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INTRODUCTION

High-altitude above-cloud optical phenomena occu-
pying volumes on the order of 1000 km3 were repeat-
edly observed [1], high-intensity radio-emission pulses
being associated with them [2, 3]. Thunderstorm elec-
tric fields are responsible for the generation of hard
penetrating radiation of atmospheric origin [4–6].
In [7–9], a mechanism for ascending atmospheric dis-
charges, which is based on the concept of an avalanche
of relativistic runaway electrons, is proposed. This
mechanism makes it possible to explain in a unified
manner the entire totality of electromagnetic phenom-
ena proceeding in a relatively weak electric field above
thunderstorm clouds. For adequately treating field mea-
surements, we need to know the e-fold amplification
length le , which determines the exponential develop-
ment of an avalanche of runaway relativistic electrons,

or the corresponding time scale te =  (c is the speed of

light). Both were recently calculated with good accu-
racy [10, 11].

In this paper, we report the results of a straightfor-
ward laboratory experiment in which the initial stage
for the development of an avalanche of runaway relativ-
istic electrons in a dense gas medium (air at pressure
P = 1 atm and temperature T = 300 K) was directly
observed for the first time. In this experiment, we
obtained the first experimental confirmation for the cal-
culated value of le .

EXPERIMENTAL CONDITIONS

The experiment performed is similar to the classical
Townsend experiment [12]. However, in this case we

le
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deal with relativistic electrons, and electric-field
strengths are considerably smaller than Ebr ≈ 3 MV/m,
which is required for a self-breakdown by electrons
with energies close to the ionization threshold. The exe-
cution of this experiment is an extremely complicated
task, since in actual laboratory conditions le is much
longer than any reasonable length L of an accelerating
gap that can be realized in practice. Values of the run-
away threshold εth; the time te; the length le = cte, which
were calculated for three values of the overvoltage δ =

 with respect to the minimum frictional force

Fmin = 2.18 (keV/cm)/atm in atmospheric air at P =
1 atm [10]; and the corresponding voltages U for L ≈
1 m are presented in Table 1. Here, δ = 5 corresponds to
our experimental conditions. 

As is seen, it is possible to realize in a laboratory
only the initial stage for the avalanche of runaway rela-
tivistic electrons. The measurements under conditions
of low amplification are hampered for a number of rea-
sons. We have to select secondary relativistic electrons
in the above-threshold region against the background of
a huge number of electrons produced with energies
much lower than εth. There are also other obstacles, e.g.,
the escape of relativistic electrons from the acceleration
region due to scattering in air, noise of the electromag-
netic origin, etc. Therefore, the development of an ava-
lanche of runaway relativistic electrons in a dense gas
medium and for electric fields much lower than Ebr is
confirmed by comparing measured spectra of relativis-
tic electrons passing through the accelerating gap with
spectra calculated by the Monte Carlo method. These
calculations were performed using the same ELIZA

eE
Fmin
---------

Table 1

δ U, MV εth, keV te, ns le = cte, m

2 0.44 650 400 120

5 1.10 120 50 15

8 1.74 65 26 7.8
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Table 2

Collector no. Collector thickness, mm Experimental results,
U = 1 MV

Monte Carlo calculation: 
8.7% secondary and 

91.3% primary electrons

Monte Carlo calculation: 
0% secondary and 100% 

primary electrons

1 0.2 0.055 0.031 0.013

2 0.4 0.13 0.10 0.07

3 0.6 0.21 0.23 0.2

4 0.8 0.37 0.39 0.36

5 1.0 0.50 0.55 0.53

6 1.2 0.67 0.71 0.69

7 1.5 0.78 0.85 0.85

8 5 1 1 1
code [13], which had been used previously for calculat-
ing characteristics of an avalanche of runaway relativ-
istic electrons. The corresponding data are given in
Table 1.

The experiments were carried out in a conic cham-
ber with planar electrodes into which relativistic elec-
trons [with the initial number Ne(0)] had been injected.
The diameter of the upper (high-voltage) and lower
(grounded) electrodes were equal to 0.6 and 1.0 m,
respectively. The interelectrode-gap length was L =
1 m. The forced distribution of the potential between a
sectioned insulator provided a high degree of field uni-
formity. The breakdown along the insulator surface
limited the operating voltage by the value of 1.2 MV.
The chamber was fed by microsecond-duration voltage
pulses from a high-voltage generator of an ORION-1
accelerator [14]. The voltage pulse satisfied the require-
ment of quasi-steadiness with respect to the injected
beam. A MIN-1 accelerator generating a weakly
diverging electron beam uniform across the cross sec-
tion was used as an injector [15]. The total number of
beam electrons at the anode of the injector accelerating
tube, the beam width, and the duration of the pulse cur-
rent were ~9 × 1013, ~16 mm, and ~7 ns, respectively.
Electrons were distributed in a wide energy region up to
0.7 MeV. The beam was injected through a circular
window 20 cm in diameter cut out in the high-voltage
electrode of the chamber. In order to avoid beam lock-
ing due to the magnetic field of the electric current of
the secondary gas plasma generated by the beam in the
chamber interior, the injector tube was positioned at a
distance of 0.45 m from the window. Owing to this fact,
the flux density of relativistic electrons injected into the
chamber and, eventually, the magnetic field produced
by the plasma electric current were strongly decreased
without a noticeable decrease in Ne(0).

In order to measure energy distributions of relativis-
tic electrons, we employed the modified method of
range spectrometers. In this case, electrons were
detected by aluminum collectors with different thick-
ness, which, at the same time, selected the electrons
according to their energy and without shielding each
other. The advantage of this method is a considerably
weaker effect of measurement errors compared to that
inherent in the traditional method of absorbing filters.
The collectors were enclosed in thick-walled steel
detector cases. In each case, there was a window cov-
ered with aluminum foil 50 µm thick with an area of
329 cm2, equal to that of the collector area. The foil
served as a screen against the noise and did not perturb
the distribution of electrons within the region of ener-
gies exceeding εth. In this modified method, the detec-
tors registered the charge accumulated in the collector.
This charge was then determined with an accuracy of
1% according to the voltage at a capacitor connecting
the collector and the detector case. To realize the
method described, eight detectors with collectors of
different thickness were manufactured (Table 2).

MONTE CARLO CALCULATIONS

In order to analyze the experimental results obtained,
we have calculated using the ELIZA code [13] expected
detector readings after the injected beam had passed
through the chamber. In this case, we allowed for elec-
tron absorption and scattering in the injector accelerat-
ing-tube output window and in the air layer 45 cm thick
ahead of the chamber input window. Electrons passed
through the air layer with the thickness L = 0.92 m (the
distance between the accelerating-chamber window
and the detector window located at the chamber anode)

in the uniform electric field E =  = 10.9 kV/cm.

Then, they penetrated the 50-µm aluminum layer that
modeled the detector window. The transverse sizes of
all layers are not limited. Therefore, of all the electrons
passing through the detector window, only those that hit
a circle 1 m in diameter centered on the symmetry axis,
i.e., with a size equal to that of the chamber anode, were
taken into account. The electrons impinged upon the
aluminum disk with a diameter of 1 m, which modeled
the collector of the given thickness. The calculations

1 MV
0.92  m
-----------------
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are performed for the values of the disk thickness that
were equal to those of the collectors. The reflection of
electrons from a 5-mm-thick aluminum disk that mod-
eled the anode was also taken into account. The charge
being accumulated in the disk of the given thickness
was calculated as e(Ne, inc – Ne, pass), where Ne, inc and
Ne, pass are, respectively, numbers of electrons incident
onto and passing through the disk that modeled the col-
lector. Trajectories were traced for all electrons with
energies exceeding 1 keV. The electron energy distribu-
tions in the disk modeling the collector is shown in
Fig. 1. The distributions are normalized to the fraction
(0.115) of the total number (9 × 1013) of incoming elec-
trons at the injector anode. In these distributions, the
fraction of secondary electrons equals 8.7% (Table 2).
As is seen, the spectra of primary (injected) and sec-
ondary (high-energy) electrons are weakly overlapped
and the energy distribution of secondary electrons is
rather uniform. This considerably simplified their
selection by the collectors. Calculations have also been
carried out testifying to the fact that the actual varia-
tions of the injected-electron spectrum virtually do not
affect the value of the gas amplification.

It was important to adequately arrange the detectors
on the anode surface in order to allow for both the radial
nonuniformity of the electron flux and the degree of its
amplification. We also took into account the fact that
the expected collector readings had been obtained by
averaging over a circle with a diameter of 1 m, whereas
the actual area of the collectors was significantly
smaller. Therefore, we performed calculations of the
distribution of the local electron flux along the disk
radius for the above-described geometry that corre-
sponded to the experimental conditions. The positions
of the detectors were shown to be reasonable to choose
between the radii r = 15 and 40 cm, which correspond
to the majority of electrons, and where the electron flux
is rather uniform. In this case, a weak radial depen-
dence of the ratio for the numbers of primary and sec-
ondary electrons on the anode considerably simplifies
performing the measurements and interpreting the
results obtained.

THE RESULTS OBTAINED
AND THEIR DISCUSSION

In Table 2, the measurement results for charges
accumulated in the collectors per one pulse and the
results of the Monte Carlo numerical simulations,
which were normalized to the readings of the thickest
collector, are presented. The measurement error is esti-
mated to be approximately ±10%. It is seen that the
results of the measurements and the calculations per-
formed with allowance for the generation of secondary
relativistic electrons (whose fraction is 8.7%) are close
to each other, except for the thinnest collector. The cal-
culations performed with allowance for the contribu-
tion of only primary relativistic electrons in the
expected detector readings (zero fraction of the second-
DOKLADY PHYSICS      Vol. 47      No. 1      2002
                               

ary relativistic electrons) lowered the degree of agree-
ment with the experimental data. Hence, we may con-
clude that the generation of a rather large number of
secondary electrons with energies exceeding the run-
away threshold εth took place. The following reasons
probably explaining the discrepancy are possible. The
calculation results are not corrected for the fact that a
part of the reflecting anode surface was occupied by the
steel detector cases. In addition, in actual experiments,
there exists a contribution of electrons scattered from
the chamber walls. It is also necessary to keep in mind
that the measurement error was maximal in the case of
thin collectors. In order to minimize the effect of errors,
we intend to carry out new experiments with consider-
ably higher voltages applied. For this purpose, we have
constructed a new experimental setup with an operating
voltage up to 2.5 MV and without a solid insulator
between electrodes.

CONCLUSION

In this study, a satisfactory agreement between the
results of a laboratory experiment on the multiplication
of relativistic electrons in air at atmospheric pressure
and theoretical predictions is obtained. In the experi-
ment, electric-field strengths considerably lower than
the self-breakdown value were used. The results
obtained testify to the observation of the initial stage for
the development of an avalanche of runaway relativistic
electrons.
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INTRODUCTION

Observations of the seismic activity for a rock mas-
sif after quasi-static (filling a water storage [1]) and
dynamic (high-intensity explosions [2] and earth-
quakes [3]) actions show that, in a number of cases, the
quantity of energy released considerably exceeds that
determined by external sources. This testifies to the fact
of involving into the process the potential energy accu-
mulated in the massif. Good examples are an increase
in the oil-well production rate and, sometimes, a reani-
mation of oil wells [3]. A number of mechanisms are
proposed for explaining these facts, e.g., an increase in
the collector penetrability due to intense cracking [4],
the initiation of resonance processes in a multiphase
medium by unsteady waves [5], and a reduction in the
fluid viscosity in a dynamic field [6].

In this paper, we propose a mechanism for an
increase in oil recovery that is based on the concept of
a rock-massif block structure [7]: an external action
induces a local redistribution of stresses in the medium,
which can result in increasing contour pressure and
stratum pressure.

1. INITIAL HYPOTHESES AND FORMULATION 
OF THE PROBLEM

It is well known that the interblock-contact strength is
considerably weaker than that of the blocks involved
[7, 8]. Therefore, under a certain external action, the
equilibrium inside a massif is likely to be disturbed pre-
cisely in such a weak link. This assumption is also con-
firmed by the fact that the majority of sources of seismic
events are localized in the vicinity of tectonic breaks [9].
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Let the deformation of an interblock damage be
described by the function

(1.1)

where R is the relative displacement of edges (i.e., slip),
τ and σn are the tangential and normal stresses, Kt is the
tangential stiffness, Kd is the tangent of the descending-
branch slope, τp = σn  + τc, ϕ is the analog of the

viscous friction, τc is the cohesion, , and H is

the Heaviside function. The stress–strain state of the
medium is such that the current state of the contact

(R∗ , τ∗ ) is close to the ultimate one (Rp, τp): 

(∆R = Rp – R∗  > 0). If an external action leads to violat-
ing the ultimate state, then the residual slip can be esti-

mated as  [10].

In the case of underground nuclear explosions, the
relative displacement of blocks is known to reach
20 mm [11]. Intense vibrators can generate a signal
whose amplitude amounts to a value on the order of
0.01 mm at a depth of 1–2 km [12]. We take this value
as an estimate for ∆R and find a stress state such that the
mechanism proposed can be realized for a reasonably
typical massif block structure.

Let a horizontal stratum L of a thickness h be located
at a depth z2 in the half-space z ≥ 0. Let a part of the
overlying layer with a thickness D1 have a slantingly
laminar structure with a slope angle of 90° – α (Fig. 1),
and let the environment be elastic. We select the calcu-
lation domain D{z1 ≤ z ≤ z3, 0 ≤ x ≤ x1} and formulate
the following conditions on ∂D:

(1.2)

Here, ui are the displacements, σij are the stress-tensor

τ R σn,( ) K tRH Rp R–( )=

+ τp Kd R Rp–( )–[ ] H R Rp–( ),

ϕtan

Rp
τp

K t
-----=

∆R
Rp
------- ! 1

∆R 1
Kd

K t
------+ 

 

ux 0, σxz 0, for x 0;= = =

σxx qσV z( ), σxz 0, for x x1;= = =

σzz σV z1( ), σxz 0, for z z1;= = =

uz 0, σxz 0, for z z2.= = =
002 MAIK “Nauka/Interperiodica”



       

ON A MECHANISM PROVIDING AN INCREASE IN OIL RECOVERY FROM STRATA 13
components (i, j = x, z), σV = γgz, γ is the density, g is
the free-fall acceleration, and q is the lateral-resistance
coefficient that characterizes the ratio between the hor-
izontal stress and the vertical stress σV outside the zone
in which the effects of the object under investigation are
noticeable.

In D, the equilibrium conditions

(1.3)

and Hooke’s law

(1.4)

are valid. Here, εij = 0.5(ui, j + uj, i) are the components
of the strain tensor, ε = ui, i, E is the Young modulus, ν is
the Poisson ratio, δij is the Kronecker delta, and the
summation is performed over the repeated subscript.

The tangential deformation of interblock contacts is
described by formula (1.1), while σn and the normal
displacements in these contacts are continuous.

The set of equations (1.1)–(1.4) determining the initial

stress field  in the massif is formulated for the plane-
strain model [13] that fittingly describes the fault (q < 1)
tectonic regime characteristic for many oil fields [14].

The set of equations (1.1)–(1.4) is solved by the
finite-element method. The following calculation-
domain sizes were chosen: z1 = 1500 m, z2 = 2000 m,
z3 = 2500 m, h = 50 m, and x1 = 1000 m. The zone D1
involving ten thin layers (each 5 m thick) separated by dis-
continuities is located in the middle of overlying layer D
(Fig. 1). The physical properties of rocks are presented in
the table. For interblock contacts, we used the values
Kt = 3 GPa/m, Kd = 0.2Kt, ϕ = 25°, and τc = 0.5 MPa.

In Fig. 2, we display the calculation results for the
distribution of ∆R along a slanting fault for various val-
ues of α (the dashed and solid lines are used for q = 0.3
and q = 0.275, respectively). These results show that the
break zone in the vicinity of the stratum is in the
almost-ultimate state (∆R ≈ 0.06 mm). This fact pre-
sents a principal possibility to violate the equilibrium of
the environment by the action of a group of vibrators,
thereby inducing a redistribution of stresses in the
vicinity of stratum, increasing pressure within the stra-
tum and, thus, its fluid recovery.

2. ANALYSIS OF CHANGES
IN WELL PRODUCTION

Without posing to thoroughly investigate filtration
processes, we qualitatively analyze changes in the
fluid-flow rate in the case of an induced local stress
redistribution.

At the time moment t = 0, a stratum is opened by a
well located at a distance x0 from the middle of the

σi j j, γgδiz– 0=

σij
E

1 ν+
------------ ν

1 2ν–
---------------εδij εij+ 

 =

σij
0
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break zone. The filtration process is described by the
equations of mass conservation

(2.1)

of state

, (2.2)

and by the Darcy law

(2.3)

Here, wi are the velocity components; ρ, η, and C are
the fluid density, viscosity, and compressibility; p is
pressure; k is the penetrability; m is the porosity; and
the subscript 0 marks the initial values of the corre-

mρ( ),t ρwi( ),i+ 0,=

ρ
ρ0
----- 1–

p p0–
C

--------------=

wi
k
η
--- p i, .–=

hL

x0 x1D
z1

z3
z, uz

D1

uz = 0 σxz = 0

σzz = σV(z1) σxz = 0 x, ux

u x
 =

 0
σ x

z =
 0

z2

σ x
x 

=
 q

σ V
(z

)
σ x

z =
 0

α

Fig. 1. Structure of the calculation domain and boundary
conditions.
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Fig. 3. Pressure increment in a stratum, which is induced by a redistribution of stresses in the massif.
sponding quantities. In the case under consideration,
the right-hand side of Eq. (1.2) has the form of
mp,iH(h – |z – z2|); i.e., the change in the stress–strain
state of the massif due to filtration processes in the stra-
tum is taken into account.

For (2.1)–(2.3), we formulate the boundary condi-
tions

(2.4)

(2.5)

, (2.6)

and the initial condition

, (2.7)

where s(z) = (1 + ν)(1 + q)  is the mean stress in

the virgin massif (the positive values correspond to
compression). Condition (2.6) realizes the Khristiano-
vich hypothesis about the pressure distribution in an
intact stratum.

wz t x z2, ,( ) wz t x z2, , h+( ) 0,= =

p t 0 z, ,( ) p0,=

p t x1 z, ,( ) s z( )=

p 0 x z, ,( )
1 ν+( )σii

0 x z,( )
3

-------------------------------------=

σV z( )
3

------------

Physical properties of rocks

Domain E, GPa ν γ, kg/m3

D 20 0.25 2500

Dl 18 0.25 2500

L 15 0.23 2200
Sets (1.1)–(1.4) and (2.1)–(2.7) were solved using
the procedure and codes developed in [15].

Let a shift of certain contacts in the break zone occur
at t = tp (it does not matter what the reason was), which
induces a redistribution of stresses in the massif. We

denote the new state as . Thus, the pressure in the
stratum varies jumpwise:

p(tp,  x, z)  p(tp,  x,  z) + ∆σ(x ,  z),

where ∆σ = . Along with this, we assume that

the stratum penetrability decreases: k = k0 ,

where  is the collector compressibil-

ity.

The calculations were carried out for k0 = 5 ×
10−14 m2, η = 0.03 Pa s, m = 0.2, p0 = 105 Pa, q = 0.275,
ρ0 = 850 kg/m3, and C = 3 GPa (whereas K = 24.6 GPa).
In Fig. 3, we display the distribution of ∆σ for the case
when a slip by ∆R = 0.06 mm took place for six contacts
in the middle of D1. As is seen, the redistribution is of a
rather local nature, and in the case of thick strata, the
realization of the mechanism proposed is unreasonable.

In Fig. 4, we show a relative increase in the well
production for t > tp (and for the same calculation
parameters):

.

σij
1

σii
1 σii

0–

1 ∆σ
K

-------– 
 

K
1 m–( )E

1 2ν– mC+
------------------------------=

∆Q
Qp t( ) Q tp( )–
Q t( ) Q tp( )–
-------------------------------- 1–=
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Fig. 4. Relative change in the fluid flow rate.
Here, Qp and Q are the fluid flow rate in the case with
and without an additional action onto the massif. We
can note two features in the behavior of : an

increase with time tp and

a reasonably fast tendency to reach a certain steady
value , which characterizes the residual effect after
such a forced change in the pressure inside the stratum.

The calculations showed that the effect of the local
redistribution of stresses decreased by ∆Q with remov-
ing the well from the break zone.

Remark 1. The analysis is carried out in the two-
dimensional formulation. It is evident that in the actual
(three-dimensional) situation, it is necessary to treat by
external sources the corresponding parts of the massif
over the area of stratum bedding.

Remark 2. A forced shift in interblock contacts can
also lead to a negative effect. For example, if in the
model under consideration a slip of two edge contacts
is induced, then virtually everywhere in the stratum we
observe ∆σ < 0. Therefore, the preliminary analysis of
the stress–strain state of the massif is necessary not
only to reveal weak zones, but also to estimate how
consequences of a disturbance of the equilibrium state
in these zones affect the filtration process.

Remark 3. The numerical analysis showed that, for
the upthrust tectonic regime with its high (q > 1) hori-
zontal stresses, the break-zone state (for the massif
structure given here) with ∆R ~ 0.05 mm can take place
only for rather low values of ϕ, which are virtually
absent. Therefore, in this case, the realization of the
proposed mechanism is very problematic.
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Characteristic Temperature and Polymorphism
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Structural polymorphism of matter is a widespread
phenomenon in nature. It manifests itself in all aggre-
gate states of substances under the variation of general-
ized forces: temperature, pressure, magnetic- and elec-
tric-field intensity, etc.

The temperature polymorphism of a chemical ele-
ment (single-component monoatomic substance) is
observed in the case if, along with a basic modification
stable at a low temperature, the chemical element has
an energetically close unstable modification (with a
lower atomization energy). With increasing tempera-
ture T, even at a constant pressure p, the element under-
goes a transition from the region of the thermodynamic
stability of the low-temperature modification I to the
region of the equilibrium existence of another modifi-
cation II. In the case of further increasing temperature,
the subsequent modifications III and IV can arise, if
they actually exist.

Note that the appearance of various modifications
upon changing other generalized forces, including, e.g.,
pressure p, magnetic-field intensity H, and electric-field
intensity E (at T = const), corresponds to other types of
polymorphism, e.g., baric, magnetic, etc., which we
here ignore.

Polymorphous structural transitions are, as a rule,
enantiomorphous phase transitions of the first order
(for p = const).

The polymorphism phenomenon can be treated
from the structural standpoint and starting from an
analysis of the role of the components for the tempera-
ture dependence of the free energy and the correspond-
ing thermodynamic characteristic functions [1–4].

Below, we restrict our consideration of the lattice
dynamics of chemical elements as Debye solids,
assuming other components of the free energy (elec-
tronic and magnetic) to be negligibly small. In the
accepted Debye approximation, the crystal-lattice
dynamics of each of the modifications is described by
the Debye phonon spectrum with the density of states

Moscow State University of Environmental Engineering,
ul. Pryanishnikova 19, Moscow, 127550 Russia
1028-3358/02/4701- $22.00 © 20016
g(ν) = , which is the quadratic function of atomic

oscillations with frequency ν (the maximum fre-
quency νm) and the corresponding characteristic tem-

perature θ = .

The Debye approximation is valid only for crystals
possessing no strongly pronounced anisotropy and with
the dimensionality (including the exponent n at the

maximum frequency  of the Debye phonon spec-
trum) not strongly differing from three.

In the approximation accepted, the critical tempera-
ture  of the polymorphic transition for the i, k mod-
ification of the element j corresponds to the intersection
point for the curves of the Helmholtz free energy
∆Fikj = 0. At moderate temperatures, the quantity ,
specified from the condition ∆Fikj = 0, practically does
not differ from the quantity , determined from the
condition of the equality to zero of the Gibbs free
energy ∆Gikj = 0.

The free energy F and the internal energy U of the
modifications ikj are summed from the temperature-
independent atomization energies Uat including the
energies of atomic zeroth oscillations and temperature-
dependent fractions of UT and FT.

At T = Tcr, the differences in the free energies of
modifications I and II are

(1)

At T = Tcr, the difference in the temperature-depen-
dent fractions of the free energies of modifications I and
II is equal to the difference in their atomization energies
at T = 0:

. (2)

Note that ∆U0tr ! Uat.

gN

νm
3

-------ν2

hνm

k
---------

νm
n

TKikj

TKikj

TKikj

FI FII–

=  UatI UatII T– cr UI T( ) UII T( )–( ) Td
T
------

0

Tcr

∫– 0.=

F T( )I Tcr, F T( )II Tcr,– UatI UatII– ∆U0tr= =
002 MAIK “Nauka/Interperiodica”
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Correspondingly, the difference of the entropy for
the modifications I and II at T = Tcr is equal to the phase-
transition heat related to Tcr , which is assumed to be the
difference of the internal energies

where ∆Utr = U0tr + ∆U(T).
If the entropy SI of the low-temperature modifica-

tion I, Tcr , and the heat of the polymorphous transition
Utr = UI – UII are known, the entropy SII of the subse-
quent high-temperature modification is

(3)

The entropy of the Debye solid is a tabulated func-

tion of the ratio . Consequently, the found values of

 and  at T = Tcr determine the characteristic
temperature of the modification II and, correspond-
ingly, the temperature dependences FII(T) and UII(T).

The characteristic temperatures of Debye solids are
independent of temperature. They are quantitatively
related to the atomization energy, as well as to the crys-
tal structure. In contrast to Debye solids, the character-
istic temperatures of actual crystals are functions of
temperature and depend on the type of the actual
phonon spectrum. For example, according to Alers [5],
the characteristic temperature θ for copper, which is
calculated according to elastic constants within the
range from T = 0 to T = 25 K, varies from 345 to 307 K.
According to data of [6] for germanium within the
range from T = 0 to T = 300 K, the value of θ deter-
mined from the calorimetric measurements varies from
375 K at T = 0 K, passes through the minimum equal to
257 K at T = 20 K, and reaches 378 K at T = 300 K.

In calculations of the thermodynamic properties of
polymorphic modifications II and III, it turns out to be
possible to reduce the number of necessary initial data
employing the equation connecting the atomic interac-
tion energy U and the volume V per one atom, e.g.,

, (4)

which follows from the condition

(5)

SI SII–
UI UII–

Tcr
-------------------

UatI UatII–
Tcr

------------------------= =

+
UI T( ) UII T( )–

Tcr
------------------------------------

∆U tr

Tcr
-----------,=

SII SI

∆U tr

Tcr
-----------.+=

θ
T
---

SI Tcr, SII Tcr,

U ae βν– be γν–+–=

∂U
∂V
------- 

 
V0

0,=

b a
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, a
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The magnitude of the bulk elastic modulus B is equal to

(6)

Since Uat = U0V0 , then

(7)

The bulk elastic modulus is proportional to the
atomization energy multiplied by the product of the
coefficients βγ.

The characteristic temperature of the crystal modifi-
cation in the certain approximation can be expressed in
terms of the bulk elastic modulus B (A is the atomic
number):

(8)

Assuming βγ = 9.35, we obtain

(9)

The ratio of the characteristic temperatures for the
modifications I and II will be

(10)

where ∆U0tr = UatI – UatII .

For the employed values of β and γ (βγ = 9.35), the

inverse values of α are  = 0.999 for A1,  = 0.998

for A2,  = 0.741 for A4 , and  = 0.915 for A5 . For

A3 , the value of α3 depends on the ratio  and is close

in its magnitude to α1 and α2 .

Introducing the coefficient α (depending on the type
Ai, i = 1, 2, ..., 5 of the crystal structure) for given val-
ues of β and γ makes it possible to take into account and
to correlate their relation to the structure of a crystal
having the coefficient κ of filling the unit-cell of the

volume  with atoms of a diameter of δ:

(11)

where n is the number of atoms in the unit cell. The fill-
ing coefficient is κ1 = 0.74 for A1 structures, κ2 = 0.68
for A2, and κ4 = 0.34 for A4. For A3 and A5, the coeffi-

cients κ depend on the ratio . The coefficient α relates

to the inverse value of the effective packing coefficient

κeff ≈ κ +  for q ≥ 3, and is proportional to the

V∂2U
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Table 1.  Initial data employed in calculations
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8]

U
tr
,

kJ
/m

ol
 [

8] Tcr,
K [7]

S 2
98

,
J/

(K
 m

ol
) 

[7
]

, K θ, K [8]

20 Ca 40.078 A1 5.5884 25.86 3.951 178.2
(194.1)

0.150 573 41.42 218.2 220

A2 4.480 27.064 3.8797 178.05 723

A3 3.97 1.6347 30.788 3.97 177.99

6.49

22 Ti 47.88 A3 2.9511 1.5873 10.55 2.9511 469.9 4.0 1155 30.63 342.1 430

4.6843

A2 3.3065 10.88 2.8634 465.4

26 Fe 55.847 A2 2.86645 7.0 2.4823 416.3 0.905 1183 27.28 395.4

A1 3.6468 7.3 2.5783 415.39 0.692 1663

A2 2.9322 7.588 2.5393 414.70

27 Co 58.933 A1 3.5441 6.62 2.5057 424.7 0.44 690 30.04 350.7 445

A3 2.507 1.623 6.67 2.507 424.26

4.069

40 Zr 91.224 A3 3.2321 1.5927 14.02 3.2321 608.8 3.84 1135 38.99 240.8 237–310

5.1477

A2 3.616 14.231 3.1315 605.14

50 Sn 118.71 A4 6.4892 20.477 2.81 302.10 2.47 286.4 44.14 195.3 212

A5 5.8316 1.833 16.24 2.354 299.63 51.55

3.1813

57 La 138.9055 A3 3.77 1.6127 22.497 3.77 431.0 0.4 583 56.9 116.4 142

12.144

A1 5.296 22.355 3.7443 430.6 3.19 1137 139

A2 4.2 23.27 3.6892 427.41

c
a
--- θS298
probability integral:

 for x ≈ 4κ.

The variation of the characteristic temperature cal-
culated by relations (8), (9) while passing from modifi-
cation II to modification I is determined not only by a
change in both the molar volume and the atomization
energy but also by the change in the exponents β and γ.

According to relation (9), the change in the charac-
teristic temperature at the polymorphous transition
from modification I to modification II depends not only
on the variation in the atomization energy, the molar
volume, and the coefficient α but also on the variation
in the product βγ. In this case, we assume that the rela-

α Φ x( )≈ 2

2π
---------- e

t
2

2
----–

td

0

x

∫=
tionship  is proportional to  for (βγ)II =

(βγ)I and n = 0. For other values of (βγ)II and (βγ)n, n =
2 or n = 4,

(12)

The values of the lattice parameters a and c, molar
volume V, atomization energy Uat, experimental values
of the characteristic temperatures θ, standard entropy
S298 and the value θ298 determined according to them,
the heat ∆Utr, and temperatures Tcr of polymorphous
transitions are given in Table 1.

The calculated values of θikj (and, for comparison,
the values of  obtained for αij = 1) and the values of
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Table 2.  Determined values: θ', θ, θ*, , , ∆U0(θ), , ∆U0(θ*), , and values of α,

n, and βγ used in calculations

Element Tcr, K α n βγ (βγ)* θ', K θ, K θ*, K

,

kJ
/m

ol

,

J/
(K

 m
ol

)

∆U
0,

kJ
/m

ol ,
kJ

/m
ol

∆
,

J/
(K

 m
ol

) , 

J/
(K

 m
ol

)

Ca A1 1.0000 2 6.150 192.75 192.75 22.235 60.76

A2 573.0 1.0020 5.830 188.72 180.89 22.980 62.23 0.745 1.47

A2 723.0 1.0020 2 5.830 188.72 180.89 33.021 68.37

A3 1.0001 4.330 176.57 154.57 35.442 72.04 2.421 3.67

Ti A3 1.0090 4 6.150 452.38 452.38 40.809 56.82

A2 1155.0 1.0020 5.825 5.84 440.26 394.91 396.20 44.419 60.37 3.609 3.528 3.54 3.46

Fe A2 1.0020 0 6.150 480.66 480.66 40.830 55.88

A1 1183.0 1.0000 6.150 6.07 469.23 469.23 466.27 41.429 56.47 0.599 0.785 0.59 0.76

A1 1663.0 1.0000 0 6.150 469.23 469.23 71.062 65.15

A2 1.0020 5.930 6.21 460.78 460.78 462.37 71.840 65.66 0.778 0.631 0.51 0.42

Co A1 1.0000 2 6.150 485.01 485.01 16.131 42.38

A3 690.0 1.0003 6.150 6.00 483.08 479.25 473.03 16.293 42.67 0.162 0.348 0.30 0.64

Zr A3 1.0085 4 6.150 323.45 323.45 48.206 64.86

A2 1135.0 1.0020 5.940 5.48 318.01 297.16 285.35 50.624 67.20 2.418 3.505 2.33 3.38

Sn A4 1.3495 2 5.045 221.15 221.15 6.203 40.12

A5 286.4 1.0930 5.045 3.72 200.31 164.32 155.78 7.850 47.41 1.647 1.961 7.28 8.62

La A3 1.0020 2 6.150 174.53 174.53 23.990 63.41

A1 583.0 1.0000 5.950 5.97 173.10 170.29 170.60 24.380 64.15 0.390 0.362 0.73 0.68

A1 1137.0 1.0000 4 5.950 173.10 170.29 66.523 82.09

A2 1.0020 5.111 4.88 169.38 155.25 151.79 68.984 84.37 2.461 3.027 2.28 2.81

Note: The value of θ* corresponds to the experimental value of . For Sn,  = 200.31,  = 2.37 at n = 0.

FT Tcr= θ( ) ST Tcr= θ( ) ∆ST Tcr= θ( ) ∆ST Tcr=
* θ*( )

F
T

T
cr

=

S T
T

cr
=

∆
U

0*

S T
T

cr
=

∆
S T

T
cr

=
*

∆Utr

Tcr
----------- ∆ST Tcr=

*= θA5
∆STcr A4 A5, ,
θ* corresponding to ∆S* determined according to 

(see Table 1) are presented in Table 2. According to the
values θikj obtained, the values of the internal energy
Uikj of the modifications i and k for chemical elements
j, the free energies Fikj, and the differences
∆F(T  = ∆U0ikj at T = (TK)ikj are determined. The

values of θexpt and θcalcd and those of ∆  and

∆  are plotted for comparison in Figs. 1 and 2.

While calculating the characteristic temperatures of
iron modifications I(A2), II(A1), and III(A2) reduced to
the state of the Debye solids, we have used lattice con-
stants according to [7] but not normalized to T  0.
The values of θ experimentally determined according
to [8] are also taken for A2. The modifications indicated
were considered as independent phases with the func-

∆U tr

Tcr
-----------

)ik j T, Tcr=

STcrexpt

STcrcalcd
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tions F(T) also independent of each other, as distinct,
e.g., from [9–11], in which FI(T) and FIII(T) were taken
as unique common function F(T). In [9, 10], the role of
the magnetic contribution of the free energy was taken
into account. In [11], the analysis of temperature varia-
tions of polymorphic modifications was carried out for
iron alloys by the method of geometric thermody-
namics.

In the present paper, apart from the geometric vibra-
tional component, other possible components of the
free energy were not taken into account. Other possible
approaches [12–14] to the polymorphism problem were
not considered either.

As follows from the results of this paper, apart from
the similarity in the number of cases of characteristic
temperatures used with experimental ones, the Debye
approximations result in certain inconsistencies of ther-
modynamic properties at T = Tcr. The characteristic
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temperatures calculated according to the experimental
data for the entropy of different modifications, as a rule,
slightly differ from the characteristic temperatures
found on the basis of other experimental data. This fact
emphasizes the principle importance of the allowance
for the difference phonon spectra, as well as the role of
other components of thermodynamic functions except
the harmonic vibrational ones.
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Fig. 1. Calculated and experimental [8] values of θ for low-
temperature modifications.

Fig. 2. Calculated and experimental [8] values of ∆  for

polymorphous transitions: (1) Ti(A3A2); (2) Fe(A2A1);
(3) Fe(A1A2); (4) Co(A1A3); (5) Zr(A3A2); (6) Sn(A4A5);
(7) La(A3A1); (8) La(A1A2); (9) Sn(A4A5 for n = 2.5).

STcr
Along with the arguments given above, the results of
this paper testify to the fact that the Debye approxima-
tion allows the clear description of the polymorphism
of chemical elements having crystal structures free of
strongly pronounced anisotropy to be presented and
quantitative relations of atomization energy, atomic
mass, and molar volume with the Debye characteristic
temperature of modifications to be established.

As also follows from both the thermodynamic anal-
ysis and the results of this paper, in the Debye approxi-
mation the characteristic temperatures of a high-tem-
perature modification are always lower than those of
the low-temperature modification. Correspondingly,
the stability determinants and other properties of the
polymorphic modifications specified by the character-
istic temperature also differ from each other.

The use of a novel analytical expression for the
Debye characteristic temperature simplifies the struc-
turally-thermodynamic consideration of the polymor-
phism phenomenon and the estimates of a number of
properties for modifications of chemical elements.
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Among numerous methods for producing plasmas
exhibiting strong Coulomb interaction [1], dust plasma
presently attracts particular attention [2–4]. This is
explained by the fact that it allows an extremely high
parameter of nonideality (γ = Z2e2n1/3/kT ~ 105) to be
obtained, due to a significant charge Z of macroparti-
cles, which reaches ~104–105. Such a value of the
charge can be provided by both a high mobility of elec-
trons (for example, in a high-frequency discharge or
glow discharge [2, 3]) and the action of photoelectron
emission or thermal emission [3, 5, 6], as well as by
radioactive decay [7]. In this case, in a number of
experiments, the interparticle Coulomb interaction
turns out to be so strong that it causes the appearance of
ordered dust structures (plasma liquids and plasma
crystals). In them, the interparticle interaction causing
structural ordering exceeds by orders of magnitude the
thermal motion characterized by the energy kT, which
destroys the structure.

In the present paper, we propose a method (alterna-
tive to the charge one) that makes it possible to increase
the nonideality of the dust plasma. This method is
based on decreasing the kinetic energy of dust particles
down to cryogenic temperatures. Note that this allows
a nonideal plasma in cryogenic discharges to be
obtained [8] by laser cooling of ions in electrostatic
traps [9] and electron cooling of ions in accelerating
rings [10], as well as two-dimensional crystals on the
liquid-helium surface [11].

In this study, we experimentally obtained dust struc-
tures in both glow-discharge plasma and high-fre-
quency-discharge plasma at liquid-nitrogen tempera-
ture (77 K). The scheme of our experiment is similar to
that considered in [12]. Dust structures consisting of
magnesium oxide particles 3–5 µm in diameter, which
had been introduced from above (i.e., from the anode
side), were observed in striations of the positive column
of a low-pressure glow discharge in a quartz discharge
tube (2 cm in diameter) immersed into a cryostat filled
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with liquid nitrogen. Using laser illumination, also
from above, we observed the dust structures through an
optical window of the cryostat. Outside the discharge
tube, we mounted two copper-foil rings spaced 4 cm
from each other, between which the capacitive high-
frequency discharge was ignited at a frequency of
13.6 MHz. Air at a pressure below 0.1 Torr served as a
plasma-forming gas. The pressure was measured at
room temperature by a thermocouple manometer
placed in the upper part of the tube. The air density in
the lower part of the tube, which was immersed in the
liquid nitrogen, is approximately four times higher.

It should be noted that both glow discharge and
high-frequency discharge are insufficiently studied at
cryogenic temperatures. At the same time, as was
shown in our experiments, they possess a number of
interesting features. Visually, even the shape of the stri-
ations in the glow discharge at 77 K is absolutely dis-
tinct compared to that at room temperature. Probably,
the shape of the striations is most significantly affected
by metastable atoms and molecules accumulated in the
discharge and ionization processes associated with
them. Thermophoresis forces caused by temperature
gradients also play an important role [12].

At liquid-nitrogen temperature, the dust structures
in glow-discharge striations are observed in the form of
threads and are similar to those detected for the same
currents (~1 mA) at room temperature. Interparticle
distances are nearly the same and attain approximately
200 to 250 µm [13]. In contrast to room temperatures,
there are many particles that rapidly rotate around
immovable threads located near the tube axis; no ring
structures being observed. With an increase of the dis-
charge current to 3 mA, the dust structures disappear. A
rather extended structure (about 30 cm in length) con-
sisting of long dust threads that occupy almost the
entire volume of the glow-discharge positive column
arises in a narrow range of pressures between 0.04 and
0.05 Torr, both above and below the level of liquid
nitrogen. The experiments performed have shown that,
along with well-known causes (the shape of the electro-
static potential, gravity force, and ion-friction force),
the dynamics and stability of cryogenic dust plasma are
significantly affected by longitudinal thermophoresis
forces [12]. The forces are proportional to temperature
gradients and (as shown in [12]), for the micron-size
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particles, exceed ion-friction forces appear because by
almost one order of magnitude. These forces appear
because the momentum transferred to a macroparticle
by molecules passing from the side of the more heated
gas exceeds the total momentum of cold molecules.
The cryogenic dust structure turns out as though it were
in an electrostatic trap. In this trap, the vertical stability
is provided by the electric field of the glow discharge
(that balances the gravity force of macroparticles) and
by the thermophoresis force. This force acts both down-
wards along the direction of the thermal flow from the
upper zone unoccupied by liquid nitrogen and upwards
due to the heat release in the cathode region. With
decreasing pressure, the dust structure is partitioned
into several parts, 4–5 cm in length.

Previously, such extended dust structures were
never observed in experiments. However, the structure
is unstable with respect to longitudinal low-frequency
disturbances. With laser illumination, these distur-
bances are directly observed by the unaided eye in the
form of longitudinal density waves. The entire
extended structure is divided into transverse layers
(with different densities) about 0.7 mm thick. Probably,
this is a result of spontaneous dust-acoustic instability,
similar to ion sound in conventional plasmas [14]. It is

Layering of a dense dust structure at a cryogenic tempera-
ture. The size of a luminous region is 2 mm.
worth noting that, in contrast to experiments at room
temperatures when the dust-acoustic instability was
observed, in our case, the entire extended structure at a
distance about 30 cm is partitioned into transverse lay-
ers. The development of the dust-sound instability is a
result of total plasma-flow instability when plasma ions
pass through the charged dust with drift velocities
exceeding the sound velocity in the dust itself. With
decreasing temperature of heavy particles, the develop-
ment of such an instability is simplified due to the low-
ered dust-acoustic speed.

The second series of experiments at cryogenic tem-
peratures was performed with a capacitive high-fre-
quency discharge. Since the electrodes are isolated
from plasma by the glass tube walls, such a discharge is
entirely controlled by the ambipolar diffusion. Experi-
ments carried out at room temperature have shown that
particles are located just below the lower ring and are
confined in the vertical ambipolar electric field. The
plasma localized between the rings represents an elec-
trostatic trap for negatively charged macroparticles.
The particles form a cone consisting of threads about
2 cm in length and ~2 mm in diameter. At liquid-nitro-
gen temperatures, the particle density in this structure
abruptly changes. There appears a very dense plasma-
dust structure with the same size, which is located in the
middle between the rings to which the high-frequency
power is transmitted. Interparticle distances in the
structure are poorly distinguished even at a high magni-
fication. Around this structure extended along the tube
axis, we observed vertical threads consisting of parti-
cles having a density typical of the conventional glow
discharge. The surface of the dust structure not only
intensely scatters but also reflects the laser radiation. 

The degree of particle ordering depends on gas pres-
sure. Although we failed to observe the mutual arrange-
ment of the particles in individual layers, we could see
that the reconstruction of the structure occurred with an
increase in gas pressure. The reconstruction of the
structure (from cubic to hexagonal) with increasing
pressure was previously observed by us in a glow dis-
charge at room temperature [13]. With decreasing pres-
sure, the dense structure is layered in spite of the fact
that the ionization in this region remains uniform. We
can observe well-pronounced dark and light thin trans-
verse stripes with a thickness of about 150 µm, with
sharp boundaries along the entire length of the structure
(see figure). However, unlike the glow discharge, the
dust particles in the dark stripes are almost entirely
absent. In the lower part of the dust structure, we
observed damped density waves traveling upward with
a velocity of about 2 cm/s. The damping is associated
with the collisional dissipation, which is significantly
higher in the dust plasma than in the dust-free plasma.
Layering seems to be caused by acoustic instability;
however, dust sound is only excited in the dense struc-
ture, without affecting rare threads of surrounding mac-
roparticles. Previously, the appearance of thin dust lay-
ers with sharp boundaries was not observed in studies
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of dust plasmas. This phenomenon is apparently asso-
ciated with the development of nonlinear processes. In
addition, the nonlinear dust-acoustic vibrations (similar
to nonlinear ion-acoustic waves) may also give rise to
the appearance of sharp boundaries in the dust density.
However, the nonlinear processes, as in the case of ion-
acoustic vibrations in plasmas, are limited by the
effects of spatial dispersion. 

For the dust sound, the dependence of the phase
velocity on the wavelength is the same as for the ion
sound and results from the dispersion equation [14]:

(1)

Here, Cs = Z(kTε/md)1/2 is the speed of the dust sound,
ε = nd /ni, ni is the ion density, md is the mass of a dust
particles, nd is their density, and D is the Debye radius.
With increasing the wave number, the phase velocity
ω/K decreases. In this case, nonlinear dust-acoustic
waves of cnoidal type can propagate along the struc-
ture. They correspond to an electric-field wave having
a steep leading front and result in the formation of dust
layers. In our conditions, the Debye radius D ≈ 20 µm
is determined by the ion temperature, the KD parameter
is KD ≈ 0.4, and the wavelength λ ≈ 300 µm is signifi-
cantly smaller than in other experiments performed
with dust plasmas. At the same time, the experimental
value of Cs ≈ 2 cm/s exceeds by a factor of two or three
the speed of the dust sound measured at room tempera-
ture. This is associated with the higher density of dust
structures observed at cryogenic temperatures. Despite
of the fact that the dust-acoustic vibrations in noniso-
thermal plasma is excited by ion drift, the thickness of
the dust layers cannot be smaller than the ion mean free
path in the charged dust, since otherwise the macropar-
ticles in the layers cannot maintain their charge.

The formation of very dense dust structures is seem-
ingly explained by the fact that, at cryogenic tempera-
tures, the Debye screening radius D decreases and the
mutual Coulomb repulsion of charged particles at dis-
tances r ≥ D, which is determined by the exponential
part of the Debye potential (Z2e2/r)exp(–r/D), is signif-
icantly weakened. In this case, dust particles can
approach each other more closely, and their attraction
associated with the mutual polarization of ion clouds
surrounding them is revealed to a greater extent. The
formation of ordering structures (in which interparticle
distance considerably exceeds the Debye radius) can be
explained by the attraction associated with ion fluxes
impinging onto dust particles [15]. At the same time, at
low temperatures in very dense structures under consid-
eration, the dust particles strongly shade each other, and
the ion mean free path becomes shorter than the size of
the structure. Under these conditions, the attraction of
dust particles by the action of pure electrostatic forces
is possible.

ω
KCs

1 K2D2+( )1/2
--------------------------------.=
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Under the conditions of our experiment (at gas tem-
perature T = 77 K and the power of ~0.5 W transferred
to the high-frequency discharge), the electron concen-
tration evaluated from the conductivity of the discharge
is on the order of 109 cm–3. The dust concentration in
the dense structure can be estimated from the quasi-
neutrality condition

(2)

and the expression for the dust-sound speed Cs entering
into formula (1). Using the measured value of Cs and
assuming that the negative charge in the dense dust
structure is mainly concentrated on the macroparticles,
i.e, at Zε ~ 1, we obtain that Z ≈ 3 × 103 and the density
of macroparticles in the structure nd cannot exceed
106 cm–3. In this case, the ion mean free path in the
charged dust λ = (ndσ)–1 ~ 0.01 cm, where σ is the cross
section for Coulomb scattering of an ion on a charged
dust particle. The parameters of nonideality γ and of the
Debye interaction Γ = γexp(–r/D) attain the values of
104 and ~103, respectively. This indicates that the Cou-
lomb system is strongly nonideal, and its nonideality
parameter significantly exceeds the critical value γ ≈
170 for which a Coulomb crystal is formed.

It is worth noting that, despite the fact that in the
high-frequency discharge the dense structure with
sharp boundaries is surrounded by a dust structure con-
sisting of rare threads, it does not absorb additional par-
ticles when environmental conditions are changed. Nei-
ther radial thermophoresis forces [12] nor ion entrain-
ment forces associated with the ion ambipolar flow
toward the walls are capable of destroying the dense
structure. With decreasing pressure, there appear in it
instabilities (similar to density waves) giving rise only
to its partition into thin layers.

Thus, at cryogenic temperatures, we have managed
to obtain superdense ordered plasma-dust structures
that were previously unobserved in a high-frequency
low-pressure discharge at room temperatures. The for-
mation of dense structures is most likely related to the
pure electrostatic interaction between charged dust par-
ticles. Instabilities inherent in these structures (proba-
bly associated with longitudinal dust-sound vibrations)
give rise to their separation into thin transverse layers
with well-pronounced boundaries and are observed
when lowering gas pressure. In such structures, the
dust-sound speed is several times higher than in dust
formations previously investigated at room tempera-
tures.
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This paper deals with oscillations in viscous incom-
pressible fluid filling an infinitely long slot. Both the
fluid and the slot rotate as a solid with an angular veloc-
ity w0 = const. Oscillations in the fluid are induced by
both vibrations of the upper plate, which are not tor-
sional, and a temperature gradient. This gradient is
applied to the lower plate at the initial time moment. We
have determined the velocity field in the flow and the
vectors of tangential stresses acting from the fluid upon
the upper and lower plates of the slot. Various motions
of the upper plate are investigated, and the correspond-
ing velocity fields formed in the flow are found.

We consider a flow of a viscous incompressible fluid
with the density ρ and the kinematic viscosity ν, which
fills in the slot Q. Both the fluid and the slot uniformly
rotate as a solid with an angular velocity w0. The fluid is
placed in a field of mass forces having the potential U.
We introduce a Cartesian coordinate system Oxyz with
basis vectors ex, ey, and ez . The system is fixed in the
upper plate Q0 so that the plane Oxz coincides with the
plane Q0 and the y-axis being directed into the fluid is
normal to Q0 . The equations of motion for the flow,
which are written in the system Oxyz rotating with the
angular velocity w0 , have the form

(1)

Here, t, r, V, and P are time, the radius vector with
respect to the pole 0, the fluid velocity, and pressure,
respectively.

We now consider the boundary conditions and ini-
tial conditions of the problem. In the rotating system,
the fluid is initially at rest so that

w0 w0 r×( )× 2w0 V× ∂V
∂t
-------   + V ∇( ) V + +

1
ρ
--- ∇ P– ν∆V ∇ U ,++=

divV 0 in Q.=

V r t,( ) 0 at r Q, t 0.<∈=
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At the time moment 
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, the upper plate begins to
move with the velocity 
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 and the nonslip condition
takes the form 
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. At the same time, the
lower plate being at rest is specified by a temperature
gradient 

 

∇

 

T

 

. Since the temperature varies along the sur-
face 

 

Q

 

l

 

, the Knudsen layer with a width on the order of
the mean free path 

 

λ

 

 of medium molecules is formed in
the fluid. Within this layer, the medium begins to slip
with the velocity 

 

V

 

T

 

, where 

 

V

 

T

 

 is such that the total
momentum flux through the surface 

 

Q

 

l

 

 is zero. There-
fore, the medium velocity 

 

V

 

 should be specified on the
outer boundary of the Knudsen layer as a boundary
condition.

It is noteworthy that the slip of a viscous phase along
solid nonuniformly heated boundaries was not taken
into account in all papers devoted to solving hydrody-
namical equations in an oscillating fluid. In this paper,
we for the first time allow for the thermal slip and ana-
lyze the results based on the exact solution to the hydro-
dynamic problem, which has primary significance.

The phenomenon of thermal gas slip along a non-
uniformly heated surface has been known for a long
time. It has been considered in many papers, for exam-
ple, in [1–4]. In addition, the theoretical results were
reliably verified in numerous experiments. It was
shown that the velocity of the thermal slip along a non-
uniformly heated surface is proportional to the temper-
ature gradient, the proportionality coefficient depend-
ing on intermolecular gas–solid interaction. For the
velocity of the thermal gas slip along a flat surface, the
expression

has been derived. Here, 

 

k

 

TSL

 

, 

 

ν

 

g

 

, 

 

∇

 

T

 

, and 

 

T

 

 are the ther-
mal-slip coefficient, the dynamic viscosity, the temper-
ature gradient, and the average gas temperature, respec-
tively.

Papers devoted to the effects of thermal slip in tem-
perature-inhomogeneous liquids appeared somewhat
later (see, e.g., [5–7]). Moreover, the experiments [8]
carried out by McNab and Meison in various liquids
containing large latex particles have shown that thermal

v T kTSLνg
∇ T
T

--------=
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slip occurs only if the temperature gradient is main-
tained on a solid surface in contact with a liquid. In this
case, the formula for the velocity of the thermal slip
turns out to be identical for both liquid and gas. How-
ever, in the case of a liquid, the coefficient of thermal
slip is kTSL = 0.13. Thus, the velocity of the thermal slip
in a liquid is described by the expression

where νl is the dynamic viscosity of the liquid.

As is well known, kinematic viscosity of gases
exceeds that of liquids by an order of magnitude; i.e.,
νl = 0.1νg. Moreover, being proportional to the mean
free path of molecules, the coefficient of thermal slip in
gas is larger than the corresponding coefficient in liquid
by an order of magnitude as well. Therefore, in gas, the
velocity of the thermal slip is by two orders of magni-
tude larger than in liquid.

At ∇ T ~ 10 K/cm, the velocity of thermal slip in
gases VT ~ 10–4 cm/s. However, in the case of the tem-
perature gradient ∇ T ~ 104 K/cm, the velocity of the
thermal slip in liquid exceeds that in gas by an order of
magnitude. With allowance for this remark, the bound-
ary conditions specified on the surface Ql take the form

Here, we took into account the fact that the Knudsen
layer is thin (λ ! |r|). Therefore, the velocity V on the
outer boundary of this layer can be calculated for the
surface of the plate Ql.

The complete system of equations describing a per-
turbed flow of a viscous fluid has the form

(2)

The solution to system (2) is sought as

(3)

v T 0.13ν l
∇ T
T

--------,=

V r t,( ) VT at r Ql.∈=

w0 w0 r×( )× 2w0 V× ∂V
∂t
------- V∇( )V++ +

=  
1 ρ 
--- ∇ P ∇ U ν∆ V ;+ +–

divV 0 in Q;=

V r t,( ) u t( ) at r Q0, t 0;≥∈=

V r t,( ) VT t( ) at r Ql, t 0;≥∈=

V 0 at r Q, t 0.<∈=

P
1
2
---ρ w0 r×( )2= ρU ρp y t,( ),+ +

V V x y t,( )ex Vz y t,( )ez.+=
                             

 

As a result, system (2) splits into two following sub-
systems:

 

(4)

(5)

 

The velocity field formed in the fluid is determined
from equations (4), and the pressure field is found from
the velocity field (5).

The solution to system (4) is sought as
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 is a new unknown
function. Furthermore, it is convenient to introduce the
notation 
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Substituting (6) into (4) yields the following homo-
geneous heat-conduction equation for determining 

 

W

 

:

 

(7)

 

This equation is solved by using both the initial condi-
tion 

 

W

 

(

 

y

 

, 0)

 

 = 0 and the boundary conditions

Integrating Eq. (7), we arrive at the relation

 

(8)

 

where 

 

λ

 

n

 

 = 

 

.

Substituting (8) into (6), we obtain the desired
velocity field

where

∂V
∂t
------- 2ω0y ey V×( )+ ν∂2V

∂y2
---------, 0 y l,≤ ≤=

V 0 t,( ) u t( ), t 0; V l t,( )≥ VT t( ), t 0;≥= =

V y 0,( ) 0, 0 y l;≤ ≤=

∂p
∂y
------ 2V w0 ey×( ),=

P 0 t,( ) P0 t( ), ω0y w0 ey.⋅= =

V W 2Ωtsin= W ey×( ) 2Ωt,cos–

Wt νWyy, 0 y l.≤ ≤=

W 0 t,( ) u1 t( ) 2Ωtsin= u1 t( ) ey×( ) 2Ωt,cos+

W l t,( ) u2 t( ) 2Ωtsin= u2 t( ) ey×( ) 2Ωt.cos+

W W 0 t,( )= 1 y
l
--– 

  W l t,( )y
l
--+

–
2
l
---

λnysin
λn

---------------- Ẇ0 t, τ( )exp νλ n
2 t τ–( )–( ) τ ,d

0

t

∫
n 1=

∞

∑

πn
l

------

V u1 t( )= 1 y
l
--– 

  u2 t( )y
l
--+

–
2
l
---

λnysin
λn

---------------- Ṫ0 l, τ( )exp νλ n
2 t τ–( )–( ) τ ,d

0

t

∫
n 1=

∞

∑
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(9)

The pressure field

(10)

is calculated by solving equation (5) with its right-hand
side obtained with allowance for expression (9).

We now consider features of the velocity field (9).
When studying the perturbed motion of a mechanical
object, we can employ an approach widely used in
structural dynamics. According to this approach, only
the first several tones of the system vibrations are taken
into account, while higher harmonics are omitted. Such
a procedure is possible, because the coefficients that
characterize inertial bonds between the body motion
and wave motions in the fluid decrease sharply for
higher harmonics compared to the fundamental (lower)
tone.

For n = 1 and λ1 = , the velocity field for a viscous

fluid can be represented as

where

(11)

We consider the case ν = 10–2 cm2 s–1, l = π cm, and
2Ω = 10–2 s–1. In addition, u1(τ) = exu1 = const and
u2(τ) = u2ex = const, where ex is the basis vector of the
Ox-axis. In this case, the velocity field (11) can be rep-
resented as

Ṫ0 l, τ( ) ∂
∂τ
-----T0 l, τ( ),=

T0 l, τ( ) T1 τ t τ–,( )= 1–( )nT2 τ t, τ–( ),–

T1 2, τ t, τ–( ) u1 2, τ( ) 2Ω t τ–( )cos=

+ u1 2, τ( ) ey×( ) 2Ω t τ–( ).sin

P y t,( ) 2 w0 ey×( ) u1 t( ) y
y2

2l
-----– 

  u2 t( )y2

2l
-----------------+





=

+
2
l
--- 1

λn
2

----- λny Ṫ0 l, τ( )exp νλ n
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For the time T =  = 200π s, the natural fluid oscil-

lations are damped; therefore, the velocity profile takes
the form

(12)

Below, we consider the limiting cases.
1. Let u2 ! u1; i.e., the velocity of the upper plate

considerably exceeds the velocity of the thermal fluid
slip along the lower plate Ql. In this case, the velocity
profile has the form

As is seen from this expression, near the upper plate
(y  0), the fluid velocity coincides with the velocity
of the plate motion u1 = u1ex; i.e., the nonslip condition
is satisfied. At the same time, at the lower wall (y  π)
the fluid velocity vanishes. This fact also corresponds to
the nonslip condition, because in the rotating coordi-
nate system the lower plate is motionless.

2. Let u1 ! u2; i.e., the velocity of the thermal fluid
slip along the lower plate is much higher than velocity
of the upper plate. In this case, the velocity profile can
be represented as

Evidently, the fluid velocity v = u1 = 
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which corresponds to the nonslip condition at the upper
plate. At the same time, 
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2
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x
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y

 
  

 
π

 
; i.e., the

boundary condition specified at the lower wall is sat-
isfied.

In conclusion, we note that the velocity field (9),
which is obtained with allowance for the thermal slip of
a temperature-nonuniform viscous fluid, represents the
exact solution to the time-dependent Navier–Stokes
equations in a rotating coordinate system. This velocity
field can be used in order to take into account force
actions occurring in the case of fluid flows in channels
of different shapes, in solving filtration problems, and
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in modeling various physical phenomena in a flowing
fluid.
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INTRODUCTION

Since 1990, nonlinear oscillations of a gas bubble in
intense ultrasonic fields are of increasing interest,
because one-bubble sonoluminescence, promising for
chemistry and physics, was discovered at that time.
Now, there are many papers on this problem (see [1, 2]),
where much attention is given to the study of harmonic,
subharmonic, and ultraharmonic resonances character-
ized by an increase in oscillation amplitude, period
doubling, bifurcations, chaos, and other features.

Here, we consider bubble oscillations for a bubble
radius being by two or more orders of magnitude
smaller than its resonant value, which corresponds to
medium characteristics and conditions of excitation.
Such oscillations rapidly become steady-state. In con-
sideration of small-bubble oscillations, were focused
on the explanation of both mechanisms of one-bubble
sonoluminescence and various associated effects, in
particular, on reaching the maximum bubble compres-
sion [1, 3].

The Rayleigh–Plesset equation

(1)

is widely used to describe bubble dynamics. Here, rb

and ub are the radius of the bubble and the velocity of

its surface,  and  are the unperturbed sound veloc-
ity in the liquid and the density thereof, and pex is the
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liquid pressure at a distance far from the bubble. In
addition,

(2)

where pg is the gas pressure at the bubble surface; µl and
σ are the viscosity and surface-tension coefficient of the
liquid, respectively.

If pressure variation in the bubble is uniform and
adiabatic, then

(3)

Here,  and  are the equilibrium gas pressures in
the bubble and in the liquid, respectively, which both

correspond to the initial bubble radius , and γ is the
adiabatic exponent.

EFFICIENCY OF BUBBLE COMPRESSION 
BY COMPRESSION 

AND RAREFACTION PULSES

Figure 1 shows the response of an air bubble to pres-
sure variation in water according to model (1)–(3),
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where

(4)

t0 = 0, tn = tn – 1 + T, n = 0, and T = . The calculations

were carried out at µl = 0.001 kg/(m s), ω = 2π ×
26.5 kHz,  = 1498 m/s,  = 4.5 µm,  = 1 bar,  =
998 kg/m3, σ = 0.0727 kg/s2, and γ = 1.4. Curves 1–4
represent bubble responses rb = rb(t) to pressure varia-
tion pex = pex(t) (curves 1'–4'), where the curves num-
bered by i' and i correspond to each other. Curves 1', 2',
1, 2 and 3, 4, 3', 4' are obtained at ∆p = 0.9 and 1.35 bar,
respectively.

With the enhancement of a compression pulse [pos-
itive sign in relation (4)], the growth of pulse amplitude
causes only a small quantitative variation of the bubble
response, whereas during rarefaction [negative sign in
relation (4)], a strong quantitative and qualitative
change of the bubble response occur. Namely, at rela-
tively low pressure ∆p, the bubble responds by com-
pression (curve 1) to excitation by the compression
half-wave (curve 1') and by expansion (curve 2) to exci-
tation by the rarefaction half-wave (curve 2'). With
increasing ∆p, this feature takes place only for the com-
pression pulse (curves 3' and 3). So, being excited by
the rarefaction half-wave (curve 4'), the bubble
responds first by expansion, which is typical for
curve 2, and then by a series of short-term successively
attenuated compressions, the first of which is the stron-
gest (curve 4). In particular, the rarefaction half-wave
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and compression half-waves
of amplitude ∆p = 1.35 bar compresses the bubble up to
the maximum values of pressure, density, and tempera-
ture that are 104, 103, and 10 times higher, respectively,
than those caused by the compression half-wave of the
same amplitude.

Figure 2 shows the maximum bubble compression

characterized by the dimensionless parameter ,

where  is the minimum bubble radius, versus pres-
sure amplitude ranging in the interval 0.4 < ∆p < 2.1
bar. Curves 1 and 2 correspond to excitation by com-
pression and rarefaction pulses of the form (4), respec-
tively. We can see that with increasing amplitude of the
compression pulse a decrease in the minimum bubble
radius is very slow (curve 1). Under the effect of the rar-
efaction pulse, a bubble decrease with respect to its ini-
tial dimension can be noticed only at the amplitude
∆p ≈ 1 bar (the inset in Fig. 2). At ∆p ≈ 1.05 bar, the rar-

efaction pulse brings the ratio  to the level reached

under the effect of the compression pulse (before, it was
below this level). Beginning from ∆p ≈ 1.1 bar, curve 2
steeply deflects upwards so that, in the region 1.3 <
∆p < 2.1 bar, the maximum bubble decrease reached
under the effect of the rarefaction pulse by more than a
factor of ten exceeds a similar decrease reached under
the effect of the compression pulse. With increasing ∆p,
this difference grows.

It is noteworthy that, when forming converging
spherical shock waves in a bubble, its compression
caused by the rarefaction pulse becomes much more
efficient in the sense of obtaining the maximum values
of gas pressure, density, and temperature in the bubble
center. In particular, if the shock-wave effect is taken
into account by using the model with a complete
description of gas compressibility both in the bubble
and in the liquid around it [4]. In this case, bubble com-
pression caused by the rarefaction pulse with ∆p =
1.35 bar and characterized by an increase in pressure,
density, and temperature in the bubble center turns out
to be ~108, ~104, and ~102 times, respectively, more
efficient compared to the case of the compression pulse.

BUBBLE DYNAMICS 
AND ITS QUASI-STATIC PORTRAIT

To understand features of bubble dynamics, it is use-
ful to analyze its varying static-equilibrium states, i.e.,
its “quasi-static portrait.” As is known, certain equilib-
rium states represent attraction centers of a dynamic
system. According to relations (1)–(3), these states are
determined by the equation pb – pex = 0, which, after

rb
0

rb
min

--------

rb
min

rb
0

rb
min

--------
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substitution of the relation pex =  – ∆psinωt entering
into (4), takes the form

(5)

If Eq. (5) is satisfied, the system, in contrast to the

case of its loading by the pressure pex =  + ∆psinωt,
does not have static-equilibrium states with all external
actions. This fact becomes more evident at σ = 0, when
equation (5) takes the form

showing that the static-equilibrium states exist only if

 < 1. At σ ≠ 0, the static-equilibrium states

exist under the condition

(6)

where p* is the critical value of the pressure amplitude
∆p (the Blake threshold [5]) such that excess over it
leads to liquid discontinuity.

Figure 3 shows the quasi-static portrait of bubble-
radius variation for certain excitation amplitudes from
the interval 0.45 ≤ ∆p ≤ 1.5 bar. Curves 1*–7* situated

in the region rb ≤  correspond to the responses to the
compression pulses, while curves 1–7 lying in the

region rb ≥  conform to the responses to the rarefac-
tion pulses. The quasi-static portraits of the responses
to the compression pulses change rather insignificantly
(curves 1*–7*). The portraits of bubble responses to the
rarefaction pulses of the amplitude ∆p not exceeding
1 bar (curves 1–3) behave in a similar way. Following a
further increase in ∆p up to p* ≈ 1.106 bar, the maxi-

mum bubble radius  in the portrait tends rapidly to
infinity (between curves 4 and 5). A higher ∆p leads to

expansion of the interval within which  tends to
infinity (curves 5–7).

In the zones mentioned, condition (6) is violated.

Values of both ∆p and the initial bubble radius  at
which the bubble expands strongly can be easily esti-
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mated by using equation (5) under the condition

 ! 1. A solution to the corresponding linear

equation has the form

It grows unboundedly at

After dividing its second term by two, the relation writ-
ten above would become close in its value to relation (6).
Using this relation, we can determine the critical ampli-

tude (∆p)cr at the given radius  and the critical radius

( )cr at the given amplitude ∆p

(7)

which are such that an excess over them leads to strong
bubble expansion.

Below, we use the quasi-static portrait to explain fea-
tures of the bubble responses plotted in Figs. 1 and 2.
Being affected by the compression pulse throughout the
interval 1.3 < ∆p < 2.1 bar or by the rarefaction pulse of
the amplitude ∆p lower than 1 bar, the static-equilib-
rium bubble states change slowly. For the most part, the
difference between dynamic and quasi-static bubble
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states, which include a degree of compression, arises
because the quasi-static bubble radius first tends rapidly
to infinity and then returns rapidly from infinity to the

region . In addition, this difference depends on the
length of the time interval between these two instants.
Because the quasi-static bubble radius tends to infinity
at ∆p ≥ 1.106 bar and, following a further increase in
∆p, the above-mentioned interval expands (Fig. 3,
curves 4–7), the maximum bubble compression grows
initially abruptly and then more smoothly (Fig. 2,
curve 2).

Figure 4 shows dynamic (solid curves 1–3) and
quasi-static (dashed curves 1*–3*) radii of a bubble
excited with the amplitudes ∆p = 0.9, 1.1, and 1.35 bar,
respectively, (curves 1'–3') as functions of time. The
other input data are the same as before. At relatively
small amplitudes ∆p, the regime of bubble oscillations
is close to the quasi-static one (curves 1 and 1* practi-
cally merge). While ∆p increases up to 1.1 bar, the dif-
ference between dynamic and quasi-static behavior
grows rather rapidly (curves 2 and 2*). Damped vibra-
tions with respect to the varying static-equilibrium

state arise in the transient region between  and

. Being calculated by the dynamic model, 
forms with increasing time lag and, up to ∆p ≈ 1.1 bar,
is a little larger than that according to the quasi-static

model. At ∆p ≈1.106 bar, the quasi-static value of 
grows abruptly so that, following a further increase in
∆p, the difference between radii becomes more con-
siderable (curves 3 and 3*). Their similar behavior is
observed only within a relatively short initial time
interval.

We now consider loading by the succession of rar-
efaction and compression half-waves of the form pex =
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 – ∆psinωt. Here, the bubble is excited, in turn, by
rarefaction and compression half-waves, the latter of
which is not taken into account in relation (4). Having
compared curves 2 and 4 (Fig. 1) describing the effect
of the rarefaction alone with solid curves 1 and 3
(Fig. 4) corresponding to alternation of the rarefaction
with the compression, we can conclude that the com-
pression half-wave following the rarefaction half-wave
has an insignificant effect. This conclusion is confirmed
as well in Fig. 2, where, in the region ∆p < 1.35 bar,
curve 2 taking into account the action of the rarefaction
half-wave is only close to curve 3 constructed with
allowance for alternation of the rarefaction and com-
pression half-waves. According to Fig. 2, the effect of
the compression half-wave grows gradually with
increasing ∆p.

CONCLUSIONS

1. At the given initial bubble radius , an increase
in pressure of the amplitude ∆p with respect to the aver-

age liquid pressure  causes higher bubble compres-
sion than a decrease in pressure of the same amplitude

∆p if ∆p < (∆p)cr or  < ( )cr, where (∆p)cr and ( )cr

are determined by expressions (7). This conclusion can
be drawn from data presented in Figs. 1 and 2.

2. A pressure decrease in the liquid by ∆p and its
subsequent increase up to the average level under the
condition ∆p > (∆p)cr cause strong bubble expansion. In
this case, due to subsequent inertial compression of the
bubble, maximum values of pressure, density, and tem-
perature attained in it are 104, 103, and 10 times, respec-
tively, higher than those caused alone by the pressure
increase in the liquid by the same ∆p. These estimates
are obtained under the assumption of volume-uniform
adiabatic gas compression. Being carried out for the
bubble center with allowance for spherical shock
waves, the similar estimation yields 108, 106, and 102,
respectively.

3. If pressure in the liquid varies according to the
sine law throughout its period, bubble compression
increases only a little compared to the case of the rar-
efaction half-wave. The difference can be noticed only

at  > 1.4 (Fig. 2). Therefore, an experimental setup

intended for obtaining strong gas compression should
mainly provide a decrease in pressure.

For  and ∆p being higher by some orders of mag-
nitude than those considered above, the item under con-
sideration should be studied additionally.
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4. At  < ( )cr and (or) ∆p < (∆p)cr, expansion and
compression of micron-size bubbles can be approxi-
mately determined from the quasi-static equation (5).
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1. Production of excited ions in electron–atom colli-
sions is a complex process involving the ionization of
an atom and the excitation of the ion produced. For
these stages to be simultaneous, the incident electron
energy must be sufficiently high. This process corre-
sponds to the reaction equation (in the case of single
ionization)

A + e  A+* + e' + e''. (1)

Here, A is an atom; e and e' are incident and scattered
electrons, respectively; and e" is an electron knocked
out from the atom. Excited particles are marked by an
asterisk.

Processes similar to (1) are of interest for a series of
branches of fundamental science (theory of atomic
structure, atomic spectroscopy, physics of atomic and
electron collisions, astrophysics), as well as for
intensely developed intermediate branches at the
boundary between fundamental and applied science
(lasers, plasma chemistry, special radiation sources).
Ionic metal-vapor lasers (MVL) are the most typical
example. Principal directions of developing current
metal-vapor lasers involve the use of high-temperature
active media and the improvement of performance
characteristics of MVL, namely, the elevation of their
efficiency and output-radiation power, the extension of
the range of operating conditions, etc.

All MVL, among them ionic MVL, can be classified
according to two basic criteria: the technique of intro-
ducing active-medium atoms into the discharge and the
method of exciting the atoms. Thermal evaporation is
the most evident method of such introduction. How-
ever, this method requires the entire discharge tube to
be heated up to a sufficiently high temperature. Some-
times, this procedure encounters insurmountable tech-
nical difficulties. In order to avoid them, a variety of
approaches were proposed. To date, three basic meth-
ods for introducing high-temperature atoms into an
active volume have been proposed: (1) cathode sputter-
ing (MVL on transitions of copper, silver, gold, etc. [1]),

Moscow Power Institute (Technical University), 
Krasnokazarmennaya ul. 14, Moscow, 111250 Russia
1028-3358/02/4701- $22.00 © 20034
(2) laser evaporation (MVL on transitions of titanium [2],
etc.), and (3) the use of metal halides (for example,
MnCl2 vapor laser [3]). In the last case, doubled pulses
are employed. Namely, the first and second pulses are
used, respectively, to dissociate a halide and to excite
metal atoms formed by the dissociation. The use of
halides instead of pure metals allows the discharge-tube
temperature to be lowered by several hundred degrees
(for certain compounds, by 1000°C) compared to the
evaporation of pure metals.

As to the most advanced methods of exciting ionic
MVL, we can refer to (i) hollow-cathode discharge
[1, p. 175], (ii) transverse high-frequency discharge
[1, p. 194], and (iii) excitation by both transverse and
longitudinal electron beams [4]. Longitudinally elec-
tron-pumped metal-vapor lasers are rather efficient;
however, their realization meets certain technical diffi-
culties that can be overcome by using runaway elec-
trons. In particular, the electron energy can be lowered
from several hundred to several kiloelectron-volt. In
this case, the longitudinal magnetic field providing the
relativistic-beam confinement need not be used. More-
over, difficulties associated with the conjugation of a
high-voltage accelerator with a high-temperature laser
chamber are eliminated, since the kiloelectron-volt-
energy electron beam is formed inside the laser tube. As
was concluded in [4, p. 981], the efficiency and the
energy release for a kiloelectron-volt electron-pumped
laser are tens or hundreds of times as high as those for
gas-discharge systems, and such a laser can efficiently
operate on atoms and ions within a wide wavelength
range.

The presence of fast electrons, whose collisions
with atoms of metals are basically responsible for the
filling of high-lying laser levels of the ions produced, is
a specific feature of all the metal-vapor lasers indicated
above. Reference data on atomic constants specifying
inelastic electron–atom collisions, including process (1),
are urgent for developing and improving ionic metal-
vapor lasers. As was pointed out in the reviews [1, 5],
there is a considerable deficiency of such data for most
atoms and ions. Theoretical calculations of the excita-
tion cross sections for ionic states in process (1) are
very laborious. Moreover, as a rule, the accuracy of the
002 MAIK “Nauka/Interperiodica”
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calculation results obtained cannot be determined a pri-
ori. However, experimental data on the cross sections
of simultaneous excitation and ionization for most
atoms became available after the method of extended
crossed beams had been developed [6]. In the present
work, this method was employed for studying the exci-
tation of odd triplet levels of a singly charged yttrium
ion in collisions of electrons with yttrium atoms.

2. The technique and instrumentation for the appli-
cation of extended crossed beams have previously been
discussed in a series of papers [6–8]. Thus, a detailed
description of these methods seems to be unnecessary
in this paper. Below, we point out only basic experi-
mental conditions specific for investigations involving
yttrium atoms. In order to produce the atomic beam, we
evaporated metallic yttrium with a total impurity con-
tent of 0.18% (the basic impurities were Ta, Mo, Cu,
Gd, and Tb) from a cup-shaped copper crucible cooled
with circulating water. The use of a crucible of the
Knudsen cell type turned out to be impossible, because
there were no materials sufficiently resistant to the
long-term action of melted yttrium. The power needed
for melting and evaporation of the yttrium was trans-
ported to the metal surface by an electron beam. The
temperature of the molten zone was 1870 K. In this
case, the concentration of yttrium atoms within the
region of intersection for atomic and electron beams
was 4.3 × 109 cm–3 and could be increased by an order
of magnitude when investigating faint lines.

The ground 4d5s2a2D state of an yttrium atom has

two levels with J =  and J = , the former being the

ground level. Under our experimental conditions, the
difference 530.5 cm–1 in the energy of these levels is on
the order of kT. Owing to this fact, thermal filling of the

level with J =  can occur. At the temperature indicated

above, in the assumption of thermodynamic equilib-
rium, the populations estimated for these levels turn out
to be equal, because the statistical weight of the higher
lying level is greater than that of the lower lying level.
This fact was taken into account in theoretical papers
by Peterkop that were devoted to calculating excitation
cross sections for a series of metal atoms (see, e.g., [9]).
This allows the more correct comparison of theoretical
and experimental values for the cross sections. The
interval between the ground level and the closest higher

lying 5s25pz2  level attains 104 cm–1 so that the ther-
mal population of this level is negligibly low. It is worth
noting that the population of several low lying atomic
levels has been considered to date in none of theoretical
papers devoted to studying the process of simultaneous
excitation and ionization.

The relative and absolute values of the excitation
cross sections for YII are measured with errors from 10
to 15% and ±25 to ±35%, respectively, depending on
the spectral-line intensity. The error sources were thor-

3
2
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oughly analyzed in [7], where additional information
on the experimental conditions was presented. The
author of [7] intentionally maintained the experimental
conditions as stable as possible in order to provide the
more correct comparison of the results obtained for var-
ious objects under investigation.

3. We recorded the optical emission spectrum of
yttrium atoms within the wavelength range from 212 to
780 nm in the case of bombarding them by a monoen-
ergetic electron beam with an energy of 50 eV. Out of
360 spectral lines observed, almost 120 lines were clas-
sified as belonging to the spectrum of a singly charged
yttrium ion. Among them, 45 spectral lines lying within
the range from 319 to 690 nm arose as a result of the
excitation of odd triplet levels of YII. In the case of an
even initial level, these levels are excited more effi-
ciently. Moreover, allowed transitions from these levels
of YII to the metastable terms a3P, a3D, and a3F take
place. Such transitions are of interest from the stand-
point of the development of r–m lasers [5]. For all these
lines, we measured, within the energy range from 0 to
200 eV, the dependence of the excitation cross sections
on the energy of incident electrons (i.e., the optical
excitation functions).

The measurement results complemented with rele-
vant spectroscopic data are presented in Table 1. There,
the wavelength λ, the kind of transition, the total-
moment quantum number J of the electron shell, the
energies Elow and Eup (with respect to the ground level
of a singly charged yttrium ion) of the lower and upper
levels, the cross sections Q50 and Qmax corresponding to
the energy of exciting electrons of 50 eV and in the
maximum of the optical excitation function (OEF),
respectively, and the position E(Qmax) of the maximum
are listed. In the OEF column, the numbers of OEFs are
indicated in accordance with their numbering in Fig. 1.
Each OEF is normalized to unity in its maximum and
has an individual origin on the ordinate axis. The scales
for the abscissa and ordinate axes are linear and loga-
rithmic, respectively.

In the case of a singly charged yttrium ion, the four
odd triplet terms, z3P°, z3D°, z3F°, and y3P° , within the
range from 23400 to 32300 cm–1 have a fairly low
energy for its excitation from the 5s2a1S0 ground state.
The first term and the following three terms belong to
the 5s5p and 4d5p configurations, respectively. The
configuration mixing for all the levels under consider-
ation is rather weak. Namely, the least content of the

basic component amounts to 74% for the z3  level,

while the content of the same component for the z3

level attains 100% [10, p. 256]. The higher lying
4d6p3D° triplet state closest to these terms corresponds
to 64000 cm–1, and no radiative transitions from this
state were observed in this study.

The scheme of the low lying triplet states of YII
together with the transitions observed is presented in

F2°

F4°



 

36

        

SMIRNOV

                                  
Table 1.  Excitation cross sections for a singly charged yttrium ion

λ, nm Transition J Elow, cm–1 Eup, cm–1 Q50,
10–18 cm2

Qmax,
10–18 cm2 E(Qmax), eV OEF

319.561 a3D–y3P° 1–1 840 32124 2.00 2.32 34 5
320.027 a3D–y3P° 2–2 1045 32283 2.34 2.76 36 6
320.332 a3D–y3P° 1–0 840 32048 3.24 3.81 32 4
321.668 a3D–y3P° 2–1 1045 32124 4.28 4.97 34 5
324.227 a3D–y3P° 3–2 1449 32283 7.20 8.48 36 6
349.608 a1S–z3D° 0–1 0 28595 1.09 1.21 35 7
354.900 a3D–z3D° 2–3 1045 29213 1.73 1.82 40 9
358.451 a3D–z3D° 1–2 840 28730 1.65 1.90 36 8
360.073 a3D–z3D° 3–3 1449 29213 4.93 5.19 40 9
360.192 a3D–z3D° 1–1 840 28595 3.82 4.24 35 7
361.104 a3D–z3D° 2–2 1045 28730 4.15 4.77 36 8
362.870 a3D–z3D° 2–1 1045 28595 1.30 1.45 35 7
366.461 a3D–z3D° 3–2 1449 28730 2.00 2.30 36 8
371.029 a3D–z3F° 3–4 1449 28394 10.2 12.0 37 2
377.433 a3D–z3F° 2–3 1045 27532 7.88 9.27 37 11
378.869 a3D–z3F° 1–2 840 27227 5.46 6.00 37 10
381.834 a3D–z3F° 2–2 1045 27227 1.55 1.71 37 10
383.289 a3D–z3F° 3–3 1449 27532 2.18 2.56 37 11
387.828 a3D–z3F° 3–2 1449 27227 0.49 0.54 37 10
393.066 a1D–z3D° 2–2 3296 28730 0.87 1.00 36 8
395.159 a1D–z3D° 2–1 3296 28595 0.34 0.38 35 7
412.490 a1D–z3F° 2–3 3296 27532 0.39 0.46 37 11
417.753 a1D–z3F° 2–2 3296 27227 2.04 2.24 37 10
419.927 a3D–z3P° 1–2 840 24647 0.57 0.60; 0.60 34; 44 3
420.469 a1S–z3P° 0–1 0 23776 0.95 1.09 35 2
423.573 a3D–z3P° 2–2 1045 24647 3.67 3.87; 3.87 34; 44 3
430.962 a3D–z3P° 3–2 1449 24647 6.76 7.11; 7.11 34; 44 3
435.872 a3D–z3P° 1–1 840 23776 2.04 2.34 35 2
439.801 a3D–z3P° 2–1 1045 23776 3.31 3.80 35 2
442.258 a3D–z3P° 1–0 840 23445 1.81 2.35 30 1
468.232 a1D–z3P° 2–2 3296 24647 0.81 0.85; 0.85 34; 44 3
478.658 a3F–z3D° 3–3 8328 29213 0.51 0.55 40 9
485.486 a3F–z3D° 2–1 8003 28595 1.03 1.14 35 7
488.368 a3F–z3D° 4–3 8743 29213 1.86 1.96 40 9
490.012 a3F–z3D° 3–2 8328 28730 1.56 1.79 36 8
508.742 a3F–z3F° 4–4 8743 28394 0.84 0.98 37 12
520.041 a3F–z3F° 2–2 8003 27227 0.30 0.33 37 10
520.572 a3F–z3F° 3–3 8328 27532 0.67 0.79 37 11
532.078 a3F–z3F° 4–3 8743 27532 0.25 0.29 37 11
549.740 a3P–y3P° 2–2 14098 32283 0.66 0.78 36 6
554.461 a3P–y3P° 1–0 14018 32048 0.26 0.31 32 4
661.373 a3P–z3D° 2–3 14098 29213 0.84 0.89 40 9
679.541 a3P–z3D° 1–2 14018 28730 0.81 0.93 36 8
685.822 a3P–z3D° 1–1 14018 28595 0.20 0.22 35 7
689.598 a3P–z3D° 2–1 14098 28595 0.31 0.35 35 7
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Fig. 2, the term splitting being not shown. A singly
charged yttrium ion has the low lying even (metastable)
4d5sa1D2, 4d5sa3D, 4d2a3P, and 4d2a3F states and
also three singlet levels with the 4d2 configuration
within the energy range from 14800 to 25100 cm–1. The

5s5pz3  level would be expected to be combined with
the 5s2a1S0 ground level, even though the multiplicity
would change, because the 5p  5s transition occurs

in this case. The 5s2a1S0–4d5p z3  transition is seem-
ingly significantly less probable, since it occurs as a
two-electron 4d5p  5s2 transition and, moreover, it
is a transition accompanied by a change of the multi-
plicity and has ∆L = –2. Nevertheless, the excitation
cross section for this transition turns out to be even
slightly larger than that for the former and less highly
forbidden transition. On the other hand, the transitions
from all the odd triplet levels under consideration to
4d5s a3D levels are quite allowed transitions, because
they correspond to 5p  4d and 5p → 5s transitions
for the higher lying z3P° term and for the following
three terms, respectively. Indeed, as is seen from
Table 1, the largest from measured cross sections
exactly corresponds to transitions to a3D levels. Transi-
tions to both a3P and a3F levels are characterized by
slightly smaller excitation cross sections, because the
5p  4d transition is less probable than the 5p  5s
transition.

Experiments based on observation of the optical
radiation of excited atoms make it possible to directly
measure the excitation cross sections Qki for spectral
lines. However, a different quantity, namely, the excita-
tion cross section qk for an energy level, is used in the-
ory and in many practical applications. The relation
between these quantities has the form

qk =  (2)

where  is the total cross section of the spontane-

ous radiative transitions from a k level and  is the
total cross section of the cascade transitions to the k
level from all higher lying levels. In the present paper,
all the cross-section values correspond to an electron
energy of 50 eV.

The data on the excitation cross sections for the
spectral lines listed in Table 1 were used to calculate qk

according to relationship (2). We do not present here
cumbersome information related to the individual cross
sections for each of the cascade transitions. The results

obtained are listed in Table 2, in which  is the

contribution (percent) into the total cross section for
each of the levels under consideration. As is seen, this

contribution ranges from 13 to 59%. The z3  level is
the only exception for which the contribution of the
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Fig. 1. Optical excitation functions for YII.
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Fig. 2. Scheme of the triplet states of YII and the transitions
observed.
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Table 2.  Excitation cross sections for the energy levels of YII and the cascade-filling contribution

Level J Eup, cm–1 , 

10–18 cm2
, 10–18 cm2 qk, 10–18 cm2 , %

5s5p z 3P° 0 23445 1.81 2.02 (–0.21) 112.0

1 23776 6.30 3.53 2.77 56.0

2 24647 11.8 5.99 5.81 50.7

4d5p y3P° 0 32048 3.50 3.50

1 32124 6.28 1.34 4.94 21.4

2 32283 10.20 6.01 4.19 59.0

4d5p z3D° 1 28595 8.09 2.71 5.38 33.5

2 28730 11.04 2.64 8.40 23.9

3 29213 9.87 4.82 5.05 48.8

4d5p z3F° 2 27227 9.84 1.79 8.05 18.2

3 27532 11.37 1.52 9.85 13.4

4 28394 11.04 3.43 7.61 31.1

Q50∑ Q'∑
Q'∑

Q50∑
---------------
cascade transitions slightly exceeds the total measured
excitation cross section. The main reason for this anom-
aly is that we have not determined the cross section of

the relatively strong a3P1–z3  transition with a wave-
length of 1.06 nm, which could not be observed under
the experimental conditions of the present work.

4. Thus, we have obtained experimental data con-
cerning the cross sections for the electron-impact exci-
tation of the odd triplet levels of YII and certain features
in the behavior of these cross sections. The results pre-
sented in this paper can be used for calculating and esti-
mating characteristics of plasmas containing yttrium
and its compounds, as well as for solving other prob-
lems of fundamental physics.
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Titanium monoxide TiOy cubic (B1-type) basis
structure is a unique compound that has no analogs.
Possessing a wide region of homogeneity from TiO0.70
to TiO1.25, TiOy monoxide contains from 10 to 15 at. %
of structural vacancies in titanium and oxygen sublat-
tices. We can understand the actual structure of tita-
nium monoxide representing its content with allowance
for structural vacancies in each of the sublattices, i.e.,
in the form of TixOz ≡ TiOy or Tixj1 − xOzh1 – z ≡ TiOy ,
where y = z/x, h and j are the structural vacancies of
oxygen and titanium sublattices, respectively. Even
TiO1.00 monoxide, which formally has a stoichiometric
composition, contains of 16.7 at.% vacancies in the tita-
nium and oxygen sublattices; therefore, its actual con-
tent is ~Ti0.833O0.833 .

Synthesis of TiOy monoxide is a complicated prob-
lem, inasmuch as its content is already unstable at 700–
800 K. Even under controllable partial oxygen pres-
sure, it can disproportionate with the formation of Ti2O
(TiO0.50) or of Ti3O2 (TiO0.67) and a cubic oxide or of
cubic dioxide and Ti2O3 (TiO1.50), as well as of other
phases of TinO2n – 1 homologous series (n = 2 – 10 is an
integer). At temperatures ~700, ~1000, and ~1100 K,
various superstructures are formed in TiOy. Only four
of them are reliably described in the literature. The type
and symmetry of superstructures depend on the actual
initial content of titanium monoxide. The temperature
measurements of kinetic and magnetic properties of
TiOy , which had been carried out in the 1960s and
1970s, showed that the chemical and phase content
changed in the course of the measurements. This fact
caused ambiguity in the results obtained. For example,
the temperature coefficient dρ/dT of the resistivity ρ for
disordered TiOy monoxide with y ≈ 1 is positive in cer-
tain studies [3–5] and negative in [6]. An experimental
result with which all the authors agree is the negative
sign of both the thermal electromotive force and Hall

Institute of Solid-State Chemistry, Ural Division, 
Russian Academy of Sciences, 
ul. Pervomaœskaya 91, GSP-145, Yekaterinburg,
620219 Russia
1028-3358/02/4701- $22.00 © 20039
coefficient for TiOy with y > 0.85 [3–6]. Unreliability of
experimental data has caused the appearance of a num-
ber of papers devoted to the calculation of the TiOy

electronic structure. But the calculation results, among
them those based on the first principles, are also contra-
dictory. According to [7–10], O2p- and Ti3d-bands in
the electronic energy spectrum of the cubic titanium
monoxide are separated by a broad (several electron-
volts) forbidden gap. The presence of the gap is con-
firmed by experimental studies of X-ray photoemission
spectra, bremsstrahlung spectra, and UV photoemis-
sion spectra [9] of disordered TiOy monoxide. How-
ever, according to the results of another group of calcu-
lations [11–13], there exists no p–d gap in the TiOy

electronic spectrum.

Thus, the experimental and theoretical data are
contradictory, and it is unclear up to now whether tita-
nium monoxide exhibits metallic or semiconductor
properties.

In this paper, experimental results are obtained for
the first time on the electrical conductivity (resistivity)
and magnetic susceptibility of TiOy monoxide within
the entire homogeneity region of the cubic phase.

The samples of the nonstoichiometric cubic TiOy

monoxide with various oxygen contents (0.920 ≤ y ≤
1.262) were synthesized by the solid-phase sintering of
powder mixtures of metallic titanium and titanium
dioxide in vacuum (at a pressure of 0.0013 Pa and tem-
perature of 1770 K) for 70 h. The diffraction analysis
was performed with the Cu -emission line on the
basis of Siemens D-500 and STADI-P (STOE) auto-
mated diffractometers. In order to attain the disordered
state, the samples synthesized were annealed for 3 h in
evacuated quarts ampoules at a temperature of 1330 K.
Then, the ampoules with the samples were thrown into
water so that the quenching rate was ~200 K s–1. The
reflections of only the cubic disordered TiOy phase with
a B1 structure (in the samples with y ≥ 1.112) or the
reflections of the disordered TiOy and of the monoclinic
ordered Ti5O5 phase [14] (in the samples with y ≤
1.087) were observed on the X-ray diffraction patterns.

Kα1 2,
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The resistivity ρ was measured by the four-probe
method within the range 77 to 300 K; the resistivity of
TiO1.262, TiO1.087, and TiO0.920 was also measured at
4.2 K. An In–Ga paste was applied to the contact sam-
ple surfaces to provide reliability of electrical contact.

The magnetic susceptibility χ of the TiOy monoxide
(0.920 ≤ y ≤ 1.262) was measured within the tempera-
ture range from 4 to 400 K in the magnetic fields with
an intensity of 8.8, 25, 30, and 50 kOe, using a MPMS-
XL-5 (Quantum Design) vibrating-coil magnetometer.
In addition, the susceptibility of TiO0.946, TiO1.069,
TiO1.087, and TiO1.262 was measured within the temper-
ature interval from 300 K up to the temperature of the
disorder  order transition onset (about 1000 K) by
the Faraday method, using a pendulum magnetic bal-
ance of the Domenicalli type.

The chemical and phase content of the samples was
controlled before and after the measurements.

The measurements of TiOy magnetization in mag-
netic fields with an intensity up to 50 kOe at tempera-
tures of 4, 130, and 300 K show that the samples of tita-
nium monoxide studied exhibit no residual magnetiza-
tion and contain no ferromagnetic impurities.

The temperature dependences of the resistivity ρ(T)
for TiOy titanium monoxide of various contents are
shown in Fig. 1. Within the temperature range under
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Fig. 1. Temperature dependence of the resistivity ρ for the
disordered cubic TiOy monoxides with various oxygen con-
tent. The approximations of experimental results by func-
tion (2) for TiOy monoxides with y ≤ 1.069 and by function
(7) for TiOy monoxides with y ≥ 1.087 are shown by solid
lines. In the insert, the temperature dependence for the con-
ductivity of TiO1.262–TiO1.087 monoxides is plotted in the

coordinates ln{[σ(T) – σ(0)]/T1/2} – 1/T.
study, the resistivity ρ increases as a result of the tran-
sition from TiO0.920 to TiO1.262.

The resistivities of TiO1.069, TiO0.985, TiO0.946, and
TiO0.920 increase with temperature, although the resis-
tance temperature coefficient is small. In materials with
electronic conduction within the range T < 300 K, the
temperature dependence of the mean free time  asso-
ciated with scattering by phonons is well described by
the semiempirical Bloch–Grüneisen formula

(1)

Here, λ is the constant of the electron–phonon interac-
tion and θD is the characteristic Debye temperature.
Since the resistivity is ρ = m/ne2 , the temperature
dependence of the resistivity with allowance for the
residual resistivity ρ(0) can be represented as

(2)

In various temperature ranges, the integral in relation (2)
has various forms. For T < 80 K and θD ~ 400–500 K,
θD/2T > 3.14; in this case the integral

 is calculated as

At T > 80 K and θD ~ 400–500 K, θD/2T < 3.14 and, there-

fore, the integral  is found as a series

 = /[(4 + 2k)(2k)!],

where B2k are the Bernoulli numbers.
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Experimental dependences ρ(T) for TiO1.069,
TiO0.985, TiO0.946, and TiO0.920 oxides are well approxi-
mated by function (2) (Fig. 1), the value of θD being
equal to 480, 400, 470, and 470 K, respectively.
According to the data of [4], θD = 350–410 K for equi-
atomic TiO1.00 monoxide and increases with a decrease
in the annealing temperature. For the ordered mono-
clinic Ti2O5 monoxide, θD = 500 K [10].

The resistivity of TiOy monoxides with y ≥ 1.087
decreases very rapidly with a temperature increase
from 4.2 to 300 K. A small resistivity value (~10–6 Ω m)
for all titanium monoxides is characteristic for metals,
whereas the negative temperature coefficient dρ/dT of
the resistivity for TiOy monoxides with y ≥ 1.087 is one
of the main attributes of the dielectric behavior. Within
the range 4.2–300 K, the change of resistivity caused by
this effect is ∆ρ = 20–50%. This fact makes it impossi-
ble to consider ∆ρ as a small correction in the relax-
ation-time approximation.

The conductivity σ is proportional to the product of
the carrier concentration N multiplied by their mobility
u; i.e.,

(3)

If the carriers obey the Boltzmann statistics and the
energy bands are parabolic, which is practically valid
near the band edges [15], the carrier concentration is

(4)

where m* is the effective mass of the charge carriers;
∆E is the energy parameter, which has a meaning of the
activation energy and, in the case of intrinsic conduc-
tion, is equal to the energy gap Eg between the valence
band and the conduction band. In the case of the Boltz-
mann distribution, the carrier mobility is inversely pro-
portional to the temperature:

(5)

Since all the samples of titanium monoxide have a non-
zero residual resistivity, we can represent, with allow-
ance for (4) and (5), the conductivity of TiOy

(y ≥ 1.087) oxides in the form

(6)

The constant contribution σ(0) has a meaning of the
nonintrinsic conductivity of the system and implies that
the conductivity is nonzero at T = 0 K.

The numerical analysis of experimental depen-
dences σ(T) shows that they are well described by func-
tion (6) with p ≈ 1; i.e., 

(7)

σ T( ) ene h, ue uh+( ).=

ne 2 m∗( )3/2
kBT /2π"

2( )3/2 ∆E/2kBT–( ),exp=

u AT p– .∼

σ T( ) σ 0( )=

+ 2 kBm/2π"
2( )3/2

T 3/2 p–( ) ∆E/2kBT–( ).exp

σ T( ) σ 0( ) BT1/2 ∆E/2kBT–( ).exp+=
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The parameter p = 1 is characteristic for polyatomic
semiconductors in which scattering occurs not only by
acoustic phonons but also by optical phonons.

The representation of the temperature-dependent
contribution to conductivity (7) for TiOy (y ≥ 1.087)
monoxides in the coordinates ln{[σ(T) – σ(0)]/T1/2} –
1/T  (see insert in Fig. 1) shows that the linear depen-
dence is observed in the entire temperature range under
study. The activation energy ∆E for the monoxides from
TiO1.087 to TiO1.233 is small and equals 0.015–0.030 eV. It
equals 0.043 eV only for TiO1.262. If the intrinsic conduc-
tion appears near 300 K and above, we cannot definitely
claim whether the value found for ∆E is the forbidden
gap of the semiconductor in itself or is the activation
energy of the impurity level. Analysis of the magnetic
susceptibility allows us to elucidate this question.

Two regions with an opposite change of the quantity
χ as a function of temperature can be separated in χ(T)
temperature curves for all TiOy samples (Figs. 2 and 3).
The decrease in the susceptibility at T < 150–200 K is
characteristic for the paramagnetic contribution, which
is described by the modified Curie law χ(T) = χ(0) +
C/(T + ∆) with the temperature-independent paramag-
netic contribution χ(0) and ∆ > 0. At temperatures
above 150–200 K the susceptibility χ(T) along with the
contribution χ(0) + C/(T + ∆) also includes a quadratic
or more complicated temperature function.

The Curie paramagnetism per unit volume of the

material is equal to χV = Nn /3kBT, where N is the
number of atoms per unit volume, n is the relative con-
centration of atoms having the magnetic moment, µeff =

µeff
2
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Fig. 2. Magnetic susceptibility χ of disordered cubic TiOy
monoxides with a various oxygen content within the tem-
perature range from 4.2 to 400 K (H = 25 kOe).
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pµB is the effective magnetic moment, and µB is the
Bohr magneton. Since N = NAd/M (NA is Avogadro’s
number, d is the density, and M is the molecular mass),
the measured magnetic susceptibility per mass unit is
χ = χV/d = (nNA/M)(pµB)2/(3kBT) ≡ C/T, whence p2 =
(CM/n)(3kB/NA ) or, with allowance for values of

NA, µB, and kB, p ≈ , the Curie constant C hav-
ing the dimensionality cm3 K g–1. If the concentration
of atoms n that have a magnetic moment is unknown,

then the average magnetic moment is paver ≈ .

The calculations using the determined values of the
constant C have shown that the magnitude of the mag-
netic moment µeff averaged over all atoms is 0.015–
0.225 of Bohr magneton. The low magnitude of µeff is
indicative of the fact that the Curie contribution into the
susceptibility is, most probably, of impurity origin. In
TiOy monoxide, the majority of Ti2+ ions likely have
paired electrons, or else there exists the exchange cat-
ion–cationic interaction. By virtue of a high concentra-
tion of delocalized electrons, we did not succeed in
determining the presence in TiOy monoxide of ions
with an uncompensated magnetic moment by the EPR
method. Since the ferromagnetic impurities in TiOy
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Fig. 3. Magnetic susceptibility of TiO0.946, TiO1.069,
TiO1.087, and TiO1.262 monoxides within the temperature
range from 4.2 K to the temperature of the disorder ↔ order
transition onset (near 1000 K). The dependence χ(T) is
described by the functions: TiO0.946 – χ(T) × 106 = 1.410 +

22.9/(T + 88.6) + 4.930 × 10–7T2; TiO1.069 – χ(T) × 106 =

1.237 + 0.54/(T + 8.5) + 6.591 × 10–7T2; TiO1.087 – χ(T) ×
106 = 1.196 + 0.012T1/2exp(–353/T) + 14.9/(Τ + 71.8),
∆E = 0.061 eV; TiO1.262 – χ(T) × 106 = 0.847 +

0.034T1/2exp(–1004/T) + 24.1/(Τ + 7.8), ∆E = 0.173 eV.
samples are absent, the presence of a small effective
magnetic moment can be caused by Ti2+ and Ti3+ ions
having an impurity nature. The content of such impu-
rity ions, judging from the value of p, ranges from 2 to
8 at. %. Most distinctly, the Curie paramagnetism is
observed for TiOy titanium monoxides with a relatively
high oxygen content y > 1.2 (Fig. 3).

The dependence χ(T) of TiOy titanium monoxides
with y ≤ 1.069 (Fig. 3) in the entire temperature range
under study is described well by the function χ(T) =
χ(0) + C/(T + ∆) + bT2 . The presence of the quadratic
term bT2 is characteristic for the Pauli paramagnetism
of conduction electrons, which agrees well with the
metallic type of conduction for these monoxides.

The temperature dependences of the susceptibility
for monoxides TiOy with y ≥ 1.087 are more compli-
cated, which is clearly distinguishable in the high-tem-
perature region (Fig. 3). If the charge-carrier concentra-
tion in TiOy with y ≥ 1.087 at T > 300 K is described by
formula (4), then, in this case, in agreement with the
Curie formula χp(T) = ne(µB)2/kBT, the fraction of the
magnetic susceptibility dependent on temperature will
have a paramagnetic contribution

(8)

where A = 2(m0 /2π"2)3/2(kB)1/2(µB)2q3/2 = 3.008 ×
10−9q3/2 [K–1/2], q = m*/m0, and m0 is the electron mass.
Formula (8) describes the dimensionless susceptibility
per unit volume. Taking into account that Am = A/d and
also the features of χ(T) dependences that were indi-
cated above, we may approximate within the entire
temperature range under study the mass susceptibility
of TiOy monoxides with y ≥ 1.087 by the function

(9)

This function takes into account the temperature-inde-
pendent contribution of χ(0), the paramagnetic Pauli
contribution for the electron system with the energy
gap, and the paramagnetic Curie contribution.

The coefficients Am in dependence (9) for TiO1.087

and TiO1.262 monoxides are 0.012 × 10–6 and 0.034 ×
10–6 cm3 g–1 K–1/2; the densities of TiO1.087 and TiO1.262

are 4.97 and 4.82 g cm–3. The effective mass of carriers
expressed in terms of m0 is equal to m* = 4.799 ×
105(Amd)2/3m0 . With allowance for this fact, the effec-
tive mass of carriers in TiO1.087 and TiO1.262 is equal to
~7m0 and ~14m0. A rather large effective mass confirms
the correctness in the application of the Boltzmann dis-
tribution for the description of carrier concentration in
TiOy monoxides with y ≥ 1.087.

The values of ∆E found from the χ(T) curves (9) for
TiO1.087 and TiO1.262 monoxides are equal to 0.061 and

χ p T( ) 2 m∗ /2π"
2( )3/2

kB( )1/2 µB( )2T1/2=

× ∆E/2kBT–( ) AT1/2 ∆E/2kBT–( ),exp≡exp

χ T( ) χ 0( )=

+ AmT1/2 ∆E/2kBT–( )exp C/ T ∆+( ).+
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0.173 eV. The values of ∆E determined for these mon-
oxides from the temperature dependences of the con-
ductivity are 0.029 and 0.043 eV. We may assume that
the values of ∆E found from the low-temperature
dependences of the conductivity correspond to the acti-
vation energy of impurity levels, whereas the values of
∆E derived for the wider temperature range from the
magnetic susceptibility define the forbidden gap in the
case of the intrinsic conduction. The small magnitude
of the forbidden gap allows us to consider the TiOy tita-
nium monoxide with y ≥ 1.087 as a narrow-gap semi-
conductor.

Thus, the totality of the kinetic and magnetic data
obtained allows us to assume that with elevation of the
oxygen content in the electronic structure of the disor-
dered cubic TiOy , a narrow gap appears between the
valence band and the conduction band. In accordance
with this conclusion and depending on the oxygen con-
tent, TiOy monoxide can behave as a d-metal or as a
semiconductor.
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In recent years, much attention was paid to investi-
gating the chaotic generation of lasers. For example,
scenarios and characteristics of chaotic generation in an
unstable cavity of a fast-flow laser with spatially inho-
mogeneous pumping were studied in [1]. A scheme of
optical information chaos on the basis of lasers that
synchronously operate in a chaotic regime with chaotic
pumping was considered in [2]. Both scaling and fractal
dimension are important characteristics of nonlinear
systems with dynamic chaos [3]. The existence of scal-
ing properties for harmonic radiation in laser plasmas
under the action of high-power pumping was indicated
in [4]. The mode structure for the radiation of an unsta-
ble-cavity laser was demonstrated to be fractal [5]. The
fractal dimensions of the radiation-intensity distribution
for lasers with narrow slit-shaped and circular apertures
were found to be D = 1.6 and 1.3, respectively.

Plates are often used as target samples for studying
mechanisms of laser-radiation interaction with a mate-
rial. Characteristics of plate vibrations are a source of
useful information on relevant physical processes [6, 7].
It is of interest to analyze features of plate-vibration
excitation by unstable chaotic laser radiation. This is
important for elucidating potentialities of the photo-
acoustic diagnostics of a radiation fractal structure for
an unstable-cavity laser by detecting plate vibrations.
Below, we consider the thermooptical excitation of
vibrations (flexural waves) in a thin plate by laser radi-
ation with a harmonically modulated intensity and a
random fractal spatial distribution of intensity fluctua-
tions over the laser-beam cross section. It is worth not-
ing that the effect of spatial and temporal intensity fluc-
tuations of laser radiation on the sound excitation in a
liquid was previously studied in [8]. However, the char-
acter of the distribution was not specified there.
Recently, the sound excited in liquid by chaotic laser
radiation was considered in [9].

We now assume that a laser beam with harmonically
modulated intensity impinges onto a thin plate orthog-
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onally to its surface. The following equation holds for
the displacement u(x, y) of a plate executing forced
flexural vibrations [10]:

(1)

Here,

g is the flexural stiffness, E is the Young modulus, σ is
the Poisson’s ratio, 2h is the thickness, ρ is the plate-
material density, k is the wave number of the propagat-
ing flexural waves (vibrations), ω is the circular modu-
lation frequency for the laser-radiation intensity, and
F(x, y) is a function that characterizes an external force
caused by the laser-radiation action on the plate. The
time-dependent factor is omitted everywhere.

Without a loss of generality, we assume that the
plate is opaque with respect to laser radiation and this
radiation is absorbed in a thin near-surface plate layer.

Based on these arguments, we can write the follow-
ing expression for F(x, y) [11]:

(2)

Here, I0 is the laser-radiation intensity, f(x, y) is the
function characterizing the intensity distribution over
the plate surface, α is the coefficient of volumetric ther-
mal expansion, Cp is the specific heat, E is the Young’s
modulus of the plate material, m is the modulation coef-
ficient (0 ≤ m ≤ 1), and µ is the coefficient of the laser-
radiation absorption by the plate.

Using the reciprocity theorem, we can write the
solution to Eq. (1) in the form

(3)

∆2 k4–[ ] u x y,( ) F x y,( )
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∂2
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Eh2
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Here, G(x0, y0/x, y) is the solution to the boundary value
problem on a field of a point source (point force), which
is located at the plate point r(x, y) at which the solution
to Eq. (1) should be found. In other words, G is Green’s
function for an infinite plate [12].

Furthermore, we analyze the field of excited flexural
waves in the Fraunhofer zone with respect to the laser-
beam radius. In this case, for finding plate displace-
ments, it suffices to know the Green’s function asymp-
totic behavior. It is of the form [10]

(4)

where R = , (x, y) are the coordinates of the
observation point; (x0, y0) are the source-point coordi-

nates; and k2 =  + , where kx and ky are the wave-
vector components.

We assume that the spatial distribution of the laser-
radiation intensity is characterized by a random statisti-
cally homogeneous function f(x, y) so that 〈 f(x, y)〉 = 0.

Substituting the asymptotic form of Green’s func-
tion (4) into solution (3) and multiplying the expression
obtained by the complex-conjugate one, we find the
mean-square displacement 〈|u(x, y)|〉 of the plate:

After the replacement of coordinates x1 = ,

y1 = , ξ = x ' – x '', η = y' – y'', and integration

over the coordinates x1 and y1 , the expression for the
mean-square displacements takes the form

(5)

Here, B(ξ, η) = 〈 f(x ', y') f(x '', y'') is a normalized corre-
lation function for the laser-radiation intensity fluctua-
tions, ξ = |x ' – x '' |, η = |y' – y'' |, and S is the spot area of
the laser beam on the plate surface. The integration with
respect to ξ and η is performed over the entire area of
the laser-radiation action. In the case when B(ξ, η) rap-
idly drops at the periphery of the laser-beam cross sec-
tion, the integration can be extended to the interval
from –∞ to +∞.

G x0 y0/x y, ,( ) ikR( )exp

32πik5R
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2 ky
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2g2 32πRk5×
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Properties of statistical fractals are often character-
ized by structure (correlation) functions and by their
spectra, whose specific feature is that they are described
by power laws. This fact follows from the scale invari-
ance of the fractal structures [3].

For wave problems, an important characteristic of
statistical fractals is the power-law shape of the fluctu-
ation spectrum that has the form

(6)

Here, for objects with a fractal surface, the exponent δ
is determined by the expression [13]

(7)

where D is the fractal dimension and d is the embed-
ded-space dimension.

We now find the mean-square plate displacements
for the case when the laser aperture in the x-direction is
of the narrow-slit form. The correlation function for
fluctuations of the laser-radiation intensity can be rep-
resented in the form of the product

(8)

Here, B2(η) ≈ 1, since the fluctuation distribution of the
laser-radiation intensity may be treated as completely
correlated.

In this case, taking into account the fact that, for the
transverse dimensions of the laser spot, kyη ! 1, we
arrive at

(9)

where η0 is the transverse dimension of the laser spot
on the plate surface.

We choose the normalized correlation function in
the longitudinal direction in the form (see, e.g., [14])

(10)

where Γ(ν) is the gamma function, kν  is the Mac-

donald function, and ξ0 is the correlation radius for
laser-radiation intensity fluctuations in the longitudinal
direction. We note that B1(0) = 1, B1(∞) = 0, and

B1(ξ  ~ ; i.e., the correlation function is of

the power-law form. Thus, this function can be used to
describe the fractal spatial structure of intensity fluctu-
ations for unstable laser radiation.
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Substituting expressions (8), (9), and (10) into for-
mula (5), we obtain after integration

(11)

where Φ1(kx) is the spatial spectral power density for
intensity fluctuations of laser radiation in the horizontal
direction:

(12)

For kxξ0 > 1, the spectral density Φ1(kx) is seen to be of
the power-law (fractal) form

(13)

We now consider the circular-aperture case. Expres-
sion (5) for the plate mean-square displacements can be
represented in the form

(14)

where

(15)

Here, k⊥  is the wave number for a so-called resonance
harmonic in the spatial spectrum of the fluctuation
power k⊥  ~ k of the laser-radiation intensity. We repre-
sent the correlation function B(ρ) in form (9), replacing
ξ by ρ and ξ0 by ρ0 , where ρ0 is the correlation radius
for the laser-radiation fluctuations.

For spectral density (15), we have

(16)

For k⊥ ρ0 > 1, we obtain

(17)

In order to calculate the plate mean-square displace-
ments, we need to specify a particular value of the
parameter ν for each of the cases under consideration.

Under the conditions of the numerical experiment
[5], the embedded-space dimension is d = 2. If we
employ the fractal dimensions D = 1.6 and 1.3 obtained
in the numerical experiment [5], we find from expres-
sions (6), (7), (12), and (16) that ν = 0.7 and 0.35 for the
slit-shaped and circular apertures, respectively.

We now analyze in greater detail expressions (11),
(12), (14), and (16), which characterize the plate mean-
square displacements and fluctuation spectra of the
laser-radiation intensity for lasers with slit-shaped and
circular apertures, respectively. We assume that the
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modulation frequency ω is sufficiently high and the
conditions kxξ0 > 1 or k⊥ ρ0 > 1 are met. For the cases of
slit-shaped and circular apertures, we analyze the fre-
quency dependence of the plate mean-square displace-
ments as plate vibrations excited by radiation of an
unstable-cavity laser. Note that the relation k ~ ω1/2

holds for the wave number k of the flexural waves
(vibrations) of the plate [see formula (1)]. Using equa-
tions (6), (7), (12), and (16); the values D1 and D2 of the
fractal dimensions; and the value of the parameter ν, we
obtain 〈|u(x, y)|2〉 ~ ω–3.7 and 〈|u(x, y)|2〉 ~ ω–3.85 for lasers
with slit-shaped and circular apertures, respectively. As is
evident from expression (4) for Green’s function, in the
case of stable laser radiation, we have |u(x, y)|2 ~ ω–2.5.

Thus, in the cases of stable and chaotic laser radia-
tion, the frequency dependences for the plate mean-
square displacements excited by modulated laser radia-
tion are different and can serve as characteristics of
radiation instability and fractal structure. Properly
choosing and varying the modulation frequency of laser
radiation, its characteristics, and, in particular, the laser-
spot size on the plate surface, as well as plate parameters,
we can diagnose the fractal structure of chaotic laser
radiation by observing the frequency dependence of
plate vibrations excited by this laser radiation.
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Alloying elements in an alloy are quite sensitive to
the level and character of the residual-stress distribu-
tion. The substitutional impurities, whose atoms have
large atomic radii (compared to the host metal), migrate
towards the tensile-stress region. At the same time, the
corresponding impurities of small atomic radii migrate
towards the compressive-stress region. Thus, the strati-
fication of a solid solution containing substitutional
impurities of various kinds and, as a consequence, a
change in the thermophysical and strength characteris-
tics of the material occur. If the concentration of substi-
tutional impurities exceeds the solubility limit at a
given temperature, new-phase nuclei are formed. Their
further growth occurs at the expense of the diffusion
feed by impurity atoms. The growing precipitations
capture the substitutional impurities from the solid
solution, thus depleting it. At the macroscopic level, the
formation of concentration inhomogeneities or the
appearance of a new phase are observed.

The goal of this paper is to analyze both the stratifi-
cation kinetics and depletion of a solid solution con-
taining substitutional impurities in the field of residual
stresses of a cylindrical shell (e.g., the shell of a fuel
element). A system of stresses is considered as a model,
whose coordinate dependence admits the exact analyti-
cal solution to the diffusion equation in an external
force field.

Residual stresses are a particular case of internal
stresses. They are characterized by self-equilibrium,
which is implied as the presence of tensile and com-
pressive stresses under the condition of the zero value
of their integral characteristic. A complex coordinate
dependence of residual stresses results in strong math-
ematical difficulties while solving diffusion equations
with allowance for these stresses. The residual stresses
in a cylindrical shell are a nice exception from the gen-
eral rule.

The logarithmic coordinate dependence of the first
invariant of the stress tensor substantially simplifies the
equation of diffusion in a force field [1]. Such stresses
are formed, e.g., in the following manner: the edges of

Research-Industrial Enterprise “Luch,” 
Podol’sk, Moscow oblast, 142100 Russia
1028-3358/02/4701- $22.00 © 20047
a shell cut are drawn apart at the angle ω, and a required
material is placed within. Under such manipulation, in
the vicinity of the outer-shell surface the material is in
the compressive state, whereas in the vicinity of the
inner surface it is in the tensile state. Nonzero compo-
nents of the stress tensor allow us to easily write out the
first invariant for the tensor of these stresses (plane
deformation) [2]:

(1)

Here, µ is the shear modulus, ν is the Poisson’s ratio, ω
is the angle of rotation for the shell-cut edges, and r0
and R are the outer and inner shell radii.

In the case of other equal conditions, the sign of the
quantity σll depends on the angle of rotation for the
shell-cut edges. In the accepted model of residual
stresses, it is conventionally considered that ω < 0
(σll > 0 and σll < 0 on the inner and outer shell surfaces,
respectively). The potential of interaction with the field
of residual stresses for an impurity atom is determined
by the well-known relation

(2)

where δv  is the change in the material volume after
incorporating an impurity atom. If δv  > 0 (the substitu-
tional impurity increases the crystal-lattice parameter),
then the potential V becomes negative for σll > 0. This
corresponds to the attraction of similar impurities to the
tensile region of residual stresses. Needless to say that
the choice of the sign for the potential V, which charac-
terizes the attraction or repulsion of impurity atoms, is
of a conditional nature. The equilibrium concentration
of the substitutional impurities exponentially depends
on the potential V:

(3)
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Here, C0 is the average concentration of impurity
atoms, k is the Boltzmann constant, and T is the abso-
lute temperature. In the tensile region (σll > 0), Ceq > C0
for δv  > 0 and Ceq < C0 for δv  < 0 (substitutional impu-
rities reduce the crystal-lattice parameter). In the com-
pression region Ceq < C0 for δv  > 0 and Ceq > C0 for
δv  < 0. Physically, this implies that the substitutional
impurities with a large atomic radius migrate from the
compression region into the tensile zone, whereas the
diffusion flow of impurities with a small atomic radius
has the opposite direction. The final result of such a
migration of alloying elements is a stratification of this
solid solution. The inhomogeneous field of the impu-
rity-atom concentration produces concentration
stresses of the opposite sign with respect to residual
stresses. The calculation of the concentration stresses is
performed by analogy with the temperature stresses [3].
The change in the crystal-lattice parameter at the
expense of the unit impurity-atom concentration is put
into correspondence with the linear-expansion coeffi-
cient. For a substantial concentration of the substitu-
tional impurities and at the later stages of the diffusion
process, the concentration stresses damp the stratifica-
tion of a solid solution. However, for a low concentra-
tion of impurity atoms and at the early stages of the pro-
cess, this effect can be ignored.

The stratification kinetics for the solid solution of
substitutional impurities is described by the unsteady
diffusion equation in the field of the potential V under
the corresponding initial and boundary conditions:

(4)

where D is the diffusion coefficient for impurity atoms

and  and  are the equilibrium concentrations of
the substitutional impurities for r = r0 and r = R, respec-
tively. Without a loss of generality, we consider the dif-
fusion migration of substitutional impurities of a large

radius (δv  > 0). In this case,  > , since in the
model accepted the inner and the outer regions of the
cylindrical shell are in the tension-state and compres-
sion-state regions, respectively. The physical meaning
of the initial and boundary conditions related to prob-
lem (4) is completely evident. At the initial time
moment, the impurity concentration is equal to its aver-
age value.

The boundary conditions for r = r0 and r = R imply
that the equilibrium concentration of impurity atoms,
which corresponds to the potential V, is instantaneously
established and maintained at these boundaries. This is
caused by the fact that the maximum and minimum val-
ues of σll are attained precisely at the boundaries of the
cylindrical shell.

The logarithmic coordinate dependence of the
potential V considerably simplifies problem (4). In this

1
D
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∂t
------- ∆C

∇ C∇ V( )
kT

----------------------, r0 r R,< <+=

C r 0,( ) C0, C r0 t,( ) Ceq
1 , C R t,( ) Ceq

2 ,= = =

Ceq
1 Ceq

2

Ceq
1 Ceq

2

case, the constants entering into relation (1) play no
part, since the diffusion of impurity atoms depends on
the gradient of the potential V (∆V = 0, since V is a har-
monic function). With allowance for the arguments
stated above, problem (4) is formulated mathematically
in the form

(5)

The dimensionless problem parameter α determines
the contribution of residual stresses into the total diffu-
sion flow of substitutional impurities. For |α| ! 1, the
field of residual stresses should be considered as a weak
perturbation of the substitutional-impurity flow caused
by the concentration gradient. If |α| @ 1, the residual
stresses play a decisive role. For |α| ≈ 1, the diffusion
flows of the substitutional impurities caused by both
concentration gradients and the potential V are compa-
rable with each other. The estimates show that the mag-
nitude of |α| is close to unity. Indeed, for µ = 5 ×
1010 Pa, ω = 0.1 rad, ν = 0.3, δv  = 10–29 m3, and kT =
10−20 J, we arrive at |α| ≈ 1. Furthermore, we take α =
−1, since ω < 0 and δv  > 0. The solution to equation (5)
for α = –1 describes the concentration field of substitu-
tional impurities with allowance for the effect of resid-
ual stresses [4]:

(6)

The solution obtained shows that the residual
stresses transform the diffusion equation with cylindri-
cal symmetry into an equation with plane symmetry.
Physically, it implies that the diffusion process changes
not only quantitatively but also qualitatively. This
results in a higher formation rate for the concentration
profile of substitutional impurities that immediately
follows from the form of equation (5). In fact, for

 < 0, the change rate  of the impurity concentra-

tion for α = –1 exceeds the corresponding value  for

α = 0. The diffusion flows caused by both the concen-
tration gradients and the potential V have the opposite
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direction: the term  is responsible for transferring

the substitutional impurities with a large atomic radius
into the region of the tensile stresses, while the term

 provides the impurity migration in the direction

opposite to the gradient of the potential V. In the case of
the equality of diffusion flows, dynamic equilibrium
takes place, which is defined by relation (3). The profile
of the substitutional-impurity concentration linearly
depends on the radial coordinate. This is a consequence

of the model accepted (α = –1), since exp  = .

The equilibrium concentration of substitutional impuri-

ties is formed as  > 1, when the contribution

of the second term in expression (6) is sufficiently
small.

We now consider the kinetics of the new-phase
growth with allowance for the field of residual stresses
of the cylindrical shell. If the concentration of the sub-
stitutional impurities in the region of maximum resid-
ual stresses exceeds the solubility limit, then on the
inner shell surface a new-phase nucleus [with a charac-
teristic size R0 (r0 < R0 ! R)] is formed. As far as
R0 ! R, diffusion processes in an unbounded matrix are
considered for the description of kinetics of the new-
phase growth. At the moving boundary of precipitations,
the concentration of substitutional impurities changes
jumpwise: C = C1 for the new phase and C = C2 in the
surrounding matrix (C1 > C2, C2 < C0 , where C0 is the
average concentration of impurity atoms). This fact
implies that the interphase boundary instantaneously
captures impurities from the solid solution and trans-
fers them into the new phase with a higher concentra-
tion. The kinetics of the diffusion new-phase growth in
the vicinity of the inner surface of the cylindrical shell
is mathematically formulated as [5]

(7)

where R0 is the radius of a precipitation nucleus and R
is the current radius of the new phase.

For a cylindrical shell with a positive dilatation on
the inner surface in the presence of substitutional impu-
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rities with a large atomic radius (α = –1), problem (7)
takes the more simple form

(8)

If the new-phase growth kinetics is limited by the
diffusion of impurity atoms, then the change in the pre-

cipitation size obeys the law R(t) = β , where β is
the dimensionless problem parameter. Its value is found
from the equation of the mass balance at the interphase
boundary. In the approximation of an immobile inter-
phase boundary, we obtain the quadratic equation for
the determination of the parameter β:

(9)

Other approximations e.g., introducing the new vari-

able  only complicate the equation for the

determination of the parameter β [6]. If we set α = 0 in
problem (7), then, under the same initial and boundary
conditions, we obtain

(10)

In this case, the growth of a new-phase precipitation is
caused only by the concentration gradient for impurity
atoms. From the equation of mass balance for the inter-
phase boundary, we obtain the transcendental equation
that determines parameter β1 , which characterizes the
new-phase growth kinetics according to the relation
β1 :

(11)

Here, K0(x) and K1(x) are modified Bessel functions of
the second kind and of the zero and first orders, respec-
tively. Solving equations (9) and (11), we are able to
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reveal the contribution of the residual-stress field into
the kinetics of the process of the new-phase growth. For
atomic concentrations C0 = 2 × 10–4, C2 = 10–4, and C1 =
3 × 10–4, we obtain

(12)

Since  > 1, we have β1 > . On the other hand,

it follows from β =  +  that β > . Therefore,

without numerical analysis of relations (12), deriving
the expected inequality β > β1 seems to be impossible.

Numerically solving equation (12) yields β = 1.3
and β1 = 0.8. This implies that the residual stresses pro-
mote the growth rate of new-phase nuclei. Using other
values of boundary concentrations for impurity atoms
will result only in refinement of the numerical values
for parameters β and β1 . When the characteristic size of
the precipitate is increased, the depletion of the solid
solution of substitutional impurities occurs, and the
new-phase growth becomes slower. Bulk variations of
the new phase result in the appearance of stresses at the
interphase boundary. Generally speaking, these stresses
change the kinetics of the diffusion process. However,
under small bulk changes of the new phase and at early
stages of the process, this effect can be ignored.

Thus, the substitutional impurities with a large
atomic radius are redistributed in the field of residual
stresses. In this case, the enrichment of the tensile-
stress zone and the depletion of the compressive-stress
region occur. Simultaneously with this process, the dif-
fusion migration of the substitutional impurities with a
small atomic radius occurs. In the equilibrium state, the

β2 β
π

------- 1–– 0, β1
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π
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1
β
--- 1

π
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π
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field of residual stresses redistributes these impurities
as well, the profile of their concentration being also lin-
early dependent on the radial coordinate. At the same
time, however, there exists an essential difference: the
substitutional impurities of small atomic radius enrich
the region of compressive stresses and deplete the zone
of tensile stresses. At the macroscopic level, a stratifica-
tion of the solid solution containing substitutional
impurities of various types is observed. This stratifica-
tion is most noticeable at the boundaries of the cylindri-
cal shell. If the concentration of substitutional impuri-
ties in the near-boundary region of the shell exceeds the
solubility limit, new-phase nuclei are formed. Their dif-
fusion growth is followed by the depletion of the solid
solution containing substitutional impurities through-
out the entire volume bounded by the shell. In the mac-
roscopic scale, formation of the concentration inhomo-
geneities or the new-phase precipitations is observed.
In these processes, the residual stresses play the deci-
sive role.
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The need in modern microelectronics for the repro-
ducible production of thin (2–5 nm) silicon dioxide lay-
ers used as gate insulators stimulates particular atten-
tion to processes accompanying the formation of the
boundary layer in the Si–SiO2 system [1]. After termi-
nation of the thermal oxidation of silicon, the boundary
layer naturally becomes the junction-layer [2]. Hence,
the features characterizing the boundary-layer forma-
tion strongly affect the structure and the impurity distri-
bution in the junction layer. In addition, the evolution of
the boundary layer eventually gives rise to the forma-
tion of the random Zachariasen network characteristic
of bulk silicon dioxide.

Note that due to the high characteristic temperature
of the oxidation process (1273–1373 K), it is a rather
complicated task to study the boundary layer in the
course of thermal oxidation. Therefore, it is of primary
importance to develop a theoretical scheme or a model
for the description of the boundary layer. In this paper,
we consider a general mathematical model for the oxi-
dation of silicon, which takes into account the polymer-
ization processes occurring in this layer.

In our paper [2], we proposed to divide the boundary
layer into an active zone and a polymerization zone. In
the active zone directly adjoining the Si–SiO2 interface,
low-molecular-weight silicon–oxygen clusters are
formed due to the intense heat release in the course of
chemical reactions. These clusters are monomer units
for further polymerization reactions. Owing to ther-
mally activated diffusion, the monomers also arrive at
the polymerization zone. In this zone, the local viscos-
ity elevates with distance from the Si–SiO2 interface
due to the increase in the number of 8-, 9-, and 10-unit
polymer molecules. The formation of ring molecules
and of the polymer network limits the further prolonga-
tion of the polymeric-molecule chain. As a result, the
local viscosity undergoes a jumplike increase, and the
chemical reactions corresponding to the growth in the
chain length are impeded due to steric causes.
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1. EQUATIONS OF THE MODEL

We consider an arbitrary cross section in the poly-
merization zone. In the course of the polymerization
process, the Si–SiO2 interface continuously shifts
deeper into the semiconductor (say, for definiteness, to
the left) and the horizontal coordinate of this cross sec-
tion increases. We assume that there exists a steady
inflow j of the monomer to the given cross section. Let
the monomer concentration and the (i + 1)-unit polymer
concentration in a layer be x0 and xi , respectively.
Assuming the cross section of a certain finite thickness
to be, as a whole, homogeneous, we can write out all
proceeding chemical reactions until n-unit polymers
will be formed (n ≤ N = 8):

x0 + x0  x1,

(1)

xN – 1 + x0  xN.

Here, k0, k1, …, kN – 1 are the reaction-rate constants
characterizing the rates of corresponding chemical
reactions. The reactions are assumed to be irreversible,
and their rates are calculated according to the acting-
mass law (bimolecular reaction). The reaction rate con-
stants are considered to be different. To take into account
the limitation imposed on the growth of the chain length,
we assume that kN = 0. Then, we can write out

(2)

k0

x1 x0 x2,+

…

k1

kN – 1

dx0

dt
-------- j x0 t,( ) k0x0

2– k1x0x1– …– kN 1– xN 1– x0,–=

dx1

dt
-------- k0x0

2 k1x1x0,–=

…
dxn

dt
-------- kn 1– xn 1– x0 knxnx0,–=

…
dxN

dt
--------- kN 1– xN 1– x0.=
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The reaction rate is limited by the diffusion of reagents.
This assumption stems from the viscoelastic properties
of the growing SiO2 layer, which is verified in a number
of studies [3]. It is well known [4] that the reaction-rate
constant kd of a diffusion-driven reaction obeys the fol-
lowing relationship:

. (3)

Here, η is the viscosity of the medium, ra is the reagent
molecular size (related to the number of monomer
units), rb is the monomer molecular size, R is the uni-
versal gas constant, and T is temperature. Thus, in our
case, ki = kd(ra(i)), ki increasing with i. Ignoring unity
compared to i, we can write out

(4)

It should be noted that the parameter k0 should actually
be given by another expression, since the monomer–
monomer interaction seems to be controlled by the
reaction kinetics rather than by diffusion. The bound-
ary-layer viscosity, in turn, depends on the problem
parameters, i.e., on the concentration of polymer mole-
cules. As is known from the physics of polymers [5],
the viscosity of a polymer melt consisting of n-unit
molecules is proportional to n3 . Therefore, we use in
our case this dependence valid for large n (n > 30) as an
approximation, i.e.,

(5)

In Eqs. (2) of our model, we have introduced the mono-
mer flux j(x0, t) incoming from outside to the cross sec-
tion under study. Generally speaking, this flux depends
on both time (since the farther the cross section from
the interface, the smaller the diffusion-induced flow
from the active zone) and the monomer concentration.
It is evident that the time dependence of the flux j is a
monotonically decreasing function that vanishes when
the given cross section passes from the polymerization
zone to the domain of already formed SiO2 layers. The
derivation of an explicit formula for j(x0, t) seems to be
a very complicated task. Therefore, we use furthermore
a number of model dependences having the aforemen-
tioned property.

2. ANALYSIS OF THE MODEL 
IN THE LINEAR CASE

We now introduce a simplifying assumption sup-
posing the boundary-layer viscosity to have a constant
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.=
value. Although this assumption is hardly justified from
the physical standpoint, it is certainly of interest to con-
sider this case as providing an opportunity to find an
explicit solution to be used as a starting approximation.
Thus, Eqs. (2) form an autonomous homogeneous set
of the second order. We perform a change of variables:
dξ = x0(t)dt. For correctness of this change, we also
assume that k0x0 @ kixi (i > 0); i.e., the amount of a
monomer decreases mainly due to its dimerization.
Then, we have an equation with respect to x0(ξ),
another one with respect to x1(ξ), and N – 1 equations
with respect to xi(t), i > 1:

(6)

Here, f(ξ) is expressed by the term k0x0 written out in the
new variable ξ. At first, we solve the linear homoge-
neous system, i.e., that containing f(ξ) = 0. Its n roots
are λi = –ki, and the kth component of ith eigenvector ui

is given by the expression

(7)

For example, the values λn = –kn and λ1 = –k1 corre-
spond, respectively, to the vectors (0, 0, 0, …, 0, 1) and

1, , , …,

.

The general solution to the homogeneous equation has
the form

. (8)

We note that the first component of x(ξ) depends only
on the first of the constants Ck . This makes the use of
the Cauchy formula for the solution to the inhomoge-
neous system easier. Thus, we obtain the following
formula:

(9)

Under the initial condition xi(0) = 0, x1(0) = 0, we have
C1 = Ck = 0. We now go back to the function x0(ξ).

dx1

dξ
-------- f ξ( ) k1x1,–=

dxi

dξ
------- ki 1– xi 1– kixi,       i– 2 3 … N 1.–, , ,= =

uik

0     k i<,

kl

kl ki–
--------------,        k i>

l i 1+=

k

∏
1     k = i.,








=

k1

k2 k1–
---------------

k1k2

k2 k1–( ) k3 k1–( )
-----------------------------------------

k1 … kn××
k2 k1–( ) … kn k1–( )××

-----------------------------------------------------------

xi ξ( ) Ckuik kiξ–( )exp
k 1=

n

∑=

x ξ( ) C1u1 k1ξ–( )exp=

+ f ξ'( ) k1 ξ' ξ–( )( )exp ξ'd

0

ξ

∫ Ck kξ–( )uk.exp
k 2=

n

∑+
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It is evident that

(10)

If j = const and x0(0) = c, then we find

, (11)

. (12)

In particular, it follows from (12) that the rate of the
decrease in the amount of the monomer is strongly
affected by its initial concentration, since the parameter
c enters into the exponent of the exponential terms. The
same remark is applicable to the effect of the flux j.

3. CALCULATION RESULTS

It is quite difficult to experimentally determine the
reaction-rate constants for the increase in the chain
length, especially if we take into account specific fea-
tures of each n-unit polymer. We have assumed that T =
1273 K and η0 = 109 kg/(m s) [4, 6]. To specify the ini-
tial conditions for Cauchy problem (2), we need to
know c = x0(0), whereas we have xi(0) = 0, i > 0 for
other xi . The concentration x0 is assumed to have the
dimension of cm–3, and we took c equal to 2.2 ×
1022 cm–3. Such a choice of the dimension (the alterna-
tive choice is [cm–2]) allows us to preserve the habitual
dimensions for both constants of chemical reactions
and flux j. Moreover, there is an additional parameter τ
responsible for the flux-decrease rate according, e.g., to
the relationship

. (13)

For the steady-state case, we assume that τ = 300 s. The
parameter j0 was taken to be proportional to the initial
monomer concentration c. In our opinion, the relation
between these two parameters determines in many
respects the adequacy of an arbitrary model describing
the thermal oxidation.

Based on the above considerations, we performed
our calculation using dimensionless parameters. The
concentrations, time, and flux were normalized, respec-
tively, to the value of c, to one second, and to the value

dt
dx0

j x0( ) k0x0
2–

----------------------------,=

dξ x0dt
1
2
---

d x0
2( )

j x0
2

 
  k0x0

2–

------------------------------------.= =

x0 t( ) j
k0
----

1 bt–( )exp–
1 bt–( )exp+
--------------------------------    b, 2 jk0

j ck0+
j ck0–
----------------= =

f ξ( ) k0x0 ξ( )=

=  k0 j 1 2k0ξ–( )exp–( ) k0c2 2k0ξ–( )exp+

j j0
t
τ
--– 

 exp=
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of [x0(0)/c]; the reaction rates were expressed in terms
of the parameter

. (14)

The set of equations written out in the dimensionless
form demonstrates that variations of the quantities c
and Q are equivalent; i.e., they cause the same changes
in dynamics of the curves (expressed in dimensionless
variables). The calculations were performed using the
conventional Runge–Kutta method of the fourth order
of accuracy with the step corresponding to 1/10 s.

In the figure, we present typical results for the expo-
nential decay of the monomer flux j. The horizontal
axis corresponds to time (expressed in seconds),
whereas the vertical axis corresponds to the molar or
weight fraction of polymer chains having different
lengths (in arbitrary units). Such a representation
allows us to account for the excluded-volume problem;
i.e., the chosen cross section is permanently supplied
with the substance and simultaneously expands. The

Q
2RT
3η0
-----------=

1.0

0.8

0.6
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0.2
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0.8

0.6

0.4

0.2

0

1

2

3

4

4

(a) Molar fractions of polymers and (b) weight fractions of
polymer molecules in a certain cross section; c =1, Q =1:
(1) monomers; (2) 2-, 3-, 4-unit polymers; (3) 5-, 6-, 7-unit
polymers; (4) 8- and 9-unit polymers.

Weight polymer fraction
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molar W and weight U fractions are calculated accord-
ing to the relationships

, (15)

. (16)

Here, α is a set of indices with respect to which the
aggregation takes place. We considered the following
sets {0}, {1, 2,3}, {4, 5, 6}, and {7, 8}. As should be
expected, the general pattern corresponds to the follow-
ing behavior of the curves: the fraction of monomer
decreases (except, maybe, the initial segment of the
curves); the fraction of 8- and 9-unit polymers
increases monotonically; and the fractions of 2-, 3-, and
4-unit molecules and 5-, 6-, 7-unit rings have more or
less pronounced peak (the moments corresponding to
the peaks of molar and weight fractions can be not coin-
cident). Note that the fractions of 2-, 3-, and 4-unit
polymers steeply increase during the first seconds; on
the contrary, the monomer fraction rapidly decreases.
The most interesting features are the settled ratios of
fractions between the polymers of different lengths at
large times and the settled ratios of fractions between dif-
ferent polymers in a given cross section, i.e., at fixed t cor-
responding to the termination of the oxidation process.

The model was analyzed for different values of
parameters. As a result, in the case of more intense
chain-prolongation processes (Q = 10), all peaks turn
out to be clearly pronounced; the fraction of 8- and
9-unit polymers tends to 90–95%. The quasisteady
mode is attained faster. We can note a rapidly attained
(for about 1 s) local dip in the monomer fraction, which
exists until the formation of a local peak has been com-
pleted for about 16 s. When the monomer flux increases
by a factor of 100 (j0 = 10 c) compared to the situation
presented in the figure, the monomer fraction drasti-
cally decreases. The peaks also become more clearly
pronounced, and the ratio of peak heights for fractions
of 2-, 3-, 4-unit and 5-, 6-, 7-unit polymers changes. We
also have considered the case when the flux j linearly
decreases in time down to zero and then remains there
identically zero:

 (17)

The behavior of molar fractions turns out to be more
complicated. The decrease in the molar fraction of 8-
and 9-unit polymers down to 63% seems to be the most
important feature. The fraction of 2-, 3-, and 4-unit

Wα

xi
i α∈
∑

xi
0 i N≤ ≤
∑

------------------=

Uα

i 1+( )xi
i α∈
∑

i 1+( )xi
0 i N≤ ≤
∑

----------------------------------=

j t( )
j0 1 t

τ
--– 

      0 t τ≤ ≤,

0  τ t 3τ .≤ ≤,





=

polymers increases; moreover, it exceeds the fraction of
5-, 6-, and 7-unit polymers. At the same time, the
weight fraction of 8- and 9-unit polymers equals 80%.
Finally, in the absence of the diffusion-induced mono-
mer flux (j = 0), the 2-, 3-, and 4-unit polymers domi-
nate (80%), whereas the fraction of 8- and 9-unit poly-
mers is rather small (below 5%).

Thus, the case of the exponential attenuation of the
flux (see figure) is nearest to the actual physics of the
process under study. The computer simulation demon-
strates that the diffusion-induced monomer flux from
the active zone to the polymerization zone strongly
affects the relation between the fractions of polymer
molecules with different lengths even in the case when
growing silicon layers are relatively thick. Bearing in
mind that the active zone naturally transforms with time
to the polymerization zone, we may conclude that this
result is rather interesting.

4. CONCLUSION

Electrophysical properties of the Si–SiO2 system are
determined in many aspects by the structural features of
thermally oxidized silicon layers. As it was shown
in [1], the junction region in the silicon–silicon dioxide
system is a mixture consisting of 3–10-unit structural
rings. Currently, there is no mathematical model pro-
viding an opportunity to find the percentage of these
rings in different cross sections of the junction layer. In
addition, the mechanisms underlying the formation of
rings with different sizes are also far from being well
understood.

The mathematical model developed in this paper,
which describes the formation of inhomogeneous struc-
tures in thermally oxidized silicon layers, gives an
answer to the questions posed above. This fact has sig-
nificant practical importance, providing an opportunity
to control the structure of the junction layer and, hence,
parameters of Si–SiO2 system and of semiconductor
devices based on this system.
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1. INTRODUCTION
In [1–10], the application of atomic functions to

solving problems of signal digital processing was con-
sidered, and the efficiency of the atomic functions com-
pared to the classical methods of [11, 12] was proven.
In the present paper, we present for the first time new
weight functions (windows) proposed and substanti-
ated by the author. Introducing such nonstandard win-
dows is a timely solution to urgent problems that arose
recently, being associated with the appearance of a new
class of ground-based and airborne radar stations [14]
capable of simultaneously searching for and tracking
numerous targets. That is why they are called multi-
functional radar stations [15]. Noticeable progress in
radar engineering, brought about by the use of antenna
arrays with phase and digital methods of beam forma-
tion, as well as by the application of modern computers,
has still received little attention in Russian and foreign
scientific literature. A broad list of windows is pre-
sented in [11]. As follows from [11], the windows con-
structed are represented in the form of products, sums,
and convolutions of simple windows, as well as in the
form of separate parts of windows known previously.
As a rule, these windows exhibit moderate physical
characteristics, and some of them do not even satisfy
necessary practical requirements. In this connection,
constructing new windows on the basis of atomic func-
tions and operations of convolution and correlation is of
great practical importance.

2. OPERATIONS OF CONVOLUTION 
AND CORRELATION

The principal idea of the method proposed consists
in the following. Atomic functions considered in [4] are
closely connected with other atomic functions, e.g.,

(1)

up̂ x( ) cup x( )
1

2π
------ ixt( )exp

∞–

∞

∫= =

× t 2 k–×( )sin

t 2 k–×
--------------------------- 

 
2

dt.
k 1=

∞

∏
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Russian Academy of Sciences, 
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This atomic function is the self-convolution of the func-
tion up(x):

(2)

The role of this function consists in the fact that inte-

grals of the products of shifts by  of the functions

up(x), Fupn(x), and other atomic functions are

expressed in terms of (x) = cup . For under-

standing further results, we briefly describe basic oper-
ations of convolution and correlation, which are based
on the results of [13]. When constructing windows, it is
helpful to apply operations called convolutions that
allow us to obtain the third, daughter, or hybrid function

(x), which is based on the two parent atomic func-
tions up1(x) and up2(x), in accordance with the rule

(3)

Employing the sign * for the convolution operation, we
can write out formula (3) in a more convenient form:

(4)

Assuming x – τ = y in expression (3), we obtain

From here, it follows that the convolution operation has
the same commutation property as a usual multiplication:

(5)

The validity of the combinative properties is also sub-
stantiated quite simply:
up1(x) * [up2(x) * up3(x)] = [up1(x) * up2(x)] * up3(x).

Figure 1a demonstrates the convolution of the func-
tions up1(x) and up2(x). The method of deriving the

daughter function (x) (cup(x)) from the parent func-
tions up1(x) and up2(x) shows that this function inherits

up̂ x( ) cup x( ) up x( ) * up x( ).= =

k

2n
-----

up̂
k

2n
----- 

 

up̂

up̂ x( ) up1 τ( )up2 x τ–( ) τ .d

∞–

∞

∫=

up̂ x( ) up1 x( ) * up2 x( ).=

up2 y( )up2 x y–( ) yd

∞–

∞

∫ up̂ x( ).=

up1 x( ) * up2 x( ) up2 x( ) * up1 x( ).=

up̂
002 MAIK “Nauka/Interperiodica”
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up2(x)
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 (x)
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0

(c)

up1(x)
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0
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t

∫up1(τ)up2(x –  τ)dτ

x

P(x/a)
∑           – na

x

×

×

Fig. 1. (a) Convolution of the functions up1(x) and up2(x) and (b) convolution of the function (x) (bell) and the lattice function
P(x/a) (plot of the functions); (c) plot of the carriers.

up̂

up̂  (x)up̂
parental attributes. These attributes consist in the fact
that the carrier has an extension. In the limiting case,

the convolution of the function (x), whose carrier is
zero, does not change this function:

(6)

Here, the first integral is the convolution and the second
integral is the selective property of the δ-function. For
functions shifted from the origin of the chosen coordi-
nate system, we have:

(7)

up̂

up̂ x( ) * δ x( ) δ x( ) * up̂ x( ) up̂ x( ),= =

up̂ x( ) * δ x( ) up̂ x( )δ x τ–( ) τd

∞–

∞

∫=

=  up̂ τ( )δ τ x–( ) τd

∞–

∞

∫ up̂ x( ).=

up̂ x x1–( ) * δ x x2–( ) up̂ x x1 x2+( )–( ).=
The convolution of a “good” function  with a unit
function l(x), which has a carrier suppl(x) = [–∞, ∞],
yields the unit function normalized to the area under the

function  

(8)

A case of convolution of the function  with the
lattice function

(9)

is basic in applications. In Figs. 1b and 1c, the lattice

function is shown that has repeated the function 
at position points of the δ-function. In addition to the
integral operation of the convolution, there exists one
more operation of the same type, which is called corre-

up̂ x( )

up̂ x( )

up̂ x( ) * l x( ) up̂ τ( )l x τ–( ) τd

∞–

∞

∫ up̂ τ( ) τ .d

∞–

∞

∫= =

up̂ x( )

up̂ x( ) * P
x
a
--- 

  up̂ x na–( )
n ∞–=

∞

∑=

up̂ x( )
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0 x 0 x 0 x

0 x 0 x x0

∗ =

∗ =

x d – x

0 d x

(a)

(b)

(c)

Fig. 2. Convolution and correlation: (a) convolution; (b) correlation; (c) extension (equal to d – |x |) of the autocorrelation region.

 (x)up̂

 (x)up̂  (x)up̂  (x) ∗up̂  (x)up̂

 (x)up̂  (x) ∗up̂  (x)up̂
lation (or cross-correlation) and which makes it possi-
ble to obtain a third function from two others:

(10)
Here, the asterisk in the superscript implies complex
conjugation. It follows from Eq. (10) that, in contrast to
the convolution, the functions up1(x) and up2(x) do not
commute. However, a particular case for the operation

 is a variant called the autocorrelation when  ≡
up2(x). In the case when  = up2(x) [the function
up1(x) is real-valued], we arrive at

(11)

Hence, the autocorrelation for a real-valued function
can be changed by the convolution of the original func-
tion obtained from the former one by means of inver-
sion. If there exists the correlation of the finite function

(x), whose carrier is d, then the extension of the cor-
relation region under the given shift x is equal to the dif-

up̂ x( ) up1 x( ) * up2 x( ) up1
* τ( )up2 x τ+( ) τ .d

∞–

∞

∫= =

* up1 x( )

up1
* x( )

up̂ x( ) up1 x( ) * up2 x( )=

=  up1 τ( )up2 x τ+( ) τd

∞–

∞

∫ up1 x( ) * up2 x–( ).=

up̂
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ference d – x (Fig. 2c); the correlation function can be
written out as

where the average value is calculated over the correlation
region. When the set of quantities {xi}, i = 1, 2, …, R
is given, the autocorrelation is determined by the
expression

With allowance for formulas (4) and (11) for the func-
tion  = up1(x), we obtain

It is worth mentioning that the autocorrelation of a real-
valued function exhibits the property of symmetriza-
tion of the finite function. This implies that the output

function is even:  = . We note that for a

up̂ x( ) up1 x( ) * up2 x( )=

=  d x–( ) up1* τ( )up2 x τ+( )〈 〉 ,

up̂ n( ) xn j+ x j

j 1=

R n–

∑ R n–( ) xn j+ x j〈 〉 .= =

up1* x( )

up̂ x( ) up1 x( ) * up1 x( ) up1 x( ) * up1 x–( )= =

=  up1 x–( ) * up1 x( ) up̂ x–( ).=

up̂ x( ) up̂ x–( )
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Table 1.  Basic physical parameters for new synthesized Kravchenko windows and classical windows
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Kravchenko

K 2.34 0.8 0.6 4.3 –47 –∞ 3.05 0.31

K1 2.9 0.06 0.4 5 –69.8 –∞ 3.82 0.25

K2 3.35 0.004 0.3 5.55 –93.2 –∞ 4.45 0.21

K3 3.75 2.9 × 10–4 0.24 5.98 –116.4 –∞ 4.90 0.19

K4 4.11 2.1 × 10–5 0.2 6.34 –139.8 –∞ 5.41 0.17

1.89 4.95 0.9 3.67 –34 –∞ 2.51 0.5

2.14 2.1 1.35 4.66 –51 –∞ 2.05 0.5

2.35 0.9 1.8 5.5 –68 –∞ 1.78 0.5

2.73 0.7 2.7 7.1 –102 –∞ 1.5 0.5

Kaiser–Bessel

a = 3.0 1.8 7.4 1.02 3.56 –69 –6 2.39 0.4

a = 3.5 1.93 4.8 0.89 3.74 –82 –6 2.57 0.37

Hamming 1.36 23.5 1.78 3.1 –43 –6 1.81 0.54

Blackman–Harris 
(four-term)

2 3.8 0.83 3.85 –92 –6 2.72 0.36

KΞ2

KΞ3

KΞ4

KΞ6
real-valued and even function , operations of con-
volution and autocorrelation are undistinguished. For

 =  = , we obtain that  *

 =   .

3. SYNTHESIZING NEW WINDOWS

Based on atomic functions, we now are studying
new synthesized windows under the following parame-

ters: w(nT) = 0, |n | > , N is even, w(nT) = w(–nT). To

compare characteristics of new synthesized windows,
we make use of the system of physical parameters
introduced in [11]. It is well known that in practice (at
T = 1), the following windows are widely used [11, 12].

1. The Kaiser–Bessel window

up̂ x( )

up̂∗ x( ) up̂ x( ) up̂ x–( ) up̂ x( )

up̂ x( ) up̂ x( ) * up̂ x( )

N
2
----

w n( )

I0 α 1 2n
N 1–
------------- 1– 

  2

– 
 

I0 α( )
---------------------------------------------------------, 0 n N 1,–≤ ≤=
where I0 is the Bessel function of the zero order, α = 2,
2.5, 3, 3.5.

2. The Hamming window

3. The Blackman–Harris (four-term) window

Using theoretical results, we consider the window K
[up(x) * up(x), which is new and synthesized by the
author] (see Table 1 and Fig. 3a) and determine its
physical parameters. The calculation was performed for
N = 50.

1. The equivalent noise band is k1(K) = 50 ×
0.0468 = 2.34.

w n( ) 0.54 0.46 2π n
N 1–
------------- 

  , 0 n N 1.–≤ ≤cos–=

w n( ) 0.35875 0.48829
2π
N
------n 

 cos–=

+ 0.14128
2π
N
------2n 

  0.01168
2π
N
------3n 

  ,cos–cos

0 n N 1.–≤ ≤
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2. The correlation for the 50% overlap is k2(K) =

 = 0.8%.

3. The parasitic amplitude modulation is k3(K) =

−10log  = 0.6.

4. The maximum transformation loss is k4(K) =
10log(2.34) + 0.6 = 4.3 dB.

5. The maximum level of the side-lobe decrease is
equal to k5(K) = –47 dB.

6. The asymptotic rate for the side-lobe decrease is
k6(K) = –∞.

7. The window width at the 6-dB level is k7(K) =
3.05.

8. The coherent amplification is k8(K) = 0.31.

For comparison, we present the calculated data for
the K2 [up(x) * up(x) * up(x) * up(x)] synthesized win-
dow (Table 1, Fig. 3b).

9. The equivalent noise band is k1(K2) = 50 ×
0.0017 = 3.35.

10. The correlation for the 50% overlap is k2(K2) =

 = 0.004%.

11. The parasitic amplitude modulation is k3(K2) =

−10log  = 0.3.

3.68
446
----------

W π/2( )
W 0( )

-----------------
2

0.0125
306

----------------

W π/2( )
W 0( )

-----------------
2
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12. The maximum transformation loss is k4(K2) =
10log(3.35) + 0.3 = 5.55 dB.

13. The maximum level of the side-lobe decrease is
equal to k5(K2) = –93.2 dB.

14. The asymptotic rate for the side-lobe decrease is
k6(K2) = –∞.

15. The window width at the 6-dB level is k7(K2) =
4.45.

16. The coherent amplification is k8(K) = 0.21.

4. A NUMERICAL EXPERIMENT

Analysis of numerical results for synthesizing
Kravchenko windows (Table 1) and classical Kaiser–
Bessel, Hamming, and Blackman–Harris (four-term
solution) windows has shown that the Kravchenko win-
dows exceed the well-known windows in their physical
parameters.

New windows exhibit a low parasitic amplitude
modulation and a high decrease level for side lobes,
which essentially depends on the degree of the convolu-
tion operation within the range from –47 to –139.8 dB.
The other group of windows, i.e., the Kravchenko win-
dows, are composed of convolutions of atomic func-
tions Ξn(x). We now give the basic physical parameters
for the  and  windows (Table 1).

17. The equivalent noise bands are k1( ) = 50 ×
0.0178 = 1.89 and k1( ) = 50 × 0.047 = 2.35.

KΞ2
KΞ4

KΞ2

KΞ4
Table 2.  Basic physical parameters of new synthesized windows for Kravchenko–Hamming (KH), Kravchenko–Kaiser–Bessel
(KKB), and Kravchenko–Blackman–Harris (KBH) windows
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KH 2.14 2.06 0.74 4.05 –71.2 –∞ 2.78 0.35

KH1 2.68 0.21 0.46 4.74 –96 –∞ 3.5 0.27

KH2 3.17 0.016 0.17 5.1 –120 –∞ 4.1 0.23

KH3 3.6 0.0012 0.026 5.8 –143 –∞ 4.77 0.2

KKB 2.44 0.58 0.56 4.43 –50.2 –∞ 3.2 0.29

KKB1 2.97 0.042 0.38 5.1 –75.4 –∞ 3.9 0.24

KKB2 3.4 0.003 0.29 5.6 –100 –∞ 4.45 0.21

KKB3 3.81 2.3 × 10–4 0.24 6 –123.6 –∞ 4.9 0.19

KBH 2.55 0.31 0.5 4.6 –44.2 –∞ 3.37 0.28

KBH1 3.05 0.023 0.36 5.2 –68.7 –∞ 3.97 0.25

KBH2 3.46 0.0026 0.233 5.6 –115.8 –∞ 5.09 0.21

KBH3 3.85 1.9 × 10–4 0.23 6 –116.2 –∞ 5.1 0.19
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Fig. 3. Synthesized Kravchenko windows: (a), (b) Kravchenko windows (K, K2); (c), (d) Kravchenko–Hamming windows (KH,
KH2); (e), (f) Kravchenko–Kaiser–Bessel windows (KKB, KKB2); (g), (h) Kravchenko–Blackman–Harris windows (KBH,
KBH2). The functions are on the left, the logarithm of the Fourier transform for the corresponding window is on the right; n is the

count number, n ∈ , N = 50 is the total number of counts; θ =  is the normalized frequency.N
2
----–

N
2
----, 2π

N
------

–30 –20 –10 0 10 20 n –3 –2 –1 1 2 3 q
18. The correlations for the 50% overlap are
k2( ) = 4.95% and k2( ) = 0.9%.

19. The parasitic amplitude modulations are

k3( ) = –10log  = 0.9 and k3( ) = 1.8.

KΞ2
KΞ4

KΞ2

W π/2( )
W 0( )

-----------------
2

KΞ4
20. The maximum transformation losses are
k4( ) = 10 log(1.89) + 0.9 = 3.67 dB and k4( ) =
5.5 dB.

21. The maximum levels of the side-lobe decrease
are equal to k5( ) = –34 dB and k5( ) = –68 dB.

KΞ2
KΞ4

KΞ2
KΞ4
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22. The asymptotic rates for the side-lobe decrease
are k6( ) = –∞ and k6( ) = –∞.

23. The window widths at the 6-dB level are
k7( ) = 2.51 and k7( ) = 1.5.

24. The coherent amplifications are k8( ) = 0.5

and k8( ) = 0.5.

We should emphasize the high selectivity of this
group of Kravchenko windows: with the increase in the
degree of the convolution operation, the transmission
band (according to the 6-dB level) reduces from
2.51 bin [  window] to 1.5 bin [  window]. In

addition to the good selectivity, the latter  window

KΞ2
KΞ4

KΞ2
KΞ4

KΞ2

KΞ4

KΞ2
KΞ6

KΞ6
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also has a high level for the decrease of side lobes
(−102 dB) and a low correlation factor for overlapping
segments (exceeding this parameter for classical win-
dows by an order of magnitude). Thus, this window can
be applied for filtering signals with a small distance
between equal-intensity spectral lines (e.g., in the
application of radars for a group of targets). If we need
windows with a very low correlation factor, a small
value of the parasitic amplitude modulation, and a high
level of the side-lobe decrease (down to –143 dB), it is
possible to use the synthesized Kravchenko–Hamming
(KH) windows, Kravchenko–Kaiser–Bessel (KKB)
windows, and Kravchenko–Blackman–Harris (KBH)
windows (Table 2 and Fig. 3). All the synthesized win-
dows have an infinite rate of the side-lobe decrease. The
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basic physical characteristics of the new synthesized
windows are presented in Table 2 and in Fig. 3.

From the standpoint of practical applicability of the
windows, the diagram for the dependence of the trans-

–140
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Maximum
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transformation loss, dB

3

level of side lobes, dB

Fig. 4. Diagram for the relation between the transformation
loss and the maximum level of the side-lobe decrease for
new synthesized Kravchenko windows.
formation loss and the maximum level of the side-lobe
decrease is of the most interest (Fig. 4). As follows from
this diagram, most optimal new synthesized windows
are situated in its lower left corner. These windows have
a low level of the side lobes, although the transforma-
tion loss is slightly enhanced. The latter parameter can
be considerably improved by passing to the extension
or compression of windows on the basis of properties of
atomic functions. To do this, we employ a number of
particular mathematical transformations. We transform
the x-axis into the t-axis according to the formula t =

x. Then, we analyze how the basic physical parame-

ters of new synthesized windows can change under
these transformations (Tables 3 and 4). When extending
the windows, the following physical effects are
observed in the time region: the equivalent noise band
narrows for all windows, the same occurs for the band
corresponding to the 6-dB level, and the maximum
transformation loss considerably decreases. In this
case, the following disadvantages should be indicated:
the correlation of overlapping segments increases, and
the parasitic amplitude modulation deteriorates. These
effects arise at the constant maximum level of the side-
lobe decrease. Thus, the windows investigated compare
well with known classical windows, and even exceed
them for a number of parameters.

The results of this study were reported at the First
International Workshop on Mathematical Modeling of
Physical Processes in Inhomogeneous Media (Mexico,
Guanajuato, March 20–22, 2001) [8] and at the Fourth
International Symposium on Physics and Engineering
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Table 3.  Parameters of the new synthesized Kravchenko window with allowance for time variations
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0 2.34 0.8 0.6 4.3 –47 –∞ 3.05 0.31

5 2.22 1.42 0.67 4.13 – – 2.92 0.32

10 2.1 2.35 0.74 3.96 – – 2.78 0.34

15 1.98 3.72 0.83 3.8 – – 2.61 0.36

20 1.87 5.64 0.94 3.66 – – 2.46 0.39

25 1.75 8.24 1.07 3.5 – – 2.3 0.41

30 1.64 11.6 1.22 3.38 – – 2.15 0.44

35 1.52 15.7 1.42 3.24 – – 2 0.47

40 1.42 20.5 1.67 3.2 – – 1.83 0.51
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Table 4.  Parameters of new synthesized windows of Kravchenko–Hamming and Kravchenko–Blackman–Harris with
allowance for time variations
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Kravchenko–Hamming window

0 2.68 0.21 0.46 4.74 –96 –∞ 3.5 0.27

5 2.55 0.4 0.51 4.57 – – 3.37 0.28

10 2.42 0.74 0.57 4.41 – – 3.2 0.3

15 2.3 1.32 0.64 4.26 – – 3 0.31

20 2.1 2.25 0.72 4.05 – – 2.85 0.33

25 2.02 3.7 0.82 3.88 – – 2.64 0.36

30 1.88 5.7 0.94 3.68 – – 2.48 0.38

35 1.75 8.6 1.1 3.52 – – 2.3 0.41

40 1.62 12.4 1.28 3.38 – – 2.15 0.44

Kravchenko–Blackman–Harris window

0 3.4 0.003 0.29 5.6 –100 –∞ 4.45 0.21

5 3.24 0.01 0.32 5.43 – – 4.29 0.22

10 3.1 0.03 0.36 5.27 – – 4.07 0.23

15 2.9 0.08 0.4 5.03 – – 3.84 0.25

20 2.73 0.2 0.45 4.8 – – 3.6 0.26

25 2.56 0.43 0.51 4.6 – – 3.39 0.28

30 2.39 0.92 0.59 4.34 – – 3.17 0.3

35 2.21 1.82 0.68 4.13 – – 2.93 0.32

60 1.39 21.5 1.8 3.24 – – 1.78 0.52
of Millimeter and Submillimeter Waves (Kharkov,
Ukraine, June 4–9, 2001) [9].
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1. INTRODUCTION

Problems concerning natural waves for a series of
both screened strip transmission lines and slotted trans-
mission lines can be formulated in the form of vector
integral equations of the first kind with respect to elec-
tric-current density components on strips or electric-
field intensity components on slots. The kernel ele-
ments of these integral equations implicitly contain
both logarithmic and Cauchy singularities. Employing
the projection-operator technique to this equation is
always accompanied by a change from the singular ker-
nel to a regular one and, therefore, introduces an incor-
rectness into the statement of the problem [1].

The method of partial integral-operator inversion
[2], which leads to an integral equation of the second
kind, makes it possible to avoid the incorrectness. How-
ever, this method is associated with considerable ana-
lytic transformations of integral equations. This
imposes certain constraints on the class of problems
being solved by this method. In particular, the con-
straint imposed on the domain of definition for the inte-
gral equation of the first kind has remained significant.
Indeed, most electrodynamic problems solved to date
were defined only on an interval of the real axis.

2. A METHOD PROPOSED

In this paper, we extend the method of partial oper-
ator inversion (which is more correctly referred to as a
method of almost complete operator inversion) to the
case of connected plane transmission lines. The gener-
alization is based on formulas for the partial inversion
of both the Cauchy singular integral and an integral

* Povolzhskaya State Academy of Telecommunication 
and Informatics, ul. L’va Tolstogo 23, 
Samara, 443099 Russia

** Institute of Radio Engineering and Electronics, 
Russian Academy of Sciences (Fryazino Branch),
pl. Vvedenskogo 1, Fryazino, Moscow oblast, 
141120 Russia
1028-3358/02/4701- $22.00 © 200061
having a logarithmic singularity, which are defined on
a combination of intervals

where Vm = (vm1, vm2). We also assume that V ⊂  (–1, 1).
We define the following system of functions on V:

(1)

Here, i = 0, 1, …; m = 1, 2, …, L, Ti are the Chebyshev
polynomials of the first kind; and

The system of functions  is orthogonal on V with
the weight coefficient Q–1, which is defined on each of
the intervals Vm by the relationship

Q–1(v) = (1 – (am + bmv)2)–1/2.

It is also evident that the system  is complete in a
space of functions that are quadratically integrable on V
with a measure corresponding to the weight of Q–1.

We now consider the Cauchy singular integral

(2)

We suggest that the function ϕ belongs to the class H* of
functions satisfying the Hölder condition [3] and, possi-
bly, having integrable singularities at the ends of inter-
vals Vm . We expand kernel (2) into the singular K[S] and
regular K [R] parts:

(v ' − v)–1 = K[S](v ', v) + K[R](v ', v), (3)

V Vm,
m 1=

L

∪=

Ti
m( ) v( )

Ti am bmv+( ), v Vm∈
0, v V \Vm.∈




=

am

v m2 v m1+
v m2 v m1–
------------------------   bm,–

2
v m2 v m1–
------------------------.= =

Ti
m( )

Ti
m( )

1
π
--- ϕ v '( )

v ' v–
--------------- v 'd

V

∫ f v( )     v V .∈,=
02 MAIK “Nauka/Interperiodica”



62 AREF’EV et al.
assuming that

We then define an integral operator S on H*,

and a projection operator P given by the relationship

Here, the functions , in much the same way as

functions , can be expressed in terms of the Cheby-
shev polynomials of the second kind. Using the expan-
sion

we can easily prove the validity of the equality

Then, expanding integral (2) with the help of expan-
sion (3) and applying the operator P to the result

K S[ ] v ' v,( ) v ' v–( ) 1– T0
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Cross section of the coplanar waveguide.
obtained, we arrive at the following relationship:

(4)

Similarly, for the integral with a logarithmic singular-
ity,

(5)

we obtain

(6)

It seems natural to refer to relationships (4) and (6) as
formulas for partial inversion of integrals (2) and (5).

We now employ the procedures of partial operator
inversion proposed above in order to evaluate spectral
parameters of a coplanar waveguide. The cross section
of the waveguide is shown in the figure. Three infinitely
thin strips made of a perfect conductor are deposited
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onto an insulating substrate (region 2). The structure is
placed into a rectangular metallic screen, the wall
losses being ignored.

The integral equation of the first kind for the copla-
nar waveguide coincides with the equation describing a
screened slotted transmission line [4]. However, the
domain of definition in the former case is a combination
of intervals on the x-axis, which correspond to the slots.

Isolating the singularity of kernel [4] and making
the change of variables

we arrive at integrals (2) and (5). Then, the method of
partial operator inversion, which is based on transfor-
mations (2), (4) and (5), (6), should be applied to the
equation obtained. Furthermore, using projection basis
(1), we should solve the boundary value problem
numerically.

When calculating, we took the following values of
the parameters: y1 = y3 – y2 = 0.225a, y2 – y1 = 0.05a,
x11 = 0.375a, x12 = 0.425a, x21 = 0.45a, and x22 = 0.55a.
The values of the permittivity and of the permeability
for the dielectric layers and the normalized wave num-
ber were ε(1) = ε(3) = 1, ε(2) = 9.35, µ(i) = 1 (i = 1, 2, 3),
and ka = 1.7, respectively.

The data listed in Tables 1 and 2 illustrate the con-
vergence in the spectral parameters for the method of
partial operator inversion. Here, we have chosen the
rates γ/k of wave slowing-down for the first and second
natural waves of the coplanar waveguide as spectral
parameters (γ is the wave propagation constant). The
parameters N and M are the number of terms taken into
account in the representation of the field components at
each slot and in the kernel of the integral equation of the
second kind.

Thus, we have presented in this paper the proce-
dures of partial inversion for the singular Cauchy inte-
gral and the integral having a logarithmic singularity,
both being defined on a combination of intervals. The
method allowed us to construct a well convergent math-
ematical model of a coplanar waveguide. This method
can easily be extended to the case of an arbitrary finite

v
πx
a

------        v ',cos
πx'
a

-------,cos= =
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number of slotted transmission lines or strip transmis-
sion lines placed in the same plane inside a rectangular
screen.
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Table 1

N γ/k (M = 400)

1 2.085282847 0.56073294

2 2.087857031 0.55166405

3 2.087794630 0.55149564

4 2.087782304 0.55148941

5 2.087781984 0.55148843

6 2.087781985 0.55148836

Table 2

M γ/k (N = 7)

25 2.08775881 0.55142105

50 2.08777951 0.55148013

100 2.08778148 0.55148736

200 2.08778193 0.55148823

400 2.08778199 0.55148835
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In spite of the fact that effects of thermomagnetic
and thermomechanical treatments were discovered
long ago [1, 2] and are widely used in industry, their
physical nature is not clarified until now.1 To date, two
models that explain the rise in µmax and Br after thermo-
magnetic and thermomechanical treatments are the
most popular. One of them relates the rise in µmax with
the anisotropy of the shape of precipitated particles [4].
The other explains this rise with the reorienting axes of
pairs of nearest atoms of dissolved elements (direc-
tional ordering) in an alloy having an ordered arrange-
ment of the component’s atoms (superstructure) [5]. At
the same time, the atomic mechanism responsible for
the reorientation of these axes is not discussed in this
case. However, the above models fail to explain numer-
ous experimental data. For example, it is unclear why
the above effects are thermally unstable (when
annealed without external actions, the effects disap-
pear). The decrease in Hc and P after the thermomag-
netic and thermomechanical treatments is associated
with the destabilization of the magnetic domain struc-
ture [3], but the reasons for this phenomenon remain
incomprehensible.

In this study, we have investigated the relation
between the effects of thermomagnetic and thermome-
chanical treatments and strain aging.2 

1 Holding of a ferromagnet at a certain elevated temperature and its
cooling to a lower temperature in the presence of either an exter-
nal magnetic field or a uniaxial tensile stress is called thermo-
magnetic treatment and thermomechanical treatment, respec-
tively. For soft-magnetic alloys that were subjected to either ther-
momagnetic or thermomechanical treatment in the direction of
external actions, the maximum magnetic permeability µmax and
the residual induction Br increase, whereas the coercive force Hc
and the specific electromagnetic loss P decrease [3].

2 Strain aging is interaction between atoms of dissolved elements
and fresh defects in a crystal lattice, which were introduced into a
material by a certain method, e.g., upon rapid cooling. The redis-
tribution of atoms of dissolved elements under strain aging corre-
sponds to the distribution of defects in the material. Strain aging
has four subsequent stages: ordering, formation of atmospheres,
formation of segregations, and precipitation [6].

Institute of Metal Physics, Ural Division, 
Russian Academy of Sciences,
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From the standpoint of a positive effect of strain
aging on the efficiency of thermomagnetic and thermo-
mechanical treatments, the stage of ordering can be the
most significant, since atmospheres, segregations, and
precipitated particles increase Hc and P (atmospheres
and segregations, in addition, lead to a kink in the mag-
netization curve [7]). For the case of strain aging, the
effect of ordering on the efficiency of the thermomag-
netic treatment was examined experimentally.

We used samples of Fe–3 wt % Si alloy, which had
a size of 0.33 × 5 × 100 mm, a (110)[011] texture, and
2−4-mm grains. After high-temperature annealing at
1000°C for 30 min, they were slowly (0.5°C/min) and
rapidly (60–100°C/min) cooled. In the latter case, in
contrast to the former one, the material contained fresh
defects. This is explained by the fact that, upon slow
cooling, the defects hardly appear and, even having
appeared, have time to interact with atoms of dissolved
chemical elements. Furthermore, the samples were suc-
cessively subjected to strain aging at 400°C for 10 h and
to thermomagnetic treatment at 400°C for 15 min in an
alternating magnetic field with a frequency of 50 Hz
and an amplitude of 10 kA/m. After each treatment, we
measured the magnetic-hysteresis loops and deter-
mined Hc (see table).

After various thermal treatments, all the samples
exhibited usual (without kinks) magnetization curves.
The absence of kinks in the curves indicates that, for an
alloy subjected to strain aging in chosen treatment

Effect of thermal treatment on the quantity Hc, A/cm, in
(Fe−3% Si) alloy

Treatment

Cooling after high-tem-
perature annealing

slow rapid

High-temperature annealing 0.19 0.26

High-temperature annealing + strain 
aging

0.19 0.22

High-temperature annealing + strain 
aging + thermomagnetic treatment

0.18 0.10
002 MAIK “Nauka/Interperiodica”
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regimes, only the ordering stage takes place, which
determines the effect of thermomagnetic treatment.

The significant positive effect of the thermomag-
netic treatment can be caused by the following reasons.

1. In Fe–3%Si alloy at the stage of ordering under
strain aging, there appear microvolumes of the type of
Guinier–Preston zones (clusters) with an elevated sili-
con content and the B2 (FeSi) superstructure. The clus-
ters that appeared can have the shape of globules (when
the temperature of strain aging is above the Curie
point), since such a shape corresponds to a state with a
minimum surface energy. The appearance of anisotro-
pic clusters (when the temperature of strain aging is
below the Curie point) oriented along the domain mag-
netization (similar to precipitated particles in [8, 9]) is
also possible. The clusters are distributed throughout
the volume of the material in accordance with a defect
structure (but rather chaotically) and, according to [10],
have dimensions on the order of several nanometers.

The lowering of Hc under strain aging is caused by
partial relieving internal stresses, which is associated
with a decrease in the number of defects and a redistri-
bution of the remaining defects into low-energy config-
urations, as well as due to the stress relaxation in the
process of interaction between defects and atoms of
dissolved elements.

2. Under thermomagnetic treatment, the magnetic
field reorients the axes of pairs of nearest silicon atoms
in clusters so that the angle between the axes and the
field direction becomes minimal. We propose one pos-
sible mechanism responsible for the reorientation of
axes of silicon-atom pairs, namely, the jump of a part of
the silicon atoms from central sites of a cubic lattice to
its vertices. This process occurs due to the existence of
thermal vacancies in the material. The state when sili-
con atoms are situated in the cube vertices (i.e., direc-
tional ordering) is nonequilibrium and, thermally
unstable. Therefore, upon heating or cooling in the
absence of a magnetic field, silicon atoms in the alloy
come back to their previous sites, and the effect of ther-
momagnetic treatment disappears, which is observed
experimentally.

According to [3], the larger the number of pairs of
nearest silicon atoms, the higher the effect of thermo-
magnetic treatment. Therefore, we should expect that
its maximum effect would correspond to complete
ordering in the case of the stoichiometric alloy compo-
sition. However, as was shown for Fe–Ni alloys [11],
the maximum effect under thermomagnetic treatment is
observed in an alloy containing a significantly lower
nickel content compared to the stoichiometric compo-
sition. Hence, first, the maximum effect of thermomag-
netic treatment is attained when the number of pairs of
nearest atoms of a dissolved element is optimal (conse-
quently, when the number of clusters with superstruc-
ture is also optimal), which holds for a certain but non-
stoichiometric alloy composition. Second, the effect of
thermomagnetic treatment depends not only (and in any
DOKLADY PHYSICS      Vol. 47      No. 1      2002
case, insignificantly) on the reorientation of axes of
pairs of a dissolved-element atoms, since the maximum
effect of the thermomagnetic treatment with respect to
µmax exceeds by a factor of three the effect obtained in
the case of reorienting the maximum possible number
of pairs [11].

3. Under thermomagnetic treatment, globular clus-
ters formed in the process of strain aging acquire an
anisotropic shape, while anisotropic clusters reorient.
In both cases, they become extended along the direction
of an applied external field, which leads to a decrease in
the free energy of the system because of reducing the
magnetostatic energy and an increase in µmax. Probably,
this is the anisotropy of the shape of clusters oriented
along the magnetic field that causes the maximum
effect with respect to µmax in [11].

Note that Hc and P can be unchanged or can even
rise. This is associated with the chaotic location of clus-
ters, which stabilizes the magnetic domain structure.

4. Estimates for the effect of an external magnetic
field on strain aging were performed in [12]. On the
basis of these estimates, it is possible to assume that,
under thermomagnetic treatment in an alternating mag-
netic field, the magnetoelastic interaction between clus-
ters, impurities, and defects (inhomogeneities) with
moving walls of magnetic domains takes place. The
result of this interaction is the redistribution of the inho-
mogeneities mentioned above throughout the alloy vol-
ume. They migrate, forming narrow alternating regions
(enriched by clusters, impurities, and defects) that pen-
etrate through the bulk of the sample (or a grain) and
are extended along the field direction. The distances
between these regions are specified by the amplitude of
the domain-wall vibrations under the thermomagnetic
treatment. The occurrence of such regions additionally
increases µmax and decreases Hc and P because of the
destabilization of the magnetic domain structure, since
the motion of domain walls in the process of magneti-
zation reversal occurs in pure volumes free of clusters,
impurities, and defects.

In addition, upon cooling, the samples undergo
uniaxial tension due to the difference in thermal-expan-
sion coefficients of the regions of aggregating inhomo-
geneities and pure volumes, which will still more
strongly reduce Hc and P. As a result, after the high-
temperature annealing of a rapidly cooled alloy, Hc is
lowered down to a value significantly smaller than that
obtained for an alloy cooled slowly (see table).

Probably, similar processes also occur under both
thermomagnetic treatment in a constant magnetic field
and thermomechanical treatment. In all these cases, the
motive force responsible for the processes of formation,
redistribution, and modification of cluster shapes, reori-
entation of axes of pairs of nearest atoms of dissolved
elements, as well as redistribution of impurities and
defects, is uniaxial tensile stress. In the case of the ther-
momagnetic treatment in a constant magnetic field, the
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cause of uniaxial tensile stress is a positive magneto-
striction. The validity of the above statement is con-
firmed by the transformation of cube-shaped particles of
the ordered phase in a lamel under the creep process [13].

Thus, a new concept explaining the effects of ther-
momagnetic and thermomechanical treatments is pro-
posed. The essence of this concept (in our approach)
consists in the fact that, along with existing models,
regularities in strain aging and in the interaction
between the magnetic-domain walls with both atoms of
dissolved elements and defects of the crystal lattice is
used.
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1. According to the ideas of physical mesomechan-
ics [1, 2], the surface layers of loaded solids correspond
to an important mesoscopic structural level of deforma-
tion. In the case of cyclic loading, plastic strain develops
mainly in the near-surface layers of a material [3–6].
This fact causes a determining role of the surface in the
nucleation and development of fatigue fracture. Inves-
tigations of the mechanism of cyclic deformation on the
mesoscale level [7–9] show that the main bulk of a
specimen experiences only elastic strain under cyclic
loading, while its surface layers undergo an alternating
tension–compression in the plastic domain. In develop-
ing such strain, two effects play a fundamental role.
First is the Bauschinger effect, which is accompanied
by accumulating a significant degree of plastic strain in
the surface layers for a large number of loading cycles.
Second is the character of conjugation between the
plastically deformed surface layer and an elastically
deformed substrate (the effect of strain incompatibil-
ity), which leads inevitably to the nucleation of fatigue
cracks in the near-surface layer.

This study is devoted to the investigation of the mech-
anism for developing the fatigue fracture in the surface
layer of aluminum polycrystals under cyclic loading.

2. As a material for investigation, we used A6 com-
mercial aluminum. Flat dumb-bell specimens were of
40 × 8 × 1 mm in size of the gage section. For a large-
scale observation of the pattern of nucleation and devel-
opment of the surface strain and fracture, the specimens
were previously treated to obtain a coarse-grained
structure. Individual surface grains were 8–15 mm long
and 2−7 mm wide. The loading was performed by alter-
nating bending, which predominantly provided strain
only in surface layers of the specimen. As a quantitative
characteristic of fatigue, we took the number Nf of
cycles to fracture. For obtaining extended patterns of
the strain mechanism in the surface layers at the
mesolevel, we used montages of optical images of the
deformed-specimen surface, obtained with a scanning

Institute of Strength Physics and Materials Science, 
Siberian Division, Russian Academy of Sciences, 
Akademicheskiœ pr. 2/1, Tomsk, 634021 Russia
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optical microscope. In addition, we analyzed fields of
displacement vectors, which were obtained employing
the TOMSC optical television measuring complex [10].

3. In Fig. 1, we show a typical pattern of slip traces
and nucleation of surface cracks in coarse grains A and
B in the surface layer of a flat aluminum specimen for
the number N = 7.6 × 106 of loading cycles. The follow-
ing features of developing the plastic strain and the
fatigue cracks in the surface layer are typical.

The first plastic shears develop in a coarse grain A
located near the immobile grip, where a maximum
amplitude of bending is set. These shears arise alterna-
tively on the opposite boundaries of the grain A and
propagate towards one another. The front of shears
moves along the grain according to the switching-wave
scheme.

When the plastic strain completely envelopes the
grain A, the shears in the adjacent grain A begin to
develop along the conjugate directions of maximum
tangential stresses τmax. The primary shears along a
lengthy axis of the grain B develop the most intensely.
The shear in the conjugate direction τmax distributed
more rarely superimpose onto the primary ones.

The approach of the front of intense primary shears
in the grain B to the strengthened grain A induces the
initiation of a strong bending–torsion effect in the near-
boundary band C. In this zone, a powerful kink band
develops; the accommodation shears propagate in this
band as the mechanism of material rotation.

For a reasonably large number of loading cycles, the
surface tearing-mode shears arise in the band of intense
primary shears of the grain B. An enhancement of the
bending–torsion effect in the kink band C forms a pow-
erful concentrator of stresses in this band, which, at
first, initiates the tearing-mode shear in the adjacent
grain A and then the accommodation crack in the kink
band itself. The crack in the kink band C connects
cracks in the grains A and B nearest to each other. This
process is completed by the formation of an extended
zigzag surface crack enveloping the entire surface of
the specimen.

The directions for all the types of shears in the
region of the tips of primary-surface cracks in the
grain B for their propagation in the kink band C are
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Development of shears, a kink band ë, and microcracks in the grains Ä and Ç of aluminum after N = 7.6 × 106 loading
cycles, 30×.
identified by constructing the fields of displacement
vectors. The typical pattern of such a vector field is
shown in Fig. 2 for the specimen subjected to alternat-
ing bending with a loading-cycle number N + ∆N =
3.22 × 106 + 50. This vector field is characterized by the
following features.

The dominating directions of the displacement
vectors are the conjugate directions τmax or their vector
sums.
Within the presented surface fragment, the strain is
developed in strictly specified sites. In each of the sites
(B, B', C, and C '), the shears manifest themselves
mainly along one of the conjugate directions τmax or
their vector sum.

In the site B, intense primary shears with a vector a
prevail. In the site B', two types of primary conjugate
shears develop with the vectors ‡ and b. In the site C,
the accommodation shears prevail in the kink band with
a vector c. The extended zone C ' of the surface ahead of
DOKLADY PHYSICS      Vol. 47      No. 1      2002
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Fig. 2. (a) Microstructure and (b) the corresponding displacement-vector field after N = 3.22 × 106 + 50 loading cycles.
the crack tips is characterized by the vector sum of pri-
mary shears with the vector ‡ and accommodation
shears with the vector Ò.

The experimental results displayed in Figs. 1 and 2
make it possible to assume the following mechanism of
developing the shears in a surface grain B of the speci-
men under cyclic loading (Fig. 3).

For loading half-cycles inducing plastic compres-
sion in the surface layer, intense primary shears are
developed in this layer along the τmax direction with the
vector ‡. The longitudinal component of these shears
causes compression in the surface layer. The transverse
component of the compression shears induces local
bending of the specimen. In this case, counteracting
stresses arise in the elastically deformed substrate,
which decelerate the primary shears in the surface
layer.

For the loading half-cycles inducing the plastic ten-
sion of the surface layer, the shears develop with the
vector b along the direction conjugate to τmax. Their
longitudinal component induces a tension in the surface
layer that causes a relaxation of residual compression
stresses in this layer. According to the Bauschinger
effect, the surface compression shears continue to
develop under the subsequent loading. This process is
cyclically repeated during the alternating bending.
OKLADY PHYSICS      Vol. 47      No. 1      2002
At the same time, the transverse components of the
vectors ‡ and b are collinear. Thus, the bending stresses
caused by the surface compressive and tensile shears

Fig. 3. Scheme of development of “primary compression
shears” a, “conjugate tension shears” b, and localized
accommodation slip Ò in the kink band ë of the surface
grain Ç.
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are summed. This fact forms an intense concentrator of
stresses in the bending–torsion zone. The counteracting
image forces associated with this concentrator generate
the kink band with localization of accommodation

(a)

(b)

(c)

εxy

x

ωz0.0058
0.0125

–0.0025

Fig. 4. (a) Microstructure, (b) corresponding displacement-
vector field, and (c) distribution of shear component εxy and
rotation component ωz of the distortion tensor after N =

5.9 × 106 cycles of loading. The fatigue crack in the grain is
indicated by the arrow.
shears as the rotation mode of strain. In this case, the
local bending stresses relax.

A similar problem was analyzed theoretically in [11]
by numerically calculating a stress field generated by
the edge of the plastic-shear band near the crystal sur-
face. The results of the theoretical calculations and the
above experimental data agree well qualitatively. It
should be emphasized that the results displayed in
Figs. 1–3 convincingly illustrate the wave nature of the
basic act of plastic deformation: intense shears along τmax

in the surface layer of a loaded solid generate the kink
band as a rotation mode of the plastic-flow wave [2].

The experimental results under consideration and
the theoretical estimates make it possible to conclude
that the nucleation mechanism for surface tearing-
mode shear is associated with the effect of rotation of
the plastically deformed surface layer relative to the
elastically loaded substrate. Experimentally, such a
rotation was discovered, quantitatively measured, and
shown in Fig. 4. Here, it can be seen that the displace-
ment-vector field (Fig. 4b) is clearly separated into two
macrofragments by the fatigue crack propagated in the
direction of the intense primary sliding. It is character-
istic that this separation of the grain propagates far
ahead of the crack determining the trajectory of its fur-
ther development. This fact is clearly displayed in
Fig. 4c, where we show the strong localization of the
shear–rotation on the boundary of fragments ahead of
the crack. The theoretical possibility of such a rotation is
shown by the example of the model of motion of an infi-
nite series of screw dislocations in the slip plane [12].

The surface shears propagate in a polycrystal along
the conjugate directions τmax, which, probably, occurs
according to the Bain mechanism [13] by means of a
local rearrangement of various atomic configurations in
the surface layer. The propagation of the front of such a
rearrangement in the shear band is qualitatively similar
to the propagation of screw-dislocation pileups in the
surface layer. Therefore, the theoretical model [12]
most adequately represents the development of shear
bands in the surface layers of solids under deformation.

In this model, an infinite series of parallel screw dis-
locations with the Bürgers vector b is considered. The
dislocations are located in the xz plane along the z-axis
at equal h intervals [12]. The presence of pileups of
such dislocations in the xz plane causes the initiation of
significant microstresses in a medium with the shear
modulus µ. In the main, these microstresses are local-
ized in the layer ∆Û < 2h. The components σxz and σyz

of these stress tensors and related rotations ωzx and ωyz

have the form

(1)σxz
bµ
2h
------ y

y
----- 1 2 e

2πκ y
h

----------------– 2πκx
h

------------- 
 cos

κ 1=

∞

∑+ ,–=
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(2)

(3)

(4)

At distances y > 2h, the zero harmonic (k = 0) of the
component σxy determines macrostresses in the
medium containing a flat pileup of screw dislocations.
In passing through the slip plane, this harmonic under-

goes a jump  and the corresponding rotation-vector

component ωxz undergoes a jump .

When passing through the plane of screw-disloca-
tion pileup, the jumps of average shear-stress and rota-
tion fields cause two very important consequences.

1. The jump ωzx is the angle of disorientation of the
surface layer in the shear band with the elastically
loaded substrate. In other words, the interface between
the plastically deformed surface layer and the elastic
substrate is the crystal-torsion boundary with an angle

ω = – .

2. The jump of shear stresses σxz =  forms a stress

concentration on the torsion boundary, which is charac-
terized by the shear–rotation scheme.

The former consequence agrees well with the
known experimental result [14], according to which the
uniaxial tension of flat whiskers is always accompanied
by their twisting. The surface-layer rotation in the shear
band relative to an elastically loaded substrate arising in
the alternating bending explains the nucleation of the
surface fatigue cracks of the longitudinal shear.

The latter consequence is associated with the
appearance of the concentration of the shear–bending–
torsion stresses in the primary-shear band. These
stresses cause corrugation of the primary-shear band
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and the formation of the kink bands in it (Fig. 1). These
bands can have various orientations relative to the pri-
mary shears. This fact is due to the strongly inhomoge-
neous field of internal stresses arising in an elastically
deformed heterogeneous substrate.

Following the development of surface cracks in the
primary-shear band, similar surface cracks appear in
the kink bands (Fig. 1). Then, the main fatigue crack
propagates in a zigzag manner along the surface cracks
of the longitudinal shear in the primary-shear bands and
of the kink band inducing fatigue fracture of the material.
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In the case of tension in thermoplastic polymers filled
with mineral particles at a certain filler content, an abrupt
drop of the material deformability occurs, caused by the
transition from plastic to brittle fracture [1–5]. In the
present study, we have established that the embrittle-
ment of filled thermoplastics is associated with the for-
mation and propagation of a neck in the matrix polymer
under tension. If the matrix polymer is deformed mac-
rouniformly and the neck does not form, then introduc-
ing a filler does not result in the embrittlement of the
composite material.

In order to prepare composite materials, we used a
copolymer of ethylene and vinyl acetate (CEVA) of the
11306-075 trademark. A rubber powder was used as a
filler. The powder consisted of about 50, 10, and
10 wt % of isoprene; divinyl; and methylstyrene
caoutchoucs, respectively, as well as 30 wt % carbon
black. The size of rubber particles was 100 < d <
500 µm.

Mixing the CEVA with rubber particles was per-
formed in a single-worm laboratory extruder. The con-
centration of the rubber powder varied within the limits
from 1.7 to 88 vol % (2 to 90 wt %). From the mixtures
obtained, plates 2 mm thick were prepared by pressing.
Two-sided blades with working surfaces of 5 × 35 mm
were cut out from these plates.

Mechanical tests of the composites were carried out
with the help of a 2038P-005 dynamometric facility at
the deformation rate of 20 mm/min. The CEVA crystal-
line structure and CEVA-based composites were stud-
ied at a heating rate of 10 K/min by the method of dif-
ferential scanning calorimetry with the use of a
TA 4000 thermal analyzer manufactured by the Mettler
Company.

Calorimetric analysis has shown that the presence of
rubber particles does not change the crystallinity degree
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Russian Academy of Sciences, Profsoyuznaya ul. 70, 
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or melting temperature of the polymeric matrix. There-
fore, the elastic filler does not affect the crystalline
structure of the material, and it is identical with the
original structure of the unfilled CEVA.

The curves for tension of the original CEVA and
composites prepared on its base are displayed in Fig. 1.
A characteristic feature of the deformation of the unfilled
polymer is the absence of a yield tooth (curve 1). The
copolymer deforms macrouniformly without a neck
formation, and the stress in it monotonically increases
with deformation. With deformation, plastic strains are
developed in the polymer along with reversible strains.
After fracture of the unfilled polymer under a deforma-
tion of 830%, the residual elongation reaches 650%.
After filling the CEVA by rubber particles, the pattern
of the tension diagram does not vary. The tension dia-
gram of a composite containing more than 30 vol % of
the rubber powder is similar to tension diagrams for
rubber (curves 2 and 3).

Figure 2 exhibits the composite strength as a func-
tion of the volume fraction of rubber particles. In the

1

2

3

10

5

0 500 1000
ε, %

σ, MPa

Fig. 1. Deformation diagram for (1) a copolymer of ethyl-
ene with vinyl acetate and composite materials based on this
copolymer and containing (2) 26 and 66 vol % of rubber
particles.
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entire content region, a monotonous decrease of the
composite-material strength is observed.

The dependence of the material fracturing deforma-
tion on the volume fraction of rubber particles is shown
in Fig. 3. The shape of the ε–Vf curve is similar to the
strength curve. The material deformability monotoni-
cally decreases with increasing filler concentration.
Within the entire range of the filling degree, the fractur-

12

8

4

0 0.2 0.4 0.6 0.8 1.0
Vf

σ, MPa

Fig. 2. Strength of a composite material based on the copol-
ymer of ethylene with vinyl acetate as a function of the vol-
ume content of rubber particles.
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300
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Fig. 3. Dependence of the relative elongation in the case of
a rupture of a composite material based on the copolymer of
ethylene with vinyl acetate on the volume content of rubber
particles.
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ing deformation exceeds 200%, and the composite
material does not become brittle.

The embrittlement is typical for a number of filled
polymers, e.g., high-density polyethylene, polypropy-
lene, polycarbonate, polyvinyl chloride, polyethylene,
and terephthalate [5]. According to concepts concern-
ing the embrittlement mechanism for polymers devel-
oped in [6–8], this phenomenon is associated with the
transition from the propagation of a neck along a sample
to a fracture in the process of the neck formation [7].
When using a thermoplastic matrix that deforms with-
out formation of a neck, no embrittlement of the mate-
rial must be observed. This assumption is confirmed by
the results of our study.

The absence of the composite-material embrittle-
ment was also observed when studying deformation
properties of polytetrafluoroethylene filled with copper
particles [8]. Polytetrafluoroethylene is deformed with-
out the neck formation. The deformation properties of
the given composite material monotonously decreased
with increasing filler content. The behavior of caoutch-
ouc with a rigid mineral filler is similar [7].

Thus, we may conclude that the embrittlement of
filled polymers, i.e., the abrupt decrease in the compos-
ite-material deformability, is unambiguously associ-
ated with the formation and propagation of a neck in the
matrix polymer under tension. In the case of a mac-
rouniform deformation of a polymer, introducing an
arbitrary amount of a filler into its bulk does not lead to
the embrittlement of the given composite material. This
conclusion is valid for both vulcanized caoutchoucs
being deformed without the neck formation and linear
thermoplastic polymers.
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Within the framework of the general nonlinear the-
ory of elastic shells, we found families of finite defor-
mations for which the original two-dimensional bound-
ary value problem of statics is reduced to the boundary
value problem for a system of ordinary differential
equations. These families represent exact solutions to
nonlinear equilibrium equations and are applicable to
shells with the shape of a helical surface. Shells of rev-
olution and cylindrical (prismatic) shells are special
cases of such thin-walled shells. The solutions con-
structed describe, in particular, severe torsional and
bending deformations of helical tubes and self-twisted
prismatic shells.

BASIC RELATIONSHIPS

Let σ be the surface of a shell in an original (refer-
ence) configuration. The surface is specified in the
Gaussian coordinates qα (α = 1, 2). The radius vector r
of a point on the surface σ is r(q1, q2) = x1i1 + x2i2 + x3i3,
where xk (k = 1, 2, 3) are Cartesian coordinates of the
point and ik is a fixed orthonormal vector basis. The
coefficients of the first and second quadratic forms of
the surface σ are determined by the relationships

(1)

Here, n is the unit normal to σ, and  is the Kronecker
delta. The surface Σ of the deformed shell is specified
in the same coordinates qα, and the position of a point
at Σ is specified by the radius vector

where Xk are Cartesian coordinates of a point for which
the normal to Σ is denoted by N. The coefficients of the

gαβ rα rβ, bαβ⋅
∂rα

∂qβ-------- n, rα⋅ ∂r

∂qα--------,= = =

rβ rα⋅ δα
β , rβ n⋅ 0.= =

δα
β

R q1 q2,( ) X1i1= X2i2 X3i3,+ +
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quadratic forms for the surface Σ are given by the equa-
tions

(2)

For a shell of the Love type, the equilibrium equa-
tions in terms of resultant stresses and couples take the
form [1–4]

(3)

Here, F is the vector of an external force load applied to
Σ; ναβ and µαβ are the tensors of resultant stresses and
couples, respectively; and ∇ α stands for the covariant
derivative in the metric Gαβ . The constitutive relations
for an elastic shell take the form [1]

(4)

In the case of a homogeneous isotropic shell, the
specific (per unit area of the surface σ) strain energy W
is a function of the following nine quantities [1]:

(5)

Gαβ Rα= Rβ, Bαβ⋅
∂Rα

∂qβ---------- N,⋅=

Rα
∂R

∂qα--------, Rβ Rα⋅ δα
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β∇ αµαδ– Fβ+ 0, β 1 2,,= =
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F F N, Fβ⋅ F Rβ,⋅= =

Bδ
α Gαγ Bγδ, Gαγ Rα Rγ.⋅= =

χ G
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----ναβ 2

∂W
∂Gαβ
------------,=

χ G
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002 MAIK “Nauka/Interperiodica”



GENERAL SOLUTIONS TO THE NONLINEAR STATIC PROBLEM FOR ELASTIC SHELLS 75

                 
We assume that the boundary δΣ of the deformed
shell is loaded by a distributed force and a distributed
moment with the linear densities Q = QαRα + QN and
d × N, respectively. In this case, the boundary condi-
tions take the form [1]

(6)

Here, m and t are, respectively, the unit vectors of a
normal and a tangent to the boundary contour ∂σ of the
undistorted shell, and s is the current arc length in the
curve ∂σ.

In what follows, we consider general solutions to
equilibrium equations (3). These solutions applicable
to shells having a specific geometric shape represent
families of the finite deformations for which the origi-
nal nonlinear system of partial differential equations
with the two independent variables q1 and q2 is reduced
to a system of ordinary differential equations (i.e.,
equations in unknown functions of a single variable).

TORSION AND TENSION 
OF A SELF-TWISTED CYLINDRICAL SHELL

We assume that the original shape of a shell is a heli-
cal surface. The surface is formed by a screw motion of
a plane curve, described by the equations x1 = η1(ξ) and
x2 = η2(ξ), along the x3-axis. Introducing the Gaussian
coordinates q1 = x3 and q2 = ξ, we can write out the
equation for the surface σ in the form

(7)

where ψ0 is a constant.
The shell whose surface is given by Eq. (7) will be

referred to as a self-twisted cylindrical shell. For
ψ0 = 0, the shell becomes cylindrical and has an arbi-
trary cross section. With due regard for Eq. (7), we have

bαβ gακ gβλbκλ , gβλ rβ rλ .⋅≡≡

G
g
----mα ναβ 2Bδ

βµαβ–( ) ε Qβ Bα
βdα–( ), β 1 2,,= =

G
g
----mαmβµαβ εmαdα ,=

G
g
----mβ∇ αµαβ d

ds
----- G

g
----ε 2– τδmβGαδµαβ

 
 +

=  εQ
d
ds
----- ε 1– τδdδ( ),+

d dαRα dβRβ, m mαrα ,= = =

t τδrδ, ε  =  τ 
α τ 

β G αβ .=

r q1 q2,( ) η1 ξ( )e1= η2 ξ( )e2 x3i3,+ +

e1 i1 ψ0x3cos= i2 ψ0x3,sin+

e2 i1 ψ0x3sin–= i2 ψ0x3,cos+

r1 ψ0 –η2e1 η1e2+( ) i3, r2+ η1' e1 η2' e2,+= =
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sider the following deformations of a self-twisted shell:
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Using Eq. (9), we find
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Based on Eqs. (2) and (10) and taking into account
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 form an orthonormal
basis, we can easily prove that the quantities 
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riant derivatives 
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, depend only on the coordinate 
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. In
the case of an isotropic uniform shell, it follows
from (4) and (5) that the tensors 

 

ν
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 and 

 

µ

 

αβ

 

 are func-
tions of the single variable 

 

ξ

 

. We then assume that the
loads 

 

Q

 

β

 

, 

 

Q

 

, and 

 

d

 

α, which are applied to the shell edges
ξ = ξ1 and ξ = ξ2 , as well as the external surface loads
Fβ and F, are independent of the x3-coordinate. In this
case, equilibrium equations (3) and boundary condi-
tions (6) at ξ = ξ1 and ξ = ξ2 compose the nonlinear
boundary value problem for a system of ordinary dif-
ferential equations with the unknown functions v k(ξ)
(k = 1, 2, 3).
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E1 i1 ψx3cos= i2 ψx3,sin+

E2 i1 ψx3sin–= i2 ψx3,cos+
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TORSION OF A CYLINDRICAL SHELL 
WITH A DISLOCATION

In order to consider a prismatic (cylindrical) shell
with its generatrices parallel to the xk-axis, we intro-
duce the circular cylindrical coordinates r, ϕ, and z:
x1 = rcosϕ, x2 = rsinϕ, and x3 = z, where x1, x2, and x3

are Cartesian coordinates. The cross section of the sur-
face σ at z = const is described by the function r(ϕ).
Introducing the Gaussian coordinates q1 = z and q2 = ϕ,
we have

(11)

We then denote the cylindrical coordinates of a
point on the deformed shell surface Σ by R, Φ, and Z
(X1 = RcosΦ, X2 = RsinΦ, and X3 = Z) and discuss the
following deformations of the shell:

(12)

Formulas (12) describe axial torsion combined with
and out-of-plane tension and out-of-plane shear, with ψ
being the angle of torsion per unit length. If the shell
cross section is a closed curve, then the functions R, v,
and w should be 2π-periodic and, hence, the quantity
2πa should be coincident with the length of the Bürgers
vector for the screw dislocation. From Eqs. (12), we
have

(13)

It follows from (13) that the quantities Gαβ, Bαβ , and

 are independent of the variable z. Hence, in the
case of an isotropic cylindrical shell, Eqs. (3) are
reduced to a system of ordinary differential equations
in the unknown functions R(ϕ), v (ϕ), and w(ϕ).

We now consider the problem of a screw dislocation
in the closed circular cylindrical shell whose original
cross section has the radius r0 . As is easily verified with
the help of formulas (11) and (13), in this case, there
exists an isometric deformation (i.e., bending) of the

r1 i3= , r2 r 'er reϕ ,+=

g11 1, g12 0, g22 r '2 r2,+= = =

er i1 ϕcos= i2 ϕsin , eϕ+ i1 ϕ i2 ϕ .cos+sin–=

R R ϕ( ), Φ ϕ ψz v ϕ( ),+ += =

Z λz= aϕ w ϕ( ), ψ a λ, ,+ + const.=

R1 λ i3= ψReΦ,+

R2 a w '+( )i3 R 'eR R 1 v '+( )eΦ,++=

eR = i1 Φcos i2 Φ, eΦsin+  = i1 Φ i2 Φ,cos+sin–

G11 λ2= ψ2R2, G12+ λ a w '+( ) ψR2 1 v '+( ),+=

G22 a w '+( )2= R2 1 v '+( )2 R '2.+ +

Γδλ
β

cylindrical surface, which is specified by the relation-
ships

(14)

According to (14), this isometric deformation
involves the torsion of the cylinder and a decrease in its
radius.

BENDING 
OF A SELF-TWISTED CYLINDRICAL SHELL

We assume that the axis of the helical surface σ of
an elastic undistorted shell is parallel to the vector i1 . In
this case, the surface σ is specified by the relationships

(15)

From (15), with q1 = x1 and q2 = ξ, we have

(16)

We describe the shell deformations by the following
relations:

(17)

As is seen from Eqs. (17), the surface Σ of the
deformed shell is a helical surface with the axis parallel
to the vector i3 . Using Eqs. (17), we arrive at

(18)

R ϕ( ) R0 r0
2 a2– , v ϕ( ) 0, w ϕ( ) 0,= = = =

ψ a

r0 r0
2 a2–( )

-------------------------, λ– 1 a2

r0
2

-----– .= =

r x1i1= η2 ξ( )j2 η3 ξ( )j3,+ +

j2 i2 ψ0x1cos= i3 ψ0x1,sin+

j3 i2 ψ0x1sin–= i3 ψ0x1.cos+

r1 i1= ψ0η3j2– ψ0η2j3+ , r2 η2' j2 η3' j3,+=

n n1 ξ( )i1= n2 ξ( )j2 n3 ξ( )j3.+ +

X1 u1 ξ( ) ωx1cos= u2 ξ( ) ωx1,sin–

X2 u1 ξ( ) ωx1sin= u2 ξ( ) ωx1,cos+

X3 u3 ξ( )= lx1+ , ω l, const.=

R1 ωu1I2= ωu2I1– li3,+

R2 u1' I1 u2' I2 u3'+ i3,+=

N N1 ξ( )I1= N2 ξ( )I2 N3 ξ( )i3,+ +

∂R1

∂q1
--------- ω2 u1I1 u2I2+( ),–=

∂R1

∂q2
--------- ω u1' I2 u2' I1–( ),=

∂R2

∂q2
--------- u1''I1 u2''I2 u3''i3,++=

I1 i1 ωx1cos= i2 ωx1,sin+

I2 i1 ωx1sin–= i2 ωx1.cos+
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It follows from relationships (1), (2), (16), and (18)

that the quantities gαβ, bαβ, Gαβ, Bαβ , and  are inde-
pendent of the x1 coordinate. Hence, equilibrium equa-
tions (3) become ordinary differential equations in the
unknown functions uk(ξ) (k = 1, 2, 3).

BENDING AND TORSION OF A HELICAL SHELL

We now consider the helical surface formed by a
screw motion of a given plane curve. The curve lies in
a plane containing the x3-axis of revolution and is
defined by the equations x3 = ζ(t) and r = ρ(t), where r
is the distance to the axis of revolution. The equation of
the helical surface takes the form

(19)

where ϕ is the polar angle in the circular cylindrical
coordinates (r, ϕ, x3). The elastic shell with the surface
σ given by Eq. (19) will be referred to as a helical shell.
In the case of l0 = 0, the surface becomes a sector of a
surface of revolution. Introducing the Gaussian coordi-
nates q1 = t and q2 = ϕ, we have

(20)

We then analyze a two-parameter family of defor-
mations for which the deformed surface Σ remains heli-
cal with its axis parallel to the vector i3:

(21)

It follows from Eqs. (21) that

(22)

Γδλ
β

r ρ t( )er= ζ t( )i3 l0ϕ i3,+ +

er i1 ϕcos= i2 ϕ , l0sin+ const,=

r1 ρ'er= ζ 'i3, r2+ ρeϕ l0i3,+=

eϕ i1 ϕsin–= i2 ϕ ,cos+

n n1 t( )er= n2 t( )eϕ n3 t( )i3.+ +

X1 α t( ) κϕcos= β t( ) κϕ ,sin–

X2 α t( ) κϕsin= β t( ) κϕ ,cos+

X3 γ t( )= Lϕ , L κ,+ const.=

R1 α 'F1= β'F2 γ'i3,+ +

R2 κβF1 κα F2 Li3,++–=

F1 i1 κϕ i2 κϕ ,sin+cos=

F2 i1 κϕ i2 κϕ ,cos+sin–=

∂R1

∂q1
--------- α''F1 β''F2+ γ''i3,+=

∂R1

∂q2
--------- κβ'F1 κα 'F2,+–=

∂R2

∂q2
--------- κ2 αF1 βF2+( ),–=

N N1 t( )F1 N2 t( )F2 N3 t( )i3.++=
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As before, it follows from Eqs. (4), (5), (20), and
(22) that, if the external loads Fβ, F, Qβ, Q, and dα are
independent of the variable ϕ, then the equilibrium
state of the shell is determined by solving the boundary
value problem for the system of ordinary differential
equations in the unknown functions α(t), β(t), and γ(t).

It is worth noting that expressions (21) involve the
following important particular cases:

(1) κ = 1, l0 = L = 0 (torsion of a shell of revolution);

(2) κ = –1, l0 = L = 0 (torsion of a shell of revolution
turned inside out);

(3) κ > 0, l0 = L = β(t) = 0 (pure bending of a sector
of a shell of revolution); and

(4) κ > 0, l0 = L = 0 (torsion of a shell of revolution
containing a disclination).

DEFORMATION ACCOMPANIED 
BY A VARIATION IN THE AXIS 

OF A HELICAL SHELL

We consider the following two-parameter deforma-
tions of a helical shell:

(23)

In this case, a helical surface σ, which is subjected
to such deformations, with its axis parallel to the vector
i1 is transformed into a helical surface Σ with its axis
parallel to the vector i1.

The subsequent arguments concerning the reduction
of the problem under consideration to a one-dimen-
sional boundary value problem for the functions U(t),
V(t), and P(t) are similar to those given above.
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Using approximate methods of nonlinear mechan-
ics, we construct a theoretical model of the polar
motion that satisfies the astrometric data of the Interna-
tional Earth-Rotation Service (IERS). This model is
shown to rationally explain the observed characteristics
of a complicated oscillatory process executed by the
angular-velocity vector with respect to a coordinate
system associated with the Earth. On the basis of the
IERS data and using the least-squares technique, we
determine parameters of the system, determine the tra-
jectory of the pole, and predict its motion. The dynamic
model is found to satisfactory describe the overall
motion and its fundamental oscillations (free nutation),
forced oscillations (annual nutation), and irregular rel-
atively slow drift of the figure-Earth axis (the trend); the
model allows further refinement if accessory factors are
taken into account.

1. The construction of the mathematical model
that satisfies the astrometric data is of interest in nat-
ural science and technology. The problem has an
age-old history pointing to the lack of a rational
approach to its solution; the theories and models
available do not account for the essence of the regular
mechanical oscillation process [1–3]. The use of only
seasonal geophysical factors and an unjustified
complication of the model for explaining the
mechanism of the moment-of-force action without
necessary estimates cannot be considered as conclu-
sive in a mechanical aspect. A very short-term pre-
diction (for 100 days) requires weekly correction,
taking into account the IERS operational data
(http://hpiers.obspm.fr/eoppc/eop/eopc04/eopc04-xy.gif).

In this paper, we substantiate the possibility of con-
structing a simple dynamic model using the methods
of theoretical and celestial mechanics. The realization
proposed for the first-approximation model involves a
small number of parameters determined from obser-
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vations and makes it possible to reliably (from the sta-
tistic standpoint) interpret essential characteristics of
the pole trajectory and give a reasonably accurate pre-
diction for long-time intervals (from one to a few
years).

The principal component of oscillations (free nuta-
tion or Chandler wobble) has an amplitude of ~0 2 and
a period T1 = 433 ± 2 sidereal days. At the Earth’s sur-
face, this trajectory is close to a circumference with the
center corresponding to the figure axis; the radius is
approximately 6.3 m. The characteristics of the oscilla-
tions are determined by the inertia tensor of the
deformed Earth, with allowance for an “equatorial pro-
tuberance” and by the axial-rotation velocity [1–3]; the
refined model of the Chandler wobble is constructed
in [4]. The amplitude is determined by initial data and,
as observations of the last decade show, is quite stable:
no noticeable tidal evolution occurs [4].

Frequency analysis testifies to the fact that there is a
regular annual component of oscillations with a period
Th = 365 sidereal days and an amplitude of ~0.08″. The
summation of the Chandler and annual components
leads to beats with a period of TΣ ≈ 6 years. The trajec-
tory represents an either winding or unwinding spiral
with minimum ~0.12″ (~3.8 m) and maximum ~0.28″
(~8.8 m) radii. These values are essential and must be
taken into account when solving the modern astromet-
ric and navigational problems. The polar-motion pre-
diction is a topical, very interesting, and complicated
problem. According to the opinion of specialists,
causes and the mechanism of excitation of annual oscil-
lations are not explained; it is customary to relate them
to seasonal geophysical phenomena (atmospheric pro-
cesses and oceanic tides) [1].

Classical investigations in the context of the hard-
Earth model were carried out by considering a moment
of solar gravitational forces [2, 3]. However, such an
approach turned out to be inadequate and did not result
in revealing the mechanism of observed oscillations of
the angular-velocity vector with respect to the coordi-
nate system associated with the Earth. The authors
believe that the annual nutation oscillations can be
explained and calculated on the basis of additionally
taking into account the daily gravitational tides occur-
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ring in the deformable Earth. The simultaneous analy-
sis of the Euler dynamic and kinematic equations for
the inertia tensor deformed with the daily period in the
coordinate system associated with the Earth, with
allowance for the orbital motion and the figure-axis
inclination to the ecliptic plane, makes it possible to
establish the presence of the solar moment-of-force
action with an annual period relative to the equatorial
axes of inertia (see below). The necessary value of the
amplitude for this action attains Mh ≈ 1020 kg m2 s–2 and
leads to a relative variation of principal central
moments of inertia on the order of 10–5. This is almost
two orders of magnitude less than the quasi-steady
deformation adopted in the theory of deformable
Earth for substantiating the period T1 of the Chandler
wobble [1–4]. The effect of the lunar gravitational-
force moment is less by a factor of 20, which is
explained by a substantial difference in frequencies for
eigenmodes and external actions. Monthly-period
mutations of the pole virtually do not manifest them-
selves.

The axis drift for the figure of the Earth (the trend of
~0.5″ in the direction of ~90° to the west of Greenwich)
can be explained by off-diagonal components of the
inertia tensor. The relative value of these components is
~10–8 and lies outside the limits of accuracy for their
determination. The trend variations can be explained by
geotectonic processes with time constants on the order
of 103 years and by the effect of dynamic asymmetry
leading to the modulation of Chandler wobbles with a
period of about 220 years.

2. For constructing the first-approximation simpli-
fied mathematical model, small deformations of the
Earth are assumed to proceed mainly in the radial direc-
tion. In this case, the equations of rotation with respect
to the center of mass can be represented in the form of
the classical Euler equations with a variable inertia ten-
sor J [2–6]:

(1)

Here, w is the angular-velocity vector in the coordinate
system associated with the Earth (the reference sys-
tem), which approximately coincides with the principal
central axes of inertia J* of the “frozen” Earth with
allowance for the equatorial protuberance [2–4]. The
small inertia-tensor variations δJ are considered as con-
taining various harmonic components caused by the
effect of solar and lunar daily tides and, possibly, other
(annual, half-annual, monthly, half-daily, etc.) compo-
nents. The gravitational actions are taken as the main

Jẇ w Jw×+ M, w p q r, ,( )T ,= =

J J∗ δJ , J∗+ const,= =

J∗  = diag A∗ B∗ C∗, ,( ), δJ  = δJ t( ), δJ  ! J∗ .
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perturbing external moments of forces M causing the
nutation oscillations.

The Euler kinematic equations setting the orienta-
tion of the coordinate system associated with the Earth
about the orbital coordinate system are of the form

(2)

Here, ν(t) is the real anomaly, e is the orbital eccentric-
ity, and ω* is a constant determined by the gravitational
and focal parameters. While investigating equations (1)
and (2) in the situation corresponding to the polar
motion, the terms in equations (2), which are propor-
tional to ω0 , turn out to be essentially higher compared
to p and q (by a factor of approximately 300) and are the

defining factors for finding  and . In scientific liter-
ature, this important property was not noted, while the
above-indicated terms were discarded without proof.

The structure of expressions for components of the
moment of solar gravitational forces is of the form [7]

(3)

For calculating Mp, r, we make a cyclic permutation of
the subscripts p, q, and r in (3). Analysis of (3) shows
that the annual component of mutations of the pole can
be caused by the term involving the products γpγr and
γqγr  of direction cosines. For their calculation in the first
approximation, we integrate equations (2):

(4)

The second and higher harmonics in ν lead to values
that are smaller than the principal ones by a factor of
102–103, and, therefore, can be ignored. The value of
B* – A* is also considerably smaller than that of

θ̇ p ϕ q ϕ ω0 ν( ) ψ,sin–sin–cos=

ν̇ ω0 ν( ) ω* 1 e νcos+( )2,= =

ψ̇ = p ϕsin q ϕcos+
θsin

------------------------------------- ω0 ν( ) θ ψ, ecoscot–  = 0.0167,

ϕ̇ r p ϕsin q ϕcos+( ) θ ω0 ν( )
ψcos
θsin

-------------.+cot–=

θ̇ ϕ̇

Mq 3ω2 A∗ δA C∗ δC+( )–+( )γrγp[=

+ δJ pqγrγq δJ pr γr
2 γp

2–( ) δJrpγpγq–+ ] ,

ω ω* 1 e νcos+( )3/2,=

γp θ ϕ, γqsinsin θ ϕ, γrcossin θ.cos= = =

r r0, ϕ rt ϕ0, ν ω*t ν0,+≈+≈=

θ ν( )cos a θ0 ψ0,( ) ν ,cos=

θ 0( ) θ0 66°33 ′ , 0.4 a 1, 0 ψ0 2π,≤ ≤≤ ≤= =

θ θsincos b θ0 ψ0,( ) νcos d 3ν … ,+cos+=

0.4 b
4
3
---π–1, d  ! 1.≤ ≤
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Fig. 1. Interpolation of the pole trajectory for the eight-year interval of 1988–1995 (solid line); here, as in Figs. 2–4, dots correspond
to the IERS data.
C* − A* (by a factor of approximately 160). After aver-
aging over the fast phase ϕ, the estimate of terms in equa-
tions (1) for p and q leads to a simplified analytical model
of the form

(5)

Here, κp and κq are the average values of  and

, which can be slow functions. The quantities χp

ṗ N pq+ κqr2 3bω*
2 χ p ν ,cos+=

N p q, N≈ 2π
T1
------ 0.84ω*,≈=

q̇ Nq p– κ pr2 3bω*
2 χq ν ,cos––=

p 0( ) p0, q 0( ) q0.= =

δJ pr

B∗
----------

δJqr

A∗
----------
and χq are obtained by averaging over ϕ for the coeffi-
cients of cosν in the components of the moment of
solar gravitational forces; as was noted, they are caused
by the daily tides. The moments of the lunar gravita-
tional force are ignored due to their relatively low effect
on the nutation oscillations.

The right-hand sides of Eqs. (5) contain in an
explicit form harmonic action with the annual period,
which explains the mechanism of nutation oscillations
detected by the IERS observations. Although the sensi-
tivity of the coefficients κp, q is five orders higher than
that of χp, q , the regular mechanism of the annual
(moment-of-force) action with the indicated amplitude
Mh ~ 1020 kg m2 s–2 by means of internal geophysical
factors seems to be inconsistent in the mechanical
aspect.
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Fig. 2. Interpolation of the pole trajectory for the four-year interval of 1988–1991 and the prediction for 1992–1995 (solid line).
3. The values of the coefficients κp, q and χp, q and the
initial values p0 and q0 are unknown: they should be
determined on the basis of observational data. Introduc-

ing the variables x(τ) = p(t) and y(τ) = q(t), where τ = 

is the time measured in years, we obtain the structure of
solution to the set of Eqs. (5) [8]:

(6)

t
Th

-----

x τ( ) cx ax
c 2πNτ ax

s 2πNτsin+cos–=

–
Ndx

c 2πτcos dx
s 2πτsin+

1 N2–
----------------------------------------------------------,

y τ( ) cy ay
c 2πNτ ay

s 2πNτsin+cos+=

–
Ndy

c 2πτcos dy
s 2πτsin–

1 N2–
---------------------------------------------------------.
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Here, cx, y , , and  are the quantities to be calcu-
lated by the least-square technique [9] from the IERS
measurements [1, 8]. These coefficients are unambigu-
ously related to the unknowns involved in set (5); in this
case, it is necessary to take into account the equalities

 =  and  =  representing the structural
property of the model. The parameters introduced can

be subjected to a correction of the form cx, y =  +

τ + … in a reasonably long interval 0 ≤ τ ≤ Θ
(where, e.g., Θ ~ 10–20 years); a similar correction can

be made for  and . The secular terms must take
into account the evolution of the parameters of set (1)–(5)
for improving the interpolation of the oscillation pro-
cess [8]. Theoretical model (6) can be refined by taking
into account accessory factors but this seems to be
unsuitable and unjustified at the given stage.

ax y,
c s, dx y,

c s,

ax
c s, ay

s c, dx
c s, dy

s c,

cx y,
0

cx y,
1

ax y,
c s, dx y,

c s,
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Fig. 3. Interpolation of the pole trajectory for the four-year interval of 1984–1997 and the prediction for 1998–2001 (solid line).
Below, we present the results of calculations on the
basis of the method of least squares [9], which was
applied independently to the variables x(τ) and y(τ) in
the form of the six-dimensional approximation accord-
ing to model (6):

(7)

First, it is of interest to investigate the efficiency of the
interpolation and prediction for the polar motion by
means of the simple mathematical model (6) on the
basis of the known daily IERS measurement data [1]. In
Fig. 1, we show the theoretical curves x*(τ) and y*(τ)

x τ( ) ξ f τ( ),( ), y τ( ) η f τ( ),( ),= =

ξ ξ 1 … ξ6, ,( )T , η η 1 … η6, ,( )T ,= =

f τ( ) 1 τ 2πNτ 2sin πNτ 2πτ 2πτsin,cos,,cos, ,( )T ,=

N 0.84.=
of interpolation for daily measurements on the eight-
year time interval 0 ≤ τ ≤ 8 from 1988 to the end of
1995. The root-mean-square deviations are equal to
σx = 0.014 and σy = 0.017, which indicates a satisfac-
tory accuracy of the model constructed (6), (7) corre-
sponding to the optimal values of ξ*, η*:

(8)

The comparison of the coefficients  and ,  and

, determining the Chandler components of oscilla-

tions, and also  and ,  and  (with allowance
for the factor N = 0.84), corresponding to the annual

ξ∗ 0.041 0.0004– 0.034– 0.194 0.023– 0.065–, , , , ,( )T ,=

η∗ 0.300 0.005 0.193 0.033 0.060– 0.020, , , , ,( )T .=

ξ3
* η4

* ξ4
*

η3
*

ξ5
* η6

* ξ6
* η5

*
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Fig. 4. Interpolation of the pole’s trajectory for the seven-year interval 1994–2000 and the prediction for 2001–2002 (solid line).
component in (8), strongly supports the indicated struc-
tural property of the model.

In Fig. 2, we display the theoretical curves x*(τ) and
y*(τ) plotted on the basis of the measurement data for
the four-year interval 0 ≤ τ ≤ 4 and give a prediction for
4 ≤ τ ≤ 8. The comparison with the experimental points
confirms the efficiency of the model, i.e., the high accu-
racy of interpolation and a reasonably reliable predic-
tion. The corresponding optimal vectors ξ*, η*, and the
root-mean-square errors σx, σy in the interpolation
interval are:

(9)

ξ∗ 0.039 0.002 0.023– 0.182 0.025– 0.072–, , , , ,( )T ,=

σx 0.012,=

η∗ 0.298 0.007 0.179 0.025 0.068– 0.023, , , , ,( )T ,=

σy 0.015.=
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Comparison of the values obtained in accordance
with (9) for the indicated coefficients corroborates the
structural property of the theoretical model.

In Fig. 3, we show the results of interpolation and
prediction using model (7) on the basis of the operative
daily IERS data from 1994 to mid-2001. The optimal
theoretical trajectory x*(τ), y*(τ) is plotted by interpo-
lation on a four-year interval; the prediction for four
years is given beginning from 1988. The optimal
parameters ξ*, η* and the root-mean-square errors σx,
σy are:

(10)

ξ∗ 0.036 0.0005– 0.003 0.188 0.037– 0.051–, , , , ,( )T ,=

σx 0.016,=

η∗ 0.345 0.007– 0.193 0.006– 0.048– 0.027, , , , ,( )T ,=

σy 0.015.=
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The anomaly of the mutation of the pole from the end
of 1999 to mid-2000 is noteworthy, which, in our opin-
ion, can be naturally explained by the gravitational per-
turbations (parade of planets). In the next time interval,
the regular mutations of the pole take place according
to model (7). This fact is an indirect confirmation of the
adequacy and efficiency of the model. The components
of the vectors ξ*, η* (10) satisfy the required properties
of the model.

In Fig. 4, we display the results of interpolation for
the seven-year data of measurements from the begin-
ning of 1999 to the end of 2000. Then, we predict the
trajectory for two years from the beginning of 2001 to
the end of 2002. The optimal parameters ξ*, η* of the-
oretical model (7) and the root-mean-square errors σx,
σy are:

(11)

The coefficients in (11) convincingly satisfy to the fact
of the structural property of theoretical model (6), (7).

We also carried out numerous calculations for veri-
fying the efficiency of the model by the interpolation in
time intervals from 2 to 20 years and the prediction of
the trajectory for 1–5 years. The results obtained testify
to the satisfactory accuracy for the interpretation of
observations and for the prediction of the pole trajec-
tory by a very simple theoretical first-approximation
model. This model admits its natural refinement and

ξ∗  = 0.039 0.0001 0.015 0.161 0.046– 0.076–, , , , ,( )T ,

σx 0.024,=

η∗  = 0.334 0.0005 0.162 0.0139– 0.068– 0.043, , , , ,( )T ,

σy 0.025.=
complication by taking into account accessory factors
to which we can also assign random perturbations.
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There is no doubt that the fracture process in solids
is multistage and multilevel; therefore, its adequate
modeling necessitates using advanced modern experi-
mental and computing methods. At the same time, the
formulation of principles that could be applicable in
engineering practice increasingly becomes an urgent
problem. This is explained by the fact that methods and
ways used in analyzing a large number of well-known
models (mainly numerical), unfortunately, turned out to
be accessible almost exclusively only to their authors.
However, in practice, it is very important to have clear
analytical tools that make it possible to reduce the qual-
itative analysis of fracture to simple procedures suitable
for application in engineering. One of the most well-
known examples of such a practical approach is the
structural macromechanics of fracture [1–3], as well as
the structure–time approach [4] based on the notion of
incubation fracture time (which is a natural generaliza-
tion for application in fracture dynamics). These frac-
ture theories represent the deep structure–time regular-
ities of fracture processes in solids. One of the most
important consequences of these approaches is associ-
ated with the dual character of dynamic fracture, which
can be expressed in certain relations between time
parameters of loading and the incubation period pre-
ceding the time moment of macroscopic fracture. This
results in a novel version of the problem related to test-
ing the dynamic-strength properties of materials. In a
certain sense, this situation is similar to what we dealt
with in the case of a spatial characteristic linear size in
static fracture mechanics. To elucidate the situation, we
consider the static and dynamic cases successively.

One of the principal parameters in linear fracture
mechanics is the structural linear size d describing a
unit fracture cell. The linear size can be represented in
the form of a dimensional combination involving the
surface energy, the critical stress-intensity factor, the
static strength, and the elastic constants of a material:

(1)d
γE

σc
2

------, d
KIc

2

σc
2

-------.∼∼
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There exist several suggestions of various authors,
which concern the physical nature of the parameter d
(interatomic distance in a medium with a regular
atomic structure, grain size in a polycrystalline
medium, scaling parameter for strength characteristics,
etc.). In this study, this parameter is treated as a specific
linear size characterizing a unit fracture cell at a given
scale level. Note that in the classical Griffith–Irwin
approach [5, 6] this characteristic is present in the
implicit form.

In the Neuber–Novozhilov approach, the linear size
is assumed to be taken into account explicitly. We now
consider basic principles of structural fracture macro-
mechanics corresponding to this approach. They can be
reduced to the following points similar to those that
were enunciated as early as in the beginning of the last
century, when principles of classical quantum mechan-
ics were formulated:

(i) all solids consist of structural spatial elements of
a finite size;

(ii) an elementary fracture act is the fracture of a sin-
gle structural element;

(iii) criterion parameters (including the size of a
structural element) must be chosen in such a manner
that, in ultimate adequate cases, the results of the clas-
sical fracture theory could be obtained.

We now apply these principles to formulate an ade-
quate condition for fracturing. We consider a static two-
dimensional stress field (e.g., corresponding to the case
of plane deformation) and suggest that the fracture
occurs along a certain direction Ox, which is assumed
to be a symmetry line. In accordance with the aforesaid
first principle, we assume that the solid structure is
specified in the spatial scale (Fig. 1a) and that the linear
size of a single structural component is equal to d. In
accordance with the second principle [2], we suggest
that the macrofracture has occurred when even only a
single structural element failed. The natural condition
of fracture can be written out in the form of the condi-
tion when a force acting onto a structural element
attains a certain critical value:

(2)F Fc.≤
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In terms of a uniform stress field that we actually deal
with in continuum mechanics, this relationship can be
written out in the form

(3)

The condition (3) represents the Neuber–Novozhilov
force criterion. The stress σc can be treated as a specific
critical stress introduced instead of the critical force Fc .

To determine σc and the linear size d introduced
above, it is necessary to apply the third basic principle.
Next, using (3), we consider the problem of fracturing
a homogeneous sample free of defects. Assuming that,
in this case, the fracture is determined by the classical
strength criterion σ ≤ σB, we obtain that σc = σB . We
now consider the classical problem of the Griffith crack
and the Irwin fracture criterion. First, we substitute the
tensile stress corresponding to the crack continuation

(4)

into criterion (3). Then, integrating over r (r = x – d)
from 0 to d and taking into account that KI ≤ KI c , we
arrive at the following formula for the linear size:

(5)

The physical meaning of the parameter σc is beyond
question: this is the brittle strength of a defect-free sam-
ple. However, there exist different opinions concerning
the physical meaning of the parameter d. It would be
promising to unambiguously relate d with characteris-
tics of the material internal structure (interatomic dis-
tances, physical or geometric parameters of dislocation
motions, grains, grain blocks, etc.). Nevertheless, there
is no need to do so! Similar to the situation with the
actual strength of a polycrystal (e.g., an alloy), σc is not
directly related to the atomic-lattice strength of a partic-
ular single-crystal block that forms the given crystal.
Generally speaking, the linear size d also must not be

σ rd

x d–

x

∫ σcd .≤

σ
KI

2πr
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d
2
π
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Fig. 1. Fracture structural parameters: (a) linear size;
(b) incubation time; and (c) space-and-time fracture cell.
unambiguously determined by the geometric structure
of the material. The parameters σc and d are equivalent
and independent characteristics of the fracture process
[7]. Therefore, in our opinion, the treatment of d given
in [8] as a scaling parameter that determines the corre-
lation of material strength properties at a given scale
level seems to be the most natural. It is much more sig-
nificant that, in accordance with basic physical princi-
ples, such defining parameters introduced into theory
must be measurable, i.e., directly or indirectly be deter-
mined experimentally. For σc and d, this requirement is
completely fulfilled.

The above approach admits a natural generalization
for the dynamic case. Let, under the previous condi-
tions, the stress state of the medium be spatially uni-
form and change only with time (Fig. 1b). In addition,
let a certain structure also be given in the time scale. We
denote the corresponding time size by τ and call it
structural (incubation) fracture time. We assume that
the fracture takes place provided that a force pulse act-
ing during the time τ attains its critical value

 

(6)

 

In terms of the continuum mechanics, we have

 

(7)

 
Here, 
 

τ
 

 is the minimum time that is needed for fractur-
ing an element under the action of the stress  σ c .

In the general case of the space-and-time nonunifor-
mity of the dynamic stress field, we have a combination
of both previous variants and the corresponding space-
and-time unit fracture cell (Fig. 1c). Then, we have the
following structure–time criterion:
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maximum rupture stress near the crack tip (
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 = 0). Thus,
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, and 

 

τ

 

 form a system of defining
parameters in the given fracture theory. Written out in
form (8), the dynamic criterion was first put forward
in [9].

In the case of a defect-free material, criterion (8) is
reduced to the form (7), which is convenient for simu-
lating fracture under the splitting-off condition. Crite-
rion (7) is the efficient means for explaining the time
dependence of strength, which makes it possible to pro-

J t( ) Jc.≤

1
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vide a unified description of the static and dynamic
branches, as well as a prediction of the geometry of the
fracture zone in the splitting-off process [4, 10].

In the case of fracturing near the tip of a symmetri-
cally loaded crack, condition (5) should be taken into
account. Then, it follows from (8) that

(9)

It is shown in [11] that, in the case of dynamic fracture
near the macroscopic-crack tip, the structural size τ in
criterion (9) can be treated as an incubation time in the
well-known criterion of the minimum time, which was
proposed and studied in [12–14].

Analysis of fracture with the help of structure–time
criteria (7) and (9) presents the possibility to determine
ultimate dynamic loads, dynamic fracture strength, and
dynamic fracture viscosity as calculated parameters.
This is possible, provided that σc, KI c , and τ are used
as constants of the material, which are assumed to be
independent of both the way and the history (rate) of
loading.

In the case of the structure–time approach, the anal-
ysis of the available experimental data shows that the
corresponding unstable behavior of the dynamic frac-
ture strength σd and the dynamic fracture viscosity KI d
is a principle feature of the dynamic fracture, which is
caused by the discrete structure–time nature of the pro-
cess [15]. The observed significant data spread of both
dynamic fracture strength and the dynamic fracture vis-
cosity, which were measured under various conditions,
reflects the space-and-time structure and physical dis-
creteness of the dynamic fracture process. With this fact
taken into account, we can also conclude that introduc-
ing into the dynamic theory the so-called strain-rate
dependences for the critical stress σd and the critical-
intensity coefficients KI d as functional characteristics
of the material under consideration (by analogy with
the static ones σc and KI c) is incorrect.

The effects indicated become significant when we
pass from slow actions to those having periods com-
pared in their duration to a scale depending on the incu-
bation fracture time. The nature of this period of time is
determined by the preliminary relaxation processes of
developing microdefects in the material structure. In
essence, the structural size and the incubation time are
the parameters determining the boundary between the
micro- and macrofractures in the space-and-time scale
under consideration, which corresponds to the given
scale level.

Thus, our analysis of fracture processes indicates
that it is necessary to take into account at least two
dynamics types, namely, dynamics of elastic-wave
propagation and the dynamics of structural-element
fracture. Both of them manifest themselves as being

1
τ
--- KI t'( ) t'd

t τ–

t

∫ KI  c.≤
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dependent on the testing scale level, geometric charac-
teristics of samples, and loading conditions. The first is
determined by the ratio between a characteristic length
of samples and the loading rate (or by a characteristic
wavelength). This ratio provides an efficient tool for the
distinction between the static and dynamic models. For
example, when the action pulses are short compared to
the time interval needed for propagating the stress wave
through a sample, it is necessary to take into account
inertial effects and to analyze corresponding hyper-
bolic equations. Note that, when the loading rate is
reasonably small or a pulse duration sufficiently
exceeds the corresponding incubation time for the
fracture process, we can apply the static critical stress
and the static fracture viscosity to estimate ultimate
loads. The second type of dynamics is associated with
the situation when an interval of the load application
is on the order of (or less than) the incubation time of
the sample material. Then, it is necessary to take into
account the dynamic specificity of the fracture pro-
cess, which can manifest itself, for example, as a
dependence of the fracture strength and fracture vis-
cosity on the loading history. In this case, it is appro-
priate to use the structure–time criterion.

Thus, for studying properties of the material
dynamic strength, we may use various combinations of
sample sizes (e.g., small-sized samples) and loading
parameters, thereby realizing one type of fracture
dynamics or another. If the interval of loading time is
on the order of (or less than) the incubation time but is
larger, in fact, than the interval needed for the stress
wave to propagate through the sample, we can investi-
gate the dynamic specificity of the fracture process on
the basis of a quasi-static solution to the corresponding
boundary value problem. The size of a small sample
must be determined by the conditions that provide the
quasi-static stabilization of the stress field until the
fracture time moment.

The above arguments are of importance when
determining the scale level for experimentally observ-
able effects and in choosing a corresponding tech-
nique for testing static and dynamic strength proper-
ties of materials.
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Many outstanding scientists have analyzed the flow
around a sill in an open channel [1]. However, this
problem of hydraulics has a number of weakly studied
aspects, which include, under certain conditions, the for-
mation of an air cavity behind a sill. Our paper contains
experimental data on methods of closure of the cavity
free end, which are important for cavity theory [2].
In addition, we show that many different steady-state
regimes can be formed with the same external problem
parameters, i.e., that the flow under consideration is not
unique.

The experiments were carried out in a rectangular
open channel with a zero bottom slope. The sill had a
rectangular cross section with a length and height equal
to 30 and 4.9 cm, respectively. In the transverse direc-
tion (6 cm), the sill closed the channel. The force of
gravity and surface tension at the water–air interface
(73 × 10−3 N/m) represented the most important prob-
lem parameters. The discharge Q varied within the
range for which the flow behind the sill was supercriti-
cal. The flow pattern was visualized by adding an alu-
minum powder with typical particle dimensions of
10 µm into the water. Photographic recording of parti-
cle trajectories was carried out in a dark room so that
the part of flow under investigation was illuminated
with a 1-cm-thick penlight. 

As is well known [1], three typical flow regimes can
be observed behind a sharp-crested weir. They are char-
acterized by adhering, free, and depressed nappes,
respectively. It is also known that an adhering nappe
can become free by injecting air under it without vary-
ing any external problem parameters. In this paper, we
show that under certain conditions similar phenomena
occur behind a broad-crested weir, i.e., that both a
depressed-nappe regime and many free-nappe regimes
can form with identical problem parameters.

Photographs presented in Fig. 1 for illustration were
obtained at Q = 1.159 l/s and the above-mentioned val-

Lavrent’ev Institute of Hydrodynamics, Siberian Division, 
Russian Academy of Sciences,
pr. Akademika Lavrent’eva 15, Novosibirsk, 630090 Russia
1028-3358/02/4701- $22.00 © 0089
ues of the other parameters. In Fig. 1a, the nappe is
depressed, while in Fig. 1b there is an air cavity existing
for an arbitrarily long time.

Flow regimes can be controlled. For example, if the
transition to the steady-state conditions is sufficiently
slow, then the adhering nappe becomes depressed with-
out the formation of a cavity. At a rapid increase in the
flow rate, the flow separates from different points of the
downstream sill edge at different moments of time. As
a result, conditions arise for air leak-in under the nappe
and, thus, for cavity formation. Transition from a
steady-state free nappe with cavities of different vol-
umes to a depressed nappe can be realized by a short-
term elevation of the free-surface level behind the sill
and a subsequent return to the initial steady-state con-
ditions. The reverse transition from the depressed
nappe to the free one can be realized by means of air
injection or suction.

The cavity stability depends essentially on both the
sill length and the height of the nappe fall. Our experi-
ments have shown that, in a certain range of these
parameters, sporadic air leakage from the cavity to the
atmosphere leads to self-sustained oscillations. In
nature, a similar process occurs, for example, in pulsat-
ing waterfalls, in which flow regimes are free-nappe
and air cavities periodically change their volumes.

Different methods are used in cavity theory to close
the cavity free end [2]. Among them, the Riaboushin-
sky–Weinig calculation scheme [2] based on using a
fictitious return jet is preferable. Our experiments
(Fig. 2a) qualitatively verify the possibility of a return
jet existing in the cavity formed behind a sill. However,
actual and fictitious return jets differ from each other
(cf. Fig. 2a with the calculating scheme [2]). This is
explained by the fact that the fluid viscosity, surface
tension, force of gravity, and occurrence of both the
free surface and the channel bottom are not taken into
account in the calculation scheme. In our experiments,
the shape and dimensions of the jet varied with time,
while the total cavity volume remained constant for an
arbitrarily long time.

Figure 2b verifies the method of introducing a ficti-
tious wall [2] for closure of the free cavity end in the
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Depressed and (b) free nappes with identical values of the parameters. The flow is directed from the left to the right. 

(a) (b)

Fig. 2. Examples of closure of the free cavity end at (a) Q = 0.904 and (b) 1.473 l/s.

(a)

(b)
calculation schemes. However, in our experiments, cav-
ities with flat free ends were unstable. Air bubbles were
sporadically released from them until the formation of
one of the stable configurations was over. Along with
stable cavities containing return jets, we observed a sta-
ble cavity having its free end in the form of an acute
angle slightly smoothed by the surface tension.

According to the classical theory, upper and lower
cavity boundaries must be convex towards the side of
the surrounding liquid [2]. However, in a flow with a
free surface behind a weir, the shape of cavity bound-
aries is more complicated because of the effect of the
force of gravity.

In the regimes possible with identical external
parameters, flow features important for practice can be
highly different. For example, at a flow rate of 2 l/s and
the above-mentioned values of other parameters, the
maximum excess pressure exerted on the channel bot-
DOKLADY PHYSICS      Vol. 47      No. 1      2002
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tom behind the sill varied from 700 Pa (in the regime
without a cavity) to 1200 Pa (in the regime with a stable
cavity of the largest volume). In these regimes, the dis-
charge coefficient characterizing the flow capacity of a
sill considered as a spillway [1] varied from 0.38 (in the
first case) to 0.32 (in the second case).
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Modes intrinsic to elliptic optical fibers are nonde-
generate in contrast to those of circular optical fibers. In
the case of elliptic fibers, the longitudinal-propagation
constants for orthogonally polarized modes are differ-
ent, and under certain conditions a polarization state of
guided light can be conserved [1]. This effect provides
the basis for many fiber devices, for example, fiber-
optic interferometers.

Foundations for the theory of electromagnetic-wave
propagation in elliptic fiber-optic waveguides were laid
down long ago in [2]. There, approximate dispersion
equations for two fundamental (even and odd) modes of
a dielectric elliptic air-filled waveguide were formu-
lated. Later on, based on this theory, dispersion equa-
tions for guided modes of a two-layer elliptic fiber [3]
and of a three-layer fiber with layer boundaries having
the form of confocal elliptic cylinders [4] were derived.
In addition, a method of evaluating dispersion charac-
teristics of an arbitrary three-layer elliptic optical fiber
was developed [5].

A method for solving the problem of natural waves
in a multilayer light guide was formulated in [6], with a
circular multilayer fiber used as an example. In the
present study, employing this method, we have deter-
mined both field components and dispersion equations
for all guided modes of a multilayer elliptic-fiber light
guide having an arbitrary number of confocal elliptic
layers. The dispersion equations are presented in the
form corresponding to a determinant equal to zero, with
its rank being independent of the number of the layers.

We consider an elliptic optic fiber whose permittiv-
ity (in elliptic cylindrical coordinates ξ, η, and z, with
the z-axis directed along the fiber axis) is written out in
the form

ε ξ( )

ε1, for 0 ξ0 ξ ξ 1<≤=

ε2, for ξ1 ξ ξ 2<≤
……………………
εN 1+ , for ξN ξ ∞ ,<≤








=
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where εN + 1 < max(ε1, ε2, …, εN).

For a guided mode of such a fiber, the dependence
of both the electric field strength E = (Eξ, Eη, Ez) and the
magnetic field strength H = (Hξ, Hη, Hz) on time t and
the longitudinal coordinate z takes the form exp[j(ωt –
βz)] (in what follows, the exponential factor is omitted),
where ω and β are, respectively, the circular frequency
and the constant for the longitudinal propagation of the
mode. In this case, Maxwell equations are reduced to
the following set:

where

Here, ρ is the half-distance between the foci of the

given elliptic cylindrical coordinate system, γ = , k0 =

ω , and ε0 and µ0 are the permittivity and the per-
meability of free space, respectively.

We now define the functions

ε ξ( )
∂e
∂ξ
------ A ξ η,( )h,=

∂h
∂ξ
------ A ξ η,( )e,–=

e ε0
Ez

jg ξ η,( )Eη 
 
 

, h µ0
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jg ξ η,( )Hη 
 
 

,= =

A ξ η,( )
–γ η∂

∂ ε ξ( ) γ2–

ε ξ( )g2 ξ η,( ) ∂2
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---------+ γ η∂

∂
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 
 
 
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2
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β
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2π
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Here,

j = 1, 2, 3,

and sem(η, q), cem(η, q), M (ξ, q), and M (ξ, q) are
the angular and radial Mathieu functions [7].

The derived system of equations has a solution sat-
isfying the conventional conditions at ξ = 0 and as
ξ  ∞. We represent this solution in the form

µ, ν ∈  {0, 1}.

Here,

Vαm
j( ) ξ ξ ' q, ,( )

=  – 1–( ) jπ
2
--- Mαm

1( ) ξ q,( )
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dξ j
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1( ) ξ q,( )[ ] ξ ξ '=




,
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This solution corresponds to the even modes eHEmn and
eEHmn for µ = 0 and to the odd modes oHFmn and oEHmn

for µ = 1 with the even (ν = 0) or odd (ν = 1) azimuth
index m.

It follows from the continuity condition for the tan-
gential field components that the constants

satisfy the homogeneous system of equations
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i = 1, 2, …, N,

The determinant of this system must be equal to zero.
We eliminate the unknowns C2, C3, …, CN + 1 from

this system of equations and set the determinant of the
system obtained to zero. As a result, we arrive at the fol-
lowing equation in the unknown phase constant γ:

where

Pα ij
mn Vα 2n ν+,

j( ) ξ i ξ i 1– qi, ,( )=

×
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2
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Qα ij
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d
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α i γ
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2
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α1 qi qi,( ),=

Kmn
α δmn

uN 1+
2
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d
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N
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0, µ ν 0 1,{ } ,∈,=
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This equation is a dispersion equation for guided modes
of the multilayer elliptic-fiber light guide under consid-
eration, with the boundaries having the form of confo-
cal elliptic cylinders. It corresponds to the even modes
eHEmn and eEHmn for µ = 0 and the odd modes oHEmn

and oEHmn for µ = 1 with the azimuth index m = 2k + ν,
k = 0, 1, ….

The rank of the determinant in the left-hand side of
this equation is virtually equal to the doubled number of
terms in the expansion of the mode field components in
the angular Mathieu functions. It is especially impor-
tant that this rank is independent of the number of lay-
ers in the fiber under consideration.
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The averaged equations in heterogeneous-contin-
uum mechanics, which are derived by spatially averag-
ing equations for single-phase continua, contain
unknown integrals over the interphase interface. These
integrals are of the following form (we use the termi-
nology and notation introduced in [1]):

(1)

Here,  = ,  – , x' × ;  are the

stress tensor components;  is the velocity vector; 
is the vector of the heat flow or radiation flux through
the interface towards the ith phase; and x' and n' are the
radius-vector of an interface point and the vector of a
unit-normal to the interface, respectively. The prime
stands for the local parameter of the single-phase
medium; the subscript i enumerates the phases in the
medium; the sign 〈 ·〉12 implies averaging over the inter-
face; dS12 is the interface area in the volume element dV
in which the averaging occurs; and dS12 = s12dV, where
s12 is the interface area per unit volume.

The lack of a method for evaluating integrals (1)
noticeably hampers the employment of the theory [1].
Relationships (1) are usually applied for a particular
model describing the interface shape. This model
should be separately substantiated for each of the prob-
lems to be considered and, as a rule, significantly dif-
fers from the actual situation. Within the framework of
the topological hypothesis proposed below, we present
here a universal method for solving Eq. (1). The
hypothesis uses an interface-area distribution function
in terms of the direction angles for normals to the inter-
face [2]. The method is based on Stokes integral formu-
las extended below to the case of heterogeneous media
and on new equations describing the evolution of aver-
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aged topological parameters of the interface. These

parameters are s12 and the tensor  · s12 of the
volume density for the interface area.

TOPOLOGICAL HYPOTHESIS 

Let s(t, x', θ, ϕ) be a distribution function for the
interface area per unit volume of a heterogeneous
medium [2]. Therefore, the quantity s(t, x', θ, ϕ)dΩd 'V
is numerically equal to the interface area per volume
element d 'V, with the direction angles θ and ϕ of nor-
mals to the interface lying in the solid-angle element
dΩ = sinθdθdϕ. Here, θ is the angle between a normal
and the unit vector e3 of a Cartesian coordinate system,
the angle ϕ lies in a plane perpendicular to e3, and
n'={sinθ · cosϕ, sinθ · sinϕ, cosθ}. Since d 'S = s12d 'V,
relationships (1) can be written in terms of the distribu-
tion function

(2)

where the domain Ω = (0 ≤ θ ≤ π, 0 ≤ θ ≤ 2π). To eval-
uate the function s(t, x', θ, ϕ), we should sum the inter-
face area in a volume element dV with the direction
angles θ and ϕ for normals to the interface lying in the
solid-angle element dΩ and then divide the result
obtained by dVdΩ. Such a method was employed, for
example, to evaluate the distribution function for pack-
ing of spheres [2]. The aforesaid implies that the
x'-coordinate of the volume element dV can be substi-
tuted for the argument x of the function s(t, x', θ, ϕ)
entering into relation (2), which, furthermore, is
assumed to always be true. Under this natural assump-
tion, which will be referred to as a topological hypoth-
esis, equality (2) can be written in the form

(3)

ni'
p
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k ψi'

k〈 〉 12,=

     
2002 MAIK “Nauka/Interperiodica”



ON THE THEORY OF SPATIAL AVERAGING 93

                
(4)

EQUATIONS DESCRIBING THE EVOLUTION 
OF AVERAGED TOPOLOGICAL PARAMETERS 

OF THE INTERFACE

In order to derive the desired equations, we use the
equation for the function Φ(t, x', θ, ϕ) introduced in [2]
(below, the subscript i is omitted):

(5)

Here, f = 〈Φ'〉12, v k = , dVi is a volume

element of the ith phase in dV, and e'pq = (∇ 'pv 'q +

∇ 'qv 'p) are the strain rate tensor components. We also

use the expression for  from [2]:

(6)

with W' = rot 'v', as well as the identity

(7)

where ek are the unit vectors of the Cartesian coordinate
system. Then the summation over repetitive indices is
implied. Substituting Φ = n' and then Φ = n'kn'i into for-
mula (5) and taking into account expressions (6) and
(7), as well as the topological hypothesis, we arrive at

(8)

(9)

Here, ekpq is the unit antisymmetric Levi-Civita tensor
[3], and

νk t x,( )
1

s12
------ ni'

k
s t x θ ϕ, , ,( ) Ωd

Ω
∫ ni'

k〈 〉 12.= =

1
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∂
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=  
d Φ
 
dt
 ------- 

12
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2
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kpqν pωq+ 0,=

1
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d
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1
2
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2
--- zs
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It is worth noting that the equation for s12 is derived by
summing equalities (9) over k for i = k, with νkk = 1. The

quantity  entering into these equalities is zero if the
phase is a Newtonian liquid whose surface is free from
tangential stresses.

ANALOGS OF STOKES FORMULAS
FOR HETEROGENEOUS MEDIA

Stokes formulas [3] for a closed surface dS12 have
the form

(10)

Here, dL12 is the multiply connected boundary for dS12 ,
which lies on the surface dS of a volume element dV; d'l
is a vector element of the contour dL12; and the func-
tions Φ(ı') and F(x') are defined on the interface. Using
the method of additional spatial averaging presented
in [4], it is easy to derive the following analogs of for-
mulas (10) for heterogeneous media:

(11)

Comment. If Φ(ı') and F(x') are defined in the
entire volume dVi , which is occupied by the ith phase
in dV, as well as at the surface dS12 , then Eqs. (11) can
be derived without employing the method of additional
spatial averaging. Indeed, transforming the volume
integral that enters into the identity 0 =

 to a surface integral and using the

relationship

(12)
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given in [1] (subscript i is omitted), we arrive at

Two other formulas in the set of equations (11) can be
derived in a similar way.

THE APPLICATION OF STOKES FORMULAS 
AND THE EQUATIONS

FOR THE AVERAGED TOPOLOGICAL 
PARAMETERS

We substitute Φ = v'k into (11) and take account of
the topological hypothesis and the equality s12ν = –—α
following from (12) for Φ' = 1. As a result, we obtain

(13)

where ϑk = 〈v 'k〉12.
It follows from (13) that

(14)

where T should be expressed in terms of w. To do this,
we use the equations

(15)

which follow from formula (14). Assuming the ith phase
to be incompressible, so that divv' = 0, we arrive at

T · —α = –divJ. (16)

Solving Eqs. (15), (16) with respect to T, we obtain [3]

(17)

After the substitution F = v' into (11) and on the basis
of the identity

we have

(18)

Finally, we express the variable J in terms of v and α.
According to relation (18), we rewrite Eq. (8) in the
form

(19)

We now use Eq. (19), the equation  = s12〈n'v'〉12 =

–J—α for the volume content of the ith phase, and the
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∇ 'kv〈 〉 12 —ϑ k Tk—α ,+=

εkp 1
2
--- ∇ kϑ p ∇ pϑ k+( ) 1

2
--- Tk∇ pα T p∇ kα+( ),+=
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n' —'×( ) v'× n'divv' ekn'pe'kp 1
2
---n' W',×+ +–=

1
s12
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xp∂
∂

s12 J ep n×( )×[ ] ekν pεpk 1
2
---n w.×+=

d—α
dt

----------- —αdivv
xp∂
∂+ + J ep —α×( )×[ ] 0.=

∂α
∂t
-------
continuity equation  + div(αv) = 0 for the incom-

pressible phase to derive the following relationships:

(20)

(21)

CONCLUSIONS

Thus, we have shown that integrals (1) over the inter-
face, which enter into the averaged equations [1], can
be evaluated by formulas (3), where s12n = –—α. We
have derived generalized Stokes formulas (11) and
Eq. (9), the latter describing the evolution of the aver-
aged topological parameters s12 and νik of the interface.
The equations obtained are needed for exact evalua-
tions of both the volume density of surface forces
(which, as was shown in [4], is proportional to the
divergence of the tensor νik) and the volume densities
for the work and the angular momentum of surface
forces. These quantities enter into the averaged equa-
tions of conservation for the momentum, energy, and
angular momentum, respectively [1]. The variables εkp

in Eqs. (9) are determined from formulas (14) and (17)
in terms of w and J. The vector J is found from rela-
tion (20), while the quantity w is determined by for-
mula (15) and boundary conditions for the stress σ'ik at
the interface. In the case of the stress tensor linearly
depending on the strain-rate tensor, these conditions
can be easily obtained by the method proposed. We also
have derived Eq. (21) extending the incompressibility
condition to the case of heterogeneous media.
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