heterocycle. The anion has a planar struc-
ture to within 0.02 Å (without regard for the CN
groups). The motif of the crystal packing is similar to
that revealed in ionic salts 27 and 28. In each stack, the
interplanar distance between the anions is alternately
equal to 3.30 and 3.33 Å, which suggests a high degree
of the π–π interaction [78].

The considerable interest expressed by researchers
in polycyanocarbanions is motivated by their practical
use both as materials with important electrical and
magnetic properties and as dyes. Four ionic salts were
investigated by X-ray diffraction. Two tricyanovinyl
groups in the anion are linked by the aza bridge in com-
pounds 30 and 31 [79] and by the diaza bridge in com-
pounds 32 and 33 [80]. The structure of tetraethylam-
C

monium salt 30 is built up of the [C10N7]– anions and
[NEt4]+ cations. In crystals 31, the silver cations occupy
two crystallographically nonequivalent special posi-
tions on the twofold axis and at the center of symmetry.
In this structure, the anions play the role of bridging
ligands: each anion is firmly bonded to four different
Ag cations through the N atoms of the four outer cyano
groups. In both structures, five atoms of the central
bridge lie in the same plane (to within 0.04 Å) and six
cyano groups deviate insignificantly from this plane. It
is worth noting that the C–C(N) bond lengths in the
outer cyano groups (1.419–1.425 Å in compound 30)
are considerably shorter than those in the inner cyano
groups (1.459 and 1.460 Å in compound 30); however,
the C≡N bond lengths differ only slightly, and the C=C
bond lengths in the tricyanovinyl groups are equal to
1.361 and 1.382 Å in compound 30 [79]. Close values
of the bond lengths, but with a lower accuracy, were
obtained for the anion in salt 31.

Decoster et al. [80] determined the structural char-
acteristics of tetraalkylammonium salts 32 and 33. In
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Table 6.  Tricyanopropenylidene compounds of the general formula  and their salts

Compound no. Formula R factor References

44 0.039 [89]

45 0.047 [90]

46 0.041 [91]

47 0.043 [92]

48 0.045 [93]

49 0.052 (153 K) [94]

50 0.076 [95]

51 0.047 [96]
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Table 6.  (Contd.)

Compound no. Formula R factor References

52 0.036 (–100°C) [97]

53 0.055 [98]

54 0.090 [99]

55 0.045 [94]

56 0.057 [100]

C C
CN

CN

NC

NC

C

CN

[ ]–  [Fe(C5Me5)2]+

C C
CN

CN

NC

NC

C

CN

[ ]–  [Fe(CO)2(η-C5H5)PPh3]+

C C
CN

CN

NC

NC

C

CN

[ ]– Cu Cl

NN

N N

[              ]+

C C
O

OEt

NC

NC

C

CN

[ ]–  K+ · H2OC

CN

C C
CN

CN

NC

NC

C[ ]– [AsPh4]+C N

F

CN
both structures, two tricyanovinyl groups are in the
trans position with respect to the N–N bond. In crys-
tals 32, the asymmetric part of the unit cell involves two
cations and two anions. In this case, two crystallo-
graphically independent anions form a dimer in which
the nearly parallel midplanes of the anions are charac-
terized by a shortened interplanar distance (on aver-
age, 3.0 Å). In ionic salt 33, the dianion has a cen-
trosymmetric structure and two cations are related by
the inversion center. The dianion with the approximate
symmetry C2h is planar to within 0.03 Å. Judging from
the bond lengths (C=C, 1.416 Å and C–C(N), 1.464 Å
in the inner cyano group and C=C, 1.421 Å and C–C(N),
1.411 Å in the outer cyano groups), the delocalization
should occur in each NC(CN)C(CN)2 fragment of the
dianion [80].

3.3. Organometallic Complexes and Ionic Salts 
with Tricyanoethenolate

The structurally characterized compounds with the
[(CN)2C=C(CN)O]– tricyanoethenolate fragment,
which serves as an anion or a ligand in the organome-
tallic complexes, are presented in Table 5. The geomet-
ric parameters of ionic salt 34 were determined by Nes-
terov [81]. A nearly planar anion of tricyanoethenolate
has a conjugated structure with delocalized bonds: the
C–O distance (1.234 Å) is longer than the standard
C

length of the C(sp2)=O nonconjugated bond (1.199 Å)
[39] and the bond length (1.218 Å) found in the cation of
compound 34; moreover, the length of the central C=C
bond (1.399 Å) substantially exceeds the standard
length of the C(sp2)=C(sp2) bond (1.331 Å) [39]. The
conjugation occurs with the participation of two cyano
groups in the 1,1 position. In these groups, the C–C(N)
bonds (1.417 and 1.414 Å) are appreciably shorter than
the C–C(N) bond (1.487 Å) in the third cyano group. In
the crystal, the cations are joined into the centrosym-
metric dimers by the NH···O intermolecular hydrogen
bonds (2.958 Å) (the mean-statistic length of these
hydrogen bonds is 2.89 Å [59]). In turn, the dimers and
two anions form tetramers through the weak
NH···N(≡C) hydrogen bonds.

In principle, Dahl [82] solved the structure of
salt  35, which crystallizes with the dioxane molecule.
Unfortunately, both ions and the solvent molecule
appeared to be disordered over positions: the occupan-
cies are equal to 0.58 and 0.42 for the tricyanoetheno-
late anion, 0.70 and 0.30 for the cation, and 0.50 and
0.50 for the dioxane molecule. The crystal packing is
determined primarily by a large number of hydrogen
bonds [82].

The reaction of ferrocene with tetracyanoethylene
produced the previously unknown product (compound 36)
with an unusual stoichiometry. According to X-ray
structure analysis, the crystal contains both ferrocene
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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Table 7.  Derivatives of tricyanobutadienylidene and its homologs of the general formula ,

their complexes, and salts

Compound no. Formula R factor References

57 0.030 [16]

58 0.031 (178 K) [101]

59 0.086 (–100°C) [102]

60 0.042 [103]

61 0.032 [104, 105]

62 0.041 [106, 107]

63 0.042 [108]

64 0.049 [108]

65 0.051 [108]

66 0.062 (–106°C) [109]
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Table 7.  (Contd.)

Compound no. Formula R factor References

67 0.072 (–100°C) [102]

68 0.045 [102]

69 0.072 [110]

70 0.058 [111]

71 0.112 [112]

72 0.069 [113]

73 0.069 [114]
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and ferrocenium ions. In the crystal structure, ferrocene
and the tricyanoethenolate anion form donor–acceptor
(1 : 2) stacks and cations form virtually linear separate
stacks. The tricyanoethenolate anions in the structure
are disordered with respect to the m plane and occupy
two positions with an occupancy of 0.5. In the anion,
the bond lengths (C=C, 1.387 Å and C–O, 1.246 Å)
[83] are close to those determined in [81].

In three manganese compounds, the tricyanoetheno-
late fragment plays the role of either a ligand in organo-
metallic complexes 37 and 38 or an anion in salt 39.
Sato et al. [84] determined the crystal structures of the
tricyanoethenolate adducts of the manganese com-
plexes with the tetradentate Schiff base (compounds 37
and 38). Tricyanoethenolate interacts with manganese
either through the O atom in compound 37 or through
C

the N atom of the cyano group in compound 38. The
water molecule found in crystal 38 participates in the
formation of the hydrogen bond with the N atom of the
adjacent fragment of tricyanoethenolate, thus forming a
chain structure. In salt 39, the ions are located at the
centers of symmetry and the tricyanoethenolate anion is
disordered over two equiprobable positions. Structure 39
consists of centrosymmetric sixfold-coordinated man-
ganese cationic complexes linked together by a chain of
tricyanoethenolate anions. The bridge between the
pairs of Mn atoms is alternately formed by an N or O
atom due to the anion disordering [85].

In compounds 40, 41, and 42, tricyanoethenolate
enters into the composition of the copper complexes. In
compound 40, the Cu atom is coordinated by the
ethenolate anion through the N atom of the cyano group
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in the same manner as in structure 38 of the manganese
complex. In compound 41, the ethenolate anion is not
involved in the coordination sphere of the Cu atom.
Complex 42 has the center of symmetry; hence, this
compound represents the trans complex. The Cu atom
is sixfold-coordinated, and the ethenolate ligands at
two axial positions are bonded to the Cu atom through
the O atom. The tricyanoethenolate anion has a planar
structure with a maximum atomic deviation of 0.028 Å
[87].

In crystal solvate 43, the antimony complex occu-
pies the general position and the solvate molecule of
benzene is located at the inversion center. In this struc-
ture, the ethenolate ligands are also bonded through the
O atom but to different Sb atoms linked by the oxygen
bridge. Thus, as was noted by Brandon et al. [85], tri-
cyanoethenolate is coordinationally flexible and either
can be bonded to the metal atom through the O atom
(compounds 37, 42, and 43), the N atom (compounds 38
and 40), and the O and N atoms (compound 39) or can
serve as a noncoordinated anion (structures 34–36
and 41). The data obtained in [82, 83, 85–88] on the
chemically equivalent bond lengths and bond angles in
the [C2(CN)3O]– ion are summarized in [85].

3.4. Tricyanopropenylidene Compounds

Similar to the tricyanovinyl compounds, tricyano-
propenylidene compounds of the general formula
(CH)2C=C(CN)–C–R are the tetracyanoethylene deriv-
atives. Table 6 presents the tricyanopropenylidene com-
pounds and the ionic salts whose crystals are character-
ized by X-ray diffraction analysis. Since molecule 44
contains the strong electron-acceptor tricyanoprope-
nylidene group and the electron-donor dihydroquino-
line moiety interacting through the π-conjugated sys-
tem, this compound can be assigned to conjugated sys-
tems with intramolecular charge transfer. The crystal is
built up of two symmetrically independent molecules (I
and II) with a similar geometry. The tricyanoprope-
nylidene fragments are nearly planar and form dihedral
angles of 8.6° (molecule I) and 10.8° (molecule II)
with the planar dihydroquinoline moieties. This indi-
cates that the molecules are slightly twisted around the
CH=C bond. The bond lengths are considerably redis-
tributed in the conjugated chain between the donor and
acceptor fragments of the molecule due to a substantial
intramolecular charge transfer. In the tricyanoprope-
nylidene group, the formally double bonds CH=C
(1.416 Å in I and 1.420 Å in II) and C=C (1.411 Å in I
and 1.401 Å in II) are appreciably longer than the nor-
mal bond (1.331 Å [39]) and the C=C bond in the tricy-
anovinyl group of the tricyanovinyl compounds. In the
crystal, molecules I and II form stacks with short inter-
planar distances (3.341, 3.449, and 3.347 Å), which can
encourage the intermolecular charge transfer [89].

In betaine structure 46, the molecule involves a
nearly planar fragment composed of the C(3), C(2), and
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
C(1) atoms and the two outer nitrile groups. The bond
lengths [C(1)–C(2), 1.408 Å; C(2)–C(3), 1.384 Å; and
C(1)–C(N), 1.411 and 1.413 Å] indicate that the delo-
calization of the negative charge occurs in the planar
conjugated ilide fragment C(3)=C(2)–C(1)(CN)2. The
coordination plane of the C atom in the carbonyl group
is rotated with respect to the ilide fragment through an
angle of 142.5°. Large rotation angles are observed for
the Py+ (107.5°) and Ph (60.9°) substituents. In the
tungsten complex (compound 47), the tricyanoprope-
nylidene group serves as a ligand. In the structure, one
of the outer cyano groups is disordered over positions
with occupancies of 0.65 and 0.35. The interaction with
the W atom occurs through the N bridge.

In recent years, increased interest has been
expressed by researchers in the structural characteris-
tics of percyanocarbanions, including pentacyanopro-
penides. These ions form stable salts and metal com-
plexes. The organic (compounds 48–50) and organo-
metallic (compounds 51–54) salts with 1,1,2,3,3-
pentacyanopropenide were characterized structurally.
The geometry of the 1,1,2,3,3-pentacyanopropenide
anion [(CN)2C(1)=C(2)(CN)–C(3)(CN)2]– (structure
48) was determined for the first time by Bertolasi and
Gilli [93]. The C(2)–C(3) bond lengths (1.370 Å) and,
especially, the C(1)=C(2) bond lengths (1.405 Å) are
closer to the sesquibond length. The pentacyanopro-
penide ion has an almost planar, slightly asymmetric
structure. For the major part, the asymmetry resides in
the large difference between the C–C bond lengths in
the central carbon chain. The ion pair is linked by the
NH···N hydrogen bond (2.869 Å) (the mean-statistic
length of this bond is 2.98 Å [59]). The cation and the
anion lie in the same plane: the angle between the cat-
ion and the anion is equal to only 1.1°. The crystal
structure consists of infinite columns in which the anion
is sandwiched between the cations. This arrangement
of ions suggests that the π–π interaction occurs with
intermolecular charge transfer [93].

Hipps et al. [96] determined the crystal structure and
measured the spectral characteristics of cesium salt 51.
Moreover, these authors performed quantum-chemical
calculations of the geometric parameters of the penta-
cyanopropenide anion for comparison with the bond
lengths found experimentally. This anion is almost pla-
nar: the maximum deviation of the N atom of the outer
cyano group is equal to 0.20 Å. The C–C bond lengths
in the carbon chain are 1.395 and 1.398 Å. The sym-
metry of the pentacyanopropenide anion is similar to
the C2v  symmetry. The crystal structure consists of
layers. In each layer, the anion is surrounded by the
four nearest-neighbor Cs atoms. The coordination
sphere of the anion also involves two Cs atoms of the
adjacent layers. The mean interlayer distance is equal
to 3.19 Å [96].

In crystals of ionic salt 52 with interesting magnetic
properties, the cation is located at the center of symme-
try and the planar pentacyanopropenide anion with the
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C2v pseudosymmetry lies on the axis 2 passing through
the central CCN group. The bond lengths in the anion
(C–C, 1.396 Å; C–CN, 1.423 Å for the outer groups
and 1.451 Å for the central nitrile group; C≡N, 1.142–
1.155 Å) are in agreement with those obtained in
[93, 96]. The structure consists of alternating cations
and anions arranged in such a way that the planes of the
pentacyanopropenide anions and five-membered rings
are aligned parallel to each other with an interplanar
distance of 3.44 Å [97]. In iron salt 53, whose structure
is characterized by X-ray diffraction analysis, the pen-
tacyanopropenide anion is disordered over two orienta-
tions with an occupancy of 0.5 for all the atoms. Con-
sequently, the geometric parameters of the pentacyano-
propenide anion cannot be determined with sufficient
accuracy. The geometric parameters of the pentacyano-
propenide anion were also determined with a low accu-
racy for the structure of copper salt 54, in which the pla-
nar pentacyanopropenide anion is not involved in the
coordination of the metal atom [99].

The crystal structures of the potassium hydrate salt 55
and tetraphenylarsonium salt 56 were also deter-
mined by X-ray diffraction. In crystal 55, the ethyl
group is disordered over two positions with occupan-
cies of 0.7 and 0.3. The carbanion in salt 56 is nonpla-
nar, most likely, due to internal steric effects. The
atomic deviations from the midplane of the anion fall in
the range from 0.103 to –0.095 Å. The C–C bond
lengths (1.393 and 1.391 Å) in the carbon chain corre-
spond to the sesquibond. The averaged bond lengths in
five cyano groups (C–CN, 1.435 Å; C≡N, 1.146 Å)
agree with those observed in the other cyano com-
pounds.

3.5. Derivatives of Tricyanobutadienylidene 
and Its Homologs

Tricyanobutadienylidene derivatives of aromatic
heterocyclic compounds belong to the class of conju-
gated dyes with intramolecular charge transfer and can
be used as efficient photosensitizers. Table 7 presents
the structurally characterized compounds and their
complexes and salts. 

Molecule 57 consists of the electron-donor acridone
and electron-acceptor tricyanobutadiene fragments.
The acridone fragment adopts a butterfly conformation:
the dihedral angle between the outer rings is equal to
159.2° and the folding angles of the outer rings, the car-
bonyl group, and the CNC plane from the plane of four
carbon atoms of the central heterocycle are equal to
8.9° and 12.1°, 8.7°, and 20.4°, respectively. In the
structures of N-methylacridone [18], N-ethylacridone
[19], and N-phenylacridone [20], the outer rings of the
acridone moiety in the molecule are coplanar and the
central heterocycle has the conformation of a flattened
boat. Therefore, the attachment of the tricyanobutadi-
ene group leads to a considerable distortion of the acri-
done moiety in molecule 57. The planar butadiene frag-
ment is rotated with respect to the donor molecular
C

fragment through an angle of 37.0°. As in the structures
of the other tricyanovinyl compounds [12, 14], the tri-
cyanovinyl fragment is almost planar. In the molecule,
the tricyanobutadiene moiety, as a whole, is nonplanar;
however, the bond lengths [C(1)=C(2), 1.371 Å; C(2)–
C(3), 1.419 Å; and C(3)=C(4), 1.349 Å] in the butadi-
ene chain indicate that the conjugation of the bonds is
retained in the chain. It should be noted that, in the
unsubstituted butadiene molecule, the C–C bond length
is equal to 1.465 (1.467) Å and the C=C bond length is
1.345 (1.349) Å [38, 115]. In crystal 57, the molecules
are joined through the van der Waals contacts and the
intermolecular hydrogen bonds between the CH groups
of the six-membered rings and the nitrile N atoms. The
H···N distances (2.38 and 2.60 Å) and the CHN angles
(151° and 143°) are in agreement with those reported
by Taylor and Kennard [116].

Hopf et al. [101] performed the reaction of
cyano(phenylethynyl)ethylene (a potential acceptor for
charge-transfer complexes) with tetrathiafulvalene and,
instead of the expected charge-transfer complex,
obtained an unusual compound (58), whose structure
was determined by X-ray diffraction analysis. Crystal
structure 58 is characterized by the mutually perpendic-
ular arrangement of two nearly planar halves of the
molecule: the dihedral angle about the central C(3)–
C(Ph) bond is equal to 96.79°.

Among the six well-known polycyano acceptors,
the hexacyanobutadiene C4(CN)6 (compound 59),
which was synthesized in 1964 (see the reference in
[106]) possesses the strongest electron affinity (3.3 eV)
[1, 2]. In the crystal, the hexacyanobutadiene molecule
consisting of two tricyanoethylene fragments occupies
the general position and has a nonplanar structure with
a torsion angle of 140.1° at the central C(2)–C(3) bond;
i.e., it deviates from the trans conformation by 40°. In
the hexacyanobutadiene molecule, the length of the
central C(2)–C(3) bond is equal to 1.487 Å and the
averaged lengths of the C=C, C–CN, and C≡N bonds
are 1.307, 1.459, and 1.124 Å, respectively. The lengths
of the C–CN bonds depend on their location in the mol-
ecule [102].

The polycyano-substituted derivatives of butadiene
form organometallic complexes (compounds 60 and
61). In structure 60, the N atom of the cyano(tricy-
anovinyl)keteniminato ligand is involved in the coordi-
nation of the ruthenium atom. A comparison with the
geometry of the related molecules demonstrated that
the charge is predominantly delocalized in the dicya-
nomethylene molecular fragment and in the carbon
chain [103]. It was shown that the tricyanobutadie-
nylidene ligand is a very good π-acceptor. In the struc-
ture of complex 61, the terminal C atom of the butadi-
ene chain is bonded to two Fe atoms. The bridging
ligand has a planar structure and exhibits a strong elec-
tron delocalization: the single C–CH bond (1.406 Å) is
shortened, whereas the CH=C bonds (1.358 Å) and,
especially, the C=C bonds (1.382 Å) are longer than
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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those observed in hexacyanobutadiene [102] and tetra-
cyanoethylene [28, 33].

Hexacyanobutadiene and aromatic compounds form
charge-transfer complexes 62–65. Hexacyanobutadi-
ene can be treated as a chemical extended analogue of
tetracyanoethylene. However, the number of known
charge-transfer complexes with hexacyanobutadiene is
considerably smaller than that with tetracyanoethylene.
In the crystal structure of the 1 : 1 complex of hexacy-
anobutadiene with perylene (compound 62), the accep-
tor and donor molecules are located at the centers of
symmetry and alternate with each other in columns;
i.e., they form a mixed-type packing. Moreover, the
hexacyanobutadiene and perylene molecules form
alternating single-component layers with an interplanar
distance of 3.2 Å and a dihedral angle of 2.88°. In this
complex, the hexacyanobutadiene molecule is ordered.
Single crystal 62 is an insulator with a neutral ground
state [106, 107].

The crystal structures of the 1 : 2 (compound 63)
and 1 : 1 (compounds 64 and 65) molecular complexes
of hexacyanobutadiene with tetrathiafulvalene deriva-
tives have been determined. In all three complexes, the
hexacyanobutadiene molecule is orientationally disor-
dered. In the structures of complexes 64 and 65, unlike
the structure of complex 62, the donor and hexacyanob-
utadiene molecules are packed in separate stacks. The
disordered hexacyanobutadiene molecule has the m
symmetry in structures 63 and 64 and is centrosymmet-
ric in complex 65. Analysis of the electrical properties
of these compounds [117, 118] demonstrated that com-
plex 63 is a semiconductor, whereas complexes 64 and
65 are insulators.

Hexacyanobutadiene can be easily transformed into
the radical ion and then into the dianion. The ionic salts
of hexacyanobutadiene with decamethylferrocenium
(compounds 66–68) are characterized structurally. In
the charge-transfer complex with the monoanion (com-
pound 66), both components are centrosymmetric. In
the crystal, the planar anions are disordered over two
equivalent trans orientations and sandwiched between
parallel Cp rings of two neighboring cations. In this
case, the dihedral angle between the anion and the ring
planes is equal to 26.4°. The complex in the ground
state is a ferromagnet. According to the magnetic sus-
ceptibility and Mössbauer data, the ordering tempera-
ture of the crystal structure is equal to 7.5 ± 0.5 K [109].

The geometry of the ordered planar dianion, which
is located at the center of symmetry in the crystal and
has the trans configuration with the approximate sym-
metry C2h, is determined in the 1 : 2 ionic salt with the
dianion (compound 67). The distribution of bond
lengths in the carbon chain of the dianion differs sub-
stantially from that observed in the neutral hexacyanob-
utadiene molecule [102]: the central bond C(2)–C(3)
(1.342 Å) is appreciably shorter than the terminal for-
mally double bonds C(1)=C(2) (1.401 Å). The mean
lengths of the C–CN and C≡N bonds are equal to 1.459
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and 1.128 Å, respectively. In the structure of salt 68, the
cation and the planar dianion with the cis configuration
lie on the axis 3 and are disordered.

The structure of potassium salt 69 was solved, and
the geometric parameters of the hexacyanobutadiene
dianion in the cis conformation were determined [110].
As in the trans form, the central C(2)–C(3) bond
(1.399 Å) in the cis dianion is shorter than the terminal
bonds [C(1)=C(2), 1.442 Å and C(3)=C(4), 1.434 Å].
The dianion geometry suggests a high degree of charge
delocalization. In this structure, unlike the structures
considered above [102], the dianion is nonplanar: the
C(1)C(2)C(3)C(4) torsion angle is equal to 12° and the
terminal cyano groups are rotated about the C(1)–C(2)
and C(3)–C(4) bonds. A considerable deviation from
planarity and a certain distortion of the bond angles (an
increase to 127.6°) result in a decrease in the dianion
strain. The deviation from the C2 symmetry can be
associated with a particular crystal packing [110].

Schlodder and Ibers [111] determined the structure
of compound 70 and showed that the hexacyanobutene-
diide dianion is bound to the Rh atoms through the Rh–
N bonds with the formation of the binuclear complex.
The bridging ligand has a trans structure. The central
carbon chain is nonplanar: the torsion angles about the
bonds C(1)–C(2) (1.455 Å), C(2)–C(3) (1.359 Å), and
C(3)–C(4) (1.444 Å) are equal to 38°, 8.5°, and 25°,
respectively. It was demonstrated that the transition
metals change the electronic nature of the dianion [111].

Ionic salts 71 and 72 with the pentadienide bridge
and six cyano groups in the anion can be classified as
compounds related to tricyanobutadienylidene deriva-
tives.

In ionic salts 71–73, the monoanion contains two
terminal tricyanoethylene fragments that are linked by
the carbon bridge and form the five-membered central
carbon chain in compounds 71 and 72 and the seven-
membered chain in compound 73. In structure 71, the
anion occupies the general position and is partly disor-
dered. The anion adopts a helical configuration due to
large steric strains that are predominantly induced by
the isopropyl group at the central C atom. Three almost
planar fragments can be distinguished in the molecule:
the tricyanoethylene groups are rotated with respect to
the plane of four central C atoms [C–C(CH)–C]
through 19.4° and 40.7° [112].

A comparison of the anion structures is of particular
interest in the study of crystals 72 and 73 [113]. In crys-
tal 72, the anion lies in the m plane and has a symmetry
similar to the C2v symmetry. In the carbon chain, the C–
C bond lengths fall in the range 1.388–1.404 Å and the
bond angles increase to 130° for CC(H)C and 123° and
125° for CCC(H). In structure 73, the anion with the
seven-membered polyene chain slightly deviates from a
planar configuration: the root-mean-square deviation
from the plane passing through all the atoms of the car-
banion is equal to 0.079 Å. The anion, as a whole, con-
sists of two planar halves with the approximate symme-
2
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try Cs (m). The outer cyano groups are slightly rotated
toward the anion plane. The bond lengths in the hep-
tatriene chain fall in the range 1.378–1.397 Å. As in the
other polycyanocarbanions, the bond lengths in the
outer and inner cyano groups differ from each other: the
mean lengths of the C–C(N) and C≡N bonds are equal
to 1.430 and 1.139 Å for the outer cyano groups and
1.468 and 1.121 Å for the inner cyano groups, respec-
tively.

4. CONCLUSION

Thus, we generalized the available data (obtained by
different diffraction methods) on the molecular struc-
ture of the cubic and monoclinic crystals of tetracyano-
ethylene—the ancestor of a large class of charge-trans-
fer complexes and radical ion salts.

The structures of 17 individual tricyanoethylene
derivatives, which have the general formula
(CN)2C=C(CN)R (R is the aromatic or heterocyclic
electron-donor substituent) and are typical conjugated
systems with pronounced intramolecular charge trans-
fer, have been analyzed using X-ray diffraction data.
It  is found that, owing to the steric interactions and
intramolecular charge transfer, the geometric parame-
ters of the tricyanovinyl fragment in the molecular
structure of the tricyanoethylene derivatives differ from
those of the unsubstituted tetracyanoethylene. A more
flattened molecular structure favors the intramolecular
charge transfer. The features observed in the molecular
structure of tricyanovinylarylamine (the lengthening of
the C=C double bond in the tricyanovinyl fragment, the
shortening of the C–C bond with the phenylene ring, a
well-pronounced quinoid character of the bonds
involved in the phenylene ring, and the shortening of
the C(sp2)–N bond in the amine group to the sesqui-
bond) can be associated with the intramolecular charge
transfer. Similar changes in the geometric parameters
are also observed in the tricyanovinyl derivatives of the
nitrogen-containing heterocyclic compounds, which
also belong to the class of conjugated compounds with
intramolecular charge transfer.

The molecular conformation of the tricyanovinyl
compounds is characterized by the rotation of the tricy-
anovinyl group with respect to the planar donor frag-
ment. The dihedral angle in monosubstituted tricyano-
ethylenes does not exceed 26°.

For a series of tricyanovinyl derivatives, the struc-
ture of molecules and their packing in the crystal are
compared with the photoelectric properties of the sin-
gle crystals. The specific features in the crystal and
molecular structures confirm the previously revealed
dependence of the photocurrent multiplication on the
geometric parameters of the molecules.

The structural features of 16 molecular complexes
and ionic salts with the tricyanovinyl group are exam-
ined. Of particular interest are the poorly investigated
C

complexes and salts in which the tricyanovinyl com-
pounds exhibit an amphoteric nature.

In the structures of ten compounds in which the tri-
cyanoethenolate fragment can serve as an anion of the
salt or as a ligand of the organometallic complex, the
tricyanoethenolate anions are disordered in a number of
cases. In the organometallic compounds, the tricyanoe-
thenolate fragment interacts with the metal atoms either
through the O atom of the carbonyl group or through
the N atom of the cyano group.

Among the representatives of the related class of tri-
cyanopropenylidene derivatives, four individual com-
pounds and seven ionic salts are characterized structur-
ally. It is established that the seven compounds involve
the pentacyanopropenide anion.

The structural features of the tricyanobutadiene
derivatives, their complexes, and salts are analyzed
using 17 structures as examples. Hexacyanobutadiene
is one of the strongest acceptors and can form either
charge-transfer complexes with aromatic compounds
(four structures) or ionic salts (five structures) in which
it can be in the form of a monoanion or a dianion.
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Abstract—The new compound [Pd(NH2CH2CH2OH)4][Pd6(NH2CH2CH2S)8]Cl6 · 5H2O (I) is synthesized
and its crystal structure is determined. The crystals are monoclinic, a = 25.625(6) Å, b = 9.633(5) Å, c =
24.847(7) Å, β = 91.47(2)°, Z = 4, and space group C2/c. The structural units of crystals I are the centrosym-
metric hexanuclear [Pd6(NH2CH2CH2S)8]4+ cations, the mononuclear [Pd(NH2CH2CH2OH)4]2+ cations with
C2 symmetry, the Cl– anions, and crystallization water molecules. In the hexanuclear cation, the interaction
between the Pd atoms occurs through the S atoms of the mercaptoethylaminate ligands. The Pd(2) and Pd(3)
atoms and the ligands form two metallochelate fragments in which the N and S atoms are located in cis posi-
tions. The average lengths of the Pd–S and Pd–N bonds are equal to 2.274(1) and 2.074(6) Å, respectively. The
metallochelate fragments are joined to each other and to their centrosymmetric analogues through the Pd(1)
atom, which coordinates four S atoms [the average Pd–Sav bond length is 2.332(1) Å]. In the mononuclear cat-
ion, the Pd(4) atom coordinates four N atoms of the monoethylaminate ligands [the Pd–N bond lengths are
2.045(6) and 2.056(6) Å]. The shortest Pd···Pd distance is equal to 3.207(1) Å. The bonding in the structure is
provided by numerous hydrogen bonds with the participation of all the H2O molecules, NH2 groups, and Cl–
anions. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The interaction of acido palladium complexes with
cystamine H2NCH2CH2–S–S–CH2CH2NH2 (LH2)
leads to the formation of compounds with different
compositions and structures, depending on the pH of
the medium. For example, in aqueous media at pH 1–7,
the disulfide bond in cystamine is broken with the for-
mation of the mercamine NH2CH2CH2SH (L'H) and its
coordination to palladium. This results in the formation
of the complexes of compositions Pd  [1],
Pd2(L'H)2Cl4 with Cl or S bridging atoms (depending

on the reaction temperature), and Pd2 Cl2 with Cl
bridging atoms and a bidentate ligand coordination [2].
In nonaqueous media, the cationic–anionic complex of
composition [LH4][PdCl4] can be formed without
breaking the S–S bond in cystamine and coordination
of this ligand to palladium [3].

The complex involving the noncluster hexanuclear
cation [Pd6 ]Cl4 (II) is formed at pH ~ 10 [4, 5].

In the present work, we investigated the
interaction  of  the palladium ethanolaminate comp-
lex   PdCl2(NH2CH2CH2OH)2 with cystamine di-
hydrochloride  NH2CH2CH2–S–S–CH2CH2NH2 · 2HCl
and     performed X-ray structure analysis of

L2'

L2'

L8'
1063-7745/02/4704- $22.00 © 20603
the       final       reaction      product—the compound
[Pd(NH2CH2CH2OH)4][Pd6(NH2CH2CH2S)8]Cl6 ·
5H2O (I).

EXPERIMENTAL

Synthesis. The complex trans-
PdCl2(NH2CH2CH2OH)2 was synthesized according to
the procedure described in [6]. Cystamine dihydrochlo-
ride (Fluka) was used without additional purification.

Compound I was synthesized by two methods.
Method 1. A solution of cystamine dihydrochloride

(0.3345 g, 0.1485 mmol) in water (7 ml) was added to
a filtered solution of PdCl2(NH2CH2CH2OH)2 (0.3541 g,
0.1485 mmol) in water (10 ml) with stirring. An orange
precipitate formed, which dissolved upon heating to
50°C, and the solution turned light yellow. The solution
was evaporated at 70°C to a volume of 5 ml and left to
crystallize at room temperature. Yellow crystals precip-
itated were filtered off and dried in air.

For Pd7N12C24H86O9S8Cl6 anal. calcd. (%): Pd,
39.18; Cl, 11.19; N, 8.84.

Found (%): Pd, 40.02; Cl, 10.95; N, 9.20.
Method 2. A solution of ethanol (0.5057 g,

8.3169 mmol) in water (10 ml) was added, with stir-
002 MAIK “Nauka/Interperiodica”



604 GASANOV et al.
ring, to a filtered solution prepared at 50°C from palla-
dium chloride (0.2650 g, 1.4937 mmol) and a mixture
of water (20 ml) with concentrated hydrochloric acid
(5 ml). A 0.5 M aqueous solution of cystamine dihydro-
chloride (3 ml) was added to the prepared solution to
the formation of an orange solution, to which a 25%
ammonia solution was added dropwise to pH 7. The
reaction mixture was evaporated at 50°C in a water bath
to a volume of 10 ml and left to crystallize at room tem-
perature. Within four days, yellow crystals precipitated.
The crystals were filtered off, washed with water, and
dried at room temperature to a constant weight.

For Pd7N12C24H86O9S8Cl6 anal. calcd. (%): Pd,
39.18; Cl, 11.19; N, 8.84.

Found (%): Pd, 38.64; Cl, 10.80; N, 7.80.
The Pd content in compound I was determined after

calcination at 850°C according to the procedure
described in [7, 8]. The Cl content was evaluated using
the Schöneherr method, and the N content was deter-
mined by the Dumas method [9].

X-ray diffraction analysis. Crystals I are mono-
clinic, a = 25.625(6) Å, b = 9.633(5) Å, c = 24.847(7) Å,
β = 91.47(2)°, V = 6131(3) Å3, M = 1901, F(000) =
3752, ρcalcd = 2.059 g/cm3, µMo = 2.59 mm–1, Z = 4, and
space group C2/c.

The experimental data were collected on an Enraf–
Nonius CAD4 diffractometer (λMoKα, graphite mono-
chromator, θ/2θ scan mode, 2θmax = 56°).

Structure I was solved by the direct method with the
use of 3973 reflections. The hydrogen atoms were
located from the difference Fourier syntheses. The
structure was refined by the least-squares procedure
using 3952 reflection with Fo ≥ 4σ(Fo). The non-hydro-
gen atoms were refined in the anisotropic approxima-
tion, and the hydrogen atoms were refined in the isotro-
C

pic approximation. The final R values were as follows:
R1 = 0.0287, wR2 = 0.0721, and Goof = 1.060 for 3952
reflections; ∆ρmax = 0.92 e/Å3; and ∆ρmin = –0.78 e/Å3 .

The calculations were performed according to the
SHELXS86 [10] and SHELXL93 [11] software pack-
ages.

The atomic coordinates and thermal parameters for
structure I are listed in Table 1. The bond lengths and
angles are presented in Table 2.

RESULTS AND DISCUSSION

The structural units of crystals I are the
centrosymmetric hexanuclear cationic complexes
[Pd6(NH2CH2CH2S)8]4+ (Fig. 1a), the mononuclear cat-
ionic complexes [Pd(NH2CH2CH2OH)4]2+ with C2 sym-
metry (Fig. 1b), the anions Cl–, and the crystallization
water molecules in general positions.

The structure of the hexapalladium cation in com-
pound I is virtually identical to that of the corresponding
cation in the compound [Pd6(NH2CH2CH2S)8]Cl4 (II) [4].
The cation structure is formed by three pairs of Pd
atoms, which do not interact directly. The coordination
polyhedra of the Pd(1), Pd(2), and Pd(3) atoms have the
shape of nearly planar squares. The Pd(2) and Pd(3)
atoms each coordinate two N atoms and two S atoms of
two deprotonated β-mercaptoethylaminate ligands,
thus closing the five-membered chelate metallocycles
with the N and S atoms in the cis positions. The average
lengths of the Pd–N and Pd–S bonds are equal to
2.074(6) and 2.274(1) Å, respectively. Similar bonds in
structure II are somewhat lengthened [2.091(6) and
2.280(1) Å]. In structure I, a small tetrahedral distor-
tion of the coordination core PdN2S2 is observed in both
metallocycles. The deviation of the N and S atoms from
C(5) C(6)

C(1)
N(1)

N(3)
S(3)

S(1)Pd(1) Pd(3)

S(2)

Pd(1') C(4)

C(7)

C(8)

N(4)
N(2)

Pd(2)

Pd(4)
N(5)

N(6)

C(10)

C(12)
C(11)

C(9)

O(2)

O(1)

S(4)

Fig. 1. Cationic complexes in structure I: (a) hexanuclear [Pd6(NH2CH2CH2S)8]4+ and (b) mononuclear [Pd(NH2CH2CH2OH)4]2+

complexes.

(a) (b)
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Table 1.  Atomic coordinates and thermal parameters (Ueq/Uiso) for compound I

Atom x y z Ueq/Uiso, Å2

Pd(1) 0.25782(2) 0.08767(4) 0.51205(2) 0.0224(1)
Pd(2) 0.21318(2) 0.17429(4) 0.37278(2) 0.0251(1)
Pd(3) 0.12494(2) 0.22164(4) 0.53581(2) 0.0263(1)
Pd(4) 0.0 0.94546(7) 0.25 0.0324(2)
S(1) 0.18903(5) 0.0856(2) 0.57199(6) 0.0278(3)
S(2) 0.17352(5) 0.4172(2) 0.54759(6) 0.0289(3)
S(3) 0.19981(6) 0.0263(2) 0.44245(6) 0.0282(3)
S(4) 0.18244(5) 0.3504(1) 0.41835(6) 0.0274(3)
Cl(1) 0.1823(1) –0.0478(2) 0.7138(1) 0.0469(4)
Cl(2) 0.0375(1) –0.1932(2) 0.4442(1) 0.0598(5)
Cl(3) –0.0433(1) 0.3465(2) 0.3396(1) 0.0617(5)
O(w1) 0.1640(3) –0.3605(7) 0.6692(4) 0.088(3)
O(w2) 0.0552(3) 0.4921(9) 0.3976(3) 0.104(3)
O(w3) 0.0000(0) 0.536(1) 0.2500(0) 0.092(4)
O(1) 0.1646(2) 0.7316(6) 0.2343(3) 0.074(2)
O(2) 0.0895(2) 0.9524(6) 0.3479(2) 0.059(1)
N(1) 0.0788(3) 0.0447(7) 0.5341(4) 0.041(2)
N(2) 0.0661(2) 0.3515(6) 0.5076(3) 0.043(1)
N(3) 0.2376(3) 0.0011(6) 0.3309(2) 0.037(1)
N(4) 0.2190(3) 0.3086(6) 0.3075(2) 0.039(1)
N(5) 0.0563(2) 0.7951(6) 0.2486(3) 0.039(1)
N(6) 0.0580(2) 1.0928(6) 0.2499(2) 0.039(1)
C(1) 0.0982(3) –0.0629(7) 0.5723(3) 0.041(2)
C(2) 0.1558(3) –0.0813(7) 0.5645(3) 0.034(1)
C(3) 0.0721(3) 0.4907(8) 0.5313(3) 0.045(2)
C(4) 0.1258(3) 0.5436(7) 0.5212(3) 0.038(2)
C(5) 0.2264(3) –0.1316(6) 0.4124(3) 0.036(1)
C(6) 0.2157(3) –0.1283(7) 0.3528(3) 0.037(1)
C(7) 0.1918(3) 0.4940(7) 0.3669(3) 0.037(2)
C(8) 0.1843(3) 0.4325(7) 0.3126(3) 0.041(2)
C(9) 0.0776(3) 0.7677(8) 0.1957(3) 0.044(2)
C(10) 0.1251(4) 0.676(1) 0.1994(5) 0.061(3)
C(11) 0.0717(4) 1.1643(9) 0.3015(4) 0.056(2)
C(12) 0.0622(4) 1.079(1) 0.3489(4) 0.059(2)

H(11) 0.083(3) –0.156(8) 0.569(3) 0.06(2)
H(12) 0.097(3) –0.021(9) 0.600(3) 0.06(3)
H(21) 0.171(2) –0.145(7) 0.594(3) 0.04(2)
H(22) 0.160(2) –0.113(6) 0.537(2) 0.01(2)
H(31) 0.068(2) 0.466(7) 0.570(3) 0.04(2)
H(32) 0.050(3) 0.557(7) 0.519(3) 0.05(2)
H(41) 0.136(2) 0.637(6) 0.541(2) 0.03(2)
H(42) 0.128(2) 0.551(6) 0.488(2) 0.02(2)
H(51) 0.264(3) –0.139(6) 0.415(2) 0.04(2)
H(52) 0.205(3) –0.196(8) 0.432(3) 0.06(2)
H(61) 0.232(2) –0.206(6) 0.337(2) 0.02(2)
H(62) 0.180(2) –0.127(6) 0.346(2) 0.03(2)
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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Table 1.  (Contd.)

Atom x y z Ueq/Uiso, Å2

H(71) 0.168(2) 0.560(6) 0.371(2) 0.03(2)

H(72) 0.230(2) 0.530(6) 0.375(2) 0.03(2)

H(81) 0.151(2) 0.405(6) 0.304(2) 0.03(2)

H(82) 0.192(2) 0.500(8) 0.286(3) 0.05(2)

H(91) 0.085(3) 0.844(7) 0.178(3) 0.04(2)

H(92) 0.050(3) 0.723(7) 0.172(3) 0.05(2)

H(101) 0.138(3) 0.654(9) 0.178(3) 0.05(3)

H(102) 0.119(3) 0.581(8) 0.212(3) 0.05(2)

H(111) 0.055(4) 1.241(9) 0.298(4) 0.09(3)

H(112) 0.106(3) 1.185(7) 0.299(3) 0.04(2)

H(121) 0.027(3) 1.065(6) 0.352(2) 0.03(2)

H(122) 0.064(3) 1.120(9) 0.380(4) 0.07(3)

H(1N1) 0.047(3) 0.070(9) 0.541(3) 0.07(3)

H(2N1) 0.072(3) 0.029(9) 0.511(3) 0.06(3)

H(1N2) 0.070(2) 0.364(7) 0.475(3) 0.03(2)

H(2N2) 0.040(3) 0.321(8) 0.514(3) 0.05(2)

H(1N3) 0.221(3) –0.004(9) 0.292(3) 0.09(3)

H(2N3) 0.267(3) 0.005(9) 0.332(3) 0.06(3)

H(1N4) 0.250(3) 0.345(8) 0.310(3) 0.06(2)

H(2N4) 0.205(4) 0.273(9) 0.281(4) 0.09(3)

H(1N5) 0.075(3) 0.816(7) 0.272(3) 0.04(2)

H(2N5) 0.036(3) 0.722(8) 0.263(3) 0.07(3)

H(1N6) 0.049(2) 1.161(7) 0.230(3) 0.04(2)

H(2N6) 0.092(4) 1.041(9) 0.238(3) 0.10(3)

H(1w1) 0.170(3) –0.285(7) 0.681(3) 0.03(2)

H(2w1) 0.125(3) –0.355(8) 0.665(3) 0.07(3)

H(1w2) 0.057(2) 0.568(7) 0.351(3) 0.03(2)

H(2w2) 0.026(4) 0.44(1) 0.371(4) 0.08(4)

H(1w3) 0.002(5) 0.47(1) 0.277(4) 0.16(5)

H(1) 0.167(6) 0.82(1) 0.230(6) 0.16(5)

H(2) 0.082(5) 0.93(1) 0.366(5) 0.13(5)
the mean plane passing through these atoms is equal to
±0.018 Å for Pd(2)N2S2 and ±0.025 Å for Pd(3)N2S2.

The chelate fragments containing the Pd(2) and
Pd(3) atoms are joined to each other and to their cen-
trosymmetric analogues Pd(2)' and Pd(3)' through the
Pd(1) and Pd(1)' atoms. These atoms each coordinate
four bridging S atoms. The average Pd–S bond lengths in
structures I and II are equal to 2.332(1) and 2.336(1) Å,
respectively.

In compound I, the shortest distance Pd(1)···Pd(1)'
is equal to 3.207(1) Å and the other distances Pd···Pd
are 3.712(1) and 3.703(1) Å. The corresponding dis-
tances in compound II are equal to 3.202(1), 3.722(1),
and 3.689(1) Å.
C

The hexanuclear complex involves the two mutually
perpendicular eight-membered rings Pd4S4 composed
of the alternating Pd and S atoms. Both rings adopt a
chair-type conformation: the Pd(2) and Pd(2)' atoms
deviate from the central planar fragment
Pd(1)S(3)S(4)Pd(1)'S(3)'S(4)' in opposite directions by
1.38 Å, and the deviations of the Pd(3) and Pd(3)' atoms
from the plane Pd(1)S(1)S(2)Pd(1)'S(1)'S(2)' are equal
to ±1.40 Å.

The nonplanar conformation of the eight-membered
metallocycles possibly results from an additional (sec-
ondary) interaction of the Pd(2) and Pd(3) atoms with
the S atoms of the adjacent perpendicularly oriented
cycle: the Pd(2) atom deviates from the plane of the
coordination square N(3)N(4)S(3)S(4) by 0.067 Å
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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Table 2.  Bond lengths and angles in compound I

Bond d, Å Bond d, Å

Pd(1) ⋅ ⋅ ⋅Pd(1)' 3.207(1)

Pd(1)–S(1) 2.337(1) Pd(1)–S(2) 2.330(1)

Pd(1)–S(3) 2.328(2) Pd(1)–S(4) 2.334(1)

Pd(2)–S(3) 2.275(2) Pd(2)–S(4) 2.272(2)

Pd(2)–N(3) 2.071(6) Pd(2)–N(4) 2.084(6)

Pd(3)–S(1) 2.269(1) Pd(3)–S(2) 2.272(1)

Pd(3)–N(1) 2.075(6) Pd(3)–N(2) 2.067(6)

Pd(4)–N(5) 2.045(6) Pd(4)–N(6) 2.056(6)

S(1)–C(2) 1.826(7) S(2)–C(4) 1.836(7)

S(3)–C(5) 1.833(6) S(4)–C(7) 1.834(7)

O(1)–C(10) 1.42(1) O(2)–C(12) 1.41(1)

N(1)–C(1) 1.48(1) N(2)–C(3) 1.47(1)

N(3)–C(6) 1.477(9) N(4)–C(8) 1.494(9)

N(5)–C(9) 1.46(1) N(6)–C(11) 1.49(1)

C(1)–C(2) 1.50(1) C(3)–C(4) 1.49(1)

C(5)–C(6) 1.50(1) C(7)–C(8) 1.48(1)

C(9)–C(10) 1.50(1) C(11)–C(12) 1.46(1)

Bond angle ω, deg Bond angle ω, deg

S(1)Pd(1)S(2) 178.36(5) S(1)Pd(1)S(3) 89.62(5)

S(1)Pd(1)S(4) 91.19(5) S(2)Pd(1)S(3) 90.04(5)

S(2)Pd(1)S(4) 89.07(5) S(3)Pd(1)S(4) 177.53(6)

S(3)Pd(2)S(4) 93.10(5) S(3)Pd(2)N(3) 86.0(2)

S(3)Pd(2)N(4) 175.4(2) S(4)Pd(2)N(3) 177.3(2)

S(4)Pd(2)N(4) 86.0(2) N(3)Pd(2)N(4) 94.6(2)

S(1)Pd(3)S(2) 92.24(5) S(1)Pd(3)N(1) 86.6(2)

S(1)Pd(3)N(2) 176.4(2) S(2)Pd(3)N(1) 173.6(2)

S(2)Pd(3)N(2) 86.2(2) N(1)Pd(3)N(2) 94.6(3)

N(5)Pd(4)N(6) 88.7(2) Pd(1)S(1)Pd(3) 107.02(6)

Pd(1)S(1)C(2) 107.4(2) Pd(3)S(1)C(2) 97.9(2)

Pd(1)S(2)Pd(3) 108.77(6) Pd(1)S(2)C(4) 107.0(2)

Pd(3)S(2)C(4) 98.4(2) Pd(1)S(3)Pd(2) 107.48(6)

Pd(1)S(3)C(5) 106.0(2) Pd(2)S(3)C(5) 98.4(2)

Pd(1)S(4)Pd(2) 108.01(6) Pd(1)S(4)C(7) 105.8(2)

Pd(2)S(4)C(7) 98.8(2) Pd(3)N(1)C(1) 112.2(5)

Pd(3)N(2)C(3) 110.3(5) Pd(2)N(3)C(6) 111.9(4)

Pd(2)N(4)C(8) 112.1(4) Pd(4)N(5)C(9) 115.1(5)

Pd(4)N(6)C(11) 118.1(5) N(1)C(1)C(2) 108.4(6)

S(1)C(2)C(1) 109.8(5) N(2)C(3)C(4) 109.3(6)

S(2)C(4)C(3) 108.7(5) S(3)C(5)C(6) 108.9(5)

N(3)C(6)C(5) 108.7(6) S(4)C(7)C(8) 109.8(5)

N(4)C(8)C(7) 109.4(6) N(5)C(9)C(10) 111.7(7)

O(1)C(10)C(9) 112.5(8) N(6)C(11)C(12) 113.2(7)

O(2)C(12)C(11) 112.3(8)
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toward the S(1)' and S(2)' atoms, and the Pd(3) atom is
displaced from the N(1)N(2)S(1)S(2) plane by 0.091 Å
toward the S(3)' and S(4)' atoms.

In the mononuclear cation [Pd(NH2CH2CH2OH)4]2+

of compound I, the Pd atom coordinates four N atoms
of four monodentate hydroxyethylamine ligands [the
Pd(4)–N bond lengths are equal to 2.045(6) and
2.056(6) Å]. The central fragment Pd(4)N4 is planar to
within ±0.007 Å.

The structural units in crystal I are linked together
by numerous hydrogen bonds, which involve all the Cl
anions, water molecules, and O atoms of the hydroxy
groups (Table 3). In all the hydrogen bonds, the amino
groups serve as proton donors. In crystal I, as in crystal II,
the Cl ions participate as proton acceptors in the hydro-
gen bonds with the N atoms of the amino groups and
the O atoms of water molecules.

The similarity of the hexanuclear cationic complexes
in compounds I and II leads to a certain structural simi-
larity of their crystals as a whole. For example, in both
compounds, the principal axes of the local symmetry
C4h pass through the Pd(1) and Pd(1)' atoms and are
almost parallel to the crystallographic axes with the
minimum unit cell parameter: b = 9.63 Å in compound I
and a = 9.67 Å in compound II. The misorientation
angles between the axes in the complexes and the above

Table 3.  Parameters of hydrogen bonds in structure I

Bond
no. Bond Distance, Å Angle, 

deg

A–H ⋅ ⋅ ⋅B A ⋅ ⋅ ⋅B A–H H ⋅ ⋅ ⋅B AHB

1 O(w1)–H ⋅ ⋅ ⋅Cl(1) 3.150(7) 0.73(7) 2.42(7) 175(7)

2 O(w1)–H ⋅ ⋅ ⋅Cl(3) 3.099(8) 1.00(9) 2.15(9) 174(7)

3 O(w2)–H ⋅ ⋅ ⋅Cl(2) 3.271(9) 0.83(9) 2.44(8) 178(9)

4 O(w2)–H ⋅ ⋅ ⋅Cl(3) 3.209(9) 0.89(9) 2.31(9) 178(9)

5 O(w3)–H ⋅ ⋅ ⋅Cl(3) 3.103(7) 0.92(7) 2.31(8) 148(7)

6 O(1)–H ⋅ ⋅ ⋅Cl(1) 3.142(7) 0.85(6) 2.29(8) 173(7)

7 O(2)–H ⋅ ⋅ ⋅Cl(2) 3.114(8) 0.74(7) 2.47(7) 144(6)

8 N(1)–H ⋅ ⋅ ⋅Cl(2') 3.359(8) 0.88(8) 2.49(8) 169(6)

9 N(1)–H ⋅ ⋅ ⋅Cl(2) 3.348(7) 0.66(8) 2.77(2) 148(6)

10 N(2)–H ⋅ ⋅ ⋅O(w2) 3.085(9) 0.78(8) 2.39(9) 150(7)

11 N(2)–H ⋅ ⋅ ⋅Cl(2) 3.311(7) 0.78(7) 2.55(7) 165(4)

12 N(3)–H ⋅ ⋅ ⋅Cl(1) 3.237(7) 0.98(7) 2.27(8) 172(9)

13 N(3)–H ⋅ ⋅ ⋅O(w1) 2.907(7) 0.74(7) 2.35(8) 134(8)

14 N(4)–H ⋅ ⋅ ⋅Cl(1) 3.468(8) 0.90(8) 2.68(7) 148(7)

15 N(4)–H ⋅ ⋅ ⋅O(1) 3.277(7) 0.90(7) 2.69(8) 124(6)

16 N(4)–H ⋅ ⋅ ⋅Cl(1) 3.541(8) 0.72(7) 2.86(8) 158()8

17 N(5)–H ⋅ ⋅ ⋅O(2) 3.001(7) 0.75(8) 2.36(7) 145(7)

18 N(5)–H ⋅ ⋅ ⋅O(w3) 2.887(7) 0.99(8) 2.01(7) 146(7)

19 N(6)–H ⋅ ⋅ ⋅Cl(3) 3.317(7) 0.91(9) 2.43(8) 167(6)

20 N(6)–H ⋅ ⋅ ⋅Cl(1) 3.360(8) 1.05(9) 2.37(8) 157(7)
C

crystallographic axes are also virtually identical and are
equal to 12.8° and 11.9°, respectively. The cationic
complexes are aligned along these crystallographic
axes and form columns surrounded by Cl anions
attached by hydrogen bonds. Owing to the congruence
of complexes I and II, the hydrogen bond directions
(governed by the orientation of the NH2 groups) appear
to be the same (Fig. 2). The participation of structural
units (Cl and H2O) in the formation of the hydrogen
bonds also turns out to be similar in many respects. The
difference actually resides in the fact that one amino
group in structure II does not participate in hydrogen
bonds, whereas the amino group in structure I forms the
bifurcated hydrogen bond (Table 3, bonds nos. 14, 15)
with the Cl(1) atom and the hydroxyl O atom of the
monoethanolaminate ligand in the mononuclear cat-
ionic complex. Moreover, in structure I, the arrange-
ment of the Cl(1) and Cl(2) atoms, together with the
corresponding hydrogen bonds (nos. 12, 14, 16 and
8, 9, 11), is quite adequate for the local symmetry of the
complex. As a result, in structure I, the hexanuclear cat-
ion in which all the H atoms of the amino groups are
involved in the hydrogen bonds appears to be in a more
isotropic force field and has a more pronounced local
symmetry C4h. In particular, the folding angles made by
the planes of the Pd(2) and Pd(3) coordination squares
with the central planes of the eight-membered rings are
virtually equal to each other (62.3° and 62.7°). At the
same time, the asymmetry of intermolecular contacts
with neighbors in the cations of structure II results in a
noticeable deviation from an “ideal” symmetry: the
aforementioned angles (51.5° and 69.4°) differ consid-
erably. A certain redistribution of bond lengths and
bond angles is also likely caused by external actions.

Despite certain differences in specific features of the
interaction, the columns in structures I and II form lay-
ers with a very similar structure. These layered frag-
ments contain the hexanuclear complexes related only
by the inversion centers and the associated Cl atoms.
The columns are directly linked by double hydrogen
bridges through the Cl(2) atoms (hydrogen bonds
nos. 8, 9, 11). The layers are parallel to the coordinate
plane (001) in structure I and to the diagonal plane
(011) in structure II. The distances between columns in
the layers are equal to 12.80 Å in compound I and
12.90 Å in compound II.

It is evident that the structures under consideration
are characterized by different packings of layers. In
structure I, since the local symmetry C4h occurs outside
the complex, it is possible to distinguish layered frag-
ments extending in the perpendicular direction. In this
case, the screw axis 21 is the controlling symmetry ele-
ment and the layers are directly joined by a number of
hydrogen bonds with the participation of the bridging
Cl(1) atom (hydrogen bonds nos. 12, 14, 16). In combi-
nation, both systems of layers form a framework con-
sisting of columns with channels of a square cross sec-
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Fig. 2. A system of hydrogen bonds in the hexapalladium complexes. Projections along the lattice axes nearest to the principal axes
of the C4h local symmetry: (a) the b-axis in structure I and (b) the a-axis in structure II.
tion. In structure II, the cross section of channels is tri-
angular in shape.

Undeniably, the main reason for the difference
between structures I and II lies in the different compo-
sitions of the compounds and, primarily, in the presence
of the second cationic complex with its different nature
in compound I. In crystals II, no hydrogen bonds, in
principle, can occur between similar cationic com-
plexes. A quite different situation is observed in the
case of compound I involving the second cation
[Pd(NH2CH2CH2OH)4]2+ with four hydroxyl groups. In
compound I, the hydrogen bonds are formed
both   between the different-type cationic complexes
(hydrogen bond no. 15) and between the cations
[Pd(NH2CH2CH2OH)4]2+ (hydrogen bond no. 17). The
mononuclear cations joined through their subsystem of
hydrogen bonds, the Cl(3) atoms, and the crystallization
water molecules occupy channels formed between the
layers of hexanuclear cationic complexes.

REFERENCES
1. D. C. Jicha and D. H. Bush, Inorg. Chim. Acta 1 (4), 177

(1962).
2. I. A. Efimenko, Kh. I. Gasanov, N. A. Ivanova, et al.,

Koord. Khim. 26 (2), 117 (2000).
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
3. I. A. Zakharova, in Research in Inorganic Chemistry and
Chemical Technology (Nauka, Moscow, 1982), p. 171.

4. Yu. E. Gorbunova, Yu. N. Mikhaœlov, A. P. Kurbakova,
and I. A. Efimenko, Koord. Khim. 19 (4), 322 (1993).

5. I. A. Efimenko, Kh. I. Gasanov, Yu. E. Gorbunova, et al.,
Dokl. Akad. Nauk 326 (4), 654 (1992).

6. Kh. I. Gasanov, S. S. Fatullaeva, D. I. Mirzai, and
I. A. Efimenko, in Proceedings of the XVI Mendeleev
Congress on General and Applied Chemistry, Moscow,
1998, p. 67.

7. S. Livingstone, Rhenium, Rhodium, Palladium,
Osmium, Iridium, and Platinum (Pergamon, Oxford,
1975; Mir, Moscow, 1978).

8. S. I. Ginzburg, K. A. Gladyshevskaya, N. A. Ezerskaya,
et al., Guide on Chemical Analysis of Platinum Metals
and Gold (Nauka, Moscow, 1965).

9. V. A. Klimov, Basic Micromethods of Analyzing Organic
Compounds (Khimiya, Moscow, 1967).

10. G. M. Sheldrick, SHELXS86: Program for the Solution
of Crystal Structures (Univ. of Göttingen, Göttingen,
1986).

11. G. M. Sheldrick, SHELXL93: Program for the Refine-
ment of Crystal Structures (Univ. of Göttingen, Göttin-
gen, 1993).

Translated by O. Borovik-Romanova



  

Crystallography Reports, Vol. 47, No. 4, 2002, pp. 610–615. Translated from Kristallografiya, Vol. 47, No. 4, 2002, pp. 667–671.
Original Russian Text Copyright © 2002 by Suponitski

 

œ

 

, Gusev, Kuleshova, Antipin.

                                                                                                             

STRUCTURES
OF ORGANIC COMPOUNDS
X-ray Structure Investigation of Two Polymorphic Modifications 
of 1-Acetyl-3-(4-Nitrophenyl)-5-(2'-Furyl)pyrazoline

K. Yu. Suponitskiœ, D. V. Gusev, L. N. Kuleshova, and M. Yu. Antipin
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 

ul. Vavilova 28, Moscow, 119991 Russia
e-mail: lukul@xrlab.ineos.ac.ru

Received July 5, 2001

Abstract—Two polymorphic modifications of 1-acetyl-3-(4-nitrophenyl)-5-(2'-furyl)pyrazoline (I) are inves-
tigated by X-ray diffraction with the purpose of analyzing the factors responsible for the formation of crystal
structures of the optical nonlinear organic compounds. Both modifications crystallize simultaneously upon
slow evaporation of a solution of compound I in an isopropanol–acetonitrile (3 : 1) mixture. It is found that the
molecular geometry of the polymorphic modifications is characterized by the rotation of the furan substituent
with respect to the plane of the pyrazoline ring. The molecular hyperpolarizabilities (β) of both conformers are
calculated. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The ability of organic compounds to form crystal
packings (polymorphic modifications) differing in
structure and symmetry provides a means of synthesiz-
ing new optical nonlinear crystalline materials. In this
respect, considerable recent attention has been concen-
trated on the search for new polymorphic modifications
of organic compounds with high molecular hyperpolar-
izability (β) [1–4]. Among these compounds are differ-
ent molecular conjugated systems with donor–acceptor
substituents. However, the nonlinear optical effect can
manifest itself only in crystals with a noncentrosym-
metric space group. In particular, Hall et al. [1]
described the polymorphism of 1-(4-methoxyphenyl)-
3-(4-nitrophenyl)pyrazoline with high molecular
hyperpolarizability. For this compound, four polymor-
phic modifications (two of which belong to the noncen-
trosymmetric space group P21) were prepared through
crystallization from different solvents. For the purpose
of analyzing the possible polymorphism of other deriva-
tives of this series, we prepared polymorphic modifica-
tions of 1-acetyl-3-(4-nitrophenyl)-5-(2'-furyl)pyrazo-
line (I) and performed an X-ray structure investigation
of these compounds.

EXPERIMENTAL

Synthesis and crystallization. 3-(4-Nitrophenyl)-
5-(2'-furyl)pyrazoline1 was synthesized by the condensa-
tion of 2-furaldehyde-(4-nitroacetophenone) in an alco-
hol solution with hydrazine hydrate. Unfortunately,
many attempts to prepare high-quality single crystals

1 The atomic numbering used in this work differs from that
accepted in the system of notations recommended by the Interna-
tional Union of Pure and Applied Chemistry (IUPAC).
1063-7745/02/4704- $22.00 © 20610
were unsuccessful because the compound synthesized
was unstable in the majority of the solvents used in our
experiments. With the aim of increasing the stability of
the product, we synthesized its acyl derivative, namely,
1-acetyl-3-(4-nitrophenyl)-5-(2'-furyl)pyrazoline (I).
Upon slow evaporation of a solution of I in an isopro-
panol–acetonitrile (3 : 1) mixture, thin light yellow nee-
dle-shaped crystals (modification A) precipitated
simultaneously with light yellow prismatic crystals
(modification B).

X-ray diffraction analysis. Crystals of modifica-
tion A (C15H13N3O4) are triclinic; at 110 K, the unit cell
parameters are as follows: a = 6.709(2) Å, b = 8.276(3) Å,
c = 13.782(6) Å, α = 72.726(8)°, β = 89.023(9)°, γ =
68.799(11)°, V = 677.8(4) Å3, dcalcd = 1.466 g cm–3, Z = 2,

and space group . A set of experimental reflections
was collected on a SMART 1000 CCD automated dif-
fractometer (λMoKα; graphite monochromator; ω step-
scan mode; step width, 0.3° in ω; scan time, 25 s; 2θ <
60°). An analysis of the reciprocal lattice revealed
twinned crystals. The contributions of both components
were taken into account in the processing of the exper-
imental set of intensities according to the GEMINI pro-
gram [5]. The structure was solved by the direct method
and refined using the full-matrix least-squares proce-

dure in the anisotropic approximation for . The
hydrogen atoms were located from the electron-density
difference synthesis and refined in the isotropic approx-
imation. The final discrepancy factors are as follows:
R1 = 0.1186, wR2  = 0.2800 for all 5895 unique reflec-
tions, and GOF = 0.814. The high R factors can be
explained by the poor quality of the twinned crystal.
The atomic coordinates and isotropic equivalent (iso-

P1

Fhkl
2
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Table 1.  Atomic coordinates (Å ×104; for H atoms, ×103) and isotropic equivalent (isotropic for H atoms) thermal parameters
U (Å2, ×103) for modification A

Atom x y z U Atom x y z U

N(1) 1643(6) 1781(5) 2627(3) 21(1) C(12) –4644(8) 7514(8) 3008(4) 26(1)

N(2) 362(6) 2070(5) 3391(3) 19(1) C(13) –4550(8) 6811(8) 4037(4) 27(1)

N(3) 8800(6) 2489(6) –462(3) 24(1) C(14) –945(6) 1111(6) 3743(4) 19(1)

O(1) –2677(5) 5341(5) 4413(3) 29(1) C(15) –778(8) –406(7) 3330(4) 22(1)

O(2) –2156(5) 1495(5) 4387(3) 29(1) H(1) 318(7) 104(6) 100(4) 7(10)

O(3) 8800(6) 1626(6) –1045(3) 37(1) H(2) 575(9) 93(8) –17(5) 29(14)

O(4) 10011(6) 3331(6) –495(3) 34(1) H(4) 823(7) 417(6) 95(4) 8(11)

C(1) 4322(7) 1817(7) 1026(4) 21(1) H(5) 574(8) 430(8) 223(4) 25(15)

C(2) 5837(8) 1701(7) 322(4) 25(1) H(8A) 169(7) 515(6) 284(3) 0(10)

C(3) 7238(7) 2600(7) 303(3) 20(1) H(8B) 358(7) 354(7) 370(4) 10(11)

C(4) 7225(7) 3560(7) 962(4) 21(1) H(9) 109(9) 281(9) 456(5) 36(16)

C(5) 5711(7) 3671(7) 1679(4) 21(1) H(11) –258(12) 674(11) 204(6) 60(20)

C(6) 4293(6) 2752(6) 1728(3) 17(1) H(12) –553(7) 846(6) 257(4) 0(10)

C(7) 2747(6) 2818(6) 2503(3) 19(1) H(13) –545(11) 698(9) 464(5) 46(18)

C(8) 2356(8) 3932(8) 3227(4) 23(1) H(15A) –40(12) –28(11) 277(7) 60(20)

C(9) 525(7) 3511(7) 3799(4) 19(1) H(15B) –189(9) –104(8) 356(5) 33(15)

C(10) –1555(7) 5141(6) 3577(4) 21(1) H(15C) 30(11) –122(9) 382(5) 45(19)

C(11) –2658(7) 6413(7) 2728(4) 24(1)

Table 2.  Atomic coordinates (Å ×104) and isotropic equivalent (isotropic for H atoms) thermal parameters U (Å2, ×103) for
modification B

Atom x y z U Atom x y z U

O(1) 4106(1) 764(1) 7205(1) 36(1) C(12) 2189(2) 449(1) 5921(2) 42(1)

O(2) 4073(1) –2114(1) 7737(1) 39(1) C(13) 2779(2) 1071(1) 6697(2) 40(1)

O(3) 11508(1) 2013(1) 12724(1) 44(1) C(14) 4747(2) –1745(1) 8597(1) 31(1)

O(4) 11990(1) 2825(1) 11113(1) 40(1) C(15) 4749(2) –2095(1) 9903(1) 36(1)

N(1) 6412(1) –550(1) 9295(1) 28(1) H(1) 7694(18) 112(11) 11186(14) 31(4)

N(2) 5562(1) –981(1) 8383(1) 30(1) H(2) 9346(19) 1023(12) 12401(16) 42(5)

N(3) 11294(1) 2214(1) 11630(1) 33(1) H(4) 10767(18) 2237(11) 9243(15) 35(4)

C(1) 8323(2) 540(1) 10805(1) 30(1) H(5) 9075(18) 1352(11) 8045(15) 34(4)

C(2) 9299(2) 1069(1) 11505(1) 32(1) H(8A) 7951(18) –160(11) 7020(14) 31(4)

C(3) 10199(2) 1687(1) 10901(1) 29(1) H(8B) 6888(18) 665(12) 7081(15) 36(4)

C(4) 10122(2) 1811(1) 9633(1) 31(1) H(9) 5971(17) –1036(11) 6554(14) 31(4)

C(5) 9133(2) 1280(1) 8941(1) 31(1) H(11) 3110(20) –851(14) 5482(18) 56(6)

C(6) 8240(2) 633(1) 9513(1) 27(1) H(12) 1260(20) 502(13) 5458(18) 52(5)

C(7) 7227(2) 56(1) 8774(1) 28(1) H(13) 2480(20) 1664(13) 6978(16) 48(5)

C(8) 7062(2) 76(1) 7383(1) 31(1) H(15A) 3850(20) –2422(13) 10028(17) 47(5)

C(9) 5727(2) –564(1) 7138(1) 29(1) H(15B) 4810(20) –1624(15) 10522(19) 59(6)

C(10) 4336(2) –87(1) 6713(1) 30(1) H(15C) 5600(30) –2467(16) 10040(20) 70(7)

C(11) 3199(2) –306(1) 5927(1) 37(1)
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tropic for H atoms) thermal parameters for modifica-
tion A are presented in Table 1.

Crystals of modification B (C15H13N3O4) are mono-
clinic; at 110 K, the unit cell parameters are as follows:
a = 8.9521(13) Å, b = 14.679(2) Å, c = 10.8300(15) Å,
β = 91.620(3)°, V = 1422.6(3) Å3, dcalcd = 1.397 g cm–3,
Z = 4, and space group P21/n. The intensities of
9432 reflections were measured on the same diffractome-
ter (ω step-scan mode; step width, 0.3° in ω; scan time,
10 s; 2θ < 60°). The structure was solved by the direct
method and refined using the full-matrix least-squares

procedure in the anisotropic approximation for . The
hydrogen atoms were located from the electron-density
difference synthesis and refined in the isotropic approx-
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Fig. 1. A general view of molecule I: (a) modification A,
(b) modification B, and (c) comparison of the molecular
structures in modifications A and B.
C

imation. The refinement was carried out using 4128
unique reflections (Rint = 0.0192). The final discrepancy
factors are as follows: R1 = 0.0467 for 3114 reflections
with I > 2σ(I), wR2 = 0.1044 for all the unique reflec-
tions, and GOF = 0.927. The atomic coordinates and
isotropic equivalent (isotropic for H atoms) thermal
parameters for modification B are listed in Table 2. All
the calculations were performed on an IBM PC AT with
the SHELXTL97 software package [6].

Calculation of hyperpolarizability. The molecular
hyperpolarizability β was calculated by the finite-field
method [7] (included in the MOPAC program pack-
age [8]) in the framework of the AM1 parametrization [9].
The data derived from the MOPAC program were pro-
cessed according to the HYPER program [10] in order
to calculate the components of the β tensor. Then, the
vector part of the hyperpolarizability was estimated
from the β tensor components.

RESULTS AND DISCUSSION

The molecular structures of compound I in poly-
morphic modifications A and B are displayed in Figs. 1a
and 1b, respectively. All the bond lengths and bond
angles in molecule I correspond to the mean-statistic
values [11, 12]. For different polymorphic modifica-
tions of compound I, the root-mean-square deviations
of the relevant geometric parameters of the molecule
are within the limits of experimental error. A compari-
son of the molecular structures of I in modifications A
and B is shown in Fig. 1c. For the benefit of clarity, we
brought the centers of gravity of molecules A and B into
coincidence according to the OFIT procedure included
in the XP software package. As is clearly seen from
Fig. 1c, the molecular conformations of both modifica-
tions are characterized by a rotation of the furan ring
with respect to the plane of the pyrazoline moiety of the
molecule. The basic parameters characterizing the
structure of molecule I are given in Table 3. In both
modifications, molecule I contains three planar rings.
The angles between the planes of the benzene and pyra-
zoline rings in modifications A and B are equal to 8.8°
and 2.3°, respectively. This suggest that the benzene
and pyrazoline rings can be conjugated along the C(6)–
C(7)–N(1)–N(2) bonds. This assumption is also con-
firmed by the following bond lengths: C(7)–N(1),
1.297(6) Å in modification A and 1.290(2) Å in modifi-
cation B (for pyrazole, the mean value is 1.329 Å);
and  N(1)–N(2), 1.369(5) Å in modification A and
1.383(2)  Å in modification B (for pyrazole, the mean
value is 1.366 Å). The furan ring is rotated with respect
to the planar (conjugated) moiety of the molecule either
through 91.7° in modification A or through 80.4° in
modification B.

The differences in the conformations of molecules A
and B bring about the formation of different crystal
packings. In modification A, the stacks of molecules
with a parallel orientation are aligned along the shortest
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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Fig. 2. Molecular packings in crystal I: (a) modification A and (b) modification B.
unit-cell dimension (a). In each stack, the distance
between the molecular planes is equal to 2.87 Å.2 The
molecules of the adjacent stacks are joined into dimers
through the short contacts C(13)–H(13)···O(2) (–1 – x,
1 – y, 1 – z) [C···O, 3.313(6) Å; H···O, 2.29 Å; and the
angle at the H atom is 158°]3 about the centers of sym-
metry (Fig. 2a). In modification B, the stacks of mole-

2 The root-mean-square plane of the molecule passes through the
C(1), C(2), C(3), C(4), C(5), C(6), C(7), C(8), C(9), N(1), N(2),
N(3), O(3), and O(4) atoms.

3 The bond lengths and angles for the C–H···O contacts are calcu-
lated under the assumption that the C–H distance is equal to
1.08 Å.
ALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
cules with an antiparallel orientation are aligned along
the crystallographic direction a (Fig. 2b). In each stack,
the interplanar distances between the neighboring mol-
ecules are different and equal to 3.04 Å (1 – x, –y, 2 – z)
and 3.38 Å (2 – x, –y, 2 – z). The molecular stacks are
linked by the short contacts C(4)–H(4)···O(2) (1.5 – x,
0.5 + y, 1.5 – z) [C···O, 3.114(2) Å; H···O, 2.27(2) Å;
and the angle at the H atom is 134(1)°].

Since the density of crystals A (dcalcd = 1.466 g cm–3)
is considerably higher than the density of crystals B
(dcalcd = 1.397 g cm–3), it is assumed that the former
crystals are more thermodynamically stable [13]. How-
ever, the calculation of the intermolecular interaction
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energies in the polymorphic modifications4 has demon-
strated that the crystal packing of modification A is
only   slightly more energetically favorable (EA =
−27.9 kcal mol–1 and EB = –26.7 kcal mol–1). Moreover,
the detailed analysis of the energies of the pair intermo-
lecular contacts has revealed that, despite the shorter
interplanar distances between the neighboring mole-
cules in stacks of modification A, the interaction energy
inside the molecular stack of this modification
(−7.4 kcal mol–1) is higher than those of modification B
[–13.1 kcal mol–1 (1 – x, –y, 2 – z) and –11.8 kcal mol–1

(2 – x, –y, 2 – z)]. This difference can be explained by
the fact that the skew conformation of the molecules
inside the stacks of modification A is more pronounced:
the angles between the molecular plane and the a-axis
in modifications A and B are equal to 28.6° and 47.2°,
respectively. However, modification A is characterized
by the stronger interaction between the molecular
stacks [–8.8 kcal mol–1 (1 – x, 1 – y, –z)]. As a conse-
quence, the gain in the total energy for modification A
is approximately equal to 1 kcal mol–1.

In both modifications, the energies of the packings
are found to be close to each other. In this respect, it is
of interest to compare the intramolecular interaction
energies of these conformers. For this purpose, we per-
formed molecular dynamics calculations of the
intramolecular energies of both conformers in the
framework of the MM3 method [16–18]. We calculated
the energies of individual molecules whose geometry
corresponded to the geometry of the conformers

4 The calculation of the intermolecular interaction energies was
performed by the atom–atom potential method using the parame-
trization proposed by Mirsky [14], which was included in the
NONVPOT software package [15].

Table 3.  Basic parameters characterizing the molecular
structure of I

Torsion angle, deg Modifi-
cation A

Modifi-
cation B

N(2)–C(9)–C(10)–C(11) 67.0 –100.7

N(2)–C(9)–C(10)–O(1) –108.3 78.9

N(1)–N(2)–C(9)–C(10) –114.7 –110.3

C(14)–N(2)–C(9)–C(10) 65.4 74.0

C(1)–C(6)–C(7)–N(1) –10.2 –0.9

C(5)–C(6)–C(7)–C(8) –5.8 –1.5

Root-mean-square plane of the molecule δ, Å

C(1), C(2), C(3), C(4), C(5), C(6) 0.009 0.008

N(1), N(2), C(7), C(8), C(9) 0.027 0.009

C(10), C(11), C(12), C(13), O(1) 0.004 0.001
C

revealed by X-ray diffraction analysis. The difference
in the calculated energies of conformers A and B is
found to be small (2 kcal mol–1). It is worth noting that,
in modification A, the structure of an individual mole-
cule is less energetically favorable and the molecular
packing is more energetically favorable (by
1.2 kcal mol–1) as compared to those in modification B.
For these conformations, the barrier to rotation of the
furan ring with respect to the C(9)–C(10) bond is equal
to 4.0 kcal mol–1. It may be assumed that the molecular
structures of modifications A and B are already differ-
ent in their solutions. In our opinion, it is this circum-
stance that can lead to the formation of different crys-
tal packings.

CONCLUSIONS

The molecular hyperpolarizabilities (β) have been
evaluated using the experimentally established geome-
tries of conformers A and B. The calculated hyperpolar-
izabilities of these conformers are very close in magni-
tude: βA = 34.1 ± 0.1 (×10–51 cm3 B–2) and βB = 33.3 ±
0.1 (×10–51 cm3 B–2). This result is not surprising
because the difference in the structures of the conju-
gated moieties is insignificant. Judging from the molec-
ular hyperpolarizabilities obtained in the present work,
organic compounds of this class are very promising for
the creation of new optical nonlinear materials.
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Abstract—The molecular and crystal structures of the first monomeric dioxygermylene Ge(OCH2CH2NMe2)2
(I) stabilized by two Ge  N intramolecular coordination bonds are determined by X-ray diffraction analysis.
The Ge  N bond lengths in two independent molecules are equal to 2.329(2), 2.337(2) and 2.324(2),
2.346(2) Å, respectively. The central germanium atom plays the role of a spiro atom between two five-mem-
bered heterocycles in the envelope conformation and adopts a trigonal–bipyramidal configuration with a lone
electron pair in the equatorial position. Compound I has two planar–chiral isomers which crystallize jointly.
Molecules in the crystal have a layered packing (molecular layers are perpendicular to the [001] direction) com-
posed of four translationally independent equivalent layers. These layers are spaced at 1/4c intervals and dis-
placed with respect to each other by approximately +0.35a, –1/4b, –0.35a, and +1/4b, respectively. The char-
acteristic displacement of the layers and their proper symmetry (pba2) that differs from the symmetry of the
crystal (space group P212121) determine a large variety of pseudosymmetry operations. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

In recent years, considerable interest has been
expressed by researchers in compounds of Group IVA
bivalent elements, which possess unique chemical
properties but are unstable under normal conditions.
This interest is associated with the successful develop-
ment of techniques for stabilizing these compounds
through steric and electronic mechanisms. The steric
stabilization consists in screening M(II) atoms by
bulky  substituents. In the case of electronic stabiliza-
tion, the M(II) atoms are involved in a system of conju-
gated bonds or different coordination interactions.
More than 100 monomeric compounds of bivalent ger-
manium, tin, and lead have been known to date [1], the
majority of which have been synthesized over the last
five years. Among them, 20 compounds belong to oxy-
gen-containing compounds [2–17]. However, mono-
meric oxygen-containing compounds of bivalent ger-
manium, tin, and lead, as a rule, can be obtained only
1063-7745/02/4704- $22.00 © 20616
using a combined approach to their stabilization. Note
that, in this case, the steric stabilization plays a decisive
role. In the present work, we undertook an X-ray struc-
ture investigation of the first monomeric dioxyger-
mylene Ge(OCH2CH2NMe2)2 (I) stabilized by two
Ge  N intramolecular coordination bonds. The spe-
cific feature of dioxygermylene I is the absence of
steric stabilization.

EXPERIMENTAL

Crystals I (C8H20GeN2O2, M = 248.85) are orthor-
hombic, space group P212121; at 110 K: a =
10.1606(12) Å, b = 11.2693(14) Å, c = 20.387(2) Å,
V = 2334.3(5) Å3, Z = 8, dcalcd = 1.416 g cm–3, F(000) =
1040, and µ = 2.601 mm–1.

The unit cell parameters and intensities of
27535 reflections were measured on a Bruker SMART
CCD 1000 automated diffractometer (T = 110 K,
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Molecular structure of compound I. Two independent molecules with anisotropic displacement ellipsoids at the 50% prob-
ability level are shown.
λMoKα, ω scan mode with a step of 0.3° and an expo-
sure time of 10 s per frame, θmax = 30°). Absorption cor-
rection was semiempirically included in calculations
with the SADABS program [18]. The structure was
solved by the direct method and refined by the full-
matrix least-squares procedure in the anisotropic
approximation for the non-hydrogen atoms. The hydro-
gen atoms were located in the difference Fourier map
and refined in the isotropic approximation. The abso-
lute structure was determined by refining the Flack
parameter, which was equal to 0.003(7). The final dis-
crepancy factors were as follows: R1 = 0.0230 for 5412
unique reflections with I > 2σ(I) and wR2 = 0.0449 for
all 6786 independent reflections. All the calculations were
performed with the SHELXTL PLUS (Version 5.10) soft-
ware package [19]. Tables of atomic coordinates, bond
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
lengths, bond and torsion angles, and anisotropic ther-
mal parameters have been deposited in the Cambridge
Structural Database.

RESULTS AND DISCUSSION

The X-ray diffraction investigation has revealed that
the dioxygermylene Ge(OCH2CH2NMe2)2 has a mono-
meric structure and is stabilized by two Ge(II)  N
intramolecular coordination bonds. The lengths of
these bonds [for two independent molecules, 2.329(2),
2.337(2) and 2.324(2), 2.346(2) Å, respectively] consider-
ably exceed the lengths of all the known Ge(II)  N
coordination bonds (Table 1) [1]. Analysis of the data
available in the Cambridge Structural Database for ger-
mylenes, stannylenes, and plumbylenes stabilized by
M(II)  N coordination bonds demonstrates that the
Table 1.  Mean lengths* (Å) of the M(II)  N intramolecular coordination bonds in Ge(II), Sn(II), and Pb(II) monomeric
compounds

M(II)  N Nar (one bond) Nar (two bonds)  (one bond)  (two bonds)

Ge(II) 2.082 [20] 2.280 [21, 22] 2.116 [23–25]** 2.334 [this work]

Sn(II) 2.300 [20, 27, 28] 2.441 [16, 17, 21, 27] 2.370 [29–33] 2.538 [10, 34–37]

Pb(II) 2.601 [21, 38, 39]*** 2.695 [41]

*  In all experiments, the error in measurements of the M(II)  N bond lengths does not exceed 0.008 Å.
** Data for the (NMe2CH2CH2)Me4CpGeCl [26] compound [26] with the Cp–Ge(II) π bond are not included. In this compound, the

       Ge(II)  N distance is equal to 2.286(3) Å.
*** Data for lead 8-mercaptoquinolinolate [40] are not included because of the very low accuracy of the experiment (R = 0.131).
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Fig. 2. Planar–chiral isomers of compound I.
lengthening of the M(II)   coordination bonds

as compared to the M(II)  Nar bonds and the length-
ening of the M(II)  N coordination bonds for the
fourfold-coordinated M(II) atom as compared to the
M(II)  N bonds for the threefold-coordinated M(II)
atom are common structural features of these com-
pounds (Table 1). It should be noted that, although the
range of M(II)  N intermolecular coordination bond
lengths is wider than that of M(II)  N intramolecu-
lar coordination bond lengths, the mean lengths of
coordination bonds of both types are very close to each
other [1]. It is of interest that Sn(II) and Pb(II) com-
pounds stabilized by two M(II)   coordination

bonds have a common structural feature: in all these
compounds, the lengths of the formally equivalent
M(II)   bonds in identical axial positions are

not equal; on the contrary, they differ significantly from
each other. However, these bond lengths level off when
the lone electron pair of the M(II) atom is bound by dif-
ferent acceptors, such as BH3 [25] or transition metals
[34, 36, 42, 43].

The Ge(II)–O bond lengths [1.864(1), 1.868(1) and
1.861(1), 1.870(1) Å in two independent molecules] in
compound I virtually coincide with the corresponding
bond lengths in the dioxygermylenes studied earlier in
[4, 12, 14].

N
s p

3

N
s p

3

N
s p

3

Table 2.  Coordinates of one of the Ge atoms in four transla-
tionally independent layers

Atom x y z

Ge(1) (first layer) 0.0748(1) 0.6385(1) 0.1540(1)

Ge(2) (second layer) 0.4205(1) 0.6257(1) 0.3473(1)

Ge(1) (third layer) 0.4252(1) 0.3615(1) 0.6540(1)

Ge(2) (fourth layer) 0.0795(1) 0.3743(1) 0.8473(1)
C

The central germanium atom plays the role of a
spiro atom between two five-membered heterocycles in
the envelope conformation and has a trigonal–bipyra-
midal configuration with a lone electron pair in the
equatorial position. The bond angles in molecule A are
as follows: O(1)–Ge(1)–O(2) = 98.79(6)°, O(1)–
Ge(1)–N(1) = 80.78(6)°, O(1)–Ge(1)–N(2) =
83.89(6)°, O(2)–Ge(1)–N(1) = 84.21(6)°, O(2)–Ge(1)–
N(2) = 80.48(6)°, and N(1)–Ge(1)–N(2) = 156.38(6)°.
The bond angles in molecule B are as follows: O(3)–
Ge(2)–O(4) = 98.91(7)°, O(3)–Ge(2)–N(3) =
81.00(6)°, O(3)–Ge(2)–N(4) = 83.85(6)°, O(4)–Ge(2)–
N(3) = 84.00(6)°, O(4)–Ge(2)–N(4) = 80.22(6)°, and
N(3)–Ge(2)–N(4) = 156.11(6)°. Owing to the forma-
tion of the Ge(II)  N intramolecular coordination
bonds, compound I has two planar–chiral isomers
which crystallize jointly (Fig. 2). It is worth noting that
each isomer can have three conformers, namely, two cis
and one trans conformers with respect to the deviations
of the C(2) and C(6) atoms in molecule A and the C(10)
and C(14) atoms in molecule B from the planes of the
corresponding heterocycles. However, only one cis
conformer can exist in the crystal [the deviations of the
C(2), C(6), C(10), and C(14) atoms from the planes of
the corresponding heterocycles are equal to –0.546,
−0.565, –0.555, and –0.555 Å, respectively]. Appar-
ently, this stems from the fact that the free lone electron
pair of the Ge atom tends to occupy the maximum vol-
ume in the space, thus giving rise to steric interactions
responsible for the conformation observed in molecules
of compound I.

Most likely, it is this structure of molecules I that
determines their layered packing in the crystal (the lay-
ers are perpendicular to the [001] direction). This pack-
ing involves four translationally independent equiva-
lent layers, which are spaced at 1/4c intervals and dis-
placed with respect to each other by approximately
+0.35a, –1/4b, –0.35a, and +1/4b, respectively (Fig. 3,
Table 2). The layers are arranged in pairs in such a man-
ner that the lone electron pairs of the germanium atoms
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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Fig. 3. Layered packing of molecules I in the crystal.
are directed toward each other. With due regard for the
characteristic displacement of the layers, this picture
resembles an engagement of gears (in which lone elec-
tron pairs of the germanium atoms in molecules of each
ALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
layer serve as teeth). In pairs of the layers thus
arranged, the direction of tooth engagement alternately
changes to mutually perpendicular. This gives four
translationally independent layers. As a result, the
Table 3.  Determination of the space group of symmetry of crystal I

Reflections P A B C I F

N (total) 0 13880 13875 13853 13873 20804

N (I > 3σ) 0 8902 8866 5956 8837 11862

〈 I 〉 0.0 12.2 12.2 2.8 12.1 9.0

〈 I/σ〉 0.0 12.3 12.2 5.1 12.2 9.9

|E2 – 1| = 0.972 (for centrosymmetric and noncentrosymmetric structures, the expected values are equal to 0.968 and
0.736, respectively)

Reflections b-- c-- n-- 21-- -c- -a- -n- -21- --a --b --n --21

N (total) 791 784 789 18 717 714 715 20 398 402 400 36

N (I > 3σ) 358 453 451 2 301 79 304 0 250 247 165 1

〈 I 〉 1.9 20.6 20.5 0.1 15.0 0.4 15.1 0.1 20.0 20.2 2.9 0.2

〈 I/σ〉 4.4 13.8 13.7 0.8 12.2 1.2 12.3 0.5 16.5 17.1 6.0 1.0

Note: N is the number of reflections violating the given element of symmetry, and I is the intensity of reflections. Elements of pseudosym-
metry are marked in bold type.
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Fig. 4. Structure and symmetry of layers in crystal I. The heavy line indicates the true unit cell.
methylene fragments of molecules in one pair of layers
are brought into the free space (cavities) of molecules
in another pair, which provides a closer packing
(Fig. 3).

It should be noted that the molecules have the proper
symmetry 2, whereas the layers formed by the mole-
cules are characterized by pba2 symmetry (Fig. 4),
which differs from the symmetry of the crystal due to
the displacement of the layers with respect to each
other. As a consequence, there exist a large number of
pseudosymmetry operations, which, in particular, man-
ifest themselves in pseudoabsences of the correspond-
ing reflections (Table 3). The decrease observed in the
intensities of the reflections that correspond to the Bra-
vais body-centered C cell and the n glide reflection
plane is determined by the position of the heavy germa-
nium atom. The decrease in the intensities of the reflec-
tions attributed to the Bravais face-centered F cell and
the possible occurrence of the inversion center is gov-
erned by the mutual arrangement of the layers. The
decrease in the intensities of the reflections assigned to
the a and b glide reflection planes is associated with the
proper symmetry of the layers. The absence of the
reflections corresponding to the 21 screw axes is caused
by the proper symmetry of the crystal lattice. In the case
C

of the layers arranged precisely above each other with-
out displacement, the crystal lattice should possess
Pbam symmetry. However, the steric interactions in
this situation should lead to an increase in the interlayer
spacing, which would result in a looser packing.

Crystal structure I is one more prominent example
of a layered three-dimensional molecular packing
described by Britton [44]. This packing is responsible
for different pseudosymmetry operations in crystals of
chemical compounds which, as a rule, possess proper
symmetry elements.
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Abstract—Dimethyl 3-(p-chlorobenzoyl)-5-chloroindolizine-1,2-dicarboxylate, C19H13Cl2NO5, (2) and the
product of its cyclization 1,2-bis(carbomethoxy)-6-chloro-3H-isoquinolino[1,2,3-d,c]indolizine-3-one,
C19H12ClNO5, (3) are synthesized, and their molecular and crystal structures are determined by the single-crys-
tal X-ray diffraction technique. Crystals 2 are monoclinic, a = 9.627(3) Å, b = 6.646(2) Å, c = 28.500(9) Å, β =
98.72(2)°, Z = 4, and space group P21/c. Crystals 3 are monoclinic, a = 7.048(4) Å, b = 10.582(4) Å, c =
21.760(7) Å, β = 97.23(4)°, Z = 4, and space group P21/c. The structures are solved by the direct method and
refined in the anisotropic approximation by the full-matrix least-squares procedure to R = 0.0504 and 0.0510
for 2 and 3, respectively. In both structures, the intramolecular and intermolecular contacts involving the C, H,
and O atoms are observed. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION
This paper continues our structural investigations of

heterocyclic compounds that are able to enter readily
into various rearrangements and reactions of ring trans-
formations [1–14]. As in the previous studies, we have
performed the step-by-step structure determination of
all the intermediates and the final products of the mul-
tistage cyclization and recyclization reactions. Note
that data on the molecular structures discussed in this
1063-7745/02/4704- $22.00 © 20622
paper are not available in the Cambridge Structural
Database [15].

EXPERIMENTAL

Synthesis. Indolizine 2 was synthesized by the reac-
tion between the pyridinium salt 1 and dimethyl acety-
lenedicarboxylate according to the following scheme:
N+Cl

O

Cl

O O

OO

CH3

CH3

N

O

O
O

O

CH3

CH3

Cl O

Cl

Br–

+ + Et3N
[O]

O2 (air)

1 2Scheme I
Salt 1 (1.5 g, 4.32 mmol) and dimethyl acetylenedicar-
boxylate (0.642 g, 4.52 mmol) were dissolved in dry
dimethylformamide (DMF) (17 ml) on heating to 40°C.
After the solution was cooled to room temperature,
absolute Et3N (0.496 g, 4.91 mmol) was added to it.
The resultant reddish brown solution was allowed to
stand for a day at room temperature and was then
poured into water (400 ml) on stirring. The precipitate
was filtered off, washed with water (5 × 30 ml), and
dryed. The resultant greenish amorphous powder was
002 MAIK “Nauka/Interperiodica”
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dissolved in a minimum amount of MeOH, the solution
was passed through a column filled with SiO2 (Silpearl,
lcol = 5 cm, dcol = 2 cm, MeOH as an eluent) in order to
remove impurities of resins and DMF, the eluate was
evaporated to dryness, and the residue (1.70 g, 96.8%)
was purified by column chromatography on SiO2 (Sil-
pearl, lcol = 8 cm, dcol = 1.5 cm, benzene : acetone =
10 : 1 as an eluent). The yellow substance obtained was
indolizine 2, Tmp = 175–177°C (MeOH). The yield was
0.71 g (40%). The 1H NMR spectrum agrees with the
formula assigned to this substance. Indolizine 2 is
unstable: on long standing or under the effect of alumi-
num oxide, this compound undergoes an intramolecu-
lar cyclization. We found that the product of this
cyclization has a tetracyclic structure of 3:

A weighed portion of 2 (20 mg) was dissolved in
CHCl3 (20 ml), Al2O3 [0.5 g; for chromatography,
activity grade III (Brockman)] was added to the solu-
tion, and the solvent was evaporated to dryness. Alumi-
num oxide with the substance absorbed was allowed to
stand at room temperature for two days and was then
treated twice with CHCl3 (20 ml). The extract was

N

O

O
O

O

CH3

CH3

Cl O

Cl

N

O

O
O

O

CH3

CH3

O

Cl

2 3Scheme II
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evaporated. The yield of 3 was 15 mg (83%); Tmp =
193–194°C.

X-ray diffraction analysis. The data sets for X-ray
analysis were collected at room temperature on an
Enraf–Nonius CAD4 four-circle automated diffracto-
meter (MoKα radiation, graphite monochromator, ω-2θ
scan mode) [16]. The unit cell parameters were deter-
mined and refined using 25 reflections in the θ range
14°–16°. The crystal data for compounds 2 and 3 are
summarized in Table 1. The crystals of the compounds
studied are small in size and are characterized by small
linear absorption coefficients; therefore, the empirical
absorption correction was not applied.

The primary processing of the sets of diffraction
data was performed with the WinGX98 program [17].
The structures were solved by the direct method. The
coordinates and thermal parameters for all the non-
hydrogen atoms were refined in the anisotropic approx-
imation. All the calculations on the solution and refine-
ment of the crystal structures were performed with the
SHELX97 program package [18]. All the hydrogen
atoms in both structures were located from the differ-
ence Fourier syntheses and refined in the isotropic
approximation of thermal parameters. The atomic coor-
dinates and equivalent thermal parameters for com-
pounds 2 and 3 are listed in Tables 2 and 3, respectively.
The spatial arrangement of atoms in molecules 2 and 3
and the atomic numbering, which were obtained with
the PLUTON96 program [19], are shown in Figs. 1 and
2, respectively. For convenient comparison of the geo-
metric parameters in the two molecules, we used a uni-
fied atomic numbering. The interatomic distances in
structures 2 and 3 were calculated with the PARST95
program [20]. They are listed in Tables 4–6.
Table 1.  Crystal data and details of the X-ray diffraction experiment and refinement for structures 2 and 3

Compound C19H13Cl2NO5 (2) C19H12ClNO5 (3)

Crystal system Monoclinic Monoclinic

Space group P21/c P21/c

a, Å 9.627(3) 7.048(4)

b, Å 6.646(2) 10.582(4)

c, Å 28.500(9) 21.760(7)

β, deg 98.72(2) 97.23(4)

V, Å3 1802.4(9) 1610(1)

Z 4 4

ρcalcd, g/cm3 1.497 1.525

µ(Mo, Kα), cm–1 3.92 2.70

Crystal size, mm 0.24 × 0.12 × 0.06 0.50 × 0.20 × 0.10

θmax, deg 25 26

Number of reflections with I ≥ 2σ(I)/Number of parameters 1679/297 2538/284

R1/wR2 0.0504/0.0575 0.0510/0.0426

∆ρmax/∆ρmin, e/Å3 0.173/–0.196 0.159/–0.166
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Table 2.  Atomic coordinates (×104) and isotropic thermal parameters Ueq (Å2 × 103) for molecule 2

Atom x y z Ueq/Uiso Atom x y z Ueq/Uiso

Cl(1) 2392(1) 1572(2) 1586(1) 51(1) C(14) –2082(3) 4406(6) –18(1) 61(2)

Cl(2) –2706(1) 6002(2) –483(1) 125(1) C(15) –1769(4) 2404(6) –103(1) 59(2)

N(1) 133(2) 1089(4) 2015(1) 22(1) C(16) –1273(3) 1200(7) 261(1) 58(1)

O(1) –4394(2) 1008(4) 2310(1) 61(1) C(17) –3213(3) 1239(6) 2494(1) 35(1)

O(2) –2823(2) 1475(4) 2960(1) 45(1) C(18) –3903(3) 1447(6) 3252(1) 59(1)

O(3) –4238(2) 2646(4) 1320(1) 61(1) C(19) –3452(3) 1222(7) 1384(1) 50(1)

O(4) –3624(2) –507(4) 1143(1) 58(1) C(20) –4803(4) –559(7) 775(1) 91(2)

C(2) –842(3) 1044(5) 1596(1) 35(1) H(6) –250(20) 1260(50) 3138(8) 56(9)

C(3) –2147(3) 1194(5) 1736(1) 27(1) H(7) 2200(20) 1300(40) 3237(7) 55(9)

C(4) –1988(3) 1273(5) 2234(1) 24(1) H(8) 3380(20) 1270(50) 2556(8) 49(9)

C(5) –574(3) 1252(5) 2407(1) 26(1) H(12) –1170(20) 4480(40) 1115(9) 67(10)

C(6) 239(3) 1250(5) 2864(1) 30(1) H(13) –2090(20) 6600(40) 492(8) 62(10)

C(7) 1644(3) 1267(6) 2918(1) 39(1) H(15) –1920(20) 1840(40) –431(8) 64(10)

C(8) 2358(3) 1258(5) 2519(1) 35(1) H(16) –1020(20) –230(40) 202(9) 68(10)

C(9) 1585(3) 1246(5) 2073(1) 35(1) H(18A) –3460(20) 1650(40) 3612(8) 59(10)

C(10) –523(3) 564(5) 1115(1) 48(1) H(18B) –4410(30) 70(50) 3218(9) 83(12)

O(10) 94(2) –1033(4) 1057(1) 63(1) H(18C) –4620(20) 2620(40) 3150(7) 36(9)

C(11) –1099(3) 1927(6) 731(1) 42(1) H(20A) –4860(20) –1960(40) 609(8) 60(10)

C(12) –1355(3) 3934(5) 800(1) 45(1) H(20B) –4700(20) 570(40) 533(8) 59(10)

C(13) –1876(4) 5207(6) 433(1) 67(2) H(20C) –5720(20) –300(50) 917(8) 69(11)

Table 3.  Atomic coordinates (×104) and isotropic thermal parameters Ueq (Å2 × 103) for molecule 3

Atom x y z Ueq/Uiso Atom x y z Ueq/Uiso

Cl(2) 8183(1) 7124(1) 2456(1) 71(1) C(19) 7616(5) 1835(3) –851(1) 45(1)

N(1) 7310(3) 5100(2) –316(1) 33(1) C(20) 9794(6) 143(3) –930(2) 78(1)

C(2) 7676(4) 3821(2) –208(1) 35(1) O(1) 6997(3) 2793(2) –2105(1) 71(1)

C(3) 7495(4) 3233(2) –776(1) 35(1) O(2) 6423(3) 4857(2) –2251(1) 58(1)

C(4) 7071(4) 4123(3) –1240(1) 36(1) O(3) 6278(3) 1119(2) –874(1) 59(1)

C(5) 6936(4) 5315(3) –952(1) 36(1) O(4) 9431(3) 1482(2) –876(1) 53(1)

C(6) 6504(4) 6541(3) –1150(1) 43(1) O(10) 8355(3) 2242(2) 524(1) 56(1)

C(7) 6432(4) 7477(3) –716(1) 44(1) H(6) 6180(30) 6660(20) –1640(9) 46(8)

C(8) 6822(4) 7211(3) –87(1) 44(1) H(7) 6030(40) 8350(20) –887(11) 68(10)

C(9) 7261(4) 6015(3) 128(1) 34(1) H(8) 6680(30) 7740(20) 187(9) 27(8)

C(10) 8063(4) 3369(3) 416(1) 40(1) H(13) 7460(30) 7400(20) 1150(9) 41(8)

C(11) 8064(4) 4332(3) 905(1) 37(1) H(15) 8870(30) 4560(20) 2426(8) 32(7)

C(12) 7691(4) 5598(3) 767(1) 33(1) H(16) 8810(30) 2960(20) 1579(9) 32(7)

C(13) 7717(4) 6461(3) 1256(1) 40(1) H(18A) 5660(40) 5490(30) –3072(13) 116(14)

C(14) 8107(4) 6042(3) 1854(1) 44(1) H(18B) 4990(40) 3920(30) –3024(13) 102(12)

C(15) 8473(4) 4778(3) 1995(1) 50(1) H(18C) 7460(40) 4280(30) –3004(12) 83(12)

C(16) 8453(4) 3918(3) 1515(1) 47(1) H(20A) 10940(50) 70(40) –859(17) 190(20)

C(17) 6844(4) 3835(3) –1899(1) 46(1) H(20B) 9350(40) –330(20) –1336(11) 70(10)

C(18) 6145(6) 4660(4) –2921(1) 78(1) H(20C) 9200(40) –400(30) –606(12) 95(12)
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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Table 4.  Interatomic distances d (Å) in structures 2 and 3

Bond d (2) d (3) Bond d (2) d (3)

Cl(1)–C(9) 1.706(3) C(10)–O(10) 1.239(4) 1.229(3)

Cl(2)–C(14) 1.732(4) 1.736(3) C(10)–C(11) 1.464(4) 1.473(4)

N(1)–C(9) 1.386(3) 1.370(3) C(11)–C(16) 1.412(4) 1.392(4)

N(1)–C(2) 1.402(3) 1.392(3) C(11)–C(12) 1.376(5) 1.391(4)

N(1)–C(5) 1.399(3) 1.396(3) C(12)–C(13) 1.380(5) 1.401(4)

C(2)–C(3) 1.378(4) 1.376(3) C(13)–C(14) 1.378(5) 1.368(3)

C(2)–C(10) 1.484(4) 1.432(3) C(14)–C(15) 1.393(5) 1.389(4)

C(3)–C(4) 1.406(4) 1.385(3) C(15)–C(16) 1.339(5) 1.385(4)

C(3)–C(19) 1.484(4) 1.492(4) C(17)–O(1) 1.187(3) 1.200(3)

C(4)–C(5) 1.376(3) 1.416(4) C(17)–O(2) 1.336(3) 1.337(3)

C(4)–C(17) 1.483(4) 1.456(3) O(2)–C(18) 1.425(4) 1.460(3)

C(5)–C(6) 1.413(3) 1.389(4) C(19)–O(3) 1.208(5) 1.206(3)

C(6)–C(7) 1.339(4) 1.374(4) C(19)–O(4) 1.336(5) 1.341(3)

C(7)–C(8) 1.416(4) 1.392(4) O(4)–C(20) 1.425(4) 1.447(4)

C(8)–C(9) 1.370(4) 1.370(4) C(9)–C(12) 1.456(3)

Table 5.  Parameters of intramolecular and intermolecular contacts in structure 2

D–H d(D–H), Å d(D ⋅ ⋅ ⋅A), Å d(H ⋅ ⋅ ⋅A), Å ω(D–H ⋅ ⋅ ⋅A), 
deg A Symmetry operation

C(6)–H(6) 0.97(3) 3.005(4) 2.45(2) 116(2) O(2) [x; y; z]

C(16)–H(16) 1.00(3) 2.860(4) 2.57(3) 97(2) O(10) [x; y; z]

C(7)–H(7) 0.98(2) 3.721(4) 2.96(3) 135(2) O(4) [–x; y + 1/2; 1/2 – z)

C(6)–H(6) 0.97(3) 3.622(4) 2.90(3) 132(2) O(10) [–x; y + 1/2; 1/2 – z)

C(8)–H(8) 0.98(2) 3.285(4) 2.36(2) 156(2) O(1) [x + 1; y; z]

C(13)–H(13) 0.97(3) 3.461(4) 2.91(2) 117(2) O(10) [x; y + 1; z]

C(15)–H(15) 1.00(2) 3.486(5) 2.74(3) 132(2) O(10) [–x; –y; –z]

C(18)–H(18B) 1.04(3) 3.426(4) 2.56(3) 141(2) O(3) [–x – 1; y – 1/2; 1/2 – z)

C(18)–H(18C) 1.05(2) 3.694(4) 2.71(2) 157(2) O(1) [–x – 1; y + 1/2; 1/2 – z)
RESULTS AND DISCUSSION
The transformation of pyridinium salt 1 into indoliz-

ine 2 provides an example of 1,3-dipolar cycloaddition,
which is characteristic of N-phenacylpyridinium ylides
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
of the 4a type. The specific feature of the reaction
described is the regioselective cycloaddition of acety-
lene dienophile through the formation of adduct 4b
(followed by oxidation to indolizine 2):
NE

E
Ar

O

N+Cl

O

Ar

H

NCl E
H

EH
Ar

O

NCl E

E
Ar

O

4d 4c 4a 4b 2

[O]

–

–HCl E–C≡C–E E–C≡C–E

E = COOMe, Ar = p-ClPh

NE

E
Ar

O

Cl

H

Scheme III
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An alternative cycloaddition resulting in the forma-
tion of cycloadduct 4c would necessarily be followed
by the aromatization of this structure to indolizine 4d. Our
special experiments (independent synthesis of indoliz-
ine 4d and comparison of its chromatographic behavior
with that of trace contaminants that are formed in the
reaction mixture) revealed that indolizine 4d is not
formed even in trace amounts.

In the structure of heterocycle 2, the indolizine bicy-
cle is planar (the atomic deviations from the rms plane
are within 0.06 Å). The dihedral angle between the
planes of the indolizine nucleus of the molecule and the
phenyl ring of the benzoyl group is 75.1(1)°. The O(10)
atom deviates from the plane of the phenyl ring and the
plane of the indolizine bicycle by 0.366(6) and
1.372(5) Å, respectively. The dihedral angles formed
by the planar C(17)O(1)O(2)C(18) and
C(19)O(3)O(4)C(20) ester radicals (the atomic devia-
tions from each of the rms planes are within 0.1 Å) with

C(18)

C(17)

C(19)

C(3)

C(20)C(12)
C(13)

C(14)

C(15)

C(16)

C(10)

C(2)C(9)
C(8)

C(7)
C(6)

C(5)
C(4)

O(2)

O(1)

O(3)

O(4)

O(10)

Cl(2)

Cl(1)

N(1)

Fig. 1. Structure of molecule 2 and the atomic numbering.
C

the nine-membered bicycle are equal to 7.0(1)° and
66.8(1)°, respectively. Earlier [21], we studied the crys-
tal structure of dimethyl 3-(p-nitrobenzoyl)-5-chloroin-
dolizine-1,2-dicarboxylate, C19H13Cl1N2O7. The simi-
larity of the structural fragments of these two com-
pounds allows us to compare their geometric
parameters. In these molecules, the O(1)C(17)C(4)C(3)
torsion angles of the C(17)O(1)O(2)C(18) ester groups
are +5.3(6)° (2) and –176.2(2)° [21] and the
O(3)C(19)C(3)C(4) torsion angles of the
C(19)O(3)O(4)C(20) ester groups are +66.0(6)° (2) and
–98.3(3)° (p-nitro derivative [21]). This reorientation of
the ester fragments is not accompanied by changes in
their geometric charecteristics; that is, their bond
lengths and angles are equal within standard deviations.
The same tendency is observed in the molecule as a
whole.

The tetracyclic product 3 is formed from indolizine 2
through the formation of the C–C bond between the

C(6)
C(7)

C(8)

C(9)

C(12)
C(13)

C(14)
C(15)

C(16)

C(11)
C(10)

C(2)

C(3)
C(19)

C(20)

C(5)
C(4)

C(17)

C(18)

O(2)

O(1)

O(4)

O(3)

O(10)

Cl(2)

N(1)

Fig. 2. Structure of molecule 3 and the atomic numbering.
Table 6.  Parameters of intramolecular and intermolecular contacts in structure 3

D–H d(D–H), Å d(D ⋅ ⋅ ⋅A), Å d(H ⋅ ⋅ ⋅A), Å ω(D–H ⋅ ⋅ ⋅A), 
deg A Symmetry operation

C(6)–H(6) 1.07(2) 2.981(3) 2.35(2) 116(1) O(2) [x; y; z]

C(16)–H(16) 1.05(2) 2.786(3) 2.40(2) 100(1) O(10) [x; y; z]

C(7)–H(7) 1.02(2) 3.870(4) 2.94(2) 152(2) O(3) [x; y + 1; z]

C(8)–H(8) 0.83(2) 3.663(4) 2.97(2) 142(2) O(3) [1 – x; 1 – y; –z]

C(13)–H(13) 1.03(2) 3.143(4) 2.62(2) 111(1) O(4) [2 – x; 1 – y; –z]

C(18)–H(18A) 0.99(3) 3.324(4) 2.60(3) 130(2) O(3) [1 – x; 1/2 + y; –z – 1/2]

C(20)–H(20C) 1.04(3) 2.927(4) 2.59(3) 98(2) O(10) [2 – x; –y; –z]
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benzoyl group and the pyridine fragment of indolizine
followed by dehydrohalogenation. The mechanism of
this transformation is somewhat unusual. Although the
chlorine atom in the α position with respect to the nitro-
gen atom of the pyridine fragment is probably rather
mobile, it is difficult to assume that the chlorine atom is
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
replaced by the benzoyl fragment according to the
mechanism of aromatic nucleophilic substitution (it is
apparent that the benzoyl group in the ortho position is
not nucleophilic). Therefore, it is highly improbable
that the reaction mechanism includes the formation of
intermediate 5a:
N

O

COOMe

COOMe

Cl

Cl H

+

– N

OH

COOMe

COOMe

Cl

Cl
+

N

OH

COOMe

COOMe

Cl

Cl

+

5a 5b 5c

Scheme IV
The only reasonable explanation for the mechanism
of the cyclization observed is provided by the following
hypothesis. Indolizine 2 undergoes cyclization under
the effect of either Al2O3 or acids (as was observed in
our special experiments). Acids (as well as the acid OH
groups, which are always present in aluminum oxide)
protonate the benzoyl group of indolizine 2 to form cat-
ion 5b (scheme IV). This direction of protonation of
3-acylindolizines is well known [22]. In this case, the
indolizine skeleton and the adjacent benzoyl fragment
form a common system (shown by heavy lines in inter-
mediate 5c) that consists of eleven atoms and contains
a total of ten π electrons. Evidently, the ten-electron
system can undergo a pericyclic cyclization reaction,
which is allowed by the Woodward–Hoffmann rules.
This unusual 1,11-cyclization would result (upon the
detachment of HCl) in the formation of tetracycle 3.

The tetracyclic system 3 is planar and consists of
19 atoms, including C(17) and C(19) (Fig. 2). The rms
atomic deviations from this plane are within 0.036(3) Å.
The ester radicals are also planar (the rms atomic devi-
ations are within 0.003 Å in each of them), and their
arrangement is quite different from that in 2: the
C(17)O(1)O(2)C(18) group is almost coplanar with the
heterocyclic system [the dihedral angle is 0.68(7)°],
whereas the C(19)O(3)O(4)C(20) group is situated
almost perpendicularly to the latter system [the dihedral
angle is 88.13(9)°]. This position of the ester groups with
respect to the heterocyclic nucleus of the molecule is due
to the minimum repulsion of the O(10) and O(1) atoms
from the O(3) and O(4) atoms, respectively.

In molecules 2 and 3, the intramolecular C(6)–
H(6)···O(2) and C(16)–H(16)···O(10) hydrogen bonds
have almost identical geometric parameters (Tables 5,
6). The parameters of the intermolecular contacts
involving the C, H, and O atoms are also included in
these tables.
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Abstract—The three-dimensional structure of the Arg32His mutant of the human tumor necrosis factor (TNF-α)
was established at 2.5 Å resolution by the molecular replacement method. The crystals of the mutant belong to
sp. gr. R3. The specimen has a hemihedral twinning fraction of approximately one half with the twin law cor-
responding to an additional twofold axis along the a- or b-axis of the crystal lattice. The model analysis of inter-
actions between functionally important loop 29–36 of the mutant and the receptors p55 and p75 was performed.
© 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The tumor necrosis factor (TNF-α), one of the most
important immune mediators and an antiinflammatory
cytokine, is produced mainly by activated macrophages
[1]. The protein TNF-α was first discovered as a factor
released into blood upon bacterial infections [2] and
was initially characterized as a protein inducing the necro-
sis of tumor tissues of mice [3]. The protein TNF-α is
characterized by the selective in vitro cytotoxic activity
with respect to a large number of tumor and trans-
formed cell lines [3–5]. Similar cytotoxic action [6] is
also characteristic of another protein, lymphotoxin
(TNF-β), produced primarily by T lymphocytes. Both
cytokines are closely related immune-system factors
against bacterial infections, which act as mediators of
inflammatory and immune reactions and compete for
binding with the same cell receptors [1, 7, 8]. The typ-
ical biological effects of TNF-α and TNF-β are mani-
fested via interactions with two types of receptors,
which are called p55 and p75 in accordance with their
molecular weights [9–11]. The amino-acid sequences
of the extracellular portions of both receptors are essen-
tially homologous, and these domains are characterized
by a fourfold repetition of the structure motif contain-
ing six cysteine residues. In contrast, the intracellular
domains of both receptors show no significant sequence
homology, which is indicative of different signal-trans-
duction pathways. It was found that the receptors
impart different biological functions of TNF-α and
1063-7745/02/4704- $22.00 © 20629
TNF-β. For example, the interaction of TNF-α with the
p55 receptor induces cytotoxic activity [12–14], the
expression of adhesion molecules of epithelial cells and
kerotinocytes [15–17], the activation of the NF-kB
transcription factor [15, 18], and the induction of the
transcription of mRNA which codes Mn superoxide
dismutase [13, 19].

The three-dimensional structures of native TNF-α
and a number of its derivatives with site mutations in
the regions that are of functional importance for inter-
actions with receptors have been established by meth-
ods of protein crystallography [20–25]. The structure of
the TNF-β in the complex with the p55 receptor was
also determined [26]. Having ~32% homology between
the amino-acid sequences of TNF-α and TNF-β, these
proteins are structurally similar (the rms deviation of
the superimposed Cα atoms is ~0.87 Å). The interac-
tions of TNF-α and TNF-β with the receptors begin
with the formation of the cytokine molecule trimers
both in solution [27, 28] and in the crystalline state as is
exemplified by the crystal structure of the TNF-β–p55
complex [26, 29].

The regions of the TNF-α and TNF-β molecules
essential for binding with the receptors and responsible
for their biological activity were identified by the muta-
tion analysis [30–34]. These regions reside in the lower
part of the bell-shaped trimer and consist mainly of
three triads of surface loop regions located at the inter-
faces between each pair of the adjacent subunits. In par-
002 MAIK “Nauka/Interperiodica”
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ticular, it was confirmed that one of the loop regions,
29–36, is involved in binding with the receptor.

In this study, we established the three-dimensional
structure of the Arg32His mutant of human tumor
necrosis factor (H32-TNF-α) by X-ray diffraction anal-
ysis and examined the structure–function relationships.

EXPERIMENTAL

The crystals of the H32-TNF-α mutant were grown
by the vapor-diffusion hanging-drop techniques under
conditions that were slightly different from those used
for the growth of the native protein [35] (Table 1).

The X-ray diffraction patterns indicated sp. gr. R32.
However, as evidenced by the calculated Matthews
coefficient [36], the asymmetric part of the unit cell in
this case must contain a molecule with a molecular
weight half as large as that of the monomer of the H32-
TNF-α mutant. Hence, it was concluded that the crys-
tals in fact belong to sp. gr. R3, whereas the observed
higher symmetry of the X-ray diffraction pattern was
attributed to twinning.

The  X-ray data were collected on an automated
R-AXIS II diffractometer (Rigaku, Japan) equipped with
an Image Plate detector at 18°C. The statistical analysis
of the X-ray data with the use of the CNS program
package (version 1.0) [37] confirmed crystal twinning
with the characteristic parameters 〈|Io |2〉/〈|Io |〉2 = 1.65

Table 1.  Crystallographic and X-ray diffraction data for
H32-TNF-α

Parameters

Conditions of crystallization

Solution (1 µl): 0.02 M 
Tris-HCl, pH 8.0, 0.15 M 
NaCl, protein (50 mg/ml)
Reservoir solution (1 µl):

0.2 M MES, pH 6.4,
2.0 M MgSO4

Molecular weight, Da ~16280

Sp. gr. R3

Unit-cell
parameters

a, Å 66.235

b, Å 66.235

c, Å 85.186

γ, deg 120.0

Hexagonal setting Z 9

Vcell, Å
3 323649

Resolution, Å 2.5

Matthews coefficient, Å3/Da 2.21

Number of reflections with (F ≥ 0) 3789

Number of reflections with (F ≥ 2σF) 3651

Data completeness, % 78.6

Rmerge 0.103
C

and 〈|Fo |2〉/〈|Fo |〉2 = 0.86. In the absence of twinning,
these parameters are equal to 2.0 and 0.785, respec-
tively [38], whereas for a specimen with 50% hemihe-
dral twinning fraction they are equal to 1.5 and 0.865,
respectively [38]. The twinning fraction (about 50%) is
related to the basic crystal domain by a twofold axis
parallel to the a- or b-axis of the unit cell.

The H32-TNF-α structure was solved by the molec-
ular replacement method without regard for twinning
with the aid of the X-PLOR program package (ver-
sion 3.1) [39] and with the use of 3651 structure factors,
F ≥ 2σF , in the resolution shell between 10 and 3 Å.
The structure of one of the TNF-α mutants (PDB code
4TSV) determined at 1.8 Å resolution [23] was used as
the starting model. The subsequent refinement of the
structure was carried out in several steps using the CNS

Table 2.  Statistics of the crystallographic refinement of the
H32-TNF-α structure

Parameters

Number of amino-acid residues 148

Number of non-hydrogen atoms of the protein 1158

Number of water molecules 26

Rtwin (F ≥ 0) 0.106

Rtwin(free) (using 10% of X-ray data, F ≥ 0) 0.237

Rtwin (F ≥ 2σF) 0.100

Rtwin(free) (using 10% of X-ray data, F ≥ 2σF) 0.230

Average B factor (over structure), Å2 43.8

rmsd Backbone 2.74

rmsd of B factors,* Å2 Side chains 3.40

rmsd of parameters 
from the ideal values

Bond lengths, Å 0.006

Bond angles, deg 1.208

Torsion angles, deg 25.826

Planarity, deg 0.867

The Ramachandran plot 
statistics of the ϕ and 
ψ angles for amino-
acid residues (Gly and 
Pro are ignored) over 
the regions of the Ram-
achandran plot, %

Favoured regions 71.4

Additional allowed
regions

25.4

Generously allowed
regions

3.2

Disallowed regions 0.0

Angles ω, deg Average 179.9

Standard deviation 0.9

Positional error, Å According to Luzzati 
[41]

0.19

Standard deviation of the chiral angles
ξ(Cα–N–C–Cβ), deg

0.9

Note: The relative rms deviations of the B factors for pairs of
covalently bonded atoms are given.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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His32

Fig. 1. Fragment of the functionally important region of TNF-α with the mutated His32 residue in to the electron density (the level
ρ ≥ 1σρ).
program package. Calculations by the slow-cooling
procedure were alternated with the manual correction
of the molecular geometry on an OCTANE graphics sta-
tion (Silicon Graphics) using the CHAIN program [40].

In the CNS program [37], the X-ray term of the min-
imized functional with allowance for the contribution
of the twinning fraction is represented by the function

Exref = Σ{|Fo(hkl)|–k[(1 – θ)|Fc(hkl)|2 

+ θ|Fc(h'k'l ')|2]1/2}2 [37],

where k is the scale factor, θ is the relative content of the
twinning fraction (0.50), and the relation between the hkl
and h'k 'l ' reflections is determined by the twinning
type (in our case, h' = h, k' = –h – k, l' = –l). Following
the common practice for crystals with the θ parameter
close to 50% [38], the intensities of the corresponding
pairs of twin-related reflections were averaged. In all
stages of the refinement, the calculated structure factors
Fc were corrected for the contribution from the bulk
solvent. The electron-density maps were calculated
using not the structure factors |Fo(hkl)| but the values
calculated from the X-ray diffraction data with the
coordinates of the model structure

Fdetwin = {0.5[|Fo(hkl)|2 + k'(|Fc(hkl)|2 

– |Fc(h'k'l ')|2)]}1/2 [37].

The crystallographic R factor,

Rtwin = Σ{|Fo(hkl)| – k[(1 – θ)|Fc(hkl)|2 

+ θ|Fc(h'k'l ')|2]1/2}/Σ|Fo(hkl)| [37],
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
characterizing the validity of the refined H32-TNF-α
structure was ~10.0% (the corresponding statistical
data are given in Table 2). The final electron-density

Fig. 2. Topology of the spatial arrangement of the trimer of
the Arg32His mutant of TNF-α. The individual monomers
are differently shaded; the strands of the β-structure are
indicated by arrows.
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Fig. 3. Stereoview of the loops 29–36 of the superimposed molecules of H32-TNF-α (black) and native TNF-α (grey).
map calculated by the (2Fdetwin – Fc) coefficients is of
high quality and, on the whole, is adequate to the
amino-acid sequence of the protein (Fig. 1). The crystal
structure has 26 ordered water molecules located in
the first and second shells on the surface of the TNF-α
C

molecule and characterized by electron-density max-
ima higher than 1.0σ, temperature factors B lower than
70 Å2, and lengths of hydrogen bonds to the nearest
atoms of the protein molecule ranging from 2.5
to 3.5 Å.
Table 3.  Conformational parameters (ϕ and ψ) and rms deviations (RMSD) of the superimposed Cα atoms of loop re-
gions 29–26 in the TNF-α and TNF-β structures

TNF-α TNF-β

native mutant forms complex with the p55 receptor

amino-acid 
residues

torsion 
angles, 

deg 
[20] R32H,

this study R31D [24] A84V [25]
L29S
S52I

Y56F [23]
[26] amino-acid 

residues

Leu29   ϕ –158.9 –119.7 –152.5 –121.3 –147.5 –143.7 Arg46

ψ 149.9 154.0 146.5 148.0 141.4 159.6

Asn30 ϕ –127.5 –122.7 –114.7 –102.4 –104.5 –129.4 Ala47

ψ –133.9 –35.4 28.4 –155.2 4.8 17.5

Arg31 ϕ 60.0 –70.9 –130.1 40.3 –89.5 –102.1 Asn48

ψ –33.1 67.1 –2.2 29.9 66.2 10.7

Arg32 ϕ –65.0 –155.7 –120.2 –106.1 –151.1 –142.0 Thr49

ψ –163.7 146.1 170.1 –177.2 148.9 162.9

Ala33 ϕ –39.3 –56.0 49.0 –30.7 –71.1 53.8 Asp50

ψ –68.0 150.4 –136.4 –31.7 154.5 –138.8

Asn34 ϕ –130.9 54.5 –109.9 –159.9 67.2 –96.9 Arg51

ψ 67.9 26.0 41.3 40.5 21.4 19.8

Ala35 ϕ –116.2 –113.5 –61.8 –73.9 –125.1 –76.0 Ala52

ψ 78.6 126.6 74.5 116.8 155.7 155.8

Leu36 ϕ –83.6 –98.2 –61.2 –105.8 –137.4 –171.9 Phe53

ψ 140.7 163.0 159.5 121.5 150.3 165.7

RMSD, Å 0.75 0.0 0.87 0.91 0.44 0.65
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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Table 4.  Stabilizing interactions of the equivalent functional loops 29–36 of TNF-β, TNF-α, and H32-TNF-α with the p55
receptor

TNF-β-p55 [26] TNF-α and H32-TNF-α-p55 (model)

type of interaction TNF-β p55 type of interaction TNF-α and H32-TNF-α p55

H bond, potential salt bridge Arg46 (Nη) Ser72 (Oγ)
Glu56 (Oε)

Leu29

Potential H bond Asn48 (Nδ2) Glu56 (Oε) Salt bridge Arg31 (Nη) Glu56 (Oε)

Potential H bond Thr49 (OγH) Cys70 (O) H bond Arg32 (Nη)/His32 (Nε2) Ser72 (OγH)

H bond Asp50 (Oδ) Ser72 (OγH) Hydrophobic Ala33 (Cβ) Leu71 (Cδ2)
RESULTS AND DISCUSSION

As was expected, the H32-TNF-α molecules form
trimers (Fig. 2). On the whole, this spatial organization
is virtually identical to the structure of native TNF-α
[20] and is similar to the TNF-β structure in the com-
plex with the p55 receptor [26] (the rms deviations
(RMSD) of the superimposed Cα atoms of the individ-
ual monomers are equal to ~0.9 Å). For each monomer,
the chain-folding topology can be described as an elon-
gated sandwich consisting of two twisted antiparallel
β-sheets. In the structure under consideration, the
replacement of Arg32 by His residue occurs in the loop
region 29–36 located between two β strands a and a'
(Fig. 3). This region is of functional importance for
interactions with receptors [20]. The least-squares
superposition of the H32-TNF-α structure to the known
structures of native TNF-α, its mutant forms [20, 23–25],
and the TNF-β–p55 complex [26] are indicative of a
certain conformational and positional lability of the
loop 29–36. This lability is characterized by the RMSD
values for the Cα atoms ranging from 0.44 to 0.91 Å
(Table 3).

Analysis of the models built from the TNF-β–p55
complex by replacing the TNF-β molecule by the mol-
ecules of native TNF-α and the H32-TNF-α mutant
demonstrated that the pattern of the interactions
between loop 29–36 of TNF-α and receptor p55 is
somewhat different from that observed for equivalent
loop 46–53 in the TNF-β–p55 complex. However, in
both cases, the numbers of stabilizing interactions
remain at the same level (Table 4). In principle, the
replacement of Arg32 by His residue has no substantial
effect on the general character of interactions in this
local region. Nevertheless, the selective evaluation of
the Coulomb energy of interactions between these res-
idues and the receptor indicates that the recognition of
arginine is favored over that of histidine. These results
confirmed the experimental evidence that the H32-TNF-α
mutant has a rather satisfactory ability to bind the
p55 receptor, although one would expect a slight decrease
in the selectivity of its binding in comparison with
native TNF-α. The latter conclusion is indirectly con-
firmed by a noticeable decrease in the cytotoxic activity
of this mutant form [1].
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
The rather high homology between the amino-acid
sequences (~30%) of the extracellular domains (resi-
dues 1–153) of the p55 and p75 receptors presupposes
a similar backbone folding [42]. The model analysis
showed that the regions of the receptors interacting
with the residue in position 32 of TNF-α are absolutely
identical (the Glu56, Cys70, Leu71, Ser72, and Cys73
residues), which, by analogy with the p55 receptor, indi-
cates that the character of the binding of native TNF-α
with the p75 receptor is similar to that of the mutant.
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Abstract—Characteristics of plastic deformation in the amorphous Fe–Cr–Mo–V–B–Si alloy have been stud-
ied by the method of local deformation. It is established that plastic deformation in the rapidly quenched iron-
based alloy proceeds by two channels. The model for interpreting the energy aspects of plastic deformation in
amorphous materials is suggested. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The well-known methods of extension and contrac-
tion are often inapplicable to the studies of plastic
deformation in amorphous ribbons prepared by rapid
quenching because of the high brittleness and small
thicknesses of these ribbons. Therefore, the develop-
ment of a convenient precision method for studying
pronounced plastic deformation in amorphous alloys is
an important problem. Another interesting problem is
the detailed study of the characteristics of plastic defor-
mation in the amorphous alloy in the Fe–Cr–Mo–V–B–
Si system, because the nature of defects formed during
the deformation of amorphous materials is still not
quite clear.

EXPERIMENTAL

The starting material for preparing an amorphous
metal ribbon in the process of rapid quenching of the
melt was the alloy in the Fe–Cr–Mo–V–B–Si system.
Vacuum melting of the charge and its subsequent rapid
quenching allowed us to obtain 15-mm-wide amor-
phous ribbons. Alloy was melted in a crucible in the
form of a quartz tube with a 0.25- to 0.30-mm-long slot
under excessive argon pressure (0.2–0.5 MPa). The
melt temperature was recorded by a Krok-2 pyrometer
with an accuracy of ±2°C. The angular velocity of the
copper disk-crystallizer of radius 0.35 m ranged from
50 to 60 rps and was recorded by a PDF-1 angle-data
transmitter in the control system with an electric drive
of a type SEU-7885. The ribbon thickness varied from
30 to 80 µm. The rate of ribbon cooling was 8 ×
105 °C/s–1.

The X-ray diffraction analysis was performed on a
DRON-3 diffractometer (monochromatic CuKα radia-
tion) at the following parameters: voltage 30 kV, cur-
rent 20 mA, counter rate 2 deg/min. The standard was
1063-7745/02/4704- $22.00 © 20635
the initial alloy of the above composition annealed at
850°C.

The structure was studied in an optical Neophot-21
microscope and a CamScan-4 scanning electron micro-
scope.

The characteristics of plastic deformation in the Fe–
Cr–Mo–V–B–Si alloy were studied by the method of
local deformation of the surface, which reduced to
deformation of an amorphous material by the Vickers
pyramid of a PMT-3 device [1–3]. Using a CamScan-4
microscope, we obtained the micrographs of typical
plastic-deformation patterns in an amorphous alloy;
then the geometric parameters of plastic deformation
were measured.

EXPERIMENTAL RESULTS AND THEIR 
DISCUSSION

X-ray diffraction studies showed that the Fe–Cr–
Mo–V–B–Si alloy is amorphous under X-ray radiation,
which is seen from the absence of the diffraction peaks
at angles 2θ > 45°.

The typical deformation patterns around the depres-
sion produced by the Vickers pyramid on the surface of
the amorphous Fe–Cr–Mo–V–B–Si alloy under an
applied load of up to 1 N are shown in Fig. 1. One can
see the system of scalelike shears around the indenta-
tion.

With an increase in the load applied to the indenter,
a new type of defect is formed (Fig. 2)—the rays prop-
agating from the depression made by the indenter,
which, in fact, are the bands of shear of one part of the
material with respect to another.

The quantitative and geometrical characteristics of
these signs of plastic deformation in the amorphous Fe–
Cr–Mo–V–B–Si alloy are shown in Figs. 3–5. It is seen
from Fig. 3 that the number of scale pileups formed due
002 MAIK “Nauka/Interperiodica”
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10 nm

3 nm

Fig. 1. Scale pileups around the indenter depression.

Fig. 2. Shear bands. The micrograph was obtained in a CamScan-34 scanning electron microscope.
to shear Nsp per one indentation first increases with an
increase in the load applied to the indenter (up to 1 N)
and then decreases; in other words, the function Nsp =
f(P) has an extremum, which is often evidence of the

10

5

0 0.5 1.0 1.5

1

2

Nsp

P, N

Fig. 3. The average number Nsp of scale pileups as a func-
tion of load P applied to the indenter. (1) The ribbon side
which in the process of its preparation was in contact with
air, (2) the ribbon side which in the process of its prepara-
tion was in contact with the copper disk-crystallizer.
C

occurrence of two or several competing processes such
that different processes dominate at different stages of
deformation [4]. In our case, the formation of scale
pileups (Fig. 1) compete with the formation of shear
bands (Fig. 2) under loads exceeding 1 N (Figs. 4
and 5).

The appearance of a new channel of plastic defor-
mation results in the redistribution of the deformation
energy between the scale pileups and shear bands. As a
result, less energy is consumed for the formation of
defects shown in Fig. 1, and, thus, the number of these
defects decreases.

The formation of defects shown in Fig. 2 under pro-
nounced loads seems to be associated with the higher
critical stresses of their formation in comparison with
the critical stresses necessary for the formation of scale
pileups.

As is seen from Figs. 4 and 5, the dependences of the
average number of shear bands, Nsb, on the load applied
to the indenter and the average length of the glide trace,
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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Lsb, on the load applied to the indenter are similar. Prior
to the application of a 1-N-load to the indenter, the
number of shear bands and their lengths are equal to
zero; then, these parameters continue increasing lin-
early.

It should be indicated that the experimental depen-
dences Nsp = f(P), Nsb = f(P), and Lsb = f(P) are different
for the two sides of the ribbon. The number of scale
pileups around the indenter offset formed on the ribbon
side which was in contact with air in the process of its
preparation is considerably larger than on the other side
of the ribbon. On the contrary, the number of shear
bands due to deformation was larger if the indenter was
applied to the side of the ribbon that, in the process of
its preparation, was in contact with the copper disk-
crystallizer. Moreover, on this side of the ribbon, shear
bands started forming under lower load values (of the
order of 0.75 N). The increment in the number and the
length of shear bands is also larger on the ribbon side
which was in contact with the disk-crystallizer during
the ribbon preparation.

Now, consider the mechanisms of the formation of
defects shown in Figs. 1, 2. It is well known that, during
shear in single-crystal materials, the atoms in the shear
plane occupy the sites of the neighboring atoms but the
material preserves its structure and the shear plane has
only a small number of defects [5]. The situation is
quite different if the shear takes place in an amorphous
material. Generally speaking, in this case, atoms cannot
occupy the sites of the neighboring atoms. This results
in local changes in their density in the shear plane. As
was shown in [6], this creates favorable conditions for
the formation of micropores in the shear plane (Fig. 6).
Along with micropores, there are also the regions of
cohesion of the amorphous-material parts lying on dif-
ferent sides of the shear plane (Fig. 6). Obviously, the
cohesion-force value in these regions shown in Fig. 6 is
much lower than the cohesion-force value in the defect-
free region of the amorphous material, because the area
of the cohesion region in the shear plane is finite and
rather small. As a result, at considerable deformation
stresses when the shear plane emerges at the surface,
this cohesion practically cannot be detected, because
the external stresses are so high that it is almost impos-
sible to prevent a further shear, which results in the sep-
aration of weakly bound cohesion regions and the open-
ing of a crack propagating along the shear plane [6].

Thus, the formation of shear bands proceeds in four
stages: (1) the appearance of local plastic flow and the
activation of the sources of the formation of shear
bands; (2) nucleation and development of shear bands
with the formation of micropores and regions where
parts of the material located on different sides of the
shear are bound by cohesion forces; (3) the emergence
of the shear bands to the surface; and (4) the fracture of
the cohesion regions with a further increase in external
stresses.
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      200
In turn, the last stage can proceed in several steps. At
the first step, the primary shear takes place, as a result
of which the pores and cohesion regions are formed. If
the shear band does not emerge to the surface as in the
case of the local deformation observed in our case, the
cohesion regions can increase because of diffusion and
pronounced material compression in the shear plane. If
the shear band emerges to the surface, these forces are
somewhat less pronounced because of the absence of
the compressive-stress localization at the top of the
shear band.

Slight material deformation after the emergence of
the shear band to the surface at the second step results
in the formation of shear bands in the cohesion regions

40

20

0 0.5 1.0 1.5 P, N

Nsb

1

2

Fig. 4. The average number Nsb of shear bands as a function
of load P applied to the indenter. (1) The ribbon side that
was in contact with air, (2) the ribbon side that was in con-
tact with the copper disk-crystallizer.

100

50

0 0.5 1.0 1.5 P, N

Lsb, µm

1

2

Fig. 5. The average length of glide traces Lsb as a function
of load P applied to the indenter. (1) The ribbon side that
was in contact with air, (2) the ribbon side that was in con-
tact with the copper disk-crystallizer.

1

2

3

Fig. 6. Schematic representation of the shear-band in an
amorphous material. (1) Trace of the shear plane, (2) pores,
(3) the sites of cohesion of the parts of an amorphous mate-
rial located on different sides of the shear plane.
2
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of the primary band. At this step, new cohesion regions
can form, especially under high compressive stresses.
Under quasi-static loading, the shear bands in the cohe-
sion regions can repeatedly form until the formation of
a crack and its opening. The development of the crack
is more probable in the presence of pores and misfit
stresses formed because the displaced atoms in amor-
phous materials cannot occupy the sites of the neigh-
boring atoms as in single crystals.

At high deformation stresses, crack formation can
also happen at the first step of the fourth stage of forma-
tion of the shear-band. At extremely high stresses,
cracks can also be nucleated at the third and fourth
stages.

It should be indicated that the formation of scale
pileups is similar to the formation of shear bands with
the only difference that, according to [7], in the approx-
imation of the quasi-static loading and an ideal elastic–
plastic medium, scale pileups can be formed under con-
ditions of hydrostatic compression of the material ful-
filled in the vicinity of the indenter. The emergence of
the scales to the surface occurs along the glide lines [7]
that describe the stressed state in the vicinity of the
indenter, which suggests that this process is more ener-
getically favorable at the initial stage of deformation
than the formation of shear bands in the form of rays
propagating from the indenter.

Now, consider the energy aspect of the defect for-
mation during deformation. In our case, the general
energy balance can be written as

Wd = Wsb + Wsp + Woth, (1)

where Wd is the deformation energy, Wsb is the energy
of formation of shear bands, Wsp is the energy of forma-
tion of scale pileups, and Woth is the energy losses for
the formation of other channels of plastic deformation
not considered in this study.

According to [7], in the approximation of quasi-static
loading and an ideally plastic medium, the material in
the vicinity of the indenter during deformation is under

1

2

α
N
–

R F
–

F
–
fr

F
–
d

Fig. 7. Schematic illustrating the calculation of the energy
of formation of shear bands and scale pileups.
C

conditions of hydrostatic compression. Therefore, the
deformation energy is determined by the relationship

(2)

where E is the Young’s modulus, P is the load applied
to the indenter, S is the area of the depression projection
onto the plane normal to the direction of loading, and V
is the volume of the deformed material. In our case,

(3)

where d is the length of the diagonal of the depression
produced by the indenter on the surface of the amor-
phous material, which is related to the depth of the
indenter penetration into the material h, as d = 7h.

In order to determine Wsb and Wsp, consider Fig. 7.
Elements 1 and 2 in Fig. 7 are the contacting parts of the
shear band (Fig. 6) located on the different sides of this
band. In the first approximation, during the formation
of a pore under the action of an external force F, ele-
ment 1 covers a distance equal to a quarter-circumfer-
ence of the radius equal to the curvature radius R of ele-
ment 2. The internal-friction force  does the work

(4)

The potential energy El of the lift of element 1 on top
of element 2 is determined by the force of pressure of
element 1 onto element 2, . Then, under the approx-
imation that element 2 in the section normal to the shear
plane has the shape of half-circumference of radius R,
we can write

El = FdR. (5)

Taking into account that Ffr = µN and Fd = Ncosα
(where α is the angle formed by the directions of the
action of the force  and the response to this action N*
(Fig. 7) and µ is the friction coefficient for elements 1
and 2), we obtain from Eq. (5)

(6)

Performing the integration in Eq. (6) with respect

to α within the limits from  to zero, we arrive at

. (7)

Summing up Eqs. (4) and (7), we obtain the energy
of formation of the ith relative displacement of two ele-
ments located on different sides of the shear plane as

(8)
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Now, assume that all the elements of type 2 (Fig. 7)
that form the shear plane have approximately the same
dimension R as the element considered above. We also
assume that, during formation of a shear band, the unit
displacement by distance R takes place. Then, Eq. (8)
for the energy of the unit shear takes the form

(9)

where n is the number of elements of type 2 in a single
shear band.

Multiplying Eq. (9) by the number of shear bands
formed in the vicinity of the indenter N, and assuming
that all these bands are of the same length, we obtain

(10)

In the above equation, N = Nsb (Fig. 4). Taking into
account that, according to the above model, Lsb = 2nR,
we can pass in Eq. (10) to the quantities that can be
determined experimentally:

(11)

Assuming that the mechanism of formation of scale
pileups is similar to that of the formation of shear bands
and using Eq. (11) for Wsp, we can write

(12)

Now, substituting Eqs. (2), (10), and (11) into Eqs. (1),
we obtain

(13)

whence it follows that

(14)

where ξ =  – Woth  + .

In the above equation, we managed to determine the
quantities Lsb, Nsb, and Nsp experimentally (Figs. 3–5).
The quantity Lsb can also be determined experimentally
from the following expression:

(15)

where it is assumed that the length of the scale pileup is
equal to a quarter-circumference of the diameter close
to d.
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π
2
--- 1

µ
---+ 

  FfrR,=

W sb nN
π
2
--- 1

µ
---+ 

  FfrR.=

W sb
1
2
--- π

2
--- 1

µ
---+ 

  LsbNsbFfr.=

W sp
1
2
--- π

2
--- 1

µ
---+ 

  LspNspFfr.=

1
E
--- 2P

d
2

------- 
  2 d

3

42
------

=  π
2
--- 1

µ
---+ 

  Ffr LsbNsb LspNsp+( ) Woth,+

Ffr ξ / LsbNsb LspNsp+( ),=

1
E
--- 2P

d
2

------- 
  2 d

3

42
------









/
π
2
---

 1
µ
---



Lsp
π
4
---d ,≈
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Taking into account that in [8]

, (16)

where H is microhardness, k is the geometrical param-
eter (equal to k = 0.03797 for a Vickers pyramid), the
quantity ξ can be conveniently written in the form ξ =

 – Woth  + , and expres-

sion (15) can be written as Lsp ≈ . The character

of the dependences of Lsb, Nsb, and Nsp on P can be cho-
sen based on the experimental curves shown in Figs. 3–
5. In our case, we have

Nsb = P(b1 – a1P), (17)

(18)

(19)

where a1, a2, a3 and b1, b2, b3 are the empirical coeffi-
cients determined from Figs. 3–5.

Substituting Eqs. (15) and (17)–(19) into Eq. (14),
we obtain that at P < 1 N

(20)

and at P > 1 N

(21)

In Eqs. (20) and (21), α =  and

β =  + , γ = . Taking into account that E ≈

1.7 × 1011 N/m2, H ≈ 15.0 GPa, and µ ≈ 0.1, we obtain
the following values of the above parameters: α ≈

0.3  m, β ≈ 11.6, γ ≈ 9.4 × 10–6  m. Taking into
account these values and assuming that b1 = 2a1 = 2,
a2 = b2 = 1, and a3 = b3 = 10–4 m at P = 1 N, we can con-

struct the theoretical curves | | = f (P) (where  =
βFfr). In the absence of shear bands, these curves at
Woth = 0, 1, and 5 J are shown in Fig. 8. It is seen that at
the initial stage the friction force (proportional to the
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compression force of the material parts on both sides of
the shear plane) has rather high values. Then, with an
increase in the load up to the value providing the forma-
tion of shear bands, the friction force falls to zero and,
thus, activates the channels of plastic deformation.
A  further increase in the load promotes an increase in

| | and reduces the probability of formation of new
scale pileups.

The curve | | = f(P) in the case of formation of
shear bands has a similar shape to that of the curve in
Fig. 8 (in this case, the maximum observed at a load of
2 N is higher by an order of magnitude than that observed
in the formation only of scale pileups). Therefore, upon
the application of a 1-N load to the indenter, the forma-
tion of new scale pileups becomes less probable. Exper-
imentally, this can be seen from the residual deforma-
tion pattern, where the shear bands and scale pileups
are indented by the indenter, as is shown in Fig. 2.

Ffr*

Ffr*

2

1

0
1 2 3

1
2

3

|Ffr''|, 106 N

P, N

Fig. 8. Dependences | | = f(P) at different values of Woth:

(1) 0, (2) 1, and (3) 5 J.

Ffr*
C

CONCLUSION

Thus, applying the method of local deformation to
studying plastic deformation in the amorphous Fe–Cr–
Mo–V–B–Si alloy, we established that deformation
proceeds along two channels—the formation of shear
bands and the formation of scale pileups. We also estab-
lished the stages of inclusion of these channels into the
process of plastic deformation: first, scale pileups are
formed and only then, shear bands. It is shown theoret-
ically that the activation of plastic deformation by the
formation of shear bands takes place only within a cer-
tain range of loads applied to the indenter (about 1 N).
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Abstract—The serrated plastic flow in LiF single crystals has been studied in the mode of active deformation
at high temperatures (T = 573–1093 K). The parameters of the jumps in the deforming stresses (normalized
amplitude and relaxation time of stress oscillations) were determined at the stage of strain softening under con-
ditions of uniaxial compression and tension. It was shown that the jump parameters are essentially dependent
on the type of the stressed state and the deformation temperature. The activation energy of serrated deformation
in shear bands was established to be close to the migration energy for cation vacancies. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

During the last two decades, the high-temperature
localization of plastic strains has widely attracted the
attention of researchers. This phenomenon can be
described as the stain-induced stratification of crystals
at temperatures exceeding 0.5Tm and the formation of
highly strained domains (localized shear bands, LSBs)
with shear strains of the order of ~103–104% within the
practically unstrained matrix [1–7]. These crystallo-
graphic shear strains arise in crystals with various types
of crystal lattice [6, 8] and are associated with the for-
mation of a specific fine-grain dislocation structure [9, 10]
in the zones of intense plastic flow of the material. It
was found [11, 12] that the formation of LSBs occurs at
the stage of steady-state flow in the absence of harden-
ing (stage III of hardening) and stems from the local
loss of plastic stability and the drastic decrease in mate-
rial resistance. Earlier, the correlation between the
oscillations in deforming stresses on the deformation
curves and the number of LSBs was established [13].
The systematic detailed study of the relations between
plastic instability, the fluctuations of deforming
stresses, and the rate of shear deformation is very
important for understanding the physical mechanisms
underlying the formation of localized shear bands. In
the present paper, we analyze statistically the quasi-
periodic oscillations in the deforming stresses on the
diagrams of the uniaxial compression and tension of
LiF single crystals deformed under high-deformations
and temperatures (T = 573–1093 K or (0.5–0.96)Tm).

EXPERIMENTAL TECHNIQUE

We studied LiF single crystals (0.002 wt % Mg)
grown from melt, annealed for 60 h in air at 973 K, and
1063-7745/02/4704- $22.00 © 20641
then slowly cooled. Samples cleaved along the cleavage
planes in the shape of ~4 × 4 × 20-mm3 rectangular bars
were used in tensile tests; ~5 × 5 × 10-mm3 samples
were used in compression tests. The samples for tensile
tests were fixed in the clamps by an adhesive mixture of
liquid glass and kaolin [14], which provided a firm con-
tact at all temperatures. The high-temperature tensile
tests were performed in a special furnace with a heater
made of electrical steel which was placed into the back-
spacing with ruby cross-heads. This reduced the chem-
ical interaction between samples and the material of
cross-heads and reduced heat losses at the end faces
at  high temperatures. The temperature gradient in the
90-mm-long working zone of the furnace did not
exceed ±2%. All the experiments were performed
under atmospheric pressure in air. The samples were
deformed along the [001] direction at a constant clamp
speed of about 0.83 × 10–6 m/s in the temperature range
T = (0.5–0.96)Tm up to large strains using the Ingstrom
testing machine. The testing machine rigidity was about
720 kg. wt./mm. The load was measured with an accuracy
of ±5 g. wt. The parameters of the serrated deformation
were determined at the stage of strain softening at defor-
mation ε ≅  15% from the deformation curves (Fig. 1). The
depth of large stress jumps, ∆σext, was normalized to the
value of the maximum deforming stress, σu, for each
stress oscillation. The times of the stress oscillations,
∆t, were determined as the time intervals between pro-
nounced stress jumps correlating with nucleation and
the evolution of shear strains in LSBs. The accuracy of
the measurements of amplitudes and relaxation times
of oscillations in deforming stresses was about 10%. 

The statistical distributions of the amplitudes and
the relaxation periods of stress oscillations correspond-
ing to the plastic flow in LSBs were analyzed within the
002 MAIK “Nauka/Interperiodica”
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temperature range 573–1093 K. We also calculated the
distributions of the deformation parameters for micro-
scopic shear strains in LSBs within the temperature
range 973–1093 K. The total volumes of the statistical
sample n for each investigated parameter of serrated
deformation in different temperature ranges are indi-
cated in the table. The structure of the deformed sam-
ples was studied by the methods of selective chemical
etching, and optical and interferometric microscopy.

σ

σu

σl

LSBs Microscopic shear
strains within the LSBs

∆t

t

∆σext

Fig. 1. Schematic illustrating oscillations in deforming
stresses corresponding to LSBs and microscopic shear
strains within LSBs. The parameters characterizing serrated
deformation are indicated; σu and σl are the maximum and
minimum stresses, respectively, ∆σext is the amplitude of
stress jump.
C

The LSBs were identified using the glide steps at the
side faces of the sample under oblique illumination in a
Neophot microscope.

EXPERIMENTAL RESULTS 
AND DISCUSSION

Under conditions of high-temperature deforma-
tion, the compression and tension diagrams exhibit
oscillations in the deforming stress with different
amplitudes, which indicates the pronounced nonunifor-
mity of the plastic flow. Typical examples of stress
oscillations on the compression diagram of a LiF single
crystal at strain rate  = 0.92 × 10–4 s–1 and T =
1043 K are shown in Fig. 2. The yield drop is followed
by the range of serrated flow almost without any hard-
ening, which extended up to the strain value ε ≅ 25%.
Quasi-periodic oscillations in deforming stresses with
relatively large jump parameters (∆σ/σ and ∆t) corre-
spond to the well-developed LSBs (Figs. 1, 2a). The
instabilities in the microscopic flow in LSBs are also
reflected in the deformation curves as oscillations with
very low values of the jump parameters corresponding
to microscopic shear strains within the LSBs. Compar-
ing the data obtained on different samples, we estab-
lished that the characteristics of the periodic stress
jumps on deformation curves are independent of the
strain magnitude. In the range of large strains (ε >
25%), the identification of LSBs is rather difficult,
since the stress oscillations are irregular, which can be
explained by the possible destruction of the material in
the zones of its intense plastic flow (Fig. 2b).

The parameters of serrated deformation are strongly
dependent on the stressed state and the temperature

ε̇a
σ

∆σ
ex

t =
 0

.5
 M

Pa
∆σ

ex
t =

 0
.5

 M
Pa

∆εtot = 1%

∆εtot = 1 %

ε

(a)

(b)

Fig. 2. Deformation curves corresponding to the compression of a LiF crystal at T = 1043 K,  = 0.92 × 10–4 s–1, and at the total

average strain (a) ε ≅  7% and (b) ε ≥ 25%; ∆εtot is the total strain.

ε̇a
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maintained in the course of the experiment. The exam-
ples of statistical distributions of amplitudes and relax-
ation times of stress oscillations corresponding to the
localized plastic flow in LSBs under uniaxial compres-
sion and tension are shown in Fig. 3. It is clearly seen
that these distributions are asymmetric (elongated
toward the oscillations with relatively high values of the
jump parameters). The asymmetry becomes more pro-
nounced at higher deformation temperatures. The mean
relative amplitudes 〈∆σ/σ〉 of the stress jumps corre-
sponding to the local shear strains in LSBs (vertical
lines in Figs. 3a and 3b) are about 3 and 6% for com-
pression and tension, respectively, at T = 0.85Tm. The
maximum oscillation amplitude increases from ~12 to
~20% in the transition from compression to tension.
Also, the amplitude of stress oscillations corresponding
to LSBs is about an order of magnitude higher than that
of stress oscillations corresponding to microscopic
shear strains in LSBs (Fig. 2a). Under the given exper-
imental conditions, the mean relaxation times 〈∆t 〉  are
equal to about 87 and 190 s, respectively. We observed
an approximate triple increase in the maximum relaxation
time (from ~270 to 840 s) with the change in the experi-
mental conditions (Figs. 3c, 3d).

The temperature dependences of 〈∆σ/σ〉 and 〈∆t 〉
obtained by processing the data of the deformation
curves for LiF crystals are shown in the Arrhenius coor-
dinates in Fig. 4. In the temperature range under study,
the amplitude of stress jumps dependent on the rates of
formation and annihilation of dislocations exponen-
tially increased with the temperature in both compres-
sion and tension experiments (Fig. 4a). An increase in
the jump amplitudes was accompanied by an increase
in 〈∆t 〉  values (from several seconds in the temperature
range (0.5–0.7)Tm up to hundreds of seconds at
T > 0.7Tm). Within a rather good approximation, the
experimental data obtained can be described by the fol-
lowing equations:

(1)

(2)

where k is the Boltzmann constant, (∆σ/σ)0 ≅  40.5 and
(∆t)0 ≅  1.63 × 105 s are the constants characterizing the
given material, and U is the activation energy corre-
sponding to serrated deformation in LSBs. The activa-
tion energy determined from the slope of the depen-
dences of ln〈∆σ/σ〉 and ln〈∆t〉 on 1/T is equal to about
0.6 eV (Figs. 4a, 4b). The parameters characterizing
serrated high-temperature deformation correlate well
with the discrete changes in the deformation relief and
the dislocation-related microstructure in LSBs of the
deformed samples. According to the experimental data
on the evolution of the localized shear bands [13, 15],
the rise L of the shear steps in the screw components of
the LSBs ranged from about 4 to about 140 µm at tem-
peratures T = 673–1043 K. The plots lnL versus 1/T
showed that the experimental points fit a straight line

∆σ/σ〈 〉 ∆σ /σ( )0 U/kT–( ),exp=

∆t〈 〉 ∆ t( )0 U/kT–( ),exp=
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
with the slope corresponding to activation energy U of
the formation of the local shear strains in LSBs, U =
0.57 eV [15]. This confirms the correctness of the acti-
vation-energy value determined above and approxi-
mately agrees with the migration energy of cation
vacancies in LiF (0.65 eV [16]).

Earlier experimental data on the parameters charac-
terizing the activation of the high-temperature localiza-
tion demonstrated that the rate of formation of local
shear strains is controlled by the processes of disloca-
tion climb and annihilation dependent on vacancy dif-
fusion [15, 17]. As in [18], we first performed the quan-
titative analysis of serrated high-temperature deforma-
tion in LiF single crystals in the temperature range 573–

0.5

0.3

0.1

0

f

0.1 0.2

300 600 900

∆σ/σ

∆t, s

0.5

0.3

0.1

0

(a)

(c)

(b)

(d)

300 600 900

0.1 0.20

Fig. 3. Statistical distributions of oscillations in deforming
stresses (corresponding to LSBs) over (a, b) the normalized
amplitude and (c, d) period of stress oscillations under con-
ditions of (a, c) uniaxial compression and (b, d) tension of
the crystals at T = 973 K (0.85Tm) and ε = 15% (for each
distribution, vertical lines indicate the mean parameter val-
ues characterizing serrated deformation).

0
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1093 K. It is shown that the parameters characterizing
the stress jumps (amplitude, period of the stress oscilla-
tions) depend on the type of the stressed state and dras-
tically increase in the transition from compression to
tension. We also demonstrated the exponential form of
the temperature dependences of the parameters charac-
terizing the fluctuations in deforming stresses. The acti-
vation energies of serrated deformation and formation
of a deformation relief (shear steps in LSBs) turn out to
be close. This allows one to consider the approach to
the study of LSBs suggested in the present paper as an
in situ study of the high-temperature localization of
plastic deformation.

2
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103/T, K–1

0

1

3

4

5

6
ln[〈∆t〉 , s]
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Fig. 4. Temperature dependence of (a) average values of
normalized amplitudes and (b) period of stress oscillations
in deforming stresses at the stage of steady-state flow in
LSBs during (1) compression and (2) tension.

Total volume of statistical sample, n, used in determination of the
parameters characterizing serrated deformation of LiF crystals

Temperature of 
measurements (K) T/Tm

Number of
deformed 
samples

Number 
of measure-

ments n

573–673 0.50–0.59 3 600

773–923 0.68–0.81 4 400

973–1093 0.85–0.96 7 250
C

Some results of this study were reported at the
VI Interstate Seminar on the Structural Foundations of
Material Modification by the Methods of Nontraditional
Technologies (June 12–15, 2001, Obninsk, Russia) [18].
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Abstract—A new approach to the solution of the boundary problems of light propagation in optically active
anisotropic absorbing media has been suggested. Unlike a number of already existing approaches, the new
approach is based on the use of a computer mathematical system—the integrated application package Mathe-
matica-4.1 and the method suggested by Berreman. It is shown that the special functions integrated into the
package allow one to calculate the characteristics of the reflected and transmitted light for an arbitrary class of
crystals and construct their dependences on various optical parameters. The examples of the application of the
package Mathematica-4.1 for solving various problems of crystal optics are considered. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The solution of the boundary problems of light
propagation through crystalline plates and layered
media with due regard for its multiple reflection is con-
sidered in a large number of works. In optically active
media, these problems become rather complicated, and
the corresponding calculations and the analytical
expressions are rather cumbersome. These problems
are solved by different methods. Thus, F.I. Fedorov
suggested the covariant method, which provided a
rather compact solution of this complex problem [1].
His method allowed one to solve many boundary prob-
lems in crystal optics [2–6]. Nevertheless, in compli-
cated cases, one has to use computers.

D. Berreman [7] suggested the method of 4 × 4 matri-
ces for studying the reflection and transmission of
polarized light incident onto planar layered anisotropic
media at a certain angle. The method is considered in
detail elsewhere [8]. Since the development of this
method, numerous practical problems of ellipsometry
of layered isotropic media and optics of liquid crystals
have been solved by the method. The programs for
this method are written in several languages (C, C++,
FORTRAN, Visual Basic, etc.), so each program is
written in a different way and is therefore not accessible
to all users. However, the Berreman method did not find
extensive application for solving various problems of
crystal optics, so that it is possible to state that it is
hardly used in practice. Possibly, this is partly associ-
1063-7745/02/4704- $22.00 © 20645
ated with the fact that most of the problems of crystal
optics have already been solved, and, in many practi-
cally important instances, very convenient analytical
expressions have already been derived.

At present, any problem of light propagation in plates
and layered systems with an arbitrary set of optical prop-
erties, including anisotropy, absorption, and optical activ-
ity, can be solved by the Berreman method with the aid of
the system of computer mathematics—the application
package Mathematica-4.1 or any other similar software
package. In this case, there is no need to write complex
programs. Below, we discuss this method in application to
the boundary problems of crystal optics.

Despite the fact that the Berreman method has
already been stated in detail elsewhere [7, 8], we con-
sider in brief the necessary data from these works to
show what new possibilities are provided by this
method for solving the boundary problems of crystal
optics and what advantages for their solution are provided
by the application of the Mathematica-4.1 package.

THE BERREMAN METHOD
First, formulate the problem to be solved. Let a

plane monochromatic wave with the wavelength λ be
incident from isotropic medium I with the refractive
index ni onto a plane-parallel plate of thickness d cut
out from an anisotropic optically active (gyrotropic)
absorbing crystal at an angle φi (Fig. 1). Upon the wave
refraction by medium II, two waves propagate from the
002 MAIK “Nauka/Interperiodica”
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upper face of the plate toward its lower face and two
waves propagate in the backward direction from the
upper and lower faces and undergo numerous reflec-
tion. The light exits to medium III at an angle φt with the
refractive index nt.
C

The transition matrix for the system of the principal
axes of the tensors which describe the properties of the
anisotropic medium to the Cartesian coordinate system
xyz can be written with the aid of the Eulerian angles ϕ,
θ, and ψ as
. (1)
ϕ ψcoscos θ ϕ ψsinsincos– ψ ϕsincos θ ϕ ψsincoscos+ θ ψsinsin

– θ ψ ϕsincoscos ϕ ψsincos– θ ϕ ψcoscoscos ϕsin ψsin– ψ θsincos

θ ϕsinsin ϕ θsincos– θcos 
 
 
 
 
In the Mathematica-4.1 package, the Eulerian angles
determine three successive rotations: through angle ϕ
around the z-axis, angle θ around the x-axis, and angle
ψ around the z-axis.

The Maxwell equations for the fields in a medium can
be written in the Cartesian coordinate system as a single
matrix equation. In its abridged form it can be written as

(2)

where O is the block matrix operator

(3)

where O is the zeroth 3 × 3 matrix, G and C are the gen-
eralized vector-columns and G = [Ex, Ey, Ez, Hx, Hy, Hz],
C = [Dx, Dy, Dz, Bx, By, Bz],

(4)

Here, E and H are the intensity vectors of the electric
and magnetic fields, D and B are the vectors of the elec-

OG 1/c( )∂C/∂t,=

O 0 rot

rot– 0 
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Fig. 1. Reflection and transmission of a plane wave with due
regard for multiple reflection at the oblique incidence of
light onto the system: (I) isotropic ambient medium,
(II) anisotropic plate; (III) isotropic substrate. The y-axis is
normal to the drawing plane; mj = njnj are the refraction
vectors of the incident (i) and reflected (r) waves, the waves
refracted in the forward (1, 2) and backward (3, 4) direc-
tions, and the transmitted (t) waves, where nj are the corre-
sponding refractive indices and nj are the corresponding
wave normals.
tric and magnetic induction. The relationships between
the induction and the field are set by the constitutive
equations, and for introduced G and C, can be written as

C = åG, (5)

where the block matrix M is called the optical matrix
and, in the general form, is written as

(6)

Here, ε and µ are the tensors of dielectric permittivity
and magnetic susceptibility and ρ and ρ' are the tensors
which describe the optical activity of crystals. The form
of blocks of the matrix M depends on the constitutive
equations, which, in the general case, have the form

D = εE + ρH, B = µH + ρ'E. (7)

If G is written as G = Âxp(–iωt)G, where G depends only
on the spatial coordinates, then Eqs. (2) and (4) yield

OG = (–iω/c)åG. (8)

Equality (8) is, in fact, the abridged matrix form of the
system of six first-order differential equations.

It was shown in [7, 8] that for homogeneous plane
waves, ∂/∂x = iξ and ∂/∂y = 0, where ξ = nisinφi. Then
the rotor operator is simplified to the form

(9)

In this case, system of equations (8) includes two
homogeneous linear algebraic and four differential
equations. Solving the algebraic equations with respect
to the field components Ez and Hz and substituting the
expressions thus obtained into the differential equa-
tions, we arrive at the system of four homogeneous lin-
ear differential equations of the first order with respect
to the unknown field components Ex, Ey, Hx, and Hy,

(10)

where y = [Ex, Hy, Ey, –Hx] is the generalized vector-
column of the field and D is the differential 4 × 4 prop-

M ε ρ
ρ' µ 

 
 

.=

curl
0 ∂/∂z– 0

∂/∂z 0 iξ–

0 iξ 0

.=

∂
∂z
-----y iωDy,=
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agation matrix for the given medium. Obviously, the
elements of the matrix D are the functions of the ele-
ments of the optical 6 × 6-matrix M and the direction of
the wave normal of the incident wave, i.e., D = f(ε, µ, ρ,
ρ', ϕ, θ, ψ, φi, ni). Equation (10) is the wave equation of
the generalized field vector y.

In [7, 8], it was suggested that Eq. (10) be integrated
by dividing the anisotropic medium of thickness d into
layers of small thicknesses so that within each such
layer the elements of the matrix D are independent of z.
As a result, for a layer of thickness h, the solution has
the form

y(z + h) = exp(iωhD)y(z) = L(h)y(z). (11)

The matrix L(h) = exp(iωhD), which describes the
transformation of the field of a light wave during its
propagation through a plate, is called the layer matrix.
The further solution of the problem reduces to the
determination of the layer matrix L(h). It was suggested
[7, 8] that the function L(h) be expanded into a series in
powers of D. Obviously, this expansion is only approx-
imate. In [9], the layer matrix L(h) is determined with
the use of the similarity transformation. With this aim,
one has to determine numerically the eigenvalues and
eigenvectors of the matrix D for each layer. These quan-
tities characterize the plane waves propagating in the
layer upon the incidence onto it of a wave with the
given wave-normal vector. It is also suggested that the
orthogonality relationships be used to determine the
analytical form of the similarity transformation. This
method is rather cumbersome and requires consider-
able computational resources. The rigorous expression
of the layer matrix L(h) is calculated with the invoca-
tion of the Sylvester theorem [10]. Once the layer
matrix is determined, one can pass to the direct solution
of the boundary problem of light propagation in a lay-
ered system.

SOLUTION OF BOUNDARY PROBLEMS
IN CRYSTAL OPTICS

Now, we shall show how to solve the boundary
problems of the light propagation in a crystalline plate
by the Berreman method with the use of application
package Mathematica-4.1. It should be noted that,
within the framework of the application package Math-
ematica-4.1, the problem can be solved by two different
ways. The first one reduces to the transformation of the
symbols at each stage of the procedure and results in
the derivation of the corresponding analytical expres-
sions. The second way, more often used in program-
ming reduces, first, to the determination of the variables
necessary for the solution, which are defined as the
functions of the initial parameters, and only then vari-
ous computations, including algebraic ones, are per-
formed. In fact, this is the main advantage of the appli-
cation package Mathematica-4.1 over traditional pro-
gramming languages. The built-in logic of the algebraic
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      200
and symbol transformations of the package allows one
to set the functions of both the numerical and algebraic
parameters. The computation algorithm provides a
“hybrid” of symbolic and numerical programming. It
should also be emphasized that some package functions
used in our computations are available only in version 4.1;
in other words, the method suggested here cannot be
completely realized within the old package versions 2.0
and 3.

The concrete form of the constitutive equations is
very important in the application of the Berreman
method. General constitutive equation (7) are used in
the rigorous theory of optically active crystals [11] as

D = εE + iαH, B = µH – i E, (12)

i.e., ρ = iα and ρ' = –i , where the tilde indicates the
transposition.

The constitutive equations used in different theories
of optical activity will be compared in our following
publications.

The physical meaning of α is a pseudotensor, but it
is referred to differently. Often, it is referred to as the
gyration tensor with the omission of the prefix pseudo
[11−14], sometimes it is called the tensor of optical
rotation [7, 8, 10] (despite the fact that this tensor
defines the optical rotation only in isotropic compounds
and anisotropic crystals, where the light propagates
along the optic axis). We stick to the terminology most
widespread in crystal optics and hereafter refer to α as
the gyration tensor.

It should also be indicated that, in the presence of
absorption, all the tensors in the constitutive equations
become complex. All the tensors for uni- and biaxial
orthorhombic crystals have the same systems of the
principal axes, irrespective of the presence and absence
of absorption if the tensor α has no nondiagonal ele-
ments. The situation becomes much more complicated
if the tensors have no such systems. This can happen in
monoclinic and triclinic crystals. Therefore, the latter
crystals should be studied separately.

Now, we pass to the direct description of the ways of
solving the formulated problem. First, the form of all
the tensors, ε, µ, and α, should be set in the principal
coordinate system defined by the triad of the Eulerian
angles ϕ, θ, and ψ (ϕ = 0, θ = 0, and ψ = 0). Thanks to
the interface used in the Mathematica-4.1 system and
the convenient representation of the input data, all the
tensors can be set in a very clear symbolic and numeri-
cal form and can readily be modified. Thus, the block
optical matrix M is readily determined. The built-in
function sets the rotation matrix for the transition from
the principal coordinate system of the tensor to a new
coordinate system chosen in the formulation of the con-
crete problem. Then, the form of each tensor is deter-
mined in the new coordinate system, and the matrix M
is constructed.

α̃

α̃

2
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The stage of the solution following the determina-
tion of all the tensors ε, µ, and α is the determination of
the matrix D. In all the studies known to us, the matrices D
are determined with the use of the relationships indi-
cated in [7, 8]. The corresponding procedure is rather
complicated and cumbersome. The possibilities pro-
vided by Mathematica-4.1 allow one to avoid writing
all the elements of the matrix D. The form of the matrix D
depends on the form of the constitutive equations. It
should also be noted that the matrix D is of interest by
itself, and the consideration of its form and properties
for crystals from different symmetry classes is a subject
of special consideration.

Using Mathematica-4.1, one can readily obtain the
expression for the layer matrix L(h) with the aid of the
built-in function called the “matrix exponent”:

L(h) = MatrixExp(i2πhD/λ). (13)

As was indicated in [7, 8], the matrix L(h) relates
the fields at the entrance and exit surfaces of the plate
(for each layer, h = d):

yt(d) = L(d)(yi(0) + yr(0)), (14)

where the subscripts i, r, and t indicate the incident,
reflected, and transmitted waves, respectively, whereas,
similar to [7, 8], the generalized fields are written as

(15)

where Eip and Eis are the known components of the elec-
tric field of the incident wave of any polarization (lin-
ear, circular, or elliptic) and Erp, Ers, Etp, and Ets are the
components of the electric fields of the reflected and
transmitted waves. Here, the subscript p indicates the
wave polarization parallel to the incidence plane (the p-
polarization) and the subscript s indicates the polariza-
tion normal to this plane (the s-polarization).

Thus, for a linearly polarized incident wave with the
azimuth βP, the components Eip and Eis are

(16)

where βP = 0° corresponds to the p-polarization of the
incident light and βP = 90°, to the s-polarization. For the
circularly polarized light we have

(17)

yi

Eip φicos

niEip

Eis

niEis φicos

, yr

Erp φrcos–

niErp

Ers

niErs φrcos–

,= =

yt

Etp φtcos

ntEtp

Ets

ntEts φtcos

,=

Eip βP, Eiscos βP,sin= =

Eip i 2/2, Eis+− 2/2,= =
C

where the upper sign corresponds to the right-hand cir-
cular polarization.

When writing Eq. (15), we took into account that, in
the optically isotropic and nonmagnetic ambient media,
the components of the magnetic field are proportional
to the corresponding orthogonal components of the
electric field with the proportionality coefficient being
equal to the refractive index of the medium.

Writing the generalized vectors of the fields of the
incident, reflected, and transmitted waves yj ( j = i, r, t)
as is suggested in [7, 8], we can solve the system of lin-
ear algebraic equations (14) with respect to the
unknown components of the fields of the reflected and
transmitted waves. To solve the boundary problem, we
introduce a new generalized field vector Q which
includes the components of the electric fields of the
transmitted and reflected waves,

Q = [Etp, Ets, Erp, Ers] (18)

and related to the generalized vectors of the fields of the
transmitted yt and reflected yr waves by the relation-
ships

yt = TmQ, yr = RmQ, (19)

where

Then Eq. (14) can be rewritten as

TmQ = Lyi + LRmQ, (20)

whence the vector introduced earlier is determined as

Q = (Tm – LRm)–1Lyi . (21)

Calculating the vector Q, we can determine the
components of the fields of the reflected and transmit-
ted waves. Knowing these components, we can write
the reflection and transmission matrices for the plate in
the form [8]

(22)

Tm

φtcos 0 0 0

nt 0 0 0

0 1 0 0

0 nt φtcos 0 0 
 
 
 
 
 
 

,=

Rm

0 0 φicos– 0

0 0 ni 0

0 0 0 1

0 0 0 ni φicos– 
 
 
 
 
 
 

.=

Er
Erp

Ers

REi
rpp rps

rsp rss 
 
  Eip

Eis

,= = =
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TEi
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Fig. 2. Real parts of the reflection coefficients Re(rpp) and Re(rsp) as functions of the azimuthal rotation angle ψ at two plate thick-
nesses: (1) Rerpp, d = 0.2, (2) Rerpp, d = 100, (3) Rersp, d = 0.2, (4) Rersp, d = 100 µm; n1 = 1.344, n2 = 1.411, and n3 = 1.651 (the
refractive indices are equal to those of sodium nitrite NaNO2); nt = 1.6, θ = 90°, and φi = 70°.
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Fig. 3. Reflectivity Rjj as a function of the angle of light incidence φi for an absorbing 2-µm-thick plate (1) Rpp, the p-polarized
incident light; (2) Rss, the s-polarized incident light. (a) Biaxial crystal: n1 = 5.12 + i0.635, n2 = 4.37 + i0.817, n3 = 3.41 + i0.723
(the refractive indices are equal to those of antimony glance, class 222), θ = 90°, ψ = 0°; (b) isotropic crystal: n1 = n2 = n3 = 3.41 +
i0.723.
The matrices R and T are the complex amplitude
reflection and transmission matrices, respectively.
Once the reflection and transmission coefficients are
determined, one can calculate the reflectivity and trans-
missivity as

Rij = (Rerij)2 + (Imrij)2, (23)

Tij = (Retij)2 + (Imtij)2, where ij = p, s,

and also the reflectance and transmittance (the ampli-
tude of the incident wave is assumed to be unity) as

(24)

One should pay attention to the factor
(ntcosφt /ni cosφi) in Eqs. (24). If the refractive indices
of the ambient media are equal, nt = ni, this factor is
unity and, thus, is omitted in the formulas. If nt ≠ ni, the
law of energy conservation R + T = 1 [15] is fulfilled

R Erp
2

Ers
2
,+=

T Etp
2

Ets
2

+( )nt φt/ni φi.coscos=
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only if this factor is also taken into account, which can
be considered as a certain criterion of the correctness of
the computations.

The components of the reflection and transmission
matrices (22) thus determined allow one to calculate
the characteristics of the polarizations of the reflected
and transmitted waves, i.e., the azimuths χr, t and the
ellipticities kr, t =  written in the form

(25)

In crystal optics, one often has to study the variation
in the intensity of the light transmitted in the direction
normal to the plate located between arbitrarily oriented
polarizer (βP) and analyzer (βA). In this case, the light
intensity can be written in different ways, in particular,

γr t,tan

2χr t,tan 2 Re Ers ts, /Erp tp,( )/ 1 Ers ts, /Erp tp,
2

–( ),=

2sin γr t, 2 Im Ers ts, /Erp tp,( )/ 1 Ers ts, /Erp tp,
2

+( ).=
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as

J = T(1 + cos2γt cos(2βA – 2χt ))/2. (26)

Thus, the use of the Berreman method and the pack-
age Mathematica-4.1 allows one to solve any problems
of propagation of homogeneous plane waves through
crystalline plates with arbitrary sets of optical proper-
ties such as birefringence, absorption, and optical activ-
ity. No limitations are imposed on the presence or
absence of magnetic properties. Thus, it is a possible
not only to obtain the numerical results by a compara-
tively simple and clear way, but also to derive the ana-
lytical expressions that describe various optical charac-
teristics. It should be emphasized once again that the
Berreman method is still not widely used in crystal
optics.

SOME EXAMPLES OF SOLVING BOUNDARY 
PROBLEMS IN CRYSTAL OPTICS. DISCUSSION 

OF THE RESULTS

The use of all the above stated material allowed us
to write an original program and calculate, with the aid
of the built-in functions of the package Mathematica-4.1,
the characteristics of the reflected and transmitted light
for crystals of any class by setting the tensors ε and α
in their general, including complex, forms, and by con-
structing the dependences of these characteristics on all
the parameters of the media for which the calculations
are made. Since the present study is aimed at the inves-
tigation of insufficiently studied optical properties of
some concrete classes of crystals, we consider here
only some purely illustrative examples. The detailed
study of some interesting characteristics of light propa-
gation in crystals will be considered later.

As a rule, crystal optics deals with plates whose
thickness ranges from fractions of a millimeter to sev-
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Fig. 4. Polarization azimuth χt of the light wave transmitted
through the optically active crystalline plate normally to its
surface as a function of angle θ of the deviation of the optic
axis from the surface normal: n1 = n2 = 1.54424, n3 =

1.55335, α11 = α22 = –3.259 × 10–5, α33 = 6.714 × 10–5, d =
500 µm (the optical parameters are equal to those of quartz,
λ = 0.589 µm). In the inset: the same dependence in the
range of angle θ from 20° to 90°.
C

eral millimeters. At such thicknesses and a fixed wave-
length, it is rather difficult to establish the true run of
the curves because of oscillations associated with
multibeam interference. To avoid these oscillations,
one has to take into account the range of possible wave-
length variation. Otherwise, one can perform such cal-
culations for thin plates, because all the features of the
these dependences are well preserved also at small
plate thicknesses. This is illustrated by Fig. 2, which
shows the dependence of the real parts of the reflection
coefficients rpp and rsp on the azimuthal rotation angle ψ
for two plates whose thicknesses differ by a factor of 500.
It is clearly seen that the characteristic run of curves 1,
2 and 3, 4 is quite similar.
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Fig. 5. Intensity of the light transmitted by a 1-mm-thick
plate prepared from a uniaxial crystal normally to its surface
placed between the crossed polarizer and analyzer as a func-
tion of the angle ψ of the plate rotation about the surface
normal: n1 = n2 = 1.5, n3 = 1.51; (1) θ = 0°, (2) θ = 5°,
(3) θ = 20°, (4) θ = 90°; (a) optically inactive nonmagnetic
crystal (α = 0, µ = 1), (b) optically active nonmagnetic crys-
tal (α11 = α22 = –10–5, α33 = 5 × 10–5, µ = 1); (c) optically
inactive magnetic crystal (α = 0, µ11 = µ22 = 1.01, µ33 =
1.03).
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Fig. 6. Reflectivity R as a function of the angle of light incidence φi for a plate prepared from an optically active uniaxial crystal;
(a) the incident light has p-polarization, (b) the incident light has right-hand circular polarization, n1 = n2 = 1.55, n3 = 1.56, α11 =

α22 = –10 × 10–5, α33 = 3 × 10–5, ϕ = θ = ψ = 0, d = 20 µm.
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Fig. 7. Reflectivity R as a function of the angle of light incidence φi and thickness d of the plate prepared from an optically active
uniaxial crystal. For the optical parameters see Fig. 6.
It should be indicated that all the calculations were
made at λ = 0.6328 µm, ni = 1, nt = 1, and ϕ = 0° if not
specified otherwise. These curves are also constructed
using the package Mathematica-4.1.

Figure 3 shows reflectivity as a function of the angle
of light incidence for the plates prepared from absorb-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
ing biaxial (Fig. 3a) and isotropic (Fig. 3b) crystals.
One can clearly see the considerable difference
between the light reflection from the anisotropic and
isotropic plates at small incidence angles: the Rpp and
Rss values in the isotropic plate are the same, whereas in
the biaxial crystals, Rpp and Rss values are different,
which is a sign of crystal anisotropy.
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Figure 4 shows the change in the polarization azi-
muth χt of the transmitted light as a function of the ori-
entation angle of the optic axis θ for the normal inci-
dence of p-polarized light onto the optically active
plate. It is seen that, if the light propagates along the
optical axis (θ = 0°), the angle χt corresponds to the
rotation of the polarization plane. If the optical axis
deviates from the normal, the angle χt first drastically
decreases, then becomes zero, and, finally, increases
again up to a certain value. This behavior is associated
with the fact that the components α11 and α33 of the
gyration tensor have different signs.

Figure 5 compares the effect of optical activity and
magnetic properties on the intensity of the light trans-
mitted by the plate of a uniaxial crystal located between
the crossed polarizer and analyzer normally to its sur-
face for some orientations of the optic axis. Figure 5a
illustrates an increase in the intensity with an increase
in the angle of the deviation of the optic axis from the
surface normal of the plate, θ. It is clearly seen that if
the light propagates along the optic axis (θ = 0°, lines 1) in
an optically active crystal, the intensity of the transmit-
ted light has a nonzero value (Fig. 5b). At small angles θ
(θ = 5°, curves 2), one may notice the simultaneous
effect of birefringence (because the intensity curve
oscillates) and optical activity (because the intensity
curve is above the abscissa in the whole range of the
rotation angles of the specimen). In magnetic crystals
(Fig. 5c), with an increase of the angle θ, the light inten-
sity changes much more pronouncedly than the inten-
sity in nonmagnetic crystals (Fig. 5a).

Figure 6 shows the influence of the type of polariza-
tion (circular or linear) of the incident light on the char-
acteristics of the reflected light. For incident p-polar-
ized light, the dependence of R on the incidence angle
has the minimum in the vicinity of the Brewster angle
(Fig. 6a), whereas for circularly polarized incident light
no such minimum is observed, and the reflectivity R is
much higher (Fig. 6b).

The possibilities of similar calculations and graphi-
cal constructions are illustrated by Fig. 7, which shows
the dependence of reflectivity R on the angle of light
incidence φi and simultaneously on the plate thickness
d for a plate prepared from an optically active uniaxial
crystal. One can clearly see the region of the Brewster
angle and a regular increase in the number of oscilla-
tions of the reflectivity curve R with an increase in the
plate thickness.

Thus, it is shown that the combined use of the Ber-
reman method and the package Mathematica-4.1 opens
new vistas for solving the problems of crystal optics
and studying the characteristics of light propagation in
crystals with various optical properties. The depen-
C

dences considered above clearly demonstrate the uni-
versal nature of this approach, namely, the possibility
of constructing any necessary dependence of the
reflected and transmitted light with due regard for the
optical activity and the magnetic properties and absorp-
tion in the plate and the substrate. Moreover, it is also
possible to set the functional dependences of the optical
properties of crystals, e.g., on the wavelength or the
temperature, to set any polarization of the incident
light, and to consider the dependence of the intensity
and polarization of the light transmitted by the plate
placed between the arbitrarily oriented polarizer and
analyzer.
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Abstract—The results of a stimulated Raman scattering (SRS) spectroscopy study of Nd3+-doped CaMoO4,
SrMoO4 , and SrWO4 crystals are presented. All the wavelengths of the Stokes and anti-Stokes generation
observed in these crystals are identified. For the first time, the self-SRS conversion of the emission fre-
quency of activator Nd3+-ions is attained in these lasing molybdates and tungstate with scheelite-type
structures. © 2002 MAIK “Nauka/Interperiodica”.
The search for crystals doped with trivalent lan-
thanide ions for self-stimulated Raman scattering (self-
SRS) lasers has been within the sphere of interest of
many research groups for several years [1, 2]. These
lasers provide emission in new spectral ranges and have
a rather simple design, because their active media pos-
sess several functional properties. The crystals with
high χ(3) nonlinearity containing Nd3+ or Yb3+ ions [3–7],
whose stimulated emission can be excited by the spe-
cially designed high-power AlGaAs and InGaAs semi-
conductor lasers [8], are most attractive for these pur-
poses. According to [9–14], tetragonal molybdates and
tungstates, already recognized as efficient lasing media
[15], are also SRS-active crystals. Below, we present
the results of the study of the Stokes and anti-Stokes
generation and report the first promising self-SRS
experiments for three Nd3+-doped lasing crystals—
CaMoO4, SrMoO4, and SrWO4—with scheelite-type
structures.1 

In our SRS study of Nd3+-doped (CNd  = 0.5–1 at. %)
CaMoO4, SrMoO4, and SrWO4 crystals, we used
lasing elements in the shape of rods (5 mm in diameter
and 10–15 mm in length) cut along the a-axis whose
plane–parallel (~20′′ ) end faces were coated with an
antireflectory broad-band coating. For SRS spectros-
copy, we also used CaMoO4 samples with the same

1 These results were first discussed at the 198th meeting of the
Moscow Seminar on Physics and Spectroscopy of Laser Crystals
on January 31, 2002.
1063-7745/02/4704- $22.00 © 20653
orientation and dimensions as the Nd3+-doped ones.
As  in [9–12], the stationary SRS in these crystals
(τp @ T2 = 1/π∆νR, where T2 = 2 ps and ∆νR are the time
of phonon relaxation and the width of the correspond-
ing line in the spectrum of spontaneous Raman scatter-
ing) was excited in a single-pass cavity-free experimen-
tal scheme by pumping with picosecond pulses of a
Nd3+ : Y3Al5O12 laser emitted at λp1 = 1.06415 µm with
τp1 ≈ 110 ps and λp2 = 0.53207 µm (second harmonic)
with τp2 ≈ 80 ps at 300 K. The spectral composition of
the components of parametric generation was studied
with the aid of a CSMA spectrometry complex based
on a ST-130 analyzer (Princeton Instruments) and a
McPherson-218 grating monochromator with a cooled
Si-CCD matrix (Hamamatsu S3923-1024Q). The spec-
tra thus obtained are shown in Figs. 1a, 1b, and 2; the
results of their analysis are summarized in the table.

For a body-centered tetragonal (sp. gr. –I41/a)
unit cell of the CaMoO4, SrMoO4, and SrWO4 crystals,
the factor-group analysis predicts 36 (3NZrep) vibra-
tional modes described by the irreducible representa-
tions ÉN = 3Ag + 5Bg + 5Eg + 5Au + 3Bu + 5Eu at k = 0.
According to [16], the spectra of spontaneous Raman
scattering should have (3Ag + 5Bg + 5Eg)-vibrations
with the acoustic modes (Au + Eu) being the remaining
vibrations (except for 3Bu) observed in the IR absorp-
tion and reflection spectra. The identification of SRS-
active frequencies ωSRS ≈ 879 cm–1 in the CaMoO4 crys-
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Fig. 1. Spectra of parametric Raman generation in Nd3+-doped (a) SrMoO4 and (b) SrWO4 crystals under pumping with λp1 =
1.06415 µm (marked by an asterisk) at 300 K. Line wavelengths are given in µm; their intensities, in arbitrary units without the
correction for the spectral sensitivity of the detecting system based on the Si-CCD matrix. “Brackets” show the relation between
the components of χ(3)-generation and the SRS-active vibrational modes in the crystals.
tals, ωSRS ≈ 886 cm–1 in the SrMoO4 crystals, and ωSRS ≈
921 cm–1 in the SrWO4 crystals was facilitated by the
measurements of the spectra of spontaneous Raman
scattering and IR absorption and reflection in these
crystals reported in [17–19]. These results, and the
results of our previous studies of parametric Raman
generation in other lasing molybdates and tungstates
with ordered and disordered scheelite-type structures
[9–14], allowed us to conclude that the SRS-active fre-
quencies revealed in the CaMoO4, SrMoO4, and
SrWO4 crystals belong to the internal totally symmetri-
cal (stretching) optical vibrational modes Ag(ν1) of their

complex tetrahedral Mo  and W  anions.

In the experiment on self-SRS conversion, the active
elements prepared from Nd3+-doped CaMoO4,

O4
2–

O4
2–
C

SrMoO4, and SrWO4 crystals were placed into a 30-mm
laser cavity together with a passive Q-switch (1-mm-
long plate prepared from Cr-doped Y3Al5O12 : Ca gar-
net). The necessary Q-factor of the cavity at the wave-
lengths of stimulated emission and the first Stokes com-
ponents was ensured by high reflection coefficients
(~99%) of its plane and spherical (R = 200 mm) mir-
rors. The source of stimulated-emission pumping was
the beam of continuous radiation (λp ≈ 0.8 µm) from a
1-W AlGaAs laser diode, which was corrected,
focused, and directed onto the active element with the
aid of the plane mirror. While the stimulated emission
on π-transitions of the laser channel 4F3/2  4I11/2 of
Nd3+ ions was excited at practically the same pumping
power (~220 mW, initial transmission of the saturable
filter ~90%) for all the crystals, the SRS thresholds at
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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Spectral composition of the parametric Raman generation in the tetragonal CaMoO4, SrMoO4, and SrWO4 crystals under
picosecond pumping by an Nd3+ : Y3Al5O12 laser in the c(aa)c geometry at 300 K

Pump
wavelength, µm

Characteristics of parametric Raman generation SRS-active vibrational 
mode ωSRS, cm–1

wavelength*, µm line identification

SrMoO4 : Nd3+ (Fig. 1a)

1.06415 0.7232 ASt5 ωp1 + 5ωSRS ~886

0.7727 ASt4 ωp1 + 4ωSRS ~886

0.8295 ASt3 ωp1 + 3ωSRS ~886

0.8953 ASt2 ωp1 + 2ωSRS ~886

0.9725 ASt1 ωp1 + ωSRS ~886

1.06415 λp ωp1

1.1749 St1 ωp1 – ωSRS ~886

SrWO4 : Nd3+ (Fig. 1b)

1.06415 0.5654 ASt9 ωp1 + 9ωSRS ~921

0.5965 ASt8 ωp1 + 8ωSRS ~921

0.6311 ASt7 ωp1 + 7ωSRS ~921

0.6701 ASt6 ωp1 + 6ωSRS ~921

0.7142 ASt5 ωp1 + 5ωSRS ~921

0.7645 ASt4 ωp1 + 4ωSRS ~921

0.8224 ASt3 ωp1 + 3ωSRS ~921

0.8897 ASt2 ωp1 + 2ωSRS ~921

0.9692 ASt1 ωp1 + ωSRS ~921

1.06415 λp1 ωp1

1.1798 St1 ωp1 – ωSRS ~921

CaMoO4 and CaMoO4 : Nd3+ (Fig. 2)

1.06415 0.6816 ASt6 ωp1 + 6ωSRS ~879

0.7251 ASt5 ωp1 + 5ωSRS ~879

0.7744 ASt4 ωp1 + 4ωSRS ~879

0.8310 ASt3 ωp1 + 3ωSRS ~879

0.8965 ASt2 ωp1 + 2ωSRS ~879

0.9731 ASt1 ωp1 + ωSRS ~879

1.06415 λp ωp1 –

1.1740 St1 ωp1 – ωSRS ~879

0.53207 0.5083 ASt1 ωp2 + ωSRS ~879

0.53207 λp2 ωp2 –

0.5582 St1 ωp2 – ωSRS ~879

0.5870 St2 ωp2 – 2ωSRS ~879

0.6189 St3 ωp2 – 3ωSRS ~879

0.6545 St4 ωp2 – 4ωSRS ~879

* Measurement accuracy is ±0.0003 µm.
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Fig. 2. Spectra of parametric Raman generation in CaMoO4 under picosecond pumping with λp1 = 1.06415 µm and λp2 = 0.53207
µm at 300 K (for notation see Fig. 1).
the wavelengths of the first Stokes components in
molybdates were higher by a factor of ~1.5 (about
480 mW). With an increase in the pump power
absorbed in the lasing crystals from the threshold value
up to the greatest accessible value (800 mW), the length
of the stimulated-emission pulses and SRS decreased
by a factor of 2, while their repetition rate increased by
a factor of 2. Thus, at the pumping power Pp ≈ 750 mW,
the lasing parameters of all the three crystals were
almost equal, despite the different thresholds of the
excitation of stimulated emission, namely, repetition
rate ~11 kHz, τSI ≈ 35 ns, and τSRS ≈ 20 ns. The total out-
put power was about 3 mW; the ratio of the SRS and
stimulated-emission contribution was about 1 : 5. At
300 K, the self-SRS lasers with CaMoO4 : Nd3+ emitted
at λSt1 ≈ 1.166 µm; with SrMoO4 : Nd3+, at λSt1 ≈
1.167 µm; and with SrWO4 : Nd3+, at λSt1 ≈ 1.156 µm.
The attained self-SRS conversion parameters can be
substantially improved by optimizing the crystal char-
acteristics (dimensions and concentration of Nd3+-ions)
and the scheme of semiconductor-laser pumping. In
conclusion, we should like to emphasize that earlier, the
stimulated-emission generation in the molybdates and
tungstate under study was excited only under flashlight
pumping.
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Abstract—A new family of manganites, LnBaMn2O6 – γ (Ln = Nd, Sm, and Gd), is obtained by the method of
topotactic reactions. In these compounds, rare-earth and barium ions are ordered, which results in a dramatic
increase in the temperature of transition to the paramagnetic state. Thus, a SmBaMn2O6 compound with a dis-
ordered arrangement of Sm and Ba ions is a spin glass with the freezing temperature of magnetic moments Tf =
40 K, whereas in the state with an ordered Sm and Ba arrangement, the Curie temperature TC, is ~ 280 K. Below
TC, a maximum in resistivity and magnetoresistance is observed. The possible models of magnetic ordering are
discussed. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Manganites of the Ln1 – xDxMnO3 type (Ln is a rare-
earth ion and D is an alkaline-earth ion) show a wide
variety of magnetic and structural phase transforma-
tions with a dramatic change in the electric-transport
properties. Therefore, they are convenient objects for
studying the correlation between the magnetic and
electric states. The important feature of manganites is
their phase transformations provided by the orbital and
charge states determining the type of magnetic order-
ing. Thus, the charge-ordered compounds are antiferro-
magnetic insulators, whereas the charge-disordered
compounds are ferromagnetic metals [1]. An applied
magnetic field causes a metamagnetic transition from
the antiferromagnetic to the ferromagnetic state accom-
panied by a change in the conductance of many orders
of magnitude [2–4].

It should be noted that the best studied manganites
are those where Ln is replaced by alkaline-earth cal-
cium and strontium ions [5–9]. This is explained by the
possibility of growing high-quality single crystals with
the given chemical composition by the floating-zone tech-
nique and the wide concentration range of the replace-
ment of Ln by Ca and Sr which is, in turn, explained by
the ionic radii of the considered elements. In the case of
Ln replacement by calcium, a full series of solid solu-
tions is formed if the synthesis proceeds in air, whereas
if Ln is replaced by strontium, the complete series of
solid solutions can be formed only under special condi-
tions [10].

If Ln is substituted by barium, solid solutions are
formed up to x = 0.50 in the synthesis in air [11]. In the
range 0.20 ≤ x ≤ 0.50, La1 – xBaxMnO3 compounds are
1063-7745/02/4704- $22.00 © 20658
metal ferromagnets with TC up to ~350 K [12]. For the
rare-earth ions, Ln = Pr and Nd, the temperature of
magnetic ordering drops to ~160 K (Ln = Pr) [13, 14]
and ~80 K (Ln = Nd) [11]. For the Sm1 – xBaxMnO3

series, the replacement of Ln by barium ions leads to
the concentrational phase transformation from the anti-
ferromagnetic state (x < 0.12) to the spin-glass state
(x ≥ 0.12) without the transformation into the ferro-
magnetic phase. In this case, despite a great difference
between the Ln and Ba ionic radii, the compounds with
a high concentration of barium ions have a cubic struc-
ture [15], whereas the solid solutions where the rare-
earth ions are replaced by calcium and strontium ions
have an orthorhombically distorted unit cell.

It was reported [13] that the TC of the
Pr0.50Ba0.50MnO3 – γ compound prepared under strongly
reduction conditions is much higher than that of the
same compound synthesized in air. For manganites,
such a behavior of magnetic properties is very unusual,
since it was established that the reduction of the
La1 − xCaxMnO3 – γ [16] and La1 – xBaxMnO3 – γ series
destroys the long-range order [17]. Moreover, it is
known that the strongly reduced LnBaMn2O5 com-
pounds become insulators with a magnetic-ordering
temperature of ~120 K [17]. Therefore, we undertook a
detailed study of the properties of the Ln0.50Ba0.50MnO3 – γ
compounds (Ln = Nd, Sm, and Gd) depending on the
conditions of their synthesis. We established that the
properties of these compounds are very sensitive to the
crystallographic ordering of trivalent rare-earth ions
and divalent barium ions in the A-sublattice of the per-
ovskite-type ABO3 structure.
002 MAIK “Nauka/Interperiodica”
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EXPERIMENTAL

Ceramic LnBaMn2O6 samples (Ln = Nd, Sm, and
Gd) were prepared using conventional ceramic technol-
ogy. The samples of Ln2O3 and Mn2O3 oxides and
BaCO3 carbonate (of extra pure grade) were weighed in
cationic proportion Ln : Ba : Mn = 0.50 : 0.50 : 1 and
carefully mixed in an agate mortar with a small quantity
of ethyl alcohol. Prior to weighing, the Ln2O3 was
annealed for 2 h in air at a temperature of 1000°C to
eliminate water and carbon dioxide. The mixtures of
oxides and carbonates were pressed into pellets 1 cm in
diameter and 1.5 cm in height, annealed for 2 h in air at
1100°C, and then ground. The synthesis was performed
for 2 h in air at 1550°C. The samples were placed only
on a platinum substrate. To obtain near stoichiometric
compounds, the samples were held for 100 h in air
at 900°C and then were cooled to room temperature at
a rate of 100 deg/h.

The X-ray diffraction analysis of the reaction prod-
ucts was performed on a DRON-3 diffractometer
(CrKα-radiation) in the angular range 30° ≤ 2θ ≤ 100° at
room temperature. The oxygen content was determined
by thermogravimetric analysis. According to our stud-
ies, the samples synthesized in air were stoichiometric
with respect to oxygen. According to [18], the oxygen
content in manganites with Ln replaced by calcium and
strontium ions (up to x ~ 0.50) prepared in air was close
to stoichiometric.

The reduced LnBaMn2O6 samples (Ln = Nd, Sm,
and Gd) were obtained in the topotactic reactions. The
samples were placed into the evacuated quartz
ampoules together with a certain quantity of metallic
tantalum (an oxygen getter). The quartz ampoules were
held for 10 h at 900°C and then were cooled to room
temperature at a rate of 100 deg/h. The equation of the
reducing chemical reaction is

LnBaMn2O6 + 0.4Ta  LnBaMn2O5 + 0.2Ta2O5. (1)

The oxygen content in the reduced samples was
determined from the change in the mass by weighing
the samples prior to and after the reduction. To decrease
the relative error in the measurement of the oxygen
content, we used a sample with a mass of 2–3 g. Under
these conditions, the error did not exceed 0.3%. The
reduced samples were reoxidized for 5 h in air
at  900°C. The corresponding reaction is described by
the equation

LnBaMn2O5 + 0.5O2  LnBaMn2O6. (2)

After oxidation, weighing the sample showed that the
oxygen content increased in accordance with Eq. (2).

Magnetization was measured on a commercial OI-
3001 vibrating magnetometer in the temperature range
4–350 K. The magnetic-transition temperature was
determined as the temperature of the most sharp drop of
magnetization (the minimum of the dM/dT derivative)
in a low magnetic field. The electrical resistance was
measured on 8 × 2 × 2-mm3 samples by the standard
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
four-probe method in the temperature range 77–350 K.
The magnetoresistance was calculated by equation

MR(%) = {[ρ(H) – ρ(0)]/ρ(0)} × 100%, (3)

where ρ(H) is the resistivity in a 9-kOe magnetic field
and ρ(0) is the resistivity in the zero magnetic field. The
magnetic field was applied parallel to the electrical cur-
rent in the sample.

RESULTS AND DISCUSSION

The unit-cell parameters of LnBaMn2O6 – γ samples
(Ln = Nd, Sm, and Gd) prepared in air, reduced in
quartz ampoules, and reannealed in air are indicated in
Table 1. The samples obtained in air had a cubic unit
cell, whereas the samples reduced in quartz ampoules
had a tetragonally distorted unit-cell. With an increase
in the atomic number of a rare-earth ion because of a
decrease in its ionic radius, the unit-cell volume gradu-
ally decreased [19]. The reduced samples with a certain
type of rare-earth ion had a much larger unit-cell volume,
which is explained by the larger size of the manganese
ion in the oxidized state. The nominal chemical formula
of the reduced samples is LnBa(Mn2+Mn3+)O5 ± 0.01.
The X-ray diffraction patterns of NdBaMn2O6 – γ com-
pounds (γ = 0, 1) (1) synthesized in air, (2) reduced in
quartz ampoules, and (3) annealed in air after reduction
are shown in Fig. 1. Similar X-ray diffraction patterns are
also obtained from other samples with Sm- and Gd-ions.
The c-parameter of the tetragonally distorted samples is
doubled, which may be explained by the ordering of
rare-earth and barium ions. The tetragonal distortion is
partly removed by annealing in air at 900°C (Fig. 1c).
Diffraction patterns of some samples annealed in air
had a superstructure reflection indicating cationic
ordering. It is worth noting that the volume per formula
unit in the samples obtained in air and annealed after
their reduction are approximately equal, although the
volume in the second case is slightly smaller (Table 1).
The tetragonal distortion is completely removed after
annealing in air at 1300°C.

The temperature dependences of magnetization
measured in a relatively low 100-Oe magnetic field
after cooling the sample in a magnetic field (FC) and in
a zero magnetic field (ZFC) are shown in Fig. 2. Prior
to reduction, the temperature of magnetic ordering in
the NdBaMn2O6 sample was about 90 K (Fig. 2a). A
small temperature hysteresis (~3 K) near the tempera-
ture of magnetic ordering and a kink in the temperature
dependence of magnetization that is still preserved in
the fields up to 15 kOe indicate a first-order phase tran-
sition. The spontaneous magnetic moment per manga-
nese ion is about 3µB, which is somewhat lower than the
expected value of 3.50µB under the assumption that
µ(Mn2+) = 4µB and µ(Mn3+) = 3µB. The reduced
NdBa(Mn3+Mn2+)O5 sample is characterized by a much
lower spontaneous magnetization (Fig. 3a), but the
temperature of transition to the paramagnetic state
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Fig. 1. X-ray diffraction patterns from the NdBaMn2O6 – γ sample (a) prepared in air (γ = 0), (b) reduced in a quartz ampoule (γ = 1),
and (c) annealed in air after reduction (γ = 0). Insets show the 200 reflections for (a) and 004 + 400 reflections for (b) and (c).
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Table 1.  Unit-cell parameters (Å) of LnBaMn2O6 – γ samples (A) prepared in air, (B) reduced in quartz ampoules, and (C)
annealed in air after reduction

Chemical formula Conditions
of synthesis Unit-cell symmetry a, Å c, Å V, Å3

NdBaMn2O6 A Cubic 3.896 59.16

NdBaMn2O5 B Tetragonal 3.966 7.761 122.10

NdBaMn2O6 C Tetragonal 3.899 7.756 117.94

SmBaMn2O6 A Cubic 3.887 58.75

SmBaMn2O5 B Tetragonal 3.951 7.727 120.62

SmBaMn2O6 C Tetragonal 3.900 7.712 117.30

GdBaMn2O6 A Cubic 3.879 58.39

GdBaMn2O5 B Tetragonal 3.942 7.704 119.73

GdBaMn2O6 C Tetragonal 3.901 7.651 116.47

Table 2.  Type of magnetic state, critical temperature, and evaluated spontaneous magnetic moment per formula unit of
LnBaMn2O6 – γ samples (A) prepared in air, (B) reduced in quartz ampoules, and (C) annealed in air after reduction. F is ferro-
magnet, FI is ferromagnetic insulator, SS is spin glass, F + P is inhomogeneous ferromagnet

Chemical formula Conditions
of synthesis Magnetic state TC (K)

Spontaneous 
magnetic moment σc 
(µB per formula unit)

NdBaMn2O6 A F 90 3.06

NdBaMn2O5 B FI 130 0.23

NdBaMn2O6 C F 320 2.94

SmBaMn2O6 A SS 40

SmBaMn2O5 B FI 140 0.19

SmBaMn2O6 C F + P 280 1.24

GdBaMn2O6 A SS 40

GdBaMn2O5 B FI 145 0.92

GdBaMn2O6 C F + P 250 0.28
increases up to 130 K. The ZFC and FC magnetization
curves are essentially different (Fig. 2b), which is usu-
ally the case at high magnetic anisotropy. The transition
to the paramagnetic state is rather steep, which is char-
acteristic of magnetically uniform magnets. After
annealing the reduced sample, both the spontaneous
magnetization and Curie point drastically increase (up
to 320 K) (Fig. 2c). The spontaneous magnetization is
practically the same as for the sample prepared in air.

The SmBaMn2O6 sample prepared in air shows
static magnetic properties typical of the spin-glass state
(Fig. 3b). The ZFC magnetization curve (Fig. 2d) has a
maximum at 40 K. Close to this temperature, the ZFC
and FC curves diverge, and a spontaneous magnetiza-
tion is recorded that cannot be saturated in fields up to
16 kOe (Fig. 3b). The curve σ(H) is of the Langevin
type characteristic of magnetic systems with clusters.

Long-range magnetic order arises in the reduced
SmBaMn2O5 sample at a temperature close to 140 K
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(Fig. 2e). This follows from the fact that the transition
to the paramagnetic state is rather sharp. As in
NdBaMn2O5 , the spontaneous magnetization has a
moderate value. It is difficult to evaluate the magnetic
moment per manganese ion because of the pronounced
contribution from rare-earth ions. Annealing in air
leads to a dramatic rise in the critical temperature up to
280 K (Fig. 2f). However, the magnetization of this
sample is much lower than for annealed NdBaMn2O6 .
Most probably, this can be explained by the existence of
several magnetic phases, since the contribution from
the samarium sublattice can hardly be that high. The
properties of the GdBaMn2O6 sample annealed in air
after reduction in the quartz ampoule are consistent
with this assumption (Fig. 2i). Apparently, the
GdBaMn2O6 sample prepared in air is also a spin glass
with a Tf of about 40 K. A sharp rise in the (FC) mag-
netization with a lowering of the temperature is proba-
bly caused by the large contribution of the gadolinium
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sublattice. It is well known that the magnetic moment
of gadolinium is very high (µ(Gd3+) = 7µB) [20]. The
temperature of magnetic ordering in the reduced
GdBaMn2O5 sample is 145 K (Fig. 2h). At a tempera-
ture of about 100 K, the compensation point is
observed, which seems to be associated with the fact
that with a lowering of the temperature, the contribu-
tion to magnetization from the gadolinium sublattice
directed antiparallel to the magnetic moments of man-
ganese ions gradually increases as in the case of rare-
earth ions [20]. Although the ZFC and FC magnetiza-
tion curves for the annealed sample diverge at a temper-
ature of about 250 K, their smooth run is inconsistent
with the cooperative process of magnetic ordering. A
low value of spontaneous magnetization indicates an
inhomogeneous magnetic state. One can assume that
the magnetic properties of the GdBaMn2O6 sample
annealed in air after reduction in the quartz ampoule are
provided by ferromagnetic clusters with strong
exchange interactions between manganese ions. Ferro-
magnetic clusters are incorporated in a paramagnetic
matrix. This model does not contradict the experimen-
C

tal data. The results of the study of magnetic properties
are listed in Table 2.

The temperature curves of electric conductance and
magnetoresistance of the samples annealed in air after
reduction are shown in Fig. 4. With a lowering of the tem-
perature, the electric conductance of the NdBaMn2O6 and
SmBaMn2O6 samples in a magnetically ordered state
starts decreasing; however, the temperature of the resis-
tivity maximum differs from the Curie point. In the
vicinity of the Curie point, the maximum absolute value
of magnetoresistance was observed, as in classical
magnetic semiconductors. With a lowering of the tem-
perature, a gradual increase in magnetoresistance was
observed again, which is characteristic of polycrystal-
line samples of several conducting magnetic ceramics.
This type of magnetoresistance is caused by the inter-
granular electric transport. The GdBaMn2O6 sample
annealed in air after reduction shows a gradual increase
in both resistivity and magnetoresistance, with a lower-
ing of the temperature to 77 K (Fig. 4).

For the NdBaMn2O6 sample prepared in air, the
classical behavior of electrical conductance and magne-
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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toresistance (typical of semiconductors) is observed,
whereas SmBaMn2O6 and GdBaMn2O6 show neither
the metal–insulator transition nor magnetoresistance,
which is consistent with the magnetic data (Fig. 2d).
The reduced LnBaMn2O5 samples are characterized by
a high resistivity even at temperatures close to room
temperature. It should be noted that the samples
annealed in air at temperatures above 1300°C show
magnetic and electric properties similar to those of the
samples prepared in air. 

We start our discussion with the nature of the mag-
netic state of the samples prepared in air. It is well
known that the magnetic state of Ln1 – xDxMnO3 manga-
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field at 15 K for (a) NdBaMn2O6 – γ, (b) SmBaMn2O6 – γ,
and (c) GdBaMn2O6 – γ compounds (1) prepared in air (γ =
0), (2) reduced in a quartz ampoule (γ = 1), and (3) annealed
in air after reduction (γ = 0).
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nites (D = Ca, Sr, Ba, Pb) is determined by the ratio
Mn3+/Mn4+ in the B-sublattice of the perovskite-like
ABO3 structure, the average ionic radii of alkaline-earth
and rare-earth ions, and the variance between the cation
sizes in the A-sublattice

(4)

where xi is the fractional occupancy of the perovskite-
type A-sublattice by i-type cations with the radius ri,
and 〈rA 〉  is the average radius of the A-ions. This vari-
ance characterizes the difference between the radii of
rare-earth and alkaline-earth ions [21]. The smaller the
average ionic radius of the A-sublatice and the greater
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the difference between the Ln and D radii, the lower the
temperature of the magnetic ordering [22]. At a
Mn3+/Mn4+ ratio of manganese ions close to 1 : 1, an
increase in the Mn4+ concentration results in the transi-
tion from the antiferromagnetic state to the ferromag-
netic one [23]. The magnetic properties of the
Ln0.50Ba0.50MnO3 system are within the framework of
this model. The compounds including relatively large
ions such as La, Pr, and Nd are ferromagnetic metals,
whereas compounds based on smaller ions such as Sm,
Eu, Gd, and Tb show the properties of spin glasses with
a semiconductor character of conductivity. The mag-
netic moment of Nd0.50Ba0.50MnO3 seems to correspond
to a two-phase state—the main ferromagnetic phase
and small inclusions of the antiferromagnetic phase.
It is precisely this explanation that is applied to the low
magnetization values in comparison with their calcu-
lated value for the ferromagnetic ordering [24].The
spin-glass state arises because of a large difference in
the Mn–O–Mn bond angles which, in turn, arise from
the large difference between the ionic radii of Ln and D.
One has to remember that the closer the Mn–O–Mn
bond angle to 180°, the more pronounced the exchange
interaction [25]. With a decrease in the Mn–O–Mn
bond angle in the case of the orbitally disordered state,
the sign of the exchange interaction can be changed
from positive to negative. Since the Ln- and D-ions are
randomly distributed over the A-sublattice, the local
fluctuations in the Mn–O–Mn bond angle are lower
than a certain critical value at which the ferromagnetic
properties can yet exist, and, thus, the magnetic state of
the spin-glass type is formed.

In the reduction of the LnBaMn2O6 to LnBaMn2O5,
the Ln and Ba cations and oxygen vacancies are ordered
in the A-sublattice as was observed for the YBaMn2O5
compound [26]. It is unambiguously established that
the structure of this compound has planes predomi-
nantly occupied either by Ba- or Y-ions, alternating
along the c-axis of the tetragonal unit cell. A similar
crystal structure was also established in cobaltites
LnBaCo2O5 [27].

The sharp transition to the paramagnetic state in the
series of reduced samples indicates the existence of
magnetic order. According to [28], the magnetic struc-
ture is determined by the antiparallel orientation of the
magnetic moments of Mn3+- and Mn2+-ions. Unfortu-
nately, the sample used in neutron diffraction studies
[28] contained only 30% of the YBaMn2O5 phase,
which considerably reduce the reliability of the results.
At the antiparallel orientation of the magnetic moments
of Mn3+- and Mn2+-ions, the magnetic moment per for-
mula unit should be close to 1 µB; however, the mag-
netic measurements yielded a lower value (Fig. 3). Pos-
sibly, this is caused by the contribution made by rare-
earth ions. In principle, a low ferromagnetic moment
may arise from the Dzyaloshinski–Moriya antisymmet-
rical exchange, however, given the symmetrical consid-
C

erations and the relatively high magnetization it is
hardly probable in these compounds.

We believe that the long-range order in the arrange-
ment of Ln- and Ba-cations is preserved after annealing
in air if the annealing temperature does not exceed
1300°C. It is also confirmed by the existence of the tet-
ragonal distortions of the samples annealed in air after
reduction in the quartz ampoule and the superstructure
(0 0 3/2) reflection in their diffraction patterns. The
long-range crystallographic order in the arrangement of
cations in the A-sublattice gives rise to a translational
symmetry in the Mn–O–Mn bond angles in the B-sub-
lattice and, thus, to the formation of conditions under
which ferromagnetism is possible. Note that the order-
ing of the Mn–O–Mn bonds results in a considerable
increase in the temperature of magnetic ordering.
Apparently, the bond angles in the samples oxidized
after reduction (crystallographically ordered samples)
vary only slightly with a decrease in radius of a rare-
earth ion in contrast to the situation in the disordered
Ln1 − xBaxMnO3 with a perovskite structure. This
assumption is confirmed by a slight decrease in the tem-
perature of appearance of spontaneous magnetization
with a decrease in the radius of the rare-earth ion.

There is no doubt that the compounds with large
ionic radius of Ln are ferromagnetic, whereas with a
decrease in the Ln radius, the inhomogeneous magnetic
state is stabilized. We believe that the inhomogeneous
magnetic state results from some structural characteris-
tics of the ordered LnBaMn2O6-type phases. To estab-
lish the details of the crystal and magnetic structures
of  these compounds, neutron diffraction studies are
necessary.
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Abstract—The nonequivalence of the crystallographic {110} and {111} planes in Y3Fe5O12 (YIG) garnet crys-
tals was revealed in the analysis of the crystal density as a function of the intensity ratio of coherent and inco-
herent X-ray scattering (K/nk). The samples were divided into two groups with different types of variation in
their physical properties. For the first time, the quantitative correlation between the absorption coefficient α and
K/nk with due account of the crystallographic orientation in the YIG crystals was established. It was found that
the samples with the (111) orientation had minimum resistivity at 293 K because it is along this direction that
the easy magnetization axis, domain boundaries, and dislocations were oriented. It was shown that the param-
eter K/nk can be used as a criterion for estimating the part of conduction electrons involved in charge transfer.
© 2002 MAIK “Nauka/Interperiodica”.
The main physical properties of Y3Fe5O12 (YIG)
single crystals such as optical absorption, specific Fara-
day rotation in the infrared (IR) range, and the width of
the resonance absorption curve in the microwave range
are strongly dependent on structural defects [1, 2]. The
design of microwave and magnetooptical devices is
closely related to the establishment of the unified mech-
anism underlying the variations in the physical proper-
ties associated with crystal growth and incorporation of
noncontrolled impurities and structural defects. In spite
of a very large number of publications on the electrical
properties and nonstoichiometry of garnet-type crys-
tals, none of them considered these problems with due
regard for the crystallographic orientations of the sam-
ples [3–5].

The Y3Fe5O12 garnet has a cubic unit cell containing
eight {C3}[A2](T3)O12 formula units (the braces and
square and round brackets indicate the positions of
Y cations with the dodecahedral coordination and of
Fe-ions octahedrally and tetrahedrally coordinated
with oxygen ions, respectively). The crystal field in the
dodecahedral positions (Y-ions) has orthorhombic
symmetry with two axes being aligned in the 〈110〉
directions and the third axis aligned in one of the 〈100〉
directions [6]. The local symmetry is trigonal for
the  octahedral [A] positions and tetragonal for (T)
positions occupied by Fe-ions and noncontrolled
impurities.

The magnetic moments of Fe3+-ions are antiparallel
in the tetrahedral and octahedral sublattices and aligned
along the 〈111〉  directions. For this direction, the mag-
netic moments of all the tetrahedral positions are mag-
1063-7745/02/4704- $22.00 © 20666
netically equivalent; for two octahedral positions, they
are not equivalent. Their nonequivalence manifests
itself in the fact that the local C3-axis is parallel to the
magnetization vector in the a1 sublattice, whereas in the
a2 sublattice, the C3 axis and the magnetization axis are
directed along different space diagonals [7].

We continue the study of a series of YIG crystals by
both increasing the number of samples and the range of
techniques used [8–10]. All YIG crystals were grown
from flux with the use of PbO–PbF2–B2O3 or BaO–
B2O3 solvents in both static and dynamic modes under
the same conditions [8]. To study the anisotropy in the
defect distribution in YIG, platelike 1.6–2.5-mm-thick
samples were cut along the (110), (111), and (100)
crystallographic planes. The transmission spectra were
recorded on a Beckman spectrometer in unpolarized
light in the 1000–2000 nm wavelength range at 293 K.
The absorption coefficient α (at λ = 1300 nm) was cal-
culated by the conventional formula taking into account
the reflection coefficient and refractive index (n = 2.3)
[9]. For the (110) and (111) orientations, we used spe-
cially chosen YIG plates of a high (α < 3 cm–1), medium
(3 < α < 7.5 cm–1), and poor optical quality (α > 7.5 cm–1)
(see table). The samples of group I were the high-qual-
ity plates and also some medium-quality ones (samples
nos. 52 and 34), whereas the samples of group II were
poor-quality plates and some medium-quality ones
(samples nos. 50" and 32). The samples cut out from
the same crystal but having different crystallographic
orientations are indicated in the table and figures as
nos.  40, 41, and 42. The samples were numbered
002 MAIK “Nauka/Interperiodica”
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Classification of YIG samples into groups according to their optical quality with due regard for their absorption coefficients
α and crystallographic orientations

Sample orientation (110) (111) (100) Nonoriented samples

Sample characterization α, cm–1 sample α, cm–1 sample α, cm–1 sample α, cm–1 sample

Samples of group I 0.4 7 0.9 42 0.8 40

1.27 41 1.07 44 2.3 3

Medium quality YIG samples 5.15 52 6.16 34 3.1 45

6.91 50'' 7.2 32

Samples of group II 13.2 50 10.2 46 23.5 VI-4

12.0 51 17.3 III-6

20.7 V-1
according to the batches of plates of the same orienta-
tion or proceeding from their quality. Therefore, to
facilitate the reading, we always indicate the specimen
number in the figures. In Figs. 1–3, curves 1 and 2 corre-
spond to (110)-oriented samples, curves 3 and 4,
to (111)-oriented ones, and curve 5, to the (100) orien-
tation.

In the samples under study, the relative content of
Mn-ions and the weight ratio of the main ions (Y/Fe)
were determined using neutron activation analysis. The
mass of the samples ranged from 7 to 20 mg. The den-
sities d were measured by the Archimedes method with
an accuracy not lower than 0.3%. The mass of YIG
samples ranged from 400 to 1100 mg. The quantitative
data on the impurity content were obtained using the
X-ray radiometric analysis using the Am241 and Cd109

excitation sources. The X-ray radiometric method was
also used to determine the content of Y, Fe, Ba, Bi, and
Pb and the intensity ratio of the coherent and incoherent
scattering (K/nk). The analysis was performed on both
sides of the plates with the averaging the results. The
values of α, electrical resistivity (ρ), and K/nk were
measured along the specified crystallographic direc-
tions at 293 K, so it was expected that the YIG samples
studied would allow us to reveal the correlations asso-
ciated with structural defects, nonstoichiometry, and
the percentage of relatively free electrons.

The effect of nonstoichiometry and technological
impurities (Ba, Mn, V) on the structural properties and
absorption in the IR range was studied in our earlier
study [10]. We also suggested the criterion for evaluat-
ing the quality of differently oriented plates from the
batch under study in the form of the ratio of the total
content of cations (Y + Fe) and the content of O anions
(in our case, these quantities are expressed in wt %).
Garnets possess a unique structure, which provides
wide opportunities for introducing different ions with
varying valence into the three nonequivalent cation
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
sublattices. The introduction of divalent ions (Ba, Ca,
Pb) with large ionic radii into the dodecahedral sublat-
tice provides the formation of vacancies at the cation
sites of other positions. According to Kröger [11], each
impurity atom gives rise to the formation of one
vacancy. The final YIG faceting has only slowly grow-
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Fig. 1. Density of plates versus K/nk ratio for differently
oriented YIG samples: (1) and (2), (110) orientation;
(1') (dashed line), samples nos. 40 (110) orientation, 7 (110)
orientation, 52 (110) orientation, and 3 (100) orientation;
(3) and (4), (111) orientation; (5) (triangles), (100)-oriented
samples and sample no. 32-NO.
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ing {110} faces. At the final growth stages (under con-
ditions of low supersaturations), the difference in the
growth rates of different faces and even of the faces of
the same type differently located with respect to the
feeding concentration flows becomes quite important.
According to the conclusion made in [12], the growth
rates for the {211} and {110} faces of YIG crystals are
about twice as low as the growth rate of the (111) face.

The nonequivalence of the {110} and {111} planes
in each group is clearly seen in Fig. 1, where the inten-
sity ratio (K/nk) of coherent and incoherent X-ray scat-
tering is plotted versus density d for YIG samples. The
first group of samples with a density close to its theo-
retical value (5.17 g/cm3) is characterized by a high
transparency in the IR range and variations in the
K/nk  ratio over a wide range (Fig. 1, curve 1). Curve 1
corresponds to the (110)-oriented samples nos. 52, 7,
and 41 (Fig. 1). The second group of (110)-oriented
samples is represented by curve 2 in Fig. 1 (samples
nos. 50, 50'', and 41). The character of the curve is quite
different: d varies over a wide range of values, whereas
K/nk varies only slightly (0.042–0.043). Note that point 41
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Fig. 2. Absorption coefficient α (λ = 1300 nm) versus K/nk
ratio for differently oriented YIG samples: (1) and (2), (110)
orientation; (3) and (4), (111) orientation; (5), (100)-ori-
ented samples and sample no. 32-NO.
C

(sample no. 41) is located at the intersection of curves 1
and 2.

The K/nk ratio allows us to reveal the content of free
electrons in each YIG sample taking into account the
individual “ensemble” of impurity ions (Ba, Mn,
Sm,  Pb, V) with different valence, oxygen vacancies,
and other structural defects. Most likely, the K/nk
ratio characterizes the fraction of conduction elec-
trons taking part in charge transfer, as was indicated
by Sommerfeld [13].

The (111)-oriented samples are represented by
curves 3 (samples nos. 34 and 42) and 4 (samples
nos. III-6, V-1, and 46). The samples corresponding to
curves 1 and 3 (group I) are characterized by high trans-
parency in the IR range (α < 7 cm–1).

The YIG samples of group II (curves 2 and 4, for
which, usually, α > 7 cm–1) are characterized by a
looser structure and contain numerous impurities (see
Table 1 from [10]). In [10], a similar type of implanta-
tion for a small amount of Ba ions and their effect on
transparency was revealed in (110)- and (100)-oriented
YIG samples. In the batch of samples studied, three
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Fig. 3. Logarithm of electrical resistivity ρ at 293 K versus
K/nk ratio for differently oriented YIG samples: (1) (110)
orientation; (3) (111) orientation; (5) (100) orientation.
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samples were cut from the same crystal: no. 40 (100),
no. 41 (110), and no. 42 (111) and had the densities
5.15, 5.16, and 5.14 g/cm3, respectively. The (110) face
growing at the minimum rate has a significant advan-
tage in the uniform filling of the tetrahedral positions
alternating with the dodecahedral ones and is character-
ized by the optimum d-value close to dX-ray =
5.17 g/cm3. Sample no. 42 cut out parallel to (111) face
growing at the maximum rate along the [111] direction
in the garnet structure has the minimum density of the
three plates cut out from the same crystal. Further anal-
ysis of the experimental results and the growth rates of
the main crystal planes in YIG leads to the conclusion
that the growth rate in the [100] direction is slightly
higher than, or close to, the growth rate along the [110]
direction, but is much lower than the growth rate along
[111]. Among the YIG samples studied earlier, the min-
imum value, α = 0.034 cm–1, was obtained for the
(100)-oriented plate [8]. This value is lower by about an
order of magnitude than the value for (110)-oriented
sample no. 7 from this batch possessing the highest
transparency, α = 0.4 cm–1.

Figure 1 shows the data for (100)-oriented samples
nos. 40 and VI-4 and for unoriented sample no. 32-NO
with d = 5.21 g/cm3 and K/nk = 0.0418. Point 32-NO
lies on the extension of curve 5. Point 3 ((100)-oriented
sample no. 3) with coordinates d = 5.147 g/cm3 and
K/nk = 0.053 is located separately and does not lie on
any curve. At the same time, it can be joined to point 40
((100)-oriented sample no. 40) corresponding to d =
5.15 g/cm3. Both samples are characterized by high
transparencies, α = 2.3 and 0.8 cm–1, respectively), so
that they can be related to group I. Taking into account
the similar behavior of the (110)- and (100)-oriented
YIG samples (for example, curves 2 and 5 in Fig. 1 and
the aforementioned examples), we can suggest drawing
curve 1' through points 40, 7, 52, and 3 [samples
nos. 40, (100); 7 and 52, (110); and 3, (100)]. For these
samples, d ≈ (5.150 ± 0.003) g/cm3 (dashed line in Fig. 1).

The nonequivalence of (110) and (111) planes in the
garnet structure stems from the morphological and
growth characteristics. The noncubic anisotropy of
magnetic garnets grown from flux was first discussed in
[14]. The (110) face, which has the minimum growth
rate, has a morphological advantage in the successive
filling of the tetrahedral positions alternating with
dodecahedral positions occupied by Y- or Ba-ions. It is
also characterized by the maximum thickness of an ele-
mentary layer (EL ≈ 4.37 Å) [15]. For comparison, the
thickness of an elementary layer on the (111) face is
about 1.78 Å, which is less than that for the (110) face
by a factor of 2.5. The thickness of the elementary layer
is important since the stoichiometry in this layer
remains unchanged; for the (100) face, the thickness of
the elementary layer is 3.094 Å [16].

For the first time, we revealed the quantitative corre-
lation between the absorption coefficient α and the
K/nk ratio with due regard for the crystallographic ori-
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
entations of YIG samples (Fig. 2). Curve 1 describes
samples nos. 7 and 52, and curve 2 describes samples
nos. 41, 50'', and 50 with the (110) orientation. Samples
nos. 42 (α = 0.9 cm–1) and 34 (the latter is of medium
quality) (see table). Two poor samples nos. 46 and III-
6 from group II are described by curve 4. The samples
cut out from the same crystal are presented by curves 5
(sample no. 40), 2 (sample no. 41), and 3 (sample
no. 42) in Fig. 2. Curve 5 connects points VI-4, 40, and
32-NO characterizing sample no. VI-4 with the lowest
transparency, one of the best samples with the (100) ori-
entation (no. 40), and unoriented sample no. 32-NO
with the coordinate α = 7/2 cm–1 that fits curve 5 well.

The analysis of data presented in Figs. 1 and 2 dem-
onstrated that the points corresponding to the samples
of group I are located on curves 1 and 3 and, partly, on
curves 2 and 5, whereas the points characterizing the
most transparent plates are located on the curves in the
lower part in Fig. 2 and the upper part in Fig. 1.
Curves 2 and 5 seem to form the boundary between the
samples of the first and second groups and connect
points corresponding to plates nos. 41 and 50 with the
point of the extremum transparency; for the latter plate,
the α value is maximal for the (110) orientation, and,
similarly, for the (100) orientation, for samples nos. 40,
32-NO, and VI-4 (α = 23.5 cm–1).

To check the expediency of using the K/nk ratio as a
characteristic of the number of conduction electrons
taking part in charge transfer, we measured electrical
resistivity at room temperature Troom for three differ-
ently oriented YIG samples with α < 7 cm–1 (mainly the
samples from group I). The results are presented in
Fig. 3, where the points corresponding to the (110)-,
(111)-, and (100)-oriented samples are located on
curves 1, 3, and 5, respectively. We assume that heat
transfer proceeds along the crystallographic [111]
directions to which the easy magnetization axis, dislo-
cations, and domain walls are parallel. Therefore, the
resistivity for the samples described by curve 3 is min-
imal.

The periodic chains of bonds (PCB-111) of the type
O–3A–3D–3A–O, where O is a Fe-ion at the octahedral
site, A is an anion (oxygen), and D is the Y-ion at the
dodecahedral site are perpendicular to the (111) plane
[15]. The easy magnetization axis, dislocations, and
domain walls are parallel to these directions of YIG
crystals. According to Blakemore [13], volume charges
having cylindrical symmetry arise around the disloca-
tions. The octahedral sublattice considerably distorts
the generally non-cubic anisotropy in a garnet crystal
[14]. Therefore, it is possible to state that PCB-111 con-
tains numerous defects favoring charge transfer along
these directions and providing the minimum resistivity
of sample no. 42 (lnρ = 23.95) in comparison with
resistivity of sample no. 40 with the (100) orientation
(lnρ = 26.05). We believe that charge transfer in the
(110)- and (100)-oriented plates takes place along
PCB-001, which consist of T–2A–D–2A–T chains,
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where T are the tetrahedral sites occupied by Fe-ions or
those substituting them. These ions with a small radius
create the minimum distortions in the garnet structure.
Along the PCB-001 chains, the distortions should be
less marked than along PCB-111. Hence, the numbers
of defects and conduction electrons should also be less
along this direction. That is why we observe the maxi-
mum resistivity in (110)- and (100)-oriented YIG sam-
ples.

As was shown earlier [8], divalent Ba-ions are inev-
itable technological impurities substituting Y-ions at
the dodecahedral positions. The Ba-ions are character-
ized by stable valence and play the role of acceptor
impurities in the YIG samples. On the contrary, Mn-
ions can exhibit valences ranging from 2 to 4 and, in
contrast to Y- and Ba-ions, they have magnetic
moments, and, hence, they take an active part in charge
transfer. Sample no. 7 with the (110) orientation has the
maximum Mn content among all the samples of this
batch and small content of Ba- and Pb-ions and shows
the minimum resistivity among all the samples of group I.
It seems that a small number of Mn-ions does not
reduce the transparency in the IR range, because α =
0.4 cm–1.

Note that changes ∆(K/nk) = 0.016 are maximal for
the (111)-oriented YIG plates of two groups. They are
larger by a factor of 1.4 and 2.3 than those for (100)-
and (110)-oriented plates. For the latter orientation, we
have ∆(K/nk) = 0.007. Note that ∆(K/nk) values for the
three above orientations are inversely proportional to
the thickness of the elementary layer; i.e., the minimum
values of ∆(K/nk) for the (110) orientation correspond
to the maximum thicknesses of the elementary layer,
whereas at the (111) orientation, we arrive at the oppo-
site limiting case.

For the samples with the minimum K/nk value, i.e.,
with the density of conduction electrons being low
along the specified crystallographic direction, the elec-
trical resistivity is maximal. The anisotropic character
of K/nk variations for the three orientations is the most
pronounced for samples nos. 40, 41, and 42 (see
Figs. 1–3). For the (111)-oriented sample no. 42, the
K/nk value is the largest, K/nk = 0.0439, while the lnρ
value is the lowest, lnρ = 24. For comparison, for
(100)-oriented sample no. 40 and for (110)-oriented
sample no. 50'', we have lnρ = 26 and 27.59, respec-
tively. The latter value of lnρ is the highest for the batch
of YIG single crystals under study.

Nonequivalence of crystallographic planes is caused
by the distortions in the garnet structure arising during
crystal growth from flux, the orthorhombic symmetry
of the dodecahedral positions, and the nonequivalence
of the two octahedral sublattices. The crystal grows in
the shape of a dodecahedron inscribed into a sphere and
is often faceted by the (110) planes. In the (110) plane,
the short diagonal of the rhombus coincides with the
[100] direction, whereas its long diagonal coincides
with the [110] direction. In the course of growth, the
C

(211) faces can be formed, for which the [111] and
[110] directions are mutually perpendicular [16].

If the plates are cut out along a specified crystallo-
graphic direction of the same crystal, the concentration
inhomogeneity is observed [8]. Studying three differ-
ently oriented YIG samples cut out from the same crys-
tal, we obtained close but not exactly coinciding values
of α, lattice constants, and densities, whereas K/nk and
electrical resistivity had essentially different values
(Figs. 1–3). In other words, we observed obvious man-
ifestations of anisotropy in growth and properties. The
samples cut from different parts of different crystals,
which were differently located with respect to the feed-
ing concentration flows in the melt during growth, are
characterized by nonstoichiometry and pronounced
fluctuations in the impurity composition. For such sam-
ples, the {110} and {111} planes in YIG crystals were
not equivalent.

Finally, we also managed to reveal the character of
the variations in the density and the absorption coeffi-
cient with due account for structural defects in the plate
with the aid of a single physical parameter K/nk, which,
in our opinion, can be used as the criterion for estimat-
ing the relative density of conduction electrons in real
crystals. We also revealed the nonequivalence of the
main crystallographic planes {110} and {111}, which
allows one to divide the samples of each orientation
into two groups showing different behavior in their
physical characteristics. In this paper, we also sug-
gested the mechanism of charge transfer in YIG crystals
via the PCB-111 and PCB-001 chains for (111)- and
(110)-oriented YIG samples, respectively.

In the present series of experiments, we used 14 YIG
plates of three different orientations. Obviously, it is
insufficient to reveal all the variants of nonequivalence
of crystallographic planes. General considerations allow
us to conclude that the number of such variants should
be not less than three at each orientation.
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Abstract—The patterns of plastic flow in fcc Cu and Ni single crystals oriented in a way to provide easy slip
are studied. The main space–time characteristics of deformation localization at the stages of easy slip and linear
strengthening in these single crystals are established. The relation between the orientation of the sites of defor-
mation localization and the crystallography of the slip systems in the samples is studied. The velocity of the
motion of the deformation-localization sites during sample tension is determined. © 2002 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

The characteristics and the specific features of plas-
tic deformation cannot be studied without doing corre-
sponding experiments on single-crystal samples,
because these experiments provide the most exact
determination of the main crystallographic elements of
slip lines and bands and different stages of the deforma-
tion process and also the establishment of the relation
between these stages and the distribution and motion of
dislocations [1]. It is the experiments on Cu and Ni sin-
gle crystals that laid the basis of the first theory of
deformation strengthening [2].

Recent studies showed [3–8] that plastic deforma-
tion in the range from the yield stress to the complete
fracture of the sample is necessarily accompanied by
deformation localization on a macroscale. The experi-
ments performed on both single crystals and polycrys-
tals allowed not only the observation of deformation
localization but also provided its systematization and
establishment of the deformation types and the relation
between the deformation type and deformation
strengthening at the corresponding stage of flow. The
ordered patterns of deformation localization are formed
on the basis of the initial chaotic distribution of defor-
mation sites [5–7] corresponding either to the initial or
the transient parts of the stress–strain curves. The anal-
ysis of the general form and the quantitative parameters
of the evolution of the patterns of plastic-flow localiza-
tion showed its possible relation to the self-organiza-
tion of the subsystem of defects in the deformed
medium described in detail elsewhere [9–11]. This
allowed us to suggest [3] and develop [4–8] an
approach to the description of the evolution of the mac-
roinhomogeneity of the plastic flow based on the repre-
sentation of the localization zones in the form of auto-
waves of plastic flow [12] characterized by the experi-
1063-7745/02/4704- $22.00 © 20672
mentally determined wavelength λ and the velocity of
the wave propagation Vaw.

The most interesting phenomena are observed in fcc
single crystals at the stages of easy slip and linear
strengthening, because fundamental data clarifying the
nature of deformation strengthening in metal crystals
are obtained from the analysis of the characteristic
curves of plastic flow [2].

Earlier, this problem was studied mainly on single
crystals of various doped alloys. This considerably
reduced the generality of the theory thus developed,
because it is well known that the micro- and macrode-
tails of plastic flow in alloys are essentially different
from those in pure (undoped) metals [13, 14]. Thus, the
stage of linear strengthening of solid solutions is con-
siderably longer than this stage in metals. It is espe-
cially important that the propensity to slip localization
is much more pronounced for alloys that are specially
oriented for multiple slip. Under these conditions, the
problem of the existence and possible forms of local-
ization of plastic deformation in undoped Cu and Ni
single crystals under tensile stresses becomes very
important.

EXPERIMENTAL

The crystals used in our study were grown by the
Bridgman technique from reagent-grade Cu and Ni
(99.98%) on a Redmet-1 setup. The flat dumb-bell sam-
ples were cut out from homogenized single-crystal
ingots on an electroerosion machine. The crystallo-
graphic orientation of the single crystals and the pre-
pared samples was determined by the X-ray diffraction
method.

The dimensions of the working part of single-crystal
Cu samples were 30 × 5 × 3 mm. The longitudinal axes
002 MAIK “Nauka/Interperiodica”
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coincided with the [ ] direction, whereas the broad
working surface was indexed as ( ). Upon cutting out
the samples, they were annealed for an hour at 1123 K
and then were cooled in the furnace. The maximum
value of the Schmid factor m1 = 0.49 for the above ori-

entation was possessed by the (111)[ ] slip system.
The lines of this slip system should form an angle of
ϕ1 = 44°26′ on the working surface. The ( )[101] and

( )[011] systems have Schmid factors m2 = 0.47 and

 = 0.41, respectively, and, thus, are the secondary
systems. Their slip lines on the working surface form
the angles of ϕ2 = 90° and  = 40°30′ with the sample
axis. Under tension in the direction of the long axis and
upon the attainment of the yield stress, these speci-
mens are deformed via single slip along the (111)[ ]
system.

The shape of the Ni samples was the same as the Cu,
but the dimensions of the working surface were differ-
ent, 30 × 5 × 1.3 mm. The cut-out samples were
annealed for 20 h in a neutral atmosphere at 1273 K and
then were cooled in the furnace. The longitudinal axis
of the samples coincided with the [ ] direction,

whereas the working surface was indexed as ( ). The

Schmid factor of the primary (111)[ ] system was
m1  = 0.46, whereas these factors of the secondary

(111)[ ] and ( )[101] systems were m2 =  =
0.40. The slip lines (or traces) of the primary slip sys-
tem formed angles of ϕ1 = 48°28′ with the sample axis
on the working surface, whereas those of the secondary

slip system, ϕ2 = 131°32′ and  = 119°9′.

The main experimental procedure consisted in the
successive restoration of the fields of the translation
vectors of the points r(x, y) simultaneously on the
whole sample surface (where x and y are the coordi-
nates of the points on the surface) directly in the tension
process [6] by the methods of double-exposure speckle
interferometry [15] on an Instron-1185 testing machine
at a rate of 5.5 × 10–5 s–1. These fields were recorded
during loading with a time interval of 36 s (the incre-
ment in the total deformation δεtot = 0.2%). The numer-
ical differentiation of the set of r(x, y) values with
respect to x and y provided the determination of the lon-
gitudinal εxx, shear εxy , and rotational ωz components of
the tensor of plastic distortion β = —r(x, y) [16] at the
points of the sample surface at a step of 1 mm. In what
follows, we limit our consideration to local elongation
εxx = ∂u/∂x of the samples (the u projection of r onto the
elongation axis x). The construction and analysis of the
spatial εxx(x, y) and spatial–temporal εxx(x, t) patterns
allow the determination of the zones of deformation
localization and observation of their evolution with
time. The slip traces in deformed samples were ana-
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lyzed in a Neophot-21 metallographic microscope. The
tests were performed at 300 K.

EXPERIMENTAL RESULTS

The tension curves for the materials studied were
constructed in the coordinates “reduced shear stress τ—
reduced shear γ” as was indicated in [13, 14] (Fig. 1).
One can clearly see three stages that are characteristic
of fcc single crystals—the stages of easy slip (I) and
linear (II) and parabolic (III) strengthening [2, 13, 14].
We determined the following parameters of plastic
flow: critical shear stress τ0, coefficients of deformation
strengthening θ = dτ/dγ at the stages of easy slip (θI)
and linear strengthening (θII), and shear deformation
corresponding to the beginning γI and end γII of the stage
of easy slip. These data are listed in the table, which, for
the sake of comparison, also contains the corresponding
values taken from monograph [13]. Despite the qualitative
differences, the deformation in Cu and Ni single crystals
was consistent with generally accepted ideas, and, thus,
the plastic flow is developed from the easy slip via linear
strengthening to the parabolic stage.1 

Now, consider the patterns of slip traces on the
observation plane of the samples. In a Cu single crystal,

only the primary (111)[ ] system is active at the first
stage (Fig. 2). Fine slip traces in this system form an
angle of 40° with the sample axis. Then, prior to the
completion of this stage, some short rough traces of the

secondary ( )[101] system appear at the crystal
edges, which are inclined at an angle of 86° to the axis
(Fig. 2). By this moment, the whole working plane of

1 The value θI = 1.7 × 10–4G for Cu single crystals is minimal [2],
with θI being essentially dependent on the orientation [13].
McLean points out [17] that θI for various orientations of fcc
crystals ranges within 10–4–10–3G. According to Honeycombe
[14], the [139]-oriented Cu single crystals at 300 K have θI = 23–
41 MPa. At the same time, the coefficient θII is almost indepen-
dent of orientation and is close to 4 × 10–3G at 300 K for all the
fcc single crystals [12, 17].
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0.2 0.4 0.6 0.8 1.0 1.2 γ

Cu Ni

Cu

Ni
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Fig. 1. Tension diagrams for Cu and Ni single-crystal sam-
ples. The orientations of the tension axes and the slip ele-
ments are indicated in the text.
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Parameters of deformation strengthening in Cu and Ni single-crystal samples and their comparison with data [13]

Crystal τ0, MPa θI/G × 104 θI/G × 104 [13] θII /G × 103 θII/G × 103 [13] γII γIII

Cu 6.2 7.5 4 2.6 3 0.135 0.3

Ni 23 11 5 2 3 0.06 0.17

Note: For notation, see text.
the sample is uniformly filled with the slip traces of the
primary system. The differences between the experi-
mentally observed and the calculated angles (see
above) seem to be caused by the insufficiently accurate
determination of the sample orientation by the X-ray
diffraction method. As earlier, at the stage of linear
strengthening, one mainly observed the traces of the
primary slip system.

In Ni single crystals, the traces of the (111)[ ]
system also appear at the stage of easy slip. They form
an angle of 49° with the sample axis (Fig. 2), which is
within the error of the X-ray diffraction method used to
determine the sample orientation. At the same stage,

traces of the secondary ( )[101] system also appear,
which form an angle of 122° with the tension axis.
However, the number of the latter traces is less than the
number of the traces of the primary system within the
whole deformation process. These traces often intersect
the traces of the primary system and become bent

101

111

(a)

(b)

200 µm

200 µm

Fig. 2. Slip traces on the working surface of a single-crystal
sample; (a) Cu, γtot = 0.075 and (b) Ni, γtot = 0.055. The
completion of the easy-slip stage.
C

(Fig. 2). Also, at the first stage, one can often observe
the surface regions where there are no slip traces at all.
With further tension of the sample and the transition to
the stage of linear strengthening, the densities of the
traces of primary slip and the primary and secondary
systems increase, and they become curved and rough.
At the stage of linear strengthening, the traces of the
primary and secondary slip systems fill the whole

working field. The traces of the ( )[101] system on
the working surface of the samples were never
observed at all; they were recorded only at the sample
“heads.”

Thus, the analysis of the shape of the plastic-flow
curves and the orientations of the slip traces showed no
essential differences from those observed for Cu and Ni
single crystals [13, 14] and, thus, these data are indi-
cated here only to prove the accuracy of the experimen-
tal method used. Completely new results were obtained
in the studies of the plastic-deformation distribution
over the samples at different stages of flow. The mea-
surements of the local elongation made by the speckle-
interferometry method showed that deformation is
macroscopically localized at all stages of the plastic
flow.

Figure 3 shows the arrangement of the sites of defor-
mation localization εxx characteristic of the easy-slip
stage. In Cu single crystals, it is a combination of three
or four equidistant zones (λ = 4.0 ± 0.5 mm) more than
1.5 mm in width. The map of isolines of local elonga-
tions for this case (Fig. 3) shows that these zones are
inclined to the longitudinal axis of the sample at an
angle of ϕ = 50°–55°. It seems that this fact is provided
by the action of only one primary slip system, whose
traces, as was indicated above, are inclined by an angle
of ϕI = 40° to the [ ] axis.

The pattern of local elongation in a Ni sample at the
easy-slip stage is shown in Fig. 4. Two local εxx maxima
move toward one another; the map of isolines of local
elongations (Fig. 4) shows that, at the very beginning of
the easy-slip stage, the slope of one deformation site is
ϕI = 50°, whereas that of the other one is  = 54°. In
other words, these sites are almost parallel. Later, these
angles increase approaching 90°. We should like to
repeat once again that the traces of the primary slip sys-
tem (111)[ ] in Ni form an angle of ϕI = 49° with the
direction of the tension axis [ ]. A situation with two
moving zones of deformation localization in Ni is very
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Fig. 3. Arrangement of moving deformation sites at the stage of easy slip in (a) a Cu single crystal and (b) isolines of local elongation
corresponding to this case; γtot = 0.03, ϕ = 53° is the angle of the inclination of the zones of deformation localization to the tension
axis.
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Fig. 4. Arrangement of moving sites of deformation localization at the stage of easy slip in (a) an Ni single crystal and (b) isolines
of local elongation, γtot = 0.03.
often encountered. However, we also observed the
motion of a single deformation front oriented approxi-
mately along the traces of the primary slip system.

The patterns of local-deformation distribution at
the stage of the linear strengthening in both materials
are the mobile sequences of equidistant sites of plastic
flow similar to those described for the easy slip in Cu
single crystals. There also exist four moving sites of
deformation localization. In Ni, the distance between
the localization zones is λ ≈ 3.5 mm, in Cu, 4.5 mm
(Fig. 5).
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      200
DISCUSSION

The data obtained show that the phenomenon of the
localization of plastic flow is of a general nature and is
readily seen in both Cu and Ni single crystals at the
stages of easy slip and linear strengthening, which until
now has gone unnoticed.2 Nevertheless, it is clear that
the real pattern of deformation distribution in single
crystals is a priori inconsistent with the assumption that

2 At the parabolic stage of strengthening in Cu and Ni single crys-
tals, the sites of localized plasticity form a stationary periodic
system similar to that described, e.g., in [3–5].
2
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(b) Ni single crystals.
dislocation-induced shear is uniformly distributed in
the bulk of a deformed crystal [18]. Plastic flow is
localized in certain active zones of the sample regularly
distributed along its length. In this case, the zones
between these sites show no deformation, whereas the
active zones (at least at the stages of easy slip and linear
strengthening) move along the sample axis. In this
motion, some parts of the sample participate in plastic
flow only successively, one after another, and not
simultaneously. Such cycles of the participation in plas-
tic flow are repeated several times within one stage of
the process.

The most interesting feature of the localization of
plastic deformation at the stages of easy slip and linear
strengthening is the mutually correlated motion of the
sites of plastic flow along the tension axis. This phe-
nomenon was first observed in undoped single crystals,
although it is studied in detail [6–8] in doped single
crystals and polycrystals of some metals and alloys.

At the stage of easy slip of the deformation process
in Cu and Ni, the sites of deformation localization move
synchronously. Figure 6 shows the positions of the X
maxima of localization of the component εxx on the ten-
sion axis as a function of time t. The velocity of their
motion Vaw was determined from the slope of the
C

dependence X(t ) [4–6]. It was established that, at
the stage of easy slip, the zones of deformation local-
ization in Cu single crystals move with a velocity of
2.6 × 10−5 m/s, whereas in Ni single crystals, with
velocities of +3.6 × 10–5 m/s and –2.2 × 10–5 m/s. The
signs + and – indicate the opposite directions of the
motion of the zones of deformation localization in Ni.
The orders of magnitude of the velocities (10–5 m/s) are
close to those recorded earlier at the stages of easy slip
in single crystals of the Cu–Ni–Sn alloy [4], chro-
mium–nickel austenite [8], and manganese austenite
([012] orientation) [19], but they are much higher than
the analogous values obtained in NiTi single crystals
[5, 6] and manganese austenite with the tension axis
parallel to the [377] direction [19]. This qualitative dif-
ference seems to be caused by the fact that deformation
in the NiTi intermetallic compound is attained via the
martensite B2  B19' transformation [20] and in the
[377]-oriented single crystals of the Hatfield steel, by
twinning [21], whereas the deformation in all the other
materials is associated with dislocation-induced slip.

We should like to emphasize the fact that, in single
crystals of the Cu–Ni–Sn alloy and doped γ-Fe, the pat-
terns of deformation localization at the stage of easy
slip are in the form of moving individual deformation
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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fronts similar to the Lüders bands observed, e.g., in
α-Fe polycrystals [14, 17]. This situation is also char-
acteristic of Ni single crystals, where the deformation
front passes one time each unit volume and where one
or two fronts moving in the opposite directions can be
considered as Lüders bands. The stage of easy slip is
completed when two deformation sites meet, and, in the
case of deformation caused by the motion of an individ-
ual front, it is completed simultaneously with the com-
pletion of the front’s motion.

However, the configuration of several successively
moving deformation sites that is usual in Cu single
crystals (Fig. 3) is closer to the situation characteristic
of the stage of linear strengthening (see below). In this
case, the periods of active deformation in each zone of
the sample regularly alternate with almost the same
periods of absence of any deformation.

At the stage of linear strengthening, the mobile
equidistant systems of the plastic-flow sites (the
“waves”) are formed in Cu and Ni single crystals. The
velocities of the motion of these sites are somewhat
higher than at the stage of easy slip and are equal to 8 ×
10–5 m/s in Cu and 6 × 10–5 m/s in Ni (Fig. 6). An
increase in the velocity of the deformation-site motion
at the stage of linear strengthening with respect to that
at the stage of easy slip was also observed earlier in the
tension experiments on single crystals of the Cu–Ni–Sn
alloy and also on the chromium–nickel and high-man-
ganese austenites. It was shown [7, 22] that at the linear
stage the velocities of the motion of deformation sites
Vaw are inversely proportional to the coefficient of
deformation strengthening θ* = G–1θII normalized to
the shear modulus G. It follows from Fig. 7 that our
data can be described by a linear dependence of the
form

Vaw = V0 + Ω/θ*, (1)

whose plot was constructed with the use of known data
on the velocities of the waves in other (doped) single
crystals [3–8]. In the above equation, V0 = 3.6 × 10–5 m/s
and Ω = 2.5 × 10–7 m/s are the constants, whereas the
correlation coefficient is ~0.74. The result obtained
confirms the similar character of the wave processes
observed at the stage of linear strengthening in all the
single crystals.

Consider a possible nature of the dependence Vaw ~
1/θ* at the stage of linear strengthening. Based on the
fact that the velocity of the motion of the site of local-
ized deformation is proportional to the path of the head
dislocations of a planar pileup, we assume that
dVaw/dθ* ~ l(θ*) (where l is the length of the slip line
at this stage). The explicit form of the function l(θ*)
can be determined from the following consideration.
According to [2], l = Λ/(γ – γ1) with the constant Λ
being dependent only on the material studied, whereas
deformation γ1 corresponds to the beginning of the
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
stage of linear strengthening. As was shown in [2], we
have at the stage of linear strengthening

(2)

where n is the number of dislocations with the Burgers
vector b in the planar pileup [2, 13]. Determining Λ
from (2) and assuming that Λ and θ* vary with the
change of the material, we have

(3)

Since γ – γ1 and n only weakly depend on the material
[13], it follows from (3) that Vaw ~ 1/θ*.

CONCLUSION

Thus, the study of plastic deformation in undoped
single crystals of fcc metals confirmed the statement
made in [3–8] that there exist new types of waves asso-
ciated with the self-organization processes. These
waves are generated during the quasi-static deforma-
tion of solids. Since these waves were observed earlier
in doped single crystals and polycrystals of various
alloys [6–8, 22, 23], then, with due regard for the new
data, the wave (autowave) nature of plastic deformation
can be recognized as universal for the processes of plas-
tic flow in all the materials. It should be emphasized
that the wavelike approach allows the detection of con-
siderable differences in the deformation of various
materials. Thus, the deformation localization (the wave
patterns) at the stage of easy slip in Cu and Ni single
crystals are different with all the other parameters of the
process being practically the same. This difference can
be caused by different properties of the active media [12]
generating different types of the autowave processes in
single crystals.

Another aspect of the problem is that, while analyz-
ing microscopically different types of dislocation
ensembles formed at different stages of plastic flow, it
is necessary to take into account from which part of the

θ* nb/3Λ ,≈

dVaw
nb

γ γ1–
-------------dθ*

θ*2
---------.∼

0.00002

0.00004

0.00006

0.00008

0 20 40 60 80 100 120 140 160
G/θ

Vaw, m/s

γ–FeI[001]

γ–FeII[111]

γ–FeI[001]γ–FeI[001]

Cu[139]

Νi[167]

γ–FeII[377]
γ–FeI[111]

γ–FeI[111]
CuNiSn[111]

Fig. 7. Generalized dependence of the velocity of the defor-
mation autowaves on the coefficient of deformation
strengthening.
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sample volume the microsample was cut out. In this
case, the total deformation of the sample may no longer
serve as an adequate description of the process. Thus,
the analysis of this statement showed [23] that the
deformation structures in localized deformation sites
develop much faster than in the regions between these
sites. This seems to be very important especially for the
interpretation of the transmission electron microscopy
(TEM) data for thin foils. In this case, the analysis of
the dependence of the densities of various dislocations
on the total deformation without allowance for the char-
acter of deformation localization at each stage of the
process can give somewhat erroneous results.
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Abstract—A simple model for describing structural phase transitions in thin ferroelectric copolymer films on
solid substrates obtained by the Langmuir–Blodgett method has been suggested. It is shown that the polymer–
substrate interaction and surface tension considerably influence these transitions and, in particular, can induce
additional low-temperature first- and second-order phase transitions depending on the material parameters and
the film thickness. The main dimensionless parameter and its critical value, which control the formation of the
additional order in very thin films, are determined. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Recently, the existence of a ferroelectric phase tran-
sition in thin films of arbitrary copolymers of
vinylidene fluoride and trifluorethylene were reported
for the cases where the film thickness did not exceed
several monomolecular layers [1–4]. Two first-order
phase transitions were observed in these almost two-
dimensional films—a high-temperature transition at the
temperature close to that of the phase transition in a
bulk copolymer sample and a low-temperature phase
transition, which seemed to be provided only by surface
properties of the film. This phenomenon is rather inter-
esting in terms of fundamental and applied science. The
physical reasons of this phenomenon are not quite clear.
Thus, the two-dimensional ferroelectricity observed in
these experiments was explained only by the properties
of the copolymer thin film, whereas the effect of the
substrate supporting this film was ignored [1–4]. How-
ever, taking into account the method used for film prep-
aration—layer-by-layer application of the polymer by
the Langmuir–Blodgett method providing the forma-
tion of the layer structure (i.e., the introduction of an
additional order into the molecular system), one can
expect that the substrate should also play an important
role. As in the case of smectic liquid crystals, this addi-
tional order can be described by the order parameter
ψ(r) decreasing relatively rapidly with the distance of
the point of observation from the substrate along the
surface normal (the z-axis) and includes the periodic
dependence exp(ikr), where the component kz of the
wave vector k is close to the reciprocal thickness of a
molecular layer. This layer consists of a fragment of
both the main polymer chain and also the side chains
characterized by the constant electric dipole moments p,
which  form  crystalline  grains  with  the  macro-
1063-7745/02/4704- $22.00 © 20679
scopic polarization P in the ferroelectric phase of the
copolymer.

In a conventional disordered film, these crystalline
regions are oriented in a random way, but in artificially
synthesized layer films, these regions can also have the
above-mentioned additional order, whose character is
strongly dependent on the copolymer–substrate inter-
action. The maximum value of the order-parameter
amplitude, |ψ|, on the substrate equals ψ0. In the
absence of any surface effects, this order parameter
equals zero in the whole film. Thus, one can assume
that the macroscopic polarization P interacts with this
order parameter of the structure so that, in the simplest
case, P depends on the coordinate z only slightly,
whereas ψ(r) rapidly varies in the vicinity of the sub-
strate–copolymer interface. It should be indicated that,
unlike the situation in freely suspended films of chiral
smectics of type C, where polarization is the conse-
quence of the inclination of the chiral molecules [15],
the polarization P in the materials under study is, in
fact, the inherent order parameter. The experiments also
revealed some changes in thin crystalline films and
their “metallic” properties [6, 7]. Below, we shall show
that the unusual ferroelectric behavior of very thin
polymer Langmuir–Blodgett films in which the small
depth of the structural modulation imitates the two-
dimensional order in a thin subsurface layer can be
interpreted in terms of a rather simple model.

MODEL OF SURFACE-INDUCED PHASE 
TRANSITION

The structure of a polymer ferroelectric Langmuir-
Blodgett film has not been studied in detail as yet. How-
ever, there is no doubt that this structure is similar to
that of a smectic and that, similar to all the Langmuir-
Blodgett films, it is obviously of a defective nature.
002 MAIK “Nauka/Interperiodica”
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Since the macroscopic polarization P exists in the local
regions, the smectic order can promote an increase in
the component Pz even in the absence of an electric
field. The experimental data [1] indicate that the maxi-
mum value of Pz corresponds to 50% polarization, with
all the dipoles being normal to the film surface. The sur-
face tension of the film dependent on the interaction
between the dipole moments of the polymer chains and
the substrate should considerably influence the film
structure. Since the data for constructing a microscopic
model of the surface tension are rather limited, we sug-
gest a simple phenomenological model that describes
the interaction of a polarized copolymer with the sub-
strate, which induces an additional positional ordering
of the chains in the vicinity of the film surface with the
density distribution

(1)

where ψ = ψ0exp(–λz) is the amplitude of the density
wave, ψ0 is the amplitude at the interface, the positive
parameter λ determines the rate of decrease in the den-
sity with the distance from the substrate, and k is the
wave vector of the subsurface structure, which
describes the local order of the polymer chains in the
crystal.

In this case, the effect produced by the surface can
be taken into account by introducing the following term
into the free-energy density:

(2)

This term is invariant in the whole crystal structure. In
the simplest approximation, there is no need to consider
the dependence of the component Pz on the coordinate z,
because the copolymer is also polarized in the film bulk
also at Ψ = 0; in other words, it is possible to assume
that the characteristic scale of considerable variations
in Pz essentially exceeds the scale of λ–1. Integrating
Eq. (2) over the volume, we arrive at a negative contri-

bution to the energy equal to –cPz /2 at a certain
polarization orientation on the surface dependent on the
sign of the phenomenological constant c characterizing
the interaction between the substrate and the polarized
copolymer.

In the general case, the solution ψ = ψ0exp(–λz) can
be obtained by minimizing the total free energy

(3)

where the quantity cPz in square brackets in the inte-
grand is positive, L is the film thickness, the tempera-
ture-dependent parameter τ describes the formation of
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the inherent ferroelectricity, a is the positive parameter
corresponding to the absence of inherent smectic order,

and the coefficients before , |ψ|4, and |dψ/dz |2 are
omitted under the assumption that the quantities Pz , ψ,
and z are renormalized so as to simplify further compu-
tations. The local crystal structure and the vector k in
Eqs. (1) and (3) are not specified, and the allowance for
the concrete value of the component kz results only in
the renormalization of the coefficient a. It should be
emphasized that an additional proper structural transi-
tion is impossible because of the positiveness of the
parameter a.

Equation (3) shows that solution (1) is correct if the
term |ψ|4 is small in comparison with the term a |ψ|2
and, therefore, can be considered as a certain correc-
tion. In the case where |ψ|4 considerably exceeds a |ψ|2,
the amplitude ψ(z) is determined from the equation

(4)

with the solution

(5)

Solution (5) minimizes the free energy so that the value
of ψ(0) ≡ ψ0 is equal to 1/A. Equations (1) and (5) are
very useful for the qualitative consideration of possible
phase transitions in the vicinity of the interface, where
polarization Pz(T) increases with a decrease in the tem-
perature T.

As usual, the possible appearance of the inherent
polarization Pz is associated with the reversal of the
sign of the parameter τ, whereas its modulus |τ| is
assumed to be small. Substituting Eq. (1) into Eq. (3)
and minimizing F with respect to the parameter λ, we
arrive at

(6)

which is approximately correct if the value of  is less
than that of the parameter a. The further substitution of
Eq. (6) into Eq. (3) and minimization of F with respect

to  determines the quantity

(7)

Using Eqs. (3) and (7), we obtain the free energy
F(Pz, τ). To determine the conditions for the occurrence

of the phase transition from the state {  = 0,  = –τ}
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to the state {  ≠ 0,  ≠ 0}, we have to consider the
following two equations:

(8)

Introducing the new variables (y, t) and the parameter α
with the aid of the equations

(9)

and applying Eq. (9), we can rewrite Eq. (8) in the form

(10)

The solutions of Eq. (10) describe second-order
phase transitions if α ≥ 1/8; then, at the phase-transition
point tc = 4, the following relationships are satisfied:

 = tc = 4 and  = 0. However, if α < 1/8, first-order
phase transitions occur; then, the “transition tempera-
ture” t* is approximately equal to

(11)

if the value of (1 – 8α) is small. The corresponding
jumps in the order parameters at the transition point are

(12)

If t ≥ t*, i.e., at temperatures lower than the temperature
of the first-order phase transition, where t = t* + ∆t, y =

y* + ∆y, and  =  + ∆ , Eqs. (10) yield

(13)

The above expressions show that above the point t*,
polarization Pz(t) increases relatively rapidly and is

approximately proportional to .

Now, consider the case of power law (5) for the spa-
tial distribution ψ(z). The corresponding calculation of
the energy F and the minimization of F(Pz, ψ0) allow
one to determine the characteristics of the first-order
phase transition at the point

(14)
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namely, the jumps in the order parameter

(15)

It should be emphasized that this is the phase transfor-
mation from the state with ψ0 = Pz = 0 to the state with
finite values of ψ0 and Pz. In fact, in this case, there is
only one phase transition at the point τ* > 0, and the sit-
uation can exist only under the condition that the value

of  is much larger than the value of , i.e., if
α ! 1/8.

CONCLUSION

Thus, the dimensionless parameter of the interaction
between the substrate and the polarized copolymer,
1/α, can effectively control both the number and the
character of phase transitions in the films under consid-
eration. In particular, the parameter α is proportional to
the film thickness L, which signifies that the film thick-
ness plays an important role in the phase transforma-
tion. Thus, for rather thick films, the low-temperature
transformation is a second-order phase transition. In
this case, the existence of finite spontaneous polariza-
tion in the film bulk and the orienting effect of the sub-
strate provide the formation of an additional order in
the crystal, e.g., smectic order in the copolymer,
whereas an increase in the film thickness results in a rel-
ative decrease in the thermodynamic contribution due to
this additional order. In the latter case, the corresponding
contribution to the specific temperature dependence of
the dielectric permittivity should also decrease, which
was confirmed experimentally [8]. At small film thick-
nesses (α < 1/8), the appearance of smectic order indi-
cates the occurrence of a first-order phase transition
with jumps in the order parameters and temperature of
the smectic transition being the higher, the thinner the
film thickness [see Eqs. (11) and (12)]. It should be
emphasized that unless the parameter α is higher than,
or approximately equal to, 1/8, the temperatures of both
phase transitions are only slightly dependent on the
film  thickness—the high-temperature transition occurs
at τ = 0, whereas the low-temperature transition, at
τ ≈ –4a/c2. It seems that it is this situation that was
observed experimentally in [1]. Finally, if the film
thicknesses are too small (α ! 1/8), smectic order and
spontaneous polarization should appear simultaneously,
with the jumps in the order parameters being quite pro-
nounced and the transition temperature higher than in
the bulk film [see Eqs. (14) and (15)].

Of course, as in a conventional bulk copolymer, the
high-temperature transformation can be a first-order
phase transition, which is unimportant in this case. The
suggested model is useful, because it allows one to cal-
culate all the characteristics of phase transitions and
determine the main dimensionless parameter α and its
critical value. In the low-temperature phase, where the
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48L
---------, Pz*

c
3
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order parameters Pz and ψ0 induce one another, the tem-
perature behavior of polarization is unusual—it addi-
tionally increases with a decrease in the “temperature”
τ (below the point τ* = τ(t*) < 0).

It should also be emphasized that the energy of sur-
face cohesion described by Eq. (2) also plays an impor-
tant part in repolarization processes, because the inter-
face gives an additional contribution to the stabilization of
the polarized state. In this case, an oriented electric field
stabilizes this state, whereas the field of the opposite
sign should overcome a surface energy barrier to reori-
ent the polarization in the film bulk. Thus, in extremely
thin films, a certain bistability threshold exists or, in
other words, there is a certain critical field above which
the copolymer is repolarized and remains in this new
state even after the field is switched of. A similar effect
in ferroelectric liquid crystals was studied both theoret-
ically and experimentally with due regard for the possi-
ble rotation of polar molecules and the effect of surface
tension [9, 10]. In this case, the coercive field can be
rather intense and depends mainly on the properties of
the interface and not on the film thickness. In thick
films, only those volume effects related to nucleation as
a switching mechanism are important, which are char-
acterized by a less intense coercive field, because, in
this case, the energy contribution of the interface is rel-
atively small. With a decrease in the film thickness, the
interface starts playing a more important role, whereas
the volume effects become less important, because with
an increase in the film thickness, the coercive field
should be less intense. With a decrease in the film thick-
ness, i.e., with an increase in the above surface factor,
the hysteresis loops should become asymmetrical. All
these effects, including an increase in spontaneous
polarization with a decrease in the temperature below the
point of the low-temperature phase transition T ≈ 20°ë,
were observed experimentally [1, 2]. However, these
C

phenomena are not necessarily associated with “two-
dimensional ferroelectricity” proper and can be explained
by the reasons considered above.
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Abstract—The method for reconstructing the profile of the material density distribution arbitrarily varying
over the depth of the subsurface layer of the specimen from X-ray reflectometry data is suggested. For the first
time, the recurrent relationships for the derivatives of the specular reflection coefficient with respect to the
parameters of the subsurface layer are obtained, which reduce the volume of the necessary computations by one
to two orders of magnitude. The class of functions for which such density-profile reconstruction can be made
within a 5% error is characterized. The method is tested on thin tungsten and carbon films on silicon substrates
and thin films of porous silicon films with p+-type conductivity. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The recent development of high technologies
imposes additional requirements for the surfaces of var-
ious materials (semiconductor substrates, optoelec-
tronic devices, multilayer structure and superlattices,
porous materials, organic films and membranes, etc.) [1].
This, in turn, stimulated the development of the already
existing methods [2, 3] and the creation of new efficient
techniques for studying various surfaces [4–7].

X-ray methods are traditionally used for the efficient
nondestructive characterization of crystals and thin
subsurface layers [4, 7]. One of these methods is high-
resolution X-ray reflectometry (HRXR) [7–9] charac-
terized by relative simplicity, high speed (especially if
synchrotron radiation is used), no necessity to perform
vacuum studies, etc. The high angular collimation of
the primary beam in combination with the precision
angular analysis of the X-ray radiation scattered by the
specimen in the HRXR method allows one not only to
determine the root-mean-square height of the surface
roughness, but also to reconstruct the surface morphol-
ogy [10, 11]. The analysis of the scattering indicatrix
[12–14] and the construction of the two-dimensional
distribution of the X-ray intensity scattered by the spec-
imen in the vicinity of the direction of specular reflec-
tion [7, 15, 16] are considerably more informative than
integrated specular-reflection curves.

The development of thin-film technologies posed
the problem not only of film thickness and density but
also of roughness height and correlation length on the
surface and at the interfaces. In most cases, the applica-
1063-7745/02/4704- $22.00 © 20683
tion of the HRXR method to homogeneous films pro-
vides the reconstruction of these parameters from the
specular-reflection and diffuse-scattering data [17].
However, such determinations are usually based on
a priori data obtained, e.g., from growth conditions. In
some instances, if the density variations are rather weak
[18, 19] and the parameters of multilayer structures are
close to their technological values [20] or else if certain
values and forms of the electron-density distribution
are known [21], one can reconstruct the density profile
practically unambiguously.

At the same time, for locally inhomogeneous films
and multilayer structures with the density arbitrarily
varying both over the depth and along the surface, the
problem of the reconstruction of these parameters from
X-ray reflectometry data has not been solved as yet.
This is explained, on the one hand, by the fact that the
use of the adequate complicated structure model can
considerably increase the number of necessary param-
eters and often results in the loss of their physical
meaning and, on the other hand, by the increasing com-
plexity of the specimen morphology, which results in
the fact that the type of density inhomogeneities and
their location in the specimen depth are not always
known a priori. Also, in volume-inhomogeneous films
(e.g., in porous materials), a considerable part of the
radiation is scattered diffusely, and neglect of this scat-
tering channel in the consideration of the specular
reflection can often lead to erroneous results.

The present article is dedicated to the development
of a general approach to processing HRXR curves that
002 MAIK “Nauka/Interperiodica”
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provides the determination of the density profile aver-
aged over the surface characterized by arbitrary density
variations over the depth in the subsurface layer of the
specimen. The reconstruction of the density profile is
reduced to the minimization of the functional χ2 based
on the well-known recurrent formulas suggested by
Parratt. We obtained here, for the first time, the recur-
rent formulas for the derivatives of the specular-reflec-
tion coefficient in terms of the sublayer density in the
subsurface region, which reduces the volume of com-
putations by one to two orders of magnitude. The
method is tested on a number of model objects and is
used in the reflectometry studies of thin tungsten and
carbon films on silicon substrates and thin porous sili-
con films. The results obtained are compared with the
atomic-force microscopy data.

THEORY

Consider a subsurface layer of thickness L in which
the relative density ρ(z) = χ(z)/χ0 differs from the sub-
strate density, where χ(z) and χ0 are the material polar-
izabilities in the layer and substrate, respectively, and
the z-axis directed inside the material is normal to the
surface. Depending on the required accuracy, the layer
can be divided into N homogeneous sublayers with
smooth boundaries. The middle sections of the layers
pass through the points zn whose distribution along the
z-axis can be chosen, e.g., from the data known a priori.
In the absence of such data, the layer thicknesses are
assumed to be the same. The parameters of this model
are the relative densities ρ(z) at these points that are
constant within each sublayer, νn = ρ(zn) = χn /χ0,
where χn is the polarizability of the nth sublayer; the
layers are numbered in the direction from the substrate
(n = 0) to the vacuum (n = N + 1).

The solution of the problem of density-profile
reconstruction ρ(z) is sought in the form of such a set of
values of the parameters {ν} = (ν1, ν2, …, νN) that
would determine the angular distribution of the intensi-
ties of X-ray specular reflection, which is the closest to
the experimentally measured one. To determine the
parameter νn, one has to minimize the functional
χ2({ν}) in the form [22]

(1)

where m is the number of the points on the experimen-

tal curves,  and  are the measured and calculated
intensities, and si are the errors in the measurements of
the ith point of the experimental curve. We have to
solve the following set of N nonlinear equations:

(2)

χ2 1
m N–
-------------- Ii
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t
–( )

2
/si

2
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i 1=

m

∑=

Ii
e

Ii
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/∂νk 0, k 1 2 … N ., , ,= =
C

This set of equations can be solved in terms of the
sought parameters by the method of successive approx-
imations using the following iterative procedure [22]:

(3)

where j is the successive number of the iteration,

(4)

(5)

It should be noted that Eq. (1) includes the statistical
errors at each point of the measured curve. If the num-
ber of such points is large, the random quantity in
Eq. (1) tends to its average theoretical limit 〈χ 2〉  = 1. It
is the use of the procedure described by Eqs. (1)–(5)
that allows one to restore most adequately the defor-
mation and amorphization profiles of the crystal struc-
ture from X-ray diffraction data obtained in the wide
range of scanning angles in the vicinity of the Bragg
angle [23].

In order to calculate I t in Eq. (1), introduce the par-
tial amplitude coefficients of specular reflection Rn =

/ , where  and  are the amplitudes of the
reflected and incident waves in the nth layer, respec-
tively. Then, the intensity of specular reflection from
the whole system of N layers is determined as I t =
|R(θ)|2, where R(θ) = RN + 1, θ is the grazing angle of the
X-ray radiation with respect to the specimen surface.
The amplitude reflection coefficient R is calculated by
the recurrent Parratt relationship [24] as

(6)

where n = 0, 1, …, N,

(7)

(8)

Here, rn is the Fresnel coefficient of reflection from the
interface between the media with the polarizabilities
χn + 1 and χn, dn is the thickness of the nth layer, and λ is
the wavelength of the X-ray radiation. The recurrent
procedure described by Eq. (6) is performed under the
boundary conditions R0 = 0, ν0 = 1 (substrate), and
χN + 1 = 0 (vacuum).

The equations of the iteration procedure (3)–(5)
include the matrix of the intensity derivatives with
respect to the sought parameters, νk,

(9)
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where R = R(θi); θi is the grazing angle corresponding
to the ith point of the experimental reflection curve.

The calculation of m × N elements of matrix (9) is
the most time-consuming stage of each iteration
described by Eqs. (3)–(5). Therefore, we suggest here
calculating the derivatives ∂R/∂νk analytically, which
would allow one to essentially reduce the time neces-
sary for the calculation of derivatives (9). With this aim,
we have to differentiate Eq. (6) with respect to the kth
parameter. As a result, we arrive at the following impor-
tant recurrent relationship for calculating the deriva-
tives of the amplitude reflection coefficients Rn:

(10)

where k = 1, 2, …, n,

(11)

(12)

The quantities Cn, k include the derivatives of the
Fresnel reflection coefficients rn and the phase factors
gn with respect to the parameter νk that can readily be
calculated by analytical formulas. It should be indi-
cated that the rn values described by Eq. (7) depend
only on the parameters νn and νn + 1, whereas gn in
Eq. (8) depends only on νn. Therefore, at a fixed value
of k, all the quantities Cn, k (except for Ck – 1, k and Ck, k)
are zeroes, which considerably simplifies the problem.
With due regard for the equality R0 = 0, the boundary
condition for the recurrent procedure described by
Eq. (10) has the form ∂R0/∂νk = 0.

Now, consider the suggested recurrent procedure at
the given k in more detail. In accordance with Eq. (10),
we can write the formulas for the derivatives of interest
for each nth sublayer in the form

(13)

(14)

(15)

It follows from Eq. (13) that the real calculations
should be performed only at values n = k – 1, …, N, i.e.,
only beginning with the derivatives described by
Eq. (14). Moreover, according to Eq. (15), the deriva-
tives of Rn in the neighboring layers beginning with n =
k + 1 differ only in their coefficients Bn. Therefore, the
computations by Eqs. (13)–(15) with respect to n can be
reduced analytically to the following compact equation
for the derivative of the reflection coefficient with
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respect to the kth parameter for the whole system of
n layers:

(16)

The coefficients Pk in Eqs. (16) can be conveniently
calculated in the reverse order, i.e., at k values k = N,
N – 1, …, 1, by calculating the products Pk – 1 = PkBk.
The comparison of the last relationship with the defini-
tion of Pk, Eqs. (16), leads to the boundary condition
PN = 1. Using the recurrent relationship obtained for
Pk – 1 with a decreasing index k, we can successively
determine both Pk values and the sought derivatives of
the coefficients R in Eqs. (16) and then substitute these
values into Eq. (9).

Thus, the use of Eqs. (16) considerably reduces the
computation time. Indeed, in the numerical differentia-
tion of the intensities I t, one has to use individual recur-
rent procedure (6) for each k, which requires the perfor-
mance of N2 operations described by Eqs. (6)–(8). The
application of the approach suggested in this article to
the calculation of matrix (9) requires only N operations,
including the calculation of the quantities described by
Eqs. (6)–(8) with the use of Eqs. (11), (12), and (16). It
should also be noted that the above reduction of the
computer time is not associated with the use of any
approximations in the fitting procedure.

TEST OF THE METHOD ON MODEL 
STRUCTURES

To determine the reliability of the density profile
reconstruction, ρ(z), we tested the above iteration
method on a number of model profiles. First, using
recurrent Eq. (6), we solved the direct problem of the
determination of the specular-reflection coefficient
R(θ) for the known model profile ρ(z), and then, calcu-
lated the reflection intensity I(θ) = I0 |R(θ)|2G(θ) corre-
sponding to this profile, where I0 is the intensity of the
X-ray beam transmitted by the collimator slits. G(θ) is
the geometrical factor taking into account the change in
the fraction of the primary beam participating in reflec-
tion depending on the grazing angle. The function G(θ)
is determined by the beam shape and width and the
specimen’s dimensions [25]. This function was calcu-
lated with the invocation of the corresponding experi-
mental parameters. The intensity values I(θ) thus
obtained were considered as the measured ones and
were used in the iteration procedure of minimizing
functional (1). Then, different classes of density pro-
files restored within an accuracy of up to 4 to 5% were
thoroughly analyzed.

Figures 1 and 2 show the reconstructed density pro-
files for various model films on silicon substrates and
the corresponding specular-reflection curves for the
CuKα radiation. It is seen from Fig. 1 that a depth-
homogeneous film on the substrate with smooth transi-

∂R/∂νk = BkCk 1– k, Ck k,+( )Pk, Pk = Bn.
n k 1+=

N

∏
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tion layers on both interfaces is reconstructed within an
accuracy of about 4% (Fig. 1a, curves 1 and 2). If the
film is depth-inhomogeneous (e.g., a layer with a pro-
nounced boundary and a lower density in the bulk), its
density profile is restored with an accuracy of 5%
(Fig. 1b). The specular-reflection curves for the initial
model density profiles (Figs. 1a–1b, curves 1) are
shown in Fig. 1c. With an increase in the number of pro-
file “anomalies,” the degree of its inhomogeneity, and
the film thickness, the accuracy of the profile restora-
tion usually decreases (5 and 6% for profiles 2 in Figs. 2a
and 2b, respectively).

Curves 3 in Figs. 1b and 2a, 2b illustrate one of the
numerous initial approximations used in the iteration
procedure. Despite the fact that these curves have no
anomalies (homogeneous and linear profiles), the final
results turned out to be very close to the model profiles.

Thus, the analysis of the inverse problem solution
performed shows that the processing of specular-reflec-
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Fig. 1. (a, b) Model (solid curves 1) and reconstructed
(dashed curves 2) density profiles ρ(z) from (a) homoge-
neous and (b) weakly inhomogeneous films. Dashed-and-
dotted curve 3 shows the initial approximation; (c) specular-
reflection curves 1 and 2 calculated for the model profiles 1
shown in (a) and (b), respectively.
C

tion curves allows one to reconstruct smooth density
profiles (i.e., profiles smoothly varying over the depth)
with a sufficient accuracy. Thus, if CuKα radiation is
used, the relative change in the density in 1 nm-thick
layers should not exceed 30%.

If, according to the preliminary data, the film has Nt

transitional layers corresponding to the Gaussian distri-
bution of the interlayer roughness, their parameters
(thicknesses lk of the transitional layers, location in the
depth tk, and jumps in the density ∆ρk between the adja-
cent homogeneous layers) can become the parameters
to be determined by minimizing the functional χ2 .
The  densities of the individual sublayers stop being
independent and are now determined by the following
equation:

(17)ν i ∆ρk/ 1 1.67 zi tk–( )/lk–{ }exp+[ ] ,
k 1=

Nt

∑=
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Fig. 2. (a, b) (1) Model and (2) reconstructed density pro-
files of (a) moderately and (b) pronouncedly inhomoge-
neous films; specular-reflection curves 1 and 2 correspond
to the model profiles shown in (c); curve 3 (a, b) shows the
initial approximation.
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002



RECONSTRUCTION OF THE SURFACE LAYER DENSITY PROFILE 687
where zi is the coordinate of the ith sublayer. If the
thicknesses lk are equal to the root-mean-square heights
of the interlayer roughness, the terms in Eq. (17)
describe quite well the dependence of the material den-
sity on the layer depth averaged along the correspond-
ing interlayer boundaries [26].

EXPERIMENTAL

To analyze the possibilities provided by the
approach suggested for reconstruction of the density
profile in real structures, we performed a comparative
study of the density distribution both in continuous
films with strongly different densities (tungsten, car-
bon) and porous (silicon) films with nanoscale gradi-
ent-density changes.

Approximately 20-nm-thick tungsten and carbon
films were obtained on standard silicon substrates by
the magnetron sputtering method. Porous silicon layers
[25, 27, 28] were deposited onto standard (111)-ori-
ented p-type single-crystal wafers (KDB-10). Then, the
subsurface region of the substrate was doped with
boron atoms (thermal diffusion) up to a boron concen-
tration ~4 × 1020 cm–3. As a result, a p+-type layer was
formed in the vicinity of the surface. The films of
porous silicon were obtained by 150-s-long anodizing
in an electrolyte (the mixture of the fluoric acid HF and
ethyl alcohol C2H5OH in the proportions 1 : 2 and 1 : 1
for specimens 1 and 2, respectively) at a current density
of 10 mA/cm2 at room temperature [25]. The longitudi-
nal dimension of the region coated with a porous silicon
film was 15 mm.

The X-ray reflectometry curves were measured on a
triple-crystal TRS-1 diffractometer connected with a
MATEX controller. The radiation source was a 1.1-kW
X-ray tube with a copper anode. The beam of the char-
acteristic CuKα1 radiation was shaped by a threefold-
reflection monochromator Si(111) and the exit slits of
the collimator. The vertical and horizontal dimensions
of the exit slits during recording HRXR curves were
2 mm and 20 µm, respectively. The intensity of the pri-
mary beam at the collimator exit was I0 = 105 pulse/s.
A horizontal slit with an angular width of 160′′  was
placed before the X-ray detector. Specular reflection
intensities were recorded in the θ/2θ scanning mode.
To   exclude diffuse scattering (whose contribution
increases with an increase in the angle θ), the scattering
indicatrix was measured in the vicinity of the specular-
reflection peak of interest in the θ-scanning mode at
fixed positions of the specimen.

RESULTS AND DISCUSSION

The experimental specular-reflection curve from the
specimen coated with a tungsten film is shown by dots
in Fig. 3a. The corresponding reconstructed density
profiles are shown in Fig. 3b. The density distribution at
the film–surface interface is described by the model
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
with one transitional layer of form (17). It should be
noted that the agreement between the theory and the
experiment is better for the model with two layers of
form (17) at the vacuum–film interface and with vary-
ing density in the film bulk (solid curve 1 in Fig. 3b)
than for a homogeneous film with only one transitional
layer at this interface (Fig. 3b, dashed line 2). This is
seen from the comparison of experimental (dots) and
reflection curves 1 and 2 in Fig. 3a calculated based on
profiles 1 and 2 in Fig. 3b (reconstruction quality χ2 =
8 and 73, respectively).

Thus, we obtained the homogeneous density dis-
tribution (within an accuracy of 4%) for a (16.1 ±
0.2)-nm-thick tungsten film (Fig. 3b), which corre-
sponds to the technological data of specimen preparation.
Moreover, we also determined the thicknesses of the
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Fig. 3. (a, b) (1, 2) Experimental (dots) and theoretical spec-
ular-reflection curves from a tungsten/silicon structure.
Curve 1 shows the density profile reconstructed for a struc-
ture with one (dashed curve 2) and two (solid curve 1) tran-
sitional layers on the surface; (c) the probability density
function for roughness heights at the vacuum–film interface
calculated based on the specular-reflection data from the
specimen with (1) two and (2) one transitional layers and
(3) based on atomic-force microscopy data.
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688 BUSHUEV et al.
transition layers at the vacuum–film (~2.7 nm) and the
film–substrate (~1 nm) interfaces.

Figure 4a shows the experimental (dots) and calcu-
lated (1 and 2) specular-reflection curves for a carbon
film. The analysis of the reconstructed density profile of
a (20 ± 0.5)-nm-thick carbon film (according to the
technological data) shows that, in this case, the film is
somewhat inhomogeneous—the film density is slightly
lower in the center than at the periphery (Fig. 4b, solid
line 1). In addition to the inhomogeneity of the film
proper, we also observed a decrease in the density at the
film–substrate interface, which seems to be associated
with the presence of a thin native silicon oxide layer at
this interface. The density of the latter (2.0 ± 0.3)-nm-
thick layer was 1.9 g/cm3, which is lower by 10% than
the density of the native silicon oxide layer. It seems
that this decrease in the density is associated with car-
bon atoms incorporated into the film during its deposi-
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Fig. 4. (a) Specular-reflection curves from a carbon film on
the silicon substrate; (b) the corresponding density profiles
calculated for the models with (1) five transitional layers,
(2) different densities of the sublayers, and (3) in the initial
approximation; (c) functions W(z) obtained from (1) the
specular-reflection and (2) atomic-force microscopy data.
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tion. In the case of a tungsten film, this layer is not seen
because of the considerable absorption of the X rays by
this layer and its small contribution to scattering in
comparison with the contribution to scattering from
tungsten. All the specific features (transitional layers)
of the density distribution in carbon film are well
described by the model with five transitional layers of
form (17) (Fig. 4b, curve 1) and are reproduced in the
modeling of the density profile by a set of sublayers
with individual (independent) densities (Fig. 4b, dashed
curve 2). Corresponding specular-reflection curves 1
and 2 in Fig. 4a almost coincide (χ2 = 11 and 16, respec-
tively). According to the reflectometry data, the average
thickness of the carbon film, 21.5 ± 0.3 nm, is some-
what higher than the thickness that could be expected
from the sputtering conditions.

The derivative of the density profile ρ(z) with
respect to depth z at the vacuum–film interface in the
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Fig. 5. Density profiles of a porous silicon film calculated in
the models of (1) sublayers with different independent den-
sities and (2) a homogeneous film with smooth transitional
layers (a); (b) specular-reflection curves 1 and 2 correspond
to profiles 1 and 2, respectively; the dotted line indicates the
experimental data, the specular reflection intensities of
curve 2 are multiplied by 0.5.
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region of the transition layers yields the probability
density function of roughness heights of the film, W(z)
(Figs. 3c, 4c, solid curves 1). The data for tungsten and
carbon films are confirmed by independent measure-
ments of the distribution of roughness heights obtained
by the method of atomic force microscopy [29].
According to the atomic-force microscopy data, the
function W(z) for a tungsten film has two peaks—the
main one and the additional weak one (Fig. 3a, curve 3).
It is seen that both methods yield almost the same value
of the main peak, which corresponds to the root-mean-
square height of the roughness. Moreover, X-ray reflec-
tometry also allows one to record the additional peak
with parameters close to those obtained by atomic-
force microscopy. At the same time, the widths of the
function W(z) for a carbon film obtained by the two
methods are essentially different (Fig. 4c, curves 1
and 2), which seems to be associated with the impuri-
ties absorbed on the film surface. In the case of a dense
tungsten film, scattering from these impurities only
slightly affects the roughness parameters obtained,
whereas the density of the impurities absorbed on the
carbon film is rather close to the film density and, thus,
can considerably change the roughness parameters
“seen” by HRXR.

On the whole, the HRXR curves from both porous
silicon specimens are described sufficiently well if a
porous layer is modeled by a homogeneous film with a
transition layer of form (17) (Figs. 5, 6). However, in
order to reveal possible inhomogeneity along the film
depth, we have to use a multilayer model with the
unknown densities of individual sublayers to be deter-
mined. The corresponding density profiles are shown in
Figs. 5a and 6a (solid curves 1). It is seen that the more
thorough minimization of functional χ2 (1) than that in
the model of a homogeneous film with a smaller num-
ber of parameters allowed us to detect the inhomogene-
ity of the porous films studied.

In addition to a slow increase in the density with the
specimen depth, we also observed a noticeable density
modulation along the z-axis (Figs. 5a and 6a). The
angular range of the measurements for the first speci-
men was 609, whereas the increased diffuse back-
ground for the second specimen reduced the range of
the angular intensity measurements to 409. Therefore,
the smaller number of the experimental points for the
second specimen made its density profile less accurate.
Thus, the HRXR curve for specimen 2 is also well mod-
eled if another density profile is chosen (Fig. 6a, profile 2).
Nevertheless, profile 1 seems to be more probable,
because it reflects the general tendency of an increase
in density over the depth for both specimens prepared
under similar conditions. The comparison of profiles 1
in Figs. 5a and 6a shows that, with a decrease in the
alcohol concentration in the electrolyte, the degree of
porosity also decreases and the film becomes more
homogeneous, while its thickness remains almost con-
stant.
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CONCLUSION

Thus, we suggested a method for solving the inverse
problem of the density-profile reconstruction in the
subsurface region of the specimen from the specular-
reflection intensities. We also tested the suggested
method on model objects and real specimens. It is
shown that the method allows one to reconstruct within
an error of ≤5% a density profile distribution that varies
rather arbitrarily with depth. The class of functions that
allow one to reconstruct the density profiles is charac-
terized. For the first time, the recurrent relationships for
the derivatives of the amplitude specular-reflection
coefficients are obtained by minimizing the functional χ2,
which considerably (by a factor of N) reduces the vol-
ume of calculations.

The studies show that, depending on the value of the
χ(z)/χ0 ratio in continuous films, one can extract infor-
mation on the characteristics of transitional layers and
the thin intermediate layer formed at the film–substrate
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Fig. 6. (a) (1, 2) Density profiles for specimen 2 in the
model of sublayers with different independent densities and
of (3) a homogeneous film with smooth transitional layers
(dash and dot curve 3); (b) The specimens with density pro-
files 1 and 2 yield almost indistinguishable specular-reflec-
tion curves (fitting quality χ2 = 4 and χ2 = 5, respectively);
curves 2 and 3 are multiplied by 2/3 and 1.5, respectively.
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interface in these films. The measurements of a carbon
film on the silicon substrate provided the detection of a
native oxide layer and the reliable determination of its
thickness (2.0 ± 0.3 nm) and density (1.9 g/cm3). Thus,
the suggested approach can be used as one more
method of studying thin films. It should also be noted
that the insufficient intensities at large grazing angles in
a standard X-ray reflectometry experiment make the
detection of a native-oxide film and the determination
of its parameters a rather complicated and time-con-
suming problem.

The suggested method is also rather sensitive to the
statistical characteristics of the surface. The compari-
son of the data obtained on root-mean-square heights of
the surface roughness for carbon and tungsten films
with the corresponding atomic force microscopy-based
data showed quite satisfactory results. Finally, it should
also be indicated that, in some instances, the analysis of
structures with pores of nanodimensions did not allow
a unique reconstruction of the density profiles for two
reasons; first, because of the insufficient angular range
of recording the specular-reflection curves and, second,
because of the assumption that the diffuse-scattering
contribution was small. This assumption is invalid for
scattering from structures with local inhomogeneities
in the bulk, because diffuse scattering from pores is
more intense than diffuse scattering from interlayer
roughness. The latter problem is beyond the scope of
the present study and is the subject of our next article.
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Abstract—The kinetics of crystallization of the {0001}Ò, { }r, and { }R faces of quartz in 0.5 M Na2CO3
(M is molarity) aqueous solutions has been studied in the temperature range 200–450°C. It is established that the
dependence of the crystal growth rate on temperature in the logV–1/T, K coordinates is of a parabolic nature. It is
most probable that the nonlinearity of this dependence is associated with a deficiency in the solution of silica
monomers, taking part in the elementary event of quartz crystallization. The causes of a jumpwise decrease in the
activation energy of the growth of the c, r, and R faces at t > 280–325°C are considered. © 2002 MAIK
“Nauka/Interperiodica”.
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INTRODUCTION

Despite the wide use of Na2CO3 aqueous solutions
as mineralizers in the hydrothermal growth of quartz
(α-SiO2), the kinetics of quartz crystallization in this
solution is studied insufficiently in comparison with the
kinetics of quartz growth in NaOH [1–3] and is limited
to the temperature range 330–400°C [2]. Laudise, who
studied the crystallization kinetics of the pinacoidal

faces {0001} and the positive { } (+x) and negative

{ } (−x) faces of the trigonal prisms of quartz, also
considered the temperature dependence of the growth
rates of the c, +x, and –x faces in other alkali solutions
(NaOH, KOH, NaHCO3, and KHCO3) [2]. The experi-
ments were performed in 0.5 M aqueous solutions with
a constant coefficient of autoclave filling (0.75). It was
established that the temperature dependences of the
rate of quartz crystallization in the NaOH and KOH
solutions differ from the crystallization rate in the solu-
tions of sodium and potassium carbonate and bicarbon-
ate, where growth rate V linearly depends on the tem-
perature in the logV–1/T, K coordinates, whereas in the
NaOH and KOH aqueous solutions, this dependence is
parabolic.

Our study of the crystallization kinetics of the pina-

coidal faces and the faces of the small { }r and

large { }R rhombohedra in a 0.5 M NaOH aque-
ous solution performed in the temperature range 250–
450°C [3] confirmed the data [2] on the parabolic
dependence of the growth rates of various quartz faces
in this solution.

Dissolution of quartz in a Na2CO3 aqueous solution
is determined by the presence of chemically active
hydroxyl ions formed as a result of hydrolysis [4, 5].
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Then, the forms of silica presence in the Na2CO3 and
NaOH aqueous solutions and the mechanisms of
hydrothermal crystallization of quartz in these solu-
tions should be identical. The character of the tempera-
ture dependence of quartz growth in these solutions
should also be similar. The aim of our study was to ver-
ify experimentally this assumption and to continue
studying the role of the adsorbed-water film on the
quartz surface detected from the data on the kinetics of
quartz dissolution and crystallization in aqueous solu-
tions of various electrolytes [3, 6, 7].

EXPERIMENTAL RESULTS 
AND DISCUSSION

The kinetic studies were performed in 0.35-l labora-
tory autoclaves made of 1Kh18N9T steel. Heating was
performed in two-section electric furnaces that main-
tained the necessary temperature mode due to the vari-
ation of resistivity. The method is described in detail
elsewhere [8]. We used the standard 6.5 × 1.0 × 0.2-cm
seeding plates and a constant amount of the charge (60 g).
The seeds were located at fixed sites in the reaction
chamber. The experiments were performed under con-
ditions which excluded the stratification and spontane-
ous formation of quartz in the system and the precipita-
tion of mineralizer (Na2CO3) from the solution. To
exclude the effect of the solution density on the crystal-
lization rate of quartz in homogeneous solutions (usu-
ally taking place at t > 300°C [1, 8]), the coefficient of
autoclave filling (and, thus, the solution density) were
maintained constant (F = 0.75). To preserve the homo-
geneity of the solution at 200–300°C, the process was
performed at higher filling coefficients under the iso-
baric conditions (500 bar). We used 0.5 M solutions.
The experiment duration in the stationary mode ranged
002 MAIK “Nauka/Interperiodica”
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from 2.5 to 45.5 days depending on the crystallization
temperature. The growth rate was always estimated on
the same side of the seed.

The results of the experimental study of the depen-
dence of the crystallization rate of quartz (the pinacoi-
dal faces and the faces of small and large rhombohedra)
in the 0.5 M Na2CO3 aqueous solution in the tempera-
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Kinetics of quartz crystallization in 0.5 M Na2CO3 solution:
s the pinacoidal faces, n the faces of the small rhombohe-
dron, h the faces of the large rhombohedron.

Activation energy of growth (E) of various quartz faces in
0.5 M Na2CO3 and 0.5 M NaOH aqueous solutions

Face Temperature 
range, °C Solution E, kJ/mol

Pinacoid 325–450 Na2CO3 51.5

200–325 Na2CO3 92.1

Small rhombohedron 300–450 Na2CO3 53.2

200–300 Na2CO3 113.4

Large rhombohedron 280–450 Na2CO3 64.9

200–280 Na2CO3 127.3

Pinacoid 325–450 NaOH 59.0

250–325 NaOH 96.7

Small rhombohedron 325–450 NaOH 71.6

250–325 NaOH 121.4

Large rhombohedron 300–450 NaOH 88.7

250–300 NaOH 153.2
C

ture range 200–450°C with a temperature difference
of 20°C are shown in the figure. The dependence of the
logarithm of the crystallization rate of all the faces on
the reciprocal temperature has an obvious nonlinear
character. The mathematical treatment of the results
obtained indicates that all the experimental points on
the c, r, and R faces are best described by the following
parabolas:

(1)

(2)

(3)

where x = 1000/T and R2 is the correlation coefficient.
At the same time, the curves had almost linear seg-

ments in the temperature ranges t1 = 200–325°C and
t2 = 325–450°C for the pinacoidal faces, and t1 = 200–
300°C and t2 = 300–450°C for the faces of small and
t1 = 200–280°C and t2 = 280–450°C for the faces of
large rhombohedra. These linear segments are
described by the equations

(t1) = –4.8028x + 7.4662 (R2 = 0.987), (4)

(t2) = –2.6828x + 3.8122 (R2 = 0.980), (5)

(t1) = –5.9324x + 9.3468 (R2 = 0.993), (6)

(t2) = –2.7781x + 3.7243 (R2 = 0.994), (7)

(t1) = –6.6481x + 10.132 (R2 = 0.998), (8)

(t2) = –3.3876x + 4.2734 (R2 = 0.982). (9)

Thus, the deviation of the temperature dependence
of the growth rates of various quartz faces in the aque-
ous Na2CO3 solution from the linear dependence can be
revealed only if one studies a sufficiently large temper-
ature range. This explains the fact that nonlinearity of
this dependence was not revealed in the kinetic experi-
ments performed in the range 330–400°C [2].

The activation energies for the c, r, and R faces of
quartz calculated on the rectilinear segments of the acti-
vation-energy curves of these faces are indicated in the
table. For comparison, the table also lists the activation
energies of the same faces in a 0.5 M NaOH aqueous
solution [3]. The activation energy of growth of the
pinacoidal face and the faces of small and large rhom-
bohedra in 0.5 M Na2CO3 and 0.5 M NaOH aqueous
solutions in the temperature ranges from (200–250) to
(280–325°C) and from (280–325) to 450°C are essen-
tially different. The high activation energies at t < 280–

Vclog 3.0842x
2

– 6.9872x 3.7208–+=

R
2

0.996=( ),

Vrlog 3.922x
2
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R
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0.993=( ),
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325°C (exceeding 80 kJ/mol (20 kcal/mol)) indicate
that crystallization proceeds in the kinetic mode, i.e.,
under conditions where the growth rate is limited by the
kinetics of the processes at the crystal–mother solution
interface. The jumpwise change from the kinetic to the
diffusion mode of the process was revealed in the stud-
ies of the kinetics of quartz growth in NaOH [6, 7]
aqueous solution at 275–300°C. Thus, there are
grounds to believe that the kinetic difficulties in the
crystallization of the c, r, and R faces of quartz at t <
280–325°C are associated with the formation of a poly-
molecular layer of adsorbed water molecules on the
chemisorbed hydroxyl coating (of monomolecular
thickness as on the surfaces of other minerals [9]).
The  layer is formed by the mechanism of hydrogen
bonding.

The high activation energy of dissolution and crys-
tallization of quartz (and, thus, the low rates of these
processes in the presence of physically adsorbed water
molecules) can be explained as follows. The long-range
forces acting on the quartz surface and on the surfaces
of other minerals at distances of 1500–2000 Å [10] and
even the polymolecular layer of physically adsorbed
water molecules with the thickness in the above-indi-
cated range cannot be an insurmountable hindrance for
the dissolution and crystallization processes. However,
such a layer considerably hinders the diffusion of the
particles detached from the solid during its dissolution
or the particles of the feeding substance flowing to the
seed surface during crystallization. With an increase in
the temperature and the gradual destruction of the layer
of physically adsorbed water molecules, the decelerat-
ing effect of the layer becomes weaker, whereas the
rates of dissolution and crystallization increase. It can
be assumed that here the Palit rule [11], well-known in
organic chemistry, is valid, i.e.; if the active center par-
ticipating in the reaction is blocked by a hydrogen bond
or some other interaction of this center with the solvent,
the reaction rate in this solvent decreases [12].

As is seen from the tabulated data, the temperature
of the jumpwise change in the activation energy of crys-
tallization of various faces in the Na2CO3 solution cor-
responding to the moment of dehydration of quartz sur-
face changes as c(325°C) > r(300°C) > R(280°C) and
shows the different adsorption activity of hydroxyl-coated

(0001), ( ), and ( ) surfaces. The correlation
of the above series with a decrease in the growth rates
of the same faces allows one to state that the adsorption
activity of various quartz faces and their ability to be
crystallized vary in a similar way. This can be consid-
ered as an additional argument in favor of the concept
[3] according to which the hydroxyl groups chemi-
sorbed on the quartz surface and the polymolecular
layer of physically adsorbed water molecules in the
water film perform different functions. The oxygen

0111 1011
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atoms of OH-groups can participate in donor–acceptor
interactions, whereas the hydroxyl groups play the role
of active centers of quartz crystallization,

(10)

The layer of physically adsorbed water molecules hin-
ders the diffusion of silicate particles to the growing
surface of the crystal and, thus, also limits the crystalli-
zation rate.

CONCLUSIONS

The general signs of the kinetics of crystallization of
all the quartz faces (except those of a slowly growing
hexagonal prism [3]) in Na2CO3 and NaOH aqueous
solutions at 200–450°C are the deviation of the temper-
ature dependence of the growth rate from the linear one
in the logV–1/T, K coordinates and the jumpwise
decrease of the activation energy of crystallization at
t > 280–325°C.

These characteristics are associated with (1) dehy-
dration of the quartz surface and the destruction of the
layer of physically adsorbed water molecules in the
water film at t ~ 300°C (occurring by the mechanism of
hydrogen bonding) and (2) an increase in the fraction of
polymer silica groupings in the aqueous alkali solution
with an increase in the temperature, which leads to a
deficiency in silicon monomers participating in ele-
mentary events of quartz crystallization.

The adsorption activity of the quartz surface coated
with hydroxyl groups (with respect to the polar water
molecules) changes in the sequence c(325°C) >
r(300°C) > R(280°C) (the approximate dehydration
temperature of the surface is indicated in parentheses)
and correlates with the propensity of these faces to
crystallization. In turn, this indicates that hydroxyl
groups chemisorbed on the quartz surface play not only
the role of centers of physical adsorption but also the
role of active centers of chemical crystallization of
quartz.
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Abstract—Single crystals of CdF2 and low-temperature modifications of PbF2 and PbSbF4 are synthesized
from high-temperature hydrothermal solutions in the MF2–M'F2–HF (KF, NH4F)–(Pb)–H2O systems, where
M = Cd and Pb and M' = Sn. Ionic conductivity of the synthesized phases showed pronounced anisotropy of
fluoride-ion transport. Conductivity of α-PbF2 measured along two directions equals σ||a = 1.4 × 10–3 Sm/cm
and σ||c = 2.3 × 10–4 Sm/cm. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Inorganic fluorides are studied by many scientists
because of their high fluoride-ion conductivity. Simple
Pb and Cd fluorides and Pb–Sn tetrafluoride are known
as fluoride-ion conductors at 300 to 600°C, i.e., at tem-
peratures lower by several hundred degrees centigrade
than their melting points [1–9]. Although the chemical
compositions of these compounds are rather simple, the
growth of single crystals of some polymorphous modi-
fications is still a serious problem because of several
phase transitions undergone by these compounds in a
narrow temperature range.

The data on the structure and stability regions of
various modifications of fluorides under study are
rather contradictory [10–14]. Most of the experimental
data on ionic conductivity were measured on polycrys-
tal samples obtained by solid-phase synthesis, sedi-
mentation from solutions, and crystallization from
melts. Since the structural data indicate the anisotropy
of the electrophysical properties of the low-temperature
modifications of Pb difluoride and (Pb,Sn) tetrafluo-
ride, their detailed studies should be performed on sin-
gle crystals of these modifications.

The analysis of the known data on the synthesis,
structure, and polymorphism of PbF2 and PbSnF4 led to
the conclusion that the optimum method of obtaining
single crystals of their low-temperature modifications
should he hydrothermal synthesis. A finely crystalline
powder or very small crystals (0.1–0.3 mm) of CdF2,
PbF2, and PbSnF4 can be obtained by deposition from
low-temperature solutions. In [12], large CdF2 and PbF2
crystals were grown by the method of directed crystal-
lization from melts; however, because of high melting
points, only the β-PbF2 phase was crystallized, whereas
the α-modification was formed only as an impurity.
Unfortunately, tin–lead tetrafluoride cannot be synthe-
1063-7745/02/4704- $22.00 © 20695
sized from melt because, below the melting point
(~399°C), PbSnF4 undergoes a number of phase transi-
tions [10, 11]. The experiments performed in [14]
showed that PbSnF4 single crystals can be grown by the
method of hydrothermal synthesis.

The present study was aimed at the synthesis of sin-
gle crystals of low-temperature PbF2 and PbSnF4 mod-
ifications by the hydrothermal method and measure-
ments of conductivity of the grown crystals.

EXPERIMENTAL

Single crystals were obtained by hydrothermal
synthesis under conditions of a direct vertical temper-
ature gradient. The experiments were performed either
in 40-cm3 silver-lined steel autoclaves or in 170-cm3

autoclaves with the use of copper ampules or Teflon
cans. The temperature in the dissolution zone varied
from 170 to 450°C; the vertical temperature gradient
ranged from 1.9 to 2 deg/cm. The pressure was deter-
mined from the pressure–volume–temperature (PVT)
dependences for water and aqueous solutions with the
fill coefficient varying within 0.65–0.80 depending on
the solvent (HF, NH4F, and KF solutions) concentra-
tion. Single crystals of CdF2 fluoride were synthesized
in the CdF2–HF(NH4F)–H2O system, those of PbF2, in
the PbF2–KF(NH4F)–H2O system, and those of
PbSnF4, in the PbF2–SnF2–HF(KF)–H2O system.

The final products of crystallization were analyzed
by X-ray phase analysis (Rigaku D-max III-C auto-
mated diffractometer), X-ray diffraction analysis (sin-
gle crystal SYNTEX-2 diffractometer), the methods of
optical (optical binocular microscope, ZRQ-3 goniom-
eter) and electron (JXA-8600S) microscopy, and differ-
ential thermal analysis (DTA) (Sinku Rico TA 7000).
002 MAIK “Nauka/Interperiodica”
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Table 1.  Experimental data on the synthesis of fluorides under hydrothermal conditions

Starting materials Solvent
concentration tgr, °C Characteristics of grown crystals

CdF2 2% HF 280 CdF2, octahedral crystals with 1- to 2-mm-long octahedron edges

CdF2 10% NH4F 280 CdF2, finely crystalline powder

*PbF2 10% NH4F 450 α-PbF2, thin (100)-platelike crystals (75–65%);
β-PbF2, finely crystalline powder (25–35%)

*PbF2 6% NH4F 450 α-PbF2, thin (100)-platelike crystals (65–50%);
β-PbF2, finely crystalline powder (35–50%)

PbF2 10% NH4F 280 α-PbF2, 0.1- to 2-mm-long prismatic crystals with the β-PbF2,
(120}, {010}, and {012} main simple forms

PbF2 6% NH4F 280 α-PbF2, 0.1- to 0.2-mm-long needlelike crystals

*PbF2 10% KF 450 α-PbF2, 0.2- to 0.3-mm-long isometric crystals (10%);
β-PbF2, finely crystalline powder (90%)

PbF2 10% KF 280 α-PbF2, elongated prismatic crystals with 5-mm-long edges 
and well-developed {100} and {010} faces

PbF2 20% KF 270 α-PbF2, elongated prismatic crystals with up to 10-mm-long edges
and well-developed {100}, {010}, and {012} faces

PbF2 (crystals) 20% KF 280 α-PbF2, up to 17-mm-long crystals with prismatic habits 
and well-developed {100}, {010}, and {012} faces

PbF2 + SnCl2 ⋅ H2O 10% NH4F 180 PbFCl, finely crystalline powder (80%); PbF2, thin platelike crystals
up to 5 mm in size (20%)

PbF2 + SnF2 (1 : 1) 20% KF 270 K2SnF6 ⋅ 6H2O, up to 5-mm-large crystals with dipyramidal habits; 
β-PbF2, up to 10-mm-long crystals with prismatic habits

PbF2 + SnF2 (1 : 1) 20% KF 380 α-PbF2, thin 10 × 3 × 0.2 mm3-large platelets (40–50%); SnF2, finely 
crystalline powder

**PbF2 + SnF2 (1 : 1) 0.2% HF 180 α'-PbSnF4, up to ~0.1-mm-long platelike crystals (40–45%); β-PbF2, 
finely crystalline powder (5–10%); α-PbF2, finely crystalline powder 
(25%); SnF2, finely crystalline powder (25%)

PbF2 + SnF2 + Pb
(1 : 1.2 : 0.2)

0.2% HF 180 α'-PbSnF4, 5 × 5 × 0.02-mm-large (100)-platelike crystals

PbF2 + SnF2 + Pb 2% HF 200 α'-PbSnF4, 10 × 10 × 0.02-mm-large (100)-platelike crystals
Bulk resistance was determined using electrochem-
ical C|PbF2(PbSnF4)|C cells. Temperature measure-
ments were made in an experimental setup that
allowed  one to measure electric conductivity in the
range 293–700 K with an accuracy in temperature
maintenance of ±1 K. The impedance was measured in
a ~0.1-Pa vacuum by a TESLA BM507 impedanceme-
ter in the frequency range from 5 Hz to 500 kHz. The
preliminary studies showed that the contribution of
electron conductivity to the total electrical conductivity
of PbF2 and α'-PbSnF4 crystals can be ignored. Con-

ductivity was calculated by the formula σ = (h/S) ,
where Rv is the bulk resistance of the specimen associ-
ated with the anionic transport, h is the specimen thick-
ness, and S is the surface area of the specimen. The

Rv
1–
C

measurements were made on α-PbF2 single crystals
(along and normally to the c-axis), α'-PbSnF4 single
crystals (along the c-axis), and polycrystal ceramics.

RESULTS AND DISCUSSION

Growth of single crystals. The results of the exper-
iments on hydrothermal synthesis of inorganic fluo-
rides are shown in Table 1. Most of the experiments
were made in Teflon-lined autoclaves at temperatures
below ~280°C. The experiments performed in copper-
and platinum-lined autoclaves are marked with one and
two asterisks, respectively. The X-ray diffraction and
DTA data obtained for the specimens are indicated in
Table 2.
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Table 2.  Unit-cell parameters and the first phase transitions observed in the heating of the synthesized fluoride crystals

Compound
Unit-cell parameters at 25°C

Sp. gr. First phase transition
observed during heatinga, Å b, Å c, Å γ, deg

CdF2 5.391 Fm3m

PbF2 7.652 6.439 3.899 Pcnm α-PbF2  β-PbF2

α'-PbSnF4 4.191 4.193 22.962 91.73 P21/n α'-PbSnF4  β-PbSnF4

349°C

82°C
Single crystals of CdF2 were obtained in the CdF2–
HF–H2O system at the optimum HF concentration
equal to ~2 wt %. Colorless crystals were obtained for
the first time in the form of transparent {111} octahedra
with well-shaped faces (Fig. 1). X-ray diffraction anal-
ysis of the crystals confirmed that they belong to the
fluorite structure type.

Single crystals of PbF2 were synthesized in the
PbF2–NH4F–H2O and PbF2–KF–H2O systems; the opti-
mum KF solvent had a concentration of ~20 wt % and the
optimum crystallization temperatures ranged within
270–280°C. According to the data of X-ray phase anal-
ysis, these crystals were identified with the low-temper-
ature α-PbF2 modification (Fig. 2, Table 2). With an
increase in the solvent temperature and concentration,
CR, the crystal habit changed from a needle-like habit
(elongation in the direction of the c-axis) to a habit
flattened along the a-axis and somewhat elongated
along the c-axis (Fig. 3). At low growth temperatures,
the main faces were two pinacoidal {010} and {100}
and two prismatic {012} and {120} ones. With an
increase in the growth temperature, the {120} faces dis-
appeared and the {100} faces were developed. The
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
analysis of the growth morphology of the face surfaces
led to the conclusion that the (100) face of α-PbF2 crys-
tals was a singular one and grew by the layer-by-layer
mechanism (steps repeating the face configuration, flat-
tening of crystals). It is possible that the dislocation
mechanism could be switched on in the course of crys-
tal growth (the formation of growth hillocks). The (120)
faces grew by the normal growth mechanism. The
{012} faces seem to be singular but showed a more pro-
nounced tendency to the transition to the rough atomic
state of the surface and normal growth mechanism,
which was indicated by the presence of growth hillocks
and the higher growth rate of these faces in comparison
with the growth rate of the (100) face. The DTA data
proved the occurrence of the α-PbF2  β-PbF2 phase
transition at a temperature of 349 ± 5°C.

Single-phase PbSnF4 crystals were synthesized only
in the PbF2–SnF2–HF–H2O system with added lead to
prevent tin oxidation. In KF solutions with a finely
crystalline PbF2 and SnF2 mixture as a starting nutrient,
pyramidal K2SnF4 · 6H2O crystals were formed at tem-
peratures below 300°C. According to the data of X-ray
diffraction analysis, PbSnF4 crystals grown from the
100 µm

Fig. 1. Single crystals of CdF2 synthesized in the CdF2–HF–H2O system.
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1 mm

Fig. 2. Single crystals of α-PbF2 synthesized in the PbF2–KF–H2O system.
HF solutions are the α'-modification of PbSnF4 crystals
and have the shape of thin platelets of the square habit
(Fig. 4) with unit-cell parameters corresponding to
those indicated in [10] for tetrafluoride obtained by
deposition from solution.

Fluoride polymorphism. Among all fluorides stud-
ied in our works, only CdF2 has one modification with
the fluorite structure type. There are two modifications
of PbF2 (α and β), whereas, according to various data,
PbSnF4 has from three to five polymorphous modifica-
tions (Table 3). The known data on the phase-transition
temperatures and the structural characteristics of these
phases are inconsistent, which seems to be caused by
C

different methods of their synthesis and different treat-
ment of the synthesized crystals (cooling, keeping in a
certain atmosphere, annealing, etc.). As a result, the
synthesized PbxSn1 – xF4 solid solutions (0.5 < x < 0.75)
or the mixture of the phases α + α', α' + β, α + β, and β +
β' were often mistakenly identified with pure α-, β-, and
γ-modifications. The polymorphism scheme indicated
in [10] seems to be the most adequate, because the
phase transition temperatures in [10] were reliably
determined from the differential calorimetric analysis
data for crystals synthesized at different temperatures
(20 and 250°C). It has the form 
α -PbSnF4

α'-PbSnF4

β-PbSnF4 β'-PbSnF4 γ-PbSnF4 melt.350°C 380°C

80°C

80°C

390°C
At room temperature, at least two modifications, α
and α ', can coexist (the reversible transition between
these phases occurs at t < 80°C). Also, these phases
have similar structures and activation energies of con-
ductivity; the conductivity of α'-PbSnF4 is somewhat
higher than the conductivity of the α-phase. With an
increase in the temperature, three phase transitions suc-
cessively take place in the solid phase, β  β' 
γ-PbSnF4.

The DTA data indicated several thermal effects, of
which only the first one could be reliably interpreted (at
81 ± 1°C), because the DTA measurements were made
in air. This effect corresponds to the phase transition
α'  β which proceeds at a high rate. The reverse
transformation proceeds very slowly, is characterized
by a considerable hysteresis, and cannot be recorded on
the cooling curve. At heating above 250°C, the crystal
changes its color because of the interaction with CO2
and H2O vapors. Despite the changes occurring in the
crystal, the transition β'  γ is still quite pronounced
at 399–400°C. Heating of the crystal up to 420°C in air
did not lead to its melting.

Ionic conductivity. Ionic conductivity of PbF2 and
SnF2 was discussed elsewhere [5, 9–14]. Most of the
data analyzed were obtained on polycrystal specimens.

The bulk α-PbF2 single crystals up to several milli-
meters in size allowed us to make electrophysical mea-
surements along the crystallographic a- and c-axes.

Figure 4 shows the temperature curves of ion con-
ductivity for α-PbF2 single crystals along the crystallo-
graphic a- and c-axes in the temperature range 300–450 K
(i.e., below the temperature of the polymorphous trans-
formation into the β'-phase). The α-PbF2 crystals
showed anisotropy of conductivity. The ratio of the
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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Table 3.  Stability ranges and unit-cell parameters of different polymorphous modifications of PbSnF4 crystals

Modifi-
cation

Stability 
ranges, °C System

Unit-cell parameters
Z Sp. gr. Reference

a, Å b, Å c, Å γ, deg

α <80 Monoclinic 4.204 4.205 11.414 91.56 8 P2/n [10]

6.021 5.840 22.875 P2/n [13]

α' 80–85 Monoclinic 4.191 4.193 22.83 91.9 P21/n [10]

orthorhombic 22.84 5.850 6.021 Aba2 = C2ca [3]

α'' <80 Orthorhombic 6.010 5.886 11.388 4 [1]*

6.00 5.79 11.41 4 C222 [12]**

Cmma

β 80–350 Tetragonal 4.216 11.407 P4/n [10]

80–355 4.22 5.70 1 P4/nm [12]

<260–290 4.219 11.415 [1]***

β' 350–380 Tetragonal 4.215 11.744 2 P4/nm [2]

60–390 16.83 23.063 [1]

350–380 5.969 51.51 36 P42/n; P42/nn [10]

γ 355–380 Cubic 5.91 2 [12]

γ' <420 6.05 [1]

* The phase is identified by the author as α-PbSnF4.
** The phase is identified by the author as α-PbSnF4. 

*** The existence range of α-PbSnF4 is indicated.
conductivities along the a- and c-axes, σ||a /σ||c, varies
from 3.1 at 300 K to 6.3 at 400 K. The activation energy
of the ionic transport determined in conductometric
measurements was 0.36 eV along the a-axis and 0.31 eV
along the c-axis, which is in good accord with the
migration energy of fluoride-ion vacancies (0.33–0.38 eV)
in polycrystal line α-PbF2 specimens [6, 9]. Thus, the
results obtained indicate the vacancy nature of ionic
conductivity in α-PbF2 single crystals.

The absolute ionic conductivity of hydrothermally
grown α-PbF2 crystals turned out to be much higher
than for ceramic specimens obtained by solid-phase
synthesis, σ||a = 1.4 × 10–3 Sm/cm, σ||c = 2.3 ×
10−4 Sm/cm, and σcer = (1–2.5) × 10–6 Sm/cm at 400 K
[5–9]. We assumed that the high ionic conductivity of
hydrothermally grown α-PbF2 crystals in comparison
with the conductivity of crystals grown by other meth-
ods can be explained by the partial replacement of Pb2+

by K+ ions from the KF solution. Thus, the formation of
VF vacancies might be associated with this replace-
ment. However, X-ray microanalysis revealed no potas-
sium atoms in the crystals studied and, therefore, the
cause of the high conductivity of hydrothermally-
grown α-PbF2 single crystals can be established only
upon some additional experiments.

Because of the perfect cleavage and platelike habit
of α'-PbSnF4 single crystals, their conductivity was
measured only along the c-axis (Fig. 5). Therefore, we
CRYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
had to make electrophysical measurements also on 1
to  3-mm-thick ceramic tablets α'-PbSnF4 5 mm in
diameter. The inert electrodes were prepared from the
DAG-580 graphite paste applied to opposite sides of
the specimens.

It is seen from Fig. 5 that in the vicinity of the phase
transition temperature Tα'–β = 354 K, the temperature
dependence of ionic conductivity of ceramic specimens
is nonlinear. On the contrary, the temperature depen-
dence of conductivity along the c-axis of single crystals
shows no anomalies. The activation energy of conduc-
tivity in the α'-PbSnF4 single crystals equals 0.30 eV.

(100)
(010)

(1
20

)

(012)

(100) (100)(010)
(010)

(012)
(012)

T, K; CR

Fig. 3. Changes in the habit of α-PbF2 crystals grown at dif-
ferent temperatures and concentrations of the solvent.
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The electrophysical measurements made on single
crystals and ceramic specimens indicate the pro-
nounced anisotropy of the ionic transport in PbSnF4:
the σcer /σ||c ratio equals 50 at 300 K (α'-phase) and 250
at 417 K (β-phase). Thus, PbSnF4 crystals can be con-
sidered as two-dimensional superionic conductors with
fast transport of fluoride ions in the crystallographic
planes normal to the c-axis.

CONCLUSION

Single crystals of CdF2 difluoride and low-tempera-
ture modifications of PbF2 and PbSnF4 fluorides were
synthesized by the method of direct temperature gradi-
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–3.0
2.2 2.4 2.6 2.8 3.0 3.2 3.4
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2
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log( σT) [Sm K/cm]

Fig. 4. Temperature curves of ionic conductivity of α-PbF2
single crystals along the (1) a- and (2) c-axes.
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4, 5

103/T, K–1

log( σT) [Sm K/cm]

Fig. 5. Temperature dependences of ionic conductivity in
α'-PbSnF4: (1, 2, 3) ceramic specimens, (4, 5) single crys-
tals.
C

ent under hydrothermal conditions. The conditions for
the monophase crystallization of CdF2, PbF2, and
PbSnF4 from F-containing solutions are determined.

The conductivity of hydrothermally grown α-PbF2
crystals is measured at temperatures up to 420 K. It is
established that the transport of fluoride ions is highly
anisotropic (the σ||a /σ||c ratio is 3.1 at 300 K and 6.3 at
400 K). Electrophysical studies of single crystals of the
low-temperature α'-PbSnF4 modification also showed
pronounced anisotropy of fluoriode-ion transport and
much higher conductivity in α'-PbSnF4 single crystals
in comparison with the conductivity of the ceramic.
The PbSnF4 tetrafluoride can be considered as a two-
dimensional superionic conductor in which fast fluo-
ride-ion transport proceeds in the crystallographic
planes normal to the c-axis.
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OBITUARIES

   
Anatoliœ Georgievich Luchaninov
(March 14, 1948–December 27, 2001)
On the night of December 27, 2001, Anatoliœ Geor-
gievich Luchaninov suddenly died in the middle of his
creative work, having completed his doctoral disserta-
tion. He left life while writing his last article. While in
a coma, he still continued citing the formulas from this
article.

Luchaninov was one of those rare physicists of our
time who luckily combined two gifts—he was both an
outstanding experimenter and an exceptional theoreti-
cian.

Upon graduating from the Physics Faculty, Rostov-
on-Don University, in 1971, he started working at the
plant Avrora, where he successfully combined his work
in industry with research. His first publication (co-
authored with V.Z. Borodin and A.I. Sogr) was pub-
lished in 1971.

In the late 1970s, he paid attention to the gap exist-
ing in studies of the symmetry aspects of the physics of
ferroelectrics and related materials. Luchaninov man-
1063-7745/02/4704- $22.00 © 20701
aged to show, first theoretically and then also experi-
mentally, that a piezoelectric ceramic depolarized by a
crystal field in such a way that its macroscopic polariza-
tion is zero possesses a considerable piezoelectric
effect but does not possess any pyroelectric effect (an
analogue of quartz). These studies formed the basis for
his candidate dissertation in physics and mathematics
(1987) entitled Piezoelectric Effect in Electrically Depo-
larized Polycrystalline Ferroelectrics, written under the
guidance of L.A. Shuvalov and A.V. Shil’nikov. Con-
tinuing working as a main researcher in industry,
Luchaninov actively continued the research along these
chosen lines and published his articles in the most pres-
tigious Soviet and foreign scientific journals.

In October 1999, he started working on his doctor-
ate at the Department of Physics, Volgograd Academy
of Architecture and Construction (advisers Shil’nikov
and Shuvalov). On December 20, 2001, he presented
the results of his doctoral dissertation entitled Piezo-
electric Effect in Nonpolar Ferroelectric Materials at a
002 MAIK “Nauka/Interperiodica”
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departmental meeting. Developing the results of his
candidate dissertation, Luchaninov showed, in particu-
lar, that the theoretical model in which piezoelectric
ceramic is considered as a system consisting of crystal-
lites with identical properties cannot be used for the
qualitative description of experimental data. For the
analysis of the effective characteristics of polarized and
electrically depolarized piezoelectric ceramics, he sug-
gested using a more adequate model in which, in accor-
dance with the experimental data, one has also to take
into account (1) the domain structure of crystallites, (2)
the irreversible displacement of 90°-domain bound-
aries, and (3) the rearrangement of the domain structure
under the action of the polarizing field. Using this
model, Luchaninov calculated the pyroelectric, dielec-
tric, piezoelectric, elastic, and inelastic constants of the
BaTiO3 ceramic as functions of the degree of specimen
polarization and obtained good agreement between the
predicted and experimental results. To be able to pre-
dict the values of these constants for an arbitrary piezo-
electric ceramic, he constructed a system of nonlinear
equations based on the solution of the problem of pyro-
C

electrically active inclusions in a transversely isotropic
pyroelectrically active medium. These equations are, in
fact, the most general formulation of the method of
effective medium and rigorously take into account the
piezoelectric interactions in the material.

Luchaninov published about 70 articles, had 10 inven-
tion certificates, and delivered about 20 papers to vari-
ous international and national scientific conferences.

Luchaninov not only successfully worked in indus-
try and was a gifted scientist. He also knew and loved
literature, especially classical Russian authors.

Luchaninov was a wonderful modest person. He
was always surrounded by many friends and was
always ready to help them. He was also a wonderful
family man—a son, husband, father, and grandfather.

Luchaninov’s death is an irreplaceable loss to sci-
ence and industry. Many people who knew him well
will always keep his noble image in their memory.

Translated by L. Man
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Marina Aleksandrovna Chernysheva
(December 14, 1911–January 31, 2002)
On January 31, 2002, Marina Aleksandrovna
Chernysheva, the oldest scientist at the Institute of
Crystallography of the Russian Academy of Sciences,
died in the ninety-first year of her life. A gifted scien-
tist, an industrious, kind, and charming person, she
belonged to the cohort of founders of the Institute of
Crystallography. She started her research in a team
guided by Aleksei Vasil’evich Shubnikov in 1942.
According to her own words, she was charmed with the
magic beauty of crystals and devoted her scientific life
to crystals. These studies not only gave her deep satis-
faction as a researcher, but also enormous an esthetic
pleasure.

Chernysheva was a brilliant experimenter and was
very demanding in her research; she was an unsur-
passed expert on the application of various optical
methods to the studies of crystals. At the same time, she
took an active part in the design and development of
1063-7745/02/4704- $22.00 © 20703
new devices and instruments necessary for planned
experiments.

Some outstanding scientific achievements are
closely associated with her name. At the beginning of
her scientific carrier, Chernysheva participated in the
tests of highly durable composition materials—the first
glass-reinforced plastics in this country—created at the
Institute of Crystallography in the 1940s to 1950s by
the outstanding architect A.K. Burov.

In her dissertation on twinning in Seignette salt, she
used the polarization–optical method and, for the first
time, managed to visualize ferroelectric domains and
investigate and interpret their physical nature. This
result received world recognition, and entered the
golden foundation of science as an important discovery
in the physics of ferroelectrics.

She applied the unique method of high-speed film-
ing in polarized light to the study of the distribution and
002 MAIK “Nauka/Interperiodica”
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evolution of stresses in crystals in the process of their
plastic deformation under conditions of forbidden glide,
and achieved remarkable results on nucleation and the
development of fault formation.

Chernysheva made a considerable contribution to
the growth of lasing crystals, which was formulated and
solved at the Institute of Crystallography in the 1960s.
She was among the designers of a unique conoscope for
studying and measuring stresses in large crystals. For
the creation of this device, Chernysheva was awarded
the Vavilov prize. This device was successfully used in
experiments on stress relaxation in corundum crystals
during annealing. The latter studies, performed in coop-
eration with outstanding scientists of the Institute of
Crystallography such as M.V. Klassen-Neklyudova,
V.L. Indenbom, and A.A. Urusovskaya, considerably
improved crystal quality and the elements used in the
first ruby lasers.

Up to the last days of her life, Chernysheva kept a
clear mind and interest in life, whose main component
was always work and science. Only recently, she com-
pleted and published a book about her father Academi-
cian A.A. Chernyshev, an outstanding physicist in the
field of electricity who was one of the founders of this
science in this country. She was interested in all aspects
of scientific life at the Institute of Crystallography and
C

continued active studies with a number of its laborato-
ries. She was always a benevolent adviser to all her col-
leagues. Those who come to her always found under-
standing and support from her side.

Chernysheva was an all-round educated person, she
loved and knew literature and music, played piano, and
was a serious painter. She was a natural carrier of the
cultural and moral values of the Russian intelligentsia,
disinterestedly devoted to life and work in her native
country.

Despite all the historical catastrophes of the 20th
century and the severe tests that befell her generation,
Chernysheva and all those cultural and moral values
safely reached the 21st century. We should like to
believe that the “thread connecting our days” will never
be torn, and the succession of new generations will not
waste the best tradition of the Russian intelligentsia of
whom Marina Aleksandrovna Chernysheva was a shin-
ing example.

The memory of this remarkable woman shall always
be in the grateful hearts of all those who were happy to
be friendly with her, work with her, and meet her on
their paths through life.

Translated by L. Man
RYSTALLOGRAPHY REPORTS      Vol. 47      No. 4      2002
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ERRATA

    
We regret the error made in the article.
The correct formula for qz has an additional term and should be written as

(6)

The second term in this formula may be essential in the analysis of asymmetric diffraction schemes. The
authors are grateful to S.S. Fanchenko, who showed interest in their article and drew their attention to the
incompleteness of Eq. (6) in the article.

Translated by L. Man

qz k0 ∆θ θB ψ–( )cos 2α θB ψsinsin–[ ] .=

Erratum: “Triple-Crystal X-ray Spectroscopy of Diffuse
Scattering from Tracks”
[Crystallogr. Rep. 46 (5) (2001), pp. 717–721].

V. N. Peregudov and É. M. Pashaev
1063-7745/02/4704- $22.00 © 2002 MAIK “Nauka/Interperiodica”0705
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