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In this paper, we study vibrations of a viscous liquid
filling a cavity made in a vibrating body. The cavity,
containing structural elements in the form of radial and
ring-shaped ribs, is filled partly with a viscous liquid
and partly with a constant-pressure gas. Assuming that
the energy dissipation per vibrational period is small
compared to the system energy, we derive general equa-
tions for perturbed motion of a body containing a liquid
in its interior.

The viscosity of liquid components substantially
affects the stability of motion of a body filled with a liq-
uid fuel. There exist two mechanisms of energy dissipa-
tion, caused by vibrations of the liquid in the cavity.
One of them is associated with vortex formation at the
cavity walls and the subsequent energy dissipation in a
thin near-wall boundary layer (for smooth cavity walls
and large Reynolds numbers). The second mechanism
includes the separation of intense discrete vortices that
dissipate, furthermore, in the entire bulk of the liquid
(for a cavity having structural elements with sharp
edges). Being essentially nonlinear, the latter effect
exceeds the former one by at least two orders of magni-
tude.

Therefore, additional dissipative forces should be
introduced into equations of motion for a solid contain-
ing a cavity filled with liquid.

In this paper, an approach is proposed for the first
time that makes it possible to simultaneously take into
account both mechanisms of energy dissipation. We
should especially emphasize that the method of the
boundary layer, which was successfully used to allow
for the energy dissipation in cavities with smooth walls,
is invalid in cavities containing structural elements.

Our approach is similar to the method broadly used
by Landau [1]. It is applicable in cavities having struc-
tural elements in their volumes, which is especially
important for applications.

Here, we consider a class of perturbed motions of a
body containing a liquid where both the relative energy
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dissipation and the generalized coordinates characteriz-
ing perturbed motions of the body and of the liquid are
small. The cavity shape is supposed to be arbitrary. In
the case of a perfect liquid, the system of equations
turns into the equations derived in [2]. As particular
cases, our results include those presented in [3–5].

Thus, we consider a body with a cavity. The cavity
is filled partly with a viscous incompressible liquid
having a density ρ and kinematic viscosity ν, and partly
with a constant-pressure gas. The cavity contains ribs
formed by surfaces orthogonal to its walls.

For unperturbed case, we analyze the translational
motion of the liquid-filled body. In the course of this
motion, the liquid occupies the volume Q bounded by
the surface S of cavity walls and by the planar free sur-
face Σ. The latter is perpendicular to the total-accelera-
tion vector j (the g-load vector), which is caused by the
mass forces of unperturbed motion.

The perturbed motion of the body is determined by
the vectors of both small displacement u(t) and small
rotation Q(t). The perturbed liquid flow is characterized
by the parameters Sk(t), each of them representing the
amplitude of the kth tone of vibrations of the liquid at a
certain point on its free surface.

We now write out equations for the perturbed
motion of a body with a liquid, ignoring terms of higher
orders of smallness with respect to the generalized
coordinates (see [6]):

(1)
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Here, m0 and m are the masses of the solid and of the
liquid; J0 and J are the symmetric inertia tensor of the
solid and the symmetric tensor for adjoint moments of
inertia of the liquid, respectively; L0 and L are the anti-
symmetric tensors for static moments of the body and

of the liquid; and  and  are the tensors conjugate to

L0 and , respectively. The tensors  and  corre-
spond to moments of mass forces acting in the case of
an unperturbed motion; the vectors lk and l0k charac-
terize the inertial coupling of body motions with wave
motions of the liquid; and δP, δM0 , and δPk represent
generalized forces caused by the energy dissipation in
the cavity.

For δP = δM0 = δPk = 0, Eqs. (1) turn into equations
describing the perturbed motion of a body with a cavity
partly filled with a perfect liquid [2]. In what follows,
the coefficients entering into the equations of motion
for the body filled with a perfect liquid are assumed to
be known.

Thus, in order to construct equations of motion for a
body having a cavity partly filled with a viscous liquid,
we should find the generalized dissipative forces δP,
δM0, and δPk .

Let a cavity with smooth walls have m ribs formed
by surface elements orthogonal to the cavity surface S.
We also assume that the rib height b, which is measured
in the direction of the normal to the cavity surface, is
small compared to both the characteristic cavity dimen-
sion and the minimum distance between the ribs. In
addition, the liquid is assumed to flow with large values

of the Reynolds number Re =  @ 1, where v  and l are

the characteristic liquid velocity and the characteristic
linear cavity size, respectively.

Under these conditions, the energy dissipation
occurs not only in a thin layer near the boundaries of the
volume occupied by the liquid (the first dissipation
mechanism) but also in the entire bulk of the liquid (the
second dissipation mechanism). The rate of the energy
dissipation per unit volume of the liquid is on the order

of  near the wet cavity surface S and on the order

of  near the free surface of the liquid [1].

Below, we restrict our analysis to considering terms

on the order of  in the expressions for dissipative

forces and, therefore, ignore the energy dissipation near
the free surface of the liquid.

L
0

L

L̃ L̃
0

L̃

v l
ν
-----

1

Re
----------

1
Re
------

1

Re
----------
DOKLADY PHYSICS      Vol. 47      No. 2      2002
Since the boundary layer is thin on the order of

, an element of the surface S can be treated as an

element of an infinite plane that bounds a half-space
occupied by a viscous liquid. This element moves with a
velocity equal to the difference between the velocities of
the body and of the perturbed flow of the perfect liquid.

A force applied to an element of the surface S, which
moves with the velocity v(r, t), can be represented as
(see [7]):

(2)

where r is the radius vector of a current point of the sur-
face S. Then, the first mechanism leads to an energy-
dissipation rate in the cavity equal to

(3)

The velocity for the perturbed flow of the perfect
liquid v0 is presented in the form (see [2])

(4)

Here, Θj = (Q, ej) are the components of the vector Q in
the body’s coordinate system Ox1x2x3 , ej are the basis
vectors of this coordinate system, and Ψj(x1, x2, x3) and
ϕk(x1, x2, x3) are the solutions to boundary value prob-
lems dependent only on the cavity configuration.
Therefore, the relative velocity v can be expressed as

(5)

In addition, a linear rib element can be treated as an ele-
ment of an infinitely long plate, which is perpendicular
to the boundary of the half-space occupied by the liquid
vibrating along this boundary. At the same time, the
vibration velocity is equal to the normal component of
the relative perfect-liquid velocity at points correspond-
ing to the midline of the rib element under consider-
ation in the case when the rib is absent.
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The relative-velocity component normal to the rib
can be written as

(6)

where r(Γ) is the radius vector of points belonging to
the rib midline, Γ is the length of the midline arch, and
the vector n of the outer normal to the rib surface forms
an acute angle with the direction of the relative velocity
of the liquid. The subscript j corresponds to the jth vec-
tor component.

The semiempirical approach used in [2] was based
on a drag force applied to a linear rib element, which
can be represented in the form

(7)

where the coefficient c depends on the vibration ampli-
tude.

Expression (7) is rather convenient in analysis of
steady-state harmonic vibrations. However, in studying
transient processes, additional hypotheses are necessary
to construct a dynamic scheme based on formula (7).

In this paper, we propose another expression free
from the above-mentioned disadvantages (see [8]):

(8)

The coefficient cx in (8) is such that the energy dissipa-
tion per vibrational period is identical for both resis-
tance laws (7) and (8).

It is easy to show that in the harmonic-vibration
mode, expressions (7) and (8) coincide with each other.
However, since relation (8) is not associated with the
amplitude and frequency of a harmonic process, it is
applicable for analyzing transients.

The second dissipation mechanism leads to the fol-
lowing expression for the energy-dissipation rate in the
cavity:

(9)

where m is the number of ribs and Γl is the contour
formed by the rib midline.

Thus, the relation for the total rate of the energy dis-
sipation in a cavity with allowance for both these dissi-

v ν v n,( ) Θ̇ j
∂Ψ j

∂ν
--------- r n×( ) j–

 
 
 

j 1=

3

∑–= =

– Ṡk
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pation mechanisms takes the form

(10)

The first term in formula (10) is associated with the
energy dissipation at smooth walls, while the second
one takes into account the presence of ribs in the cavity.
Substituting expressions (5) and (6) for the relative
velocity of the liquid into relation (10), we arrive at

(11)

Here, B is the tensor with the elements ,  are the

vectors with the components , and  are the sca-
lars. In addition,

(12)

In each of formulas (12), the first term takes into
account the effect of the boundary layer, while the sec-
ond term is associated with vortex formation at the rib
edges. The second term dominates at finite vibrational
amplitudes of both body and liquid, while the first term
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manifests itself either at vanishing amplitudes or in the
case of the absence of ribs.

On the other hand, the energy-dissipation rate is
determined by the expression

(13)

Being compared, relations (11) and (13) yield

(14)

At large values of the Reynolds number, the rela-
tions derived are quite sufficient to construct equations
for perturbed motion of a body with a cavity partly
filled with a viscous liquid.
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It is known [1–4] that the ductile–brittle transition
(DBT) depends on temperature, chemical composition,
stressed state, and loading rate. Moreover, it was estab-
lished [4, 5] that the DBT can be attributed to a unified
mechanism consisting in the disturbance of the elec-
tron-structure order responsible for the chemical bond.
This is either the restoration or the destruction of the
directed component of the chemical bond at the DBT
critical temperatures Tcr or the so-called “crystalliza-
tion” of valence electrons. The simplest kind of this
phenomenon in the presence of a uniform compensat-
ing nuclear field is Wigner crystallization [6, 7].

As was indicated in [5], a decrease in the thermal
vibrations or a change in an alloying element leads to
the appearance of directed chemical bonds, i.e., to the
crystallization of the electron structure at Tcr of DBT. In
this case, we can use the formalism of the second-order
phase transition as, e.g., in [6–8].

Let the system of electrons be described by the fol-
lowing Hamiltonian in the x representation:

(1)

where as*(x) and as(x) are, respectively, the creation
and annihilation operators for particles with spin s =

, ν(x, y) is the s-independent potential of interaction

between two particles, U(x) = U(x + R) is the periodic

field of the crystal lattice {R},  is the kinetic energy

operator (h = 1), and µ is the chemical potential. We
integrate over the entire volume of the system, take the
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 
 
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cyclic boundary conditions, and sum with respect to the
repeating superscripts s ' and s.

The operators as*(x) and as(x) are expressed in terms
of the secondary-quantization operators with the Wan-
nier functions Wn(x – R) of electrons. We obtain 

(2)

The Wannier functions Wn(x – R) are defined in terms
of the Bloch functions as

(2‡)

where the summation with respect to k is performed
over the first Brillouin zone of the lattice {R} and N is
the number of lattice cites in the cell volume V. The
Bloch functions uk, n(x) are associated with the nth zone
and are the solutions of the Schrödinger equation

(3)

with the eigenvalues (k).

Including the valence angle and taking into account
that the energy gaps between zones are somewhat
broadened due to thermal vibrations and are higher than
the corresponding characteristic interaction energies,
we write the Hamiltonian in the new representation as:
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(5)

We introduce the Green’s function

(6)

where (R, t) and (R', t ' ) are the operators in the
Heisenberg representation; θ(t – t ' ) is the unit step
function; [. , .]+ is the anticommutator; the angular
brackets mean averaging over the grand canonical
ensemble with Hamiltonian (4) and the parameter β =

, where T is the absolute temperature in the energy

units; and the summation is performed with respect to
the superscript s. It is evident that this Green’s function
satisfies the equation

Ln R1 R2–( ) Ln
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1
T
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(7)

where (R – R1; E) = E  – Ln(R – R1) is the

inverse unperturbed Green’s function, and  is the
mass operator [E is the parameter of the Fourier trans-
form with respect to time (t – t ')].

The analysis of solutions according to [8–10] leads
to the first density matrix

(8)

Further, it is possible to determine the density n(x)
of “true” particles by using Eq. (2a). In a certain limit,
the mass operator M(R, R'; E) can be expressed as a
functional of ρ(R, R'; E). In this case, after the transfor-
mations according to [8–10], we obtain the nonlinear
equation 
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which can be solved as a set of the finite-difference
equations determining G0(p) and G1(p).

Then, using (8) and changing G0(p), G1(p) to

(p), (p), we obtain the set of equations

(10)

where ψ1 and ψ2 are the nonlinear integral operators.
From the physical reasons for T  ∞, the solution

of Eq. (7) is the spatially uniform; i.e.,

(11)

For the set of equations (7) at T > Tcr, we have

 ≡ 0,  ≡ (R – R'); i.e., Tcr is the phase-tran-
sition point or the stability-loss point for the spatially
homogeneous solution.

However, Tcr can be determined by the branch
method following [9]. This method is based on the fact
that, at T < Tcr and T  Tcr , the functions

η0
1( ) η1
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(12)

tend to zero but remain infinitesimal. Taking the varia-
tions of Eq. (10) with allowance for Eq. (12), we obtain 

(13)

where  and  are the linear integral operators

depending on β =  and µ.

The least positive eigenvalue βcr of set (13) deter-
mines the highest Tcr phase-transition temperature
depending on the particle density through µ. If a band
is filled, the corresponding particle density is n(R) ≡ 2
and the redistribution of particles between the quantum
states is impossible; therefore, the crystallization of the
electron structure does not occur.

Thus, the crystallization of the electron structure
responsible for the chemical bond is possible only for
atoms with unfilled electron shells, and the above the-
ory correctly describes the DBT mechanism. For binary

δn0 p( ) η0
1( ) p( ) η0

0( ) p( ), δη1 p( )– η1
1( ) p( )= =

δη0 p( ) Â1 δη0 p( ), δη1 p( ){ } ,=

δη1 p( ) Â2 δη0 p( ), δη1 p( ){ } ,=

Â1 Â2

1
T
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iron alloys, this phenomenon takes place when impuri-
ties have unfilled np, nd, and pf electron shells [4, 5]. In
order to reduce Tcr of the DBT for iron alloys, it is nec-
essary to alloy the iron matrix with elements that have
unfilled np, nd, and pf electron shells and larger angles
and lengths of chemical bonds.
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The problem of explicit inclusion of the spin-depen-
dent permutation symmetry in the Feynman path-inte-
gral method is solved for many-electron systems. As an
example, the Monte Carlo numerical calculations for
near-degenerate hydrogen plasma are presented. The
new method is promising in systematic computations
for systems of quantum particles at finite temperatures,
with an accuracy similar to that for systems of classical
particles.

1. INTRODUCTION

Over the few decades since the publication of the
pioneering Metropolis paper [1], a special research
field, the computer simulation of materials at the
atomic level, was formed in theoretical physics. Over
the last two decades, the rapid development of com-
puter technologies created a basis for the transforma-
tion of computer simulation methods into an indepen-
dent field, intermediate between pure theory and exper-
iment. Until the mid-1960s, computer simulation
methods were used only for classical-mechanics sys-
tems. In the early 1960s, Feynman proposed an alterna-
tive formulation of quantum mechanics in terms of path
integrals [2]. In this formalism, the motion of a quan-
tum particle is described by virtual paths. The evolu-
tion-operator kernel is expressed as a sum of complex
amplitudes for all paths. The partition function is
obtained from the quantum evolution operator by the
formal change of time to imaginary reciprocal temper-
ature. Each quantum particle corresponds to its own
closed path. A problem in such a form can be solved by
the Monte Carlo method. Feynman paths are approxi-
mated by broken lines whose vertex coordinates are
stored in the computer memory. The integration
reduces to random walks in the path space with the
weight function dependent upon the action calculated
for the path corresponding to the imaginary time [3].
Fosdick and Jordan [4, 5] were the first who numeri-
cally implemented these concepts for the simplest sys-
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tem of two interacting helium atoms. In Russia, the first
attempts to apply the path integral method to the com-
puter simulation of electron systems were undertaken
in [6–9].

Among problems seriously impeding the systematic
application of the path integral method to the study of
many-particle quantum systems at finite temperatures,
the description of the permutation symmetry is most
difficult. In terms of the path integrals, the symmetriza-
tion over permutations requires integration over the
coupled Feynman paths, and each kind of coupling cor-
responds to its own positive or negative weight factor.
Although the Hamiltonian of the system of nonrelativ-
istic particles does not affect spin variables, the system
energy depends strongly on the spin state via the type
of coordinate permutation symmetry. In the system of
identical fermions, the wave function changes sign
upon the simultaneous permutation of the spin and
coordinate variables of an electron pair. In spin or coor-
dinate variables taken separately, the wave function can
be neither symmetric nor antisymmetric. The specific
permutation symmetry in the spin variables necessarily
leads to definite (complementary to it) permutation
symmetry in the coordinate variables. The partition
function is the trace of the statistical operator calculated
in the representation of the complete set of wave func-
tions. The complete set of linearly independent wave
functions can be constructed based on the Young sym-
metry operators [10].

Until recently, in path-integral computer simulation,
either the spin of particles was ignored, the exchange
symmetry was approximately taken into account by
combining determinants formed by one-particle func-
tions [7, 8], or else the exchange was neglected alto-
gether. Note that spinless fermions do not exist, and the
disregard of spin can be hardly considered as an
approximation since it is difficult to check the corre-
sponding error, which can even exceed the result. This
statement is illustrated by the well-known orthostate
and parastate of hydrogen molecules. An explicit pro-
cedure of including spin and exchange symmetry in the
path-integral description of the systems of interacting
electrons was first formulated in [11, 12]. This algo-
rithm provides numerical simulation for systems
02 MAIK “Nauka/Interperiodica”
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including up to about ten electrons. For a larger number
of particles, the calculation becomes virtually impracti-
cable, because the computer time needed for calcula-
tion of the control tables for the combinatorial coeffi-
cients increases faster than N! The path-integral method
was used to simulate an electron pair in a microcavity in
the context of the problem of electrides [13], a hydrogen
molecule in a state close to the ground state [14], and
the thermally excited states of a hydrogen atom and
lithium and beryllium ions in a dense plasma [15].

In this paper, we present the results of the path-inte-
gral simulations for a many-electron system at finite
temperature with the exact inclusion of the exchange
and spin of electrons. For the first time, the Monte
Carlo method as an exact statistical-mechanics method
was applied to systems with spin, and the limitations on
the number of particles in the description of exchange
was removed.

2. THE PROBLEM OF A LARGE NUMBER
OF PARTICLES IN THE DESCRIPTION 

OF EXCHANGE IN SYSTEMS WITH SPIN

The impossibility of directly calculating the control
tables for the combinatorial coefficients was solved by
including the calculations of combinatorial coefficients
to the Markov random walk procedure. The space of
random walks was extended. In the new method, a
microscopic state is defined by the coordinates of verti-
ces of the paths, the structure of their couplings, and a
limited random sample of permutations used to calcu-
late the combinatorial weight of the given microscopic
state. As a whole, the calculation procedure remains in
principle exact, although the sample of permutations is
limited.

The Young operator corresponding to the eigenvalue
S(S + 1) of the spin-squared operator can be represented
as the product of the operators of pair symmetrization
(1 + ) and antisymmetrization (1 – ) over the
numbers of arguments

(1)

Upon removing the parentheses, product (1) takes the
form

(2)

The summation in Eq. (2) is performed over all N! per-

mutations of arguments over numbers . Combinato-
rial weights α(n) take one of three values: +1, –1, and
0. If the permutation operator in sum (2) is represent-
able in the form

(3)

where  and  are the permutation operators for
arguments in the first and second columns of the Young

n̂ij n̂ij

Ĵ S( ) 1 n̂a–( ) 1 n̂b–( )… 1 n̂ν+( ) 1 n̂w+( ).=

Ĵ S( ) α s n( )N̂n.
n

∑=

N̂n

N̂n N̂k N̂l N̂m,=

N̂k N̂l
diagram, respectively, and  is the operator of the
permutations of the diagram lines, then we have αs(n) =
(–1)c(k) + c(l), where c(k) and c(l) are the parities of per-

mutations  and . If the operator Nn cannot be rep-
resented in form (3), it does not appear in the symmetry

operator (S) and its combinatorial weight in sum (2)
is αs(n) = 0. It was shown in [12] that the partition func-
tion for N identical fermions with a spin of 1/2 is writ-
ten as

(4)

where β ≡  is the inverse temperature, kB is the

Boltzmann constant,  is the Hamiltonian, and sub-
script S means that the summation is performed only
over the permutation operators appearing in the Young

operator (S). Each  permutation generates a cer-
tain diagram of coupled virtual numbered paths. Sub-
sets of diagrams differing only in the enumeration of
vertices form classes. They can be combined with the
common factor

(5)

and the summation over all permutations N! can be
replaced by the summation over the classes specified by

the generic graph , where multidimensional index
{νi} = {ν1, ν2, …, νN} determines the diagram structure
and νi is the number of cycles formed by i connected
paths. The superscript {νi} in the summation symbol in
Eq. (5) denotes that the summation is performed only

over those n for which operators  belong to the class

with the generic graph 

(6)

where

In principle, Eq. (6) provides the basis for a Markov
random process for the numerical calculations of equi-

N̂m

N̂k N̂l

Ĵ

Z
1
N!
------ 2S 1+( ) 1–( )S c l( ) c k( )+ dNr∫

n

∑
S

∑=

× ri{ } β Ĥ–( )exp N̂n ri{ }〈 〉 1
N!
------ 2S 1+( )

S

∑=

× αs n( )
n

∑ dNr ri{ } β Ĥ–( )exp N̂n ri{ }〈 〉 ,∫
1

kBT
---------

Ĥ

Ĵ N̂n

ωs ν i{ }( ) α
νi{ }

s n( ),
n

∑=

Π̂ νi{ }

N̂n

Π̂ νi{ }

Z
1
N!
------ ω νi{ }( )

νi{ }
∑ dNr∫=

× ri{ } β Ĥ–( )exp Π̂ νi{ } ri{ }〈 〉 ,

ω νi{ }( ) 2S 1+( )ωs ν i{ }( ).
S

∑=
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librium expectation values. However, the implementa-
tion of this program in practice turns out to be possible
only for a relatively small number of particles. Indeed,
according to Eq. (5), the calculation of the control table
for the combinatorial weights ωs({νi}) implies sorting
all permutations contained in the Young symmetry
operator, and the number of the necessary operations
increases faster than N! To solve this problem, the com-
binatorial coefficients ω({νi}) are calculated by the
substantial-sample method. Thus, the calculation of the
integral in Eq. (6) is united with the calculation of the
combinatorial coefficients into the unified Markov ran-
dom process. It is advantageous to divide the averaging
over permutations into segments so that there are no
transitions between classes within each segment and the
repeated calculation of matrix elements in integral (6) is
not required. In each segment, a random equiprobable

sampling from the set of all permutations  is per-
formed, verifying the conditions that they belong both

to a given class {νi} and to the Young operator (S). A
permutation is assigned by the combinatorial factor

(n) = αs(n) if both conditions are satisfied and by

the factor (n) = 0 if at least one condition is vio-
lated. At each step of the random process, we have the
following unbiased estimate for the combinatorial fac-
tor ωs({νi}):

(7)

where l is the size of the sample {nk}. It is of fundamen-
tal importance that the approximate character of
ωs({νi}) estimate (7) found with a finite sample {nk} in
a single step of the Markov process does not imply an
approximate character of the whole calculation proce-
dure if this procedure is based on the combinatorial
weights ({νi}, {nk}, l) instead of ωs({νi}). Indeed,
Eq. (5) can be rewritten in the form

(8)

where {nk} = n1, n2, …, nl is a sample of l numbers from
the unbroken series of integers from 1 to N! and where
the numbers in the series {nk} may repeat. The summa-
tion over {nk} in Eq. (8) means the summation over all
possible samples. Substituting Eq. (8) into Eq. (6) and

N̂n

Ĵ

α s νi{ },

α s νi{ },

ω̃s ν i{ } nk{ } l, ,( ) N!
l

------ α s νi{ }, nk( ),
k 1=

l

∑=

ω̃s

ωs ν i{ }( ) 1

l N!( )l 1–
-------------------- α s nk( )

νi{ }

k 1=

l

∑
nk{ }
∑=

=  
1

l N!( )l 1–
-------------------- α s νi{ }, nk( )

k 1=

l

∑
nk{ }
∑

=  
1

N!( )2l 1–
-------------------- ω̃s ν i{ } nk{ } l, ,( ),

nk{ }
∑
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expressing the matrix element in the integrand as a
product of high-temperature matrix elements, for
which the explicit expressions are known [2], we find
the partition function in the form

(9)

which is exact although written in terms of the coeffi-
cients ({νi}, {nk}, l) determined with limited sam-
ples. The partition function in form (9) allows us to
remove the exchange-imposed limitations on the num-
ber of particles and to construct the Markov random
process for systems including hundreds and thousands
of particles.

3. NUMERICAL RESULTS
FOR HYDROGEN PLASMA

In this section, we present the numerical results
obtained by the Monte Carlo path-integral method for
hydrogen plasma with a density ρ = 6.96 × 1020 cm–3

and temperature T = 37130 K. The exchange effects are
significant under these conditions, since the thermal de

Broglie wavelength for electrons, Λ =  =

3.9 × 10–8 cm, is comparable to the mean distance
between neighboring particles, ρ–3 = 11.3 × 10–8 cm.
Periodic boundary conditions are imposed on the
system. The unit cell with an edge length of 52.38 ×
10−8 cm corresponding to this periodicity holds 100 elec-
trons described as quantum particles and 100 protons
described as classical particles. The Feynman path of
each electron is represented by a broken line consisting
of M = 320 sections. The Coulomb interactions of each
particle with the others are calculated by the nearest
image method [6]. For the prelimit approximation of
the action in the Feynman paths, the nonsingular-poten-
tial method is used [15]. The Markov process consists
of steps corresponding to the displacement of one of the
M vertices of the path, translation and rotation of the
path as a whole, and connection and disconnection of
two paths. The calculations involve 900 million steps.
The first 320 million of these were used to thermalize
the system, and the rest were used to calculate the equi-

Z
1

N!3l 1–
--------------- 2S 1+( )ω̃s ν i{ } nk{ } l, ,( )

S

∑
nk{ }
∑

νi{ }
∑=

× dNr 1( )dNr 2( )…dNr M( )∫
× ri M( ){ } βĤ

M
--------– 

 exp ri 1( ){ }

× ri 1( ){ } βĤ
M

--------– 
 exp ri 2( ){ } …

… ri M 1–( ){ } βĤ
M

--------– 
 exp Π̂ νi{ } ri M( ){ } ,

ω̃s

h

2πmkBT
-------------------------
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librium expectation values. At the stage of calculating
the expectation values, about 3000 connections and dis-
connections took place. The size of the random sample
for calculation of combinatorial coefficients at a single
step was l = 10. At the thermalization stage, the proce-
dure of the subsequent multiplication of path vertices
was applied and accelerated the process by one to two
orders of magnitude.

1 2 3 r, Å0

1.00

0.75

0.50

0.25

4πr2ρie, Å
–1

Fig. 1. The radial distribution of the electron density near a
proton. The solid curve is the Monte Carlo path-integral cal-
culation for the hydrogen plasma with the temperature T =
37130 K and total density ρ = 0.696 × 1021 cm–3; the dashed
curve corresponds to the ground state of the hydrogen atom.
Microstructural characteristics of plasma in the
form of the pair correlation function are represented in
Figs. 1–3. The ion–electron correlation function ρie(r)
has the meaning of the density of the probability of
finding an electron at a distance r from a proton. In the
coordinate representation with allowance for the degen-
eracy with respect of the eigenvalues of the spin projec-
tion operator, we have

2.5 5.0 7.5 r, Å0

0.6

0.4

0.2

ρii, ρee × 103, Å–3

Fig. 2. The pair correlation functions for the hydrogen
plasma calculated under the same conditions as in Fig. 1.
The solid and dashed lines are ρii and ρee, respectively. The
straight horizontal line corresponds to the total density.
(10)ρie r( ) = 

2S 1+( ) dr1dr2…drNdR1…dRN ri{ } Ri{ } S
1
N
---- δ r xk Xn––( ) βĤ–( )exp

k n,
∑ ri{ } Ri{ } S, , , ,∫

S

∑

4πr2 2S 1+( ) dr1dr2…drNdR1…dRN ri{ } Ri{ } S βĤ–( )exp ri{ } Ri{ } S, , , ,∫
S

∑
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------,
where {xi} ≡ x1, x2, …, xN and {Xi} are the spatial vari-
ables for electrons and protons, respectively, {ri} and
{Ri} are the eigenvalues of coordinate operator, and
δ(r) is the one-dimensional Dirac delta function. The
matrix elements in Eq. (10) are calculated in the repre-
sentation of wave functions symmetrized over the per-
mutations according to the eigenvalue of the spin-S
operator squared of the system. The electron–electron,
ρee(r), and ion–ion, ρii(r), correlation functions can be
written similar to Eq. (10) with the replacement of
|xk − Xn | by |xk – xn | and |Xk – Xn |, respectively, and the
summation under the condition n ≠ k. The function
ρie(r) (Fig. 1), as well as ρii(r) and ρee(r) (Fig. 2), was
numerically calculated by the path-integral method.

The mean-force potential

(11)Wee r( ) kBT
ρee r( )

ρ
-------------- 

  ,ln–≡
0 1 2 3 r, Å

20

0

–20

Wee, Wii, Wie, eV

2

1

3

Fig. 3. The mean-force potentials in the hydrogen plasma,
(1) Wee , (2) Wii , and (3) Wie under the same conditions as
in Fig. 1. The dashed curves correspond to the interaction of
two elementary charged particles in vacuum.
DOKLADY PHYSICS      Vol. 47      No. 2      2002



EXCHANGE SYMMETRY IN THE FEYNMAN PATH-INTEGRAL FORMALISM 113
where ρ is the particle density, describes interaction
between two particles with inclusion of indirect interac-
tions via the other particles in the system. Deviation of

Wee(r) from the interaction energy  of two pointlike

charged particles is caused by quantum effects and
interactions with the other particles. Apparently, the
quantum effects manifest themselves at interparticle
distances smaller than the thermal de Broglie wave-
length, whereas the shielding of interaction by other
particles of the medium becomes more pronounced
with increasing r. The curves shown in Fig. 3 demon-
strate that the mean-force potentials for all three types
of interactions satisfy the condition Wee(r), Wii(r),
Wie(r) ! kBT at r > 4 Å. The interparticle interaction is
considerably shielded at these distances. The reduction
of the Coulomb interaction is of a collective origin. The
curve shown in Fig. 4 demonstrates that the number of
electrons spaced from the proton at distances smaller
than r = 4 Å is as low as 0.66. The electron nearest to the
proton cannot shield the field of the proton to the extent
suggested by the data presented in Fig. 3. The charge of
other electrons plays a significant role in this region.

The higher the plasma density, the more conven-
tional the degree of ionization. To a first approximation,
the probability of ionization can be estimated from the
area under the peak in Fig. 1. Figure 4 demonstrates
that the degree of ionization under these conditions is
∆Nb = 0.45.

The quantum-mechanical uncertainty in the coordi-
nate leads to smoothing of the plots for mean-force
potentials at small distances. The effect is clearly pro-
nounced at distances r < 2 Å (Fig. 3). At a distance of
1 Å, the potentials Wee(r) and Wie(r) differ from the
interaction energies of the classical pointlike charges
by 5 and 3 eV, respectively. The quantum effects at
these distances lead to strengthening the interelectron
repulsion and to weakening the attraction between elec-
trons and protons. At distances r < 0.5 Å, the effect has
the same sign for both curves and is rapidly enhanced
with a decrease in r. The Wii(r) curve at distances r <
0.5 Å has a steeper slope, since heavy protons behave
as classical particles and the quantum-mechanical
uncertainty in their positions has no effect here. The
effect is enhanced due to a small dip at a distance of
about 1 Å. This dip corresponds to the formation of the
bound state involving two hydrogen atoms. This bound
state is manifested as a peak in the ρii(r) curve (Fig. 2).

The calculated correlation functions demonstrate the
clearly pronounced quantum character of the particle
motion at distances where the electrostatic interaction is
not shielded. The interactions at these distances are pri-
marily responsible for the thermal properties of the dense
plasma. At larger distances, where the particle motion is
nearly classical, the interactions are significantly
shielded. In spite of the relatively high temperature, the
calculation of deviating the characteristics of the dense

e2

r
----
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hydrogen plasma from those of the ideal plasma requires
the fundamental inclusion of the quantum effects.
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Holograms recorded in photosensitive layers with a
thickness of several millimeters have a number of
attractive specific properties. Thus they can be widely
used in the development of modern elements for optical
information processors, in systems of optical memories
with multiplex information storage, in devices for inter-
fiber connection in optical telecommunication net-
works, etc. [1]. However, known recording media turn
out to be unsuitable for obtaining such holograms,
since, as a rule, a change in the layer-thickness structure
occurs in processing these media, caused, e.g., by
shrinkage of photoemulsions.

At the same time, the new recording media desired
can be obtained on the basis of colloidal emulsion sys-
tems of self-developing dichromatic gelatin (SDDG)
[2]. However, in the process of synthesizing the super-
thick (more than 0.5 mm) layers, the problem of their
drying arises, which takes a long time (more than
3 days), followed by the jellification or ripening of the
colloidal medium. This problem appears at the last
stage of the phototechnological process and cannot be
solved by traditional methods of blowing hot air or by
alcoholic dehydration, which lead to the appearance of
a strong gradient of optical properties over the thick-
ness of the layer. In phototechnological production,
ultrasonic and acoustic treatment as well as microwave
heating [3] have been used already for a long time.
However, their application makes an accurate energy
dosage of ultrasonic or microwave treatment upon the
object difficult. In addition, the processing of colloidal
layers by microwave radiation often results in their
exfoliation from the substrate and in an uncontrollable
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change in the conformational state of gelatin macro-
molecules.

In this paper, the holographic characteristics of
SDDG are considered in the case of synthesizing emul-
sion with the use of a high-power IR radiation of the
1.06-µm wavelength. The radiation provides laser
annealing (drying) and gelatination of colloidal layers
of millimeter thickness, as well as the possibility of
controlling the properties of the material when anneal-
ing by IR laser radiation.

CONTROLLING THE GELATIN-LAYER 
STRUCTURE

Gelatin as a polymeric system passes through a
sequence of various aggregate states in the preparation
of a dichromatic-gelatin layer. A diluted solution of gel-
atin in water is the initial state. In this state, macromol-
ecules are in the condition of a Gaussian coil or a glob-
ule. In the forming process, as a result of the interaction
of chain macromolecules after the solution has been
poured onto the substrate, gel formation occurs. This
gel can manifest properties of either a liquid crystal (if
the molecules are hard-chained) or a concentrated solu-
tion with equal volumetric fractions of solvent and
polymer [2].

Evaporation of the solvent (water) from the poured
emulsion is accompanied by the process of returning
macromolecules into the native state of the collagen-
like three-strand spiral structure deformed to a certain
extent by conditions of the film formation. In the pro-
cess of gelatination under both the action of forces from
the substrate side and drying conditions, the unwrap-
ping of macromolecules into linear structures occurs
with a simultaneous twisting of segments into spiral
pieces. Such a spontaneous return into the native spiral
state in the process of gelatination occurs statistically
and locally due to the interaction of macromolecular
segments. In turn, this provides the presence of well
developed short-range order in the gelatin emulsion,
without the long-range order inherent in collagens [4].
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STRUCTURE OF WATER AND THE ACTION
OF INFRARED RADIATION

An SDDG system contains a very large amount of
water. Therefore, this system can be treated as an
almost-water solution, for which the role of the quasi-
crystalline structure of the entire liquid is essential [5].
Connection into a unified three-dimensional network
and the collective character of molecular motion in
water are confirmed by studies in the field of molecular
dynamics [6]. Under the action of IR radiation, the
structure energy increases, hydrogen bonds are weak-
ened, vibration amplitudes rise, and the concentration
of defects produced by translations of molecules from
crystal-lattice sites into a neighboring potential well is
enhanced. Water molecules form a collective module,
and, therefore, an association of five molecules is con-
sidered as a particle more or less reflecting actual prop-
erties of water [5]. Interaction of water with dissolved
species results in the formation of an aquacomplex, i.e.,
an association of a species molecule with several mole-
cules of water. Water molecules entering into the com-
plex composition, in turn, are connected with neighbor-
ing water molecules; i.e., the aquacomplexes can be
considered as segments of the hydrogen-bond network
in water [5, 6].

We can affect the structure of the SDDG-emulsion
throughout the entire bulk of the layer using laser IR
radiation. In this case, the molecular reconstruction
mechanism by the action of the electromagnetic field of
IR radiation is determined by the loss of the coordina-
tion stability of vibrations for a fraction of molecules. It
is, naturally, impossible to specify a certain radiation
wavelength optimal for such an annealing, due to the
complicated composition of the emulsion. Therefore,
based on known data concerning the water-absorption
spectra, we used the carbon-dioxide laser radiation with
a wavelength of about 1 µm. In addition, the radiation
of the nearest IR range passes through a glass substrate
so that undesirable effects of the IR-radiation interfer-
ence are absent in the layer bulk.

The energy action of IR-radiation upon the SDDG-
layer should satisfy the following requirements:

(i) the absence of either parasitic illumination or
photosensitivity loss in the system;

(ii) the elimination of gelatin thermal destruction;
(iii) the minimization of noticeable heating of the

system, which could result in both the unwrapping of
spiral macromolecular regions and a drop of the photo-
sensitivity [4].

Thus, the energy pumping should be very selective
in order to change only the ternary and quaternary
structures of gelatin, i.e., the disposition and elongation
of its molecules. Therefore, it is worthwhile to use laser
radiation with low photon energies, which is not
absorbed by proteins and individual water molecules.

The action of the electromagnetic field upon the
water solution of gelatin macromolecules results in a
DOKLADY PHYSICS      Vol. 47      No. 2      2002
violation of the equilibrium state of the system. After
ceasing irradiation, dielectric relaxation occurs. Being
subjected to the action of the electromagnetic field of
IR radiation, water molecules begin to reconstruct them-
selves in accordance with the Le Chatelier principle. In
this case, the absorption frequency of 1000 cm–1 (the
wavelength of 1 µm) can be interpreted as a sum of two
frequencies: 200 cm–1 (the frequency of individual
rotary oscillations) and ~800 cm–1 (the libration fre-
quency of water molecules within the collective mod-
ule, or aquacomplex) [5].

EXPERIMENTAL METHOD

Synthesizing SDDG layers. Samples were pre-
pared in accordance with the following method. Gelatin
was dissolved in water for 1 h (1 g of gelatin per 5 ml
of distilled water) at 50°C. Then, after the glycerin had
been added (0.8 ml per 5 ml of water), the solution was
held at 40°C for 2 h. Ammonium bichromate in the
needed concentration (20% with respect to the dry-gel-
atin mass, or 0.2 g per 5 ml of water), ammonium for
attaining pH = 9.0, and methylene blue dye (MB) in the
form of a solution (10 mg of MB per 100 ml of water)
was added to the solution obtained. The emulsion solu-
tion prepared was poured into a transparent cuvette
with side walls of a necessary height (from 0.5 to
3 mm) and covered by a cover glass. Then, this solution
was gelatinated for 24 h at 25°C. As a result, a layer
with the desired thickness was obtained.

Technique of laser annealing. After holding
poured-on emulsion layers for a day, a primary quasi-
crystalline SDDG structure was formed [4]. Then the
plates were subjected to the action of laser IR radiation
with a wavelength of 1 µm.

Measurement of holographic characteristics. The
results of laser annealing were determined according to
changes in the diffraction efficiency (DE) of holograms
recorded in similar annealed test layers due to the inter-
ference of two plane waves of helium–neon laser radi-
ation (λ = 633 nm). The spatial frequency of the diffrac-
tion grating being recorded was about 500 lines per
1 mm. The power of two beams incident onto a plate was
6 mW. Diffraction efficiency was measured as a ratio of
the intensities for the diffracted and incident beams.

The experimental data on the diffraction efficiency
variation as a function of annealing parameters are
shown in Figs. 1–4.

Thus, under the action of the electromagnetic field
of IR radiation, a pulsed perturbation of the water struc-
ture occurs (in the first approximation) at the level of
collective modules, since the individual water mole-
cules and protein molecules do not absorb radiation
with a wavelength of about 1 µm [7]. The reconstruc-
tion of the quasi-crystalline water structure results in a
change in the water–gelatin interaction. Gelatin macro-
molecules stir under the action of this field and change
their conformation ternary and quaternary states in
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Fig. 1. Diffraction efficiency (DE) of a test holographic grating recorded in a SDDG layer by the helium–neon laser radiation as a
function of the laser annealing energy and exposure time under the action of pulsed laser IR radiation of a 5-ms duration. Maximum
DE are: 9.8% (without annealing) and 8.8% (with annealing). Here, and in Figs. 2–4, Ean is the total energy for the sequence of anneal-
ing pulses; Eexp is the exposure energy for a test grating in the case of helium–neon laser radiation; m = [(DEan – DE0)/Dan] × 100%,
where DEan is the diffraction efficiency for the test grating recorded by the annealed SDDG; and DE0 is the diffraction efficiency
for the test grating recorded by the unannealed SDDG.

Fig. 2. Diffraction efficiency (DE) of a test holographic grating recorded in the SDDG layer by helium–neon laser radiation as a
function of the laser annealing energy and exposure time under the 4-pulse action of laser IR radiation for the 4-ms pulse duration.
Maximum values of the DE are 3% (without annealing) and 3.8% (with annealing).
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Fig. 3. Diffraction efficiency (DE) of test holographic grating, which is recorded in the SDDG layer by helium–neon laser radiation
as a function of the laser annealing energy and exposure time under the 8-pulse action of laser IR radiation for a 2-ms pulse duration.
Maximum DE values are 1.4% (without annealing) and 4.2% (with annealing).

Fig. 4. Diffraction efficiency (DE) of test holographic grating recorded in the SDDG layer by helium–neon laser radiation as a func-
tion of the laser annealing energy and exposure time under the 6-pulse action of laser IR radiation for a 3-ms pulse duration. Max-
imum DE values are 1.3% (without annealing) and 3.7% (with annealing).
order to attain a minimum energy in the new quasi-
crystalline structure. In this case, the spiral segments
are not destroyed; i.e., the photosensitive properties of
the entire SDDG system can remain unchanged.
DOKLADY PHYSICS      Vol. 47      No. 2      2002
A pulse-periodic regime of irradiation in the case of
laser annealing is more favorable, since it allows esti-
mating the exact energy of action on the layer structure.
Pulse-periodic irradiation is, to some extent, similar to
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a sharp shaking-up of the system, and the necessary
package of macromolecules is attained at the expense
of relaxation processes.

Thus, in this paper, the possibility of the improve-
ment of SDDG properties under the action of laser IR
radiation is experimentally confirmed. In addition to
the reduction of the time for synthesizing the layer, the
application of laser annealing for structuring the SDDG
results in an increase in the diffraction efficiency and
improves the uniformity of properties throughout the
entire bulk of the system, which is very important for
the 1- to 5-mm-thick layers. Laser annealing, as a
whole, serves as an additional parameter of controlling
the technological process. Optimal regimes of laser
annealing are revealed, as well as the emulsion compo-
sitions that make it possible to increase the photosensi-
tivity by recording holograms using the radiation of a
helium–neon laser with a wavelength of 0.63 µm and
reduce the time of emulsion ripening by several times
(from three days to 2–3 h).
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In the general relativity theory (GRT), the covariant

law for the density of the energy–momentum tensor 
of a medium in a Riemannian space has a form

(1)

This equation immediately follows from the Gilbert–
Einstein equations. The law of energy–momentum con-
servation for both matter and the gravitational field in
the GRT has a noncovariant form

(2)

This is a way that leads to the appearance of the gravi-

tational-field pseudotensor  in the GRT, which is not
a covariant quantity. It is impossible, in principle, to
write out in the GRT an equation for the conservation
of the energy–momentum of both matter and the gravi-
tational-field in the general covariant form. As a result,
the concept has arisen based on the GRT that localizing
the gravitational energy is impossible.

In the relativistic gravitational theory (RGT), the
gravitational field is treated as a physical tensor field
Φµν with spins 2 and 0 that develops in a Minkowski
space. In the RGT, the conserved density of the energy–
momentum tensor for all material fields, including the
gravitational field, is the source of the gravitational
field. This approach provides rigorous fulfillment of the
laws of conservation for both the energy–momentum
and angular momentum. In this case, due to the action
of the gravitational field, an effective Riemannian space
arises that has the field origin. In the RGT, the density
of the Lagrangian has the form

(3)

Tµ
ν

∇ νTµ
ν ∂νTµ

ν 1
2
---Tσλ∂µgσλ , Tσλ–≡ 2

δLM

δgσλ
-----------.–=

∂ν Tµ
ν τµ

ν+( ) 0.=

τµ
ν

L Lg γ̃µν Φ̃σλ,( ) LM g̃σλ Φ̃A,( ).+=
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Here,

(4)

(5)

 = ,  = , , and
ΦA are the matter fields. We imply as matter all material
fields excluding the gravitational field.

The metric-tensor density  of an effective Rie-

mannian space is connected with the density  of the
gravitational-field tensor by the relation

(6)

The equation for the gravitational field can be written
out in the form [1]

(7)

where  is the density of the energy–momentum ten-
sor for the gravitational field. Thus,

(8)

It is easy to see that the identity

(9)

takes place. Equations (7) for the gravitational field can
be represented as

(10)

Here, m is the graviton mass and γαβ is the metric tensor

Lg
1

16π
---------g̃µν Gµν

λ Gλσ
σ Gµσ

λ Gνλ
σ–( )=

–
m2

2
------ 1

2
---γµνg̃µν g– γ––– 

  ,

Gµν
λ 1

2
---gλσ Dµgνσ Dνgµσ Dσgµν–+( ),=

γ̃µν γ– γµν Φ̃σλ γ– Φσλ g̃σλ g– gσλ=

g̃σλ

Φ̃σλ

g̃σλ γ̃σλ Φ̃σλ
.+=

Jσλ m2Φ̃σλ
+– 16π g

γ
--- Tσλ tg

σλ+( ),=

tg
σλ

Jσλ DµDν–=

× γµνg̃σλ γσλ g̃µν γνσg̃λµ– γµλ g̃σν–+( ).

Dλ Jσλ 0=

g– Rµν 1
2
---gµνR– 

 

+
m2

2
------ g̃µν g̃µαgνβ 1

2
--- g̃µνgαβ– 

  γαβ+ 8πTµν.=
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of a Minkowski space. From Eq. (10), we obtain

(11)

According to Eq. (7), we have

(12)

Substituting relation (12) into Eq. (11), we arrive at

(13)

On the basis of the general structure for the
Lagrangian LM of the medium, we can find the strong
identity [2, 3]

(14)

which holds independent of the equations of motion. In
the case when the equations of motion for the medium

(15)

are valid, the equality

(16)

takes place. Therefore, in accordance with Eq. (13), the
covariant law of conservation for the energy–momen-
tum of matter and of the gravitational field taken
together can be written in the form

(17)

Thus, in the GRT, covariant law (1) leads to the nonco-
variant law of conservation (2) for the energy–momen-
tum of both matter and the gravitational field, as well as
to the introduction of a certain noncovariant quantity,

namely, the pseudotensor  of the gravitational field.
At the same time, according to the GRT, covariant
law (1) combined with the gravitational equations in the

m2γνλ DσΦ̃σλ
16π∇ µTν

µ.=

m2Φ̃σλ
Jσλ 16π g

γ
--- Tσλ tg

σλ+( ).+=

Dσ
g
γ
--- Tσλ tg

σλ+( ) γνλ ∇ µTν
µ.=

∇ µTν
µ –Dσ

δLM

δΦA

----------FA  ν;
B  σ; ΦB 

  δLM

δΦA

----------DνΦA,–=

σLM

δΦA

----------- 0=

∇ µTν
µ 0=

Dσ g– Tσλ tg
σλ+( )[ ] 0.=

τµ
ν

form (10) or (7) leads exactly to the covariant law of con-
servation for the energy–momentum of both matter and
the gravitational field taken together in form (17). In

expression (17), the gravitational component 
additively enters into expression (17) under the sign of
the covariant derivative in a Minkowski space. At the
same time, in (16), this component disappears as it par-
ticipates in the formation of an effective Riemannian
space. Therefore, under the sign of the covariant deriv-
ative in a Riemannian space, only the density of the ten-
sor for the energy–momentum of matter in this space is
present. The field approach to gravitation, which is real-
ized in the RGT, results in another (compared to the
GRT) system of gravitational equations. This approach
also preserves the fundamental principles, namely, the
laws of conservation for both the energy–momentum
and the angular momentum. This is the reason why,
according to the RGT, the gravitational energy is local-
ized, as well as all other forms of energy. In the GRT,
the problem is still discussed [4] as to whether the grav-
itational waves carry energy. According to the RGT,
gravitational radiation must exist, and gravitational
waves must carry energy.

In conclusion, we note that an effective Riemannian
space that arises due to the action of the gravitational
field has only a simple topology as far as the gravita-
tional field develops in a Minkowski space.
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1. THE ESSENCE OF THE PROBLEM

The design parameters of thin electric dipoles are
generally calculated by solving the Pocklington and
Harrington integro-differential equations, which may
be combined with the Hallen integral equation [1–4].
The most popular approach is based on the moment
method and its modifications defined by specific
choices of basis functions. In our view, the main disad-
vantage of this approach lies in the fact that solutions to
the integral equations are sought by replacing the orig-
inal singular kernels written in implicit form with regu-
lar (Fredholm) ones. This leads to ill-posed problems
for Fredholm integral equations of the first kind [5].
Both the mathematical verification and physical valida-
tion of the resulting solutions remain issues open to dis-
cussion. In [6], a new class of basis functions was pro-
posed for solving equations of this type. These func-
tions were called the eigenfunctions of an integro-
differential operator. However, the use of such functions
substantially complicates the algorithm of the numerical
solution.

In this paper, we continue the analysis presented
in [7, 8] and based on the mathematical theory of sin-
gular integral equations (SIEs). This was employed for
analyzing superhigh-frequency and extremely high-fre-
quency strip-slotted waveguides [9, 10] to derive an SIE
for the longitudinal derivative of the dipole surface-cur-
rent density.

2. STATEMENT OF THE PROBLEM 
AND THE SINGULAR INTEGRAL EQUATION

We consider a thin-cut conductor with a total length
2L and radius a excited in its gap by means of a high-
frequency oscillator (see Fig. 1). The governing equa-
tions are derived here for the conventional model of a
thin electric dipole (a ! L, λ). In this model, both the
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longitudinal current density  and the equivalent mag-
netic current density in the gap are represented by a fil-

amentary current Iz(z) = 2πa (z), which is assumed to
be continuous in the gap region and to vanish at the
dipole’s ends. End currents are ignored. The electric
field component Ez induced by the filamentary current
is zero on the entire cylinder surface (ρ = a, z ∈  [–L, L])
besides the gap region 2b, where it is identified with the
extraneous electric field Eext(z).

When the radiation emitted by the dipole is indepen-
dent of the angle ϕ, the physical model adopted here is
described by the Pocklington equation [1–4]

(1)

where R = , γ2 = k2εµ (k =  is the wave

number), ε is the relative permittivity of the ambient

η z
e

η z
e

d2

dz2
------- γ2+ 

  Iz z'( )
4πR
-----------eiγR zd

L–

L

∫ iωε0εEext,–=

z z'–( )2 a2+
ω
c
----

ρ
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L0 + b

L

L0

–L

2a

z

Fig. 1.
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medium, µ is its relative permeability, and ε0 is the free-
space permittivity.

Using a well-known representation of the Green’s
function in Eq. (1) (see [11]),

(2)

where J0(x) is the zeroth-order Bessel function of the
first kind, we obtain the following integral equation:

(3)

with

(4)

Relation (3) is an inhomogeneous integral equation of
the first kind.

It is evident that the integrand in the expression for
the kernel G1(z, z'), which is contained in Eq. (3), lin-
early increases with h as h  ∞, and the integral in
expression (4) is divergent. In order to eliminate the
singularity in kernel (4), we turn from the function Iz(z)

to its derivative  =  in Eq. (3). Since the current Iz

vanishes at the dipole ends [Iz(L) = Iz(–L) = 0], we can
write

(5)

Using (5), we rewrite Eq. (3) as

(6)

where

(7)

Taking the limit of the function g(h) as h  ∞,
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we consider the asymptotic form of the kernel:

(8)

Using the representation

(9)

where

and E(k) is the complete elliptic integral of the second
kind, we rewrite Eq. (6) as the following SIE:

(10)

Here,

(11)

U(z) = 2bEext(z) is the voltage over the dipole gap, and

Zc =  is the characteristic ambient impedance.

Relation (10) is an SIE of the first kind for the lon-
gitudinal derivative of the dipole current. Here, K1(z, z')
is a regular kernel, because k  1, E(k)  1,
α(z, z')  η ln |z – z' |(z – z'), and   0

as z  z' (η is a constant factor).

3. SOLUTION 
OF THE SINGULAR INTEGRAL EQUATION

To solve the SIE, we turn to the dimensionless vari-
ables t and t ' defined by setting z = Lt and z ' = Lt ' and
rewrite Eq. (10) in the form (t ∈  [–1, 1]):

(12)
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where

(13)

We solve Eq. (12) using the inversion formula for
the Cauchy integral [4]. As a result, we have

(14)

where

and a0 is an unknown constant determined by setting Iz

to zero at the dipole’s ends, i.e., by the condition

According to this relation, the total charge accumulated
on the dipole must also vanish. Equation (14) is an
inhomogeneous Fredholm integral equation of the sec-
ond kind, and its numerical solution is easy to find.
Equation (14) has been analyzed numerically by the
method of mechanical quadratures [12].

Figure 2 shows typical distributions for the real and
imaginary parts of the dipole current, Re{Iz(t)} and
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Im{Iz(t)}, calculated for  = ,  = , and  = .

The solid and dashed curves represent Re{Iz(t)} and
Im{Iz(t)}, respectively. The results obtained in the present
study are in good agreement with those reported in [6, 7].

CONCLUSIONS

The proposed approach, based on the mathematical
formalism of the SIE theory, was used to derive a new
singular integral equation with the intent to calculate
the design parameters of a thin electric dipole. The SIE
derived here makes it possible to analyze the perfor-
mance of a thin electric dipole within the framework of
a well-posed problem. In particular, the SIE can be
solved without dealing with any manifestation of rela-
tive convergence of the type encountered in analyses of
Fredholm equations of the first kind [4, 5], which
include the known Hallen equation. The new SIE can
serve as a basis for obtaining approximate analytical
expressions for dipole currents. The method developed
above provides an efficient tool for calculating the input
conductance and input impedances of dipole antennas.
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In recent years, the interest in studies of ferroelectric
magnets, i.e., crystals with the perovskite structure, has
grown considerably. These crystals demonstrate the
coexistence of magnetic and ferroelectric long-range
order [1–3]. Most of all, this interest is caused by the
fact that such crystals are very promising materials for
applications in modern electronics [4].

In this paper, we analyze the possibility of enhanc-
ing parameters of the magneto-elastic and magneto-
electric coupling in antiferromagnetic structures with
the orthorhombic symmetry (the D2h spatial group) by
the exchange interaction.

The system under investigation is described by the
Hamiltonian

(1)

which allows for the energies of magnetic (M), elastic
(U), and ferroelectric (F) system parts and their interac-
tion energies. In the Hamiltonian of the magnetic sub-
system placed into an external magnetic field, energies
of uniform and nonuniform exchange interactions and
relativistic interactions are taken into account. The elas-
tic subsystem is considered in the harmonic approxima-
tion, and the Hamiltonian of the ferroelectric subsystem
allows for the inverse dielectric susceptibility and cor-
relation properties. The magnetoelectric energy is natu-
ral and relativistic.

Hamiltonian (1) is written in the representation of
the approximate secondary quantization. To this aim,
the magnetic moments Mα of sublattices and the vector
of elastic displacements u are expressed in terms of the

Holstein–Primakoff operators  and aα and of the

phonon creation and annihilation operators , ,
respectively (see, e.g., [5]). We also represent the devi-
ation of the polarization vector from the equilibrium

H HM HU HF HMU HMF HFU,+ + + + +=

aα
+

bks
+ bks
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value in the form

where  is the unit vector of the ferroelectric polariza-

tion,  is the energy of ferroelectric excitations, and
δ is the polarization index of a transverse vibration.

Furthermore, for the diagonalization of the Hamilto-
nian of the magnetic and ferroelectric subsystems, we
employ the Bogolyubov canonical transformations

Thus, we can write out Hamiltonian (1) in the form

where  (  = 1, 2),  (s = 1, t1, t2), Ekδα (δ = 1, 2;
α = 1, 2) are energies of the corresponding branches of
spin waves, elastic waves, and ferroelectric waves.
Parameters of the magnetoelastic and magnetoelectric
interactions are determined by the expressions

(2)
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Here, the first and second terms describe, respectively,

the piezomagnetic effect and the magnetostriction; 

is the unit vector of the phonon polarization; and ,

 are the transformation coefficients for the  oper-
ators with respect to the proper representation

(3)

where the first and second terms describe, respectively,
the linear magnetoelectric effect and the magnetic
anisotropy induced by the vector P.

The parameter of the electroelastic coupling has a
simple form:

(4)

where wijm is the tensor of piezoelectric constants and
v ijmn is the tensor describing the coupling of inhomoge-
neities for the polarization and deformation.

To find the eigenfrequencies of coupled ferroelectric
magnetoelastic waves, we use the equations of motion
for the secondary-quantized operators. Within the accu-
racy to the terms quadratic over coupling coefficients,
we derive the following dispersion equation:

We now consider the interaction of spin and elastic
waves for crystals of orthorhombic symmetry in an
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external magnetic field. For simplicity, the piezomag-
netic effect is ignored. Depending on the direction of
the wave vector k, we find according to (2) for certain
particular cases [here and below, we omit zero (in our
approximation) coupling coefficients].

1a. The case k || Z:

where

The exchange interaction enhances by a factor of 
the coupling of the second spin branch with the first
transverse phonon branch.

2a. The case k || Y:

Here, the coefficient for the coupling of the first spin
branch with the second transverse phonon branch is
enhanced due to the exchange interaction.

3a. The case k || X:

In this case, the couplings of the first and second spin
branches with the t1 and t2 transverse phonon branches,
respectively, are enhanced by the exchange interaction.

We now consider the magnetoelectric interaction (3).
This interaction is different depending on the direction
of the k vector with respect to the magnetizations and
polarizations of sublattices for various magnetic and
ferroelectric waves. For simplicity, we ignore the linear
magnetoelectric effect.
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1b. The case k || Z:

The coupling of the spin branches with the first and sec-
ond ferroelectric branches is enhanced by a factor of

 due to the exchange interaction.

2b. The case k || Y:
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Coupled ferroelectric magnetoelastic waves.
The coupling of spin branches with the first and the sec-
ond ferroelectric branches is enhanced by a factor of

 due to the exchange interaction.

3b. The case k || X:

The coupling of spin branches with the first and the sec-
ond ferroelectric branches is enhanced by a factor of

 due to the exchange interaction. 

Thus, the study of the magnetoelectric interaction in
the antiferroelectric antiferromagnets with orthorhom-
bic symmetry shows that the interactions of individual
branches of spin waves and ferroelectric waves in the
antiferroelectric antiferromagnets can be enhanced by
the parameter of the exchange interaction that results in
the increase in the corresponding coupling coefficient

by a factor of .

The general pattern of the spectrum of coupled fer-
roelectric magnetoelastic waves for the case of the
propagation of a wave along the Y-axis in the absence of
an external magnetic field is presented in the figure. The
dependences for the frequencies of noninteracting mag-
netic and ferroelectric waves and coupled ferroelectric
magnetoelastic waves on the wave vector are shown by
dashed and solid lines, respectively. As is clearly seen
from the figure, in various regions the coupled ferro-
electric magnetoelastic wave corresponds to eigen-
modes of various subsystems. Therefore, moving along
a subsystem, it is possible to obtain spin waves, sonic
waves, ferroelectric waves, etc.

Estimates of the interaction parameters show that

 ≈ 10–2 and  ≈ 10–1; i.e., a gap in the spec-

trum of spin waves, which is caused by the magneto-
electric interaction due to a significant dielectric con-
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stant exceeds by more than an order of magnitude the
gap determined by the magnetoelastic energy.

Another important conclusion consists in the fact
that only the coupling of the lower acoustic branch of
spin vibrations with ferroelectric and elastic modes can
be enhanced by the exchange interaction.
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In this study, the shape of an elastic coating upon its
debonding from a substrate is theoretically determined.
On the basis of this solution, we develop a method of
determining the debonding energy (fracture toughness)
of the coating. The energies of debonding a carbon film
from a glass and a cobalt film from a raw mica were
measured. The debonding toughness is close to the
energy of the breaking of atomic bonds. This fact made
it possible to conclude that the debonding of films of
nanometer thickness differs fundamentally from the
fracture of macroscopic samples.

Recently, the mechanical behavior of two-layer
composites composed of a substrate and a thin coating
of nanometer thickness have been vigorously studied.
Coatings can be used for various purposes, for example,
as a shielding layer, for imparting special optical prop-
erties, and for storing information. Unfortunately, due
to an insufficient adhesion bond, a coating can debond
from the substrate. The coating usually either does not
debond at all or debonds altogether. In [1], an unusual
debonding mechanism involving the progressive inter-
growth of sinusoidal-shaped debondings was found.

The fracture including the adhesion requires the
expenditure of energy on forming a new surface. In
samples of macroscopic and microscopic sizes, the typ-
ical fracture energy is from hundreds to several thou-
sands of joules per square meter. The fracture energy is
the sum of two components, the energy of the breaking
of intermolecular bonds and the energy spent on plasti-
cally deforming the material near the fracture plane [2].
In metals and polymers, the energy of plastic deforma-
tion is three–five orders of magnitude higher than the
energy of the breaking of chemical bonds. For this rea-
son, the bond-breaking contribution is considered as
negligible. The fracture energy decreases with the
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thickness of samples [3]; however, these data were
available only for films of thickness from tens of
micrometers to several centimeters. For the samples
with a thickness of several nanometers, the fracture
energy could not be previously measured. This study is
devoted to solving this problem.

We studied two composites. The first was a glass
plate 0.5 mm thick covered by a carbon layer 60 nm
thick, and the second was a mica plate covered by a
cobalt–carbon layer 160 nm thick. The cobalt-to-car-
bon mass ratio was 80 : 20. The surface of composites
was studied by a Nanoscope-2 atomic-force micro-
scope (Digital Instruments, Santa Barbara, Calif.) in the
contact-force mode. The electron-microscope investi-
gations were carried out on a Hitachi S-520 scanning
electron microscope.

Figure 1 shows the image of the glass/carbon com-
posite obtained by the atomic-force microscope. The
single sinusoidal-shape debonding, similar to those
described in [1], can be observed at the surface. The
profile of the surface along the dashed line is shown in
the upper part of the figure. The width and height of this
debonding are approximately 1.5 and 0.1 µm, respec-
tively.

Figure 2 shows the similar image of the mica surface
covered by a Co–C layer. In this case, the debonding is
larger and its width is approximately equal to 8 µm.

Upon bending, the coating length increases. This
behavior indicates that, upon debonding and bending,
the coating film was biaxially compressed. As a result
of bending, the compressive stress decreases. In this
case, the bending is accompanied by the adhesion frac-
ture of the coating/substrate interface, in contrast to the
classical case of the loss of stability of a compressed
elastic rod.

Below, we solved the problem of the debonding of a
thin elastic coating under conditions of uniaxial com-
pression along the X-axis in Fig. 3. We seek a coating
shape upon the loss of stability (bending). The defor-
mation of the debonded coating is described by the equa-
tions for bending an elastic beam. The beam ends are
considered as fixed, and the bending is assumed to be
small. The latter condition is satisfied if the debonding
height of 2A is small compared to its length L (Fig. 3).
002 MAIK “Nauka/Interperiodica”
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It is assumed that the debonding begins with the
appearance of a small defect (a debonding crack). Then,
the coating loses its stability (bends) under the action of
the compressive force. The bending of the rod leads to a
decrease in the compression energy and an increase in
the bending energy. If the sum of the energies of com-
pression and bending decreases, the coating bends.

Upon the loss of stability, tensile stresses appear at
the crack tip between the substrate and the coating and
tend to separate the coating from the substrate. The
original crack can spontaneously grow if an elastic-
energy decrease caused by the crack growth exceeds
the energy of forming a new surface. When the crack
attains a certain length, the compressive stress in the
coating reduces so that a decrease in the compression
energy ceases to compensate the expenditure of energy
on debonding with the further increase in length. As a
consequence, the crack comes to rest.

We choose the coordinate axes so that the plane Y = 0
coincides with the coating plane and denote the coordi-
nates of the two ends of the crack as x1 = 0 and x2 = L
(L is the length of the debonding crack). The bending

10000 nm

30

0 300
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90

nm

600 900 1200 1500 1800 nm

Fig. 1. (Lower part) The coating surface image obtained by
an atomic-force microscope and (upper part) the corre-
sponding profile for the glass/carbon composite. Here and
in Fig. 2, the surface profile corresponds to the dashed line.
The coating thickness is 60 nm.
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of an elastic beam is described by the differential equa-
tion [4, 5]

(1)

where y(x) is the displacement of the beam elements

IE
d4y

dx4
-------- F

d2y

dx2
--------– 0,=

10000 nm

0.2

0 2 

0.4

0.6

µm

6 10 µm

Fig. 2. Surface of mica covered by a 160-nm-thick Co–C
layer.

2AF
L X

Y

F

Fig. 3. Scheme of debonding.
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(coating) from the plane Y = 0 as a result of bending, I =
wh3/12 is the moment of inertia of the beam at bending,
w is the beam width along the third coordinate Z, h is
the thickness of the coating, E is its elastic modulus,
and F is the compressive force. For the beam with fixed
ends, the boundary conditions have the form

y = 0,  = 0, for x = 0 and x = L.

The solution of Eq. (1) with allowance for these
boundary conditions has the form

(2)

where A is the half maximum debonding height and k =
2π/L. Substituting solution (2) into Eq. (1), we deter-
mine the compressive force for the coating:

(3)

Equation (3) describes the compressive force for the
loss of stability of the rod with the fixed ends. The
energy of elastic strain for a bent beam is the sum of
energies of compression and bending. The energy of
compression is equal to

where σ = F/S is the compressive stress, σ2/2E is the
density of elastic energy, and S = wh is the cross section
of the debonded coating. On the basis of Eq. (3), we
obtain

(4)

The bending energy for an elastic beam is found by
integrating 

and, with allowance for Eq. (2), we obtain

. (5)

The constant A is determined as follows. In the ini-
tial state, the coating is compressed. A length of a small
element of the debonded bent coating is equal to

Integrating this relation with allowance for Eq. (2)
under the assumption that the debonding amplitude is

dy
dx
------

y A 1 kxcos–( ),=

F
4π2IE

L2
---------------.=

Wc
σ2

2E
-------SL,=

Wc
8π4I2E

L3S
-----------------.=

Wb
EI
2

------ y2d

x2d
-------- 

 
2

x,d

0

L

∫=

Wb
4π4A2EI

L3
---------------------=

dL 1 y'2+ dx.=
A ! L,  ≈ 1 + y'2/2, we obtain

. (6)

The compressive strain of the beam upon its bend-
ing decreases by the value (L1 – L)/L = A2k2/4. The
strain upon the bending is ε = ε0 – A2k2/4, where ε0 is
the strain before the bending. With allowance for
Eq. (3), we obtain

(7)

It should be noted that 4I/S = h2/3, and the second
term under the radical sign in Eq. (7) can be neglected
if the debonding height 2A is much larger than the deb-
onding thickness. Now, we analyze the solution
obtained. In order that the debonding lose its stability,
the compressive force must exceed the critical value
determined by Eq. (3). This condition results in the ine-
quality

(8)

where L0 is the original length of the debonding defect.
Thus, the initial defect must be relatively large in order
for the coating to be bent.

We consider the behavior of debonding upon a loss
of stability. The strain energy of the bent coating is
equal to the sum of energies of compression and bend-
ing. Furthermore, the total energy of the system
involves the energy of forming a new surface,

(9)

where GIc is the energy (toughness) of adhesion frac-
ture spent on the formation of 1-m2 debonding. The
debonding grows spontaneously if the total energy

decreases with increasing its length L and  < 0. Dif-

ferentiating Eq. (9), we obtain

(10)

The crack comes to rest when this inequality goes
over into the equality. With allowance for Eq. (7), we
obtain

(11)

We pass to the analysis of experimental data on the
basis of the above theory. It should be noted that the
exact value of the elastic modulus of the deposited car-
bon film is unknown. Assuming that the modulus is

1 y'2+

L1 L
A2k2L

4
---------------+=

A
ε0L2

π2
---------- 4I

S
-----– .=

L0
π2h2

3ε0
----------> ,

W
4π2ε0EI

L
-------------------- 8π4EI2

SL3
----------------- GIcwL,+–=

dW
dL
--------

π2ε0Eh3

3L2
-------------------- π4Eh5

6L4
--------------- GIc 0.<+ +–

GIc
π4Eh3A2

3L4
--------------------- 1 h2

6A2
---------– 

  .=
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within 200–400 GPa [6] and using the values L =
2.13 µm and A = 0.09 µm (Fig. 1), we obtain the frac-
ture toughness GIc = 1.7–3.4 J/m2. This value corre-
sponds to the energy 2.8–3.0 J/m2 of the brittle fracture
of glass [7]. A similar calculation for the composite
based on mica for L = 9.2 µm, A = 0.31 µm (Fig. 2), h =
160 nm, and the cobalt elastic modulus E = 209 GPa
gives GIc = 0.36 J/m2.

For the loss of coating stability, inequalities (8) and
(10) must be satisfied. Neglecting the second term in
inequality (10), we obtain

(12)

Double inequality (12) physically means that too
short debondings do not lose stability, whereas too long
debondings do not grow. This inequality can be satis-
fied only when the left-hand side of Eq. (12) is less than
the right-hand side:

(13)

Otherwise, inequality (12) cannot be satisfied for
any length of the initial debonding. Inequality (13) pro-
vides the important conclusion that there is a critical
coating thickness below which its debonding is impos-
sible. The critical coating thickness for the carbon/glass
composite is estimated as 30 nm.

Thus, in this study, we pioneered in measuring the
debonding energy for a nanometer-thick film. The val-
ues obtained for fracture toughness are close to the
energy of the breaking of atomic bonds. Consequently,

π2h2

3ε0
---------- L2 π2ε0Eh3

3GIc

--------------------.< <

GIc ε0
2Eh.<
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the contribution of the plastic-strain energy of materials
can be neglected and the debonding of a nanometer-
thick coating differs fundamentally from the adhesion
fracture of two plates of macroscopic sizes.
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1. MOTION OF A VARIABLE BODY

We consider the problem of a body with a rigid shell
moving in an infinite volume of a homogeneous perfect
fluid. The fluid motion and the fluid in itself are
assumed, respectively to be nonrotational and quiescent
at infinity. However, in contrast to the classical formu-
lation of the problem on the body motion, we consider
that the mass geometry of the body can vary under the
action of internal forces according to a law known a
priory. For example, a material point moves inside a
case in accordance with a given law.

We assume that the body and the fluid were immo-
bile at the initial time moment. It is of interest whether
or not it is possible to displace the body’s case from the
given position to an arbitrary preassigned position by
means of an appropriate variation of body-mass geom-
etry (under the action of internal forces). At first glance,
this seems to be impossible, because the center of mass
for the body–fluid system is at rest. However, this argu-
ment cannot be taken into account. Firstly, the center of
mass of an infinite volume of fluid is uncertain; sec-
ondly, we are interested only in the displacement of the
body’s case but not of the fluid.

We formulate our principal result for a body whose
boundary has three mutually orthogonal planes of sym-
metry. It turns out that, if not all the associated masses
of the body (depending only on the body shape) are
equal, a driving force can be produced inside its case
due to the displacements of points. Moreover, the body
can be displaced from an arbitrary position to another
arbitrary position in the case of an appropriate control
of the mass geometry. We note that the property of the
total body controllability is lost if all the associated
masses coincide.

The problem under consideration is a particular case
of a more general problem on the motion of a deform-
able body in a fluid, which is of a substantial impor-
tance in studying the mechanism of swimming fish and
also the cavitation phenomenon. The first results in this
field were obtained by Taylor [1] and Lighthill [2].
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They considered motion in a viscous fluid. The body–
fluid energy exchange takes place because of the vortex
separation from sharp edges of the body and also due to
an inertial action of the fluid onto the body. In [3], the
model problem on dynamics of a deformable plate in a
fluid was considered. The proper motion of the plate
represents a running wave. An estimate of the effect of
wave parameters on the value of a driving-force was
made. A qualitative explanation of the mechanism for
the motion of fish on the basis of a model of motion in
a solid channel was given in [4].

In this connection, the question arises as to whether
the motion of the body is possible at the expense of
deforming its own boundary in a perfect fluid perform-
ing a nonrotational motion. The positive solution to this
problem is given in [5]. A similar problem was also
considered in [6]. The approach used in [5] was
repeated in [7]. In [8], the possibility of producing a
driving force was shown for the case when a variable
plate of infinite length moves in a perfect nonrotational
fluid. This problem was considered most rigorously
in [9]. It is assumed that just as after the deformation
(without the fluid), the center-of-mass position and that
of the principal axes are invariable. The force and the
moment acting from the fluid onto the body can be
found using the generalized Lagally theorem [10].

In our study, we investigate a more complicated
problem on the possibility of the gradual motion of a
body with a rigid boundary in a perfect fluid without
vortices.

2. THEOREM OF CONTROLLABILITY

Thus, we consider the motion of a body with three
orthogonal planes of symmetry. Inside the body, a
material point of mass m can move (under the action of
internal forces). We relate to the body a mobile refer-
ence system Oξηζ  so that the kinetic energy of the
body–fluid system can be represented in the form

Here, v  is the velocity of the point O, ω is the angular
velocity of the body with respect to the mobile axes,

T ' Av v,( )
2

--------------------
Cω ω,( )

2
--------------------.+=
002 MAIK “Nauka/Interperiodica”
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A = diag(a1, a2, a3), and C = diag(c1, c2, c3); all the
constants ak and ck are positive.

The motion of the point with mass m is assigned by
the certain known functions ξ(t), η(t), and ζ(t). The
components of the absolute velocity of this point in the
mobile axes ξηζ  have the form

Here, v 1, v 2, v 3(ω1, ω2, ω3) are the components of the
vector v(ω).

The total kinetic energy of a variable body is

The theorems on the variation of the momentum and
the angular momentum with respect to the mobile axes
yield the generalized Kirchhoff equations

(2.1)

According to [9], this type of equation also describes
the motion of a body with a variable boundary.
In [5−7], equations (2.1) were not used explicitly.

Equations (2.1) need to be supplemented by kine-
matic relations. Let θ, ϕ, and ψ be the Euler angles
defining the orientation of a mobile trihedron (ξηζ )
with respect to the immobile system (xyz). Let x, y, and
z also be the coordinates of the point O. We now use the
kinematic Euler formulas

(2.2)

and the formulas for the passage from a mobile trihe-
dron to the immobile one

(2.3)

The expressions for the elements of matrices B and D
(D is the orthogonal matrix) in terms of the Euler angles
are well known (see, for example, [11]). Equations (2.1)–
(2.3) represent the total set of equations of motion for
the system under consideration.

We assume that the system begins to move from the
quiescent state. In this case, the integrals of momentum
and of the angular momentum take the form

By virtue of the positive definiteness of the form T ',
these equations can be solved with respect to v  and ω.

u1 v 1 ξ̇ ω3η– ω2ζ ,+ +=

u2 v 2 η̇ ω3ξ ω1ζ ,–+ +=

u3 v 3 ζ̇ ω1η ω2ξ .–+ +=

T T '
m u1

2
u2

2 u3
2+ +( )

2
-------------------------------------.+=

∂T
∂ω
------- 

 
.

ω ∂T
∂ω
-------, v

∂T
∂v
-------,+ + 0,=

∂T
∂v
------- 

 
.

ω ∂T
∂v
-------,+ 0.=

θ̇ ψ̇ ϕ̇, ,( )T
B p q r, ,( )T=

ẋ ẏ ż, ,( )T D v 1 v 2 v 3, ,( )T .=

∂T
∂v
------- ∂T

∂ω
------- 0.= =
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Substituting the obtained expressions into kinematic
relationships (2.2) and (2.3), we arrive at 

(2.4)

The components of the six-dimensional vectors U, V,
and W depend parametrically on the functions ξ(t), η(t),
ζ(t), and the Euler angles, as well as on the coefficients
of the form T '. Equations (2.4) represent a closed set of
first-order differential equations on the e(3) group of
motions in three-dimensional space. The functions ξ, η,
and ζ serve as controls. The position of a body is deter-
mined by six parameters (x, y, z, θ, ϕ, ψ) = z, z ∈  e(3).

Remark. The indicated reduction is an example of
a more general construction for mechanical systems
with a configuration space in the form of the Lie group
and the left-invariant kinetic energy. If the motion pro-
ceeds without the action of external forces, the role of
integrals for the momentum and for the angular
momentum is played by the total set of Noether inte-
grals [12].

The system under consideration is called com-
pletely controllable if, for an arbitrary ε > 0 and two
arbitrary positions z1 and z2 of the body, it is possible to
find the piecewise smooth functions ξ(t), η(t), and ζ(t)
with t1 ≤ t ≤ t2 such that

The time t2 – t1 of the motion substantially depends on
the parameter ε.

Theorem. The system is quite controllable if and
only if not all the associated masses a1, a2, and a3 are
equal to each other.

Indeed, x, y, and z are limited as functions of time if
a1 = a2 = a3 . In turn, this fact follows from the immobil-
ity of the center of mass for the system of the body–
fluid–point of the integral in equations (2.4):

For proving the sufficiency, we introduce the wid-
ened nine-dimensional space M with the coordinates x,
y, z, θ, ϕ, ψ, ξ, η, and ζ.

Equations (2.4) determine the distribution of three-
dimensional tangential planes. We also introduce three
independent admissible vector fields V1, V2, and V3 with
the components (U, 1, 0, 0), (V, 0, 1, 0), and (W, 0, 0, 1),
respectively. Following the Rashevskiœ–Chow
approach [13], we consider nine vector fields

(2.5)

where [ , ] is the Jacobi bracket. If a2 ≠ a3 , for small val-
ues of ξ, η, and ζ, these vectors turn out to be linearly
independent at each point of e(3).

ẋ ẏ ż θ̇ ϕ̇ ψ̇, , , , ,( )T
U ξ̇ V η̇ W ζ̇ .+ +=

ξ t( ) ε, η t( ) ε, ζ t( ) ε,≤≤≤

z t1( ) z1, z t2( ) z2.= =

a m+( ) x y z, ,( )T mD ξ η ζ, ,( )T+ const.=

V1 V2 V3 V1 V2,[ ] V1 V3,[ ] V2 V3,[ ] ,, , , , ,
V1 V1 V2,[ ],[ ] V3 V1 V3,[ ],[ ] V2 V2 V3,[ ],[ ] ,, ,
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Indeed, for ξ = η = ζ = 0, the determinant of the
matrix 9 × 9 composed of the components of vectors
(2.5) is equal to

Here, P(a1, a2, a3) and Q(a1, a2, a3) are polynomials
with positive coefficients. Since ak > 0, this expression
vanishes only for a2 = a3 .

If commutators (2.5) are chosen in a somewhat dif-
ferent way, the independence condition a2 ≠ a3 trans-
forms into the condition a1 ≠ a2 , or a1 ≠ a3 .

It remains to utilize the Rashevskiœ–Chow theorem,
according to which two arbitrary points of the con-
nected domain in M given by the inequalities |ξ| ≤ ε,
|η| ≤ ε, and |ζ| ≤ ε (ε is small) can be connected by the
piecewise smooth curve composed of segments from
the integral curvilinear fields V1, V2 , and V3 .

3. THE GUARANTEED CONTROL

We indicate an explicit method of controlling the
mass geometry of a body inside a rigid shell, which
makes it possible to transfer the body with unequal
associated masses from one position to another arbi-
trary position. For this purpose, we initially consider an
auxiliary problem on a gradual plane-parallel body’s
motion, when one of the symmetry planes (for exam-
ple, ζ = 0) always remains invariable with time. The
material point m also moves in this plane.

The group e(2) serves as a configuration space; the
generalized coordinates are x, y, i.e., the coordinates of
the body’s point O and the rotation angle ϕ. To sim-
plify the calculation, we consider the limiting case as
a1  0, a2  ∞, and c3 tends to a finite limit. The
possibility of such a passage to the limit was substanti-
ated in [14]. In this case, equations (2.4) take the fol-
lowing form:

–2a3
2m 3a3

2
a2– a2

2m 3a3a2
2 a3a2m+ + +( )P a1 a2 a3, ,( )

Q a1 a2 a3, ,( )c1
2c2

2
c3

2 θsin
--------------------------------------------------------------------------------------------------------------------------------.

ξ

–ε

–ε

ε

ε

η

Figure.
(3.1)

where κ = .

Let the point m move with a constant (in its modu-
lus) velocity along a closed curve shown in the figure.
Using (3.1), we can calculate the increment of the coor-
dinates for a period:

(3.2)

Here, µ = . For small ε ≠ 0, it is evident that

∆y ≠ 0. Thus, on the average, the body is displaced for-
ward by its wide side. By virtue of analyticity, this con-
clusion is also retained for almost all values of the
parameters.

Remark. For the first two equations of set (3.1), we
can see that motion of the body is subjected to a nonin-
tegrable constraint sinϕ – cosϕ = 0. However, this
motion proceeds not in accordance with laws of non-
holonomic mechanics but according to the principles of
vaconomic mechanics developed in [14].

Let the body occupy a given position at the time
moment of t1 , and its center of mass coincide with the
geometric center (the point O); in particular, let the
material point m for t = t1 be at the point O1 = O. Using
rotations of symmetric flywheels (gyrodines), the body
can be turned around the point O1 and guided to an arbi-
trary preassigned position. This problem is well studied
from various standpoints. If a1 ≠ a2 , we turn the body in
order for the plane of symmetry ζ = 0 to involve a pre-
assigned point O2 at which the body’s center must be at
the time moment t2 .

We now use formulas (3.2) valid for the plane-paral-
lel motion. It is clear that ∆y  0 (as ε3) when ε  0.
Hence, selecting a small ε, it is possible to attain the sit-
uation when the spacing between the points O1 and O2

equals n∆y, where n is a certain integer. Thus, if the
point m starting from the point O makes exactly n rota-
tions along the eight-shaped curve shown in the figure,
then the body’s center occupies the position O2 . In this
case, the point m turns out anew at the point O.

After this, it is necessary once more (for example,
using symmetric flywheels) to turn the body around the
point O2 and to orient the body in a preassigned way.

ẋ v ϕ , ẏcos v ϕ , ϕ̇sin ω,= = =

v ξ̇ κξηη̇
1 κξ 2+
------------------+ 

  , ω–
κξη̇

1 κξ 2+
------------------,–= =

m
c3
----

∆x 0, ∆y 2ε 1 µ µsin
µ

-----------–sin+ 
  ,–= =

∆ϕ 0.=

κε2

1 κε2+
-----------------

ẋ ẏ
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This study deals with a new approach to the con-
struction of effective constitutive relations for porous
nonlinearly elastic materials subjected to finite defor-
mations. The approach allows for superimposing the
deformations when pores are formed after a prelimi-
nary loading. The effective constitutive relations based
on this approach are shown to remain unchanged in the
case of a superimposed rigid motion.

The construction of the effective constitutive rela-
tions is performed on the basis of well-known general
principles [1, 2]. We isolate in a material a certain rep-
resentative volume (for the two-dimensional case, this
is a certain area) and, studying its mechanical behavior
under loading, we can determine properties of the
material as a whole. For this volume (area), the static
problem of nonlinear elasticity is solved for a given
stress at the boundary. Furthermore, deformations and
stresses are averaged over the representative volume
(area), and the effective constitutive relations are con-
structed as a dependence between averaged deforma-
tions and averaged stresses.

When solving problems on effective properties of
inhomogeneous materials, a question arises: how to
define an effective material in order that this definition
would have both a clear physical meaning (for use in
experiments) and a sufficiently simple mathematical
representation. In addition, in the process of seeking
average deformations of porous media, a problem
arises associated with the fact that the deformations are
not defined in the interior of pores (this is the difference
between porous materials and those with elastic inclu-
sions). In the case of small deformations, these issues
are solved in a rather simple manner [1, 3, 4]. For exam-
ple, the deformation tensor of an effective material is

* Moscow State University, 
Vorob’evy gory, Moscow, 119899 Russia

** Faculty of Applied Mathematics and Informatics, 
Tver State University, Sadovyœ per. 35,
Tver, 170000 Russia
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described by the relation

After using the Gauss–Ostrogradskiœ formula, this rela-
tion is reduced to the form

where V is the representative volume and Γ is its bound-
ary. Then, for porous materials, it is possible to for-
mally find the average deformations inside pores [3]
under the assumption that the pores are filled with a cer-
tain elastic material whose deformations are such that
displacements of boundary points of this special mate-
rial coincide with those for corresponding points of the
matrix material at pore boundaries. At the same time,
stresses are equal to zero (provided that the pressure
inside the pores is absent). Such an approach makes it
possible, without determining deformations inside the
pores, to find their average value according to displace-
ments of the pore boundary, which are calculated while
solving the elastic problem.

For finite deformations, and especially in the case of
their superposition, this approach cannot be directly
applied, since any deformation tensor (e.g., the Green
tensor or the Almansi tensor) exhibits a nonlinear
behavior with respect to the displacement-vector gradi-
ent in the basis of the initial or final states [5]. Thus,
when averaging, it is impossible to replace the integral
over a volume by the surface integral using the Gauss–
Ostrogradskiœ formula. Therefore, for porous materials
a certain difficulty arises; namely, the result of averag-
ing for any deformation tensor over a representative
volume depends on how this tensor is defined inside the
pores, but this definition can be done even if we require
the displacements at pore boundaries to be continuous.

Therefore, for finite deformations, the approach
used in [3, 4] in the case of small deformations should
be modified. For example, this can be done by the fol-
lowing way. We average the deformation gradient over

Ee 1
V
--- E Vd

V

∫ 1
2V
------- ∇ u u∇+( ) V .d

V

∫= =

Ee 1
2V
------- nu un+( ) Γ ,d

Γ
∫=
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an undeformed representative volume (area) rather than
the deformation tensor. Next, the deformation tensor of
an effective material is determined with the help of the
averaged gradient.

We consider the shape of pores to be given in an
undeformed configuration in which V0 is the represen-

tative volume. Let Γ0 be its boundary and  be the nor-
mal to Γ0 (we assume that hollows do not intersect or
touch on Γ0). We now use the following notation in the
deformed configuration: V is the representative volume,
Γ is its boundary, and n is the normal to Γ. We denote
gradient operators in the initial and deformed configu-

rations as  and ∇ , respectively, Y = I + u is the
deformation gradient, and u is the displacement vector.

In what follows, we used the elements of the averag-
ing scheme considered in [1]. Let the following condi-
tion be set at the boundary of the deformed volume V:

(1)

Here, σ is the true-stress tensor and  is the arbitrary
constant (i.e., independent of coordinates) symmetric
tensor.

Taking into account the linearity of the equilibrium
equations ∇ · σ = 0 and boundary conditions (1) with
respect to the tensor σ, and following [1], we can show
that, in the absence of mass forces and in the case when
condition (1) is fulfilled, the true stresses averaged over
the deformed volume are equal to .

In the undeformed configuration, the boundary con-
dition corresponding to relation (1) can be written in the
form

(2)

Here,  = (detY)Y*–1 · σ · Y–1 is the second Piola–
Kirchhoff stress tensor [5].

We now give a definition of an effective material.
Let the outer boundary of the representative material
with a volume V0, which is taken in the undeformed
configuration of the original porous material, be sub-
jected to a load in accordance with condition (2). By an
effective (averaged) material, we imply a homogeneous
material satisfying the following condition: before the
deformation, we fill the volume V0 (including pores)
with this material and set the uniform stress state in it
so that true stresses are equal to true stresses in the orig-
inal material averaged over the deformed volume
(which, taking into account the aforesaid, are equal to

). In this case, the deformation gradient of the effec-
tive material becomes equal to the deformation gradient
(averaged over the undeformed volume V0) of the orig-
inal material.

n
0

∇
0

∇
0

n σ Γ⋅ n σ̃⋅ Γ .=

σ̃

σ̃

n
00 S⋅ Γ0

detY( )n Y∗ 1– σ̃ Y 1–⋅ ⋅ ⋅ Γ0.=
0

S
0

σ̃
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Furthermore, we use the superscript e to denote
quantities corresponding to the effective material.
According to the above definition, we can write:

(3)

With the help of the Gauss–Ostrogradskiœ formula, this
equality can be transformed to the form

(4)

In previous studies [6–8], we gave another definition
of the effective material. In a solid, we isolated a repre-
sentative volume (area) in the form of a parallelepiped
(in the two-dimensional case, a parallelogram). Then,
the effective material was defined as a homogeneous
material satisfying the following condition. If we fill
the representative volume (area), including pores, with
this material and apply to it the same load as to the orig-
inal porous body, then the average displacements along
faces of this volume (or sides of the representative area)
should be the same. The definition given in this study is
more general compared to those given in [6–8], since it
imposes no constraints on the shape of the representa-
tive volume. In addition, when this volume (area) rep-
resents a parallelepiped (a parallelogram), the formulas
for seeking Ye turn out to be the same.

Using this definition, we now pass to the construc-
tion of constitutive relations for a porous elastic mate-
rial. In a porous body (for the undeformed configura-
tion), we take a representative volume V0 and solve the
boundary value problem of nonlinear elasticity for this
volume under given condition (2) set at the boundary
Γ0 . The solution to this problem makes it possible to
find the displacement vector u. Next, using formula (4),
we determine the deformation gradient Ye for the
effective material. Hence, we find the Green deforma-

tion tensor  for the effective material

(5)

and one of the stress tensors, e.g., the second Piola–
Kirchhoff stress tensor for the effective material

(6)

Then, the effective constitutive relations are con-

structed in the form of a dependence between  and

, for example, in the form  = ^( ).

Using the formulas for the tensor transformation in
the case of rigid motion [5], it is possible to show that

σe σ̃ 1
V
--- σ V , Yed

V

∫ 1
V0
------ Y V0.d

V0

∫= = =

Ye 1
V0
------ I ∇ u+( ) V0

0
d

V0

∫ I
1

V0
------ nu Γ0.d

Γ0

0

∫+= =

E
0 e

E
0 e 1

2
--- Ye Ye∗⋅ I–( )=

S
0 e detYe( ) Ye( )∗

1–
σe Ye( ) 1–⋅ ⋅=

      =  det Y 
e ( ) Y 

e ( )∗ 
1–

 σ ˜ Y 
e ( ) 

1–
 . ⋅ ⋅

S
0 e

E
0 e S

0 e E
0 e
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the tensors  and  evaluated with the help of the
approach under consideration remain unchanged when
the porous body together with the representative vol-
ume isolated inside it participates in a rigid motion after
deformation (although these tensors are nonindiffer-
ent). Therefore, the dependences between them, i.e., the
effective constitutive relations, also remain unchanged.

The approach under consideration to the construc-
tion of effective constitutive relations can be formally
applied to arbitrarily large deformations. However, it is
unclear whether this approach adequately describes the
deformation of materials if the components of the ten-

sor  considerably exceed unity in absolute value.
For small deformations, this approach coincides with the
generally accepted approach described, e.g., in [3, 4].

If the pore shape is set in the final state, it is appro-
priate to use another definition of the effective material;
when the averaging is performed over a deformed rep-
resentative volume, not for the deformation gradient
but rather for its reciprocal tensor,

Let, in accordance with condition (1), a load be applied
to the outer boundary of the representative volume V
isolated in the deformed configuration of the original
porous material. We imply as an effective material a
homogeneous material satisfying the following condi-
tion. If after a deformation we fill the volume V, includ-
ing pores, with this material and set in it a uniform
stress state so that the true stresses are equal to those in
the original material averaged over this volume (i.e.,
equal to ) then the tensor reciprocal to the deforma-
tion gradient of the effective material would be equal to
the tensor F of the original material averaged over the
deformed volume V.

According to this definition, we can write:

We now pass to the construction of effective consti-
tutive relations for porous materials in which the pore
formation occurs after preliminary loading. We use the
terminology and notation usual for the theory of
repeated superposition of large deformations [9]. We
consider two schemes of constructing effective consti-
tutive relations for preloaded porous materials.

1. A defect-free solid body is subjected to preload-
ing. In the body, there appear initial (not small) defor-
mations, and it passes to an intermediate state. In this
state, the pores are formed (opened) in the body accord-
ing to the model proposed in [9]. Because of the forma-
tion of the pores, additional finite deformations appear

E
0 e S

0 e

∇ u
0

F Y 1– I ∇ u.–= =

σ̃

Ye 1– 1
V
--- F Vd

V

∫=

=  
1
V
--- I ∇ u–( )

V

∫ dV I
1
V
--- nu Γ .d

Γ
∫–=
                    

in the body that are superimposed onto initial ones. In
addition, it is assumed that the average stresses in the
body remain unchanged. No additional external loads
are applied to the body either. Then, the effective con-
stitutive relations are constructed as a dependence
between the averaged total deformations and the aver-
aged stresses caused by preloading.

2. A solid body is subjected to a preloading. As a
result, initial deformations arise in it and then the open-
ing of pores occurs. Next, additional external loads are
applied to the body. Due to the formation of pores and
the additional loading, there appear additional defor-
mations in the body that are superimposed onto initial
ones. The effective constitutive relations are con-
structed as a dependence either between the average
additional deformations and average additional stresses
or average total deformations and average total stresses.
These relations parametrically depend on the initial
stresses (or on the initial deformations).

Furthermore, we use the same approach to con-
structing the effective constitutive relations for both
schemes. The initial deformation is considered to be
affine. Let Ye be the deformation gradient for the effec-
tive material; Y0, 1 and Y1, 2 are the initial and addi-
tional deformation gradients of the original material,
respectively; u2 is the additional displacement vector
for the original material; and σ0, 1 and σ0, 2 are, respec-
tively, the initial and the total (for the final state) true-
stress tensors. We isolate a representative volume V0 in
the initial state. We denote as V1 and V2 , respectively,
the volumes through which the volume V0 passes after
initial and total deformations. The boundaries of the
representative volume in the initial, intermediate, and
final states are denoted by Γ0, Γ1, and Γ2 , respectively;

the normal to Γi is  (i = 0, 1, 2).

Let the following boundary condition be set in terms
of the coordinates of the final state at the boundary Γ2

(7)

where  is the constant symmetric tensor.

As in the case when superposition is absent, it is
possible to show that, if condition (7) is fulfilled, the
total true stress averaged over the volume V2 is equal
to .

In the coordinates of the intermediate state, the
boundary condition corresponding to condition (7) can
be written in the form

. (8)

We now give the definition of an effective material.
We suppose that a representative volume V0 taken in the
original material before the deformation passes into the
volume V1 after the initial deformation. We also sup-
pose that, in the material being contained in this vol-

ni

n σ0 2,
2 ⋅ Γ2

n σ̃⋅ Γ2

2 ,=

σ̃

σ̃

n
1 S0 2,

1
⋅ Γ1

detY1 2,( )n Y1 2,*
1– σ̃ Y1 2,

1–⋅ ⋅ ⋅ Γ1

1
=
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ume, pores are formed according to the model devel-
oped in [9] and the loads are applied to its outer bound-
ary in accordance with boundary condition (8). Then
this volume passes into the volume V2 . In this case, we
imply as an effective material a homogeneous material
satisfying the following condition. Let us fill the vol-
ume V0 with this material before deformation and set in
it a uniform stress state so that the true stresses in this
volume are equal to the true total stresses averaged over
the volume V2 in the original material (which, with
allowance for the aforesaid, are equal to ). Then, the
deformation gradient of the effective material should be
equal to the product of the initial-deformation gradient
by the additional-deformation gradient of the original
material, which is averaged over the volume V1 .

Thus, for preloaded materials, the deformation of an
effective material is formally considered as a sequence
of two deformation stages, the first stage of the defor-
mation being assumed to coincide with the initial defor-
mation of the original material.

According to the given definition, we can write:

(9)

We take into account in this equality that Y1, 2 = I +

u2 and apply the Gauss–Ostrogradskiœ formula. Then
we arrive at

(10)

An approach to constructing effective constitutive
relations on the basis of the given definition mainly
coincides with the aforesaid in the case when the super-
position of the deformations is absent. Let the shape of
pores be given at the moment of their formation. For the
first turn, using the given initial stress σ0, 1, we deter-
mine the initial deformation gradient Y0, 1. Next, we
isolate a representative volume V1 in the body and solve
the boundary value problem of nonlinear elasticity for
this volume under condition (8) set at its outer bound-
ary Γ1 and under conditions set at the pore boundaries.
The solution to this problem, in particular, makes it
possible to find the vector u2 of additional displace-
ments. Furthermore, using formulas (9) and (10), we
determine the deformation gradient Ye of the effective
material. Next, using formulas (5) and (6), we find the

tensors  and . As a result, the effective constitu-
tive relations are constructed in the form of a depen-

dence between  and .

σ̃

σe σ̃ 1
V2
------ σ0 2, V2, Yed

V2

∫ Y0 1, Y1 2,
e ,⋅= = =

Y1 2,
e 1

V1
------ Y1 2, V1.d

V1

∫=
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Y1 2,
e I

1
V1
------ nu2

1 Γ1.d

Γ1

∫+=

E
0 e S

0 e

S
0 e E

0 e
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The calculations of effective moduli were per-
formed for the two-dimensional case (plane deforma-
tion) when the mechanical properties of the matrix
material are described by the Murnaghan potential [5]:

The problem of nonlinear elasticity was solved by
the (Signorini) method of successive approximations
[5, 6] within the accuracy to second-order effects. An
approximate approach was applied to constructing
effective constitutive relations on the basis of the
method of successive approximations described in [6–
8]. The application of the technique of averaging over
an ensemble (which was considered in [8, 9]) made it
possible to obtain the effective constitutive relations in
the form:

(11)

where λe and Ge are the effective first-order elasticity

moduli and  (i = 3, 4, 5, 6) are the effective second-
order moduli.

According to [6], in the case of plane deformation,

one of the effective moduli  can be chosen arbitrarily.

In calculations, we assumed that  = C4(1 – p)2.

Since in this case the solution to the problem of non-
linear elasticity, which was obtained by the method of
successive approximations (the solution is correct up to
the terms of the second order of smallness), linearly
depends on the material constants C3, C4, and C5 . The
effective moduli evaluated with the help of the scheme
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Fig. 1. Effective moduli λe and Ge as functions of porosity.
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Fig. 2. Dependence of the coefficients ai on porosity. For the
case of pore formation in the loaded body, the coefficients
are marked by asterisks.
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Fig. 3. Coefficients bij as functions of porosity.
described above also linearly depend on these con-
stants; i.e.,

(12)

The calculations were performed for both the case
when the pores are available in the unloaded body and
the case when the formation of pores occurs after pre-
loading (for scheme 1, i.e., when after the formation of
pores, additional loads are not applied to the body). The
calculations have demonstrated that the values of λe,
Ge, and a3 and of all coefficients bij for the case of the
formation of pores in the loaded body are the same as in
the absence of a superposition of deformations (when
pores are available in the unloaded body) but the coef-
ficients a5 and a6 are different for these two cases. Fig-
ures 1–3 show the dependences of the effective moduli
λe and Ge and coefficients ai and bij entering into for-

mula (12) on the porosity factor p for the case  = 2.

For the case of the pore formation in the loaded body,
the coefficients ai are marked by asterisks.
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with Inner Cavities
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We consider the vibration of an elastic solid contain-
ing plane parallel inhomogeneities. The inhomogene-
ities considered are cracks. Such objects were named
vibration-strength viruses in [1–4]. Numerous prob-
lems in seismology, flaw detection, and the theories of
acoustic emission and fracture involve consideration of
the localization of a wave process by inner cracks–cav-
ities. These problems are currently of great importance
but are poorly studied in a rigorous mathematical sense.

In this study, we reveal the effect of spacing between
cracks on the wave-process localization and further
develop the approach described in [2, 3].

1. We consider an elastic medium containing L
plane parallel horizontal inhomogeneities in the Carte-
sian coordinate system (x1, x2, x3) at heights h1, h2, …,
and hL; the lth crack occupies the domain Ωl with inter-
faces Sl , l = 1, 2, …, and L. For the sake of simplicity,
we assume that all h1 are different.

For a steady process with a frequency of ω, stresses
with the amplitudes t l = (τl1, τl2, τl3) act on the inter-

faces x3 = hl of the cavities. Let  = ( , , ) be
the displacements in the sections x3  ±hl . Then,
according to [1, 2], the boundary value problem for a
layer is equivalent to the set of the integral equations

(1)

ul
± ul1

± ul2
± ul3

±

i λσ2lm 2µα knk
l αm+[ ] ulm ξ1, ξ2, ξ3( )ei σξ〈 〉 sd∫

Sl

∫
m 1=

3

∑
k 1=

3

∑

=  αm τ lm ξ1 ξ2 ξ3, ,( )ei σξ〈 〉 sd

Sl

∫∫ ,
m 1=

3

∑

α3 γ1
2 α2– , α3± γ2

2 α 2
– ,±= =

α2 α1
2 α2

2;+=
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(2)

In both relationships, l = 0, 1, 2, …, L + 1; –∞ ≤ α1, α2 ≤
∞, nl = ( , , ) is the outer normal to the interface
Sl; and λ and µ are the Lame parameters of the elastic

medium, ρ is its density, γ1 = , γ2 = , v 1 =

, and v 2 = .

The relationships obtained represent the integral
equations relating the stresses and displacements near a
crack. For a layer with plane-parallel interfaces and

plane cracks (  =  = 0,  = ±1), we obtain the fol-
lowing matrix representation of Eqs. (1), (2):

(3)

Here,
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where the matrices ,  and ,  describe the
reflection of waves propagating upwards and down-
wards in the layer, respectively.

The above relationships make it possible to con-
struct the set of integral equations relating the edge dis-

Ll
±

α1α31e
iα31hl± α2α31e

iα31hl± se
iα31hl

α2α32e
iα32hl± α1α32e

iα32hl+− 0
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placements  and the stresses tl in the section of the
cracks for the space –∞ ≤ z ≤ ∞ (–h0, hN + 1  ∞) with
the plane cracks.

When a medium includes only one plane crack at a
height of h1, Eq. (3) takes the form

where  and Tl are the Fourier transforms of the

stresses tl and displacements  at the upper and lower
edges of the crack, respectively.

In this case, the jump U1 =  –  of the displace-
ments is written as

U1 = MT1,

where ( )–1  – ( )–1  = M,
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In turn, the stresses T1 can be expressed in terms of the
jump of the displacements

(4)

Thus, Eq. (4) expresses the dependence between the
known integral characteristic of a stress on crack edges
and the unknown integral characteristic of the jump of
the displacements.

It is evident that the above relationships can be gen-
eralized to the case of an arbitrary number of cracks.
For L cracks in the medium, we have

(5)

T1 M 1– U1.=

U1 A12
+ U2 A13

+ U3 … A1L
+ UL+ + + + MT1,=

A12
– U1 U2 A23

+ U3 … A2L
+ UL+ + + + MT2,=

…

A1k
– U1 … Uk … AkL

+ UL+ + + + MTk,=

…

A1L
– U1 … AkL

– Uk … UL+ + + + MTL.=
                           

Here,

Equations (5) can be written in the matrix form

(6)

Thus, the method used provides the set of integral
equations in unknown jumps of displacements on the
crack edges in the matrix form for an arbitrary number

Tl Tl
+ Tl

–.= =

Amk
+ Lm

+( ) 1–
Lk

+, Amk
– Lk

–( ) 1–
Lm

– , m k.<= =

M 1– M 1– A12
+ … M 1– A1L

+

M 1– A12
– M 1– … M 1– A2L

+

… … … …

M 1– A1k
– … M 1– AL 1L–

– M 1–
 
 
 
 
 
 
 
 

U1

U2

UL 
 
 
 
 
 
 

=  

T1

T2

TL 
 
 
 
 
 
 

.

…

…
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3

1 3 2

Fig. 1. Function of the determinant modulus for L = 2, ε = 0.5, γ2h12 = (1) , (2) , (3) π, and β ∈  (a) [0, 0.2], (b) [0.45, 0.65],

(c) [0.96, 1.35].

π
3
--- 2π

3
------
of plane-parallel cavities called the vibration-strength
virus V(2/h1; S1/…/hL; SL) [3, 4].

2. To solve the above set by the method discussed
in [3, 4] and to determine the condition of the localiza-
tion of the wave process by an aggregate of inhomoge-
neities, it is necessary to know the real singularities of
the elements of the matrix appearing in Eq. (6). This
matrix is a function of the kernel symbol for the con-
ventional set of integral equations of the mixed prob-
lem. The properties of this set make it possible to use
known algorithms for calculating the determinants of
block matrices [5, 6]. The numerical investigation of
the determinant shows that the number of its real zeros
increases with the vertical spacing between cracks.
When the spacing between cracks increases by half the
DOKLADY PHYSICS      Vol. 47      No. 2      2002
length of the transverse wave in the medium, an addi-
tional real zero appears. Upon substituting dimension-

less coordinates β31 = , β32 = , β = ,

and ε = , these regularities are easily traced in the

graphs of the determinant modulus in β as a function of
the spacing between the cracks for the case of two
cracks (L = 2) in the medium. Figure 1 shows the deter-
minant modulus of the matrix of set (6) (the points of
tangency with the real axis correspond to real zeros)

when the cracks are spaced by (1) , (2) , and (3) π.

In this case, we take ε = 0.5.

ε2 β2– 1 β2–
α
γ2
-----

γ1

γ2
-----

π
3
--- 2π

3
------
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Furthermore, the determinant of the matrix of the set
has a repeated real zero β2β31β32 + (0.5 – β2)2 = 0 and
the real branch points β = ε, 1.

For the antiplane two-crack problem, Eq. (6) takes
the form

where h = h2 – h1 is the spacing between cracks. It is
easy to understand that, after substitution of the dimen-
sionless parameters

we have h1 = γ2h and the condition of appearing real
zeros can be obtained analytically.

T1

T2 
 
  iµα32–

2
---------------- 1 e

iα32h

e
iα32h

1 
 
 
  U1

U2 
 
 

,=

∆ α( )
µ2α32

2

4
------------- 1 e

2iα32h
–( ),=

∆ β( )
µ2γ2

2

4
---------- 1 β2–( ) 1 e

2i 1 β2– h1– 
  ,=
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The necessity of considering transverse shears in the
problems of beam bending was first recognized by
Timoshenko [1]. On the basis of the virtual work prin-
ciple, the Timoshenko’s theory was extended in [2] to
the case of isotropic plates. In order to take into account
a nonuniformity in the distribution of transverse shears
over cross sections of a shell, the shear correction factor
k is introduced in this theory. To date, this factor is usu-

ally taken to be equal to k =  or  [3]. In [4], it was

shown that a value of k = 1 is more preferable when the
procedure of recovering the transverse components of
the stress tensor by integrating the equations of the
three-dimensional elasticity theory is used in the linear
theory of Timoshenko shells in the approach proposed
in [2]. It was this choice that made it possible to con-
struct the mathematically consistent and geometrically
noncontradictory linear theory of Timoshenko shells.
In this study, the results obtained in [4] are extended to
anisotropic shells with finite deflection.

1. Let us consider a thin anisotropic shell of a con-
stant thickness h. We assume that an elastic-symmetry
surface parallel to the face surfaces S– and S+ exists at
each point of the shell. As an initial surface S, we take
a shell surface spaced from the face surfaces by δ– and
δ+; i.e., h = δ+ – δ–. Let the initial surface be associated
with the orthogonal curvilinear coordinates α1 and α2

measured along the lines of principal curvatures. The
coordinate α3 is measured in the direction of increasing
the outer normal to the surface S (see figure).

The equilibrium equations of the elasticity theory
for a thin shell, which has a finite deflection and whose
face-surface metrics can be identified with the metric of

5
6
--- π2

12
------

* Moscow State Technical University (MAMI), 
Moscow, Russia

** Tambov State Technical University, Tambov, Russia
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the initial surface, have the form [5]

(1)

where uα are the displacements of the shell points, σαβ
are the stresses, Ai are the Lamé constants, and ki are the
curvatures of the coordinate lines. Hereafter, i, j = 1, 2
and α, β = 1, 2, 3.

1
Ai

-----
σii∂
α i∂

--------- 1
A j

-----
σij∂
α j∂

---------
σi3∂
α3∂

---------- Bi σii σ jj–( )+ + +

+ 2B jσij k jΣi3+ 0 i j≠( ),=

1
A1
------

Σ13∂
α1∂

---------- 1
A2
------

Σ23∂
α2∂

----------
σ33∂
σ3∂

---------- B1Σ13++ +

+ B2Σ23 k1σ11– k2σ22– 0,=

Σi3 σi3 Θ1σ1i Θ2σi2,+ +=

Θi
1
Ai

-----
u3∂
α i∂

-------- kiui, Bi–
1

A1A2
------------

A j∂
α j∂

--------,= =

Shell element.

S+

S

S–

e1

α2
e2

α3

e3

δ–

δ+

p– = Σ
α

p–
α eα

p– = Σ
α

p–
α eα

α 1
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The relationships of the generalized Hooke’s law
can be written in the form [4]

(2)

When constructing our theory, we used the modified
Timoshenko hypothesis [4, 6] on the linear distribution
of tangential displacements over the shell thickness:

(3)

where (α1, α2) are the tangential displacements of

the face surfaces  and v 3(α1, α2) is the transverse dis-
placement of the surface S.

Introducing displacements (3) into the stress–strain
relationship of the nonlinear theory of elasticity [5] for
a thin finite-deflection shell and assuming that the
transverse shear strains and tangential strains are dis-
tributed, respectively, uniformly and linearly over the
shell thickness [7], we obtain

(4)

Multiplying the first two of the equilibrium Eqs. (1)
by the functions of the shape N±(α3) and integrating the
resulting equations along with the third equation with
respect to the transverse coordinate from δ– to δ+ with
allowance for the boundary conditions at the face sur-
faces S±, 

(5)

we obtain the expressions consistent with the virtual

work principle. Here,  are the components of the sur-
face-load vectors p± at the face surfaces S± (see figure).
As a result, taking into account Eqs. (3) and (4), we
arrive at the following nonlinear equilibrium equations

σij bijlmεlm, σi3

l m≤
∑ bi3l3εl3,

l

∑= =

i j l m, , , 1 2.,=

ui N– α3( )v i
– N+ α3( )v i

+, u3+ v 3,= =

N– α3( )
δ+ α3–

h
-----------------, N+ α3( )

α3 δ––
h

----------------,= =

v i
±

S±

εij N– α3( )Eij
– N+ α3( )Eij

+ , εi3+ Ei3, ε33 0,= = =

Eii
± 1

Ai

-----
v j

±∂
α i∂

--------- B jv j
± kiv 3

1
2
--- θi

±( )2
i j≠( ),+ + +=

E12
± 1

A1
------

v 2
±∂

α1∂
--------- 1

A2
------

v 1
±∂

α2∂
--------- B2v 1

±– B1v 2
±– θ1

±θ2
±,+ +=

Ei3 βi θi,–=

βi
1
h
--- v i

+ v i
––( ), θi

± kiv 1
± 1

Ai

-----
v 3∂
α i∂

---------,–= =

θi
1
2
--- θi

– θi
++( ).=

σα3 δ±( ) pα
± ,=

pα
±

for the shell with respect to the stress and moment
resultants: 

(6)

where Tiα , , , Ni3, and  are the stress and
generalized moment resultants determined by the for-
mulas

(7)

The elasticity relationships for the stress and gener-
alized moment resultants (7) with allowance for
Eqs. (2) and (4) can be represented in the form

(8)

where we take kil = 1 for the shear correlation factors.
Formula (8) for the transverse forces Ti3 has simple
meaning: the elasticity relationships for transverse
shear stresses (2) in the theory of Timoshenko shells are

1
Ai

-----
Hii

±∂
α i∂

---------- 1
A j

-----
Hij

±∂
α j∂

---------- Bi Hii
± H jj

±–( ) 2B jHij
±+ + +

+ kiSi3
± 1

h
---Ti3+− pi

± i j≠( ),+−=

1
A1
------

N13∂
α1∂

----------- 1
A2
------

N23∂
α2∂

----------- B1N13 B2N23+ + +

– k1T11 k2T22– p3
– p3

+,–=

Hij
± Hij

pq Si3
±

Ni3 Ti3 θ1
–H1i

–– θ1
+H1i

+– θ2
–Hi2

–– θ2
+Hi2

+ ,–=

Si3
– 1

2
---Ti3 θ1

–H1i
00– θ1

+H1i
01– θ2

–Hi2
00– θ2

+Hi2
01,–=

Si3
+ 1

2
---Ti3 θ1

–H1i
01– θ1

+H1i
11– θ2

–Hi2
01– θ2

+Hi2
11,–=

Tiα σiα α3, Hij
±d

δ–

δ+

∫ σijN
± α3( ) α3,d

δ–

δ+

∫= =

Hij
pq σij N– α3( )[ ] 2 p– q–

N+ α3( )[ ] p q+ α3,d

δ–

δ+

∫=

p q, 0 1.,=

Hij
00 1

12
------h bijlm 3Elm

– Elm
++( ),

l m≤
∑=

Hij
01 1

12
------h bijlm Elm

– Elm
++( ),

l m≤
∑=

Hij
11 1

12
------h bijlm Elm

– 3Elm
++( ),

l m≤
∑=

Hij
– Hij

00 Hij
01,+= Hij

+ Hij
01 Hij

11,+=

Tij Hij
– Hij

+ , Ti3 h kilbi3l3el3,
l

∑=+=
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satisfied not pointwise but integrally over the shell
thickness [6–8].

Integrating elasticity-theory Eqs. (1) with respect to
the transverse coordinate from δ– to α3 with allowance
for boundary conditions (5) at the face surface S–, we
arrive at the following formulas for the transverse com-
ponents of the stress tensor:

(9)

where

(10)

In view of the equalities Qiα (δ+) = Tiα ,  = 
and shell equilibrium equations (6), the boundary con-
ditions (5) at the face surface S+ result immediately
from Eqs. (9).

2. Now, we discuss the question (that is of impor-
tance for the theory of Timoshenko shells) of whether
or not the stress field, which is specified by Eqs. (2) and
(9) and was found by solving the problem, satisfies equi-
librium shell equations (6). The shell equilibrium equa-
tions (6) can be no longer exactly satisfied with the

transverse forces  evaluated on the basis of the
refined transverse shear stress σi3 determined by
Eq. (9). The reason is that the transverse forces Ti3 eval-
uated on the basis of Hooke’s law (2), i.e., by Eq. (8),

can generally differ from .

To solve this problem, we use the following formu-
las obtained from Eqs. (2), (4), (8), and (10):

σi3 pi
– 1

Ai

-----
Qii∂
α i∂

---------–
1
A j

-----
Qij∂
α j∂

---------– Bi Qii Q jj–( )–=

– 2B jQij kiRi3 i j≠( ),–

σ33 p3
– 1

A1
------

R13∂
α1∂

----------–
1
A2
------

R23∂
α2∂

----------– B1R13–=

– B2R23 k1Q11 k2Q22,+ +

Ri3 Qi3 θ1
–M1i

–– θ1
+M1i

+– θ2
–Mi2

–– θ2
+Mi2

+ ,–=

Qiα σiα α3, Mij
±d

δ–

α3

∫ σijN
± α3( ) α3.d

δ–

α3

∫= =

Mij
± δ+( ) Hij

±

Ti3
s

Ti3
s

Qij α3d

δ–

δ+

∫ hHij
– , Qi3 α3d

δ–

δ+

∫ 1
2
---hTi3,= =

Mij
– α3d

δ–

δ+

∫ hHij
00, Mij

+ α3d

δ–

δ+

∫ hHij
01.= =
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With allowance for these formulas and Eqs. (9), we
obtain

(11)

Taking the shell equilibrium equations (6) into account,

we derive from Eq. (11) that  = Ti3 , as we wished
prove.

Thus, on the basis of the physically clear supposi-
tion that the equations of Hooke’s law (2) for transverse
shear stresses are integrally satisfied, we succeeded in
constructing the self-consistent geometrically nonlin-
ear theory of Timoshenko shells. In this theory, the non-
linear shell equilibrium equations (6) and Eqs. (9) are
satisfied together. For this reason, kil = 1 was taken in
Eq. (8) for the transverse forces. In conclusion, it must
be emphasized that, from the standpoint of the
approach developed in this study, efforts on construct-
ing a geometrically nonlinear theory of Timoshenko
shells on the basis of various ways of evaluating the
shear correlation factors kil will lead to a mathemati-
cally inconsistent and contradictory theory.
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INTRODUCTION

As is well known, the averaging method is efficient
in investigating dynamical systems under the action of
high-frequency vibration. This method allows motion
to be separated into slow and rapid components, where
the latter can be expressed in terms of the former. The
slow component satisfies averaged equations that,
being autonomous, contain vibration-caused forces
arising as a result of the interaction of vibration fields.
For parent systems dependent on a certain additional
parameter λ [in problems of convection, it is presented
by the Rayleigh (Ra) or Marangoni (Ma) numbers], it is
of interest to study the effects of both the vibration
character and the vibration amplitude on the critical
value λ∗ . If this value grows modulo, vibration is said
to be of a stabilizing nature, otherwise, to be destabi-
lizing.

It is quite noteworthy that vibration can stabilize and
destabilize a given steady-state regime. In certain cases,
even absolute stabilization (i.e., stability at an arbitrary
value of λ) can be attained. These are diverse possibili-
ties that lead to the necessity of investigating the vibra-
tional stability and allow prediction of nontrivial effects
that can be observed experimentally. The classical
model of a pendulum with a vibrating suspension point,
which was considered by Bogolyubov and Kapitza, can
serve as a good guiding line in such investigations.
Maintaining stability of the lower position, vertical
vibrations can stabilize the unstable upper position. At
the same time, the horizontal vibrations can destabilize
even the lower pendulum position.

In the problem on thermal convection in a layer with
rigid boundaries or with free undistorted boundaries,
vibration affects it in a similar way. In particular, verti-
cal vibrations turn out to be stabilizing [1, 2], horizontal
vibrations are destabilizing, and oblique vibrations can
either stabilize or destabilize relative equilibrium [3–5].
Some of these effects were verified experimentally
in [6].

Rostov State University,
ul. Zorge 5, Rostov-on-Don, 344090 Russia
1028-3358/02/4702- $22.00 © 20148
For convection occurring in a region with rigid
boundaries, the averaging method is substantiated
in [7, 8]. For mechanical systems with constraints
imposed, this method is developed in [9], where a uni-
fied standpoint was presented for numerous vibration
effects.

In the present paper, we investigate the effect of
high-frequency translational vibration of the form

, which occurs along the vector s = (cosϕ, 0,

sinϕ), on the onset of two types of convection. We
imply the Marangoni convection in a thin uniform fluid
layer with a deformable free boundary and the Ray-
leigh–Benard convection in a nonuniform fluid layer
bounded by rigid walls. The averaging method is
applied to equations of convection, which is written in
the Oberbeck–Boussinesq approximation. Conditions
for the applicability of these equations are considered
in [10]. It is characteristic that in a layer with a free
boundary the vibration generates both mass forces and
surface stresses. It is shown that the effect of vibration
on the thermocapillary convection is determined by the

single parameter µs = , where the vibrational

Reynolds number Re =  and ϕ is the vibration angle.

With increasing µs, the Marangoni numbers Ma grow
and approach their values corresponding to an undis-
torted free boundary. Thermal gravitational convection
in a layer bounded by rigid walls depends on two vibra-
tional parameters: the dimensionless vibration velocity

r =  and the angle ϕ.

The critical Rayleigh number Ra∗ (r, ϕ) is plotted in
Figs. 1 and 2. It turns out that in the case of heating
from below (Ra > 0) the strong vibration (r @ 1) desta-
bilizes the equilibrium for any arbitrary angle ϕ except
90°. There exists a critical angle ϕ∗  ≈ 52° such that at
0° ≤ ϕ ≤ ϕ∗  the destabilization occurs at an arbitrary r.
However, for small values of r when ϕ∗  < ϕ < 90°, the

a
ω̃
---- ω̃cos t

Re ϕsin( )2

2
-------------------------

ah
ν

------

a χν
2gh2

----------------
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vibration stabilizes the equilibrium. In this case, there is
a single optimal value r∗ (ϕ) such that the stabilizing
effect of the vibration decreases and gradually becomes
destabilizing at r > r∗ . In the case of heating from above
(Ra < 0, Fig. 2), the vibration destabilizes the relative
equilibrium at an arbitrary angle ϕ ≠ 90°. With increasing
r, this destabilizing effect is intensified; i.e., Ra  0 as
r  ∞.

FORMULATION OF THE PROBLEM

We consider an infinite horizontal layer of a viscous
incompressible heat-conducting fluid with the density
ρ = ρ0 (1 – β(T – T0)). From below (  = h), the layer
is bounded by a rigid wall, while its upper boundary can
be either rigid or free. In the latter case, the boundary is
considered as a deformable surface (  = ζ'( , , t))
with acting forces of surface tension, which are charac-
terized by the coefficient σ = σ0 – σT(T – T0), where

σT = . Heat-exchange boundary conditions of the

generalized form are specified at each boundary. It is
assumed that the layer, as a whole, executes plane trans-
lational harmonic vibrations along the vector s = (cosϕ,

0, sinϕ) according to the law . The coordinate

system is chosen in such a manner that the x3-axis coin-
cides with the direction of gravity force, the origin
being situated on the unperturbed upper boundary.

Equations of convection written out in the Ober-
beck–Boussinesq approximation in the coordinate sys-

x3'

x3' x1' x2'

σ∂
T∂

------

a
ω̃
---- ω̃cos t

Fig. 1.
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tem moving together with the vibrating layer are of the
form

(1)

Boundary conditions specified at the free deformable
boundary  = ζ'( , , t) have the form

(2)

(3)

(4)

At the rigid wall,  = 1, the boundary conditions are
specified as

(5)

Problem (1)–(5) contains the following dimension-
less parameters, namely, the vibration frequency ω =

dv '
dt
------- –∇ p ' ∆v ' 1 εT '–( ) Gag ωRe ωtscos+( ),+ +=

divv ' 0,
dT '
dt

-------- Pr 1– ∆T ',
d
td
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x3' x1' x2'
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Ma
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  Kni
Ma
Pr
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xi∂
--------,+=

i 1 2;,=

τ3k' nk' p '– 2 C
Ma
Pr
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  K , τ ik'–
v i'∂
xk∂
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xi∂

---------,+= =

2K ∇ 2
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1 ∇ 2ζ ' 2+
-----------------------------
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∂
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, the vibrational Reynolds number Re = , the

Boussinesq parameter ε = Ahβ (A is the characteristic

temperature gradient), the Galilei number Ga = ,

the Prandtl number Pr = , the Marangoni number

Ma = , the surface-tension coefficient C = ,

and the heat-transfer parameters Bi =  and B0 = .

AVERAGING

Furthermore, we assume that the frequency ω is
high and the vibrational Reynolds number is finite; i.e.,
ω  ∞ and Re = O(1). Similar to [1, 3], we apply the
Van der Pol–Krylov–Bogolyubov averaging method to
problem (1)–(5). Along with the slow time t, we intro-
duce the rapid time τ = ωt and present the unknowns as
sums of smooth components and fast components that
have zero average (over τ) values:

(6)

After selecting principal vibrational terms, substituting
relations (6) into the system of equations (1) as ω  ∞
yields the system

(7)

Conserving the principal terms with respect to ω in
relations (2) and (3), we arrive at the following condi-
tions at the free boundary:

(8)

At the rigid wall x3 = 1, there remains only one bound-
ary condition  = 0.

ω̃h2

ν
--------- ah

ν
------

gh3

ν2
--------

ν
χ
---

AσTh2

ρ0χν
---------------

σ0h

ρ0ν
2

-----------

b1h
k1

--------
b2h
k2

--------

v ' v x t,( ) ṽ x t τ, ,( ),+=

p ' p x t,( ) ωp̃ x t τ, ,( ),+=

T ' T x t,( ) 1
ω
----T̃ x t τ, ,( ),+=

ζ ' ζ x1 x2 t, ,( ) 1
ω
---- ζ̃ x1 x2 t τ, , ,( ).+=

ṽ∂
τ∂

----- –∇ p̃ 1 εT–( )Re τ s,⋅cos+=

divṽ 0,
T̃∂
τ∂

------ ṽ ∇ T,( )+ 0.= =

x3 ζ x1 x2 t, ,( ):
ζ̃∂
τ∂

----- l ṽ,( ),= =

l ζ∂
x1∂

-------– ζ∂
x2∂

-------– 1, , 
  , p̃ 0.= =

ṽ n
Problem (7), (8) has the solution

(9)

which is 2π-periodic in τ, where w(x, t) and Φ(x, t) are
the amplitudes of pulsatory velocity and of pulsatory
pressure, respectively. These amplitudes satisfy the
equations

(10)

Substituting relations (9) into formulas (6) and, then, the
latter into system (1)–(5), averaging the result over τ, and
retaining the terms on the order of O(1) as ω  ∞ in
the equations derived, we obtain the following autono-
mous system for average values of the unknowns:

(11)

At the averaged free boundary, x3 = ζ(x1, x2, t), the
boundary conditions take the form

(12)

At the rigid wall, x3 = 1, boundary conditions are

(13)

Thus, as a result of the nonlinear interaction of the
vibration fields, there appears a vibration-caused force
in the averaged equations of motion and vibration-
caused stresses in the dynamic boundary condition,
where both quantities vary as the square of the vibra-
tional Reynolds number.

Furthermore, Eqs. (11)–(13) are used to consider
thermocapillary convection in a thin layer of a uniform

ṽ Rew x t,( ) τ , p̃sin ReΦ x t,( ) τ ,cos= =

T̃ Re w ∇ T,( ) τ , ζ̃cos Re w l,( ) τ ,cos–= =

w –∇Φ 1 εT–( )s, divw+ 0,= =

Φ x3 ζ x1 x2 t, ,( )= 0, wn x3 1= 0.= =

dv
dt
------ –∇ q ∆v GaεTγ–

Re2

2
-------- w ∇,( )∇Φ ,+ +=

divv 0;=

dT
dt
------ Pr 1– ∆T , w –∇Φ 1 εT–( )s,+= =

divw 0.=

v l,( ) ζ∂
t∂

-----, l ζ∂
x1∂

-------– ζ∂
x2∂

-------– 1, , 
  ,= =

τ iknk q Gaζ Re2

2
-------- Φ∂

x3∂
------- w l,( )–+ 

  ni–

=  –2 C
Ma
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--------T– 

  Kni
Ma
Pr
-------- T∂

xi∂
-------, i+ 1 2;,=

τ3knk q Gaζ Re2

2
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x3∂
------- w l,( )–+ 

 – 2 C
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--------T– 

  K ,–=

2K ∇ 2

∇ 2ζ

1 ∇ 2ζ
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,
T∂
n∂

------ BiT– δ1, Φ 0.= = =
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------- B0T+ δ2, w3 0.= = =
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fluid and thermal vibrational convection in a layer
bounded by rigid walls.

THERMOCAPILLARY MARANGONI 
CONVECTION

Under the assumption that ε = 0 in (11), the vibra-
tion-caused force

is potential and can be included into the pressure term.
Thus, vibration effects occur only provided that the free
surface is, on the average, deformable.

We assume that δ1B0 + δ2Bi = B0(1 + Bi) + Bi ≠ 0 if

Bi2 +  ≠ 0 and δ1 = δ2 = 1 at Bi = B0 = 0. Then, prob-
lem (11)–(13) has the equilibrium solution v0 = 0,

T0 = z, q0 = , w0 = (cosϕ, 0, 0), Φ0 = x3sinϕ,

and ζ0 = 0. While analyzing the stability of the solution,
we derive the following system for the amplitudes v(z)
and θ(z) of δ-components for normal perturbations pro-
portional to exp(λt + iα1x1 + iα2x2):

(14)

(15)

(16)

(17)

Here, D = , α2 =  + , L = D2 – α2, and µs =

 is the vibrational Galilei number. The pre-

sented expression for the parameter µs shows that hori-
zontal (ϕ = 0) high-frequency vibrations do not affect
(in the limit ω  ∞) the onset of the thermocapillary
convection in a thin layer of a uniform fluid. Moreover,
the vibration increases the effective surface tension

For example, C = 7 × 104, Ga = 0.98 × 104, and µs =
0.5 × 104sin2ϕ for a water layer with h = 1 mm, ν =
0.01 cm2/s if  = 100 Hz and a/  = 1 mm. Additional
terms (gravitational and vibrational) also depend on the
wave number α. They can be noticeable already at
α ~ 1 and even principal at small α.

We can assume that at α ≠ 0 critical values of the
Marangoni number grow modulo with increasing µs

Fv
Re2

2
-------- w ∇,( )∇Φ Re2

4
--------– 

  ∇ w2= =

B0
2

Re2

4
-------- ϕcos

2

λLv L2v , λPrθ Lθ v ;–= =

x3 = 0: v  = λPrδ, D2v α2v+ Maα2 θ δ+( ),=

Dθ Bi θ δ+( )– 0;=

3α2 λ+( )Dv D3v–

=  Prα2 Cα2 Ga µsα αtanh+ +( )δ;

x3 1: v Dv 0, Dθ B0θ+ 0.= = = =

d
dz
----- α1

2 α2
2

Re ϕsin( )2

2
-------------------------

Cs C
Ga

α2
-------

µsα αtanh

α2
------------------------.+ +=

ω̃ ω̃
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and tend to the values corresponding to the undistorted
free boundary. Then, the strongest stabilizing effect is
attained for vertical vibrations. Calculation results and
asymptotic formulas corresponding to α  0 [11]
confirm this assumption. Monotone (λ = 0) and oscilla-
tory (λ = ic) instabilities existing at α @ 1 [Ma(α) > 0]
and α ! 1 [Ma(α) < 0] have been studied numerically.

THERMAL VIBRATIONAL CONVECTION
IN A HORIZONTAL LAYER BOUNDED 

BY RIGID WALLS

We assume that the fluid is nonuniform (ε ≠ 0) and
the layer boundaries (z = 0 and h) represent rigid iso-
thermal walls with given temperatures T1 and T2 ,
respectively. Then, heating from below corresponds to

the condition A =  > 0. The averaged equations

can be written as

(18)

Here, Gr = Ga × ε is the gravitational Grashof number

and Gv =  is the vibrational Grashof number

[1]. This system has the following equilibrium solution:

The corresponding spectral problem for amplitudes of
normal perturbations (in the form described in the pre-
ceding section) can be reduced to the system

(19)

Here, Ra = GrPr and µ = GvPr represent the gravita-
tional and vibrational Rayleigh numbers, respectively.

T2 T1–
h

-----------------

du
dt
------ –∇ q ∆u GrTg– Gv w ∇,( )∇Φ̃ ,+ +=

divu 0,=

dT
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------ Pr 1– ∆T , w –∇Φ̃ Ts, divw– 0,= = =

z 0; 1: u 0, T z, w3 0.= = = =
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v0 0, T0 z, q0 –
Grz2

2
----------- const,+= = =

w0 z ϕcos– 0 0, ,( ), Φ̃0 –
z2

2
---- ϕsin const.+= =

λLu L2u Raα2θ+=

+ µ α2 ϕθ2cos α2 ϕwsin iα ϕ Dwcos+ +( ),

λPrθ L2θ u, D
d
dz
-----, L D2 α2,–≡=–=

Lw α2 ϕθ iα ϕ Dθ,cos+sin=

z 0; 1: u Du θ w 0.= = = = =
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They are related by the equality µ = Ra2r2, where the

parameter r2 =  characterizes the ratio between

vibration-caused and gravitation-caused forces.
Numerical investigation of the spectral problem (19)

yields only the monotone instability (λ = 0). The behav-
ior of neutral curves Ra∗ (r, ϕ) = min

α
Ra(r, ϕ, α) is

illustrated in Figs. 1 and 2. We can see (Fig. 1) that the
direction ϕ = 90° is exclusive, because the absolute sta-
bilization is possible only in this case: namely, at r >
0.023, the layer is stable at any value of the Rayleigh
number. However, if 52° < ϕ < 90°, there are values of
the parameter r∗ (ϕ) at which the layer is the most sta-

ble, and (r∗ , ϕ) > Ra∗ (0). For the angles 0° < ϕ <

52°, the vibration destabilizes the layer: (r, ϕ) <
Ra∗ (0).

One of the most interesting vibration effects is the
existence of negative Rayleigh numbers at r ≠ 0 and
0° ≤ ϕ < 90° (see Fig. 2). This fact implies that the ther-
mal vibrational convection can arise not only if a layer
is heated from below but also if it is heated from above.

At sufficiently large values of the parameter r, the

critical numbers Ra∗  tend to zero so that r2 =
µ∗ (ϕ), where µ∗ (ϕ) determines convection under the
condition of zero gravity. According to calculations, the
asymptotic behavior corresponding to r  ∞ is
attained already at r ≈ 10. For Ra = 0, problem (18) was
first considered in [12], where the functions µ∗ (ϕ) were
calculated. 

Following to Yudovich [13], we apply the Krein–
Gantmakher theory of oscillation operators to prob-
lem (19) for Ra = 0, λ = 0 and attain a rather complete
description of the spectrum at ϕ = 0° and 90°. In both
cases, the eigenvalues µk(α) are simple, while the
eigenfunctions form the Markovian chain. All values of
µk(α) are positive at ϕ = 0° and negative at ϕ = 90°.
This fact implies that, in the conditions of zero gravity,

a2χν
2g2h4
-------------

Ra*
+

Ra*
+

Ra*
2

monotone instability is absent in the case of vertical
vibrations and is present when the vibrations are hori-
zontal.
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MECHANICS
Pressure-Wave Damping in a Liquid with Bubbles 
Produced by Two Kinds of Gases
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Evolution of pressure waves in a liquid with gas bub-
bles is investigated sufficiently well from both the exper-
imental and theoretical standpoints (see, e.g., [1, 2]). In
particular, it is shown that an initial perturbation in a
gas–liquid medium can decay into solitary waves, i.e.,
solitons, whose properties are studied in detail. It is
revealed that the principal mechanism of wave dissipa-
tion in bubble media is the heat exchange between bub-
bles and the surrounding liquid. In [3, 4], the structure
and damping of solitary pressure waves of moderate
intensity in a gas–liquid mixture was experimentally
investigated. In [5, 6], it was shown that allowance for
polydispersivity in a gas–liquid medium leads to addi-
tional pressure-perturbation damping without qualita-
tively changing the wave structure. The effect of the
inhomogeneity of a gas–liquid mixture and of the com-
pressibility of a liquid on the pressure-wave structure
are investigated in [7, 8]. In [9, 10], the appearance of
two kinds of oscillatory solitary waves in a liquid with
gas bubbles was discovered. These waves, called multi-
solitons, are caused by the existence of two degrees of
freedom in a medium. The structure and damping of
oscillatory solitary waves in liquids with gas bubbles in
the case of various relations between bubble radii was
experimentally studied in [11, 12].

In the present paper, we experimentally investigated
the structure and damping of moderate-amplitude pres-
sure waves in a liquid containing a bubble mixture of
two gases (freon and helium) for the cases of one and
two different bubble sizes.

The experiments were carried out with a setup of the
shock-tube type. The basic section of the setup was a
vertical thick-walled steel tube with an internal diame-
ter of 0.053 m and a length of 1.5 m. This section filled
with a liquid was then saturated with gas bubbles
through two independent bubble sources situated in the
lower part of the section. The bubble-size spread was
within ±5%. A solution of glycerin (50 wt %) in dis-
tilled water was used as a working liquid. Freon-12
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(CCl2F2) and helium, whose thermal diffusivities differ
by a factor of more than 50, were used as a gas phase.
The mean (over the basic section length) volume gas
contents ϕf, h for bubbles of each gas were determined
by the increase in the level of the liquid in the basic sec-
tion after the bubbles (with a diameter d f, h) of the (f, h)-
kind gas had been introduced. (The subscripts f and h
correspond to freon and helium, respectively.) The
experiments were performed under a static atmospheric
pressure P0 . Bell-shaped pressure waves were gener-
ated by means of an electromagnetic vibrator located in
the bottom of the basis section. The signals were
formed by the repulsion of a thin copper plate from an
electromagnetic coil when an electric-current pulse
flowed through it. Pressure-wave profiles were regis-
tered by six piezoelectric sensors located along the
basic-section length. The sensor signals were transmit-
ted to amplitude-to-digital converters and then pro-
cessed by a computer.

As a result of these experimental studies, it was
established that the relationship between the relative
concentrations of poorly heat-conducting freon bubbles
and highly heat-conducting helium bubbles in the gas–
liquid mixture qualitatively defines the wave structure
and significantly affects the wave damping. While
propagating waves in the liquid containing the low
heat-conducting gas (freon), a solitary wave (soliton) or
a group of solitary waves are formed from the initial sig-
nal, which damp due to dissipative processes. The prin-
cipal mechanism for the dissipation of the solitary waves
in a liquid with gas bubbles is the heat exchange between
the bubble gas and the surrounding liquid [1–3]. The
main parameters defining the damping of solitary waves
are the gas heat diffusivity in bubbles, their size, the vol-
ume gas content in a liquid, and the wave amplitude.

Figure 1 displays the evolution of a pressure wave in
a liquid with freon bubbles and a small volume concen-
tration of helium bubbles of the same size. The time
scales in Figs. 1a and 1b are 10–3 s. Above each wave
profile, the wave amplitude (or the amplitude of the first
oscillation for a group of solitary waves and oscillating
shock waves) is indicated. As is seen, for the wave
amplitudes with ∆P0/P0 ~ 1 (Fig. 1a), a small addition
of helium bubbles to the medium does not qualitatively
change the wave structure. From an initial signal, a sol-
002 MAIK “Nauka/Interperiodica”
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X [m] = 0.02 0.23 0.5 1.23

(a)
0.095 MPa 0.053 MPa 0.037 MPa 0.023 MPa

X [m] = 0.02 0.23 0.73 1.23

(b)

1.24 MPa 0.32 MPa 0.13 MPa 0.09 MPa

Fig. 1. Evolution of a pressure wave in a liquid containing a mixture of freon bubbles and helium bubbles at the distance X [m] from
the inlet to the medium: (a) ∆P0 = 0.095 and (b) 1.24 MPa (d f = dh = 2.3 mm; ϕ f = 1.0%, ϕh = 0.2%). The time scale is 1 ms.
itary wave is formed. However, the damping of the sol-
itary wave is considerably stronger than in the liquid
containing freon bubbles. This is explained by the fact
that the wave structure is, basically, previously formed
by freon bubbles, whereas helium bubbles mainly con-
tribute to damping.

The dissipative energy loss increases with the
amplitude of the wave incoming onto the medium,
which is accompanied by the formation of an oscillat-
ing shock wave from the initial signal (Fig. 1b). The
qualitative change in the wave structure leads, in turn,
to a decrease in its damping, due to additional energy
feeding the forward front of the oscillating shock wave.
As a result, the effect of the increase in wave damping
due to introducing helium bubbles into the medium is
less pronounced for large-amplitude waves.

One of the possible ways to enhance damping for
large wave amplitudes is an increase in the size of gas
bubbles in the liquid. This makes it possible to form
from the initial signal a series of solitary waves whose
damping is considerably stronger than that for oscillat-
ing shock waves.

An increase in the volume concentration of helium
bubbles in a gas–liquid mixture results in enhancing the
pressure-wave damping. In the case of a high concen-
tration of helium bubbles (ϕh = 1%, ϕ f = 0.2%), shock
waves, whose oscillations rapidly damp, are immedi-
ately formed from an initial signal. In this case, dissipa-
tive processes predominate over nonlinear and disper-
sive processes even for large wave amplitudes. This fact
leads to both rapidly smoothing pulsations and the for-
mation of a monotonous shock wave.

Figure 2 displays the pressure-wave damping in the
liquid with bubbles of freon and helium of various vol-
ume concentrations as a function of the wave amplitude
at a distance X = 1.23 m from the inlet of the wave into
the medium. Here, ∆P is the (first-oscillation) wave
amplitude at a given distance X from the inlet to the
medium. As is seen, the helium-bubble concentration in
the gas–liquid density strongly affects the wave damp-
ing. An effect of small relative concentrations of helium
bubbles on damping waves with an amplitude ∆P0/P0 ~ 1
(points 1 and 2) is the most pronounced. The wave
damping increases with the relative concentration of
helium bubbles in the medium (under the condition of
preserving the total volume gas content). At the same
time, the effect of helium-bubble concentration on the
wave damping noticeably decreases. For example,
points 5 and 6, which, respectively, correspond to rela-
tively high concentrations of helium bubbles and pure
helium bubbles (without freon bubbles) virtually coin-
cide. With increasing the relative amplitude ∆P0/P0 of a
wave entering into the medium, the effect of the
helium-bubble concentration on the wave damping
DOKLADY PHYSICS      Vol. 47      No. 2      2002
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decreases. As was shown above, this fact is explained
by coupling solitary waves and the formation of an
oscillating shock wave.

The damping of a pressure wave increases with the
distance X. The strongest effect of this distance on the
wave damping is observed for small wave amplitudes
∆P0/P0 ~ 1 when solitary waves are not even coupled
into an oscillating shock wave. With an increase in X
and the relative concentration of helium bubbles in the
gas–liquid medium, the damping depends less on the
shock-wave amplitude; this is caused by the structural
reconstruction of the wave profile.

As it was shown in [4, 11], the solitary-wave damp-
ing in a liquid that contains gas bubbles of two different
sizes is stronger than in a liquid with gas bubbles of a
single size under similar other parameters for the wave
and the medium. This fact is explained by the resonant
behavior of the bubbles of two kinds, which form an
oscillating solitary wave called multisoliton. In this
study, experimental data are obtained related to the
structure and damping of moderate-amplitude pressure
waves in a liquid with freon bubbles and a relatively
low concentration of smaller-size helium bubbles. It
was shown that the variation of the helium-bubble size
by a factor of more than two virtually affects neither the
wave structure nor the wave damping. Apparently, the
dissipative energy loss in the case of compressing small-

1
2
3
4
5
6

0.6

0.4

0.2

0 5 10 15 20 25
∆P0/P0

∆P/∆P0

Fig. 2. Damping of a pressure wave in a liquid containing a
mixture of freon bubbles and helium bubbles as a function
of the wave amplitude (d f = dh = 2.3 mm): (1) ϕ f = 1.2%,
ϕh = 0; (2) ϕ f = 1.0%, ϕh = 0.2%; (3) ϕ f = 0.8%, ϕh = 0.4%;
(4) ϕ f = 0.4%, ϕh = 0.8%; (5) ϕ f = 0.2%, ϕh = 1.0%;
(6) ϕ f = 0, ϕh = 1.2%.
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sized helium bubbles is so high that the bubbles fail to
execute resonant-frequency oscillations and to form
(together with freon bubbles) an oscillating solitary
wave. The helium bubbles follow only the pressure in the
wave being formed by freon bubbles and insignificantly
affect the structure and damping of the wave.

While investigating wave damping in a liquid with
larger size bubbles, when the general dissipation is
lower, the effect of an increase in the wave damping is
apparently possible in the case of introducing bubbles
into the gas–liquid mixture that correspond to a highly
heat-conducting gas.

Thus, we have demonstrated the possibility of a con-
siderable increase in the damping of moderate-ampli-
tude pressure waves in a liquid containing gas bubbles
by introducing small relative volume concentrations of
bubbles with a highly heat-conducting gas into the
medium.
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We consider a problem concerning the localization
of a vibrational process in an elastic space by an array
of rigid parallel planar inclusions. These inclusions,
described in the framework of the Griffith theory [1],
were called in [2, 3] vibration-strength “viruses”.
Although this class of problems is rather topical, its rig-
orous mathematical study commenced only recently.
This type of defects (inhomogeneities) most often
arises in nonuniformly strengthened structural ele-
ments, as well as in heterogeneous-layer geological
structures. In the latter case, such defects are inherent in
tectonic plates of break zones and can trigger a brittle
fracture. Methods suggested in the present paper are
also applicable to the mathematical analysis of phe-
nomena arising in three-dimensional integral circuits
used as elements of electronic devices.

In previous papers [2, 3], methods applicable to the
analysis of general integral-equation sets were used to
find out the conditions for the localization of wave pro-
cesses. In the present paper, studying this problem in an
infinite medium, we confirm the concepts of [2, 3]
and demonstrate the ways for practically solving the
problem.

1. We consider an elastic space with L horizontal
inhomogeneities (inclusions) in the orthogonal (x1, x2, x3)
reference system. The lth inhomogeneity (l = 1, 2, …, L)
is located in the x3 = hl plane and occupies a domain Ωl .
The x3 = hl boundaries of the inclusions are subjected to
the actions of displacements with amplitudes ul and a
frequency ω. We denote the stresses at the boundaries

of inclusions as . According to the definition of [2],
this set of inhomogeneities is the L-level virus of the
class 1 and of the type Ω , which is denoted as V(1/h1;
Ω1/…/hL; ΩL). To construct a system of integral equa-
tions relating the displacements and stresses at the
inclusion boundaries, we apply the method of the Fou-
rier transform with respect to the variables x1 and x2

tl
±
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introducing the following notation for the displacement

vectors u and stresses :

The integral relationships (similar to those we are
searching for) were derived in [3] but for a level –∞ ≤
x1, x2 ≤ +∞, hl – 1 ≤ x3 ≤ hl . We now represent them in
the vector form

(1)

where α3j = , s =  – α2, γ1 = , γ2 = ;

cl =  and ct =  are velocities of longitudinal

and transverse waves in the medium; ω is the circular
frequency; λ and µ are the Lamé coefficients; and α2 =

tl
±

Vu U α1 α2 x3, ,( )≡

=  u x1 x2 x3, ,( )e
i α1x1 α2x2+( )

dx1dx2,∫
∞–

∞

∫

Vt T α1 α2 x3, ,( )≡

=  t x1 x2 x3, ,( )e
i α1x1 α2x2+( )

dx1dx2.∫
∞–

∞

∫

Dl 1–
+ Tl 1–

+ Dl
+Tl

–– Ll 1–
+ Ul 1–

+ Ll
+Ul

–,–=

Dl 1–
– Tl 1–

+ Dl
–Tl

–– Ll 1–
– Ul 1–

+ Ll
–Ul

–,–=

Ll
± = 

α1α31e
iα31hl±

± α2α31e
iα31hl±

± se
iα31hl±

α2α31e
iα32hl±

± α1α32e
iα32hl±

+− 0

2s α2
2+( )e

iα32hl±
α1α2e

iα32hl±
– 2α1α32e

iα32hl±
+−

,

Dl
± i

µ
---

α1

2
-----e

iα31hl± α2

2
-----e

iα31hl± α31

2
-------e

iα31hl±
±

α2e
iα32hl±

α1e
iα32hl±

– 0

α32e
iα32hl±

± 0 α1e
iα32hl±

–

,=

γ j
2 α2– 0.5γ j

2 ω
cl

---- ω
ct

----

λ 2µ+
ρ

---------------- µ
ρ
---
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 + . The branch α3j of the square root is chosen
from the condition

It is evident that the matrices  and  are associ-
ated with effects related to interactions of waves prop-
agating inside the layer with its inhomogeneities.

To derive integral equations, we should eliminate
from relationships (1) (for l = 1) the first equation and

all terms with  from the second equation. At the
same time, for l = L + 1, we should omit the second

equation and all terms with . In the case of

inclusions, we take into account that  =  = Ul . As
a result, we arrive at the following set of integral rela-
tionships

………………………………… (2)

Solving Eqs. (2) with respect to vectors U1, U2, …,
UL , we derive a set of integral equations

(3)

(4)

α1
2 α2

2

α3 j

γ j
2 α2–

1/2
, γ j

2 α2>

i γ j
2 α2–

1/2
, γ j

2 α 2
.<







=

Ll
± Dl

±

e
iα3 jh0–

e
iα3 jhL 1+

Ul
+ Ul

–

D1
–T1

– L1
–U1,=

D1
+Tl

+ D2
+T2

–– L1
+U1 L2

+U2,–=

D1
–T1

+ D2
–T2

–– L1
–U1 L2

–U2,–=

DL 1–
+ TL 1–

+ DL
+TL

–– LL 1–
+ UL 1– LL

+UL,–=

DL 1–
– TL 1–

+ DL
– TL

–– LL 1–
– UL 1– LL

– UL,–=

DL
+TL

+ LL
+UL.=

SLT U,=

T T1 T2 … TL, , ,{ } , U U1 U2 … UL, , ,{ } ,= =

SL ΘLJL,=

ΘL diag S1
1– S1

1– … S1
1–, , ,{ } ,=

JL

I J12
+ J13

+ … J1 N 1–,
+ J1N

+

J12
– I J23

+ … J2 N 1–,
+ J2N

+

J13
– J23

– I … J2 N 1–,
+ J3N

+

… … … … … …

J1 N 1–,
– J2 N 1–,

– J3 N 1–,
– … I JN 1– N,

+

J1N
– J2N

– J3N
– … JN 1– N,

– I

.=
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Here, Tl =  –  is the jump of stresses at the bound-
ary of the lth inclusion

The matrix D± can be found from the matrix  by
eliminating exponentials from the matrix elements.
Note that in the case of L = 2, representation (3) coin-
cides with the similar representation for the case of
antiplanar strain u = (u1, 0, 0), u1 = u1(x2, x3), τ =
(τ13, 0, 0), τ13 = τ13(x2, x3), for which it is possible to
obtain the equations in the analytical form

(5)

Here, the functions U1, U2, T1 , and T2 are the first com-
ponents of the corresponding vector functions U1, U2,
T1 , and T2 .

2. For set (3), the method of solution was thoroughly
described in [2, 3], so we do not repeat it here. Note
only that in order to use this method we need informa-
tion concerning the real-valued singularities of the
matrix-function elements describing the set of equa-
tions in the symbolic form and also zeroes of the deter-
minant for this set.

According to expansion (4), the problem of deter-
mining these singularities reduces to analyzing the
functions ΘL and JL . The block-matrix theory yields the
following relationships expressed in dimensionless
coordinates:

In the case of two inclusions, by virtue of the struc-
ture of the JL matrix, it is easily reduced to the third-
order determinant that can be calculated on the basis of
the Sarrus rule. For the larger number of inclusions, the
use of this approach is not reasonable, because it calls
for the inversion of high-order matrices. Therefore, the
other methods are used. For example, according to the
compact Gauss scheme [5], the initial matrix JL is rep-

Tl
+ Tl

–

S1 D+
1– L+ D–

1– L–, Jkl
±– D±

1– PklD±,= =

Pkl diag e
iα31Hkl e

iα32Hkl e
iα32Hkl, ,{ } ,=

Hkl hl hk.–=

Dl
±

U1
i

2µγ2β32
------------------- T1 e

iβ32H12T2+[ ] ,=

U2
i

2µγ2β32
------------------- e

iβ32H12T1 T2+[ ] .=

detΘ detS1
1–( )L

,=

detS1
1– δ2 u( )

8i µγ2( )3β31β32
2

------------------------------------,=

β31 ε2 u2– , β32 1 u2– ,= =

u
α
γ2
-----, δ u( ) u2 β31β32, ε+

ct

cl

---.= = =
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resented as a product of triangular matrices. Then, it is
easy to calculate the determinant in itself.

The presence of the exponentials exp{iβ3kγ2Hpq} in
the elements of the JL matrix can cause pronounced
oscillations of its determinant at large values of the nor-

malized frequency γ2Hpq =  (λt is the wavelength

of the transverse wave), when 0 ≤ u ≤ 1. This feature
can give rise to regular real-valued zeros in the segment
[0, 1] that was confirmed by results of numerous calcu-
lations. In particular, the condition of the existence for
the root subsets γ2Hpq ≥ π was determined, namely, the
fact that the distance between the neighboring inclu-
sions should exceed the half-wavelength of the trans-
verse wave in the medium. This condition can be
obtained in the analytical form for antiplanar case (5)
having the root subset

2πH pq

λ t

----------------

8

0.2

6

4

2

0 0.4 0.6 0.8 1.0
u

1

2

3

4

Absolute values of the determinant for L = 2, ε = 0.5, and

different values of γ2H12: (1) γ2H12 = ; (2) π; (3) 2π; and

(4) 3π.

π
2
---
As an illustration confirming the above conclusions,
we display in the figure the behavior of the determinant
absolute value as a function of the parameter u at L = 2
for different values of the normalized frequency, which
are multiple to π.

Thus, the matrix of the set SL has real singularities,
such as branch points u = ε, 1, and the main factor deter-
mining the existence of the root subsets [0, 1] of its
determinant is the relative distance between neighbor-
ing inhomogeneities, which is equal to the half-wave-
length.
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INTRODUCTION

In [1, 2], a self-similar solution to the problem of a
shear-free turbulent unstratified mixing layer is pre-
sented. The characteristic property of this solution lies
in the existence of differential constraints [3] isolating
the given class of solutions. It is established that the dif-
ferential constraint derived coincides with the algebraic
relation (closing relation) for triple correlations found
in [4]. Therefore, we can say that the tensor-invariant
model [4] is substantiated within the framework of the
method of differential constraints.

In this paper, we study the dynamics of a shear-free
stratified mixing layer. Our principal result is presented
by the theorem for the existence of an invariant mani-
fold for the model. This makes it possible to solve the
problem for the cases of both stable and unstable flow
stratification. It turns out that the algebraic parameter-
ization for the third moments, which corresponds to the
Zeman–Lumley model [5], defines an equation for the
invariant manifold of the model under consideration,
while the Brunt–Väisälä frequency represents a bifur-
cation parameter in analyzing solutions to the equation
for the turbulence time scale.

1. INVARIANT MANIFOLDS OF THE MODEL

The model [1] used here to describe a shear-free
mixing layer has the third order of closure and is based
on the hypothesis [6] that cumulants of the fifth and
fourth orders are zero and nonzero, respectively. Thus,
this model is represented by the equations

(1.1)∂ w2〈 〉
∂t

--------------- ∂ w3〈 〉
∂z

---------------– α 1 aτ̂2N2+( )
w2〈 〉
τ̂

-----------,–=
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(1.2)

(1.3)

where α = , κ = , γ = , δ =

, ρ = ,  = , and a =

. In addition, w is the vertical pulsatory

velocity component; 〈w2〉  is the single-point second-
order pulsation correlation for the vertical velocity
component; 〈w3〉  is the third-order correlation; e is the
spectral flux of the turbulence kinetic energy; N2 =

βg , where N is the Brunt–Väisälä frequency; β = 

is the coefficient of volume expansion; Θ is the average
potential temperature; g is acceleration of gravity; c**
are the model coefficients; and the sign 〈 ·〉  denotes aver-
aging.

Since the system of evolution equations has an
invariant manifold, its structure can be simplified [7].
Namely, the existence of differential constraints defin-
ing the invariant manifold makes it possible to reduce
the number of equations and replace the differentiation
operation by a certain algebraic procedure.

One of the invariant manifolds of system (1.1)–(1.3)
has the form

(1.4)

To prove invariance of the set D with respect to the flux
generated by system (1.1)–(1.3), we make certain that

∂ w3〈 〉
∂t

---------------
z∂

∂ κτ̂ w2〈 〉 ∂ w3〈 〉
∂z

---------------=

– 3 w2〈 〉 ∂ w2〈 〉
∂z

--------------- γ 1 aτ̂2N2+( ) w3〈 〉
τ̂

-----------,–

∂e
∂t
-----

z∂
∂ δτ̂ w2〈 〉 ∂e

∂z
----- ρ 1 aτ̂2N2+( )e

τ̂
--,–=

2
3
---

6c1

c3 c1 2+( )
------------------------

2c2 c1 1+( )
3c1

---------------------------

3c1cd

2 c1 2+( )
----------------------

2ce2
c1 2+( )

3c1
---------------------------- τ̂ w2〈 〉

e
-----------

c1
2π

8 c1 2+( )2
------------------------

∂Θ
∂z
------- 1

Θ
----

D w2〈 〉 w3〈 〉 τ̂ : *1
w2〈 〉 w3〈 〉, τ̂,( ), ,{=

≡ w3〈 〉 δτ̂ w2〈 〉 w2〈 〉 z+ 0= } .
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on the set of smooth solutions to system (1.1)–(1.3) the
operator *1(〈w2〉 , 〈w3〉 , ) does not change sign [8].

Theorem 1.1. Let 〈w2〉 , 〈w3〉 , and e be sufficiently
smooth solutions to system (1.1)–(1.3) and, in addition,

(1.5)

Then, the operator *1 has the property of conserving
the sign [8].

Corollary 1.1. The set D represents the invariant
manifold of system (1.1)–(1.3).

Corollary 1.2. The differential constraint *1(〈w2〉 ,
〈w3〉 , ) = 0, which defines the invariant manifold of
system (1.1)–(1.3), coincides with the algebraic model
of triple correlations [5].

The theorem formulated below forms a basis for
finding different classes of the solutions.

Theorem 1.2. Let constants of model (1.1)–(1.3)
satisfy the equalities

Then, on the invariant manifold D, system (1.1)–(1.3)
can be reduced to the form

(1.6)

(1.7)

where  = (t) is the solution to the equation

(1.8)

2. SOLUTIONS ON THE INVARIANT SET

We consider equation (1.8) written out as

(2.1)

where B = a(2α – γ) and D =  + 2α – γ. The form of a

solution to Eq. (2.1) depends on signs of the quantities
B, D, and N2. According to calculations, B < 0 and
D > 0. Positive (negative) definiteness of N2 corre-
sponds to the cases of stable (unstable) stratification.

2.1. Stable stratification. Integration of equation (2.1)
allows its solution to be expressed as

τ̂

∂τ̂
∂z
----- 0,

∂τ̂
∂t
----- 2α γ–( ) 1 aτ̂2N2+( ) 3

δ
---,+= =

κ δ.=

τ̂

a 2α γ–( ) α ρ a–( ),=

3
δ
--- 2α γ–+ ρ α , κ– δ.= =

w2〈 〉 τ̂ e, w3〈 〉 δτ̂ w2〈 〉 ∂ w2〈 〉
∂z

---------------,–= =

∂e
∂t
-----

z∂
∂ δτ̂ w2〈 〉 ∂e

∂z
----- ρ 1 aτ̂2N2+( )e

τ̂
--,–=

τ̂ τ̂
∂τ̂
∂t
----- 2α γ–( ) 1 aτ̂2N2+( ) 3

δ
---.+=

∂τ̂
∂t
----- BN2τ̂2 t( ) D,+=

3
δ
---

τ̂ s t( ) A 4
D
B–

------- 
  BNt C0+ 

  ,tanh=
where A =  and C0 is an integration constant

determined by the specified initial value (0);

(t)  A as t  ∞.

Initial conditions for equation (1.7) are determined
by the formulation of the problem. They are

where e– and e+ are positive numbers such that e– < e+.
We introduce the notation

where  = e(z, t). Then the function us satisfies the
equation

(2.2)

(2.3)

It is easy to verify that : [0, +∞)  [0, ), where

 < , and

The solution to problem (2.2), (2.3) is unique and
invariant with respect to the parametric transformation
group presented in [9]. Thus, us is a self-similar solu-
tion of the form

where λ0 is a certain constant and problem (2.2), (2.3)
turns into the equation

(2.4)

D

BN2–
-------------

τ̂ s

τ̂ s

e0 z( ) e z 0,( )≡
e–, if z 0<
e+, if z 0,≥




=

θ θ t( )≡ τ̂s
2 p( ) p, ς θ( )d

0

t

∫ τ̂ s
2 θ 1– t( )( ),= =

ψ θ( )
1 aς2 θ( )N2+

ς3 θ( )
-------------------------------,=

ê z θ,( ) us z θ,( ) ψ p( ) pd

0

θ

∫–
 
 
 

,exp=

ê z θ,( )

∂us

∂θ̂
--------

z∂
∂ ∂us

∂us

∂z
-------- , θ̂ ψ p( ) pd

0

ξ

∫–
 
 
 

exp ξ ,d

0

θ

∫= =

us z 0,( ) e–, if z 0,<=

us z 0,( ) e+, if z 0.≥=

θ̂ θ̂0

θ̂0
A

aN2
---------

ψ p( ) pd

0

θ

∫–
 
 
 

exp          0 at θ          + ∞ .

us z θ̂,( ) us ξ̂( ), ξ̂
z zc–

2θ̂
------------, zc θ̂( ) λ0 2θ̂,= = =

2δ
d2us

d ξ̂
2

---------- 2δ
dus

d ξ̂
-------- 

  2

ξ̂ λ0+( )
dus

d ξ̂
--------+ + 0,=
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(2.5)

Setting us( ) = , where ζ is the new variable, we

obtain the following boundary value problem for the
Blasius equation:

(2.6)

(2.7)

Lemma 2.1. For arbitrary positive numbers e– and
e+ (e– ≤ e+), there exists a unique positive solution us to
problem (2.4), (2.5) [correspondingly, (2.2), (2.3)] such

that convex (  < 0) or concave (  > 0) function us is
monotonically increasing in the interval (–∞, +∞).

Having determined us, we easily find 〈w2〉  and 〈w3〉
by the formulas

2.2. Unstable stratification. For N2 < 0, the solution
to equation (2.1) has the form

where C1 is determined by the value (0). We intro-
duce the notation

Then, the function uns , defined as

satisfies the equation

us ∞–( ) e–, us +∞( ) e+.= =

ξ̂ d ξ̂
dζ
------

2δd3ξ̂
dζ3
-------- ξ̂ λ0+( )d2ξ̂

dζ2
--------+ 0,=

d ξ̂
dζ
------

∞–

e–, d ξ̂
dζ
------

+∞

e+.= =

ξ̂ ξ̂

ŵ2 z θ,( )〈 〉 τ̂ sê z θ,( ) τ̂ sus z θ,( ) ψ p( ) pd

0

θ

∫–
 
 
 

,exp= =

ŵ3 z θ,( )〈 〉 δτ̂ s ŵ2 z θ,( )〈 〉 ∂ ŵ2 z θ,( )〈 〉
∂z

---------------------------,–=

w3 z t,( )〈 〉 ŵ3 z θ,( )〈 〉 .=

τ̂ns A DBN2( )t C1+( ),tanh=

τ̂ns

θ θ t( ) τ̂ns
2 p( ) p.d

0

t

∫≡=

uns z θ,( ) ê z θ,( ) ψ p( ) pd

0

θ

∫ 
 
 

,exp=

ψ θ( )
1 aς2 θ( )N2+

ς3 θ( )
-------------------------------,=

ς θ( ) τ̂ns
2 θ 1– t( )( ),=

∂uns

∂θ̂
---------

z∂
∂ ∂uns

∂uns

∂z
--------- .=
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Here,

It is evident that   +∞ as t +

C1  . Further analysis is similar to the case of the

stable stratification.
Lemma 2.1 allows formulation of the following the-

orem:
Theorem 2.1. Let κ = δ and

Then, there is a solution to system (1.1)–(1.3) of the
form

(a) for N2 > 0,

(b) for N2 < 0,

Here, us (uns) represents the self-similar solution to
problem (2.4), (2.5).
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0

ξ
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0

θ
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π
2
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3
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0

θ
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 
 
 
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θ θ t( ) τ̂ s
2 p( ) p,d

0

t
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0

θ
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 
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 

,exp=

θ θ t( ) τ̂ns
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0

t

∫≡=
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The exact solution to the linearized problem of gen-
erating disturbances by a two-dimensional obstacle
performing a periodic motion in a viscous continuously
stratified liquid describes thin boundary layers [1] as
well as progressive waves and makes it possible to esti-
mate the errors of the extensively used method of
sources [2]. The three-dimensional boundary-layer
flow is split into layers of two types [3]. One of them
(viscous periodic flow) is analogous to the Stokes layer
in a homogeneous fluid and has a thickness depending
on the kinematic viscosity and frequency. The spatial
scale of the second (internal boundary) layer depends
on the geometric parameters of the problem [3]. Since
the governing equations are nonlinear, the moving
boundary layers are direct sources of waves. The
parameters of waves generated by a boundary-layer flow
on a horizontal disc performing torsional vibrations are
in satisfactory agreement with measurements [4]. For the
first time, we consider here the generation of internal
waves through new mechanisms attributed to the non-
linear interaction of boundary-layer flows with each
other and with progressive internal waves or residual
motions into which the internal waves transform when
the disturbance frequency ω exceeds the buoyancy fre-
quency N of a media. As a source of waves, we consider
an infinite immovable vertical plane whose part per-
forms complex two-dimensional motion, which is the
superposition of two vertical oscillations with frequen-
cies ω1 and ω2 . In this case, only the vertical compo-
nent of the surface velocity is nonzero:

(1)

The equations of two-dimensional motion of a vis-
cous incompressible stratified liquid without diffusion
have the form

U z t,( ) U1 z( )e
iω1t–

U2 z( )e
iω2t–

.+=

ρ0 ρ+( )
∂ux

∂t
-------- ux

∂ux

∂x
-------- uz

∂ux

∂z
-------- ν∆ux–+ + 

  ∂P
∂x
------,–=

Institute for Problems of Mechanics,
Russian Academy of Sciences,
pr. Vernadskogo 101, Moscow, 117526 Russia
1028-3358/02/4702- $22.00 © 20163
(2)

where ρ0(z) is the undisturbed density profile, ρ is the
density disturbance, ux and uz are the velocity compo-
nents, P is the pressure minus the hydrostatic pressure,
ν is the kinematic viscosity, g is the acceleration of
gravity directed opposite to the vertical z-axis, and ∆ =

 + . The boundary conditions are the no-slip

condition in the plane,

(3)

and damping of the disturbances at infinity.
In the approximation of weak nonlinearity, the solu-

tion of the problem in the first-order perturbation theory
is represented as the sum of solutions of linearized sys-
tem (2) with boundary conditions (3) and the solutions
of the inhomogeneous linearized system

(4)

with zero boundary conditions in the plane. The sources
f x, f z, and m appear in Eqs. (4) upon substituting the
stream function Ψ, which is the solution of the linear-
ized system, into the quadratic terms of Eqs. (2) and
have the form

(5)

ρ0 ρ+( )
∂uz

∂t
-------- ux

∂uz

∂x
-------- uz

∂uz

∂z
-------- ν∆uz–+ + 

 

=  ∂P
∂z
------ ρg,––

∂ρ
∂t
------ uz

dρ0

dz
-------- ux

∂ρ
∂x
------ uz

∂ρ
∂z
------+ + + 0,

∂ux

∂x
--------

∂uz

∂z
--------+ 0,= =

∂2

∂x2
-------- ∂2

∂z2
-------

ux x 0 z t, ,=( ) 0, uz x 0 z t, ,=( ) U z t,( ),= =

ρ0

∂ũx

∂t
-------- ∂P̃

∂x
------- ρ0ν∆ ũx ρ0 f x,+ +–=

ρ0

∂ũz

∂t
-------- ∂P̃

∂z
------- ρ0ν∆ ũz ρ̃g– ρ0 f z,+ +–=

∂ρ̃
∂t
------ ũz

dρ0

dz
--------+ m,

∂ũx

∂x
--------

∂ũz

∂z
--------+ 0= =

f x ΨxΨzz ΨzΨxz,–=

f z ΨzΨxx ΨxΨxz, m– Ψxρz Ψzρx,–= =
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where the subscripts x and z denote the partial deriva-
tives with respect to the corresponding variables. In

Eqs. (5), the terms ρ  and ρν∆u are omitted under

the assumption that

where λ is the typical spatial scale, δν =  is the

thickness of the viscous boundary layer, and Λ = –  is

the stratification scale. Equations (4) lead to the follow-
ing equation for the correction to the stream function,

 (  = ,  = – ):

(6)

where N =  is the buoyancy frequency.

Entering into (5), the solution of linearized system (2)
with boundary conditions (3) is represented as the
plane-wave expansion [2, 6]

(7)

which describes both the internal waves and the bound-
ary layers (the terms with the subscripts w and b). Here,
the wave numbers satisfy the dispersion equation

(8)

The substitution of solutions (7) into Eqs. (5) and (6)
results in the appearance of the terms with different
combination frequencies 0, 2ω1, 2ω2, and ω1 ± ω2 on
the right-hand side of Eq. (6). To calculate the genera-
tion of waves with the frequency Ω = ω1 – ω2 , we seek
a solution of Eq. (6) in the form

.

∂u
∂t
------

λ  ! Λ , δν
2
 ! λΛ ,

2ν
ω
------

ρ0

ρ0'
-----

Ψ̃ ũx Ψ̃z ũz Ψ̃x

∂2

∂t2
-------∆ N2 ∂2

∂x2
-------- ν

t∂
∂ ∆2–+ Ψ̃

=  
t∂

∂ ∂ f x

∂z
-------- ∂ f z

∂x
--------– 

  g
ρ0
-----∂m

∂x
------- F,≡+

g
Λ
----

Ψ 1
2
--- Ψ1e

iω1t–
Ψ2e

iω2t–
+( ) c.c.,+=

ρ
iρ0'

2ω1
---------Ψ1xe

iω1t– iρ0'

2ω2
---------Ψ2xe

iω2t–
c.c.,+ +=

Ψ j A j k( ) e
ik jwx

e
ik jbx

–( )eikz k,d

∞–

+∞

∫=

A j k( )
i

2π
------ 1

k jw k jb–
-------------------- U j z( )e ikz– z,d

∞–

+∞

∫=

ωj
2 k j

2 k2+( ) N2k j
2– iωjν k j

2 k2+( )
2

+ 0.=

Ψ̃ 1
2
--- ψ x z,( )e iΩt– ψ∗ x z,( )eiΩt+[ ]=
Here, the asterisk denotes complex conjugation and ψ
satisfies the equation

(9)

(10)

where αj = .

A solution of Eq. (9) is constructed in the form of
the convolution of its right-hand side with the Green’s
function of Eq. (9):

(11)

The conducted calculations demonstrate that the
Green’s function satisfying the boundary conditions

 =  = 0 at x = 0 has the form

(12)

(13)

where the solutions κw(κ) and κb(κ) of the dispersion
equation corresponding to Eq. (9) have the form

(14)

Here, θ =  is the angle between the beams of

the internal waves and the horizontal plane.

Ω2∆ N2 ∂2

∂x2
--------– iΩν∆2– ψ FΩ x z,( ),=

FΩ
iΩ
2

------ 1 α1+( ) Ψ2x* Ψ1xxz Ψ2z* Ψ1xxx–[ ]{=

+ 1 α2–( ) Ψ1xΨ2xxz* Ψ1zΨ2xxx*–[ ]

+ α1 α2+( ) Ψ1xzΨ2xx* Ψ1xxΨ2xz*–[ ] Ψ 1xΨ2zzz*+

– Ψ1zΨ2xzz* Ψ2x* Ψ1zzz Ψ2z* Ψ1xzz–+ } ,

N2

Ωωj

----------

ψ x z,( ) G x ξ ; z ζ–,( )FΩ ξ ζ,( ) ζd ξ .d

∞–

+∞

∫
0

∞

∫=

∂G
∂x
------- ∂G

∂z
-------

G
1

4πΩν
--------------- G̃ κ ; x ξ,( )eiκ z ζ–( ) κ ,d

∞–

+∞

∫=

G̃
1

κb
2 κw

2–
----------------- 1

κw
------





=

× e
iκw x ξ– κb κw+

κb κw–
------------------e

iκw x ξ+( )
–

2κw

κb κw–
-----------------e

iκwx
e

iκbξ
+

–
1
κb
----- e

iκb x ξ– κb κw+
κb κw–
------------------e

iκb x ξ+( ) 2κb

κb κw–
-----------------e

iκbx
e

iκwξ
–+





,

κw = κ θ iν κ 3

2N θcos
5

----------------------,   κ b +tan  =  i 1– ( ) θ Ω 
2

 
ν

 ------.cot

Ω
N
---- 

 arcsin
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Substituting Eqs. (7), (10), (12), and (13) into
Eq. (11) and integrating with respect to ζ, we obtain

(15)

where

(16)

Here,

The terms entering into Eq. (16) for  describe the
nonlinear interaction between the internal waves (this
interaction was calculated in [7]), the interaction of the
internal waves with the boundary layers, and the inter-
action between the boundary layers.

When integrating in Eq. (15) with respect to the
coordinate ξ in the approximation of low viscosity, we
retain only the terms of the minimum order in ν  0.
Then the terms presenting the direct interaction
between internal waves disappear in Eq. (15), since
they have a higher order in ν. The nonlinear interaction
of the boundary layers with each other and with the
internal waves leads to the generation of a wave field,
whose stream function is

(17)

Solution (17) exists for arbitrary frequencies ω1 and
ω2 , in particular, exceeding the buoyancy frequency N.
Since the energy density increases with the wave fre-
quency, only the case ω1 is of practical importance,
ω2 @ N, where the direct generation of progressive
internal waves is forbidden by the properties of the dis-
persion equation. In this case, it follows from Eq. (8)

ψ i
4ν
------ eiκ z

∞–

+∞

∫ A1 k( )A2
* k κ–( )

0

∞

∫
∞–

+∞

∫=

× G̃ κ ; x ξ,( )F̃ k κ ; ξ,( )dξdkdκ ,

F̃ H kw k̃w,( ) H kb k̃w,( )– H kw k̃b,( )– H kb k̃b,( ),+=

H σ σ̃,( ) ei σ σ̃–( )ξ k κ–( )σ kσ̃–[ ] σ σ̃–( ){=

× 1 α1+( )σ 1 α2–( )σ̃+[ ] κ 2k κ–( )+ } .

kw k1w k( ), k̃w k2w
* k κ–( ),= =

kb k1b k( ), k̃b k2b
* k κ–( ).= =

F̃

Ψ 1
2νκ b
------------ e

iκwx
eiκ z A1 k( )A2* k κ–( )

∞–

+∞

∫
∞–

+∞

∫=

×
1 α1+( ) k κ–( )kb

κb kb+
------------------------------------------

1 α2–( )kk̃b

κb k̃b–
----------------------------+





–
k κ–( )kb kk̃b–[ ] 1 α1+( )kb 1 α2–( )k̃b+[ ]

κb kb k̃b–+( ) kb k̃b–( )
------------------------------------------------------------------------------------------------------





dkdκ .
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that the roots of the dispersion equation corresponding
to the boundary layer take the form

Substituting Eq. (7) for Aj(k) into Eq. (17) and per-
forming integration, we obtain

(18)

If the geometry of the part of the plane moving with dif-
ferent frequencies is characterized by a common func-
tion S(z), i.e., Uj(z) = –iωjbjS(z), where bj is the ampli-
tude of corresponding oscillations and maxS(z) = 1,
we have

(19)

Since the frequencies ω1 and ω2 are high (ω1 ≈ ω2 = ω @
Ω), it follows from (19) that

(20)

As an illustration, we consider the generation of

waves by an a-wide strip when S(z) = ϑ , where

kb 1 i+( )
ω1

2 N2–
2ω1ν

------------------, k̃b 1 i–( )
ω2

2 N2–
2ω2ν

------------------.= =

ψ i

4πνκb κb kb k̃b–+( ) kb k̃b–( )
---------------------------------------------------------------------–=

× e
iκwx

eiκ z β1I1 κ( ) β2I2 κ( )+[ ] κ ,d

∞–

+∞

∫

β1 2 α1 α2– 1 α2–( )
kb k̃b–

κb k̃b–
----------------,+ +=

β2 2 α1 α2– 1 α1+( )
kb k̃b–

κb k̃b+
----------------,+ +=

I1 κ( ) U1' z( )U2
* z( )e iκ z– z,d

∞–

+∞

∫=

I2 κ( ) U1 z( )U2'* z( )e iκ z– z.d

∞–

+∞

∫=

ψ
ω1ω2b1b2β

8πνκb
--------------------------- κe

iκwx
eiκ z S2 ζ( )e–iκζ ζd κ ,d

∞–

+∞

∫
∞–

+∞

∫=

β
β1 β2+

κb kb k̃b–+( ) kb k̃b–( )
-----------------------------------------------------.=

ψ
3ωb1b2

8πκb
------------------ κe

iκwx
eiκ z

∞–

+∞

∫ S2 ζ( )e iκζ– ζd κ .d

∞–

+∞

∫–=

a
2
--- z– 

 
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ϑ  is the unit step function. Integrating with respect to ζ
in Eq. (20), we obtain the stream function in the form

(21)

For simplicity, let us consider only one beam propagat-
ing in the first quadrant. Introducing its concomitant
coordinate system (p, q) with the q-axis directed along
the beam, and using Eq. (14) and (21), we obtain the
vertical displacements h of particles in the beam

(22)

which can be expressed in terms of the standard work
functions F(p, q) [6].

The amplitude of the displacements in the axis of
the single-mode beam excited by the motion of a nar-

row strip a <  for large distances from a source

q @  takes the form

(23)

which is proportional to the product of the oscillation
amplitudes, average frequency, and strip width.

Under the laboratory conditions, when q = 20 cm,
N = 1 s–1, a = b1 = b2 = 1 cm, θ = 45°, and ω = 10 s–1,
Eq. (23) yields the estimate hm(q) ≈ 2 mm that is quite
possible to observe.

The above method makes it possible to evaluate the
parameters of wave beams for other combination fre-
quencies: double, sum, and zero.

The effects of nonlinear generation are also mani-
fested in the cases of more complex motions of a gen-
erating surface. In particular, let a part of the plane per-
form frequency-modulated oscillations with a constant
amplitude b so that the surface velocity is

(24)

where µ is the frequency-modulation depth and the
function S(z) specifies, as above, the geometry of the

ψ
3ωb1b2

4πκb
------------------ κa

2
------e

iκwx
eiκ zsin κ .d

∞–

+∞

∫–=

h p q,( )
3ωb1b2 1 i+( ) θsin

8π
---------------------------------------------- 2ν

Ω
------=

× κ κa θcos
2

------------------- iκp
νκ 3q

2N θcos
--------------------– 

 expsin κ ,d

0

∞

∫


 gν3

N
----------




 2Na3 θcos

ν
-------------------------



hm q( )
ωab1b2 θcos

2

4πq
-------------------------------- θsin

νN
-----------,=

U z t,( ) –iϕ' t( )be iϕ t( )– S z( ),=

ϕ' t( ) ω t( )≡ ω0 1 µ Ωtsin+( ),=
moving part of the plane. Following the above method,
we find the stream function of the generated wave field

(25)

When a source of waves is an a-wide strip, we have

S(z) = ϑ  and Eq. (25) takes the form

(26)

which determines both the beams of internal waves
propagating away from the source to the right. Consid-
ering motion only in the first quadrant of the joint coor-
dinate system (p, q), we find the vertical displacements
h of particles in the beam in the form

(27)

At large distances from the source q @ ,

when the beam is single-mode, the integral in Eq. (27)
is calculated and the expression for the displacements
in the beam axis takes the form

(28)

The amplitude of the generated wave is proportional to
the depth of the frequency modulation.

Under natural conditions, when the flows are sub-
stantially nonstationary, the mechanisms under consid-
eration can significantly contribute to the generation
and formation of the internal-wave spectrum. Similar
effects can be observed in the dynamics of other types
of waves (acoustic, surface, inertial, and hybrid), which
also coexist with their boundary layers classified in [8].
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ψ
3ω0b2µ
16πκb

------------------ κ J κ( )e
iκwx

eiκ z κ ,d

∞–

+∞

∫–=

J κ( ) S2 z( )e iκ z– z.d

∞–

+∞

∫=

a
2
--- z– 

 

Ψ̃Ω
3µω0b2

8πκb
------------------ κa

2
------e

iκwx
eiκ zsin κ ,d

∞–

+∞

∫=

h p q,( )
3µω0b2 1 i+( ) θsin

2

16πΩ
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Ω
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
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8πq 2νΩ
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1. In this paper, we consider rotationally symmetric
motions of an ideal fluid in the absence of external bulk
forces. The Euler equations describing such motions
have the form

(1)

Here, t is the time; u, v , and w are the velocity compo-
nents along the axes r, θ, and z of the cylindrical coor-
dinate system, respectively; and p is the pressure.

Our main result consists in finding a class of those
exact solutions to system (1) that depend on four arbi-
trary functions of the variable z and one arbitrary func-
tion of the variable t. Using nonlinear substitutions and
certain quadratures, we express these solutions in terms
of solutions of linear ordinary differential equations of
the second order.

2. The Euler equations admit a broad transformation
group [1] that yields exact solutions to them. Until
recently, invariant solutions of the Euler equations were
primarily studied (see, e.g., [2]). For a more broad class
of partially invariant solutions [3], only individual
examples including the so-called singular vortex were
found [4].

This paper is devoted to the analysis of those par-
tially invariant solutions of system (1) that can be rep-
resented as

(2)

As was shown in [5], these solutions are based on a six-
parametric group admissible by the equations for the
three-dimensional unsteady motion of an ideal fluid.
These equations are of the second rank and have a
defect equal to three, which is the maximum number
possible for system (1). This implies that they have two

ut uur wuz r 1– v 2–+ + pr+ 0,=

v t uv r wv z r 1– uv+ + + 0,=

wt uwr wwz pz+ + + 0,=

ur r 1– u wz+ + 0.=

w w z t,( ), u u r z t, ,( ),= =

v v r z t, ,( ), p p r z t, ,( ).= =
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invariant independent variables and three noninvariant
functions to be found.

3. In order to find solutions (2) of system (1), one
should supplement it with the equation wr = 0 and ana-
lyze the consistency of the resulting overdetermined
system of equations. Such an analysis was performed
in [5]. In what follows, we will briefly formulate the
results of that paper.

Let us first assume that v  ≠ 0 and wzz ≠ 0. In this
case, solution (2) of system (1) can be written out in the
form

(3)

Here, χ and ϑ  are arbitrary functions of t; K is an arbi-

trary constant; and functions f = – , a, q, and b of

variables z and t satisfy the equations

(4)

where  = .

The case where v  ≠ 0 and wzz = 0 was considered
in [6]. Omitting details, we only note that, under the
additional assumption uz = 0, the function v  is found to
take the form

Here, a and q are arbitrary functions of t, and the func-
tion s(r, t) satisfies a linear partial differential equation
of the first order. Therefore, the trivial z-dependence of
the velocity field is compensated by the more intricate
r-dependence of the circular velocity v  and pressure p.

In particular, this allows us to consider the problem
on motion of a fluid with the free cylindrical boundary
r = R(t) and a time-dependent vorticity source at the

u fr qr 1– , v+  = r 1– a χ+( )r4 br2 K q2–+ +[ ] 1/2
,=

p
1
2
--- χr2 w2– Kr 2––( ) wt ζ t,( ) ζd

0

z

∫ ϑ t( ).+–=

wz

2
-----

f t w f z f 2 a–+ + 0,=

at waz 4 a χ+( ) f χ̇+ + + 0,=

qt wqz b–+ 0,=

bt wbz 2 fb 4 a χ+( )q+ + + 0,=

χ̇ dχ
dt
------

v r 1– a s+( )r4 q̇r2 q2–+[ ] 1/2
.=
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flow axis [6]. The fluid-cylinder bases are assumed to
be solid surfaces at z = 0 and z = kt + l, where k and l are
constants. This solution could be treated as the Ovsyan-
nikov’s solution [7] generalized to vortex fluid flows
with singularities at the symmetry axis.

In the case where v  = 0, solution (2) of system (1) is
obtained in quadratures by integrating the Riccati equa-
tion with respect to the unknown t (the second variable
enters into the initial conditions as a parameter).

Although this case corresponds to an axial motion,
the rotational component can be added to the velocity
field by the following transformation conserving the
form of system (1):

v ' = (v  + cr–2)1/2, p' = p – ,

where c is a constant. The other variables entering into
system (1) remain as before [8]. The same transforma-
tion allows the constant K to be eliminated from
Eqs. (3).

4. Let us consider solution (3) in detail. We first note
that Eqs. (4) for a given function w form a hyperbolic
system. The system is decomposed into two sub-
systems to be solved sequentially. The first subsystem
consists of two semilinear equations relating the func-
tions f and a. Upon determining them, the functions q
and b can be found from the system of linear hyperbolic
equations. The fact that the equations are reduced to
hyperbolic system (4) is very noteworthy, because the
initial system of Euler equations (1) is of the mixed
type (the system has both real and complex characteris-
tics). Another remarkable feature of system (4) is that it
has a unique characteristic direction. This fact allows us
to reduce Eqs. (4) to a system of ordinary differential
equations by introducing the Lagrangian coordinates ζ
and t. For a given function w, the relation between ζ and
z is determined by the solution of the Cauchy problem

(5)

Let us introduce the new desired functions

In this case, the first two equations in system (4) take
the form

(6)

It is natural to consider the following Cauchy problem
for system (6):

(7)

We now prove that system (6) can be linearized exactly.
According to the second of Eqs. (6), the sign of the

function A(ζ, t) + χ(t) is fixed for any fixed value of ζ.

cr 2–

2
---------

dz
dt
----- w z t,( ), z ζ for t 0.= = =

F ζ t,( ) f z t,( ), A ζ t,( ) a z t,( ),= =

Q ζ t,( ) q z t,( ), B ζ t,( ) b z t,( ).= =

Ft F2 A– 0, At 4F A χ+( ) χ̇+ + 0.= = =

F F0 ζ( ), A A0 ζ( ) for t 0.= = =
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When A + χ ≤ 0, we can introduce the new function G =
[–(A + χ)]1/2 and rewrite Eqs. (6) in the form

It is evident that the functions F + G = C and F – G = D
satisfy the Riccati equations

which, by substituting C = (lnρ)t and D = (lnσ)t , are
reduced to the linear equations

(8)

Initial conditions (7) are satisfied by setting

(9)

Here, G0 = [–(A0 + χ0)]1/2 and χ0 = χ(0). In the case
of A + χ ≥ 0, the substitution A + χ = G2 reduces sys-
tem (6) to the form

which can be rewritten as the Riccati equation Ht + H2 +
χ = 0 for the complex function F + iG + H. In turn, sub-
stituting H = (lnµ)t, we reduce this equation to the lin-
ear equation

(10)

where µ is the new complex function. According to
Eqs. (7), the initial conditions for Eq. (10) take the form

(11)

where G0 = (A0 + χ0)1/2.
If the functions F and A are found, the functions Q

and B are determined from the linear Cauchy problem

(12)

(13)

Thus, the equations governing the partially invariant
solution under consideration admit complete lineariza-
tion. Functional arbitrariness in this solution is provided
by the function χ(t) entering into representation (3) and
those four functions F0, A0, Q0, and B0 of the variable ζ
that specify initial conditions (7) and (13) for systems (6)
and (12), respectively.

It remains to transform the equation to the Eulerian
coordinates. To perform this transformation, we note
that, according to Eq. (5), the strain zζ can be expressed
in terms of solutions of Eqs. (8), (9) and (10), (11):

(14)

Ft F2 G2 χ+ + + 0, Gt 2FG+ 0.= =

Ct C2 χ+ + 0, Dt D2 χ+ + 0,= =

ρtt χρ+ 0, σtt χσ+ 0.= =

ρ 1, ρt F0 ζ( ) G0 ζ( ), σ+ 1,= = =

σt F0 ζ( ) G0 ζ( ) for t– 0.= =

Ft F2 G2– χ+ + 0, Gt 2FG+ 0,= =

µtt χµ+ 0,=

µ 1, µt F0 ζ( ) iG0 ζ( ) for t+ 0,= = =

Qt B– 0, Bt 2FB 4 A χ+( )Q+ + 0,= =

Q Q0 ζ( ), B B0 ζ( ) for t 0.= = =

zζ
1

ρσ
----------, for A χ 0,≤+=

zζ
1

µ2
--------, for A χ 0.≥+=
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Therefore, the function z = Z(ζ, t) is determined by a
quadrature under the initial condition z = z0(t) at t = 0,
whereas the function w = Zt of the variables z and t is
found in a parametric form.

5. Although system (6) is solved independently of
Eqs. (12), the functions to be found in the initial prob-
lem are coupled through the boundary conditions. It is
precisely the situation that takes place for the fluid
motion in the semi-infinite impenetrable cylinder (z > 0,
0 < r < R = const) with sources and vortices at its axis.

In the case of χ = const, system (12) has a set of the
solutions Q = –R2F and B = R2(F2 – A), where the func-
tions F and A satisfy Eqs. (6). For these solutions, we

have u = − (r – R2r–1)wz so that the impenetrability

condition u = 0 is satisfied at the lateral surface of the
semicylinder. The impenetrability condition w = 0 is
also satisfied at the cylinder base for even functions
F0(ζ) and A0(ζ). For such functions, F(ζ, t) and A(ζ, t)
are also even functions of ζ. Moreover, with regard to

Eqs. (14) and the relation f = – , w(z, t) is an odd func-

tion of z. According to Eqs. (3), (5), and (7) and the
above assumption on the functions Q and B, the initial
velocity field for the motion under consideration takes
the form

(15)

For given constants R and χ and bounded functions F0
and A0 , the positiveness of the radicand in the formula
for v  can be ensured by choosing a sufficiently large
constant K > 0.

Taking into account that the solution of Eqs. (6) and
(7) for χ = const can be expressed in terms of elemen-

1
2
---

wz

2
-----

u r R2r 1––( )F0 z( ), w 2 F0 ζ( ) ζ ,d

0

z

∫–= =

v r 1– r4 A0 z( ) χ+[ ] R2r2 A0 z( ) F0
2 z( )–[ ]–{=

+ K R4F0
2 z( )– } 1/2

.
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Fig. 1. Function h(t).
tary functions and using Eqs. (5) and (14), we arrive at
a parametric representation for the solution of the
boundary value problem of the motion of an ideal fluid
in a semicylinder. This solution corresponds to initial
state (15) and depends on two arbitrary functions F0(z)
and A0(z). We do not present this representation here
and consider only a simple particular case.

Let χ = 1 and both F0 and A0 > –1 be even finite func-
tions of ζ on the segment [–1, 1]. Because A0 + χ > 0, we
have, according to the relationships F + iG = (lnµ)t and
A + χ = G2 ,

(16)

where µ is a solution of Cauchy problem (10) and (11).
In the case under consideration, this solution takes the
form

(17)

The function z(ζ, t) is determined from the second of
Eqs. (14) under the condition z(0, t) = 0:

(18)

where h(t) = Z(1, t) is a 2π-periodic function of t. When
deriving the second of Eqs. (18), we take into account
that |µ| = 1 for ζ ≥ 1 as follows from Eq. (17) and the
condition F0 = A0 = 0 for ζ ≥ 1.

Using Eqs. (16)–(18), we can describe the motion
under consideration in the parametric form. In particu-

lar, w = Zt for 0 ≤ ζ ≤ 1 and w =  for ζ ≥ 1. This
implies that the impenetrability condition is satisfied at
each plane z = h(t) + N, where N = const > 0. Moreover,
u = 0 and v  = r –1(K + r4)1/2 for ζ ≥ 1.

Therefore, the fluid motion in the region bounded by
the planes z = h(t) and z = h(t) + N is similar to the
motion of a plunger. In the region 0 < r < R and 0 < z <
h(t), the fluid flow is periodic in time. Such a motion is
a result of interaction between the sources and vortices
distributed on the segment [0, h(t)] at the flow symme-
try axis. In this case, the vortex circulation is equal to a
constant of 2πK1/2, while the source power M = –2πR2F
is periodic in time.

In the simplest case where F0 = k = const and A0 =
l = const, we obtain

Moreover, the function M is independent of z and has
the form

F Re µln( )t, A Im µln( )t[ ] 2 1,–= =

µ tcos F0 ζ( ) i A0 ζ( ) 1+[ ] 1/2+{ } t.sin+=

z ζ t,( ) ηd

µ t η,( ) 2
--------------------

0

ζ

∫ Z ζ t,( ), for 0 ζ 1,≤ ≤≡=

z ζ t,( ) ζ 1– h t( ), for ζ 1,≥+=

ḣ t( )

h t( ) t k tsin+cos( )2 l 1+( ) tsin
2

+[ ]
1–
.=

M 2πR2k tcos
2

tsin
2

–( ) k2 l+( ) t tcossin+

tcos k tsin+( )2 l 1+( ) tsin
2

+
-----------------------------------------------------------------------------------.–=
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For k = 1, l = –0.05, and R = (2π)–1/2, the functions h(t)
and M(t) are shown in Figs. 1 and 2, respectively.
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It is widely known that titanium nickelide is one of
the most studied alloys exhibiting a shape memory
effect. This effect is based on reversible martensitic
transformations (see, e.g., [1, 2]). It is somewhat less
well known that massive samples of titanium nick-
elide are prepared by the self-propagating high-tem-
perature synthesis (SHS) of nickel and titanium pow-
ders (see, e.g., [3]). The SHS in the powders is consid-
ered to be a fairly well-studied process. However,
investigation of the SHS in thin films has begun only
recently. In [4], it was shown for the first time that in the
case of high heating rates, solid-phase reactions
between layers of two-layer film samples can occur in
the SHS regime. The SHS in thin films represents a sur-
face-combustion wave and is characterized by an initi-
ation temperature T0 and a front velocity Vf . With
increasing substrate temperature TS , the front velocity
Vf  increases according to a law close to the Arrhenius
law. The value of Vf at TS slightly exceeding T0 lies
within the range (0.1–0.5) × 10–2 m s–1; therefore, the
front propagation can be easily observed by visual
means. Thus, in the same two-layer film samples, the
solid-phase reactions can be realized in both fast and
slow SHS combustion regimes being determined by the
reaction diffusion. The choice of regime depends on the
control parameter, which is, in fact, the substrate-heat-

ing rate .

During the last three decades, solid-phase reactions
in thin films were an object of intense study (see, e.g.,
[5–9]). In two-layer thin films, these reactions occur at
temperatures of 400–800 K, which are noticeably lower
than in massive samples. Analysis of numerous experi-
mental data has shown that, with increasing tempera-
ture of a two-layer thin-film sample, a phase (called the
first phase) is initially formed at the interface. Further

dTS

dt
---------
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elevation of the temperature results in the appearance
of new phases that form a phase sequence (see, e.g.,
[6−9]). The prediction of the existence of pairs, i.e., the
first phase and the sequence of phases, between which
a solid-phase reaction is possible, is extremely impor-
tant for technological applications. In [6, 7], principles
were formulated for the first time that made it possible
to predict the first phase and the phase sequence. Fur-
thermore, these principles were extended and modified,
which allowed the new experimental data of [8, 9] to be
explained. However, even until now, no general rules
for predicting the first phase and the phase sequence
exist.

Under the sequential deposition of films as a result
of chemisorption, the interface can represent a two-
dimensional reaction product. At the temperature of the
solid-phase transformation, a redistribution of atoms
takes place, accompanied by breakage and formation of
new bonds. Therefore, it is natural to associate the ini-
tiation temperature of the solid-phase reactions and the
formation of the first phase in two-layer films with tem-
peratures of solid-phase transformations of reaction
products. For example, as was shown in [10], the initi-
ation temperature for the SHS in a two-layer Fe/S-film
system coincides with the metal–dielectric phase-tran-
sition temperature in the FeS iron monosulfide formed
among reaction products. For the classical (from the
standpoint of the ordering phenomenon) Cu/Au sys-
tem, it was shown that the SHS initiation temperature in
the Cu/Au two-layer film system is determined by the
temperature of the order–disorder transition in the CuAu
superstructure formed among reaction products [11].
The class of film pairs for which the initiation temper-
ature coincides with the Kurnakov temperature and of
phases precipitating together with reaction products is
extended in [13]. Therefore, a following novel rule is
proposed in [13]:

The first phase formed at the film interface is a
phase being the first in the phase-equilibrium diagram,
which has a minimum temperature of structural phase
transformations. Further phase formation accompa-
nied by an increase in the annealing temperature for
002 MAIK “Nauka/Interperiodica”
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the solid-phase reactions in thin films is determined by
structural transformations in a given binary system.
The initiation temperature of solid-phase reactions
coincides with temperatures of structural phase trans-
formations.

In this paper, the results of studies of a solid-phase
reaction in an Ni/Ti-two-layer film system is presented.
The main goal of this study is to extend the first-phase
rule to the martensitic transformations and to show that,
at the nickel-layer and titanium-layer interface, a solid-
phase reaction arises and martensitic phases among
reaction products are formed. In this case, the initiation
temperature T0 coincides with the onset temperature AS

of the reverse martensitic transformation.

We sequentially deposited nickel and titanium lay-
ers onto glass substrates by employing the ion-plasma
sputtering method. The basis pressure and the pressure
of argon in the sputtering chamber were 6.5 × 10–3 and
7.5 × 10–2 Pa. The sputtering rates were ~0.02 and
~0.01 nm/s for nickel and titanium layers so that the
thicknesses of nickel and titanium films lay within the
range 50–100 and 80–150 nm, respectively. It was
shown in [4] that the SHS in thin films can be initiated
by two methods: either by heating a two-layer film sam-
ple at a rate not lower than 20 K/s up to the temperature
above the initiation temperature (TS > T0), or by depos-

× 6

(b)

B2 (NiTi)

Ni

35° 40° 45° 50° 55°

Ti

(a)

Ni4Ti3
B19'

B19

2Θ

I, arb. units

Fig. 1. X-ray diffraction patterns for a two-layer
(90 nm)Ti/(75 nm)Ni film sample after the sequential depo-
sition of a titanium layer onto a nickel layer at different sub-
strate temperatures: (a) prior to the reaction, TS = 300 K;
(b) after the reaction, TS = 420 K.
iting the second layer at the substrate temperature TS

exceeding the initiation temperature T0 .

The martensitic transitions in the titanium nickelide
reveal a temperature hysteresis, and for the stoichio-
metric composition the temperatures of the onset and
the end of the direct and reverse transformation are
equal: MS ~ 360 K, Mf ~ 340 K, AS ~ 390 K, and Af ~
400 K [2]. In our experiments, Ni/Ti films were depos-
ited at the substrate temperatures TS = 300 K (series 1)
and TS = 420 K (series 2), which are, respectively, lower
and higher than the temperatures Mf and Af . We should
also note that in accordance with the phase-equilibrium
diagram within the temperature range 300–420 K there
exist no other structural phase transformations in the
Ni–Ti system except the martensitic one. At the sub-
strate temperature TS = 300 K, the X-ray patterns for the
series 1 (Fig. 1a) contain reflections only from the
nickel and titanium layers. This fact implies that only a
two-layer nickel–titanium film system is formed. How-
ever, if the substrate temperature TS = 420 K, the forma-
tion of compounds at the nickel–titanium interface
begins. X-ray diffraction patterns (Fig. 1b) show that
reaction products contain the reflections of unreacted
nickel and reflections that can be related to the
B2(NiTi) high-temperature austenitic phase, the B19
and B19' martensitic phases, and a metastable form of
the Ni3Ti4 phase with the shape-memory effect. Forma-
tion of Ni3Ti and Ti2Ni is also possible as a result of the
reaction. As a whole, those phases are formed among
the reaction products, which are contained in powders
after the SHS [3]. The measurement of the magnetic
moment of the samples, which is proportional to the
thickness of unreacted nickel, shows that the reaction
does not occupy the entire depth of the sample but pen-
etrates to a thickness not exceeding 40 nm. The depen-
dences of the electrical resistance R(TS) on the substrate
temperature TS manifest a large variety, all of them
exhibiting a nonmonotone behavior in the region of the
martensitic transition. A typical plot for R(TS) is shown
in Fig. 2, which has a nonmetallic behavior. The pres-
ence of oxygen atoms and nitrogen atoms that absorb
the titanium layer can strongly affect the dependence
R(TS). The nonmonotonic behavior of this dependence
shown in Fig. 2 coincides with the dependence R(TS) in
NiTi films [13] and confirms the fact that, basically, mar-
tensitic phases are formed among reaction products.

Ni/Ti two-layer film samples obtained at a tempera-
ture TS = 300 K (series 1) were heated up to the temper-
ature of 800 K at a rate of ~20 K/s, which is necessary
for initiating an SHS wave. However, the propagation
of the SHS front was not visually observed. Therefore,
these samples were subjected to rapid temperature
annealing. This consisted in heating at a rate of ~20 K/s
up to the temperature required, holding at this temper-
ature for 30 s, and cooling at a rate of ~10 K/s. The
dependence of the thickness d(Ni) of reacted nickel on
the substrate temperature TS for rapid temperature
DOKLADY PHYSICS      Vol. 47      No. 2      2002
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annealing is shown in Fig. 3. This dependence is of the
Arrhenius type. Since the quantity d(Ni) is proportional
to the reaction rate, the activation energy Ea = 20 kJ/mol
was determined from the dependence of d(Ni) on TS.
This value is close to that of the activation energy for
the martensitic transformation in steels (~5 kJ/mol) and
strongly differs from the average activation energy of
the solid-phase reaction in Ni/Ti-multilayer samples
(~150 kJ/mol), which was determined in [14]. It is seen
from Fig. 3 that the formation of compounds at the
nickel–titanium interface begins from the temperature
TS < 420 K and proceeds in a regime of the reaction dif-
fusion. The dependence of the thickness d(Ni) of the
reacted nickel on the annealing time t at a substrate
temperature TS = 420 K is close to the parabolic law
d2(Ni) ~ Dt . Determination of the diffusivity D yields
the value of D on the order of ~0.5 × 10–18 m2/s. This
value is by a factor of 103–105 higher than that for the
bulk diffusivity of metals at a temperature of 420 K and
is close to the diffusivity related to grain boundaries.
The diffusion along grain boundaries is assumed to be
a predominant mechanism in the formation of com-
pounds in thin films. However, the martensitic transfor-
mations, in which the austenitic phase transforms into a
martensitic one by the cooperative displacement of lat-
tice atoms are diffusion-free. As is shown above, the
mass transfer to depths attaining 40 nm to both sides
occurs from the interface between the layers of nickel
and titanium at the temperature somewhat higher
than Af . This implies a mechanism of mass transfer in
thin films that is alternative to the diffusion. Such a
mechanism consists in the fact that the transfer of
reagent atoms (possibly, the transfer of their complete
planes) to each other is accompanied by the formation
of reaction products by cooperative displacement. This
mechanism is analyzed in [15].

It was shown previously in [14] that in Ni/Ti multi-
layers the solid-phase reaction occurs at temperatures
between 420 and 600 K. This reaction is accompanied
by the formation of an amorphous phase among the
reaction products. However, the X-ray diffraction pat-
terns obtained in this study exhibit an amorphous halo
for the reflection angles 2θ belonging to the range {36°,
44°}, which is characteristic of reflections from the
martensitic phase of titanium nickelide.

The closeness of the initiation temperature T0 for the
solid-phase reaction between layers of nickel and tita-
nium to the temperatures of martensitic transformation
in the titanium nickelide suggests that T0 must coincide
with the temperature of the martensitic transition into
the austenitic phase, i.e., with the temperature AS of the
onset of the reverse martensitic transformation.

At the present time, it is generally accepted that, in
the martensitic transitions, atoms cooperatively shift to
distances not exceeding the lattice parameter without
affecting the nearest environment. The results of this
study show that, at the onset temperature of the reverse
DOKLADY PHYSICS      Vol. 47      No. 2      2002
martensitic transformation, a significant mass transfer
(up to distances of ~80 nm) accompanied by the forma-
tion of compounds in two-layer film condensates takes
place. At this temperature, the process of the martensi-
tic transformation is actually a secondary result. This
assumes similar chemical mechanisms of martensitic
transformations, as well as synthesis that has a long-
range nature. The long-range mechanism of the synthe-
sis determines the processes of martensitic transitions
by which the breakage and formation of new bonds can
arise (possibly with a change of their types). It is well
known that the martensitic transformations can occur at
very low temperatures. Therefore, on this basis, we can
assume that even at these temperatures, compounds can
be formed at the interfaces of film condensates.
Mechanical stresses also strongly affect the kinetics of
martensitic transitions. Thin films are practically
always under the action of large mechanical stresses

600550500450400350300
TS, K

R, arb. units

Fig. 2. Dependence of the relative electrical resistance
R(TS) of the two-layer (90 nm)Ti/(75 nm)Ni film sample in
which 40 nm of Ni layer has reacted. 
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Fig. 3. Dependence of the thickness d(Ni) of nickel reacted
in the two-layer (110 nm)Ti/(50 nm)Ni film sample on the
substrate temperature TS in the regime of rapid temperature
annealing. 
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capable of affecting the kinetics and the character of
solid-phase transformations of two-layer systems, pro-
vided that martensitic phases are formed among the
reaction products. In numerous studies of solid-phase
reactions in thin films, the formation of martensitic
phases was not found. The results of this study imply
that the martensitic phases not only can be formed in
the reaction products but also determine the pairs of
reagents and temperatures of solid-phase reactions in
thin films.
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As is well known, the Shafranov equation

(1)

is used to find the steady-state solution to equations of
magnetohydrodynamics for a spatially bounded and
axially symmetric plasma configuration [1]. Here, the
functions F and G are expressed in terms of the plasma
pressure p and the total current J across a circle of
radius r perpendicular to the z-axis, respectively:

The corresponding components of magnetic induction
are expressed as

.

In previous studies, it was demonstrated that an
approach based on scale invariance makes it possible to
obtain solutions that describe transient one-dimen-
sional plasma motions belonging to the class of flows
with a velocity proportional to the distance from the
center of symmetry (see [2, 3] and references cited
therein).

The method proposed in this paper can be used to
find a time-dependent solution to the magnetohydrody-
namics equations

(2)

(3)

(4)

div
∇ψ
r2

-------- –16π3 dF
dψ
------- 8π2

c2r2
---------dG2

dψ
---------–=

F ψ( ) p r z,( ),=

G ψ( ) jz 2πr rd×  

0

r

∫ J r z,( ).= =

Br
1

2πr
---------∂ψ

∂z
-------, Bz–

1
2πr
---------∂ψ

∂r
-------, Bϕ

2G
cr
-------= = =

divB 0,
∂B
∂t
------- curl= = VB[ ] ,

∂ρ
∂t
------ div+ ρV 0,=

dV
dt
------- ∂V

∂t
------- V∇( )V+≡ 1

4πρ
---------- BcurlB( ) 1

ρ
--- ∇ p––=
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for an axially symmetric plasma configuration when
the corresponding steady state is described by a solu-
tion to the Shafranov equation. The resulting solution
describes the unsteady motion of the class indicated
above.

Let R and L be the characteristic radius and axial
length of a quiescent plasma, respectively. Replacing r

and z by the new variables χ =  and ζ = , we rewrite

the magnetic flux density and plasma density as
ψ(r, z) = Ψ(χ, ζ) and ρ = Φ(χ, ζ), respectively. Here,
Φ is a certain function.

This change of variables leads to somewhat differ-
ent forms of both Eq. (1) and expressions for the radial
and axial components of the magnetic induction:

(5)

(6)

We now denote by a = a(t) and b = b(t) the charac-
teristic dimensions of a moving plasma, which were
introduced above. Suppose that a(0) = R and b(0) = L.
For a plasma motion of the class under consideration,
the velocity components and density are expressed as

where ξ =  and η =  are scale-invariant variables.

The expressions involved in Eq. (6) suggest that the
radial and axial components of magnetic induction in a
moving plasma should be represented in terms of the
function ψ(r, z, t) = Ψ(ξ, η) as

r
R
--- z

L
---

1

R2
----- ∂2Ψ

∂χ2
----------

1
χ
---∂Ψ

∂χ
--------– 

  1

L2
-----∂2Ψ

∂ζ2
----------+

=  –16π3χ2R2 dF
dΨ
-------- 8π2

c2
--------dG2

dΨ
---------,–

Br
1

2πRLχ
-----------------∂Ψ

∂ζ
--------, Bz–

1

2πR2χ
----------------∂Ψ

∂χ
--------.= =

Vr ȧξ , Vϕ 0= , Vz ḃη , ρ LR2

ba2
---------Φ ξ η,( ),= = =

r
a
--- z

b
---
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(7)

The applicability of these expressions can be demon-
strated by directly substituting expression (7) into
Eqs. (2). However, we propose here a simpler method
based on a corollary to these equations.

The frozen-in condition for the magnetic-field lines
described by Eqs. (2) implies that

(8)

where the quantity S is preserved  =  in a mov-

ing plasma. Since ξ and η are scale-invariant variables,
it can be readily shown that expressions (7) are consis-
tent with condition (8). Furthermore, setting S = ϕ, we
find an expression for the azimuth component of the

magnetic induction: Bϕ = .

The results obtained above can be used to calculate

the components of current density j = curlB:

(9)

where I(r, z, t) = Gψ. As in the case of a quiescent
plasma, the function ψ represents the magnetic flux
density for a circle of radius r perpendicular to the
z-axis. According to Eqs. (9), the function I correspond-
ing to an unsteady motion differs from the total current

across above-indicated circle: I = . We also consider

that the same dependence p = F(ψ) is applicable for the
moving-plasma pressure.

As a result, we find from Euler equation (4) that 

(10)

Here, for brevity, the notation is used:

As is easy to understand, if the function Ψ(χ, ζ) sat-
isfies Eq. (5), then the solution to ordinary differential

Br
1

2πabξ
----------------∂Ψ

∂η
--------, Bz–

1

2πa2ξ
---------------∂Ψ

∂ξ
--------.= =

d
dt
----- B∇ S

ρ
----------- 

  0,=

dS
dt
------

 0


2LG ψ( )
abcξ

--------------------

c
4π
------

jr
L

2πbr
------------∂I

∂z
-----, jϕ–

cr

8π2
--------div

∇ψ
r2

--------,–= =

jz
L

2πbr
------------∂I

∂r
-----,=

bJ
L

------

ȧ̇ξ A
aρ
------∂Ψ

∂ξ
--------,– ḃ̇η A

bρ
------∂Ψ

∂η
--------.–= =

A
dF
dΨ
--------

1
2π
------ L

abcξ
------------ 

 
2dG2

dΨ
---------+=

+
1

16π3a2ξ2
---------------------- 1

a2
----- ∂2Ψ

∂ξ2
----------

1
ξ
---∂Ψ

∂ξ
--------– 

  1

b2
-----∂2Ψ

∂η2
----------+ .
equations (10) takes the form

In the case when the flow density is distributed in the
azimuth direction in the steady configuration under
study, i.e., G = 0, the solution is possible with a plas-
moid dependent on time and having a longitudinal
dimension

Here, u and w are certain constants.

Thus, using the solutions to the Shafranov equa-
tions, we can construct the unsteady solution to the
magnetohydrodynamics equations, which describes the
variation of the dimensions of an axially symmetric
plasma configuration. The unsteady motion of plasma
is determined by both the time dependence of the elec-
tric current flowing in the plasma and the magnitude of
the external confining field.

As an illustration of the applicability of the method
proposed here, we consider a spherical configuration
with an azimuth current density [1]. This configuration
is described by a time-independent solution analogous
to Hill’s vortex in fluid dynamics:

(11)

where B0 represents the external confining magnetic
field and R is the radius of the plasma ball. This config-

uration is characterized by F = –  and G = 0.

Since L = R in this case, expression (11) is equivalent to

In accordance with the scheme developed above, we
obtain the following results for unsteady motion of the
plasma ball:

(12)

a R 1 ut+( ), b L.= =

a R 1 ut+( ), b L 1 wt+( ).= =

ψ 3
2
---πB0r2 r2 z2+

R2
--------------- 1– 

  ,=

15B0ψ
16π2R2
------------------

Ψ χ ζ,( )
3
2
---πB0R2χ2 χ2 ζ2 1–+( ).=

ψ r z,( ) Ψ ξ η,( )
3
2
---πB0

R2

a2
-----r2 r2 z2+

a2
--------------- 1– 

  ,= =

Vr = r
ȧ
a
---, Vϕ  = 0, Vz = z

ȧ
a
---, ρ = 

R
a
--- 

 
3

Φ r
a
--- 

  ,

Br –B0
3R2

2a4
---------rz, Bz B0

3R2

2a2
--------- 2r2 z2+

a2
------------------ 1– 

  .–= =
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Comparing expressions (11) and (12), we can see
that the obtained solution to the magnetohydrodynam-
ics equations describes a spherical plasma configura-
tion placed in an unsteady external magnetic field with

the induction Bext = B0 . The distribution of the

current density is also a function of time: jϕ =

− . A solution describing a plasmoid that has

the shape of a prolate or oblate spheroid can be
obtained in a similar manner by using the correspond-
ing solution to the time-independent problem [4].

R
a
--- 

 
2

15cB0R2r

8πa4
------------------------
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