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INTRODUCTION

High-altitude above-cloud optical phenomena occu-
pying volumes on the order of 1000 km? were repeat-
edly observed [1], high-intensity radio-emission pulses
being associated with them [2, 3]. Thunderstorm elec-
tric fields are responsible for the generation of hard
penetrating radiation of atmospheric origin [4-6].
In [7-9], a mechanism for ascending atmospheric dis-
charges, which is based on the concept of an avalanche
of relativistic runaway electrons, is proposed. This
mechanism makes it possible to explain in a unified
manner the entire totality of electromagnetic phenom-
ena proceeding in arelatively weak electric field above
thunderstorm clouds. For adequately treating field mea-
surements, we need to know the e-fold amplification
length 1., which determines the exponential develop-
ment of an avalanche of runaway relativistic electrons,

o le , .
or the corresponding time scalet, = Ee (cisthe speed of

light). Both were recently calculated with good accu-
racy [10, 11].

In this paper, we report the results of a straightfor-
ward laboratory experiment in which the initial stage
for the devel opment of an avalanche of runaway relativ-
istic electrons in a dense gas medium (air at pressure
P = 1am and temperature T = 300 K) was directly
observed for the first time. In this experiment, we
obtained the first experimental confirmation for the cal-
culated value of .

EXPERIMENTAL CONDITIONS

The experiment performed is similar to the classical
Townsend experiment [12]. However, in this case we
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deal with relativistic electrons, and electric-field
strengths are considerably smaller than E,, =3 MV/m,
which is required for a self-breakdown by electrons
with energies closeto theionization threshold. The exe-
cution of this experiment is an extremely complicated
task, since in actual laboratory conditions |, is much
longer than any reasonable length L of an accelerating
gap that can be realized in practice. Values of the run-
away threshold g,,; thetimet,, thelength |, = ct,, which
were calculated for three values of the overvoltage 6 =

FE with respect to the minimum frictiona force
min
Fmin = 2.18 (keV/cm)/atm in atmospheric air a P =
1 atm [10]; and the corresponding voltages U for L =
1 marepresentedin Table 1. Here, & = 5 correspondsto
our experimental conditions.

Asis seen, it is possible to realize in a laboratory
only theinitial stage for the avalanche of runaway rela-
tivistic electrons. The measurements under conditions
of low amplification are hampered for a number of rea-
sons. We have to select secondary relativistic electrons
in the above-threshold region against the background of
a huge number of electrons produced with energies
much lower than €,,. There are al so other obstacles, e.g.,
the escape of relativistic electronsfrom the acceleration
region due to scattering in air, noise of the electromag-
netic origin, etc. Therefore, the development of an ava-
lanche of runaway relativistic electrons in a dense gas
medium and for electric fields much lower than E,, is
confirmed by comparing measured spectra of relativis-
tic electrons passing through the accelerating gap with
spectra calculated by the Monte Carlo method. These
calculations were performed using the same ELIZA

Tablel
U, MV iy KEV te, NS |lg=cCtg, m
2 0.44 650 400 120
5 1.10 120 50 15
8 1.74 65 26 7.8
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Table 2
Collector no. Coallector thickness, mm Experbnleritil/l \r/esults, Mgﬁ%&)c;égr?glaﬁyl g}:gn. Mo/c;r;t:cgr?g:r;iﬁgl%g&
91.3% primary electrons|  primary electrons
1 0.2 0.055 0.031 0.013
2 04 0.13 0.10 0.07
3 0.6 0.21 0.23 0.2
4 0.8 0.37 0.39 0.36
5 1.0 0.50 0.55 0.53
6 12 0.67 0.71 0.69
7 15 0.78 0.85 0.85
8 5 1 1 1

code[13], which had been used previously for calcul at-
ing characteristics of an avalanche of runaway relativ-
istic electrons. The corresponding data are given in
Table 1.

The experiments were carried out in a conic cham-
ber with planar electrodes into which reativistic elec-
trons [with the initial number Ng(0)] had been injected.
The diameter of the upper (high-voltage) and lower
(grounded) electrodes were equal to 0.6 and 1.0 m,
respectively. The interelectrode-gap length was L =
1 m. The forced distribution of the potential between a
sectioned insulator provided a high degree of field uni-
formity. The breakdown aong the insulator surface
limited the operating voltage by the value of 1.2 MV.
The chamber was fed by microsecond-duration voltage
pulses from a high-voltage generator of an ORION-1
accelerator [14]. The voltage pul se satisfied the require-
ment of quasi-steadiness with respect to the injected
beam. A MIN-1 accelerator generating a wesakly
diverging electron beam uniform across the cross sec-
tion was used as an injector [15]. The total number of
beam electrons at the anode of the injector accelerating
tube, the beam width, and the duration of the pulse cur-
rent were ~9 x 103, ~16 mm, and ~7 ns, respectively.
Electronswere distributed in awide energy region up to
0.7 MeV. The beam was injected through a circular
window 20 cm in diameter cut out in the high-voltage
electrode of the chamber. In order to avoid beam lock-
ing due to the magnetic field of the electric current of
the secondary gas plasma generated by the beam in the
chamber interior, the injector tube was positioned at a
distance of 0.45 m from the window. Owing to thisfact,
theflux density of relativistic electronsinjected into the
chamber and, eventually, the magnetic field produced
by the plasma electric current were strongly decreased
without a noticeable decrease in Ng(0).

In order to measure energy distributions of relativis-
tic electrons, we employed the modified method of
range spectrometers. In this case, electrons were
detected by aluminum collectors with different thick-
ness, which, at the same time, selected the electrons

according to their energy and without shielding each
other. The advantage of this method is a considerably
weaker effect of measurement errors compared to that
inherent in the traditional method of absorbing filters.
The collectors were enclosed in thick-walled steel
detector cases. In each case, there was a window cov-
ered with aluminum foil 50 um thick with an area of
329 cm?, equal to that of the collector area. The foil
served as a screen against the noise and did not perturb
the distribution of eectrons within the region of ener-
gies exceeding €, In this modified method, the detec-
tors registered the charge accumulated in the collector.
This charge was then determined with an accuracy of
1% according to the voltage at a capacitor connecting
the collector and the detector case. To redlize the
method described, eight detectors with collectors of
different thickness were manufactured (Table 2).

MONTE CARLO CALCULATIONS

In order to analyze the experimental results obtained,
we have calculated using the ELIZA code [13] expected
detector readings after the injected beam had passed
through the chamber. In this case, we allowed for elec-
tron absorption and scattering in the injector accelerat-
ing-tube output window and inthe air layer 45 cm thick
ahead of the chamber input window. Electrons passed
through the air layer with the thickness L = 0.92 m (the
distance between the accelerating-chamber window
and the detector window located at the chamber anode)

in the uniform electric field E = 1MV =10.9kV/cm.
092 m

Then, they penetrated the 50-um aluminum layer that
modeled the detector window. The transverse sizes of
all layersare not limited. Therefore, of al the electrons
passing through the detector window, only those that hit
acirclel min diameter centered on the symmetry axis,
i.e.,, withasize equa to that of the chamber anode, were
taken into account. The electrons impinged upon the
aluminum disk with a diameter of 1 m, which modeled
the collector of the given thickness. The calculations
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are performed for the values of the disk thickness that
were egual to those of the collectors. The reflection of
electrons from a 5-mm-thick aluminum disk that mod-
eled the anode was also taken into account. The charge
being accumulated in the disk of the given thickness
was calculated as &(Ng jne — Ne pass)» Where Ny 4, and
Ne a5 €, respectively, numbers of electrons incident
onto and passing through the disk that model ed the col-
lector. Trajectories were traced for al electrons with
energies exceeding 1 keV. The electron energy distribu-
tions in the disk modeling the collector is shown in
Fig. 1. The distributions are normalized to the fraction
(0.115) of thetotal number (9 x 103) of incoming elec-
trons at the injector anode. In these distributions, the
fraction of secondary eectrons equals 8.7% (Table 2).
As is seen, the spectra of primary (injected) and sec-
ondary (high-energy) electrons are weakly overlapped
and the energy distribution of secondary electrons is
rather uniform. This considerably simplified their
selection by the collectors. Calculations have also been
carried out testifying to the fact that the actual varia-
tions of the injected-electron spectrum virtually do not
affect the value of the gas amplification.

It was important to adequately arrange the detectors
on the anode surfacein order to allow for both theradial
nonuniformity of the electron flux and the degree of its
amplification. We also took into account the fact that
the expected collector readings had been obtained by
averaging over acirclewith adiameter of 1 m, whereas
the actual area of the collectors was significantly
smaller. Therefore, we performed calculations of the
distribution of the local electron flux along the disk
radius for the above-described geometry that corre-
sponded to the experimental conditions. The positions
of the detectors were shown to be reasonabl e to choose
between the radii r = 15 and 40 cm, which correspond
to the majority of electrons, and where the electron flux
is rather uniform. In this case, a weak radial depen-
dence of the ratio for the numbers of primary and sec-
ondary electrons on the anode considerably simplifies
performing the measurements and interpreting the
results obtained.

THE RESULTS OBTAINED
AND THEIR DISCUSSION

In Table 2, the measurement results for charges
accumulated in the collectors per one pulse and the
results of the Monte Carlo numerical simulations,
which were normalized to the readings of the thickest
collector, are presented. The measurement error is esti-
mated to be approximately +10%. It is seen that the
results of the measurements and the calculations per-
formed with allowance for the generation of secondary
relativistic electrons (whose fraction is 8.7%) are close
to each other, except for the thinnest collector. The cal-
culations performed with allowance for the contribu-
tion of only primary relativistic electrons in the
expected detector readings (zero fraction of the second-
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ary relativistic electrons) lowered the degree of agree-
ment with the experimental data. Hence, we may con-
clude that the generation of a rather large number of
secondary electrons with energies exceeding the run-
away threshold ¢, took place. The following reasons
probably explaining the discrepancy are possible. The
calculation results are not corrected for the fact that a
part of the reflecting anode surface was occupied by the
steel detector cases. In addition, in actual experiments,
there exists a contribution of electrons scattered from
the chamber walls. It is also necessary to keep in mind
that the measurement error was maximal in the case of
thin collectors. In order to minimizethe effect of errors,
we intend to carry out new experiments with consider-
ably higher voltages applied. For this purpose, we have
constructed anew experimental setup with an operating
voltage up to 2.5 MV and without a solid insulator
between electrodes.

CONCLUSION

In this study, a satisfactory agreement between the
results of alaboratory experiment on the multiplication
of relativistic electrons in air at atmospheric pressure
and theoretical predictions is obtained. In the experi-
ment, electric-field strengths considerably lower than
the self-breskdown value were used. The results
obtai ned testify to the observation of theinitial stagefor
the development of an avalanche of runaway relativistic
electrons.
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INTRODUCTION

Observations of the seismic activity for arock mas-
sif after quasi-static (filling a water storage [1]) and
dynamic (high-intensity explosions [2] and earth-
quakes[3]) actions show that, in a number of cases, the
quantity of energy released considerably exceeds that
determined by external sources. Thistestifiesto thefact
of involving into the process the potential energy accu-
mulated in the massif. Good examples are an increase
in the oil-well production rate and, sometimes, areani-
mation of oil wells [3]. A number of mechanisms are
proposed for explaining these facts, e.g., an increasein
the collector penetrability due to intense cracking [4],
the initiation of resonance processes in a multiphase
medium by unsteady waves [5], and areduction in the
fluid viscosity in adynamic field [6].

In this paper, we propose a mechanism for an
increase in oil recovery that is based on the concept of
a rock-massif block structure [7]: an external action
induces alocal redistribution of stressesin the medium,
which can result in increasing contour pressure and
stratum pressure.

1. INITIAL HYPOTHESES AND FORMULATION
OF THE PROBLEM

Itiswell known that theinterblock-contact strengthis
considerably weaker than that of the blocks involved
[7,8]. Therefore, under a certain externa action, the
equilibrium inside a massif is likely to be disturbed pre-
cisaly in such aweak link. This assumption is also con-
firmed by the fact that the magjority of sources of seismic
events arelocalized in the vicinity of tectonic breaks[9].
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Let the deformation of an interblock damage be
described by the function

(R 0,) = KiRH(R,-R)
+[1,-Kg(R-R)]H(R-R)),
where Ristherelative displacement of edges (i.e., dip),
T and g, arethe tangential and normal stresses, K; isthe

tangential stiffness, K, isthe tangent of the descending-
branch slope, 1, = o,tan¢ + T, ¢ is the analog of the

(1.1)

: - , : T ,
viscous friction, T is the cohesion, R, = Kp,and His

t
the Heaviside function. The stress-strain state of the
medium is such that the current state of the contact

(Rp 1) is close to the ultimate one (R, Tp): —R <1

(AR=R,-R7>0). If an external action Ieadsto V|olat—
ing the ultimate state, then the residual slip can be esti-

mated as AR%L + _'ﬂ [10].

In the case of underground nuclear explosions, the
relative displacement of blocks is known to reach
20 mm [11]. Intense vibrators can generate a signal
whose amplitude amounts to a value on the order of
0.01 mm at adepth of 1-2 km [12]. We take this value
asan estimatefor AR and find a stress state such that the
mechanism proposed can be realized for a reasonably
typical massif block structure.

Let ahorizontal stratum L of athickness  belocated
at a depth z, in the half-space z > 0. Let a part of the
overlying layer with a thickness D, have a dantingly
laminar structure with aslope angle of 90° —a (Fig. 1),
and let the environment be elastic. We select the calcu-
lation domain D{z < z< 7, 0 £ x< X} and formulate
the following conditions on dD:

u =0, o,=0, for

x = q0v(2),

C)-zz = O-V(Zl)i

u =0, o,=0, for

Here, u; are the displacements, g;; are the stress-tensor

X = 0;
o, =0, for X=X,

Xz 1 (1'2)
o, =0, for z=1z;

z=z,.
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components (i, j = X, 2), Oy = Y9z Yy isthe density, g is
the free-fall acceleration, and q is the lateral-resistance
coefficient that characterizes the ratio between the hor-
izontal stress and the vertical stress oy, outside the zone
inwhich the effects of the object under investigation are
noticeable.

In D, the equilibrium conditions

0ij,j—Y9%, = 0 (1.3)

and Hooke's law

__Egv N
% = Trvi_ vt g

arevalid. Here, g; = 0.5(y; j + U; ;) are the components
of the strain tensor, e = u, ;, EistheYoung modulus, v is
the Poisson ratio, §; is the Kronecker delta, and the
summation is performed over the repeated subscript.

Thetangential deformation of interblock contactsis
described by formula (1.1), while g, and the normal
displacements in these contacts are continuous.

The set of equations (1.1)—(1.4) determining theinitial

stressfield oﬁ in the massif is formulated for the plane-

strain model [13] that fittingly describesthe fault (g < 1)
tectonic regime characteristic for many oil fields [14].

The set of equations (1.1)—(1.4) is solved by the
finite-element method. The following calculation-
domain sizes were chosen: z; = 1500 m, z, = 2000 m,
z;= 2500 m, h = 50 m, and x, = 1000 m. The zone D,
involving ten thinlayers (each 5 mthick) separated by dis-
continuities is located in the middle of overlying layer D
(Fig. 1). The physical properties of rocks are presented in
the table. For interblock contacts, we used the values
K;=3GPa/m, K;=0.2K,, ¢ =25°, and 1. = 0.5 MPa

In Fig. 2, we display the calculation results for the
distribution of AR along a danting fault for various val-
ues of a (the dashed and solid lines are used for g = 0.3
and g = 0.275, respectively). Theseresults show that the
break zone in the vicinity of the stratum is in the
amost-ultimate state (AR = 0.06 mm). This fact pre-
sentsaprincipal possibility to violate the equilibrium of
the environment by the action of a group of vibrators,
thereby inducing a redistribution of stresses in the
vicinity of stratum, increasing pressure within the stra-
tum and, thus, its fluid recovery.

(1.4)

2. ANALY SIS OF CHANGES
IN WELL PRODUCTION

Without posing to thoroughly investigate filtration
processes, we qualitatively analyze changes in the
fluid-flow rate in the case of an induced local stress
redistribution.

At the time moment t = 0, a stratum is opened by a
well located at a distance x, from the middle of the
DOKLADY PHYSICS Vol. 47
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Fig. 1. Structure of the calculation domain and boundary
conditions.
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Fig. 2. Distribution of AR along afault for various lateral-
resistance coefficients.

break zone. The filtration process is described by the
equations of mass conservation

(mp)  +(pw;); = 0, (2.1)

of state
P_1=P"F 22
o c )
and by the Darcy law
k
Wi = — i 23
N P, (2.3)

Here, w; are the velocity components; p, n, and C are
the fluid density, viscosity, and compressibility; p is
pressure; Kk is the penetrability; mis the porosity; and
the subscript 0 marks the initial values of the corre-
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Fig. 3. Pressure increment in a stratum, which isinduced by aredistribution of stressesin the massif.

sponding quantities. In the case under consideration,
the right-hand side of Eg. (1.2) has the form of
mp;H(h - |z- z)); i.e,, the change in the stress—strain
state of the massif dueto filtration processesin the stra-
tum is taken into account.

For (2.1)—«2.3), we formulate the boundary condi-
tions
W,(t, X, 2,) = W,(t, x,z,+h) = 0, 2.4)

p(t,0,2) = po, 2.5)

p(t, X1, 2) = s(2), (2.6)

and theinitial condition

0
p(01 X, z) = W , 2.7)
where s(z) = (1 + v)(1 + q)GVS(Z) is the mean stressin

the virgin massif (the positive values correspond to
compression). Condition (2.6) realizes the Khristiano-
vich hypothesis about the pressure distribution in an
intact stratum.

Physical properties of rocks

Domain E, GPa v y, kg/m?
D 20 0.25 2500
D, 18 0.25 2500
L 15 0.23 2200

Sets (1.1)—(1.4) and (2.1)—«2.7) were solved using
the procedure and codes developed in [15].

Let ashift of certain contactsin the break zone occur
at t=t, (it does not matter what the reason was), which
induces a redistribution of stresses in the massif. We

denote the new state as oﬁ . Thus, the pressure in the
stratum varies jumpwise:

where Ac = 07 — o}, . Along with this, we assume that

the stratum penetrability decreases: k = k; %L—ED

K4’

_ (L-mE . il

Yvhere K Toov+mC isthe collector compressibil
ity.

The calculations were carried out for k, = 5 x
10 m?,n =0.03 Pas,m=0.2, p, = 10° Pa, q = 0.275,
Po =850kg/m?3, and C = 3 GPa(whereasK = 24.6 GPa).
In Fig. 3, we display the distribution of Ao for the case
when adlip by AR = 0.06 mm took place for six contacts
inthe middle of D,. Asis seen, the redistribution is of a
rather local nature, and in the case of thick strata, the
realization of the mechanism proposed is unreasonable.

In Fig. 4, we show a relative increase in the well
production for t > t, (and for the same calculation
parameters):

Qp(t) — Q(ty)

AR = Qm-aw) ~

DOKLADY PHYSICS Vol. 47 No.1 2002
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Fig. 4. Relative change in the fluid flow rate.
Here, Q, and Q are the fluid flow rate in the case with REFERENCES

and without an additional action onto the massif. We
can note two features in the behavior of AQ: an
increase with timet, and
areasonably fast tendency to reach a certain steady

value AQ, , which characterizesthe residual effect after
such aforced change in the pressure inside the stratum.

The calculations showed that the effect of the local
redistribution of stresses decreased by AQ with remov-
ing the well from the break zone.

Remark 1. The analysisis carried out in the two-
dimensional formulation. It is evident that in the actual
(three-dimensional) situation, it is necessary to treat by
external sources the corresponding parts of the massif
over the area of stratum bedding.

Remark 2. A forced shift in interblock contacts can
also lead to a negative effect. For example, if in the
model under consideration a slip of two edge contacts
isinduced, then virtually everywhere in the stratum we
observe Ao < 0. Therefore, the preliminary analysis of
the stress-strain state of the massif is necessary not
only to reveal weak zones, but also to estimate how
consequences of a disturbance of the equilibrium state
in these zones affect the filtration process.

Remark 3. The numerical analysis showed that, for
the upthrust tectonic regime with its high (q > 1) hori-
zontal stresses, the bresk-zone state (for the massif
structure given here) with AR~ 0.05 mm can take place
only for rather low values of ¢, which are virtually
absent. Therefore, in this case, the redization of the
proposed mechanism is very problematic.

ACKNOWLEDGMENTS

Thiswork was supported by Schlumberger Qilfield
Services, an international company in the oil and gas
industry, and by the CRDF Foundation, contract
RGO-679-A.

DOKLADY PHYSICS Vol. 47

No.1 2002

10.

11.

12.

13.

14.

15.

K. M. Mirzoev and S. Kh. Negmatullaev, Prognoz Zem-
letryasenii, No. 4, 365 (1983).

A. A. Eremenko and N. I. Sklyar, Fiz.-Tekh. Probl.
Razrabh. Polezn. Iskop., No. 1, 14 (1999).

E. V. Kraus, O. L. Kuznetsov, E. M. Simkin, et al., in
New Data on Seismology and Seismogeol ogy of Uzbeki-
stan (Fan, Tashkent), pp. 292—-302.

V. A. Chernykh, Fiz.-Tekh. Probl. Razrab. Polezn.
Iskop., No. 1, 126 (1990).

V. N. Nikolaevskii, Geomechanics and Fluidodynamics
(Moscow, 1996).

G. G. Vakhitov and E. M. Simkin, Uses of Physical
Fields for Recovery Oil from Srata (Nedra, Moscow,
1985).

M. A. Sadovskii, L. G. Bolkhovitinov, and V. F. Pisa-
renko, Deformation of Medium and Seismic Process
(Nauka, Moscow, 1987).

J. C. Jaeger and N. G. W. Cook, Fundamentals of Rock
Mechanics (M ethuen, London, 1969).

M. L. Zoback, J. Geophys. Res. 97, 11703 (1992).

L. A. Nazarov and L. A. Nazarova, Dokl. Akad. Nauk
365, 193 (1999) [Dokl. Phys. 44, 184 (1999)].

G. G. Kocharyan and A. A. Spivek, Fiz.-Tekh. Probl.
Razrab. Polezn. I1skop., No. 1, 71 (2001).

N. P. Ryashentsev, Yu. S. Ashchepkov, L. A. Nazarov,
et al., Preprint No. 31 IGD SO AN SSSR (Inst. of Min-
ing, Siberian Division, Academy of Sciences of the
USSR, Novosibirsk, 1989).

L.A. Nazarova, Fiz.-Tekh. Probl. Razrab. Polezn. 1skop.,
No. 1, 28 (1999).

E. V. Artyushkov, Physical Tectonics (Nauka, Moscow,
1993).

L. A. Nazarov and L. A. Nazarova, Fiz.-Tekh. Probl.
Razrab. Polezn. I1skop., No. 2, 35 (1999).

Trandated by V. Bukhanov



Doklady Physics, \ol. 47, No. 1, 2002, pp. 16-20. Translated from Doklady Akademii Nauk, Vol. 382, No. 1, 2002, pp. 45-49.

Original Russian Text Copyright © 2002 by Sirota.

PHYSICS

Characteristic Temperature and Polymor phism
of Ca, Ti, Fe, Co, Zr, Sn, and Lain the Debye Approximation

N. N. Sirota
Presented by Academician O.A. Bannykh May 21, 2001

Received May 24, 2001

Structural polymorphism of matter is a widespread
phenomenon in nature. It manifests itself in all aggre-
gate states of substances under the variation of general-
ized forces. temperature, pressure, magnetic- and elec-
tric-field intensity, etc.

The temperature polymorphism of a chemical ele-
ment (single-component monoatomic substance) is
observed in the case if, along with a basic modification
stable at a low temperature, the chemica element has
an energetically close unstable modification (with a
lower atomization energy). With increasing tempera-
ture T, even at a constant pressure p, the element under-
goes atransition from the region of the thermodynamic
stability of the low-temperature modification | to the
region of the equilibrium existence of another modifi-
cation 1. In the case of further increasing temperature,
the subsequent modifications Il and IV can arise, if
they actualy exist.

Note that the appearance of various modifications
upon changing other generalized forces, including, e.g.,
pressure p, magnetic-field intensity H, and electric-field
intensity E (at T = const), corresponds to other types of
polymorphism, e.g., baric, magnetic, etc., which we
hereignore.

Polymorphous structural transitions are, as a rule,
enantiomorphous phase transitions of the first order
(for p = const).

The polymorphism phenomenon can be treated
from the structural standpoint and starting from an
analysis of the role of the components for the tempera-
ture dependence of the free energy and the correspond-
ing thermodynamic characteristic functions [1-4].

Below, we restrict our consideration of the lattice
dynamics of chemical elements as Debye solids,
assuming other components of the free energy (elec-
tronic and magnetic) to be negligibly small. In the
accepted Debye approximation, the crystal-lattice
dynamics of each of the modifications is described by
the Debye phonon spectrum with the density of states

Moscow Sate University of Environmental Engineering,
ul. Pryanishnikova 19, Moscow, 127550 Russia

gW) = %vz , which is the quadratic function of atomic
oscillations with frequency v (the maximum fre-
quency v,,) and the corresponding characteristic tem-

hv,,
perature 6 = et

The Debye approximation is valid only for crystals
possessing no strongly pronounced anisotropy and with
the dimensionality (including the exponent n at the
maximum frequency v,, of the Debye phonon spec-
trum) not strongly differing from three.

In the approximation accepted, the critical tempera-
ture TKikj of the polymorphic transition for thei, k mod-
ification of the element j correspondsto the intersection
point for the curves of the Helmholtz free energy
AF;,; = 0. At moderate temperatures, the quantity TKikj :
specified from the condition AF;; = 0, practically does
not differ from the quantity TKikj , determined from the
condition of the equality to zero of the Gibbs free
energy AG; = 0.

The free energy F and the internal energy U of the
modifications ikj are summed from the temperature-
independent atomization energies U, including the
energies of atomic zeroth oscillations and temperature-
dependent fractions of U+ and F+.

At T = T, the differences in the free energies of
modifications| and Il are

I:I _FII

- dT M
= Uaﬂ_Uaﬂl_Tch’(UI(T)_UII(T))? = 0.
0

At T = T, the difference in the temperature-depen-
dent fractions of the free energies of modifications| and
Il isequal to the differencein their atomization energies
aT=0:

F(T),r,—F(Mu,1, = Ua—Uqy = AUg,.  (2)
Note that AU, <€ U,,.
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Correspondingly, the difference of the entropy for
themodifications| and |l at T =T isequal to the phase-
transition heat related to T, which is assumed to be the
difference of the internal energies

UI _UII UatI_UatII
§-S = =
! TCI’ TCT
LU(M-U(M _ Au,
TCI‘ TCI’ ’

where AU, = U, + AU(T).

If the entropy S of the low-temperature maodifica-
tionl, T, and the heat of the polymorphous transition
U, = U, — U; are known, the entropy S, of the subse-
guent high-temperature modification is

AU,
Si =S+ (3)

cr

The entropy of the Debye solid is a tabulated func-

tion of the ratio _?_ . Consequently, the found values of

S,r, and §, 1, a T=T, determine the characteristic

temperature of the modification Il and, correspond-
ingly, the temperature dependences F(T) and Uy(T).

The characteristic temperatures of Debye solids are
independent of temperature. They are quantitatively
related to the atomization energy, aswell asto the crys-
tal structure. In contrast to Debye solids, the character-
istic temperatures of actual crystals are functions of
temperature and depend on the type of the actual
phonon spectrum. For example, according to Alers[5],
the characteristic temperature 6 for copper, which is
calculated according to elastic constants within the
rangefromT=0to T=25K, variesfrom 345 to 307 K.
According to data of [6] for germanium within the
range from T = 0to T = 300 K, the value of 6 deter-
mined from the cal orimetric measurements varies from
375K at T = 0K, passes through the minimum equal to
257K at T=20K, and reaches 378 K at T = 300 K.

In calculations of the thermodynamic properties of
polymorphic modifications |1 and 111, it turns out to be
possible to reduce the number of necessary initial data
employing the equation connecting the atomic interac-
tion energy U and the volume V per one atom, e.g.,

U =-ae™+be, 4)
which follows from the condition
[ﬁ_UD =0
EBVDVO ’
B U
b = ak—)e 8 v)vm’ a:_v OeBVo,
y y-B
Up . BV-Vvy —y(V-Vy)
U=——ye —[Be . 5
. B[v B ] ®)
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The magnitude of the bulk elastic modulus B isequal to

voug  _
—~ = yBU,V,. (6)
Hav2 L, MMl
SinceU, = U,V,, then
B = yBU,. (7

The bulk elastic modulus is proportional to the
atomization energy multiplied by the product of the
coefficients By.

The characteristic temperature of the crystal modifi-
cation in the certain approximation can be expressed in
terms of the bulk elastic modulus B (A is the atomic

number):
N /BVP
6 = . Na Vil A (8)

Assuming By = 9.35, we obtain

a Ua[
VI ©)

A
The ratio of the characteristic temperatures for the
modifications | and Il will be

0 _ ur(BY) Vi7" [ AUs
0, 0(|[(BV)|V||} ! Ug

Where AU()tr = Uatl - UatII'
For the employed values of 3 and y (By = 9.35), the
inversevaluesof a are a;* =0.999for A,, o' =0.998

for A,, a;' =0.741for A,,and a5 =0.915for As. For

0 = 147

(10)

A5, the value of o, depends on the ratio g andisclose

in its magnitude to a, and a,.

Introducing the coefficient a (depending on thetype
A, i=1 2, .., 50f thecrysta structure) for given val-
ues of 3 and y makesit possibleto take into account and
to correlate their relation to the structure of a crystal
having the coefficient k of filling the unit-cell of the

volume Vo with atoms of a diameter of &:

3
_ 1o n

= EV_‘O’
where n isthe number of atomsin the unit cell. Thefill-
ing coefficient isk, = 0.74 for A structures, K, = 0.68
for A,, and k, = 0.34 for A,. For A; and Az, the coeffi-

(11)

cientsk depend on theratio g . The coefficient o relates
to the inverse value of the effective packing coefficient

Ker = K + 1;qK for g = 3, and is proportional to the
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Table 1. Initial data employed in calculations
=
3 o) © =
‘g ‘g g %w 2’[% g V’[%m o, A g g KT([:;] B |9se K| e K8
O | o §§ 55 S% |32 A=
20 | Ca | 40.078 | A; | 5.5884 25.86 3.951 1782 | 0.150 | 573 | 41.42 | 218.2 220
(194.1)
A, | 4.480 27.064 | 3.8797 | 178.05 723
A; | 397 1.6347 | 30.788 | 3.97 177.99
6.49
22 | Ti 47.88 A; | 29511 |1.5873| 10.55 29511 | 469.9 4.0 1155 | 30.63 | 342.1 430
4.6843
A, | 3.3065 10.88 2.8634 | 465.4
26 | Fe 55.847 | A, | 2.86645 7.0 24823 | 416.3 0.905 | 1183 | 27.28 | 3954
A; | 3.6468 7.3 2.5783 | 415.39 | 0.692 | 1663
A, | 2.9322 7.588 | 25393 | 414.70
27 | Co | 58933 | A; | 35441 6.62 25057 | 424.7 0.44 690 | 30.04 | 350.7 | 445
A5 | 2507 1.623 6.67 2.507 424.26
4.069
40 | Zr 91.224 | A; | 3.2321 |1.5927 | 14.02 3.2321 | 608.8 3.84 |1135 | 38.99 | 240.8 (237310
5.1477
A, | 3.616 14.231 | 3.1315 | 605.14
50 | Sn [118.71 A, | 6.4892 20477 | 281 302.10 | 2.47 286.4| 44.14 | 195.3 212
As | 5.8316 |1.833 | 16.24 2.354 299.63 51.55
3.1813
57 | La [138.9055| A5 | 3.77 1.6127 | 22.497 | 3.77 431.0 0.4 583 | 56.9 116.4 142
12.144
A; | 5.296 22.355 | 3.7443 | 430.6 3.19 |1137 139
A, | 42 23.27 3.6892 | 427.41
probability integral: tionship [((Ey))”} is proportional to %%n for (By)y =
|

xtz

e 2dt for x = 4k.

ﬁ

The variation of the characteristic temperature cal-
culated by relations (8), (9) while passing from modifi-
cation Il to modification | is determined not only by a
change in both the molar volume and the atomization
energy but also by the change in the exponents 3 and y.

According to relation (9), the change in the charac-
teristic temperature at the polymorphous transition
from modification | to modification |1 depends not only
on the variation in the atomization energy, the molar
volume, and the coefficient o but also on the variation
in the product By. In this case, we assume that the rela

a=®(x) =

(By); and n = 0. For other values of (By); and (By),, N =
2orn=4,

Ua B

6 = 1473 yyira

v (12)

The values of the lattice parameters a and ¢, molar
volume V, atomization energy U,,, experimental values
of the characteristic temperatures 6, standard entropy
Sys and the value 8,y; determined according to them,
the heat AU,,, and temperatures T, of polymorphous
transitions are given in Table 1.

The calculated values of 6, (and, for comparison,
thevaluesof ©;,; obtained for a;; = 1) and the values of

DOKLADY PHYSICS Vol. 47 No.1 2002
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Table 2. Determined values: 8,6, 8%, F1_1_(8), Sy-1_(8), AUy(®), ASy - 1_(8), AU(8%), AS; - 1_(8*), and valuesof a,

n, and By used in calculations

Element [T, K| o |n| py |@y+| 0.k | 6.k |evk| 5| 28| 5| -5l HE| & E
rEl g5 Doy
L2 |05 |al | 323545
Ca A; 1.0000| 2 | 6.150 192.75 | 192.75 22.235 | 60.76
A, | 573.0|1.0020 5.830 188.72 | 180.89 22.980 | 62.23 | 0.745 147
A, | 723.0/1.0020| 2 | 5.830 188.72 | 180.89 33.021 | 68.37
Ag 1.0001 4.330 176.57 | 154.57 35.442 | 72.04 | 2.421 3.67
Ti A 1.0090 | 4 | 6.150 452.38 | 452.38 40.809 | 56.82
A, [1155.0| 1.0020 5.825 | 5.84 | 440.26 | 394.91|396.20| 44.419 | 60.37 | 3.609| 3.528 | 3.54 | 3.46
Fe A, 1.0020| O | 6.150 480.66 | 480.66 40.830 | 55.88
A; [1183.0| 1.0000 6.150 | 6.07 | 469.23 | 469.23 |466.27| 41.429 | 56.47 |0.599| 0.785 | 0.59 | 0.76
A; 11663.0|1.0000| O | 6.150 469.23 | 469.23 71.062 | 65.15
A, 1.0020 5.930 | 6.21 | 460.78 | 460.78 | 462.37| 71.840 | 65.66 |0.778| 0.631 | 0.51 | 0.42
Co A 1.0000| 2 | 6.150 485.01 | 485.01 16.131 | 42.38
Az | 690.0| 1.0003 6.150 | 6.00 | 483.08 | 479.25|473.03| 16.293 | 42.67 |0.162| 0.348 | 0.30 | 0.64
Zr Aj 1.0085| 4 | 6.150 323.45 | 323.45 48.206 | 64.86
A, [1135.0| 1.0020 5.940 | 548 | 318.01 | 297.16 | 285.35| 50.624 | 67.20 | 2.418| 3.505 | 2.33 | 3.38
Sn Ay 1.3495| 2 | 5.045 221.15|221.15 6.203 | 40.12
Ag | 286.4 | 1.0930 5.045| 3.72 | 200.31 | 164.32|155.78| 7.850 | 47.41 |1.647| 1.961 | 7.28 | 8.62
La Az 1.0020| 2 | 6.150 174.53 | 174.53 23.990 | 63.41
A; | 583.0|1.0000 5950 | 5.97 | 173.10 | 170.29|170.60| 24.380 | 64.15 |0.390| 0.362 | 0.73 | 0.68
A; [1137.0|1.0000 | 4 | 5.950 173.10 | 170.29 66.523 | 82.09
A, 1.0020 5111 | 4.88 | 169.38 | 155.25|151.79| 68.984 | 84.37 | 2.461| 3.027 | 2.28 | 2.81
Note: The value of 8* corresponds to the experimental value of e = AS’;:Tcr -ForSn, 6, =200.31, AS; A, A, =237an=0.

cr

. . : AU
0* corresponding to AS* determined according to T—”

cr

(see Table 1) are presented in Table 2. According to the
values 6, obtained, the values of the internal energy
U of the modificationsi and k for chemical elements
j, the free energies Fy;, and the differences

AF(T)ij, 1 =1, =AUg a T=(Ty)y; are determined. The

values of 6., and 6.4 and those of AS; o and

expt

AS;_cacq @€ plotted for comparisonin Figs. 1 and 2.

While calculating the characteristic temperatures of
iron modificationsI(A,), II(A,), and III(A,) reduced to
the state of the Debye solids, we have used lattice con-
stants according to [7] but not normalizedto T — 0.
The values of 8 experimentally determined according
to[8] arealsotakenfor A,. The madificationsindicated
were considered as independent phases with the func-

DOKLADY PHYSICS Vol. 47
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tions F(T) also independent of each other, as distinct,
e.g., from [9-11], in which F,(T) and F;(T) were taken
as unique common function F(T). In[9, 10], the role of
the magnetic contribution of the free energy was taken
into account. In [11], the analysis of temperature varia-
tions of polymorphic modifications was carried out for
iron aloys by the method of geometric thermody-
namics.

In the present paper, apart from the geometric vibra-
tional component, other possible components of the
free energy were not taken into account. Other possible
approaches[12-14] to the polymorphism problem were
not considered either.

Asfollowsfrom the results of this paper, apart from
the similarity in the number of cases of characteristic
temperatures used with experimental ones, the Debye
approximationsresult in certain inconsistencies of ther-
modynamic properties at T = T,. The characteristic
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eexpl’ K
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Fig. 1. Caculated and experimental [8] values of 0 for low-
temperature modifications.

ASTCI., expt»
J/(K mol)

=N
\O
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Ter, caled>
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Fig. 2. Calculated and experimental [8] values of A Srcr for
polymorphous transitions: (1) Ti(AzA,); (2) Fe(AyAy);
(3) Fe(A1Ay); (4) Co(AA3); (5) Zr(AsA,); (6) Sn(A4As);
(7) La(A3A)); (8) La(A [ A); (9) Sn(A,As for n=2.5).

temperatures calculated according to the experimental
datafor the entropy of different modifications, asarule,
dightly differ from the characteristic temperatures
found on the basis of other experimental data. Thisfact
emphasizes the principle importance of the allowance
for the difference phonon spectra, aswell astherole of
other components of thermodynamic functions except
the harmonic vibrational ones.

Along with the arguments given above, the results of
this paper testify to the fact that the Debye approxima:
tion alows the clear description of the polymorphism
of chemica elements having crystal structures free of
strongly pronounced anisotropy to be presented and
quantitative relations of atomization energy, atomic
mass, and molar volume with the Debye characteristic
temperature of modifications to be established.

As also follows from both the thermodynamic anal-
ysis and the results of this paper, in the Debye approxi-
mation the characteristic temperatures of a high-tem-
perature modification are always lower than those of
the low-temperature modification. Correspondingly,
the stability determinants and other properties of the
polymorphic modifications specified by the character-
istic temperature also differ from each other.

The use of a novel analytical expression for the
Debye characteristic temperature simplifies the struc-
turally-thermodynamic consideration of the polymor-
phism phenomenon and the estimates of a number of
properties for modifications of chemical elements.
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Among numerous methods for producing plasmas
exhibiting strong Coulomb interaction [1], dust plasma
presently attracts particular attention [2—4]. This is
explained by the fact that it allows an extremely high
parameter of nonideality (y = Z?e’n'3/KT ~ 10°) to be
obtained, due to a significant charge Z of macroparti-
cles, which reaches ~10*-10°. Such a value of the
charge can be provided by both ahigh mobility of elec-
trons (for example, in a high-frequency discharge or
glow discharge [2, 3]) and the action of photoelectron
emission or therma emission [3, 5, 6], as well as by
radioactive decay [7]. In this case, in a number of
experiments, the interparticle Coulomb interaction
turns out to be so strong that it causes the appearance of
ordered dust structures (plasma liquids and plasma
crystals). In them, the interparticle interaction causing
structural ordering exceeds by orders of magnitude the
thermal motion characterized by the energy KT, which
destroys the structure.

In the present paper, we propose a method (alterna-
tiveto the charge one) that makesit possible to increase
the nonideality of the dust plasma This method is
based on decreasing the kinetic energy of dust particles
down to cryogenic temperatures. Note that this allows
anonideal plasma in cryogenic discharges to be
obtained [8] by laser cooling of ions in electrostatic
traps [9] and electron cooling of ions in accelerating
rings [10], as well as two-dimensional crystals on the
liquid-helium surface [11].

In this study, we experimentally obtained dust struc-
tures in both glow-discharge plasma and high-fre-
guency-discharge plasma at liquid-nitrogen tempera-
ture (77 K). The scheme of our experiment is similar to
that considered in [12]. Dust structures consisting of
magnesium oxide particles 3-5 pm in diameter, which
had been introduced from above (i.e., from the anode
side), were observed in striations of the positive column
of alow-pressure glow discharge in a quartz discharge
tube (2 cm in diameter) immersed into a cryostat filled

T Deceased.

Institute for Thermal Physics of Extremal States,
Ingtitute of High Temperatures Scientific Association
(IVTAN), Russian Academy of Sciences,

| zhorskaya ul. 13/19, Moscow, 127412 Russia

with liquid nitrogen. Using laser illumination, also
from above, we observed the dust structures through an
optical window of the cryostat. Outside the discharge
tube, we mounted two copper-foil rings spaced 4 cm
from each other, between which the capacitive high-
frequency discharge was ignited at a frequency of
13.6 MHz. Air at a pressure below 0.1 Torr served as a
plasma-forming gas. The pressure was measured at
room temperature by a thermocouple manometer
placed in the upper part of the tube. The air density in
the lower part of the tube, which was immersed in the
liquid nitrogen, is approximately four times higher.

It should be noted that both glow discharge and
high-frequency discharge are insufficiently studied at
cryogenic temperatures. At the same time, as was
shown in our experiments, they possess a humber of
interesting features. Visually, even the shape of the stri-
ations in the glow discharge at 77 K is absolutely dis-
tinct compared to that at room temperature. Probably,
the shape of the striationsis most significantly affected
by metastable atoms and molecules accumulated in the
discharge and ionization processes associated with
them. Thermophoresis forces caused by temperature
gradients also play an important role [12].

At liquid-nitrogen temperature, the dust structures
in glow-discharge striations are observed in the form of
threads and are similar to those detected for the same
currents (~1 mA) at room temperature. Interparticle
distances are nearly the same and attain approximately
200 to 250 pum [13]. In contrast to room temperatures,
there are many particles that rapidly rotate around
immovable threads located near the tube axis; no ring
structures being observed. With an increase of the dis-
charge current to 3 mA, the dust structures disappear. A
rather extended structure (about 30 cm in length) con-
sisting of long dust threads that occupy almost the
entire volume of the glow-discharge positive column
arisesin anarrow range of pressures between 0.04 and
0.05 Torr, both above and below the level of liquid
nitrogen. The experiments performed have shown that,
along with well-known causes (the shape of the electro-
static potential, gravity force, and ion-friction force),
the dynamics and stability of cryogenic dust plasmaare
significantly affected by longitudinal thermophoresis
forces[12]. The forces are proportional to temperature
gradients and (as shown in [12]), for the micron-size
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Layering of a dense dust structure at a cryogenic tempera-
ture. The size of aluminous region is 2 mm.

particles, exceed ion-friction forces appear because by
amost one order of magnitude. These forces appear
because the momentum transferred to a macroparticle
by molecules passing from the side of the more heated
gas exceeds the total momentum of cold molecules.
The cryogenic dust structure turns out asthough it were
in an electrostatic trap. In thistrap, the vertical stability
is provided by the electric field of the glow discharge
(that balances the gravity force of macroparticles) and
by the thermophoresisforce. Thisforce acts both down-
wards along the direction of the thermal flow from the
upper zone unoccupied by liquid nitrogen and upwards
due to the heat release in the cathode region. With
decreasing pressure, the dust structure is partitioned
into severa parts, 4-5 cmin length.

Previoudly, such extended dust structures were
never observed in experiments. However, the structure
is unstable with respect to longitudinal low-frequency
disturbances. With laser illumination, these distur-
bances are directly observed by the unaided eye in the
form of longitudinal density waves. The entire
extended structure is divided into transverse layers
(with different densities) about 0.7 mm thick. Probably,
thisis aresult of spontaneous dust-acoustic instability,
similar to ion sound in conventional plasmas[14]. Itis

worth noting that, in contrast to experiments at room
temperatures when the dust-acoustic instability was
observed, in our case, the entire extended structure at a
distance about 30 cm is partitioned into transverse lay-
ers. The development of the dust-sound instability is a
result of total plasma-flow instability when plasmaions
pass through the charged dust with drift velocities
exceeding the sound velocity in the dust itself. With
decreasing temperature of heavy particles, the devel op-
ment of such an instability is simplified due to the low-
ered dust-acoustic speed.

The second series of experiments at cryogenic tem-
peratures was performed with a capacitive high-fre-
guency discharge. Since the electrodes are isolated
from plasmaby the glasstubewalls, such adischargeis
entirely controlled by the ambipolar diffusion. Experi-
ments carried out at room temperature have shown that
particles are located just below the lower ring and are
confined in the vertical ambipolar electric field. The
plasma localized between the rings represents an elec-
trostatic trap for negatively charged macroparticles.
The particles form a cone consisting of threads about
2 cminlength and ~2 mm in diameter. At liquid-nitro-
gen temperatures, the particle density in this structure
abruptly changes. There appears a very dense plasma-
dust structure with the same size, whichislocated inthe
middle between the rings to which the high-frequency
power is transmitted. Interparticle distances in the
structure are poorly distinguished even at ahigh magni-
fication. Around this structure extended along the tube
axis, we observed vertical threads consisting of parti-
cles having a density typical of the conventional glow
discharge. The surface of the dust structure not only
intensely scatters but also reflects the laser radiation.

The degree of particle ordering depends on gas pres-
sure. Although we failed to observe the mutual arrange-
ment of the particlesin individual layers, we could see
that the reconstruction of the structure occurred with an
increase in gas pressure. The reconstruction of the
structure (from cubic to hexagonal) with increasing
pressure was previously observed by usin aglow dis-
charge at room temperature [13]. With decreasing pres-
sure, the dense structure is layered in spite of the fact
that the ionization in this region remains uniform. We
can observe well-pronounced dark and light thin trans-
verse stripes with a thickness of about 150 pm, with
sharp boundaries along the entire length of the structure
(see figure). However, unlike the glow discharge, the
dust particles in the dark stripes are amost entirely
absent. In the lower part of the dust structure, we
observed damped density waves traveling upward with
a velocity of about 2 cm/s. The damping is associated
with the collisional dissipation, which is significantly
higher in the dust plasma than in the dust-free plasma.
Layering seems to be caused by acoustic instability;
however, dust sound is only excited in the dense struc-
ture, without affecting rare threads of surrounding mac-
roparticles. Previously, the appearance of thin dust lay-
ers with sharp boundaries was not observed in studies
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of dust plasmas. This phenomenon is apparently asso-
ciated with the devel opment of nonlinear processes. In
addition, the nonlinear dust-acoustic vibrations (similar
to nonlinear ion-acoustic waves) may also give rise to
the appearance of sharp boundaries in the dust density.
However, the nonlinear processes, asin the case of ion-
acoustic vibrations in plasmas, are limited by the
effects of spatial dispersion.

For the dust sound, the dependence of the phase
velocity on the wavelength is the same as for the ion
sound and results from the dispersion equation [14]:

KC,

Ww=———--:.
(1+K?D¥)™

ey

Here, C, = Z(kTe/my)'? is the speed of the dust sound,
€ =ny/N;, 0y istheion density, m, is the mass of a dust
particles, ny istheir density, and D is the Debye radius.
With increasing the wave number, the phase velocity
w/K decreases. In this case, nonlinear dust-acoustic
waves of cnoidal type can propagate along the struc-
ture. They correspond to an electric-field wave having
asteep leading front and result in the formation of dust
layers. In our conditions, the Debye radius D =20 um
isdetermined by theion temperature, the KD parameter
is KD = 0.4, and the wavelength A = 300 um is signifi-
cantly smaller than in other experiments performed
with dust plasmas. At the same time, the experimental
value of C,= 2 cm/s exceeds by afactor of two or three
the speed of the dust sound measured at room tempera-
ture. Thisis associated with the higher density of dust
structures observed at cryogenic temperatures. Despite
of the fact that the dust-acoustic vibrations in noniso-
thermal plasmais excited by ion drift, the thickness of
the dust layers cannot be smaller than the ion mean free
path in the charged dust, since otherwise the macropar-
ticlesin the layers cannot maintain their charge.

Theformation of very dense dust structuresis seem-
ingly explained by the fact that, at cryogenic tempera-
tures, the Debye screening radius D decreases and the
mutual Coulomb repulsion of charged particles at dis-
tances r = D, which is determined by the exponential
part of the Debye potential (Z2€?/r)exp(—r/D), issignif-
icantly weakened. In this case, dust particles can
approach each other more closely, and their attraction
associated with the mutual polarization of ion clouds
surrounding them is revealed to a greater extent. The
formation of ordering structures (in which interparticle
distance considerably exceedsthe Debye radius) can be
explained by the attraction associated with ion fluxes
impinging onto dust particles[15]. At the sametime, at
low temperaturesin very dense structures under consid-
eration, the dust particles strongly shade each other, and
the ion mean free path becomes shorter than the size of
the structure. Under these conditions, the attraction of
dust particles by the action of pure electrostatic forces
ispossible.
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Under the conditions of our experiment (at gas tem-
perature T = 77 K and the power of ~0.5 W transferred
to the high-frequency discharge), the electron concen-
tration evaluated from the conductivity of the discharge
is on the order of 10° cm3. The dust concentration in
the dense structure can be estimated from the quasi-
neutrality condition

ze = 1 @)
1

and the expression for the dust-sound speed C, entering
into formula (1). Using the measured value of C, and
assuming that the negative charge in the dense dust
structure is mainly concentrated on the macroparticles,
i.e at Ze ~ 1, we obtain that Z = 3 x 10 and the density
of macroparticles in the structure ny cannot exceed
10% cm3. In this case, the ion mean free path in the
charged dust A = (ngo)~! ~0.01 cm, where o isthe cross
section for Coulomb scattering of an ion on a charged
dust particle. The parameters of nonideality y and of the
Debye interaction I' = yexp(-r/D) attain the values of
10% and ~10°, respectively. Thisindicates that the Cou-
lomb system is strongly nonideal, and its nonideality
parameter significantly exceeds the critical value y =
170 for which a Coulomb crystal is formed.

It is worth noting that, despite the fact that in the
high-frequency discharge the dense structure with
sharp boundariesis surrounded by a dust structure con-
sisting of rare threads, it does not absorb additional par-
ticleswhen environmental conditions are changed. Nei-
ther radial thermophoresis forces [12] nor ion entrain-
ment forces associated with the ion ambipolar flow
toward the walls are capable of destroying the dense
structure. With decreasing pressure, there appear in it
instabilities (similar to density waves) giving rise only
to its partition into thin layers.

Thus, at cryogenic temperatures, we have managed
to obtain superdense ordered plasma-dust structures
that were previously unobserved in a high-frequency
low-pressure discharge at room temperatures. The for-
mation of dense structures is most likely related to the
pure el ectrostatic interaction between charged dust par-
ticles. Instabilities inherent in these structures (proba-
bly associated with longitudinal dust-sound vibrations)
give rise to their separation into thin transverse layers
with well-pronounced boundaries and are observed
when lowering gas pressure. In such structures, the
dust-sound speed is several times higher than in dust
formations previoudly investigated at room tempera-
tures.
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This paper dealswith oscillationsin viscous incom-
pressible fluid filling an infinitely long slot. Both the
fluid and the dlot rotate as a solid with an angular veloc-
ity , = const. Oscillations in the fluid are induced by
both vibrations of the upper plate, which are not tor-
sional, and a temperature gradient. This gradient is
applied to thelower plate at theinitial time moment. We
have determined the velocity field in the flow and the
vectors of tangential stresses acting from the fluid upon
the upper and lower plates of the slot. Various motions
of the upper plate are investigated, and the correspond-
ing velocity fields formed in the flow are found.

We consider aflow of aviscousincompressiblefluid
with the density p and the kinematic viscosity v, which
fillsin the dot Q. Both the fluid and the dot uniformly
rotate as a solid with an angular velocity @,. Thefluidis
placed in a field of mass forces having the potential U.
We introduce a Cartesian coordinate system Oxyz with
basis vectors e,, e,, and e,. The system is fixed in the
upper plate Q, so that the plane Oxz coincides with the
plane Q, and the y-axis being directed into the fluid is
normal to Q,. The equations of motion for the flow,
which are written in the system Oxyz rotating with the
angular velocity o, have the form

oV

mox(moxr)+2moxv+_

5t +(vO)V

= —%DP+VAV+DU, (1)

divV = 0 in Q.

Here t, r, V, and P are time, the radius vector with
respect to the pole 0, the fluid velocity, and pressure,
respectively.

We now consider the boundary conditions and ini-
tia conditions of the problem. In the rotating system,
thefluid isinitially at rest so that

V(r,t) =0 at rJQ, t<O0.

Computer Center, Russian Academy of Sciences,
ul. Vavilova 40, GSP-1, Moscow, 117967 Russia

At the time moment t = 0, the upper plate begins to
move with the velocity u(t) and the nondlip condition
takes the form V(0, t) = u(t). At the same time, the
lower plate being at rest is specified by a temperature
gradient OT. Since the temperature varies along the sur-
face Q,, the Knudsen layer with awidth on the order of
the mean free path A of medium moleculesisformedin
the fluid. Within this layer, the medium begins to slip
with the velocity V+, where V5 is such that the total
momentum flux through the surface Q, is zero. There-
fore, the medium velocity V should be specified on the
outer boundary of the Knudsen layer as a boundary
condition.

It isnoteworthy that the dlip of aviscous phasealong
solid nonuniformly heated boundaries was not taken
into account in all papers devoted to solving hydrody-
namical equationsin an oscillating fluid. In this paper,
we for the first time allow for the thermal dlip and ana-
lyzethe results based on the exact solution to the hydro-
dynamic problem, which has primary significance.

The phenomenon of thermal gas dip along a non-
uniformly heated surface has been known for a long
time. It has been considered in many papers, for exam-
ple, in [1-4]. In addition, the theoretical results were
reliably verified in numerous experiments. It was
shown that the velocity of the thermal slip along anon-
uniformly heated surface is proportional to the temper-
ature gradient, the proportionality coefficient depend-
ing on intermolecular gas-solid interaction. For the
velacity of the thermal gas dlip along aflat surface, the
expression

OT
Vi = kTSLVg—i——
has been derived. Here, krg , v, OT, and T are the ther-
mal-slip coefficient, the dynamic viscosity, the temper-
ature gradient, and the average gastemperature, respec-
tively.

Papers devoted to the effects of thermal dlip in tem-
perature-inhomogeneous liquids appeared somewhat
later (see, eg., [5-7]). Moreover, the experiments [8]
carried out by McNab and Meison in various liquids
containing large latex particles have shown that thermal
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dlip occurs only if the temperature gradient is main-
tained on asolid surface in contact with aliquid. In this
case, the formula for the velocity of the thermal dlip
turns out to be identical for both liquid and gas. How-
ever, in the case of aliquid, the coefficient of thermal
slipiskrg =0.13. Thus, the velocity of the thermal slip
inaliquid is described by the expression

= 0.13yv, DTT

where v, is the dynamic viscosity of the liquid.

As is well known, kinematic viscosity of gases
exceeds that of liquids by an order of magnitude; i.e.,
v, = 0.1v4. Moreover, being proportional to the mean
free path of molecules, the coefficient of thermal dlipin
gasislarger than the corresponding coefficient in liquid
by an order of magnitude aswell. Therefore, in gas, the
velocity of the thermal dip is by two orders of magni-
tude larger thanin liquid.

At OT ~ 10 K/cm, the velocity of thermal dip in
gases V1 ~ 10~ cm/s. However, in the case of the tem-
perature gradient OT ~ 10* K/cm, the velocity of the
thermal slip in liquid exceeds that in gas by an order of
magnitude. With allowance for this remark, the bound-
ary conditions specified on the surface Q, take the form

V(r,t) =V at r0Q,.

Here, we took into account the fact that the Knudsen
layer isthin (A < |r|). Therefore, the velocity V on the
outer boundary of this layer can be calculated for the
surface of the plate Q,.

The complete system of equations describing a per-
turbed flow of aviscous fluid has the form

X(woxr)+2woxv+aa—v+(VD)V

= —%DP+ OU +VAV;

divv = 0 in Q;

V(r,t) = u(t) at r 0Q,, @

t=0;

V(r,t)
\Y

Vi(t) at rO0Q, t=0;
Oat rdqQ, t<o.

The solution to system (2) is sought as

1
P =2p(eoxr)*+pU+ pp(y. 1),
Vo= Vi e+ Vil e,

3)

Asaresult, system (2) splitsinto two following sub-
systems:

oV o’V

+20,(6y %X V) = v—;, 0O=sy<l,
ot ayz )
V(0,t) = u(t), t=0; V(I,t) = V(t), t=0;

V(y,0) =0, 0=<y<l;

dp _
dy - 2V(m, xe), )

P(0,t) = Py(t), Gq, = @, (&,

The velocity field formed in the fluid is determined
from equations (4), and the pressure field isfound from
the velocity field (5).

The solution to system (4) is sought as
V = Wsin2Qt - (W x g) cos2Qt, ©6)

where W = W,(y, t)e, + Wy, t)e, is a new unknown
function. Furthermore, it is convenient to introduce the
notation Q = wy,y and u(t) = u, (H)V(t) = uy(t).

Substituting (6) into (4) yields the following homo-
geneous heat-conduction equation for determining W:
W, =vW,,, O=sy<l. @)

This equation is solved by using both the initial condi-
tion W(y, 0) = 0 and the boundary conditions

W(O0,t) = uy(t)sin2Qt + (u,(t) x ey) cos2Qt,
W(l, 1) = u,(t)sin2Qt + (u,(t) x ey) cos2Qt.

Integrating Eq. (7), we arrive at the relation

W = W(Ot)%l Hew, t)y

®)

‘|2 z An IWO (T)eXp(—VAL(t—1))dt,

TN
-
Substituting (8) into (6), we obtain the desired
velocity field
vV =u -

‘TZZ An ITm(r)exp(—v?\n(t—T))dT

where A, =

+ Uz(t)

where
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'i'o,l(T) = %TO,I(T)i

To, (1) = Ty(1,t-71) —(-1)"Ty(1, t=1),
Ty (T, t=T) = Uy »(T)Cc0S2Q(t—T)

€))

+ (U »(T) x€,)siN2Q(t—-T1).

The pressure field

0 v, Uty
P(y.t) = 2(0oxe) M)y -5+ 57—
0 X&) SR TEMT
N ¢ (10)
2 1 - 2 ll
+= Z —Zcos}\nyJ’To,|(r)exp(—v)\n(t—r))dr 0
I n= 1An 0 D

is calculated by solving equation (5) with itsright-hand
side obtained with allowance for expression (9).

We now consider features of the velocity field (9).
When studying the perturbed motion of a mechanical
object, we can employ an approach widely used in
structural dynamics. According to this approach, only
the first several tones of the system vibrations are taken
into account, while higher harmonics are omitted. Such
a procedure is possible, because the coefficients that
characterize inertial bonds between the body motion
and wave motions in the fluid decrease sharply for
higher harmonics compared to the fundamental (lower)
tone.

n
I
fluid can be represented as

Forn=1andA, = -, thevelocity field for aviscous

v(y.t) = ul(t)%l_lz%ﬂz(lt)y

t

—%sin)\lyf'i'o,|(r)exp(—v)\f(t—T))dT,
0

where
'i'o, (1) = U(r) cos2Q(t—1)

+U(T)x€,9n(2Q(t—1) +2Q[u(T)siN2Q(t—T) (11)
—u(T) x €,c0s2Q(t-1)],

u(t) = uy(T) +ux(1).

We consider the casev = 102 cm? s, | = tem, and
2Q = 102 s In addition, u,(T) = eu; = const and
u,(T) = U,e, = const, where e, is the basis vector of the
Ox-axis. Inthis case, the velocity field (11) can be rep-
resented as
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K3
x {[1—(sin107t + cos10’t) exp(—10~°t)] e,

—[1+ (sin107°t — cos10t) exp(=10°t)] e,} .

For thetimeT = EQI[ =2007tS, the natural fluid oscil-

lations are damped; therefore, the velocity profile takes
the form

vy) = [wH -+ 2 -siny

catg e
p YE,.

u, +u
1 2}ex

(12)

Below, we consider the limiting cases.

1 Let u, < uy; i.e, the velocity of the upper plate
considerably exceeds the velocity of the thermal fluid
dlip along the lower plate Q,. In this case, the velocity
profile has the form

_ y _sinyg BNy
V(y) - ulgl-_.,'_[_'—ﬁ‘mex"'ulm T DeZ'

Asisseen from this expression, near the upper plate
(y — 0), the fluid velocity coincides with the velocity
of the plate motion u, = u,e,; i.e., the nondip condition
issatisfied. At the sametime, at the lower wall (y — )
thefluid velocity vanishes. Thisfact al so correspondsto
the nondip condition, because in the rotating coordi-
nate system the lower plate is motionless.

2. Let u; < uy; i.e, the velocity of the thermal fluid
dlip along the lower plate is much higher than velocity
of the upper plate. In this case, the velocity profile can
be represented as

_ oy _siny Up BNy
V(y) u2|:.h T + Uﬁex + u2|:| T DeZ'

Evidently, the fluid velocity v=u, = u,e, asy — 0,
which corresponds to the nondlip condition at the upper
plate. At the sametime, v = u,e, asy — Tt i.e., the
boundary condition specified at the lower wall is sat-
isfied.

In conclusion, we note that the velocity field (9),
which is obtained with allowance for the thermal slip of
atemperature-nonuniform viscous fluid, represents the
exact solution to the time-dependent Navier—Stokes
equationsin arotating coordinate system. This velocity
field can be used in order to take into account force
actions occurring in the case of fluid flows in channels
of different shapes, in solving filtration problems, and
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in modeling various physical phenomena in a flowing
fluid.
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INTRODUCTION

Since 1990, nonlinear oscillations of agas bubblein
intense ultrasonic fields are of increasing interest,
because one-bubble sonoluminescence, promising for
chemistry and physics, was discovered at that time.
Now, there are many paperson thisproblem (see[1, 2]),
where much attention is given to the study of harmonic,
subharmonic, and ultraharmonic resonances character-
ized by an increase in oscillation amplitude, period
doubling, bifurcations, chaos, and other features.

Here, we consider bubble oscillations for a bubble
radius being by two or more orders of magnitude
smaller than its resonant value, which corresponds to
medium characteristics and conditions of excitation.
Such oscillations rapidly become steady-state. In con-
sideration of small-bubble oscillations, were focused
on the explanation of both mechanisms of one-bubble
sonoluminescence and various associated effects, in
particular, on reaching the maximum bubble compres-
son[1, 3].

The Rayleigh—Plesset equation

Ugg, v, 3 Up[] 2
——=ryU,+ =5l ——=u
Clqub 2%[ 3C|d]b

(D

Up rbd|:|pb_pex
= + =+ —_—
? ¢ chdtl of

is widely used to describe bubble dynamics. Here, r,
and u, are the radius of the bubble and the velocity of

itssurface, ¢ and p; are the unperturbed sound vel oc-
ity in the liquid and the density thereof, and p,, is the

* |nstitute of Mechanics and Machine Building,
Kazan ientific Center, Russian Academy of Sciences,
ul. Lobachevskogo 2/31, Kazan, 420111 Tatarstan, Russia
** Presidium of Ufa Scientific Center,
Russian Academy of Sciences,
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liquid pressure at a distance far from the bubble. In
addition,

u o
Po = pg—4u|r—b—2r—,
b b

2

where p, isthe gas pressure at the bubbl e surface; |, and
o aretheviscosity and surface-tension coefficient of the
liquid, respectively.

If pressure variation in the bubble is uniform and
adiabatic, then

oHE by = ple2S ©

Here, py and p; are the equilibrium gas pressures in
the bubble and in the liquid, respectively, which both
correspond to the initial bubble radius rJ , and y is the
adiabatic exponent.

EFFICIENCY OF BUBBLE COMPRESSION
BY COMPRESSION
AND RAREFACTION PULSES

Figure 1 showsthe response of an air bubbleto pres-
sure variation in water according to model (1)—(3),

T, HM Dex bar
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Fig. 2.
where

T
On® + Apsinot tt,St<t,+=
Dp p al n 2

)

| at t +3 <t<tn+1;

@D

th,=0,t,=t,_;+T,n=0,and T = %ﬂ The calculations

were carried out at i, = 0.001 kg/(m s), w = 21T X
26.5 kHz, c|0 =1498 m/s, rg =4.5um, p|0 =1 bar, p|O =

998 kg/m?, o = 0.0727 kg/s?, and y = 1.4. Curves /4
represent bubble responses r, = r(t) to pressure varia-
tion pe, = pe(t) (curves I'—4"), where the curves num-
bered by i' and i correspond to each other. Curves /', 2',
1,2and3,4,3', 4" areobtained at Ap = 0.9 and 1.35 bar,
respectively.

With the enhancement of a compression pulse [pos-
itivesigninrelation (4)], the growth of pulse amplitude
causes only asmall quantitative variation of the bubble
response, whereas during rarefaction [negative sign in
relation (4)], a strong quantitative and qualitative
change of the bubble response occur. Namely, at rela-
tively low pressure Ap, the bubble responds by com-
pression (curve 1) to excitation by the compression
half-wave (curve 1') and by expansion (curve 2) to exci-
tation by the rarefaction half-wave (curve 2'). With
increasing Ap, thisfeature takes place only for the com-
pression pulse (curves 3' and 3). So, being excited by
the rarefaction half-wave (curve 4'), the bubble
responds first by expansion, which is typical for
curve 2, and then by a series of short-term successively
attenuated compressions, thefirst of which isthe stron-
gest (curve 4). In particular, the rarefaction half-wave

of amplitude Ap = 1.35 bar compresses the bubble up to
the maximum values of pressure, density, and tempera-
ture that are 10%, 103, and 10 times higher, respectively,
than those caused by the compression half-wave of the
same amplitude.

Figure 2 shows the maximum bubble compression

0
M
min ’
b

characterized by the dimensionless parameter

where rp" isthe minimum bubble radius, versus pres-

sure amplitude ranging in the interval 0.4 < Ap< 2.1
bar. Curves / and 2 correspond to excitation by com-
pression and rarefaction pulses of the form (4), respec-
tively. We can see that with increasing amplitude of the
compression pulse a decrease in the minimum bubble
radiusisvery slow (curve I). Under the effect of therar-
efaction pulse, abubble decrease with respect to itsini-
tial dimension can be noticed only at the amplitude
Ap =1 bar (theinsetin Fig. 2). At Ap = 1.05 bar, therar-
0
efaction pulse brings the ratio —%’m to the level reached
Iy

under the effect of the compression pulse (before, it was
below thislevel). Beginning from Ap = 1.1 bar, curve 2
steeply deflects upwards so that, in the region 1.3 <
Ap < 2.1 bar, the maximum bubble decrease reached
under the effect of the rarefaction pulse by more than a
factor of ten exceeds a similar decrease reached under
the effect of the compression pulse. Withincreasing Ap,
this difference grows.

It is noteworthy that, when forming converging
spherical shock waves in a bubble, its compression
caused by the rarefaction pulse becomes much more
efficient in the sense of obtaining the maximum values
of gas pressure, density, and temperature in the bubble
center. In particular, if the shock-wave effect is taken
into account by using the model with a complete
description of gas compressibility both in the bubble
and intheliquid around it [4]. Inthis case, bubble com-
pression caused by the rarefaction pulse with Ap =
1.35 bar and characterized by an increase in pressure,
density, and temperature in the bubble center turns out
to be ~10%, ~10%, and ~10? times, respectively, more
efficient compared to the case of the compression pulse.

BUBBLE DYNAMICS
AND ITS QUASI-STATIC PORTRAIT

To understand features of bubble dynamics, itisuse-

ful to analyze its varying static-equilibrium states, i.e.,
its “quasi-static portrait.” Asis known, certain equilib-
rium states represent attraction centers of a dynamic
system. According to relations (1)—(3), these states are
determined by the equation p, — ps = 0, which, after
DOKLADY PHYSICS Vol. 47
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substitution of the relation pe, = pI
into (4), takes the form

— Apsinwt entering

0 3y 0 3y )
[H—‘D —1}+ [d@ + = }+A—psmoot—0
H o p|
)
4z 20
pITo

If Eq. (5) is satisfied, the system, in contrast to the

case of itsloading by the pressure p, = pI + Apsinwt,

does not have static-equilibrium states with all external
actions. Thisfact becomes more evident at 0 = 0, when
equation (5) takes the form

1
E’ = %I_—%)Slnw% Sy,

My

o

showing that the static-equilibrium states exist only if

Apsm(ot < 1. At 0 # 0, the static-equilibrium states
p|
exist under the condition

1
_ 3y-1 0
Alosmcot<1+3y 1aD a [ - B

P 3y [By(l1+aj - pY

(6)

where p* isthe critical value of the pressure amplitude
Ap (the Blake threshold [5]) such that excess over it
leads to liquid discontinuity.

Figure 3 shows the quasi-static portrait of bubble-
radius variation for certain excitation amplitudes from
theinterval 0.45 < Ap < 1.5 bar. Curves [*-7* situated
intheregionr, < rg correspond to the responses to the
compression pulses, while curves -7 lying in the
region r, = r conform to the responses to the rarefac-

tion pulses. The quasi-static portraits of the responses
to the compression pulses change rather insignificantly
(curves 1*-7%*). The portraits of bubble responsesto the
rarefaction pulses of the amplitude Ap not exceeding
1 bar (curves 1-3) behavein asimilar way. Following a
further increase in Ap up to p* = 1.106 bar, the maxi-
mum bubble radius r;™ in the portrait tends rapidly to

infinity (between curves4 and 5). A higher Ap leadsto
expansion of the interval within which ry tends to
infinity (curves 5-7).

In the zones mentioned, condition (6) is violated.

Values of both Ap and the initial bubble radius rg at
which the bubble expands strongly can be easily esti-
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mated
rb_rg

by using eguation (5) under the condition

< 1. A solution to the corresponding linear
Iy

equation has the form

o= _ Ap
o (3y-1ap’-3y(p-p))
It grows unboundedly at
Ap _ 1+3y 1 a
p| 3y

After dividing its second term by two, the relation writ-
ten above would become closeinitsvalueto relation (6).
Using thisrelation, we can determine the critical ampli-

tude (Ap),, at the given radius rp and the critical radius
(rp)e a the given amplitude Ap

3y-1co

3Y ry

(Ap)e = p; +

(3y—1)o @

0
3y(0p— o) (Ap>p),

( b)cr

which are such that an excess over them leads to strong
bubble expansion.

Below, we use the quasi-static portrait to explain fea-
tures of the bubble responses plotted in Figs. 1 and 2.
Being affected by the compression pul se throughout the
interval 1.3 <Ap < 2.1 bar or by the rarefaction pulse of
the amplitude Ap lower than 1 bar, the static-equilib-
rium bubble states change slowly. For the most part, the
difference between dynamic and quasi-static bubble
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states, which include a degree of compression, arises
because the quasi-static bubble radiusfirst tendsrapidly
to infinity and then returns rapidly from infinity to the

region rg. In addition, this difference depends on the

length of the time interval between these two instants.
Because the quasi-static bubble radius tends to infinity
at Ap = 1.106 bar and, following a further increase in
Ap, the above-mentioned interval expands (Fig. 3,
curves 4-7), the maximum bubble compression grows
initially abruptly and then more smoothly (Fig. 2,
curve2).

Figure 4 shows dynamic (solid curves /-3) and
quasi-static (dashed curves 1*-3*) radii of a bubble
excited with the amplitudesAp=0.9, 1.1, and 1.35 bar,
respectively, (curves 1'-3") as functions of time. The
other input data are the same as before. At relatively
small amplitudes Ap, the regime of bubble oscillations
is close to the quasi-static one (curves I and /* practi-
cally merge). While Ap increases up to 1.1 bar, the dif-
ference between dynamic and quasi-static behavior
grows rather rapidly (curves2 and 2*). Damped vibra-
tions with respect to the varying static-equilibrium

state arise in the transient region between rp and
r". Being calculated by the dynamic model, rp™
formswithincreasing timelag and, upto Ap = 1.1 bar,
isalittle larger than that according to the quasi-static

model. At Ap=1.106 bar, the quasi-static value of ry™

grows abruptly so that, following a further increasein
Ap, the difference between radii becomes more con-
siderable (curves 3 and 3*). Their similar behavior is
observed only within a relatively short initia time
interval.

We now consider loading by the succession of rar-
efaction and compression half-waves of the form p,, =

p? — Apsinwt. Here, the bubble is excited, in turn, by

rarefaction and compression half-waves, the latter of
which is not taken into account in relation (4). Having
compared curves 2 and 4 (Fig. 1) describing the effect
of the rarefaction alone with solid curves / and 3
(Fig. 4) corresponding to aternation of the rarefaction
with the compression, we can conclude that the com-
pression half-wave following the rarefaction half-wave
has an insignificant effect. Thisconclusionisconfirmed
as well in Fig. 2, where, in the region Ap < 1.35 bar,
curve 2 taking into account the action of the rarefaction
half-wave is only close to curve 3 constructed with
allowance for alternation of the rarefaction and com-
pression half-waves. According to Fig. 2, the effect of
the compression haf-wave grows gradualy with
increasing Ap.

CONCLUSIONS

1. At the given initial bubble radius ry, an increase
in pressure of the amplitude Ap with respect to the aver-

age liquid pressure p|O causes higher bubble compres-
sion than a decrease in pressure of the same amplitude
Apif Ap < (Bp)g OF Ty < (Iy)er, Where (Ap)e and (I e

are determined by expressions (7). This conclusion can
be drawn from data presented in Figs. 1 and 2.

2. A pressure decrease in the liquid by Ap and its
subsequent increase up to the average level under the
condition Ap > (Ap) cause strong bubble expansion. In
this case, due to subsequent inertial compression of the
bubble, maximum values of pressure, density, and tem-
perature attained in it are 104, 103, and 10 times, respec-
tively, higher than those caused alone by the pressure
increase in the liquid by the same Ap. These estimates
are obtained under the assumption of volume-uniform
adiabatic gas compression. Being carried out for the
bubble center with alowance for spherical shock
waves, the similar estimation yields 108, 106, and 107,
respectively.

3. If pressure in the liquid varies according to the
sine law throughout its period, bubble compression
increases only a little compared to the case of the rar-
efaction half-wave. The difference can be noticed only

at A—E) > 1.4 (Fig. 2). Therefore, an experimental setup
|
intended for obtaining strong gas compression should

mainly provide a decrease in pressure.

For p|0 and Ap being higher by some orders of mag-

nitude than those considered above, theitem under con-
sideration should be studied additionally.
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1. Production of excited ionsin electron—atom colli-
sions is a complex process involving the ionization of
an atom and the excitation of the ion produced. For
these stages to be simultaneous, the incident electron
energy must be sufficiently high. This process corre-
sponds to the reaction equation (in the case of single
ionization)

A+e— At +e+¢e. (D

Here, A is an atom; e and € are incident and scattered
electrons, respectively; and €" is an electron knocked
out from the atom. Excited particles are marked by an
asterisk.

Processes similar to (1) are of interest for a series of
branches of fundamental science (theory of atomic
structure, atomic spectroscopy, physics of atomic and
electron collisions, astrophysics), as well as for
intensely developed intermediate branches at the
boundary between fundamental and applied science
(lasers, plasma chemistry, special radiation sources).
lonic metal-vapor lasers (MVL) are the most typical
example. Principal directions of developing current
metal-vapor lasers involve the use of high-temperature
active media and the improvement of performance
characteristics of MVL, namely, the elevation of their
efficiency and output-radiation power, the extension of
the range of operating conditions, etc.

All MVL, among themionic MVL, can be classified
according to two basic criteria: the technique of intro-
ducing active-medium atoms into the discharge and the
method of exciting the atoms. Thermal evaporation is
the most evident method of such introduction. How-
ever, this method requires the entire discharge tube to
be heated up to a sufficiently high temperature. Some-
times, this procedure encounters insurmountable tech-
nical difficulties. In order to avoid them, a variety of
approaches were proposed. To date, three basic meth-
ods for introducing high-temperature atoms into an
active volume have been proposed: (1) cathode sputter-
ing (MVL on transitions of copper, silver, gold, etc. [1]),

Moscow Power Institute (Technical University),
Krasnokazar mennaya ul. 14, Moscow, 111250 Russia

(2) laser evaporation (MVL ontransitions of titanium [2],
etc.), and (3) the use of metal halides (for example,
MnCl, vapor laser [3]). In the last case, doubled pulses
are employed. Namely, the first and second pulses are
used, respectively, to dissociate a halide and to excite
metal atoms formed by the dissociation. The use of
halidesinstead of pure metalsallowsthe discharge-tube
temperature to be lowered by several hundred degrees
(for certain compounds, by 1000°C) compared to the
evaporation of pure metals.

As to the most advanced methods of exciting ionic
MVL, we can refer to (i) hollow-cathode discharge
[1, p. 175], (ii) transverse high-frequency discharge
[1, p. 194], and (iii) excitation by both transverse and
longitudinal electron beams [4]. Longitudinaly elec-
tron-pumped metal-vapor lasers are rather efficient;
however, their realization meets certain technical diffi-
culties that can be overcome by using runaway elec-
trons. In particular, the electron energy can be lowered
from several hundred to several kiloelectron-volt. In
this case, the longitudinal magnetic field providing the
relativistic-beam confinement need not be used. More-
over, difficulties associated with the conjugation of a
high-voltage accelerator with a high-temperature laser
chamber are eliminated, since the kiloelectron-volt-
energy electron beamisformed insidethelaser tube. As
was concluded in [4, p. 981], the efficiency and the
energy release for a kiloelectron-volt electron-pumped
laser are tens or hundreds of times as high as those for
gas-discharge systems, and such a laser can efficiently
operate on atoms and ions within a wide wavelength
range.

The presence of fast electrons, whose collisions
with atoms of metals are basically responsible for the
filling of high-lying laser levels of theions produced, is
a specific feature of all the metal-vapor lasers indicated
above. Reference data on atomic constants specifying
inelastic eectron—atom collisions, including process (1),
are urgent for developing and improving ionic metal-
vapor lasers. As was pointed out in the reviews [1, 5],
there is a considerable deficiency of such data for most
atoms and ions. Theoretical calculations of the excita-
tion cross sections for ionic states in process (1) are
very laborious. Moreover, as arule, the accuracy of the
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calculation results obtained cannot be determined a pri-
ori. However, experimental data on the cross sections
of simultaneous excitation and ionization for most
atoms became available after the method of extended
crossed beams had been developed [6]. In the present
work, this method was employed for studying the exci-
tation of odd triplet levels of a singly charged yttrium
ionin collisions of electrons with yttrium atoms.

2. The technique and instrumentation for the appli-
cation of extended crossed beams have previously been
discussed in a series of papers [6-8]. Thus, a detailed
description of these methods seems to be unnecessary
in this paper. Below, we point out only basic experi-
mental conditions specific for investigations involving
yttrium atoms. In order to produce the atomic beam, we
evaporated metallic yttrium with a total impurity con-
tent of 0.18% (the basic impurities were Ta, Mo, Cu,
Gd, and Tb) from a cup-shaped copper crucible cooled
with circulating water. The use of a crucible of the
Knudsen cell type turned out to be impossible, because
there were no materials sufficiently resistant to the
long-term action of melted yttrium. The power needed
for melting and evaporation of the yttrium was trans-
ported to the metal surface by an electron beam. The
temperature of the molten zone was 1870 K. In this
case, the concentration of yttrium atoms within the
region of intersection for atomic and electron beams
was 4.3 x 10° cm~3 and could be increased by an order
of magnitude when investigating faint lines.

The ground 4d5s’a’D state of an yttrium atom has

two levels with J = g and J = g the former being the

ground level. Under our experimental conditions, the
difference 530.5 cm in the energy of theselevelsison
the order of KT. Owing to thisfact, thermal filling of the

level withJ= g can occur. At the temperature indicated

above, in the assumption of thermodynamic equilib-
rium, the populations estimated for these levelsturn out
to be equal, because the statistical weight of the higher
lying level is greater than that of the lower lying level.
This fact was taken into account in theoretical papers
by Peterkop that were devoted to calculating excitation
cross sectionsfor aseries of metal atoms(see, e.g., [9]).
This alows the more correct comparison of theoretical
and experimental values for the cross sections. The
interval between the ground level and the closest higher

lying 58°5pZ> Py, level attains 10* cm so that the ther-
mal population of thislevel isnegligibly low. It isworth
noting that the population of several low lying atomic
levels has been considered to date in none of theoretical
papers devoted to studying the process of simultaneous
excitation and ionization.

The relative and absolute values of the excitation
cross sectionsfor Yl are measured with errorsfrom 10
to 15% and +25 to £35%, respectively, depending on
the spectral-line intensity. The error sources were thor-
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oughly analyzed in [7], where additional information
on the experimental conditions was presented. The
author of [7] intentionally maintained the experimental
conditions as stable as possible in order to provide the
more correct comparison of the results obtained for var-
ious obj ects under investigation.

3. We recorded the optical emission spectrum of
yttrium atoms within the wavel ength range from 212 to
780 nm in the case of bombarding them by a monoen-
ergetic electron beam with an energy of 50 eV. Out of
360 spectral lines observed, amost 120 lineswere clas-
sified as belonging to the spectrum of a singly charged
yttriumion. Among them, 45 spectral lineslying within
the range from 319 to 690 nm arose as a result of the
excitation of odd triplet levels of YlI. In the case of an
even initial level, these levels are excited more effi-
ciently. Moreover, alowed transitions from these levels
of YII to the metastable terms a’P, a’D, and &°F take
place. Such transitions are of interest from the stand-
point of the development of r-mlasers[5]. For al these
lines, we measured, within the energy range from 0 to
200 eV, the dependence of the excitation cross sections
on the energy of incident electrons (i.e., the optical
excitation functions).

The measurement results complemented with rele-
vant spectroscopic dataare presented in Table 1. There,
the wavelength A, the kind of transition, the total-
moment guantum number J of the electron shell, the
energies E,,, and E,, (with respect to the ground level
of asingly charged yttrium ion) of the lower and upper
levels, the cross sections Qs, and Q. corresponding to
the energy of exciting electrons of 50 eV and in the
maximum of the optical excitation function (OEF),
respectively, and the position E(Q,,,) of the maximum
arelisted. In the OEF column, the numbers of OEFsare
indicated in accordance with their numbering in Fig. 1.
Each OEF is normalized to unity in its maximum and
has an individual origin on the ordinate axis. The scales
for the abscissa and ordinate axes are linear and loga-
rithmic, respectively.

In the case of asingly charged yttrium ion, the four
odd triplet terms, ZP°, ZD°, Z’F°, and y3P°, within the
range from 23400 to 32300 cm™ have a fairly low
energy for its excitation from the 5s’a' S, ground state.
The first term and the following three terms belong to
the 5s5p and 4d5p configurations, respectively. The
configuration mixing for all the levels under consider-
ation is rather weak. Namely, the least content of the

basic component amounts to 74% for the Z2F; level,

while the content of the same component for the 22 F;
level attains 100% [10, p. 256]. The higher lying
4d6p3De triplet state closest to these terms corresponds
to 64000 cm?, and no radiative transitions from this
state were observed in this study.

The scheme of the low lying triplet states of Yl
together with the transitions observed is presented in
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Table 1. Excitation cross sections for asingly charged yttriumion

A, nm Transition J Ejow: 2 | Eyp, cm? 10‘%3%m2 10(_21@5‘3;“2 E(Qma). €V| OEF
319.561 a’D-y3pP° 1-1 840 32124 2.00 2.32 34 5
320.027 a’D—y°P° 2-2 1045 32283 2.34 2.76 36 6
320.332 a’D—y°P° 1-0 840 32048 3.24 3.81 32 4
321.668 a’D-y°P° 2-1 1045 32124 4.28 4.97 34 5
324.227 a’D-y°pP° 32 1449 32283 7.20 8.48 36 6
349.608 als7D° 01 0 28595 1.09 1.21 35 7
354.900 a’D-D° 2-3 1045 29213 173 1.82 40 9
358.451 a’D—2D° 1-2 840 28730 1.65 1.90 36 8
360.073 a’D-2D° 33 1449 29213 4.93 5.19 40 9
360.192 a’D-2D° 1-1 840 28595 3.82 4.24 35 7
361.104 a’D-2°D° 2-2 1045 28730 415 4.77 36 8
362.870 a’D-2D° 2-1 1045 28595 1.30 1.45 35 7
366.461 a’D-D° 32 1449 28730 2.00 2.30 36 8
371.029 a’D-F° 34 1449 28394 10.2 12.0 37 2
377.433 a’D-2F° 2-3 1045 27532 7.88 9.27 37 11
378.869 a’D-2F° 1-2 840 27227 5.46 6.00 37 10
381.834 a’D-2F° 2-2 1045 27227 1.55 171 37 10
383.289 a’D-F° 33 1449 27532 2.18 2.56 37 11
387.828 a’D-F° 32 1449 27227 0.49 0.54 37 10
393.066 a'D-2D° 2-2 3296 28730 0.87 1.00 36 8
395.159 alD-2D° 2-1 3296 28595 0.34 0.38 35 7
412.490 alD-2F° 2-3 3296 27532 0.39 0.46 37 11
417.753 alD-2F° 2-2 3296 27227 2.04 2.24 37 10
419.927 a’D-P° 1-2 840 24647 0.57 0.60; 0.60 | 34:44 3
420.469 alsS-zp° 0-1 0 23776 0.95 1.09 35 2
423573 a’D-2pP° 2-2 1045 24647 3.67 3.87;387 | 34,44 3
430.962 a’D-2P° 32 1449 24647 6.76 7.11;7.11 34; 44 3
435.872 a’D-2P° 1-1 840 23776 2.04 2.34 35 2
439.801 a’D-2P° 2-1 1045 23776 3.31 3.80 35 2
442.258 a’D-P° 1-0 840 23445 1.81 2.35 30 1
468.232 alD-P° 2-2 3296 24647 0.81 0.85;0.85 | 34:44 3
478.658 a’F—2°D° 33 8328 29213 0.51 0.55 40 9
485.486 a’F—°D° 2-1 8003 28595 1.03 1.14 35 7
488.368 a’F-2°D° 4-3 8743 29213 1.86 1.96 40 9
490.012 a’F-2°D° 32 8328 28730 1.56 1.79 36 8
508.742 a’F-F° 4-4 8743 28394 0.84 0.98 37 12
520.041 a’F-F° 2-2 8003 27227 0.30 0.33 37 10
520.572 a’F-z°F° 33 8328 27532 0.67 0.79 37 11
532.078 a’F—°F° 4-3 8743 27532 0.25 0.29 37 11
549.740 a’P—y°pP° 2-2 14098 32283 0.66 0.78 36 6
554.461 a’P—y°pP° 1-0 14018 32048 0.26 0.31 32 4
661.373 a’P-D° 2-3 14098 29213 0.84 0.89 40 9
679.541 a’P—D° 1-2 14018 28730 0.81 0.93 36 8
685.822 a’P—D° 1-1 14018 28595 0.20 0.22 35 7
689.598 a’P—D° 2-1 14098 28595 0.31 0.35 35 7
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Fig. 2, the term splitting being not shown. A singly
charged yttriumion hasthe low lying even (metastable)
4d5sa'D,, 4d5sa’D, 4d’a’P, and 4d’a’F states and
aso three singlet levels with the 4d* configuration
within the energy range from 14800 to 25100 cm . The

5s5pZ* P7 level would be expected to be combined with
the 58’a'S, ground level, even though the multiplicity
would change, because the 5p — 5stransition occurs

inthiscase. The5s’a'§—4d5p Z2D7 transitionisseem-
ingly significantly less probable, since it occurs as a
two-electron 4d5p —~ 58’ transition and, moreover, it
is a transition accompanied by a change of the multi-
plicity and has AL = —2. Nevertheless, the excitation
cross section for this transition turns out to be even
dlightly larger than that for the former and less highly
forbidden transition. On the other hand, the transitions
from al the odd triplet levels under consideration to
4d5sa’D levels are quite allowed transitions, because
they correspond to 5p — 4d and 5p — Sstransitions
for the higher lying Z2P° term and for the following
three terms, respectively. Indeed, as is seen from
Tablel, the largest from measured cross sections
exactly correspondsto transitionsto a’D levels. Transi-
tions to both a’P and a’F levels are characterized by
dlightly smaller excitation cross sections, because the
5p — 4dtransitionisless probablethanthe 5p —» 5s
transition.

Experiments based on observation of the optical
radiation of excited atoms make it possible to directly
measure the excitation cross sections Q,; for spectral
lines. However, adifferent quantity, namely, the excita-
tion cross section g, for an energy level, is used in the-
ory and in many practical applications. The relation
between these quantities has the form

Ok = ZQso—ZQ' (2
where Z Qx, isthetotal cross section of the spontane-

ousradiative transitionsfrom ak level and ) Q' isthe

total cross section of the cascade transitions to the k
level from all higher lying levels. In the present paper,
all the cross-section values correspond to an electron
energy of 50 eV.

The data on the excitation cross sections for the
spectral lineslisted in Table 1 were used to calculate g,
according to relationship (2). We do not present here
cumbersome information related to the individual cross
sections for each of the cascade transitions. The results

obtained are listed in Table 2, in which Lg is the
50

contribution (percent) into the total cross section for

each of the levels under consideration. As is seen, this

contribution ranges from 13 to 59%. The ZP; level is
the only exception for which the contribution of the
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Table 2. Excitation cross sections for the energy levels of Y1 and the cascade-filling contribution

Q
Level J Eyp cmt Z Qeo. z Q,10%cm?3 q, 10728 cm? E_ %
10718 cm? Z Qso
5s5p z3P° 0 23445 181 2.02 (-0.20) 112.0
1 23776 6.30 3.53 2.77 56.0
2 24647 11.8 5.99 5.81 50.7
4d5p y3P° 0 32048 3.50 3.50
1 32124 6.28 134 4.94 214
2 32283 10.20 6.01 419 59.0
4d5p 2°D° 1 28595 8.09 2.71 5.38 335
2 28730 11.04 2.64 8.40 239
3 29213 9.87 4.82 5.05 48.8
4d5p Z2F° 2 27227 9.84 1.79 8.05 18.2
3 27532 11.37 152 9.85 134
4 28394 11.04 343 7.61 311
cascade transitions slightly exceeds the total measured 2. H. Ninomiya and K. Hirata, J. Appl. Phys. 66, 2219
excitation cross section. The main reason for thisanom- (1989).
aly isthat we have not determined the cross section of 3. V. K. Isakov, M. M. Kaugin, and S. E. Potapov, Pis ma
. o " , Zh. Tekh. Fiz. 2, 747 (1976) [Tech. Phys. Lett. 2, 292
the relatively strong a’P,—Z P transition with a wave- (1976)].
length of 1.06 nm, which could not be observed under 4. s v. Arlantsev, B. L. Borovich, V. V. Buchanov, and
the experimental conditions of the present work. N.I.Yurchenko, Kvant. Elektronika 23 (11), 977
. . (1996).
4. Thus, we have obtained experimentdl data con- 5 " "patrash, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 8,
cerning the cross sections for the electron-impact exci- 18 (1999).
Fatltﬁn gl;hhe .Odd tf”tﬂet levelsof Ytl.l and_I(_:ﬁrtalnfﬁatures 6. Yu. M. Smirnov, Physics of Electron and Atomic Colli-
In the behavior o tnese Cross sections. 1 e results pre- sions (1zd. Fiz. Tekhn. Inst. Akad. Nauk SSSR, Lenin-
sented in this paper can be used for calculating and esti- grad, 1985).
ma(‘}' .r;g char aCteréﬂ'CS of eIFI"aS'?aS C‘IJ”Fa‘ n nt% ytt”ut’)" 7. Yu. M. Smirnov, J. Phys. I (France) 4 (1), 23 (1994).
?n ! Sfc]iomc?oun tsél ashW > asTor Solving other prob- 8. Yu. M. Smirnov, Dokl. Ross. Akad. Nauk 359, 610
ems Of Tundamental physics. (1998) [Phys. Dokl. 42, 173 (1998)].
9. R. K. Peterkop, Izv. Akad. Nauk Latv. SSR, Ser. Fiz.
Tekh. Nauk, No. 4, 3 (1988).
REFERENCES 10. A. E. Nilsson, S. Johansson, and R. L. Kurucz, Phys. Scr.

1. 1. G. lvanov, E. L. Latush, and M. F. Sem, lon Lasers
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Titanium monoxide TiO, cubic (Bl-type) basis
structure is a unique compound that has no analogs.
Possessing a wide region of homogeneity from TiO, 4,
to TiO, 5, TiO, monoxide contains from 10 to 15 at. %
of structural vacancies in titanium and oxygen sublat-
tices. We can understand the actua structure of tita-
nium monoxide representing its content with allowance
for structural vacancies in each of the sublattices, i.e.,
in the form of Ti,O, = TiO, or Ti,m,_,0,0, ,=TiQ,,
where y = z/x, O and ® are the structural vacancies of
oxygen and titanium sublattices, respectively. Even
TiO, oo monoxide, which formally has a stoichiometric
composition, containsof 16.7 at.% vacanciesin thetita-
nium and oxygen sublattices; therefore, its actual con-
tent |S ~Ti0.83300.833 .

Synthesis of TiO, monoxide is a complicated prob-
lem, inasmuch asits content is already unstable at 700—
800 K. Even under controllable partial oxygen pres-
sure, it can disproportionate with the formation of Ti,O
(TiOgy50) or of TizO, (TiOy67) and a cubic oxide or of
cubic dioxide and Ti,O5 (TiO; 5), as well as of other
phases of Ti,O,,_, homologous series(n=2-10isan
integer). At temperatures ~700, ~1000, and ~1100 K,
various superstructures are formed in TiO,. Only four
of them arereliably described in the literature. Thetype
and symmetry of superstructures depend on the actual
initial content of titanium monoxide. The temperature
measurements of kinetic and magnetic properties of
TiOy, which had been carried out in the 1960s and
1970s, showed that the chemical and phase content
changed in the course of the measurements. This fact
caused ambiguity in the results obtained. For example,
the temperature coefficient dp/dT of theresistivity p for
disordered TiO, monoxide withy = 1 is positive in cer-
tain studies [3-5] and negative in [6]. An experimental
result with which all the authors agree is the negative
sign of both the thermal electromotive force and Hall

Institute of Solid-Sate Chemistry, Ural Division,
Russian Academy of Sciences,

ul. Pervomaiskaya 91, GSP-145, Yekaterinburg,
620219 Russia

coefficient for TiO, withy > 0.85 [3-6]. Unreliability of
experimental data has caused the appearance of anum-
ber of papers devoted to the calculation of the TiO,
electronic structure. But the calculation results, among
them those based on thefirst principles, are also contra-
dictory. According to [7-10], O2p- and Ti3d-bands in
the electronic energy spectrum of the cubic titanium
monoxide are separated by a broad (several electron-
volts) forbidden gap. The presence of the gap is con-
firmed by experimental studies of X-ray photoemission
spectra, bremsstrahlung spectra, and UV photoemis-
sion spectra [9] of disordered TiO, monoxide. How-
ever, according to the results of another group of calcu-
lations [11-13], there exists no p-d gap in the TiO,
electronic spectrum.

Thus, the experimental and theoretical data are
contradictory, and it is unclear up to now whether tita-
nium monoxide exhibits metallic or semiconductor
properties.

In this paper, experimental results are obtained for
the first time on the electrical conductivity (resistivity)
and magnetic susceptibility of TiO, monoxide within
the entire homogeneity region of the cubic phase.

The samples of the nonstoichiometric cubic TiO,
monoxide with various oxygen contents (0.920 <y <
1.262) were synthesized by the solid-phase sintering of
powder mixtures of metalic titanium and titanium
dioxide in vacuum (at a pressure of 0.0013 Paand tem-
perature of 1770 K) for 70 h. The diffraction analysis

was performed with the CuK, _-emission line on the

basis of Siemens D-500 and STADI-P (STOE) auto-
mated diffractometers. In order to attain the disordered
state, the samples synthesized were annealed for 3 hin
evacuated quarts ampoules at atemperature of 1330 K.
Then, the ampoul es with the samples were thrown into
water so that the quenching rate was ~200 K s. The
reflections of only the cubic disordered TiO, phase with
a B1 sructure (in the samples with y = 1.112) or the
reflections of the disordered TiO, and of the monoclinic
ordered TisOs phase [14] (in the samples with y <
1.087) were observed on the X-ray diffraction patterns.

1028-3358/02/4701-0039$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Fig. 1. Temperature dependence of the resistivity p for the
disordered cubic TiO, monoxides with various oxygen con-

tent. The approximations of experimental results by func-
tion (2) for TiO, monoxides with y < 1.069 and by function
(7) for TiO, monoxides with y = 1.087 are shown by solid
lines. In the insert, the temperature dependence for the con-
ductivity of TiOy 56o—TiOq gg7 Monoxides is plotted in the

coordinates In{[a(T) — a(O)/T2} — 1/T.

The resistivity p was measured by the four-probe
method within the range 77 to 300 K; the resistivity of
TiO; 562, TiO; gg7, and TiOg gy Was also measured at
4.2 K. An In—Ga paste was applied to the contact sam-
ple surfaces to provide reliability of electrical contact.

The magnetic susceptibility x of the TiO, monoxide
(0.920 <y < 1.262) was measured within the tempera
ture range from 4 to 400 K in the magnetic fields with
anintensity of 8.8, 25, 30, and 50 kOe, usingaMPMS-
XL-5 (Quantum Design) vibrating-coil magnetometer.
In addition, the susceptibility of TiOpgss, TiO; o,
TiO, gg7, and TiO; ,5, Was measured within the temper-
ature interval from 300 K up to the temperature of the
disorder —— order transition onset (about 1000 K) by
the Faraday method, using a pendulum magnetic bal-
ance of the Domenicalli type.

The chemical and phase content of the samples was
controlled before and after the measurements.

The measurements of TiO, magnetization in mag-
netic fields with an intensity up to 50 kOe at tempera-
tures of 4, 130, and 300 K show that the samples of tita-
nium monoxide studied exhibit no residual magnetiza-
tion and contain no ferromagnetic impurities.

The temperature dependences of the resistivity p(T)
for TiO, titanium monoxide of various contents are

shown in Fig. 1. Within the temperature range under

study, the resistivity p increases as a result of the tran-
sition from TiOg g0 10 TiO; o6,-

The resistivities of TiO; g9, TiOpgss, TiOggss, and
TiOg g0 iNCrease with temperature, although the resis-
tance temperature coefficient issmall. In materialswith
electronic conduction within the range T < 300 K, the
temperature dependence of the mean freetime T asso-
ciated with scattering by phonons is well described by
the semiempirical Bloch—-Griineisen formula

6,/2T
4T[AkB eD ﬂl:'s
% byl

x°dx

= )]

1
T sinh’x
Here, A isthe constant of the el ectron—phonon interac-
tion and 6y is the characteristic Debye temperature.
Since the resistivity is p = myne’t, the temperature

dependence of the resistivity with allowance for the
residual resistivity p(0) can be represented as

8p/2T
4ATtmA kg0, 277 x°dx
T = o(0) + —m8M8M—=-+——
p(T) = P(O) ne’s Bl sinh®x
_ ATIMAKg O 2T
- p(O) + nezﬁ EBDD (2)

85/2T

[ o’ cothDeDD+5 I x*cothxdx |.

In various temperature ranges, the integral in relation (2)
has various forms. For T < 80 K and 6, ~ 400-500 K,
02T > 3.14; in this case the integra

8,/2T
I (x*/sinh’x)dx is calculated as
0
0,/2T
x°dx
[ =3
5 sinn X
0,/2T

+10 I X[ exp(=2x) + exp(—4x)

0,/2T
= x°(1 - cothx)|o’

+ ... + exp(—2nx)] dx.
AtT>80K and 6, ~400-500 K, 8,/2T < 3.14 and, there-

8p/2T

fore, the integral I x*cothxdx is found as a series

8p/2T
I x*cothxdx = 222k82kx4+2k/[(4 + 2K)(2K)!],
Where B,, arethe Bernoul li numbers.
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Experimental dependences p(T) for TiO; g,
TiOg.gs5, T1Og 046, and TiO, g OXides are well approxi-
mated by function (2) (Fig. 1), the value of 6, being
equal to 480, 400, 470, and 470 K, respectively.
According to the data of [4], 6y = 350410 K for equi-
atomic TiO; oo monoxide and increases with a decrease
in the annealing temperature. For the ordered mono-
clinic Ti,O5 monoxide, 8, = 500 K [10].

The resistivity of TiO, monoxides with y > 1.087
decreases very rapidly with a temperature increase
from 4.2t0 300 K. A small resistivity value (~10° Q m)
for all titanium monoxides is characteristic for metals,
whereas the negative temperature coefficient dp/dT of
the resistivity for TiO, monoxideswithy > 1.087 isone
of the main attributes of the dielectric behavior. Within
therange 4.2-300 K, the change of resistivity caused by
this effect is Ap = 20-50%. This fact makes it impossi-
ble to consider Ap as a small correction in the relax-
ation-time approximation.

The conductivity o is proportional to the product of
the carrier concentration N multiplied by their mobility
u;i.e,

G(T) = ene,h(ue+uh)- (3)

If the carriers obey the Boltzmann statistics and the
energy bands are parabolic, which is practically valid
near the band edges [15], the carrier concentration is

ne = 2(mD)* (ks T/210:2) P exp(-AE/2ksT),  (4)

where m* is the effective mass of the charge carriers;
AE isthe energy parameter, which has ameaning of the
activation energy and, in the case of intrinsic conduc-
tion, is equal to the energy gap E, between the valence
band and the conduction band. In the case of the Boltz-
mann distribution, the carrier mobility isinversely pro-
portional to the temperature:

uOAT . 3)

Since al the samples of titanium monoxide have anon-
zero residual resistivity, we can represent, with allow-
ance for (4) and (5), the conductivity of TiO,
(y=1.087) oxidesin the form

o(T) = o(0)

(6)
+ 2(kgmV21th %) TP exp (—AE/ 2k T).
The constant contribution a(0) has a meaning of the
nonintrinsic conductivity of the system and impliesthat
the conductivity isnonzeroat T=0K.

The numerical anaysis of experimental depen-
dences o(T) showsthat they are well described by func-
tion (6) withp=1;i.e,

o(T) = o(0) + BT exp(-AE/2kg T). (7)
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Fig. 2. Magnetic susceptibility x of disordered cubic TiOy,

monoxides with a various oxygen content within the tem-
perature range from 4.2 to 400 K (H = 25 kOe).

The parameter p = 1 is characteristic for polyatomic
semiconductors in which scattering occurs not only by
acoustic phonons but also by optical phonons.

The representation of the temperature-dependent
contribution to conductivity (7) for TiO, (y = 1.087)
monoxides in the coordinates In{[a(T) — 6(0)]/T?} —
1/T (seeinsert in Fig. 1) shows that the linear depen-
denceis observed in the entire temperature range under
study. The activation energy AE for the monoxidesfrom
TiO; 0710 TIO; 533 issmall and equals0.015-0.030 eV. It
equals0.043 eV only for TiO; 4. If theintrinsic conduc-
tion appears near 300 K and above, we cannot definitely
claim whether the value found for AE is the forbidden
gap of the semiconductor in itself or is the activation
energy of the impurity level. Analysis of the magnetic
susceptibility allows usto elucidate this question.

Two regions with an opposite change of the quantity
X asafunction of temperature can be separated in x(T)
temperature curvesfor al TiO, samples (Figs. 2 and 3).
The decrease in the susceptibility at T < 150200 K is
characteristic for the paramagnetic contribution, which
is described by the modified Curie law x(T) = X(0) +
C/(T + A) with the temperature-independent paramag-
netic contribution x(0) and A > 0. At temperatures
above 150-200 K the susceptibility x(T) along with the
contribution x(0) + C/(T + A) also includes a quadratic
or more complicated temperature function.

The Curie paramagnetism per unit volume of the

material is equal to Xy = Nnp% /3ksT, where N is the

number of atoms per unit volume, n isthe relative con-
centration of atoms having the magnetic moment, [ ¢ =
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Fig. 3. Magnetic susceptibility of TiOggas, TiO1 069

TiO1 gg7, and TiOq 5o Monoxides within the temperature

rangefrom 4.2 K to the temperature of the disorder ~ order
transition onset (near 1000 K). The dependence x(T) is

described by the functions: TiOy gus — X(T) % 10° = 1.410 +
22.9/(T + 88.6) + 4.930 x 10712 TiO o9 — X(T) x 10° =
1.237 + 0.54/(T + 8.5) + 6.591 x 1077T% TiO; og7 — X(T) %
109 = 1.196 + 0.012Texp(—353/T) + 14.9/(T + 71.8),
AE=0061 eV; TiOj, — X(T) x 10° = 0.847 +
0.034T2exp(~1004/T) + 24.1/(T + 7.8), AE = 0.173 eV.
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pUg is the effective magnetic moment, and g is the
Bohr magneton. Since N = N,d/M (N, is Avogadro’s
number, disthe density, and M is the molecular mass),
the measured magnetic susceptibility per mass unit is
X = Xv/d = (NNA/M)(pUe)*/(3ksT) = C/T, whence p* =
(CM/n)(3kg/NA 2 ) or, with allowance for values of

N,, Mg, @and kg, p= ~/8CM/n , the Curie constant C hav-

ing the dimensionality cm® K g. If the concentration
of atoms n that have a magnetic moment is unknown,

then the average magnetic moment is pyo = ~V8CM.

The calculations using the determined values of the
constant C have shown that the magnitude of the mag-
netic moment . averaged over all atoms is 0.015—
0.225 of Bohr magneton. The low magnitude of [ is
indicative of the fact that the Curie contribution into the
susceptibility is, most probably, of impurity origin. In
TiO, monoxide, the magjority of Ti%* ions likely have
paired electrons, or €lse there exists the exchange cat-
ion—cationic interaction. By virtue of ahigh concentra-
tion of delocalized electrons, we did not succeed in
determining the presence in TiO, monoxide of ions
with an uncompensated magnetic moment by the EPR
method. Since the ferromagnetic impurities in TiO,

samples are absent, the presence of a small effective
magnetic moment can be caused by Ti%?* and Ti®* ions
having an impurity nature. The content of such impu-
rity ions, judging from the value of p, ranges from 2 to
8 at. %. Most distinctly, the Curie paramagnetism is
observed for TiO, titanium monoxides with arelatively
high oxygen content y > 1.2 (Fig. 3).

The dependence x(T) of TiQ, titanium monoxides
with y < 1.069 (Fig. 3) in the entire temperature range
under study is described well by the function x(T) =
X(0) + C/(T + A) + bT?2. The presence of the quadratic
term bT? is characteristic for the Pauli paramagnetism
of conduction electrons, which agrees well with the
metallic type of conduction for these monoxides.

The temperature dependences of the susceptibility
for monoxides TiO, with y > 1.087 are more compli-
cated, which is clearly distinguishable in the high-tem-
peratureregion (Fig. 3). If the charge-carrier concentra-
tioninTiO, withy>1.087 at T > 300K is described by
formula (4), then, in this case, in agreement with the
Curie formula X,(T) = ng(Hg)*/ksT, the fraction of the
magnetic susceptibility dependent on temperature will
have a paramagnetic contribution

Xo(T) = 2(m021i%)* (ke) " (1a) T
x exp(—AE/2kg T) = AT 2exp(=AE/ 2K T),

where A = 2(m,/2112)**(kg)*(Mg)*q*? = 3.008 x
107°¢g*? [K-172], g = m*/m,, and m, isthe electron mass.
Formula (8) describes the dimensionless susceptibility
per unit volume. Taking into account that A,,= A/d and
also the features of x(T) dependences that were indi-
cated above, we may approximate within the entire
temperature range under study the mass susceptibility
of TiO, monoxides with'y > 1.087 by the function

X(T) = x(0)
+ A T exp(=AE/2ks T) + C/(T + A).

This function takes into account the temperature-inde-
pendent contribution of x(0), the paramagnetic Pauli
contribution for the electron system with the energy
gap, and the paramagnetic Curie contribution.

The coefficients A, in dependence (9) for TiO; g7
and TiO, 55, monoxides are 0.012 x 10 and 0.034 x
106 cm?® gt K-Y2; the densities of TiO, og; and TiO; ,e,
are 4.97 and 4.82 g cm 3. The effective mass of carriers
expressed in terms of m, is equal to m* = 4.799 x
103(A,d)**m,. With allowance for this fact, the effec-
tive mass of carriersin TiO, g7 and TiO, 4, iSequal to
~7m, and ~14m,. A rather large effective mass confirms
the correctnessin the application of the Boltzmann dis-
tribution for the description of carrier concentration in
TiO, monoxides with y > 1.087.

The values of AE found from the X(T) curves (9) for
TiO, gg7 and TiO, 55, Monoxides are equal to 0.061 and

®)
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0.173 eV. The values of AE determined for these mon-
oxides from the temperature dependences of the con-
ductivity are 0.029 and 0.043 eV. We may assume that
the values of AE found from the low-temperature
dependences of the conductivity correspond to the acti-
vation energy of impurity levels, whereas the values of
AE derived for the wider temperature range from the
magnetic susceptibility define the forbidden gap in the
case of the intrinsic conduction. The small magnitude
of the forbidden gap allows usto consider the TiO, tita-
nium monoxide with y = 1.087 as a narrow-gap semi-
conductor.

Thus, the totality of the kinetic and magnetic data
obtained allows us to assume that with elevation of the
oxygen content in the electronic structure of the disor-
dered cubic TiO,, a narrow gap appears between the
valence band and the conduction band. In accordance
with this conclusion and depending on the oxygen con-
tent, TiO, monoxide can behave as a d-meta or as a
semiconductor.

ACKNOWLEDGMENTS

The authors are grateful to N.A. Kirsanov,
A.V. Korolev, and R. Henesfor their help in performing
the experiment.

REFERENCES

1. A.l.GusevandA.A. Rempd’, Sructural Phase Transi-
tions in Nonstoichiometric Compounds (Nauka, Mos-
cow, 1988).

DOKLADY PHYSICS Vol. 47 No.1 2002

2. A.l.Gusev and A. A. Rempel’, Nonstoichiometry, Dis-
order and Order in Solids (Ural. Otd. Ross. Akad. Nauk,
Yekaterinburg, 2001).

3. A.D. Pearson, J. Phys. Chem. Solids 5, 316 (1958).
S. P. Denker, J. Appl. Phys. 37, 142 (1966).

5. M. I. Aivazov, |. A. Domashnev, A. G. Sarkisyan, and
T. V. Rezchikova, 1zv. Akad. Nauk SSSR, Neorg. Mater.
6, 745 (1970).

6. M.D.Banus, T. B. Reed, and A. J. Strauss, Phys. Rev. B.
5, 2775 (1972).

7. M. Schoenand S. P. Denker, Phys. Rev. 184, 864 (1969).
A. Neckel, Intern. J. Quantum. Chem. 23, 1317 (1983).

9. S.R. Barman and D. D. Sarma, Phys. Rev. B 49, 16141
(1994).

10. C. Leung, M. Weinert, P. B. Allen, and R. M. Wentzco-
vitch, Phys. Rev. B 54, 7857 (1996).

11. D. R. Jennison and A. B. Kunz, Phys. Rev. Lett. 39, 418
(1977).

12. J. K. Burdett and T. Hughbanks, J. Am. Chem. Soc. 106,
3101 (1984).

13. G. Hobiger, P. Herzig, R. Eibler, et al., J. Phys.: Con-
dens. Matter 2, 4595 (1990).

14. A. A, Valeeva, A. A. Rempel’, and A. |. Gusev, Pis ma
Zh. Eksp. Teor. Fiz. 71, 675 (1990) [JETP Lett. 71, 460
(2000)].

15. 1. M. Tsidil’ kovskii, Zero-Gap Semiconductors. A New
Class of Materials (Nauka, Moscow, 1986).

>

©

Trandated by T. Galkina



Doklady Physics, \ol. 47, No. 1, 2002, pp. 44-46. Translated from Doklady Akademii Nauk, Vol. 382, No. 3, 2002, pp. 325-328.

Original Russian Text Copyright © 2002 by Lyamshev.

PHYSICS

Thermooptical Excitation of Plate Vibration
by Modulated Radiation of an Unstable-Cavity L aser

M. L. Lyamshev
Presented by Academician F.V. Bunkin May 17, 2001

Received June 26, 2001

In recent years, much attention was paid to investi-
gating the chaotic generation of lasers. For example,
scenarios and characteristics of chaotic generationin an
unstable cavity of afast-flow laser with spatially inho-
mogeneous pumping were studied in [1]. A scheme of
optical information chaos on the basis of lasers that
synchronously operate in a chaotic regime with chaotic
pumping was considered in[2]. Both scaling and fractal
dimension are important characteristics of nonlinear
systems with dynamic chaos[3]. The existence of scal-
ing properties for harmonic radiation in laser plasmas
under the action of high-power pumping was indicated
in [4]. The mode structure for the radiation of an unsta-
ble-cavity laser was demonstrated to be fractal [5]. The
fractal dimensions of the radiation-intensity distribution
for lasers with narrow dlit-shaped and circular apertures
were found to be D = 1.6 and 1.3, respectively.

Plates are often used as target samples for studying
mechanisms of laser-radiation interaction with a mate-
rial. Characteristics of plate vibrations are a source of
useful information on relevant physica processes|[6, 7].
It is of interest to analyze features of plate-vibration
excitation by unstable chaotic laser radiation. This is
important for elucidating potentialities of the photo-
acoustic diagnostics of aradiation fractal structure for
an unstable-cavity laser by detecting plate vibrations.
Below, we consider the thermooptical excitation of
vibrations (flexural waves) in athin plate by laser radi-
ation with a harmonically modulated intensity and a
random fractal spatial distribution of intensity fluctua-
tions over the laser-beam cross section. It is worth not-
ing that the effect of spatial and temporal intensity fluc-
tuations of laser radiation on the sound excitation in a
liquid was previously studied in [8]. However, the char-
acter of the distribution was not specified there.
Recently, the sound excited in liquid by chaotic laser
radiation was considered in [9].

We now assumethat alaser beam with harmonically
modulated intensity impinges onto a thin plate orthog-

Ingtitute of General Physics, Russian Academy of Sciences,
ul. Vavilova 38, Moscow, 117942 Russia
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onally to its surface. The following equation holds for
the displacement u(x, y) of a plate executing forced
flexural vibrations [10]:

[Az_k“] U(X, y) = @ (1)
Here,
Aza_2+a_2 9= Fh® k4=3c02p(1—02)
0x*  ay* 3(1-0%)’ ER:

g istheflexural stiffness, E istheYoung modulus, o is
the Poisson’s ratio, 2h is the thickness, p is the plate-
materia density, k is the wave number of the propagat-
ing flexural waves (vibrations), wisthe circular modu-
lation frequency for the laser-radiation intensity, and
F(x, y) isafunction that characterizes an external force
caused by the laser-radiation action on the plate. The
time-dependent factor is omitted everywhere.

Without a loss of generality, we assume that the
plate is opague with respect to laser radiation and this
radiation is absorbed in athin near-surface plate layer.

Based on these arguments, we can write the follow-
ing expression for F(x, y) [11]:

Faum
C

Here, |, is the laser-radiation intensity, f(x, y) is the
function characterizing the intensity distribution over
the plate surface, a isthe coefficient of volumetric ther-
mal expansion, G isthe specific heat, E istheYoung's
modulus of the plate material, misthe modulation coef-
ficient (0 < m< 1), and p isthe coefficient of the laser-
radiation absorption by the plate.

Using the reciprocity theorem, we can write the
solution to Eq. (1) intheform

F(Xy) = — lof (X, ). ()

p

Eaum
Cy9

u(xy) = - lo
3

x I f (X Y0) G(Xo, Yo/ X, Y)dS(Xo, Yo)-
S
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Here, G(X,, Yo/, ¥) isthe solution to the boundary value
problem on afield of apoint source (point force), which
islocated at the plate point r(x, y) at which the solution
to Eq. (1) should befound. In other words, G is Green's
function for an infinite plate [12].

Furthermore, we analyze thefield of excited flexural
waves in the Fraunhofer zone with respect to the | aser-
beam radius. In this case, for finding plate displace-
ments, it suffices to know the Green’s function asymp-
totic behavior. It is of the form [10]

_ exp(ikR)

J32mik°R

where R = J/x*+y*, (X, y) are the coordinates of the
observation point; (X, Y,) are the source-point coordi-
nates; and k2 = k;, + K; , where k and k, are the wave-
vector components.

We assume that the spatial distribution of the laser-

radiation intensity is characterized by a random statisti-
cally homogeneous function f(x, y) so that [f(x, y)[= O.

G(Xo Yo/%,y) = exp(ikeXo +ikyYo), (4)

Substituting the asymptotic form of Green’s func-
tion (4) into solution (3) and multiplying the expression
obtained by the complex-conjugate one, we find the
mean-square displacement [u(x, y)|Cof the plate:

Eo’u’m® 2
e | af (X, y) f(x", y)O
Cog’ x 32mRK OQ X))
x exp[—iky(X —x") =ik, (Y —y")] dx'dy'dx"dy".

Ou(x, y)I’'0=

After the replacement of coordinates x; = X >
Y1 = Y ;y ,E&=x'—x",n=y —Yy" and integration

over the coordinates x, and y,, the expression for the
mean-square displacements takes the form

E’a’p’m” 2

Ou(x, y)I’0 = ——————13S
OY) C2g x 32TRK®

(%)
X!{B(E, n)exp[-ik,& —ik,n]d€ dn.

Here, B(&, n) = OF (X', y) f(xX", y") isanormalized corre-
lation function for the laser-radiation intensity fluctua-
tions, & = |x'—x"|, n =y —y"|, and Sis the spot area of
thelaser beam on the plate surface. Theintegration with
respect to & and n is performed over the entire area of
the laser-radiation action. In the case when B(E, n) rap-
idly drops at the periphery of the laser-beam cross sec-
tion, the integration can be extended to the interval
from —co to +oo.
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Properties of statistical fractals are often character-
ized by structure (correlation) functions and by their
spectra, whose specific featureisthat they are described
by power laws. This fact follows from the scale invari-
ance of the fractal structures[3].

For wave problems, an important characteristic of
statistical fractalsis the power-law shape of the fluctu-
ation spectrum that has the form

®(q) Og”. (6)

Here, for objects with a fractal surface, the exponent o
is determined by the expression [13]

5 = D-2d, )

where D is the fractal dimension and d is the embed-
ded-space dimension.

We now find the mean-sgquare plate displacements
for the case when the laser aperture in the x-direction is
of the narrow-dlit form. The correlation function for
fluctuations of the laser-radiation intensity can be rep-
resented in the form of the product

B(&,n) = By(&)B,(n). ®)

Here, B,(n) = 1, since the fluctuation distribution of the
laser-radiation intensity may be treated as completely
correlated.

In this case, taking into account the fact that, for the
transverse dimensions of the laser spot, kn < 1, we
arrive at

+00

IBz(n)exp(ikyn)dn =No, )

where n, is the transverse dimension of the laser spot
on the plate surface.

We choose the normalized correlation function in
the longitudinal direction in the form (see, e.g., [14])

1Ry C80

B.i(§) = mq—p E (10)

where " (v) isthe gamma function, k, %5(5 isthe Mac-

donald function, and &, is the correlation radius for
laser-radiation intensity fluctuations in the longitudinal
direction. We note that B,(0) = 1, B,(w) = 0, and

Bi(€)e <z, ~ %E ; i.e,, the correlation function is of
the power-law form. Thus, this function can be used to

describe the fractal spatial structure of intensity fluctu-
ations for unstable laser radiation.
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Substituting expressions (8), (9), and (10) into for-
mula (5), we obtain after integration

E2a2u2m2

16T°k°RC:g’
where ®,(k,) is the spatial spectral power density for

intensity fluctuations of laser radiation in the horizontal
direction:

Ou(x, y)|'0= 155N, 005 (k,), (11

1

r b

®, (k) = ﬁf: 2 & 1 (12)
MO ey

For k&, > 1, the spectral density ®,(k,) is seen to be of
the power-law (fractal) form

@, (k) O, (13)

We now consider the circular-aperture case. Expres-
sion (5) for the plate mean-square displacements can be
represented in the form

2 .2 2 2
Ou(x, y) 0= TEEB M 250k ),

8k’RC2g

(14)

where

+o00

o(ky) = (2m)~ [ B(P)exp(-ikep)dp. (1)

Here, k5 is the wave number for a so-called resonance
harmonic in the spatia spectrum of the fluctuation
power k- ~ k of the laser-radiation intensity. We repre-
sent the correlation function B(p) in form (9), replacing
& by p and &, by p,, where p, is the correlation radius
for the laser-radiation fluctuations.

For spectral density (15), we have

2 o2v+1 -1

®(ko) = vpo[m(1+kipg) 1
For k,p, > 1, we abtain

(k) Ok, (17)

In order to cal culate the plate mean-square displace-
ments, we need to specify a particular value of the
parameter v for each of the cases under consideration.

Under the conditions of the numerical experiment
[5], the embedded-space dimension is d = 2. If we
employ thefractal dimensionsD = 1.6 and 1.3 obtained
in the numerical experiment [5], we find from expres-
sions(6), (7), (12), and (16) that v = 0.7 and 0.35 for the
dlit-shaped and circular apertures, respectively.

We now analyze in greater detail expressions (11),
(12), (14), and (16), which characterize the plate mean-
square displacements and fluctuation spectra of the
laser-radiation intensity for lasers with dlit-shaped and
circular apertures, respectively. We assume that the

(16)

modulation frequency w is sufficiently high and the
conditions k&, > 1 or kyp, > 1 are met. For the cases of
dlit-shaped and circular apertures, we analyze the fre-
guency dependence of the plate mean-square displace-
ments as plate vibrations excited by radiation of an
unstable-cavity laser. Note that the relation k ~ w'?
holds for the wave number k of the flexura waves
(vibrations) of the plate [see formula (1)]. Using equa
tions (6), (7), (12), and (16); the values D, and D, of the
fractal dimensions; and the value of the parameter v, we
obtain [u(x, y)PPC~ w37 and [U(X, Y)PO~ w3 for lasers
with dit-shaped and circular apertures, respectively. Asis
evident from expression (4) for Green's function, in the
case of stable laser radiation, we have Ju(x, y)J? ~ w27.

Thus, in the cases of stable and chaotic laser radia-
tion, the frequency dependences for the plate mean-
square displacements excited by modulated laser radia-
tion are different and can serve as characteristics of
radiation ingtability and fractal structure. Properly
choosing and varying the modulation frequency of laser
radiation, its characteristics, and, in particular, the laser-
spot size onthe plate surface, aswell as plate parameters,
we can diagnose the fractal structure of chaotic laser
radiation by observing the frequency dependence of
plate vibrations excited by this|aser radiation.
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Alloying elementsin an alloy are quite sensitive to
the level and character of the residual-stress distribu-
tion. The substitutional impurities, whose atoms have
large atomic radii (compared to the host metal), migrate
towards the tensile-stress region. At the same time, the
corresponding impurities of small atomic radii migrate
towards the compressive-stress region. Thus, the strati-
fication of a solid solution containing substitutional
impurities of various kinds and, as a consequence, a
change in the thermophysical and strength characteris-
tics of the material occur. If the concentration of substi-
tutional impurities exceeds the solubility limit at a
given temperature, new-phase nuclei are formed. Their
further growth occurs at the expense of the diffusion
feed by impurity atoms. The growing precipitations
capture the substitutional impurities from the solid
solution, thus depleting it. At the macroscopic level, the
formation of concentration inhomogeneities or the
appearance of a new phase are observed.

The goal of this paper is to analyze both the stratifi-
cation kinetics and depletion of a solid solution con-
taining substitutional impuritiesin the field of residual
stresses of a cylindrical shell (e.g., the shell of afuel
element). A system of stressesis considered asamodel,
whose coordinate dependence admits the exact analyti-
cal solution to the diffusion equation in an external
forcefield.

Residual stresses are a particular case of internal
stresses. They are characterized by self-equilibrium,
which is implied as the presence of tensile and com-
pressive stresses under the condition of the zero value
of their integral characteristic. A complex coordinate
dependence of residual stresses results in strong math-
ematical difficulties while solving diffusion equations
with allowance for these stresses. The residual stresses
inacylindrical shell are anice exception from the gen-
eral rule.

The logarithmic coordinate dependence of the first
invariant of the stress tensor substantially simplifiesthe
equation of diffusion in aforce field [1]. Such stresses
are formed, e.g., in the following manner: the edges of

Research-Industrial Enterprise” Luch,”
Podol’sk, Moscow oblast, 142100 Russia

ashell cut are drawn apart at the angle w, and arequired
material is placed within. Under such manipulation, in
the vicinity of the outer-shell surface the materia isin
the compressive state, whereas in the vicinity of the
inner surface it isin the tensile state. Nonzero compo-
nents of the stresstensor allow usto easily write out the
first invariant for the tensor of these stresses (plane
deformation) [2]:

0
% 2

_ Hw(1+V) r

B 2T[(l—v)%ﬂ-+2|nR+ n
0 1-mR7

gy

Here, [ isthe shear modulus, v isthe Poisson’sratio, w
is the angle of rotation for the shell-cut edges, and r,,
and R are the outer and inner shell radii.

In the case of other equal conditions, the sign of the
guantity o, depends on the angle of rotation for the
shell-cut edges. In the accepted model of residual
stresses, it is conventionally considered that w < 0
(o, > 0and g;, < 0 on the inner and outer shell surfaces,
respectively). The potentia of interaction with the field
of residual stresses for an impurity atom is determined
by the well-known relation

=%
V = 36v, )

where dv is the change in the material volume after
incorporating an impurity atom. If dv > 0 (the substitu-
tiona impurity increases the crystal-lattice parameter),
then the potential V becomes negative for g, > 0. This
correspondsto the attraction of similar impuritiesto the
tensile region of residual stresses. Needless to say that
the choice of the sign for the potential V, which charac-
terizes the attraction or repulsion of impurity atoms, is
of a conditional nature. The equilibrium concentration
of the substitutional impurities exponentialy depends
on the potential V:

C

v
CoeXp E‘ﬁ%- 3)

p
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Here, C, is the average concentration of impurity
atoms, k is the Boltzmann constant, and T is the abso-
lute temperature. Inthetensileregion (g;, > 0), Co, > C,
for dv > 0 and Cg, < C, for dv < 0 (substitutional impu-
rities reduce the crystal-lattice parameter). In the com-
pression region Cq, < C, for v > 0 and C, > C, for
ov < 0. Physically, this implies that the substitutional
impurities with a large atomic radius migrate from the
compression region into the tensile zone, whereas the
diffusion flow of impurities with a small atomic radius
has the opposite direction. The final result of such a
migration of alloying elementsis a stratification of this
solid solution. The inhomogeneous field of the impu-
rity-atom concentration produces concentration
stresses of the opposite sign with respect to residua
stresses. The calculation of the concentration stressesis
performed by anal ogy with thetemperature stresses|[3].
The change in the crysta-lattice parameter at the
expense of the unit impurity-atom concentration is put
into correspondence with the linear-expansion coeffi-
cient. For a substantial concentration of the substitu-
tiona impurities and at the later stages of the diffusion
process, the concentration stresses damp the stratifica-
tion of a solid solution. However, for alow concentra-
tion of impurity atomsand at the early stages of the pro-
cess, this effect can be ignored.

The stratification kinetics for the solid solution of
substitutional impurities is described by the unsteady
diffusion equation in the field of the potential V under
the corresponding initial and boundary conditions:

10C _ 0(Cov)
Dot - ACT g v fosr<R )

C(r,0) = Cp, C(ro,t) = C, C(R 1) = CZ,
where D is the diffusion coefficient for impurity atoms

and Cg, and C, are the equilibrium concentrations of
the substitutional impuritiesforr =r,andr = R, respec-
tively. Without aloss of generality, we consider the dif-
fusion migration of substitutional impurities of alarge
radius (8v > 0). In this case, Cg, > CZ;, since in the
model accepted the inner and the outer regions of the
cylindrical shell are in the tension-state and compres-
sion-state regions, respectively. The physical meaning
of the initial and boundary conditions related to prob-
lem (4) is completely evident. At the initia time
moment, the impurity concentration isequal to itsaver-
age value.

The boundary conditionsfor r = r, and r = Rimply
that the equilibrium concentration of impurity atoms,
which correspondsto the potentia V, isinstantaneously
established and maintained at these boundaries. Thisis
caused by the fact that the maximum and minimum val-
ues of g, are attained precisely at the boundaries of the
cylindrical shell.

The logarithmic coordinate dependence of the
potential V considerably simplifies problem (4). In this

case, the constants entering into relation (1) play no
part, since the diffusion of impurity atoms depends on
the gradient of the potentia V (AV =0, sinceVisahar-
monic function). With alowance for the arguments
stated above, problem (4) isformulated mathematically
in the form

10C _o'c, 1+adC

Dot ~ ar2+ or’ fo<r<R
C(r,0) = Cp, C(rot) = Cy C(R1) =C%, (5
_ Hw(1+Vv)dv
O = Sn—vkT <0

The dimensionless problem parameter a determines
the contribution of residual stressesinto the total diffu-
sion flow of substitutional impurities. For |a| < 1, the
field of residual stresses should be considered asaweak
perturbation of the substitutional-impurity flow caused
by the concentration gradient. If |a| > 1, the residual
stresses play a decisive role. For |a| =1, the diffusion
flows of the substitutional impurities caused by both
concentration gradients and the potential V are compa-
rable with each other. The estimates show that the mag-
nitude of |a| is close to unity. Indeed, for = 5 x
10°Pa, w=0.1rad, v=0.3,dv =102 m3, and kT =
1072 J, we arrive at |a| = 1. Furthermore, we take o =
-1, sincew< 0 and dv > 0. The solution to equation (5)
for a = —1 describes the concentration field of substitu-
tional impurities with allowance for the effect of resid-
ual stresses[4]:

_ R(Ceq—Co) ~ro(Ceq = Co) + 1(Coy— Cay)

-G R—T,

YOI

. TIN(r —ryp)
X sin RoTe exp[

™n°Dt
(R=ro)*|

The solution obtained shows that the residual
stresses transform the diffusion equation with cylindri-
cal symmetry into an equation with plane symmetry.
Physically, it impliesthat the diffusion process changes
not only quantitatively but also qualitatively. This
results in a higher formation rate for the concentration
profile of substitutional impurities that immediately
follows from the form of equation (5). In fact, for

%—f < 0, the change rate %—Cr: of the impurity concentra-

tion for a =—1 exceedsthe corresponding value %—(r: for

a = 0. The diffusion flows caused by both the concen-
tration gradients and the potentia V have the opposite
DOKLADY PHYSICS Vol. 47
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direction: the term %—\r/

the substitutional impurities with alarge atomic radius
into the region of the tensile stresses, while the term

%—(r: provides the impurity migration in the direction

is responsible for transferring

opposite to the gradient of the potential V. In the case of
the equality of diffusion flows, dynamic equilibrium
takes place, which is defined by relation (3). The profile
of the substitutional-impurity concentration linearly
dependson theradial coordinate. Thisisaconsequence

- - mm_r
of the model accepted (a =-1), since expanﬂ] =5
The equilibrium concentration of substitutional impuri-

Dt
(R=ro)
of the second term in expression (6) is sufficiently
small.

tiesis formed as > 1, when the contribution

2

We now consider the kinetics of the new-phase
growth with allowance for the field of residual stresses
of the cylindrical shell. If the concentration of the sub-
gtitutional impurities in the region of maximum resid-
ual stresses exceeds the solubility limit, then on the
inner shell surface a new-phase nucleus [with a charac-
teristic size R, (r, < Ry < R)] is formed. As far as
R, < R, diffusion processesin an unbounded matrix are
considered for the description of kinetics of the new-
phase growth. At the moving boundary of precipitations,
the concentration of substitutional impurities changes
jumpwise: C = C, for the new phase and C = C, in the
surrounding matrix (C, > C,, C, < C,, where C, isthe
average concentration of impurity atoms). This fact
implies that the interphase boundary instantaneously
captures impurities from the solid solution and trans-
fers them into the new phase with a higher concentra-
tion. The kinetics of the diffusion new-phase growth in
the vicinity of the inner surface of the cylindrical shell
is mathematically formulated as[5]

1oC _ 9 C+1+0(6C

Dot or? roor’
CR 1Y = Cp C(r,0) = Colr 2Ry), .
Cleo, 1) = Co, 7

dR _ O
(Cl - CZ) Dt

ar| |r

r=R
where R, is the radius of a precipitation nucleus and R
isthe current radius of the new phase.

For a cylindrical shell with a positive dilatation on
the inner surfacein the presence of substitutional impu-
DOKLADY PHYSICS Vol. 47
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rities with a large atomic radius (a = —1), problem (7)
takes the more simple form

19c _o'C
D ot - arz’
C(R 1) = C,, C(r,0) = Cy(r 2Ry), g
C(oo,t) = C,, ®)
dR dC , Qj
Cc,-C D :
( 1 Z)d Ddr R

If the new-phase growth kinetics is limited by the
diffusion of impurity atoms, then the changein the pre-
cipitation size obeys the law R(t) = B./Dt, where B is
the dimensionless problem parameter. ltsvalueisfound
from the equation of the mass balance at the interphase
boundary. In the approximation of an immobile inter-
phase boundary, we obtain the quadratic equation for
the determination of the parameter f3:

BZ_;@ C2_ 2C2
JmC-Cy |C-C,

Other approximations Ee.g., introducing the new vari-

= 0. )

able

«/— D only complicate the equation for the
determination of the parameter 3 [6]. If weseta =0in
problem (7), then, under the same initial and boundary
conditions, we obtain

190C _

_d°c, 10C
Dot

T o2 ror
C(Rt) = C,, C(r,0) = Cy(r2Ry),
Ceo, 1) = Cy,

dC
= Dy

In this case, the growth of a new-phase precipitation is
caused only by the concentration gradient for impurity
atoms. From the equation of mass balance for the inter-
phase boundary, we obtain the transcendental equation
that determines parameter 3,, which characterizes the
new-phase growth kinetics according to the relation

Bl'\/ﬁt:

(10)

dR
(Cl_CZ) dt

b

. (11)
K HIB «/_TD

I Cl C2
Here, Ky(x) and K, (x) are modified Bessel functions of

the second kind and of the zero and first orders, respec-
tively. Solving equations (9) and (11), we are able to
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reveal the contribution of the residual-stress field into
the kinetics of the process of the new-phase growth. For
atomic concentrationsC,=2x 104, C,=10% andC, =
3 x 104, we obtain

BZ B 1 — 0 B _ 1 Kl%ﬂl% (12)
,\/‘)_'[ ’ 1 ﬁ[K g; ﬁ[l
0 1 2 |:|
. K1(X) 1
Since > 1, wehave 3, > — . On the other hand,
Ko B>

. 1 1 1
it followsfrom B = = + — that 3 > — . Therefore,
without numerical analysis of relations (12), deriving
the expected inequality 3 > 3, seemsto be impossible.
Numerically solving equation (12) yields B = 1.3
and 3, = 0.8. Thisimpliesthat the residual stresses pro-
mote the growth rate of new-phase nuclei. Using other
values of boundary concentrations for impurity atoms
will result only in refinement of the numerical values
for parameters 3 and 3, . When the characteristic size of
the precipitate is increased, the depletion of the solid
solution of substitutional impurities occurs, and the
new-phase growth becomes slower. Bulk variations of
the new phase result in the appearance of stresses at the
interphase boundary. Generally speaking, these stresses
change the kinetics of the diffusion process. However,
under small bulk changes of the new phase and at early
stages of the process, this effect can be ignored.

Thus, the substitutional impurities with a large
atomic radius are redistributed in the field of residual
stresses. In this case, the enrichment of the tensile-
stress zone and the depl etion of the compressive-stress
region occur. Simultaneously with this process, the dif-
fusion migration of the substitutional impurities with a
small atomic radius occurs. In the equilibrium state, the

field of residual stresses redistributes these impurities
aswell, the profile of their concentration being also lin-
early dependent on the radial coordinate. At the same
time, however, there exists an essential difference: the
substitutional impurities of small atomic radius enrich
the region of compressive stresses and deplete the zone
of tensile stresses. At the macroscopic level, astratifica
tion of the solid solution containing substitutional
impurities of various types is observed. This stratifica-
tion ismost noticeabl e at the boundaries of the cylindri-
cal shell. If the concentration of substitutional impuri-
tiesin the near-boundary region of the shell exceedsthe
solubility limit, new-phase nuclei areformed. Their dif-
fusion growth is followed by the depletion of the solid
solution containing substitutional impurities through-
out the entire volume bounded by the shell. In the mac-
roscopic scale, formation of the concentration inhomo-
geneities or the new-phase precipitations is observed.
In these processes, the residual stresses play the deci-
siverole.
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The need in modern microelectronics for the repro-
ducible production of thin (2-5 nm) silicon dioxide lay-
ers used as gate insulators stimulates particular atten-
tion to processes accompanying the formation of the
boundary layer in the Si-SiO, system [1]. After termi-
nation of the thermal oxidation of silicon, the boundary
layer naturally becomes the junction-layer [2]. Hence,
the features characterizing the boundary-layer forma-
tion strongly affect the structure and the impurity distri-
bution in the junction layer. In addition, the evolution of
the boundary layer eventualy gives rise to the forma-
tion of the random Zachariasen network characteristic
of bulk silicon dioxide.

Note that due to the high characteristic temperature
of the oxidation process (1273-1373 K), it is a rather
complicated task to study the boundary layer in the
course of thermal oxidation. Therefore, it is of primary
importance to develop atheoretical scheme or a model
for the description of the boundary layer. In this paper,
we consider a general mathematical model for the oxi-
dation of silicon, which takesinto account the polymer-
ization processes occurring in this layer.

I'n our paper [2], we proposed to divide the boundary
layer into an active zone and a polymerization zone. In
the active zone directly adjoining the S—-SiO, interface,
low-molecular-weight silicon—oxygen clusters are
formed due to the intense heat release in the course of
chemical reactions. These clusters are monomer units
for further polymerization reactions. Owing to ther-
mally activated diffusion, the monomers also arrive at
the polymerization zone. In this zone, the local viscos-
ity elevates with distance from the S-SiO, interface
due to the increase in the number of 8-, 9-, and 10-unit
polymer molecules. The formation of ring molecules
and of the polymer network limitsthe further prolonga
tion of the polymeric-molecule chain. As a result, the
local viscosity undergoes a jumplike increase, and the
chemical reactions corresponding to the growth in the
chain length are impeded due to steric causes.

AOOT Research Institute of Molecular Electronics
and Micron Plant, Zelenograd,
Moscow, 103460 Russia

1. EQUATIONS OF THE MODEL

We consider an arbitrary cross section in the poly-
merization zone. In the course of the polymerization
process, the Si-SiO, interface continuously shifts
deeper into the semiconductor (say, for definiteness, to
the left) and the horizontal coordinate of this cross sec-
tion increases. We assume that there exists a steady
inflow j of the monomer to the given cross section. Let
the monomer concentration and the (i + 1)-unit polymer
concentration in a layer be x, and x,, respectively.
Assuming the cross section of a certain finite thickness
to be, as a whole, homogeneous, we can write out all
proceeding chemical reactions until n-unit polymers
will beformed (n< N =8):

ko
Xot X — X,

ky
X1+ Xg —= X5,

ey

KN -1
XN—l +X0 —— XN‘

Here, k,, ki, ..., ky_, are the reaction-rate constants
characterizing the rates of corresponding chemical
reactions. The reactions are assumed to be irreversible,
and their rates are calculated according to the acting-
mass law (bimolecular reaction). The reaction rate con-
stants are considered to be different. To take into account
the limitation imposed on the growth of the chain length,
we assume that ky, = 0. Then, we can write out

dx .
d_to = J(XO1 t)_kox(z)_klxoxl_"'_kN—lxN—le’
dd—);l = koxg—klxlxo,
dx ()
d_tn = kn—lxn—lxo_annX01
dxy
ot K 1Xn-1X0

1028-3358/02/4701-0005%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Thereactionrateislimited by the diffusion of reagents.
This assumption stems from the viscoel astic properties
of thegrowing SiO, layer, whichisverified in anumber
of studies[3]. It iswell known [4] that the reaction-rate
constant ky of a diffusion-driven reaction obeys the fol-
lowing relationship:

2RT (ra+ 1)’
3N rap

a4 = 3)
Here, n isthe viscosity of the medium, r, isthe reagent
molecular size (related to the number of monomer
units), r, is the monomer molecular size, R is the uni-
versal gas constant, and T is temperature. Thus, in our
case, k = ky(r,(i)), k increasing with i. Ignoring unity
compared to i, we can write out

k_2RT

1 3r]

It should be noted that the parameter k, should actually
be given by another expression, since the monomer—
monomer interaction seems to be controlled by the
reaction kinetics rather than by diffusion. The bound-
ary-layer viscosity, in turn, depends on the problem
parameters, i.e., on the concentration of polymer mole-
cules. As is known from the physics of polymers [5],
the viscosity of a polymer melt consisting of n-unit
molecules is proportional to n*. Therefore, we use in
our case thisdependence valid for largen (n > 30) asan
approximation, i.e.,

(i +1). @)

N-1

Z xn(t)nﬁ

0
0
N =ned+H—~0 (5)
0 0
0 (1) O
2405

n=1

In Egs. (2) of our model, we have introduced the mono-
mer flux j(X,, t) incoming from outside to the cross sec-
tion under study. Generally speaking, this flux depends
on both time (since the farther the cross section from
the interface, the smaler the diffusion-induced flow
from the active zone) and the monomer concentration.
It is evident that the time dependence of the flux j isa
monotonically decreasing function that vanishes when
the given cross section passes from the polymerization
zone to the domain of already formed SiO, layers. The
derivation of an explicit formulafor j(x,, t) seemsto be
avery complicated task. Therefore, we use furthermore
a number of model dependences having the aforemen-
tioned property.

2. ANALY SIS OF THE MODEL
IN THE LINEAR CASE
We now introduce a simplifying assumption sup-
posing the boundary-layer viscosity to have a constant

value. Although this assumption is hardly justified from
the physical standpoint, it is certainly of interest to con-
sider this case as providing an opportunity to find an
explicit solution to be used as a starting approximation.
Thus, Egs. (2) form an autonomous homogeneous set
of the second order. We perform a change of variables:
d¢ = x,(t)dt. For correctness of this change, we also
assume that kX, > kx (i > 0); i.e., the amount of a
monomer decreases mainly due to its dimerization.
Then, we have an equation with respect to x,(&),
another one with respect to x,(&), and N — 1 equations
with respect to x(t), i > 1.
dx,
dg
(Cji_)E(l = Ki_1X_1— kX, i=23...
Here, f(§) is expressed by the term kX, written out in the
new variable &. At first, we solve the linear homoge-
neous system, i.e., that containing f(§) = 0. Its n roots

are A\, =k, and the kth component of ith eigenvector u;
is given by the expression

0, k<i

= F(8) —kixy,

k>i @)

For example, the values A, = —k, and A, = -k, corre-
spond, respectively, to the vectors (0, 0, 0, ..., 0, 1) and

Lk ik,
Tko—ky T (Kp—ki) (ks —ky) "
ky % ... xKk,

(ka—ky) o x (Ky—kq)”

The general solution to the homogeneous equation has
the form

xi(&) = ZCkUikeXp(—kia)- (8)
k=1

We note that the first component of x(§) depends only
on the first of the constants C,. This makes the use of
the Cauchy formula for the solution to the inhomoge-
neous system easier. Thus, we obtain the following
formula:

X(&) = Cyu exp(—k.&)
& n

+[f(&)exp(ky (& —&))dg" + Z Crexp(—kE)uy. ®
'! 1 2 k k

Under the initial condition x(0) = 0, x,(0) = 0, we have
C, = C, = 0. We now go back to the function X,(£).
DOKLADY PHYSICS Vol. 47
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It is evident that
dt = .d—xoz,
] (Xo) —KoXo
2 (10)
dE = xdt = %&
i5 %6 B-koxs

If j = const and x,(0) = ¢, then wefind
_ |i1-exp(-ht)
%ol J;ol + exp(-bt)
f(&) = koXo(&)
= Jkoj (1— exp(-2ke8)) + ko€’ eXp(~2k,E)
In particular, it follows from (12) that the rate of the
decrease in the amount of the monomer is strongly
affected by itsinitial concentration, since the parameter

c entersinto the exponent of the exponential terms. The
same remark is applicable to the effect of the flux j.

e )
b - 2/\/J_kOJ_Ck0’

(11)

(12)

3. CALCULATION RESULTS

It is quite difficult to experimentally determine the
reaction-rate constants for the increase in the chan
length, especialy if we take into account specific fea
tures of each n-unit polymer. We have assumed that T =
1273 K and n, = 10° kg/(m s) [4, 6]. To specify theini-
tial conditions for Cauchy problem (2), we need to
know ¢ = x,(0), whereas we have x;(0) =0, i > O for
other x;. The concentration X, is assumed to have the
dimension of cm=3, and we took ¢ equal to 2.2 x
10%? cm3. Such a choice of the dimension (the alterna-
tive choice is[cm™]) allows us to preserve the habitual
dimensions for both constants of chemical reactions
and flux j. Moreover, there is an additional parameter 1
responsiblefor the flux-decrease rate according, e.g., to
the relationship

. . t
i = JoexpEg. (13)

For the steady-state case, we assume that T = 300 s. The
parameter j, was taken to be proportional to the initial
monomer concentration ¢. In our opinion, the relation
between these two parameters determines in many
respects the adequacy of an arbitrary model describing
the thermal oxidation.

Based on the above considerations, we performed
our calculation using dimensionless parameters. The
concentrations, time, and flux were normalized, respec-
tively, to the value of ¢, to one second, and to the value
No. 1

DOKLADY PHYSICS Vol. 47 2002
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(a) Molar fractions of polymers and (b) weight fractions of
polymer molecules in a certain cross section; ¢ =1, Q =1:
(1) monomers; (2) 2-, 3-, 4-unit polymers; (3) 5-, 6-, 7-unit
polymers; (4) 8- and 9-unit polymers.

of [%,(0)/c]; the reaction rates were expressed in terms
of the parameter

2RT

. 14
T (14)
The set of equations written out in the dimensionless
form demonstrates that variations of the quantities ¢
and Q are equivalent; i.e., they cause the same changes
in dynamics of the curves (expressed in dimensionless
variables). The calculations were performed using the
conventional Runge-Kutta method of the fourth order
of accuracy with the step corresponding to 1/10 s.

In thefigure, we present typical resultsfor the expo-
nential decay of the monomer flux j. The horizontal
axis corresponds to time (expressed in seconds),
whereas the vertical axis corresponds to the molar or
weight fraction of polymer chains having different
lengths (in arbitrary units). Such a representation
allows usto account for the excluded-volume problem;
i.e., the chosen cross section is permanently supplied
with the substance and simultaneously expands. The
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molar W and weight U fractions are calculated accord-
ing to the relationships

) (15)

<N

g +1)x

Uqg (16)

Z (i +1)x

0<i

Here, a is a set of indices with respect to which the
aggregation takes place. We considered the following
sets {0}, {1, 2,3}, {4, 5, 6}, and {7, 8}. As should be
expected, the general pattern correspondsto the follow-
ing behavior of the curves. the fraction of monomer
decreases (except, maybe, the initial segment of the
curves); the fraction of 8- and 9-unit polymers
increases monotonically; and thefractions of 2-, 3-, and
4-unit molecules and 5-, 6-, 7-unit rings have more or
less pronounced peak (the moments corresponding to
the peaks of molar and weight fractions can be not coin-
cident). Note that the fractions of 2-, 3-, and 4-unit
polymers steeply increase during the first seconds; on
the contrary, the monomer fraction rapidly decreases.
The most interesting features are the settled ratios of
fractions between the polymers of different lengths at
large times and the settled ratios of fractions between dif-
ferent polymersin agiven crosssection, i.e., at fixed t cor-
responding to the termination of the oxidation process.

The model was analyzed for different values of
parameters. As a result, in the case of more intense
chain-prolongation processes (Q = 10), all peaks turn
out to be clearly pronounced; the fraction of 8- and
9-unit polymers tends to 90-95%. The quasisteady
mode is attained faster. We can note a rapidly attained
(for about 1 ) local dip inthe monomer fraction, which
exists until the formation of alocal peak has been com-
pleted for about 16 s. When the monomer flux increases
by afactor of 100 (j, = 10 ¢) compared to the situation
presented in the figure, the monomer fraction drasti-
cally decreases. The peaks also become more clearly
pronounced, and the ratio of peak heights for fractions
of 2-, 3-, 4-unit and 5-, 6-, 7-unit polymers changes. We
also have considered the case when the flux j linearly
decreases in time down to zero and then remains there
identically zero:

II\

I'n|
O O<t<rt
i) = 50% ™

Ep, T<t<3rt.

The behavior of molar fractions turns out to be more
complicated. The decrease in the molar fraction of 8-
and 9-unit polymers down to 63% seemsto be the most
important feature. The fraction of 2-, 3-, and 4-unit

(17)

polymersincreases; moreover, it exceedsthefraction of
5-, 6-, and 7-unit polymers. At the same time, the
weight fraction of 8- and 9-unit polymers equals 80%.
Finally, in the absence of the diffusion-induced mono-
mer flux (j = 0), the 2-, 3-, and 4-unit polymers domi-
nate (80%), whereas the fraction of 8- and 9-unit poly-
mersis rather small (below 5%).

Thus, the case of the exponential attenuation of the
flux (seefigure) is nearest to the actual physics of the
process under study. The computer simulation demon-
strates that the diffusion-induced monomer flux from
the active zone to the polymerization zone strongly
affects the relation between the fractions of polymer
molecules with different lengths even in the case when
growing silicon layers are relatively thick. Bearing in
mind that the active zone naturally transformswith time
to the polymerization zone, we may conclude that this
result is rather interesting.

4. CONCLUSION

Electrophysical propertiesof the S—SiO, system are
determined in many aspects by the structural features of
thermally oxidized silicon layers. As it was shown
in[1], the junction region in the silicon—silicon dioxide
system is a mixture consisting of 3-10-unit structural
rings. Currently, there is no mathematical model pro-
viding an opportunity to find the percentage of these
ringsin different cross sections of the junction layer. In
addition, the mechanisms underlying the formation of
rings with different sizes are also far from being well
understood.

The mathematical model developed in this paper,
which describes the formation of inhomogeneous struc-
tures in thermally oxidized silicon layers, gives an
answer to the questions posed above. This fact has sig-
nificant practical importance, providing an opportunity
to control the structure of the junction layer and, hence,
parameters of S—SIO, system and of semiconductor
devices based on this system.
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1. INTRODUCTION

In [1-10], the application of atomic functions to
solving problems of signal digital processing was con-
sidered, and the efficiency of the atomic functions com-
pared to the classical methods of [11, 12] was proven.
In the present paper, we present for the first time new
weight functions (windows) proposed and substanti-
ated by the author. Introducing such nonstandard win-
dowsisatimely solution to urgent problems that arose
recently, being associated with the appearance of anew
class of ground-based and airborne radar stations [14]
capable of simultaneously searching for and tracking
numerous targets. That is why they are called multi-
functional radar stations [15]. Noticeable progress in
radar engineering, brought about by the use of antenna
arrays with phase and digital methods of beam forma-
tion, aswell as by the application of modern computers,
has still received little attention in Russian and foreign
scientific literature. A broad list of windows is pre-
sented in [11]. Asfollows from [11], the windows con-
structed are represented in the form of products, sums,
and convolutions of simple windows, as well asin the
form of separate parts of windows known previously.
As a rule, these windows exhibit moderate physical
characteristics, and some of them do not even satisfy
necessary practical requirements. In this connection,
constructing new windows on the basis of atomic func-
tionsand operations of convolution and correlation is of
great practical importance.

2. OPERATIONS OF CONVOLUTION
AND CORRELATION

The principal idea of the method proposed consists
inthefollowing. Atomic functions considered in[4] are
closely connected with other atomic functions, e.g.,

lfp(x) = cup(x) = %J exp(ixt)

o €]
[sin(tx2 )D
UD T D dt.

Ingtitute of Radio Engineering and Electronics,
Russian Academy of Sciences,
Mokhovaya ul. 18, Moscow, 103907 Russia

Thisatomic function isthe self-convol ution of thefunc-
tion up(x):

up(x) = cup(x) = up(x) * up(x). 2)
The role of this function consists in the fact that inte-

grals of the products of shifts by z—kn of the functions

up(x), Fup,(X), and other atomic functions are

expressed in terms of pr X = cup%g. For under-

standing further results, we briefly describe basic oper-
ations of convolution and correlation, which are based
on the results of [13]. When constructing windows, itis
helpful to apply operations called convolutions that
allow usto obtain thethird, daughter, or hybrid function

UAp (X), which is based on the two parent atomic func-
tions up,(x) and up,(x), in accordance with the rule

[

up(x) = [ ups(r)up(x ~ ). 3)

Employing the sign = for the convolution operation, we
can write out formula (3) in a more convenient form:

UpO) = Upy(X) * Up(X). @)
Assuming X —T =Y in expression (3), we obtain

(<)

[ upay)upa(x~y)dy = up(x).

From here, it follows that the convolution operation has
the same commutation property asausual multiplication:

up;(X) * Upx(X) = Upy(X) * Upy(X). (5)

The validity of the combinative propertiesis also sub-
stantiated quite simply:

up;(X) * [Up,(X) * Ups(X)] = [Up;(X) * UP,(X)] * UP5(X).

Figure 1a demonstrates the convolution of the func-
tions up,(X) and up,(X). The method of deriving the

daughter function pr (X) (cup(x)) from the parent func-
tions up,(X) and up,(X) shows that this function inherits

1028-3358/02/4701-0051$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Fig. 1. () Convolution of the functions up; (x) and up,(x) and (b) convolution of the function lfp (X) (bell) and the lattice function

P(x/a) (plot of the functions); (c) plot of the carriers.

parental attributes. These attributes consist in the fact
that the carrier has an extension. In the limiting case,

the convolution of the function lfp (X), whose carrier is
zero, does not change this function:

up(x) = 8(x) = 8(x) = up(x) = up(x),

00

lfp(x) * O(X) = Ilfp(x) O(x—T)dt ©

[

= J'Jp(r)a(r—x)dr = up(X).

Here, thefirst integral isthe convolution and the second
integral is the selective property of the d-function. For
functions shifted from the origin of the chosen coordi-
nate system, we have:

UP(X = X)) * B(X—X)) = Up(X— (X, +X,)).  (7)

The convolution of a“good” function pr(x) with aunit
function 1(x), which has a carrier suppl(x) = [—oo, o],
yieldsthe unit function normalized to the areaunder the

function uAp(x)

00 00

up(X) * 1(x) = J'Jp(r)l(x-T)dr = J'uAp(T)dI. 8)

A case of convolution of the function lfp(x) withthe
lattice function

00

Z up(X — na)

n=—o

uAp(x) * PD—G =

i'a ©)

is basic in applications. In Figs. 1b and 1c, the lattice

function is shown that has repeated the function up(x)

at position points of the &-function. In addition to the
integral operation of the convolution, there exists one
more operation of the same type, which is called corre-
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up(y) uper) @ UpCY) CUPCY)
O =
0 X 0 X 0 X
up(y) upr)y  ® Up(x) CUP(Y)
O =
0 X 0 X 0 X
©
X d—x
0 d X

Fig. 2. Convolution and correlation: (a) convolution; (b) correlation; (c) extension (equal to d — |x|) of the autocorrelation region.

lation (or cross-correlation) and which makes it possi-
ble to obtain a third function from two others:

00

Up(X) = Ups() ¥ Up(¥) = ['up;(1)up,(x + T)dr.

e (10)
Here, the asterisk in the superscript implies complex
conjugation. It followsfrom Eq. (10) that, in contrast to
the convolution, the functions up,(x) and up,(x) do not
commute. However, a particular case for the operation
* isavariant called the autocorrelation when up,(X) =

up,(x). In the case when upy (x) = up,(x) [the function
up,(X) isreal-valued], we arrive at

UP(X) = Up;(X) * up,(X)

” (11)
= J’ Up5(T)Up,(X + T)dT = upy(X) * UP,(—X).

Hence, the autocorrelation for a real-valued function
can be changed by the convolution of the original func-
tion obtained from the former one by means of inver-
sion. If there exists the correlation of the finite function

lfp (X), whose carrier isd, then the extension of the cor-
relation region under the given shift xisequal to the dif-

DOKLADY PHYSICS Vol. 47 No.1 2002

ference d — x (Fig. 2c); the correlation function can be
written out as

UP(X) = Upy(X) * up,()

= (d—x) Lp7 (D)up(x + )

wherethe average valueis calculated over the correlation
region. When the set of quantities {x},i=1,2,...,R
isgiven, the autocorrelation is determined by the
expression

. R—-n

up(n) = zxn+jxj = (R—n) B, ;1

j=1

With allowance for formulas (4) and (11) for the func-
tion up? (X) = up,(x), we obtain

UP(X) = Up;(X) & Upy(X) = Upy(X) * Upy(—X)
= upy(—X) * upy(X) = up(—x).

It isworth mentioning that the autocorrel ation of areal-
valued function exhibits the property of symmetriza-
tion of the finite function. This implies that the output

function is even: ljp(x) = ljp(—X) . We note that for a
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Table 1. Basic physical parameters for new synthesized Kravchenko windows and classical windows

c X o c
5 5.8 bt 2 e g 5
=] § LS v 5 £ E B S0 B
. 2590 - = e o m O] = ®
window | 38 |@Efg|eS% | 25m (2§58 | Bfs | was | BE
.2 Tl — =3 — -v) "~ — Q Sl - a; =
=% |svev | 28 | 3%y (3538 | fgs | BeY | B
§2 |Sz8Bs| £ | =88 |[s8s5 | 382 | 888 | S§
Kravchenko
K 2.34 0.8 0.6 43 -47 —00 3.05 0.31
K, 2.9 0.06 0.4 5 —-69.8 —00 3.82 0.25
K, 3.35 0.004 0.3 5.55 -93.2 —00 4.45 0.21
Ky 3.75 29x 10 0.24 5.98 -116.4 —00 4,90 0.19
K, 411 | 21x10°| 02 6.34 -139.8 —o0 5.41 0.17
K-, 1.89 4,95 0.9 3.67 -34 —00 251 0.5
K53 2.14 21 1.35 4.66 -51 —00 2.05 0.5
Kz, 2.35 0.9 18 55 —68 —00 1.78 0.5
K56 2.73 0.7 2.7 7.1 -102 —00 15 0.5
Kaiser—Bessel
a=30 1.8 7.4 1.02 3.56 —69 -6 2.39 0.4
a=35 1.93 4.8 0.89 3.74 -82 —6 2.57 0.37
Hamming 1.36 235 1.78 31 -43 -6 181 0.54
Blackman—Harris 2 38 0.83 3.85 -92 —6 2.72 0.36
(four-term)

real-valued and even function pr(x) , Operations of con-
volution and autocorrelation are undistinguished. For

upHX) = up(¥) =
Up(x) = Up(x) * up(x).

pr(—x), we obtain that pr(x) *

3. SYNTHESIZING NEW WINDOWS

Based on atomic functions, we now are studying
new synthesized windows under the following parame-

ters: w(nT) =0, |n| > g , Niseven, w(nT) = w(-nT). To

compare characteristics of new synthesized windows,
we make use of the system of physical parameters
introduced in [11]. It iswell known that in practice (at
T=1), thefollowing windows arewidely used [11, 12].

1. The Kaiser—Bessel window

oo

win) = o) ’

<nsN-1,

where |, isthe Bessdl function of the zero order, a = 2,
2.5, 3,35.

2. The Hamming window
w(n) = 0.54— 0.46003%HND_-—1%, O<nsN-1.
3. The Blackman—Harris (four-term) window

- 21
w(n) = 0.35875 - 0.48829coS H

[2m [2m
+0.14128cos i 2%—0.01168cosDN 3%

O0snsN-1

Using theoretical results, we consider the window K
[up(X) = up(x), which is new and synthesized by the
author] (see Table 1 and Fig. 3a) and determine its
physical parameters. The cal culation was performed for
N = 50.

1. The equivalent noise band is k,(K) = 50 x
0.0468 = 2.34.
DOKLADY PHYSICS Vol. 47
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2. The correlation for the 50% overlap is ky(K) =

3.68 _ oo
Tag = 0-8%.

3. The parasitic amplitude modulation is ky(K) =
—10|og‘VM‘2 = 0.6.
W(0)

4. The maximum transformation loss is k,(K) =
10log(2.34) + 0.6 = 4.3 dB.

5. The maximum level of the side-lobe decrease is
equal to ky(K) =47 dB.

6. The asymptotic rate for the side-lobe decrease is
ke(K) = —co.

7. The window width at the 6-dB level is k,(K) =
3.05.

8. The coherent amplification is ky(K) = 0.31.

For comparison, we present the calculated data for
the K, [up(X) * up(x) * up(x) * up(x)] synthesized win-
dow (Table 1, Fig. 3b).

9. The equivalent noise band is k;(K,) = 50 x
0.0017 = 3.35.

10. The correlation for the 50% overlap is k,(K,) =

0.0125 _ .
o = 0-004%.

11. The parasitic amplitude modulation is ky(K,) =

12. The maximum transformation loss is k,(K,) =
10log(3.35) + 0.3 = 5.55 dB.

13. The maximum level of the side-lobe decreaseis
equal to ky(K,) =—-93.2 dB.

14. The asymptotic rate for the side-lobe decrease is
ke(K,) = —00.

15. The window width at the 6-dB level isk;(K,) =
4.45,

16. The coherent amplification is ky(K) = 0.21.

4. A NUMERICAL EXPERIMENT

Analysis of numerical results for synthesizing
Kravchenko windows (Table 1) and classical Kaiser—
Bessel, Hamming, and Blackman—Harris (four-term
solution) windows has shown that the Kravchenko win-
dows exceed the well-known windows in their physical
parameters.

New windows exhibit a low parasitic amplitude
modulation and a high decrease level for side lobes,
which essentially depends on the degree of the convolu-
tion operation within the range from —47 to —139.8 dB.
The other group of windows, i.e., the Kravchenko win-
dows, are composed of convolutions of atomic func-
tions =,(X). We now give the basic physical parameters
for the K-, and K-, windows (Table 1).

17. The equivalent noise bands are k;(K=,) = 50 x
0.0178 = 1.89 and k;(K =, ) = 50 x 0.047 = 2.35.

ot WD) —
10Iog‘._w_(6)_ 0.3.

Table 2. Basic physical parameters of new synthesized windows for Kravchenko-Hamming (KH), Kravchenko—Kal ser—Bessel
(KKB), and Kravchenko—Blackman—Harris (KBH) windows

c S on) c
o5 | 8888 | L2 | o3 °l L8 :
wdow | 85 | 5gBe| e85 | Bio | Zpof | BpE | nus | 58
2% |53z | BeR | £Bg |Ep3e | 485 | sy | iF
w e Od®nd 1S =50 =clw® NST sl U%
KH 2.14 2.06 0.74 4.05 -71.2 —00 2.78 0.35
KH, 2.68 021 0.46 4.74 -96 —00 35 0.27
KH, 3.17 0.016 0.17 5.1 -120 —00 4.1 0.23
KH; 3.6 0.0012 0.026 5.8 -143 —00 4.77 0.2
KKB 244 0.58 0.56 4.43 -50.2 —00 3.2 0.29
KKB; 2.97 0.042 0.38 51 -754 —00 39 0.24
KKB, 34 0.003 0.29 5.6 —-100 —00 4.45 0.21
KKB; 381 23x10% 0.24 6 -123.6 —00 4.9 0.19
KBH 2.55 0.31 05 4.6 —44.2 —00 3.37 0.28
KBH, 3.05 0.023 0.36 52 —68.7 —00 3.97 0.25
KBH, 3.46 0.0026 0.233 5.6 —-115.8 —00 5.09 0.21
KBH; 3.85 19x10 0.23 6 -116.2 —00 5.1 0.19

DOKLADY PHYSICS Vol. 47 No.1 2002



56

KRAVCHENKO

1.0 @ dB

JAEY
‘ A A/
/\ ¥

0.8

0.6

0.4

0.2

0.8

0.6 -

021

0.8

0.6

04+

0.2 1001

0
=30 —20 -10 0 10 20 n -3

Fig. 3. Synthesized Kravchenko windows: (a), (b) Kravchenko windows (K, K»); (€), (d) Kravchenko—-Hamming windows (KH,
KHy); (e), (f) Kravchenko—Kaiser—-Bessel windows (KKB, KKBy); (9), (h) Kravchenko-Blackman—Harris windows (KBH,
KBH,). The functions are on the | eft, the logarithm of the Fourier transform for the corresponding window is on the right; n isthe

count number, n O [—g g} N = 50 is the total number of counts; 6 = Zﬁn isthe normalized frequency.
18. The correlations for the 50% overlap are 20. The maximum transformation losses are
ky(Kz,) =4.95% and ky(K =, ) = 0.9%. ky(Kz,) = 10log(1.89) + 0.9 = 3.67 dB and k,(K+,) =
5.5dB.

19. The parasitic amplitude modulations  are 21. The maximum levels of the side-lobe decrease

k(K=,) = _10|og‘V%‘2 —09andky(K=,)=18  areequal toky(K= ) =—34dB and ky(K-, ) = —68 dB.

DOKLADY PHYSICS Vol. 47 No.1 2002
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Fig. 3. (Contd.)

22. The asymptotic rates for the side-lobe decrease
arekg(Kz,) = -0 and ky(Kz, ) = —.

23. The window widths at the 6-dB level are
k7(KEZ) = 2.51 and k7(KE4) = 1.5.

24. The coherent amplifications are ky(K-,) = 0.5
and ky(K=,) = 0.5.

We should emphasize the high selectivity of this
group of Kravchenko windows: with theincreasein the
degree of the convolution operation, the transmission
band (according to the 6-dB level) reduces from

2,51 bin [K-, window] to 1.5 bin [K-, window]. In
addition to the good selectivity, the latter K- window
DOKLADY PHYSICS Vol. 47

No.1 2002

also has a high level for the decrease of side lobes
(=102 dB) and alow correlation factor for overlapping
segments (exceeding this parameter for classical win-
dows by an order of magnitude). Thus, thiswindow can
be applied for filtering signals with a small distance
between equal-intensity spectral lines (e.g., in the
application of radars for agroup of targets). If we need
windows with a very low correlation factor, a small
value of the parasitic amplitude modulation, and a high
level of the side-lobe decrease (down to —143 dB), it is
possible to use the synthesized Kravchenko—-Hamming
(KH) windows, Kravchenko—-Kaiser—Bessel (KKB)
windows, and Kravchenko—Blackman—Harris (KBH)
windows (Table 2 and Fig. 3). All the synthesized win-
dows have aninfiniterate of the side-lobe decrease. The
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Fig. 4. Diagram for the relation between the transformation
loss and the maximum level of the side-lobe decrease for
new synthesized Kravchenko windows.

basic physical characteristics of the new synthesized
windows are presented in Table 2 and in Fig. 3.

From the standpoint of practical applicability of the
windows, the diagram for the dependence of the trans-

formation loss and the maximum level of the side-lobe
decreaseisof themost interest (Fig. 4). Asfollowsfrom
this diagram, most optimal new synthesized windows
aresituated initslower left corner. These windows have
alow level of the side lobes, athough the transforma-
tion lossis dightly enhanced. The latter parameter can
be considerably improved by passing to the extension
or compression of windows on the basis of properties of
atomic functions. To do this, we employ a number of
particular mathematical transformations. We transform
the x-axis into the t-axis according to the formulat =

;_I'( X. Then, we analyze how the basic physical parame-

ters of new synthesized windows can change under
these transformations (Tables 3 and 4). When extending
the windows, the following physical effects are
observed in the time region: the equivalent noise band
narrows for al windows, the same occurs for the band
corresponding to the 6-dB level, and the maximum
transformation loss considerably decreases. In this
case, the following disadvantages should be indicated:
the correlation of overlapping segments increases, and
the parasitic amplitude modulation deteriorates. These
effects arise at the constant maximum level of the side-
lobe decrease. Thus, the windows investigated compare
well with known classical windows, and even exceed
them for a number of parameters.

The results of this study were reported at the First
International Workshop on Mathematical Modeling of
Physical Processes in Inhomogeneous Media (Mexico,
Guangjuato, March 20-22, 2001) [8] and at the Fourth
International Symposium on Physics and Engineering

Table 3. Parameters of the new synthesized Kravchenko window with allowance for time variations

£ § o
% % % g_ _% G § %_ 5 T -;' @ c
8228 | 52 |829%| .88 | ¥ | £28 | 4%e e | =%
£658 | =2 | 35pe | £2% | E58 | Efg | B | %= | B
§55e | 3% |s@ou| fBes | %Ry | 28l | SBs | Bs¥ | 3P
rsas we Od»nd e =50 =>cl NoSoT nso O%
0 2.34 0.8 0.6 4.3 47 —00 3.05 0.31
5 2.22 142 0.67 413 - - 2.92 0.32
10 21 2.35 0.74 3.96 - - 2.78 0.34
15 1.98 3.72 0.83 38 - - 2.61 0.36
20 1.87 5.64 0.94 3.66 - - 2.46 0.39
25 175 8.24 1.07 35 - - 2.3 0.41
30 164 11.6 122 3.38 - - 2.15 0.44
35 1.52 15.7 1.42 3.24 - - 2 0.47
40 142 20.5 1.67 3.2 - - 1.83 0.51

DOKLADY PHYSICS Vol. 47 No.1 2002



NEW SYNTHESIZED WINDOWS 59

Table 4. Parameters of new synthesized windows of Kravchenko-Hamming and Kravchenko—Blackman—Harris with

adlowance for time variations

55 m
c 0
B o o m = o
e 5 |8 8 A - g | g & 5
5E5 | g9 |52%% | o5 | 8 eS8 | 4%o | £_ -
Q=@ Eé BSES fé_g‘cs‘ Z2=m 20 o 8 & ®'S 5O
202 < T 3T ZE=S EST E@Qo 2an , o=
589 S8 |suvEw | 828 | 82g | 857 | €353 23 23
2sE 2 |3s8s | £5 | =8¢ | =85 | 582 g 35
Kravchenko-Hamming window
0 2.68 0.21 0.46 474 —96 —00 35 0.27
2.55 04 0.51 4.57 — - 3.37 0.28
10 242 0.74 0.57 441 - - 3.2 0.3
15 2.3 1.32 0.64 4.26 - - 3 0.31
20 21 2.25 0.72 4.05 - - 2.85 0.33
25 2.02 3.7 0.82 3.88 - - 2.64 0.36
30 1.88 5.7 0.94 3.68 - - 2.48 0.38
35 175 8.6 11 3.52 — — 2.3 041
40 1.62 12.4 1.28 3.38 — — 2.15 0.44
Kravchenko—Blackman—Harris window
34 0.003 0.29 5.6 -100 —00 4.45 0.21
324 0.01 0.32 543 - — 4.29 0.22
10 31 0.03 0.36 5.27 - - 4.07 0.23
15 2.9 0.08 0.4 5.03 — - 3.84 0.25
20 2.73 0.2 0.45 4.8 - - 3.6 0.26
25 2.56 0.43 0.51 4.6 - - 3.39 0.28
30 2.39 0.92 0.59 4.34 — — 3.17 0.3
35 221 1.82 0.68 4.13 — — 2.93 0.32
60 1.39 215 18 3.24 - - 1.78 0.52
of Millimeter and Submillimeter Waves (Kharkov, 2. V.F Kravchenko, M. A. Basarab, and H. Perez-Meana,
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1. INTRODUCTION

Problems concerning natural waves for a series of
both screened strip transmission lines and dlotted trans-
mission lines can be formulated in the form of vector
integral equations of the first kind with respect to elec-
tric-current density components on strips or electric-
field intensity components on dots. The kernel ele-
ments of these integral equations implicitly contain
both logarithmic and Cauchy singularities. Employing
the projection-operator technique to this equation is
always accompanied by achange from the singular ker-
nel to aregular one and, therefore, introduces an incor-
rectness into the statement of the problem [1].

The method of partial integral-operator inversion
[2], which leads to an integral equation of the second
kind, makesit possibleto avoid theincorrectness. How-
ever, this method is associated with considerable ana-
lytic transformations of integral equations. This
imposes certain constraints on the class of problems
being solved by this method. In particular, the con-
straint imposed on the domain of definition for the inte-
gral equation of the first kind has remained significant.
Indeed, most electrodynamic problems solved to date
were defined only on an interval of the real axis.

2. A METHOD PROPOSED

In this paper, we extend the method of partial oper-
ator inversion (which is more correctly referred to as a
method of almost complete operator inversion) to the
case of connected plane transmission lines. The gener-
alization is based on formulas for the partial inversion
of both the Cauchy singular integral and an integra

* Povol zhskaya Sate Academy of Tel ecommunication
and Informatics, ul. L’va Tolstogo 23,
Samara, 443099 Russia
** |nstitute of Radio Engineering and Electronics,
Russian Academy of Sciences (Fryazino Branch),
pl. Vwedenskogo 1, Fryazino, Moscow oblast,
141120 Russia

having a logarithmic singularity, which are defined on
acombination of intervals

L
v =[]V,
m=1

whereV,,= (V, Vip). Wealso assumethat V [ (-1, 1).
We define the following system of functionson V:

m ari(a,+byv), vIOV,
T (v) = %)( : (1)

Here,i=0,1,...;m=1,2, ..., L, T, arethe Chebyshev
polynomials of thefirst kind; and

Vm2+vm1 b — 2
] m —

a, = —
V2= Vmi

Vi — lel
The system of functions Ti(m) is orthogonal on V with

the weight coefficient Q~!, which is defined on each of
the intervals V,, by the relationship

Q'(v) = (1 = @+ by 1~

It is also evident that the system T{™ is complete in a

space of functionsthat are quadratically integrable on V
with a measure corresponding to the weight of Q'

We now consider the Cauchy singular integral

10 4 = £(v), vOv. )

<
|
<

We suggest that the function ¢ belongsto the classH* of
functions satisfying the Holder condition [3] and, possi-
bly, having integrable singularities at the ends of inter-
valsV,,. We expand kernel (2) into the singular KIS and

regular KR! parts:
(V' = vy ' =KBE(v', v) + KRI(V', v), 3)

1028-3358/02/4701-0061$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Cross section of the coplanar waveguide.

assuming that
L
K v) = (vi=n)7 y T ()T ().
m=1

We then define an integral operator Son H*,

S(v)6 = FKE(, Ve(v)dv, v OV,
\
and a projection operator P given by the relationship

P(VY = 2(MQ(v))™ Y by Y Ti(v)
m=1 n=1
XIQ(V')Uﬁ"i)l(v')LlJ(v‘)dv‘, vOV.

Here, the functions Uff"), in much the same way as

functions Tﬁm) , can be expressed in terms of the Cheby-

shev polynomials of the second kind. Using the expan-
sion

o(v) = QMY Y T (v), vOV,
m=1n=0

we can easily prove the validity of the equality

L
P(VS(V)9 = ¢(v)-Q7(v) Y ¢5”T"(v).

Then, expanding integral (2) with the help of expan-
sion (3) and applying the operator P to the result

obtained, we arrive at the following relationship:

Lok

1 - m O
o(v) = (MQ(v))” [ZTE) (V)0n Y -
m=1 k=1

_fsg”("'—v)J(am+bmv')2—1
Y @)
R UJ
x KR (v, v)d(v)dv'D
O]
—J'Q(V')K[S](v',v)f(v‘)dv vV,

Similarly, for the integral with a logarithmic singular-
ity,

%Jlnlv‘—vli(v‘)dv' = g(v'), vOV, ()
\Y

we obtain

_ 4 < B —bh
E(V) - (]TQ(V)) z TO (V)%n(Zb )
m=1 m

*[T67(v)g(v)Q(v)dv'

b, m . :
+ mJ’(l—Tg (V) InHaw + bV

+ J(an+byv')’ =15 (v)dv’ ©

- fsgn(v--vmam bav')2—1

Rl N D
x K (v,v)E(v)dvE

+J’Q(v')K[S](v', v)g'(v')dv'},

v OVv.

It seems natural to refer to relationships (4) and (6) as
formulas for partial inversion of integrals (2) and (5).

We now employ the procedures of partial operator
inversion proposed above in order to evaluate spectral
parameters of a coplanar waveguide. The cross section
of thewaveguideisshowninthefigure. Threeinfinitely
thin strips made of a perfect conductor are deposited
No. 1
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onto an insulating substrate (region 2). The structureis
placed into a rectangular metalic screen, the wall
losses being ignored.

The integral equation of thefirst kind for the copla-
nar waveguide coincides with the equation describing a
screened slotted transmission line [4]. However, the
domain of definition intheformer caseisacombination
of intervals on the x-axis, which correspond to the dots.

Isolating the singularity of kernel [4] and making
the change of variables

. TiX
= COS—,
a

TIX
vV = cos—, v
a
we arrive at integrals (2) and (5). Then, the method of
partial operator inversion, which is based on transfor-
mations (2), (4) and (5), (6), should be applied to the
equation obtained. Furthermore, using projection basis
(1), we should solve the boundary vaue problem
numerically.

When calculating, we took the following values of
the parameters: y, =y, — ¥, = 0.225a, y, — y;, = 0.05a,
X;; = 0.3754a, X, = 0.425a, X%,; = 0.45a, and x,, = 0.55a.
The values of the permittivity and of the permeability
for the dielectric layers and the normalized wave num-
ber weree =e® =1,e® =935 " =1 (i =1, 2, 3),
and ka = 1.7, respectively.

The data listed in Tables 1 and 2 illustrate the con-
vergence in the spectral parameters for the method of
partial operator inversion. Here, we have chosen the
rates y/k of wave slowing-down for the first and second
natural waves of the coplanar waveguide as spectral
parameters (y is the wave propagation constant). The
parameters N and M are the number of termstaken into
account in the representation of the field components at
each slot and inthe kernel of theintegral equation of the
second kind.

Thus, we have presented in this paper the proce-
dures of partial inversion for the singular Cauchy inte-
gral and the integral having a logarithmic singularity,
both being defined on a combination of intervals. The
method allowed usto construct awell convergent math-
ematical model of a coplanar waveguide. This method
can easily be extended to the case of an arbitrary finite
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Table 1
N y/k (M = 400)
1 2.085282847 0.56073294
2 2.087857031 0.55166405
3 2.087794630 0.55149564
4 2.087782304 0.55148941
5 2.087781984 0.55148843
6 2.087781985 0.55148836
Table 2
M VIk(N=7)
25 2.08775881 0.55142105
50 2.08777951 0.55148013
100 2.08778148 0.55148736
200 2.08778193 0.55148823
400 2.08778199 0.55148835

number of dotted transmission lines or strip transmis-
sion lines placed in the same plane inside a rectangul ar
screen.
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In spite of the fact that effects of thermomagnetic
and thermomechanical treatments were discovered
long ago [1, 2] and are widely used in mdustry their
physical nature is not clarified until now.! To date, two
modelsthat explain therisein p,,,,, and B, after thermo-
magnetic and thermomechanical treatments are the
most popular. One of them relates the rise in pl, With
the anisotropy of the shape of precipitated particles[4].
The other explains this rise with the reorienting axes of
pairs of nearest atoms of dissolved elements (direc-
tiona ordering) in an alloy having an ordered arrange-
ment of the component’s atoms (superstructure) [5]. At
the same time, the atomic mechanism responsible for
the reorientation of these axes is not discussed in this
case. However, the above modelsfail to explain numer-
ous experimental data. For example, it is unclear why
the above effects are thermally unstable (when
annealed without external actions, the effects disap-
pear). The decrease in H, and P after the thermomag-
netic and thermomechanical treatments is associated
with the destabilization of the magnetic domain struc-
ture [3], but the reasons for this phenomenon remain
incomprehensible.

In this study, we have investigated the relation
between the effects of thermomagnetlc and thermome-
chanical treatments and strain aging.

1 Holding of aferromagnet at a certain elevated temperature and its
cooling to alower temperature in the presence of either an exter-
nal magnetic field or a uniaxia tensile stress is called thermo-
magnetic treatment and thermomechanical treatment, respec-
tively. For soft-magnetic alloys that were subjected to either ther-
momagnetic or thermomechanical treatment in the direction of
external actions, the maximum magnetic permeability g and
the residual induction B, increase, whereas the coercive force H,

and the specific electromagnetic loss P decrease [ 3].

2 Strain aging is interaction between atoms of dissolved elements
and fresh defectsin acrystal lattice, which were introduced into a
material by a certain method, e.g., upon rapid cooling. The redis-
tribution of atoms of dissolved elements under strain aging corre-
sponds to the distribution of defects in the material. Strain aging
has four subsequent stages. ordering, formation of atmospheres,
formation of segregations, and precipitation [6].

Institute of Metal Physics, Ural Division,
Russian Academy of Sciences,
ul. S. Kovalevskor 18, Yekaterinburg, 620219 Russia

From the standpoint of a positive effect of strain
aging on the efficiency of thermomagnetic and thermo-
mechanical treatments, the stage of ordering can be the
most significant, since atmospheres, segregations, and
precipitated particles increase H, and P (atmospheres
and segregations, in addition, lead to akink in the mag-
netization curve [7]). For the case of strain aging, the
effect of ordering on the efficiency of the thermomag-
netic treatment was examined experimentally.

We used samples of Fe-3 wt % Si aloy, which had
asizeof 0.33 x 5 x 100 mm, a (110)[011] texture, and
2-4-mm grains. After high-temperature annealing at
1000°C for 30 min, they were slowly (0.5°C/min) and
rapidly (60-100°C/min) cooled. In the latter case, in
contrast to the former one, the material contained fresh
defects. This is explained by the fact that, upon slow
cooling, the defects hardly appear and, even having
appeared, have time to interact with atoms of dissolved
chemical elements. Furthermore, the sampleswere suc-
cessively subjected to strain aging at 400°C for 10 h and
to thermomagnetic treatment at 400°C for 15 minin an
aternating magnetic field with a frequency of 50 Hz
and an amplitude of 10 kA/m. After each treatment, we
measured the magnetic-hysteresis loops and deter-
mined H, (seetable).

After various thermal treatments, al the samples
exhibited usual (without kinks) magnetization curves.
The absence of kinksin the curvesindicates that, for an
aloy subjected to strain aging in chosen treatment

Effect of thermd trestment on the quantity H,, A/cm, in
(Fe-3% Si) alloy

Cooling after high-tem-
perature annedling

Treatment
slow rapid
High-temperature annealing 0.19 0.26
High-temperature annealing + strain|  0.19 0.22
aging
High-temperature annealing + strain|  0.18 0.10
aging + thermomagnetic treatment

1028-3358/02/4701-0064%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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regimes, only the ordering stage takes place, which
determines the effect of thermomagnetic treatment.

The significant positive effect of the thermomag-
netic treatment can be caused by the following reasons.

1. In Fe-3%Si aloy at the stage of ordering under
strain aging, there appear microvolumes of the type of
Guinier—Preston zones (clusters) with an elevated sili-
con content and the B2 (FeSi) superstructure. The clus-
tersthat appeared can have the shape of globules (when
the temperature of strain aging is above the Curie
point), since such a shape corresponds to a state with a
minimum surface energy. The appearance of anisotro-
pic clusters (when the temperature of strain aging is
below the Curie point) oriented along the domain mag-
netization (similar to precipitated particlesin [8, 9]) is
also possible. The clusters are distributed throughout
the volume of the material in accordance with a defect
structure (but rather chaotically) and, according to [10],
have dimensions on the order of several nanometers.

The lowering of H. under strain aging is caused by
partia relieving internal stresses, which is associated
with a decrease in the number of defects and a redistri-
bution of the remaining defectsinto low-energy config-
urations, as well as due to the stress relaxation in the
process of interaction between defects and atoms of
dissolved elements.

2. Under thermomagnetic treatment, the magnetic
field reorients the axes of pairs of nearest silicon atoms
in clusters so that the angle between the axes and the
field direction becomes minimal. We propose one pos-
sible mechanism responsible for the reorientation of
axes of silicon-atom pairs, namely, thejump of a part of
the silicon atoms from central sites of a cubic lattice to
its vertices. This process occurs due to the existence of
thermal vacancies in the material. The state when sili-
con atoms are situated in the cube vertices (i.e., direc-
tional ordering) is nonequilibrium and, thermally
unstable. Therefore, upon heating or cooling in the
absence of a magnetic field, silicon atoms in the alloy
come back to their previous sites, and the effect of ther-
momagnetic trestment disappears, which is observed
experimentally.

According to [3], the larger the number of pairs of
nearest silicon atoms, the higher the effect of thermo-
magnetic treatment. Therefore, we should expect that
its maximum effect would correspond to complete
ordering in the case of the stoichiometric alloy compo-
sition. However, as was shown for Fe-Ni alloys [11],
the maximum effect under thermomagnetic treatment is
observed in an aloy containing a significantly lower
nickel content compared to the stoichiometric compo-
sition. Hence, first, the maximum effect of thermomag-
netic treatment is attained when the number of pairs of
nearest atoms of a dissolved element is optimal (conse-
guently, when the number of clusters with superstruc-
tureis aso optimal), which holds for a certain but non-
stoichiometric alloy composition. Second, the effect of
thermomagnetic treatment depends not only (and in any
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case, insignificantly) on the reorientation of axes of
pairs of adissolved-element atoms, since the maximum
effect of the thermomagnetic treatment with respect to
Mmax €XCeeds by afactor of three the effect obtained in
the case of reorienting the maximum possible number
of pairs[11].

3. Under thermomagnetic treatment, globular clus-
ters formed in the process of strain aging acquire an
anisotropic shape, while anisotropic clusters reorient.
In both cases, they become extended a ong the direction
of an applied external field, which leadsto adecreasein
the free energy of the system because of reducing the
magnetostatic energy and anincreasein .. Probably,
this is the anisotropy of the shape of clusters oriented
along the magnetic field that causes the maximum
effect with respect to W, in[11].

Note that H, and P can be unchanged or can even
rise. Thisisassociated with the chaotic location of clus-
ters, which stabilizes the magnetic domain structure.

4. Estimates for the effect of an external magnetic
field on strain aging were performed in [12]. On the
basis of these estimates, it is possible to assume that,
under thermomagnetic treatment in an alternating mag-
netic field, the magnetoel asti ¢ interaction between clus-
ters, impurities, and defects (inhomogeneities) with
moving walls of magnetic domains takes place. The
result of thisinteraction isthe redistribution of theinho-
mogeneities mentioned above throughout the alloy vol-
ume. They migrate, forming narrow alternating regions
(enriched by clusters, impurities, and defects) that pen-
etrate through the bulk of the sample (or a grain) and
are extended along the field direction. The distances
between these regions are specified by the amplitude of
the domain-wall vibrations under the thermomagnetic
treatment. The occurrence of such regions additionally
increases Wy, and decreases H, and P because of the
destabilization of the magnetic domain structure, since
the motion of domain walls in the process of magneti-
zation reversal occurs in pure volumes free of clusters,
impurities, and defects.

In addition, upon cooling, the samples undergo
uniaxial tension dueto the difference in thermal -expan-
sion coefficients of the regions of aggregating inhomo-
geneities and pure volumes, which will still more
strongly reduce H, and P. As a result, after the high-
temperature annealing of a rapidly cooled alloy, H, is
lowered down to a value significantly smaller than that
obtained for an alloy cooled slowly (seetable).

Probably, similar processes also occur under both
thermomagnetic treatment in a constant magnetic field
and thermomechanical treatment. In all these cases, the
motiveforceresponsiblefor the processes of formation,
redistribution, and modification of cluster shapes, reori-
entation of axes of pairs of nearest atoms of dissolved
elements, as well as redistribution of impurities and
defects, isuniaxia tensile stress. In the case of the ther-
momagnetic treatment in a constant magnetic field, the
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cause of uniaxial tensile stress is a positive magneto-
striction. The validity of the above statement is con-
firmed by the transformation of cube-shaped particles of
the ordered phasein alamel under the creep process[13].

Thus, a new concept explaining the effects of ther-
momagnetic and thermomechanical treatments is pro-
posed. The essence of this concept (in our approach)
consists in the fact that, along with existing models,
regularities in strain aging and in the interaction
between the magnetic-domain walls with both atoms of
dissolved elements and defects of the crystal lattice is
used.
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1. According to the ideas of physical mesomechan-
ics[1, 2], the surface layers of loaded solids correspond
to an important mesoscopic structural level of deforma-
tion. In the case of cyclic loading, plastic strain develops
mainly in the near-surface layers of a material [3-6].
Thisfact causes adetermining role of the surfacein the
nucleation and development of fatigue fracture. Inves-
tigations of the mechanism of cyclic deformation onthe
mesoscale level [7-9] show that the main bulk of a
specimen experiences only elastic strain under cyclic
loading, while its surface layers undergo an alternating
tension—compression in the plastic domain. In devel op-
ing such strain, two effects play a fundamental role.
First is the Bauschinger effect, which is accompanied
by accumulating a significant degree of plastic strainin
the surface layers for alarge number of loading cycles.
Second is the character of conjugation between the
plastically deformed surface layer and an elasticaly
deformed substrate (the effect of strain incompatibil-
ity), which leads inevitably to the nucleation of fatigue
cracksin the near-surface layer.

Thisstudy isdevoted to theinvestigation of the mech-
anism for developing the fatigue fracture in the surface
layer of aluminum polycrystals under cyclic loading.

2. Asamateria for investigation, we used A6 com-
mercial aluminum. Flat dumb-bell specimens were of
40 x 8 x 1 mm in size of the gage section. For alarge-
scal e observation of the pattern of nucleation and devel-
opment of the surface strain and fracture, the specimens
were previously treated to obtain a coarse-grained
structure. Individual surface grainswere 8-15 mm long
and 2-7 mmwide. Theloading was performed by alter-
nating bending, which predominantly provided strain
only in surface layers of the specimen. Asaquantitative
characteristic of fatigue, we took the number N; of
cycles to fracture. For obtaining extended patterns of
the strain mechanism in the surface layers at the
mesolevel, we used montages of optical images of the
deformed-specimen surface, obtained with a scanning

Ingtitute of Strength Physics and Materials Science,
Sberian Division, Russian Academy of Sciences,
Akademicheskii pr. 2/1, Tomsk, 634021 Russia

optical microscope. In addition, we analyzed fields of
displacement vectors, which were obtained employing
the TOM SC optical television measuring complex [10].

3.InFig. 1, we show atypical pattern of dlip traces
and nucleation of surface cracksin coarse grains A and
B in the surface layer of aflat aluminum specimen for
the number N = 7.6 x 10° of loading cycles. The follow-
ing features of developing the plastic strain and the
fatigue cracks in the surface layer are typical.

The first plastic shears develop in a coarse grain A
located near the immobile grip, where a maximum
amplitude of bending is set. These shears arise alterna-
tively on the opposite boundaries of the grain A and
propagate towards one another. The front of shears
moves along the grain according to the switching-wave
scheme.

When the plastic strain completely envelopes the
grain A, the shears in the adjacent grain A begin to
develop along the conjugate directions of maximum
tangential stresses T,,,. The primary shears along a
lengthy axis of the grain B develop the most intensely.
The shear in the conjugate direction 1, distributed
more rarely superimpose onto the primary ones.

The approach of the front of intense primary shears
in the grain B to the strengthened grain A induces the
initiation of a strong bending—torsion effect in the near-
boundary band C. In this zone, a powerful kink band
develops; the accommodation shears propagate in this
band as the mechanism of material rotation.

For areasonably large number of loading cycles, the
surface tearing-mode shears arise in the band of intense
primary shears of the grain B. An enhancement of the
bending—torsion effect in the kink band C forms a pow-
erful concentrator of stresses in this band, which, at
first, initiates the tearing-mode shear in the adjacent
grain A and then the accommodation crack in the kink
band itself. The crack in the kink band C connects
cracks in the grains A and B nearest to each other. This
process is completed by the formation of an extended
zigzag surface crack enveloping the entire surface of
the specimen.

The directions for al the types of shears in the
region of the tips of primary-surface cracks in the
grain B for their propagation in the kink band C are

1028-3358/02/4701-0067$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Immobile grip

Fig. 1. Development of shears, akink band C, and microcracks in the grains A and B of aluminum after N= 7.6 x 100 loading

cycles, 30x.

identified by constructing the fields of displacement
vectors. The typical pattern of such a vector field is
shown in Fig. 2 for the specimen subjected to alternat-
ing bending with a loading-cycle number N + AN =
3.22 x 10% + 50. Thisvector field ischaracterized by the
following features.

The dominating directions of the displacement
vectors are the conjugate directions T,,,, or their vector
sums.

Within the presented surface fragment, the strain is
developed in strictly specified sites. In each of the sites
(B, B, C, and C"), the shears manifest themselves
mainly along one of the conjugate directions T, or
their vector sum.

In the site B, intense primary shears with a vector a
prevail. In the site B', two types of primary conjugate
shears develop with the vectors a and b. In the site C,
the accommaodation shears prevail in the kink band with
avector c. The extended zone C' of the surface ahead of
No. 1

DOKLADY PHYSICS Vol. 47 2002
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Fig. 2. (a) Microstructure and (b) the corresponding displacement-vector field after N = 3.22 x 10° + 50 loading cycles.

the crack tipsis characterized by the vector sum of pri-
mary shears with the vector a and accommodation
shears with the vector c.

The experimental results displayed in Figs. 1 and 2
make it possible to assume the following mechanism of
developing the shears in a surface grain B of the speci-
men under cyclic loading (Fig. 3).

For loading half-cycles inducing plastic compres-
sion in the surface layer, intense primary shears are
developed in thislayer along the 1, direction with the
vector a. The longitudinal component of these shears
causes compression in the surface layer. The transverse
component of the compression shears induces loca
bending of the specimen. In this case, counteracting
stresses arise in the elastically deformed substrate,
which decelerate the primary shears in the surface

layer.

For the loading half-cycles inducing the plastic ten-
sion of the surface layer, the shears develop with the
vector b along the direction conjugate to T,,,. Their
longitudinal component induces atension in the surface
layer that causes a relaxation of residual compression
stresses in this layer. According to the Bauschinger
effect, the surface compression shears continue to
develop under the subsequent loading. This processis
cyclically repeated during the alternating bending.

DOKLADY PHYSICS Vol. 47
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At the same time, the transverse components of the
vectorsa and b are collinear. Thus, the bending stresses
caused by the surface compressive and tensile shears

Primary
compression sh

Conjugate tension

Immobile grip

4

-0

Fig. 3. Scheme of development of “primary compression
shears’ a, “conjugate tension shears’ b, and localized
accommodation slip ¢ in the kink band C of the surface
grain B.
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Fig. 4. (a) Microstructure, (b) corresponding displacement-
vector field, and (c) distribution of shear component €,y and

rotation component w, of the distortion tensor after N =

5.9 x 10° cycles of loading. Thefatigue crack inthe grainiis
indicated by the arrow.

are summed. Thisfact forms an intense concentrator of
stressesin the bending—torsion zone. The counteracting
image forces associated with this concentrator generate
the kink band with localization of accommodation

shears as the rotation mode of strain. In this case, the
local bending stresses relax.

A similar problem was analyzed theoretically in [11]
by numerically calculating a stress field generated by
the edge of the plastic-shear band near the crystal sur-
face. The results of the theoretical calculations and the
above experimental data agree well qualitatively. It
should be emphasized that the results displayed in
Figs. 1-3 convincingly illustrate the wave nature of the
basic act of plastic deformation: intense shearsalong T,
in the surface layer of aloaded solid generate the kink
band as a rotation mode of the plastic-flow wave [2].

The experimental results under consideration and
the theoretical estimates make it possible to conclude
that the nucleation mechanism for surface tearing-
mode shear is associated with the effect of rotation of
the plastically deformed surface layer relative to the
elastically loaded substrate. Experimentally, such a
rotation was discovered, quantitatively measured, and
shown in Fig. 4. Here, it can be seen that the displace-
ment-vector field (Fig. 4b) isclearly separated into two
macrofragments by the fatigue crack propagated in the
direction of the intense primary dliding. It is character-
istic that this separation of the grain propagates far
ahead of the crack determining the trgjectory of its fur-
ther development. This fact is clearly displayed in
Fig. 4c, where we show the strong localization of the
shear—rotation on the boundary of fragments ahead of
the crack. Thetheoretical possibility of such arotationis
shown by the example of the model of motion of an infi-
nite series of screw didocationsin the dip plane [12].

The surface shears propagate in a polycrystal along
the conjugate directions T, Which, probably, occurs
according to the Bain mechanism [13] by means of a
local rearrangement of various atomic configurationsin
the surface layer. The propagation of the front of such a
rearrangement in the shear band is qualitatively similar
to the propagation of screw-dislocation pileups in the
surface layer. Therefore, the theoretical model [12]
most adequately represents the development of shear
bandsin the surface layers of solids under deformation.

Inthismodel, an infinite series of parallel screw dis-
locations with the Blrgers vector b is considered. The
dislocations are located in the xz plane along the z-axis
at equal h intervals [12]. The presence of pileups of
such dislocations in the xz plane causes the initiation of
significant microstresses in a medium with the shear
modulus p. In the main, these microstresses are local-
ized in the layer Ay < 2h. The components oy, and oy,
of these stress tensors and related rotations w,, and w,
have the form

by y o N pmon
= L 2 h <
DOKLADY PHYSICS Vol. 47 No.1 2002
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At distancesy > 2h, the zero harmonic (k = 0) of the
component o,, determines macrostresses in the
medium containing aflat pileup of screw dislocations.
In passing through the dlip plane, this harmonic under-

goesajump ‘QhH‘ and the corresponding rotation-vector

component w,, undergoes ajump ‘%‘ .

When passing through the plane of screw-disloca-
tion pileup, the jJumps of average shear-stress and rota-
tion fields cause two very important consegquences.

1. The jump w,, isthe angle of disorientation of the
surface layer in the shear band with the elastically
|oaded substrate. In other words, the interface between
the plastically deformed surface layer and the elastic
substrate is the crystal-torsion boundary with an angle

b

T

pr formsastress

concentration on the torsion boundary, which is charac-
terized by the shear—rotation scheme.

The former consequence agrees well with the
known experimental result [14], according to which the
uniaxial tension of flat whiskersisaways accompanied
by their twisting. The surface-layer rotation in the shear
band relative to an elastically loaded substrate arising in
the alternating bending explains the nucleation of the
surface fatigue cracks of the longitudinal shear.

The latter consequence is associated with the
appearance of the concentration of the shear—bending—
torsion stresses in the primary-shear band. These
stresses cause corrugation of the primary-shear band

2. Thejump of shear stressesg,, =

DOKLADY PHYSICS Vol. 47 No.1 2002

and the formation of thekink bandsinit (Fig. 1). These
bands can have various orientations relative to the pri-
mary shears. Thisfact is dueto the strongly inhomoge-
neous field of internal stresses arising in an elastically
deformed heterogeneous substrate.

Following the development of surface cracksin the
primary-shear band, similar surface cracks appear in
the kink bands (Fig. 1). Then, the main fatigue crack
propagates in a zigzag manner aong the surface cracks
of the longitudina shear in the primary-shear bands and
of the kink band inducing fatigue fracture of the material.
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Inthe case of tension in thermoplastic polymersfilled
with mineral particlesat acertainfiller content, an abrupt
drop of the material deformability occurs, caused by the
trangition from plastic to brittle fracture [1-5]. In the
present study, we have established that the embrittle-
ment of filled thermoplastics is associated with the for-
mation and propagation of aneck in the matrix polymer
under tension. If the matrix polymer is deformed mac-
rouniformly and the neck does not form, then introduc-
ing a filler does not result in the embrittlement of the
composite material.

In order to prepare composite materials, we used a
copolymer of ethylene and vinyl acetate (CEVA) of the
11306-075 trademark. A rubber powder was used as a
filler. The powder consisted of about 50, 10, and
10wt % of isoprene; divinyl; and methylstyrene
caoutchoucs, respectively, as well as 30 wt % carbon
black. The size of rubber particles was 100 < d <
500 pm.

Mixing the CEVA with rubber particles was per-
formed in a single-worm laboratory extruder. The con-
centration of the rubber powder varied within the limits
from 1.7 to 88 vol % (2 to 90 wt %). From the mixtures
obtained, plates 2 mm thick were prepared by pressing.
Two-sided blades with working surfaces of 5 x 35 mm
were cut out from these plates.

Mechanical tests of the composites were carried out
with the help of a 2038P-005 dynamometric facility at
the deformation rate of 20 mm/min. The CEVA crystal-
line structure and CEVA-based composites were stud-
ied at a heating rate of 10 K/min by the method of dif-
ferential scanning calorimetry with the use of a
TA 4000 thermal analyzer manufactured by the Mettler
Company.

Calorimetric analysis has shown that the presence of
rubber particles does not change the crystallinity degree

Enikolopov Institute of Synthetic Polymeric Materials,
Russian Academy of Sciences, Profsoyuznaya ul. 70,
Moscow, 117393 Russia

or melting temperature of the polymeric matrix. There-
fore, the elastic filler does not affect the crystaline
structure of the material, and it is identical with the
original structure of the unfilled CEVA.

The curves for tension of the origina CEVA and
composites prepared on its base are displayed in Fig. 1.
A characteristic feature of the deformation of the unfilled
polymer is the absence of ayield tooth (curve 1). The
copolymer deforms macrouniformly without a neck
formation, and the stress in it monotonically increases
with deformation. With deformation, plastic strains are
developed in the polymer along with reversible strains.
After fracture of the unfilled polymer under a deforma-
tion of 830%, the residual elongation reaches 650%.
After filling the CEVA by rubber particles, the pattern
of the tension diagram does not vary. The tension dia-
gram of a composite containing more than 30 vol % of
the rubber powder is similar to tension diagrams for
rubber (curves 2 and 3).

Figure 2 exhibits the composite strength as a func-
tion of the volume fraction of rubber particles. In the

o, MPa
10 -

]
1000
€, %
Fig. 1. Deformation diagram for (1) a copolymer of ethyl-
enewith vinyl acetate and composite materialsbased on this

copolymer and containing (2) 26 and 66 vol % of rubber
particles.

1
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Fig. 2. Strength of acomposite material based on the copol -
ymer of ethylene with vinyl acetate as a function of the vol-
ume content of rubber particles.
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Fig. 3. Dependence of the relative elongation in the case of
arupture of acomposite material based on the copolymer of
ethylene with vinyl acetate on the volume content of rubber
particles.

entire content region, a monotonous decrease of the
composite-material strength is observed.

The dependence of the material fracturing deforma-
tion on the volume fraction of rubber particlesis shown
in Fig. 3. The shape of the e~V curve is similar to the
strength curve. The material deformability monotoni-
cally decreases with increasing filler concentration.
Within the entire range of thefilling degree, the fractur-

DOKLADY PHYSICS Vol. 47 No.1 2002

ing deformation exceeds 200%, and the composite
material does not become brittle.

The embrittlement is typical for a number of filled
polymers, e.g., high-density polyethylene, polypropy-
lene, polycarbonate, polyvinyl chloride, polyethylene,
and terephthalate [5]. According to concepts concern-
ing the embrittlement mechanism for polymers devel-
oped in [6-8], this phenomenon is associated with the
transition from the propagation of aneck along asample
to a fracture in the process of the neck formation [7].
When using a thermoplastic matrix that deforms with-
out formation of a neck, no embrittlement of the mate-
rial must be observed. This assumption is confirmed by
the results of our study.

The absence of the composite-material embrittle-
ment was also observed when studying deformation
properties of polytetrafluoroethylene filled with copper
particles[8]. Polytetrafluoroethylene is deformed with-
out the neck formation. The deformation properties of
the given composite material monotonously decreased
with increasing filler content. The behavior of caoutch-
ouc with arigid mineral filler issimilar [7].

Thus, we may conclude that the embrittlement of
filled polymers, i.e., the abrupt decrease in the compos-
ite-material deformability, is unambiguously associ-
ated with the formation and propagation of aneck inthe
matrix polymer under tension. In the case of a mac-
rouniform deformation of a polymer, introducing an
arbitrary amount of afiller into its bulk does not lead to
the embrittlement of the given composite material. This
conclusion is valid for both vulcanized caoutchoucs
being deformed without the neck formation and linear
thermoplastic polymers.
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Within the framework of the general nonlinear the-
ory of elastic shells, we found families of finite defor-
mationsfor which the original two-dimensional bound-
ary value problem of staticsis reduced to the boundary
value problem for a system of ordinary differentia
equations. These families represent exact solutions to
nonlinear equilibrium equations and are applicable to
shells with the shape of a helical surface. Shells of rev-
olution and cylindrical (prismatic) shells are specia
cases of such thin-walled shells. The solutions con-
structed describe, in particular, severe torsional and
bending deformations of helical tubes and self-twisted
prismatic shells.

BASIC RELATIONSHIPS

Let o be the surface of ashell in an original (refer-
ence) configuration. The surface is specified in the
Gaussian coordinates g (a = 1, 2). The radius vector r
of apoint onthesurface gisr(q', o) = Xi; + %oi, + X5,
where x, (k =1, 2, 3) are Cartesian coordinates of the
point and i, is a fixed orthonormal vector basis. The
coefficients of the first and second quadratic forms of
the surface o are determined by the relationships

or or
=r,fg by =—0h, ry=—,

guB a B af an o aqa (1)

P, = 85, rPrh =o.

Here, n istheunit normal to g, and 65 isthe Kronecker
delta. The surface Z of the deformed shell is specified

in the same coordinates g%, and the position of a point
at X is specified by the radius vector
R(A", 4°) = Xaiy + Xaip + Xsis,

where X, are Cartesian coordinates of apoint for which
the normal to Z is denoted by N. The coefficients of the

Rostov Sate University,
pr. Stachki 194, Rostov-on-Don, 344104 Russia

quadratic formsfor the surface > are given by the equa-
tions

oR
GC(B:RC( [RB’ BGB = _gD\I,
oq
IR (2
R, = —, RFIR, =3, RPN = 0.

o

For a shell of the Love type, the equilibrium equa-
tions in terms of resultant stresses and couples take the
form [1-4]

0o (v —p™Bf) - B +F* =0, B =12,
Oolgh™ + B (VP -BIU) +F =0, o

F=FIN, F’=FR"

B; = G"B,, G" = R"[R".

Here, F isthe vector of an external forceload applied to
>; vo8 and po® are the tensors of resultant stresses and
couples, respectively; and [, stands for the covariant
derivative in the metric G,s. The constitutive relations
for an elastic shell take the form [1]

G ap oW
=V = 2—
X[g 3Gy

ow n,

(_; [o{t} — a = B
X/\/;IJ aBaB’ E}Z,

= 4
X o £, “)

G= G11G22_Gi21 g = gllgzz_giz-

In the case of a homogeneous isotropic shell, the
specific (per unit area of the surface o) strain energy W
isafunction of the following nine quantities [1]:

b,,b,, — b’
gaBbaB’ guBGan gaBBaﬁv = 2; 12; 31

By;B,, — B}
152~ Bz baBGug, b“BBaB, gaBgyéGuyBga,@)
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baBEgGKgB)\bK;\, gB)\ErBD)\.

We assume that the boundary 8% of the deformed
shell is loaded by a distributed force and a distributed
moment with the linear densities Q = Q°R, + QN and
d x N, respectively. In this case, the boundary condi-
tions take the form [1]

Ema(v“ﬁ—zeﬁu“ﬁ) = g(Q°-Bid"), B =12

E Mo + géa/ge_zTémﬁGw“a%

_ d, 13
= sQ+dS(s T ds),

(6)

d = dRy = dgR?, m = myr",

T =15 &€= AT Gp.

Here, m and t are, respectively, the unit vectors of a
normal and atangent to the boundary contour oo of the
undistorted shell, and s is the current arc length in the
curve da.

In what follows, we consider general solutions to
equilibrium equations (3). These solutions applicable
to shells having a specific geometric shape represent
families of the finite deformations for which the origi-
nal nonlinear system of partia differential equations
with the two independent variables q' and ¢ is reduced
to a system of ordinary differential equations (i.e.,
equations in unknown functions of asingle variable).

TORSION AND TENSION
OF A SELF-TWISTED CYLINDRICAL SHELL

We assumethat the original shape of ashell isaheli-
cal surface. The surfaceisformed by a screw motion of
aplane curve, described by the equationsx, = n,(§) and
X, = N,(§), aong the x;-axis. Introducing the Gaussian
coordinates q' = x; and ¢ = &, we can write out the
equation for the surface o in the form

r(q", a%) = nu(&)e, + na(E)e, + Xsis,
€, = i,CoSYgXs + i,SINPeXs, (7
e, = —i;SiNPyX5 + i,C0SYyXs,

where |, is a constant.

The shell whose surface is given by Eq. (7) will be
referred to as a self-twisted cylindrical shell. For
Y, = 0, the shell becomes cylindrical and has an arbi-
trary cross section. With dueregard for Eq. (7), we have

ry = Wo(—N2€ +N16) +iz, Iy = N1€ +1,8,,
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or
— = —UJ(Z)(rllel"'nzez),

or, . "
aql 6_C]2 = N1 +Nye,,

8
or, _ ®)

arz 1 '
= e, —N,6,),
6q2 Wo(N1€,—N2€1)

a_ql =
n=n;(§)e; +ny(g)e;, + ng(&)is.

It follows from (1) and (8) that the coefficients g,g
and byg of the first and second quadratic forms of the
surface o areindependent of the x;-coordinate. We con-
sider the following deformations of a self-twisted shell:

X, = v (&) cosWx; — V,(&)Sinxs,
Xz = V(&) sinPxs + v,(&) cosPxs, )
X3 = vg(§) +Ax5, A, W = const.
Using Eq. (9), we find
Ry = W(v,E;—V,Ey) + A,
R, = ViEy + V3E, + viig,

E, = i;cosdx; + i,Sinyxs,

E, = —i;SinPXxg +i,cosPXg,

oR (10)
—11 = —*(v,E, + v,E)),
dq
aR " " e
5&32 = ViE + Vo By + vy,
aR 1 1
“'51 = Y(v E;—Vv3Ey),
0q

N = Ny (E)E; + No(§)E, + N3(&)is.

Based on Egs. (2) and (10) and taking into account
that the vectors E,, E,, and i, form an orthonormal
basis, we can easily prove that the quantities G, and
B are independent of the coordinate x;. The Christof-

R
fel symbols rg =RP. %—76 , which enter into the cova-

riant derivatives (1, depend only on the coordinate&. In
the case of an isotropic uniform shell, it follows
from (4) and (5) that the tensors v® and p°® are func-
tions of the single variable &. We then assume that the
loads QB, Q, and d®, which are applied to the shell edges
E=¢ and & = ¢&,, aswdl asthe external surface loads
F# and F, are independent of the x,-coordinate. In this
case, equilibrium equations (3) and boundary condi-
tions (6) at & = &, and & = &, compose the nonlinear
boundary value problem for a system of ordinary dif-
ferential equations with the unknown functions v(&)
(k=1,2,3).
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TORSION OF A CYLINDRICAL SHELL
WITH A DISLOCATION

In order to consider a prismatic (cylindrical) shell
with its generatrices parallel to the x.-axis, we intro-
duce the circular cylindrical coordinates r, ¢, and z
X, =rcosd, X, = rsin¢, and x; = z, where x;, X,, and X5
are Cartesian coordinates. The cross section of the sur-
face 0 a z = const is described by the function r(¢).
Introducing the Gaussian coordinates q' = zand ? = ¢,
we have

rp=is ry=r'e+re,

gu =1, 9 =0, Op = r?+r?, (11)

g =i,c08¢ +i,snd, e, = —i;sin +i,cosd.

We then denote the cylindrical coordinates of a
point on the deformed shell surface ~ by R, ®, and Z
(X; = Rcos®, X, = Rsin®, and X, = Z) and discuss the
following deformations of the shell:

R=R®), ®=o¢+bzeve)
Z=Az+ad +w(d), @,a, A = const.
Formulas (12) describe axial torsion combined with
and out-of -plane tension and out-of -plane shear, with {
being the angle of torsion per unit length. If the shell
cross section is a closed curve, then the functions R, v,
and w should be 21eperiodic and, hence, the quantity
21ta should be coincident with the length of the Birgers
vector for the screw dislocation. From Egs. (12), we
have

R, = Aig+ URey,
R, = (a+wW)ig+ Reg+ R(1+ v')ey,,

ez = i,CosP +i,9NP, e, =—i;9nP +i,c0sP, (13)

Gy =N +P’R’, Gp = Ma+w)+YR(1+v'),
Gy = (a+wW) +R(1+Vv')’+R%

It follows from (13) that the quantities Gz, Byg, and

FEA are independent of the variable z. Hence, in the
case of an isotropic cylindrical shell, Egs. (3) are
reduced to a system of ordinary differential equations
in the unknown functions R(¢), v (), and w(d).

We now consider the problem of a screw dislocation
in the closed circular cylindrical shell whose original
cross section hastheradiusr,. Asiseasily verified with
the help of formulas (11) and (13), in this case, there
exists an isometric deformation (i.e., bending) of the

cylindrical surface, which is specified by the relation-
ships

R(®) = Ry = Jry—a’, v($) =0, w(p) =0,

2 (14)
g = —F—, A= /1—%-
ro(ro—a’) )

According to (14), this isometric deformation
involvesthetorsion of the cylinder and adecreasein its
radius.

BENDING
OF A SELF-TWISTED CYLINDRICAL SHELL

We assume that the axis of the helical surface o of
an elastic undistorted shell is parallel to thevectori,. In
this case, the surface o is specified by the relationships

r =X +N2(&)j2+Ns(€)js,

2 = 1,C0SWeXy +igSiNWeXy, (15)
J3 = —i,SiNYPeX, +i53C0SWoX;.

From (15), with g' = X, and ¢* = &, we have

ri=ip—WoNaio+ WoNaa, Ty = Najy+Najs,
N =ny(&)ig+Nny(&)j,+N3(&)]s.

We describe the shell deformations by the following
relations:

(16)

X1 = Uy (&) coswx; —U,(&) sinwx,,
X, = U (&) sinwx, + u,(&) coswx,,
X3 = Ug(&) + 1%y,

(17)
w, | = const.

As is seen from Egs. (17), the surface Z of the
deformed shell isahelical surface with the axis parallel
to the vector i;. Using Egs. (17), we arrive at

Rl = (.0U1|2—00U2|1+ |i3,
Ry = uily + Uyl + Usis,

N = Ny (&)1 + Ny (&)1, + Ny(&)is,

Ry o (gl +ugly),

od (18)
IR (Ul —uly),

aq’

a—R2 = uil, +U,l,+ Uyl

aqz 111 T Uzl + Usls,

I, =i;C08WX; +i,SNWX;,
|, = —i;SiNWX; +i,COSWX;.
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It follows from relationships (1), (2), (16), and (18)
that the quantities gug, by, G, Bug, and 5, areinde-
pendent of the x, coordinate. Hence, equilibrium equa-

tions (3) become ordinary differential equations in the
unknown functions u(§) (k= 1, 2, 3).

BENDING AND TORSION OF A HELICAL SHELL

We now consider the helical surface formed by a
screw motion of a given plane curve. The curve liesin
a plane containing the x;-axis of revolution and is
defined by the equations x; = {(t) and r = p(t), wherer
isthe distanceto the axis of revolution. The equation of
the helical surface takes the form

r=p(t)e +(t)is+1odis, (19)
e =i,cosd +i,sing, I, = const,

where ¢ is the polar angle in the circular cylindrical
coordinates (r, ¢, x;). The elastic shell with the surface
o given by Eq. (19) will bereferred to asahelical shell.
In the case of |, = 0, the surface becomes a sector of a
surface of revolution. Introducing the Gaussian coordi-

natesq' =t and ¢ = ¢, we have
ri=p'e+s ry; = pey+lois,
€ = —i;SiN¢ +i,c0s0, (20)

n = ny(t)e +ny(t)e, + ns(t)is.

We then analyze a two-parameter family of defor-

mations for which the deformed surface = remains heli-
cal with its axis parallel to the vector i5:

X, = a(t)coskd —B(t)sinkd,
X, = a(t)sinkd + B(t)cosko),
X3 =y(t) + Lo,
It follows from Egs. (21) that

(21)
L, K = const.

Ry=a'F +B'F,+Y'is,
R, = «BF;+KaF,+ Lis,
F, = i;coskd +i,Sinkd,

F, = —i;sink$ +i,coskd,
oR .\ .

a_qll = a"F;+B"F,+y"is,

oR,

o’

R,

o’

N = Nj(t)F; + Ny(t)F, + N5(t)is.

(22)

= KB'F;+Ka'F,,

—K*(aF; + BFy),
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As before, it follows from Egs. (4), (5), (20), and
(22) that, if the external loads FB, F, Q, Q, and d are
independent of the variable ¢, then the equilibrium
state of the shell is determined by solving the boundary
value problem for the system of ordinary differential
equations in the unknown functions a(t), 3(t), and y(t).

It is worth noting that expressions (21) involve the
following important particular cases:

(1) k=1,1,=L=0(torsion of ashell of revolution);

(2)k=-1,1,=L =0 (torsion of ashell of revolution
turned inside out);

(3 k>0,l,=L=p() =0 (pure bending of a sector
of ashell of revolution); and

(4 k>0,l,=L =0 (torsion of ashell of revolution
containing a disclination).

DEFORMATION ACCOMPANIED
BY A VARIATION IN THE AXIS
OF A HELICAL SHELL

We consider the following two-parameter deforma-
tions of ahelical shell:

X, =P()+K¢, K,06 = congt,
X, = U(t)cosBd —V(t)sinB¢,
X3 =U(t)sinB¢ + V(t)cosO¢.

(23)

In this case, a helical surface a, which is subjected
to such deformations, with its axis parallel to the vector
i, is transformed into a helical surface > with its axis
parallel to the vector i;.

The subsequent arguments concerning the reduction
of the problem under consideration to a one-dimen-
siona boundary value prablem for the functions U(t),
V(t), and P(t) are similar to those given above.
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Using approximate methods of nonlinear mechan-
ics, we construct a theoretical model of the polar
motion that satisfies the astrometric data of the Interna-
tional Earth-Rotation Service (IERS). This model is
shown to rationally explain the observed characteristics
of a complicated oscillatory process executed by the
angular-velocity vector with respect to a coordinate
system associated with the Earth. On the basis of the
IERS data and using the least-squares technique, we
determine parameters of the system, determine the tra-
jectory of the pole, and predict its motion. The dynamic
model is found to satisfactory describe the overal
motion and its fundamental oscillations (free nutation),
forced oscillations (annual nutation), and irregular rel-
atively slow drift of thefigure-Earth axis (the trend); the
model allowsfurther refinement if accessory factorsare
taken into account.

1. The construction of the mathematical model
that satisfies the astrometric datais of interest in nat-
ural science and technology. The problem has an
age-old history pointing to the lack of a rational
approach to its solution; the theories and models
available do not account for the essence of theregular
mechanical oscillation process[1-3]. The use of only
seasonal geophysical factors and an unjustified
complication of the model for explaining the
mechanism of the moment-of-force action without
necessary estimates cannot be considered as conclu-
sive in a mechanical aspect. A very short-term pre-
diction (for 100 days) requires weekly correction,
taking into account the IERS operational data

(http://hpiers.obspm.fr/eoppc/eop/eopc04/eopcO4-xy.gif).

In this paper, we substantiate the possibility of con-
structing a simple dynamic model using the methods
of theoretical and celestial mechanics. The realization
proposed for the first-approximation model involves a
small number of parameters determined from obser-

* | nstitute of Problems of Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101/1, Moscow, 117526 Russia
** Moscow | nstitute of Aviation,
\ol okolamskoe sh. 4, Moscow, 125080 Russia

vations and makesit possibleto reliably (from the sta-
tistic standpoint) interpret essential characteristics of
the pole trgjectory and give areasonably accurate pre-
diction for long-time intervals (from one to a few
years).

The principal component of oscillations (free nuta-
tion or Chandler wabble) has an amplitude of ~0" 2 and
aperiod T, =433 + 2 sidereal days. At the Earth’s sur-
face, thistrajectory is close to a circumference with the
center corresponding to the figure axis; the radius is
approximately 6.3 m. The characteristics of the oscilla-
tions are determined by the inertia tensor of the
deformed Earth, with allowance for an “equatorial pro-
tuberance” and by the axial-rotation vel ocity [1-3]; the
refined model of the Chandler waobble is constructed
in [4]. The amplitude is determined by initial data and,
as observations of the last decade show, is quite stable:
no noticeable tidal evolution occurs [4].

Freguency analysistestifiesto the fact that thereisa
regular annual component of oscillations with a period
T,, = 365 sidereal days and an amplitude of ~0.08". The
summation of the Chandler and annual components
leads to beats with aperiod of Ty = 6 years. The trajec-
tory represents an either winding or unwinding spiral
with minimum ~0.12" (~3.8 m) and maximum ~0.28"
(~8.8 m) radii. These values are essential and must be
taken into account when solving the modern astromet-
ric and navigational problems. The polar-motion pre-
diction is a topical, very interesting, and complicated
problem. According to the opinion of specialists,
causes and the mechanism of excitation of annual oscil-
lations are not explained; it is customary to relate them
to seasona geophysical phenomena (atmospheric pro-
cesses and oceanic tides) [1].

Classical investigations in the context of the hard-
Earth model were carried out by considering a moment
of solar gravitational forces [2, 3]. However, such an
approach turned out to be inadequate and did not result
in revealing the mechanism of observed oscillations of
the angular-velocity vector with respect to the coordi-
nate system associated with the Earth. The authors
believe that the annual nutation oscillations can be
explained and calculated on the basis of additionally
taking into account the daily gravitational tides occur-
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ring in the deformable Earth. The simultaneous analy-
sis of the Euler dynamic and kinematic equations for
the inertia tensor deformed with the daily period in the
coordinate system associated with the Earth, with
allowance for the orbital motion and the figure-axis
inclination to the ecliptic plane, makes it possible to
establish the presence of the solar moment-of-force
action with an annual period relative to the equatoria
axes of inertia (see below). The necessary value of the
amplitude for this action attains M,, = 10*° kg m? s? and
leads to a relative variation of principal central
moments of inertia on the order of 10-°. Thisis amost
two orders of magnitude less than the quasi-steady
deformation adopted in the theory of deformable
Earth for substantiating the period T, of the Chandler
wobble [1-4]. The effect of the lunar gravitational-
force moment is less by a factor of 20, which is
explained by a substantial difference in frequencies for
eigenmodes and external actions. Monthly-period
mutations of the pole virtually do not manifest them-
selves.

The axisdrift for the figure of the Earth (the trend of
~0.5" inthedirection of ~90° to the west of Greenwich)
can be explained by off-diagonal components of the
inertiatensor. The relative value of these componentsis
~10-% and lies outside the limits of accuracy for their
determination. The trend variations can be explained by
geotectonic processes with time constants on the order
of 10° years and by the effect of dynamic asymmetry
leading to the modulation of Chandler wobbles with a
period of about 220 years.

2. For constructing the first-approximation simpli-
fied mathematical model, small deformations of the
Earth are assumed to proceed mainly intheradial direc-
tion. In this case, the equations of rotation with respect
to the center of mass can be represented in the form of
the classical Euler equationswith avariable inertiaten-
sor J[2-6]:

J(o+co><Jw=M, (0=(p,q,r)T,
J = J0+38J, JU= const, (1)
JO=diag(A0 BO CD), 33=38J(t), [8J] <I9d.

Here, @ isthe angular-velocity vector in the coordinate
system associated with the Earth (the reference sys-
tem), which approximately coincides with the principal
central axes of inertia J* of the “frozen” Earth with
allowance for the equatoria protuberance [2-4]. The
small inertia-tensor variations &J are considered as con-
taining various harmonic components caused by the
effect of solar and lunar daily tides and, possibly, other
(annual, half-annual, monthly, half-daily, etc.) compo-
nents. The gravitational actions are taken as the main
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perturbing external moments of forces M causing the
nutation oscillations.

The Euler kinematic eguations setting the orienta-
tion of the coordinate system associated with the Earth
about the orbital coordinate system are of the form

8 = pcosd —qsing —wy(v)siny,

. _ 2
V = wy(V) = wy(1+ecosv)’, 2

o= psing +qcos¢ —wy(v)cotBeosy, e=0.0167,

sin®

¢ = r—(psind +gcosd)cotO + wo(v)%.

Here, v(t) isthe real anomaly, eisthe orbital eccentric-
ity, and wx isaconstant determined by the gravitational
and focal parameters. While investigating equations (1)
and (2) in the situation corresponding to the polar
motion, the terms in equations (2), which are propor-
tional to wy,, turn out to be essentially higher compared
top and q (by afactor of approximately 300) and arethe

defining factors for finding 6 and ¢ . In scientific liter-
ature, this important property was not noted, while the
above-indicated terms were discarded without proof.

The structure of expressions for components of the
moment of solar gravitational forcesis of the form [7]

Mg = 30’[(A+8A - (CO+3C))y,y,

+0J pa¥rYq +0J pr(yr2 _yf)) - 6‘]rpypyq] '

€))
W = w(1+ecosv)¥,

Yp = SinBsing, y, = sinBcosd, Yy, = cosO.

For calculating M,, ;, we make a cyclic permutation of
the subscripts p, g, and r in (3). Analysis of (3) shows
that the annual component of mutations of the pole can
be caused by the term involving the products vy, and
YqY: of direction cosines. For their calculationinthefirst
approximation, we integrate equations (2):

r=r° ¢o=rt+¢° v=o,t+v’

cosB(v) = a(8°, y°)cosv,
8(0) = 8° = 66°33', 04<a<l, O0sy’<2m(4)

cosBsin® = b(8° Y°)cosv +dcos3v + ...,

04<bs gn‘l,
The second and higher harmonics in v lead to values
that are smaller than the principal ones by a factor of
10%2-103, and, therefore, can be ignored. The value of
B* — A* is also considerably smaller than that of

|dl < 1.
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Fig. 1. Interpolation of the poletrajectory for the eight-year interval of 1988-1995 (solid line); here, asin Figs. 24, dots correspond

to the IERS data.

C* — A* (by afactor of approximately 160). After aver-
aging over thefast phase ¢, the estimate of termsin equa
tions (1) for pand qleadsto asimplified analytical model
of theform

P+ Ny = Ko’ + 3bwi X ,cosv,

= 2_11: 0.84w, ,
Ty (5)

q—Ngp = —K,r’ —3bw} X,co8v,

pO = p°, q( = d".

Npq=N

%and

Here, K, and K, are the average values of B0

oJ : . .
TA\% , which can be slow functions. The quantities x,

and x, are obtained by averaging over ¢ for the coeffi-
cients of cosv in the components of the moment of
solar gravitational forces; aswas noted, they are caused
by the daily tides. The moments of the lunar gravita-
tional force areignored dueto their relatively low effect
on the nutation oscillations.

The right-hand sides of Egs. (5) contain in an
explicit form harmonic action with the annual period,
which explains the mechanism of nutation oscillations
detected by the IERS observations. Although the sensi-
tivity of the coefficients k,, , is five orders higher than
that of X, o the regular mechanism of the annual
(moment-of-force) action with the indicated amplitude
M}, ~ 10%° kg m? s by means of internal geophysical
factors seems to be inconsistent in the mechanical
aspect.
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Fig. 2. Interpolation of the pole trajectory for the four-year interval of 1988-1991 and the prediction for 1992-1995 (solid line).

3. Thevalues of the coefficientsk,, ,and X, 4andthe

initial values p° and g are unknown: they should be
determined on the basis of observational data. Introduc-

ing the variables x(T) = p(t) and y(T) = q(t), where T = Ti
h

isthetime measured in years, we obtain the structure of
solution to the set of Egs. (5) [8]:

X(T) = ¢,—a,Cos2TINT + a3Sin27iNT
Nd§cos2mt+ disin2mt
1-N?

y(t) = ¢, +ajcos2mNT + a;sin2mNT

(6)

Ndjcos2mt—d;sin2mt
1-N° '
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Here, ¢ . a; ., and d | arethe quantities to be calcu-

lated by the least-square technique [9] from the IERS
measurements [1, 8]. These coefficients are unambigu-
ously related to the unknownsinvolved in set (5); inthis
case, it is necessary to take into account the equalities
a,” =a)° and d;° = dj° representing the structural
property of the model. The parameters introduced can

be subjected to a correction of the form ¢, = ¢y, +

cin + ... in a reasonably long interval 0 < 1< O
(where, e.g., © ~ 10-20 years); asimilar correction can
be made for &} and dy ;. The secular terms must take

into account the evolution of the parameters of set (1)—5)
for improving the interpolation of the oscillation pro-
cess[8]. Theoretical model (6) can be refined by taking
into account accessory factors but this seems to be
unsuitable and unjustified at the given stage.
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Fig. 3. Interpolation of the pole trajectory for the four-year interval

Below, we present the results of calculations on the
basis of the method of least squares [9], which was
applied independently to the variables x(t) and y(T) in
the form of the six-dimensional approximation accord-

ing to model (6):

X = (& (M), ¥y =, (D),
£€=(Ey &) N =(MNy-ino) s (7

f(t) = (1, T, COS2TINT, SIN2TINT, COS2TTT, Sin2m1)’,
N = 0.84.

First, it is of interest to investigate the efficiency of the
interpolation and prediction for the polar motion by
means of the simple mathematica model (6) on the
basis of the known daily IERS measurement data[1]. In
Fig. 1, we show the theoretical curves x* (1) and y* (1)

of 1984-1997 and the prediction for 1998-2001 (solid line).

of interpolation for daily measurements on the eight-

year time interval 0 < T < 8 from 1988 to the end of

1995. The root-mean-square deviations are equal to
o,=0.014 and o, = 0.017, which indicates a satisfac-

tory accuracy of the model constructed (6), (7) corre-
sponding to the optimal values of &*, n*:

g0 = (0.041, —0.0004, —0.034, 0.194,-0.023,—-0.065) ", ®
nO = (0.300, 0.005, 0.193, 0.033,-0.060, 0.020) .

The comparison of the coefficients &5 andny , & and
N3 , determining the Chandler components of oscilla-
tions, andalso & andng, & andn: (withalowance
for the factor N = 0.84), corresponding to the annual

DOKLADY PHYSICS Vol. 47 No.1 2002
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Fig. 4. Interpolation of the pole'strajectory for the seven-year interval 1994-2000 and the prediction for 2001-2002 (solid line).

component in (8), strongly supportstheindicated struc-
tural property of the model.

InFig. 2, wedisplay thetheoretical curvesx* (1) and
y* (1) plotted on the basis of the measurement data for
the four-year interval 0 < T <4 and give aprediction for
4 <1 < 8. The comparison with the experimental points
confirmsthe efficiency of the model, i.e., the high accu-
racy of interpolation and a reasonably reliable predic-
tion. The corresponding optimal vectors&*, n*, and the
root-mean-square errors a,, 0, in the interpolation
interval are:

£0 = (0.039, 0.002,-0.023, 0.182,-0.025,-0.072)",

o, = 0.012, 9)
nd = (0.298, 0.007, 0.179, 0.025,-0.068,0.023)",
o, = 0.015.

DOKLADY PHYSICS Vol. 47 No.1 2002

Comparison of the values obtained in accordance
with (9) for the indicated coefficients corroborates the
structural property of the theoretical model.

In Fig. 3, we show the results of interpolation and
prediction using model (7) on the basis of the operative
daily 1ERS data from 1994 to mid-2001. The optimal
theoretical trgjectory x* (1), y* (1) is plotted by interpo-
lation on a four-year interval; the prediction for four
years is given beginning from 1988. The optimal
parameters &*, n* and the root-mean-square errors a,,
g, are:

£0=(0.036, —0.0005, 0.003, 0.188,-0.037,-0.051) ",

o, = 0.016, (10)
nU= (0.345, —0.007, 0.193, -0.006,—0.048, 0.027)T,
o, = 0.015.
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The anomaly of the mutation of the pole from the end
of 1999 to mid-2000 is noteworthy, which, in our opin-
ion, can be naturally explained by the gravitational per-
turbations (parade of planets). In the next timeinterval,
the regular mutations of the pole take place according
tomodel (7). Thisfactisanindirect confirmation of the
adequacy and efficiency of the model. The components
of thevectors&*, n* (10) satisfy the required properties
of the model.

In Fig. 4, we display the results of interpolation for
the seven-year data of measurements from the begin-
ning of 1999 to the end of 2000. Then, we predict the
trajectory for two years from the beginning of 2001 to
the end of 2002. The optimal parameters &*, n* of the-
oretical model (7) and the root-mean-square errors g,,
o, are:

0= (0.039, 0.0001, 0.015, 0.161,-0.046,-0.076) ",

o, = 0.024, (11)
nC= (0.334, 0.0005, 0.162, —~0.0139,-0.068,0.043) ",
o, = 0.025.

The coefficientsin (11) convincingly satisfy to the fact
of the structural property of theoretica model (6), (7).

We also carried out numerous calculations for veri-
fying the efficiency of the model by the interpolationin
time intervals from 2 to 20 years and the prediction of
the trgjectory for 1-5 years. The results obtained testify
to the satisfactory accuracy for the interpretation of
observations and for the prediction of the pole trajec-
tory by a very simple theoretica first-approximation
model. This model admits its natural refinement and

complication by taking into account accessory factors
to which we can also assign random perturbations.
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There is no doubt that the fracture process in solids
is multistage and multilevel; therefore, its adequate
modeling necessitates using advanced modern experi-
mental and computing methods. At the same time, the
formulation of principles that could be applicable in
engineering practice increasingly becomes an urgent
problem. Thisisexplained by the fact that methods and
ways used in analyzing a large number of well-known
models (mainly numerical), unfortunately, turned out to
be accessible almost exclusively only to their authors.
However, in practice, it is very important to have clear
analytical toolsthat makeit possibleto reduce the qual-
itative analysisof fractureto simple procedures suitable
for application in engineering. One of the most well-
known examples of such a practical approach is the
structural macromechanics of fracture [1-3], aswell as
the structure-time approach [4] based on the notion of
incubation fracture time (which isanatural generaliza
tion for application in fracture dynamics). These frac-
ture theories represent the deep structure-time regul ar-
ities of fracture processes in solids. One of the most
important consequences of these approaches is associ-
ated with the dual character of dynamic fracture, which
can be expressed in certain relations between time
parameters of loading and the incubation period pre-
ceding the time moment of macroscopic fracture. This
resultsin anovel version of the problem related to test-
ing the dynamic-strength properties of materials. In a
certain sense, this situation is similar to what we dealt
with in the case of aspatia characteristic linear sizein
static fracture mechanics. To €lucidate the situation, we
consider the static and dynamic cases successively.

One of the principal parameters in linear fracture
mechanics is the structural linear size d describing a
unit fracture cell. The linear size can be represented in
the form of a dimensional combination involving the
surface energy, the critical stress-intensity factor, the
static strength, and the elastic constants of a material:

2
YE Kie
diL, dO0—. (1)

O¢ Oc

Smirnov Research Institute of Mathematics and Mechanics,
S. Petersburg Sate University,
Universitetskaya nab. 7/9, &. Petersburg, 199164 Russia

There exist several suggestions of various authors,
which concern the physical nature of the parameter d
(interatomic distance in a medium with a regular
atomic structure, grain size in a polycrystaline
medium, scaling parameter for strength characteristics,
etc.). Inthisstudy, this parameter istreated as a specific
linear size characterizing a unit fracture cell at a given
scale level. Note that in the classical Griffith—lrwin
approach [5, 6] this characteristic is present in the
implicit form.

In the Neuber—Novozhilov approach, the linear size
is assumed to be taken into account explicitly. We now
consider basic principles of structural fracture macro-
mechanics corresponding to this approach. They can be
reduced to the following points similar to those that
were enunciated as early as in the beginning of the last
century, when principles of classical quantum mechan-
ics were formulated:

(i) al solids consist of structural spatia elements of
afinite size;

(i) an elementary fracture act isthefracture of asin-
gle structural element;

(iii) criterion parameters (including the size of a
structural element) must be chosen in such a manner
that, in ultimate adequate cases, the results of the clas-
sical fracture theory could be obtained.

We now apply these principles to formulate an ade-
quate condition for fracturing. We consider a static two-
dimensional stressfield (e.g., corresponding to the case
of plane deformation) and suggest that the fracture
occurs along a certain direction Ox, which is assumed
to be asymmetry line. In accordance with the aforesaid
first principle, we assume that the solid structure is
specified in the spatial scale (Fig. 1a) and that the linear
size of a single structural component is equal to d. In
accordance with the second principle [2], we suggest
that the macrofracture has occurred when even only a
single structural element failed. The natural condition
of fracture can be written out in the form of the condi-
tion when a force acting onto a structural element
attains a certain critical value:

F<F.. )

1028-3358/02/4701-0085%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Fig. 1. Fracture structural parameters: (a) linear size;
(b) incubation time; and (c) space-and-time fracture cell.

In terms of a uniform stress field that we actually deal
with in continuum mechanics, this relationship can be
written out in the form

J' odr<o.d. 3)

x—d

The condition (3) represents the Neuber—Novozhilov
force criterion. The stress o, can be treated as a specific
critical stressintroduced instead of the critical force ..

To determine 0. and the linear size d introduced
above, it is necessary to apply the third basic principle.
Next, using (3), we consider the problem of fracturing
a homogeneous sample free of defects. Assuming that,
in this case, the fracture is determined by the classical
strength criterion o < og, we abtain that o, = o5. We
now consider the classical problem of the Griffith crack
and the Irwin fracture criterion. First, we substitute the
tensile stress corresponding to the crack continuation

0O =

Ki
o +0O(1),

into criterion (3). Then, integrating over r (r = x — d)
from O to d and taking into account that K, < K, ., we
arrive at the following formulafor the linear size:

r—0 @)

d = ==L )

The physical meaning of the parameter o, is beyond
guestion: thisisthe brittle strength of adefect-free sam-
ple. However, there exist different opinions concerning
the physical meaning of the parameter d. It would be
promising to unambiguously relate d with characteris-
tics of the material internal structure (interatomic dis-
tances, physical or geometric parameters of dislocation
motions, grains, grain blocks, etc.). Nevertheless, there
is no need to do so! Similar to the situation with the
actual strength of apolycrystal (e.g., an aloy), o, isnot
directly related to the atomic-lattice strength of apartic-
ular single-crystal block that forms the given crystal.
Generally speaking, the linear size d also must not be

unambiguously determined by the geometric structure
of the material. The parameters o, and d are equival ent
and independent characteristics of the fracture process
[7]. Therefore, in our opinion, the treatment of d given
in [8] as ascaling parameter that determines the corre-
lation of material strength properties at a given scale
level seemsto be the most natural. It is much more sig-
nificant that, in accordance with basic physical princi-
ples, such defining parameters introduced into theory
must be measurable, i.e., directly or indirectly be deter-
mined experimentally. For o, and d, thisrequirement is
completely fulfilled.

The above approach admits a natural generalization
for the dynamic case. Let, under the previous condi-
tions, the stress state of the medium be spatially uni-
form and change only with time (Fig. 1b). In addition,
let acertain structure also be giveninthetime scale. We
denote the corresponding time size by t and call it
structural (incubation) fracture time. We assume that
the fracture takes place provided that aforce pul se act-
ing during the time 1 attainsits critical value

() < J.. ()

In terms of the continuum mechanics, we have

t
% [ ot <o 7
t—

T

Here, T isthe minimum time that is needed for fractur-
ing an element under the action of the stress o,..

In the general case of the space-and-time nonunifor-
mity of the dynamic stressfield, we have acombination
of both previous variants and the corresponding space-
and-time unit fracture cell (Fig. 1c). Then, we have the
following structure-time criterion:

t d

: [ %Jc(r, 0, t)drdt < o ()

t—-t O

Here, (r, 0) arethe polar coordinatesand o(r, 8, t) isthe
maximum rupture stress near the crack tip (r = 0). Thus,
the parameters o, K, ., and T form a system of defining
parameters in the given fracture theory. Written out in
form (8), the dynamic criterion was first put forward
in[9].

In the case of a defect-free material, criterion (8) is
reduced to the form (7), which is convenient for ssimu-
lating fracture under the splitting-off condition. Crite-
rion (7) is the efficient means for explaining the time
dependence of strength, which makesit possibleto pro-
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vide a unified description of the static and dynamic
branches, aswell as a prediction of the geometry of the
fracture zone in the splitting-off process [4, 10].

In the case of fracturing near the tip of a symmetri-
cally loaded crack, condition (5) should be taken into
account. Then, it follows from (8) that

t
[ Kyt <K, . 9)

1
T
t—1

It isshown in [11] that, in the case of dynamic fracture
near the macroscopic-crack tip, the structural sizet in
criterion (9) can be treated as an incubation time in the
well-known criterion of the minimum time, which was
proposed and studied in [12-14].

Analysis of fracture with the help of structure-time
criteria(7) and (9) presents the possibility to determine
ultimate dynamic loads, dynamic fracture strength, and
dynamic fracture viscosity as calculated parameters.
Thisis possible, provided that o, K, ., and T are used
as constants of the material, which are assumed to be
independent of both the way and the history (rate) of
loading.

In the case of the structure-time approach, the anal-
ysis of the available experimental data shows that the
corresponding unstable behavior of the dynamic frac-
ture strength o4 and the dynamic fracture viscosity K 4
is a principle feature of the dynamic fracture, which is
caused by the discrete structure-time nature of the pro-
cess [15]. The observed significant data spread of both
dynamic fracture strength and the dynamic fracturevis-
cosity, which were measured under various conditions,
reflects the space-and-time structure and physical dis-
creteness of the dynamic fracture process. With thisfact
taken into account, we can a so conclude that introduc-
ing into the dynamic theory the so-called strain-rate
dependences for the critical stress a4 and the critical-
intensity coefficients K, 4 as functional characteristics
of the material under consideration (by analogy with
the static ones o, and K, ) isincorrect.

The effects indicated become significant when we
pass from slow actions to those having periods com-
pared in their duration to a scale depending on theincu-
bation fracture time. The nature of this period of timeis
determined by the preliminary relaxation processes of
developing microdefects in the material structure. In
essence, the structural size and the incubation time are
the parameters determining the boundary between the
micro- and macrofractures in the space-and-time scale
under consideration, which corresponds to the given
scale level.

Thus, our analysis of fracture processes indicates
that it is necessary to take into account at least two
dynamics types, namely, dynamics of elastic-wave
propagation and the dynamics of structural-element
fracture. Both of them manifest themselves as being
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dependent on the testing scale level, geometric charac-
teristics of samples, and loading conditions. Thefirst is
determined by the ratio between a characteristic length
of samples and the loading rate (or by a characteristic
wavelength). Thisratio provides an efficient tool for the
distinction between the static and dynamic models. For
example, when the action pulses are short compared to
thetimeinterval needed for propagating the stresswave
through a sample, it is necessary to take into account
inertial effects and to analyze corresponding hyper-
bolic equations. Note that, when the loading rate is
reasonably small or a pulse duration sufficiently
exceeds the corresponding incubation time for the
fracture process, we can apply the static critical stress
and the static fracture viscosity to estimate ultimate
loads. The second type of dynamicsis associated with
the situation when an interval of the load application
ison the order of (or less than) the incubation time of
the sample material. Then, it is necessary to take into
account the dynamic specificity of the fracture pro-
cess, which can manifest itself, for example, as a
dependence of the fracture strength and fracture vis-
cosity on the loading history. In this case, it is appro-
priate to use the structure-time criterion.

Thus, for studying properties of the material
dynamic strength, we may use various combinations of
sample sizes (e.g., small-sized samples) and loading
parameters, thereby realizing one type of fracture
dynamics or another. If the interval of loading timeis
on the order of (or less than) the incubation time but is
larger, in fact, than the interval needed for the stress
wave to propagate through the sample, we can investi-
gate the dynamic specificity of the fracture process on
the basis of a quasi-static solution to the corresponding
boundary value problem. The size of a small sample
must be determined by the conditions that provide the
guasi-static stabilization of the stress field until the
fracture time moment.

The above arguments are of importance when
determining the scale level for experimentally observ-
able effects and in choosing a corresponding tech-
nique for testing static and dynamic strength proper-
ties of materials.
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Many outstanding scientists have analyzed the flow
around a sill in an open channel [1]. However, this
problem of hydraulics has a number of weakly studied
aspects, which include, under certain conditions, the for-
mation of an air cavity behind a sill. Our paper contains
experimenta data on methods of closure of the cavity
free end, which are important for cavity theory [2].
In addition, we show that many different steady-state
regimes can be formed with the same external problem
parameters, i.e., that the flow under consideration is not
unique.

The experiments were carried out in a rectangular
open channel with a zero bottom slope. The sill had a
rectangular cross section with alength and height equal
to 30 and 4.9 cm, respectively. In the transverse direc-
tion (6 cm), the sill closed the channel. The force of
gravity and surface tension at the water—air interface
(73 x 1073 N/m) represented the most important prob-
lem parameters. The discharge Q varied within the
range for which the flow behind the sill was supercriti-
cal. The flow pattern was visualized by adding an alu-
minum powder with typical particle dimensions of
10 um into the water. Photographic recording of parti-
cle trgjectories was carried out in a dark room so that
the part of flow under investigation was illuminated
with a 1-cm-thick penlight.

Asiswell known [1], threetypical flow regimes can
be observed behind asharp-crested weir. They are char-
acterized by adhering, free, and depressed nappes,
respectively. It is aso known that an adhering nappe
can become free by injecting air under it without vary-
ing any external problem parameters. In this paper, we
show that under certain conditions similar phenomena
occur behind a broad-crested welr, i.e., that both a
depressed-nappe regime and many free-nappe regimes
can form with identical problem parameters.

Photographs presented in Fig. 1 for illustration were
obtained at Q = 1.159 I/s and the above-mentioned val -

Lavrent’ev Institute of Hydrodynamics, Sberian Division,
Russian Academy of Sciences,
pr. Akademika Lavrent’ eva 15, Novosibirsk, 630090 Russia

ues of the other parameters. In Fig. 1a, the nappe is
depressed, whilein Fig. 1bthereisanair cavity existing
for an arbitrarily long time.

Flow regimes can be controlled. For example, if the
transition to the steady-state conditions is sufficiently
slow, then the adhering nappe becomes depressed with-
out the formation of a cavity. At arapid increasein the
flow rate, the flow separates from different points of the
downstream sill edge at different moments of time. As
aresult, conditions arise for air leak-in under the nappe
and, thus, for cavity formation. Transition from a
steady-state free nappe with cavities of different vol-
umes to a depressed nappe can be realized by a short-
term elevation of the free-surface level behind the sill
and a subsequent return to the initial steady-state con-
ditions. The reverse transition from the depressed
nappe to the free one can be realized by means of air
injection or suction.

The cavity stability depends essentially on both the
sill length and the height of the nappe fall. Our experi-
ments have shown that, in a certain range of these
parameters, sporadic air leakage from the cavity to the
atmosphere leads to self-sustained oscillations. In
nature, asimilar process occurs, for example, in pulsat-
ing waterfalls, in which flow regimes are free-nappe
and air cavities periodically change their volumes.

Different methods are used in cavity theory to close
the cavity free end [2]. Among them, the Riaboushin-
sky—Weinig calculation scheme [2] based on using a
fictitious return jet is preferable. Our experiments
(Fig. 2a) qualitatively verify the possibility of areturn
jet existing in the cavity formed behind asill. However,
actual and fictitious return jets differ from each other
(cf. Fig. 2a with the calculating scheme [2]). This is
explained by the fact that the fluid viscosity, surface
tension, force of gravity, and occurrence of both the
free surface and the channel bottom are not taken into
account in the calculation scheme. In our experiments,
the shape and dimensions of the jet varied with time,
while the total cavity volume remained constant for an
arbitrarily long time.

Figure 2b verifies the method of introducing aficti-
tious wall [2] for closure of the free cavity end in the

1028-3358/02/4701-0089%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Fig. 2. Examples of closure of the free cavity end at (a) Q = 0.904 and (b) 1.473 I/s.

calculation schemes. However, in our experiments, cav-
itieswith flat free ends were unstable. Air bubbles were
sporadically released from them until the formation of
one of the stable configurations was over. Along with
stable cavities containing return jets, we observed a sta-
ble cavity having its free end in the form of an acute
angle slightly smoothed by the surface tension.

According to the classical theory, upper and lower
cavity boundaries must be convex towards the side of

the surrounding liquid [2]. However, in a flow with a
free surface behind a weir, the shape of cavity bound-
aries is more complicated because of the effect of the
force of gravity.

In the regimes possible with identical external
parameters, flow features important for practice can be
highly different. For example, at aflow rate of 2 I/sand
the above-mentioned values of other parameters, the
maximum excess pressure exerted on the channel bot-
No. 1
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tom behind the sill varied from 700 Pa (in the regime
without a cavity) to 1200 Pa (in the regime with astable
cavity of the largest volume). In these regimes, the dis-
charge coefficient characterizing the flow capacity of a
sill considered asa spillway [1] varied from 0.38 (in the
first case) to 0.32 (in the second case).
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Modes intrinsic to elliptic optical fibers are nonde-
generatein contrast to those of circular optical fibers. In
the case of elliptic fibers, the longitudinal-propagation
constants for orthogonally polarized modes are differ-
ent, and under certain conditions a polarization state of
guided light can be conserved [1]. This effect provides
the basis for many fiber devices, for example, fiber-
optic interferometers.

Foundations for the theory of electromagnetic-wave
propagation in elliptic fiber-optic waveguideswere laid
down long ago in [2]. There, approximate dispersion
equationsfor two fundamental (even and odd) modes of
a dielectric dliptic air-filled waveguide were formu-
lated. Later on, based on this theory, dispersion equa
tions for guided modes of a two-layer eliptic fiber [3]
and of athree-layer fiber with layer boundaries having
the form of confocal elliptic cylinders[4] were derived.
In addition, a method of evaluating dispersion charac-
teristics of an arbitrary three-layer elliptic optical fiber
was developed [5].

A method for solving the problem of natural waves
inamultilayer light guidewasformulated in[6], with a
circular multilayer fiber used as an example. In the
present study, employing this method, we have deter-
mined both field components and dispersion equations
for al guided modes of a multilayer elliptic-fiber light
guide having an arbitrary number of confocal elliptic
layers. The dispersion equations are presented in the
form corresponding to adeterminant equal to zero, with
its rank being independent of the number of the layers.

We consider an €elliptic optic fiber whose permittiv-
ity (in elliptic cylindrical coordinates &, n, and z, with
the z-axis directed along the fiber axis) iswritten out in
the form

%El, for 0=¢,<&<¢,
E(E):éle for §,<&<&,

EFN+1, for Ey<§ <o,

Moscow Sate Academy of Instrument Making
and Informatics,
ul. Sromynka 20, Moscow, 107076 Russia

Whel‘e €N+l < max(Sl, 82, ey SN)

For a guided mode of such a fiber, the dependence
of boththe electric field strength E = (E;, E,,, E,) and the
magnetic field strength H = (H;, H,,, H) ontime t and
the longitudinal coordinate z takes the form expl[j(wt —
B2)] (inwhat follows, the exponential factor isomitted),
where w and 3 are, respectively, the circular frequency
and the constant for the longitudinal propagation of the
mode. In this case, Maxwell equations are reduced to
the following set:

s@g—g = AE.mh,
dh _
ﬁ - _A(E!n)e;
where
0 E O 0 H 0
e=JeO 2 0O h=wd 72 0
"Ojg(E n)E, O "OjgE n)H, O
- —v% s(E)—vzg
AEn) = H , O
De@dEn L y2 O

g€ n) = kopa/SINh"E + sin’.
Here, p is the half-distance between the foci of the

givenéelliptic cylindrical coordinate system, y= kE LKy =
0

W./Eolg, and g, and |, are the permittivity and the per-
meability of free space, respectively.
We now define the functions

21 .
aj N o 1 lj—al ' dJ a
fmJn f - = SCrL y I Scn ’ ’
(@ ) n.! M q)dn,[ (. Q)]
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v, e, q)

(1)‘" M, q) [M‘Z’(e e -¢

|
~M2E, gL [M“R& )l - 3

E.]

MOE o)

MOE, o)
a,j =01,

5 = M, for m=n
mn , for m#n,

K@ &, q) =

mn=20,1,....
Here,
SC(n, O) =se,(N, G),  SCy(N, G) = cey(n, 0),
MinE, @) =MsPE, @), MOE, ) =McP(E, g),
j=1,2,3,

and se,(n, 9), cex(N., &), Msty (€, @), and Mcl) (€, q) are
the angular and radial Mathieu functions [7].

The derived system of equations has a solution sat-
isfying the conventional conditions at § = 0 and as
& — o0, We represent this solution in the form

HeE,n) B
0 .. 4
Oh@E,n)O

aIkV(] 2k+v(€ EI 1 qI)SC2k+v(r] ql)

Bl:l
||M N

E ﬂ) (J)p k(& &1 Q|)5C2k+v(r] Ch)]
_ i%ﬁf g ,<E<E, 1 =12 ..
k:OEDN 1g'ikK2k+v(E  €ny O+ ) SChic+ vl qN+1)|:|
E[ DJkK2k+v(E. ENan+l)SC2k+v(r] qN+1’:|
Df ENSE<OOV
M, v f{o, 1}.
Here,
0 0
O n ned o 1 g
D, = E,,DL;,DLE, Dln = E y 0 E,
RN .
0-&Dr.D'O 0 uong
[l 0
. 0020
Di =010 0,
gurdép

kop’U?
- 04 L @2 = o,

N+1 (uy,;>0),

| =
1=12,...,

1-p _
ap " = by =0,

This solution corresponds to the even modes HE,,, and

- for i = 0 and to the odd modes ,HF,,, and ,EH,
for u = 1 with the even (v = 0) or odd (v = 1) azimuth
index m.

It follows from the continuity condition for the tan-
gential field components that the constants

k=01,...

1o
ik
EC'OE u a“ O |]b.o O
C = DC.1D, Cui = E 1 E, Ci = E IKE1
00 ik b
D : D U 1k O [l |k|:|
- 0,0
a1
i =23 ...,N,
g O
Chnerx = 00, k=0,1,
Ob, O
satisfy the homogeneous system of equations
C.y=%.,,®C, 1=12 .. N-1,
@, 1Cyni1 = P\Cy
Here,
® =(® ) mn=01,.. |=12.. N+1,
O
DD Ul M 1 AL 1- pl:l
EE,,E ,,,,,, Q,,,,D, | = 1,N+1
DD_SIanL:n - “PI .
1l
(I)Imn = O _ 0
©Ph R R
ED_epoll 1- pPIO 1- upll SIpQIn?nD
H=23
¥y =(" ) mn=01.. |=23..,N,
E 5., O 0 0 g
. QUFmud, 0 0 H
‘Pmn = % 0 0 26mn S @’
U _1-n; U
O gl _d5 O
0 0 0 SI an $|6mn|]
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“Pon = Velan+ o &1, 4)
E 1:g(r(T)1+v,2n+v(qivqi+1) %
0
Y a1 !
O-5f +v,2n+vMir Mi+ 0
g i22m 2n+v(@i g 1)D
ij
mn
f v, 2n+v(Gis G + )d
in v ACOSTCURTTRTE £ 50,
i=1,2,...,N,
0‘F)N*'l«i _ E 6mn E N+1,j Uod
mn - O o, N+1 L] mn 0 a O,
D_an |:| DKmnD
Fg]in y f2m+v 2n+v(q|1 q)
5 d
Kg-m = ul dE[K2ﬂ+V(E EN’ qN+l)]E ZN’
N+1
oa=Hu,1-.

The determinant of this system must be equal to zero.

We eliminate the unknowns C,, C;, ..., Cy,; from
this system of equations and set the determinant of the
system obtained to zero. Asaresult, we arrive at thefol-
lowing eguation in the unknown phase constant y:

N

O
det%j\mlq)% =0, pvO{01n,
=1

where
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N+1

Yyir =Py ), mn=01,...,

0 7
CW N+ )
0 I:rl’nnu’N ' Omn O

[l _
wN+1 1-p
\PN+1 - an 6mn _Kmn
mn -

ad
Oen+ 1K

Thisequation isadispersion equation for guided modes
of the multilayer elliptic-fiber light guide under consid-
eration, with the boundaries having the form of confo-
cal dliptic cylinders. It corresponds to the even modes
HE,, and EH,,, for p = 0 and the odd modes HE,,
and ,EH,,,, for 4 = 1 with the azimuth index m=2k + v,
k=0,1,....

The rank of the determinant in the left-hand side of
thisequationisvirtually equal to the doubled number of
termsin the expansion of the mode field componentsin
the angular Mathieu functions. It is especialy impor-
tant that this rank is independent of the number of lay-
ersin the fiber under consideration.
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The averaged equations in heterogeneous-contin-
uum mechanics, which are derived by spatially averag-
ing equations for single-phase continua, contain
unknown integrals over the interphase interface. These
integrals are of the following form (we use the termi-
nology and notation introduced in [1]):

Wi = g5 [ win'ds M)
ds,,

|k |k |k 1 |k
Hel’e, ‘I’i = Gi 5 Gi Vi — qi

stress tensor components; v; isthe velocity vector; q; “

is the vector of the heat flow or radiation flux through
theinterface towards the ith phase; and x' and n' are the
radius-vector of an interface point and the vector of a
unit-normal to the interface, respectively. The prime
stands for the local parameter of the single-phase
medium; the subscript i enumerates the phases in the
medium; the sign L1, implies averaging over the inter-
face; dS,, istheinterface areain the volume element dV
in which the averaging occurs; and dS;, = s,,dV, where
s, isthe interface area per unit volume.

The lack of a method for evaluating integrals (1)
noticeably hampers the employment of the theory [1].
Relationships (1) are usualy applied for a particular
model describing the interface shape. This model
should be separately substantiated for each of the prob-
lems to be considered and, as a rule, significantly dif-
fers from the actual situation. Within the framework of
the topologica hypothesis proposed bel ow, we present
here a universal method for solving Eqg. (1). The
hypothesis uses an interface-area distribution function
interms of the direction anglesfor normalsto the inter-
face[2]. The method isbased on Stokesintegral formu-
las extended below to the case of heterogeneous media
and on new eguations describing the evolution of aver-

! ikn
, X' Xv; 0 aethe
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aged topological parameters of the interface. These

parameters are s,, and the tensor [h!’n/'0}, - s,, of the
volume density for the interface area.

TOPOLOGICAL HYPOTHESIS

Let s(t, X', 6, §) be a distribution function for the
interface area per unit volume of a heterogeneous
medium [2]. Therefore, the quantity s(t, X', 6, ¢)dQd'V
is numerically equal to the interface area per volume
element d'V, with the direction angles 6 and ¢ of nor-
mals to the interface lying in the solid-angle element
dQ =sinBdBdg. Here, 8 isthe angle between anormal
and the unit vector e, of a Cartesian coordinate system,
the angle ¢ lies in a plane perpendicular to e;, and
n'={sin@ - cos¢, sinb - sin¢, cosB}. Sinced'S=s,,d"V,
relationships (1) can be written in terms of the distribu-
tion function

Slzljpilkni‘ktb
=L ru¥st x, 8, 0)dod's @
_d_slzj-l-pi‘rnis(:xn NO)) :

s, ©Q

wherethedomain Q =(0<08<1 0<0<2m). To eval-
uate the function s(t, X', 6, ¢), we should sum the inter-
face area in a volume element dV with the direction
angles 6 and ¢ for normals to the interface lying in the
solid-angle element dQ and then divide the result
obtained by dvdQ. Such a method was employed, for
example, to evaluate the distribution function for pack-
ing of spheres [2]. The aforesaid implies that the
x'-coordinate of the volume element dV can be substi-
tuted for the argument x of the function s(t, x', 6, ¢)
entering into relation (2), which, furthermore, is
assumed to always be true. Under this natural assump-
tion, which will be referred to as atopological hypoth-
esis, equality (2) can be written in the form

ﬂp;kn;qu = Slzvkﬂpi'ﬁ:izi (3)
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VKt ) = iIn;ks(t,x,e,q))dQ = ', @
512Q

EQUATIONS DESCRIBING THE EVOLUTION
OF AVERAGED TOPOLOGICAL PARAMETERS
OF THE INTERFACE

In order to derive the desired equations, we use the
equation for the function ®(t, x', 8, ¢) introduced in [2]
(below, the subscript i is omitted):

179
S_lz[a(slzf) + Dk(slzka)}

&)
= <d—¢> + '™ -’ n e pa ..
dt/:2

Here, f = @', vk= ﬁlv'kd'v , dV; isavolume
iy,

element of the ith phase in dV, and € = %(D'F‘v'q +

[J'9v'P) are the strain rate tensor components. We also

dn’

use the expression for ot from [2]:

%r:—' = n'[n'(nN'V)V] = (N'V)V' —n'x Q', (6)

with Q' =rot'v', aswell asthe identity
(nIVI)VI - ekn.pe.kp_%-n. X QI, (7)

where ¢ are the unit vectors of the Cartesian coordinate
system. Then the summation over repetitive indices is
implied. Substituting ® = n' and then ® = n*n" into for-
mula (5) and taking into account expressions (6) and
(7), aswell asthetopological hypothesis, we arrive at

lQ(slzv") +V*divv + £PvP
Spdt ®

k kk o 1 «k
—v'eT+ e PivPw® = 0,

Sl%(slzv”‘) +v'*divv — PPy’
12

1k, iy, 1, ik, ki
+>(z"+2)+= + =0,
5( ) +5(% + %) ©)

k ip_pk , _ipq, k
K = PPk 4 PA kP

vV W,

Z' = m'(nPe™ —n*nPniePn,.
Here, €4 is the unit antisymmetric Levi-Civita tensor
[3], and

e’ = @0, ' = M0,
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K iy d _o
v = 'y, Gi =3t (V).

It isworth noting that the equation for s, is derived by
summing equalities (9) over kfor i =k, withv=1. The
quantity Z* entering into these equalities is zero if the
phase is a Newtonian liquid whose surface is free from
tangential stresses.

ANALOGS OF STOKES FORMULAS
FOR HETEROGENEOUS MEDIA

Stokes formulas [3] for a closed surface dS;, have
the form

J’n'rot'F(x')d'S = J’F(x')d'l,
as,, diy,
In' xV'o(x)d'sS = J’CD(x')d'I, (10)

as;, dLy,

[ (WX V) xF()d'S = — [ F(x) xd'l.
as;, dLy,

Here, dL,, isthe multiply connected boundary for dS,,,
which lies on the surface dS of avolume element dV; d'l
is a vector element of the contour dL,,; and the func-
tions d(x") and F(x") are defined on theinterface. Using
the method of additional spatial averaging presented
in[4], it is easy to derive the following analogs of for-
mulas (10) for heterogeneous media:

sp ot F, = div(s, [F' x nT,),
s, ' x V'@, = —rot(s;, (h'd1,), (11
S (" x V') x FTl, = aik(slz (e ko).
X

Comment. If &) and F(x'") are defined in the
entire volume dV;, which is occupied by the ith phase
in dV, aswell as at the surface dS;,, then Egs. (11) can
be derived without employing the method of additional
spatial averaging. Indeed, transforming the volume
integral that enters into the identity 0 =

%/ J’ rot'vV'a'd'V to a surface integral and using the
v,

relationship

a DDIKCDID = k(O( @D'ED + Sio DTkCD'IIiZ; (12)
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givenin [1] (subscript i is omitted), we arrive at
1 1 1 1 L}
v I n'xvVao'ds
ds;, +d§
= s, ' x V'O, +rot(s, (dT,) = 0.

Two other formulas in the set of equations (11) can be
derived in asimilar way.

THE APPLICATION OF STOKES FORMULAS
AND THE EQUATIONS
FOR THE AVERAGED TOPOLOGICAL
PARAMETERS

We substitute ® = v'* into (11) and take account of
the topological hypothesis and the equality s;,v = -Va
following from (12) for ®' = 1. Asaresult, we obtain

Va x (IV'v' 0, - V89 = o, (13)
where 9k = [V'¥[,.

It follows from (13) that

M*vide = V9*+ T'Va,
(14)
£¥ = %(Dkap +0P9") + %(TkDpa +TP0),
where T should be expressed in terms of m. To do this,
we use the equations
o =rotd+VaxT, (o-rotd)Va =0, (15)

which follow from formula (14). Assuming the ith phase
to be incompressible, so that divv' = 0, we arrive at

T - Va = —div9. (16)

Solving Egs. (15), (16) with respect to T, we obtain [3]
Vadivd + Va x (rotd — )
(Va)? '

After the substitution F = v' into (11) and on the basis
of the identity

T =

(17)

(n'x V') xVv' = —n'divv' + €n’Pe*® + %n‘ x Q'

we have

10 p _ kopopk 1
—— s,[UOx(e"xVv)] =eve +zvxm. (18
5, ® X (X V)] 5 (18)

Finally, we express the variable ¥ in terms of v and a.
According to relation (18), we rewrite Eq. (8) in the
form

dVa , vadivy +i[ﬂ x(e’xVa)] =0. (19
dt ox®
We now use Eg. (19), the equation %% =s,M'V'L, =

—-9Va for the volume content of the ith phase, and the

continuity equation Ja + div(av) = 0 for the incom-

ot
pressible phase to derive the following relationships:
v =v+ DVb divv,
a
m?t% (20)
b = Vb'x Vb*+ Vb®x Vb> + Vb® x Vb',
divv = —%%%b%divﬂ, B = (Vb', Vb2 VbY),
k = 1o P
b InDED,
(21)
1.2 3,113
oW)In| C99) Gvw| =0, o = Oa.
Vo
Ua
CONCLUSIONS

Thus, we have shown that integrals (1) over the inter-
face, which enter into the averaged equations [1], can
be evaluated by formulas (3), where s,v = -Va. We
have derived generalized Stokes formulas (11) and
Eq. (9), the latter describing the evolution of the aver-
aged topological parameterss;, and vk of the interface.
The equations obtained are needed for exact evalua-
tions of both the volume density of surface forces
(which, as was shown in [4], is proportional to the
divergence of the tensor vi) and the volume densities
for the work and the angular momentum of surface
forces. These quantities enter into the averaged equa-
tions of conservation for the momentum, energy, and
angular momentum, respectively [1]. The variables ¥
in Egs. (9) are determined from formulas (14) and (17)
in terms of ® and 1. The vector 49 is found from rela
tion (20), while the quantity o is determined by for-
mula (15) and boundary conditions for the stress o' at
the interface. In the case of the stress tensor linearly
depending on the strain-rate tensor, these conditions
can be easily obtained by the method proposed. We also
have derived Eq. (21) extending the incompressibility
condition to the case of heterogeneous media.
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