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Spin-combustion regimes were discovered while
burning cylindrical samples pressed from hafnium pow-
der in a nitrogen–argon mixture [1]. The authors of [1]
observed the appearance and spiral motion of a bright
spot (combustion center) over the lateral surface of a
sample. Analysis of experiments has shown that the
interaction between hafnium and nitrogen predomi-
nantly occurs in near-surface sample layers. In the case
of gas-free combustion, surface layers can also often be
distinguished because of their interaction with atmo-
spheric oxygen, cooling, or special heating (“thermal
cylinder” [2]). These facts make it possible to reduce
solving the problem to considering combustion of a
thin cylindrical shell. In [3], typical spin regimes were
investigated numerically. However, later on, other
regimes of spin propagation of the combustion front
were experimentally obtained. In addition, counter
motion of the combustion centers was observed in the
experiments [4, 5]. As was shown in [3], in the case of
classic spin burning, the motion of a combustion center
can occur in both clockwise and counterclockwise
directions. In addition, in the same region of parame-
ters, there exists also a possibility of counter combus-
tion-center motion, although such a regime is unstable.

In this study, we demonstrate that there exist regions
of parameters wherein the counter motion of combus-
tion centers is stable and the mechanism of possible
counter propagation of the combustion front can be
explained.

We consider the combustion of a sample having the
shape of a thin-walled tube pressed from a mixture of
solid reagents. We assume that initial reagents, as well
reaction products, being in the solid phase, are charac-
terized by the thermal homogeneity. The ignition is per-
formed on the upper end of a sample, and the combus-
tion front moves from the top to the bottom. We employ
a simplified model of the process, which takes into
account only the heat-transfer in the sample, the mac-
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rokinetics of interaction between reagents, and the heat
dissipation to the environment of the cylinder.

The mathematical model can be written out in the
following dimensionless form:

We use the following notation:
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Fig. 1. (a) Positions of the combustion front at successive (∆τ = 10) time moments (αst ≈ 0.75, R0 ≈ 13) and the temperature distri-
bution in the combustion front (only the near-front domain is shown); (b) formation of a high-temperature zone at a point of merging
combustion centers; (c) and (d) propagation of the front from the merging point upon decreasing the temperature in the reaction zone.
Here, T is temperature; T∗  = T0 +  is the characteristic

temperature (we take it as equal to the adiabatic-com-
bustion temperature); T0 is the ambient temperature and
the initial temperature of the sample; c is the specific
heat; Q is the thermal effect of the reaction; η is the
conversion level for a limiting component; ρ0 is the
mass of the condense phase per unit volume; t is time;
ϕ and h are the spatial coordinates (angular and along
the cylindrical axis, respectively); λ is the heat conduc-
tivity; k0 is the preexponential factor; E is the activation
energy; R is the gas universal constant; αt is the factor
determining the heat-transfer from the sample surface
to the environment (in this study, αt = 0); r0 and h0 are
the radius and the height of the cylinder, respectively;
tign is the time of action of the ignition pulse; and Td and
Ar are the Thodes and Arrhenius criteria, respectively
(similar to [6]).

This mathematical model of the combustion process
was numerically investigated using the finite-difference
method. We employed a nonuniform spatial calculation
mesh with a nonfixed number of nodes, which was
adapted to the desired solution. To do this, the mesh
nodes were concentrated in the domain of the combus-
tion front. As the sample burns, sample buildup
occurred from the reagent side and reaction products
far from the front were cut off. These properties of the

Q
c
----
 calculation mesh made it possible to reduce the time of

attaining the steady-state regime and, on the other hand,
to accelerate the calculation procedure. As defining
parameters, αst and R0 were used. The parameter αst =
9.1Td – 2.5Ar defined in [7] (at αst < 1) characterizes
the depth of penetration into the domain in which the
plane steady front is unstable. The boundary separating
the stable and unstable one-dimensional regimes is
determined by the condition αst = 1. The parameter R0
corresponds to the ratio of the cylinder radius and the
characteristic value of the reaction zone. It was condi-
tionally supposed that the front is a set of points on the
cylindrical surface where half the limiting reagent has
reacted.

Figure 1 shows a regime that can be observed for
small-diameter samples. This regime was obtained for
single-center spin combustion after reducing the sam-
ple diameter. The mechanism of the front propagation
is the following. After merging combustion centers, a
zone arises in which, owing to the cumulative effect,
the temperature is considerably higher than that in each
combustion center. However, because of the smallness
of the sample radius, a well heated zone does not yet
form at this time instant in the domain of fresh reagents.
Therefore, the combustion of materials occurs as unre-
acted reagents are heated owing to a high-temperature
zone arising in the area of combustion-center merging.
DOKLADY PHYSICS      Vol. 46      No. 5      2001
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The front line takes the form of an arc with its center at
the point of merging. With removing the reaction front
from this point, the front velocity decreases as long as
the front sections approach each other on the opposite
side of the cylinder. There, the combustion centers merge
again and the process is repeated.1 Figures 1b–1d show
the temperature distribution on the evolvent of the cyl-
inder surface for the time elapsed from the combustion-
center merging to the subsequent merging on the oppo-
site side. The question naturally arises as to whether
this mode can be considered a steady-state regime. In
the plot, nine periods are shown. While performing the
calculations, the periodicity of the system behavior
remained unchanged for 40 periods. This fact implies
that, furthermore, the combustion type also does not
change. The region of existence of this regime is rather
narrow. An insignificant decrease in the sample diame-
ter may result in transformation of the combustion into
pulsatory propagation of the reaction front. Conversely,
with increasing the sample diameter, the regime can be
transformed into the classic spin regime with a single
combustion center. For the stability criterion used in
Fig. 1, i.e., for αst ≈ 0.76, this regime exists in the inter-
val 10.5 < R0 < 15.9. It is worth noting that, due to the
nonuniqueness in the case of 12.2 < R0 < 15.9, the sam-
ple combustion may proceed in both the regime pre-
sented in Fig. 1 and the classic spin regime.

In study [5], the regime referred to as circular com-
bustion is described. This regime was reproduced in the
process of the numerical simulation of the initial sys-
tem of equations. In essence, this regime is intermedi-
ate between the plane pulsatory one and the counter
spin regime described above. Therefore, this type of
combustion front propagation can be more adequately
termed pulsatory-spin waves. In this regime, as before,
“depression” zones and rapid-combustion zones of
well-heated layers change each other. However, the
combustion front is curved and the combustion of the
well-heated layer occurs as a result of the motion of
front sections moving toward each other. After merging
the combustion centers, i.e., after complete burning of
a layer heated during the preceding period, a depression
appears again. Due to the front curvature, the next igni-
tion occurs (after the heating of the subsequent layer
has been completed) in the zone with the maximum
front delay. This is explained by the summation of heat
flows from neighboring domains advancing the delayed
front section. Furthermore, the process is repeated.
However, the investigation performed testifies to the
instability of such a regime. It inevitably transforms
into either the classic spin regime (Fig. 2) or the above
regime with counter motion of the front sections. In
experiments when only a limited number of periods are
observed, such a regime may seem to be stable. It is

1 The front structure is symmetric with respect to a certain (arbi-
trary) cylinder generatrix.
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possible to find pulsatory-spin waves in the process of
burning samples of small radius.

As is well known [3], when increasing the sample
radius, a single-center combustion regime initially
transforms into a two-center regime. Furthermore, the
number of combustion centers can increase. In this
case, all the combustion centers move in the same
direction (clockwise or counterclockwise). However, in
the high-instability region, the situation changes. The
increase in the cylinder radius results in the appearance
of a second combustion center moving in the opposite
direction with respect to the first one (Fig. 3). After both
combustion centers meet on the opposite side of the
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Fig. 2. Positions of the combustion front in successive (∆τ =
10) time moments (αst ≈ 0.75). Propagation of the combus-
tion front and its transformation at R0 ≈ 15 and R0 ≈ 16:
(I) pulsatory-spin combustion propagation; (II) regime
transformation stage; (III) regime of front propagation at the
expense of heat inflow from the high-temperature zone
formed at the point of merging front sections; (IV) spin-
combustion regime.
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sample, they merge and, as a result, a high-temperature
zone arises. It is well known [3] that both an increase in
the sample radius and penetration into the instability
region lead to an increase in the combustion-center
temperature. Therefore, the temperature in this zone is
very high. By virtue of this fact, high-temperature com-
bustion centers arise that may move away from the
point of their generation without additional heat inflow
from the high-temperature zone in which they were
formed. Divergent combustion centers removed from
this point attain more and more heated layers of fresh
reagents. This leads to a continuous rise in both the
combustion-center temperature and velocity of motion
until the subsequent merging of these centers on the
opposite side of the cylinder occurs (Fig. 4). Further-
more, the process repeats itself.
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Fig. 4. Counter combustion regimes in the region of strong instability (αst ≈ 0.47 and R0 ≈ 48). Temperature distribution in the com-
bustion front (only the near-front domain is shown): (a) appearance of new combustion centers in the high-temperature zone formed
at the point of merging combustion centers; (b) and (c) front propagation from the point of merging combustion centers as a function
of the temperature in new combustion centers; (d) position of the combustion front in successive (∆τ = 32) time moments.
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the viability of this regime. First, it exists during a large
number of periods without changing its structure. Sec-
ond, if within the region of high instability the classic
spin regime is taken as the initial condition, then it
transforms into the regime of counter-propagating
combustion centers (Fig. 3). With further penetration
into the instability region and an increase in the sample
radius, multiple counter regimes may appear.

Thus, while burning small-radius samples, the
merging of combustion centers moving counter to each
other can be followed by either depression (if the tem-
perature in the combustion center formed at the merg-
ing point is too small to initiate the combustion of the
cold layer of reagents that are situated lower) or propa-
gation of the combustion front, which is caused by heat
inflow from the formed high-temperature zone. In this
case, the temperature in the reaction zone and the rate
of its motion decrease as this zone moves away from
the high-temperature domain. Within the high-instabil-
ity region, an increase in the sample radius leads to
counter motion of well-pronounced combustion cen-
ters, whose temperature and velocity increase as they
move away from their point of generation.
DOKLADY PHYSICS      Vol. 46      No. 5      2001
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It is shown that, in one-dimensional geometry, the
principle of the minimum of entropy production in
equilibrium final states is correct in one general situa-
tion. Two examples taken from the solid-body conduc-
tance theory are considered.

For a solid body with no external loads and no
regard for heat expansion, which ensures the constancy
of stresses and density, the equations of energy and
entropy balance have the form

(1)

(2)

where s is the entropy and σ is the entropy production
rate. The subscripts e and i are related to the external
and internal parts of the variation in the total entropy

S = sdV; other designations are the same as in [1].

The entropy balance is described by the equation

(3)

For arbitrary temperature dependences κ(T) and c(T), the
entropy production rate σ is determined by the equation

(4)
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from which, on account of the condition

, (5)

we obtain

(6)

Note that the differential expression (4) degenerates in
the steady-state situation, which suggests the need for
its transformation (transition to the integral representa-
tion). In the integral form, both for Te = const and for
qe = 0, expression (6) takes the form

This means that σ and Σ decrease monotonically in the
course of system evolution, tending to the minimum
values which are attained in the steady-state condition
(the minimum is equal to zero in the equilibrium state).
This result is generally known as the minimum entropy
production principle [2, 3]. In the case considered here,
this principle is realized on the condition that the
kinetic coefficient L in the Fourier law

is constant in accordance with condition (5). Note that
this condition is satisfied for metals at low tempera-
tures [4], when T ! θ (θ is the Debye temperature).
It is asserted in [2, 3] that the discussed principle holds
only for L = const. We will show that, in the one-dimen-
sional geometry, this principle is correct in one general
situation. We start with the representation of Eq. (4)
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in the form

(7)

where χ =  and the subscripts t and x denote the par-

tial derivatives. Separating the complete derivative
in (7), we obtain

(8)

with

(9)

When K < 0, we have

,

which corresponds to the minimum entropy production
principle in the final state. 

We give here two examples from the solid-body
conductance theory. For metals, the power-law temper-
ature dependences are valid [4],

(10)

and, on account of (9), parameter K takes the form

K = (l + 2)(l + m + 3).

This means that the condition K < 0 is satisfied for

–2 < l < –(m + 3) or –(m + 3) < l < –2,

while the condition K > 0 holds for

l > –2, l > –(m + 3) or l < –2, l < –(m + 3).

The domain of unconditional fulfillment of the mini-
mum entropy production is hatched in Fig. 1. We
clearly see the exclusiveness of the value l = –2, which
is indicated in [2, 3]: this is the only function κ(T)
ensuring, irrespective of the form of the c(T) depen-
dence, the entropy production minimum in the final
state, which, in this case (l = –2), is an equilibrium
state. As follows from Fig. 1, the domain of uncondi-
tional fulfillment of the entropy production minimum
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in the final state comprises one fourth of the domain
occupied by all possible values of l and m ∈  (–∞, ∞). 

For dielectric substances, the following temperature
dependences take place at T ! θ:

(11)

(∆ ~ θ is the photon energy [4]). Taking into account the
relationships

we find from (9)

K = (l + 2)m + (l2 + 6l + 6) = (l – l1)(m – m1),
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where

l1 = –2, m1 = –(l + 4) + .

The domain located between the branches m1 , where
the entropy production minimum is unconditionally
attained, is hatched in Fig. 2.

We should make some conclusive remarks. The con-
straint by one-dimensional geometry is due to the prob-
lematic representation of the quantity (∇ S)2∆S, with an
arbitrary scalar S, by the sum of the divergence and the

source. Next, the case  < 0 is possible in a chemi-

cally reactive medium.

2
l 2+
----------

dc
dT
------
The author is grateful to I.M. Mazilin and N.A. She-
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The unremitting attention to the study of vacuum-
arc discharge [1, 2] is caused by its wide application in
high-current and high-voltage switches, sputtering
facilities, and ion sources [3]. At the same time, there
exists no conventional concept of the vacuum-arc phe-
nomenon whose specific feature is a rapid transforma-
tion of cathode material into the liquid phase, super-
dense gas, and plasma. (The latter is being subse-
quently transformed from a dense nonideal state to a
moderately rarified one and finally to a collisionless
state.)

Among the key experimental facts established while
studying vacuum discharge, an important part belongs
to the existence of directed flows (jets) of ions moving
towards the anode, whose energies exceed the energy
determined by the voltage of the discharge burning.
At present, there exist three standpoints concerning the
mechanism of ion acceleration and its spatial locali-
zation:

(i) The acceleration occurs at high densities (non-
ideal plasma or metal-density gas) in the region of
hydrodynamic and electromagnetic discontinuities
under phase transitions [4, 5].

(ii) The gas-dynamic acceleration of plasma takes
place under the action of a pressure gradient (main-
tained by Joule heating by the electric-current flow).
This occurs at gas densities ensuring the identity of
directed velocities for different-charge ions due to elec-
tron–ion and ion–ion friction [6–8].

(iii) The ions are accelerated by an electric field
towards the anode due to the nonmonotone distribution
of the electric potential (potential hump) in the absence
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of collisions. By virtue of this fact, the ion velocity
grows with the ion charge [9, 10].

The available experimental data are of a contradic-
tory nature. For example, Davies and Miller [10] found
that the ion velocity linearly increases with the ion
charge. At the same time, in a number of other studies
(e.g., in the experiments of Tsuruta et al. [11]), mea-
sured ion velocities, under certain conditions, were vir-
tually independent of ion charge.

Emission methods [12] for studying processes
intrinsic to vacuum-arc discharge, which are currently
being developed by us, consist in determination of the
parameters and characteristics of plasma on the basis of
analysis of the ion current extracted from the plasma
and the charge components of the current. In this paper,
we present the results of an analysis (by the emission
method) of directed ion velocities in a vacuum arc.
Their comparison with the calculated data allows us to
make conclusions on the principal mechanism of ion
acceleration in the vacuum arc.

The schematic diagram of the experiment is pre-
sented in Fig. 1. When burning the vacuum arc (τarc =
400–800 µs and Iarc = 100–500 A), the plasma flow
emitted by cathode spots filled the anode cavity. The
ions extracted from the plasma were accelerated by a
multiaperture three-grid accelerating–decelerating sys-
tem with a permanent applied voltage of 10–25 kV. The
charge distribution of the accelerated ion flow was ana-
lyzed by means of a time-of-flight spectrometer [12].

The ion velocity in the vacuum-arc discharge
plasma was measured according to the time delay
between the moment of a weak disturbance of the arc
current and the reaction of the extracted ion current. In
this case, analysis of the evolution of the ion currents
with different charges made it possible to measure their
directed velocities. The disturbance was formed by
either a short-term jump in the arc current or its forced
break. The time delay t between the arc-current distur-
bance and the emission-current response involves the
time of flight tl of the ions having desired directed
velocity Vi through the discharge gap, as well as the
total time tg for an ion to be in the accelerating gap and
the drift space (in this case, under our experimental
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic diagram of the experimental setup.
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conditions, t @ tg). It is worth mentioning that the basic
ionization processes in the vacuum-arc discharge occur
near the cathode spots at distances not longer than
1 mm from the cathode surface, which is much smaller
than the length l of the discharge gap. Therefore, it is
easy to determine the directed ion velocity in plasma
according to the measured time t, the calculated value

of tg, and the known distance l: Vi = .

As experiments have shown (see Fig. 2), indepen-
dent of the cathode material, the time responses to the
current jump or break were rather similar for ions with
different charges. From these results, it follows unam-
biguously that the values of the directed velocity for
ions with different charges and, hence, their kinetic
energies turn out to be virtually the same.

This result contradicts the conventional modern data
obtained by Davies and Miller [10]. The analysis of the
experimental conditions described in [10] testifies to
the fact that the pumping equipment employed in these
experiments, probably, could not provide a high vac-
uum due to the intense gas liberation which occurred
during arc burning. The elevated pressure of the resid-
ual gas in the discharge gap could affect the directed ion
velocities. For verifying this suggestion, we have car-
ried out experiments with the goal of measuring the
directed ion velocities at an elevated pressure under
conditions of forced gas puffing into the discharge gap.
As was expected, the elevation of the pressure p led to
a different decrease in the velocity Vi for ions with dif-
ferent charges. For relatively high values of pressure,
p > 10–2 Pa, the measured velocities approach those
observed in [10]. Thus, the existence of different
directed velocities of ions of different charges is intrin-
sic to the vacuum-arc plasma only in the case of ele-
vated gas pressure. This fact is, apparently, associated
with differences in the processes of deceleration of ions
of different charges in a gas rather than with the condi-
tions of their acceleration.

The identity of directed velocities for different ion
charges made it possible to considerably simplify the
process of measuring ion velocities for various chemi-
cal elements without application of a time-of-flight

l
t tg–
-----------
spectrometer. In these experiments, the ion velocities
were determined by the time shift between the dis-
charge-current modulation and the total ion-current
response. The velocities measured for various cathode
materials, including the majority of conducting ele-
ments of the periodic system, are presented in Fig. 3.

In [8], the general solution to the problem of expan-
sion of a current-carrying plasma into vacuum from the
surface of a sphere with radius r0 was obtained. This
solution can be compared with a cathode microspot of
size a ≈ 1–10 µm [1, 2] that emits a plasma jet. Slightly
modifying the results of [8], we can represent the ion

velocity in the form Vi = MVS, where VS = 

is the velocity of the (ionic) sound at the critical point
r = r∗  (where Vi = VS and M = 1). Here, M is the Mach

number; γ =  is the adiabat index; 〈Z〉  and mi are the

average charge and ion mass, respectively; and Te is the
electron temperature at the point r = r∗ . The Mach
number is a universal function of the dimensionless

γ Z〈 〉 Te

mi
------------------ 

 
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Fig. 2. Mg-ion current as a function of time after a jump or
a break of the vacuum-arc current.
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length , where r is the distance from the sphere cen-

ter. At distances exceeding 1 mm, the Mach number
virtually attains its ultimate value Mlim ≈ 3.5. Since all
available measurements of ion velocities were certainly
performed at longer distances, we can accept for the ion
velocity in the main part of the interelectrode gap under
the conditions of a vacuum arc that

To calculate ion velocities , measurements of
the ionic composition [13] and values (found from it) of
the electron temperature Te [14] were used. The values

of  obtained are given in Fig. 3. As is seen, they are
in good agreement with the measurement data. This
fact allows us to draw a conclusion on the prevailing
gas-dynamic acceleration mechanism involved in the
attainment of the observed velocities by ions. Of
course, in the initial stage of motion (when Vi < VS), a
certain acceleration of the cathode material in phase
transitions to the liquid-metal state or the state of a
super-dense gas [4, 5] is also possible. However, the

r
r*
-----

V i
lim Mlim= VS

20 Z〈 〉 Te
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--------------------- 

 
1/2

.≈

V i
lim

V i
lim

50 100

1.5

0.5

0
150 200 250

Experimental data
Solid line corresponding
to the gas-dynamic theory

Ion velocity, 106 cm/s

Atomic mass of an element, a.m.u.

Fig. 3. Experimental and calculated values for velocities of
ions of different chemical elements.
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contribution of this mechanism to the final value of the
ion velocity does not exceed 20%. As our measure-
ments have shown the absence of velocity differences
for ions of various charges, the acceleration at the phase
of collisionless plasma expansion turns out to be still
less significant.
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In 1873, van der Waals first made the suggestion that
the equation of state, when being written in an appro-
priate coordinate system, must take the same form for
all liquids and solutions (similarity law). This hypothe-
sis was confirmed by later experiments. However, the
range of validity of the similarity law turned out to
involve not the entire phase diagram, as had been ini-
tially assumed, but only a certain, sometimes fairly
wide, neighborhood of a critical point. Since the corre-
lation radius increases with approaching the critical
point, the universality of the equation of state is evi-
dently related to this process. However, attempts to
show how an individual equation of state degenerates
into a universal one have failed to date. In this paper, we
pioneer this type of analysis on the basis of the Orn-
stein–Zernike equation. In addition, we formulate the
so-called critical equations of state in themselves and
investigate some of their corollaries.

THE ORIGIN OF THE SIMILARITY LAW

The Ornstein–Zernike equation is known to repre-
sent the conventional Gibbs distribution written in the
form of an integral equation determining the correla-
tion function h(r), where r is the distance between the
particles [1]. The exact solution to this equation can be
written out in the form of a series in eigenfunctions of
the asymptotic Ornstein–Zernike equation [2]:

(1)

Here, the constants λj and µj are the roots of the tran-

scendental equation 1 – ρ∆(λ, µ) = 0; ρ =  is the den-

sity of the liquid; and A, Bj , and Cj are, in the general
case, continuous functions of the density ρ and temper-

h r( ) A
λ0r–( )exp

r
-------------------------=

+
λ jr–( )exp
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------------------------- B j µ jr( )sin C j µ jr( )cos+[ ] .

j
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V
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ature θ = kT. [The summation in (1) is performed over
the entire infinite set of roots for the transcendental
equation.]

Substituting (1) into the expression for the isother-
mal compressibility of the liquid, which is presented
in [1],

(2)

we arrive at the expression

(3)

where P is pressure.

The derivative  at the critical point is known to

tend to infinity. Since the amplitudes A, Bj , and Cj are
always bounded [2], the fact that the compressibility
tends to infinity can only be due to the vanishing of the
single real root λ0 of the transcendental equation 1 –
ρ∆(λ0) = 0. However, as is seen from formula (3), the
compressibility does not exhibit an unbounded increase
as λj or µj with j > 0 approach zero (or infinity).

The vanishing of λ0 is evidently equivalent to the
correlation radius becoming infinite:

(4)

Hence, the term  entering into the general

solution to the Ornstein–Zernike equation (1) in the
neighborhood of the critical point describes the asymp-
totic behavior of the general correlation functions. All
the remaining terms of the series [in (1), they are under
the summation sign] determine the behavior of h(r) at
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small distances, i.e., when the general correlation func-
tion is independent of the form of the interaction poten-
tial Φ(r). As soon as the contribution of asymptotic dis-
tances exceeds that of small distances, we can ignore
in (3) both the unity (corresponding to the ideal-gas
compressibility) in the braces and the sum (describing
the interparticle interaction at small distances) in the
square brackets. As a result, Eq. (3) is reduced to the
equality

(5)

Since this expression does not contain a sum allowing
for the specific properties of the medium, the behavior
of the compressibility becomes universal. Therefore,
all the remaining parameters of the medium also begin
to behave universally.

The formulas obtained above are easily generalized
for solutions [3]. In this case, the transcendental equa-
tion determining the roots λj and µj becomes rather
complicated and the constants A, Bj , and Cj in (3) (for a
binary solution) are replaced by the sums

(6)

Nevertheless, the basic conclusion remains valid. We
imply that the behavior of a solution in the neighbor-
hood of a critical point is determined by the single real
root λ0 . This fact is a reason for the universal behavior
of solutions.

THE CRITICAL EQUATION OF STATE

More rigorous analysis of the compressibility in the

neighborhood of a critical point indicates that A = A0

at this point, where η ≈ 0.05 is one of the critical indices
and A0 = const is independent of λ0 [4]. Moreover, since

λ0 = const , where ν ≈ 0.63 is another critical index

and εθ =  is a small parameter characterizing the

distance from the critical point, then equalities (6) can
be written out in the form [4]

(7)

where γ = ν(2 – η) and κ0 is a constant independent of
λ0 . In the same manner according to the theory devel-
oped in [1], the pressure P and specific heat cρ at a con-
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stant volume are given by

(8)

Here, ερ =  is the second small parameter, π0 and

Ò0 are certain constants, α ≈ 0.11 and δ ≈ 4.6 are the
critical indices, and the subscript “c” related to differ-
ent functions implies that the value of the function is
taken at the critical point.

In essence, the expression P – Pc = π0  represents
an equation of state; this equation is valid, however,
only along the isotherm θ = θc . In the general case,
when θ ≠ θc , the equation of state must take the form

P – Pc = π0  + f(ερ, εθ), where an unknown function
f(ερ, εθ) must vanish for θ = θc .1 It is natural to define
this function in such a manner that condition (7) for the
compressibility will be satisfied in the neighborhood of
the critical point. Hence,

(9)

Introducing the variables p = , P0 = π0, q = ερ,

and t = (k0π0 )−1/γεθ , we arrive at

(10)

where  = .

Since for θ = θc , the chemical potential µ obeys the

identity dµ = , then the equalities

are valid, where m = . Assuming that µ0 = ,

we have

1 In the neighborhood of a critical point, both ερ and εθ are small
parameters. Therefore, the correction f(ερ, εθ) to the degenerate
equation of state (8) can also be sought in the form of a small
addition.
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Integrating this expression within the limits q = 0
and q yields

(11)

Expanding ln(1 + q) in (11) in terms of a power series
of q, we now obtain, within an accuracy to linear terms,

that µ – µc = . The allowance for the quadratic

terms yields

(12)

We, finally, consider the behavior of the specific
heat in the vicinity of a critical point. The specific heat

cρ =  at a constant volume is known to be related

to pressure by the equality [5]

 = . 

Taking into account that ρ ≡ ρc(1 + ερ), θ ≡ θc(1 + εθ),
dρ = ρcdερ , and dθ = θcdεθ and ignoring the small quan-
tities ερ, εθ ! 1, we arrive at the relation

We set c = , where c0 = . In this case, the

equation for the dimensionless specific heat takes the
form

(13)
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Ultimate laws for various directions of approaching a critical
point

Parameter q = 0 q = t t = 0

Pressure Const ~tγ + 1 ~qδ

Compressibility ~t–γ ~t–γ ~qδ – 1

Chemical potential Const ~tγ + 1 qδ

Specific heat ~t–α ~t–α ∞
 

This equation determines the function 
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 with an accu-
racy to the arbitrary function 
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 of temperature. In
order for the solution to Eq. (13) at 

 

q

 

 = 0 to transform
into formula (8), the function 

 

f
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t
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 must take the form

 

t

 

−α

 

. As a result, we arrive at

 

(14)

 

Thus, we obtain equations that describe the behav-
ior of the pressure, compressibility, chemical potential,
and specific heat in the entire critical region, in which
the asymptotic contribution into the compressibility
isotherm exceeds the other remaining contributions. All
the equations obtained, being written in dimensionless
form, become universal because they do not contain
parameters which characterize the specific properties
of the medium. It should be emphasized that these
results are valid for both pure liquids and multicompo-
nent solutions because formula (3) for the compress-
ibility is applicable to the latter and the former.

Until now, all known equations of states (7), (8)
described the behavior of a medium along either the
critical isotherm with 

 

t

 

 = 0 or the critical isochore with

 

q

 

 = 0. The equations of state obtained above make it
possible to approach a critical point along an arbitrary
direction. The critical indices corresponding to three
directions of approaching a critical point are listed in
the table; namely, for 

 
t

 
 = 0 (i.e., along the isotherm 

 θ  
 =

θc), t = q (along the bisectrix of the right angle between
this isotherm θ = θc and the isochore ρ = ρc), and q = 0
(along this isochore). It is seen that these indices signif-
icantly differ from their generally accepted values
given by (7) and (8). Thus, the neighborhood of a criti-
cal point can be imagined as a certain mountain whose
slope depends on the direction of approaching. This
feature of a critical point appears to have been first indi-
cated in [6].
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In accordance with the Hund rules, when filling with
electrons 3d orbitals of free atoms within the range
from Sc(d1) to Mn(d 5), the magnetic moment of an
atom increases up to 5µB. Then, it lowers from Fe(d6) to
Cu(d10) (from 4µB to zero, respectively) due to the for-
mation of electron pairs with opposite spin directions.

It was established in [1–4] that the mean magnetic
moments for atoms of elements in crystals are substan-
tially lower than those for free atoms. This phenome-
non has not been reasonably explained to date.

The difference of magnetic moments of free atoms
and those bound in crystals in the case of elements with
unfilled 3d orbitals depends on the electron-density dis-
tribution in them, on the degree of orbital overlapping,
and the probability of magnetic depolarization [5]. The
“tails” of the distributions indicated play, evidently, the
most essential role in this case.

In order to describe the density distribution for elec-
trons with uncompensated spins, we employ, as before,
the Gaussian function

(1)

in which the factor A is determined from the normaliza-

tion condition, and γ =  is the inverse value of the

orbital radius squared. The use of the Gaussian function
allows us to find, within reasonable accuracy, analytical
expressions that determine the number of electrons in
the overlapping region and to evaluate the probabilities
of formation among them of electron pairs with com-
pensated spins.

The numbers Nd and n0 of 3d electrons and 3d elec-
trons with uncompensated spins for isolated atoms,
respectively, and the equilibrium distances δ1 between
nearest neighboring atoms in the crystal lattices of the
elements studied are listed in the table. The numbers nP
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of electrons per atom, which were experimentally
determined (these electrons have compensated spins in
the overlapping region), and the rest number nF of elec-
trons with uncompensated spins are also indicated in
the table. (In this case, n0 = nP – nF .) The number nF

expressed in Bohr magnetons corresponds to the mean
atomic magnetic moment in a crystal for a given degree
of orbital overlapping, which is determined by δ1 . The
equilibrium values of δ1 are calculated according to
data taken from [8, 9].

The number nP of electrons with compensated spins
that are present in the overlapping region is determined
by the degree of overlapping orbitals with the corre-
sponding effective electron density

(2)

The presence of the coefficient C2 , which takes the
probability of magnetic depolarization into account,
can be considered formally as an increase of 3d-orbital
radii in the crystal lattice compared to those in isolated
atoms.

The ratio of the number nP of electrons with com-
pensated spins in the overlapping region to the number
n0 of electrons with uncompensated spins of an isolated
atom is, in this case,

(3)

We can take, approximately, [5] that
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Radii of 3d orbitals, coefficients γw and γGZ, magnetic moments n0 for isolated atoms and atoms in crystals, the structure type
Aj, the nearest interatomic distances δ1, and the number Nd of 3d-electrons for transition elements with Z = 23–28

No. Z Element Nd n0

Radius of the 3d orbital
γw , a.m.u.–1 γGZ, 

a.m.u.–1
Structure 

type, a.m.u. , a.m.u.

1 23 V 3 3 0.84877 0.91 1.3881 1.2076 A2

2 24 Cr 5 5 0.8053 0.892 1.542 1.2568 A2

3 (4) (4)

4 25 Mn 5 5 0.73346 0.8236 1.8589 1.4742 A1

5 26 Fe 6 4 0.68620 0.7823 2.1237 1.6340 A2

6 27 Co 7 3 0.6465 0.7446 2.3925 1.8036 A1

7 28 Ni 8 2 0.6106 0.7100 2.6822 1.9837 A1

No.

Experimental data Calculated data

 × 104  × 104 δ1, a.m.u.
 × 

104

1 10 11.5 4.95 2.99 0.1 0.034 0.01 0.0003 2.999 0.001

2 (36) 4.722 (4.4) (0.6) 0.127 78 0.268 3.824 1.176

3 24 29 (3.8) (0.2) 0.083 15.7 0.054 1.79 0.21

4 72 91 5.163 3.5 1.5 0.357 81.1 0.394 3.4 1.6

5 172 224 4.692 1.782 2.218 0.808 177 0.827 1.748 2.251

6 160 210 4.737 1.28 1.72 0.85 168 0.902 1.2172 1.782

7 59 82 4.71 1.40 0.604 0.358 67 0.399 1.34 0.66

rdw
rdGZ

C2W
C2GZ

nP1
nF1 –

nP1

n0
-------ln

C2W –
nP1

n0
-------ln nP1

nF1
The quantity ln  = ln  = –C2γδ2 is associ-

ated with the ratio of the atomic magnetic moment
( ) in the crystal lattice to the magnetic moment

( ) of the isolated atom and depends on the inter-
atomic distance squared.

The values of –ln , which are determined in

accordance with experimental mean atomic magnetic
moments of 3d transition elements in crystals for equi-
librium nearest interatomic distances δ1 , as well as the
radii rw and rGZ of 3d orbitals, are presented in the table.
These radii were calculated by the Hartree–Fock
method [6] and by methods of the atom statistical the-
ory [7], respectively. The values of γw and γGZ corre-
sponding to these radii are also indicated in the table.

It is worthwhile noting that the orbital radii given in
the table and those of other authors, as well as the radii
of several types of hybridized orbitals (3d etc.), signif-
icantly differ from each other. However, the general
dependence on the ordinal number of elements is con-
served. The coefficients  and  calculated

nP

n0
----- 1

nF

n0
-----– 

 

nF µB,
n0 µB,

nP

n0
-----

C2rW
C2rGZ
according to the values of γw and γGZ, as well as the

experimental values for –ln  ≈ C2γ , are also given

in the table.

The probability coefficient C2 depending on the fill-
ing Nd of the 3d orbital can be described by a semiem-
pirical expression:

(5)

where x = ,  = 10, the exponent ν ranges within

the limits of 1 to 2 (we have accepted ν = 2), and xm is
within the range from 0.62 to 0.67 (we assume xm =
0.64, which, to a larger extent, corresponds to the
experimental data).

The curve C2(x) calculated by the expression given
above is shown in Fig. 1. Dots corresponding to the val-
ues of , which were determined according to the

nP1

n0
------- δ1

2

C2 x( ) 1

Ndm
xm

-------------------xν 1 x–( )
Ndm

2

2 2
---------- xm x–( )2–

 
 
 

,exp=

Nd

Ndm

-------- Ndm

C2W
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Fig. 1. The coefficient C2 as a function of x =  for xm =

0.64 and ν = 2. The dots corresponding to the experimental
data are plotted together with the calculated curve.

Nd

Ndm

---------

Fig. 2. (1) Values of –ln  for elements with Z = 23–28.

The calculated dots ( ) are connected by a solid line; the
dots ( ) correspond to the experimental data. In the calcu-
lations, the values of γw and δ1 are used corresponding to

xm = 0.64, ν = 2. (2) Atomic moments  for elements with

Z = 23–28. The experimental dots ( ) are plotted together
with the curve drawn according to calculated data ( ). In the
calculations, the values of γw and δ1 used correspond to
xm = 0.64.

nP1

n0
-------

*
×

nF

*
×

–
nP

n0
----- nF,ln µB,
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experimental data for ln , δ1 , and for the values of

γw , are plotted together with the curve. As is seen from
Fig. 1, the dots calculated by the experimental data fit
the theoretical curve for C2(x) relatively well.

In this case, the values of ln , depending on the

filling of the d orbital in 3d-transition elements, are
described by the expression

(6)

As is seen from Fig. 2, the experimental values for

ln  correspond well to those calculated by this

expression.

The mean atomic magnetic moments are expressed
by the relationship

(7)

In Fig. 2, the calculated curve (x) together with
experimental data on the magnetic moments of 3d ele-
ments with atomic number Z = 23–28 is also shown. As
is seen, the experimental values agree rather well with
the calculated curve.

Thus, in this paper, we have derived expressions for
the probability of the magnetic depolarization of elec-
trons in the region of d orbital overlapping. These
expressions allow us to establish the semiquantitative
dependences for the mean magnetic moments of transi-
tion elements on both the number of electrons filling 3d
orbitals and the interatomic distances between the near-
est neighboring atoms in the crystal lattice.

The allowance for the probability of spin compensa-
tion (magnetic depolarization) when overlapping 3d
orbitals of neighboring atoms is equivalent to the con-
cept of an increase (compared to isolated atoms) in the
effective radii of d orbitals in atoms that residue in a
crystal lattice.
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High-intense thermal flows (induced by radiation
heating, laser irradiation, etc.) give rise to thermal
destruction and evaporation in near-surface layers of a
material. The mass velocity for the motion of the ther-
mal-destruction boundary is determined by an approx-
imate relationship [1]:

(1)

Here, E, B, and Q are the activation energy, the preex-
ponential factor, and the thermal effect of the thermal-
decomposition reaction, respectively; T0 and Tw are the
initial temperature and surface temperature; Cs and ρ
are the heat capacity and density of the material; H* =
Cs(Tw – T0) + Q; and λs is the heat conduction of the
material, which is assumed to be constant.

Similar relationships are used when calculating the

propagation rate u =  of the combustion front in con-

densed systems [2].
Equation (1) is based on the assumptions that the

material structure is invariable and homogeneous and
that the coefficient λs is constant. A number of other
simplifications are also used in the derivation of Eq. (1),
which may be considered to be reasonable to some
extent for processes occurring in gas mixtures (when
nucleation is absent), at low temperatures, and in the
case of a free outflow of gaseous thermal-decomposi-
tion products. However, in heat-protective materials
characterized by a sufficient stiffness, in composite
materials, and in thermoplastic, reactive-plastic, and
other nonvolatile substances, the heterogeneous reac-
tion inevitably passes through the nucleation stage of

G

Bρ
RTw

2

E
----------λ s

E
RTw
----------– 

 exp

H* Q
2
----–

----------------------------------------------------------= .

G
ρ
----
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the thermal-decomposition products (usually consist-
ing of gaseous compounds) and, as a result, is accom-
panied by the destruction of the initial structure.

The goal of this study is to determine the rate of
thermal destruction of a material under intense heating
with allowance for a significant drop in the thermal
conduction of heated near-surface layers and to deter-
mine the destruction and dispersion of the substance.
This destruction is implied to proceed in the presence
of the other processes accompanying nucleation. In the
most general formulation, this problem is set for the
first time.

Formula (1) is based on the heat-conduction equation

(2)

Below, the last term is ignored because of its small-
ness [1, 2]. By integrating the equation, we find (disre-
garding, furthermore, that λs = const)

(3)

The heat conduction of a porous medium depends
on the reaction rate and, due to the similarity of temper-
ature and concentration fields, like the function of the
heat absorption F, depends on temperature and the

quantity . Approximating the ratio  by

an exponential function in the form

where λ0 is the heat conduction of the initial material,
we obtain the approximate solution

(4)

Equation (4) defines the steeply dropping exponen-
tial temperature profile T(x) near the surface (Fig. 1) to

d
dx
------λ s

dT
dx
------ F T( ) ρCsu

dT
dx
------+– 0.=

dT
dx
------ 2 F T( ) Td
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ρ0

λ0

T0

x

L

∆x

T(x)

∆Tdx

qp

Tp

λp

ρp

T
ρ(x)

dT

λs(T)

(c)

Lδ

(b)

(a)

Fig. 1. Schematic diagram of the destruction of near-surface layers in a material heated as a result of the nucleation of thermal-
decomposition products and evaporation of the components: (a) positions of nuclei (porous inclusions of gaseous thermal-decom-
position products) in the case of a free outflow of gases through the surface owing to their diffusion or molar transfer. On the top,
the thermocouple junction for measuring the near-surface temperature Tw is shown; (b) separation of a near-surface layer with thick-
ness δ due to the action of elevated pressure in the pores (in the absence of gas filtration to the surface; a triangular hollow is a het-
erogeneous nucleus); (c) distributions of the temperature T(x), density ρ(x), and heat-conduction coefficient in the vicinity of the
surface of a body heated by a thermal flow qp. Dashed line is the adopted steplike approximation for λs(T).
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Fig. 2. Schematic drawing of the setup for determining the kinetic characteristics of a material’s thermal decomposition and of the
ultimate thickness δ for a near-surface layer exfoliated by gas pressure: (1) film (sample) of a material, (2) substrate, (3) heater,
(4) laser, (5) optical filters, (6) lens, (7) photodetector, (8) point screen, (9) amplifier, (10) computer, (11) glass rod, (12) removable
emitter, (13) oscillator.
which the heat flow qp = λp  is delivered. Let λp be

the heat conduction of a surface layer with pores filled
with the products of thermal decomposition (λp < λ0).
It is evident that the material boundary should be con-
sidered as a surface (x = 0), which is characterized by
the maximum number of pores. While exceeding this
number, their merging and, as a result, material-conti-
nuity violation occur. According to [3], the maximum
relative volumetric content of spherical inclusions in
the case of a dense chaotic (random) porosity distribu-
tion is 0.64 of the entire volume (Π = 0.64). In accor-
dance with the heat conduction theory of disperse
media [4–6], the heat conduction of a porous medium
and the heat conduction λ0 of a matrix substance are
bound by a simple relation. For the surface x = 0, it
takes the form

(5)

The evaluation of the proportionality factor κ by
various theories yields close results. For example, at
Π = 0.64, according to the Missenard formula, κ = 1 –
Π2/3 = 0.2573. As is seen from Fig. 1a, a certain fraction
(1 – ζ) of the nonreacting near-surface material filling
the space between the pores is separated from the basic
layer in the form of small disperse particles, thereby
increasing the rate of the surface motion.

We now equate the flow qp to the total amount of
heat spent on heating the fraction ζ of the reacting
material, which, in the case under consideration, is
equal to Π (ζ = Π):

(6)

where Tp is the calculated value of Tw. Whence it fol-

dT
dx
------ 

 

λp λ0κ .=

qp κλ 0
dT
dx
------ 

 
x 0=

uρ Cs Tp T0–( ) ζQ+( ),= =
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lows that the thickness L of the well-heated layer
increases with decreasing qp. The value of L is propor-
tional to the segment ∆x cut off by a tangent to the curve
T(x) at the point x = 0. Therefore, the filtration and dif-
fusion of gases to the surface is hampered. As a result,
under the action of gas pressure, this can lead to the
separation of a layer with thickness δ (see Fig. 1b).
Then, the fraction ζ of the reacting material decreases
(ζ < Π) and the regime can acquire a pulsating form [7].

Substituting  from Eq. (6) into Eq. (4), we obtain

(7)

In the particular case of κ = 1, ζ = 1, Cs(Tp – T0) ! Q,
and Eλ = E, this equation transforms into relationship (1).
For ζ = 0, Eq. (7) transforms into the well-known
Belyaev–Zel’dovich equation applied in calculating the
combustion rate u of volatile power-consuming com-
pounds [2]. However, the results of calculating the
quantity G on the basis of traditional formulas (without
regard for the above factors) significantly disagree (by
a factor of 2 to 3) with the available experimental data.
We imply the thermal destruction of energy-consuming
compounds [8], linear polymers [9], composites [1],
and other materials in the case of intense surface heat-
ing [2, 7, 13]. The allowance for the corrections κ and
ζ makes it possible to avoid this disagreement in the
results.

dT
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G uρ
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There is another essential drawback of Eq. (1).
Using it, we need to experimentally determine the sur-
face temperature Tw, which is unknown a priori. This
fact decreases the predictive significance of the equa-
tion, since the quantity G, in itself, is usually deter-
mined in the same experiments. Employing a thermo-
couple reduces the accuracy of the measurements of Tp,
because the temperature along the thermocouple length
is averaged to Tw ≠ Tp. The above problems may be
solved, if all parameters involved in Eq. (7) are deter-
mined by the contact thermal-analysis method [7].
Using this method, it is possible to record the decrease
in the mass kinetics of samples placed on a substrate
heated to a constant temperature (Fig. 2).

The method and the setup used were updated. To
improve the setup time resolution, we used a laser sys-
tem for signal recording. The setup makes it possible to
determine the effective activation energies E1 and E2
not only for moderate temperatures (E1), in which het-
erogeneous nucleation dominates, but also at high tem-
peratures, where homogeneous nucleation (E2) occurs
(with allowance for vibrations) [11]. In accordance
with the theory of heterogeneous reactions [12, 13],
both these characteristics are taken into account in the
heat-absorption function F(T). Hence, substituting
them into Eq. (3), we obtain the final result, which can
be written out in simplified form [at Eλ = E, λs = λ0 ,
Cs(Tp – T0) ! Q, and λp = κλ0] as

(8)

In addition, the method of contact thermal analysis
allows us to determine the admissible temperature Tl of
overheating a material [3] and the minimum thickness
of the surface layer δ, which is separated under the
action of the gaseous-product pressure. These quanti-
ties make it possible to calculate the surface tempera-

ture Tp of the material. Since  =  ≈ , it follows

that Tp = Tl – qp  [7]. For example, for linear poly-

mers, such as PMMA, PS, and PE, it was established
that δ ~ 20 µm. This fact results in a reduction (∆T ~
15–20 K) of the temperature when testing by the linear
pyrolysis method. Such a reduction was found previ-
ously in [9, 14]. Other examples of the analysis of ther-
mal-destruction processes with allowance for nucle-
ation and admissible overheating, as applied to techno-
logical processes, are given in [7, 15].
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The above analysis makes it possible to conclude
that the processes of nucleation, secondary-pore forma-
tion, and the accompanying reasons for their occur-
rence essentially influence the physical properties of
near-surface layers and, ultimately, the rate of material
thermal destruction. Allowance for the nucleation
parameters enables significant (in a number of cases, by
an order of magnitude) improvements of the results of
numerical simulations to be made. The relationships
derived include certain additional parameters. For their
determination, we have proposed employing the
updated contact thermal-analysis method combined
with a high-speed signal-recording system.
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Three possible trends in experimental investigations
of the strong Coulomb interaction in plasma can be
associated with the plasma-imperfection parameter [1]:

(1)

Different methods of obtaining a dense nonperfect
plasma with a charged-particle concentration ne ~ 1020–
1023 cm–3 can be assigned to a traditional trend of
increasing Γ. The second trend is associated with dust
plasma in which the Coulomb interaction between
microparticles is enhanced because of the high values
of particle charges Z ~ 103–105 [2]. In this paper, we
consider cryogenic plasma in which the parameter Γ
can be increased by decreasing the temperature of
charged particles in the plasma to cryogenic tempera-
tures. One of the reasons why this trend should be con-
sidered is the results of experiments with ions accumu-
lated in electrostatic traps and cooled by laser radiation
to temperatures of ~10 mK [3]. Although the confined
ionic formation is not a plasma in itself because of the
absence of electrical neutrality, it is worthwhile noting
that the correlation effects observed in the system of
Coulomb particles are attained at the expense of
decreasing the temperature of these particles.

To date, three cycles of investigations are known in
which the problem of obtaining an imperfect cryogenic
plasma is formulated. In [4], microwave methods were
used to investigate helium afterglow plasma cooled in a
cryostat at gas densities lower than 1.2 × 1019 cm–3. The
temperature and the electron-collision frequency were
measured when the electrons were cooled to 5 K. It was
found that, in a late afterglow, the frequency of elec-
tron–atom collisions becomes independent of gas den-
sity in the range 4.5 × 1018–1.1 × 1019 cm–3. The authors
presumed that this effect is caused by the presence of a

Γ
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large number of atoms in spheres with radius equal to
the de Broglie wavelength for cooled electrons.

A decaying cryogenic plasma with a particle num-
ber N = 2 in the Debye sphere was obtained in experi-
ments [5]. The theoretical estimates showed that the
value of N can be reduced to ~0.4 in the afterglow; i.e.,
a value of Γ ≈ 0.8 can be attained.

A steady cryogenic plasma was first investigated
in [6]. A tube with a glow discharge was immersed in
cryogenic fluid—liquid nitrogen or helium (Fig. 1).
The pressure in the tube and discharge current were
chosen such that the ionic temperature Ti in the tube
was close to the cooling-fluid temperature. At the same
time, the electron temperature Te in the discharge
plasma can attain several tens of thousands of degrees.
Theory [7] makes it possible to estimate the interval of
parameters in which a heavy component has a mean
temperature close to the tube temperature. This theory
relates internal plasma parameters Te, E, and ne to exter-
nal discharge parameters: a tube radius R, a gas type, its
pressure P, a tube temperature Tw, and a current
strength i. The possibility of cooling ions to cryogenic
temperatures follows from the energy balance for parti-
cles in a nonequilibrium positive-column plasma:

(2)

Here, ue, i , δe, i , νe, i , and µe, i are the drift velocity, the
energy fraction lost in collisions, the frequency of col-
lisions with neutral atoms, and the mobilities of elec-
trons and ions, respectively. If we exclude E from the
power balance, it is possible to obtain the relationship
for temperatures of plasma components:

(3)

From this formula, it is possible to determine the range
of parameters for the glow discharge in which the ionic
component can be cooled to cryogenic temperatures.

The neutral-gas temperature in a weakly ionized
plasma is lower than the temperature of ions and is
approximately equal to the temperature of tube walls. A
neutral gas can be heated mainly by the electrons that
loose their energy in elastic collisions. The energy flux

We i, eEue i, δe i, k Te i, Ta–( )νe i a, , .= =

Te Te Ta–( )
T i T i Ta–( )
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from electrons per atom is approximately equal to

qe, a = νe, a kTe . The heat outflow to the wall

is determined by the gas heat conductivity, and the cor-

responding heat flow amounts to qa = .

Making these quantities equal, we obtain the relation-
ship

(4)

i.e., at a reasonably low ionization degree of 10–8 and
low pR = 5–10 torr cm, a neutral gas and, thus, the ionic
component are heated negligibly in a steady discharge
even at Te = 5 eV. Because the glow-discharge plasma is
strongly nonequilibrium, the cooling does not directly

2me

ma
--------- 

  ne

na
---- 

 

k Ta Tw–( )D

Λ2
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Ta Tw–
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Fig. 1. Design of the discharge tube with a cryostat for
investigating steady cryogenic plasma at T = 4.2 K:
(1) Pirani manometer; (2) cathode; (3) discharge tube; (4),
(8), (9) probes; (5) anode; (6) outlet for pumping out and for
filling the tube by gaseous helium; (7) pipe for filling the
cryostat with liquid helium.
affect the character of the electron–atomic interaction;
therefore, in the investigation of cryogenic plasma of
this type, the methods commonly used in investigating
glow discharge at room temperatures are applicable.

In the case of a two-component quasineutral elec-
tron–ion plasma with single-charged ions, it is neces-
sary to take the following parameter as a criterion for a
strong Coulomb interaction:

(5)

Thus, in steady discharges of low and moderate pres-
sure, which are cooled to cryogenic temperatures, it is
possible to investigate the effects of imperfect behavior
associated with the ionic component for the Γ value
close to unity, whose maximum is limited by the heat-
ing of ions in the discharge.

It is known that the present view of the low-pres-
sure glow discharge at room temperatures (see, for
example, [7]) does not suggest any dependence of ion-
ization processes on the neutral-component tempera-
ture. However, for the glow discharge occurring at
cryogenic temperatures, the region of parameters in
which such an approach is invalid was found experi-
mentally [6, 8, 9].

The strongest influence of liquid-nitrogen cooling
of discharge-tube walls on discharge was found for low
currents and the electric fields indicated above. At p ≥

5 mm Hg, i < 1 mA, and  > 2.5 V/(cm mm Hg), a

modification in the behavior of the E(i) dependence is
observed: a decrease in the current by 15–20% is
accompanied by a drop of E by more than a factor of

two; respectively,  > 0 (Fig. 2). This segment of the

current–voltage characteristic was termed an H–T tran-
sition by analogy with study [10], in which a similar
shape of the current–voltage characteristic was
observed for oxygen. The regime with i < 1 mA
(T-form of discharge) is characterized by an increase in
the strength of the  molecular bands and by a mod-
ification in the shape of probe characteristics—their
electron branch is identical to the ionic branch within
the ±30 V range near the point jp = 0. A comparison of
the characteristics at Tw = 300 K and Tw = 77 K shows
that, for currents in the range from 5 to 130 mA and for
neutral-atom concentrations na = (1–20) × 1016 cm–3,
the results of measurements are closely allied if they
are referred to the same neutral-gas concentration in the
tube irrespective of whether the tube is cooled or not.
The change to a low temperature at high discharge cur-
rents also does not lead to essential changes in the lon-
gitudinal electric field in plasma.

Γ
e2ne

1/3

k
TeT i

Te T i+
---------------- 
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dE
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In spite of the low absolute values of power released
in this range of currents in a unit length of the plasma
column (102–103 mW/cm), this power turns out to be
sufficient for heating a gas to the temperature (lower
than 300 K) at which special features of elementary
processes at low temperatures still fail to influence the
field strength. A decrease in the current and specific
power of the discharge leads to the appearance of the
E(T) dependence, although the values of E(p) (i >
1 mA) are close to those known for room temperature.
Moreover, the shape of the E(i) characteristics is
retained.

Theoretical and experimental investigations [11, 12]
show that the nature of H–T transitions is closely
related to the so-called S-source of fast electrons in the
cryogenic glow-discharge plasma; such electrons orig-
inate in reactions with participation of helium metasta-
ble atoms and molecules. To such processes, we assign
the reactions

(6)

(7)

(8)

as well as collisions between electrons and metastable
atoms for which the excitation energy is transferred to
electrons. The theoretical model of cryogenic glow-dis-
charge plasma [11] involving an S-source of electrons

shows that, for  < 4 × 10–17 V cm2, the excitation con-

stant is equal to (0.5–2.0) × 10–14 V cm3 s–1 and exceeds,
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Reduced electric-field strength in the discharge col-
umn as a function of current for various pressures and tem-
peratures:
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therefore, by four orders of magnitude, the constant
calculated for the case when the birth of fast electrons

is ignored. Thus, in the region of small , the excita-

tion constant depends not only on , but also on the

metastable-particle concentration, which increases
with decreasing plasma temperature because the
breakup of metastable atoms by ground-state atoms
does not occur at Ta < 88–100 K due to the presence of
a low activation barrier in their interaction [13]. There-
fore, when the temperature of the heavy plasma compo-
nent passes from room temperature to the liquid-nitro-
gen temperature, spectral measurements show an
increase in the metastable-atom concentration by more
than an order of magnitude, while the ratio of the meta-
stable-atom density in the triplet state to the electron
density attains a value of 102 and is much higher than
for other excited states [12]. The addition of small
amounts of argon to the discharge leads to a decrease in
the density of metastable helium atoms owing to their
deexcitation in the Penning-ionization reaction, and the
H–T transition disappears for sufficiently high quanti-
ties of the additive. The H–T transition can also be
observed in pure neon and in a helium–neon mixture.

The glow discharge cooled to helium temperatures
in the region of parameters where the imperfection
parameter has a maximum (Γ ≈ 0.3–0.4) reveals other
features as well [8]. To these features we should assign,
first of all, the appearance of cathode drops of potential
which exceed normal drops by an order of magnitude.
In this case, a break in the current–voltage characteris-
tic and its hysteresis are observed (Fig. 3).
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Current–voltage characteristic of discharge at helium
temperatures: 
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 are the segments where no optical radiation
was observed from the positive column [6, 9].
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Electrical characteristics of the discharge cooled to 

 

T

 

 = 4–5 K (this work): (a) current–voltage characteristic of the discharge;
(b) strength of the longitudinal electric field in plasma.
When the discharge ignites in point A and the cur-
rent reduces to 0.4 mA (point B), the voltage and cur-
rent in the tube change in a jumplike manner to the val-
ues corresponding to point C. The segments CD and
C'D' are linear. In the reverse run, the current–voltage
characteristic undergoes the discontinuity once again.
It has the same appearance, but does not coincide with
the curve ABCD; i.e., the hysteresis is observed. The
discontinuity in polarity of electrodes is retained for the
same discharge currents. The measured temperature T
of the gas in the tube at the moment of discontinuity is
equal to 5–6 K. The peculiar feature of the discharge at
the segments DC and D'C' is the complete absence of
optical glow of the positive column in the cryogenic
plasma.

In this study, we confirmed this effect on a newly
built setup (Fig. 4a) and measured the electric field in
plasma (Fig. 4b) using probes. The characteristic
obtained points to a jumplike change in the mechanism
of plasma conductivity in the region of 5 K and to its
independence from the value of discharge current. In
connection with this, it is of interest to compare the
measured conductivity with the corresponding value
for a strongly imperfect “cold” plasma [1, 14]:

(9)

where ω0 is the plasma frequency. On the left-hand branch
of the characteristic, the value σe ≈ 10–4 Ohm–1 cm–1 aver-
aged over the cross section agrees well with the con-
ductivity of an imperfect cold plasma under the
assumption of the electron concentration ne ≈ 109 cm3

being the same as on the right-hand branch near the
transition.

Thus, the available experimental data confirm the
possibility of transition of cryogenic plasma into a new
state, the study of which calls for the development of

σe

ω0

4π
------,=
special methods of diagnostics and methods of increas-
ing the parameter Γ. From this point of view, of interest
are the experiments with a glow discharge cooled to
several kelvin, in which high-amplitude ionization
waves are excited by high-voltage nanosecond pulses.

In these waves, the value  of the reduced electric field

is optimal for accumulating both the metastable states
and the charged component and for obtaining the val-
ues of Γ @ 1 for the ionic and electron components.

The transition discovered in plasma near 5 K (Figs. 3,
4) testifies to the change-over of the conductivity mech-
anism. This transition is of interest itself irrespective of
whether it is caused by the plasma imperfection or by the
accumulation of the metastable states within it.
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An Accelerated Frame of Reference Is Not a Particular Case
of a Gravitational Field
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In the general relativity (GR) theory, in the case of
the absence of a medium, an arbitrary metric field of
Minkowski space, which corresponds to an accelerated
frame of reference, is a solution to the Gilbert–Einstein
equation. This is what made it possible for A. Einstein
to consider such a metric field a particular case of a
gravitational field [1]. In the relativistic gravitation the-
ory [2], the gravitational field, in contrast to general rel-
ativity, is a physical field possessing energy-momen-
tum density. By virtue of the universality of this field, it
is natural to consider the conserving energy-momen-
tum tensor of the medium and the gravitational field
taken together to be a field source. As the medium, we
imply all forms of matter except the gravitational field.
This approach ensures the existence, in the theory of
fundamental conservation laws, of both the energy-
momentum and moment of momentum in a closed
physical system. In this case, there arises, as a conse-
quence, an effective Riemann space of the field origin
that has a simple topology. Moreover, a nonzero gravi-
ton mass also inevitably arises. Furthermore, we use a
system of units in which the constants ", c, and G are
equal to unity.

The equations of the relativistic gravitation theory
in Minkowski space, which are written out in an arbi-
trary frame of reference determined by the metric ten-
sor γαβ, have the form

(1)

(2)

Here, the following notation is employed: Dµ is the
covariant derivative in the Minkowski space, γαβ(x) is
the metric tensor of the Minkowski space, tµν is the ten-
sor of the energy-momentum density for the entire mat-

ter,  is the density of the tensor gravitational field,
and m is the graviton mass.

γαβDα DβΦ̃µν
m2Φ̃µν

+ 16πtµν,=

DµΦ̃µν
0.=

Φ̃µν

Institute of High-Energy Physics, 
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The effective metric of the Riemann space and the
gravitational field turn out to be bound by the relation-
ship

(3)

The densities of the tensors are equal to

(4)

Here, gµν is the metric tensor of the effective Riemann
space and Φµν is the tensor gravitational field,

(5)

The system of equations of the relativistic gravitation
theory in the effective Riemann space has the form [3]

(6)

(7)

To solve particular problems, we should add the equa-
tion of state to Eqs. (6), (7). It is particularly worth
emphasizing that the system of equations (6), (7) is,
generally, covariant with respect to arbitrary coordinate
transformations. At the same time, it is form-invariant
with respect to coordinate transformations that remain
the functionally invariant metric γµν(x). In other words,

(8)

Physical solutions to Eqs. (6), (7) must satisfy the con-
ditions g < 0 at each point of the Kν space TµνKµKν ≥ 0
for an arbitrary timelike vector Kν . At the same time,
the quantity TµνKν must form a nonspacelike vector.

On the other hand, the causality principle must be
valid:

(9)

It follows from the causality conditions (9) that if the

g̃µν x( ) γ̃µν x( ) Φ̃µν
x( ).+=

g̃µν g– gµν, γ̃µν γ– γµν, Φ̃µν γ– Φµν.===

g det gµν( ), γ det γµν( ).==

Rµν
m2

2
------ γµν gµν–( )+ 8π Tµν

1
2
---gµνT– 

  ,=

Dνg̃µν 0.=

dσ2 γµν x( )dxµdxν γµν x '( )dx 'µdx 'ν.= =

γµν x( )VµVν 0,=

gµν x( )VµVν 0.≤
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inequality

(10)

is fulfilled by definition for an arbitrary spacelike vec-
tor Lµ, then the inequality

(11)

must also be valid.

According to the causality principle, the gravita-
tional field does not extract a tentative body out from
the causality cone of the Minkowski space with metric
γµν(x). At the same time, this condition always makes it
possible to compensate the three-dimensional gravita-
tion force by the inertia force in the case of the corre-
sponding choice of a reference system.

In the case of ideal liquid, the energy-momentum
tensor of the medium has the form

(12)

Here, ds is an interval of the effective Riemann space:

(13)

In Eqs. (6), (7), as in all other physical theories, the
metric γµν(x) of the Minkowski space is chosen by the
researcher. Usually, an inertial reference frame is used
in the calculations.

It follows from Eqs. (6), (7) that in the case when the
medium is absent, among all possible metrics of the
Minkowski space in the given reference frame, only
one metric γµν(x) chosen previously satisfies the equa-
tions. We now show that in this reference frame and in
the presence of a medium, none of the metrics of the
Minkowski space is the solution to gravitational equa-
tions (6), (7). With this goal in mind, we perform the
convolution of Eq. (6) with the help of a spacelike vec-
tor determined by inequality (10):

(14)

As long as we consider only metric fields of the
Minkowski space, relation (14) is simplified and takes

γµνLµLν 0<

gµνLµLν 0<

Tµν ρ p+( )UµUν pgµν,–=

T Tµνgµν ρ 3 p–( ), Uν dxν

ds
--------.= = =

ds2 gµν x( )dxµdxν.=

m2

2
------γµνLµLν 8π Tµν

1
2
---gµνT– 

  LµLν=

– RµνLµLν m2

2
------gµνLµLν.+
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the form

(15)

Substituting expression (12) into this equation, we
arrive at the formula

(16)

By virtue of conditions (10), (11), we see that the right-
hand side of Eq. (16) is strictly positive as long as the
inequality

(17)

is fulfilled. At the same time, the left-hand side of
Eq. (16) is strictly negative. Whence it follows that in
the presence of a medium, none of the metric fields of
Minkowski space satisfies the gravitational equations.
Therefore, metric fields arising in noninertial frames of
reference in Minkowski space cannot be considered
gravitational fields. Equation (16) has a solution only if
p = ρ = 0. However, in this case, only one solution,
which was discussed above, takes place:

(18)

Since Eq. (16) also is valid in the case of a nonzero ten-
sor of the Riemannian curvature but with the zero Rµν
tensor, it follows from this equation that it has no solu-
tion satisfying the causality principle. In particular,
such a conclusion relates to that region of space in
which the effect of the graviton mass is significant. This
implies that in this region, a substantial change in the
character of the solution takes place. We were con-
vinced of this conclusion previously when studying, as
an example, the solution for a static spherically sym-
metric body in the region close to the Schwarzschild
sphere [4].
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1. It has long been known that studying nonlinear
phenomena is one of the most interesting and challeng-
ing problems in theoretical physics [1]. Recently, this
problem became even more urgent since supercold
gases in the Bose-condensate state were observed in
magnetic traps [2–4]. Many of the properties of such
gases are adequately described by the nonlinear
Schrödinger equation which, for nearly ideal Bose gases,
is referred to as the Gross–Pitaevskiœ equation [5, 6]. In
this paper, we consider the problem of scattering Bose-
condensate excitations by a one-dimensional barrier.
This problem is nontrivial even in the case of a low bar-
rier because both the variation of the condensate den-
sity in the neighborhood of the barrier and the barrier
itself play an equally important role. In contrast to a
bare particle, for which any repulsive potential
becomes impermeable in the long-wave limit, the trans-
mission coefficient for phonons passing through a
δ-shaped barrier tends in this limit to unity, and, hence,
the barrier becomes transparent.

2. The Gross–Pitaevskiœ equation in dimensionless

variables t = , x = , ψ = ψdim , and

V(x) =  takes the form

(1)

Here, we restrict ourselves to the evaluation of scatter-
ing by using only the localized δ-shaped potential
barrier

The wave function ψ(x) for the ground state of the con-
densate has, to the left and to the right of the barrier, the

-
 tsµ

"
-------

xcm mµ
"

-------------------- U
µ
----

V erg

µ
---------



i
∂Ψ
∂t

-------- 1
2
---Ψ'' Ψ––= Ψ 2+ Ψ V x( )Ψ.+

V x( ) V0δ x( ),   with   V 0 
m µ

 
"

 µ ------------ V dim 0. > = =                          
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well-known form

(2)

The derivative jump at the barrier determines the
wave-function amplitude at the point x = 0:

(3)

In the limits of small and large barriers, we obtain,
respectively,

The states with negative values of ξ have a higher
energy.

The odd state ψ =  has no derivative jump, but
the energy of this state is even higher.

3. The Bose-condensate excitations  = Ψ – ψ are
described by the Gross–Pitaevskiœ linearized equation

(4)

where the interaction potential for the excitation and
the condensate is given by formulas (1) and (2):

(5)

We do not consider inelastic processes, and the
calculation of the excitation scattering on the basis of
quasi-classical equation (4) yields the same result as
that within the framework of the secondary quanti-
zation.

ψ x( ) t x( ) x X0+( ), x a.>tanh≡=

1 ξ2– V0ξ , ξ X0tanh
1
2
---V0

1
2
---V0 

 
2

1++ .–= = =

ξ 1
1
2
---V0– 1 2e

2X0–
– , X0

1
2
--- 4

V0
------, V0 ! 1,ln= = =

ξ X0
1

V0
------, V0 @ 1.= =

xtanh

ψ̃

i
∂ψ̃
∂t
------- hψ̃ g x( )ψ̃*,+=

h –
1
2
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dx2
-------- V x( ) 2g x( ) 1–+ + 

  ,=

g x( ) ψ2 x X0+( ).tanh
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= =
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As is well known, Eq. (4) can be reduced to a diag-
onal form by the Bogolyubov–de Jean transformation:

(6)

At long distances from the barrier, we have

(7)

It is easy to prove that the excitation-energy flux far
from the barrier is

(8)

In the secondary-quantization representation,

and quasi-classical expression (8) for the energy flux
takes the conventional form

Whence it is clear that, when solving the problem of the
excitation scattering within the framework of quasi-
classical equation (4), the function u(x) must, naturally,
be considered. However, the functions u(x), v(x), and
f(x) = u(x) + v(x) are asymptotically mutually propor-
tional to each other and we may use any of them to eval-
uate the transmission coefficient.

If V0 ! 1 and V0 ! ε, we can ignore in (6) the con-
densate-density perturbance in the neighborhood of the
barrier and use the approximation g(x) = 1 to solve the
scattering problem.

Then, at the point x = 0, we can directly sew together

ψ̃ uk x( )e iεt– v k* x( )eiεt–( ),
k

∑=

h ε–( )uk gv k– 0, h ε+( )v k guk– 0.= =

v k uk ε2 1+ ε– 
  eikx,∼=

ε2 1
2
---k2 1+ 

 
2

1, ε[ ] k  ! 1 . k.–=

Q Re p̂ψ̃( )* p̂2

2
----- 1+ 

  ψ̃ ψ̃++ 
 

 
 
 

=

=  kε2 ε2 1+ ε– 
  uk

2.
k

∑

ûk eikxb̂k
1
2
--- ε2 1+

ε
------------------ 1+ 

 =

Q kεnk, nk

k

∑ b̂k
+
b̂k〈 〉 .= =
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the wave outgoing from the right side and a superposi-
tion of the incident and reflected waves on the left side:

(9)

(10)

As a result, we obtain the reflection coefficient

(11)

which differs from the known expression for a bare par-
ticle only in the dependence k(ε). At high energies (k @
V0), the barrier is nearly completely transparent. At the
lower boundary of the application range for this for-
mula, when V0 . ε . k, semitransparency takes place.

4. However, even small density variations in the
vicinity of the barrier can significantly affect the low-
energy phonon scattering (for ε < V0) by the barrier.

In the neighborhood of the barrier, a phonon moves
in the effective potential [whose size is on the order of
the correlation length, see (5)]

(12)

For long-wave excitations (phonons), the sum f =
u + v  is large, while the difference F = u – v  is smaller
by a factor of ε:

(13)

(14)

In the linear (with respect to ε) approximation, the
function f is described by the equation

(15)

According to [8], within the range of the action of
potential (12), the function f can be written out as a
superposition of two independent exact solutions to
Eq. (15):

Thus, for |x | ! k –1, we obtain

f + Aeikx, x 0,>=

f – eikx Be ikx– , x 0.<+=

D
k2

k2 V0
2+

-----------------,=

V eff x( ) V x( ) g x( ).+=

–
1
2
--- d2

dx2
-------- V eff+ x( ) 1– 

  f εF,=

–
1
2
--- d2

dx2
-------- V eff+ x( ) 2g x( ) 1–+ 

  F εf .=

–
1
2
--- d2

dx2
-------- V eff+ x( ) 1– 

  f 0 O ε2( ).+=

f 1 x, f 2tanh x x 1.–tanh= =
f + A1 x X0+( ) B1 x X0+( ) x X0+( )tanh 1–[ ] ,+tanh=

x 0,>

f – A2 x X0+( ) B2 x X0+( ) x X0+( ) 1–tanh[ ] ,+tanh=

x 0.<
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For 1 ! |x| ! k–1, the asymptotic representation of
these functions,

must have the form [see (9) and (10)]

Sewing together these functions on the left and on the
right of the barrier, we arrive at the expressions

(16)

(17)

Sewing these functions at the barrier (x = 0) yields,
with due regard to equality (3),

(18)

Multiplying the first equation in (18) by V0 and add-
ing it to the second one, we obtain the simple relation-
ship

(19)

which allows the set of equations (16)–(19) to be easily
solved. As a result, the transmission and reflection
amplitudes are, respectively,

Here, we introduce the effective barrier length

(20)

Thus, for the δ-shaped barrier, the transmission and
reflection coefficients for phonons are, respectively,

(21)

The dependence of scattering on the wavelength of a
bare particle is opposite to that for a phonon [see (11)].

f + A1 B1+ x X0 1–+[ ] ,=

f – A2 B2+ –x X0+( ) 1–[ ] ,=

f + A ikAx,+=

f – 1 B+( ) 1 B–( )ikx.+=

A1 A 1 ik– X0 1–( )[ ] , B1 ikA,= =

A2 1 B+( ) ik X0 1–( ) 1 B–( ),+=

B2 ik 1 B–( ).–=

A1ξ B1+ X0ξ 1–( ) A2ξ= B2+ X0ξ 1–( ),

A1 V0ξ–( ) A2 V0ξ( ) B1+ + X0V0– ξ ξ 2V0+ +( )
+ B2 X0V0ξ ξ+( ) 0.=

B1 B2,–=

A
1

1 ikL–
-----------------, B

ikL
1 ikL–
-----------------.–= =

L
1 ξ–

ξ
-----------

1
2
---V0= =

1
2
---V0 

 
2

1+  . V0.+

D
1

1 kL( )2+
----------------------, R

kL( )2

1 kL( )2+
----------------------.= =
In the long-wave limit, a particle is completely
reflected, while the barrier is transparent for long-wave
phonons. It is worth noting that formulas (21) are valid
only for low-energy quasi-particles (ε ! 1).

In the case of small ε, the use of Eqs. (13) and (14)
instead of (15) to describe the scattering can lead to the
appearance of an insignificant weak ε-dependence of
the transmission coefficient; i.e.,

In the range of application of formulas (21), small bar-
riers (L . V0 ! 1) are nearly transparent. Larger barri-
ers, for which formula (11) is applicable, are semitrans-
parent and become completely transparent for high-
energy quasi-particles. The transparency of large barri-
ers (L . V0 @ 1) drops twice even within the range of
application of formula (21). The question on barrier
transparency in a wide range (1< k < V0) yet remains
open.
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A method for solving a stationary problem of wave
scattering by a semi-infinite circular cone with slots
periodically cut along its generating lines is presented
in [1]. In this paper, we pioneer the presentation of an
algorithm for constructing an unsteady Green’s func-
tion of a cone with longitudinal slots.

FORMULATION AND THE METHOD
OF SOLUTION OF THE PROBLEM

The conic structure under consideration represents a
perfectly conducting semi-infinite thin cone with N
slots periodically cut along its generatrices. We intro-
duce a spherical coordinate system r, ϑ, ϕ with the ori-
gin at the vertex of the cone; its axis coincides with the
oz-axis of the Cartesian coordinate system (see the fig-
ure). Furthermore, we use the following notation: 2γ is

the cone opening angle, l =  is the structure period,

and d is the slot width (d and l are the values of the dihe-
dral angles formed by intersections of planes drawn
through the cone axis and edges of conic strips). In the
coordinate system chosen, the cone is determined by a
set of points:

where

The desired Green’s function G(r, r0, t, t0) satisfies

(1) the equation

2π
N
------

Σ r ϑ ϕ, ,( ) R3:    r 0 + ∞ ) ϑ γ = ϕ L } , ∈, ,,[∈∈{  =

L Lp, Lp p 1–( )l
d
2
--- pl

d
2
---–,+ 

  ,=
p 1=

N

∪=

CL 0 2π, )\L.[=

∆ 1

c2
---- ∂2

t2∂
------– 

  G r r0 t t0, , ,( ) δ r r0–( )δ t t0–( );–=
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We represent the function 
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(1)

 

Here, 

 

c

 

 is the speed of light; the function 
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 is con-
ditioned by the presence of the cone surface. For find-

G r r0 t t0, , ,( ) Σ 0;=

G
G∂
t∂

------- 0 for t t0.<≡=

G r r0 t t0, , ,( ) G0 r r0 t t0, , ,( ) G1 r r0 t t0, , ,( ),+=
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-------------------------,
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B(r, θ, ϕ)
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o
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π/2 – θ

Geometry of the problem.
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ing G, we use the Laplace transformation

(2)

where Gs is the Green’s function for the corresponding
steady boundary value problem. This function satisfies
the inhomogeneous Helmholtz equation, the first
boundary condition on the cone strips, the condition at
infinity in space, and the condition near the boundary
irregularities (the cone vertex and the strip edges).

In accordance with (1),

To solve the steady problem, we invoke the Kontor-
ovich–Lebedev integral transformation

(3)

(4)

Here, Kµ(z) is the Macdonald function. Taking into
account the representation

we seek the function  in the form of Kontorovich–
Lebedev integral (3), (4):

(5)

(6)

Here, (cosϑ) is the associated Legendre function of

the first kind;  and  are known coefficients, and
xm and xn are unknown coefficients; the superscripts of

Gs r r0 t0, ,( ) G r r0 t t0, , ,( )e st– t, s 0,>d

0

+∞

∫=

Gs r r0 t t0, , ,( ) G0
s r r0 t t0, , ,( ) G1

s r r0 t t0, , ,( ),+=

G0
s r r0 t t0, , ,( ) e

st0– e qR–

4πR
----------, q

s
c
--.==

F τ( ) f r( )
Kiτ qr( )

r
------------------ r,d

0

+∞

∫=

f r( ) 2

π2
----- τ πsinh τF τ( )

Kiτ qr( )
r

------------------ τ .d

0

+∞

∫=

G0
s 2

π2
----- τ πsinh τ amτ

s Umτ
0( )eimϕ

m ∞–=

+∞

∑ Kiτ qr( )
r

------------------ τ ,d

0

+∞

∫=

Umτ
0( ) ϑ ϑ 0,( )

=  
P–1/2 iτ+

m ϑcos( )P–1/2 iτ+
m ϑ 0cos–( ), ϑ ϑ 0<

P–1/2 iτ+
m ϑcos–( )P–1/2 iτ+

m ϑ 0cos( ), ϑ 0 ϑ ,<



G1
s

G1
s 2

π2
----- τ πsinh τ bmτ

s Umτ
1( )

m ∞–=

+∞

∑ Kiτ qr( )
r

------------------ τ ,d

0

+∞

∫=

Umτ
1( ) xm n m0+, τ( )

P–1/2 iτ+
m nN+ ϑcos±( )

P–1/2 iτ+
m nN+ γcos±( )

----------------------------------------ei m nN+( )ϕ .
n ∞–=

+∞

∑=

Pµ
m

aντ
s bντ

s

the Legendre-function arguments in (6) correspond to
the region 0 < ϑ < γ, and the subscripts correspond to

the region γ < ϑ < π; and  = ν + m0, –  ≤ ν < , m0

being the integer closest to . As a result of using the

boundary condition, the conjunction condition for 
in the slots, and the semiconversion method [1], the
steady problem is reduced to the solution of an infinite
set of linear Fredholm-type algebraic equations of the
second kind with respect to the coefficients ym, n related
to xm, n:

(7)

(8)

where Vm(u) and (u) are known functions [1]. For
the matrix elements εm, n of the system, in the case of
N(n + ν) @ 1, the estimate holds:

It should be emphasized that the desired coefficients
ym, n (and, consequently, xm, n) are independent of
parameter q. This is essential for conversing and solv-
ing the unsteady problem. A solution to the system of
equations (7), (8) exists and is unique. For arbitrary
parameters of the problem, this solution can be
obtained by the reduction method. In the case of a semi-
transparent cone, a cone with narrow slots, and a nar-
row cone, the norm of the system matrix operator is
smaller than unity. This allows the method of succes-
sive approximations to be employed for solving the
system of equations. Using the procedure of a steady-
problem conversion for a continuous cone [2], we
obtain representations for the Green’s function G1 in

m
N
---- 1

2
--- 1

2
---

m
N
----

G1
s

Aν u( )ym 0, V
m0 u( ) p

p
------εm p, V p u( )ym p, ,

p ∞–=
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ym n, Vn 1–
m0 1–

u( )=

+
p
p

------εm p, ym p, Vn 1–
p 1– u( ) ym 0, Pn u( ), n 0,≠+

p ∞–=
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∑

ym n, 1–( )
n m0– n ν+

m0 ν+
--------------- n

n
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xm n,

1 εm n,–
------------------,=

Aν u( )
2Pν 1– u–( )

ν Pν 1– u–( ) Pν u–( )+( )
-------------------------------------------------------,=

u δ, δ l d–
d

----------π,=cos=

Vn 1–
p 1–

εm n, O
γsin

2

N2 n ν+( )2
-------------------------- 

  .=
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the case of a cone with longitudinal slots:

(9)

Here,

( ) = ,

η(x) is the Heaviside function, and Γ(z) is the gamma-
function.

REPRESENTATIONS
FOR THE GREEN’S FUNCTION

Semitransparent cone. In the case of a semitrans-
parent cone determined by the existence of the limit

we obtain from (9) the following integral representa-
tions for the unsteady Green’s function:

(10)

(11)

If the source is placed on the cone axis (ϑ0 = π, ϕ0 = 0;
m = 0), expressions (10) and (11) are simplified:
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(12)

Passing to integrating over the imaginary axis (µ =
iτ) in (12) and using the fundamental residue theorem,
we arrive at a representation for G1 in the form of a
series:

(13)

where Qζ(z) is the Legendre function of the second
kind. Thus, the spectrum for the unsteady boundary
value problem is the same as that for the corresponding
steady one; it depends on the angular parameters of the
conic structure [1]. In the particular case of a semitrans-
parent cone (Q @ 1), the spectrum is determined by the

set { :

In the case of a steady-state mode (  @ 1), we can
restrict ourselves to approximation (13) for G1:

For a semitransparent cone with the filling parame-
ter Q @ 1 and  @ 1,

under the condition that |ln(0.5sinγ)| ! 1.
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Narrow slots. In the case of a cone with narrow

slots  ! 1; 1 + u ! 1 , the asymptotic expansion of

the Green’s function in terms of the parameter 1 + u,
which holds far from the slots, has the form (ϑ0 = π,
ϕ0 = 0)

A similar representation also holds in the case of 0 <
ϑ  < γ. The spectrum of eigenvalues is determined by the
roots of the equation with a small right-hand side:

where
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In the limiting case of vanishing slots (d  0,
u  –1), the expressions obtained coincide with the
results for the continuous cone [2].

Narrow cone. In the case of a narrow cone (γ ! 1),
the asymptotic representation for G1 has the form (ϑ0 =
π, ϕ0 = 0)

(14)

Here,

is the asymptotic form of the Green’s function for the
continuous cone:

where Ψ(z) is the psi-function, C is the Euler constant,
and the term

accounts for the effect of the slots. Representation (14)
for G1 is valid far from the slots and the cone vertex.

CONCLUSIONS

In this paper, we proposed and substantiated an
algorithm for constructing an unsteady Green’s func-
tion of a first boundary value problem for a semi-infi-
nite circular cone with periodic longitudinal slots. The
problem of finding the Green’s function for the wave
equation was reduced to solving a system of linear
algebraic equations with respect to the Fourier coeffi-
cients of the desired function. For the cases of a semi-
transparent cone, a cone with narrow slots, and a nar-
row cone, both integral representations and representa-
tions in the form of a series are obtained for the Green’s
function. The spectrum of the unsteady first boundary
value problem is shown to be the same as that for the
corresponding steady one. The algorithm proposed can
be used in solving boundary value problems with a
more complicated conic geometry.
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The results of this study were reported in part at the
Second International Conference “Urgent Problems of
Computational Physics” (July 24–29, 2000, Dubna,
Russia) [3].
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1. Problem statement. Let Ω = Ω0\M be a two-
dimensional inhomogeneous anisotropic aging body
containing a crack represented by the segment M =
{x: |x1| < l, |x2 | = 0}. In the creep theory, the stress col-
umn σ = (σ11, σ22, 21/2σ12)t is determined as

(1)

We use the matrix representation of equations in Carte-
sian coordinates x = (x1, x2)t, i.e., interpret the displace-
ment vector u as the column (u1, u2)t (where “t” is trans-

position). In addition, ∇ x = (∂1, ∂2)t, ∂i = , and

(2)

Equation (1) includes the strain column ε = D(∇ x)u, as
well as the positive definite matrix A of elastic con-
stants and the relaxation kernel B; these are symmetric
3 × 3 matrices smoothly dependent on variables x,
which, however, are only measurable and bounded in
the time parameters t and τ. The behavior of these
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matrices near the tips P± = (0, ±l ) is described by the
formula

(3)

where p = 0, …, s + 1; (r±, ϕ±) are the polar coordinates
with origin P±. The matrices A± and B± retain the prop-
erties of the matrices A and B, with a smooth depen-
dence on ϕ± ∈

 

 [–

 

π

 

, 

 

π

 

]

 

. The factors 

 

2

 

–1/2

 

 are introduced
in formulas (2) in order to equalize the natural norms of
the strain column 

 

ε

 

 and the strain tensor [
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ij

 

]. The col-
umn 

 

c
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 forms a rigid displacement 
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t
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. The
equilibrium equations and boundary conditions take
the form

 

(4)

 

where 
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 is a unit vector (column) of the external normal
to 
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 characterizes the mass forces; and 
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 character-
izes the external efforts, which are assumed to be self-
balanced for nearly all 
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(5)

 
The main objective of this paper is to indicate the

asymptotic formulas for solving problem (4), which
isolate stresses and give residuals bounded everywhere
in 

 

Ω

 

. As was verified in [1–5] and in some other works,
the root singularities of stresses typical of the linear
problems of elasticity theory are also retained in prob-
lem (4) on the condition that the instant elastic properties
and the relaxation kernel are isotropic. This is
explained by the conformity principle (see [6, 7], etc.),
which establishes the independence of the stress field
from Poisson’s ratio. This principle is realized in the
creep theory as the Volterra integral operator. Thus, the
reason for the retention of the singularity is revealed:
the viscoelastic integral operator cancels the principal
elastic-solution term at any time 

 

t

 

!

 

 Such an effect dis-
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appears in the anisotropic case, and the root singulari-
ties gain an additional factor which depends analyti-
cally on the logarithmic variable. Similar complica-
tions were encountered in the problem with Laplacian
operator [8], where direct calculations were possible.

2. Solvability of the problem and its asymptotic
behavior. To ensure the uniformity of residuals in the
asymptotic formulas, it is convenient to use the Hölder
weight space with the norm

(6)

where s ∈  {0, 1, …}, α ∈  (0, 1), and β ∈  R are the
smoothness and weight indices; ρ(x) = min{1, r±}; and
dots mean x, y ∈  Ω: 2|x – y| < ρ(x), where x and y lie on
one side of M , when |x1| < l. Let us additionally intro-

duce the space L∞([0, t°]  (Ω)) of the functions
dependent on parameter t ∈  [0, t°] and having the finite
norm

We assume that

(7)

Here, χ± are smooth cutoff functions that are equal to
unity near “their own” tips P± and vanish near the “for-

eign” tips ; χ±(x) = 0 for r± > l. Formulas (7) admit
any right-hand side f, smooth up to the bound, but the
boundary data g must have the same limits at the verti-
ces P± along the crack shore. The point is that, for β –
s – α < 0, norm (6) estimates the value of |v (x)| at any
point x ∈  Ω and, moreover, the weight ρ(x)β – s – α with
a negative exponent causes the norm to tend to zero at
x  P±.

Theorem. Under the constraints (3), (5), and (7),
problem (4) has a solution representable as

(8)
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This solution possesses a finite elastic energy at nearly
all t
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. Provided that the orthogonality conditions

are fulfilled at nearly all , the solution
becomes unique and the values of C

 

i

 

 > 
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 and 

 

δi > 0 exist
such that, for any t ≤ t°, the relations

(10)

are valid.

Let us make some comments on the outcome formu-
lated here. As usual (see, e.g., [9]), the solution to prob-
lem (4) is sought as a series:

(11)

where uq are the solutions of the elasticity theory with
parameter t:
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The existence of solutions to problems (12) and their
asymptotic representations are established using the the-
ory of boundary-value problems in domains with angular
and conical points (see [10, 11] and also [12–14], where
the theory is adapted to the problems of crack mechan-
ics). Since the asymptotic representations are con-
structed iteratively (one has to solve the tasks with
right-hand sides of a special kind; see theorem 4.5.12
in [12]), logarithms accumulate and the Uq±(ϕ±, t, )

factors at  in the asymptotics of the solution uq turn

out to be polynomials of  of degree q. Multistep
estimates of the coefficients of these polynomials (due
to the presence of the four selected constants Ci and δi)
make it possible to sum up series (11).

The sums 8±(ϕ±, t, ) involved in (8) are, in
general, infinitely large as compared to any power of
| |. At the same time, for arbitrary J ∈  {1, 2, …},
we deduce from (10) the relationship

where κ(J) = min{Jj/j!| j = 0, 1, …} < ∞. Therefore,
8±(ϕ±, t, ) grows more slowly than any power of
r± and does not change the power order of the stress sin-
gularity.

The stresses σ( ) calculated from the asymptotic

residue belong to the space L∞([0, t°]  (Ω))
and, therefore, as was mentioned before the theorem
statement, are bounded everywhere in Ω at nearly all
t ∈  (0, t°).

3. Conditions for appearance and disappearance

of logarithms. Let Xi±(x, t) = Φi±(ϕ±, t) and

Yi±(x, t) = Ψi±(ϕ±, t) (i = 1, 2) be solutions to the
problem of elasticity theory in the homogeneous plane
with a semi-infinite crosscut {x:  > 0, x2 = 0}. The
elastic properties of the plane are described by the
matrix A±(t). The singularities Y i±(x, t) of the weight
functions are found from the main singularities Xi±(x, t)
using simple operations (see [15]).
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r±log

ũ

Λβ
s α,

r±
1/2

r±
1– /2

x1+−
Lemma. If for any t ∈  [0, t°] and τ ∈  [0, t] the 2 × 2
matrix Q±(t, τ) with elements

(13)

is nonsingular, the polynomials  ° Uq±(ϕ± , t,

) with nonzero coefficients in ( )q appear in
the asymptotics of the solutions uq to problems (12).
Moreover, if A and B are independent of the time
parameters t and τ and 8 j± = 0 for large numbers j,
then 8 j± = 0 for all j = 0, 1, … and, therefore, 8±(ϕ±,
t, ) is never a nontrivial polynomial of the vari-

able .

We should emphasize that the ring {x: 1 < r < 2} in
formula (13) can be replaced by any concentric ring,
because the integrand is a homogeneous function of the
variable r± of degree –2.

For any sets {D(∇ x)Yi±} and {D(∇ x)Xn±}, we can
construct the matrix-function B±(ϕ±, t, τ) so that
detQ±(t, τ) ≠ 0. In other words, the condition defined by
the lemma can be satisfied at even instant elastic isot-
ropy of the material if the relaxation kernel is suitably

chosen. In this case, the product σ(u; x, t) has no
limit when r  +0! This unexpected result calls for
reconsideration of the classical force criterion in the
creep theory, which appeals to the notion of the stress
intensity coefficients expressed through such a limit. 

The equality Q±(t, τ) = 0 does not provide for the
absence of logarithms in the asymptotic formula (8).
Certainly, logarithms disappear on the condition that
the matrices B±(ϕ±, t, τ) and A±(t) are similar to the
matrix A±(0). However, all possible variants are not
exhausted by such a simple case. Indeed, using the
algebraic equivalence of two-dimensional problems of
elasticity theory [15], one can assure that the loga-
rithms are absent if the matrices B±(ϕ±, t, τ) and A±(t)
fall into a certain two-parameter class generated by the
matrix A±(0). 

The stabilization condition (3) implies that the
A±(t)-matrices are independent of ϕ± . This requirement
is necessary because the exponents of the stress singu-
larities in the elasticity problem with matrix A±(ϕ±, t)
may differ from –1/2 and vary with time. No detailed
asymptotic formulas are, however, known for such a
situation.

This study was supported by the Lyapunov French–
Russian Center for Applied Mathematics and Informat-
ics, project no. 00-01.
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In 1958, the well-known American scientist
E. Lorentz proposed a hypothesis on climate intransi-
tivity (ambiguity) [1]. This hypothesis claims the exist-
ence of several steady states of a dynamical system
under identical external actions and is well known in
mechanics (cf., the famous Euler problem on equilib-
rium of an elastic rod). We show that similar phenom-
ena of multiplicity and instability of steady-state
regimes are characteristic for many natural processes,
and they can be described in terms of the theory of non-
linear dynamical systems. The observed abrupt varia-
tions in the level of the Caspian Sea and global warm-
ing are explained by the nonlinear dependence of ther-
mal-physical properties (heat capacity and albedo) of
dry land on moisture reserves.

1. BISTABILITY OF THE SEA LEVEL

The equations of water balance for the Caspian-Sea
basin, the dynamics of the river run-off, and the water
balance of the sea in itself are

(1)

Here, W, Q, H are the moisture capacity of the basin
volume, the river run-off, and the sea level, respec-
tively; Sr, S(H) are the areas of the water-collection

basin and the sea; P, E, , q are the quantities charac-
terizing atmospheric precipitations in the sea basin,
evaporation from both the basin and the water area, and
the run-off into the Gulf of Kara-Bogaz-Gol, respec-

dW
dt

-------- P E W( )– Q– σ1ξ1 t( ) σ2ξ2 t( ),–+=

τdQ
dt
------- G W( ) Q,–=

dH
dt
-------

SrQ
S H( )
------------ Ẽ H( )– q H( )–= σ3ξ3 t( ).+

Ẽ
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tively; G(W) is the run-off dependence on the moisture
reserves (above all, on the volume of underground
waters actively drained by rivers); τ is the relaxation
time of the river run-off (i.e., the setting time for a new
regime as a reaction to an external perturbation); ξ1, ξ2,
ξ3 are the delta-correlated independent random pro-
cesses; and σ1, σ2, and σ3 are their intensities.

The second equation of set (1) can be obtained in the

following method. Let K =  be the kinetic energy of

the river run-off, Π = G(W)τ–1Q be the power deve-
loped by the gravity force while displacing river-basin
waters into the locking section of a river, and Φ = τ–1Q2

be the power of dissipative forces (friction forces and
other resistance forces).

The second equation of set (1) is derived from the

change of the kinetic energy for the river run-off:  =

Π – Φ.

As a result of vast investigations [2] (over 56 sta-
tions of the East-European Plain, Kazakhstan, and Cen-
tral Asia), it was found that the estimate of the correla-
tion between the annual atmospheric precipitations and
evaporability is negative at a reasonable significance
level. Thus, for the zone of formation of the river run-
off in sufficiently moistened territories, it is possible to
assume that evaporation decreases with increasing
moisture reserves. In [3], it was shown (over 125 sta-
tions of Eurasia and North America in the zone of 35°–
65° N.L.) that the amplitude of the annual temperature
variation is a decreasing function of the annual amount
P(mm/year) of precipitation, ∆θa = 470P–0.63.

The fundamental effects indicated explain the
dependence of evaporation on moisture reserves and
lead to a high negative correlation between the river
run-off and the apparent evaporation in the Caspian
Sea, as was found in [4]. A rise in precipitation in the
Volga and Ural basins leads to a simultaneous growth
in the run-off and moistening. This, in turn, reduces the
evaporation both from the river basin and sea surface.
Here, the mechanism of positive feedback is in action,

Q2

2
------

dK
dt
-------
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Table 1.  Parameters obtained by the Box–Jenkins method for the discrete ARMA(2, 1) model and the corresponding conti-
nuous mode

Parameter φ1 φ2 θ 2h ω2

Nile run-off (1900–1960) 0.66 –0.26 0.32 1.347 1.205

Residual sequence {γ(5) (t)} for the Caspian-Sea 
model (1830–1989)

0.49 –0.13 –0.01 2.040 1.719
which is responsible for the abrupt variation in the level
of the Caspian Sea and other basins without outflow.

In [5], nonlinear dependences of the evaporation
and run-off on the moisture reserves of river basins
were proposed. For them, the following relationships
are characteristic:

(2)

From the set of relationships (1), without allowance for
the stochastic components, it is possible to obtain an
equation for the Duffing-type nonlinear oscillator:

This oscillator has three equilibrium states: ,  =

G( ), Ψ( ) = 0; i = 1, 2, 3. It is easy to show that,

under assumptions (2),  and  are stable (or

unstable) focuses and  is a saddle.

The set of equations (1) has stable self-oscillatory
regimes. The conditions for the excitation of self-oscil-

lations are ( ) + τ–1 < 0.

We would like to emphasize that the nonlinear oscil-
lators with two stable states of equilibrium with the
presence of a periodic excitation demonstrate a deter-
minate chaos.

For example, from this set, we can obtain the equa-
tions for a linear oscillator with friction:

(3)

In the vicinity of stable equilibrium states, we have two

frequencies ωj with periods Ω j = .
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q Q QS
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d2q

dt2
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dq
dt
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Since the available models of the hydrologic cycle [6]
fail to describe even the regional climatic systems, we
determine the parameters h and ω for the model of a
river run-off from the full-scale data for the mean
annual run-off. If an original continuous process is sub-
jected to white noise (3) in its right-hand side (at the
input), then the discrete autoregression process is
described by a differential equation with a moving
average whose order of magnitude is smaller by unity
than that for the differential equation describing the
system under consideration [7, 8]. We put in correspon-
dence to Eq. (3) a discrete autoregression model, i.e.,
the moving-average model ARMA(2, 1) qt – φ1qt – 1 –
φ2qt – 2 = εt – θεt – 1, where εt is the white noise, Eεt = 0,

and Eεtεt + u = δ(u)  {δ(u) is the Dirac delta function}.
The parameters φ1, φ2 , and θ of this model are obtained
by minimizing the function

over φ1 and φ2 with the Box–Jenkins method and by
recalculating θ with the help of the formula from [8],
which was adapted to the case of complex roots λ1 =
|λ|eiϕ and λ2 = |λ|e–iϕ, ϕ ≠ 0 for the discrete-model char-
acteristic equation

The parameters 2h and ω2 of Eq. (3) can be expressed
in terms of the ARMA(2, 1) parameters:

In the case under consideration, ∆ = 1 year. The results
of calculations for certain time series are displayed in
Table 1.

σε
2

Ω εt
2

t 3=

n

∑ qt φ1qt 1–– φ2qt 2–– θεt 1–+( )2

t 3=

n

∑= =
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=  
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------------------------------------------------------------------------------------------------------------------------------------.
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The characteristic feature of the steady-state proba-
bility density for the moisture reserves of the Caspian
basin and the Volga run-off is its bimodal distribution.

Indeed, the time-independent solution to the Fok-
ker–Planck–Kolmogorov equation for set (1), 

∂p
∂t
------ ∂

∂W
--------+ P E W( )–( )p[ ]

+
∂
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Fig. 1. Histograms for variations in water levels in the case
of (a) the Caspian Sea, (b) Lake Chad; and (c) the Dead Sea.
as τ  0, has the form

Hence, it follows that  = 0 corresponds to the

maximum for i = 1, 3 and to the minimum for i = 2.

Analysis of observational data showed that, for the
modern climate, in the case of the same value of atmo-
spheric precipitates in the sea basin, there are two
steady equilibrium values of the annual river run-off
into the Caspian Sea, namely, 320 and 270 km3/year
and two levels of the Caspian Sea equal to –25.47 and
–27.92 m abs., respectively. The equilibrium states of
the sea level are determined as

In fact, the histograms for the level of the Caspian Sea
and for certain other closed basins (the Dead Sea, Lake
Chad, the Great Salt Lake, etc.) are bimodal (Fig. 1).
In [9], it is stated that the bimodal character of the his-
togram for the level of the Caspian Sea is only an occa-
sion. However, it is unlikely that Nature is so occa-
sional. In our opinion, the Caspian Sea represents a
complicated and poorly studied nonlinear system,
which should be investigated instead of claiming that
its properties are occasional.

We present here the regression model [10] for the
variation of the level of the Caspian Sea:

(4)

Here, Z(t) is the dimensionless level, γ(5) (t) is the resid-
ual sequence of the regression model of the fifth order,
and δ(5) (t) is the sequence of mutually independent and
identically distributed random values with zero mean
and unit variance.

The full-scale data X(t), t = 1, 2, …, N were normal-
ized using the transformation

where Xmax = –25.21 and Xmin = –28.92 m abs.
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Fig. 2. Phase portrait of the nonlinear model for variations in the level of the Caspian Sea.
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The attractor of nonlinear model (4) is shown in Fig. 2.

2. ON A PROBABILISTIC PREDICTION 
OF SEA-LEVEL OSCILLATIONS

We now put forth a question: what is the probability
that a sea initially at a fixed level Hc (for example, Hc can
be the sea level observed in 1999) attains a high level H3
(–25.47 m abs.) prior to a lower level H1 (−27.92 m abs.),
and what is the average time of attaining a new position
of equilibrium? The solution to this problem is based on
solving the Kolmogorov inverse equation and is dis-
played in Table 2. This is the probabilistic prognosis of
the sea-level variations for the nearest 15–20 years,
which is obtained on the basis of the analytical solution
to the Kolmogorov inverse equation. [This result can also
be obtained by the method of mathematical simulation of
the solution to nonlinear discrete equation (4).]

In the long-term time scale, the number of transi-
tions of the Caspian Sea from one equilibrium level to
another is determined by the Poisson law with a param-

eter of 0.01–0.002 . We emphasize that the pro-

cesses of the heat exchange and moisture exchange in
the sea basin are strongly unstable and are nonlinear
dynamic processes whose description is possible only
at the probabilistic level. Thus, only the ensemble evolu-
tion can be predicted. As to the individual trajectory over
a period of 100 years, this prediction is incorrect [11].

3. ON THE PROBLEM OF INSTABILITY
OF THE GLOBAL CLIMATE

We write out the equations of the thermal-energy bal-
ance for the terrestrial climatic system, the land water

1
year
----------
OKLADY PHYSICS      Vol. 46      No. 5      2001
balance, and the dynamics of the global river run-off:

(5)

Here, R = {T, W, Q} are the global air temperature, the
moisture reserves of continents, and the river run-off

c
dT
dt
------

S0

4
-----= 1 α– T W,( )[ ] I T( ),–

dW
dt

-------- P T( ) E T W,( ) Q,––=

τdQ
dt
------- G W( ) Q.–=

Table 2.  Probabilities and durations of transitions from a
fixed sea level to the upper and lower levels

Level,
m abs.

Probability
of the transi-

tion to the 
lower level

Transition 
time, years

Probability 
of the transi-

tion to the
upper level

Transition 
time, years

–27.74 0.98 5 0.02 34

–27.55 0.96 10 0.04 33

–27.36 0.93 13 0.07 32

–27.17 0.89 17 0.11 29

–26.99 0.83 20 0.17 27

–26.81 0.75 22 0.25 24

–26.62 0.64 25 0.36 20

–26.44 0.50 28 0.50 17

–26.25 0.35 30 0.65 13

–26.07 0.22 32 0.78 10

–25.88 0.12 33 0.88 7

–25.69 0.05 34 0.95 3
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into the ocean, respectively; S0, I(T), α(T, W) are the
solar constant, the amount of the heat radiation outgo-
ing from the atmosphere upper boundary, and the plan-
etary albedo of the Earth; c is the heat capacity of the
system consisting of both the atmosphere and the func-
tional layer of the underlying surface; and P(T) and
E(T, W) are the amount of precipitates and evaporation
from the continental surface.

These equations are obtained provided that the
amount of water and the total ice mass on the Earth are
constant (land and island polar-ice sheets and the
underground ice of permafrost are steady formations
and do not participate in short-period oscillations of the
climate).

Let RS = {TS, WS, QS} be the time-independent solu-
tion to the set of equations (5). It is easy to show that,
with allowance for the dependence of planetary albedo
and evaporation of the land moisture reserves, this solu-
tion turns out to be unstable. The character of the cli-
mate instability is specified by the spectrum of the

matrix  of the nonlinear dynamical system

∂tR = F(R). For example, for c = 9.6 Wyear/m2,  = 0, 

where the derivatives are calculated for modern cli-
matic conditions (TS = 15°C, QS = 0.3 m/year, PS =
0.8 m/year, ES = 0.5 m/year, αS = 0.33, S0 = 1370 W/m2)
and the eigenvalues of this matrix are 1.63 × 10–2 1/year,
–2.07 × 10–1 ± 1.15 × 10–2 i/year (saddle–focus). It is

easy to show that, for  < 0 and  < 0, the nonlin-

ear set of equations (5) can have several solutions. The
central problem relevant to the properties of this set
consists in the possibility of existence of a strange
attractor, because there exists a hypothesis that the cli-
matic evolution for the last million years can be consid-
ered a manifestation of the deterministic dynamics pos-
sessing a chaotic small-dimensional attractor.

Thus, the modern climate turns out to be unstable
with a characteristic oscillation period of hundreds of
years.

The observed global warming of the Earth takes
place due to increased solar-energy absorption, owing
to a progressing decrease in the land albedo and an
increase in the land heat capacity. The rise in carbon-
dioxide concentration in the atmosphere (the green-
house effect) is a consequence of natural processes.
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In our opinion, the correlation [11] between the
anomalous warming of waters off the shores of Ecua-
dor and Peru (El Niño) and the climate in the Volga
basin is explained by the instability of the Earth’s glo-
bal climate. The moistening of the Northern hemi-
sphere in the 1980s induced a decrease in the albedo
and land heat capacity. This fact, in turn, increased the
near-ground temperature of the Northern hemisphere,
decreased the heat outflow from the tropics, and
increased the temperature in the equatorial zone of the
Pacific Ocean. The development of a vast temperature
anomaly on the surface of the Pacific Ocean in its cen-
tral part preceded the occurrence of El Niño and con-
siderably enhanced it.

Indeed, prior to the occurrence of the anomalous El
Niño (1982–1983), the level of the Caspian Sea had
already been elevated by 86 cm (!) and the soil-mois-
ture reserves for the European territory of Russia
increased everywhere in 1972–1985 and in all the sea-
sons at a rate of 1 to 3 cm for 10 years. Note that the
correlation dependence between El Niño and the Nile
run-off was noticed for the first time in [12]. It should
be emphasized that the relationship between the El
Niño phenomenon and the anomalies in meteorological
and oceanic fields in various regions is the consequence
of the instability and nonequilibrium of the global cli-
matic system. According to the descriptive expression
of I. Prigozhin, “only in a nonequilibrium state, can a
system turn out to be sensitive to certain aspects of its
proper reality.”

4. KOLMOGOROV ESTIMATES 
FOR SPECTRAL DENSITIES OF TIME SERIES

Since periodic solutions are characteristic of mod-
els (1) and (5), the spectra of climatic and hydrologic
series must have extrema at certain frequencies.

For the spectral densities of the series, we used the
Kolmogorov estimate [13, 14]. Let the series X(t) of
length N be divided into T segments each of length M,
which are shifted by L with respect to each other; i.e.,
N = (T – 1)L + M + 1. We determine that

where aM(t), t = …, –1, 0, 1, … is a certain nonnegative
function (“data window”) equal to zero outside the
interval [0, M]. In the case of the Kolmogorov estimate
[13, 14], this function is determined by the relation

Here, M = K(
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 is the normalizing fac-
tor, the integers 
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M of a segment. The coefficients CK, P(t) are determined
from the relationship

Usage of the (ω) statistic constructed on the overlap-
ping segments makes it possible to markedly decrease
the variance of the estimate and to simultaneously test
the series with respect to its stationary character. The
statistical properties of this estimate were thoroughly
investigated in [13].

Thus, in this paper, we have constructed the spectra
for the Caspian Sea and its basin, for the Volga run-off
in Yaroslavl, the run-off for all the rivers into the Cas-
pian Sea, the air temperature in Kazan and Moscow,
and the sequence γ(5)(t) [see (4)] for variations in the
level of the Caspian Sea (Fig. 3). Moreover, we have
constructed the spectra of the Wolf numbers, the Nile
run-off near the Aswan dam, the El Niño anomalous
flow near the shores of Peru and Ecuador (the tempera-
ture series), the Dnieper run-off, and the air tempera-
ture in Saint Petersburg (Fig. 4).
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1. The state-of-the-art in laminated-plate and shell
mechanics was covered in review [1]. The current sta-
tus of the stability theory for three-layer plates and
shells was presented in [2]. In [2], the stages of the the-
ory’s development and lines of further inquiry were
analyzed and a proposal was put forth on the classifica-
tion of stability-loss forms according to Euler. In the
case of three-layer plates and shells under the action of
a static load, for different forms of the stressed-strained
state in both supporting layers and the filler, we should
distinguish the following:

(1) Skew-symmetric (equiphase) and symmetric
(antiphase) stability-loss forms. These forms are real-
ized in certain structures for equal values of subcritical
forces in supporting layers and zero values of subcriti-
cal transverse tangent shear stresses in a filler.

(2) A mixed flexural stability-loss form. This is real-
ized for unequal values of subcritical forces in support-
ing layers and zero values of subcritical transverse tan-
gent shear stresses in a filler.

(3) A pure shearing stability-loss form. This is real-
ized for zero values of subcritical forces in supporting
layers and nonzero values of subcritical transverse tan-
gent shear stresses in a filler.

(4) A flexural-shearing stability-loss form. This is
realized in the case of nonzero subcritical tangential
stresses in supporting layers and transverse shear
stresses in a filler.

(5) A shearing stability-loss form in tangential
directions. This is realized for low values of the shear
modulus of a supporting-layer material in the tangential
plane under conditions of pure shear.

(6) An arbitrary stability-loss form. This is a combi-
nation of the above forms for a subcritical stressed-
strained state of an arbitrary form.

2. We consider a circular three-layer ring with a
symmetric structure along the thickness, which is under
the action of a uniform external pressure p. Let 2t and
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2h be the thicknesses of the supporting layers and the
filler, respectively; R be the radius of the filler middle
surface; θ be the circumferential coordinate; E3 be the
filler elastic modulus in the thickness direction; and G
be the filler transverse-shear modulus.

Using the results of [3, 4], we can represent the lin-
earized equations for investigating all possible forms of
the ring stability loss (ignoring variations of the metric
along the filler thickness) in the following form:

(1)

Here, v (k), w(k) are the circumferential displacements
and deflections of the middle surfaces for the upper
(k = 1) and lower (k = 2) supporting layers; q are the
transverse shear stresses in the filler, which are perma-
nent along its thickness; and T (k), N(k), and ω(k) are the
axial thrusts, the generalized cutting forces, and the
turns in the supporting layers, respectively. The latter
quantities are expressed by the following formulas:

(2)

Here, Ç is the tension–compression stiffness of the sup-
porting layer; and M (k) is the bending moment related to
v (k) and w (k) by the following relation (D is the flexural
stiffness of the supporting layer):

(3)
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The subcritical axial thrusts  in the supporting
layers involved in (2) can be represented in the form

(4)

In particular, for p = const (uniform external pres-
sure), it is easy to show that

(5)

(6)

Here, χ =  is the dimensionless defining parame-

ter of the filler transverse squeezing.

The classical solution to the formulated problem of
finding the critical external pressure pcr can be found by
representing the unknown functions v (k), w(k), and q in
the form

(7)

where n = 1, 2, … is the number of stability-loss half-
waves.

Substituting (7) into (1) and using Eqs. (2), (3), and
(5), we obtain a system of homogeneous equations in
V (k), W (k), and Q. The critical value pcr can be found
from the condition that the solutions to this system are
nontrivial [4]:

(8)

Here, mcr > 1 is the dimensionless parameter of the crit-
ical load whose least value is determined by minimiz-
ing the expression for mcr with respect to n.

It is worth noting that by virtue of  ≠  in the
case of low values of χ, we deal with a mixed flexural
stability-loss form (w(1) ≠ w(2)) with n ≠ 2. When
increasing χ, this form passes to the classic equiphase
flexural form (w(1) ≈ w(2)) with n = 2.

3. We now demonstrate that the above-described
solution to the problem under consideration is not unique
and the value of the critical pressure found from (8) need
not be minimum. To this end, using Eqs. (1)–(4), we
construct a homogeneous system of stability equations

T0
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T0
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1( ) T0
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assuming that undulation in the coordinate θ is impos-

sible, i.e., assuming that  =  =  = 0:

(9)

Here, we accept that ω(k) = .

In what follows, instead of the desired unknowns
v (k) and w(k), it is convenient to introduce new
unknowns according to the following representations:

(10)

After constructing the combinations

the system of equations (9) can be rewritten in terms of
the new unknowns as

(11)

(12)

where ωa = , ωc = .

We connect subcritical forces ,  entering into
(12) by the relation

(13)

where, according to condition (6), the following for-
mula holds for c:

(14)
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Substituting relation (13) into Eqs. (12) and allow-
ing for the condition of the nontrivial nature of the

solutions to these equations for , we arrive at the
expression

(15)

Furthermore, combining (15) with the first formula
of (6), we can determine the critical external pressure
pcr, namely,

(16)

The stability can be lost by the form under consider-
ation even earlier than by the mixed flexural one if the
following inequality is fulfilled:

(17)

When designing three-layer structures, this inequality
is one of the constraints in choosing the value of the
filler’s transverse-shear modulus.

4. The analysis of the results obtained makes it pos-
sible to formulate the following fundamentally impor-
tant conclusions.

The quantity  is the critical load for the stability
loss. As follows from formula (16), this load is physi-
cally realized only in the case of external pressure.

In accordance with the classification compiled
in [1, 2], the form of stability loss under investigation
in a filler is a shearing loss. It is realized without
appearance of deflections in the supporting layers. This
is evident from trivial solutions wc ≡ 0, wa ≡ 0, w(1) ≡ 0,
and w(2) ≡ 0, which follow from (11).

Tc
0

Tc
0 R2 2cR+ t h+( ) t h+( )2+[ ] G

h 1 c2–( )
------------------------------------------------------------------------.–=

pcr
2G R2 2cR t h+( ) t h+( )2++[ ]

Rh 1 c2–( )
---------------------------------------------------------------------------= .

2G R2 2cR t h+( ) t h+( )2+ +[ ]
Rh 1 c2–( )

--------------------------------------------------------------------------- D

R2
-----mcr.<

Tc
0

The found form of shearing stability loss in the filler
can occur in structures not only at nonzero values of
subcritical transverse tangent shear stresses in the filler
but also in the case when they are absent in the subcrit-

ical state provided that  > 0. This conclusion is an
extremely important addition to the results of [4],
which were listed in Section 1, and significantly
extends our insight into the mechanisms of stability
loss for three-layer structures.

In studying the revealed form of shearing stability-
loss in fillers, introduction of simplifications of the
shallow-shell theory into the stability equations for
three-layer structures is inadmissible.

In three-layer structures, the form of the shearing
stability-loss in a filler is realized mainly through
mutual tangential displacements of supporting layers
without their bending.

To prevent the stability loss of three-layer structures
in accordance with the forms discussed above, the cor-
responding conditions for the fixation of supporting
layers in their contour must be provided.
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Molecular mass–heat exchange between drops and
their surrounding medium may be accompanied by
macroscopic effects; these effects make this process a
subject of continuum mechanics. As an example, we
refer to the emergence of oscillations or the transla-
tional motion of such drops due to the instability of
their equilibrium positions [1–3]. We discovered new
effects pertaining to this type of phenomena in studying
the dissolution of a drop of a binary mixture with a high
content of a surface-active substance (SAS).

1. SPHERICAL DROP

In our experiment, a drop of a chlorobenzene–iso-
propyl alcohol mixture was put in a water solution of
sodium chloride with a vertical density gradient. The
gradient value was chosen so as to suspend the drop in
the salt solution, thus decreasing the vertical motions of
the drop in the process of dissolution. The initial con-
centration C0 of alcohol in chlorobenzene was varied
from 10 to 45%; the drop diameter, in the range
3−10 mm. Only one component of the drop, namely
alcohol, was soluble in our experiment. This compo-
nent served as a surface-active substance not only for
the second component, chlorobenzene, but also for the
surrounding liquid. All working liquids were opaque.
To visualize and record the flow structure, we
employed a horizontal “light knife” and a video cam-
era. For a tracer, we used the white-colored opaque
emulsions that appeared at the drop boundary due to the
mutual trapping of water and chlorobenzene during
alcohol dissolution.

It is convenient to subdivide the dissolution of a
drop with a sufficiently high initial SAS concentration
into several stages. Owing to the surface instability
caused by capillary effects [4–7], the SAS dissolution
initially occurred as an ejection of concentration jets of,
on average, equal intensity. At each instant of time,
these jets were randomly redistributed over the drop
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surface. As the alcohol content decreased, the number
of jets diminished and their unsteady redistribution
over the surface caused the drop to swing with an
amplitude equal to 0.1–0.2 of the drop diameter, by
analogy with the well-known effect of a “jumping
drop” [1, 2]. Swinging was accompanied by the forma-
tion of an unsteady stream inside the drop in the form
of two or more cells. Later on, this regime changed to
the steady-state regime, and, finally, the motion of the
drop, as a whole, and the visible streams in the interior
of the drop ceased. 

However, the achieved mechanical equilibrium was
not the final stage of dissolution when the initial SAS
concentration was in excess of 20%. Suddenly, a large-
scale motion reappeared inside the drop and further
developed in accordance with one of the two scenarios.
In the first case, the convective motion inside a stagnant
drop manifested itself in the symmetric rise of the liq-
uid from the lower part of the drop along its axis in the
form of a rotating torus. Such an impulsive rise of the
liquid could occur repeatedly, for example, 5–6 times,
when C0 = 35%.

In the second, less frequent variant, a one-cellular
stream developed in the drop in the form of a rise of the
liquid along one side of the drop and a sink along the
other. Presumably, the type of motion changed as a
result of an accidental emergence of asymmetric (e.g.,
thermal) conditions on the drop surface. It could be
conceived that the drop was upset like a top upon com-
pleting its rotation. The upset was accompanied by the
intense ejection of the SAS from the floating-up stream
into the surrounding medium, which was clearly indi-
cated by the formation of concentration “swirls.” The
drop itself began to perform a translation, and its dis-
placement reached 3−5 drop diameters in a time of
about 10 s.

2. CYLINDRICAL DROP

Drops of spherical shape cannot be used for precise
observations and measurements. For this reason, in
order to elucidate the cause of the unusual behavior of
drops, we studied the dissolution of a stagnant drop in
the form of a short horizontal cylinder (“tablet”) with a
001 MAIK “Nauka/Interperiodica”
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(a) (b)

Fig. 1. The structure of the stream and concentration field in the cylindrical drop during its dissolution (D = 9 mm, C0 = 35%).
(a) Two-cellular stream visualized by a white-colored emulsion in reflected light; the time t elapsed from the onset of dissolution is
2 min; (b) field concentration in transparent monochromatic light (a transition from one interference band to the other corresponds
to a change in the alcohol concentration by 0.10%); t = 4.5 min.
free side surface, the faces of which were clamped
between two vertical glass plates. The gap between the
plates (~1 mm), filled with distilled water, was used as
a Fizeau interferometric cell, which enabled us to
record, face-on, the structure of the concentration fields
simultaneously with the visualization of the streams.
The drop diameter was varied from 5 to 15 mm.

As the cylindrical drop dissolved we initially
observed, as with the spherical drop dissolved, an
intense small-scale motion near the interface. Then, a
large-scale plane stream appeared inside the drop in the
form of two symmetric cells. This stream was produced
by the motion of the SAS-depleted mixture along the
side boundaries (Fig. 1a). In parallel with the evolution
of the stream, a stable, nearly linear distribution of den-
sity of the binary mixture with a downward-directed
vertical (positive) gradient formed throughout the drop.
As the mean alcohol concentration decreased, the
intensity of the large-scale stream declined and the
stream was expelled into the upper part of the drop. The
stream in the lower part became slow (creeping), repre-
senting the rise of the bulk of the liquid as a whole. 

As a result, two zones with different characteristic
mass-transfer rates were developed inside the drop: the
upper convective zone and the lower quasi-diffusive
(stagnant) zone. Correspondingly, the distribution of
the isopropyl alcohol concentration changed, retaining,
however, its linear appearance in the stagnant zone
(Fig. 1b) and becoming homogeneous in the upper part
of the drop due to the convective mixing. The mean
alcohol content in the convective region decreased at a
higher rate, making this region heavier than the under-
lying zone, i.e., changing the sign of the density gradi-
ent to negative. This unstable stratification of the mix-
ture was maintained by the creeping stream until the
onset of the crisis of large-scale motion in the upper
part of the drop and the breakup of this motion into iso-
lated streams of a depleted mixture sinking through the
drop body took place. When heavy streams reached the
upper boundary of the stagnant zone, the negative den-
sity gradient increased, resulting in the loss of stability
of the equilibrium state. The vertical distribution of
alcohol concentration at this instant of time is shown in
Fig. 2. (The alcohol-concentration and mixture-density
gradients are directed opposite to one another; the
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Fig. 2. Distribution of the alcohol concentration over the
height of the cylindrical drop at the instant corresponding to
the loss of stability and the repeated development of convec-
tive motion (D = 9 mm, C0 = 35%, t = 5 min). 
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unstable stratification of density corresponds to seg-
ment “B.”)

After the loss of stability, the light portion of the
mixture began to float up along the side surface. How-
ever, the buoyant liquid lost the SAS rapidly, which led
to the generation of an inverse stream and to the forma-
tion of a cell similar to the torus in the three-dimen-
sional case. Consequently, the prerequisites arose for
the repeated cycle. Note that, at the instant of the onset
of repeated motion, both the concentration gradient and
the mean concentration (~1%) are small compared to
the initial concentration.

Thus, we experimentally studied the streams and
concentration fields that are formed in the process of
dissolution of spherical and cylindrical drops in an
SAS-containing binary mixture due to the interaction
of the concentration–capillary and gravitational con-
vection mechanisms. We discovered and explored a
new phenomenon, the reappearance of large-scale
motion at the ultimate quasi-diffusive stage of dissolu-
tion. The reason for this is the loss of stability in the
density distribution, which is formed by initial convec-
tive streams. Because the intensity of such flows is
determined by the initial concentration of the dissolv-
ing component, the effect revealed by us has a threshold
DOKLADY PHYSICS      Vol. 46      No. 5      2001
character and can be observed only at a sufficiently
high SAS content.
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The Lagrange equations of motion are written for a
mechanical system consisting of kinematic dry-friction
pairs. These equations are not solved for higher deriva-
tives and constraint forces. The definition of a solution
to them is given. Theorems on the uniqueness and exist-
ence of such a solution are formulated under certain
sufficiently general additional assumptions. The results
obtained develop and complement the mechanical the-
ory of systems with dry friction [1–6].

1. The equations of motion are derived by the
method of elimination of constraints, which is
described in papers [7, 8]. According to this method, an
initial system with constraints is changed for another
system in which frictional constraints are replaced by
reaction forces N1, …, and Nm and friction forces. To
describe the position of such a system, additional coor-
dinates qn + 1, …, qn + m are introduced along with the
initial coordinates q1, …, qn .

For the extended system under consideration, which
is free of frictional constraints, an expression for
kinetic energy T and the Lagrange equations of motion
can be immediately determined. The kinetic energy T
is assumed to be the quadratic form with respect to :

;

its coefficients are continuously differentiable. As is
shown in paper [8], the work of reaction forces, which
is spent for virtual displacements along the lines of
each coordinate qi (i = 1, …, n + m), represents a func-

tion of the form (q, , N) = ( (q, ), N). It is con-

tinuous with respect to q and , linear in N, and con-

tains a vector , which is continuous with respect to

q̇

T aij q( )q̇iq̇ j

i j, 1=

m n+

∑ bi q( )q̇i c q( )+
i 1=
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q and . The external forces (q, ) (k = 1, …, n +
m) are also assumed to be continuous. In this notation,
the complete system of equations of motion has the
form

(1)

(2)

(3)

Here, the steady-state equations (3) which describe the
constraints close the incomplete system of n + m
Lagrange equations (1), (2) in n + m + m unknowns
q1, …, qn + m; N1, …, Nm .

The system presented differs from the known alge-
braic-differential systems in the absence of variables
N1, …, Nm in Eqs. (3).

According to Coulomb’s law, the generalized fric-

tion forces  are taken to be

in the regions of their continuity (at nonzero velocities

), where  ∈  C(q, ) are the friction coefficients,

||N ||i =  is the Euclidean norm of the

corresponding reaction-force vector, Ti(q, ) ∈
C(U\6) are piecewise continuous functions, and 6
represents the union of discontinuity surfaces of all Ti .

Most widely used is the function Ti( ) = , where

 are the components of the vector  that determine
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velocity at a contact point. Use of other functions Ti ,
which can be taken, for example, from papers [1, 8, 9],
is also possible.

Using (3), we eliminate the variables qn + 1, …, qn + m
in Eqs. (1) and (2) and obtain

(4)

The left-hand sides of these equations are linear in ,

aki akj

∂S j

∂qi

--------
j n 1+=

n m+

∑+
 
 
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q̇̇i v N
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while their right-hand sides are piecewise continuous
with respect to their arguments and independent of 
and N.

System (4) consists of n + m second-order differen-
tial equations in n + m unknowns qk (k = 1, …, n) and Ni

(i = 1, …, m). These equations are not solved for  and
do not contain derivatives of N, while the reaction
forces N themselves enter nonlinearly into them and
have discontinuous coefficients.

2. We assume that N(t) is a given function. By
replacing  with p in Eqs. (4) and substituting the func-
tion N(t) in these equations, we construct the many-val-
ued function

q̇̇

q̇̇

q̇̇

M 4( ) q q̇ N t( ), ,( ) p Rn∈
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.=
Here, the set M(4) (q, , N(t)) is formed by the values of
 satisfying system (4) at given q, , N(t), and N(t).

Remark 1. The set M(4)(q, , N(t)) is defined by
n + m equations with n unknowns pi . Therefore, this set
is not empty only for certain functions N(t) called
admissible.

Definition 1. The pair q(t): R  Rn, N(t): R 
Rm is called a solution to system (4) under the following
conditions:

(1) The function (t) is absolutely continuous with
respect to t and, consequently, has the measurable
derivative (t).

(2) The many-valued function N(t) is everywhere
β-continuous with respect to t (has a closed graph); it is
single-valued if t is such that q(t) and (t) do not
belong to the discontinuity surfaces 6 of the functions

(q, ) .

(3) The generalized differential equation

is satisfied, where, similarly to paper [10], co{·} and an
over-bar mean take the convex hull and closure of a
function graph in the space {q, , p}, respectively.

3. The unit sphere  of the dimensionality pj is
considered for each reaction-force vector having the
number j = 1, …, J. It is assumed that the vector ej ∈

q̇
q̇̇ q̇

q̇

q̇

q̇̇

q̇
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k q̇

q̇̇ t( ) co M 4( ) q q̇ N t( ), ,( ){ }∈

q̇

S1
p j
 and the vector e = (e1, …, ej) ∈  Rm are formed by
coordinates of the vectors ej . Outside the set 6, the
norms || · ||j occurring in system (4) are replaced by the
scalar products (ej , ·). A matrix of the derived system

that is linear in ( , N) is denoted by .

We denote by Ae (q, ) a set of matrices which are

limiting matrices for (qi, ) at qi  q,   

(i  ∞, qi ∈  U). If, in addition, q and  are such that

|| (q, )''F(q, )||j* = 0 for a certain j*, we consider

that Ae(q, ) =  at this point. Here,

the expression (q, )'' represents the last m rows

of the matrix .

We also introduce the set of matrices that ensure the
linearization of system (4) in  and N at the point q, 
for all possible vectors e of the form considered here: 

Here, elements of the matrices A ∈  ! can be discontin-
uous only in 6.

Theorem 1 (on the existence of the solution). Let,
at any point q,  in the region U, the following condi-
tions be satisfied:

(i) ∃ c > 0 is such that for any compact set K ∈  U,
K ∩ 6 = , ∀ Ae ∈  !, ∀ A ∈  Ae |detAe | ≥ c and the func-

S1
p j
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tion A–1(q, )F(q, ) satisfies the Lipschitz condition
with respect to q,  in K.

(ii) The condition

(5)

is satisfied for ∀ Ae (q, ) ∈  !  ∀ :  ( , ej) = 0, ∀ A∗ ,

A∗∗  ∈  Ae . (By definition, in the set 6, Ae is the closure

of the limiting matrix set corresponding to qk  q and
  .)

Then, for ∀ t0, ∀ q0,  ∈  U, for which ∃ N0 is such

that if N(t0) = N0, then the set M(4)(q0, , N0)  ≠ ,
there is a solution to system (4) in the sense of Defini-
tion 1. It exists in the region U and is such that q(t0) =
q0, (t0) = , and N(t0) = N0 .

For the right- and left-hand sides of the differential
equation (4), condition (ii) of Theorem 1 is difficult to
verify. The proposition formulated below gives the suf-
ficient condition for item (ii) of Theorem 1, which is
simple and often applicable.

Proposition 1. Let, for any compact set K ∈  U,
∃ c > 0: ∀ Ae ∈  ! and the condition |detA | ≥ c > 0 be
satisfied for any matrix A belonging to closure of the

convex hull ÒÓ{ } of the set of limiting matrices.
Then, condition (5) of Theorem 1 is satisfied.
To prove Theorem 1, the author has presented a rule

making possible a construction of the approximate
solution and development of the corresponding numer-
ical algorithm.

4. We assume that there are both the initial condi-
tions q(0) = q0, (0) =  and a certain region U, which

contains (q0, ) and needs to be used for investigation
of the properties of the solution.

The vector N0 ∈  Rm that describes the initial reactions
at the point q0,  is called admissible for system (4) if

the set M(4)(q0, , N0) ≠  for this N0.

Proposition 2. Let the conditions of Theorem 1 and
Proposition 1 be satisfied. Then, only a finite number of
the admissible reaction-force vectors Ni  corresponding
to system (4) exists at each point q,  ∈  U\6. 

The proposition formulated below gives the suffi-
cient uniqueness conditions for reaction forces arising
in the system.

Proposition 3. Let the conditions of Theorem 1 and
Proposition 1 be satisfied throughout the space R2n.
Then, the unique admissible vector N0 exists for each
q0,  ∈  R2n\6.

Definition 2. The solution to system (4) is termed
right-hand single-valued in the region U if any two
solutions to system (4), q1, N1 and q2, N2 , which have

q̇ q̇
q̇

A*
1– q q̇,( )'' A**

1– q q̇,( )''( )T
e j

0 e j
0,( ) 0>

q̇ e j
0 e j

0

q̇k q̇

q̇0

q̇0 |t t0=

q̇ q̇0

Ae
1–

q̇ q̇0

q̇0

q̇0

q̇0

q̇

q̇0
the identical initial conditions q1(t0) = q2(t0), (t0) =

(t0), and N1(t0) = N2(t0), coincide at t > t0 belonging
to a domain of their definition.

The right-hand Lipschitz condition represents the
main tool for investigating the right-hand uniqueness.
The vector-function G satisfies the right-hand Lipschitz
condition in the region U if ∃ 6* with µ(6*) = 0:
∃ L > 0: ∀ x, y ∈  U\6*:

(6)

where µ(·) is the Lebesgue measure in U.
Remark 2. Piecewise continuous functions of the

form T∗  = –  ∈  Rn satisfy condition (6) in .

For a solution to system (4), the theorem formulated
below represents the sufficient conditions of the right-
hand uniqueness in the sense of Definition 2. These
conditions are applicable, for example, for systems
where constraint forces are independent of friction or
the work of the reaction forces is equal to zero for the
possible displacements along q1, …, qn .

Theorem 2. Let, along with the realization of the con-
ditions of Theorem 1 and Proposition 1 for system (4), the
following conditions be satisfied:

(i) All functions ||N(q, )||iTi(q, ) and Fi satisfy the
right-hand Lipschitz condition in the region U; the fric-
tion coefficients fi are positive and satisfy the Lipschitz
condition.

(ii) The matrix

is continuously differentiable in U, self-conjugate
(symmetric), and positive-definite with |detE | ≥ c > 0.

(iii) Each function (( (q, ), N(q, )) (k = 1, …, n)
satisfies the Lipschitz condition with respect to the vari-

ables q,  ∈  U [for normal reactions ( (q, ),

N(q, ) = 0].

Then, for any initial condition q0,  ∈  U and each
admissible reaction-force vector N0 , a solution to sys-
tem (4) that satisfies these initial conditions is right-
hand single-valued in the region U in the sense of Def-
inition 2.

Remark 3. If  = 0, then E is the matrix of kinetic

energy, which is assumed to be symmetric and positive-
definite.

Application of the theorems discussed here is illus-
trated in my papers [11], where, along with other exam-
ples, those proposed by P. Painlevé concerning a body

q̇1

q̇2

x y– G x( ) G y( )–,( ) L x y– 2,≤

q̇
q̇ w+

--------------------q̇ q̇

q̇ q̇

E aki akj

∂S j

∂qi

--------
j n 1+=

n m+

∑+
 
 
 

i 1= … n; k, , 1= … n, ,

=

v N
k q̇ q̇

q̇ v N
k q̇

q̇

q̇0

∂S j

∂qi

--------
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fixed in its center of mass in a ball-and-socket joint with
friction are considered.
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Uniqueness of the Solution to the Stability Problem
for a Material with Nonlinear Heterogeneous Elasticity
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In contrast to the classical case, in the case of phys-
ically nonlinear elastic media, the uniqueness theorem
usually only states uniqueness in the small. In this
paper, we present the conditions of stability and
uniqueness in the small and in the large for the model
of a heterogeneously elastic material (with a nonuni-
form elastic modulus) [1–4].

This model is employed, for example, to allow for
the effect of damages and microruptures on the strain
characteristics of solids, when studying the stability of
spatial bodies, and on the fracture mechanics. Various
sufficient conditions of uniqueness in the small of a
solution to the static problem for such materials and the
conditions of their stability were given in [5–8]. The
uniqueness theorem for a local solution to the dynami-
cal one-dimensional problem was proved in [3].

In the geometrically linear formulation, the bound-
ary value problem of the elasticity theory is described
by the equations

(1)

(2)

(3)

These equations admit branching of their solution.
Namely, on attaining a certain stressed–strained state,

two different solutions , ,  and , ,

 correspond to the same problem (1)–(3). Here,
W(εij) is the elastic potential; S = ST + SU + STU is the

σij j, Fi+ 0, εij
1
2
--- ui j, u j i,+( ),==

σij
W∂
εij∂

--------,=

σijn j ST
Ti, ui SU

Ui,= =

uili STU
Ul, εmjk σ jsns( )lk STU

Tm.= =

σij
1( ) εij

1( ) ui
1( ) σij

2( ) εij
2( )

ui
2( )
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surface of the body under consideration with volume V;
Fi and Ti are the specific mass loads and the given sur-
face loads, respectively; Ui are the displacements of
points on the surface SU; Ul is the displacement compo-
nent along the given unit vector l for points on the
boundary STU; Tm are the surface-load components in
the plane orthogonal to l; and εmjk is the absolutely anti-
symmetric unit tensor.

Equilibrium equations (1), the Cauchy relation-
ships, and also the Gauss–Ostrogradskiœ theorem lead
to the equation for virtual works:

(4)

In this case, denoting ∆σij =  – , ∆εij =  –

, and ∆ui =  –  and using (1) and (4), we
obtain

(5)

The integral in the right-hand side of relationship (5)

is zero because the loads are equal on ST, ( nj =

nj = Ti); the displacements are equal on SU , (  =

 = Ui); and the vectors ∆σijnj and ∆ui are mutually
orthogonal on STU . We now consider the left-hand side
of relationship (5).

We use the expression for W(ε) corresponding to the
first approximation for the elastic potential of the media
under consideration. This approximation was given
in [4]. Similar to the classical approximation, it is the
best in its class and takes the following form:

(6)

We assume that the function W(ε) is strictly convex.
1. Uniqueness in the small. In this case, the solu-

tions are infinitely close. From (2) and (6), we find,

σijεij Vd

V

∫ Fiui Vd

V

∫ σijn jui S.d

S

∫+=

σij
1( ) σij

2( ) εij
1( )

εij
2( ) ui

1( ) ui
2

∆σij∆εij Vd

V

∫ ∆σijn j∆ui S.d

S

∫=

σij
1( )

σij
2( ) ui

1( )

ui
2( )

W ε( ) λ
2
--- I1

2 µI2 ν I1 I2,–+=

ε εij( ), I1 δijεij, I2 εijεij=== .
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ignoring the values of the second and higher orders of
magnitude, that

For  ≠ , integral (5) is positive.

The uniqueness in the small follows from the con-
tradiction obtained.

For the function W(ε) to be strictly convex, it is nec-
essary and sufficient that the eigenvalues of the matrix

 be positive, where εi are the eigenvalues of

the strain tensor. According to [9], one of the eigenval-
ues is equal to the squared velocity of propagation of a
transverse acoustoelastic wave. Using the Vièta theo-
rem for two residual eigenvalues of this matrix, we
come to the desired conditions of uniqueness in the
small, which take the form of three inequalities:

(7)

Here, ξ =  is the strain parameter characterizing the

relation between the relative variations of volume and
mean-square shears.

For ν = 0, it follows from (7) that both the shear
modulus and the bulk modulus are positive; this pro-
vides for the uniqueness of solutions to problems of the
classical elasticity theory.

A more rigorous theorem on the uniqueness in the
small can be proved for this model provided that one of
the solutions is zero. In this case, the conditions of
uniqueness in the small and in the large coincide.

2. Uniqueness in the large. Using the equation of a
plane tangent to a convex surface and the Taylor for-
mula, with the residual term in the Lagrange form, we
have

(8)

where  = α  + (1 + α)  is a certain strain dis-

tribution intermediate between the solutions  and

 with α ∈  (0, 1).

From inequality (8) and relationship (5), it follows
that the necessary and sufficient condition of unique-
ness is given by inequalities (7), which should be satis-

fied for all values of ξ ∈  [– , ].

∆σij∆εij
∂2W
εij εkl∂∂

-----------------
εij

1( )
∆εij∆εkl 0.≥=

εij
1( ) εij

2( )

∂2W
εi ε j∂∂

-------------- 
 

2µ νξ 0,>–

4µ 3λ 3νξ–+ 0,>

6µλ 4µ2 λνξ 3– 6µνξ– 3ν2ξ2 3ν2–+ + 0.>

I1

I2

--------

∆σij∆εij
∂2W
εij εkl∂∂

-----------------
εij
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∆εij∆εkl 0,≥=
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α( ) εij
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εij
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εij
2( )

3 3
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The left-hand side of the last inequality of set (7) is
a cubic polynomial and is satisfied for all given ξ if

(9)

It is easy to verify that potential (6) is positive defi-
nite, and the first two inequalities of set (7) are also met
for all ξ provided that conditions (9) are satisfied.

It is seen from (9) that the constant ν in (6), which is
additional compared to the classical case, may exceed
the value of the classical shear modulus, but not by

more than a factor of ; however, it is always smaller,

at least by the same factor, than the bulk modulus
defined by Hooke’s law.

Inequalities (9) are also valid when one of the solu-
tions is zero. In this case, the value of the parameter ξ
in (7) is determined by the increments ∆εij:

Then, by virtue of the necessity of considering the
entire manifold ∆εij , the condition of uniqueness in the

small is given by inequalities (7) for all |ξ| ≤ , i.e.,
corresponds to conditions (9).

Thus, for materials described by (6) whose con-
stants satisfy conditions (9), the distribution of stresses
and strains corresponding to the boundary conditions of
problem (1)–(3) is unique.

3. Stability of a material. The nonuniqueness that
can arise when conditions (7) are not satisfied is caused
by the instability of the material. The conditions of sta-
bility follow from the positive definiteness of the fol-
lowing two quadratic forms [10]:

Here, x1 = δI1, x2 = δ , x3 = δΨ, Ψ is the angle of the
strain-tensor form, and the coefficients are determined
by the equalities

Using these relationships, we find that the necessary
and sufficient conditions of stability in the small are

µ 0, λ 2
3
---µ 0, ν

2

3
-------µ, λ 2

3
---µ≥

3
2

------- λ 2
3
---µ+ 
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3
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<>+>

2

3
-------
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given by the following three inequalities:

(10)

The first and the last inequalities of sets (10) and (7),
which are the most severe constraints, coincide. This
fact causes sets (10) and (7) to be equivalent and the
condition of stability in the small to coincide with that
of uniqueness in the small.

If set (10) is satisfied, all the principal minors of the

matrix  are positive. From this fact and the theo-

rem on implicit functions, it follows that, if any three
(with different subscripts) of six quantities σi and εi (i =
1, 2, 3) are given, then the three remaining quantities
are found unambiguously. The violation of stability
condition (10) leads to ambiguous relations between
strains and stresses for the given ξ. According to (7),
this ambiguity is due to the nonconvexity or the weak
convexity of potential (6) in its section by the cone I1 =

ξ . Thus, the nonuniqueness of the solution in the
small is realized.

If inequalities (10) are satisfied for all given ξ, they
also provide for stability in the large. In this case, as
with deriving the uniqueness condition, we conclude
that inequalities (10) are certainly satisfied if their coef-
ficients obey constraints (9). For a material described
by Eqs. (6), the condition of stability in the large coin-
cides with the condition of uniqueness in the large for
the solution to problem (1)–(3). For many actual mate-
rials, the constants λ, µ, and ν satisfy these conditions.

2µ νξ– 0,>

2µ νξ– λ 3 ξ2–( )+ 0,>

6µλ 4µ2 λνξ 3 6– µνξ 3ν2ξ2 3ν2 0.>–+–+

σi∂
ε j∂

------- 
 
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Stability of a Steady Front
for the Water–Vapor Phase Transition

in Geothermal Reservoirs1 
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Presented by Academician D.M. Klimov November 24, 2000

Received December 18, 2000
1. Investigations of natural geothermal systems
show that in many reservoirs, a situation takes place
wherein a water layer of a considerable thickness over-
lies a layer of overheated vapor [1, 2]. It is well known
that the state when a heavy-liquid layer lies over a
lighter liquid layer is unstable [3]. Therefore, various
hypotheses of a qualitative character were formulated
concerning the physical mechanisms of stability of
such geothermal systems [2].

For the first time, a mathematical model explaining
the linear stability of a water–vapor interface, when a
water layer lies over the vapor layer, was presented
in [4]. It was assumed that, in the unperturbed state, the
phases are motionless and the phase transition does not
occur. As a result of the numerical investigation under-
taken in that paper, the critical value of permeability k ~
4 × 10–17 m2 corresponding to the boundary between the
stable and unstable states for the geothermal system in
question was found. When the permeability exceeds the
critical value, the system turns out to be unstable. Nev-
ertheless, the authors indicated that the critical value
given is lower by approximately an order of magnitude
than the characteristic permeability of geothermal sys-
tems. Therefore, the stability of the majority of systems
has no explanation. The physical mechanisms of stabil-
ity observed were also not clarified.

In the present study, we analyze a more complicated
example of a geothermal system with allowance for the
phase motion and phase transition in the unperturbed
state. The solution to the bounded steady problem for
the phase-transition interface is obtained under the
assumption of a small convective transfer compared to
the conductive one. Our analysis of the linear stability

1 The article was submitted by the authors in English.
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of the solution shows that, in the parameter range where
this solution exists, it is always stable. Steady solutions
are obtained which hold for the permeability k ~ 4 ×
10−16 m2 typical of geothermal systems. The criterion
for the existence of the steady solution, which coin-
cides with the criterion for the stability of a geothermal
system, is presented. In this setting, the stability mech-
anism for the class of geothermal systems under con-
sideration acquires a clear physical meaning that con-
sists in the predominant conductive energy transfer
compared to the convective one.

2. We consider a high-temperature geothermal res-
ervoir consisting of two high-permeable parallel layers
separated by a low-permeable layer. We assume the
thermodynamic conditions to be the following. The
upper highly permeable layer x < 0 is filled with water
having a temperature T0 and a pressure P0 . The lower
layer x > L has a temperature T0 and a pressure P0 . In
this case, in the low-permeable layer 0 < x < L, there
exists a surface x = h of phase transitions, which sepa-
rates the domain of water 0 < x < h and vapor h < x < L.
Either the regime of evaporation, when the water moves
downwards, or the condensation regime corresponding
to upward vapor motion can take place depending on
the pressure in the highly permeable layers. We exam-
ine the stability of the interface with respect to small
perturbations.

Processes of heat and mass transfer under the condi-
tion of equilibrium phase transitions are described by
equations of mass and energy conservation, the Darcy
rule for water and vapor, equations of state, and ther-
modynamic relations [5]. Following [3, 4], we assume,
for simplicity, that water and vapor are incompressible.
Then, the system of defining equations for the both
domains has the form

(1)

divv j 0, v j
k
µ j

----- gradP ρ jg–( ),–= =

ρC( )1 2,
∂T
∂t
------ ρ jC jv jgradT+ div λ1 2, gradT( ),=
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Here, v  is the filtration rate, m is porosity, k is perme-
ability, µ is viscosity, P is pressure, g is the acceleration
of gravity, ρ is density, ë is specific heat, T is tempera-
ture, and λ is heat conductivity. The subscripts w, v , s
correspond to the properties of water, vapor, and the
porous-medium skeleton, respectively. The domains 1
and 2 correspond to vapor and water.

The conditions on the interface are formulated as
those for a thermodynamically equilibrium jump of the
water-saturation function [6]. These conditions are of
the form

(2)

Here, V is the velocity of the interface and q is the evap-
oration heat per unit mass. The subscripts n, plus,
minus, and * correspond to the normal vector, domains
of water and vapor, and values on the interface, respec-
tively.

Hereafter, we consider a particular case where the
convective heat transfer in Eq. (1) may be ignored. The
ratio of the convective to the conductive term in the
energy equation entering into Eq. (1) is determined for
the water domain by the dimensionless parameter

In this parameter, the permeability and pressure varia-
tions can considerably change, while the other physical
parameters vary insignificantly. Therefore, after substi-
tuting characteristic values of the parameters, the con-
dition of smallness for the convective transfer may be
written out in the form

where l is the characteristic length.

λ1 2, mλ j 1 m–( )λ s,+=
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µwλ1
-------------k δP ρwgl–( ).

ρwCw

µwλ1
-------------k δP ρwgl– 1010N 1– k δP ρwgl–  ! 1∼

or k δP ρwgl–  ! 10 10– N,
Performing similar estimates for the vapor domain,
we can show that the condition of a small convective
transfer is weaker than that for the water domain. In the
vapor domain, this condition is fulfilled automatically
in the case of a weak convective transfer in the water
domain. Then, the energy equations are reduced to the
usual equations of heat conduction for both domains.

3. We now consider the one-dimensional problem of
the phase transfer. If the pressure and temperature in
both highly permeable layers are constant (which is
provided by the heat inflow from the surrounding rocks
and high permeability, respectively), then the boiling
front occupies a certain equilibrium position and the
problem has a steady solution. The position of the inter-
face x = h is unknown and can be determined in the pro-
cess of solving the problem. The equations for the
desired pressure and temperature in both the water
domain and the vapor domain now take the form

The conservation laws for the mass and energy on
the interface are given by

where prime denotes the derivative with respect to x.
These equations, along with the conditions of thermo-
dynamic equilibrium at the interface, constitute the
complete system of relations. 

The solutions in the domains of water and vapor
have the respective forms

(3)

Substituting solution (3) into the conditions (2) on
the interface, we arrive at the system of equations for
the unknown quantities T∗ , P∗ , and h:

P '' x( ) 0, T '' x( ) 0.= =
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------–+ 0,=
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h
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We now consider, as an example, the solution corre-
sponding to the following values of the parameters and
initial and boundary conditions: µw = 1.48 × 10–4 Pa s;
µv = 1.59 × 10–5 Pa s; ρw = 888.66 kg m–3; ρv =
4.82 kg m–3; q = 2 × 106 J kg–1; L = 10 m; T0 = 450 K;
T0 = 460 ä; and P0 = P0 = 106 Pa. The values of the per-
meability are taken to be k × 1016 = 2, 1, and 0.5 m2.
The pressures in the highly permeable layers are cho-
sen to be equal in order to provide minimum pressure
variation. This makes it possible to strongly increase
the value of permeability and, at the same time, satisfy
the criterion of small convective energy transfer. Phys-
ically, this flow regime corresponds to the downward
motion of water under the action of gravity forces and
its further evaporation in lower layers of higher temper-
atures.

The solution to the system of equations on the inter-
face yields the following values of the desired quanti-
ties: h = 4.6, 3.2, 2.94 m; T∗  = 453.39, 452.9, 452.81 K;

and P∗  = 1.038 × 106, 1.027 × 106, 1.025 × 106 Pa.

It is worth mentioning that in the cases under con-
sideration, the maximum value of the parameter kδP is
0.76 × 10–11, which is by more than an order of magni-
tude lower than the critical value. Therefore, the
assumption on the smallness of the energy convective
transfer is valid. For k = 4 × 10–16 m2, we have P∗  =

1.046 × 106 Pa and k |δP – ρwgl | = 1.5 × 10–11 N; i.e., the
conductive term in the energy equation is seven times
higher than the convective one. Further increase in the
permeability enhances the role of the convective trans-
fer and, in turn, violates the above criterion.

4. Systems of defining equations linearized with
respect to the steady solution under the condition of the
small convective energy transfer in both domains have
the form

(4)

Hereafter, we assume for simplicity that the specific
heats and heat conductivities in both domains are deter-
mined by the corresponding parameters a = a1 = a2 for
the skeleton of the porous medium.

The boundary conditions for perturbations are given
by the relations

∆P 0,
∂T
∂t
------ a1 2, ∆T , a1 2,

λ1 2,

ρC( )1 2,
------------------,= = =

0 x h, h x L.< < < <

P 0, T 0 at x 0 L,,= = =

P– P+ Γ1η , Γ1+
P0

h
----- P0h P*L–

h L h–( )
--------------------------+ 

 = =

at x h,=
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Here, x = h + η(t, y) is the equation for the interface. We
assume furthermore that the temperature and the pres-
sure have the form g(x)exp(σt + iκy). Then, from the
condition of the existence of the nontrivial solution to
the problem (4), (5), we obtain the dispersion relation

(6)

where
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The function F(σ) is analytical everywhere in the
complex plane of σ except for the negative part of the
real axis, where it has a finite set of isolated poles sep-
arated from zero.

If for the fixed real κ there exist complex roots σ of
Eq. (6) with a positive real part, then the corresponding
perturbations exponentially grow with time and the
basic steady solution (3) is unstable.

We now consider the left side of the dispersion rela-
tion obtained as a function of the complex variable
F(σ). Zeroes of this function correspond to the roots of
Eq. (6). The absence of zeroes with a positive real part
that would provide exponential growth of small pertur-
bations implies the stability of the solution. To investi-
gate the stability, we use the argument principle [7],
which implies that the difference between the number
of zeroes and poles of the function F(σ) inside a certain
contour C lying in the (Re(σ), Im(σ)) plane is equal to
the number of rotations for the radius-vector in the
complex (ReF(σ), ImF(σ)) plane while going around
the contour C1 , which is the image of C while map-
ping F(σ).

In the plane of σ, we choose a contour consisting of
an imaginary axis and a semicircle lying in the right
half-plane. By virtue of the analytical properties of the
function F(σ), as was mentioned before, it has no sin-
gularities in the right half-plane. If F(σ) has zeroes
there, then, increasing the radius of the contour, we can
make all zeroes and poles lie inside the contour C. The
F-images of C, i.e., the contours C1 , were constructed
for a large variety of parameters. All these contours
have a shape similar to that for the contours presented
in the figure. In this figure, the comparative shape of
C1 is presented for the three regimes mentioned in
Section 3. In this case, the fact of principal importance,
which underlies the absence of zeroes for F(σ) inde-
pendently of the radius of C, is the negative value of the
coordinate for the point A.

α κ 2 σ
a
---+ .=

–7.5 –5.0

10

–15.0 –12.5 –10.0 –2.5

5

–5

–10

A
1 2 3

Characteristic shape of the function F(σ) = 0 in the complex
plane (ReF(σ), ImF(σ)) for κ = 3 and three different perme-
ability values (1) k = 2 × 10–16; (2) 1 × 10–16; and (3) 0.5 ×
10–16 m2.

0

We note here that the investigation carried out in [4]
is based on the assumption of the absence of complex
roots for the increment σ, which, generally speaking,
requires substantiation.

The analysis performed of the linear stability shows
that the solution is always stable in the case under con-
sideration. This corresponds to the stability of the phys-
ical configuration when the water layer lies over the
vapor layer. Hence, the smallness of the convective heat
transfer can serve as a stability criterion. This fact
makes it possible to understand the physical mecha-
nism of the stability. Such a mechanism implies that
perturbations of the interface and penetration of the so-
called water fingers into the vapor domain are pre-
vented by the dominating conductive heat flow leading
to the evaporation of the liquid phase. As computations
show, stable solutions can exist corresponding to the
permeability values k ~ 4 × 10–16 m2, which exceed the
critical value given in [4] by an order of magnitude. For
higher values of the permeability, the role of the con-
vective heat transfer increases and the basic solution
becomes invalid. However, it is natural to assume that
growth in the permeability does not immediately lead
to the rise of instability. In other words, in actual condi-
tions, the water layer can also exist over the vapor layer
in the case of a higher permeability so that our analysis
allows us to assume the existence of stable regimes up
to k ~ 10–15 m2.
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Cavitation is the disturbance of continuity of a liq-
uid (the initial stage of failure) in the field of tensile
stresses; it is accompanied by the growth of vapor-gas
bubbles on the cavitation nuclei that are always present
in liquid media as microbubbles of a free gas, or micro-
particles, or both [1, 2]. One of the parameters that
characterize the cavitation strength of water is the cav-
itation threshold, which is understood as a negative
pressure, the excess above which causes an intense
growth of cavitation nuclei and, as a consequence, a
steep change in the dynamics of the free surface of the
liquid [3], in the intensity of light scattering [1, 3], etc.
Depending on the measuring technique and quality of
water purification, the cavitation threshold varies from
units [2, 3–6] to several hundred atmospheres [4–6],
and its statistical dispersion, based on standard measur-
ing procedures, reaches 50–100% [5, 6] and is deter-
mined by the size dispersion of cavitation nuclei, fluc-
tuations in the nucleus distribution, nonlinear dynamics
of microbubbles, and by the measuring technique.

Statistical scatter of experimental values of the cav-
itation threshold can be considerably lowered by using
the capacitance technique [3, 7] for recording this
threshold through the observation of the dynamics of
the free surface of the liquid at the reflection of a shock
wave from this liquid. Such a wave is created in a shock
tube by the pressure of a pulsed magnetic field on the
conducting membrane that translates the pressure pulse
to the liquid. As a result of the wave reflection, the
downward propagating rarefaction pulsed wave is
formed near the surface, initiating the growth of cavita-
tion nuclei and the formation of a cavitation cluster.
The dynamics of the latter at different degrees of cavita-
tion is reflected by the free surface of water (Fig. 1) [7].
Curve 1 in Fig. 1 corresponds to the dynamics of the
free surface of a specimen of distilled water that is
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25 mm in height, which is observed at the reflection of
the compression wave from this surface before the
manifestation of cavitation phenomena (prethreshold
mode). Curve 2 demonstrates the displacement of the
free surface at the threshold amplitude of loading. It is
readily seen that a minor change in the amplitude of the
shock wave gives rise to a considerable change in the
free surface dynamics. Curve 3 corresponds to the
intense development of cavitation at which the dis-
placement of the free surface due to the growth of the
cavitation cluster is comparable to its displacement at
the instant of reflection of the shock wave. The slope Ui

of curves 1, 2 and 3 to the right of the bound AA
(Fig. 1), which corresponds to the completion of the
shock wave reflection from the free surface, is linked to
the specific volume ϕ of the formed bubbles (gas con-

tent) by the simple relationship ϕi = , where Ui is the

velocity of the free surface and c is the speed of sound
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c
-----
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Fig. 1. Dynamics of the free surface of specimen of distilled
water 25 mm in height observed at the reflection of the rar-
efaction wave from this surface.
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in water [2]. In practice, for threshold loading, the ϕ
value falls in the range from 10–4 to 10–3.

The data in Table 1 illustrate the dependence of the
amplitude of the cavitation threshold, which is detected
as a sharp increase in the slope of the Ui-curves of the
free surface, on the length of the positive phase T of the
pressure pulse. The pressure profile of the incident
shock wave was reconstructed from the dynamics of
the free water surface in the precavitation reflection
mode.

It is commonly accepted in acoustics that a liquid in
a field of an acoustic emitter is destroyed immediately
after the appearance of the first oscillating bubble,
which begins to disintegrate, resulting in the formation
of a cavitation region. In our case (Fig. 1, curve 3), we
can consider that the cavitation zone (cluster) forms
near the free surface, which continues to move by iner-
tia, as in the case of the split-off occurring in a solid
body.

A similar phenomenon—an increase in the strength
with decreasing the sounding time—is observed in the
failure of solids. The situation closest to the onset of
cavitation appears in solids in the case of a split-off fail-
ure. In this case, the material strength rises as the
sounding time decreases, while in the case of threshold
pulses, a weak dependence of failure time on the ampli-
tude of the starting loading pulse is established. This
effect was termed the dynamical branch phenomenon.

The structure–time failure criterion proposed in [8, 9]
enables one to calculate the increase in strength
observed in split-off experiments. This criterion provides
a reasonable explanation for the phenomena observed in
split-off experiments with brittle materials [8]. A similar
criterion, enabling an effective prediction of the behav-
ior of the dynamic yield strength [10], is used for plas-
tic materials:

(1)

Here, αc is the static yield strength and τ is the incuba-
tion period pertaining to the dynamics of the disloca-
tion process. The parameter α characterizes the sensi-

1
τ
--- σ t( )

σc

---------- 
  α

td

t τ–

t

∫ 1.<

Dependence of the cavitation threshold amplitude on the
length of the positive phase of the pressure pulse

Pulse length, µs Pressure, atm

2.9 65
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4 34

4.5 31

4.8 27

6 18
tivity of the material to the level of stresses that cause
an irreversible deformation. Its value for solids is
higher than or equal to unity. For some materials, α
attains several tens; e.g., α = 10–30 for steels and
alloys. It should be noted that the condition for the irre-
versible growth of cavitation bubbles under critical
loading, which leads to the failure of a liquid specimen,
is also used for liquids [11].

In order to analyze the initial stage of cavitation fail-
ure, we will use criterion (1), taking into account that
the tensile stresses are positive in the mechanics of
deformable solids, while the tensile pressures in liquids
are negative. In addition, it is necessary to make allow-
ance for the contribution of compression. As a result,
relationship (1) takes the form

(2)

For distilled water, we take σc ≈ 1 atm, because an
intense growth of cavitation nuclei under the action of
tensile stresses begins after neutralization of surface

tension forces, i.e. when σc = , where σw is the sur-

face tension for water and r ≈ 1.5 µm is the radius of
cavitation nuclei [1]. The values of τ and α were chosen
using experimental points. The load realized in the
experiments is approximated by the formula

(3)

where PA is the pulse amplitude and T is the pulse
length. The parameter T1 characterizes the degree of
damping. The highest absolute value of the pulse

amplitude Pm is attained at the time t = :

The applied loading tension σ(t) induces a pressure
wave which moves toward the surface. If we take the
surface coordinate as zero and count off the time from
the instant of the wave arrival to the surface, the wave

can be written in the form σ t + H t + . Upon

reflecting from the surface, the wave takes the form

−σ t – H t –  and the pressure will be deter-

mined by the sum of these waves. Here, H(t) is the
Heaviside function and c is the speed of the wave in the
liquid (c = 1500 m/s). Computations show that experi-
mental loading curves are well described by formula (3)
at T1 = 2.85 × 10–6 s.

1
τ
--- σ t '( )( )sgn abs

σ t '( )
σc

----------- 
 

 
  α

t 'd

t τ–

t

∫ 1.<

2σw

r
---------

σ t( ) PA
πt
T
----- 

  e
t /T1–

,sin–=

T
π
---

πT1

T
--------- 

 arctan

Pm

πT1

T2 π2T1
2+

--------------------------- T
πT1
---------

πT1

T
--------- 

 arctan 
  .exp=

-
 x

c
--
 -

 x
c
--


-
 x

c
--
 -

 x
c
--


DOKLADY PHYSICS      Vol. 46      No. 5      2001



ON THE SIMILARITY OF THE INITIAL STAGE OF FAILURE OF SOLIDS AND LIQUIDS 365
The critical strength is calculated as follows. We
substitute the normalized pressure values at all points
of the liquid at all instants of time corresponding to
nonzero pressure into integral (2). Then, the instant and
the coordinate are determined for which this integral
reaches a maximum. The Pm value for which criterion (2)
becomes an equality at the instant of time and for the
coordinate corresponding to the maximum value of the
integral represents the required amplitude. Calculations
show that the best coincidence with experimental val-
ues is observed for α values in the range from 0.4 to 0.5.

The dependence of the strength on the pulse length
T for α = 0.5 and τ = 19 µs calculated from criterion (2)
is plotted in Fig. 2. The open circles are the experimen-
tal points.

CONCLUSIONS 
It is shown experimentally that the cavitation

strength of water rises with a decrease in the pulse

100

T, µs

50

0 2 4 6 8

Pm , atm

Fig. 2. Experimental and calculated, according to crite-
rion (2), strengths as a function of the pulse length T for
α = 0.5 and τ = 19 µs.
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length and that the corresponding dependence is non-
linear.

The use of the structure–time criterion makes it pos-
sible to calculate the increase in the cavitation threshold
with a decrease in the pulse length, which is observed
experimentally.

The data obtained testify to the fundamental impor-
tance of the structure–time approach, which provides
an adequate description of both the dynamics of failure
of solids and the initial stage of destruction of liquids.

REFERENCES
1. A. S. Besov, V. K. Kedrinskiœ, Y. Matsumoto, et al., Din.

Sploshnoœ Sredy, No. 104, 16 (1992).
2. M. Kornfeld, Elasticity and Plasticity of Liquids (Inos-

trannaya Literatura, Moscow, 1951).
3. A. S. Besov, V. K. Kedrinskiœ, and E. I. Pal’chikov,

Pis’ma Zh. Tekh. Fiz. 15 (16), 23 (1989) [Sov. Tech.
Phys. Lett. 15, 630 (1989)].

4. L. Y. Briggs, J. Appl. Phys. 26, 1001 (1955); 21, 721
(1950).

5. R. T. Knapp, J. W. Daily, and F. G. Hammitt, Cavitation
(McGraw-Hill, New York, 1970; Mir, Moscow, 1974).

6. A. D. Pernik, Problems of Cavitation (Sudostroenie,
Leningrad, 1966).

7. A. Besov and V. Kedrinskiœ, in Proceedings of the Inter-
national Symposium on Bubble Dynamics and Interface
Phenomena, Birmingham, 1994, p. 93.

8. N. F. Morozov, Yu. V. Petrov, and A. A. Utkin, Dokl.
Akad. Nauk SSSR 313, 276 (1990) [Sov. Phys. Dokl. 35,
646 (1990)].

9. N. F. Morozov and Yu. V. Petrov, Problems of Dynamics
of Failure of Solid Bodies (Sankt-Peterb. Gos. Univ.,
St. Petersburg, 1997).

10. A. A. Gruzdkov and Yu. V. Petrov, Dokl. Akad. Nauk
364, 766 (1999) [Dokl. Phys. 44, 114 (1999)].

11. V. K. Kedrinskiœ, Prikl. Mekh. Tekh. Fiz., No. 3, 74
(1993).

Translated by A. Kozlenkov



  

Doklady Physics, Vol. 46, No. 5, 2001, pp. 366–368. Translated from Doklady Akademii Nauk, Vol. 378, No. 3, 2001, pp. 336–338.
Original Russian Text Copyright © 2001 by Obraztsov, Yanovski

 

œ

 

, Vlasov, Zgaevski

 

œ

 

.

                                                     

MECHANICS
Poisson’s Ratios for Interfacial Layers 
of Polymer Matrix Composites

Academician I. F. Obraztsov, Yu. G. Yanovskiœ, A. N. Vlasov, and V. É. Zgaevskiœ

Received December 21, 2000
In most cases, extensively used polymeric materials
represent heterogeneous media with phase interfaces of
large relative areas. Polymer macromolecules situated
on the interface between a highly elastic matrix and the
rigid particles of a filler interact with the filler surface.
This effect leads to the formation of an interfacial poly-
mer layer whose mechanical characteristics differ from
those for the matrix [1, 2]. The specific character of the
interaction of the macromolecules with the surface
imposes restrictions on the elastic properties of the
interfacial layer. In particular, the ranges of the Pois-
son’s ratios for the interfacial layer are noteworthy and
attract interest (see [3, 4]).

The filler surface is assumed to be flat and to contain
uniformly distributed active centers; in each of these
centers, one end of a macromolecule is rigidly fixed.
We assume furthermore that the macromolecules are
surrounded by a certain medium (a solution) and the
forces of adhesive interaction between segments of the
macromolecules and the surface are negligible as com-
pared to the forces caused by chemical bonds. The filler
surface is impermeable to the segments of the macro-
molecules. Both the impermeability of the surface and
the steric restrictions leading to interaction of the mac-
romolecules cause a specific variation of their confor-
mation.

Let the other macromolecule ends, which are not
fixed on the surface, be bonded with nodes of a three-
dimensional polymer mesh (a polymer matrix) having
known mechanical characteristics and assumed to be
incompressible. Figure shows a scheme of the near-sur-
face layer. The X2- and X3-axes of coordinates are par-
allel to the plane of the near-surface layer, while the
X1-axis is perpendicular to it. Dots on the surface show
the positions to which the macromolecule ends are
attached. In addition, the dots label those nodes of the
polymer mesh that are bonded with the other ends of
the macromolecules forming the interfacial layer. Nat-
urally, the presented scheme of the interfacial layer
describes the actual physical picture only approxi-
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mately because there can exist different types of mac-
romolecule bonding with the surface. Moreover, it is
difficult, in fact, to distinguish between the near-surface
layer and the polymer matrix itself. Nevertheless, the
scheme proposed turns out to be useful for analyzing
features of the micromechanical characteristics of the
interfacial layer.

Further, the effect of the surface is replaced by a cer-
tain force, which is applied to each restrained macro-
molecule and causes its deformation, with the confor-
mation of a free macromolecule considered as its
unperturbed state. This concept makes it possible to use
the classical stress–strain relation of the geometric-
nonlinear elasticity theory.

Within the scope of the above-proposed approach,
the stress tensor σls of the interfacial layer can be writ-
ten as [5]

(1)

Here, C is the constant characterizing the material of

the matrix; λln = , where xn and  are the coordi-

nates of a point belonging to the interfacial layer before
and after deformation, respectively; α(n) is the surface-
caused relative variation of the coordinates of a point in

the interfacial layer, with α2 = α3 = ; p is the

hydrostatic pressure; δls is the Kronecker delta; and 
are the components of the initial stress field arising in
the interfacial layer under the effect of the surface.
Here, the summation is performed over each pair of
identical subscripts, while the subscript in parentheses
excludes the summation.

In the coordinate system shown in the figure, the

components of the stress tensor  are expressed as

(2)

Considering the small strains of the interfacial layer,

σls 2Cλ lnλ snα n( )
2 pδls– σls

0 .–=

xl'∂
xn∂

------- xl'

α1
1/2–

σls
0

σls
0

σ11
0 2C α1

2 α2
2–( ), σ22

0 σ33
0 0,= ==

σik
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001 MAIK “Nauka/Interperiodica”



 

DOKLADY PH

       

POISSON’S RATIOS FOR INTERFACIAL LAYERS OF POLYMER MATRIX COMPOSITES 367

                                                                                         
X1

0 Filler

Matrix

Interfacial layer

X2

Schematic drawing of the near-surface layer.
we can write out λik in the form

(3)

Then, we represent ui, k as a sum of the symmetric
(εik) and the skew-symmetric (ωik) parts; i.e., ui, k = εik +

ωik , where εik = (ui, k + uk, i) and ωik = (ui, k – uk, i).

Since the resultant moment of the forces acting on an
elementary volume of the interfacial layer must be
equal to zero, the condition ωik = 0 is satisfied. Conse-
quently, relation (3) takes the form

(4)

where εik are components of the small-strain tensor.

Substituting (4) into (1) and ignoring the terms of
the second order of smallness in strain, we have

(5)

Now, we consider the uniaxial tension along the
X1-axis of coordinates. Then, according to (5),

(6)

In this case, σ22 = σ33 = 0. This allows us to find the
quantity p from the relationship

(7)

Substituting into (6) expressions for  and p from
(2) and (7), respectively, and using both the incom-

λ ik δik

ui∂
xk∂

-------+ δik ui k, .+= =

1
2
--- 1

2
---

λ ik δik εik,+=

σis 2C δinδsnα n( )
2 δsnα n( )

2 εin δinα n( )
2 εsn+ +( )=

– pδis σis
0 .–

σ11 2C α1
2 2α1

2ε11+( ) p– σ11
0 .–=

C α2
2 α3

2 2α2
2ε22 2α3

2ε33+ + +( ) p– 0.=

σ11
0
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pressibility condition ε11 + ε22 + ε33 = 0 for the interfa-
cial layer and the equality α3 = α2 , we have

(8)

Using (8), we now derive the following formula for
the elastic modulus of the interfacial layer in the direc-
tion normal to the filler surface:

(9)

Here and below, the notation for elastic characteristics
corresponds to that in [6].

It also follows from the condition σ22 = σ33 = 0 that

(10)

Based on formula (10) and the incompressibility
condition, we relate the longitudinal (along the elonga-
tion axis) and transverse strains as

(11)

As a result, the corresponding Poisson’s ratios are

(12)

A similar consideration of tensions along the X2-
and X3-axes of coordinates leads to the following
expressions for the corresponding elastic moduli and
Poisson’s ratios:

(13)

σ11 2C 2α1
2 α2

2+( )ε11.=

E1 2C 2α1
2 α2

2+( ).=

p 2C α2
2 2α2

2ε22+( ) 2C α3
2 2α3

2ε33+( ).= =

ε11 2ε22– 2ε33.–= =

ν12 ν13 0.5.= =

E2 4C
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2 2α1
2 α2
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2 α2
2+

--------------------------------, E3 4C
α2

2 2α1
2 α2
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α1

2 α2
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(14)

Formula (1), the pure-shear conditions, and the
equality of the quantities α2 and α3 lead to the follow-
ing relationships:

(15)

Consequently, the shear moduli of the interfacial
layer are given by

(16)

In the absence of the disturbing effect of the surface,
α1 = α2 = α3 = 1 and Eq. (1) turns into an equation of
rubberlike elasticity of an isotropic body. In this case,
according to relations (9), (13), (14), and (16), the elas-
tic moduli for the matrix are

(17)
Denoting α1 by α and using both (17) and the rela-

tion between α2 and α1 , we rewrite formulas (9), (13),
(14), and (16) in the following form:

(18)

The derived expressions for the elastic characteris-
tics of the interfacial layer lead to the relations

(19)

Thus, within the framework of the model under con-
sideration, the elastic properties of the interfacial layer
are adequately defined by both the elastic characteris-
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tics of the matrix and the parameter α, with the interfa-
cial layer representing an incompressible transverse-
isotropic medium.

The values obtained for the Poisson’s ratios are of
certain interest. For example, according to (18), an
increase in α (α ≥ 1) causes a decrease in the Poisson’s
ratios ν21 = ν31 in the half-interval [0, 0.5] and a growth
of the Poisson’s ratios ν23 = ν32 , corresponding to the
isotropy plane, in the half-interval [0.5, 1). Thus, the
restrictions imposed on the Poisson’s ratios for the inter-
facial layers arising in polymer matrix composites are
more severe than the general restrictions imposed on the
Poisson’s ratios for transverse-isotropic media [4].

We note also that, according to (18),

i.e., the anisotropy factors corresponding to the Young’s
and shear moduli are equal to each other and increase
with α.

The results of this paper allow us to make the fol-
lowing basic conclusion. An interfacial layer of a poly-
mer matrix composite whose matrix represents an
incompressible isotropic medium is transverse-isotro-
pic. The anisotropy of this layer is caused by the effect
of the surface on the macromolecule conformation, and
its Poisson’s ratios satisfy the conditions 0 < ν21 = ν31 ≤
0.5, 0.5 < ν23 = ν32 ≤ 1.
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The evolution of a stochastic system consisting of
a set of elements whose initiation times are randomly
distributed, the initial size obeys the normal distribu-
tion, and the growth dynamics is determined by the

equation  = f(a), where f(a) is a power-law function,

is analyzed. The aim of this study is to describe the
behavior of such a system at different stages of its evo-
lution, to estimate the basic probabilistic characteristics
of the system, and to analyze the self-simulation condi-
tions for the system.

For the sake of clarity, we consider a particular exam-
ple of a physical system of this type related to material
failure. This enables us to estimate quantitatively, with-
out loss of generality, the system parameters.

1. The basic elements of the failure process are
defects (micro- and macrocracks) whose growth, at dif-
ferent loading modes, is described in the general form
by the equation

(1)

Here, a is the crack length,  is the crack growth rate,

C is the parameter that depends on the properties of the
material and on the level of the nominal stress γ, and m
is the exponent (m ≥ 1).

Let us consider the interval of time [0, t] on which
the cracks originate at random instants of time ti (i is the
crack index) and grow over the periods τi = t – ti . Inte-
gration of Eq. (1) from t = ti to t yields an exponential
(m = 1) or a power-law (m > 1) dependence of the crack
size on the time of its growth:

(2a)

(2b)

da
dt
------

da
dt
------ Cam.=

da
dt
------

ai τ i( ) a0i Cτ i( ),exp=

ai τ i( ) a0i
1 m– Cτ i 1 m–( )+( )

1
1 m–
-------------

.=
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Here, a0i is the initial size of the ith crack. The variable
parameters in these equations are a0i , τi(t, ti), while C
and m are the constant parameters.

To estimate the shape of the function (density) of the
size distribution of cracks and the numerical character-
istics of the system, we will assume that, at the initial
stage of the process, cracks develop independently and
originate at a constant rate µ depending on the level of
the applied load [1]. This implies that the process of
crack initiation can be conceived as a steady-state Pois-
son flow which is characterized by a uniform distribu-
tion of instants of crack initiation and, therefore, by a
uniform distribution of time intervals of crack growth,

P(τ) = , where τ is the random quantity (RQ) that char-

acterizes the period of crack growth [2]. We will assume
initially that a0 = const. Using standard relationships of
the probability theory [see Appendix (A.1)] and formu-
las for the crack growth (2a) and (2b), we can deduce
the law of the size distribution of cracks assuming that
the crack size is a function of just one RQ, τ:

(3)

Here, at is the maximum value of the parameter a,
which is determined from (2) at τ = t.

The obtained distribution is a truncated power-law
distribution whose form does not undergo change after
similarity transformation (the β-fold change in the
length and time scales, a' = βa, t ' = βt):

(4)

This relationship shows that the process is invariant
in the sense of distribution; i.e., it is statistically self-
similar [3]. Note that the processes whose distributions
on the middle segment of the curve have a power-law
form are widespread in nature. The mechanisms of for-
mation of such distributions and the reasons for the
manifestation and violation of their self-similarity have

l
t
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long been a matter of discussions [3–6], and we analyze
them in this work.

The expressions for the mean size of cracks in terms
of time period t can be obtained by substituting formu-
las (2a) and (2b) into the formula for the estimation of
average (A2):

(5)

The second expression is obtained by expanding (2b)
in a power series, keeping only the linear term in this
expansion.

In various physical applications, not only the den-
sity function but also the cumulative distribution func-
tion, expressed in the log–log scale, are often analyzed.
The distribution function for m > 1 has the form

(6)

a〈 〉 1
t
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a〈 〉 a0

a0
mCt
2

------------, m 1.>+=

F a( ) P a α<{ } p α( ) αd
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Fig. 1. Distributions of the density of fatigue microcracks
over size. Curve 1 is the normal distribution of incipient
cracks p(a0): am = 0.08 mm, σ = 0.009 mm; curve 2 is the dis-
tribution of cracks p(a): a0 = 0.025 mm, t = 190000 cycles;
and curves 3–5 represent the distributions of cracks p(a)
corresponding to the normal size distribution of initial
cracks: C = C1∆γm; m = 2, C1 = 1.9 × 10–10, ∆γ =

30 kgf/mm2, t3 = 25000 cycles (curve 3), t4 = 50000 cycles
(curve 4), t5 = 190000 cycles (curve 5).
We take a logarithm of this expression and analyze
the dependence of the function  on the argument

. To do this, we estimate the derivative of the
function

(7)

(8)

From (8) it follows that in the region of low and mod-
erate values of the parameter (a ! at), we can ignore the

term ; in this case, the derivative takes the value
1 – m. This means that in the given region, the function
of the cumulative distribution, plotted in the log–log
scale, has a linear form. In the region of large parameter
values, where a  at , this function tends to zero in a
nonlinear manner.

2. Consider now the case when the initial crack size
is a random quantity. This means, physically, that the
cracks arise on the structural inhomogeneities of the
material whose distribution determines the distribution
of incipient cracks. Assuming that the characteristic
size of the structure (e.g., the grain size) is distributed
according to the normal law with mean am and variance
σ and considering that the growth interval τ and the ini-
tial crack size a0 are independent RQs, we find, using
(A.3), the density of the length distribution of cracks as
a random function of two RQs with the known distribu-
tions

(9)

where Φ0 is the Gauss probability integral and a' is
determined by the formulas

(10)

An analysis of function (9) shows that it reaches a
maximum in the segment of small parameter values. In
this region, the density p(a) is determined largely by the
product of the first factor (the distribution at the con-
stant a0 value) and the size distribution of the original
cracks. In the region of moderate and large parameters,
the shape of the curve is determined mainly by the first
factor and has an appearance similar to that considered
above. To illustrate the results obtained, the size distri-
butions of fatigue microcracks, calculated with the aid
of (9), are plotted in Fig. 1. We show the variation of the
distribution profile with the observation time [when
t  0, the function p(a)  p(a0)]. In these calcula-
tions, we used real values of the characteristics of
fatigue failure [1].
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It should be noted that at sufficiently large observa-
tion times, which are usually realized in practice, we
have a' ! am; if, in addition, am > 3σ, the second term
in braces in formula (9) can be ignored. In this case, the
expression for the function of the density distribution is
reduced to a simple form, which allows the observed
experimental distributions to be interpreted from the
standpoint of the size distribution of initial cracks and
the dynamics of their growth:

(11)

[In this example, formula (11) gives an exact descrip-
tion of the density distribution when the number of
cycles t > 20000.]

The mean size of cracks for distribution (9) is deter-
mined with the use of formula (A.2) as

(12a)

(12b)

For other values of the exponent m, the formula for the
average can be obtained in a similar way.

It is easy to verify that distributions (9) and (11) are
self-similar, because they are obtained by multiplica-
tion of the self-similar distribution (3) by the self-simi-
lar Gauss function. The self-similarity of the resulting
distributions follows from the fact that we analyze the
stage of independent growth and accumulation of
cracks occurring as a result of a single mechanism
according to the Poisson distribution law. However, an
increase in the crack concentration with time leads to
the interaction and fusion of cracks, which results in an
increase in the share of large-sized cracks and promotes
the localization and acceleration of the failure process.
In this case, the distribution function changes its shape
and the self-similar evolution of the system breaks
down. Figure 2 shows the cumulative distribution func-
tion that demonstrates the effect of crack fusion. The
bend on the curve in the region of large parameter val-
ues corresponds to the initiation of cracks of size k〈a〉 .
In this region, the mean size of cracks is calculated
from formula (12); the number of intersecting cracks
k = 2, .…, ∞ and the probability of intersection of k
cracks is estimated from the binomial distribution [7].

Along with size distributions of cracks [8] and
pores [9], a shape similar to those plotted in Figs. 1 and
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2 is typical of the distributions of drainage areas of river
basins [10], amplitudes of acoustic emission signals,
magnitudes of seismic events [4–6], etc. The identical
form of such distributions testifies to the analogy in the
dynamics and statistics of the processes responsible for
their formation, which allows these processes to be
considered within the framework of the proposed
model.

This study was supported by the INTAS grant
no. 93-809 and by the Russian Foundation for Basic
Research, project no. 97-05-65952. The author is grate-
ful to L.R. Botvina for her valuable collaboration and
discussion of the results obtained.

APPENDIX

1. The distribution of the function Y = ϕ(X) of ran-
dom quantity X is determined by the relationship

(A.1)

provided the distribution of parameter f(x) is known. 

2. The mathematical expectation (the mean) of the
function Y = ϕ(X1, X2) of random quantities X1 and X2
is calculated from the formula

(A.2)

if the joint distribution f(x1, x2) is known.

p y( ) f ϕ 1– y( )( ) dϕ 1– y( )
dy

------------------- ,=
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Fig. 2. The cumulative function of crack-size distribution
obtained with allowance for crack fusion. The dotted line
shows the part of the curve where crack fusion is disre-
garded: m = 2,  ≈ 1, am = 0.04 mm, σ = 0.03 mm, µ =

0.00008 cracks per cycle, C1 = 2 × 10–10, ∆γ = 30 kgf/mm2,
t = 350000 cycles, 〈a〉  = 0.12 mm.
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3. The distribution of the function Y = ϕ(X1, X2) of
two random quantities X1 and X2 is determined by the
relation

(A.3)

if we know the joint distribution f(x1, x2) of these quan-
tities, where x1 = Ψ(y, x2).
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1. We consider a model of a nonuniform continuous
medium. When being subjected to ultimate stress, the
medium is known to make a transition into the plastic
state. Many plasticity models with different defining
relations have been previously developed. One of the
phenomenological approaches to these models consists
in allowing for only predominant microstructural
mechanisms and subsequently correcting the defining
relations on the basis of experimental data. However,
all the plasticity experiments show that in the plastic
state, the strain–stress field exhibits strong fluctuations.
In addition, the stress–strain diagram σ = f(e) turns out
to be similar to the pressure–volume diagram P = f(V )
for a liquid. Moreover, phase transition has even been
observed in the vicinity of a crack edge [2–4]. Hence,
we can consider the plastic-deformation process as a
critical (phase) transition in which a certain structure is
spontaneously formed [5]. The probability density for a
transition to the plastic state is governed by the Fokker–
Planck equation. Taking the potential character of the
deformation process into account, we may use the
Schrödinger equation rather than the Fokker–Planck
equation. This implies that the plastic-deformation pro-
cess can be treated as a process possessing supersym-
metric properties. Below, we consider the strain tensor
as an order parameter. In [6], Il’yushin introduced the
notion of strain trajectories in E5 space. This space is
actually a fiber in fiber-bundle strain space [5]. This
implies that the strain field can be considered a gauge
field in which the generalized Il’yushin’s strain trajec-
tory is a section of the fiber bundle. Identifying the gen-
eralized strain trajectory with nodes, we analyzed
(in [6]) the topological features of the deformation pro-
cess, which are related to the Witten invariant. In this
way, we obtained the probability density for a transition
to the plastic state:

Z kSCS e( )–[ ]exp e.d∫=
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Here, k is the elasticity coefficient and SCS is the Chern–
Simons action:

where ΓCS is the Chern–Simons form for the strain
manifold.

2. From the most general standpoint, the strain
space P = {En(x, t)} is a noncommutative space. In [7],
Connes developed a noncommutative geometry in
which the properties of a function ring rather than the
character of a point space are considered. Within the
framework of this geometry, we construct a model for
the plastic deformation, i.e., a noncommutative fiber
bundle of the strain field [8]. The associative algebra A
and the universal algebra Ω(A) of forms over A are two
basic objects in the Connes’ geometry. We consider the
strain space P = {En(x, t)} as an associative algebra. We
should then choose the Connes’ universal algebra.
According to [8], each form of such an algebra is asso-
ciated with a certain differential calculus. Hence, we
choose the Hopf algebra as Ω(P), thus using differential
calculus of the Voronovich type. The strain space P =
{En} is known to be an associative algebra in which
both the derivative form and the differential form can
be defined. Therefore, we choose the Connes’ universal
algebra Ω(P) as an algebra of differential forms over
the strain space P. Thus, the differential calculus on
ΩD(P) is of a type similar to that considered in [9].
According to this paper, the least differential algebra
for the algebra of the cocycles C(Der(P), P), which con-
tains the space P, is the ΩD(P) algebra, i.e., an algebra
of C(Der(P), P), where Der(P) is an algebra of deriva-
tives on P. We define the basis {1, E1, E2, …, , n =

1, …, 9} in the space P = {En} and assume that P is a
Hermitian space with the following commutative rules:

SCS ΓCS,∫=

E
n

2 1–

EkEl δkl Ckl
m i

2
---Ckl

m El,–+=

Ek El,[ ] 2iCkl
m Em.–=
001 MAIK “Nauka/Interperiodica”
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Here, δkl = Tr(EkEl),  = ,  = – ,  is the

structure constant, and  is the invariant of the group

sl(n) [10]. In the space (P), the basis θk, k ∈  {1, 2,

…, n2 – 1} is defined with its properties: θk(∂l ) = 1,
θkθl = –θlθk, and Ekθl = θlEk. Therefore, the differential

in (P) is an ordinary exterior differential:

The above-mentioned fiber bundle yields a section
that is either a strain field or an Il’yushin’s generalized
strain trajectory [5]. According to Connes’ noncommu-
tative geometry, the vector fiber bundle of the noncom-
mutative strain space P is either a left or a right modu-
lus, with the trivial fiber bundle of the strain field being
a free modulus and the nontrivial fiber bundle being a
factorization of the free modulus over the space P. As a

matter of fact, this is the cotangent bundle (P).

We now construct the action for the process of non-
commutative plastic deformation. In accordance with
Connes’ method, we first choose a Hermitian modulus
H over the strain space P. This implies that on the Her-
mitian P-modulus H, there exists a Hermitian structure
h such that h(α, β) ∈  P for all α, β ∈ H, and the equality
h(αA and βB) = A*h(α, β)B holds for all A, B ∈  P. We
should then choose a connectivity ∇ , i.e., a mapping of

H onto H ⊗   for which the following conditions are

satisfied for all :

∇ (φA) = (∇φ )A + φ ⊗  dA,

The connectivity ∇  is expanded up to the linear

mapping Dv of the first rank (Dv: H ⊗    H ⊗

) so that Dv(φ ⊗ α ) = (∇φ )α + φ ⊗  dα for all φ ∈  H

and α ∈  . Thus, in terms of ∇ , the curvature is

defined as the mapping ∇ 2: H  H ⊗  ; i.e.,

for all  

The action for the process of noncommutative plas-
tic deformation is expressed in terms of ∇  as

where ϕ is the connectivity component for the gauge
with scalar product

1
2
--- Skl
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m Ckl
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m

ΩD
1
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ΩD
1

dEk Ckl
m Emθl, dθk–

1
2
---Clm

k θlθm,–= =

d θkθ j( ) dθkθ j θkdθ j, and d2– 0.= =

ΩD
1

ΩD
1

φ ψ, H  and  A P ∈ ∈

dh φ ψ,( ) h ∇φ ψ,( ) h φ ∇ψ,( ).+=

ΩD
1

ΩD
1

ΩD
1

ΩD
2

∇ 2 φB( ) ∇ 2φ( )B=

φ H  and  B P . ∈ ∈

S ∇ 2 2 ϕ ϕ〈 〉 ,= =

ϕ ϕ〈 〉 ϕ *ϕ( )∫– Tr ϕ *ϕ( )[ ] .= =

                                            
Thus, we obtain the probability distribution for the
transition to the plastic state:

where k is the elasticity coefficient. The distribution Z
depends on the connectivity ∇  defined for a certain
gauge. In order to derive an explicit form of Z, we now
consider the following example. We choose a gauge e
that is unity in the Hermitian space H and, then, a con-

nectivity in the form ∇ e = e ⊗ α , where α ∈   with

α =  and  conjugate to α. The form α is a com-
plex-valued matrix in the Muskhelishvili sense. How-
ever, within the framework of the symplectic geometry
for the three-dimensional case, this form has a com-
plex-valued structure. Hence, each element φ ∈  H takes
the form φ = eB, where B ∈  P so that we obtain, by def-
inition, that 

 

∇φ

 

 = (

 

∇
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 + 
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dB

 

. In differential geom-
etry, 
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 and 

 

α

 

 are referred to as elements 

 

φ

 

 and 
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,
respectively, for the gauge 

 

e

 

. If the component 

 

ϕ

 

 of the
curvature 

 

∇

 

2

 

 for the gauge 

 

e

 

 is chosen as 
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d
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,
we arrive at 

 

∇

 

2

 

 = 

 

e

 

  

 

⊗ ϕ

 

. Furthermore, we write out 

 

α

 

 in
the conventional complex-valued form 
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θ

 

k

 

 + 
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l
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P

 

), subject 

 

α

 

 to the action of the operator 

 

d

 

,
evaluate 

 

α

 

2

 

, and substitute the results into the expres-
sion for 

 

ϕ

 

. Finally, we arrive at

Thus, the action takes the form

It should be noted that the above integral and the Her-
mitian modulus 

 

H

 

 is the Connes’ 

 

K

 

-cycle. However,
since Connes did not define the notion of “secondary
calculus,” we here evaluate the integral 

 

Z

 

 in a regular
manner.

 

3. 

 

In [6], Il’yushin suggested that, within the range
of fairly small strains, the defining relations for contin-
uous initially isotropic media are consistent with the
isotropy postulate; namely, they would be invariant
with respect to orthogonal transformations in the space

 

E

 

5

 

. In the case of finite strains, the defining relation was
described in [14, 15]. Within the framework of the non-
commutative plastic-deformation model when using
strain-potential formalism, this postulate would become
a theorem which could be proved. Indeed, in each cotan-
gent fiber bundle, there always exists a symplectic
structure [8, 13]. As was shown above, the spaces
cotangent to the spaces 

 

P

 

 = {

 

E

 

n

 

(

 

x

 

, 

 

t

 

)} and P are spaces

Der(P) and (P), respectively. The symplectic form

is a 2-form ω2 ∈  (P) such that, for all A ∈  P and
X ∈  Der(P), the equation ω2(X, H(A)) = XA has the
unique solution H(A) ∈  Der(P), where H(A) is the

Z kS–( ),exp∫=
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Hamiltonian vector field at the point A ∈  P. If I is an

isomorphism, i.e., (P)  Der(P), then the Hamil-
tonian vector field takes the form IdH, with H being the
Hamiltonian function and the symplectic 2-form tak-
ing the form ω2 = dH. For each vector field H(A), there
exists a one-parameter diffeomorphism group gt:

  , which is called the Hamiltonian
phase flow:

Here, the symplectic manifold is denoted by ( , ω2).
It should be noted that the orthogonal mapping is a spe-
cial case of diffeomorphisms. Hence, the isotropy pos-
tulate can be formulated in terms of the strain-potential
formalism: the defining relation is invariant with
respect to the Hamiltonian flow, in particular, to orthog-
onal transformations.

Within the framework of the commutative geome-
try, Arnold proved that the Hamiltonian phase flow con-
serves the symplectic structure (gt )*ω2 = ω2 [13]. In the
case of noncommutative geometry, the Arnold’s
method can also be employed, the only difference being
that the dimension of the symplectic space over P is 2n2

and the space points are matrices. However, if, in addi-
tion, the space P satisfies the axioms of the Hopf alge-
bra, the above method cannot be employed because of
the unconventional properties of the Voronovich-type
differential calculus. By definition, ω2 = dH =

dei; this form is invariant with respect to the flow

gt. Under the additivity condition, this implies that the

quantity  is also invariant with respect to the map-

ping gt.

In the singular model [11], the defining relation was
presented in the form

where fa is the current ultimate surface. The compo-
nents dka are nonzero if disturbances take place on the

corresponding surfaces fa , i.e., if dσ ≥ 0. Introduc-

ing the potential H (free energy) [6, 12], we arrive at the
relation

ΩD
1

M2N
2

M2n
2

d
dt
-----

t 0=

gt A IdH A( ).=

M2n
2

∂H
∂ei

-------∑

∂H
∂ei

-------

dσi

∂ f a

∂ei

--------dka,=

∂ f a

∂ei

--------

σi
∂H
∂ei

-------.=
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In the model under consideration, the plastic deforma-
tion is a stochastic process for which the free energy
serves as the system Hamiltonian function [5]. Indeed,
the defining relation in the potential formalism is
invariant with respect to the orthogonal transforma-
tions.

4. Thus, the general model of plastic deformation is
the following. Let Il’yushin’s deformation process be
given. To construct the general model, we have, first of
all, to reject the conventional notions of the elasticity
theory, which are adequate only for static processes
described by commutative variables. We should treat
the strain space as a noncommutative space. Under the
action of forces, this space turns into a cotangent fiber
bundle. When the stress attains the ultimate value, the
strain state becomes subjected to strong fluctuations.
As a result, we can describe this state by the probability
density of the transition to the plastic state. Because of
the noncommutativity, we arrive at a symplectic space.
This symplectic space over the noncommutative strain
space is larger than the conventional space of classical
theory. The essence of Il’yushin’s postulate on isotropy
can be understood only in this case. All the results of
classical theory (e.g., the Coiter’s sectors) could seem-
ingly be treated as special cases of this general model.

REFERENCES
1. M. Ausloos, Solid State Commun. 59, 401 (1986).
2. V. G. Gargin, Sverkhtverd. Mater., No. 2, 17 (1982).
3. V. A. Pesin, N. N. Pachenko, and L. I. Fal’dchuk, Éksp.

Prikl. Fiz. Khim. 53, 2794 (1979).
4. Li-Shing Li and R. J. Pabst, Mater. Sci. 15, 2861 (1980).
5. Chin’ Van Khoa, Dokl. Akad. Nauk 372, 473 (2000)

[Dokl. Phys. 45, 245 (2000)].
6. A. A. Il’yushin, Mechanics of Continua (Mos. Gos.

Univ., Moscow, 1990).
7. A. Connes, Publ. I.H.E.S. 62, 257 (1986).
8. A. T. Fomenko, Symplectic Geometry (Mos. Gos. Univ.,

Moscow, 1989; Gordon and Breach, New York, 1988).
9. M. Dubois-Violette, R. Kerner, and J. Madore, J. Math.

Phys. 31, 316 (1990).
10. A. J. Madarlan, Commun. Math. Phys. 11, 77 (1986).
11. V. D. Klyushnikov, Physicomathematical Fundamentals

of Strength and Plasticity (Mos. Gos. Univ., Moscow,
1994).

12. Yu. N. Rabotnov, Mechanics of Deformable Solids
(Nauka, Moscow, 1988).

13. V. I. Arnol’d, Mathematical Methods of Classical
Mechanics (Nauka, Moscow, 1989).

14. Ch. Tsakmakis, Arch. Mech. 49, 677 (1997).
15. Yu. N. Shevchenko, Prikl. Mekh. 35, 14 (1999).

Translated by V. Chechin


	299_1.pdf
	304_1.pdf
	307_1.pdf
	310_1.pdf
	313_1.pdf
	317_1.pdf
	321_1.pdf
	326_1.pdf
	328_1.pdf
	331_1.pdf
	336_1.pdf
	340_1.pdf
	346_1.pdf
	349_1.pdf
	352_1.pdf
	356_1.pdf
	359_1.pdf
	363_1.pdf
	366_1.pdf
	369_1.pdf
	373_1.pdf

