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In tracing the history of the discovery of the cooperative
ordering of electron spins in an antiparallel orientation of
their moments in the solid substances and the use of the term
‘‘antiferromagnetism’’ to denote this new magnetic state of
matter in physical discourse, one would invariably start from
the experiments that raised the necessity of altering the mo-
lecular field concept introduced by Weiss in 1906 for the
description of ferromagnetism. These were experiments in-
vestigating the temperature dependence of the magnetic sus-
ceptibilities of the metals Mn, Cr, the alloys Co–Fe, Fe–Mn,
Fe–Cr, and the chlorides FeCl2 , CrCl3 , and NiCl2 . As it
would turn out, these substances are by no means the sim-
plest of antiferromagnets, and it is possibly for that reason
that the path to antiferromagnetism was not the easiest one.
For some time this new magnetic state was called anomalous
ferromagnetism.

In 1932 L. Néel, striking off from Heisenberg’s notions
of the exchange interaction, deepened Weiss’s concept of the
molecular field by introducing the concept of a ‘‘local mo-
lecular field.’’ He allowed for the possibility of this field
being oriented in the opposite direction to that of the mag-
netic moment created by the neighboring ion. That made it
possible to explain the temperature behavior of the magnetic
susceptibility of PtCo alloys �L. Néel, Ann. Phys. �Paris� 17,
5 �1932�� and the anomalously large temperature-
independent susceptibility of chromium �L. Néel, J. Phys. et
Radium �Paris� 3, 160 �1932��. Subsequently Néel intro-
duced the concept of interpenetrating magnetic sublattices
into the theory of the ‘‘generalized ferromagnet’’ �later called
‘‘antiferromagnet’’�. The thermodynamic theory developed
by Néel made it possible to perceive the cooperative charac-
ter of the antiferromagnetic ordering and to predict a peak on
the temperature dependence of the susceptibility upon the
spontaneous onset of antiferromagnetic order �L. Néel, Ann.
Phys. �Paris� 5, 232 �1936��. This peak was soon observed,
and the temperature of the transition to the new magnetic
state has come to be called the Néel temperature.

During this same period of years, L. V. Shubnikov and
L. D. Landau in Kharkov were intrigued by the seemingly
contradictory magnetic properties of layered anhydrous crys-
tals of the chlorides of iron, cobalt, nickel, and chromium. In
the paramagnetic temperature region the magnetic suscepti-
bility of these salts increased with decreasing temperature as
in ordinary ferromagnets—faster than required by the Curie-
Weiss law—but no ferromagnetism arose on further cooling
below the paramagnetic Curie temperature, and the suscepti-
bility itself became dependent on the magnetic field strength
�H. R. Woltjer, Leiden Comm. N173b �1926�; H. R. Woltjer
and Kamerlingh Onnes, Leiden Comm. N173c �1926�; H. R.
Woltjer and E. C. Wiersma, Leiden Comm. N201a �1930��.

In 1933 Landau developed a phenomenological model of
a layered magnet wherein he took into account the possibility
of a strong dependence of the exchange interaction on the
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distance between magnetic ions and assumed that the inter-
action between magnetic ions belonging to the same layer is
positive �ferromagnetic� while that between ions of different
layers is negative, i.e., promoting an antiparallel orientation
of the magnetic moments. He introduced two magnetic sub-
systems formed by the ions of neighboring layers with op-
positely directed magnetic moments, and the vectors now
known as the ferromagnetic and antiferromagnetic vectors.
Landau also took into account the interaction of the magnetic
moments of the ions with the lattice, which causes magnetic
anisotropy. The minimum of the energy in the model corre-
sponds to an antiparallel orientation of the magnetic mo-
ments of the layers. The model explained the magnetic
anomalies observed and predicted spontaneous cooperative
magnetic ordering with zero resultant magnetic moment of
the whole crystal but with nonzero magnetic moments of its
subsystems; such ordering should be accompanied by char-
acteristic features on the depend dependence of the heat ca-
pacity and magnetic susceptibility. Landau obtained expres-
sions for the temperature dependence of the magnetic
susceptibility in all crystallographic directions �L. Landau,
Phys. Zs. Sowjet. 4, 675 �1933��.

In a parallel effort an experiment designed by L. Shub-
nikov was carried out to detect the anomalies of the tempera-
ture dependence of the heat capacity that should accompany
cooperative magnetic ordering in FeCl3 at low temperatures.
The experiment was brilliantly completed in 1934. The ob-
served peak �O. N. Trapeznikowa and L. W. Shubnikov, Na-
ture 134, 378 �1934�� attested to the cooperative character of
the spontaneous antiparallel ordering of the magnetic mo-
ments and confirmed the conclusions of the theory that had
been developed at that time. Subsequently these same
anomalies of the heat capacity were found in all of the chlo-
rides displaying anomalous magnetic behavior �O. N. Tra-
peznikova, L. V. Shubnikov, G. A. Milyutin, Zh. Éksp. Teor.
Fiz. 6, 421 �1936��. Soon after, the expected features on the
temperature dependence of their magnetic susceptibilities
were also observed �L. W. Schubnikow and S. S. Schalyt,
Phys. Z. Sowjet. 11, 566 �1937�; Zh. Éksp. Teor. Fiz. 8, 518
�1938��.

The years 1932–1936 can be considered to be the date of
birth of antiferromagnetism. That is the period in which the
observation of the magnetic and thermal properties expected
to accompany the formation of a magnetic state of matter
with an antiparallel orientation of the magnetic moments was
achieved. This state did not yet have a name. This was con-
ferred later, in 1937. In his Nobel Lecture, Néel would credit
F. Bitter with the introduction of the term ‘‘antiferromag-
netism’’ �F. Bitter, Phys. Rep. 54, 79–86 �1938��. However,
the term can also be found in an earlier paper �J. H. van
Vleck, Phys. Rev. 52, 1178–1198 �1937��.

Attempts at a quantum description of the phenomenon of
antiferromagnetism had not been so successful, since a strict
© 2005 American Institute of Physics
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antiparallel orientation of the spins of magnetic sublattices
did not correspond to the ground state of the quantum sys-
tems studied. This situation led to some skepticism as to
whether that picture was correct. Only the neutron-
diffraction experiments in 1949 �C. G. Shull and J. S. Smart,
Phys. Rev. 76, 1256 �1949��, in which additional diffraction
peaks were observed to appear upon the transition of the
MnO crystal to the magnetically ordered state, made it pos-
sible to assert that the antiferromagnetic ordering of the spin
moments on the macroscopic scale actually occurs. The mag-
netic structure of MnO was described beautifully by the
model of two interpenetrating magnetic sublattices. The sta-
bility of such structures in time was later confirmed indi-
rectly and then directly, by the observation of stable 180-
degree �time-reversed� antiferromagnetic domains.

Subsequent experimental and theoretical research on an-
tiferromagnets revealed many new structures and properties.
It soon became clear that collinear antiferromagnets with
completely compensated magnetic moments represent only
one of many groups of antiferromagnets. The great diversity
of states united by the property of nearly complete compen-
sation of all their elementary magnetic moments is evident
merely from a list of the terms that have been introduced to
identify the different classes of antiferromagnetic substances:
collinear or noncollinear antiferromagnets, many-lattice non-
collinear antiferromagnets, metamagnets, antiferromagnets
with weak ferromagnetism, the set of modulated antiferro-
magnetic structures commensurate and incommensurate with
the period of the unit cell of the crystal, antiferromagnetic
glasses, dimeric spin structures, antiferromagnetic chains and
ladders, gap antiferromagnets, antiferromagnetic vortex

FIG. 1. Number of papers per year containing the term ‘‘antiferromagnetic’’
in the title or abstract. The search was done using the search engine Google
Scholar. The dotted line shows the analogous result for the term ‘‘ferromag-
netic.’’ The time interval over which the number of papers increases by a
factor of e �the straight line� is 11.2 yr for ‘‘antiferromagnetic’’ and 12.5 yr
for ‘‘ferromagnetic.’’
structures, frustrated antiferromagnetic structures, molecular
cluster antiferromagnets, nuclear antiferromagnets, and, fi-
nally, artificial heteromagnetic nanostructures. We hope that
the papers published in this issue will give an idea of the
different fields of antiferromagnetics research being pursued
at various research centers of Europe, Asia, and America.

The pace of research on antiferromagnetism since the
time of its discovery is demonstrated in Figs. 1 and 2. Al-
though the data presented are far from complete, they do
reflect more accurately the evolutionary trends of such re-
search. One might think that this temperature dependence
could be altered noticeably by recent developments such as
the wide application of artificial antiferro/ferromagnetic
structures for data storage and readout devices in information
technology and the growing interest in the role of antiferro-
magnetism in high-temperature superconductivity, but in re-
ality the exponent characterizing the growth of interest varies
in direct proportion to time and fluctuates little. It is also
curious that over the entire history of antiferromagnetism the
ratio of the number of papers on antiferromagnets to the
number of papers on ferromagnets is steadily growing.

In closing, we note that many famous names in physics
are linked with research on antiferromagnets, but the discov-
ery of antiferromagnetism as a physical phenomenon is as-
sociated with the names of those who were first: L. Néel, L.
D. Landau, and L. V. Shubnikov. There is no doubt that the
physical concepts introduced by them, which have since
come to be called antiferromagnetism, Néel temperature,
magnetic sublattice, and the antiferromagnetic vector, will
endure for a long time to come.

N. F. Kharchenko

FIG. 2. Time dependence of the ratio of the number of papers per year
containing the term ‘‘antiferromagnetic’’ to the number of those containing
the term ‘‘ferromagnetic.’’
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The static and dynamic, quantum and classical properties of antiferromagnets �AFMs� are
discussed from a unified point of view. Attention is directed mainly toward mesoscopic magnets,
i.e., materials with characteristic scales of nonuniformities of the order of atomic dimensions.
The creation of such materials and their study and application have largely shaped the face of the
physics of our day. This class includes small magnetic particles and their arrays, magnetic
superlattices and clusters, and high-spin molecules. The traditional problems of the physics of
antiferromagnetism are also discussed �symmetry analysis of AFMs, reorientation
transitions, equations of spin dynamics�, but they are represented only to the extent that it is
useful to do so for subsequent consideration of the quantum and classical properties of mesoscopic
AFMs. For description of the spin dynamics of AFMs, a magnetic Lagrangian of a form
matched with the quantum-mechanical Hamiltonian is constructed. The lowering of the symmetry
of the AFMs, both that due to conventional causes such as an external magnetic field and
that due to the partial decompensation of the sublattice spins, is taken into account. The latter effect
is especially important for mesoscopic particles of AFMs of the ferrite type. The influence
of defects and of the surface on the reorientation transitions in AFMs is discussed in detail. These
effects, which are of fundamental importance for the description of small particles of AFMs,
are observed for magnetic superlattices with an antiferromagnetic interaction of the elements of the
superlattices. The description of macroscopic quantum effects in mesoscopic AFMs plays a
prominent role. The spin Lagrangian obtained describes new tunneling effects such as an
oscillatory dependence of the tunneling probability on magnetic field. Quantum effects in
magnetic systems with a nonuniform ground state are investigated. These effects can be described
as the change due to processes of tunneling of the topological charges of various natures
that characterize these states. © 2005 American Institute of Physics. �DOI: 10.1063/1.2008127�
I. INTRODUCTION

The study and practical application of mesoscopic mate-
rials with characteristic length scales of the nonuniformities
from micron to atomic dimensions started at the boundary of
the twentieth and twenty-first centuries. The class of mesos-
copic magnets includes materials with different spatial
scales, such as small magnetic particles of micron and sub-
micron dimensions and ordered arrays of such particles,
magnetic superlattices, magnetic clusters, and, finally, high-
spin molecules, including tens of spins with a strong ex-
change interaction.1,2 Mesoscopic magnets can be divided, in
terms of the character of their ordering �we are talking about
the focus of the spins both in an individual small particle and
the ordering of the magnetic moments of individual elements
of a superlattice�, into the same classes as bulk materials
�ferromagnets, AFMs, ferrimagnets�. These materials often
manifest unique physical properties that are absent in bulk
samples. It suffices to mention the macroscopic quantum ef-
fects manifested in the coherent quantum behavior of tens,
hundreds, and even thousands of spins.

The physics of mesoscopic magnets owes its progress to
the achievements of the traditional physics of magnetically
ordered crystals. Undoubtedly the significant results from the
study of ‘‘ordinary’’ AFMs, elaborated and explained in the
many monographs devoted wholly or largely to this field of
6351063-777X/2005/31(8–9)/33/$26.00
physics,3–9 have played a large role in the study of the sub-
ject of this review: the manifestations of antiferromagnetism
in the properties of mesoscopic magnets.

In the past seven decades the study of antiferromag-
netism has comprised a significant part of the fundamental
physics of magnetism.10,11 This is due not only to the fea-
tures of ‘‘purely magnetic’’ properties of these materials,
among which one might mention the broad spectrum of
spontaneous and field-induced order-disorder phase transi-
tions �see monographs5,12� and interesting resonance proper-
ties of AFMs, primarily the ‘‘exchange enhancement’’ of the
resonance frequencies.7 No less important are the manifesta-
tions of antiferromagnetism in such ‘‘nonmagnetic’’ proper-
ties of materials such as optical,8,13 galvanomagnetic,13 and
acoustic.13,14 We know of no examples of the application of
conventional crystalline AFMs as functional materials for
solid-state electronics, although their many unique param-
eters, e.g., the presence of magnetic resonance frequencies in
the submillimeter region7 and the enormous domain-wall ve-
locities �tens of kilometers per second�,6,15 look very prom-
ising for applications in modern functional electronics. In the
past decade, however, novel objects that might be classified
as ‘‘artificial AFMs’’ have arrived in the physics of magne-
tism. Among these are one-dimensional �1D� superstructures
of the multilayer film type and two-dimensional �2D� super-
© 2005 American Institute of Physics
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structures comprising lattices of magnetic elements of sub-
micron scale on a nonmagnetic substrate. Such materials are
promising for the development of new devices for high-
density magnetic recording,16–18 magnetic field sensors and
magnetic heads,19,20 and logic elements for computers.21 The
interaction of the structural elements can be antiferromag-
netic in both 1D19,22 and 2D23 superlattices.23 Antiferromag-
netic order of the structural elements of a superlattice and the
change of this order under the influence of magnetic field
�analogous to spin-flop or spin-flip transitions in crystalline
AFMs;24–26 see Sec. 4� determine its giant
magnetoresistance,19,20 a property of practical importance.

The main feature specific to the physics of mesoscopic
magnets is the presence in them of macroscopic coherent
quantum tunneling effects, which were observed more than
10 years ago.1,27–30 These effects are of interest because of
the importance, from a general physical standpoint, of mani-
festations of quantum effects in the macro world. Mesos-
copic objects, which have quantum-mechanical properties,
are of interest for their potential application as elements of
quantum computers.31 Furthermore, a number of subtle and
beautiful effects, e.g., the suppression of tunneling transi-
tions on account of interference of the instanton
trajectories.32,33 The possibility of controlling tunneling ef-
fects �turning the tunneling on or off� is important for the use
of mesoscopic magnets as elements of quantum computers.31

Analysis of macroscopic quantum tunneling effects re-
quires the use of a number of complicated methods of mod-
ern quantum physics of magnets and quantum field theory.
However, the exposition becomes much more compact and
simple if results from the classical physics of magnets are
used. Comparison of the classical and quantum pictures of
magnets is made in Sec. 3. On the basis of that discussion, in
Sec. 4 we investigate reorientation transitions in magnets,
both in the framework of the conventional approach, which
is adequate for describing bulk AFMs, and for mesoscopic
magnets. In Sec. 5 we turn to an analysis of the semiclassical
dynamics of AFMs in a formulation that is closest to the
conventional theory of the dynamical properties of magnets
but which permits a consistent analysis of purely quantum
effects. A detailed discussion of the problems of tunneling in
small particles of AFMs on this basis is presented in Sec. 6.
Finally, in Sec. 7 we discuss the question of the topological
spin nonuniformities in mesoscopic AFMs and, on the basis
of non-one-dimensional instantons, describe the tunneling ef-
fects for such nonuniform states of AFMs.

For reasons of space an author must always select those
areas that are of greatest interest at the given time. Naturally,
even though one tries to be objective, such a selection cannot
avoid subjectivity. Here we do not touch upon questions of
the dynamics of nonlinear excitations �solitons� in low-
dimensional crystalline AFMs �see reviews34–38�. In this pa-
per attention is devoted mainly to the properties specific to
mesoscopic AFMs, both quantum �macroscopic quantum
tunneling, destructive interference effects� and purely classi-
cal, deriving from the special role of the surface and of de-
fects, and also to those physical phenomena in which the
aforementioned features of mesoscopic AFMs are manifested
jointly. The traditional problems, e.g., the character of reori-
entation transitions and the form of the dynamical equations
for the order parameter, our understanding of which has been
furthered substantially in recent years, are represented to the
extent that it is useful to do so for the subsequent discussion
of mesoscopic AFMs. This review does not claim to give a
complete description of all the phenomena mentioned above.
However, the author hopes that the discussion of the static
and dynamic �including nonlinear� quantum and classical
properties of AFMs, though brief, will be useful to the
reader.

II. ANTIFERROMAGNETICS AT THE TURN OF THE
CENTURY

At the present time many different types of spin ordering
of condensed media are known, both crystalline and
amorphous.10,11 From time immemorial man has made prac-
tical use of magnets having nonzero mean values of the spin
density �S� or magnetization M; in the simplest case
M��g�B�S� , where g is the Lande factor (g�2 for ions
in the s state�, and �B is the modulus of the Bohr magneton.
In the language of the theory of symmetry this means that
such materials �including not only pure ferromagnets but
also a large class of ferrimagnets, some spiral magnets, etc.�
are characterized by spontaneous breaking of the symmetry
with respect to time inversion t→�t , whereupon both the
mean value of the spin of an individual ion and also the
value of the magnetization changes sign. Antiferromagnets
are a fundamentally different class of materials. In them the
symmetry with respect to time inversion is spontaneously
broken, but the spontaneous magnetization is equal to zero.
The phenomenon of antiferromagnetism was discovered over
70 years ago, and a theoretical explanation for it was given at
that time in the papers by Néel39,40 and Landau.41

The situation with complete compensation of the mag-
netization is presented most simply by assuming that the
crystal lattice of the AFMs contains a finite number n of
magnetic sublattices, each of which has a nonzero magneti-
zation M	 , but these magnetizations compensate each other
so that the total magnetization of the AFMs in the ground
state is equal to zero, M�
	�1

n M	�0. The simplest ex-
ample, to which we shall limit discussion, is that of a two-
sublattice AFM in the ground state of which the magnetiza-
tions M1 and M2 are equal in magnitude and antiparallel. In
such a definition it is understood that the sublattices must
necessarily be crystallographically equivalent, i.e., there ex-
ists an element of the crystal symmetry group �the symmetry
group of the paraphase� that takes one sublattice into the
other. One of the most important contains reached after many
years of study of the phenomenon of antiferromagnetism and
the ‘‘nonmagnetic’’ effects associated with it lies in the ex-
treme importance of symmetry analysis of AFMs. It is be-
cause of symmetry restrictions that there can be a strictly
zero value of the magnetization M�0 in the face of a non-
zero mean value of the spins, i.e., exact compensation of the
magnetizations of the individual spins in a finite region of a
medium. A symmetry description of magnets is based on the
use of either magnetic4,9,42 or exchange43 symmetry groups.
A symmetry operation that does not permute the magnetic
sublattices will be called even, following Turov,4 while one
that does permute will be called odd, and their signs will be
denoted as ��� or ���, respectively. A criterion of antiferro-
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magnetism is the presence of at least one odd symmetry el-
ement of the paraphase. This condition distinguishes AFMs
from ferrimagnets, the sublattices of which are inequivalent,
although their total magnetization can go to zero at a com-
pensation point. This definition of antiferromagnetism �and
not the condition that the spontaneous magnetization equals
zero� is now standard.

The magnetization of AFMs can be nonzero in the pres-
ence of an external field H�0 without eliminating the spon-
taneous symmetry breaking. Here it is appropriate to com-
pare the behavior of the different Heisenberg magnets, the
Hamiltonian of which contains only a purely isotropic ex-
change interaction of the form

Ĥ �Heis��JŜ1•Ŝ2 , �1�

where J is the exchange integral, J�0 for AFMs, and Ŝ1,2

are spin operators. In a Heisenberg ferromagnet �FM�, if one
disregards the anisotropic interactions of a relativistic nature,
the magnetization M is parallel to the field H, i.e., there is no
spontaneous symmetry breaking for H�0. For an isotropic
AFM the magnetization caused by the field is also nonzero,
M��H, where � is the susceptibility of the AFM. However,
contrary to the FM case, a difference of the sublattice mag-
netizations and, hence, antiferromagnetic order exists over a
wide region of values of the field �H��Hex , where Hex is the
exchange field. These same relationships on the whole re-
main valid when the relativistic interactions are taken into
account �if they are not too strong�: magnetic order exists in
a ferromagnet only when the field H is oriented along certain
selected symmetry axes, while in an AFM the ordering in the
presence of anisotropy remains unbroken as before at fields
H�Hex .

The criterion M�0 for defining antiferromagnetism is
not exhaustive, because in certain crystalline AFMs with the
relativistic interactions taken into account the compensation
of the magnetizations is not complete, even in the absence of
external magnetic field, and a weak spontaneous moment
appears. For a two-sublattice AFMs the incomplete compen-
sation of the magnetizations �the physics of weak ferromag-
netism� can be described as a manifestation of noncollinear-
ity, or canting, of the magnetizations M1 and M2 . Such
AFMs are called weak ferromagnets or canted AFMs. The
theory of weak ferromagnetism was constructed by
Dzyaloshinskii44 on the basis of a phenomenological ap-
proach �see the recent monograph by Turov et al.9 for de-
tails�, and a microscopic mechanism was proposed by
Moriya.45

Application of the usual concepts of the physics of crys-
talline AFMs for the description of mesoscopic AFMs can
require a certain modification. For atomic clusters containing
hundreds or thousands of spins with an antiferromagnetic
interaction, the role of the surface becomes extremely impor-
tant. Even for an atomically smooth surface the number of
particles in the sublattices can differ. As a consequence, an
uncompensated total spin of the AFM particle arises. As an
example, let us consider ferritin particles, which play an im-
portant role in the vital activity of warm-blooded animals.
These particles are used as a model object for experimental
study of the properties of AFM particles.27 The magnetic part
of a ferritin particle consists of approximately 4500 iron ions
Fe3� with spin S�5/2, coupled by an antiferromagnetic in-
teraction and ordered in an almost ideal magnetic structure of
a typical crystalline AFM—hematite 	-Fe2O3 . However, the
uncompensated magnetic moment of the ferritin particle is
not small: it has a value of around 200�B , i.e., of the order
of 1% of the maximum possible value. Thus, from the stand-
point of analysis of the magnetization, ferritin is a ferrimag-
net close to the compensation point, and that fundamentally
alters its dynamic properties, both classical and �especially�
quantum; see Secs. 5 and 6. On the other hand, for the ma-
jority of the magnetic atoms, lying in the central part of such
a particle, the standard description in the language of crystal
magnetic groups is applicable.

In recent years, new objects that can be classified as
mesoscopic magnets have appeared. Their characteristic
scales are still smaller than for the ferritin particles men-
tioned above but are larger than atomic scales. These are the
so-called high-spin molecules, containing tens of spins with
an interaction close to the isotropic Heisenberg interaction
�1� and rather strong �the exchange integral J has a value up
to 100 K�; see reviews.1,46 Such molecules are also known to
exhibit manifestations of the Dzyaloshinskii-Moriya interac-
tion. High-spin molecules typically have a regular distribu-
tion of magnetic ions, forming a quite definite magnetic
structure. Essentially, the synthesis and study of high-spin
molecules, and especially the creation of high-quality single
crystals of such molecules with good orientation of the mag-
netic axes of the molecules in the crystal, have opened up a
new era in the study of the macroscopic quantum effects in
magnets. An important class of such molecules �and a fun-
damentally new object in the physics of antiferromagnetism�
is that of the so-called spin rings �the term ferric wheels is
also used�. In such molecules an odd number of magnetic
ions �the best-studied are molecules with 6, 8, and 10 iron
ions Fe3� with spin S�5/2) form a closed ring with an
antiferromagnetic interaction of the nearest neighbors (J

15– 30 K) and a completely compensated total spin.48–52

In high-spin molecules proper �molecular magnets� the inter-
action is mainly ferromagnetic, and their total magnetic mo-
ment can reach a value of 26�B .53 Some high-spin mol-
ecules should be classified as molecular ferrimagnets. They
consist of two inequivalent groups of spins with a ferromag-
netic interaction within a group and an antiparallel orienta-
tion of the spins of the two groups �analogous to sublattices�.
This class of objects includes the best-studied molecular
magnet Mn12-ac, in which 8 manganese ions Mn3� with S
�3/2 give a total spin S tot�10.48 High-spin molecules with
half-integer spin are also known; among them are Mn4 com-
plexes with spin 9/2.54,55 For Mn12-ac the decompensation is
not small, but for the V16 molecule with 15 vanadium atoms
with spin S�1/2 the total spin is equal to 1/2.56 From the
point of view of classical symmetry analysis the high-spin
molecules should be described by finite classes of magnetic
symmetry, but, unlike the known crystalline magnetic
classes, here such symmetry elements as Cn , Dn , Sn axes
with n�5 or n�6 can also be present. An example is the
Mn72Fe30 molecule, in which the 30 iron ions Fe3�, coupled
by an antiferromagnetic exchange interaction, form an icosa-
dodecahedral structure with 5- and 3-fold axes.57

Finally, let mention the ‘‘antiferromagnetic’’ aspects of
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the physics of purely man-made magnetic materials �mag-
netic superstructures� created with the use of modern nano-
technologies. This class includes multilayer systems consist-
ing of layers of ferromagnetic metals a few atoms thick,
separated by spacer layers of nonmagnetic or antiferromag-
netic metals.19 For such 1D superstructures the interaction of
the magnetic elements �the individual layers� is determined
by the exchange across the spacers and can be ferromagnetic
or antiferromagnetic; for these structures biquadratic ex-
change effects are also known.19,22

In recent years, 2D superstructures composed of lattices
of submicron magnetic particles on a nonmagnetic substrate
have also been widely studied. Depending on their shape,
these particles are called magnetic dots, strips, rings, or
wires. Most often they are made of magnetically soft mate-
rials such as Co, Fe, and Permalloy.17 The interaction of
individual particles in such a system is determined by the
magnetic dipole interaction of their magnetic moments, i.e.,
they are a pure implementation of dipolar AFMs.58 Thus the
orientation of the magnetic moments of the elements of the
superstructures �macroscopic spins� is often
antiferromagnetic,23 and such systems can be regarded as
‘‘artificial AFMs.’’ They exhibit effects inherent to ordinary
crystalline AFMs, such as spin-flop or spin-flip
transitions,24–26 with the feature that the boundary elements
�surface� play a significant role. These and other novel ef-
fects, such as a transition to a specific incommensurate
phase, are discussed in detail in subsection 4.3.

We do not know of any effects in which the scatter in the
values of the magnetic moments of individual structural ele-
ments leads to ‘‘decompensation of the macroscopic spins’’
of artificial AFMs. However, another important effect of non-
ideality of the structure on the atomic level is well known for
them: topological defects of the atomic structure of AFMs or
FM-AFM interfaces give rise to mesoscopic nonuniformities
on account of frustration effects. The properties of such non-
uniform states, including the problem of quantum tunneling
for them, will be considered in Sec. 7.

III. CLASSICAL AND QUANTUM DESCRIPTION OF
MAGNETS

For magnetic insulators and for a number of materials
with metallic conductivity59 an adequate description can be
given on the basis of a Hamiltonian written in terms of spin
operators S	 localized at crystal lattice sites 	. As an ex-
ample, let us consider a Hamiltonian Ĥ containing an inter-
action bilinear in the operators, of the form Ji jS1

(i)S2
( j) . Here

the tensor Ji j specifies both the isotropic �exchange� and the
anisotropic pair interaction of the spins, and it can also con-
tain an antisymmetric part due to the Dzyaloshinskii–Moriya
interaction.45 The discussion below will be based on a
Hamiltonian with only a nearest-neighbor interaction. We
shall use a simple version of it with purely uniaxial symme-
try �the selected axis z is a C� axis�:

Ĥ� 

�	��

�JS	•S���d•�S	�S�����S	
z S�

z �

�d�K

	

�S	
z �2�g�B


	
H"S	 . �2�
Here the first three terms, in which the summation is over
nearest-neighbor pairs �	�� and each pair is counted once,
describe bilinear interactions of the spins. They determine
three types of interactions: the standard isotropic exchange
�the Heisenberg exchange of Eq. �1�� with an exchange inte-
gral J; the antisymmetric Dzyaloshinskii–Moriya
interaction,44,45 which is written in terms of the dual vector d
associated to the antisymmetric part of Ji j ; and, the symmet-
ric anisotropic interaction. This last is often called the inter-

ion anisotropy. The Hamiltonian Ĥ also includes the single-
ion anisotropy with the constant K , which can exist only for
site spins S�1. The last term describes the Zeeman interac-
tion of the spins with the external magnetic field. Here and
below it is assumed for convenience and transparency that
the spin vector operator S	 is parallel to the magnetization.
We shall mainly consider the case of weakly anisotropic
magnets, for which � ,K�J , and the value of the exchange-
relativistic constant d
�(� ,K)J�J .

Let us discuss the transition from a quantum spin Hamil-
tonian of the type �2� to the customary phenomenological
description of magnets. Although in reality the macroscopic
description is often used as a starting point, it is of interest to
analyze this transition, primarily for investigating macro-
scopic quantum effects. No less important is the fact that a
consistent microscopic analysis can shed light on the ad-
equacy of the macroscopic approach for description of a
given experiment.

For transition from the spin operators to the correspond-
ing field variables one usually uses the spin coherent states
�SCS� ���, which were introduced by Radcliffe60 �see also
the review61� are parametrized by a unit vector �, �2�1, or
the angular variables �, �:

�x�sin � cos � , �y�sin � sin � , �z�cos � . �3�

The spin coherent states can be constructed by acting with
the rotation operator Ô on the spin state Ŝ with a specified
maximum projection Sz�S on a certain direction n. These
states are eigenstates of the operator �"Ŝ, �"Ŝ����S��‹,
and for them the mean value of the spin operator corresponds
to its classical value

���Ŝ����S�. �4�

This property is handy for making the transition from the
quantum physics of spins to a phenomenological theory of
magnetism. The SCS are a complete �more precisely, over-
complete� set of quantum states of the spin operator Ŝ, a
property reflected in the existence of the ‘‘decomposition of
unity’’ relations

� D�������� 1̂, � D��
�2S�1 �

4� � sin �d�d� ,

�5�

where 1̂ is the unit operator and D� is the measure, which is
defined in terms of an area element on the sphere �2�1.

For applications to the theory of Heisenberg magnets it
is important that all the mean values of powers of the spin
components can be expressed in terms of the corresponding
powers of the means of the spin components, e.g.,62,63
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���� Ŝ"e�2����� 1�
1

2S � ���Ŝ"e���2�
S

2
. �6�

This relation is valid for any value of the spin; for spin S
�1/2 this corresponds to a well-known property of the Pauli
matrices64 and rules out the existence of single-ion anisot-
ropy. Here it is important to note that the SCS are con-
structed without the use of any approximations of the large-
spin type. However, there do exist a number of properties of
the SCS that permit their constructive use only in that semi-
classical limit.

An important distinction of the SCS �as for other coher-
ent states� from the states usually adopted in quantum me-
chanics is the lack of orthogonality:

���1��2����1

2
�1��1•�2��S

.

In the limit S→� the value of ��1��2� is exponentially
small; in certain calculations this formally permits one to
assume that these states are orthogonal in the large spin limit.

Spin coherent states, like the ‘‘ordinary’’ coherent states
�	� for bosons, where 	 is a complex number �introduced by
Glauber,65 these states are defined as eigenfunctions of the
boson annihilation operator â , â�	��	�	�), are particular
examples of the generalized coherent states �GCS� intro-
duced by Perelomov.66 They can be constructed for any Lie
group Ĝ . For spin coherent states, Ĝ coincides with the ro-
tation group of three-dimensional space SO�3�, and for boson
states this is the so-called Heisenberg–Weyl group.61 All
GCS share the fundamental property that they minimize the
indeterminacy of the values of the variables determined by
the quantum uncertainty relation. This means that the GCS
�in particular, the SCS� are the quantum states whose prop-
erties are most nearly classical. The use of coherent states is
most efficient when the Hamiltonian of the system is linear
with respect to the generators of the Lie group Ĝ . Then if an
initial state is coherent and described by a certain GCS, its
quantum evolution will reduce to a variation of the param-
eters of the GCS, which are described by classical equations
of motion.61 This permits a simple and elegant construction
of exact solutions of a number of problems of the quantum
evolution of an arbitrary spin in an external variable mag-
netic field.61 Exact solution of more-complex problems of
the interaction of several spins, with a Hamiltonian bilinear
in the operators of the spin components, is also possible.

For our problem it is very important that the use of the
GCS permits one to obtain in a consistent manner the semi-
classical Lagrangian of the system, which in principle cannot
be recovered solely from the classical equations of motion.
Lagrangians describing the same classical equations of mo-
tion of the system can differ by terms that are total deriva-
tives with respect to time. Such a term cannot influence the
classical dynamics of the system but is responsible for inter-
ference of the instanton trajectories67,68 �see Sec. 6�; it is also
important for the definition of the soliton momentum.69

The most elegant way of obtaining the Lagrangian for
any coherent states is based on the possibility of representing
the quantum propagator P12 �the probability amplitude of a
transition from one quantum state to another� in terms of a
path integral over trajectories:67
P12���1�exp�iĤt/����2��
�1

�2
D� exp�iA���/��, �7�

where A��� is the action functional known from classical
physics, A�����dtL��� , L is the Lagrangian of the sys-
tem, and the integration is over all values of the variable �
describing the GCS. We shall not discuss here the problem of
consistent definition of the measure D�. This approach is in
essence based on the idea of the Feynman path integrals. It
has the advantage that it can be applied to quantum field
problems when one is speaking about space-time configura-
tions ���(x,t) of the field.67,68

Using the properties of the GCS ���, we can write the
Lagrangian L��� in the form

L�������/�t����W���, W�������Ĥ��� . �8�

The Lagrangian has the standard form T�W , where the
form of the kinetic term T can easily be found for coherent
states of any Lie group. The ‘‘potential energy’’ W in this
formula is simply the quantum Hamiltonian of the system
averaged over the coherent state ���Ĥ��� .

Let us return to the description of magnets in terms of
the SCS ���. The Lagrangian of an individual spin S in the
angular variables �3� is usually written in the form34–38,67

L��S���/�t ��1�cos ���W�� ,��, �9�

where W(� ,�) has the meaning of the classical energy
W(�)����Ĥ��� , expressed in terms of the angular vari-
ables for the vector �. Variation of this Lagrangian gives the
well-known Landau–Lifshitz equation70 in angular variables
�see the monograph and review34–37,71�.

The kinetic term can be represented in a more general
form than �9� directly for the vector dynamical variable �:

L��SA���•
��

�t
�W���, A����

��n

�����n�
, �10�

where n is the quantization axis of the coherent state. For
transparency of interpretation it is convenient to assume that
the variable � is not restricted by the condition �2�1 but
has a length ������1. Then this Lagrangian corresponds
formally to the dynamics of a charged particle with a radius
vector �, moving in a magnetic field with vector potential A.
The vector potential A in formula �10� is the field of a mag-
netic monopole, having a singularity at �"n��� , i.e., on a
semi-infinite line segment in the space �. One usually
chooses n�ez , and here the quantity A(�)•(��/�t) takes
the well-known form �9�. For constructing the Lagrangian of
an AFM it is more convenient to use the general form �10�.

Let us discuss the question of the description of the static
characteristics of an AFM — its energy first and foremost.
The coherent state for a spin Hamiltonian of the type �2� is
chosen in the form a direct product of SCS, �����	��	�,
where ��	� are the SCS for the spin operator Ŝ	 located at
site 	. In this case the transition from the spin Hamiltonian,
which does not contain products of operators of the spin
components at a given site, to the classical energy is done by
replacing the operators Ŝ	 by classical vectors S�	 of length
S .

This way of writing the energy corresponds in the high-
est degree with our intuitive ideas about how to make the
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transition from the quantum spin Hamiltonian to the classical
energy of a magnet. We note that the possibility of such a
transition �rather than writing, say, the spin S	 in the form

�	�S(S�1), naively employing the condition Ŝ2�S(S
�1), which is incorrect�, does not rely on the approximation
S�1.

Let us now discuss the specifics of magnets whose
Hamiltonian contains products of the spin component opera-
tors at a single site. Such terms are present for magnets with
single-ion anisotropy �2� or a biquadratic exchange interac-
tion of the form J�(S	•S�)2. Magnets with non-small inter-
action of this type are often called non-Heisenberg.72 For
them the ‘‘classical’’ limit corresponds to the substitution

��	�(Ŝ	•e)2��	�→(1�1/2S)(e"�	)2�const; see formula
�6�. Actually, however, the description of Heisenberg mag-
nets on the basis of the SCS ���	 encounters more-serious
problems than the renormalization of the single-ion anisot-
ropy constants K→K(1�1/2S).

Let us discuss the specifics of Heisenberg magnets for
the example of a magnet with strong easy-plane single-ion
anisotropy of the form KSz

2 , K�0.72 The ground state of
such an ion is a quantum state with fixed projection Sz�0,

for which � Ŝx��0, � Ŝ y��0, but � Ŝx
2��� Ŝ y

2��S(S�1)/2.
The properties of this state are far from those of the corre-
sponding SCS with projection �z�0, in which the vector �
has a definite direction in the (x ,y) plane. Therefore it can
hardly be expected that the ground state of such a Hamil-
tonian, even in the presence of the exchange interaction, will
be well described in terms of SCS. Of course, this state can
be described in the form of a superposition of spin coherent
states �completeness of the set of SCS!�, but this approach is
extremely awkward.

For description of non-Heisenberg magnets Ostrovski�
and Loktev73,74 proposed to use the GCS for Lie group
SU(2S�1), which for spin S�1/2 is more general than the
SCS. �Recall that the SCS are constructed with the use of the
rotation group SO�3�, which is equivalent to the group
SU�2�.� This approach permits one to construct a consistent
field theory of the unusual states of such magnets, including
not only the magnetically ordered phases but also the so-
called nematic or quadrupolar phases, in which magnetic
ordering is absent. These phases are invariant with respect to
time inversion but can be characterized by spontaneous sym-
metry breaking due to anisotropy of the quadrupole variables

of the type � Ŝx
2� ,� Ŝ y

2� . The geometric image of the spin state
of the nematic phase is an ellipsoid. In the nematic phase of
spin systems with an isotropic Hamiltonian the low-
frequency dynamics is described in terms of the sigma-
model for the vector director n that specifies the orientation
of this ellipsoid.75 Even in the quadrupolar-ferromagnetic
phase with M�0 for such magnets the dynamics of the mag-
netization M includes the variation of M in length and differs
substantially from that which is obtained with the use of the
Landau–Lifshitz equation.76 The static state of this type has
long been studied; as an example we cite the analysis of a
domain wall in which �M� goes to zero at the center of the
wall.77 In the last few years the problem of the nematic
phases and other nontrivial types of nonmagnetic order of
spins systems has drawn increasing interest in connection
with the study of Bose–Einstein condensations of neutral
atoms with nonzero spin.78–80

For many magnets the non-Heisenberg interactions are
rather weak, and the SCS are the most convenient formalism
for their semiclassical description. Let us return to an analy-
sis of almost-Heisenberg AFMs in the framework of the
SCS. We consider a system of localized spins in which the
nearest neighbors are coupled by an antiferromagnetic inter-
action of the type in Eq. �1�. We shall assume that the sites at
which the spins are located can be divided into two groups in
such a way that all the spins belonging to nearest-neighbor
pairs are in different groups. �This condition is violated, e.g.,
for a frustrated triangular lattice.� For an ideal AFM these
two groups correspond to two magnetic sublattices. The in-
troduction of sublattices can also be thought of as a division
of the lattice into pairs of spins �dimers�. The Lagrangian of
an AFM can be written in terms of two unit vectors �1 and
�2 for each such dimer. In the case of an extended magnet
one can also introduce a more general description of slightly
nonuniform states on the basis of the spin densities �1(x,t)
and �2(x,t) �or their irreducible combinations l(x,t) and
m(x,t); see Eq. �14�; x is the coordinate of the dimer� as
continuous functions of the coordinates. The energy of the
nonuniformity into account is taken into account by expand-
ing in the gradients; see formula �40� below.

In many problems, e.g., the quantum tunneling in AFM
molecules, the nonuniformities can be neglected, and all the
vectors �1,2 assumed parallel. Then it is convenient to intro-
duce the sublattice spins S1�
S	1

and S2�
S	2
and the

coherent states for the spins of each sublattice, S1�sN1�1

and S2�sN2�2 . Here and below, s denotes the value of the
spin at the site, N1,2 is the number of sites in each sublattice,
and we shall use the notation

N�N1�N2 , Nex�N�N1�N2 , �11�

where Nex gives the excess �uncompensated� spin Sex

�sNex , and N is the total number of sites in the AFM. Thus
we arrive at a description of the uniform dynamics of the
AFM sample in terms of two vectors of unit length, �1 and
�2 :

L��sN1A1��1�
��1

�t
��sN2A2��2�

��2

�t

�W��1 ,�2�. �12�

The kinetic terms are represented in terms of the vector po-
tential �10� of the field of a magnetic monopole, and
W(�1 ,�2) is the classical energy of the AFM, which corre-
sponds to the Hamiltonian �2�. As we are interested in the
case of small decompensation, Nex�N , in the expression for
this energy we keep the term with Nex�0 only in the Zee-
man term and set N1�N2�N/2 everywhere else; we then
get
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W(�1 ,�2)�
1

2
s2ZN�J�1•�2��d•��1��2� ��

�
1

2
s2N��Z�z ,1�z ,2�K��z ,1

2 ��z ,2
2 ��

�
1

2
g�BsH•�N��1��2��Nex��1��2�� ,

�13�

where Z is the coordination number, the second group of
terms describes the anisotropy energy, and the third the Zee-
man energy. In addition to the unit vectors �1 and �2 , it is
convenient to introduce their irreducible combinations

l���1��2�/2, m���1��2�/2, �14�

which are related by

l2�m2�1 and m"l�0. �15�

These new variables describe the characteristic symmetry of
AFMs with respect to permutation of the sublattices and are
convenient for writing the phenomenological energy of an
AFM. We write the energy �13� in terms of the vectors l and
m:

W� l,m��Js2zNm2�s2zN�d•�m�l� �

�
1

2
s2N��Z�mz

2�lz
2��K� lz

2�mz
2��

�g�BsNm"H�g�BsNexl"H. �16�

We note an important relationship that holds for any AFM:
the anisotropy energy always contains only even powers of
the components of the vector l or m, and the Dzyaloshinskii
interaction is linear in m. In the general case instead of (d
•�m�l�) the expression Dik(l)milk appears, where the ten-
sor Dik(l) contains even power of the components of l and is
determined by the symmetry of the AFM.

IV. FIELD-INDUCED PHASE TRANSITIONS IN
ANTIFERROMAGNETS

The ground state of an AFM is determined by the mini-
mum of the energy �16� with respect to the vectors l and m.
Néel himself called attention to the fact that this state can
change in a jump upon a continuous change of magnetic
field.40 In other words, phase transitions induced by a strong
magnetic field can occur in AFMs. An example is the spin-
flop transition �SFT�,40 the experimental observation of
which was a long time in coming because of the necessity of
using high fields.81 The SFT has been studied for over 50
years and is still attracting great research interest �see the
monograph and reviews5,9,12,82�. As we have said, in recent
years the study of ‘‘novel’’ AFMs �spin pairs and clusters,
magnetic superlattices� has revealed a number of phenomena
similar to the SFT.

A. Classical bulk transitions

In a boundaryless magnet the SFT occurs simultaneously
throughout the volume of the material; we shall call this a
bulk SFT. The origin of such a transition is easily explained
by analysis of a purely uniaxial AFM model �16�. For sim-
plicity we shall assume that d�0 and the magnetic field is
parallel to the easy axis of the AFM �a more general case will
be considered below�. Analyzing the energy of the AFM
�16�, one can show that in this case the vectors �1 and �2 lie
in a single plane �say, the (x ,z) plane� at all values of the
field. Then the irreducible vectors m and l are determined
solely by the two variables �, m:

lz�l cos � , lx�l sin � , l��1�m2,

mz�m sin � , mx��m cos � . �17�

Minimization of the energy with respect to the variable m
leads to the simple relation

m�
g�BH sin �

s�2JZ�2K cos 2��Z��
. �18�

Formula �18� reflects the anisotropy of the susceptibility of
the AFM with respect to the mutual orientation of the mag-
netic field H and the vector l. In particular, for l�H (��0)
the magnetization m is equal to zero even for H�0. It will
be convenient in what follows to eliminate the total spin m
and to write the energy of the AFM in terms of the angular
variable � alone:

W��
�g�BH �2N sin2 �

2�2ZJ�Z��2K cos 2��
�� K�

Z�

2 � s2N sin2 � .

�19�

In the absence of magnetic field we get the standard result:
both the exchange and the single-ion anisotropy give an ad-
ditive contribution to the effective magnetic anisotropy:

Wa����
1

2
s2Keff N sin2 � , Keff�2K��Z , �20�

which is of the easy-axis type for 2K�Z��0. For this
model the stable phase at H�H1 is the collinear phase � � ,
in which ��0 or �, and for H�H2 the stable phase is the
spin-flop phase �� , in which ���/2. For model �19� the
characteristic fields for loss of stability of the collinear � �

and spin-flop �� phases, H1 and H2 , are given by the for-
mulae

H1�
s

g�B
��2K��Z ��2ZJ��Z�2K �, H2�

H1
2

Hs f
,

Hs f�
s

g�B
��2K��Z ��2ZJ��Z�2k �. �21�

In the spin-flop phase mz increases linearly with increasing
field as

mz�
H

Hex
, Hex�

s�2JZ��Z�2K �

g�B
, H�Hex , �22�

where Hex is the exchange field of the AFM in model �19�,
and H1 ,H2�Hex . If the value of the field H exceeds Hex ,
then l�0 for m�1, and the system reaches saturation. The
transition to the saturated state �PM with l�0 is accompa-
nied by the destruction of the antiferromagnetic order and is
called a spin-flip transition. It is a typical second-order tran-
sition of the order-disorder type, but it is brought on not by
an increase in temperature but by an increase of the external
field.
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FIG. 1. The ground state of a classical AFM with energy �19� for different K and different values of the field �schematic�. The arrows indicate the directions
of the sublattice spins in different states of the AFM; see text. �a� K�0; first-order transition, the continuations of the curves into the region of metastability
of the phases are indicated by dotted lines, which terminate at the arrowheads at the instability points. �b� K�0, second-order transition, the dashed curve
corresponds to the variation of the magnetization in a canted field.
It is important to take both types of anisotropy into ac-
count simultaneously for the description of all possible
phases of an AFM and transitions between them. If the an-
isotropy is of a purely exchange character, i.e., K�0, then a
degenerate SFT, for which critical fields H1 and H2 coincide,
occurs. If K�0, then the SFT occurs as a first-order transi-
tion at the field Hs f introduced above in Eq. �21�, with a
jump  Sz of the total spin Sz of the system:

 Sz�2sN� �Z�2K

2JZ��Z�2K
. �23�

There is another possible case, when H1�H2 , and the sta-
bility regions of the phases � � and �� do not overlap. Then
in the field interval H1�H�H2 a canted phase �� with 0
����/2 exists, and the value of Sz changes from zero to
 Sz by a linear law but with a larger slope than in the region
of the spin-flop phase �see Fig. 1�. In this case the transition
� �↔�� occurs via two second-order transitions through the
canted phase. In model �19� this requires the presence of
competing anisotropies—single-ion anisotropy with K�0
�which for ��0 corresponds to easy-plane anisotropy� and a
rather large exchange anisotropy, with �Z�2�K�, so that the
effective magnetic anisotropy is easy-axis.

B. Lowering of the symmetry of the problem

We have discussed phase transitions �the spin-flop and
spin-flip transitions� in the simplest and most symmetric case
of the model �2�, assuming in addition that d�0 and that the
magnetic field is strictly parallel to the easy axis of the AFM.
For possible applications of the theory developed it is impor-
tant to know whether these transitions are preserved when
one goes beyond the framework of such a model. As we have
said, in the case of a ferromagnet the Curie point vanishes in
the presence of magnetic field. For an AFM the situation is
more favorable, and both the first-order spin-flop and the
spin-flip transition at which the antiferromagnetic order is
destroyed ‘‘survive’’ in a quite general case.

We start with an analysis of the question of what hap-
pens when the magnetic field H deviates from the easy axis
of the AFM by some small angle � in the framework of the
model in Eq. �16�. For ��0 the vector l is not directed along
symmetry directions, ��0,�/2. The phases that are trans-
formed into � � and �� at ��0 will be called �1 and �2 ,
respectively. The stability fields H1 and H2 of these phases
behave differently with increase of the angle �, H1 decreas-
ing and H2 increasing according to the laws83

H1����H1�1�a�2/3� , H2����H2�1�a�2/3� , �24�

where a�(3/2)(K/JZ)1/3 is small, with a degree of small-
ness K/J . It follows that at a certain value ���c all the
characteristic values of the field coincide, H1(�c)�H2(�c)
�Hc�Hs f , and the phase transition �1↔�2 exists only at
a sufficiently small value of the angle ���c ,

�c�
2

3 � K

JZ � 2/3

. �25�

Thus in the model �16� on the (H ,�) plane the line of first-
order phase transitions terminates in a critical point
(�c ,Hc), at which �1(�c ,Hc)��2(�c ,Hc)��/4.83

For K�0, when two second-order transitions are real-
ized in the symmetric case ��0, the tilt of the field is of
fundamental importance: for ��0 the second-order phase
transitions �1,2↔�� vanish. Indeed, for ��0 the vector l
deviates from the symmetric directions ��0,�/2 at any
value of the field, and therefore the symmetry differences of
the phases �1 ,�2 from the canted phase �� vanish. At very
small ��0 the angle � varies rather sharply with field at
values near where the second-order transitions would occur
for ��0, and the field dependence approximately reiterates
�(H) for ��0 �see Fig. 1� but is analytic and has no kinks.

In the analysis of phase transitions in a concrete model,
e.g., the model of Eq. �2�, the question of whether the results
might change when some other invariants are taken into ac-
count. An example of such a situation was presented above:
the second-order transitions �1,2↔�� are very sensitive to
the symmetry of the problem and vanish at an arbitrarily
small deviation of the field from the axis, while the first-
order transition ‘‘survives’’ a rather strong perturbation of the
problem. A general �model-free� analysis of the existence of
the spin-flip transition can be given on the basis of symmetry
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arguments.84 In the saturated phase �PM the magnetic mo-
ments of the sublattices are parallel to each other and to the
magnetic field, i.e., all the components of l are equal to zero.
The phase �PM has a higher symmetry than any antiferro-
magnetic phase, in which l�0. Its symmetry group coincides
the symmetry group of the paramagnetic phase in the pres-
ence of an external magnetic field, GPM

H . The order param-
eter describing the transition to the paramagnetic phase �PM

is the vector l. This transition will be realized only in the
case when none of the components of the vector l is an
invariant with respect to elements of the symmetry group
GPM

H . It turns out that if the symmetry elements of the para-
magnetic phase include odd translations or inversion, then
the spin-flip transition will occur at arbitrary orientation of
the magnetic field H.84 If such elements are not present, then
the spin flip transition will either be absent altogether or will
occur only for an orientation of the field H along preferred
directions. This conclusion agrees with the results of an
analysis of the effective energy of an AFM with the Dzy-
aloshinskii interaction; see formula �38� below.

Odd symmetry elements of the translation or inversion
type are characteristic for a number of crystalline AFMs, and
their presence forbids the existence of any type of Dzy-
aloshinskii interaction. Such discrete symmetry elements as
odd inversion can be important not only for crystalline AFMs
�AFMs with such an element have unique properties; see the
monograph by Turov et al.9� but also for finite spin clusters
with an antiferromagnetic interaction.

The foregoing discussion pertains only to the case of a
completely compensated AFM. It is of interest to determine
whether reorientation transitions are possible for small AFM
particles, in which the spins of the sublattices are not equal,
S1�S2 , and in the exchange approximation a nonzero mag-
netic moment is present in the system. Assuming for defi-
niteness that S1�S2 , we find that this moment will tend to
orient along the field in such a way that the spin S1 is parallel
to the field and S2 is antiparallel. However, besides the ‘‘fer-
romagnetic’’ spin-orientation effect, which is linear in the
field, there also exists another orientation effect which is
quadratic in the field, which also arises for S1�S2 and leads
to a spin-flop transition. The combined effect of these two
factors in the case of sufficiently small decompensation gives
a certain analog of the spin-flop transition, which for sim-
plicity we shall discuss in the exchange approximation.

Suppose that the magnetizations of the sublattices make
angles �1 and �2 with the magnetic field. The collinear state
described above, with antiparallel spins �1�0, �2�� , is re-
alized only at sufficiently low fields, H�Hc , where

Hc�Hex�S1�S2�/�S1�S2�. �26�

For H�Hex the spins are parallel, �1��2�0. It is clear that
in terms of symmetry these states are equivalent to the para-
magnetic state �PM and are not degenerate. However, in an
intermediate field region Hc�H�Hex the sublattice spins S1

and S2 are noncollinear, �1 ,�2�0,� .85 Here the total spin is
parallel to H, and the value of its transverse �perpendicular to
H� projection S1 sin �1�S2 sin �2�0, but the state of the sys-
tem is degenerate with respect to direction of the vector l
�see Fig. 2�. For the case of interest, that of small decompen-
sation N1�N2�N , the value of Hc is small, Hc�Hex , and
therefore the ground state of the AFM is degenerate over a
wide range of fields.

The calculation presented above was done in neglect of
the magnetic anisotropy. Taking anisotropy into account is
somewhat awkward, and the result depends on the ratio of
the characteristic fields Hc �26� and the field Hs f introduced
above. Importantly, even when certain forms of anisotropy
are taken into account the degeneracy �discrete� of the
ground state is preserved upon decompensation of the AFM
in a strong magnetic field. Between these states, coherent
quantum tunneling effects are possible.

C. Spin-flop transition and incommensurate phases near
the surface and defects

For large enough samples the demagnetizing effect of
the surface of the a magnet will lead to the existence of a
thermodynamic-equilibrium domain structure. For an AFM
such a structure �intermediate state of the AFM� consists of
domains of the phases � � and �� �Ref. 86; see also the
reviews12,87�. For mesoscopic AFMs it becomes important
that the spins at the boundary have a coordination number
Z̃�Z . Quite some time ago Mills88 and also Keffer and
Chow89 noted that in such a case the value of the spin-flop
transition field �21� is lower at the boundary than in the bulk.
The calculation in those papers concerned the SFT in semi-
infinite systems, in which the boundary of the crystal con-
tains spins of only one sublattice. This model is essentially
equivalent to a spin chain, Z̃�Z/2 �see Fig. 3�, for which the
field of the surface SFT is Hc	Hs f /& .88–90 A surface SFT
is accompanied by the appearance of a soft mode of surface
magnons.90 Granted, the possibility of realizing this interest-
ing phenomenon is largely determined by the quality of the
surface, and for a real �non atomically smooth� surface of a
crystal its observation is difficult. That is possibly why at-
tempts at experimental observation of a surface SFT have not
met with success.91

It turns out that the surface SFT is realized for one-
dimensional magnetic superstructures of the type represented
by Fe/Cr multilayer films with an antiferromagnetic interac-

FIG. 2. Two possibilities for the arrangement of the vectors of the magnetic
field H, total spin S, sublattice spins S1 and S2 , and also the antiferromag-
netic vector l in the noncollinear state of a particle of an uncompensated
AFM in an external magnetic field.
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tion of the layers, grown on an anisotropic MgO�110� sub-
strate. These materials have growth anisotropy with an easy
axis in the plane of the layer.92 The lower value of the ex-
change field in the boundary layer can cause surface
nonuniformity.93 The localized surface SFT in such materials
has been observed and investigated by various methods.24–26

Initially, in the spirit of Refs. 88–90, it was interpreted94 as
the nucleation of the spin-flop phase near the surface, i.e., as
a rotation of the magnetic moments of the surface layers by
an angle close to 90°. Later, on the basis of calculations in
the model of a semi-infinite spin chain and analysis of the
experimental data, it was shown that the situation is more
complicated.26,95,96 It turns out that the boundary spin anti-
parallel to the field in the initial state reverses direction under
the influence of the field. Because of this, the state arising
near the surface is not the spin-flop but an antiferromagnetic
state with zero magnetization, but with opposite directions of
the magnetic moments in comparison with the bulk. In other
words, the antiferromagnetic state near the surface differs
from the bulk state by the direction of the vector l, and they
are separated by a 180° domain wall. Such a state is appro-
priately called an incommensurate phase.95

References 24, 26 and 95 aroused interest not only in the
problem of the SFT near the surface and the incommensurate
phases in AFMs. Keffer and Chow89 had noted the possibil-
ity of existence of localized transitions of a similar type in
bulk AFMs containing defects of the dislocation and grain-
boundary types. For dislocations the situation is not so
simple �see Sec. 7 below�, but it quite likely that analogs of
the surface SFT should be observed near defects of ‘‘ordi-
nary’’ crystalline AFMs.

Let us consider the simple case when magnetic ions in
low-dimensional magnets are replaced by nonmagnetic ions,
and the corresponding exchange bonds are broken. The result
is simplest for spin chains, in which the substitution of a
magnetic ion by a nonmagnetic impurity within the chain
leads simply to the breaking of the chain and the formation
of two ‘‘surfaces’’ of the type considered in the early
papers.88,89 In this case each chain ‘‘breaks’’ independently,

FIG. 3. Collinear antiferromagnetic state for several systems discussed in
the text. Here and in the subsequent diagrams of spin structures in this
Section the easy axis of the AFM is perpendicular to the plane of the figure,
the magnetic field is assumed to be directed upward, the light and dark
circles denote the spin-up and spin-down states, respectively, and the solid
line represent exchange bonds. Part �a� shows the uncompensated AFM
surface considered in Refs. 88–90, and the arrow indicates the direction of
the normal to the surface, n. The other parts show model low-dimensional
systems: the spin chain �b� and spin ladder �c�.
and a finite density of nonmagnetic impurities of substitution
creates an ensemble of identical ‘‘surfaces’’ on which obser-
vation of the localized SFT effect is possible.

Let us discuss the nature of the surface states and tran-
sitions to these states for more complex systems. For all
AFMs, excluding the simple chain, two types of surfaces can
be distinguished from the standpoint of spin states. The sur-
face can be compensated, containing an equal number of
spins of the different sublattices and having zero surface
magnetization in the Néel state, or uncompensated, with non-
zero surface magnetization, as in Fig. 3a. It is intuitively
clear that in these cases the nonuniform states that arise are
very different. As an example let us consider the layered
�2D� AFMs of the manganese halide type, which have been
studied for many years.97 Substitution of the Mn2� ions with
spin S�5/2 by nonmagnetic impurities such as Zn or Cd
ions98,99 isolated or combined into clusters gives rich possi-
bilities for realization of various magnetic defects �bulk and
surface, compensated and uncompensated� with a locally
weakened exchange interaction �see Fig. 4�.

The basic regularities of these phenomena can be under-
stood from an analysis of a model object—the so-called spin
ladder �SL�.100,101 A spin ladder contains two spin chains
coupled by an AFM interaction �see Fig. 3�. Such spin sys-
tems occur as structural elements in many low-dimensional
magnets and have interesting quantum properties.102,103 A
spin ladder can be represented as a chain of spin dimers with
AFM coupling of the spins both within each dimer and be-
tween neighboring dimers. It is natural to introduce vectors
mn and ln for the structural dimers of a SL, where n is the
number of the dimer. Importantly, a finite SL can contain an
analog of the compensated boundary illustrated in Fig. 3c
and an uncompensated boundary with an incomplete dimer
�uncompensated spin� at the end �see Fig. 7 below� and also
various bulk defects that do not reduce to breaking of the SL.

Let us give the results of an analysis for SLs with these
types of boundaries. For an SL with an uncompensated spin
the value of the critical field Hc for the transition to a non-
uniform state differs significantly more strongly from the
bulk field H1
Hs f than for an SL with a regular dimer at the
end.100,101 Numerical minimization of the discrete Hamil-
tonian �2� has shown that the structures of the phases are also
different, e.g., the form of the distribution of mz and lz as

FIG. 4. Collinear �Néel� state of a two-dimensional AFM for several de-
fects, bulk and surface: a—a single-atom defect formed by a nonmagnetic
impurity; b and c—two-atom defects, compensated and uncompensated, re-
spectively; d—a corner of the sample; e—two types of boundaries �see text�.
The easy axis is perpendicular to the plane of the figure, and the magnetic
field is directed upward. The light and dark circles denote the spin-up and
spin-down states, respectively, and the solid lines represent exchange bonds.
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functions of the distance n from the end of the ladder �see
Fig. 5�.101 For a regular SL, which can be regarded as a
model AFM with a compensated surface, the data on the
distribution of lz show the existence of a surface SFT. In
such systems the vector l rotates by approximately 90° in
going from the surface to the bulk; here the magnetization is
nonzero in the entire spin-flop region near the surface and
falls to zero in the bulk. For an uncompensated SL, as can be
seen in Fig. 5, an incommensurate state arises in which the
magnetization is close to zero both on the surface and in the
bulk, while the nonuniformity of the spins is characterized
by the presence of a 180° domain wall. In both cases the
dependence of the vector l on the number of the dimer n is
rather smooth and well described by formulae obtained for
the components of l in antiferromagnetic domain walls:
tan �n�exp��(n�n0)/ �/2� for a 90° wall, or tan(�n/2)
�exp��(n�n0)/ �� for a 180° wall. However, the numerical
data show that, unlike that of l, the behavior of mz near the
boundary is substantially irregular.

To explain these features, let us consider the problem of
stability of a collinear phase having the values �n�0 and
mn�0.101 The stability of this state can be investigated using
the Hamiltonian �2� written in the quadratic approximation in
the small variables �n and mn ; for the end dimer the index
n�0. The states of dimers with n�0 are described by the
same equations as for a boundryless spin ladder:

J�2�n��n�1��n�1��Keff�n�hmn�0,

�4J�Keff�mn�J�mn�1�mn�1��h�n�0, �27�

where Keff�2K�3�, and h�g�BH/s is a dimensionless
field. The solutions of these equations are a complex analog
of the Bloch state in an ideal lattice, �n ,mn!exp(�Qn). The
corresponding ‘‘dispersion relation’’ has two solutions for the
‘‘quasi-momentum’’ Q , and therefore two exponentials arise
in the solution:

FIG. 5. Distributions of lz �light symbols� and mz �dark symbols� as func-
tions of the number of the site for a semi-infinite spin ladder with single-ion
anisotropy and different boundaries for values of the field above the
critical.101 The circles are for a spin ladder with a regular end, and the
diamonds are for a spin ladder with an uncompensated spin at the end. For
clarity the values of mz have been multiplied by 4 for the SL with the
uncompensated spin at the end and by 20 for the SL with the regular end.
The irregular behavior of mz(n) is clearly seen for the SL with the uncom-
pensated spin; for the regular SL the details of its behavior near the bound-
ary are shown in the inset.
�n��pe�np���1 �n�qe�nq,

mn�mpe�np���1 �nmqe�nq, �28�

where

2 cosh "�3 J̃/J�1; 2 cosh q�3 J̃/J�1,

3 J̃��9J2��h1
2�h2�
3J .

The relations between the amplitudes �p ,q and mp ,q can be
written in the form �p�Amp , �q�mq /A , where A�h/6J
�1. Therefore for a slowly damped exponential with p�1 it
is found that mp��p , and for an oscillatory exponential with
fast damping (q
1) the situation is the opposite.

The structure of the equations for the boundary dimer is
different from �27�. A stability analysis can be carried out
using the equations for variables describing the spins that do
not belong to regular dimers with n�0. These include the
variables �0 , m0 describing the last dimer, and the angular
variables �, � for the ‘‘additional’’ spins present in an un-
compensated SL. The solvability conditions of the linear ho-
mogeneous equations for all these variables are satisfied only
for a certain value of the magnetic field, which is what de-
termines the stability field Hc and also the relation between
the variables �p and �q . Analysis of SL models with the use
of this example has led to the following results.101

For a regular SL the critical field, to a first approxima-
tion in the small parameters (� ,K)/J , has the form

Hc
2�H1

2�2�s/g�B�2�K��) �2. �29�

This value is smaller than the bulk critical field H1 , but the
difference between Hc and H1 is proportional to the small
parameter (� ,K)/J . A calculation showed that �q��p , and
the behavior of the vector l is regular, while the values of mp

and mq are comparable, mq�2mp /(1�))
0.73mp . This
explains the presence of irregular behavior of the magnetiza-
tion in the immediate vicinity of the boundary of the SL �see
Fig. 5�.

In the analysis of an uncompensated SL the result for the
critical field turns out to be qualitatively different, Hc

��2/5H1�0.63H1 . As in the case of the spin chain,88,89 the
value of Hc is substantially lower than H1 ; the difference
between Hc and H1 is of the order of Hc and does not con-
tain small factors. In this case �q��p , but again irregular
behavior of the magnetization appears, and the ratio of mq

and mp has a different sign than for a spin ladder with a
regular boundary: mq��mp /(1�))
�0.37mp . This
property also corresponds well to the numerical data �see the
inset in Fig. 5�. For a wide class of quasi-one-dimensional
systems with an uncompensated boundary or bulk defect, the
critical field Hc is expressed by the simple formula

Hc
2�

2Z̃2

2Z̃2�Z
H1

2, �30�

where Z̃ and Z are the coordination numbers for the bound-
ary spin and the regular part of the AFM, respectively. For a
spin chain (Z̃�1 and Z�2) this gives the known result
Hc

2�H1
2/2.88,89 For a single nonmagnetic defect inside the
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SL, which breaks one of the spin chains making up the spin
ladder, Z̃�2 and Z�3, one obtains the answer Hc

��8/11H1�0.853H1 , which is in good agreement with the
numerical results.

The majority of studies of the surface SFT have consid-
ered only modes with single-ion anisotropy and discussed
only first-order transitions. A numerical analysis shows that
two types of behavior of the magnetic-field dependence of
the z component of the total spin Sz are present. For a system
with single-ion anisotropy for the nonuniform phase there is
a finite value of Sz at the transition point, where the energies
of the collinear and nonuniform phases coincide. However,
for the case of exchange anisotropy the value of Sz tends
toward zero at the transition point, as is shown in Fig. 6.
Such behavior can be interpreted as signs of a first-order and
second-order transition, respectively. As in the case of the
bulk SFT, the kind of localized SFT depends largely on the
microscopic origins of the anisotropy. For all of the defect
models in a SL with pure single-ion anisotropy there is a
first-order transition. For the case of exchange anisotropy the
transition to the nonuniform phase is a second-order transi-
tion, and the amplitude of the nonuniform distribution goes
to zero at the transition point. In the vicinity of this point the
state cannot be classified as a surface spin-flop phase or an
incommensurate phase; it is more aptly characterized as a
slightly distorted Néel state with a distortion amplitude that
falls off in an oscillatory manner with distance from the sur-
face into the interior of the crystal.

The presence of first- and second-order transitions for a
given system indicates the presence of a tricritical point. The
square-root dependence characteristic of a tricritical point is
clearly seen in Fig. 6 for k�K/Keff
0.78. Numerical mini-
mization of the energy of the system near second-order tran-
sitions and especially near a tricritical point is greatly com-
plicated, but the analysis can be simplified by using Landau’s
phenomenological theory of phase transitions. Taking into
account that the z projection of the dimer spin mz ,n��nmn is

FIG. 6. Dependence of the z projection of the total spin Sz on magnetic field
for a spin ladder with a regular dimer at the end and an effective anisotropy
constant Keff�0.06J .101 The data shown are for pure exchange and single-
ion anisotropy and also for two types of combined anisotropy with different
ratios of the contributions of the constants K and � (k�K/Keff).
quadratic in the variables of the linear problem, �n , mn , and
that Sz�0 in the Néel state, we arrive at the conclusion that
Sz should be considered to be the square of the order param-
eter. For description of the phase diagram with a tricritical
point one must expand the energy of the system to sixth
order in the order parameter:

F���H�Hc�Sz�
1

2
�Sz

2�
1

3
#Sz

3. �31�

The form of the first term in formula �31� is obtained ana-
lytically from the expression for the energy of the SL and the
equations of the linear approximation. Determination of the
coefficients � and # requires solution of a nonlinear problem,
but in the analysis they can be treated as phenomenological
parameters and their values determined from the numerical
data.101 If the coefficients are known, then the further analy-
sis is simple: for ��0 the transition is second-order with a
linear dependence of Sz(H): Sz�(H�Hc)/� . For ��0 and
#�0 the transition will be first-order with a nonzero value of
the total spin total spin Sz

(crit) at the transition point: Sz
(crit)

�3���/4# . Thus both quantities, (dSz /dH)�1�� for �
�0 and Sz

(crit) for ��0, are proportional to the value of ���.
Near the tricritical point �→0, and extrapolation of the
curves of these two quantities as functions of 2K/Keff to zero
at a constant value of the effective uniaxial anisotropy Keff

�2K�3� gives the value of the parameters of the tricritical
point. Such a graphical analysis of the SL model with an
uncompensated spin at the end is presented in Fig. 7. It gives
the position of the tricritical point for an anisotropy ratio
2K/Keff�0.97. For a simple spin chain the tricritical point
corresponds to the value 2K/Keff�0.67. For a regular SL the
tricritical point is found at 2K/Keff�0.78. Recall that the
bulk SFT occurs as a first-order transition for all values K
�0. One can therefore state that for localized transitions the
case of a second-order phase transition is more typical than
for a bulk transition.

FIG. 7. Dependence of the quantities characteristic for analysis of the order
of a phase transition, Sz

(crit) and (dSz /dH)�1, on the parameter k
�2K/Keff , found numerically at the transition point H�Hc for a spin lad-
der with uncompensated spin at the boundary at a value of the effective
anisotropy constant Keff�0.02J .101 The structure of the SL in the collinear
state is illustrated in the inset.
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For a 2D AFM the situation remains qualitatively the
same as for the SL: single-ion anisotropy gives a first-order
transition, and anisotropy of the interaction gives a second-
order transition. For all the uncompensated surface or bulk
defects the value of the critical field �30� is substantially
lower than the instability field H1 , and the difference Hc

2

�H1
2
H1

2 does not contain any small parameters of the type
(K ,�)/J . In a 2D AFM, as for the SL, for all the compen-
sated defects Hc

2�H1
2
(K ,�)H1

2/J�H1
2 . There is only one

difference of a quantitative character, viz., the localization of
the states in the 2D case is weaker, while the difference of
the fields of the bulk and localized SFTs is less than for the
SL. Since the SL is in essence a one-dimensional object, this
regularity corresponds to the known tendency for localiza-
tion effects to weaken as the dimensionality of the system
increases.34,35 However, for such defects as an uncompen-
sated surface and especially a corner of the sample �see Fig.
4d, e�, the effects of localization of the SFT in a 2D AFM are
manifested more strongly than for a spin ladder.

The possibility of realization of 2D localized transitions
is due to some novel objects—arrays of magnetic dots of
different shapes, made from magnetically soft ferromagnets,
which can be arranged in square, rectangular, or staircase
structures. The interaction between dots is of a magnetostatic
nature, and in a weak field it leads to antiferromagnetic order
of the magnetic moments of the dots.23 An important circum-
stance derives from the character of the anisotropy in these
artificial systems. The effective anisotropy inherent to a
single dot is determined by its shape, while the anisotropy of
the interaction energy of the dots is related to the shape of
the lattice. This makes it possible the control independently
the parameters analogous to the single-ion or exchange an-
isotropy constants by modifying the geometry of the dot and
lattice, respectively.

D. Quantum analog of the spin-flop transition

We have actually been discussing the spin-flop transition
in a model of two large spins. In recent years many experi-
ments have been done that can be described directly in terms
of this model. We are talking about processes of magnetiza-
tion of spin pairs with an antiferromagnetic interaction,104

including pairs of the high-spin Mn4 molecules with a maxi-
mum value of the total spin 2S�9.54,55 For an ensemble of
such pairs �and also more complex clusters like spin triplets,
quartets, etc.� a stepped magnetization is observed, i.e., a
macroscopic manifestation of the spin quantization effect.104

The process of magnetization of spin pairs when only
isotropic exchange and the external field are taken into ac-
count can be described on the basis of the exact solution of
the quantum problem �2� with K�0, ��0. Taking into ac-
count the identity 2Ŝ1•Ŝ2�Ŝtot

2 �2S(S�1), we can write this
Hamiltonian solely in terms of the total spin operator of the
system, Ŝtot�Ŝ1�Ŝ2 , and its projection in the field direction
Ŝ z . Corresponding to the eigenstates are fixed values of the
total spin S tot , Stot

2 �Stot(Stot�1), and Sz , and their energy is
determined by the expression E(S ,Sz)�JS tot(Stot�1)/2
�g�BHSz . Comparing these values of the energy, it is easy
to find that the value of Sz jumps from Sz�n�1 to Sz�n at
a field Hn�Jn/(g�B). Saturation S tot�2S is reached at
Hex
Heis�2JS/(g�B), and the value of the field Hex coincides

with that given by the classical formula �22� for K�0, �
�0, and Z�1. Thus the process of magnetizing a spin pair is
reminiscent of the magnetizing of macroscopic isotropic
AFMs, with the difference that for pairs of quantum spins the
linear dependence Sz(H) for H�Hex becomes steplike, with
a change in spin by unity.

The exact solution of the quantum problems of finite
spin clusters with an antiferromagnetic interaction for arbi-
trary value of the spin S is known only for certain simple
models.105 An interesting model is that of a closed spin chain
with four spins,

Ĥ�J

i�1

3

Ŝi•Ŝi�1�JŜ4•Ŝ1 .

The Hamiltonian of this model is easily rewritten in terms of
the ‘‘sublattice spin’’ operators Ŝ1

sl�Ŝ1�Ŝ3 , Ŝ2
sl�Ŝ2�Ŝ4 ,

and the total spin operator Ŝtot�Ŝ1
sl�Ŝ2

sl ; with accuracy up
to an additive constant, it takes the form

Ĥ�
J

2
� Ŝtot

2 �� Ŝ1
sl�2�� Ŝ2

sl�2� .

The eigenvalues of the Hamiltonian are expressed in terms of
the value of the total spin S tot of the system and the values of
the sublattice spins, (Ŝ1,2

sl )2�S1,2
sl (S1,2

sl �1). As in the classi-
cal Néel state, in the ground state of this system the sublat-
tice spins have the maximum possible value S1,2

sl �2S . For
systems with a large number of spins such a simple treatment
cannot be done, and the conclusion that the sublattices are
‘‘saturated’’ is apparently invalid. When the anisotropy is
taken into account the exact solution is known only for the
Ising model, which corresponds to J ,K�0 in �2�. In this
case, in essence classical, we have Sz�0 at H�Hex and
saturation of the state, Sz�2S , at H�Hex . At a value of the
exchange field Hex��S/(g�B) the state of an Ising system
is degenerate, and Sz can take any value from 0 to 2S .

In the classical theory even weak anisotropy can alter the
purely linear trend of Sz(H), giving rise to a spin-flop tran-
sition of either first or second order �see Fig. 3�. Suppose the
classical SFT field Hs f	S�2JK/(g�B) exceeds the field of
the first quantum jump, Hn for n�1, H (n�1)�J/(g�B), as
can occur for moderate anisotropy K�J/S2. Then in the
behavior of the spin pair one expects the appearance of the
quantum analog of a spin-flop transition.106 The problem for
a spin pair in the presence of magnetic anisotropy of a gen-
eral form does not have an exact solution even in the most
symmetric case �2�. A numerical analysis by Kireev and the
author for a pair of spins in the simple model �2� with allow-
ance for general types of anisotropy showed that even for not
very large spins such as S�3 – 5 one observes fair agreement
of the quantum and classical results. The behavior of the
quantum jumplike magnetization curve is determined, as for
classical AFMs, by the microscopic character of the mag-
netic anisotropy. In particular, the value Sz�0 is maintained
up to field values H�H (n�1) . Further, for single-ion anisot-
ropy there exists a microscopic analog of the first-order spin-
flop transition, viz., the jump of Sz from zero to values
 Sz�1. For the case when in the macroscopic problem has
second-order transitions, for a quantum system the jumps
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 Sz�1 are concentrated in a narrow region of field values
that correspond approximately to the characteristic fields
H1 ,H2 of the classical theory.

V. LAGRANGIAN FOR THE DESCRIPTION OF THE
DYNAMICS OF REAL AFMs

Kaganov and Tsukernik107 and Turov and Irkhin108 first
proposed to describe the dynamics of AFMs on the basis of a
system of two Landau–Lifshitz equations for the sublattice
magnetizations, which can be written in terms of the unit
vectors �1 and �2 �10�, as the field variables. An equivalent
but more convenient description is based on a system of
equations for the irreducible vectors l, m �see the detailed
analysis of this approach and further generalizations of the
such equations in the monograph by Turov et al.9�. It later
became clear that by using the natural small parameters of
the AFM theory, g�BH/S
�KeffJ�J �see Eq. �2��, one can
satisfactorily describe the behavior of an AFM using only the
equation for the antiferromagnetic vector l alone. In this case
the vector m is small, �m��1, it is a slave variable and is
determined by the vector l and its time derivative �l/�t . In
this approximation the vector l, which for m�0 is three-
component with a variable length �see Eq. �15��, can be
treated as a unit vector.

The dynamical equations for the antiferromagnetic unit
vector l can be constructed on the basis of symmetry
arguments43 and can be obtained directly from the Landau–
Lifshitz equations for the sublattice magnetizations109–112

�see reviews12,34,36,38�. In both approaches one obtains the
same classical equations of motion for the unit vector l,
which are called the �-model equations. The simplest ver-
sion of the �-model has high dynamical symmetry, and the
time derivatives of l appear in the Lagrangian in the trivial
form (�l/�t)2. The use of such equations as these have made
it possible to describe the Lorentz-invariant domain-wall dy-
namics observed experimentally for a number of AFMs,
where it was found that the domain walls move with a char-
acteristic velocity c equal to the magnon velocity in the
AFM.6,15,37,38 Both the magnetic field and certain forms of
the Dzyaloshinskii–Moriya interaction lower the dynamical
symmetry of the classical �-model, and its Lagrangian ac-
quires terms linear in �l/�t .

A key development in the use of the equations of the �-
model in the quantum physics of AFMs was to obtain the
Lagrangian of the �-model on the basis of the spin coherent
states.67,113–116 We begin by considering the �-model for the
uniform dynamics of the vector l�l(t) with the magnetic
field and the Dzyaloshinskii interaction taken into account,
with the possibility of a small decompensation of the sublat-
tice spins. The nonuniform dynamics will be briefly dis-
cussed at the end of this Section. In Secs. 6 and 7 we shall
present this Lagrangian for investigating tunneling effects.

The derivation of the �-model is done under the assump-
tion that the magnetic moment is small, �m���l�. Using the
smallness of m, one can write the Lagrangian �10� in the
form an expansion in powers of that vector. The kinetic term
in the Lagrangian for the sublattice spins �12� can be de-
scribed in the approximation linear in m as
sN1�A1��1�•�̇1�sN2�A2��2�•�̇2

�s�
�l

�t
•�N1A1� l��N2A2��l��

�s�
�m

�t
•�N1A1� l��N2A2��l��

�s�mi

�l

�t
•�N1

�A1� l�

�l i
�N2

�A2��l�

�l i
� . �32�

Up to this point we have not specified a concrete choice of
axes of the singularities n1 and n2 for the potentials A1 , A2 .
We choose them so as to eliminate the singular term, at least
in the case of a compensated AFM.117,118 The corresponding
condition is A1(l)�A2(�l), which is possible when n1

��n2 . For Nex�0 one cannot get rid of the singular term,
but it is proportional to the small quantity Nex�N .

The dynamic term in �32� for the case of a ‘‘pure’’ AFM
begins with the term linear in m, which can be represented in
the form118

�m•�B�
�l

�t� , Bi�$ i jk� �A j

�lk
�

�Ak

�l j
� . �33�

Thus, in contrast to the FM case, the Lagrangian of a com-
pensated AFM contains only the gauge-invariant quantity B
� A, which has the meaning of a magnetic monopole field,
B�l/�l�3. Applying the condition m"l�0, we easily obtain
for the slave variable m

m�
�

2sJZ � #�H�eff��l�H�eff�
•l���� �l

�t
�l� � , �34�

where #�g�B /� is the gyromagnetic ratio, and H(eff) is the
sum of the external field H and the Dzyaloshinskii field
H(D). For the model �10�, in which the Dzyaloshinskii–
Moriya interaction has the purely antisymmetric form d
•(�1��2), the Dzyaloshinskii field H(D)�sZ(d�l)/g�B .
For the usual form of this interaction, proportional to
Dik(l)milk �see the discussion following formula �16��, and
the Dzyaloshinskii field Hi

(D)�Dik(k)lk . Thus for a general
AFM model the expression for the effective field becomes

Hi
eff�Hi�Dik� l�lk . �35�

We note that the vector m determines the value of the total
spin Stot of the system only in the case of a compensated
sample, when Nex�0. If Nex�0, the total spin vector will
contain both a ‘‘transverse’’ term, proportional to the compo-
nents of m, and a ‘‘longitudinal’’ term, which is due to the
excess spin and is parallel to l:

Stot�sNexl�sNm. �36�

The derivation of the �-model equations can be carried fur-
ther without specifying a concrete form of Dik(l). Substitut-
ing m into formula �10�, we obtain an effective Lagrangian
for the vector l of an AFM sample containing N spins:

L�
�2N

2JZ �1

2 � �l

�t �
2

�#� H�eff�
•� l�

�l

�t� � �
�s�NexA� l�•� �l

�t ��W̃� l�. �37�
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Here the first term governs the characteristic dynamics for a
‘‘pure’’ AFM, the second term is ‘‘ferromagnetic’’ in form
and is due to decompensation of the spins, and the last term
W̃(l) has the meaning of an effective ‘‘potential energy’’ of
the system:

W̃� l��Wa� l��g�BsNex�H"l��
�g�B�2N

4JZ
��H"l�2�H2�

�
�g�B�2N

2JZ
�H�� l�H�D �

•l��H�D �� �. �38�

In writing W̃ here we have written out separately all the
terms that depend on the magnetic field. The expression for
W(l) has the meaning of the effective anisotropy energy of
the AFM. This energy is made up of the ‘‘bare’’ anisotropy
energy mentioned above �the second group of terms in for-
mulae �13� and �16�, which are taken for �1���2�l or
m�0, respectively�, and also the additional term (H(D)

•l)2

�(H(D))2, which is acquired in the elimination of m. It is
clear that there is no sense in separating out these contribu-
tions, and W(l) is the real anisotropy energy determined
from static measurements. In essence, in writing W(l) one
must simply use the phenomenological expression whose
form is determined by the crystal symmetry of the magnet
and, as a rule, is well known. Below we shall often consider
a model AFM of rhombic symmetry and use the expression

W�� ,���s2N�Ku� lx
2�ly

2��Kply
2� , �39�

where the constants Ku and Kp describe the uniaxial anisot-
ropy and the anisotropy in the basal plane (x ,y), respec-
tively.

The energy W̃(l) of the system also contains terms linear
and quadratic in the magnetic field. The meaning of the first
term in �38� is simple: it describes the Zeeman energy of the
excess spin in a magnetic field. A second term, quadratic in
the field components, is present for any AFM. The meaning
of this contribution is very clear: it is due to the anisotropy of
the susceptibility of the AFM. The role of this term can be
represented as the appearance of a field-induced uniaxial an-
isotropy with a hard axis along the magnetic field. The com-
petition of this induced anisotropy with the initial easy-axis
crystalline anisotropy is responsible for the existence of the
spin-flop transition �see Sec. 4�. Finally, the last term, which
is bilinear in the components of the external field H and the
Dzyaloshinskii field H(D), describes the energy of the weak
ferromagnetic moment caused by the Dzyaloshinskii interac-
tion with the external magnetic field.12 It contains terms lin-
ear in the components of the vector l, making it possible to
explain easily the conclusion of a symmetry analysis that the
spin-flip transition exists for any orientation of the external
magnetic field only in the absence of the Dzyaloshinskii in-
teraction. Analyzing this term, one can easily indicate those
selected orientations of the field for which the spin-flip tran-
sition can occur for nonzero H(D). Indeed, the terms linear in
l, which destroy that transition, go to zero under the condi-
tion DikHi�0, which determines the desired direction of H.

Thus the Lagrangian for the vector l, with the external
magnetic field and the general form of the Dzyaloshinskii
interaction taken into account, differs from the Lagrangian of
the �-model of an ideal AFM67 by the presence of a number
of additional gyroscopic terms linear in �l/�t . They describe
a lowering of the real dynamical symmetry on an AFM on
account of the magnetic field and/or the Dzyaloshinskii in-
teraction. We note that in the original papers43,112,119 these
terms of different origin were written in the correct form of
total derivatives. This pertains to terms resulting from the
magnetic field �cf. Refs. 43 and 51�, the Dzyaloshinskii in-
teraction �Refs. 119 and 118�, and also from the form of the
Lagrangian for an AFM with incomplete compensation of
the spin �cf. Refs. 112 and 120�. Therefore, in particular, the
soliton momentum P , which is not invariant with respect to
the addition of total derivatives, and the dispersion relation
E�E(P) for a soliton of the kink type were found correctly
in Refs. 119, 121, and 122.

Let us discuss the form of the Lagrangian �37� in various
limiting cases. The standard �-model of a pure AFM corre-
sponds to S1�S2 , or Nex�0. For the transition to the La-
grangian of a ‘‘pure’’ ferromagnet the term proportional to
(�l/�t)2 must be set to zero. Taking this term into account
goes beyond the accuracy of the calculation for sufficiently
small Nex /N��K/J .111,120 However, in doing so we alter the
Hamiltonian structure of the system; specifically, the number
of degrees of freedom �the dimension of the phase space�
decreases by half, which is of fundamental importance for
the analysis of instantons.

In the derivation of the Lagrangian �37� the possibility of
nonuniform states was neglected for simplicity. They can be
taken into account without difficulty by allowing for the de-
pendence of the vector l on the spatial coordinates. For the
model of an AFM with a D-dimensional Heisenberg lattice
with lattice constant a , this dependence is put in by changing
from the dynamical variable l(t) to the field variable l(x,t)
and making the substitution

N�L/N �→� dxD

aD � �L/N ��
1

2
Ja2s2�“"I�2� . �40�

The value of L/N has the meaning of the value of the La-
grangian per spin for the uniform case �37�, and the second
term in the integrand is taken with the opposite sign to the
energy of nonuniformity of the spins �see, e.g., Ref. 71�. We
note that for Heff�0 the derivatives with respect to the coor-
dinate and time appear in the Lagrangian in the Lorentz-
invariant combination

%2�c2��2/�t2�, c�saJ�2Z/� , �41�

where c has the meaning of the magnon phase velocity in the
AFM.

A special case is the one-dimensional AFM, e.g., a spin
chain, when the vector l depends on one spatial coordinate,
l�l(x ,t). In the case of a simple chain the action acquires an
additional topological term67,116

Atopol�2��SQ , Q�
1

4� � dxdt� l•� �l

�x
�

�l

�t� � . �42�

The quantity Q is a topological invariant of the mapping of
the (x ,t) plane onto the sphere l2�1. For a continuous func-
tion l�l(x ,t) having a unique value for x ,t→� , this quan-
tity takes on only integer values, Q�0,	1,	2,.. . . It is clear
that the variation of this quantity is equal to zero, and its
presence is not manifested in the equations of motion for the
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vector l. However, the topological term does influence the
behavior of the non-small quantum fluctuations; in particular,
it leads to differences in the character of the ground state of
the AFM chain with integer and half-integer spin.67,116 The
topological term also determines interference effects for non-
one-dimensional instantons for the problem of tunneling in
disclinations and domain walls123,124 �see Sec. 7 below�. The
presence of the topological term depends fundamentally on
the magnetic symmetry of the AFM; in particular, it is
present for a simple spin chain but absent for a spin ladder
�which we discussed in Sec. 4 in connection with the prob-
lem of the spin-flop transition�; this circumstance leads to
fundamentally different behavior of quantum fluctuations in
these systems.102 The question of whether topological invari-
ants exist in AFMs of higher dimension, e.g., the Hopf in-
variant, which describes the mapping of the three-
dimensional manifold (x ,y ,t) onto the sphere l2�1, remains
open to discussion.

VI. TUNNELING IN SMALL AFM PARTICLES AND
ANTIFERROMAGNETIC MOLECULES

In the study of the macroscopic quantum effects, the
phenomenon of coherent macroscopic quantum tunneling be-
tween energetically equivalent but physically different states
in systems with discrete degeneracy of the ground state is of
particular interest.1,28,29 A typical effect of this type is the
mixing of two equivalent classical states and the tunneling
splitting of the energy levels corresponding to them, which
are degenerate in the classical case. The original papers on
the theory of quantum tunneling were done for small par-
ticles of ferromagnets under the assumption that all the spins
in the particle are parallel to each other �the large-spin
model�.125–128 Then it turned out that from an experimental
standpoint AFMs are a more convenient class of objects for
investigation of quantum tunneling. According to
calculations,129,130 in AFMs the level splitting is stronger
than in ferromagnets, and the effects can be observed at
higher temperature. It is not surprising that the first observa-
tion of quantum tunneling effects was done for ferritin par-
ticles of biological origin, which have an antiferromagnetic
structure27 �see Sec. 2�.

Tunneling in magnets entails subtle and beautiful effects
of interference of instanton trajectories. For ferromagnetic
particles in the absence of magnetic field these effects lead to
suppression of tunneling for half-integer total spin of the
system,32,33 and this can be considered an example of the
working of Kramers’ theorem on the ground-state degen-
eracy. In the presence of magnetic field H, Kramers’ theorem
is inapplicable, and the result cannot be predicted before-
hand. For ferromagnets, tunneling in the case H�0 was
studied theoretically by Garg with the use of the instanton
method.131 The analysis led to an extremely nontrivial result
that a partial �non-Kramers� interference can arise. If the
field is parallel to the hard axis of a particle with rhombic
anisotropy, then the tunneling level-splitting will have an os-
cillatory dependence on the magnetic field. In pure AFMs,
i.e., for complete compensation of the sublattice spins, inter-
ference effects can appear in an applied magnetic field51,132

and in the presence of certain types of Dzyaloshinskii–
Moriya interaction.118
Without fear of contradiction it can be said the synthesis
and study of high-quality single crystals of high-spin mol-
ecules with precise orientation of the molecular axes �their
properties were discussed in Sec. 2� have opened up a new
era of research on macroscopic quantum effects.1 Both ef-
fects of tunneling between excited levels, for which the split-
ting is larger,133,134 and tunneling in the ground state135–139

have been observed for such systems. Parallel orientation of
the anisotropy axes of the molecules in single crystals has
made it possible to really address the question of observing
the oscillations predicted by Garg131 in the tunneling splitting
as a function of the external magnetic field, and only for a
field parallel to the hard axis of the magnetic particle. Such
oscillations have been observed by the method of relaxation
time measurements at low temperatures139 for high-spin mol-
ecules both with integer spin S�10 �Refs. 137 and 138� and
for systems with half-integer spin S�9/2; for these cases the
phase of the oscillations is shifted by �/2. Recently the di-
rect observation of the tunneling level-splitting for antiferro-
magnetic Fe8 molecules by the method of inelastic neutron
scattering was reported.140 This led to new theoretical studies
of the tunneling problem for an ensemble of oriented
particles.141,142

A. Instanton approach to the description of tunneling

The probability amplitude of a transition from state �2� to
a different state �1� �the propagator P12) can be written in
terms of a path integral �7�. If one is talking about tunneling,
i.e., motion in the classically forbidden region, then the value
of the mechanical action in the ordinary mechanics of the
particles is purely imaginary. Then the Feynman exponent
exp(iA/�) will be a purely real expression exp(�AEu /�),
where AEu��iA is the Euclidean action. For magnets
whose Lagrangian contains terms linear in the derivatives,
the Euclidean action can have both real and imaginary parts.
In the classically forbidden region the real Feynman expo-
nent appears automatically, but the transition from iA to AEu

is conveniently done with the aid of a transition to imaginary
time, t→i& . Then for estimation of effects of macroscopic
quantum tunneling we immediately employ the Euclidean
action functional, which can be written in the form

AEu� l���
��

�

LEud&��
��

�

d&� �2N

2JZ �1

2 � �l

�& � 2

�i#� H�eff�
•� l�

�l

�&� � ��is�NexA� l�•� �l

�& �
�W̃� l�� , �43�

where the energy W̃(l), the effective field H(eff), and the
vector potential A(l) are determined by the same formulae as
in the ‘‘ordinary’’ action �37�.

To analyze the tunneling in an AFM between different
classical degenerate ground states having different values of
the vector l, labeled l(�) and l(�), and to find the value of the
tunneling splitting  of the energy of these states, one must
estimate the tunneling exponent Re AEu /� . The main object
in that formalism consists in the so-called
instantons,28–30,68,143 which are solutions of the Euler–
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Lagrange equations for the Euclidean version of the AFM
Lagrangian l�l(&). The instantons correspond to the mini-
mum of Re AEu� l� under the condition that for &→	� the
vector l tends toward two different ground states, l(&)
→l(	). In the semiclassical approximation the value of
Re(AEu /�) is not small, and the contribution to the splitting
is given only by Euclidian trajectories having the minimum
value of the real part of the Euclidean action AEu� l� . An
important feature of magnets is the presence of several
equivalent instanton paths. In the leading approximation in
the parameter exp(�AEu /�) for physically observable split-
ting  of the degenerate energy levels of the ground state,
one can write143

 ��'0


	

D	 exp��AEu
�	�/��
 , �44�

where for convenience we have immediately separated out
the factor �'0 , where '0 is the frequency of small oscilla-
tions of the vector l, and the index 	 enumerates the equiva-
lent instanton paths corresponding to the same �smallest�
value of Re AEu

(	) . The coefficient D	 is the pre-exponential
factor for a given instanton path, which in standard quantum
mechanics is determined by the first correction to the classi-
cal solution.64 In the instanton approach this factor �the fluc-
tuation determinant� is due to small fluctuations around the
instanton. Its calculation is a complex mathematical problem
that will be discussed below.

Importantly, in magnets the corresponding partial contri-
butions D	exp(�AEu

(	)/�) can be �and often are� complex,
i.e., they contain a phase factor exp(i�(	)), which leads to
interference of the instanton paths. Often such interference
arises because of a difference of the values of the imaginary
part of AEu

(	) . For example, in a rhombic ferromagnet the
quantities AEu

(	) for two instanton paths (	�1,2) contain
terms i�S tot� and �i�S tot�. Therefore, the splitting  
�D�exp(�AEu

(1)/�)�exp(�AEu
(2)/�)� acquires an interfer-

ence factor �cos �Stot�,
32,33 which describes a suppression of

tunneling for half-integer spin. Chiolero and Loss120 gave an
example of a tunneling problem in an AFM for which the
pre-exponential factor D	 is complex and gives a substantial
contribution to the phase factor. To take interference effects
into account explicitly for a system with several instantons
�for a magnet with easy axis Cn there exist n instanton tra-
jectories� it is convenient to write118

 �2�'0D�K exp��Re AEu
�	�/��, �45�

where D is now the modulus of the fluctuation determinant,
and we have explicitly separated out the phase �combinato-
rial� factor K:

K�


	 ,�

cos�  ��	 ,��

2 �
 ,  ��	 ,�����	������,

�46�

where the summation is over all pairs of instantons, and
 � (	 ,�) is the difference of the phase factors for the 	 and �
instantons.

In this formula exp(�Re AEu /�) coincides exactly with
the exponential factor that appears in the coefficient of trans-
parency of a barrier in the semiclassical approximation of
ordinary quantum mechanics. For the simplest version of the
�-model the Lagrangian is real, all the � (	) are equal to
zero, and therefore the combinatorial factor is trivial, �K
�n , i.e., for n equivalent paths the value of the level split-
ting is equal to the contribution of one instanton, multiplied
by the number of paths.

B. Instantons as solutions of the dynamical problem

For analysis of the instanton solutions one can exploit
the extremely useful analogy with the problem of finding the
separatrix solutions of finite-dimensional dynamical systems.
The vector l is conveniently parametrized by the usual angu-
lar variables:

l1�sin � cos � , l2�sin � sin � , l3�cos � . �47�

In the case of the general form of the Lagrangian �43� the
structure of the instanton is determined by a general system
of two second-order Euler–Lagrange equations for the vari-
ables �(&),�(&), which are in general complex. Let us dis-
cuss the possibility in principle of constructing the instanton
solutions of such a system. The boundary conditions for the
given problem have the form l→l	

(0) , �l/�&→0 for &→
	� . This problem is similar to the problem of finding a
moving domain wall, which is described by solutions of the
form l�l((), where (�x�vt , v being the velocity of the
wall, with the same boundary conditions for (→	� . Con-
sequently, the instanton �like a soliton of the wall type� cor-
responds to a heteroclinic separatrix trajectory of the dy-
namical system �43�, which joins the pair of equivalent
minima l	

(0) of the potential W̃(l). For the problem with more
than one degree of freedom it is by no means always possible
to construct such a solution. The situation in the case of
instantons is still worse than for solitons, since the solutions,
generally speaking, are not real and, in essence, the number
of degrees of freedom is doubled.

An arbitrary solution of the equations of motion of a
given dynamical system can be constructed if the system is
integrable. If even the vector l is real, we will have a system
with two degrees of freedom. For it to be integrable there
must exist two independent integrals of motion. One of them
is easily written: it is the Euclidean analog of the total en-
ergy:

EEu�
�2N

4JZ � � ��

�& � 2

�sin2 �� ��

�& � 2��W�� ,��, �48�

but the second integral of motion by no means always exists.
It can be constructed trivially for the case when the anisot-
ropy is purely uniaxial, i.e., when LEu does not depend on
� . Below we shall use this integral of motion �68� to con-
struct instanton solutions for a purely uniaxial AFM in mag-
netic field. However, in the case of any nonzero decompen-
sation of the sublattices for a purely uniaxial model the
moving domain wall12,34,35 and instanton144 are absent; their
existence is contingent on anisotropy in the basal plane.

Analysis of dynamical systems with more than one de-
gree of freedom, in particular, the construction of integrable
systems, has remained one of the most important problems
of analytical dynamics for over a hundred years and is still
under intensive study.145 Among the integrable systems
known are models of the dynamics of a unit vector, e.g., the
classical Neumann problem146 of the motion of a material
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point along a sphere in the field of a potential that is a qua-
dratic function of the Cartesian coordinates, and its generali-
zation for a number of other polynomial potentials.147 We
note especially the integrable model with W�Kikl ilk for H
�0, Di j�0 and with a gyrotropic term of the monopole field
type.147,148 Integrability of such a model also follows from
the exact integrability of the Landau–Lifshitz equations for
the magnetization of a two-dimensional ferromagnet, which
was established by Sklyanin.149 Diagonalizing the matrix Kik

and taking into account the condition l2�1, we arrive at the
anisotropy energy �39� for a rhombic AFM. This model de-
scribes the exact instanton solutions for the AFM model �77�
at arbitrary decompensation.144

On going from an AFM to the Lagrangian of a ferromag-
net, which is a nontrivial operation, the problem simplifies
substantially. Formally, one can obtain the Lagrangian of a
ferromagnet from �43� if the term quadratic in the derivative,
(�l/�&)2, is set to zero. However, in so doing one would alter
the Hamiltonian structure of the system, and the dimension
of the phase space would decrease by half. While for an
AFM the angles � and � that parametrize l can be treated as
canonical coordinates, and the momenta corresponding to
them contain �̇ and �̇, for a ferromagnet the Hamiltonian
variables are expressed only in terms of l. As the canonical
pair one can choose the momentum P�cos � and the coor-
dinate Q�� . A ferromagnet corresponds to an integrable
Hamiltonian system with one degree of freedom, and the role
of Hamilton’s function is played by the energy W(� ,�) of
the ferromagnet. For instantons the corresponding Hamil-
tonian is complex,

i
�P

�&
��

�W

�Q
, i

�Q

�&
�

�W

�P
, �49�

and the solution in a ferromagnet cannot be real, and there-
fore the number of degrees of freedom is actually equal to
two. However, in a recent paper by Kulagin and the author it
was shown that for any ferromagnet model, integrability is
present even in this case.150 We write W�H1�iH2 , where
H1 and H2 are real-valued functions. Assuming P and Q are
complex, P�P��iP�, Q�Q��iQ�, we separate the real
and imaginary parts of equations �49�. As a result, we obtain
a system of four real equations, the right-hand sides of which
will contain the derivatives of H1 and H2 with respect to the
variables P�,P�,Q�,Q�. However, if it is required that W be
an analytic function of the complex variables P and Q and
satisfy the Cauchy–Riemann conditions independently, then
the right-hand sides can be rewritten in terms of the deriva-
tives of H1 only or of H2 only. As a result, the system of
equations for the real variables becomes a Hamiltonian sys-
tem. In particular, by choosing pairs of canonical variables in
the following way:

p1�P�, q1�Q�; p2�P�, q2�Q�, �50�

the system can be written in the form of the standard �real�
Hamiltonian system with two degrees of freedom, ṗ i

���H1 /�qi , q̇ i��H1 /�pi , i�1,2, with the Hamiltonian
function H1�H1(p1 ,q1 ,p2 ,q2) and the additional integral
of motion H2 . Using only the Cauchy–Riemann condition
for W , one can show that the Poisson bracket of the func-
tions H1 and H2 , calculated in terms of the canonical vari-
ables pi ,qi , is equal to zero. Consequently, any ferromagnet
model whose energy W(cos �,�) is analytic with respect to
cos � and � in the sense indicated above reduces to an ex-
actly integrable dynamical system. The efficiency of this way
of constructing the instanton trajectories for a number of fer-
romagnet models was demonstrated in Ref. 150. The same
arguments can be applied to the instantons in an AFM, which
in the case of complex variables �, � are described by a
dynamical system with four degrees of freedom, but the con-
struction of one additional first integral does not solve the
problem of integrability of the problem in general form.

For the often-used model of strong easy-plane anisot-
ropy the equations of motion give the approximate relation
cos �
const•(��/�t), and cos � is a dependent variable.36 In
this approximation the Lagrangian takes on the standard
form for mechanics, M eff(�)(��/�t)2/2�W(�), where
M eff(�) and W(�) are the effective mass and the potential,
which are determined by the parameters of the system. In
this case the problem reduces to a mechanical system with
one degree of freedom. However, such a reduction of the
phase space of a Hamiltonian system with two degrees of
freedom can lead to a loss of important physical effects in
tunneling.150

C. Fluctuation determinant

Let us discuss the evaluation of the pre-exponential fac-
tor D in formula �45� for the tunneling level-splitting. In the
instanton approach this factor is due to the contribution of
small deviations of the trajectory in the total Feynman inte-
gral from the classical paths �0 ,�0 corresponding to the in-
stanton. This contribution can be estimated in the Gaussian
approximation �the semiclassical approach!� with the aid of
an expansion of the Euclidean action to second order in the
small deviations:

��&���0�&��)�&�, ��&���0�&��*��&�. �51�

For instantons of the form �0��0(&), �0�const, which of-
ten arise in tunneling problems in AFMs, the variables ) and
*� describe the longitudinal and transverse deviations from
the instanton trajectory. Introducing the variable �
�*� sin �0 , we obtain the factor D in the form

D�� D�)�D���exp� �
1

2 � dx�+ ,Â+� � , �52�

where +�() ,�) is a two-component vector, and Â is a 2
�2 matrix differential operator, with operators of the Schrö-
dinger type with respect to the dimensionless variable (
�'0& along the diagonal. An example of such an operator
that arises in a particular problem is given below; see for-
mula �71�. The off-diagonal structure of Â corresponds to
two interacting field degrees of freedom, which substantially
complicates the calculation of D as compared to the standard
case of instantons in a system with one degree of freedom.
Sometimes—for example, for instantons in the simple model
of an uncompensated AFM—this factor can be calculated.144

However, in a number of cases the operator Â is diagonal, in
which case the fluctuation determinant decomposes into a
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product of two independent factors, longitudinal D � and
transverse D� . We shall limit discussion to this simpler ex-
ample.

Calculation of the longitudinal determinant D � is a rather
nontrivial mathematical problem that has nonetheless be-
come a standard element of the theory of instantons.68,143 Its
value can be formally written in terms of an infinite product
of nonzero eigenvalues of the corresponding Schrödinger op-
erator ,k , D �
�� k(1/,k)�1/2. Besides them, the Schrödinger
operator for the longitudinal deviations always contains a
zero mode with ,�0. The presence of the zero mode is due
to the invariance of the Euclidean action with respect to the
substitution l0(&)→l0(&�&0), where &0 is an arbitrary pa-
rameter. The contribution of this mode cannot be described
in the Gaussian approximation; its inclusion causes a large
factor (Re AEu /�)1/2 to appear in D � �see details in the
reviews68,143�. As a result, the longitudinal fluctuation deter-
minant can be written in the form

D ��C� Re AEu

2�� � 1/2

, �53�

where C is a numerical factor of the order of unity.
The structure of the transverse fluctuation determinant

D� is not so universal. For a purely uniaxial AFM model
with a symmetry axis C� its form is exactly the same as for
D � . Then the square of the standard large parameter
(Re AEu /�)1/2 appears in the splitting151 �see formula �72�
below�. This result is an example of the implementation of
the general rule of working with instantons in systems with
more than one zero mode, according to which each zero
mode gives such a factor in the level splitting.143 If there is a
small but finite anisotropy Kp�Ku in the basal plane x ,y ,
then instead of this large parameter one will have �Ku /Kp.

D. Instantons in uniaxial AFMs

The structure of the instanton is determined by a general
system of second-order Euler-Lagrange equations for the an-
gular variables; this system can be written schematically in
the form

� �̈��̇2 sin � cos ��'0
2 �wa�� ,��

2��
�i�̇-�� ,���0,

�� �̇ sin2 ��2�'0
2 �wa�� ,��

2��
�i �̇-�� ,���0, �54�

where a dot denotes a derivative with respect to &, and the
terms with -(� ,�) are determined by variation of the gyro-
scopic terms in the Lagrangian �43�. The dimensionless func-
tion wa(� ,�) is proportional to the anisotropy energy
W(� ,�). The coefficient of proportionality is chosen so as to
make '0 coincide with the frequency of small oscillations of
the vector l, which corresponds to '0

2wa�(4JZ/�2N)W .
The form of wa(� ,�) and the function -(� ,�), which is
generated by the Dzyaloshinskii interaction or a magnetic
field, is discussed below for specific examples. In the case of
an AFM with a decompensation of the sublattice spins one
has -�#Hex(Nex /N)sin �, i.e., its form is the same as for
the Landau–Lifshitz equation.

The general equations �54� contain a large number of
independent parameters of various natures that are due to the
external field, the Dzyaloshinskii interaction, and possible
decompensation. As we shall see, the role of these interac-
tions is extremely diverse, and even if one could write down
a general formula for the Euclidean action with all these
factors included, it would be difficult to analyze. We there-
fore consider the role of individual interactions that lower the
dynamical symmetry of an AFM, moving from the simple to
the complex. The presence of uncompensated spins compli-
cates the analysis significantly, and we shall therefore begin
with the case of a completely compensated AFM, for which
Nex�0. It is convenient to begin discussion with the tunnel-
ing in the simplest case of a model with the highest dynami-
cal symmetry, which corresponds to -�0. The point is that
for certain AFM models with the Dzyaloshinskii–Moriya in-
teraction and nonzero -(� ,�)�0 the results turn out to be
exactly the same as for -(� ,�)�0 �this will not happen in
the case of magnetic field�.

If -(� ,�)�0 the problem can be analyzed without dif-
ficulty. We limit discussion to the case of a particle of an
easy-axis AFM with an n-fold axis, in the ground state of
which the vector l is parallel to the principal axis Cn . For
such a magnet '0�#Hs f , and the anisotropy energy wa can
be written in the form

'0
2wa�� ,���'0

2 sin2 ��'p
2 sinn � sin2�n�/2�, �55�

where the second term corresponds to the simplest expres-
sion for the anisotropy in the basal plane, and usually for n
�2 one has 'p�'0 . For such a choice of energy the z and
x axes are always the easy and medium axes of the AFM,
respectively. It is easy to see that the instanton solution cor-
responds to a solution of the form ���0�const, ���(&).
The admissible values of �0 are determined by the relation

�wa�� ,��

�� 

���0

!sin n�0�0. �56�

There exist 2n solutions of this equation, �k
(0)��k/n , k

�0,1,.. . ,2n�1, of which n solutions with even k , �k ,min
(0)

give a minimum of wa(� ,�), and the remaining n with
�k ,max

(0) give a maximum of this function for all ��0,� . In-
stantons with �k ,min

(0) correspond to lower values of the Eu-
clidean action. The function ��&� can be found from the
second-order equations, for which the first integral �48� is
known. Taking into account the boundary conditions �
→0,� for &→	� , we obtain

� d�

d& � 2

�'0
2wa�� ,�k

�0 ��. �57�

The Euclidean action is real-valued on the trajectories for all
values of � and is given by the formula

AEu�
�2'0N

2JZ �
0

�

d��wa�� ,��
2�sN�Ku

JZ
. �58�

Of course, if -(� ,�)�0 but does vanish at a certain value of
�k ,min

(0) , corresponding to a minimum of the anisotropy en-
ergy, then the ‘‘planar’’ real solution ���(&), ���k

(0)

�const is possible. For these planar solutions the contribu-
tion of the gyroscopic term to the Euclidean action AEu can
be purely imaginary �examples will be given below�. As it
turns out, however, if the function -(� ,�) goes to zero for
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all of the same values of � for which �wa(� ,�)/�� does,
viz., the minima �k ,min

(0) and the maxima �k ,max
(0) , i.e.,

-(� ,�)!sin n�, then the contribution of the gyroscopic term
to AEu is identically zero. In such a case both the instanton
solution and the Euclidean action are exactly the same as
when one is considering only the simplest model, with
-(� ,�)�0. The situation described is not realized for an
AFM in a field, but for those AFMs for which the gyroscopic
terms are determined solely by the Dzyaloshinskii interaction
it is in no way exotic. It occurs for all AFMs with an even
�according to Turov� principal axis, as is confirmed by a
symmetry analysis.118

Analysis of the various AFM models with an external
magnetic field along the symmetry axis of the crystal or with
a Dzyaloshinskii interaction in an easy-axis AFM leads to the
conclusion that besides the trivial case described above, two
more situations can be realized.118,151 Thus for an AFM with
sufficiently high symmetry, three types of behavior of the
instanton solutions have been established. The trivial case is
realized in an AFM with H�0 and an even principal axis.
For the other two nontrivial cases the behavior is substan-
tially different.

1. One nontrivial type of behavior corresponds to the
case when -(��k ,min

(0) )�0 and a planar real instanton is real-
ized but -(� ,�k ,max

(0) )�0. For this case the value of the real
part of the Euclidean action AEu does not depend on the
gyrotropy parameter �H(eff)�, but a nonzero imaginary part of
AEu appears which is proportional to �H(eff)�.

2. In the second nontrivial case, when -(� ,�k ,min
(0) )�0,

the planar solution ��const is absent. Then one must find a
general solution of system �54� in the form ���(&), �
��(&). This solution is complex and cannot always be con-
structed exactly. It can be shown, however, that for such
complex instantons the imaginary part of the Euclidean ac-
tion does not appear, Im AEu�0, and the real part Re AEu

contains only contributions quadratic in (H(eff))2.
The latter case will be discussed in detail below for the

example of an AFM in magnetic field. Now let us discuss the
first case, when the instanton trajectories are planar and real.
In the case of real trajectories for calculation of the imagi-
nary part of the Euclidean action one can use the following
simple method.117,118 We introduce a vector r�rl that is not
restricted by the condition r2�1, and we write the term with
the first derivative from �43� in the form

�i#Ã•

�r

�&
, where Ã�

r�H�eff�

r2 . �59�

This expression has the same structure as the term in the
nonrelativistic Euclidean Lagrangian describing the interac-
tion of a charged particle having coordinate r and velocity
v�dr/d& with the formal magnetic field B̃�curlÃ. The
magnetic field enters the Lagrangian of a charged particle
through the vector potential Ã �we have introduced the no-
tation Ã to prevent confusion of this quantity with the
monopole-field vector potential A introduced above� at the
point r, which is determined only to within a certain gauge,
while at the same time the field B̃ is gauge invariant. In the
Lagrangian of an AFM for any H(eff) this formal magnetic
field B̃ is directed radially and can be written as
B̃�
r

r2 B�� ,��, B�2�H�eff�
•l��

�Hk
�eff�

dlk
�

�Hi
�eff�

dl j
l il j .

�60�

For H�0 the formula for B is conveniently written directly
in terms of the Dzyaloshinskii tensor Di j :

B�3Di jl il j�Dii�
�Di j

�lk
l jlk�

�Di j

�l i
l j . �61�

The values of B(� ,�) for different AFMs with the Dzy-
aloshinskii interaction are given in Ref. 118. The imaginary
part of the Euclidean action Im AEu for the 	th instanton is
written in the form of a contour integral �Ãdr. To calculate
the value of the tunneling splitting one needs to know only
the phase difference  � (	 ,�)�� (	)�� (�) for all instanton
pairs �46�. The  � (	 ,�) are expressed in terms of the integral
�Ã•dr over a closed contour consisting of these two trajec-
tories. Using Stokes’ theorem, one can write this quantity as
the flux of the formal magnetic field B̃ introduced above,
through the part of the unit sphere bounded by that contour.
This leads to the simple expression

 ��	 ,����
0

�

sin �d��
�	

��
d�B�� ,��, �62�

where �	 and �� are the values of the angle � for the given
instantons. Importantly, for all possible forms of the Dzy-
aloshinskii interaction and for all orientations of the external
magnetic field H, the total flux of the formal field B̃ through
the sphere is equal to zero. We note that here the situation is
fundamentally different from the case of an uncompensated
total spin Sex , when A describes the field of a magnetic
monopole and the flux through some region of the sphere is
proportional to its area, and the total flux � tot�4�S. Of
course, in the case of an uncompensated magnet, too, the
individual phases are determined by A, i.e., they depend on
the gauge, but the phase difference  � (	 ,�) is gauge invari-
ant. However, this phase difference is not equal to zero for
any trajectories. In particular, for two diametrically opposed
trajectories  ��2�S , so that in the spin tunneling problem
one obtains the phase factor cos(�S) discussed above, and
the tunneling is suppressed for a half-integer uncompensated
spin. We note that, in accordance with Dirac’s discussion of
the single-valuedness of the wave function of an electron in
a monopole field,67,152 this condition yields cos(�tot/2)�0,
which leads to a half-integer quantization of the spin.

Returning to the case of a compensated AFM, we note
that formula �62� permits easy calculation of the phase factor
K �46� in formula �45� for the level splitting. The overall
form of B(� ,�) for an AFM with an n-fold axis is deter-
mined by its symmetry.118 For an AFM with an even prin-
ciple axis Cn

(�) , i.e., one that does not permute the permu-
tation of the sublattices, the function B(� ,�)!sinn � sin n�,
all the phase factors are equal to zero and there is no inter-
ference.

If the principle axis is odd, Cn
(�) , however, the situation

is different for different n . If n�4k , i.e., n�4,8,.. . �for
crystalline AFMs only n�4 is meaningful, but for magnetic
clusters and high-spin molecules values greater than n�6
are also possible� the function B(� ,�) is proportional to
sinn/2� sin(n�/2) or to sinn/2� cos(n�/2), depending on the
details of the position of the twofold axes in the basal plane.
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In this case the integral �62� can be nonzero, and destructive
interference is possible.118 In the case of an odd axis with
n�2(2k�1), i.e., for n�2,6,10,.. . , in particular for rhom-
bic and hexagonal AFMs, the function B(� ,�) is also pro-
portional to sin(n�/2) or cos(n�/2). However, it contains a
factor sinn/2� cos �, by virtue of which the phase difference
�62� is identically equal to zero on account of the integral
over �, and destructive interference is absent.

Thus the Dzyaloshinskii interaction leads to destructive
interference in tunneling only for AFMs with an odd princi-
pal axis Cn

(�) for n�4k , i.e., n�4,8,.. . . A more important
role in this phenomenon is played by the external magnetic
field. At low field one can assume that the trajectory is planar
and real, and the phase factor can then be written as

cos ��cos� �sg�BHN

2JZ
cos � � , �63�

where � is the angle between the plane in which the instan-
ton trajectories lie and the external magnetic field H. The
more interest case of a non-small field is discussed in the
next subsection.

E. Tunneling for an AFM in magnetic field

Let us consider the important case of an AFM in the
presence of a strong magnetic field.51,151,153 For concrete cal-
culations we shall consider an AFM with rhombic anisotropy
of the form �39�, where the constants Ku�0 and Kp�0 de-
scribe uniaxial anisotropy and anisotropy in the basal plane,
and the z and y axes are the easy and hard axes, respectively.
For subsequent applications it is convenient to rewrite this
energy in the form used in Eqs. �54�, in terms of the charac-
teristic values of the frequency:

'0
2wa�� ,���'u

2 sin2 ��'p
2 sin2 � sin2 � , �64�

where 'u�#Hs f , Hs f is the field of the spin-flop transition,
'p�#Hp , and the characteristic field Hp�2s�JZKp/g�B

describes the influence of the field on the anisotropy in the
basal plane �see below�. For this energy in the absence of
field the instantons corresponding to the condition �(��)
�0, �(��)�� correspond to solutions with a planar rota-
tion of l�&� in the symmetry planes of the system for which
��(�/2)k , with k an integer,

cos ��tanh '̄& , sin ��1/cosh '̄& , �65�

where '̄ is defined by the expression '̄�'u for ��0,� and
'̄��'u

2�'p
2 for ��(�/2)(2k�1). The values of the Eu-

clidean action for all these instantons can be written in a
unified way:

AEu��N��'̄/ZJ � for H�0, �66�

and for zero field the minimum of the Euclidean action cor-
responds to only one pair of instantons, with ��0,� , i.e.,
with a rotation of the vector l in the easier plane (z ,x).

When taking the magnetic field into account, we restrict
discussion to the case when it is directed along one of the
symmetry axes: z , x , or y . The function -(� ,�) appearing
in Eq. �54� for �, � can be written in the compact form118

-�� ,���2#�H"l�sin � , �67�

and it does not equal zero for any orientation of the field.
We recall that if the magnetic field is directed along the
easy axis z of the AFM and H�Hs f , then a spin-flop tran-
sition occurs from the state with l�ez to a state with l�ey �see
Sec. 4�. In this case the influence of the field on the static
properties of the AFM can be described by renormalization
of the constant Ku : Ku(H)�Ku(1�H2/Hs f

2 ). For the case
of H parallel to the medium axis ex , the constant Ku in-
creases with increasing field, Ku(H)�Ku�(g�BH)2/
(4s2JZ), while Kp decreases, Kp(H)�Kp�(g�BH)2/
(4s2JZ). At the characteristic field Hp introduced in �64� the
quantity Kp(H) changes sign, and for H�ex , H�Hp there is
a change of character of the axes in the basal plane: the y
axis become the medium axis and the x axis the hard axis.
Finally, if the magnetic field is directed along the hard axis
ey , then it effectively increases both Ku and Kp : Ku ,p(H)
�Ku ,p�(g�BH)2/(4s2JZ), and the field does not influence
the character of the anisotropy axes at all.

If one naively uses the renormalized anisotropy con-
stants to describe the instantons in the framework of Eqs.
�65� �which leads to incorrect results!�, one finds that for the
orientation of the field along the easy axis the quantity AEu

goes to zero for H→Hs f , and for the field direction along
the medium axis the value of AEu on two classes of paths,
��(�/2)(2k�1) and ���k , become equal at H�Hp .
However, as we shall show below, such a description is ab-
solutely incorrect. Besides the aforementioned renormaliza-
tion of the anisotropy, the field alters the character of the
dynamics of the vector l, and that also influences the struc-
ture of the instantons and the value of the Euclidean action
for them.

We begin by considering the case of the field parallel to
the easy axis z , which does not break the symmetry in the
(x ,y) plane. As a consequence, the gyroscopic term in Eqs.
�54� is independent of the angle �: -!sin�cos�. In this case,
under the condition Kp�0 a purely uniaxial AFM model is
realized. Analysis of such a model leads to instructive physi-
cal results,151 and we shall therefore discuss this analysis. In
the purely uniaxial case the Lagrangian �43� is independent
of � and is the Noetherian integral of motion .� �LEu /��̇ ,
the expression for which can be written in the form

.�� �̇�i#H �sin2 ��const, �68�

and the problem is integrable. The instanton solutions of the
type �→0,� for &→	� correspond to .�0, i.e., �
�i#H(&�&1), where &1 is an arbitrary constant. When this
formula is taken into account, the equation for ��&� assumes
the form �̇2�'u

2 sin2 �. Hence it is easy to obtain a solution
of the form �65� with '̄�'u . For the components of the
vector l in the instanton the following formulae are obtained:

lz�tanh�'u�&�&0�� ,

lx�
cosh�#H�&�&1��

cosh�'u�&�&0��
, ly�i

sinh�#H�&�&1��

cosh�'u�&�&0��
. �69�

This solution has the correct asymptotic behavior (lx ,y→ for
&→	�) for #H�'u , i.e., at all values of the field smaller
than the SFT field Hs f . Consequently, the instanton solution
found is valid in the entire stability region of the state with
l�	 ẑ. Despite the fact that in this region the effective an-
isotropy constant Ku(H) varies from Ku to zero for H
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→Hsf , the Euclidean action for solution �69� is independent
of H . Its imaginary part is equal to zero, and the real part is
the same as for H�0:

AEu
�0 ��2s�N�Ku /JZ for Kp�0, H�Hs f . �70�

This simple example has shown that the gyroscopic term can
substantially suppress the static renormalization of the an-
isotropy energy.

For this simple example is is possible to do an exact
calculation of the pre-exponential factor D in the form
�52�.151 The contribution of the two types of deviations, lon-
gitudinal and transverse, are determined in this case by iden-
tical operators M̂ . These operators arise for many tunneling
problems in magnets, and we shall therefore give their form
and the complete set of their eigenfunctions:

M̂��
d2

d(2�
2

cosh2 (
; M f 0�0, f 0�

1

& cosh (
;

M̂ f k��1�k2� f k , f k�
� tanh (�ik �e�ik(

�L�1�k2�
. �71�

The total fluctuation factor in this problem is the square of
the longitudinal fluctuation determinant D � �see Eq. �53��,
and as a result, the level splitting due to tunneling has the
form

 �C�'u� AEu
�0 �

2��
� exp��AEu

�0 �/��, �72�

where C is a numerical factor of the order of unity. The
additional large parameter �AEu /� appears in the problem in
connection with the fact that the instanton solution �69� in
the model with 'p�0 contains two continuous parameters,
&1 and &0 �see Sec. 6.3�. We note also that the level splitting
 is independent of magnetic field, even when the fluctuation
determinant is taken into account. This fact can be justified
on the basis of an exact quantum treatment. Indeed, for 'p

�0 the Hamiltonian of the system commutes with the z
projection of the total spin, Sz

tot . Consequently, the states of
the system are characterized by a definite value Sz

tot�0,	1,
	2,.. . . The tunneling splitting of the doublet corresponds to
Sz

tot�0, and the magnetic field cannot influence the energies
of these states. We note that in these terms the spin-flop
transition is due to the circumstance that for H�Hs f a level
with Sz

tot�0 becomes the lowest level. This in essence brings
about the quantum analog of the spin-flop transition, which
was discussed in Sec. 4.

Let us consider another simple case, when the magnetic
field is directed along the hard axis of the AFM �the y axis�.
In this case -(� ,�)�2#H sin2� sin �, and for instanton pairs
with ��0,� it has the value -�0. Consequently, in this
case there are two planar instanton solutions of the form �
�0,� , ���(&). These solutions determine the instantons
with a rotation of the vector in the easier plane (z ,x) and at
the same time have the minimum value of the real part of
AEr . The Euclidean action for them is independent of field
and is given by formula �66�:

AEu
�HA��H ��2s�N�Ku

JZ
	i

��g�BHN

2JZ
. �73�
Thus for magnetic field directed along the hard axis of the
AFM the real part of the Euclidean action AEu

(HA)(H) is inde-
pendent of the field strength �see Fig. 8�, and the signs of its
imaginary part for the two instantons differ.51,132 In this case,
however, the interference effects and the oscillatory depen-
dence of the splitting on field are due not only to the imagi-
nary part of the Euclidean action. In this geometry the most
interesting effects appear on account of the fluctuation deter-
minant. In this case the equations for small deviations of )
and � from the instanton solution are uncoupled, and D
�D �D� . The transverse determinant contains the Schrö-
dinger operator with a complex potential. The value of D� is
complex, with different phases for the two different equiva-
lent instantons, and that modifies the phase shift. Even for
moderate values of the field the presence of D� leads to a
phase shift of the oscillatory function  (H) by �/2 in com-
parison with that caused by the imaginary part of the Euclid-
ean action itself.51,153

In the presence of field the planar solution corresponds
to rotation of the vector l in the plane perpendicular to the
direction of the field H. When H is oriented along the hard
axis the planar instanton clearly has the lowest value of the
Euclidean action for all values of the field. A planar rotation
in other symmetry planes �and the more so for a rotation in a
plane that is not a symmetry plane of the AFM� would cor-
respond to a nonzero function -��,�� and is therefore impos-
sible. Investigation of the distribution of l requires analysis
of a system with two degrees of freedom; although it cannot
be done exactly, it can be done using various approximate
methods.151 Analysis showed a large diversity in the behav-
ior of nonplanar instantons for different orientations of the
field. Let us briefly discuss the results.

As was shown above on the basis of an exact solution,
for a field along the easy axis at Kp�0 the level splitting due
to tunneling is independent of field up to the field of the
spin-flop transition. In the presence of anisotropy in the basal
plane, Kp�0, the value of AEu(H) falls off with increasing
field:

AEu
�EA��H ��2s�N�Ku

JZ
�1�/

H2

Hs f
2 , �74�

FIG. 8. Real part of the Euclidean action in units of �2N/2JZ as a function
of magnetic field �schematic�. The curves for the field along the easy, me-
dium, and hard axes are labeled EA, MA, and HA, respectively. The solid
lines represent a consistent calculation151 of the value of AEu , and the dotted
line is the result obtained by a ‘‘naive’’ approach taking into account only
the static renormalization of the anisotropy constants; see text.
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FIG. 9. Tunneling splitting of the lower level of an AFM described by the Hamiltonian �39� with spin S�5 and uniaxial anisotropy Ku /J�0.1, for three
different values of the planar anisotropy: Kp /Ku�0 �–�, 0.2 ��, ��, and 0.4 ��,��. a—Field parallel to the easy axis; the kinks correspond to the spin-flop
transition. b – Field parallel to the hard axis ��, �� and medium axis ��, ��.
where the coefficient / is small at small Kp /Ku , /
��(Kp /Ku); the value /�1 that is characteristic for the
case when the influence of the field is taken into account in a
‘‘naive’’ manner is reached only in the limit Kp /Ku→� �see
Fig. 8�. Thus in a rhombic AFM for field parallel to the easy
axis the tunneling level-splitting  (H) increases with in-
creasing field, and this effect is more pronounced for larger
values of Kp .

For field direction along the medium axis the situation is
somewhat more complicated: there can be competition be-
tween different instantons. Here there exists a planar solution
with a rotation of l in the (z ,y) plane, containing the hard
axis y . For this solution the value of the real part of AEu is
larger than in the case of the field along the hard axis �73�,
where l rotates in the easier plane (z ,x), containing the me-
dium axis x:

AEu
�MA,phanar��H ��2s�N�Ku�Kp

JZ
	i

��g�BHN

2JZ
.

�75�

This value is also larger than for a planar instanton in the
case H�0. The plane solution with rotation of l in the (z ,x)
plane for a field H�0 parallel to the medium axis does not
exist, and at nonzero field it is transformed to a nonplanar
solution. For this nonplanar solution the Euclidean action is
real, and its value AEu

(MA,nonplanar)(H) grows with increasing
field, and the growth is substantially faster than for the ‘‘na-
ive’’ way of taking the field into account �see Fig. 8�. As a
result, for a certain critical value Hc the value of the action
for the nonplanar solution becomes equal to the value of the
real part of the action for the planar solution �75�, which is
independent of field. At low anisotropy in the basal plane the
value of Hc is substantially lower than the value of Hp �64�:

Hc�Hp�2/��2�Kp /Ku��Hp . �76�

The value of Hc remains lower than Hp even in the limiting
case Kp /Ku→� , at which Hc→0.616Hp . Thus the nonpla-
nar instantons govern the tunneling only at sufficiently low
field H�Hc . For H�Hc the tunneling is due to planar in-
stantons and goes according to the scenario that is character-
istic for the above-described case of the field parallel to the
hard axis, with an oscillatory dependence of the level split-
ting on the field at an almost constant oscillation amplitude.

Calculations in the framework of the instanton approach
are in good agreement with the results of a numerical analy-
sis done by direct diagonalization of the Hamiltonian of a
spin pair �see Fig. 9�.151 For field along the easy axis in the
purely uniaxial case Kp�0 the energy difference  �E1

�E0 of the two lowest levels is independent of field up to
the field of the spin-flop transition. For Kp�0 the splitting
increases with increasing field, and this effect is more pro-
nounced for larger values of Kp /Ku . In the case of magnetic
field parallel to the hard axis and also for a sufficiently large
field H�Hc directed along the medium axis, oscillations of
the splitting with variation of the field are observed, with an
amplitude that depends weakly on Kp .51,153 If the field is
parallel to the medium axis, then at low fields one observes
decay of the splitting, which then gives way to oscillatory
behavior, the characteristic value of the transition field in-
creasing and the amplitude of the oscillations decreasing
with increase of Kp /Ku . Granted, there is some quantitative
disagreement. For example, a numerical analysis demon-
strates that a characteristic field that can be interpreted as the
field of the spin-flop transition exhibits dependence on the
value of Kp /Ku . A slight falloff of the oscillation amplitude
with increasing field is also observed for tunneling through
planar instantons at a non-small value of the field H , when
the pre-exponential factor should be independent of
field.51,153 These effects are absent in the semiclassical de-
scription and can be attributed to quantum fluctuations in a
system with finite spin. A more detailed comparison of the
numerical data for different values of the spin S�20 with the
calculations based on the instanton approach can be found in
Ref. 151.
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6.6. Influence of sublattice decompensation on the
tunneling

Let us turn to the case of an uncompensated AFM, as-
suming the absence of external field and Dzyaloshinskii in-
teraction. In the general case this problem is much more
complicated for analysis than the exactly integrable case of a
pure ferromagnet or the symmetric models of compensated
AFMs discussed above when an external field or Dzy-
aloshinskii interaction is taken into account. However, there
is a case in which the system is integrable; for anisotropy of
the form �39�, quadratic in the components of the vector l.
The Euclidean version of the Lagrangian for this model is
conveniently written in the form

LEu�
�2N

2JZ �1

2
� �̇2��̇2 sin2 ���i'n�̇�1�cos ��

�
1

2
sin2 ��'u

2�'p
2 sin2 ��� , �77�

by introducing three parameters with dimensions of fre-
quency. The parameter 'n�#Hex(Sex /S tot), Sex��S1�S2� is
the excess spin, and the quantities 'p ,'u determine the form
of the energy of magnetic anisotropy with easy axis z and
hard axis y �see Eq. �64��. For constructing the instanton
solution it is helpful to recall the form of the Walker solution
in real time, which describes a moving domain wall �see,
e.g., Refs. 12, 34, and 35�. In this solution the magnetization
is rotated in the plane ���0�const, passing through the
easy axis, and the value of �0 does not correspond to a plane
of symmetry and is determined by the velocity of the wall.
The instantons of Lagrangian �77� also have this property.144

In that case the angle �0 is complex, �0��k/2�2i	 , where
k is an integer,

cosh 	�
�4'n

2'̄2�'n
4�'p

4�'n
2

'p
2 , '̄2�'u

2�
'p

2

2
.

�78�

For ��&� one has the standard formula of the type �65�,
cos ��tanh�'̄(�0)&�, with a real parameter '̄2(�0)�'u

2

�'p
2 sin2 �0 . Here one needs to consider only one pair of

equivalent instantons, which have even k�0,2 and a lower
value of the real part of the Euclidean action AEu . The
imaginary parts of AEu for instantons of this pair have dif-
ferent signs, and that gives an interference effect with the
usual phase factor for ferromagnets, �cos �Sex�.

A fundamental feature of uncompensated AFMs is the
presence of nonanalyticity with respect to the parameter 'n


Sex . For a compensated AFM with 'n�0, equation �78�
gives the real value �0��k/2, and tunneling is possible
even in a purely uniaxial model �see the exact solution �65��.
For 'n�0 and 'p�0, solutions with finite AEu do not exist,
and for arbitrarily small decompensation it is necessary that
there be anisotropy in the basal plane. This circumstance is
clearly manifested in the nonanalytic dependence of the Eu-
clidean action on the parameter 'n /'p . In the most charac-
teristic case 'p,'n�'̄ this dependence has the form

Re AEu�
�2N

2JZ � 2'̄�'n ln
'n

'p
� . �79�
For 'n→0 this gives a finite value �70�, and for 'p /'n

→0 a divergence of Re AEu appears, and tunneling is sup-
pressed.

Analysis of the pre-exponential factor D in this problem
reduces to a coupled system of equations for ) and *�, i.e.,
the differential operator Â in �52� is not diagonal. The cal-
culation showed that the fluctuation determinant is real and
does not influence the interference, and its dependence on 'n

is nonanalytic: D!1/�'n.144

The question of the influence of external magnetic field
on the coherent tunneling has been discussed repeatedly in
connection with the problem of tunneling in ferritin
particles.154 For an AFM with decompensated spins a weak
field completely lifts the degeneracy of the system, and these
effects are thereby ruled out. In Sec. 4.2 however, in a dis-
cussion of the states of an AFM with uncompensated spins, it
was noted that for sufficiently high fields it is possible to
have ground-state degeneracy due to the noncollinearity of
the sublattices. This leads to a new type of macroscopic tun-
neling effects when a freely oriented AFM particle with in-
complete compensation of the spins is found in a strong ex-
ternal field.85 In this case the height of the tunnel barrier and
the phase factor depend substantially on the field strength,
making it possible to control the tunneling probability by
varying the field.

VII. NONUNIFORM STATES IN AFMs: STRUCTURE,
TOPOLOGICAL ANALYSIS, AND QUANTUM TUNNELING
EFFECTS

It is a common belief that mesoscopic magnets should be
typical single-domain particles. However, it has recently
been shown that even for extremely small particles of ferro-
magnets the distribution of the spins in the ground state can
be nonuniform. For submicron particles of nonellipsoidal
shape and sizes smaller than the critical, R�Rc �for Permal-
loy Rc
100 nm), certain specific weakly nonuniform mag-
netic states are realized: the so-called of ‘‘flower’’ or ‘‘leaf’’
states.155 For R�Rc , topologically nontrivial156,157 states
with a magnetic vortex158 appear which have recently been
studied experimentally.159 There is now a peak of interest in
vortex states in magnetic dots1,2 and magnetic rings160 �see
the recent papers161–164 devoted to analysis of the dynamics
of vortices in such systems�.

The dipole interaction is important for FMs and negli-
gible for AFMs, but it is not the only source of nonunifor-
mities. Dimitrov and Wysin showed165 that the surface
single-ion anisotropy with local easy axis perpendicular to
the surface of the sample at each point of the surface also
leads to a nonuniform nontopological ‘‘flower’’ or ‘‘leaf’’
states. The origin of this nonuniformity is clear: in this case
the conditions of minimum energy in the bulk �uniform state�
and at the surface �the spin must be perpendicular to the
surface� are contrary, i.e., frustration occurs. The strong sur-
face anisotropy limit gives a geometric problem for the dis-
tribution of a unit vector perpendicular to the surface of the
object at each point of the surface. The solution of this prob-
lem for any simply connected object has a singularity; such
singularities actually arise for liquid crystals166 and the A
phase of superfluid 3He.167 Therefore the strong surface an-
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isotropy can give rise to vortices of the magnetization in both
FMs and AFMs.168

For AFMs specific nonuniform states can be caused by
frustration of the exchange interaction. The concept of frus-
tration is usually associated with spin glasses, but it is en-
countered for crystalline AFMs if the division of the lattice
into a finite number of magnetic sublattices cannot satisfy the
condition of antiparallel orientation of neighboring spins; an
example is an AFM with the triangular lattice.169 The divi-
sion of the AFM into magnetic sublattices is sensitive to the
presence of atomic dislocations of the crystal lattice, which
disrupt the topology of the atoms planes. As was shown by
Dzyaloshinskii170 and also by Kovalev and Kosevich,171 this
gives rise to macroscopic magnetic defects—domain walls
and disclinations; such defects have been observed in thin
films of chromium.172 For magnetic layered systems, atomic
steps on the FM/AFM interface are also a source of forma-
tion of such defects.173,174

The appearance of disclinations in a crystal with dislo-
cations can be explained by the circumstance that any con-
tour drawn along the exchange bonds and encompassing the
axis of the dislocation contains an odd number of sites.
Therefore the problems of the ground state of an AFM with
dislocations and of a closed spin chain with antiferromag-
netic interaction and an odd number of sites have a number
of traits in common. The latter model in the exchange ap-
proximation has an exact solution,175 and it is helpful to dis-
cuss it before considering the disclination. For such an odd
chain, all the spins lie in one plane, �k��/2, in which the
direction of the kth spin �k is determined by the angle �k :

�k�
�

2
�1���1 �k��m

�k

N
, �80�

where m�	1,	3,.. . is an odd integer, and the minimum of
the energy corresponds to m�	1 �see Fig. 10�. For an odd
chain, as for a crystal with a dislocation, there is no possible
division into sublattices that is consistent for the whole sys-
tem. However, one can introduce sublattices and define the

FIG. 10. Spin chain with 9 spins; the thin solid lines are exchange bonds.
The solid arrows show the direction of the spins for the solution �80� with
m�1; the dotted arrows show the direction of the vector l for the dimers.
The regions of consistent numbering of the sublattices �the numbers 1 and 2
next to the spins� are enclosed by the dotted-and-dashed lines; on the polar
(x) axis the consistency is disrupted, and the vector l has a jump.
vector l locally in any region that does not contain the center
of the dislocation. This is reminiscent of the procedure used
in the theory of elasticity when introducing a strain field for
describing a crystal with a dislocation.176,177 The character of
the behavior around the singular line can be illustrated by the
example of a screw dislocation in a layered AFM of the
CoCl2 type, in which the exchange interaction of the spins in
the planes is ferromagnetic and stronger than the antiferro-
magnetic interaction of neighboring planes.178 The smallness
of the latter makes it possible to describe a disclination con-
sistently for vectors m, l in the framework of continuum
theory.179 Near the dislocation line the �-model approxima-
tion breaks down, and �m�
�l�, and at the very center of the
disclination m�1 and l�0. Recently a general macroscopic
approach was proposed for the description of topological de-
fects in layered AFMs.180,181

Thus a disclination in an AFM with a dislocation can be
treated in the framework of the �-model as a singular line of
the field of the vector l �the direction of l is not defined on
the line� with a jump of l at the surface, which rests on the
dislocation line and extends to the boundary of the crystal.
The distribution of the vector l in a rectilinear disclination
sufficiently far from its central part �core�, for r�a , is de-
scribed by the formula

�
�/2, ���m/2����0 , �81�

where r ,� are polar coordinates on the plane perpendicular
to the disclination line. This formula, like that for the spin
chain �80�, contains the odd integer m�	1,	3,.. . . The dis-
tribution �81� is also characteristic for the director vector n of
a nematic liquid crystal with a disclination,166 and the num-
ber m is called the Frank index. The same distribution arises
for a disclination in the state of a spin nematic, which is
realized for magnets with a strong biquadratic exchange
interaction.75 The simple distribution �81� is characteristic
both for a purely isotropic medium and in the presence of
planar anisotropy, say, for an AFM with an isotropic easy
plane (x ,y). In the latter case the polar axis for the vector l
must be chosen along the hard axis z of the AFM. Formula
�81� for large r�r0 �see Eq. �83� below� is also valid for an
antiferromagnetic vortex, but the value of the Frank index
for it is even, m�	2,	4... .6,34,157

For the description of the nonuniform states in an AFM
and tunneling effects for them it is convenient to use the
method of homotopic topology.156 The possibility that singu-
lar lines of the disclination type, with nonuniformity far from
the line, is due to the continuous degeneracy of the energy of
the system with respect to a change of the order parameter in
the degeneracy space MD of the system. Let us consider the
behavior of the order parameter �the vector l for an AFM or
n for a nematic� in traversing a closed contour # around the
singular line in coordinate space. Here the order parameter
describes a closed contour - in the degeneracy space MD .
This contour is a map of the singular line from the standpoint
of the behavior of the order parameter far from the line. Two
contours -1 and -2 are called homotopic if they can be
transformed into each other by a continuous deformation.
The classes of all homotopic contours for a given space MD

form a group called the fundamental homotopy group of this
space and is denoted �1(MD). The product of -2 and -1
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corresponds to a contour -2•-1 obtained in traversing first
-1 and then -2 . A contour that can be continuously de-
formed into an infinitely small one �or, as we say, ‘‘con-
tracted to a point’’� corresponds to the unit element of the
group. The element of �1(MD) that is the inverse of - cor-
responds to a contour -�1 with the opposite direction of
traversal.

Thus from the standpoint of the behavior at infinity, the
singular lines of the order parameter are classified by group
elements of the fundamental homotopy group of the degen-
eracy space MD of the system, �1(MD), which are called
topological charges. Removable singularities correspond to
the unit element of the group. When singular lines merge, a
kind of conservation law for topological charge is obeyed.
When lines corresponding to the contours - and -�1 merge,
they give a removable singularity. The mergine of singular
lines with charges -1 and -2 give a line with a charge equal
to the product of the elements -1•-2 . We note that the fun-
damental homotopy group can be non-Abelian, but we shall
not consider examples of that kind.

It is important to note that the classification of singular
lines according to elements of the group �1(MD) can be
incomplete; singular lines that are equivalent in the sense of
�1(MD) cannot always be transformed into each other by a
continuous deformation of the field of a vector l2�1. For a
complete description of the singular lines in magnets one
must also take other topological charges into account. We
discuss this question below; right now let us turn to the clas-
sification of vortices or disclinations according the topologi-
cal charges of the group �1(MD).

In the description of spin disclinations in an AFM their
similarity to disclinations in nematics is usually emphasized.
This similarity is undoubtedly productive for the topological
classification of disclinations. However, there are essential
differences in the properties of disclinations for these ordered
media. The point is that for the same nematic sample the
Frank index m in the distribution �81� takes on any, even or
odd, integer values, m�0,	1,	2... ; m�0 corresponds to a
uniform distribution. For an AFM the parity of the Frank
index m is wholly determined by the atomic structure of the
sample, which may be assumed to remain unchanged in the
course of any changes in the spin structure. For AFMs with a
dislocation only odd values of m are admissible in formula
�81�, while for an AFM with an ideal topology of the atomic
planes either a uniform distribution with m�0 or a vortex
with even m�2q is possible.

In a purely isotropic magnet or a nematic, the state is
degenerate with respect to changes of the unit vector on the
sphere S2�l2�1�. Any geometrically closed contour on the
sphere can be contracted to a point, and the fundamental
homotopy group of the sphere �1(S2) consists of only the
unit element. Therefore no topologically nontrivial singular
lines for an order parameter of the spin � type exist in a
ferromagnet.

However, for the description of a nematic it is important
that the states with n and �n are physically indistinguish-
able; n is not a physical unit vector of the spin � type but a
director vector with an indeterminate sign, as is emphasized
by its name. Therefore, for a nematic the degeneracy space is
additionally factorized by the sign of n, and that is indicated
in writing as MD�S2/Z2 . Here Z2 is a group of two ele-
ments, 0 and 1, 1 � 1�0. This condition means that any con-
tour on the sphere which connects points n and �n can be
assumed closed physically. All such contours can be de-
formed into one another, but cannot be contracted to a point;
they correspond to a nontrivial element of the group �1 ,
while all the geometrically closed contours correspond to the
unit element of this group. Consequently, the homotopy
group �1(S2/Z2) consists of two elements and is equivalent
to that group Z2 described above. For an isotropic nematic all
the disclinations with odd Frank indices m can be trans-
formed into energetically more favorable ones with m
�	1, and the latter are topologically equivalent, while all
the disclinations with even Frank indices are topologically
removable. In an isotropic nematic, disclinations with m
�2k can be brought to the ground state �formally the state
with m�0) by a nonplanar deformation, which is descrip-
tively called ‘‘escaping into the third dimension.’’ 156

The state of a planar nematic in which n lies in the plane
of the sample is degenerate with respect to a change of n
along a circle, or the one-dimensional sphere S1�lx

2�ly
2

�1,lz�0�, with allowance for the factorization of the de-
generacy space MD�S1/Z2 . In this case all of the different
values of m correspond to topologically different states of
the disclination of the nematic, and m plays the role of a
�1-topological charge belonging to the group of integers
with respect to summation Z.

It is now understood what will happen in the case of an
AFM. For an AFM with a dislocation only those singular
lines such that the vector l changes sign on going around
them are allowed. This means that in that case there are only
disclinations with odd values of m . The minimum of the
energy of an isotropic AFM corresponds two disclinations
with m��1 and m��1, illustrated in Fig. 11a. They can
be transformed into each other by a rotation in spin space
about the x axis, which corresponds to a departure of l from
the plane and is a typical example of ‘‘escaping into the third
dimension.’’ Thus for an isotropic AFM with a dislocation
there is a nonuniform ground state, which cannot be charac-
terized by any sort of discrete degeneracy. For an isotropic
AFM without a dislocation only even m are allowed, and the
ground state corresponds to a uniform distribution of l with
m�0.

For an easy-plane AFM with an isotropic easy plane
(x ,y) in the presence of a dislocation the minimum of energy
also corresponds to two disclinations with m�	1, which,
unlike the isotropic case, are topologically different. In this
case the ground state is twofold degenerate, and macroscopic
quantum tunneling effects are possible �see below�. In the
easy-plane AFM without a dislocation the only admissible
distributions are of the form �81� with even value of the
Frank index m�2q; these correspond to an antiferromag-
netic vortex. The integer q�m/2, q�	1,	2,.. . is called the
vorticity. In other words, the vorticity is the �1-topological
charge of the vortex, which belongs to the group of integers
Z. One can write an expression for it in terms of an integral
over a closed contour #:

q�
1

2� �
#
�ez•� l�%	l� �dx	�

1

2� �
0

2� ��

��
d� . �82�
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FIG. 11. Distribution of the vector l in an antiferromagnetic disclination associated with an atomic dislocation and the domain wall generated by the
disclination; disclinations with values of the Frank index m�1 and �1 and the associated DWs with different chiralities are labeled by ��� and ��� in parts
a and b. a—exchange approximation; short distances. The line of dots shows a line of formal discontinuity of the vector l; the shaded area shows the central
part, of the order of atomic size, in which the vector l cannot be uniquely introduced. b—The influence of anisotropy at distances greater than the width of
the wall; the shaded region shows a central part corresponding approximately to the ‘‘exchange’’ region, where the distribution of l is as shown in part a.
Far from the vortex one has ���/2, but at the center of the
vortex, unlike a disclination, there is no singularity. This is
possible when l is collinear with the unit vector along the
hard axis, ez , i.e., ��0,� . Thus at a given vorticity q we
have two different states of the vortex, the structures of
which are described by the solutions

��q���0 , ���0
�	 ��r �, cos �0

	�0 ��p�	1. �83�

The functions � (	)(r) differ from �/2 in a vortex-core region
of diameter r0 , which, for a slightly anisotropic AFM, has
the value r0�a(J/Ku)1/2�a . The two distributions of l with
the same values of the �1 topological charge q can differ by
the values of the other topological invariant, the so-called �2

topological charge, which corresponds to mapping not to
contours but to two-dimensional manifolds. In the case of a
2D magnet we are talking about a mapping of the (x ,y)
plane onto the sphere S2�l2�1�. This charge is determined
by the integral topological invariant Q introduced above �Eq.
�42�� with the substitution t→y . For a vortex the value of Q
is half-integer, Q��qp/2, where p�	1 determines the
sign of lz in the core of the vortex �83�. Vortex states with
Q�	1/2 differ topologically and cannot be transformed into
each other by a continuous deformation. Consequently, the
vortex is characterized by two topological charges: the �1

charge—the vorticity q—and the p2 charge, the polarization
p�	1. This is manifested in the analysis of the merging of
two vortices with vorticities q and �q: if the polarizations
of the vortices are different, one obtains a localized �trivial
from the standpoint of �1) soliton with an integer value of
the �2 topological charge Q�	q , while if the polarizations
are of the same sign p , one obtains a topologically trivial
state.

Let us study the transformation of the structure of vorti-
ces and disclinations in the presence of weak anisotropy in
the easy plane (x ,y). Let us consider a rhombic AFM with
anisotropy energy of the form �39�, assuming that Ku�0 and
Kp�0, i.e., z is the hard axis and x is the easy axis in the
easy plane. When the anisotropy in the basal plane is taken
into account, the distribution of the vector l will no longer
have the simple form �81� or �83�. For regions found far
enough away from the core of the disclination, a domain wall
�DW� is formed; see Fig. 11b. The static two-dimensional
DW corresponds to the solution l�l0(x) with a rotation of
the vector l in the easy plane (x ,y):

lx�00 tanh�x/x0�, ly�
0

cosh�x/x0�
, lz�0, �84�

where x0
(J/Kp)1/2a�a is the DW thickness, and the num-
bers 00 ,0�	1. The value of 00 determines the values of lx

at two points far from the center of the DW. These two points
can be called a zero-dimensional sphere, by virtue of which
the value of �0 has the meaning of the �0 topological charge
of the DW. The change of 00 is due to the overcoming of a
potential barrier proportional to the size of the system �for-
mally, an infinite barrier�, and tunneling cannot occur. The
second topological charge of the type �1 is due to the map-
ping of the line perpendicular to the DW onto the circle �lx

2

�ly
2�1, lz�0�. This charge q is defined by the integral �82�

in which �#dx	 is replaced by ���
� dx; for a DW it has the

value q��000/2. Consequently, the DW chirality 1�	1,
which at fixed 10 determines the direction of rotation of l in
going along the chain, is the �1 topological charge of the
DW. On different sides of a vortex with q�	1, two such
walls, with different signs of the chirality, appear. Such DWs
with a vortex are observed in thin films of ferromagnets and
are called walls with a vertical Bloch line.6,182

Tunneling effects presuppose the presence of several dif-
ferent but energetically equivalent states of the system sepa-
rated by a finite potential barrier. For topological nonunifor-
mities the question arises of tunneling-induced change of the
signs of the topological charges. A change of the ‘‘main’’
charge such as the vorticity q for a vortex in an infinite
system involves the overcoming of an infinite barrier. In that
case tunneling-induced change of ‘‘auxiliary’’ topological
charges—the chirality for a DW or the polarization for a
vortex—is possible. In small particles tunneling of a ‘‘main’’
charge such as the Frank index for a disclination is also
possible. The problems of the tunneling-induced change of
the chirality of a DW and tunneling of the topological charge
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of a disclination in an easy-plane AFM are extremely similar,
and it is convenient to discuss them together.

We begin with an analysis of the tunneling of chirality
for a DW of the form �84� in quasi-one-dimensional AFMs
of the spin-chain type or systems of coupled spin chains
forming a mesoscopic wire or ribbon.124 For the description
of the tunneling dynamics we use the Lagrangian �40� for a
nonuniform distribution of the vector l �more precisely, its
Euclidean version for l�l(x ,&)] with the topological term
�42� and anisotropy �39� included. The state of the wall �84�
is degenerate with respect to the value of the DW chirality,
and a tunneling transition between the two DW states with
1�	1 can occur. For its description we must construct the
two-dimensional instanton solution of the equations for l
�l(x ,&). Its solution should give l→	ex for x→	� , and
go over to two DWs with different chiralities for &→	� .
These conditions lead to the situation that in going along the
boundary of a sufficiently large large part of the Euclidean
plane (x ,&) �see Fig. 12�, the vector l rotates by an angle
2�q�	2� in the easier plane (x ,y) of the AFM. In this
case, for continuity of the solution it is necessary that at
some point the vector l be perpendicular to the easy plane.
That point is naturally called the center of the instanton and
placed at the origin of coordinates in the Euclidean plane,
x�0, &�0, and at it lz(0,0)�	1. Thus the instanton con-
figuration has the properties of an out-of-plane magnetic vor-
tex for which the vorticity q�1 and the polarization
p�	1 �see Fig. 12�. Thus for tunneling of the DW chirality
there are two equivalent instanton paths having different
signs of the polarization lz(0,0)�cos �(0,0)�p�	1.

The instanton corresponds to the separatrix solution of a
partial differential equation with a finite value of the Euclid-
ean action �43�. It is by no means always possible to con-
struct even one-dimensional instanton solutions. However, a
sufficiently complete analysis of the problem can be carried
out on the basis of the formal similarity between the two-
dimensional instanton of interest to us, with l�l(x ,&), and a

FIG. 12. Structure of the instanton describing the tunneling transition be-
tween states of the DW with opposite chiralities �the top and bottom in the
figure�. The thick arrows denote the projection of the vector l on the easy
plane; the solid lines denote the curves on which l makes a 45° angle to the
hard axis �it is perpendicular to the plane of the figure�. These lines show the
DW boundaries and also the core region at the center of the vortex, which is
characteristic for an out-of-plane magnetic vortex. The vortex shown has
polarization p�1, i.e., the direction of l�0,0� is upward.
soliton of the vortex type, or, more precisely, its anisotropic
analog—a vertical Bloch line in a two-dimensional DW, for
which l�l(x ,y).6,182 Often the similarity of instantons and
the static nonuniformities is extremely constructive and per-
mits one to predict the character of the behavior of l in non-
one-dimensional instantons and to estimate the tunneling am-
plitude.

An example is the simple case of non-one-dimensional
instantons in an AFM with Heff�0. In this case the vector l in
the solution will be real. For a D�1-dimensional instanton
describing tunneling for a D-dimensional nonuniform distri-
bution l�x� the problem of finding the real part of the Euclid-
ean action Re AEu��W� l� reduces to minimization of the
real dimensionless functional W� l�:

W� l��� dxD�1

aD� �1

2
Ja2s2�%l�2�W� l�� , �85�

where dxD�1�dxDd& ,% denotes the gradient operator in the
D�1-dimensional Euclidean space (x,x0), x0�c& , and the
function W�l� is given by the same expression as the usual
static energy per spin for a magnet �37�. The imaginary part
of the Euclidean action for real l can only be due to the
topological term and is manifested only for D�1.

It is important no note that in the FM case such a situa-
tion does not arise: instanton solutions are never real, and the
analysis of non-one-dimensional instantons in a ferromagnet
is much more complicated. The problem of tunneling of the
DW chirality in a ferromagnet has been discussed by many
authors.63,183–187 It differs from the AFM case not only in
that the corresponding instanton solution ���(x ,&) is com-
plex. It is also important that the DW chirality in a ferromag-
net is directly related to the DW momentum. For example,
nonmoving DWs with different values of the chirality have
different values of the momentum �see the discussion of this
unusual property in Ref. 69�. Therefore, for a free �with no
pinning� DW in a ferromagnet, the momentum of the DW is
conserved, and tunneling of the chirality is altogether
impossible.186

Now let us return to the AFM case. The construction of
a two-dimensional vortex instanton solution describing the
tunneling of chirality in a DW can be done by minimization
of the functional �85�, which upon the substitution x→x ,
c&→y corresponds formally to the well-studied energy of a
vertical Bloch line in a two-dimensional DW on the (x ,y)
plane for a ferromagnet with rhombic anisotropy.6,182 The
value of the instanton action can easily be found by analogy
with the energy of this state. In the limiting cases of weak
and strong basal-plane anisotropy of W�l�, an estimate for
the instanton solution W� l0��W0 is given by the
formula124,188

W0�s•� 2� ln�2.2�"�, "�1,

8"1/2, "�1,
�86�

where we have introduced the rhombicity parameter "
�Kp /Ku . The limiting case of small rhombicity "�1 can
be investigated in the effective one-dimensional instanton
approximation.188 We emphasize that, although the tunneling
process involves a macroscopically large number of spins,
N0�x0 /a�1, this number does not appear in the tunneling
exponent. In the case "�1 the value of the tunneling expo-
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nent for one spin chain S
1 is small, and the dynamics of
the internal degrees of freedom of the domain wall is not
semiclassical but essentially quantum.123,189 For "�1, one
can speak of macroscopic tunneling, which requires satisfac-
tion of the condition W0�1, only for a mesoscopic sample
containing a large number of chains. In the case of strong
rhombic anisotropy the tunneling of the chirality is semiclas-
sical even for a DW in a quasi-one-dimensional AFM.124

For a two-dimensional instanton of the vortex type there
is also an imaginary part of the Euclidean action, which is
determined by the topological term �42� in the latter. For the
two instanton paths Im AEu�2�sQ�s�qp , which for
p�	1 gives Im AEu�	�s . For half-integer spin of an
atom of the chain the interference of these two instanton
paths leads to suppression of tunneling. This can be ex-
plained by the fact that a DW in an antiferromagnetic spin
chain has a spin equal to the value of the atomic spin
s .123,189,190 For a sample consisting of several coupled chains
with half-integer spin, tunneling is forbidden for an odd
number n of such chains.

The behavior of the imaginary part of the instanton ac-
tion and the overall picture of the tunneling in an AFM is
fundamentally altered in the presence of even a weak exter-
nal magnetic field H. The magnetic field gives an additional
contribution to the imaginary part of the Euclidean action,
and the value of the tunneling splitting is an oscillatory func-
tion of magnetic field.124

Let us consider the change of the Frank index of a dis-
clination as a result of tunneling in a small 2D AFM particle
of radius R �an island of a quasi-monoatomic film�.30,191 For
simplicity we shall assume that "�Kp /Ku
1 and x0
r0 .
For a small parameter R�x0 a DW does not form, and there
is a smooth distribution of spins of the type ��	�/2. In
this case there are also two instanton paths, the structure of
which is illustrated in Fig. 13. An estimate of the exponential
factor gives

W0
�part���s�R2/ax0�. �87�

This value is much smaller than the total number of spins in
the particle, N (part)��(R/a)2. For a disclination in a particle
of size R the factor W0

(part) increases with increasing R up to
the value R
x0
r0 at which a DW forms. For R�x0 tun-
neling occurs within a DW, and the factor in the exponent,

FIG. 13. Structure of two instanton paths determining the tunneling transi-
tion between states of a disclination with opposite values of the Frank index.
These two paths have the opposite signs of the topological invariant Q and
of the imaginary part of the Euclidean action.
W (DW)�(R/a)W0 , where W0 is given by formula �86�, in-
creases linearly as a function of the DW length R . For two
different paths the imaginary part of the Euclidean action is
determined by the topological term �42�; it is equal to
	�sN (chain), where N (chain) is the number of atomic chains
that enclose the center of the disclination. For AFM displace-
ments with half-integer spin s and an odd number of chains,
tunneling is suppressed in the absence of magnetic field. This
result can be explained by starting from Kramers’ theorem
and noticing that the total number of spins in a sample with
an odd number of chains and an odd number of atoms in a
chain is necessarily odd.

For vortices in two-dimensional AFMs there arises the
question of whether tunneling can affect the �2 topological
charge of the vortex: the polarization p .192 The vortex core
region of diameter r0�a (a is the interatomic distance� con-
tains a large �of the order of (r0 /a)2
J/Ku] number of
spins, the direction of which changes in the quantum transi-
tion between vortex states with p��1 and �1. The corre-
sponding three-dimensional instanton solution l�l(x ,y ,&) is
real; it inevitably contains a singular point of the hedgehog
type at the center of the instanton �see Fig. 14�. Analysis of
the behavior of the AFM near this singularity must go be-
yond the framework of the standard �-model. It can be done
qualitatively in the same way as for a Bloch point in a
ferromagnet.182 Estimates shown that the main contribution
to the Euclidean action is given not by the singularity but by
a peripheral region with size of the order of that of the vortex
core, r0 . The value of the factor in the tunneling exponent is
obtained192 in the form W 0

(vort)
(r0 /a). As in the case of
tunneling in a DW, this value is smaller than the number of
spins taking part in the process, N (vort)
s(r0 /a)2
J/Ku ,
but it nevertheless contains the large factor r0 /a

(J/Ku)1/2. Therefore, tunneling of the vortex polarization
is possible in a quasi-two-dimensional AFM with sufficiently

FIG. 14. Structure of the instanton determining the tunneling transition be-
tween states of a magnetic vortex with opposite polarizations. The sphere
around the origin of coordinates, on which a singular structure of the
‘‘hedgehog’’ type is shown, represents the region where the description of
the AFM in terms of a unit vector l is impossible.
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large anisotropy. It is important to emphasize that the vortex
structure and, consequently, the value of W0

(vort) is deter-
mined solely by the parameters of the AFM, and for an en-
semble of vortices �as for high-spin molecules� there is no
spread of the parameters characterizing the tunneling.

VIII. CONCLUSION

When an article is finished, one can better see what
questions, for objective or subjective reasons, have been dis-
cussed in less than adequate detail or left out completely.

Let us list the questions that have been left out of this
review but which would benefit from a brief discussion in
order to get a better idea of the range of problems that we
have discussed. In this review we have discussed both purely
classical aspects of AFM physics and problems of quantum
tunneling for small particles or clusters of AFMs. In the latter
case it turned out that quantum tunneling effects in essence
violate the initial premise of the ‘‘classical’’ part of this re-
view. Indeed, the classical description is based on the Neél
picture of an AFM, which includes the concepts of magnetic
sublattices and, consequently, the existence of an antiferro-
magnetic vector l. On the other hand, tunneling in an AFM
essentially amounts to a change in the sign of l as a result of
tunneling, i.e., destruction of the Néel order. For small AFM
particles the intensity of these effects is proportional to the
number of spins in the system, while tunneling is possible
only for extremely small samples.

One of the important results in AFM physics in the twen-
tieth century is the establishment of the fact that non-small
quantum fluctuations can break the Néel order even in infi-
nite systems, in particular, in quasi-one-dimensional AFMs.
An example is the spin chain and spin ladders with two or
more legs. This striking and significant area of AFM physics
is often called ‘‘quantum magnetism.’’ The author certainly
had not planned any detailed discussion of this topic in this
review. However, it is useful to at least outline the range of
topics and to cite references to the main publications. Fur-
thermore, since we have used models of the spin-ladder type
in this review, it is necessary to discuss at least briefly the
degree to which the classical approach is applicable to the
description of these materials, which are commonly associ-
ated with the quantum theory of AFMs.

Effects of non-small quantum fluctuations involving the
destruction of Néel order were first revealed in the analysis
of the exact solution of the quantum problem of the states of
an isotropic spin chain with spin S�1/2, constructed by Be-
the in 1931193 and then generalized by Baxter for a chain
with the same spin S�1/2 but with an anisotropic nearest-
neighbor interaction.194 For S�1/2 chains there is no Néel
order even at zero temperature, and the correlators F(x)
��l(0)l(x)� fall off in a power-law manner with increasing
distance x between spins. Such a state is customarily called a
critical state or a state with quasi-long-range order. �It cannot
be called purely disordered, since that would require that the
correlators have exponential behavior, F̂(x)!exp(�x/,),
where , is the correlation length.� Quasi-long-range order is
also characteristic for the Berezinskii phase, which exists in
two-dimensional easy-plane magnets at nonzero temperature
T�TBKT , where TBKT is the Berezinskii–Kosterlitz–
Thouless transition temperature.195,196 The Bethe method
does not admit generalization to systems with large spin, and
for a long time it remained unclear to what extent this result
is applicable for AFMs with S�1/2. At first glance it can be
shown that for large spins or systems of the spin-ladder type
the quantum effects should be weaker, but reality turned out
to be much more interesting. Haldane showed that for S�1
and all integer spins the long-range order is completely de-
stroyed, the correlators fall off exponentially, and the spec-
trum of excitations contains a finite gap �the so-called
Haldane gap  
�c/,).114,115 Zvyagin obtained a similar re-
sult for an exactly solvable model of coupled spins chains �in
modern parlance, a spin ladder� with spin S�1/2: the long-
range order is destroyed for an even number of chains.197 In
the case of half-integer spin, for a chain or an odd number of
coupled chains with spin S�1/2 there is quasi-long-range
order with a gapless dispersion relation. These results for
spin ladders have been confirmed by other methods,102,199–201

including direct numerical simulation.198 For this review it is
important that such results can be obtained on the basis of
the �-model both for a spin chain113,202,203 and for a spin
ladder.200,201 The analysis scheme here is essentially the
same as that used for describing quantum tunneling in AFM
particles �see Sec. 6�. The Néel state and the �-model for a
1D AFM are taken as starting points of the analysis, and then
the quantum fluctuations in this state are investigated. The
consistent incorporation of fluctuations, including non-small
ones, ‘‘rectifies’’ the problem that coherent states are not ex-
act quantum states of the AFM Hamiltonian. The destruction
of the long-range order in this approach can be described on
the basis of the instanton formalism. The corresponding in-
stantons are determined by two-dimensional solutions of the
type discussed in Sec. 7 for the problem of nonuniform tun-
neling. A remarkable property of these effects is that the
difference of integer and half-integer spins enters the prob-
lem through the phenomenon of interference of instanton
paths, and the imaginary part of the Euclidean action is de-
termined by the topological term �42� �see the review by
Affleck116 for more details�.

This brief discussion shows that not only is the use of
the classical �-model consistent with the presence of non-
small quantum fluctuations, it is actually the most universal
and convenient formalism for investigating them. Simple in-
tuitive arguments about the possible instanton paths and es-
timates of the Euclidean action for them make it possible to
understand directly the role of the quantum destruction of the
Néel long-range order. In particular, it is quite difficult to
picture the three-dimensional l�l(x ,y ,&) instanton of this
type and the realization of similar effects in the 2D case. The
instanton approach also lets one draw conclusions about the
exponential suppression of tunneling effects for non-small
spins, the Haldane gap  !exp(�2�S). Recent numerical
simulations have established that even for spin S�2, which
is next to the minimum Haldane spin S�1, a disordered
phase with a finite gap exists only for extremely small an-
isotropy and is suppressed by a weak magnetic field.204

Therefore it can be expected that the application of the clas-
sical version of the �-model to two-dimensional magnets of
the manganese halide type (S�5/2) or even to spin ladders
with ions of this type in connection with the spin-flop tran-
sition in Sec. 4 is entirely adequate.
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The spin order in materials with an antiferromagnetic
interaction is not limited to the simplest Neél structure. The
author’s only regret is that it was not possible to discuss the
nematic phases of non-Heisenberg magnets, frustrated AFMs
or AFMs with noncollinear spin order, especially since such
spin structures are known not only for crystalline AFMs but
also for the unique magnetic molecules �Mo70Fe30�.57 How-
ever, the author hopes that this review, in which a wide class
of problems, both static and dynamic, classical and quantum,
are discussed from a unified point of view for the simplest
two-sublattice AFMs will be useful to the reader.

This review could never have been written without the
collaboration of many colleagues and discussions with them
of the questions addressed in it. In closing I express deep
gratitude to V. G. Bar’yakhtar, V. E. Kireev, A. K. Kolezhuk,
A. M. Kosevich, A. S. Kovalev, N. E. Kulagin, and C. E.
Zaspel for fruitful collaboration and helpful discussions. I am
also indebted to E. G. Galkina for a long collaboration and
invaluable assistance on this review article.
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129B. Barbara and E. M. Chudnovsky, Phys. Lett. A 145, 205 �1990�.
130I. V. Krive and O. B. Zaslavskii, J. Phys.: Condens. Matter 2, 9457

�1990�.
131A. Garg, Europhys. Lett. 22, 205 �1993�.
132V. Y. Golyshev and A. F. Popkov, Europhys. Lett. 29, 327 �1995�; V. Yu.
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�JETP 99, 1291 �2004��.
151B. A. Ivanov and V. E. Kireev, Phys. Rev. B 70, 214430 �2004�.
152R. Jackiw, Commun. Nucl. Part. Phys. 13, 141 �1984�; Usp. Fiz. Nauk

149, 137 �1986�.
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A. Padmore, Science 304, 420 �2004�.

164B. A. Ivanov and C. E. Zaspel, Phys. Rev. Lett. 94, 027205 �2005�.
165D. A. Dimitrov and G. M. Wysin, Phys. Rev. B 50, 3077 �1994�; 51,

11947 �1995�.
166P.-G. de Gennes, The Physics of Liquid Crystals, Clarendon Press, Oxford

�1974�, Mir, Moscow �1974�.
167N. D. Mermin, in Quantum Fluids and Solids, S. B. Trickey, E. D. Ad-

ams, and J. W. Duffey �eds.�, Plenum Press, New York �1977�, p. 3; P. W.
Anderson and R. G. Palmer, ibid., p. 23.
168V. E. Kireev and B. A. Ivanov, Phys. Rev. B 68, 104428 �2003�.
169R. S. Gekht, Usp. Fiz. Nauk 59, 261 �1989�.
170I. E. Dzyaloshinski�, JETP Lett. 25, 414 �1977�.
171A. S. Kovalev and A. M. Kosevich, Fiz. Nizk. Temp. 3, 259 �1977� �Sov.

J. Low Temp. Phys. 3, 125 �1977��.
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Over the years the research group in Florence �Firenze� has produced a number of theoretical
results concerning the statistical mechanics of quantum antiferromagnetic models, which
range from the theory of two-magnon Raman scattering to the characterization of the phase
transitions in quantum low-dimensional antiferromagnetic models. Our research activity
was steadily aimed to the understanding of experimental observations. © 2005 American Institute
of Physics. �DOI: 10.1063/1.2008128�
I. INTRODUCTION

The Heisenberg model may well be considered the cor-
nerstone of the modern theory of magnetic systems; the rea-
son for such an important role is the simple structure of the
Hamiltonian, whose symmetries underlie its peculiar fea-
tures. The basic forces which determine the alignment of the
spins are represented by the exchange integrals J . At vari-
ance with the ferromagnet, where the parallel alignment is
promoted, in the antiferromagnet a lot of peculiar arrange-
ments of the spins can occur, with strong differences between
classical and quantum systems. As a matter of fact, even for
nearest-neighbor antiferromagnetic interactions only the
ground state of the Hamiltonian is different from the Néel
state with antialigned spins, and the �staggered� magnetiza-
tion shows the so-called spin reduction with respect to the
saturation value also at T�0. The linear excitations of an
antiferromagnet can be roughly associated in two families,
and pair excitations with vanishing total magnetization are
possible: the fact that the total momentum of them can be
close to zero allows for their investigation by light scattering.
6681063-777X/2005/31(8–9)/18/$26.00
While these peculiar features of antiferromagnetism al-
ready occur in three-dimensional �3D� compounds, they are
more pronounced in the low-dimensional ones, where other
effects caused by the enhanced role of classical and quantum
fluctuations are present, and exotic spin configurations asso-
ciated with field theory models can appear. Indeed, the last
two decades have seen a renewed interest both in the case of
the one-dimensional �1D� quantum Heisenberg antiferromag-
net �QHAF�, for which a peculiar behavior of the ground
state versus spin value was predicted,1 and of the two-
dimensional �2D� QHAF, because of its theoretically chal-
lenging properties and of the fact that it models the magnetic
behavior of the parent compounds of some high-Tc

superconductors.2,3 The experimental activity on 2D antifer-
romagnets stems from the existence of several real com-
pounds whose crystal structure is such that the magnetic ions
form parallel planes and interact strongly only if belonging
to the same plane. As a consequence of such structure, their
magnetic behavior is indeed 2D down to such low tempera-
tures that the weak interplane interaction becomes relevant,
© 2005 American Institute of Physics
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driving the system towards a 3D ordered phase.
In addition, the 2D Heisenberg model can be enriched

through symmetry-breaking terms—we considered easy-axis
�EA� and easy-plane �EP� anisotropy, as well as an external
uniform magnetic field—which are useful for reproducing
the experimental behavior of many layered compounds. In
the EA case one is left with a chain with discrete reflection
symmetry, and the system undergoes an Ising-like phase
transition. In the EP case or when a magnetic field is applied
the residual O�2� symmetry prevents finite-temperature
ordering,4 but vortex excitations are possible and determine a
Berezinskii-Kosterlitz-Thouless �BKT� transition between a
paramagnetic and a quasi-ordered phase. In spite of the tiny
anisotropies of real systems �usually �0.01J), it can be
shown that they dramatically change the behavior of the spin
array already at temperatures of the order of J .

In this paper we report about the progresses in the theory
of Heisenberg antiferromagnets that have been obtained by
our group in Florence. The early work on the theory of two-
magnon Raman scattering is summarized in Sec. 2, while the
subsequent Sections report the recent activity on low-
dimensional antiferromagnetism.

Section 3 is devoted to 1D models, and concerns the
study of the effect of soliton-like excitations in the com-
pound TMMC, as well as the anisotropic spin-1 model, for
which a reduced description of the ground state allows one to
investigate the quantum phase transition in a unitarily trans-
formed representation and to obtain quantitative results for
the phase diagram. Section 4 concerns the theory of the iso-
tropic 2D QHAF, for which we reproduced the experimental
correlation length by means of a semiclassical approach, also
deriving the connection with �and the limitations of� famous
quantum field theory results. In Sec. 5 we summarize several
recent results concerning the anisotropic 2D QHAF, with
emphasis onto the different phase diagrams and the experi-
mentally measurable signatures of XY or Ising behavior.
Eventually, in Sec. 6 results on the 2D frustrated J1 – J2 iso-
tropic model are described.

II. TWO-MAGNON RAMAN SCATTERING IN HEISENBERG
ANTIFERROMAGNETS

The scattering of radiation is a very powerful tool for
studying elementary excitations in condensed matter physics.
Any complete experiment gives rise to a quasi-elastic com-
ponent due to nonpropagating or diffusive modes and to
symmetrically shifted spectra corresponding to the states of
the system under investigation with an amplitude ratio gov-
erned by the detailed balance principle.

The most sensitive probes for this investigation are un-
doubtedly thermal neutrons, because the characteristic ener-
gies and wave vectors fit very well with those of the mag-
netic elementary excitations. However, light-scattering
experiments can require a simpler apparatus and offer a bet-
ter accuracy, although the transfer wave vector k is much
smaller than the size of the Brillouin zone, so that usually
only the center of this zone can be directly probed. In spite of
this, two-spin Raman scattering involving the creation and
destruction of a pair of elementary excitations can be per-
formed, with the contribution of two magnons having equal
frequencies and opposite wave vectors. This two-magnon
scattering is expected to be spread over a band of frequencies
in antiferromagnets. However, the density of states strongly
enhances the contribution of zone-boundary �ZB�
excitations,5 i.e., at k�kZB .

While in ferromagnets the two-spin process is only due
to a second-order mechanism, orders of magnitude smaller
than the first order one, in antiferromagnets a different inde-
pendent process is permitted, stronger than the correspond-
ing one for single-spin spectra.6 Specifically, an exchange
mechanism does not change the total z component of the
spins: exciting two magnons in the two different sublattices
(�M�0)7 is the dominant scattering process.

The one-spin Raman scattering peak disappears at the
Néel temperature because it probes the smallest wave vec-
tors, related with the long-range correlations. In contrast,
two-magnon Raman scattering essentially probes the highest
wave vectors, related to short-range correlations. Therefore
two-spin Raman scattering features persist also in the para-
magnetic phase7 where short-range order is still present. Let
us consider the following antiferromagnetic Hamiltonian
with exchange integral J�0, z nearest neighbors with dis-
placements labeled by d, and two (a ,b) sublattices:8

H�
J

2 �
id

Si,a•Si�d,b . �1�

The scattering cross section S(�) turns out9 to be propor-
tional to the Fourier transform of 	M (0)M (t)
 , where

M��
k

MkSk•S�k , �2�

is the effective Raman scattering operator.
Many antiferromagnetic compounds can be mapped onto

this model, even though a small next-nearest-neighbor ex-
change interaction without competitive effects, as well as
anisotropy terms could be present. For instance, there are 3D
perovskite and rutile structures �e.g., KNiF3 , NiF2) and 2D
layered structures �e.g., K2NiF4 , LaCuO2).

Let us remember that the exact ground state is not ex-
actly known, except in 1D models with S�1/2 or S�� �i.e.,
the classical case�: in the latter case it coincides with the
‘‘Néel state’’ with antialigned sublattices.

In the ordered phase the theory can be developed in
terms of two families of magnon operators (�k ,
k), through
the Dyson-Maleev spin-boson transformation and a Bogoliu-
bov transformation:

H�E0�H0�V� . . . , �3�

where E0 is the ground-state energy in the interacting spin-
wave approximation, and

H0��
k

�k��k
†�k�
k

†
k� �4�

is the quadratic part of the Hamiltonian of a magnon gas
whose frequencies, renormalized by zero-T quantum fluctua-
tions, are

�k�JSz� �
C

2S ��1��k
2; �k�

1

z �
d

e�ik"d. �5�
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The last term in the Hamiltonian, V , represents the four-
magnon interaction, whose most significant term refers to
two magnons of each family and turns out to be

V�
2Jz

N �
qq�pp�

�q�p,q��p�Iqq�,pp�
�
 �q

†�q�
p
†
p� , �6�

where the coefficients Iqq�pp�
�
 are known functions of �k .

In the Hartree-Fock approximation10 the temperature-
dependent Raman scattering operator �2� can be written as

M���T �S�
k

�k��k
k��k
†
k

†� �7�

with �k(T)��(T)�k . The two magnons created or de-
stroyed by the operator �7� interact through V as given by
�6�, so that the peak of the cross section S(�) appears at
values smaller than 2�ZB by an amount of the order of J .
The explicit S(�) at T�0 was calculated in the ‘‘ladder
approximation’’ by Elliott and Thorpe and found in very
good agreement with experiments.9

The finite-temperature calculation of the two-magnon
Raman scattering cross section in the ordered region, up to
T�0.95TN was performed by Balucani and Tognetti,10 who
calculated the two-magnon propagator in the ‘‘ladder ap-
proximation,’’ also taking into account the damping and the
temperature renormalization of the magnons at the boundary
of the Brillouin zone.11 The calculated spectra S(�), at in-
creasing temperatures, were found in very good agreement
with the experimental ones,8 and their characteristic param-
eters �peak and linewidth� permitted determination of the
temperature behavior of the frequency and damping of the
ZB magnons.12 In Figs. 1 and 2 we show the excellent agree-
ment of our theoretical approach with the experiments in the
ordered phase.13 The validity of light scattering in probing
the characteristic of ZB magnons has been confirmed both
from the theoretical and the experimental point of view.12 In
Fig. 3 our theoretical ZB magnon damping calculations are
compared with experimental data from different techniques.

In the paramagnetic phase all the experimental spectra
show the persistence of a broad inelastic peak up to T
�1.4TN . Only at T�TN do the spectra have a structureless
shape centered around ��0. As matter of fact, the highest
wave vectors sample only the behavior of clusters of neigh-

FIG. 1. Theoretical two-magnon spectra in KNiF3 at different
temperatures.10
boring spins, thus giving a measure of the short-range anti-
ferromagnetic order that is present at all finite temperatures.

In the disordered phase conventional many-body meth-
ods are of little use for a quantitative interpretation of the
observed, largely spread spectra. The concept of quasi-
particle loses its meaning because of the overdamped char-
acter of the ‘‘excitations.’’ The calculation of S(�) can be
instead approached by other more general theoretical meth-
ods devoted to the representation of the dynamical correla-
tion functions based on the linear response theory.11 Let us
consider the ‘‘Kubo relaxation function’’ associated with our
scattering process:

f 0� t ��
1

	M �0 �M �0 �
 �0




d�	e�HM �0 �e��HM � t �
 . �8�

Its Laplace transform f 0(z) is related to the scattering cross
section:

S����
�

1�e�
� Rf 0�z�i��. �9�

Mori14 has given the following continued-fraction represen-
tation of the relaxation function:11

FIG. 2. Experimental two-magnon spectra in KNiF3 at different
temperatures.5

FIG. 3. Zone-boundary damping �ZB versus temperature. The symbols refer
to different experimental techniques: in particular, the unfilled circles are
light scattering data.12 The dashed line is an improvement12 to a previous
�solid� theoretical curve.10
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f 0�z ��
1

z��1 f 1�z �
; f n�z ��

1

z��n�1 f n�1�z �
, �10�

which is formally exact, but allows one to perform some
approximations in respect to the level of the termination
f n�1(z). The quantities �n can be expressed in terms of
frequency moments:

	�2n
��
��

�

d��2n f 0���. �11�

In our calculations of f 0(z) in the entire paramagnetic
phase,15,16 the coefficients �1 and �2 have been evaluated
approximately by means of a decoupling procedure. More-
over, the third stage of the continued fraction �10� is evalu-
ated assuming that

�3 f 3�z ���3� f 3�0 ��z f 3��0 �� . �12�

The parameters involved in �12� can be estimated from
knowledge of the short-time behavior of f 0(t) determined by
the first moments, 	�2
 and 	�4
 .

The results of our approach in the paramagnetic region
are compared with the experiment in Fig. 4, showing the
persistence of the peak of the ZB magnetic excitations above
the critical temperature.

III. THE ONE-DIMENSIONAL ANTIFERROMAGNET

A. Solitons in the antiferromagnet TMMC

Interest in low-dimensional systems is motivated by the
simpler calculations as compared with the 3D ones, accom-
panied by interesting peculiar behavior. The powerful math-
ematical approach based on the inverse-scattering and Bethe
ansatz techniques permits one to solve exactly some 1D
models, calculating thermodynamic and sometimes transport
quantities both in the classical and quantum cases.17 The
most celebrated realizations of these models occur in 1D
magnets. An original suggestion by Mikeska18 was that the
antiferromagnetic chain TMMC �(CH3)4NMnCl3� can be
mapped onto a classical 1D sine-Gordon model. The elemen-
tary excitations of the sine-Gordon field are given in terms of
linear small-amplitude spin waves and nonlinear breathers
and kink-solitons. The nonlinear elementary excitations give
a detectable contribution to the magnetic specific heat.

TMMC is composed of Heisenberg (S�5/2) antiferro-
magnetic chains along the z axis:

FIG. 4. Two-spin Stokes spectrum in KNiF3 at T��1.02TN . The line
reports the theoretical shape,15 compared with experimental data.
H�J�
i

�Si•Si�1��Si
zSi�1

z � �13�

with a very small easy-plane anisotropy (��0.0086).
A magnetic field of the order of 1–10 T can be applied

perpendicularly (y axis� or along the chain. In the first case,
with approximations the more valid the lower the magnetic
field (H�5 T), in the continuum limit TMMC can be repre-
sented by the classical sine-Gordon Hamiltonian:

H�
A

2 � dx��̇2�c0
2�x

22�0
2�1�cos ��� , �14�

whose parameters are related with the magnetic Hamiltonian
�13�, the reduced magnetic field h�g�BH , and the lattice
spacing a as follows:

A�
1

8Ja
, c0�aJS�1�

�

2
, �0�h�1�

�

2
. �15�

The energy of a kink-soliton turns out to be

Es�8A�0c0�hS , �16�

and depends on the applied field. At variance with the ferro-
magnetic solitons, these solitons can be easily excited at low-
est temperatures and can give a significant contribution to the
thermodynamics.19 When the field is applied longitudinally
along the z axis only spin waves are present: therefore, the
specific-heat measurements were performed in the two con-
figurations. The contribution from the nonlinear excitations
was obtained as the difference �C between the two experi-
ments.

The thermodynamic quantities were calculated by the
classical transfer-matrix method20 for the sine-Gordon model
�14�. We then used a classical discrete planar model:21

H��
i

�2JS2 cos�� i�� i�1��hS�1�cos � i�� , �17�

verifying that it is qualitatively similar to the sine-Gordon.
The comparison21 is shown in Fig. 5, where the linear spin-
wave specific heat was subtracted to emphasize the nonlinear
contribution, together with the prediction of the ‘‘classical
soliton gas phenomenology.’’ 19

FIG. 5. Experimental contribution of nonlinear excitations to the specific
heat of TMMC, �C�C(H)�C(0)��CSW . The field values are H
�5.39 T ��� and H�2.5 T ���. The dotted-and-dashed line reports the
result of the free soliton gas phenomenology. The planar model �interpolated
crosses� appears to explain quantitatively the behavior of TMMC.
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This proved the presence of nonlinear excitations similar
to sine-Gordon solitons, but the peak of the specific heat
occurs at temperatures where solitons cannot be considered
to be noninteracting and the ‘‘classical soliton-gas phenom-
enology’’ breaks down. When the magnetic field is increased
to 9.98 T the model �17� is no longer able to describe the
experiments. A quasi-uniaxial model21 was proposed and
found to be in good agreement. For general reference on the
subject see Ref. 22.

B. The SÄ1 quantum antiferromagnet

We deal here with quantum antiferromagnetic spin
chains, focusing our attention on the class of models defined
by the Hamiltonian

H
J

��
i

��Si
xSi�1

x �Si
ySi�1

y ���Si
zSi�1

z �d�Si
z�2� �18�

with exchange integral J�0 and single-ion anisotropy d .
One of the most surprising evidences of the difference

between ferro- and antiferromagnetic systems is related with
the so-called Haldane conjecture, i.e., with T�0 properties
of integer-spin antiferromagnetic chains. In general, we ex-
pect three possible situations for the ground state of a mag-
netic system: either it is ordered �with finitely constant cor-
relation functions�, or quasi-ordered �with power-law
decaying correlation functions�, or completely disordered
�with exponentially decaying correlation functions�. One
could intuitively expect the third option to be possibly dis-
missed, based on the idea that, when thermal fluctuations are
completely suppressed, the system is in an ordered or at least
quasi-ordered ground state. This idea is in fact proved correct
for half-integer spin systems, thanks to the so-called Lieb-
Schultz-Mattis theorem.23 Despite the impossibility of gen-
eralizing such a theorem to integer-spin systems, its general
validity has been taken for granted till 1983, when Haldane1

suggested, for the integer-spin Heisenberg chain, an unex-
pected T�0 behavior: a unique and genuinely disordered
ground state, meaning exponentially decaying correlation
functions and a finite gap in the excitation spectrum. After
more than two decades Haldane’s idea that integer-spin sys-
tems can have a genuinely disordered ground state still
stands as a conjecture. However, theoretical,24–27

experimental,28–32 and numerical33–39 works have definitely
confirmed its validity.

Let us consider Eq. �18� for integer spin: in the (d ,�)
plane one may identify different quantum phases, corre-
sponding to models whose ground states share common fea-
tures. For ��0 three phases are singled out: the Néel phase
(��d), where the ground state has a Néel-like structure, the
so-called large-d phase (d��), where the ground state is
characterized by a large majority of sites where Sz�0, and
the Haldane phase, which extends around the isotropic point
(d�0,��1), and is characterized by disordered ground
states.

We first deal with the Ising limit,

H/J���
i

Si
zSi�1

z .
Upon its ground state, the antiferromagnetically ordered
Néel state, one may construct three types of excitations: a
single deviation, a direct soliton, an indirect soliton, where
direct (indirect) refers to the fact that the excitation be gen-
erated by flipping all the spins on the right of a given site
while keeping the z component of the spin on such site un-
changed �setting it to zero�. All of the above configurations
have energy �2� with respect to that of the ground state,
and, when properly combined, generate all of the excited
states; among them, we concentrate upon those containing a
couple of adjacent indirect solitons and notice that their en-
ergy is �3� , while excited states containing two separate
indirect solitons have energy �4� . Therefore, indirect soli-
tons are characterized by a binding energy �; moreover, one
may easily see that isolated solitons may effectively intro-
duce disorder in the global configuration of the system, while
coupled solitons only reduce the magnetization of each of the
two antiferromagnetic sublattices.40 In fact, strings contain-
ing any odd �even� number of adjacent solitons act on the
order of the global configuration as if they were isolated
�coupled� solitons.

As we move from the Ising limit, the transverse interac-
tion � i(Si

xSi�1
x �Si

ySi�1
y ) comes into play, and it is seen41 to

lower the energy of the system more efficiently by delocal-
izing indirect solitons rather than single deviations or direct
solitons, thus indicating that configurations which uniquely
contain indirect solitons are crucial in understanding how the
system evolves from the Ising limit �Néel phase� to the iso-
tropic case �Haldane phase�.

From the above ideas we may draw a simple but sugges-
tive scheme for such evolution:

—in the Ising limit (�→�) the ground state is the anti-
ferromagnetically ordered Néel state;

—as � decreases, indirect solitons appear along the
chain in pairs, thus keeping the antiferromagnetic order;

—as � is further lowered, indirect soliton pairs dissoci-
ate due to the transverse interaction which, by spreading soli-
tons along the chain, can cause the ground state to be disor-
dered.

Due to the privileged role of indirect solitons in the
above scheme, we concentrate on configurations which con-
tain only indirect solitons. Such configurations generate a
subspace for the Hilbert space of the system, which is re-
ferred to in the literature as the reduced Hilbert space.42

States belonging to the reduced Hilbert space are strongly
characterized by the fact that if one eliminates all the sites
with Sz�0, a perfectly antiferromagnetically ordered chain is
left. Remarkably, this type of order, which is called hidden
order in the literature, is not destroyed by dissociation of
soliton pairs, and it actually characterizes the disordered
ground state of a Haldane system, as discussed below.

In 1992 Kennedy and Tasaki �KT� defined a nonlocal
unitary transformation43 which makes the hidden order vis-
ible, meanwhile clarifying its meaning. The transformation is
defined by

U���1 �N0��N/2��
k

Uk

with
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Uk�
1

2 � exp� i� �
p�1

k�1

Sp
z � �1�exp� i�Sk

x�

�
1

2 � exp� i� �
p�1

k�1

Sp
z � �1� ,

where N is the number of sites of the chain, �N/2� is the
integer part of N/2, and N0 is the number of odd sites where
Sz�0. If the pure state ��
 has hidden order, meaning that it
only contains indirect solitons, then U��
 has spins with
Sz�0 all parallel to each other. This point is made transpar-
ent by the introduction of the string order parameter44

Ostring
� �H�� lim

�i� j �→�
� Si

� exp� i��
l�i

j�1

Sl
��S j

�	
H

, �19�

where ��x , y , z , and 	 . . .
H indicates the expectation value
over the ground state of the Hamiltonian H. It may be shown
that Ostring

z �0 if and only if the ground state belongs to the
reduced Hilbert space. In other terms, while ferromagnetic
order is revealed by the ferromagnetic order parameter

O ferro
� � lim

�i� j �→�
	Si

�S j
�
H ,

the hidden order is revealed by the string order parameter
Eq. �19�. In fact, the nonlocal transformation U relates the
above order parameters through the relation

Ostring
� �O ferro

� �UHU�1�, �20�

for ��x ,z , meaning that the analysis of the hidden order in
a system described by H may be developed by studying the
ferromagnetic order in the system described by the trans-
formed Hamiltonian H̃�UHU�1, which reads, for H de-
fined by Eq. �18�,

H̃
J

��
i

��Si
xSi�1

x �Si
yei��Si

z
�Si�1

x
�Si�1

y ��Si
zSi�1

z

�d�Si
z�2� . �21�

Our work developed as follows: one first assumes that
the relevant configurations, as far as the Néel-Haldane tran-
sition is concerned, belong to the reduced Hilbert space; this
permits, by the KT transformation, to restrict the analysis to
the subspace of states with either Si

z�1 or Si
z�0, �i . Then

the expectation value of the transformed Hamiltonian H̃ in
Eq. �21� is minimized on a trial ground state whose structure
takes into account at least short-range correlations between
spins. By this procedure, we aim at following the effective
dissociation of soliton pairs, in order to clarify the connec-
tion between the occurrence of isolated solitons in the
ground state, and the transition towards the completely dis-
ordered Haldane phase.39,41,42,45

In the framework of a standard variational approach, we
should minimize 	�0�H��0
 with respect to a certain num-
ber of variational parameters entering the expression of the
normalized trial ground-state ��0
 . By applying the nonlocal
unitary transformation U we instead minimize
	�0�UHU�1��0
 with ��0
�U��0
 and the transformed
Hamiltonian H̃�UHU�1 defined by Eq. �21�; if ��0
 be-
longs to the reduced Hilbert space, it is
��0
�U��0
��
�s�

c �s��s1s2 .. .sN
 �22�

with �s��(s1 ,s2 ,s3 ,. . .sN) and si�	�0�Si
z��0
��1,0.

The simplest trial ground state allowing the description
of soliton pair dissociation is that defined by Eq. �22� with
c �s��ts1s2s3

ts2s3s4
. . .tsN�2sN�1sN

. The variational parameters
are the six amplitudes t��� , t��0�t0�� , t�0� , t0�0 ,
t00��t�00 , t000 , where �tsi�1sisi�1

�2 represents the probabil-

ity for (Si�1
z ,Si

z ,Si�1
z ) to be equal to (si�1 ,si ,si�1); a com-

mon arbitrary factor may be used for normalizing ��0
 . We
notice that the chosen form for c �s� is such that the probabil-
ity for ��0
 to contain coupled solitons is finite indepen-
dently of that relative to the occurrence of isolated solitons,
whose presence is unambiguously marked by t�0��0.

Without going into the details of the variational calcula-
tions, reported in Ref. 46, we discuss here our final results.
Due to the normalization condition, the number of varia-
tional parameters is reduced from six to five; moreover, the
energy 	�0�UH̃U �1��0
 is found to depend just on four
precise combinations of the original parameters,

���t��0�2�t00��2⇒�¯��00��¯ �,

���t��0�2�t�0�⇒�¯��0��¯ �,

���t00��2�t0�0�⇒�¯00�00¯ �,

���t000�⇒�¯000¯ �, �23�

whose square moduli are related to the probabilities that the
corresponding strings �⇒� be contained in ��0
; in particu-
lar, �2 and �2 refer to the probabilities for coupled and iso-
lated solitons, respectively, to occur in the ground state.

Both the analytical expression for the energy and the
numerical minimization show that a critical value �c

��c(d)�d exists such that for ���c the minimal energy is
attained for ����0; the condition ���c(d) can, hence,
define a curve of phase separation. We therefore single out
three different phases, characterized by

�a �����0,�b �all parameters�0,�c ���t����0
�24�

in the ground state. The corresponding phase diagram is
shown in Fig. 6, together with that obtained with a factorized
trial ground state43 and by numerical simulations.33

The (a) – (b) transition is seen to quite precisely de-
scribe the Néel-Haldane one, and this leads us to define the
condition (a), meaning the occurrence of exclusively
coupled solitons, as typical of the Néel phase. As to the
(c) – (b) transition, one should note that the use of the re-
duced Hilbert space is not fully justified in the ��d region,
where we in fact do not expect quantitatively precise results.

For a comparison between our results and the exact nu-
merical data available, we have considered, along the d�0
axis, two specific quantities: the critical anisotropy �c(d),
where the Néel phase becomes unstable with respect to the
Haldane phase, and the ground-state energy E0(d ,�) at the
isotropic point ��1. For the critical anisotropy we find
�c(0)�1.2044(5) as compared to the value obtained by ex-
act diagonalization,37 �c(0)�1.19; for the energy we find
E0(0,1)��1.3663(5) as compared to E0(0,1)�
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�1.4014(5), again from an exact diagonalization
technique;47 the value obtained with the factorized trial
ground state is E0(0,1)��4/3.43

In Fig. 7 we show the variational parameters as � is
varied for d�0, i.e., along the y axis of the phase diagram;
in fact, rather than the parameters with respect to which we
have actually minimized the energy, the following combina-
tions are considered:

w �1 ���2/t���
2 ; w �2 ���;

w �2,2�����t����1/2; w �3 ��t���
2 ����2/3. �25�

The above quantities have a straightforward physical
meaning, as they are directly related with the probabilities
for a soliton to appear along the chain as an isolated excita-
tion (w (1)), as a part of a soliton pair (2w (2)

2 ), as a part of a
string made of three adjacent solitons (3w (3)

3 ), and finally as
a part of a string made of two soliton pairs separated by one
site (4w (2,2)

4 ). From Fig. 7, it becomes evident that the
Haldane phase is featured by the occurrence of isolated soli-
tons (w (1)�0), as well as of strings made of three adjacent
solitons (w (3)�0).

This result confirms that, as elicited by the analysis of
the phase diagram, the Haldane phase is characterized by our
condition (b).

FIG. 6. Phase diagram in the ��0 half-plane: our results �squares� are
shown together with those of Ref. 43 �dotted lines�; the Haldane phase
should correspond to the shaded area, according to the best available nu-
merical data33 �solid lines�.

FIG. 7. Parameters w (1) �squares�, w (2) �circles�, w (3) �upward triangles�,
and w (2,2) �downward triangles� for d�0.
Given their essential role, we have also studied the x and
z components of the string order parameter, as well as the
soliton density n0�1�	(Sz)2
 . After KT we expect
Ostring

z (H)�0 in both the Néel and the Haldane phase, and
Ostring

x (H)�0 just in the Haldane phase. In fact, analytical
expressions for Ox and Oz may be written46 in terms of four
of the five variational parameters �25�, and show that
Ostring

x (H)�0 if ����0 or ��t����0, i.e., in phases (a)
and (c); Ostring

z (H)�0 in all phases, asymptotically vanish-
ing as �→1, i.e., in the far large-d phase.

In more detail, we note that Ostring
x �0 whenever the

ground state does not contain strings made of an odd number
of adjacent spins; as soon as the shortest string of such type,
namely the isolated soliton, appears along the chain, then
Ostring

x becomes finite. The unphysical result Ostring
z �0 in the

(c) phase, vanishing only as d→� rather than everywhere in
the large-d phase, is due to our assuming the ground state to
belong to the reduced Hilbert space, which actually is licit
only in the ��d region.

In Fig. 8 we show Ostring
x , Ostring

z , and n0 as � varies
with d�0. We underline that Ostring

x becomes finite continu-
ously but with discontinuous derivative at the transition �re-
flecting the behavior of w (1) and w (3) shown in Fig. 7�, so
that the Néel-Haldane quantum phase transition is recog-
nized as a second-order one. In Fig. 9 we zoom the order
parameter Ostring

x around the critical point: its behavior is
seen to be described by a power law Ostring

x �(�c��)
, as

FIG. 8. String order parameters Ostring
x �squares�, Ostring

z �circles�, and soliton
density n0 �triangles� for d�0.

FIG. 9. Critical behavior of Ostring
x for d�0: squares are our results; curves

are obtained by best-fit procedure from Ostring
x �(���c)
 with 
 fixed to

0.125 �dashed curve� and as fitting parameter, resulting in 
�0.217 �solid
curve�. Both procedures give �c�1.2044(5), marked by a circle in figure.
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expected for a continuous phase transition; our estimated
value for the critical exponent is 
�0.217(5) as compared
to 
�0.125, corresponding to the Ising model in a trans-
verse field, to whose universality class the Haldane transition
is suggested to belong.42 At the isotropic point (d�0,�
�1) we find Ostring

x �0.3700(5), in full agreement with the
value obtained by exact diagonalization.48

The overall good agreement between our results and the
numerical data available, allows us to conclude that the
Néel-Haldane transition is a second-order one, and that the
string order parameter Ostring

x , revealing hidden order along
the x direction, is the appropriate order parameter for the
Haldane phase. The disordered ground state featuring the
Haldane phase is seen to originate by dissociation of soliton
pairs, according to this path. Solitons occur just in pairs in
the antiferromagnetically ordered Néel phase; at the Néel-
Haldane transition soliton pairs dissociate and the byproducts
rearrange into strings consisting of an odd number of soli-
tons. These strings are ultimately responsible for the disorder
of the ground state.

IV. TWO-DIMENSIONAL ISOTROPIC HEISENBERG MODEL

The 2D isotropic QHAF on the square lattice is one of
the magnetic models most intensively investigated in the last
two decades. This is due both to its theoretically challenging
properties and to it being considered the best candidate for
modeling the magnetic behavior of the parent compounds of
some high-Tc superconductors.2,3

From a theoretical point of view the fully isotropic
Heisenberg model in d dimensions, thanks to the simple
structure of its Hamiltonian �whose high symmetry is re-
sponsible for most of its peculiar features�, may well be con-
sidered a cornerstone of the modern theory of critical phe-
nomena, with its relevance extending well beyond the only
magnetic systems. The d�2 case earned additional interest,
representing the boundary dimension separating systems
with and without long-range order at finite temperature.4 The
antiferromagnetic coupling adds further appeal, as the
classical-like Néel state is made unstable by quantum fluc-
tuations, and the ground state of the system is not exactly
known. It can be rigorously proven19 to be ordered for S
 1; for S�1/2 there is no rigorous proof, although evidence
for an ordered ground state can be drawn from many differ-
ent studies �for a review, see, for instance, Ref. 50�.

On the experimental side the attention to the properties
of 2D QHAF was mainly triggered by the fact that among
the best experimental realizations of this model we find sev-
eral parent compounds of high-Tc superconductors, as, e.g.,
La2CuO4 or Sr2CuO2Cl2 �Refs. 51–53�, both having spin S
�1/2. In such materials, as well as in other magnetic com-
pounds with a layered crystal structure, such as La2NiO4

�Ref. 54� and K2NiF4 �Refs. 52, 53� (S�1), Rb2MnF4 �Ref.
55� and KFeF4 �Ref. 56� (S�5/2), or copper formate tetra-
deuterate �CFTD, S�1/2) �Ref. 57�, the magnetic ions form
parallel planes and interact strongly only if belonging to the
same plane. The interplane interaction in these compounds is
orders of magnitude smaller than the intraplane one, thus
offering a large temperature region where their magnetic be-
havior is indeed 2D down to those low temperatures where
the weak interplane interaction becomes relevant, driving the
system towards a 3D ordered phase: an antiferromagnetic
Heisenberg interaction and the small spin value make these
compounds behave as 2D QHAFs. Even the onset of 3D
magnetic long-range order is however strongly affected by
the 2D properties of the system: indeed, the observed 3D
magnetic transition temperature is comparable with the intra-
plane interaction energy, i.e., orders of magnitude larger than
one would expect solely on the basis of the value of the
interplane coupling. Such apparently odd behavior can be
easily understood by observing that the establishing of in-
plane correlations over a characteristic distance ! effectively
enhances the interplane coupling by a factor (!/a)2, a being
the lattice constant. The latter consideration is one of the
reasons explaining why most of the attention, both from the
experimental and theoretical point of view, has been paid to
the low-temperature behavior of the correlation length ! of
the 2D QHAF �in the following ! will always be given in
units of the lattice constant a).

The 2D QHAF is described by the Hamiltonian

H�
J

2 �
i,d

Si•Si�d , �26�

where J is positive and the quantum spin operators Si satisfy
�Si�2�S(S�1). The index i�(i1 ,i2) runs over the sites of a
square lattice, and d represents the displacements of the 4
nearest-neighbors of each site, (	1,0) and (0,	1).

In addition to the first approximations usually employed
to investigate the low-temperature properties of magnetic
systems as, e.g., mean-field and �modified� spin-wave theory,
the critical behavior of the 2D QHAF was commonly inter-
preted on the basis of the results obtained by field theory
starting from the so-called 2D quantum nonlinear " model
�QNL"M�,58 whose action is given by

S�
1

2g � dx�
0

u

d#� �$n�2��%#n�2�; �n�2�1. �27�

In the last equation n�x� is a unitary 3D vector field, g
�c&/� and u�c&/T are the coupling and the imaginary-
time cut-off, respectively, and the two parameters � and c are
usually referred to as spin stiffness and spin-wave velocity.
Despite their names, however, the two parameters � and c
are just phenomenological fitting constants which can be rig-
orously related to the proper parameters J and S of the origi-
nal magnetic Hamiltonian �26� only in the large-S limit.1,59

The source of nonlinearity in the model of Eq. �27�, which is
seemingly quadratic in the field variables, is the constraint
imposed on the length of the field n.

The relation between the 2D QHAF and the QNL"M
was first exploited to interpret the experimental data on cu-
prous oxides by Chakravarty, Halperin, and Nelson �CHN�,58

who used symmetry arguments to show that the long-
wavelength physics of the QHAF is the same of that of the
QNL"M; in other words, the physical observables of the two
models show the same functional dependence upon T , if the
long-wavelength excitations are assumed to be the only rel-
evant ones, as one expects to be at low temperature.

The analysis carried out by CHN on the QNL"M leads
one to single out three different regimes, called quantum
disordered, quantum critical �QCR�, and renormalized clas-
sical �RCR�, the most striking difference amongst them be-



676 Low Temp. Phys. 31 (8–9), August–September 2005 Balucani et al.
ing the temperature dependence of the spin correlations. If g
is such as to guarantee LRO at T�0, the QNL"M is in the
RCR at very low temperature, and the correlation length !
behaves as60

!3l�
e

8 � c

2�� � exp� 2��

T � �1�
T

4��� . �28�

CHN also found that by raising the temperature, any 2D
QNL"M with an ordered ground state crosses over from the
RCR to the QCR, characterized by a correlation length !
��(T)�c/T .

The first direct comparison between experimental data
on spin-1/2 compounds and the prediction of the QNL"M
field theory in the RCR gave surprisingly good agreement
and caused an intense activity, both theoretical and experi-
mental, in the subsequent years. However, with the accumu-
lation of new experimental data on higher-spin compounds it
clearly emerged that the experimentally observed behavior of
!(T) for larger spin could be reproduced neither by the origi-
nal simplified �two-loop� form of Eq. �28� given by CHN
�which does not contain the term in square brackets� nor by
the three-loop result �28� derived by Hasenfratz and Nieder-
mayer �HN�;60 moreover, no trace of QCR behavior was
found in pure compounds. The discrepancies observed could
be due to the fact that the real compounds do not behave like
2D QHAF or to an actual inadequacy of the theory. In par-
ticular the CHN-HN scheme introduces two possible reasons
for such inadequacy to occur: the physics of the 2D QHAF is
not properly described by that of the 2D QNL"M and/or the
two�three�-loop renormalization-group expressions derived
by CHN-HN do hold at temperatures lower than those ex-
perimentally accessible. After an almost ten-year debate, the
latter possibility has finally emerged as the correct one, being
strongly supported not only by our own work but also by
other independent theoretical approaches,61 joined with the
analysis of the experimental and the most recent quantum
Monte Carlo �QMC� data for the 2D QHAF.

The theoretical approach we employed to investigate the
2D QHAF is the effective Hamiltonian method,62–64 devel-
oped within the framework of the pure-quantum self-
consistent harmonic approximation �PQSCHA� we intro-
duced at the beginning of the 1990s.65,66 The PQSCHA starts
from the Hamiltonian path-integral formulation of statistical
mechanics, which allows one to separate in a natural way
classical and quantum fluctuations; only the latter are then
treated in a self-consistent harmonic approximation, finally
yielding an effective classical Hamiltonian whose properties
can thereafter be investigated by all the techniques available
for classical systems. The idea of separating classical and
quantum fluctuations turned out to be fruitful not only in
view of the implementation of the PQSCHA, but also in the
final understanding of the connection between semiclassical
approaches and quantum field theories,67 which could be
possible also thanks to the paper by Hasenfratz68 about cor-
rections to the field-theoretical results due to cutoff effects.

The PQSCHA naturally applies to bosonic systems,
whose Hamiltonian is written in terms of conjugate operators
q�̂ �( q̂1 ,. . . q̂N), p�̂ �( p̂1 ,. . . p̂N) such that � q̂m , p̂n��i�mn ;
the method, however, does not require H(p�̂ ,q�̂ ) to be stan-
dard, i.e., with separate quadratic kinetic p�̂ -dependent and
potential q�̂ -dependent terms, and its application may be ex-
tended also to magnetic systems, according to the following
scheme.65 The spin Hamiltonian H(S� ) is mapped to H(p�̂ ,q�̂ )
by a suitable spin-boson transformation; once the corre-
sponding Weyl symbol H(p� ,q� ) with p� �(p� 1 ,. . .pN) and q�
�(q1 ,. . .qN) classical phase-space variables, has been deter-
mined, the PQSCHA renormalizations may be evaluated, and
the effective classical Hamiltonian Heff(p� ,q�) and effective
classical function Oeff(p� ,q�) corresponding to the observable
O of interest follow. Finally, the effective functions Heff(s�)
and Oeff(s�), both depending on classical spin variables s with
�s��1 and containing temperature- and spin-dependent quan-
tum renormalized parameters, are reconstructed by the in-
verse of the classical analog of the spin-boson transformation
used at the beginning.

In order to successfully carry out such a renormalization
scheme, the Weyl symbol of the bosonic Hamiltonian must
be a well-behaved function in the whole phase space. Spin-
boson transformations, on the other hand, can introduce sin-
gularities as a consequence of the topological impossibility
of a global mapping of a spherical phase space into a flat
one. The choice of the transformation must then be such that
the singularities occur for configurations which are not ther-
modynamically relevant, and whose contribution may be
hence be approximated. Most of the methods for studying
magnetic systems do in fact share this problem with the
PQSCHA; what makes the difference is that by using the
PQSCHA one separates the classical contribution to the ther-
mal fluctuations from the pure quantum one, and the ap-
proximation only regards the latter, being the former exactly
taken into account when the effective Hamiltonian is recast
in the form of a classical spin Hamiltonian.

The spin-boson transformation which constitutes the first
step of the magnetic PQSCHA is chosen according to the
symmetry properties of the original Hamiltonian and of its
ground state. In the case of the 2D QHAF both Dyson-
Maleev and Holstein-Primakoff transformation can be em-
ployed, finally yielding:63

Heff

JS̃2
�

'4

2
�
i,d

si•si�d�NG� t �, �29�

G� t ��
t

N �
k

ln
sinh f k

'2 f k
�2(2D, �30�

with the temperature- and spin-dependent parameters

'2�1�
D
2

, �31�

D�
1

S̃N
�

k
�1��k

2�1/2Lk , �32�

f k�
�k

2 S̃ t
, Lk�coth f k�

1

f k

. �33�

In the previous equations �k�(cosk1�cosk2)/2, N is the
number of sites of the lattice, and k�(k1 ,k2) is the wave
vector in the first Brillouin zone; S̃�S�1/2 is the effective
classical spin length, which naturally follows from the renor-



677Low Temp. Phys. 31 (8–9), August–September 2005 Balucani et al.
malization scheme, and t�T/JS̃2 is the reduced temperature
defined in terms of the energy scale JS̃2. The renormaliza-
tion scheme is closed by the self-consistent solution of the
two coupled equations �k�4(2(1��k

2)1/2 and (2�'2

�t/(2(2). The pure-quantum renormalization coefficient D
�D(S ,t) takes the main contribution from the high-
frequency part �short-wavelength� of the spin-wave spec-
trum, because of the appearance of the Langevin function
Lk . D measures the strength of the pure-quantum fluctua-
tions, whose contribution to the thermodynamics of the sys-
tem is the only approximated one in the PQSCHA scheme.
The theory is hence quantitatively meaningful as far as D is
small enough to justify the self-consistent harmonic treat-
ment of the pure-quantum effects. In particular, the simple
criterion D�0.5 is a reasonable one to assess the validity of
the final results.

The most relevant information we get from Eq. �29� is
that the symmetry of the Hamiltonian is left unchanged, so
that from a macroscopic point of view the quantum system
essentially behaves, at an actual temperature t , as its classi-
cal counterpart does at an effective temperature teff

�t/'4(S,t). This allows us to deduce the behavior of many
observables �but not all!—see Refs. 62–64 for details� di-
rectly from the behavior of the corresponding classical quan-
tities. This is the case of the correlation length, which turns
out to be given simply by

!� t ��!cl� teff� �34�

so that once '4(S ,t) has been evaluated, the only additional
information we need is the classical !cl(t), which is available
from classical Monte Carlo �MC� simulation and analytical
asymptotic expressions69 as t→0.

Sample results obtained by PQSCHA are shown in the
figures. In Fig. 10 the correlation length for S�1/2 and S
�1 is compared with experimental data; a similar compari-
son, including MC data for S�1/2 and experimental data on
S�5/2 compounds KFeF4 and Rb2MnF4 is made in Fig. 11,
but along the vertical axis the quantity t ln ! is plotted in
order to better appreciate the deviation from the predicted
RCR behavior, that would correspond to a straight line at low
t . From the last picture one can easily see that both PQSCHA

FIG. 10. Correlation length ! versus t , for S�1/2 �leftmost� and S�1. The
symbols are experimental data; for S�1/2: 63Cu NQR data70 �circles� and
neutron scattering data for La2CuO4 �squares�51 and for Sr2CuO2Cl2

�up-triangles�;52,53 for S�1: neutron scattering data for La2NiO4

�down-triangles�54 and for K2NiF4 �diamonds�.52,53 The classical result
�dotted-and-dashed line� is also reported.
curves and experimental data for S 1 �including the exact
S�� classical result� display a change of slope at interme-
diate temperature, followed by a curvature inversion at lower
t . On the other hand, by looking at the S�1/2 case it be-
comes clear why the QNL"M approach gave such a good
agreement when first used to fit the experimental data. The
change in both the slope and the curvature of t ln ! is less
pronounced and possibly occurs at lower temperatures, the
lower the spin: in the S�1/2 case, it is difficult to say
whether these features are still present or not, but, if yes, they
occur in a temperature region where the extremely high
value of ! (�104) makes both the experimental and the
simulation data more difficult to obtain.

After having realized that the field theoretical prediction
by CHN could not be applied to the S 1 2D QHAF in the
temperature range probed by the experiments, the following
questions were waiting for a satisfactory answer: �i� the real
range of applicability of the asymptotic three-loop expres-
sion �28� at different S , and �ii� the possible extension of the
PQSCHA results to lower temperature, both in view of �iii� a
comprehensive description of the behavior of the correlation
length of the 2D QHAF in the entire range of temperature
and spin values.

A substantial contribution to settle this conundrum came
only from QMC simulations for higher spin values able to
probe the very large correlation length region:73 indeed,
high-precision Monte Carlo data for S�1 and moderate cor-
relation length could still be very well interpreted by
PQSCHA and did not display the RCR asymptotic behavior,
as shown64 in Fig. 12, where we compared our curves for !
and the staggered susceptibility �* with QMC data obtained
by Harada et al.74

QMC results for ! by Beard and coworkers73 showed
unambiguously that the three-loop Eq. �28� holds only for
temperatures low enough to ensure an extremely large corre-
lation length, e.g., !
105 for S�1, !
1012 for S�3/2, and
generally cosmological correlation lengths for S�3/2, thus
definitely excluding any possibility of employing QNL"M
results to interpret available experimental data.

In Ref. 68, Hasenfratz showed why cutoff effects, which

FIG. 11. The function y(t)�tln! versus t , for �from the rightmost curve�
S�� , 5/2, 1, and 1/2; the up-triangles71 and the diamonds72 are quantum
MC data for S�1/2; also reported are neutron scattering data for La2NiO4

�unfilled circles�,54 K2NiF4 �squares�,52,53 KFeF4 �filled circles�,56 and
Rb2MnF4 �down-triangles�.55 The abrupt rising of the experimental data for
the S�5/2 compounds at t�0.65 is due to the effect of the small, but finite,
anisotropies and will be discussed in more detail in Sec. 5.
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are so devious for S�1/2, significantly modify the correla-
tion length for S 1. Reaching such goal was possible only
going back to a direct mapping between the QHAF and the
QNL"M, and the resulting cutoff-corrected field-theoretical
outcome is68

!H�T ,S ��!3l�T ,S �e�C�T ,S �, �35�

where C(T ,S), defined in Eq. �14� of Ref. 68, is an integral
of familiar spin-wave quantities over the first Brillouin zone.

With this correction, which is the leading order in the
spin-wave expansion for the cutoff correction, it is possible
to obtain numerically accurate agreement with QMC data
down to !
103 for all S .

In our most recent paper67 about 2D QHAF we showed
that by employing the explicit expression for C(T ,S), and by
substituting in Eq. �28� the spin stiffness � and the spin-wave
velocity c given by the mapping of QHAF onto the QNL"M,
the leading terms of the result �35� not only can be cast in the
form !H(T ,S)�!3l

cl (teff
H ), in strict analogy with the PQSCHA

expression �34�, but the effective temperature teff
H is defined

through a renormalization constant which is again a function
of the pure-quantum fluctuations only! Such a remarkable
and unexpected feature of the cutoff-corrected field-theory

FIG. 12. Correlation length ! and staggered susceptibility �*��/ S̃2 versus
t for S�1. Symbols are QMC data from Ref. 74.

FIG. 13. Ratio !/!3l versus T/JS2 for S�5/2. Solid line: !cl(teff
H ); dotted-

and-dashed line: !H�!3l
cl (teff

H ); dashed line: standard PQSCHA result; sym-
bols are QMC data.67
prediction suggested that we replace the perturbative expres-
sion !3l

cl with the exactly known classical !cl , thus getting the
results presented in Fig. 13.

It is thus made clear that the main features of the quan-
tum correlation length at intermediate temperatures are due
to essentially classical nonlinear effects, which cannot be
taken into account by perturbative approaches. Moreover, the
effective exchange constant that defines the effective tem-
perature teff

H is seen to depend on the same pure-quantum
renormalization coefficients defined by the PQSCHA, ac-
cording to an expression which is very similar �equal� to that
found by the latter approach in its standard �low-T) version:
the behavior of ! in the full temperature and spin-value
ranges can thus be quantitatively described by Eq. �34� with-
out any adjustable fitting parameter.

The results obtained by the PQSCHA about the correla-
tion length and other static quantities can also represent the
needed information to be inserted within other frameworks,
like mode-coupling theory, to interpret experiments probing
dynamic quantities, like nuclear magnetic resonance �NMR�:
an example of the successful combination of PQSCHA and
mode-coupling theory is given in Ref. 57.

V. TWO-DIMENSIONAL ANISOTROPIC HEISENBERG
MODEL

While the theoretical debate mentioned in the previous
Section has been mainly dedicated to the isotropic 2D
QHAF, real compounds are not actually well described by
the isotropic model when the temperature is low: indeed, the
Mermin-Wagner theorem4 states that a finite-temperature
transition cannot occur in the 2D isotropic QHAF, while the
experimental evidence of a transition suggests that 3D corre-
lations and anisotropy effects, as well as a combination of
both, must be considered. Easy-axis �EA� or easy-plane �EP�
anisotropies turn out to be fundamental in the analysis of the
critical behavior.

A. 2D antiferromagnet with easy-axis anisotropy

Several works �see Ref. 75 for a review� have shown
that many additional interaction mechanisms may be taken
into account by inserting proper anisotropy terms in the mag-
netic Hamiltonian; in particular, the transition observed in
K2NiF4 �Ref. 76� (S�1), Rb2FeF4 �Ref. 76� (S�2),
K2MnF4 �Ref. 77� and Rb2MnF4 �Ref. 76� (S�5/2), and
others is seen to be possibly due to an easy-axis anisotropy.
Such anisotropy has been often described in the literature
through an external staggered magnetic field in order to al-
low for a qualitative description of the experimental data.
However, this choice lacks the fundamental property of de-
scribing a genuine phase transition, as the field explicitly
breaks the symmetry and makes the model ordered at all
temperatures. To preserve the symmetry under inversion
along the easy axis, it is actually appropriate to insert an
exchange anisotropy term in the spin Hamiltonian. Sponta-
neous symmetry breaking then manifests itself as a phase
transition between ordered and disordered states. The EA-
QHAF Hamiltonian then reads

H�
J

2 �
i,d

���S i
xS i�d

x �S i
yS i�d

y ��S i
zS i�d

z � , �36�
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where i�(i1 ,i2) runs over the sites of a square lattice, d
connects each site to its four nearest neighbors, J�0 is the
exchange integral, and � is the EA anisotropy parameter (0
)��1). Again, JS̃2�J(S�1/2)2 sets the overall energy
scale, and t�T/JS̃2 is the reduced temperature. The model
reduces to the isotropic QHAF when ��1. Note that a ca-
nonical transformation reversing the x and y spin compo-
nents of one sublattice is equivalent to setting �→�� , so
that the physical properties of the model are even functions
of �. The ��0 case is called Ising limit, not to be confused
with the genuine Ising model,78 reproduced by Eq. �36� with
��0 and S�1/2. Despite being a very particular case of Eq.
�36�, the 2D Ising model on the square lattice is a fundamen-
tal point of reference for the study of the thermodynamic
properties of the EA-QHAF. A renormalization-group
analysis79 of the classical model predicted the occurrence of
an Ising-like transition at a finite temperature tc

cl(�) of the
order of unity for any value of �, no matter how near to the
isotropic value ��1; this analysis has received the support
of several Monte Carlo simulations.80–83

As for the quantum case, up to a few years ago no in-
formation was available about the value of the critical tem-
perature tc(� ,S) as a function of anisotropy and spin, save
the fact that tc(0,1/2)�0.567J �Onsager solution�78 and
tc(1,S)�0 �isotropic limit�. As a consequence, it was also
uncertain whether or not the small anisotropy (1��
�10�2) observed in real compounds could be responsible
for transitions occurring at critical temperatures of the order
of J , also accounting for the fact that quantum fluctuations
are expected to lower the critical temperature with respect to
the classical case.

Over the last few years our group developed a quantita-
tive analysis of several thermodynamic properties of the
model, by means of the effective Hamiltonian method65,66 for
spin S 1 and by means of quantum Monte Carlo
simulations84 in the case S�1/2.

The effective Hamiltonian85–87 for the EA-QHAF is ex-
pressed as

Heff

JS̃2
�

jeff

2
�
i,d

��eff�s i
xs i�d

x �s i
ys i�d

y ��s i
zs i�d

z � , �37�

and shows a weaker renormalized exchange jeff(t,�)�1 and
easy-axis anisotropy �eff(t,�)��, besides an additional free-
energy term that is not reported. By means of Heff a series of
thermodynamic quantities was studied:85,88 internal energy,
specific heat, staggered magnetization, staggered correlation
function, staggered correlation length, staggered susceptibil-
ity. This required extensive classical Monte Carlo simula-
tions, as varying the temperature gives an effective system
with different effective anisotropy �eff(t,�). The quantum
phase diagram reported in Fig. 14 could be built up87,89 in a
simpler way starting from the knowledge of the classical
phase diagram and using a relation that follows from the
form of Eq. �37�,

tc�� ,S �� jeff� t ,� ,S �tc
cl��eff� t ,� ,S ��. �38�

In the region of very weak anisotropy, which is the most
important in view of the characterization of experimentally
accessible materials, we verified that the Ising-like transition
temperature decreases very slowly �logarithmically� towards
its vanishing value in the isotropic limit, so that tc remains
substantially of the order of unity.

As a sample of the various results that were obtained, in
Fig. 15 we report the comparison of the results of Ref. 85
with the experimental data97 for the correlation length of the
S�5/2 magnet Rb2MnF4 , which results are quite well de-
scribed by the anisotropic model with J�7.42 K and �
�0.9942. Rb2MnF4 is known to behave as a 2D magnet
both above and below the observed transition,76 so that the
critical behavior is not contaminated by the onset of 3D or-
der and a clean characterization of the transition is possible.
In Ref. 85, we have compared our theoretical results also
with the neutron-scattering experimental data for the stag-
gered magnetization, staggered susceptibility, and correlation
length of Rb2MnF4 and found excellent agreement both for
the overall temperature behavior and for the value of the

FIG. 14. Critical temperature versus anisotropy � for the 2D easy-axis
antiferromagnet. Dotted line: the fit of tc

cl(�) built up from classical MC
data82,83,87 �unfilled triangles�. Solid lines: PQSCHA result for S�1 and 5/2.
Quantum MC data �unfilled circles90 and diamonds84� for S�1/2, asymp-
totically described by tc(�)�2.49/ln�70/(1��)� �dashed line�, and exact
result for the Ising model, ��0 �unfilled square�. Filled symbols are ex-
perimental data for the compounds YBa2Cu3O6 �down triangle�,91 K2NiF4

�cross�,92,93 Rb2NiF4 �up triangle�,94 Rb2MnCl4 �circle�,95 Rb2MnF4

�diamond�.92,96 In the inset the region of weak anisotropy is enlarged.

FIG. 15. Correlation length versus t for S�5/2, ��0.9942 �full curve� and
��1 �isotropic, dotted-and-dashed curve�; the symbols are neutron scatter-
ing data97 for Rb2MnF4 . The triangles are quantum Monte Carlo data98 for
the isotropic model.
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critical temperature, which coincides perfectly with that de-
rived from the experimental analysis, Tc�38.4 K �i.e., tc

�0.575).
Another quantity that shows a signature of the anisot-

ropy and of the Ising transition is the specific heat: in Fig.
16, a comparison with experimental data is shown in the case
of the S�5/2 compound Mn-formate di-urea �Mn–f–2U�,88

whose anisotropy can be estimated, solely from knowledge
of the exchange integral and the measured transition tem-
perature, to be ��0.981. The comparison reveals the exis-
tence of a crossover from a high-temperature 2D-Heisenberg
regime to a critical 2D-Ising regime that triggers the
observed99 3D phase transition at TN�3.77 K.

Finally, for the strongest quantum case, S�1/2, we have
used the continuous-time quantum Monte Carlo method
based on the loop algorithm.84 The general outcome of the
numerical simulations is that the thermodynamics of 2D
quantum antiferromagnets is extremely sensitive to the pres-
ence of weak easy-axis anisotropies of the order of those of
real compounds. For instance, in Fig. 17 it is shown that for
��0.99 the uniform susceptibility, which is a noncritical

FIG. 16. Specific heat versus t�T/JS̃2 for S�5/2. Mn-f-2U experiments
�squares�,100 EA-QHAF with ��0.9942 �solid line�,87,88 isotropic QHAF
�dashed line�. Note that the correct anisotropy for this compound is esti-
mated to be ��0.981. Error bars are due to the experimental uncertainly on
J for Mn-f-2U.

FIG. 17. Uniform susceptibility of the EA model for ��0.99 from quantum
Monte Carlo simulations.84 Filled diamonds: longitudinal branch; unfilled
diamonds: transverse branch; stars: data for the isotropic model.101 The lines
are a guide to the eye. The arrow indicates the estimated critical tempera-
ture.
quantity, undoubtedly shows a characteristic anisotropic be-
havior with a different temperature dependence of the trans-
verse and longitudinal branches: the former displays a mini-
mum and the latter monotonically goes to zero, as expected
for an EA antiferromagnet.

This behavior results from the anisotropy-induced spin
ordering, which makes the system more sensitive to the ap-
plication of a transverse magnetic field than a longitudinal
one. Both the minimum of the in-plane component and the
decrease of the longitudinal component are close to the tran-
sition, a feature also peculiar to the Ising model. Results for
the critical temperature at S�1/2 are already included in Fig.
14.

B. 2D antiferromagnet with easy-plane anisotropy

In the case of an easy-plane anisotropy the Mermin-
Wagner theorem still holds, so that no finite-temperature
transition to a phase with a finite order parameter may occur.
However, a BKT transition,102,103 related to the existence of
vortex-like topological excitations, is known to characterize
the class of the easy-plane models. The reference system for
the easy-plane class is the planar rotator model, or XY
model, defined in terms of two-component spins: above the
critical temperature tc the system is disordered, with expo-
nentially decaying correlation functions; in the region 0�t
�tc the system is in a critical phase with vanishing magne-
tization and power-law decaying correlators �quasi-long-
range order�; at t�0 the magnetization acquires a finite
value and the system is ordered.

The observation of clear signatures of BKT critical be-
havior in real magnets is a controversial issue. However, it
can explain the properties of several layered
compounds53,104–106 whose high-temperature phase can be
described by a purely 2D Heisenberg Hamiltonian, with an
exchange interaction often displaying weak EP anisotropies,
on the order of 10�2 – 10�4 times the dominant isotropic
coupling.105,106 Symmetry and universality arguments sug-
gest that the EP anisotropy drives the system towards a BKT
behavior at finite temperature, and the enhanced intraplane
correlations trigger the transition to the observed 3D ordered
state. As a consequence, 2D critical behavior in close prox-
imity of the would-be BKT transition is masked by these 3D
effects.

The EP-QHAF Hamiltonian reads

H�
J

2 �
i,d

�S i
xS i�d

x �S i
yS i�d

y ��S i
zS i�d

z � , �39�

where � is the easy-plane anisotropy parameter (0)��1).
Again, JS̃2�J(S�1/2)2 sets the overall energy scale and t

�T/JS̃2 is the reduced temperature. When ��1 the model
reduces to the isotropic QHAF. Note that a canonical trans-
formation reversing the x and y spin components of one
sublattice is equivalent to setting (J ,�)→(�J ,��), so that
negative values of � (�1��)0) correspond to the EP fer-
romagnet. The ��0 case is called the XY model or XX0
model. However, at variance with the planar rotator model,
out-of-plane fluctuations are present both in the classical and
in the quantum EP models. Nevertheless, if ����1, the clas-
sical EP model still undergoes a BKT phase transition.107
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Monte Carlo simulations of the classical systems108–111 con-
firm that the planar and the XXZ model share the same quali-
tative behavior, but the value of the transition temperature of
the planar model112 shrinks by 22% in the XX0 model110,111

�i.e., with ��0), as a consequence of out-of-plane fluctua-
tions. A renormalization group calculation107 predicts that the
transition temperature vanishes logarithmically as the isotro-
pic limit ���→1 is approached, and this was also verified in
classical MC simulations.110 Experiments53,54 and quantum
MC simulations113 indicated that the qualitative behavior of
the BKT transition is preserved in the quantum system, with
only quantitative modifications of the critical parameters due
to the quantum fluctuations.

We applied the effective Hamiltonian formalism65,66 to
the EP-QHAF, finding that it was necessary87,114 to resort to
the Villain or to the Holstein-Primakoff transformation, de-
pending on whether the anisotropy is strong or weak, respec-
tively. While the above approach gives reliable results �with
a smooth enough connection at intermediate anisotropy� for
spin S 1, we adopted quantum Monte Carlo
simulations84,88,115–117 in the case S�1/2. The effective
Hamiltonian87,114,118 for the EP-QHAF, in terms of classical
spins, takes the form

Heff

JS̃2
�

jeff

2
�
i,d

�s i
xs i�d

x �s i
ys i�d

y ��effs i
zs i�d

z � , �40�

and displays a weaker renormalized exchange jeff(t,�)�1 and
easy-plane anisotropy �eff(t,�)�� �an additional free-energy
term is not reported�. In analogy to the EA case, the BKT
transition temperature can be obtained by renormalization of
the classical one using the self-consistent relation

tc�� ,S �� jeff� t ,� ,S �tc
cl��eff� t ,� ,S ��. �41�

In Fig. 18, the phase diagram of the EP-QHAF is re-
ported, including the QMC results for S�1/2. It is seen that

FIG. 18. BKT critical temperature versus anisotropy � for the easy-plane
model with S�1/2,1,5/2,� . The triangles report the classical (S��) MC
data110 used to construct the curve for tc

cl(�) and hence the renormalized
curves for S�1 and 5/2, the curves obtained through the Holstein-Primakoff
(��0.5) and the Villain (�
0.5) spin-boson transformation, are seen to be
connected in a fairly smooth way. The diamonds are our QMC data84 for
S�1/2, while the circles are earlier QMC results.113 The inset expands the
nearly isotropic region, in which the expected logarithmic behavior tc(�)
�(a�ln�1���)�1 is fitted by the dashed curve.
the BKT transition temperature stays large �i.e., comparable
to the exchange constant� also for very weak EP anisotropy.

However, as explained above, the problem of detecting
the incipient BKT transition requires looking for signatures
of XY behavior in a region above the transition. We have
shown115 that a suitable quantity is the uniform susceptibility
�u

�� , which has in-plane (��x ,y) and out-of-plane (��z)
components and is noncritical, i.e., it does not show singu-
larities at tc . Figure 19 shows indeed that �u

zz deviates from
the isotropic �u and displays a minimum. A similar feature is
also present in other quantities84,115 and occurs around a tem-
perature tco(�) that can be generally defined as the minimum
of �u

zz(t ,�). The pronounced deviation of �u
zz from the iso-

tropic behavior is due to a simple statistical reason. The uni-
form susceptibility arises from spin canting: two antiferro-
magnetically coupled spins in an infinitesimal magnetic field
h minimize their energy when they are located almost or-
thogonally to h and slightly canted in its direction, thus giv-
ing a linear response; if they are locally parallel to h the
response is instead negligible. When for t
tco the anisot-
ropy becomes effective, the fraction of spins aligned in the
EP rapidly increases compared to that of the isotropic case
(�2/3), and the response to a field along z �i.e., �u

zz) is
proportionally larger.

The layered cuprate Sr2CuO2Cl2 is a good realization53

of the EP-QHAF model, with J�1450 K; considering the
spin-wave gap renormalization, its bare anisotropy is esti-
mated to be 1���0.0014. Experimental data for the uni-
form susceptibility of this compound119,120 are reported in
Fig. 19. They agree excellently with our results for �
�0.999: the position of the minimum of �u

zz gives tco

�0.227(15). Close to the critical region the experimental
data are affected by the 3D nature of the ordering of the real
magnet: the Néel transition is observed at tN�0.176(10) and
compares well with the theoretical estimate tc(1��
�0.0014)�0.179(10), confirming that 3D ordering is in-
duced by the incipient intralayer BKT transition.

It is worthwhile to mention that in the triangular lattice
the easy-plane antiferromagnet has very peculiar behavior,
already at the classical level, due to the frustration effect of
accommodating three antiferromagnetic spins on a plaquette.
Indeed, the minimum energy corresponds to a configuration

FIG. 19. Out-of-plane (zz) and in-plane (xx) uniform susceptibility �u for
��0.999. Diamonds are our QMC results; crosses are experimental
data119,120 for Sr2CuO2Cl2 . The circles report the result for the isotropic
QHAF. The vertical lines mark the 3D transition temperature tc�0.176 and
the crossover temperature tco�0.227.
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with the three sublattices aligned in the easy plane at equal
angles 2�/3. As clockwise and counterclockwise plaquette
vorticities are possible, this configuration is twofold degen-
erate and there is chiral symmetry which corresponds to an
Ising-like order parameter. Therefore both a BKT and an
Ising transition coexist in the system. We have studied the
triangular antiferromagnet both in the classical121 and in the
quantum122 case, constructing the phase diagram for varying
anisotropy and showing that the transitions occur at slightly
different temperatures.

C. 2D antiferromagnet in an applied Zeeman field

Interesting behavior is shown by the 2D Heisenberg an-
tiferromagnet when a magnetic field is applied. Indeed, a
frustration phenomenon occurs, as antiferromagnetism tends
to antialign spins while the field tends to align them with
itself: in the classical system123 it appears that the minimum-
energy configuration is the one with the spins almost or-
thogonal to the field and canted in its direction. Therefore,
provided the field is not strong enough to overcome the ex-
change and to saturate the magnetization, it acts as an effec-
tive easy-plane anisotropy, and one expects to observe BKT
behavior. Remarkably, as this can be induced in a real
quasi-2D antiferromagnetic system by means of an applied
field, the strength of the effective anisotropy is in this case
tunable. Even though 2D criticality just acts as a trigger for
3D ordering, by observing that the critical temperature fol-
lows the predicted behavior with field, an experiment could
realize an objective observation of genuine 2D behavior.

The 2D QHAF in a uniform magnetic field is described
by the Hamiltonian

H�
J

2 �
i,d

Si•Si�d�g�BH•�
i

Si
z , �42�

where H is the applied Zeeman field, �B is the Bohr mag-
neton, and g is the gyromagnetic ratio.

We have studied124,125 the S�1/2 2D QHAF in an uni-
form magnetic field by means of the QMC method based on
the worm algorithm. Our results confirmed that an arbitrarily
small field is able to induce a BKT transition and an ex-
tended XY phase above it, as in the case of an easy-plane
exchange anisotropy. The field-induced XY behavior be-
comes more and more marked for increasing fields, while for
strong fields the antiferromagnetic behavior along the field
axis is nearly washed out, so that the system behaves as a
planar rotator model with antiferromagnetism surviving in
the orthogonal plane only; the BKT critical temperature, as
reported in Fig. 20 �where t�T/J and h�2g�BH/J), van-
ishes as the field reaches the saturation value hc and the
effective rotator length goes to zero. We have therefore
shown that the model in a moderately strong field represents
an ideal realization of the XY model and that XY behavior
can be detected by measuring standard noncritical quantities,
such as the specific heat or the induced magnetization. An
experimental realization of the XY model in purely magnetic
systems and a systematic investigation of the dynamics of
vortex/antivortex excitations is therefore possible.
VI. FRUSTRATION IN THE 2D QUANTUM J1 – J2

HEISENBERG MODEL

The study of frustrated quantum spin systems is one of
the most challenging and exciting topics in theoretical mag-
netism because of the possible existence of a nonmagnetic
zero-temperature phase. A very extensively investigated, yet
largely debated model is the so-called J1 – J2 Heisenberg
model with competing antiferromagnetic couplings (J1 ,J2

�0) between nearest neighbors �nn� and next-nearest neigh-
bors �nnn�

H�J1�
nn

Si•Sj�J2�
nnn

Si•Sj , �43�

where the spin operators are defined on a periodic lattice
with N�L�L sites; hereafter ��J2 /J1 defines the frustra-
tion ratio.

In the classical limit (S→�) the minimum energy con-
figuration has conventional Néel order with magnetic wave
vector Q�(� ,�) for ��0.5. Instead, for ��0.5, the anti-
ferromagnetic order is established independently in the two
sublattices, with the two staggered magnetizations free to
rotate with respect to each other. One of the two families of
collinear states, with pitch vectors Q�(� ,0) or �0,��, are
selected by an order-by-disorder mechanism as soon as ther-
mal or quantum fluctuations are taken into account. As a
result, for ��0.5 the classical ground state breaks not only
the spin rotational and translational invariance of the
Hamiltonian—as the conventional Néel phase—but also its
invariance under �/2 lattice rotations, the resulting degen-
eracy corresponding to the group O(3)�Z2 . Remarkably,
the additional discrete Z2 symmetry can, in principle, be bro-
ken at finite temperatures without violating the Mermin-
Wagner theorem. On this basis, in a seminal paper,127 Chan-
dra, Coleman, and Larkin �CCL� proposed that the 2D J1 – J2

model could sustain an Ising phase transition at finite tem-
perature, with an order parameter directly related to the Z2

degree of freedom induced by frustration. They also pro-
vided quantitative estimates of the critical temperatures in
the large-� limit for both the classical and the quantum
cases.

This transition in the classical model has been estab-
lished by an extensive Monte Carlo investigation.128 In the
quantum case, the occurrence of a low-temperature phase

FIG. 20. Phase diagram of the S�1/2 2D QHAF in a magnetic field. Un-
filled symbols refer to the classical limit of the model;123 the triangle126 and
the squares124 are QMC results.
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with a discrete broken symmetry has been the subject of
debates in connection with the discovery of three vanadate
compounds (Li2VOSiO4 , Li2VOGeO4 , and VOMoO4)
whose relevant magnetic interactions involve nearest and
next-nearest spin-1/2 V4� ions on weakly coupled stacked
planes. In particular, NMR and �SR measurements on
Li2VOSiO4 �Ref. 129� indicate the occurrence of a transition
to a low-temperature phase with collinear order at TN

�2.8 K. However, in the experiments with vanadate com-
pounds, structural distortions and interlayer and anisotropy
effects are likely to come into play,130 and on the other hand
the theoretical investigation cannot rely on the insight pro-
vided by quantum Monte Carlo methods, as their reliability
in the presence of frustration is strongly limited �see the re-
view articles in Refs. 131 and 132�.

A complete study of the thermodynamic properties of the
quantum J1 – J2 model in its collinear phase has been pur-
sued within the PQSCHA scheme65 described in Sec. 4, by
which the thermodynamics is rephrased in terms of a classi-
cal effective Hamiltonian with renormalized parameters de-
pending on the spin value, temperature, and frustration. It is
possible to show that, to O(1/S), the effective Hamiltonian
can be recast in a form preserving all the symmetries of the
original model, and that reads �except for uniform terms�:

Heff�J1
effS̃2�

nn
si•sj�J2

effS̃2�
nnn

si•sj , �44�

where si are classical vectors of length 1, S̃�S�1/2 is the
effective spin length, and J1

eff�('x
2�'y

2)'2
2J1/2 and J2

eff�'2
4J2

are the quantum-renormalized exchange integrals, with spin-,
temperature-, and frustration-dependent renormalization pa-
rameters 'x , 'y , and '2 .

The occurrence of the transition127 in the quantum case
can be directly addressed within our approach by calculating
the critical temperatures as functions of the spin and of the
frustration ratio.133 Using a simple scaling argument, one can
relate the critical temperatures in the quantum case Tc(S ,�)
to those of the classical model Tc

cl(�) through the following
self-consistent relation:87,122

Tc�S ,��� j1
eff�T ,S ,��Tc

cl��eff�Tc ,S ,���, �45�

where j1
eff�J1

effS̃2/J1 and �eff�J2
eff/J1

eff . The classical transition
temperature, Tc

cl(�) is accurately known through extensive
MC simulations for �)2; it vanishes for �→2 and grows
more or less linearly for ��1.

The behavior of the transition temperature versus frus-
tration ratio is plotted in Fig. 21 for different values of the
spin length. In order to represent the whole interval of �
��1/2,�� , in Fig. 21 we have plotted both the MC and the
CCL estimates of the classical critical temperatures as a
function of �/(1��). The mismatch between the MC and
CCL predictions is a minor flaw that can be corrected by
slightly modifying CCL’s criterion for the determination of
the transition temperature, as explained in Ref. 128. Remark-
ably, while for large � the transition temperature vanishes for
�→� for any value of the spin, in the opposite limit the
critical temperatures vanish on approaching a critical value
�c�0.5 that increases as S decreases, thus confirming the
existence of a nonmagnetic phase in the regime of high frus-
tration. In particular for S�1/2, �c�0.6, in agreement with
the previous estimates of the zero-temperature quantum criti-
cal point.132

VII. CONCLUSIONS

The activity in magnetism of the Condensed Matter
Theory group in Florence134 stems from the early work on
two-magnon Raman scattering in the seventies, and has
grown up over the years with the collaboration of several
scientists. In this paper we summarize the relevant theoreti-
cal work that concerns antiferromagnetic models. This activ-
ity has been mainly concentrated on low-dimensional sys-
tems and has found one of its main motivations in the intent
of interpreting the data collected in experiments on real ma-
terials. Among the prominent subjects, we have reported
about soliton-excitation effects in one-dimensional systems
and critical and near-critical behavior and phase transitions
in two-dimensional systems. Besides that, we have also ad-
dressed some intriguing theoretical problems where funda-
mental aspects of quantum mchanics come into play, as, e.g.,
the ground state of antiferromagnetic chains with integer
spin or the possible quantum critical regime predicted from
the field-theory treatment of the two-dimensional antiferro-
magnetic Heisenberg model.
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The idea of quantum state storage is generalized to describe the coherent transfer of quantum
information through a coherent data bus. In this universal framework, we comprehensively
review our recent systematical investigations to explore the possibility of implementing the
physical processes of quantum information storage and state transfer by using quantum
spin systems, which may be an isotropic antiferromagnetic spin ladder system or a ferromagnetic
Heisenberg spin chain. Our studies emphasize the physical mechanisms and the fundamental
problems behind the various protocols for the storage and transfer of quantum information in solid
state systems. © 2005 American Institute of Physics. �DOI: 10.1063/1.2008129�
I. INTRODUCTION

The current development of quantum information sci-
ence and technology demands optimal systems serving as
long-lived quantum memories, through which the quantum
information carried by a quantum system with short decoher-
ence time can be coherently transferred.1 In this sense a
quantum channel or a quantum data bus is needed for perfect
transmission of quantum states. In this article, we will dem-
onstrate that both the quantum information storage and the
quantum state transfer can be uniquely described in a univer-
sal framework.

There exist some schemes2–5 concerning the quantum
storage of photon states, and there are also some efforts de-
voted to the universal quantum storage for a qubit �a basic
two-level system� state, which is necessary in quantum com-
putation. For example, most recently an interesting
protocol6–8 was presented to reversibly map the electronic
spin state onto the collective spin state of the surrounding
nuclei. Because of the long decoherence time of the nuclear
spins, the information stored in them can be robustly pre-
served. It was found that,9 only under two homogeneous con-
ditions with low excitations, such many-nuclei system ap-
proximately behaves as a single-mode boson to serve as an
efficient quantum memory.

The low-excitation condition requires a ground state
with all spins oriented, which can be prepared by applying a
magnetic field polarizing all spins along the same direction.
With the concept of spontaneous symmetry breaking �SSB�,
one can recognize that a ferromagnetic Heisenberg spin
chain usually has a spontaneous magnetization, which natu-
rally offers a ground state of this kind. In event of SSB, the
intrinsic interaction between spins will strongly correlate
with the nuclei to form the magnon, a collective mode of
spin wave, even without any external magnetic field. With
these considerations, Wang, Li, Song, and Sun10 explored the
possibility of using a ferromagnetic quantum spin system,
instead of the free nuclear ensemble, to serve as a robust
6861063-777X/2005/31(8–9)/9/$26.00
quantum memory. A protocol was presented to implement a
quantum storage element for the electronic spin state in a
ring array of interacting nuclei. Under appropriate control of
both the electron and the external magnetic field, an arbitrary
quantum state of the electronic spin qubit, either a pure or a
mixed state, can be coherently stored in the nuclear spin
wave and then read out in the reverse process.

On the other hand, designed for a more realistic quantum
computing, a scalable architecture of quantum network
should be based on the solid state system.11,12 However, the
intrinsic feature of solid state based channels, such as the
finiteness of the correlation13,14 and the environment induced
noise �especially the low-frequency noise� may block this
scalability. Fortunately, analytical study shows that a spin
system possessing a commensurate structure of energy spec-
trum matched with the corresponding parity can ensure the
perfect state transfer.15–17 Based on this fact, an isotropic
antiferromagnetic spin ladder system can be pre-engineered
as a novel robust kind of quantum data bus.18 Because the
effective coupling strength between the two spins connected
to a spin ladder is inversely proportional to the distance of
the two spins, the quantum information can be transferred
between the two spins separated by a longer distance. An-
other example of the near-perfect transfer of quantum infor-
mation was given to illustrate an application of the theorem.
The proposed protocol of such near-perfect quantum state
transfer utilizes a ferromagnetic Heisenberg chain with uni-
form coupling constant but in an external parabolic magnetic
field.17

The present paper will give a broad overview of the
present situation of the our investigations mentioned above
on quantum state storage and quantum information coherent
transfer based on quantum spin systems. We will understand
the physical mechanisms and the fundamental problems be-
hind these protocols in the view of a unified conception, the
generalized quantum information storage.
© 2005 American Institute of Physics
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II. GENERALIZED QUANTUM STORAGE AS A DYNAMIC
PROCESS

For the dynamic process recording and reading quantum
information carried by quantum states, we first describe the
idea of generalized quantum storage, which was also intro-
duced in association with the Berry’s phase factor.19 Let M
be a quantum memory possessing a subspace spanned by
�M n� (n�1,2, . . . ,d , �M n�M m���nm), which can store the
quantum information of a system S with basis vectors �Sn� ,
n�1,2, . . . ,d . If there exists a controlled time evolution in-
terpolating between the initial state �Sn� � �M � and the final
state �S� � �M n� for each index n and arbitrarily given states
�S� and �M � , we define the usual quantum storage by using a
factorized evolution of time Tm

���Tm���U�Tm����0 ����S� � �M n� , �1�

starting from the initial state ��(0)���Sn� � �M � . The cor-
responding readout process is an inverse evolution of time T f

(�Tm)

���T f ���U�T f ����0 ����Sn� � �M � . �2�

In this sense, writing an arbitrary state �S(0)��	ncn�Sn� of
S into M with the initial state �M � of quantum memory can
be realized as a controlled evolution from time t�0 to
t�Tm

	
n

cn�Sn� � �M �→�S� � 	
n

cn�M n� . �3�

The readout process from M is another controlled evolution
from time t�Tm to t�T f :

�S� � 	
n

cn�M n�→	
n

cn�Sn� � �M � . �4�

Obviously, the combination of these two processes forms a
cyclic evolution in which a state totally returns to the initial
one.

However, in the view of the decoding approach, one
does not need ‘‘totally return’’ to revive the information of
initial state, and a difference is allowed by the n-independent
unitary transformation W�WS � 1, namely,

�S� � WM	
n

cn�M n�→(WS	
n

cn�Sn�) � �M � . �5�

This is a quantum dynamic process �QDP� for recording and
reading, which defines a quantum storage. Because the factor
WS is known to be independent of the initial state, it can be
easily decoded from WS	ncn�Sn� by the inverse transforma-
tion of WS . We notice that the quantum storage usually re-
lates to two quantum subsystems.

We will show as follows that the quantum state transfer
can be understood as a generalized quantum storage with
three subsystems, the input one with the Hilbert space SA,
the data bus with D , and the output one with SB. As illus-
trated in Fig. 1, the two subsystems SA and SB are located at
two distant locations A and B , respectively. Then the Hilbert
space of the total system can be written as

ST�SA
� D � SB
SA

� M , �6�

where M�D � SB can be regarded as the generalized quan-
tum memory with the memory space spanned by �M n�
��D��UB�Sn
B�. Here �D� is a robust state of the data bus and

UB represents some local unitary transformations with re-
spect to B , which are independent of the initial state. With
this notation, the quantum state transfer indeed can be re-
garded as a generalized QDP.

In fact, if one inputs a state of �SA��	ncn�Sn
A� localized

at A at t�0, the initial state of whole system can be written
as

���0 ���	
n

cn�Sn
A� � �M � , �7�

where �M ���D� � UB�SB� . The quantum state transfer can
be usually described as a factorized time evolution at time
t�T f

���T f ����S� � �D� � 	
n

cnUB�Sn
B���S� � 	

n
cn�M n�

�8�

with �M n���D� � UB�Sn
B� . The above equations just demon-

strate that the quantum state transfer is essentially a general-
ized quantum memory with WM�(1 � UB). In this sense the
revisable quantum state transfer can be regarded as a general
readout process.

Now we would like to remark on the differences be-
tween generalized quantum state storage and other two types
of quantum processes, quantum teleportation and quantum
copy. In fact, quantum teleportation is theoretically perfect,
yielding an output state which revives the input with a fidel-
ity F�1. Actually one of necessary procedure in teleporta-
tion is to measure the Bell state at location A , which will
induce wave packet collapse. On the other way around, the
quantum state storage process is always on time evolution
without any measurement. As for quantum copy the initial
state remains unchanged during its copy and can be gener-
ated in a dynamic process.

III. QUANTUM STATE TRANSFER IN SPIN SYSTEMS

A robust quantum information processing based on solid
state system is usually implemented in a working space
spanned by the lowest states, which are well separated from
other dense spectra of high excitations. In this sense the en-
ergy gap of the solid state system is an important factor we
should take into account. The decoherence induced by the

FIG. 1. Demonstration of quantum state transfer as a process of generalized
quantum information storage by grouping the data bus D and the target
subsystem SB as a generalized quantum memory.
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environmental noise can also destroy the robustness of quan-
tum information processing, such as the low-frequency �e.g.,
1/f ) noise prevalent in solid state devices.

People believe that the gap of the data bus can suppress
the stay of transferred state in the middle way in order to
enhance the fidelity, but the large gap may result in a shorter
correlation length. The relationship between correlation
length and the energy gap is usually established in the system
with translational symmetry. So we need to consider some
modulated-coupling systems or artificially engineered irregu-
lar quantum spin systems where the strong correlation be-
tween two distant site can be realized.

A. Theorem for the perfect quantum state transfer

Quantum mechanics shows that perfect state transfer is
possible. To sketch our central idea, let us first consider a
single-particle system with the usual spatial reflection sym-
metry �SRS� in the Hamiltonian H . Let P be the spatial
reflection operator. The SRS is implied by �H ,P��0. Now
we prove that at time �/E0 any state ��r� can evolve into the
reflected state ��(�r) if the eigenvalues 
n match the pari-
ties pn in the following way:


n�NnE0 ,pn����1 �Nn �9�

for arbitrary positive integer Nn and

H�n�r��
n�n�r�, P�n�r��pn�n�r�. �10�

Here �n(r) is the common eigen wave function of H and P ,
r is the position of the particle. We call Eq. �9� the spectrum-
parity matching condition �SPMC�. The proof of the above
rigorous conclusion is a simple but heuristic exercise in basic
quantum mechanics. In fact, for the spatial reflection opera-
tor, P�(r)���(�r). For an arbitrarily given state at t
�0, �(r,t)� t�0 , it evolves to

��r,t ��exp��iHt ���r��	
n

Cn exp��iNnE0t ��n�r�

�11�

at time t , where Cn���n��� . Then at time t��/E0 , we
have

�� r,
�

E0
��	

n
Cn��1 �Nn�n�r���P��r� �12�

that is �(r,�/E0)���(�r). This is just the central result20

discovered for quantum spin system that the evolution opera-
tor becomes a parity operator �P at some instant t�(2n
�1)�/E0 , that is exp(�iH�/E0)��P. From the above ar-
guments we have the consequence that if the eigenvalues

n�NnE0 of a 1D Hamiltonian H with spatial reflection
symmetry are odd-number spaced, i.e., Nn�Nn�1 are always
odd, any initial state �(x) can evolve into ��(�x) at time
t��/E0 . In fact, for such 1D systems, the discrete states
alternate between even and odd parities. Consider the odd-
number-spaced eigenvalues 
n�NnE0 . The next-nearest
level must be even-number spaced; then the SPMC is satis-
fied. Obviously, the 1D SPMC is more realizable for the
construction of the model Hamiltonian to perform perfect
state transfer.

Now, we can directly generalize the above analysis to
many particle systems. For the quantum spin chain, one can
identify the above SRS as the middle inversion of spins with
respect to the center of the quantum spin chain. As the dis-
cussion in Ref. 20, we write spin inversion operation

P��s1 ,s2 ,. . . ,sN�1 ,sN����sN ,sN�1 ,. . . ,s2 ,s1� �13�

for the wave function �(s1 ,s2 ,. . . ,sN�1 ,sN) of the spin
chain. Here, sn�0,1 denotes the spin values of the nth qubit.

B. Perfect state transfer in modulated coupling system

Based on the above analysis, in principle, perfect quan-
tum state transfer is possible in the framework of quantum
mechanics. According to SPMC, many spin systems can be
pre-engineered for perfect quantum states transfer. For in-
stance, two-site spin-1/2 Heisenberg system is the simplest
example which meets the SPMC. Recently, Christandl
et al.15,16 proposed an N-site XY chain with an elaborately
designed modulated coupling constants between two nearest-
neighbor sites, which ensures a perfect state transfer. It is
easy to find that this model corresponds the SPMC for the
simplest case Nn�n . A natural extension of the application
of the theorem leads to discover other models with Nn�n .
Following this idea, a new class of different models whose
spectrum structures obey the SPMC exactly were proposed
for perfect state transfer. Consider an N-site spin-1/2 XY
chain with the Hamiltonian

H�2 	
i�1

N�1

Ji�Si
xSi�1

x �Si
ySi�1

y � , �14�

where Si
x , Si

y , and Si
z are Pauli matrices for the ith site, and

Ji is the coupling strength for the nearest-neighbor interac-
tion. For the open boundary condition, this model is equiva-
lent to the spinless fermion model. The equivalent Hamil-
tonian can be written as

H� 	
i�1

N�1

Ji
�k�ai

†ai�1�h.c., �15�

where ai
† , ai are the fermion operators. This describes a

simple hopping process in the lattice. According to the
SPMC, we can present different models �labeled by different
positive integer k�0,1,2,.. .) through pre-engineering of the
coupling strength as Ji�Ji

[k]��i(N�i) for even i and Ji

�Ji
[k]��(i�2k)(N�i�2k) for odd i . By a straightfor-

ward calculation, one can find the k-dependent spectrum 
n

��N�2(n�k)�1 for n�1,2,.. . ,N/2, and 
n��N�2(n
�k)�1 for n�N/2�1,.. . ,N . The corresponding
k-dependent eigenstates are

��n��	
i�1

N

cni�i��	
i�1

N

cniai
†�0�, �16�

where the coefficients cni can be explicitly determined by the
recurrence relation presented in Ref. 18.

It is obvious that the model proposed in Ref. 15 is just
the special case of our general model with k�0. For arbi-
trary k , one can easily check that it meets the our SPMC by
a straightforward calculation. Thus we can conclude that
these spin systems with a set of pre-engineered couplings
Ji

[k] can serve as the perfect quantum channels that allow the
qubit information transfer.
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C. Near-perfect state transfer

In real many-body systems, the dimension of the Hilbert
space increases exponentially with the size N . For example,
for an N-site spin-1/2 system the dimension is D�2N, and
the symmetry of the Hamiltonian cannot help so much. So it
is almost impossible to obtain a model to be exactly engi-
neered. In the above arguments we just show the possibility
to implement the perfect state transfer of any quantum state
over arbitrary long distances in a quantum spin chain. It
sheds light into the investigation of near-perfect quantum
state transfer. There is a naive way that one selects some
special states to be transported, which is a coherent superpo-
sition of commensurate part of the whole set of eigenstates.

For example, we consider a truncated Gaussian wave
packet for an anharmonic oscillator with lower eigenstates to
be harmonic. It is obvious that such system allows some
special states to transfer with high fidelity. We can imple-
ment such approximate harmonic system in a natural spin
chain without the pre-engineering of couplings but in the
presence of a modulated external field. Another way to real-
ize near perfect state transfer is to achieve the entangled
states and fast quantum states transfer of two spin qubits by
connecting two spins to a medium which possesses a spin
gap. A perturbation method, the Fröhlich transformation,
shows that the interaction between the two spins can be
mapped to the Heisenberg type coupling.

Spin ladder. We sketch our idea with the model illus-
trated in Fig. 2. The whole quantum system we consider here
consists of two qubits (A and B) and a 2�N-site two-leg
spin ladder. In practice, this system can be realized by an
engineered array of quantum dots.21 The total Hamiltonian
H�Hm�Hq contains two parts, the medium Hamiltonian

HM�J 	
�i j��

Si•Sj�J 	
�i j��

Si•Sj �17�

describing the spin-1/2 Heisenberg spin ladder consisting of
two coupled chains, and the coupling Hamiltonian

Hq�J0S�•SL�J0SB•SR �18�

describing the connections between qubits A , B and the lad-
der. In the term HM , i denotes a lattice site on which one
electron sits, �i j�� denotes nearest-neighbor sites on the

FIG. 2. Two qubits A and B connect to a 2�N-site spin ladder. The ground
state of H with a-type connection �a� is singlet �triplet� when N is even
�odd�, while for the b-type connection �b�, one should have the opposite
result.
same rung, and �i j� � denotes nearest neighbors on either leg
of the ladder. In the term Hq , L and R denote the sites
connecting to the qubits A and B at the ends of the ladder.
There are two types of connection between SA (SB) and the
ladder, which are illustrated in Fig. 2. According to Lieb’s
theorem,22 the spin of the ground state of H with the con-
nection of type a is zero �one� when N is even �odd�, while
for the connection of type b , one should have the opposite
result. For the two-leg spin ladder HM , analytical analysis
and numerical results have shown that the ground state and
the first excited state of the spin ladder have spin 0 and 1,
respectively.13,14 It is also shown that there exists a finite spin
gap ��E1

M�Eg
M�J/2 between the ground state and the first

excited state �see Fig. 3�. This fact has been verified by
experiments13 and is very crucial for our present investiga-
tion.

Thus, it can be concluded that the medium can be ro-
bustly frozen to its ground state to induce the effective
Hamiltonian Heff�JeffSA•SB between the two end qubits.
With the effective coupling constant Jeff to be calculated in
the following, this Hamiltonian depicts the direct exchange
coupling between two separated qubits. As the famous Bell
states, Heff has singlet and triplet eigenstates � j ,m�AB :
�0,0��1/&(�↑�A�↓�B��↓�A�↑�B) and �1,1���↑�A�↑�B , �1,
�1���↓�A�↓�B , �1,0��1/&(�↑�A�↓�B��↓�A�↑�B), which
can be used as a channel to share entanglement for a perfect
quantum communication in a longer distance.

The above central conclusion can be proved with both
analytical and numerical methods as follows. To deduce the
above effective Hamiltonian we use ��g�M (����M) and Eg

(E�) to denote ground �excited� states of HM and the corre-
sponding eigenvalues. The zero-order eigenstates �m� can
then be written in a joint way as

� j ,m�g�� j ,m�AB � ��g�M ,

���
jm�sz���� j ,m�AB � ����M . �19�

Here we have considered that the z component Sz�SM
z

�SA
z �SB

z of the total spin is conserved with respect to the
connection Hamiltonian Hq . Since SM

z and SM
2 commute

with HM , we can label ��g�M as ��g(sM ,sM
z )�M , and then

sz�m�sM
z can characterize the non-coupling spin state

���
jm(sz)� .

FIG. 3. Schematic illustration of the energy levels of the system. When the
connections between two qubits and the medium are switched off (J0

�0), the ground states are degenerate �a�. When J0 switches on, the ground
state�s� and the first excited state�s� are either singlet or triplet. This is
approximately equivalent to that of two coupled spins �b�, �c�.
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When the connections between the two qubits and the
medium are switched off, i.e., J0�0, the degenerate ground
states of H are just � j ,m�g with the degenerate energy Eg and
spin 0, 1, respectively, which is illustrated in Fig. 3a. When
the connections between the two qubits and the medium are
switched on, the degenerate states with spin 0,1 �Ref. 23�
should split as illustrated in Fig. 3b, c. In the case with J0

�J at lower temperature kT�J/2, the medium can be frozen
to its ground state, and then we have the effective Hamil-
tonian

Heff � 	
j�,m�, j ,m ,sz

�g� j ,m�Hq�� �
j�m��sz���2

Eg�E�
� j ,m�gg� j ,m�

�Jeff .Diag.� 1

4
,
1

4
,
1

4
,�

3

4 ��
 �20�

where

Jeff�	
�

J0
2�L���R*����R���L*����

Eg�E�
,


�	
�

3J0
2� �L����2��R����2�

4�Eg�E��
. �21�

This just proves the above effective Heisenberg Hamiltonian
�5�. Here the matrix elements of interaction K(�)
�M��g�SK

z ���(1,0)�M (K�S ,L) can be calculated only for
the variables of the data bus medium. We also remark that,
because Sz and S2 are conserved for Hq , the off-diagonal
elements in the above effective Hamiltonian vanish.

To sum up so far, we have shown that at lower tempera-
ture kT�J/2, H can be mapped to the effective Hamiltonian
Heff , which seemingly depicts the direct exchange coupling
between two separated qubits. Notice that the coupling
strength has the form Jeff�g(L)J0

2/J, where g(L) is a function
of L�N�1, the distance between the two qubits concerned.
Here we take the N�2 case as an example. According to Eq.
�21� one can get Jeff��(1/4)J0

2/J and (1/3)J0
2/J when A and

B connect the plaquette diagonally and adjacently, respec-
tively. This result is in agreement with the theorem22 about
the ground state and the numerical result when J0�J . In
general cases, the behavior of g(L) versus L is very crucial
for quantum information since L/�Jeff� determines the char-
acteristic time of quantum state transfer between the two
qubits A and B . In order to investigate the profile of g(L), a
numerical calculation is performed for the systems L
�4,5,6,7,8,10, with J�10,20,40 and J0�1. The spin gap�s�
between the ground state�s� and first excited state�s� is �are�
calculated, corresponding to the magnitude of Jeff . The nu-
merical result is plotted in Fig. 4, which indicates that Jeff

�1/(LJ). It implies that the characteristic time of quantum
state transfer linearly depends on the distance and then guar-
antees the possibility of realizing the entanglement of two
separated qubits in practice.

In order to verify the validity of the effective Hamil-
tonian Heff , we need to compare the eigenstates of Heff with
those reduced states from the eigenstates of the whole sys-
tem. In general the eigenstates of H can be written formally
as
����	
jm

c jm� j ,m�AB � �� jm�M �22�

where ��� jm�M� is a set of vectors of the data bus, which is
not necessarily orthogonal. Then we have the condition
	 jm�c jm�M

2 �� jm�� jm�M�1 for normalization of ���. In this
sense the practical description of the A – B subsystem of two
quits can only be given by the reduced density matrix

�AB�TrM� ��������	
jm

�c jm�2� j ,m�AB� j ,m�

� 	
j�m�� jm

c j�m�
* c jmM�� j�m��� j ,m�M� j ,m�AB� j�,m��

�23�

where TrM means the trace over the variables of the medium.
By a straightforward calculation we have

�c11�2��c1�1�2� � ��� 1

4
�SA

z
•SB

z � �� � ,

�c00�2� � ��� 1

4
�SA•SB� �� � , �24�

�c10�2�1�2�c11�2��c00�2.

Now we need a criterion to judge how close the practical
reduced eigenstate is to the pure state for the effective two-
site coupling Heff . As we noticed, it has the singlet and trip-
let eigenstates � j ,m�AB in the subspace spanned by �0,0�AB

with Sz�SA
z �SB

z �0, we have �c11�2��c10�2��c1�1�2�0,
�c00�2�1; for the triplet eigenstate �1,0�AB we have �c11�2

��c1�1�2��c00�2�0, �c10�2�1. With the practical Hamil-
tonian H , the values of �c jm�2, i�1,2,3,4 are calculated nu-
merically for the ground state ��g� and first excited state
��1� of finite system�s� L�4,5,6,7,8,10 with J�10,20,40
(J0�1) in the Sz�0 subspace, which are listed in the Table
1a, b, c of Ref. 17. It shows that, at lower temperature, the
realistic interaction leads to results for �c jm�2 which are very
close to that described by Heff , even if J is not so large in
comparison with J0 .

FIG. 4. The spin gaps obtained by numerical method for the systems L
�4,5,6,7,8,10 with J�10,20,40 and J0�1 are plotted, corresponding to the
magnitude of Jeff . It indicates that Jeff�1/(LJ).
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We assert that the above tables reflect all the facts dis-
tinguishing the difference between the results about the en-
tanglement of two end qubits generated by Heff and H .
Though we have ignored the off-diagonal terms in the re-
duced density matrix, the calculation of the fidelity
F(� j ,m�)
M� j ,m��AB� j ,m�M��c jm�2 further confirms our
observation that the effective Heisenberg type interaction of
two end qubits can approximate the realistic Hamiltonian
very well. Then the quantum information can be transferred
between the two ends of the 2�N-site two-leg spin ladder,
that can be regarded as the channel to share entanglement
with separated Alice and Bob. Physically, this is just due to a
large spin gap existing in such a perfect medium, whose
ground state can induce a maximal entanglement of the two
end qubits. We also pointed out that our analysis is appli-
cable for other types of medium systems as data buses,
which possess a finite spin gap. Since L/�Jeff� determines the
characteristic time of quantum state transfer between the two
qubits, the dependence of Jeff upon L becomes important and
relies on the appropriate choice of the medium.

In conclusion, we have presented and studied in detail a
protocol for quantum state transfer. Numerical results show
that the isotropic antiferromagnetic spin ladder system is a
perfect medium through which the interaction between two
separated spins is very close to the Heisenberg type of cou-
pling, with a coupling constant inversely proportional to the
distance, even if the spin gap is not so large compared to the
couplings between the input and output spins and the me-
dium.

Spin chain in modulated external magnetic field. Let us
consider the Hamiltonian of a (2N�1)-site spin-1/2 ferro-
magnetic Heisenberg chain

H��J	
i�1

2N

Si•Si�1� 	
i�1

2N�1

B� i �Si
z �25�

with the uniform coupling strength �J�0, but in the para-
bolic magnetic field

B� i ��2B0� i�N�1 �2 �26�

where B0 is a constant. In single-excitation invariant sub-
space with the fixed z component of the total spin, Sz�N
�1/2, this model is equivalent to the spinless fermion hop-
ping model with the Hamiltonian

H��
J

2 	
i�1

2N

�ai
†ai�1�h.c.��

1

2 	
i�1

2N�1

B� i �ai
†ai �27�

where for simplicity we have neglected a constant in the
Hamiltonian. For the single-particle case with the basis set

��n���0,0,.. . ,1n�th,0,. . .� ,n�1,2,.. .�, which is just the same
as that of the Hamiltonian of a Josephson junction in the
Cooper-pair number basis24 for EJ�J , Ec�2B0 , analytical
analysis and numerical results have shown that the lower
energy spectrum is indeed quasi-harmonic in the case EJ

	Ec �Ref. 24�. Although the eigenstates of the Hamiltonian
�25� do not satisfy the SPMC precisely, especially in the
high-energy range, there must exist some Gaussian wave
packet states expanded by the lower eigenstates. This kind of
state can be transferred with high fidelity.
We consider a Gaussian wave packet at t�0, x�NA as
the initial state

���NA,0���C 	
i�1

2N�1

exp� �
1

2
�2� i�NA�1 �2� �i� �28�

where �i� denotes the state with 2N spins in the down state
and only the ith spin in the up state, and C is the normaliza-
tion factor. The coefficient �2�4 ln 2/�2 is determined by
the width � of the Gaussian wave packet. The state ��(0)�
evolves to ��(t)��exp(�iHt)��(NA,0)� at time t , and the
fidelity for the state ��(0)� transferring to the position NB is
defined as

F� t ������NB,0��exp��iHt ����NA,0���. �29�

In Fig. 5 the evolution of the state ��(0)� is illustrated sche-
matically. From the investigation of Ref. 25, we know that
for small NA��NB��x0 , where NB is the mirror counter-
part of NA , but in the large � limit, if we take B0

�8(ln 2/�2)2, F(t) has the form

F� t ��exp��
1

2
�2NA

2 � 1�cos
2t

�2� 	 �30�

which is a periodic function of t with the period T��2� and
has maximum of 1. This is in agreement with our above
analysis. However, in quantum communication, what we are
concerned with is the behavior of F(t) in the case of the
transfer distance L	� , where L�2�NA��2�NB�. For this
purpose the numerical method is performed for the case L
�500, ��2,4,6 and B0�8(ln 2�2)2�. The factor � deter-
mines the maximum fidelity, and then the optimal field dis-
tribution can be obtained numerically. In Fig. 2a, b, c of Ref.
18 the functions F(t) are plotted for different values of �. It
shows that for the given wave packets with ��2, 4, and 6
there exists a range of � within which the fidelities F(t) are
up to 0.748, 0.958, and 0.992, respectively. For finite dis-
tance, the maximum fidelity decreases as the width of Gauss-
ian wave packet increases. On the other hand, the strength of
the external field also determines the value of the optimal
fidelity for a given wave packet. There exists an optimal

FIG. 5. Schematic illustration of the time evolution of a Gaussian wave
packet. It shows that the near-perfect state transfer over a long distance is
possible in the quasi-harmonic system.
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external field to obtain maximal fidelity, while the period of
F(t) is close to T��2� . This shows a difference from the
ideal system, i.e., continuous harmonic systems, in which the
fidelity is independent of the strength of the external field.
Numerical results indicate that it is possible to realize near-
perfect quantum state transfer over a longer distance in a
practical ferromagnetic spin chain system.

In summary, we have shown that a perfect quantum
transmission can be realized through a universal quantum
channel provided by a quantum spin system with spectrum
structure, in which each eigenenergy is commensurate and
matches with the corresponding parity. According to this
SPMC for the a mirror inversion symmetry,20 we can imple-
ment the perfect quantum information transmission with sev-
eral novel pre-engineered quantum spin chains. For more
practical purpose, we prove that an approximately commen-
surate spin system can also realize near-perfect quantum
state transfer in a ferromagnetic Heisenberg chain with uni-
form coupling constant in an external field. The fidelity for
the system in a parabolic magnetic field has been studied by
a numerical method. The external field plays a crucial role in
the scheme. It induces a lower quasi-harmonic spectrum,
which can drive a Gaussian wave packet from the initial
position to its mirror counterpart. The fidelity depends on the
initial position �or distance L), the width � of the wave
packet, and the magnetic field distribution B(i) via the factor
�. Thus for given L and �, proper selection of the factor �
can achieve the optimal fidelity. Finally, we conclude that it
is possible to implement near-perfect Gaussian wave packet
transmission over a longer distance in many-body system.

IV. QUANTUM STORAGE BASED ON THE SPIN CHAIN

Recently a universal quantum storage protocol6–8 was
presented to reversibly map the electronic spin state onto the
collective spin state of the surrounding ensemble of nuclei in
a quantum well �see Fig. 6�. Because of the long decoherence
time of the nuclear spins, the information stored in them can
be robustly preserved.

When all nuclei �with spin operators Ix
(i) , Iy

(i) , Iz
(i)) of

spin I0 are coupled with a single electron spin with strength
gi , a pair of collective operators9

B�
	 i�1

N giI�
� i �

�2I0	g j
2

�31�

FIG. 6. The electronic spin state onto the collective spin state of the sur-
rounding nuclei ensemble in a quantum well.
and its conjugate B� are introduced to depict the collective
excitations in ensemble of nuclei with spin I0 from its polar-
ized initial state

�G����NI0���
i�1

N

��I0� i

which denotes the saturated ferromagnetic state of ensemble
of nuclei. There is an intuitive argument that if the gi have
different values, while the distribution is ‘‘quasi-
homogeneous,’’ B and B† can also be considered as boson
operators satisfying �B ,B��→1 approximately.

Song, Zhang, and Sun analyzed the universal applicabil-
ity of this protocol in practice.9 It was found that only under
two homogeneous conditions with low excitations does the
many-nuclei system behave approximately as a single-mode
boson and can its excitation serve as an efficient quantum
memory. The low-excitation condition requires a ground
state with all spins oriented, which can be prepared by ap-
plying a magnetic field polarizing all spins along a single
direction. With consideration of the spontaneous symmetry
breaking for all spins oriented, a protocol for a quantum
storage element was proposed utilizing a ferromagnetic
quantum spin system, instead of the free nuclear ensemble,
to serve as a robust quantum memory.

The configuration of the quantum storage element is il-
lustrated in Fig. 7. The nuclei are arranged in a circle within
a quantum to form a spin ring array. A single electron is just
localized at the center of the ring array, surrounded by the
nuclei. The interaction of the nuclear spins is assumed to
exist only between the nearest neighbors while the external
magnetic field B0 threads through the spin array. Then the
electron-nuclei system can be modeled by a Hamiltonian H
�He�Hn�Hen . It contains the electronic spin Hamiltonian
He�ge�BB0�z, the nuclear spin Hamiltonian

Hn�gn�nB0	
l�1

N

Sl
z�J	

l�1

N

Sl•Sl�1 �32�

FIG. 7. The configuration geometry of the nuclei-electron system. The nu-
clei are arranged in a circle within a quantum to form a ring array. To turn on
the interaction one can push a single electron towards the center of the circle
along the axis perpendicular to the plane.
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with the Zeeman splitting and the ferromagnetic interaction
J�0, and the interaction between the nuclear spins and the
electronic spin

Hen�
�

2N
��	

l�1

N

Sl
��h.c. �33�

Here ge (gn) is the Lande g factor of the electron �nuclei�,
and �B (�N) is the Bohr magneton �nuclear magneton�. The
Pauli matrices Sl

� and �� represent the nuclear spin of the
lth site and the electronic spin, respectively. The denomina-
tor N in Eq. �33� originates from the envelope normalization
of the localized electron wave function.6–8 The hyperfine in-
teractions between nuclei and electron are proportional to the
envelope function of localized electron. The electronic wave
function is supposed to be cylindrically symmetric, e.g., the
s-wave component. Thus the coupling coefficient �
���(r)�2 is homogeneous for all the N nuclei in the ring
array.

To consider the low spin-wave excitations, the discrete
Fourier transformation defines the bosonic operators

bk�
1

�N
	
l�1

N

exp� i
2�kl

N � S�l, �34�

in the large N limit. Then one can approximately diagonalize
the Hamiltonian �32� as

HT�HN� 	
k�1

N�1

�kbk
†bk

where HN is a Jaynes-Cummings �JC� type Hamiltonian

HN��NbN
† bN�

�

2
�z��� s

2N
���bN���bN

† �. �35�

Then we obtain the dispersion relation for the magnon or
spin-wave excitation

�k�gn�nB0�2Js�2Js cos
2�k

N
. �36�

The above results show that HT contains only the interaction
of the Nth magnon with the electronic spin, and the other
N�1 magnons decouple with it. Here the frequency of the
boson �N�gn�nB0 and the two-level spacing �
�2g*�BB0 can be modulated by the external field B0 si-
multaneously.

The process of quantum information storage can be
implemented in the invariant subspace of the electronic spin
and the Nth magnon. Now we can describe the quantum
storage protocol based on the above spin-boson model. Sup-
pose the initial state of the total system is prepared so that
there is no excitation in the N nuclei at all, while the electron
is in an arbitrary state �e(0)�	n ,m���nm�n��m�, where ���
����� denotes the electronic spin up �down� state. The initial
state of the total system can then be written as

��0 ���b�0 � � �0N��0N� � �e�0 � �37�

in terms of �b(0)���0��N�1��0��, where �n1 ,n2 ,. . . ,nN�1�

��nk��N�1 (k�1,2,.. . ,N�1) denotes the Fock state of the
other N�1 magnons. If we set B0�0, at t�T

(�/�)�N/2s , the time evolution from ��0� is just de-
scribed as a factorized state
��T ���b�0 � � wF � ������, �38�

where wF�	n ,m�0,1wnm�nN��mN� is the storing state of the
Nth magnon with

wnm��nm exp� i

2
�m�n ��	 . �39�

Here, to simplify our expression, we have denoted ���


�00 , ��
�01 , ���
�10 , ��
�11 . The difference be-
tween wF and �e(0) is only an unitary transformation inde-
pendent of the stored initial state �e(0).

So far we have discussed the ideal case with homoge-
neous coupling between the electron and the nuclei, that is,
the coupling coefficients are the same constant � for all the
nuclear spins. However, the inhomogeneous effect of cou-
pling coefficients has to be taken into account if what our
concern extends beyond the s-wave component, where the
wave function is not strictly cylindrically symmetric. In this
case, the quantum decoherence induced by the so-called
quantum leakage has been extensively investigated for the
atomic ensemble based quantum memory.26 We now discuss
the similar problems for the magnon-based quantum
memory.

In the general case the � l���(rl)�2, where �(rl) is the
envelope function of the electron at site rl , vary with the
positions of the nuclear spins. In this case, the Hamiltonian
contains terms other than the interaction between the spin
and Nth mode boson, that is, the inhomogeneity induced
interaction

V��� s

2N � �� 	
k�1

N�1

 kbk�h.c.� �40�

should be added in our model Hamiltonian HT , where

 k�	
l�1

N
� l

�N
exp� i2�kl/N �.

For a Gaussian distribution of � l , e.g., � l�(�/�2��)exp
�(�(l�1)2/(2�2)) with width � and �1�� , the correspond-
ing inhomogeneous coupling is described by

 k�
1

N 	
l�1�0

N�1
1

�2��
exp� �� l�1 �2

2�2 �i
2�kl

N � . �41�

Figure 8 shows the magnitude of  k for different Gauss-
ian distributions of � l with different widths �. It indicates
that the modes near 1 and N�1 have a stronger coupling
with the electron. When the interaction gets more homog-
enous �with larger �� the coupling coefficients  k for all the
modes from 1 to N�1 become smaller. When the distribu-
tion is completely homogeneous, all the couplings with the
N�1 magnon modes vanish, and then we obtain the Hamil-
tonian HT .

In the following we will adopt a rather direct method to
analyze the decoherence problem of our protocol resulting
from dissipation. If N is so large that the spectrum of the
quantum memory is quasicontinuous, this model is similar to
the ‘‘standard model’’ of quantum dissipation for the vacuum
induced spontaneous emission.27 The N�1 magnons will in-
duce the quantum dissipation of the electronic spin with a
decay rate
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!�2�	
k�1

N
�2s� k�2

2N
�� �k�2�� s

2N � . �42�

Let ��� be the ideal evolution governed by the expected
Hamiltonian HT without dissipation and ���� be the realistic
evolution governed by the Hamiltonian with dissipation.
Supposeing that the initial state of the electron is (�����
��)/& , we can analytically calculate the fidelity

F� t ����������

�
1

2 �1�exp� �
!

2
t � 	sec "�cos gt cos��1�t�"�

�sin gt sin �1�t �, �43�

where

"�arcsin �2N!
2 /�2s , g���s/2N and �1���g2�!2.

Figure 8 shows the curve of the fidelity F(t) changing
with time t . We can see that the fidelity exhibits a exponen-
tial decay behavior with a sinusoidal oscillation. At the in-
stance when we have just implemented the quantum storage
process, the fidelity is about 1��!/8. Therefore, the devia-
tion from the ideal case with homogeneous couplings is very
small for !/g�1. Since the ring-shape spin array with inho-
mogeneous coupling is just equivalent to an arbitrary
Heisenberg spin chain in the large N limit, the above argu-
ments means that an arbitrary Heisenberg chain can be used
for quantum storage following the same strategy addressed
above if !/g is small, i.e., the inhomogeneous effect is not
very strong.

On the other hand, if N is small, the spectrum of the
quantum memory is discrete enough to guarantee the adia-
batic elimination of the N�1 magnon modes, i.e.,
��s/2N k /��k��1 for the N�1 magnon modes. As a con-
sequence of this adiabatic elimination, quantum decoherence

FIG. 8. The fidelity F(t) in the large N limit. The vertical line indicates the
instant �/2g at which the quantum storage is just implemented. Here !/g
�1/50. The inset shows the decaying oscillation with details of F(t) in a
small region near the instant �/2g .
or dephasing can result from the mixing of different magnon
modes.
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Recent developments concerning localized-magnon eigenstates in strongly frustrated spin lattices
and their effect on the low-temperature physics of these systems in high magnetic fields are
reviewed. After illustrating the construction and the properties of localized-magnon states we
describe the plateau and the jump in the magnetization process caused by these states.
Considering appropriate lattice deformations fitting to the localized magnons we discuss a spin-
Peierls instability in high magnetic fields related to these states. Last but not least we
consider the degeneracy of the localized-magnon eigenstates and the related thermodynamics in
high magnetic fields. In particular, we discuss the low-temperature maximum in the
isothermal entropy versus field curve and the resulting enhanced magnetocaloric effect, which
allows efficient magnetic cooling from quite large temperatures down to very low
ones. © 2005 American Institute of Physics. �DOI: 10.1063/1.2008130�
I. INTRODUCTION

The interest in quantum spin antiferromagnetism has a
very long tradition; see, e.g., Ref. 1. Stimulated by the recent
progress in synthesizing magnetic materials with strong
quantum fluctuations,2 particular attention has been paid to
low-dimensional quantum magnets showing novel quantum
phenomena like spin-liquid phases, quantum phase transi-
tions or plateaus and jumps in the magnetization process.
However, quantum spin systems are of interest in their own
right as examples of strongly interacting quantum many-
body systems.

We know from the Mermin-Wagner theorem3 that ther-
mal fluctuations are strong enough to destroy magnetic long-
range order �LRO� for Heisenberg spin systems in dimension
D�3 at any finite temperature T . For T�0, where only
quantum fluctuations are present, the situation seems to be
more complicated. While for one-dimensional �1D� antifer-
romagnets, in general, the quantum fluctuations are strong
enough to prevent magnetic LRO, the competition between
interactions and fluctuations is well balanced in two dimen-
sions, and one meets magnetic LRO as well as magnetic
disorder at T�0, depending on the details of the lattice.4–8 It
was pointed out many years ago by Anderson and Fazekas9,10

that competition of magnetic bonds for instances due to tri-
angular configurations of antiferromagnetically interacting
spins may influence this balance and can lead to disordered
ground-state phases in two-dimensional �2D� quantum anti-
ferromagnets. In the context of spin glasses this competition
of bonds, later called frustration, was discussed in great de-
tail. These studies on spin glasses have shown that frustration
may have an enormous influence on the ground state and
thermodynamic properties11 of spin systems.

The investigation of frustration effects in spin systems,
especially in combination with strong quantum fluctuations,
is currently a hot topic in solid state physics. We mention
some interesting features like quantum disorder, incommen-
surate spiral phases, ‘‘order by disorder’’ phenomena to
name a few, which might appear in frustrated systems. The
6951063-777X/2005/31(8–9)/9/$26.00
theoretical study of frustrated quantum spin systems is chal-
lenging and is often faced with particular problems. While
for unfrustrated systems a wide class of well developed
many-body methods are available, at least some of them,
e.g., the powerful quantum Monte Carlo method, fail for
frustrated systems. Furthermore several important exact
statements like the Marshall-Peierls sign rule12 and the Lieb-
Mattis theorem13 are not generally valid if frustration is
present �see, e.g., Refs. 14, 15�.

On the other hand, the investigation of strongly frus-
trated magnetic systems surprisingly led to the discovery of
several new exact eigenstates. To find exact eigenstates of
quantum many-body systems is, in general, a rare exception.
For spin systems one has only a few examples. The simplest
example for an exact eigenstate is the fully polarized ferro-
magnetic state, which becomes the ground state of an anti-
ferromagnet in a strong magnetic field. Furthermore the one-
and two-magnon excitations above the fully polarized ferro-
magnetic state also can be calculated exactly �see, e.g., Ref.
1�. An example for non-trivial eigenstates is Bethe’s famous
solution for the 1D Heisenberg antiferromagnet �HAFM�.16

Some of the eigenstates found for frustrated quantum mag-
nets are of quite simple nature and their physical properties,
e.g., the spin correlation functions, can be calculated analyti-
cally. Note that such states are often eigenstates of the un-
frustrated system, too, but they are irrelevant for the physics
of the unfrustrated system if they are lying somewhere in the
spectrum. However, the interest in these eigenstates comes
from the fact that they may become ground states for par-
ticular values of frustration. Therefore these exact eigenstates
play an important role either as ground states of real quan-
tum magnets or at least as ground states of idealized models
which can be used as reference states for more complex
quantum spin systems.

Two well-known examples for simple eigenstates of
strongly frustrated quantum spin systems are the Majumdar-
Gosh state of the 1D J1 – J2 spin-half HAFM17 and the or-
thogonal dimer state of the Shastry-Sutherland model.18 Both
© 2005 American Institute of Physics
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eigenstates are product states built by dimer singlets. They
become ground states only for strong frustration. These
eigenstates indeed play a role in realistic materials. The
Majumdar-Ghosh state has some relevance in quasi-1D spin-
Peierls materials like CuGeO3 �see, e.g., Ref. 19�. The or-
thogonal dimer state of the Shastry-Sutherland model is the
magnetic ground state of the quasi-two-dimensional
SrCu2(BO3)2 compound.20 Other frustrated spin models in
one, two or three dimensions are known which have also
dimer-singlet product states as ground states �see, e.g., Refs.
21–24�. Note that these dimer-singlet product ground states
have gapped magnetic excitations and lead therefore to a
plateau in the magnetization m at m�0. Recently it has been
demonstrated for the 1D counterpart of the Shastry-
Sutherland model22,25–27 that more general product eigen-
states containing chain fragments of finite length can lead to
an infinite series of magnetization plateaus.26 Finally, we
mention the so-called frustrated Heisenberg star, where also
exact statements on the ground state are known.28

In this paper we review recent results concerning a new
class of exact eigenstates appearing in strongly frustrated an-
tiferromagnets, namely the so-called localized-magnon
states. These states have been detected as ground states of
certain frustrated antiferromagnets29–31 in a magnetic field,
and their relevance for physical properties of a wide class of
frustrated magnets has been discussed in Refs. 7 and 29–37.

II. LOCALIZED MAGNON STATES

We consider a Heisenberg XXZ antiferromagnet for gen-
eral spin quantum number s in a magnetic field h

Ĥ��
�i j�

Ji j� � Ŝ i
zŜ j

z�
1

2
� Ŝ i

�Ŝ j
�� Ŝ i

�Ŝ j
��� �hŜz,

Ji j	0. �1�

The magnetization M� Ŝ z�� iŜ i
z commutes with the Hamil-

tonian and is used as a relevant quantum number to charac-
terize the eigenstates of Ĥ . Let us consider strong magnetic
fields exceeding the saturation field hsat . Then the system is
in the fully polarized ferromagnetic eigenstate �FM����s ,
�s ,�s ,�s ,�s . . . � , which will be considered as the mag-
non vacuum state, i.e. �0���FM� . The one-magnon states
above this vacuum are given by

�1��
1

c �
i

N

aiSi
��0�; �Ĥ�EFM ��1��wi�k��1� , �2�

where EFM is the energy of the fully polarized ferromagnetic
state �FM� and c is a normalization constant. For several
strongly frustrated lattices one observes flat dispersion
modes wi(k)�const of the lowest branch. One example is
shown in Fig. 1. Here we mention that there is some relation
to the flat-band ferromagnetism in electronic systems dis-
cussed by Mielke and Tasaki; see Refs. 38–40.

Consequently, one can construct localized states by an
appropriate superposition of extended states with different k
vectors. The general form of these localized states can be
written as30,31
�1�L�
1

c �
i

N

aiŜ i
��0���
L��
R� ,

ai� �0 �i�L � local�

�0 �i�R �remainder�,
�3�

where �
L� belongs to the localized excitation living on the
local region L and �
R� describes the fully polarized ferro-
magnetic remainder. We split the Hamiltonian into three
parts Ĥ�ĤL�ĤL�R�ĤR , where ĤL contains all bonds Jil

with i ,l�L , ĤR contains all bonds Jk j with k , j�R , and
ĤL�R contains all bonds Jlk with l�L and k�R . The re-
quirement that the localized-magnon state �1�L is simulta-
neously an eigenstate of all three parts of the Hamiltonian,
i.e., ĤL�1�L�eL�1�L , ĤR�1�L�eR�1�L and ĤL�R�1�L

�eL�R�1�L , leads to two criteria for the exchange bonds
Ji j , namely31

�
l�L

Jrlal�0 �r�R �4�

and

�
r�R

Jrl�const �l�L . �5�

Equation �4� represents a condition on the bond geometry,
whereas Eq. �5� is a condition for the bond strengths and is
automatically fulfilled in uniform lattices with equivalent
sites. Note, however, that the second condition is not a nec-
essary one, i.e., one can find models with eigenstates of form
�3� violating �5�; see Ref. 30. This more general case appears

FIG. 2. Typical lattice geometries supporting the localized-magnon states
�3�. The magnon lives on the restricted area indicated by a thick line.

FIG. 1. Excitation energies wi(k) of the one-magnon states for the isotropic
spin-half Heisenberg antiferromagnet �i.e., J�1, ��1, s�1/2, and h�0 in
Eq. �1�� on the kagomé lattice �right inset�. The left inset shows the path in
the Brillouin zone corresponding to k values used as x coordinate. This
figure was provided by J. Schulenburg.
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if �
L��
R� is not an individual eigenstate of both ĤL and
ĤL�R but of (ĤL�R�ĤL). Hence, the geometry condition
�4� is the criterion of major importance. A typical geometry
fulfilling condition �4� is realized by an even polygon sur-
rounded by isosceles triangles; see Fig. 2. The lowest one-
magnon state living on an even polygon has coefficients ai in
�1�L alternating in sign. But also finite strings of two or three
sites attached by appropriate triangles can fulfill the criterion
�4�; see Fig. 2.

As an example we consider the HAFM �1� on the
kagomé lattice,30 i.e., we have Ji j�1 for nearest-neighbor
�NN� bonds and Ji j�0 otherwise. Its one-magnon dispersion
shown in Fig. 1 exhibits one flat mode. The resulting local-
ized magnon lives on a hexagon; see Fig. 3a. Its wave func-
tion is

�1�L
kagomé�

1

�12S
�
i�1

� i�hexagon�

6

aiŜ i
��0� , ai���1 � i. �6�

Note that the number of hexagons N/3 corresponds to the
number of states in the flat branch of w(k). Because of the
localized nature of the magnon we can put further such mag-
nons on the lattice in such a way that there is no interaction
between them. The maximum filling nmax of the kagomé lat-
tice with localized magnons is shown in Fig. 3b. The result-
ing eigenstate is a magnon ‘‘crystal’’ state with nmax�N/9
magnons and a magnetic unit cell three times as large as the
geometric one. Therefore the states with n
��0,1,2,3, . . . ,N/9
 localized magnons represent the class
of exactly known product eigenstates with quantum numbers
M�Sz�Ns�n��Ns ,Ns�1,Ns�2, . . . ,Ns�N/9
.

FIG. 3. Localized magnons on the kagomé lattice. One-magnon state indi-
cated by a circle, the � and � signs correspond to the sign of the coeffi-
cients ai��1 �see Eq. �6�� �a�. Magnon crystal state corresponding to the
maximum filling nmax�N/9 of the kagomé lattice with localized magnons
�circles� �b�. The figures were taken from Ref. 30.
Due to the mutual independence of the localized mag-
nons for n�nmax�N the energy E loc of the localized-magnon
states is proportional to the number n of localized magnons,
i.e., at h�0 one has E loc�EFM�n�1 , where EFM is the
energy of the fully polarized �vacuum� state and �1 is the
energy gain by one magnon. As a results there is a simple
linear relation between E loc and the total magnetization M
valid for all systems hosting localized magnons:

E loc�M ,h�0 ���aN�bsM , �7�

where the parameters a and b depend on details of the sys-
tem like the exchange constant Ji j , the anisotropy parameter
� , the coordination number z of the lattice, etc. For example,
for the isotropic spin-half HAFM with NN exchange J on the
kagomé lattice one finds30,35

E loc�M ,h�0 ��2s2NJ�6snJ��4s2NJ�6sJM . �8�

Note that also the spin-spin correlation functions of such
states can be easily found.31

For the physical relevance of these eigenstates it is cru-
cial that they have lowest energy in the corresponding sector
of M . Indeed this can be proved for quite general antiferro-
magnetic spin models.29,41

Since the condition �4� for the existence of localized-
magnon states is quite general, one can find a lot of magnetic
systems in one, two, and three dimensions having localized-
magnon eigenstates.29–32,35–37,43 To illustrate that we show in
Fig. 4 some 1D and in Fig. 5 some 2D and 3D antiferromag-
netic spin lattices. But localized-magnon states are observed
for frustrated magnetic molecules also.29

III. PLATEAUS AND JUMPS IN THE MAGNETIZATION
CURVE

As discussed in the previous Section, the localized-
magnon states are the lowest states in the corresponding sec-
tor of magnetization M . Hence they become ground states in
appropriate magnetic fields h . Furthermore we stated that
there is a linear relation between the energy of these states
E loc and M ; cf. Eq. �7�. When a magnetic field h is applied
the energy reads E loc(M ,h)��aN�bsM�hM , and one
has complete degeneracy of all localized-magnon states at
the saturation field h�hsat�bs . As a result of this degen-
eracy the zero-temperature magnetization m�M /(Ns)
jumps between the saturation value m�1 and the value 1
�nmax /(Ns) corresponding to the maximum number nmax of
FIG. 4. One-dimensional systems with localized-
magnon states. The magnons live on the restricted
area indicated by a thick line: sawtooth chain42,43

�a�, kagomé chain I44 �b�, kagomé chain II45 �c�,
diamond chain46 �d�, dimer-plaquette chain22 �e�,
frustrated ladder47 �f�. Note that there are special
restrictions for the exchange integrals to have
localized-magnon states as lowest eigenstates in
the corresponding sector of M .
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FIG. 5. Two- and three-dimensional
antiferromagnets with localized-
magnon states. The magnons live on
the restricted area indicated by a
thick line: planar pyrochlore �check-
erboard� lattice31,48 �a�, square-
kagomé lattice37,49 �b�, star lattice7,36

�c�, pyrochlore lattice50 �d�.
independent localized magnons. Since nmax is proportional to
N but independent of the spin quantum number s , the height
of the jump �m�nmax /(Ns) goes to zero for s�� , i.e., the
magnetization jump due to the localized-magnon states be-
comes irrelevant if the spins become classical.

In Fig. 6 we present two examples of the magnetization
curves; further examples can be found in Refs. 7, 27, 31, 36,
37. The jumps of height �m�1/2 �sawtooth chain� and �m
�2/7 �kagomé lattice� are well pronounced. Furthermore we
see a wide plateau at the foot of the jump for the sawtooth
chain. Note that there are general arguments in favor of a
plateau just below the jump.7,51,52 Therefore we might expect
a plateau preceeding the jump in all magnetic systems with
localized magnon states. Though from Fig. 6 it remains un-
clear whether there is a plateau for the kagomé lattice, too, a
more detailed analysis32 indeed yields evidence for a finite
plateau width of about �h�0.07J .
IV. MAGNETIC-FIELD INDUCED SPIN-PEIERLS INSTABILITY
IN QUANTUM SPIN LATTICES WITH LOCALIZED-
MAGNON STATES

The influence of a magnetoelastic coupling in frustrated
antiferromagnets on their low-temperature properties is cur-
rently widely discussed. Lattice instabilities breaking the
translational symmetry are reported for 1D and 2D as well
3D quantum spin systems; see, e.g., Ref. 53. In all those
studies the lattice instability was considered at zero field. As
discussed already in an early paper by Gross,54 a magnetic
field usually acts against the spin-Peierls transition and might
favor a uniform or incommensurate phase. In contrast to
those findings, in this Section we discuss a lattice instability
in frustrated spin lattices hosting localized magnons for
which the magnetic field is essential.32

First we point out that due to the localized nature of the
FIG. 6. Panel a: Magnetization versus magnetic field h of the isotropic spin-half Heisenberg antiferromagnet. The sawtooth chain with J1�1 and J2

�2J1 ; cf. Fig. 4. The figure was taken from Ref. 31. Panel b: The kagomé lattice with N�27 �dashed line� and 36 sites �solid line�. The inset illustrates the
‘‘magnon crystal’’ state corresponding to maximum filling with localized magnons, where the location of the magnons is indicated by the circles in certain
hexagons. The figure was taken from Ref. 8.
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magnons we have an inhomogeneous distribution of NN
spin-spin correlations �Ŝi•Ŝj� .31 In the case that one magnon
is distributed uniformly over the lattice, the deviation of the
NN correlation from the ferromagnetic value, i.e. the quan-
tity �Ŝi•Ŝj��1/4, is of order 1/N . On the other hand, for a
localized magnon �3� we have along the polygon/line hosting
the localized magnon in general actually a negative NN cor-
relation �Ŝi•Ŝj� , and all other NN correlations are positive.
For instance for the spin-half HAFM on the kagomé lattice
the localized-magnon state �6� leads to �Ŝi•Ŝj���1/12 for
neighboring sites i and j on a hexagon hosting a magnon and
to �Ŝi•Ŝj���1/6 for neighboring sites i and j on an attach-
ing triangle. Hence a deformation with optimal gain in mag-
netic energy will lead to an increase of antiferromagnetic
bonds on the polygon/line hosting the localized magnon �i.e.,
hexagon for the kagomé lattice� and to a decrease of the
bonds on the attaching triangles.

Let us discuss the situation for the isotropic spin-half
HAFM on the kagomé lattice in more detail. A correspond-
ing deformation which preserves the symmetry of the cell
which hosts the localized magnon is shown in Fig. 7. To
check the stability of the kagomé lattice with respect to a
spin-Peierls mechanism we must compare the magnetic and
the elastic energies. For the kagomé lattice the deformation
shown in Fig. 7 leads to the following changes in the ex-
change interactions: J→(1��)J �along the edges of the
hexagon� and J→(1��/2)J �along the two edges of the tri-
angles attached to the hexagon�, where the quantity � is pro-
portional to the displacement of the atoms and the change in
the exchange integrals due to lattice distortions is taken into
account in first order in �. The magnetic energy �8� is low-
ered by distortions and becomes for one magnon and one
corresponding distortion E loc(n�1,h�0,�)�NJ/2�3J
�3�J/2. Considering n�nmax independent localized mag-
nons and corresponding distortions the energy gain is then
emag��3n�J/2. On the other hand, the elastic energy in the
harmonic approximation increases according to eelast��2.
Therefore a minimal total energy is obtained for a finite �
��*�0. For the kagomé lattice the elastic energy for one
distorted cell is eelast�9��2 �the parameter � is proportional
to the elastic constant of the lattice�. If the localized-magnon

FIG. 7. Kagomé lattice with one distorted hexagon which can host localized
magnons. The parts of the lattices before distortions are shown by dashed
lines. All bonds in the lattices before distortions have the same length. The
figure was taken from Ref. 32.
states are the ground states of the systems then we have a
favorable spin-Peierls distortion with �*�J/(12�). As dis-
cussed in the previous Section, we expect a plateau at the
foot of the magnetization jump. The spin-Peierls distortion
due to localized-magnon states then takes place for the val-
ues of the magnetic field belonging to this plateau.

Now the question arises whether the lattice distortion
under consideration is stable below and above this plateau,
i.e., for M�N/2�nmax and M�N/2. It is easy to check that
the lattice distortion illustrated in Fig. 7 is not favorable for
the fully polarized vacuum state, i.e. for M�N/2. For mag-
netizations M below this plateau, we are not able to give a
rigorous answer, but numerical results for finite kagomé lat-
tices of size N�18,27,36,45,54 indicate that there is no spin-
Peierls deformation adopting the lattice distortion shown in
Fig. 7 for M�N/2�nmax �see Ref. 32 for more details�.

We mention that the scenario discussed above basically
remains unchanged for the anisotropic Hamiltonian �1� with
��1 and also for spin quantum numbers s�1/2.32

From the experimental point of view the discussed effect
should manifest itself most spectacularly as a hysteresis in
the magnetization and the deformation of kagomé-lattice an-
tiferromagnets in the vicinity of the saturation field. We em-
phasize that the discussed spin-Peierls instability in high
magnetic fields may appear in the whole class of frustrated
quantum magnets in one, two and three dimensions hosting
independent localized magnons provided it is possible to
construct a lattice distortion preserving the symmetry of the
localized-magnon cell.

V. FINITE LOW-TEMPERATURE ENTROPY AND ENHANCED
MAGNETOCALORIC EFFECT IN THE VICINITY OF THE
SATURATION FIELD

It is well-known that strongly frustrated Ising or classical
Heisenberg spin systems may exhibit a huge ground-state
degeneracy; see e.g., Refs. 5–7, 55–58. For quantum sys-
tems the degeneracy found for classical systems is often
lifted due to fluctuations, and the quantum ground state is
unique �the so-called ‘‘order from disorder’’
phenomenon60,61�. However, highly frustrated antiferromag-
netic quantum spin lattices hosting localized magnons are an
example where one finds a huge ground-state degeneracy in
a quantum system. As discussed in Sec. 3 the localized-
magnon states become degenerate at saturation field. As
pointed out first in Ref. 7 the degeneracy grows exponen-
tially with system size N . This huge degeneracy and its con-
sequence for the low-temperature physics are discussed in
more detail in Refs. 33–35.

For some of the spin systems hosting localized magnons
the ground-state degeneracy at saturation and therefore the
residual entropy at zero temperature can be calculated ex-
actly by mapping the localized-magnon problem onto a re-
lated lattice gas model of hard-core objects.33–35 These lat-
tice gas models of hard-core objects have been studied over
the last decades in great detail �see, e.g., Ref. 59�. Let us
illustrate this for the sawtooth chain. Here the local areas
where the magnons can live are the valleys of the sawtooth
chain; see Fig. 4a. Because a certain local area of the lattice
can be occupied by a magnon or not, the degeneracy of the
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ground state at saturation, W, grows exponentially with N ,
giving rise to a finite zero-temperature entropy per site at
saturation:

S

N
� lim

N→�

1

N
log W�0. �9�

Now we map the original lattice which hosts localized mag-
nons onto an auxiliary lattice which is occupied by hard-core
objects, which are rigid monomers and dimers in the case of
the sawtooth chain; see Fig. 8. The auxiliary chain �Fig. 8b�
consists of N�N/2 sites which may be filled either by rigid

FIG. 8. The sawtooth chain which hosts three localized magnons at fat V
parts �a� and the auxiliary lattice used for the exact calculation of the
ground-state degeneracy at saturation �b�. The localized magnons are eigen-
states for J2��2(1��)J1 �Ref. 30�. The figure was taken from Ref. 35.
monomers or by rigid dimers occupying two neighboring
sites. The limiting behavior of W for N→� was found by
Fisher many years ago:59

W�exp� log
1��5

2
N��exp�0.240606N �

→
S

N
�0.240606. �10�

The relevance of this result for experimental studies emerges
at low but finite temperatures. In Ref. 33 this mapping was
used to obtain a quantitative description of the low-
temperature magnetothermodynamics in the vicinity of the
saturation field of the quantum antiferromagnet on the
kagomé lattice and on the sawtooth chain.

In what follows we report on the extension of the ana-
lytical findings for the zero-temperature entropy at the satu-
ration field to finite temperatures and to arbitrary magnetic
fields using exact diagonalization data for the sawtooth chain
of up to N�20 sites.34,35 In Fig. 9a we show the isothermal
entropy versus magnetic field for several temperatures. The
presented results show that for several magnetic fields below
saturation h�hsat one has a twofold or even threefold degen-
eracy of the energy levels, leading in a finite system to a
FIG. 9. Field dependence of the isothermal entropy per site for the Heisenberg antiferromagnet on the sawtooth chain of different length (s�1/2, ��1).
J1�1, J2�2, i.e., the condition for bond strengths �Eq. �4�� is fulfilled and the localized-magnon states are exact eigenstates �a�. Influence of a deviation from
the perfect condition for bond strengths �b�. The figures were taken from Ref. 35.
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finite zero-temperature entropy per site. Correspondingly one
finds in Fig. 9a �upper panel� a peaked structure and more-
over a plateau-like area just below hsat . However, it is
clearly seen in Fig. 9a �upper panel� that the height of the
peaks and of the plateau decreases with system size N , lead-
ing to limN→�S/N�0 at T�0 for h�hsat and h�hsat . Only
the peak at h�hsat�4 is independent of N and remains finite
for N→� . At finite but low temperatures this peak survives
as a well-pronounced maximum, and it only disappears if the
temperature is of the order of the exchange constant; see Fig.
9a �lower panel�. Note that the value of the entropy at satu-
ration, which agrees with the analytical prediction �10�, is
almost temperature independent up to about T�0.2. Thus,
the effect of the independent localized magnons leading to a
finite residual zero-temperature entropy is present at finite
temperatures T�0.2, producing a noticeable maximum in
the isothermal entropy curve at the saturation field. We men-
tion that the numerical results for higher spin quantum num-
bers s suggest that the enhancement of the entropy at satu-
ration for finite temperatures becomes less pronounced with
increasing s .

With respect to the experimental observation of the
maximum in the low-temperature entropy at the saturation
field in real compounds we are faced with the situation that
the condition on bond strengths �see Eq. �4�� under which the
localized-magnon states become the exact eigenstates are
certainly not strictly fulfilled. For the considered isotropic
spin-half HAFM on the sawtooth chain this condition is ful-
filled for J2�2J1 ; see Fig. 9a. Based on the numerical cal-
culations one is able to discuss the ‘‘stability’’ of the maxi-
mum in the entropy against deviation from the perfect
condition for bond strengths. In Fig. 9b we show the field
dependence of the entropy at low temperatures for the saw-
tooth chain of N�16 sites with J1�1 and J2�1.9 and J2

�2.1. Since the degeneracy of the ground state at saturation
is lifted when J2�2J1 , the entropy at saturation at very low
temperatures �long-dashed and short-dashed curves in the
upper panel of Fig. 9b� is not enhanced at the saturation field.
However, the initially degenerate energy levels remain close
to each other if J2 deviates only slightly from the perfect
value 2J1 . Therefore with increasing temperature those lev-
els become accessible for the spin system, and one again
obtains a maximum in the entropy in the vicinity of satura-
tion at low but nonzero temperatures; see the lower panel in
Fig. 9b �long-dashed and short-dashed peaks in the vicinity
of saturation�. We emphasize that the low-temperature maxi-
mum of S/N at saturation is a generic effect for strongly
frustrated quantum spin lattices which may host independent
localized magnons.

Let us remark that the ground-state degeneracy problem
of antiferromagnetic Ising lattices in the critical magnetic
field �i.e., at the spin-flop transition point�, which obviously
do not contain quantum fluctuations, has been discussed in
the literature; see, e.g., Ref. 62.

It has been pointed out very recently by Zhitomirsky and
Honecker34,63 that the most spectacular effect accompanying
a maximum in the isothermal entropy S(h) is an enhanced
magnetocaloric effect. Indeed, the cooling rate for an adia-
batic �de�magnetization process is proportional to the deriva-
tive of the isothermal entropy with respect to the magnetic
field

� �T

�h �
S

��T
��S/�h �T

C
, �11�

where C is the specific heat. Again one can calculate the field
dependence of the temperature for an adiabatic �de�magneti-
zation process for finite systems by exact diagonalization.
Some results for the isotropic spin-half HAFM on the saw-
tooth chain are shown in Fig. 10. The lowest curves in Fig.
10 belongs to S/N�0.05 and N�12,16,20, respectively. The
other curves correspond to S/N�0.1,0.15, . . . ,0.4,0.45. The
magnetocaloric effect is largest in the vicinity of the satura-
tion field. In particular, a demagnetization coming from mag-
netic fields larger than hsat is very efficient. If one starts for
h�hsat with an entropy lower than the residual entropy at
hsat , S/N�0.240606 �see Eq. �10��, then one observes even
a cooling to T→0 as h→hsat . Thus frustrated magnetic sys-
tems hosting localized magnons allow magnetic cooling
from quite large T down to very low temperatures. We men-
tion, that the results shown in Fig. 10 also clearly demon-
strate that finite-size effects are very small for h�hsat at any
temperature. Therefore the above discussion is valid also for
large systems N→� .

VI. SUMMARY

We have reviewed recent results29–37 on exact eigen-
states constructed from localized magnons which appear in a
class of frustrated spin lattices. For these eigenstates several
quantities like the energy and the spin-spin correlation can be
calculated analytically. The physical relevance of the
localized-magnon eigenstates emerges at high magnetic
fields where they can become ground states of the spin sys-
tem.

For frustrated magnetic systems having localized-
magnon ground states several interesting physical effects as-
sociated with this states may occur. First one finds a macro-
scopic jump in the zero-temperature magnetization curve at
the saturation field hsat . This jump is a true quantum effect

FIG. 10. Lines of constant entropy versus field �i.e., adiabatic �de�magneti-
zation curves� for the Heisenberg antiferromagnet on the sawtooth chain of
different length (s�1/2, ��1, J1�J/2, J2�J). The figure was taken from
Ref. 34 with the kind permission of A. Honecker.
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which vanishes if the spins become classical (s→�). At the
foot of the jump one can expect a plateau in the magnetiza-
tion curve.

Since all localized-magnon states have the same energy
at h�hsat a huge degeneracy of the ground state at saturation
is observed which increases exponentially with system size
N , thus leading to a nonzero residual zero-temperature en-
tropy. For some of the frustrated spin models hosting local-
ized magnons the residual entropy at saturation field can be
estimated exactly. At finite temperatures T the localized-
magnon states produce a maximum in the isothermal entropy
versus field curve in the vicinity of the saturation field for not
too large T . This maximum in the isothermal entropy at hsat

leads to an enhanced magnetocaloric effect. If one starts for
h�hsat with an entropy lower than the residual entropy at
hsat then one observes even a cooling to T→0 as h→hsat .
This may allow cooling from quite large T down to very low
temperatures.

Last but not least, the localized-magnon states may lead
to a spin-Peierls instability in strong magnetic fields, for in-
stance for the antiferromagnetic kagomé spin lattice. For this
system the magnetic-field driven spin-Peierls instability
breaks spontaneously the translational symmetry of the
kagomé lattice and appears only in a certain region of the
magnetic field near saturation.

We emphasize that the reported effects are generic in
highly frustrated magnets. To observe them in experiments
one needs frustrated magnets with small spin quantum num-
ber s and sufficiently small exchange coupling strength J to
reach the saturation field. There is an increasing number of
synthesized quantum frustrated spin lattices, e.g., quantum
antiferromagnets with a kagomé-like structure.64–67 Though
such materials often do not fit perfectly to the lattice geom-
etry having localized-magnon ground states, the physical ef-
fects based on localized magnons states may survive in non-
ideal geometries �see Sec. 5�, which may open the window to
the experimental observation of the theoretically predicted
effects.
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acknowledge the support from the Deutsche Forschungsge-
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Laboratoire Léon Brillouin, CE Saclay, CEA-CNRS, 91191 Gif-sur-Yvette, France

N. Blanchard

Laboratoire de Physique des Solides, UMR 8502, Université Paris-Sud, 91405 Orsay, France
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The compounds SrCr9pGa12�9pO19 and Ba2Sn2ZnGa10�7pCr7pO22 are two highly frustrated
magnets possessing a quasi-two-dimensional kagomé bilayer of spin-3/2 chromium ions with
antiferromagnetic interactions. Their magnetic susceptibility was measured by local nuclear
magnetic resonance and nonlocal �SQUID� techniques, and their low-temperature spin dynamics
by muon spin resonance. Consistent with the theoretical picture drawn for geometrically
frustrated systems, the kagomé bilayer is shown here to exhibit: �i� short range spin-spin
correlations down to a temperature much lower than the Curie–Weiss temperature, no
conventional long-range transition occurring; �ii� a Curie contribution to the susceptibility from
paramagnetic defects generated by spin vacancies; �iii� low-temperature spin fluctuations,
at least down to 30 mK, which are a trademark of a dynamical ground state. These properties point
to a spin-liquid ground state, possibly built on resonating valence bonds with unconfined
spinons as the magnetic excitations. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2008131�
I. INTRODUCTION

A. Highly frustrated magnets

Anderson’s initial proposal of a resonating valence bond
�RVB� state was intended as a possible alternative for the
Néel ground state of a triangular network with Heisenberg
spins coupled by an antiferromagnetic interaction.1 The RVB
state, known also as a ‘‘spin-liquid’’ state because of the
short-range magnetic correlations and spin fluctuations down
to T�0, was also proposed to explain the high-Tc behavior
of cuprates2 and, more recently,3 of the superconducting
compound NaxCoO2•yH2O. Although Anderson’s conjec-
ture was proven to be wrong for the triangular network,4

there is a growing consensus that the RVB state is the ground
state of the so-called highly frustrated networks.5,6 Like the
triangular network, the magnetic frustration of these systems
is exclusively driven by the triangular geometry of their lat-
tice provided that spins are coupled through an antiferromag-
netic �AFM� interaction. This is different from spin glasses,
where frustration arises from the randomness of the magnetic
interactions.7 However, compared to a triangular network,
these networks have a corner-sharing geometry, as in the
two-dimensional kagomé �corner sharing triangles, Fig. 1�,
the three-dimensional pyrochlore �corner sharing tetrahedra,
Fig. 1�, and the quasi-two-dimensional kagomé bilayer �cor-
ner sharing triangles and tetrahedra, Fig. 2� lattices. The
corner-sharing geometry introduces a ‘‘magnetic flexibility,’’
thereby enhancing the frustration of these networks �thus the
term ‘‘highly’’� and destabilizing the Néel order. A highly
frustrated network, and the experimental counterpart known
7041063-777X/2005/31(8–9)/18/$26.00
as highly frustrated magnet �HFM�, is therefore an ideal can-
didate to possess a RVB ground state. Moreover, since HFMs
are insulators, the experimental investigation of their ground
state, and the related theoretical modeling, is greatly simpli-
fied by the absence of phenomena such as superconductivity,
charge ordering or itinerant magnetism.

The original features of the ground state of the Heisen-
berg two-dimensional �2D� kagomé network, which is the
central issue of this paper, is already apparent through a clas-
sical description of their magnetism,8–11 yielding a dynami-
cal ground state with infinite degeneracy. More precisely, the
‘‘order by disorder’’ mechanism selects a coplanar spin ar-
rangement in the ground state. However, the system can
swap from one coplanar spin configuration to the other by a
rotation of a finite number of spins, with no cost in energy.
These zero-energy excitation modes, or soft modes, prevent a
selection of one of the coplanar configurations1� and consti-
tute a low-energy reservoir of magnetic excitations. It results
in a finite entropy per spin in the ground state, without, still
up to now, any definitive conclusions on a possible long-
range order, even at T�0.

In a quantum description of the magnetism for Heisen-
berg spins 1/2 on the kagomé network, the magnetic ground
state is disordered.11 It is predicted to be RVB-like, built on a
macroscopic number of singlet states.13,14 If any, a gap be-
tween the ground state and the first triplet state is expected to
be fairly small, of the order of J/20,15 where J is the AFM
interaction between nearest neighbor spins.2� Most strikingly
and similar to the classical case, the corner-sharing geometry
and the half-integer spins lead to an exponential density of
© 2005 American Institute of Physics
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low-lying singlet excitations,16 with energies smaller than the
gap, and to a nonzero entropy per spin at T�0.17 The same
conclusions seem to emerge for the AFM pyrochlore
lattice.18 The nature of the magnetic excitations, possibly un-
confined spinons, is still an open question.17,19

As a major drawback, every additional contribution to
the nearest-neighbor AFM interaction, such as next-nearest-
neighbor interactions, dipolar interactions, anisotropy,
Dzyaloshinskii-Moriya interactions, lattice distortions or
magnetic defects generated by the presence of magnetic im-
purities or spin vacancies, all of which we designate by ‘‘dis-
order,’’ may release the frustration and stabilize an original
ground state.20–25 Experimentally, disorder is present in all
HFMs and indeed causes cooperative phase transitions at
low temperature, reminiscent of spin glasses or AFM sys-
tems. This is typically observed in the jarosites kagomé fam-
ily, where the disorder is governed by spin anisotropy and by
dipolar interactions �Ref. 26�.3� In the spin-1/2 kagomé com-
pound �Cu3(titmb)2(OCOCH3)6�•H2O, the competition be-
tween first- and second-neighbor interactions, respectively
ferromagnetic and antiferromagnetic, yields an original
ground state, with a double peak in the specific heat and
plateaus in the magnetization under particular conditions.27

In the S�1 kagomé staircase Ni3V2O8 , the competition be-
tween first and second neighbor interactions, combined to
Dzyaloshinskii-Moriya interactions and spin anisotropy, pro-
duces a very rich field and temperature phase diagram.28 In
three dimensions �3D�, dipolar couplings and interactions

FIG. 1. The kagomé �left� and the pyrochlore �right�12 corner-sharing lat-
tices. The coordinance of each site is 4 and 6, respectively.

FIG. 2. Kagomé bilayers in SCGO �left� and in BSZCGO �right�. There are
two different sites in the kagomé bilayer lattice, one of coordinance 5, the
other of coordinance 6. The magnetism of both compounds arises from the
stacking of magnetically decoupled kagomé bilayers, ensured in SCGO by
the presence of the nonmagnetic singlets and in BZSCGO by a large inter-
bilayer distance.
further than nearest neighbor yield long-range magnetic or-
der at 1 K in the pyrochlore compound Gd2Ti2O7 �Ref. 29�.
In Y2Mo2O7 , lattice distortions have been proposed to re-
lieve the frustration in the ground state.30 However, some
samples, like the pyrochlore Tb2�pYpTi2O7 �Refs. 31, 32� or
the spinel ZnCr2O4 �Ref. 33� display spin dynamics down to
very low temperature. Anyway, the high spin values and/or
the 3D character of the frustrated geometry of these com-
pounds remain far from the ideal Heisenberg kagomé case
we are dealing with. Along with the spin-liquid ground state
of the ideal systems, the plethoric number of possible ground
states in the presence of disorder �including the case of fer-
romagnetic interactions in the pyrochlore lattice, yielding the
frustrated so-called ‘‘spin ice’’ ground state,34,35 named so as
it is equivalent to the order observed for hydrogen atoms in
ice H2O), constitutes one of the rich aspects of the HFMs.

B. SCGO and BSZCGO

Among all HFMs, the chromium-based spin-3/2 kagomé
bilayer compounds SrCr9pGa12�9pO19 �SCGO(p); Ref. 36�
and Ba2Sn2ZnGa10�7pCr7pO22 �BSZCGO(p); Ref. 37� are
the most likely candidates to possess a spin-liquid ground
state. This is not surprising in view of the low spin value, 2D
character, and low level of disorder of these compounds
compared to other HFMs. They are in fact an experimental
realization of a quasi-2D kagomé bilayer of spin-3/2 chro-
mium ions with antiferromagnetic interactions �Fig. 2�.
Moreover, the AFM interaction between nearest neighboring
spins is dominated by a direct overlap exchange resulting in
a coupling of J�40 K �see Sec. 2�. This coupling is almost
two orders of magnitude larger than the typical disorder-
related interactions, like single-ion anisotropy, estimated to
0.08 K,38,39 dipolar interactions �0.1 K, or next-nearest-
neighbor interactions �1 K. These compounds, however, al-
ways have a small amount of substitutional disorder, since a
Cr coverage higher than p�0.95 and p�0.97 cannot be
reached in SCGO(p) �Ref. 40� and BSZCGO(p) �Ref. 41�,
respectively. Hence there are always at least some percent of
the magnetic Cr3� ions which are substituted with nonmag-
netic Ga3� ions. These low amounts of spin vacancies, and
the related magnetic defects that they produce, turn out to be
insufficient to destroy the spin-liquid behavior of the ground
state. We will show that local techniques like nuclear mag-
netic resonance �NMR� and muon spin relaxation ��SR� are
the most suited to probe frustration-related properties in
these systems, since they can bypass the magnetic contribu-
tion of these defects.

Figure 3 presents a simplified chemical structure for the
ideal p�1 unit cell of SCGO and of BSZCGO, highlighting
the chromium kagomé bilayers.4� As can be seen, BSZCGO
is a pure kagomé bilayer, contrary to SCGO, where there are
two additional chromium sites, labeled Cr�c�, between the
bilayers. These pairs of Cr spins are coupled by an AFM
exchange constant of 216 K with a weak coupling to the
kagomé bilayers (�1 K).42 They form an isolated singlet at
low temperatures, and the resulting susceptibility is negli-
gible at T�50 K compared to the susceptibility of the
kagomé bilayer in a pure compound. Moreover, the Ga/Cr
substitutions are substoechiometric on these sites �see Sec.
2.3.3�. The full crystal structure is obtained by the stacking



706 Low Temp. Phys. 31 (8–9), August–September 2005 Bono et al.
of the unit cells presented in Fig. 3. The magnetism of both
compounds arises by magnetically decoupled kagomé bilay-
ers, ensured in SCGO by the presence of the nonmagnetic
singlets at low temperature �only weakly affected by the
Ga/Cr substitution, see Sec. 2.3.3�, and in BSZCGO by the
large inter-bilayer distance of 9.4 Å �6.4 Å in SCGO�. These
compounds can therefore be considered as ideal two-
dimensional systems.

Figure 4 shows the typical macroscopic susceptibility

FIG. 3. Cr3� network of SCGO and BSZCGO with their oxygen ��� envi-
ronments, along with the two Ga3� sites. The dotted lines represent some of
the Ga–O–Cr hyperfine coupling paths.

FIG. 4. Macroscopic static susceptibility �macro(T) of BSZCGO�0.97� mea-
sured with a SQUID under 100 G �left scale� and �macro

�1 (T) �right scale�.
Inset: ac susceptibility �78 Hz� below 2 K, focusing on the spin-glass-like
transition (Tg).
�macro in these compounds. The linearity of �macro
�1 at high

temperature and the extrapolation of this line to �macro
�1 �0 to

a negative temperature is typical of AFM interactions and
gives an order of magnitude of the Curie-Weiss temperature
�CW�zS(S�1)J/3 �600 K and 350 K for SCGO and
BSZCGO�. However, contrary to the case of ‘‘conventional’’
antiferromagnets,43 no kink is evidenced in �macro around
�CW . This is actually one of the common signatures of the
frustration in HFMs:5 the magnetic correlation length cannot
increase because of frustration, and mean field theory re-
mains valid for T��CW . At low temperature, a spin-glass-
like transition occurs in both systems, around a freezing tem-
perature Tg�3 K in SCGO(p) and 1.5 K in BSZCGO(p)
�Fig. 5�.

However, the spin-glass transition is unconventional. In
fact, in conventional 3D spin glasses the nonlinear suscepti-
bility diverges at Tg , the specific heat is proportional to T at
low temperature, and Tg is proportional to the number of
defects. In kagomé bilayers, however, �i� the nonlinear sus-
ceptibility diverges at Tg �Ref. 44�, but Tg increases as the
number of spin vacancies decreases �Fig. 5�, indicating that
the freezing is related to an intrinsic property of the frus-
trated bilayer. �ii� The specific heat is proportional to T2, as
in AFM 2D long-range ordered systems. Its unusual large
value at low temperature unveils a high density of low-lying
excitations,37,44 and its insensitivity to an external magnetic
field suggests a large contribution from singlet excitations,
which is one of the most striking features predicted for the
S�1/2 kagomé lattice.45–47 �iii� Magnetic fluctuations and
short-range correlations, consistent with a 2D magnetic net-
work, are encountered at low temperature.48,49 The kagomé
bilayers therefore combine properties of 3D spin glasses, 2D
AFM ordering, 2D fluctuating magnetic states and original
properties expected in S�1/2 kagomé systems.

Given these two temperature scales of the macroscopic
susceptibility, �CW and Tg , Ramı́rez proposed the definition
of a ‘‘frustration ratio,’’ f ��CW /Tg , with f �10 in all
HFMs.52 The kagomé bilayers SCGO and BSZCGO, respec-
tively, display f �150 and 230,41 the largest ratios reported
so far in compounds where the frustration is driven by corner
sharing equilateral triangles.5 The large frustration, the
Heisenberg spins along with the low disorder, make them the

FIG. 5. Collection of spin-glass-like transition temperatures Tg for SCGO
and for BSZCGO versus Cr concentration p �our data and from Refs. 37, 38,
50, 51�. The line is a guide to the eye.
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archetypes of HFM and maybe the best candidates for a RVB
spin-liquid ground state.

We present a review of the magnetic properties of
SCGO(p) and BSZCGO(p) powder samples, which covers
a large range of Cr concentration p . A comparison between
samples of different concentration allows us to identify the
frustrated and disorder-related magnetic properties of the
kagomé bilayer. Through local probes it is then possible to
determine the true nature of the bilayer’s static susceptibility
�by NMR�, as well as the bilayer’s low-temperature dynam-
ics and ground-state magnetic excitations �by �SR�. The out-
line of the paper is as follows. Section 2 is dedicated to the
susceptibility of the kagomé bilayer. It is shown that the
susceptibility of the bilayer of SCGO and of BSZCGO can
be accessed directly through gallium NMR
experiments.40,41,53–56 Both susceptibilities exhibit a maxi-
mum in temperature at T�40 K�J and decrease below this
maximum down to at least J/4. This behavior indicates that
short range magnetic correlations persist at least down to 10
K, being consistent with the existence of a small spin gap.
The comparison of the kagomé bilayer’s susceptibility with
�macro shows that the spin vacancies of the bilayer generate
paramagnetic defects responsible for the low-temperature
Curie upturn observed in the macroscopic susceptibility
�both systems have also extra Curie contributions, coming
from broken Cr�c� spin pairs in SCGO and from bond length
distribution in BSZCGO�. Section 3 is dedicated to the �SR
study of the low-temperature spin dynamics of these
HFMs.49,56–58 It is shown that magnetic excitations persist
down to at least 30 mK �the lowest temperature that could be
accessed�. This temperature sets an upper limit for the value
of a spin gap. A qualitative and quantitative analysis of the
data shows that these excitations are possibly coherent un-
confined spinons of a RVB ground state. The energy scale Tg

would then correspond, in this phenomenological approach,
to the signature of this coherent resonating state. A summary
and concluding remarks can be found in Sec. 4.

II. FRUSTRATED VERSUS DISORDER-RELATED
SUSCEPTIBILITY

A. Gallium NMR in SCGO and BSZCGO

The NMR experiments were performed on 69Ga
(69	/2
�10.219 MHz/T, 69Q�0.178�10�24 cm2) and
71Ga (71	/2
�12.983 MHz/T, 71Q�0.112�10�24 cm2)
nuclei in SCGO and BSZCGO using a 
/2– � – 
 spin echo
sequence, where 	 and Q are, respectively, the gyromagnetic
ratio and the quadrupolar moment of the nuclei. The gallium
ions are located on two distinct crystallographic sites, labeled
Ga�1� and Ga�2� in Fig. 3. As pointed out in Refs. 40, 41, 53,
56, the interest in Ga NMR lies in the coupling between
gallium nuclei with their neighboring magnetic Cr3� ions
through a Ga-O-Cr hyperfine bridge �Fig. 3�. In particular,
the 69,71Ga(1) nuclei are exclusively coupled to the Cr3�

ions of the kagomé bilayer: to nine chromium ions of the
upper and lower kagomé layers �labeled Cr�b� in Fig. 3�, and
to three chromium ions in the linking site in between the two
kagomé layers �labeled Cr�a� in Fig. 3�. Through the NMR of
Ga�1�, it is possible to probe locally the magnetic properties
of the kagomé bilayers of both HFMs. This is the central
topic of the NMR study presented in this paper.
Before going any further, we briefly recall some relation-
ship between the contribution of each gallium nucleus to the
Ga�1� NMR line and its local magnetic environment in order
to underline what can be exactly probed through Ga�1�
NMR. We suppose first that the susceptibility in the kagomé
bilayer varies from chromium site to chromium site and label
it, in a generic manner, by �. A Ga�1� at site i will contribute
to the NMR spectrum at a position depending upon the num-
ber of the nearest neighbors �NN� occupied chromium sites
and their susceptibility �. This corresponds to the shift Ki in
the NMR spectrum for a gallium at site i:

Ki� �
occupied NN Cr�a ,b �

A� , �1�

where A is the hyperfine constant �the chemical shift is ne-
glected here�. The average shift, K , of the NMR line, is
simply related to the average Ki over all the gallium sites.
Hence, it is practically proportional to the average suscepti-
bility �kag of the kagomé bilayer. On the other hand, the
distribution of Ki around K defines the magnetic width of the
Ga NMR line and reflects the existence of a distribution of �.
As we show in the following sections, the NMR width
probes a susceptibility related to disorder in BSZCGO and in
SCGO.

Along with this hyperfine interaction, the 69,71Ga Hamil-
tonian in SCGO and in BSZCGO has a quadrupolar contri-
bution. The quadrupole interaction of gallium nuclei in both
SCGO and BSZCGO is a consequence of the coupling of the
nucleus to the electric field gradient �EFG� produced by the
surrounding electronic charges. Following the usual nota-
tions, the nuclear Hamiltonian may be expressed as

H��	
I� 1̄�K̄ �H0�
h�Q

6
�3Iz

2�I2���Ix
2�Iy

2�� , �2�

where H0 is the applied magnetic field, �Q is the quadrupolar
frequency, and 0���1 is the asymmetry parameter. The
principal axes of the shift tensor K̄ are collinear with the
direction of the nuclear spin operators Ix , Iy , and Iz .

As shown in Fig. 3, the gallium sites of both HFMs have
different crystallographic environments. Some simple argu-
ments can be used to anticipate differences concerning their
spectra �Table I�:

�i� The Ga�1� sites of both HFMs have a nearly tetrahe-
dral oxygen environment. Given this nearly cubic symmetry,
the EFG is small, i.e., �Q is small. However, whereas the
Ga�1� site of SCGO is occupied only by Ga3� ions, the

TABLE I. Quadrupole parameters for the 71Ga sites in SCGO40,53 and in
BSZCGO.41 Notice that 69�Q�(69Q/71Q)71�Q�1.5971�Q . Quadrupole ef-
fects are therefore more pronounced for the 69Ga isotope than for the 71Ga.

*Determined using point charge simulation.
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Ga�1� site of BSZCGO is randomly occupied either by Zn2�

or by Ga3� ions. As a consequence, point charge simulations
of the EFG on the Ga�1� site of BSZCGO show that there is
a large distribution of � and �Q , contrary to the Ga�1� of
SCGO.

�ii� The Ga�2� site of SCGO is surrounded by a bi-
pyramid of 5 oxygen ions, whereas the Ga�2� of BSZCGO
lies in an oxygen-elongated tetrahedron. As both environ-
ments lack cubic symmetry, the quadrupolar frequency is
large. For this site, point charge simulations yield a �Q that is
twice as large in SCGO as in BSZCGO.

�iii� The ratio Ga�1�:Ga�2� is 2:1 in SCGO, whereas it is
1:2 in BSZCGO. Consequently, the relative spectral weight
of the Ga�1� and Ga�2� sites will be opposite in the two
compounds.

An extensive study of the 69,71Ga NMR spectra in SCGO
was presented in Refs. 40 and 53. It allowed identification of
the NMR lines and extraction of the parameters of the
nuclear Hamiltonian, among them the quadrupolar param-
eters given in Table I. It was shown that the Ga NMR spec-
trum of both isotopes is the sum of the Ga�1� and Ga�2� sites,
plus a small extra contribution related to the presence of the
nonstoichiometric gallium substituted on the chromium sites
�labeled Ga�sub� in Fig. 8�. A similar analysis allowed iden-
tification of the NMR lines in BSZCGO and determination of
the related parameters of the nuclear Hamiltonian,41 also
listed in Table I.

Aside from the Ga-substituted sites, the Ga NMR spec-
trum displays four sets of lines corresponding to the two
isotopes distributed on both Ga�1� and Ga�2� sites. In a pow-
der sample, as used here, for a given site and a given isotope,
the line shape results from the distribution of the angles be-
tween the magnetic field and the EFG principal axes. This
yields singularities rather than well defined peaks �the so-
called powder line shape�, as in the Ga NMR spectra of
SCGO�0.95� and of BSZCGO�0.97� presented in Fig. 6.

Powder-pattern simulations for two different rf frequen-
cies (� l�40 MHz and 84 MHz� are presented in Fig. 7, us-
ing the parameters of Table I. They agree perfectly with the
experimental NMR spectra and clearly show that the
BSZCGO spectrum is more intricate than the SCGO one,
because of the more pronounced quadrupolar contribution.
This is probably the reason why the Ga�sub� line cannot be
resolved in BSZCGO, contrary to SCGO.

Most of the SCGO data were acquired in a field-sweep
spectrometer with an rf frequency � l�40 MHz, because
then the 69,71Ga(1) NMR lines can be isolated, as shown in
Fig. 7.40 At high temperatures �Fig. 8a� the NMR line shape
remains unaltered and shifts with decreasing temperature. At
low temperature (T�50 K), the line broadens with decreas-
ing temperature �Fig. 8b�. The 69,71Ga(1) shift is still quali-
tatively visible down to 5 K, where the Ga NMR signal is
lost �see below�. Fits of the low-temperature spectra �using a
convolution of a high-temperature unbroadened spectrum
with a Gaussian� allow one to extract quantitatively the shift
and the width of the NMR lines for all the samples studied
(0.72�p�0.95). All display similar shifts with temperature,
but different broadening, the line shape increasing with
Ga/Cr substitution at a given temperature.40

In the case of BSZCGO, it can be seen from Fig. 7 that
it is advantageous to work at a frequency higher than 40
MHz, in order to isolate the Ga�1� contribution.5� Field-
sweep 71Ga NMR experiments were performed at an rf fre-
quency � l�84 MHz. At high temperature �Fig. 9a� a
71Ga(1) shift is evidenced, similar to the one in SCGO.6� At
low temperature, the 71Ga(1) and 71Ga(2) lines broaden and
start to overlap. However, the two lines can be resolved by
exploiting the different transverse relaxation times T2 of the
two gallium sites (T2,Ga(1)�20 �s, T2,Ga(2)�200 �s). The
first step consists in using a large time separation between
the two rf pulses (��200 �s) in order to eliminate the Ga�1�

FIG. 6. Comparison of the 69,71Ga NMR spectra in SCGO and BSZCGO
obtained by sweeping the field with a constant frequency � l�40 MHz, at
T�40 K. The arrows point the quadrupolar singularities for the Ga�1� and
Ga�2�, respectively, located inside and outside the bilayers �Fig. 3�. ‘‘CL’’
indicates the central line (1/2↔�1/2 transition� singularities. The continu-
ous and dashed lines show the shift of the in-range singularities of the Ga
sites, from one system to the other. We cannot identify the first order satel-
lites of the Ga�1� in BSZCGO on this spectrum.

FIG. 7. Quadrupolar powder pattern simulations for both sites and isotopes
with the parameters of Table I, for frequencies � l�40 MHz �left� and 84
MHz �right� in SCGO and BSZCGO. The area of each contribution is ob-
tained considering the stoichiometry of each site in the samples and the
natural abundance of each isotope. The full NMR spectra are obtained by
adding all the contributions �not shown�.
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contribution. The isolated Ga�2� line is extracted using a
Gaussian convolution of the quadrupolar powder pattern. In
the second step, a short time separation is employed between
the pulses (��10 �s) so that the Ga�1� contribution is re-
covered. The Ga�1� line is finally isolated by subtracting the
long-� spectrum corrected in intensity to account for the
shorter time separation employed.7� Such a procedure can be
employed down to 10 K. The width and the shift of the Ga�1�
line can then be extracted from a fit using a 71�Q

�3.5 MHz quadrupolar powder pattern convoluted by a
Gaussian line shape, and are little affected by the uncertainty
on 71�Q . The ratio between the intensities of the Ga�2� and
Ga�1� lines �integrated area below the lines� was found to
stay close to 2 down to 10 K, in agreement with the 2:1
stoichiometric ratio for the Ga�2� and Ga�1� sites of
BSZCGO.

The temperature dependence of the intensity of the
71Ga(1) NMR line, which corresponds to the number of de-
tected 71Ga(1) nuclei, is presented in Fig. 10 for SCGO. A
similar trend is observed in BSZCGO, with larger error bars
due to the preponderant Ga�2� contribution. As temperature
decreases the spin dynamics slows down, and results in a
decreasing longitudinal relaxation time T1 �see Sec. 3�,
hence in a progressive loss of the NMR signal below 15 K.
Such a wipeout is reminiscent of the one observed in spin
glasses at temperatures near Tg .59 However, contrary to spin
glasses, where ultimately the signal is recovered below Tg ,

FIG. 8. 71Ga spectra in SCGO (Hl�2
� l /71	). a—High temperature. The
71Ga(2) contribution appears as a flat background in this field range.
b—Low temperature, lines are broadened. The 71Ga(2) contribution re-
mains flat at the position of the 71Ga(1) line, which shifts to higher fields in
this temperature region when the temperature decreases.
there is no evidence for such a recovery in SCGO, nor in
BSZCGO.

B. Susceptibility of the kagomé bilayer

The kagomé bilayer susceptibility �kag is probed through
the shift K of the 69,71Ga(1) NMR lines,40,41,54 presented in

FIG. 9. 71Ga spectra in BSZCGO. a—High temperature. The 71Ga(2) first-
order quadrupolar contribution appears as a flat background in this field
range at the 71Ga(1) line position. b—Low temperature, lines are broad-
ened. � and � are the short and the rescaled long spectra, respectively. � is
for the Ga�1� contribution, given by their subtraction. The dotted arrows
point at the center of the Ga�1� line, which shifts to higher fields when T
decreases. Continuous �dashed� lines are Gaussian broadened 71Ga(1)
�71Ga(2)� quadrupolar powder pattern simulations, with �Q�3.5 MHz �12
MHz� and ��0.6 (��0.04).

FIG. 10. NMR signal intensity in several SCGO(p) samples. A loss of
69,71Ga sites is observed for T�5Tg (�16 K). The line is a guide to the eye.
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Fig. 11 for the purest samples of both systems in a tempera-
ture range displaying no significant loss of intensity (T
�10 K). The shift �and �kag) increases when the tempera-
ture decreases to 45 K, where a maximum is reached, and
then decreases again as the temperature is lowered. This be-
havior is common to both systems and is field- and
dilution-independent.54 Most importantly, it is quite clear
from Fig. 12 that there is a discrepancy between the low-
temperature behavior of �kag and of �macro . Instead of a
maximum, the susceptibility probed by SQUID measure-
ments follows a Curie-like law at low temperature. This es-
tablishes that �macro is a two-component susceptibility,8� re-
sulting from the sum of the kagomé bilayer’s susceptibility
and, as evidenced in Sec. 2.3, of a susceptibility related to
magnetic defects (�def):

�macro��kag��def . �3�

Concerning the high-temperature (T�80 K) behavior of
K , a phenomenological Curie–Weiss law, K�CNMR /(T
��NMR), is an accurate fit, yielding �NMR�(440	5) K and
(380	10) K, respectively, for SCGO�0.95� and

FIG. 11. Shift of the 71Ga(1) line in SCGO and BSZCGO. Lines are GCC
calculations �see text�. Inset: Full scale down to 0. The line is the 36 spin
S�1/2 cluster calculation mentioned in the text (�ED).

FIG. 12. K �left� and �macro �right� for SCGO�0.95�. The NMR shift and the
SQUID susceptibility do not follow exactly the same law at high tempera-
ture, since �macro also probes the susceptibility of the Cr�c�–Cr�c� spin pairs
of SCGO �a detailed analysis can be found in Fig. 13 of Ref. 40�.
BSZCGO�0.97�. The ‘‘Curie–Weiss’’ constant CNMR found
from the fit is 20% larger in SCGO than in BSZCGO, which
indicates that hyperfine couplings are stronger in SCGO,
likely because of the shorter Ga–O–Cr bonds �Fig. 3�. Al-
though very commonly employed to extract information
from the HFMs susceptibility, this phenomenological law is
a rather crude approximation, since the linear behavior of the
inverse of the susceptibility is expected to hold, within a
mean field approach, only when T�2�NMR , which is not the
case here. From �NMR , one can therefore only grossly esti-
mate the coupling constants J of the kagomé bilayers. In the
absence of any prediction for S�3/2, we used the high tem-
perature series expansion of �kag , derived for an S�1/2
kagomé lattice, to correct �NMR by a factor of 1.5.60 The
coupling constant is finally extracted from the mean-field
relation �NMR�1.5zS(S�1)J/3. The coordinance is z
�5.14 and corresponds to the average number of nearest
neighbors for a chromium ion of the bilayer. The couplings
then read J�45 K and 40 K for SCGO and BSZCGO, re-
spectively. These values are consistent with the couplings
observed in other chromium-based compounds,61,62 and they
indicate that the Cr–Cr AFM interaction stems from the di-
rect overlap between orbitals of neighboring chromium ions,
rather than from an oxygen-mediated superexchange cou-
pling. A direct interaction results in a coupling J very sensi-
tive to the Cr–Cr distance �d�, and follows a phenomenologi-
cal law:40

�J/�d�450 K/Å. �4�

The slightly stronger coupling found in SCGO compared to
BSZCGO results then, following this viewpoint, from the
shorter Cr–Cr bond lengths of its kagomé bilayer �Fig. 3�.

We now turn to the low-temperature behavior of �kag ,
and in particular we discuss the maximum around 45 K. The
first possible interpretation of this maximum is the existence
of a spin gap. Such a gap � is an important issue for the
kagomé bilayer, since it would be the signature of the exis-
tence of a singlet ground state, found in the theoretical quan-
tum description of an S�1/2 kagomé layer.15 Its value is
predicted to be ��J/20, and should be of the same order for
higher spins.9� Since Ga NMR cannot access temperatures
lower than 10 K, which for SCGO and BSZCGO corre-
sponds to J/4, we cannot conclude whether the maximum in
temperature is related to a gap. From an experimental point
of view, its observation would require temperatures T�� in
order to observe the exponential decrease predicted for the
susceptibility.47 In the inset of Fig. 11, we compare our ex-
perimental data to the susceptibility computed with exact
diagonalization on a 36 spin S�1/2 kagomé cluster.19 We see
that the position of the predicted maximum does not match
the experimental one. Also, the sharp peak of the suscepti-
bility of the calculation is not seen in �kag . Clearly, larger
cluster sizes and the kagomé bilayer geometry are needed for
a better comparison to the NMR data. For the time being, it
may be safely concluded, that the behavior of the NMR shift,
hence of �kag , is consistent only with a spin gap smaller than
J/10.

Rather than the signature of a gap, the maximum in �kag

was assigned in Ref. 54 to the signature of a moderate in-
crease of the spin-spin correlations of the kagomé bilayer
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which, however, must remain short ranged given the absence
of any phase transition. This conclusion was confirmed by
neutron measurements on SCGO for temperatures ranging
from 200 K down to 1.5 K,63 and by susceptibility calcula-
tions performed on the kagomé and the pyrochlore lattices
with Heisenberg spins, in which the spin-spin correlation
length is kept of the order of the lattice parameter.64 These
calculations, using the so-called ‘‘generalized constant cou-
pling’’ method �GCC�,64 consist in computing the suscepti-
bility of isolated spin-clusters �triangles for the kagomé and
tetrahedra for the pyrochlore� and in coupling these clusters
following a mean field approach. In the case of the pyro-
chlore lattice, an exponential decrease of the susceptibility is
obtained at low temperature. In this case, the ground state of
a cluster is non-magnetic and the spin gap is between the S
�0 ground state and the magnetic S�1 excited states. In the
case of the kagomé lattice, the ground state of the triangle is
magnetic (S total�1/2) which gives rise to the nonphysical
divergence in the susceptibility as T→0, due to the choice of
a particular cluster.64 The GCC simulations for the S�3/2
kagomé and pyrochlore lattices, in between which the
kagomé bilayer’s susceptibility is expected to lie, are pre-
sented in Fig. 11. As shown, they agree with the data down to
T�40 K
�NMR , yielding a maximum and a behavior
around the maximum in agreement with the experimental
findings. From the simulations, the values of �CW are 260 K
for SCGO�0.95� and 235 K for BSZCGO�0.97�, which cor-
respond to J�40 K and J�37 K, close to the previous val-
ues obtained through the high-temperature Curie–Weiss law.

In conclusion, the GCC computation fits quite well the
data down to T�J
�CW , where J�40 K. It only shows
that the strongest underlying assumption of this cluster
mean-field approach is relevant, i.e., the spin-spin correlation
length is of the order of the lattice parameter, which prevents
any magnetic transition to a long range ordered state.

C. Defect-related susceptibility

In this section, we focus on the defects contribution to
the susceptibility. The NMR linewidth and the SQUID data
at low temperature show that the paramagnetic susceptibility
�def observed in �macro comes from the dilution of the
kagomé bilayer and from other kinds of defects, namely the
Cr�c� pairs in SCGO and bond defects in BSZCGO. The
Ga�1� NMR width not only enables to evidence that the va-
cancy of a spin on the network, i.e. the dilution, generates a
paramagnetic defect, but also allows to shed light on the
more fundamental question concerning the extended nature
of the defects. We first present the experimental facts con-
cerning the magnetic defects, as measured quantitatively
through the NMR linewidth and the SQUID susceptibility
�macro and then elaborate on their nature in both compounds.

1. NMR linewidth

The Ga�1� NMR linewidth of SCGO and of BSZCGO
was measured for various Cr-concentrations p . Figure 13
presents the typical p-dependence of the linewidth in both
samples—in the figure, only for SCGO. In agreement with
the qualitative presentation of the raw spectra in Sec. 2.1, the
width increases as temperature drops and is well described
by 1/T Curie law �lines in Fig. 13�. It is very sensitive to the
lattice dilution, similarly to the low-temperature behavior of
�macro �see Fig. 16�, but differs from the NMR shift. The
perfect scaling of the widths of the two 69,71Ga(1) isotopes
�e.g., SCGO�0.95� in Fig. 13� underlines the magnetic origin
of the low-temperature broadening.

Figure 14 presents the linewidth obtained for
SCGO�0.95� and for a comparable dilution in
BSZCGO�0.97�. Surprisingly, the Curie upturn in
BSZCGO�0.97� is four times larger than in SCGO�0.95�.
This ratio cannot be explained by a higher hyperfine cou-
pling constant for BSZCGO, since, as mentioned in Sec. 2.2,
the constants CNMR obtained from the high-temperature
Curie-Weiss analysis of the shift in SCGO and BSZCGO
point to the opposite variation. Further insight concerning
this mismatch between the two HFMs can be gained by plot-
ting the widths as a function of dilution at a given tempera-
ture �inset of Fig. 14�. In SCGO the width extrapolates to 0
when p�1, which shows that the width is only related to
dilution. On the contrary, in BSZCGO the width reaches an

FIG. 13. Ga�1� NMR width versus temperature for SCGO samples of dif-
ferent Cr concentration. The width �H is normalized by the reference field
Hl�� l /69,71	 to superimpose the results from the two gallium isotopes �as
explicitly shown for p�0.95). The solid lines are �1/T Curie-like fits.

FIG. 14. Magnetic contribution to the NMR linewidth �H/Hl . For
BSZCGO�0.97�, the data for 71Ga(2) ��� are rescaled by a factor of 6,
corresponding to the ratio of the coupling constants deduced from the high-
temperature shifts. � are for �H/Hl�

71Ga(1)� . The lines are �1/T Curie-
like fits. Inset: p dependence of �H71�71Ga(1)� at 50 K for SCGO(p) and
BSZCGO(p). The lines are a guide to the eye.
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asymptotic nonzero value for 0.86�p�1. As a first assump-
tion, one could wonder whether the dilution of the lattice is
larger than the nominal one. This can be ruled out since �i�
the expected evolution of the line shape with p is found at
300 K �see the following� �ii� muon spin relaxation measure-
ments indicate a regular evolution of the dynamical proper-
ties with p �Sec. 3�. Therefore, the increased low-temperature
upturn in BSZCGO comes from dilution-independent para-
magnetic defects, which are not present in SCGO.

We may already rule out possible scenarios which could
be responsible for the low-temperature broadening. For in-
stance, the broadening generated by the suppression of chro-
mium ions in the nuclear environment. Such a distribution is
present in the Ga�1� NMR spectra of SCGO and of
BSZCGO, but is only responsible for a minor broadening of
the line as shown in Fig. 15 for SCGO�0.95�. This broaden-
ing mechanism results from the fact that each Ga�1� nucleus
has a probability P(z�) �inset of Fig. 15� to have z� chro-
mium neighbors (0�z��12). Assuming that the Ga/Cr sub-
stitution does not affect the Ga–O–Cr hyperfine couplings
and that all the chromium ions have the same susceptibility,
the shift of a Ga�1� nucleus surrounded by z� neighboring
chromium ions is then proportional to z�, according to Eq.
�1�. To construct the spectrum, each gallium nucleus is asso-
ciated to a quadrupole line simulated with the parameters of
Table I, with a shift reflecting its Cr environment and an
intensity weighted by the total number of gallium nuclei hav-
ing the same environment, i.e., weighted by P(z�). The
simulated line perfectly matches the experimental Ga�1�
NMR line at 150 K �Fig. 15�. However, the broadening re-
sulting from this distribution scales with the susceptibility,
hence with the shift K . Since K decreases at low tempera-
ture, this broadening mechanism cannot explain the low-
temperature upturn of the width. For the same reason, a spa-
tial distribution of the hyperfine constant, which yields also a
width � K , cannot justify the broadening observed and also
has to be ruled out.10� Even if a such refined analysis is not
possible in BSZCGO because of a stronger broadening than
SCGO, similar conclusions are derived for this compound.56

FIG. 15. 71Ga(1) spectrum at 150 K in SCGO�0.95� (� l�40 MHz). The
lines are quadrupolar powder pattern simulations with the parameters of
Table I, shifted with a value proportional to z�, the number of NN Cr3� for
a site. Their area is weighted by the probability P(z�) when p�0.95, pre-
sented in the inset.
Hence, the explanation for the low-temperature broadening
must be searched elsewhere �see Sec. 2.3.3�.

2. SQUID

The SQUID measurements were carried out over a wide
range of Cr concentrations (0.29�p�0.97) for temperatures
down to 1.8 K �no difference was observed between the field
cooled �FC� and zero-field cooled �ZFC� susceptibility above
the freezing temperature Tg in a field of 100 G�. Figure 16
presents the typical low-temperature macroscopic suscepti-
bility of these HFMs. Like the NMR linewidth, the suscep-
tibility exhibits a low-temperature upturn, increasing with
growing dilution. In Sec. 2.2, by a comparison between the
NMR shift and the macroscopic susceptibility, we estab-
lished that �macro must be a two-component susceptibility,
and, in particular, that it should possess, compared to the
shift, a paramagnetic susceptibility �def to explain its low-
temperature upturn. The dilution-dependent upturn of �macro

in Fig. 16 therefore establishes that �def is related to the
Ga/Cr substitution in SCGO(p). However, we also know
from NMR that there also exist extra paramagnetic contribu-
tions, related to intrinsic defects in BSZCGO, for example.

In order to quantify the low-temperature dependence of
the susceptibility, we follow Ref. 65 and fit �macro by a two
component expression:

�macro�
C

T��
�

Cdef

T��def
. �5�

The first Curie–Weiss term roughly takes into account the
contribution from the kagomé bilayer and governs the behav-
ior of �macro at high temperature. The second term, the more
relevant for this section, also a priori Curie–Weiss, quanti-
fies the contribution of �def . A more accurate fit of �macro

would consist in using a low-temperature susceptibility mim-
icking the NMR shift. Such a fit, however, yields the same
qualitative results as presented below.

From these fits �e.g., inset of Fig. 16�, an effective mo-
ment per Cr3� is extracted, peff�4.1	0.2/�B in both
SCGO40 and BSZCGO, close to the 3.87/�B expected for

FIG. 16. Low-temperature macroscopic susceptibility �SQUID� for some
SCGO Cr concentrations. Inset: SCGO �0.95� data �circles� fitted with Eq.
�5�.
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S�3/2 spins. In BSZCGO, the Curie-Weiss temperature is
found to increase with p �Fig. 17a�, in agreement with mean-
field theory. From the linear variation, following the proce-
dure described in Sec. 2.2, we extract J�40 K,41 consistent
with our NMR results. However, two linear regimes of �(p)
are observed for SCGO(p), below and above p�0.55. This
was first reported in Ref. 50 and cannot be understood in
terms of simple mean field theory. Taking into account a
third term in Eq. �5�, corresponding to the susceptibility of
the Cr�c� pairs in SCGO, derived in Ref. 40 and vanishingly
small below 50 K, does not affect this result.

The second term in Eq. �5� is introduced to fit the low-
temperature behavior of the defects. For all samples studied,
it is close to a pure Curie law, within error bars. The values
of the Curie constants Cdef extracted are presented in Fig.
17b. A p dependence qualitatively similar to the NMR width
is found and Cdef extrapolates again to 0 for p�1 in SCGO,
whereas it displays a finite value in BSZCGO. When the Cr
concentration is �0.8, the dependency of Cdef is qualita-
tively the same in both systems �inset of Fig. 17b�.

To give an order of magnitude, this term represents, for
the purest samples, a number of S�1/2 paramagnetic spins
equal to the number of spin vacancies in SCGO(p) �40� and
to 15–20% of the number of Cr3� spins in BSZCGO(p).41

3. Paramagnetic defects: discussion

The NMR and the macroscopic susceptibility measure-
ments indicate that there are paramagnetic defects in SCGO
and BSZCGO. Some of them are related to the spin vacan-
cies in the kagomé bilayers and affect the neighboring chro-
mium ions in such a way that their overall behavior is para-
magnetic. These defects therefore yield information on how
the correlated spin network of the kagomé bilayer responds
to the presence of the vacancy. In the following, we discuss
this point as well as the presence of other types of defects in
both compounds.

The second type of defects results from lattice imperfec-
tions in BSZCGO, and from the dilution of the spin-pair sites
in SCGO. Unfortunately, in the case of BSZCGO the second
type of defects dominates the paramagnetic response, and in

FIG. 17. Fits of the SQUID data �Eq. �5��. a—� come from Ref. 50. The
lines are a guide to the eye. b—The dashed line represents the kagomé
bilayers defects contribution to Cdef(p) in SCGO(p), the other lines are a
guide to the eye. The gray area represent the Cr�c� contribution in Cdef(p)
for SCGO(p) �see text�. Inset: same data as �b� for a broader range of p .
this compound, on the contrary of SCGO, a fine analysis of
the spin-vacancy defects cannot be carried out, even by
Ga�1� NMR.

A. Spin vacancies. In AFM systems such as the 1D spin
chains66,67 the quasi-2D spin ladders68 and the 2D cuprates69

it is now well established that a vacancy �or a magnetic im-
purity� generates a long range oscillating magnetic perturba-
tion and creates a paramagnetic-like, i.e., not necessarily
�1/T , component in the macroscopic susceptibility. The
symmetric broadening of the NMR line observed in these
systems is related to the oscillating character of the pertur-
bation. The dilution effects of the kagomé bilayer would then
be described by the same physics of these correlated systems.

In SCGO, the symmetric feature of the Ga�1� NMR line
indicates that spin vacancies induce a perturbation extended
in space. This rules out descriptions of the defect in terms of
uncorrelated paramagnetic centers,65,70 since the broadening
of the line would then be asymmetric. Hence, given the AFM
interactions of the kagomé bilayer, the perturbation was as-
signed to a staggered polarization of the network.40 The ex-
act diagonalization of 36 spin 1/2 clusters on the kagomé
lattice with spin vacancies by Dommange et al. confirms this
interpretation.23 They show that within an RVB ground state,
the spin-spin correlations around a vacancy are enhanced,
and that the magnetization is staggered around it, a picture
that should also hold for higher spin values. However, it
seems that the image of a simple envelope of the staggered
magnetization, like the Lorentzian now granted in high-Tc

cuprates69, is not correct here since this localization of sin-
glets around the vacancies shifts the staggered cloud from
the nonmagnetic impurity. Although the agreement is quali-
tative at the moment, further work is required within this
framework for a quantitative modeling of the NMR line-
shape.

B. Bond disorder in BSZCGO. We previously saw that in
BSZCGO(p), low-temperature macroscopic susceptibility
and NMR width data can be both satisfactorily accounted
for, only if a novel p-independent defect-like contribution is
taken into consideration, a result somehow surprising in view
of the close similarity between the kagomé bilayers of SCGO
and BSZCGO. The only major change lies in the 1:1 random
occupancy of the Ga�1� site by Ga3� or Zn2� ions which
induces different electrostatic interactions with the neighbor-
ing ions. As an example, distances to O2� in a tetrahedral
environment vary from rGa3�-O2��0.47 Å to rZn2�-O2�

�0.60 Å which is at the origin of a change of the average
Ga�1�-O bonds, from 1.871 Å for SCGO42 to 1.925 Å in
BSZCGO.42 Similarly, one expects that the Cr3� will be less
repelled by Zn2� than by Ga3�, which certainly induces
magnetic bond-disorder, i.e., a modulation of exchange inter-
actions J between neighboring Cr3�. From Eq. �4�, one can
estimate that a modulation as low as 0.01 Å in the
Cr3�-Cr3� distances would yield a 10% modulation of J .

The presence of nonperfect equilateral triangles classi-
cally induces a paramagnetic component in the susceptibility
of the frustrated units.70 The fact that we do not observe any
extra Curie variation as compared to SCGO(p) in the aver-
age susceptibility, probed through the NMR shift K �Fig. 11�,
indicates that such unbalanced exchange interactions only
induce a staggered response in the same manner as spin va-
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cancies. Whether this could be connected with the localiza-
tion of singlets in the vicinity of defects and a staggered
cloud around them, like for spin vacancies, should be more
deeply explored. This might highlight the relevance of a
RVB approach to the physics of the kagomé network. Further
insight into the exact nature of the defects likely requires a
better determination of the bond disorder through structural
studies at low T , to avoid the usual thermal fluctuations at
room T .

C. Broken spin pairs in SCGO. The Ga/Cr substitution
on a Cr�c� site of SCGO could in principle break a Cr�c�-
Cr�c� spin pair and free a paramagnetic spin, which then
could contribute to the paramagnetic upturn of �macro . How-
ever, this contribution turns out to be small. The fact that the
broken spin-pair susceptibility is small, can be deduced by
comparing NMR and SQUID measurements for SCGO and
BSZCGO. The starting point is to notice that the crossing
between the variation of the Curie constants Cdef of both
samples determined by the fits of Eq. �5� to the macroscopic
susceptibility �Fig. 17b�, is not observed in the NMR width
�inset of Fig. 14�. Considering from our NMR analysis that
there is a 20% difference between the hyperfine coupling, we
can evaluate that the scaling factor between �H/Hl(p) and
Cdef(p) should be 20% larger in BSZCGO(p) than in
SCGO(p). An error of 10% comes from the possible differ-
ence between the bilayer susceptibility measured with NMR
and SQUID, since the Ga�1� nuclei do not probe stoichio-
metrically the magnetic sites Cr�b� and Cr�a�.11� We first de-
termine the scaling factor ��H/Hl(p)�/Cdef(p) in
BSZCGO(p), where 100% of the magnetic ions belong to
the kagomé bilayers. With the same ratio, the �H/Hl(p)
data for SCGO(p) therefore yield a lower Cdef(p) than the
measured one, outside the error bars �dashed line in Fig.
17b�. This difference is likely due to dilution of the Cr�c�
pairs in SCGO(p). Their contribution, which is not probed
with the Ga�1� NMR �gray area in Fig. 17b�, corresponds to
a 0.04p Cr3� S�3/2 paramagnetic term, whereas a 2p/9
proportion would be expected in the case of a stoichiometri-
cally substituted sample. This substoichiometric contribution
of the Cr�c� site is consistent with neutron diffraction
measurements.40

III. SPIN DYNAMICS AND MAGNETIC EXCITATIONS

A. Muon: an appropriate probe of dynamics

We mentioned that an abrupt loss of the Ga�1�-NMR
intensity occurs below 10 K �Fig. 10�. Hence, Ga�1�-NMR
cannot be employed to probe the low-temperature magnetic
properties of SCGO and of BSZCGO. This is unfortunate,
since the low-temperature spin dynamics reveal information
that, in particular, gives a clue as to the ground state of these
systems. On the contrary, due to the smaller coupling of the
muon to the electronic moments and a shorter time window
than the NMR one, the �SR technique has proven to be a
leading tool for the study of quantum dynamical states in a
vast family of fluctuating systems.

The electronic dynamics is commonly probed, either for
NMR or for �SR, through the measurements of the longitu-
dinal relaxation time, necessary to recover the thermody-
namic equilibrium after the excitation of the nuclear spin or
the muon spin systems. However, while the out-of-
equilibrium state is reached using rf pulses in NMR, the
muon spin system is already in an excited state. Indeed,
muons (��, S�1/2) are implanted in the sample, 100% spin
polarized along the z axis. Therefore, the muon spins always
depolarize to reach the Boltzmann distribution and �SR can
be performed in zero external field, contrary to conventional
NMR.71 The time dependence of their polarization Pz(t)
along the z axis is studied through their decay into a
positron72 and is directly linked to both the spin fluctuations
�the time correlation function of the local field H� is usually
exponential, i.e., �H�(0)•H�(t)�/�H�(0)2��exp(��t)] and
the �random� local field distribution, characterized by a width
�/	� (	� is the muon gyromagnetic ratio�. The longitudinal
relaxation time is related to the spin-correlation function
through

1/T1��
0

�

�S�0 �•S� t ��cos�	�HLFt �dt .

Zero-field and longitudinal-field �LF� �SR experiments,
where the external field HLF is applied along the z axis,
allow for instance to distinguish magnetic �randomly or or-
dered� frozen states from dynamical ones.73,74 Moreover,
whereas specific heat is sensitive to all kinds of excitations,
including low-lying singlets at low temperature in the
kagomé bilayer samples,46 the muons probe magnetic exci-
tations only, with a specific range of frequencies
(�109 Hz) sitting in a typical time window �10 ns–10 �s� in
between NMR and neutron experiments.

We present here our �SR study of the spin dynamics in
SCGO(p) and BSZCGO(p).56,58 We first show that while
conventional �SR polarization functions can be used in the
whole temperature range for the very diluted samples and in
the high-temperature regime (T�3Tg) for the purest ones,
they cannot be used satisfactorily in the low-temperature re-
gime in the latter case (p�0.7). Moreover, in this first step,
we qualitatively show that the magnetic state of all the
samples is dynamical down to the experimental limit of 30
mK �Sec. 3.2�. We further use a model independent analysis
of the data, simply taking the time necessary for the muon
spin polarization to decrease down to the value 1/e . The
comparison between SCGO and BSZCGO clearly shows a
correlation between the muon spin relaxation rate and Tg ,
suggesting that this freezing temperature is not an impurity
phase. On the contrary, it seems to be closely linked to the
slowing down of the spin dynamics in the bulk sample �Sec.
3.3�. Finally, a phenomenological model for the muon relax-
ation, based on sporadic dynamics due to spin excitations in
a singlet sea, proposed by Uemura et al.,49 is extended to all
fields and temperature range. Its connection to the RVB pic-
ture is discussed, and we argue that such coherent states
might mediate the interactions between ‘‘impurities,’’ which
induce the spin-glass freezing �Sec. 3.4�.

B. Conventional approaches

1. High-temperature behavior

At high temperature, a conventional paramagnetic be-
havior is found for all the samples, with a stretched exponen-
tial variation of Pz(t)�exp��(�t)��. Figure 18 shows that as
expected, �→1 in the dense magnetic cases74 �in our case,
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with a high coverage of the kagomé bilayer lattice by Cr3�)
and �→0.5 in the dilute cases73 �i.e., with a low coverage�.

We can give here an estimate of the fluctuation fre-
quency in this temperature range and of the NMR time win-
dow which would be required to measure this spin dynamics.
At �50 K, the muon relaxation rate is ��0.03 �s�1 and
0.01 �s�1 in SCGO�0.95� and BSZCGO�0.97�. In this ap-
propriate fast fluctuating paramagnetic limit, the fluctuation
rate can be estimated from ���zJS/kB
�2•1013 s�1 �Ref.
49� using the coupling J�40 K determined previously by
NMR, and the average number z�5.14 of Cr nearest neigh-
bors. We extract �����/2�600 �s�1 and 300 �s�1,
which corresponds to an average field at the muon sites of
7000 G and 3500 G for SCGO and BSZCGO, respectively.

Since the relationship between the longitudinal relax-
ation time T1 measured in NMR and �SR is

T1
NMR/T1

�SR���/�71	71A ��2,

where 71A�70 kOe/�B is the hyperfine coupling constant of
the 71Ga nuclei obtained from NMR experiments, we can
estimate that T1

NMR/T1
�SR�5. This is consistent with our data

T1
NMR�100 �s at high temperature and establishes that be-

low 5 K, the relaxation must be T1
NMR�1 �s, which is non-

measurable as it lies out of the NMR time window. Such a
small relaxation time is responsible for the wipeout of the
Ga–NMR intensity �Fig. 10�.

2. Failure of conventional approaches at low temperature
for the purest samples

The derivation of zero field and longitudinal field �SR
relaxation functions is presented in Refs. 73 and 74 for text-
book cases. We first rule out the possibility of some static
freezing as the source of the muon relaxation. Two options
can be considered. �i� In randomly frozen �static� magnetic
states, the major results are the following: first, the muon
spin polarization displays a ‘‘1/3 tail’’ in zero external field,
i.e., Pz(t�5/�)→1/3. Indeed, 1/3 of the frozen magnetic
internal fields are statistically parallel to z and do not con-
tribute to the muon spin depolarization. Second, Pz(t) is
‘‘decoupled,’’ i.e., does not relax, for longitudinal fields
HLF�10�/	� . �ii� In the case of ordered magnetic states

FIG. 18. Exponent �(p) in BSZCGO(p) using the relaxation function
Pz(t)�exp��(�t)�� appropriate for the fast fluctuations limit at high tem-
perature (T�10 K).
and powder samples, the ‘‘1/3 tail’’ is still observed in zero
field experiments for the same reasons, but oscillations ap-
pear in Pz(t), which correspond to well defined local fields.

One should notice that nuclear moments which appear
static on the �SR time window always contribute to the
time-evolution of the polarization. A small longitudinal field
of the order of a few 10s of G (�ND�0.1 �s�1) is com-
monly applied to ‘‘decouple’’ this contribution. In other
words, since the electronic and dipolar contributions are mul-
tiplied, such a contribution, if any, ‘‘disappears,’’ and only
the electronic contribution, not perturbed by such low fields,
is measured. Hence, experiments performed at HLF�100 G
are roughly equivalent to a zero-field measurement without
nuclear dipoles.

Figure 19 shows Pz(t) measured in BSZCGO�0.97� at
0.03 K for HLF�50 G and for HLF�5000 G. Neither oscil-
lations nor a 1/3 tail are observed when HLF�50 G. Al-
though not emphasized in the figure, one can note that the
initial polarization is Gaussian, which is even clearer in
SCGO(p).49 In the static case such a shape is observed in
dense magnetic randomly frozen systems, where the polar-
ization is given by the Gaussian Kubo-Toyabe �KT�
function.73 We fitted our data at short times with this function
in zero field, and plot the expected polarization when HLF

�500 G in Fig. 19, which is found to be completely decou-
pled. This contrasts with our experimental finding, i.e., the
polarization at 5000 G is hardly decoupled. The lack of a 1/3
tail, the absence of oscillations and of a decoupling effect
show that the magnetic state of BSZCGO(0.97) is fluctuating
at 0.03 K. All these considerations remain valid in both
SCGO(p) and BSZCGO(p) compounds when p�0.6.

The computation of the dynamical relaxation functions
is based on a strong collision approximation.73 Using the
corresponding dynamical Kubo-Toyabe �DKT� function,
analytically derived by Keren75 for ��� , allows us to fit the
zero field data on the whole time range �Fig. 19�. Again, the
experimental data is much less sensitive to the applied field
HLF�5000 G than the expected polarization.

FIG. 19. BSZCGO�0.97� data at 0.03 K. The lines are fits with different
models �see text�. We used ��2 �s�1, 4 �s�1 (��17 �s�1), and
65 �s�1 (��600 �s�1), for the static, dynamic and ‘‘Uemura’’ cases, re-
spectively.
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This so-called ‘‘undecouplable Gaussian line shape’’ was
first reported in Ref. 49 for SCGO�0.89� and further in other
kagomé compounds57,76,77 or spin singlet compounds like the
doped Haldane chain Y2�xCaxBaNiO5 �Ref. 78�. Uemura
et al.49 proposed a relaxation model, presented further in this
paper, which captures some of the facets of this relaxation.
For now, we just notice that this model cannot justify our
data for all fields �Fig. 19�, even if it shows a lower decou-
pling effect, consistent with our �and previous� observations.
Before going further with more complex models �Sec. 3.4�,
we will first, in the following, give qualitative arguments to
characterize the low-temperature magnetism of our samples.

In order to illustrate the evolution of the properties with
p , we present two typical low and high occupations p of the
kagomé bilayers in Fig. 20 which emphasize the qualitative
differences for various frustrated network coverage rates p .
In addition to the high-temperature behavior already com-
mented, the evolution of Pz(t) at low temperature is mark-
edly different. For p�0.97 the relaxation rate increases by
more than two orders of magnitude to reach a temperature-
independent value for T�Tg�1.5 K �Fig. 20b�, with the un-
decouplable character presented above. For a low coverage
rate, p�0.43, we also find a dynamical state but, at variance
with the previous case, only a weak temperature-dependence
is observed. Also, the polarization displays a square root ex-
ponential decay for all temperatures �Fig. 20a� and for any
longitudinal field HLF �Fig. 20c�. A weak plateau of the re-
laxation rate is still observed below 0.5 K but is no more
present for p�0.3, where Pz(t) is found to be weakly
temperature- and HLF-dependent. This is typical of the pure
paramagnetic fast fluctuations limit for dilute magnetic sys-
tems, which contrasts with the results of SQUID measure-
ments showing that strongly frustrated antiferromagnetic in-

FIG. 20. a,b—Temperature-dependence of the muon polarization Pz(t) in
BSZCGO under weak HLF �10 G for p�0.43 and 100 G for p�0.97).
Notice the different time scales for both samples. c,d—HLF dependence at
base temperature. The line for p�0.43, ZF, is a square-root exponential
times the Kubo-Toyabe function in zero field (�ND�0.08 �s�1), account-
ing for the nuclear dipole contribution. The other lines are fits described in
the text.
teractions are still present. This is the so-called ‘‘cooperative
paramagnetism.’’

C. Model-independent basic analysis

As a first step to a quantitative analysis, we estimate the
muon spin relaxation rate � using the 1/e point of the polar-
ization Pz(t), as discussed in Ref. 57. This allows one to
single out information about two important issues using a
simple model-independent analysis: the role of the spin-
glass-like transition and the impact of the spin vacancies on
the dynamics.

From high temperature, � increases by more than two
orders of magnitude down to Tg for both kagomé bilayers at
their highest level of purity, to reach a relaxation rate plateau
�T→0 for T�Tg .49,57 Using a temperature-scale twice larger
for SCGO�0.95� than in BSZCGO�0.97�, the temperature de-
pendence of � of both samples perfectly scales on the tem-
perature axis, as shown in Fig. 21.12� This ratio is very close
to the 2.3�2� ratio between their freezing temperatures Tg ,
which points to a link between the formation of the spin-
glass-like state and the presence of fluctuations. This seems
to be a quite common feature of various systems with a sin-
glet ground state.49,57,76–78

In Fig. 22 we report the variation of �T→0(T) for various
BSZCGO(p) samples and compare them to SCGO(p).49,57

FIG. 21. Comparison of the evolution of the muon spin relaxation rate �
versus T in BSZCGO�0.97� and SCGO�0.95�, from a 1/e analysis. Inset:
recovery of a part of the asymmetry at low temperature and long times in
SCGO�0.95� below Tg �log-log scale�.

FIG. 22. The p dependence of �T→0 for BSZCGO(p) �unfilled symbols�
and SCGO(p) �filled symbols�. Continuous �dashed� lines are �p3

�1.9(3)p6 (�p3; Ref. 57� fits.
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Although additional p-independent defects are dominant in
BSZCGO(p), as evidenced by SQUID and NMR measure-
ments, it is very surprising to find, for the two systems, a
very similar quantitative low-temperature relaxation rate
�T→0 with increasing Cr concentration over the entire p
range studied. Therefore we conclude that only defects re-
lated to dilution of the frustrated magnetic network influence
the relaxation rate.

In a classical framework, a coplanar arrangement with
zero-energy excitation modes, involving spins on hexagons,
was proposed in the literature to be selected at low
temperature.79 Inelastic neutron scattering experiments on
SCGO and the spinel compound ZnCr2O4 are indications in
favor of such excitations.33,48 Therefore, one expects the
muon spin relaxation to scale with the number of fully occu-
pied hexagons, � p6. In Fig. 22, the BSZCGO(p) data alto-
gether with our SCGO(p�0.89) samples indicate that
�T→0(p) is well accounted for by adding a dominant p6 term
to the p3 term proposed for SCGO(p�0.89) in Ref. 57. In a
case of purely dipolar couplings of the muon with the elec-
tronic magnetic moments, the average of the local dipolar
field is given by ���� i1/ri

3��p , where the sum is made
over the Cr3� ions, ri is the distance between the muon and
the ith position, and �•� is the average over the muon posi-
tions. One therefore obtains �(p)��(p)�p in the case of
slow fluctuations, and

��p ��2��p �2�/��2�	�
2 HLF

2 ��p2

in the case of fast fluctuations, i.e., �(p)�p�, with ��2,
which is not consistent with our data. This indicates that the
relaxation is not induced by single spin excitations but rather
collective excitation processes extending at least on triangles
and/or hexagons. However, these excitations still involve
only a finite number of spins since the increase of spin va-
cancies only affect smoothly the spin dynamics. On the con-
trary, a more pronounced effect is observed in the S�1/2
kagomé-like compound volborthite.77

D. RVB ground state with coherent unconfined spinons

Finding a phenomenological model reproducing the po-
larization Pz(t) for all fields, all temperatures, and all dilu-
tions has been for long a pending challenge in the analysis of
these �SR experiments in kagomé frustrated antiferromag-
nets. In the quantum framework of a singlet ground state,
one needs unpaired spins, i.e., isolated magnetic moments, in
order to generate magnetic excitations responsible for the
muon spin relaxation. Such excitations can be ascribed to
unconfined spinons,19 for which the location of spin 1/2 var-
ies in time with no loss of coherence of the excited state �Fig.
23�. Hence, a given muon spin couples to a spin only a short
fraction f t of the time t after implantation, and one can use a
model of ‘‘sporadic’’ field fluctuations to describe Pz(t).

This was the initial guess by Uemura et al. to account
for the weakness of the field dependence of Pz(t) at low
temperature in SCGO�0.89�,49 although the spins are S
�3/2. In the absence of any theoretical predictions, we will
just assume that the mechanism is comparable. This polar-
ization is given by a ‘‘sporadic’’ dynamical Kubo-Toyabe
function, Pz

K( f t ,� ,HLF ,�), which rewrites simply as
Pz

K(t , f � ,HLF ,�). �/	� is the local field created on the
muon site by a paramagnetic neighboring released spin with
a fluctuation frequency � and a corresponding exponential
time correlation function exp(��t). � is therefore related to
the muon location in the unit cell and its average is assumed
to be p-independent for a given system but is expected to
vary from BSZCGO to SCGO. The Gaussian at early times,
the weakness of the field dependence and a dynamical relax-
ation down to 0 are altogether related to the f factor and �
�� . In addition to this sporadic relaxation, we found that a
more conventional Markovian relaxation needs to be intro-
duced to fit the long-times tail (t�3 �s) for all fields and
temperatures. We therefore write

Pz� t ��xPz
K� t , f � , f HLF , f ����1�x �e��t, �6�

where x represents the weight of the short-time sporadic dy-
namical function, associated with the spinons dynamics. In
the following, we first detail how all these parameters can be
reliably deduced from the data and sketch a physical picture
consistent with our results.

We first present our analysis for T
Tg in BSZCGO(p).
In order to limit the number of free parameters, we make the
minimal assumption that the external field does not influence
the dynamics of the coherent spinon term. The dynamics ���
and the average dipolar field created by a spinon on a muon
site ��� are shared for all p and HLF . For low fields, x is
found close to 1 for the purest samples �Fig. 20a,b�, making
�� a nonrelevant fitting parameter. It also enables us to de-
termine � and � when HLF�500 G, for various p . The pa-
rameter f is adjusted for each p and its variation accounts for
the evolution of �T→0(p). On the contrary, the high-field
data enable us to monitor the evolution of x with HLF and to
determine a value for �. We could not extend the fits below
p�0.71 since the weak field dependence prevents an unam-
biguous determination of the parameters.

We find perfect fits of our data �Fig. 20d� with �
�1000 �s�1, ��350 �s�1�	��4 kG and an average
value of f �0.006. We find a nearly flat p-independent long-
time relaxation rate for T
Tg (���0.05 �s�1, � in Fig.
24d�. An important finding is that x is of the order of p at
low fields �Fig. 24a,b�. This may be related to the theoretical
computations showing that the correlations are enhanced
around spin vacancies in the kagomé lattice,23 which would
destroy locally the spin-liquid state. Besides, x decreases ap-
preciably for HLF�10 kG whatever the value of p . We can

FIG. 23. Schematic representation of the creation and deconfinement of a
spinon in a RVB ground state on a kagomé lattice.
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associate this decrease to the existence of an energy scale
�1 K, which is of the order of Tg . Finally, we observe a
linear variation of f with p �Fig. 24c�, and f tends to vanish
around p�0.5, a limit consistent with our classical approach
�Fig. 22�. Indeed, since we find ��� when T →0, the rela-
tionship f (p)���T→0(p) is expected. This indicates that
even far from the substituted sites, the coherent state is
somehow affected, e.g., the density of spinons could be
smaller.

As suggested by the similar p variation of �T→0 in both
BSZCGO(p) and SCGO(p), we assume that the excitation
modes are identical in both systems, i.e., f and � are kept the
same for comparable p . We find ��1200 �s�1 for our
SCGO(p�0.89) samples, in agreement with previous work
on SCGO�0.89�.49 It is quite rewarding to find that a common
physical picture underlies all the sets of data at low tempera-
ture for both kagomé bilayers.

We now extend the fits of the muon spin polarization
Pz(t) to the whole temperature range �Fig. 20b�, fixing f to
its low-temperature value in order to limit the number of free
parameters. It would also, phenomenologically, mean that
once a spinon is created, its deconfinement process remains
temperature independent, which is a quite reasonable as-
sumption from a quantum point of view. As expected from
the change of shape around Tg �Refs. 49, 57�, the weight x of
the sporadic term decreases to finally enter a high-
temperature regime �Fig. 24b� with an exponential muon re-
laxation (x→0). The similarity between the field and tem-
perature dependence of x indicates that the sporadic regime
is destroyed with an energy of the order of the freezing tem-
perature Tg . Figure 22b displays a sharp crossover from one
state to the other between Tg and 3Tg , corresponding to the
steep decrease of � �Fig. 21�, for both BSZCGO(p) and
SCGO(p). For T�Tg , � and �� �Fig. 24d� decrease by one
order of magnitude up to 10Tg .

At high temperature, it is natural to think in terms of
paramagnetic fluctuating spins. At lower temperatures, �
seems to diverge at Tg and below, the weight of the expo-
nential term at low fields (1�x�1�p) could correspond to
localized frozen spins, reflecting the glassy component mea-
sured by SQUID. It is noteworthy that Tg does not increase

FIG. 24. Fitting parameters of Eq. �6� for BSZCGO and SCGO �unfilled and
filled symbols�; f is common for both systems.
with 1�p but rather decreases, opposite to the case of ca-
nonical spin glasses. We could further confirm the existence
of such a frozen component in SCGO(p�0.95– 0.89), since
a clear recovery of a small part (�4%) of the asymmetry is
found at long times �e.g., Fig. 21, inset�. It is observed for
t�100��1, which is out of the experimental range for
BSZCGO(p).

To summarize, the picture based on a coherent RVB
state, which magnetic excitations are mobile fluctuating
spins 1/2 on the kagomé lattice, explains well the data, pro-
vided that �i� these excitations can be generated even for T
→0. This underlines the smallness of the ‘‘magnetic’’ gap, if
any, typically ��J/1000; �ii� an energy scale related to Tg

�fields of the order of 10 kG or, equivalently, temperatures of
the order of Tg , which vary very little with p) is high
enough to destroy the coherent RVB type state; �iii� the sub-
stitution defects are accounted for by an additional classical
relaxation process.

E. Spin-glass-like transition

The ‘‘intrinsic’’ spin-glass-like transition at Tg is one of
the most puzzling observation in these frustrated magnets.
Indeed, the origin of such a spin-glass state in a disorder-free
system still awaits for a complete understanding, although
recent theoretical approaches catch some of the facets of this
original ground state.80 The most realistic model, presented
by Ferrero et al. in Ref. 81, uses the so-called ‘‘dimerized’’
approach,14,16 i.e., considers a geometry of the kagomé lat-
tice with two different kinds of equilateral triangles, corre-
sponding to the Cr�b� layers in SCGO(p) and BSZCGO(p)
�Fig. 3�. It predicts a spin-glass-like transition in the S�1/2
kagomé lattice, related to the freezing of the chirality, with
Tg�0.5J�. Here J� is the largest coupling in the kagomé
planes �corresponding to the thick lines in Fig. 3�. Although
0.05J is of the order of magnitude of the experimental Tg ,
the very similar values of the Cr–Cr bonds in both systems
and Eq. �4� do not permit prediction of a factor 2 in Tg .

From our �SR results, we propose an other interpreta-
tion which still awaits for theoretical confirmation. We find
no energy gap for the spin 1/2 excitations. This could explain
quite well why the transition to the spin-glass state is fairly
independent of p . Indeed, in this framework, spinons could
mediate the interactions between magnetic defects localized
around spin vacancies. This is corroborated by all the scaling
properties in T/Tg . The transition to the spin-glass state
would correspond then to the formation of the coherent sin-
glet state rather than any interaction strength between de-
fects. The bond defects inherent to BSZCGO(p) probably
decrease the value of this coherent state energy scale since it
is more favorable to create localized singlets in this geom-
etry. This is qualitatively consistent with the twice lower
spin-glass transition temperature in this family.

F. Extension to other compounds?

We already noticed that the �SR undecouplable Gauss-
ian line shape, altogether with a plateau of the relaxation
rate, have been reported in other compounds, and now elabo-
rate about the possible links between these systems.
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The other kagomé compounds, volborthite77,82,83 and Cr
jarosite76 display the same properties as the kagomé bilayers
and our phenomenological model seems correct.

Kojima et al. already noticed the similarity between the
doped Haldane chain Y2�xCaxBaNiO5 and SCGO�0.89�.78,84

However, contrary to the kagomé bilayers, the relaxation
function becomes more ‘‘conventional’’ when the system be-
comes purer, i.e., the muon spin relaxation function is a
square root exponential in the pure system at low tempera-
ture. It is not surprising since in the pure Haldane chain one
expects a valence bond crystal.78,84 Therefore no magnetic
excitation are allowed at low temperature and no depolariza-
tion is expected in �SR. However, mobile excitations are
added when the chains are doped,85 i.e., the muon spin re-
laxation becomes unconventional. This corresponds to the
data and is consistent with our unconfined spinon phenom-
enological model.

Finally, Fukaya et al. reported the same behavior in
Sr(Cu1�xZnx)2(BO3)2 for x�0 and 0.02.86 This system dis-
plays, theoretically and experimentally, an exact singlet
dimer state and its intrinsic susceptibility vanishes for T�3
K.87,88 Nonetheless, a CW term, corresponding to 0.72% of
S�1/2 impurities with respect to the Cu sites, is observed
below 4 K,87 which is finally comparable, from the macro-
scopic susceptibility aspect, to the former cases of pure
volborthite and pure Y2CaBaNiO5 . However, according to
us, there is today no clue about the possibility of mobile
excitations in this magnetic network with a few percent of
defects.

We conclude that all these systems display �i� a theoret-
ical and/or experimental singlet ground state; �ii� a defect
term observed through a low temperature CW like upturn in
the macroscopic susceptibility; �iii� a spin-glass-like transi-
tion of this defect term at a temperature Tg �but
Sr(Cu1�xZnx)2(BO3)2);13� �iv� a plateau of the muon spin
relaxation rate below Tg .

It is important to notice that the clear experimental cor-
relation between the muon spin relaxation rate plateau and
the spin-glass-like transition is strongly against a pure muon-
induced effect argument for this plateau. Even if the muon
has indeed an effect on the physics of these compounds, the
� plateau below Tg shows that a bulk transition occurs at this
temperature, i.e., that this freezing cannot be due to isolated
impurities.

Theoretical approaches are now required to link a pos-
sible unconfined spinons state to a spin-glass-like behavior
and a relaxation plateau of the implanted muon spins. They
could therefore corroborate our phenomenological approach.

IV. CONCLUSION

With Heisenberg spins and nearest neighbor couplings of
the order of 40 K, the kagomé bilayers of SCGO and
BSZCGO are today the archetypes of highly frustrated mag-
nets. The comparison between SQUID and NMR experi-
ments on the two slightly different compounds SCGO and
BSZCGO allows us to isolate the intrinsic properties of the
frustrated kagomé bilayer geometry and to understand better
the role of the �non�magnetic defects. We find that defects
localized in the frustrated network induce a spatially ex-
tended response of the magnetic system, consistent with the-
oretical predictions. This response generates a Curie-like up-
turn in the macroscopic susceptibility at low temperature.
However, local measurements of the susceptibility, using Ga
NMR, show that the intrinsic susceptibility of the kagomé
bilayers decreases below 45 K, a temperature of the order of
J . This behavior was also predicted theoretically and is con-
sistent with short-ranged spin-spin correlations, on the order
of the lattice parameter. We cannot give a definitive conclu-
sion about the existence of a spin gap with NMR experi-
ments because the gallium nuclei cannot be probed by NMR
at low temperature. However a maximum value of �J/10 is
found for such a gap.

We measured the spin dynamics using muon spin relax-
ation experiments, down to 30 mK. We find that both sys-
tems SCGO and BSZCGO display a dynamical magnetic
state down to this temperature, unconventional for the purest
samples. Very simple considerations show that the spin-
glass-like state, measured at Tg
�CW with macroscopic sus-
ceptibility techniques, is correlated to the slowing down of
the Cr spin dynamics in the whole sample. The data are well
accounted by a description based on unconfined spinons as
the magnetic excitations and we suggest that this phenom-
enological approach remains valid for several spin singlet
compounds at low temperature. Indeed, they all display strik-
ing similar aspects such as a spin-glass transition of the mag-
netic defect channel in the macroscopic susceptibility and an
undecouplable Gaussian line shape with a relaxation rate pla-
teau of the muon polarization below this spin-glass transi-
tion.

In all these systems the fast depolarization of the muon
down to the experimental limit of T�30 mK underlines the
existence of magnetic excitations at low temperature and
hence the weakness of an hypothetical unconfined spinon
gap. An other spin dynamics study with neutron spin echo
technique is in progress and could give more details about
this T→0 spin-liquid state.89
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1�This is different from the situation encountered in spin glasses, where the
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cooling history finishes by selecting one of the numerous local minima
present in the free energy.

2�We define the Hamiltonian as H�J��i , j�Si•Sj , where i , j are the nearest
neighbors.

3�The S�3/2 Cr jarosite is the only exception.76

4�The official labeling is as follows for SCGO �BSZCGO�: Ga�4f� �Ga�2d��
for Ga�1�, Ga�4e� �Ga�2c�� for Ga�2�, Cr�1a� �Cr�2a�� for Cr�a�, Cr�12k�
�Cr�6i�� for Cr�b� and Cr�4fvi) for Cr�c� in SCGO. We used simplified
notations for clarity in the comparison of the two systems.

5�Since the Ga�2� line of BSZCGO is governed by quadrupolar effects, its
width is � �Q

2 /� l .90 Therefore this line is broader at low field. On the
contrary, the quadrupolar frequency of the Ga�1� is smaller and the line-
width is proportional to the applied external field.

6�Notice that the high-temperature analysis of both 71Ga(1) and 71Ga(2)
lines in BSZCGO allows us to compare their shifts, which yields an esti-
mate of the chemical shift of 0.15�3�%.

7�We checked that the transverse relaxation time T2 is homogeneous over the
whole 71Ga(2) line. Its shape is hence used for the subtraction whereas its
intensity is multiplied by �exp�2(�l��s)/T2

71� .
8�In the case of SCGO, �macro is a three-component susceptibility, the third

contribution coming from the Cr�c�-Cr�c� spin pairs, which we drop here
for clarity.

9�C. Lhuillier, private communication.
10�A dipolar broadening due to the diluted paramagnetic defects91 would be

too small to justify the broadening of the 69,71Ga spectra.
11�The Ga�1� nuclei are coupled to 9 Cr�b� and 3 Cr�a�. The measured sus-

ceptibility is hence �kag,NMR�9�b�3�a , where �b and �a are the Cr�b�
and Cr�a� susceptibilities. On the other hand, the macroscopic susceptibil-
ity probes these susceptibilities with their stoichiometric ratio, i.e.,
�kag,macro�6�b��a �Ref. 55�. A small difference between the ratios
�b /�a would yield a slightly different ratio ��H/Hl(p)�/Cdef(p).

12�We attribute the factor of 8 between � in the two systems to a different
coupling of the muon spin to the Cr spins. Transverse field experiments
show for instance a larger linewidth in SCGO�0.95� than in
BSZCGO�0.91� despite a lower defect term.41 On the other hand, �,
which is mainly created by dipolar interactions in �SR, is ���1/r3,
where the sum is over all the spins in the lattice and r is the distance
between the muon site and these spins.73 Usually, the muon is located near
an O2� ion.92 In a very simplified approach, we computed �, considering
that the muon would be located on the O2� sites, as an average, and find
��1100 �s�1 and 800 �s�1 in SCGO�1� and BSZCGO�1�. This is in
perfect agreement with the high-temperature evaluation of �. Since �
��2 in the fast fluctuation limit and ��� in the static limit, we expect,
with this simple approach, that � will be 1.5–2 times larger in SCGO(p).
The missing factor of 4 may either come from a more complex muon sites
distribution, due to the O2� ions around the Cr�c� sites, or to a different
dynamics range, as suggested by neutron spin echo.89

13�To our knowledge, no FC-ZFC magnetization data have been published
about Sr(Cu1�xZnx)2(BO3)2 .
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We study the 2D Ising model on a square lattice with additional non-equal diagonal next-nearest
neighbor interactions. The cases of classical and quantum �transverse� models are considered.
Possible phases and their locations in the space of three Ising couplings are analyzed. In particular,
incommensurate phases occurring only at non-equal diagonal couplings, are predicted. We
also analyze a spin-pseudospin model comprised of the quantum Ising model coupled to XY spin
chains in a particular region of interactions, corresponding to the Ising sector’s super-
antiferromagnetic �SAF� ground state. The spin-SAF transition in the coupled Ising-XY model
into a phase with co-existent SAF Ising �pseudospin� long-range order and a spin gap is
considered. Along with destruction of the quantum critical point of the Ising sector, the phase
diagram of the Ising-XY model can also demonstrate a re-entrance of the spin-SAF
phase. A detailed study of the latter is presented. The mechanism of the re-entrance, due to
interplay of interactions in the coupled model, and the conditions of its appearance are established.
Applications of the spin-SAF theory for the transition in the quarter-filled ladder compound
NaV2O5 are discussed. © 2005 American Institute of Physics. �DOI: 10.1063/1.2008132�
I. INTRODUCTION

The role of competing interactions in ordering is a fas-
cinating problem of condensed matter physics. One of the
most canonical examples of such systems are frustrated Ising
models which demonstrate a plethora of critical properties,
far from being exhaustively studied. �For a review see Ref.
1.� The frustrations1� can be either geometrical, like, e.g., in
the Ising model on a triangular lattice, or they can be brought
about by the next-nearest neighbor �NNN� interactions.
Competing interactions �frustrations� can, e.g., result in new
phases, change the Ising universality class, or even destroy
the order at all. Another interesting aspect of the criticality in
frustrated Ising models is an appearance of quantum critical
point�s� �QCP� at special frustration points of model’s high
degeneracy, and related quantum phase transitions.2

Inclusion of a transverse field ��� brings an extra scale
into the game, giving raise to a new and complicated critical
behavior. The Ising models with ��0 and ��0 are also
often called classical and quantum, respectively. For a review
on the Ising models in transverse field �IMTF� see Ref. 3.
Most studies of the frustrated quantum Ising models are re-
stricted to their ground-state properties, when mapping of the
d-dimensional quantum model at T�0 onto its
(d�1)-dimensional classical counterpart helps to analyze
the ground-state phase diagram of the former. For the NNN
2D models we are interested in, there has been a consider-
able effort on the quantum anisotropic NNN Ising �ANNNI�
model, reviewed in Ref. 3. The studies of some other 2D
frustrated transverse Ising models have appeared only
recently.4,5
7221063-777X/2005/31(8–9)/13/$26.00
Our interest in the subject comes from the earlier work
on a quantum Ising model coupled to the spin chains.6 This
kind of coupled so-called spin-pseudospin �or spin-orbital�
models appear in context of the phase transition in NaV2O5 ,
which has inspired a great experimental and theoretical effort
in recent years. �For a review see Ref. 7.� Going deeper into
analysis, we came to realize that the Ising sector of the prob-
lem is in fact the 2D transverse NN and NNN Ising model on
a square lattice. It turns out that even its classical counterpart
(��0) has been studied1 only for the case of equal NNN
couplings, J1�J2 . The elementary plaquette of this lattice
with the notations for couplings is shown in Fig. 1. To the
best of our knowledge, this 2D NN and NNN Ising model in
transverse field is a complete terra incognita even at J1

�J2 .
So, as the first step, we find the ground-state phase dia-

gram of the classical (��0) Ising model at arbitrary cou-
plings J� ,J1 ,J2 . Along with the three ordered phases found
earlier by Fan and Wu8 for the case J1�J2—ferromagnetic
�FM�, antiferromagnetic �AF�, and super-antiferromagnetic
�SAF�—the model has a fourth phase which can occur if the
sign of (J1 /J2)��1. We call it super-ferro-
antiferromagnetic �SFAF�.9 From mean-field-type arguments
we predict also the existence of an incommensurate �IC�
phase at T�0 in this model. The 2D IC phase is also called
floating.10 Similar phase is known for the well-studied 2D
ANNNI model.1,10,11 We present a qualitative temperature
phase diagram for the regions of the coupling space where
the IC phase is located. Note that the three phases—SAF,
SFAF, IC—can occur only in the presence of competing in-
© 2005 American Institute of Physics
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teractions in the Ising model, and the latter two occur only if
J1�J2 .

This analysis of the classical Ising model lays the
groundwork for venturing into its study in presence of a
transverse field. The role of transverse field is subtle. A more
straightforward aspect is that its increase above certain criti-
cal value can eventually destroy the ordered state of the clas-
sical model, and in the ground state the transverse field re-
sults in appearance of a QCP. This is similar to the well-
understood quantum NN Ising model. Another particularly
interesting aspect in the role of transverse field is that it can
lift degeneracy of the ground state and stabilize new phases
at finite temperature in a highly frustrated model, like, e.g.,
the antiferromagnetic isotropic triangular Ising model,4,5

which is disordered at any T�0 when ��0.
The behavior of the systems with infinitely degenerate

ground states �with or without a finite ground-state entropy
per spin� can be quite complicated in the presence of trans-
verse field. It lies beyond the scope of the present work, and
definitely cannot be understood from the mean-field analysis
we apply in this study. For the NN and NNN Ising model we
only identify the lines �planes� in the space of couplings
(J� ,J1 ,J2) where the model is highly degenerate, and in
their neighborhood we expect some new exotic phases gen-
erated by ��0 to appear.

From mapping of the NN and NNN IMTF at T�0 onto
its classical 3D counterpart, we qualitatively predict the
�mean-field� ground-state phase boundaries of the quantum
model in the coupling space (J� ,J1 ,J2). In particular, it
follows from our analysis that in the presence of transverse
field the IC ground-state phase can penetrate into some parts
of the FM, AF, SAF regions of the classical model (�
�0).

Finally, we consider the coupled spin-pseudospin model.
It is proposed to analyze the transition in NaV2O5 . This
material provides a unique example of a correlated electron
system, where the interplay of charge and spin degrees of
freedom results in a phase transition into a phase with coex-
istent spin gap and charge order. NaV2O5 is the only known
so far quarter-filled ladder compound. Each individual rung
of a ladder is occupied by single electron which is equally
distributed between its left/right sites in the disordered phase.
At Tc�34 K this compound undergoes a phase transition
when a spin gap opens, accompanied by charge ordering.7

The problem of the electrons in NaV2O5 localized on the
rungs of the 2D array of ladders is mapped onto the coupled
spin-pseudospin model on an effective square lattice. The

FIG. 1. Couplings on an elementary plaquette in the NN and NNN 2D Ising
model �1�. Ordering patterns in the super-antiferromagnetic �SAF� and
super-ferro-antiferromagnetic �SFAF� phases.
Ising sector of this model is given by the Hamiltonian of the
NN and NNN IMTF, and the Ising variables �called pseu-
dospins for this case� represent physically the charge degrees
of freedom. We model the spin sector by the array of the XY
spin chains. The 2D long-range charge order in NaV2O5 is
identified as the SAF phase of the Ising model, and we re-
strict our analysis to the SAF region of the couplings
(J� ,J1 ,J2). The coupled model is handled by combining
the mean-field treatment of its Ising sector with the use of
exact results available for the XY spin chains. Since the SAF
state is only fourfold degenerate, the mean-field predictions
for the Ising sector of the coupled model are expected to be
at least qualitatively correct.

The mean-field equations for the coupled model are,
with some minor modifications, the same as we have ob-
tained earlier.6 A striking feature of the coupled model is that
it always orders from the charge-disordered spin-gapless
state into the phase of co-existent SAF charge order and spin
gap. We call this the spin-SAF transition. By always we
mean that the critical temperature of the spin-SAF transition
is nonzero for all Ising couplings within the whole consid-
ered SAF region. In other words, the QCP of the IMTF is
destroyed, and this is due to the spin-charge �-pseudospin�
coupling.

This property of the spin-SAF transition and the param-
eters of the spin-SAF phase were studied earlier,6 so in this
work we only reinstate some points and stress the distinc-
tions pertinent to the present model.

The other remarkable feature of the coupled model’s
phase diagram is re-entrance, which was not well understood
in our earlier work.6 Now we carry out an analytical study of
the re-entrance and establish the conditions when it can oc-
cur. This analysis allows us to understand the detailed
mechanism of this interesting phenomenon generated by
competing interactions.

The rest of the paper is organized as follows. Section 2
contains our results on the ordering in the 2D NN and NNN
Ising model at ��0 and ��0. The results on the spin-SAF
transition in the coupled model are presented in Sec. 3. The
final Sec. 4 presents the summary and discussion.

II. 2D NEAREST- AND NEXT-NEAREST-NEIGHBOR ISING
MODEL

We consider the 2D Ising model on a square lattice with
the Hamiltonian

H�
1

2 �
�i,j	

J�T i
xT j

x�
1

2 �
��k,l		

JklT k
xT l

x , �1�

where the bold variables denote lattice vectors, the first �sec-
ond� sum includes only nearest neighbors �next-nearest
neighbors� of the lattice, respectively. Spins along the sides
of an elementary plaquette interact via the NN coupling J� ,
while spins along plaquette’s diagonals interact via the NNN
couplings Jkl�J1,2 �see Fig. 1�. The way we defined the
Hamiltonian corresponds to antiferromagnetic couplings for
J��0 and ferromagnetic for J��0.

Ground-state phases

There is no exact solution of the model �1�. Its possible
ordered phases and critical properties have been studied
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within various approaches for equal diagonal couplings J1

�J2 �see Ref. 1 for a review and references on the original
literature�. We will consider arbitrary Ising couplings
(J1 ,J2 ,J�), so the model �1� can be either frustrated or not
�see footnote 1�. The ground-state phase diagram can be
found from energy arguments, as was first done by Fan and
Wu8 for J1�J2 . �Their phase diagram is shown in Fig. 3c.�
From direct counting of the ground-state energies of possible
spin arrangements we construct the phase diagram for J1

�J2 . Along with the phases found by Fan and Wu—
ferromagnetic, antiferromagnetic, and super-
antiferromagnetic—there is a fourth phase which can occur if
J1 and J2 have opposite signs. The name of the SAF phase
comes from viewing it as two superimposed antiferromag-
netic lattices �one lattice of circled sites and another of
squared sites in Fig. 1�. In the SAF state there are two frus-
trated bonds J� per plaquette and its energy is fourfold de-
generate, since each of the superimposed lattices can be
flipped independently. In addition to the two SAF states with
alternating ferromagnetic order along the horizontal chains
�one of these is shown in Fig. 1�, there are two states with the
vertical ferromagnetic order.

The new fourth phase shown in Fig. 1 can be viewed as
two superimposed lattices, each of which is ordered ferro-
magnetically along one side �e.g., J2�0) and antiferromag-
netically along the other �e.g., J1�0). So we will call it
super-ferro-antiferromagnetic �SFAF�.9 The SFAF state also
has two frustrated plaquette’s bonds and fourfold degeneracy.
The ordering pattern shown in Fig. 1 changes only by a
lattice spacing shift over flipping of the sublattices. The di-
rection of the ferromagnetic order is determined by the fer-
romagnetic diagonal.

The ground-state phases in the space (J1 ,J2 ,J�) are
shown in Fig. 2. In order to facilitate perception of this pic-
ture, we also present in Figs. 3 and 4 several plane projec-
tions of the 3D Fig. 2. In the first quadrant (J1 ,J2�0) in the
region J1�J2��J�� lying between two frustration planes
�FP�

J1�J2��J��: FP �2�

the ground state of the model is SAF. A continuous transition
from the paramagnetic �PM� to the SAF phase occurs at
some critical temperature Tc�0. From the arguments known
for the case J1�J2 �Ref. 12; see also Ref. 13 for a more
general symmetry analysis of the Ginzburg-Landau func-
tional� this transition is nonuniversal: the critical indices de-
pend continuously on the couplings J� ,J1 ,J2 .

In the region J1�J� of the fourth quadrant (J1�0,J2

�0) lying between the other pair of frustration planes

J1��J��: FP� �3�

the ground state is SFAF. The same arguments12,13 suggest
nonuniversality of the PM→SFAF transition.

In the regions lying above �beneath� the frustration
planes FP and FP�, and above �beneath� the basal plane J�

�0 in the third quadrant, the ground state is a usual AF
�FM�, respectively. The transition PM→AF �FM� belongs to
the 2D Ising universality class. The second quadrant J1

�0,J2�0, not shown in Fig. 2, is obtained by reflection in
the plane J1�J2 . In the AF �FM� state the number of frus-
trated �diagonal� bonds per plaquette is two in the first quad-
rant, one in the second and the fourth, and zero in the third.

Transitions at finite temperature should be absent on the
frustration planes FP/FP� where the model is highly degen-
erate. We are not aware of studies of the ground state in these
cases and cannot say at the moment whether the system pos-
sesses some kind of a long-range order at zero temperature or
not, except a rather trivial line J��J1�0,J2�0 of the FP�
planes crossing where the model becomes a set of decoupled
Ising chains, and four special lines on the FP planes where it
becomes the exactly-solvable isotropic triangular Ising �ITI�
model. The latter case will be discussed momentarily.

Exactly-solvable limits

In the 3D space (J1 ,J2 ,J�) besides the frustration
planes FP and FP�, there are three special planes where one
of the couplings is zero. On these planes the model �1� re-
duces to the exactly solvable cases.

FIG. 2. Phase diagram of the ground states �GS� of the model �1�. For
visualization purposes it is drawn within the (�1,1)�(�1,1)�(�2,2) par-
allelepiped. The SAF GS lies between the frustration planes J1�J2��J��.
The SFAF GS lies between the frustration planes J1��J��. The AF GS �FM
GS� lies above �beneath� the frustration planes and above �beneath� the basal
plane in the third quadrant, respectively. The second quadrant �not shown� is
obtained by a reflection in the J1�J2 plane. Different sectors shown by
hatched and twiggy lines on the exactly solvable planes J��0 are explained
in the text.

FIG. 3. Plane projections of the 3D diagram shown in Fig. 2. �a�: Upper part
J��0, view from the top. �b�: Lower part J��0, view from the top. �c�:
Compactification of 3D Fig. 2 in the special case J1�J2
J�.8
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Let us start with the upper part (J��0) of the SAF
region

J��J1�J2 . �4�

On the SFAF–SAF boundary J2�0 the model is equivalent
to the anisotropic Ising model on a triangular lattice �ATI�,
for which exact results are available.14–17 The antiferromag-
netic (J� ,J1�0) ATI model with one strong bond J1�J� is
disordered at any nonzero temperature.17 It orders only at T
�0, i.e., it is quantum critical �QC�. The highly degenerate
ground state �however with a vanishing zero-temperature en-
tropy per site� can be viewed as a 2D array of antiferromag-
netically ordered �along the strong bond J1) correlated
chains. The oscillating �with a period of four lattice spacings�
power-law decay of the spin-spin correlation function along
J� directions17 indicate on the preference of the ferromag-
netic order along the ‘‘missing’’ diagonal J2 . This resembles
the SFAF state, however any couple of adjacent J1 chains is
uncorrelated. We label this state occurring on two sectors of
the J1�0 �or J2�0) planes as ATI �QC� on the phase dia-
gram �Fig. 2�. Since the critical behavior of the ATI model
with two equal weak ferromagnetic bonds �J���J1 is
equivalent to the totally antiferromagnetic ATI model,17 the
ATI �QC� state smoothly continues into the lower (J��0)
part of the SFAF–SAF boundary.

The sectors J2�0, J1�0 �and 1↔2) above the FP J1

�J2�J� correspond to the antiferromagnetic ATI model
with one weak bond J1�J� . It is known17 to have only two
phases and to order at finite temperature. Tc(PM→AF) as a
function of couplings is also known exactly. The sectors J2

�0, J1�0, J��0 �and 1↔2) correspond to the antiferro-
magnetic ATI model which is not even frustrated, and
Tc(PM→AF)�0 at any J��0. The PM→AF transition in
the ATI model belongs to the 2D Ising class. So, except for
the SFAF–SAF boundary, the ordered phase on the exactly-

FIG. 4. Plane phase diagram for the ratios of the couplings, corresponding
to the 3D Fig. 2 at J��0. The phase boundaries �thick solid lines� corre-
spond to the frustrations planes FP and FP�. The thick dashed lines �online�
indicate the boundaries of the incommensurate global minima locus (y
�1/2, x�1/2, y�1/4x) discussed in the text. The case J��0 can be ob-
tained by the substitutions J1,2 /J��J1,2 /�J��, AF→FM in this figure.
solvable ‘‘triangulation’’ planes J1�0 �or J2�0) is the same
as the AF ground state in the interior in this region of the
phase diagram.

The situation on the ‘‘triangulation’’ planes in the lower
part (J��0) of the phase diagram is exactly analogous to
the upper part, with an obvious replacement AF↔FM.

Note that the ground states change on the lines where the
triangulation and frustration planes cross. To put it differ-
ently, these are the lines of quantum phase transitions. The
AF �FM� phase disappears in the limit J1→�J���0 (J2

�0). Also, the zero-temperature AF in-chain order �ATI
�QC�� described above disappears in the limit J1→�J���0
(J2�0) as well. The ITI model J1�J� is disordered at any
nonzero temperature �indicated as ITI �QC� in Fig. 2�. Its
ground state, albeit having finite entropy per site, possesses
periodic �with a period of three lattice spacings� long-range
order.16

The basal plane J��0 in Fig. 2 corresponds to the case
when Hamiltonian �1� represents two decoupled identical
NN Ising models residing on two superimposed lattices
�shown by circles and squares in Fig. 1�. Diagonal couplings
J1,2 are the NN couplings of these Ising models. This is the
only exactly-solvable limit �labeled by 2�2DI in Fig. 2�
within the SFAF �or SAF� region of the phase diagram. In
this limit the PM→SAF �or SFAF� phase transition enters
into the 2D Ising universality class.

Incommensurate „floating… phase

So far we have discussed the ground-state phases of the
model and the critical behavior on the boundaries of these
phases with the disordered phase, as well as on the special
planes �lines�. However, there is also a possibility that order-
ing into the ground-state phases of Fig. 2 happens not nec-
essarily from the PM phase, but from some other one�s� oc-
curring at nonzero temperature. A very simple analysis
indicates that this indeed can take place in our model.
Fourier-transforming the Hamiltonian �1� we obtain �we set
the lattice spacing to unity�

H��
q

J�q�Tx�q�Tx��q�, �5�

J�q��J��cos qx�cos qy��J1 cos�qx�qy�

�J2 cos�qx�qy�,

where q runs within the first Brillouin zone �qx ,y��� . At
mean-field level, a minimum of J(q) in q space defines the
wave vector q0 of the critical freezing mode Tx(q0), i.e., the
order parameter �Tm

x 	
cos(q0•m��) below a certain criti-
cal temperature Tc . In different regions (J1 ,J2 ,J�) of the
ground-state phase diagram �Fig. 2� we find a minimum at
qF/A�(0,0)/(� ,�) giving the FM/AF order parameter and
two minima q1,2

SAF�(� ,0)/(0,�) giving two components of
the SAF order parameter. �The latter represent two possible
ordering patterns of the SAF phase and via some transforma-
tion can be related to magnetizations of the superimposed
sublattices.12� The important point is that the positions of the
commensurate �C� extrema q# (#�F, A, SAF) of J(q) do
not depend on the couplings.
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There are however two other pairs of extrema �qs ,a

which exist if

�J���2�J1� and/or 2�J2�. �6�

These extrema lie on the diagonal of the Brillouin zone. qs ,a

are generically incommensurated �IC� and depend on the
couplings as

qx
s��qy

s �arccos� �
J�

2J2
� , �7�

qx
a��qy

a�arccos� �
J�

2J1
� . �8�

In Fig. 5 we show the positions of all extrema of J(q) within
the Brillouin zone. In the SFAF ground-state region �e.g., in
the fourth quadrant J1�0, J2�0 shown in Fig. 2� the pair of
extrema �qa �8� gives global minima of J(q) �the other pair
of solutions �8� �qs, when it exists, corresponds to
maxima�, and �qx

a���qy
a���/2. As we see, two IC modes

�qa could give components of the SFAF ground-state order
parameter’s wave vectors �qSFAF��(�/2,��/2) only if
J��0. �In the second quadrant of the SFAF region when
J1�0, J2�0, the vectors qs and qa exchange their roles.
Because of the J1↔J2 symmetry, in the following, for con-
creteness, we will always discuss the fourth quadrant.�

The locus of the IC global minima does not coincide
with the SFAF ground-state region, but overlaps with the
neighboring FM, AF, and SAF phases. The minimum J
(�qa) is located between two planes �J���2J1 in the fourth
quadrant, and in two regions of the half of the first quadrant
(J2�J1): �i� between J���2J1 and J���2�J1J2; �ii�
��� . The regions of the IC minima in the other half (J2

�J1) of the first quadrant �as in the second quadrant� are
obtained from the described above by J1↔J2 , qa→qs. On
the plane phase diagram shown in Fig. 4 this locus is re-
stricted by the lines y�1/2, x�1/2, y�1/4x , shown by the
dashed lines.

So we can conclude that at finite temperature the model
possesses an IC phase and there is an IC–C phase transition
where the IC wave vector qa locks into one of the �commen-
surate� ground-state phase vectors. As in 2D the IC phase has

FIG. 5. Positions of extrema of J(q) �5� in the Brillouin zone. Open sym-
bols connected to their bold counterparts by a reciprocal lattice vector. In-
commensurate extrema �qa ,s �7�, �8� �shown for the case J1�0, J2�0)
exist if conditions �6� are satisfied.
only an algebraic long-range order; it is called floating.10 The
origin of the IC floating phase in our model is frustration
�competing interactions�. Such phase is well known from
another example of frustrated Ising model, i.e., the ANNNI
model which was intensively studied in the past.1,10,11 In that
model the floating phase locks into the antiphase which has
the wave vector q�(0,�/2). �The antiphase is the analog of
our SFAF phase.� The ANNNI model also provides an ex-
ample showing that the mean-field �minimization� analysis
does not work well in defining boundaries between the float-
ing and commensurate phases in 2D, and the extend of the
IC phase is less than the mean field suggests.2�

We will not attempt to locate exactly the phase bound-
aries at finite temperature in this study. Following Domany
et al.13 in classification of the ordered phases by commensu-
rability p , i.e., the ratio of superstructure’s period and lattice
spacing along a given direction, we can label the phases as
follows: F�1�1; AF�2�2; SAF�1�2 �or 2�1);
SFAF�4�4.3� From mapping of the 2D IC-C phase transi-
tion to the Kosterlitz–Thouless problem, it is established10,18

that there is no such �continuous� transition for commensu-
rate phases with small p2�8. From this result with the pro-
viso of continuity of phase transition�s� in the model, we
conclude that the IC floating phase cannot ‘‘spill’’ beyond the
SFAF (p�4) ground-state region of the phase diagram, even
if a naive �mean-field� analysis suggests that within the F,
AF, and SAF regions there are some parts where it could be
possible �see Fig. 4�. The only high-temperature phase in
which the latter three regions have a common border is the
disordered PM.

Combining this with the known exact critical properties
of the model on the special planes discussed above, we end
up with the qualitative finite-temperature phase diagram
shown in Fig. 6. Since on the plane J��0 the model �1� is
just two decoupled Ising lattices, the floating phase must be
absent. Mean-field arguments suggest that the floating phase
disappears exactly at J��0, giving rise to a Lifshitz point
�L�. Note that the floating phase does not appear if the diag-
onal couplings are equal even at the mean-field level �see
Fig. 4�, which agrees with known, more sophisticated analy-
ses of this case.1

The model in transverse field

Now we turn to the analysis of the NN and NNN Ising
Hamiltonian H �1� in the presence of a transverse field. The
total Hamiltonian of the Ising model in transverse field
�IMTF� reads

FIG. 6. Qualitative temperature phase diagram. The IC floating �Fl� phase
lies beneath the dashed lines. Crosses indicate the borders of the IC minima
locus. �a�: For fixed J1�0, J2�0. On the plane J��0 the floating phase
must be absent. We assume that it disappears smoothly at J��0, resulting in
a Lifshitz point �L�. �b�: The same for fixed J1�0, �J���J1 .
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H IMTF�H���
i

T i
z . �9�

The Ising operators are normalized to satisfy the spin algebra

�T i
� ,T j

���i� i j����T i
� . �10�

There is no exact solution of the transverse 2D Ising model
even for the case of NN couplings only (J1�J2�0). The
ground-state phase diagram of the Hamiltonian �9� can be
analyzed from the known mapping of the d-dimensional
IMTF at zero temperature onto the (d�1)-dimensional Ising
model at a given �nonzero� ‘‘temperature.’’ 3 In our case the
2D NN and NNN IMTF maps onto the 3D Ising model com-
prised of the 2D layers �1� coupled ferromagnetically in the
third �Trotter� direction with the coupling JT
�ln coth �
�0. For such a (2�1)-dimensional model a mean-field
analysis gives a qualitatively correct diagram of the ground-
state phases of the 2D IMTF.3 The new coupling JT does not
bring any additional frustration to the 2D NN and NNN
model. Analysis of J3(qx ,qy ,qT)�JT cos qT�J(qx ,qy),
where J(qx ,qy) is given by �5�, shows that JT does not
modify the domains of the global minima in the (J1 ,J2 ,J�)
space, adding only a trivial qT�0 third component to the
two-dimensional vectors q# discussed above �cf. Fig. 5.� The
temperature phase diagram of the 3D Ising model with the
spectrum J3(qx ,qy ,qT) �if we label the phases according to
the in-plane ordering pattern defined by the 2D vectors q#)
looks similar to that shown in Fig. 6, with one very important
distinction: the above-mentioned argument related to phase’s
commensurability p does not apply in 3D, so the IC region is
not restricted to lie above the SFAF phase, but can spill into
the neighboring regions of the (J1 ,J2 ,J�) space. From the
mean-field arguments, the IC region is given by the locus of
the IC minima J(�qa/s) defined in the previous Section. So
the IC phase, instead of being locked between the special
planes FP� and J2�0 as shown in Fig. 6a and 6b, respec-
tively, can spread up to the locus boundaries shown by the
crosses. From the equivalence between the zero-temperature
d-dimensional IMTF �quantum Ising� and the
(d�1)-dimensional classical Ising model, we infer that the
ground-state phase diagram of the former on the plane
(�/J ,J#) should have the same structure as the described
above (T ,J#) diagram of the latter. So we expect the trans-
verse field to generate the IC ground-state phase not only in
the SFAF region of the Ising coupling space, but also in the
neighboring parts of the F, AF, and SAF regions. From mini-
mization arguments the latter are restricted by the dashed
lines on the plane diagram in Fig. 4 and by the crosses in Fig.
6.

From analogies with the ANNNI model, we rather ex-
pect this ‘‘IC region’’ to be filled with infinitely many com-
mensurate phases with different p ,10,11 but detailed analysis
of this question, as well as the full finite-temperature phase
diagram of the transverse model �9�, need a separate study.

In the rest of the paper we will be particularly interested
in the SAF region of the coupling space, and restrict our-
selves to the couplings

J�
2 �4J1J2 , �J1 ,J2��0. �11�
According to Fig. 4, it means that we choose the couplings to
lie above the hyperbola y�1/4x . The first condition in �11�
ensures that the couplings lie in the region where q1,2

SAF

�(0,�)/(� ,0) provide a global minimum of model’s spec-
trum, so the phase with the IC solutions qa/s does not inter-
vene. The second in the above conditions stipulates that even
if J��0 we stay away from the planes where our model
becomes the triangular Ising. A transverse field can generate
exotic temperature phases in that model. Such phases have
been found4,5 in the particular case of the isotropic �antifer-
romagnetic� transverse triangular Ising model.4�

From mapping between the quantum and classical Ising
models we conclude that at zero temperature our IMTF with
the couplings satisfying �11� possesses a single QCP which
separates the SAF and PM ground-state phases. The mean
field predicts a two-phase PM/SAF diagram. The critical
temperature Tc of the second-order PM–SAF phase transi-
tion evolves smoothly from the QCP Tc(J/�cr)�0 to the
asymptotic limit Tc(�) of the classical model �see dashed
curve in Fig. 8, where g
(J1�J2)/�). It is also known that
the mean field gives a qualitatively correct phase diagram for
the IMTF when d�2.3 Thus we argue that the mean-field
result shown by the dashed curve in Fig. 8 does represent the
phase diagram of the IMTF �1�, �9�, �11�, while its quantita-
tive aspects, e.g., the exact value of the QCP, should be cor-
rected via more accurate treatments.

III. COUPLED SPIN-PSEUDOSPIN MODEL

Now we turn to the analysis of the IMTF �1�, �9� coupled
to the quantum spins (S) residing on the same sites of the
lattice as the Ising spins do. The latter we will call pseu-
dospins from now on. Such coupled spin-pseudospin �or
spin-orbital� models emerge in various contexts, most nota-
bly the Jahn–Teller transition-metal compounds19 or many
kinds of low-dimensional quantum magnets. For a recent
short overview and more references, see Ref. 6.

Models of the type we study in the present work appear
in analysis of the quarter-filled ladder compound NaV2O5 .
The Hamiltonian of this material can be mapped onto a spin-
pseudospin model with spins and pseudospins residing on
the same rung of a ladder.20–22 The ladders form a 2D lattice.
The long-range pseudospin order �Ti

x	�0 represents physi-
cally the charge disproportionation between left/right sites on
a rung below Tc .

This system was analyzed on the effective triangular lat-
tice shown by solid lines in Fig. 7a.20,22 However, in the case
of NaV2O5 the Ising couplings generated by Coulomb repul-
sion are antiferromagnetic and J1�J� . Since the triangular
Ising model with one strong side is disordered,17 one needs
an extra coupling (J2-diagonal� to stabilize the observed
SAF long-range order. In our earlier study6 we took J1 into
account explicitly, while the other diagonal J2 was effec-
tively generated via the spin-pseudospin coupling.5�

In this work we take into account the Ising couplings
J� ,J1 ,J2 between neighboring sites of the effective lattice,
as shown in Fig. 7a. Then such effective lattice can be
mapped onto the square lattice shown in Fig. 7b with the NN
and NNN Ising couplings. For NaV2O5 all J#�0, so the
model is frustrated. As follows from the geometry of the
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FIG. 7. 2D effective lattice of coupled ladders. A vertical line and a represent dot a single ladder and its rung where pseudospin Tmn and spin Smn �not shown�
reside. In the region encircled by the dashed line the Ising couplings between pseudospins are indicated. Two pseudospins from the (m�1)-th and (m
�1)-th ladders are coupled not only by J2 �bold dashed line� but also via the dimerization constant �. The T mn

x -ordering pattern shown corresponds to the SAF
phase �a�. The same after mapping on a square lattice �b�.
original NaV2O5 lattice, J2 is the weak diagonal and J1 is
the largest coupling:

J2�J��J1 . �12�

We assume J� to be small enough not only to lie beneath the
frustration plane �2�, but to satisfy a more stringent condition
�11�. Then according to the above analysis, the IMTF with
these couplings has a two-phase �PE-SAF� diagram with a
QCP.6� In the literature on NaV2O5 its charge order is called
the ‘‘zig-zag phase,’’ what characterizes the antiferroelectric
order in a single ladder only. In fact, the two-dimensional
long-range charge order in NaV2O5 is SAF. For a detailed
explanation of this point, including interpretation of the ex-
perimental crystallographic data on the charge order23 in
terms of the Ising pseudospins; see Ref. 24.

In the following we will work with dimensionless quan-
tities: Hamiltonians H�H/� , temperature T→T/� , and
Ising couplings g#
J# /� . With the site labeling shown in
Fig. 7, the IMTF Hamiltonian is:

HIMTF��
m ,n

� �T mm
z �

1

2
�g��T mn

x T m�1,n�1
x

�T mn
x xT m�1,n

x ��g1T mn
x T m ,n�1

x

�g2T mn
x T m�2,n�1

x �� . �13�

For the decoupled spin sector of the total Hamiltonian
we take into account only the strongest coupling between
spins on the NN rungs of a ladder. In terms of the effective
lattice �cf. Fig. 7� this translates into a set of decoupled
Heisenberg chains with the usual antiferromagnetic spin ex-
change J. These parallel chains are oriented along the
J1-diagonals.

As we infer from our previous work on a simpler version
of the IMTF Hamiltonian,6 there are two spin-pseudospin
interaction terms resulting in two qualitatively distinct as-
pects of model’s criticality: the inter-ladder spin-pseudospin
interaction 
� , and the in-ladder spin-pseudospin interaction

� . The former, in terms of the equivalent square lattice,
linear over difference of the charge displacement operators
T x on the NNN sites along the weak J2 diagonal, is respon-
sible for the simultaneous appearance of the SAF order and
the spin gap, as well as for the destruction of the IMTF
QCP.7� The latter, quadratic in the NNN charge operators
along the J1-diagonal, is responsible for the re-entrance.
With all these terms the total effective Hamiltonian reads

H�HIMTF��
m ,n

SmnSm ,n�1�J��T m ,n
z T m ,n�1

z

���T m�1,n�1
x �T m�1,n

x �� . �14�

The dimensionless couplings J ,� ,� in the Hamiltonian �14�
are positive, and the spin operators satisfy the same algebra
�10� as the pseudospins �while S and T commute�. The sums
above run through 1�m�M and 1�n�N. For brevity we
will use the notation Dmn
Smn•Sm ,n�1 . In this study we
consider the model with the XY spin sector:

Dmn�Smn
x Sm ,n�1

x Smn
y Sm ,n�1

y . �15�

The range of couplings under consideration will be restricted
to

�J ,���g1 , ��max J ,� . �16�

Spin-SAF phase transition

We treat the Hamiltonian �14� following conventional
wisdom of molecular-field approximations �MFA�.26 In the
present version of MFA the pseudospins are decoupled and
averaged with the density matrix �T
exp(��hmn•Tmn),
where hmn is the Weiss �molecular� field, while the spin sec-
tor is treated exactly via a Jordan-Wigner transformation.

The details are presented in Ref. 6. Similar to the pure
IMTF with couplings �11� we assume the possibility of the
SAF order in the coupled model �14�. So we take the follow-
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ing ansätze for the Ising pseudospin averages �i.e., the charge
ordering parameters in terms of the real physical quantities�

�T mn
z 	�mz , �17�

�T mn
x 	���1 �m�nmx . �18�

It is easy to see from the Hamiltonian �14� that ansatz �18�
creates a dimerization in the spin sector, therefore a natural
assumption for the dimerization operator average is

�Dmn	��� t���1 �m�n�� . �19�

With the new coupling

g
g1�g2 �20�

the molecular-field equations and results derived in Ref. 6 for
the case g2�g��0 �i.e., g�g1) can be applied here. Some
of them we reproduce in this paper in order to make it more
self-contained, and for the use in what follows as well.

The average quantities are determined by the system of
four coupled equations

mz�
1

2

1�2�tmz

n
tanh

�n

2
, �21a�

mx�
mx

2

g�2��

n
tanh

�n

2
, �21b�

t�
1

� �
0

�/2

d�
cos2 �

����
tanh �̃����


1

�
tn�� ,�̃ �, �21c�

��
�

�mx
�

0

�/2

d�
sin2 �

����
tanh �̃����


�

�mx
�n�� ,�̃ �,

�21d�

where ���hx
2�hz

2 is the absolute value of the Ising mo-
lecular field

hz�1�2�tmz , �22a�

hx�gmx�2�� . �22b�

The other auxiliary parameters are defined as follows:

�
mx� , �23a�

����
�cos2 ���2 sin2 � , �23b�

�

2�mx

J��mz
2 , �23c�

�̃

�

2
�J��mz

2�. �23d�

At some critical temperature Tc the coupled model under-
goes a phase transition. It is a second-order transition, with
the thermodynamic behavior of the physical quantities pre-
dicted by the Landau theory of phase transitions.6 With the
spin-pseudospin �-charge� coupling � present, the SAF
charge order mx�0 and the spin gap �SG�2�mx appear
simultaneously below Tc . By analogy with the spin-Peierls
transition, when the Peierls phonon instability �freezing� cre-
ates the spin gap, it is natural to call this type of transition
the spin-super-antiferroelectric �spin-SAF� transition.

It is worth noting an important property of the Hamil-
tonian �14�: in the other domains of Ising couplings �not
considered in our analysis of the coupled model� where the
Ising sector of �14� can order into, e.g., FM, AF, or SFAF
phase, the dimerization �gap� in the spin sector does not oc-
cur.

The behavior of Tc(g) in the coupled model �14� shows
two striking new features in comparison to the pure IMTF:
re-entrance and destruction of the QCP.6 In the absence of
the spin-charge coupling �, the model �14� has a QCP at

g�
2� 1�
�

� � , �24�

where Tc vanishes �see Fig. 8�. � renormalizes the QCP in
comparison with the pure IMTF value g�2. The coupling �
responsible for the spin gap generation also destroys the
QCP, resulting in the exponential behavior of Tc in the re-
gion g�g� , where the model would have been disordered at
any temperature if ��0. This constitutes an important feed-
back from the spins on the charge degrees of freedom, allow-
ing the very possibility of the model to order at all. Approxi-
mate analytical solutions for Tc(g) in the regime of strong
Ising couplings and the BCS regime are:6

Tc��
g

4
, g	g� ,

AJ̃

2
exp��

� J̃

4�2 �g��g �	 , BCS regime,

�25�

where A
8/�� exp(1��)��1.6685, ��0.5772 is Euler’s
constant, and

J̃
J�
�

4
. �26�

The boundary where the low-temperature BCS regime sets in
and the related formulas are applicable, is given approxi-
mately by the condition:

BCS regime: g�g��
4�2

� J̃
. �27�

FIG. 8. Critical temperature of the PE-SAF phase transition as a function of
the Ising coupling g at different values of J ,� ,� from the numerical solution
of Eqs. �21�. The dashed line corresponds to the pure IMTF (J����
�0). Two stars on the abscissa show the positions of critical couplings
g��2.0627 �2.6366� for ��0.1 �1.0�, respectively. The large unfilled circles
on the curves with ��0 indicate the right boundary of the exponential BCS
regime �25�. At large values of g �not shown� all curves Tc(g) approach the
asymptotic line Tc�g/4.
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The BCS regime has many analogies with the standard
theory of superconductivity, apart from the exponential de-
pendence of Tc on couplings. In particular, several physical
quantities �order parameter, BCS ratio, specific heat jump�
manifest certain ‘‘universal’’ behavior near Tc , similar to
that known from the BCS theory.6

Another peculiarity of Tc(g) found earlier6 from the nu-
merical solution of Eqs. �21� is re-entrance in the intermedi-
ate regimeg g�g� . The re-entrance occurs in the coupled
model with the QCP (��0), while when ��0 the critical
temperature can even manifest a double re-entrant behavior
before it reaches the BCS regime �see Fig. 8�. A detailed
analysis of the coupled model in the regime of re-entrance
was not done previously. We will address this in the next
subsection, mainly analytically, in order to get more insight
on the underlying physics and, in particular, to establish con-
ditions when the re-entrance can occur.

Re-entrance

Let us first reproduce some earlier formulas6 for the
reader’s convenience. At T�Tc one equation from the pair
�21a,b� can be written in the form

mz
�1�g�

4�2

��J��mz
2�

�n�
2�

�
tn , T�Tc . �28�

At T�Tc we have Eqs. �21a� as

mz�
1

2
tanh

�c

2 � 1�
2�mz

�
tn� , �29�

and parameters tn ,�n are given by Eqs. �21c,d� with ��0.
The latter two functions have the following expansions:6

tn�0,x ��� �

4
x� 1�

1

4
x2��O�x5�, x�1,

1�
�2

24

1

x2 �O�1/x4�, x�1,

�30�

and

�n�0,x ��� �

4
x� 1�

1

12
x2��O�x5�, x�1,

ln Ax�
�2

48

1

x2 �O�1/x4�, x�1.

�31�

Case �Ä0; re-entrance with QCP

As one can easily see from Eqs. �28�, �29� there is no
re-entrance when ��0. This is a well-known fact for the
pure IMTF, both on the mean-field level and beyond the
MFA.3,26 To study the re-entrance analytically and in particu-
lar, to establish whether there is some minimal value of �
when it appears, we should distinguish between two
asymptotic regimes of the mean-field equations. Let us first
consider the regime �it can occur only if J̃�1) when (Tc


1/�c)

1

2
J̃�Tc�

1

2
. �32�
�In all regimes of couplings the re-entrance occurs at Tc

�1/2.) By carrying out the leading-term expansions of the
functions in Eqs. �28�, �29� we obtain

g�2�4 exp��1/Tc��
� J̃

4Tc
�33�

for a single-valued function g(Tc). The nonmonotonic �i.e.,
re-entrant� behavior of Tc(g) is related to the existence of an
extremum of g(Tc). The coupling gmin which defines the
minimal value of g for the order in mx to be possible �in the
pure IMTF with ��0 this was the QCP� and which at the
same time is the left border of the re-entrant region

gmin�g�g� , �34�

is defined from the minimum of the function g(Tc) �33�.
This point corresponds to the critical temperature

T*�ln�1 �o , �o

16

� J̃
�35�

for which

gmin�2�
4

�o
�1�ln �o�. �36�

The consistency of the solution �35� with �32� implies the
condition

2�ln �o�
2

J̃
. �37�

The other regime corresponds to the case when

Tc�min�1/2, J̃/2�. �38�

Proceeding in the same way as above, we obtain for
g(Tc) in this case:

g�g��4 exp��g�/2Tc��
��

3 J̃2
Tc

2. �39�

Let us point out that the conditions �32�, �38� determine two
different regimes (x�1 or x�1) of the asymptotics �30�,
�31� which we apply to obtain g(Tc) as �33� or �39�. So if
J̃�1 there are regions of Tc where condition �32� is satisfied,
then the approximation �33� applies. However, at sufficiently
low temperatures (Tc� J̃/2) we inevitably enter the other
regime �38� where the asymptotics �30�, �31� change (x
�1�x�1), and the function g(Tc) crosses over from �33�

to �39�. If, on the contrary, J̃ is large, then condition �32�
never applies, and the approximation �39� describes the
whole region Tc�1/2.

Extrema T* of the function g(Tc) �39� are determined
by the transcendental equation

exp��g�/2T*��
��

3g�J̃2
T

*
3 . �40�

This equation always has a trivial solution T
*
� �0 corre-

sponding to the �local� maximum of g(Tc). This is the QCP,
and the curve Tc(g) approaches the QCP normally to the
abscissa �see Fig. 8�. Two nontrivial solutions of �40� exist if
the couplings satisfy the condition
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J̃�C1�1/2g� , �41�

where

C1
��

24 � e

3 � 3

�0.3121. �42�

There is only one solution within the validity region of the
approximation �39�, and it corresponds to the minimum of
g(Tc). If the couplings satisfy �41� then

u
ln 3�
1

3
ln ao�1, �43�

ao

24J̃2

��g�
2 ,

and the minimum can be found analytically as

T*�
g�

6 � 1

u
�

ln u

u2 � . �44�

For the left border of the re-entrant region we obtain

gmin�g��
��

3 J̃2
T

*
2 �

4��

3g�J̃2
T

*
3 . �45�

The above equations agree well with the numerical solutions
of the MFA �21� at different values of couplings �from com-
parison of the asymptotics �33�, �39� and the numerical
curves at various couplings and temperatures we found the
deviations �5% at most�. More importantly, the analytical
results of this subsection allows us to understand in detail the
interplay of the scales provided by a model’s couplings and
the temperature, resulting in the re-entrance. Let us explain
this on the example of two characteristic numerical curves
shown in Fig. 8.

The curve shown for J�0, ��1, ��0 ( J̃�0.25) corre-
sponds to the case of small J̃ . At Tc
 J̃/2�0.125 it is well
described by the equations for the regime �32�. Its re-entrant
behavior and, in particular, the minimum gmin is due to the
last term on the right-hand side of �33�. At lower tempera-
tures Tc�0.125 the asymptotics �33� is not applicable, the
curve is described by �39�. Note that since C1�1/2g�

�0.8229, the condition �41� for the minimum is broken, and
the asymptotics �39� describes the featureless low-
temperature evolution of this curve towards the maximum at
the QCP.

The second curve in Fig. 8 with J�0.75, ��1, ��0
( J̃�1) corresponds to the case of large J̃ . The whole re-
entrant region (Tc�0.4), including the position of the mini-
mum gmin (C1�1/2g��0.8229) is described by the interplay
of the last two terms on the right-hand side of Eq. �39�.
Comparison of Eqs. �36�, �45� also allows one to understand
the more pronounced re-entrant behavior for the case of
smaller J .

As we see from our analysis of Eqs. �33�, �39� in the
both regimes �32�, �38�, the re-entrant behavior on the phase
diagram occurs at any ��0.
Case �Å0; double re-entrance, no QCP

The absence of re-entrance at ��0 can be proven rigor-
ously. Indeed, combining Eqs. �28� and �29�, we obtain the
equation

mz
�1�g�

4�2

�J
�n� 0,

J

2
ln

1�2mz

1�2mz
� �46�

which has one and only one solution mz��0,1/2� for a given
value of g . This solution in its turn provides a unique value
of Tc via Eq. �29�, and thus no re-entrance.

At ��0 continuous evolution of Tc(g) between the re-
gime of strong Ising coupling and the BCS regime �cf. Eq.
�25�� can occur either with a double re-entrance �i.e., with
one minimum and one maximum of g(Tc)] within the re-
entrant region

gmin�g�gmax , �47�

or without re-entrance. In the latter case the function Tc(g)
�or g(Tc)] has only an inflexion point �see Fig. �8��.

Following the analysis given in the previous subsection,
we obtain for the case of small J̃ in the regime �32�

g�2�4 exp��1/Tc��
� J̃�2�2

4Tc
. �48�

Again, the re-entrant behavior is conditional on the existence
of a minimum of g(Tc). It exists if, at least,

��
1

&
�� J̃�0.7071�� J̃ . �49�

The unique minimum of g(Tc) �48� defines the left border of
the re-entrance region gmin and corresponds to the critical
temperature T* given by Eqs. �35�, �36� with �0�� , and

�

16

� J̃�2�2
. �50�

The consistency imposes a constraint analogous to �37�,
more stringent than the ‘‘minimal requirement’’ �49�.

The other regime �38� is described by the approximation

g�g��4 exp��g�/2Tc��
�Tc

2

3 J̃3
�� J̃��2�

�
4�2

� J̃
ln

AJ̃

2Tc

. �51�

As we have explained in the previous subsection for the case
��0, the asymptotics �48� is applicable only for small J̃ at
the intermediate temperatures �32�, while �51� can be applied
at arbitrary low temperatures, including the BCS region. The
latter, given by the exponential dependence in �25�, can be
recovered if we retain only the first and last �leading� terms
on the right-hand side of Eq. �51�.

In the regime �38� the re-entrance occurs if the equation
for extrema of �51�

exp��g�/2T*��
�T*

3g�J̃3
� �� J̃��2�T

*
2 �

6�2J̃2

�2 	 �52�
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has nontrivial solutions. Note in making comparison of Eq.
�52� to its counterpart �40� at ��0, that coupling � destroys
the QCP,6 as is immediately seen from �51�. So the trivial
solution T*�0 of Eq. �52� corresponds to the unphysical
singularity of g . As follows from �52�, �38�, nontrivial solu-
tions are possible if, at least,

��
�

2�6

1

�1��2/24
�� J̃�0.8357�� J̃ . �53�

If this condition is satisfied, the transcendental equation �52�
has at least one solution, corresponding to maximum of
g(Tc). To leading order in �, it occurs at the temperature

T
*
� �

�6

�
� J̃

�
� 1/2

� �54�

and the coupling

gmax�g��
4�2

� J̃
ln

A��� J̃

2�6�
. �55�

If the couplings meet both the conditions �41� and

��C2g�� �

J̃
� 1/2

, �56�

where

C2

�

2
�47�13�13

36
�0.0936, �57�

then a second solution of �52� (T
*
� ), corresponding to mini-

mum of g(Tc), exists. This minimum, located between

T
*
� �T

*
� �

g�

6
�58�

is given approximately by Eq. �44�, where u in �43� is modi-
fied by a0�a , and

a

24J̃3

�g�
2�� J̃��2�

. �59�

For validity of expansion �44� we assume u�1.
The analytical results of this subsection allows us to de-

scribe the behavior of the coupled model at ��0, following
from the MFA equations �21�, both qualitatively and quanti-
tatively. Two counterparts (��0.1) of the numerical curves
discussed in the previous subsection are shown in Fig. 8. For
this case of small �, re-entrance is possible, according to
conditions �49�, �53�. The re-entrant behavior at the tempera-
tures Tc
T

*
� is not modified essentially by the presence of

new coupling � as compared to the case ��0, and is in fact
controlled by couplings J ,� ,g . Since we have already dis-
cussed it in detail for the case ��0, we will not dwell on it
any more. In the low-temperature regime �51� coupling �
changes drastically the behavior of g(Tc) at Tc�T

*
� , creat-

ing a maximum at g(T
*
� ) described well by the approxima-

tion �54� and turning g(Tc) away from the QCP towards the
BCS region. For the BCS regime Eq. �25� provides a virtu-
ally exact solution.
As follows from the inequalities �49�, �53�, �56� an in-
crease of � can suppress the re-entrance even at ��0. The
necessary conditions �49�, �53� for extrema of the two as-
ymptotics �48�, �51� are close, albeit with a rather small mis-
match of the coefficient. Conditions for re-entrance are more
stringent, since they require the consistency between the so-
lutions for extrema and the validity ranges of the appropriate

asymptotics. The �overestimated� critical value �0�0.7�� J̃
gives a good simple estimate for the boundary where the
re-entrance disappears from the whole curve g(Tc), whether
J̃�1 or J̃�1. An example of the curve Tc(g) without re-
entrance is shown in Fig. 8.

To summarize our analysis of the re-entrance for the
cases ��0 and ��0: it reveals the robustness of this phe-
nomenon in the coupled model �14� and its underlying
mechanism, namely, competition between different scales
defined by the couplings J ,� ,� ,g and the temperature. These
competing scales �interactions� are not related to the Ising
frustration which is present in the model as well
�(J� ,J1 ,J2)�0� , since the latter is not accounted for ex-
plicitly by our mean-field equations. This competing mecha-
nism for the re-entrance appears to be robust and not being
an artifact of the MFA. Re-entrant phases due to competing
interactions are known also, e.g., from exact solution of the
Ising model on the Union Jack lattice,27 or from analyses of
decorated Ising models.28

It is not clear for us at the moment how the proposed
re-entrance can be observed. NaV2O5 is, up-to-date, the only
known compound with the spin-SAF transition and does not
show re-entrance. This is in agreement with our estimates for
the parameters for the effective Hamiltonian for this com-
pound. They give its g located on the disordered side of the
�destroyed� QCP, and the re-entrance on the whole curve
Tc(g) would be only very weak �i.e., localized near g�g�),
if any. It appears experimentally that, e.g., external pressure
cannot modify the in-plane parameters of NaV2O5 strongly
enough, such that re-entrance would be generated. The varia-
tions of the interlayer couplings under pressure, on the other
hand, generate various types of order �including devil’s stair-
case� with regard to the plane stacking, while the in-plane
SAF order remains unaffected.24,29

IV. SUMMARY AND DISCUSSION

We study the 2D Ising model on a square lattice with
nearest-neighbor (J�) and unequal next-nearest neighbor
(J1,2) interactions. The cases of classical and quantum mod-
els are considered.

We find the ground-state phase diagram of the classical
Ising model at arbitrary J� ,J1 ,J2 . Along with the three or-
dered phases—ferromagnetic, antiferromagnetic, and SAF—
known for J1�J2 ,8 in a more general case J1�J2 there is a
region of the coupling space with the super-ferro-
antiferromagnetic �or 4�4) ground-state phase and an in-
commensurate phase at finite temperature, not reported be-
fore. The three phases—SAF, SFAF, IC—can occur only in
the presence of competing interactions �frustrations� on the
Ising model’s plaquette.

A particularly interesting conclusion from the analysis of
the quantum model’s phase boundaries is that transverse field
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� can stabilize the IC ground-state phase �located for �
�0 in the region with sign (J1 /J2)��1] in some parts of
the AF and SAF regions of the coupling space where
(J1 ,J2)�0 but J1�J2 . These regions, along with vicinities
of the special planes of degeneracy �triangulation and frus-
tration� in coupling space, are good candidates for the quan-
tum model to demonstrate a very nontrivial critical behavior.
Leaving this for a future work, we hope that our findings will
inspire additional interest in this model. Taking into account
only one simple example of a mapping shown in Fig. 7, it is
clear the model with J1�J2 is not so exotic.

We analyze the IMTF coupled to the XY spin chains in
the restricted �SAF� region of (J� ,J1 ,J2) where the IMTF
has a simple two-phase �disordered-SAF� diagram with a
QCP, similar to that of the transverse NN model. Our interest
in this model is motivated by the problem of the phase tran-
sition in the quarter-filled ladder compound NaV2O5 . The
predictions of the mean-field equations for the critical prop-
erties of the coupled spin-pseudospin model do not differ
essentially from our earlier results for a simpler
Hamiltonian.6 Due to the spin-pseudospin coupling �, the
QCP of the NN and NNN IMTF is destroyed, and in the
whole SAF region �11� of Ising couplings the spin-
pseudospin model undergoes the spin-SAF transition. We
should point out, that albeit the exponential BCS regime �25�
on the disordered side of the IMTF QCP g�g� formally
extends up to g�0, decreasing g , i.e., J1�J2 , will eventu-
ally remove us from the coupling region �11� where the SAF
pseudospin solution of the MFA equations is applicable.

We perform a detailed analytical study of re-entrance in
the coupled model. In particular, we establish the conditions
when it can occur. The analytical results not only agree well
with the direct numerical calculations in various regimes, but
allows us to understand the physical mechanism of re-
entrance due to interplay of competing interactions in the
coupled model.

In this work we gain more insights on the transition in
the spin-pseudospin model, and we can sharpen our previous
statements concerning the applications to NaV2O5 .6 The
present analysis of Ising sector allows us to identify the 2D
long-range charge order in that compound as the SAF phase.
As follows from known results on the ordering of the frus-
trated 2D Ising model into the SAF phase,1 the spin-SAF
transition has non-universal coupling-dependent critical indi-
ces. Experiments indicate rather wide regions of the two-
dimensional structural �charge-ordering� fluctuations charac-
terized by the critical index ��0.17– 0.19,30–32 close to �
�1/8 of the 2D Ising model. Due to known difficulties in
extracting critical indices from experimental data, it seems
problematic to diagnose the deviations from universality
caused by 0�J� /J1�1. �Note that in the limit J� the PM-
SAF transition enters into the 2D Ising universality class,
and for NaV2O5 , due to its geometry, the ratio J� /J1 should
be small.�

On the theoretical side, the critical indices of the PM-
SAF transition as functions of couplings in the NN and NNN
Ising model have been calculated by various methods only at
J1�J2 .1 The critical exponents are unknown for the case
J1�J2 , and it appears to be an interesting problem to study.

Another very interesting issue we addressed recently in a
separate study,24 is the 3D nature of the transition in
NaV2O5 . According to the correlation lengths
measurements,30 upon approaching Tc�34 K the 2D cross-
over of the pretransitional structural fluctuations occurs
somewhere at T�50 K. The model considered in the present
work deals with a single plane, leaving aside the question of
charge ordering along the third �stacking� direction. The
phase transition in NaV2O5 quadruples the unit cell in the
stacking direction, and the recent x-ray experiments, carried
out deep in the ordered phase23,33 revealed peculiar stacking
ordering patterns of the super-antiferroelectrically charge-
ordered planes. In addition, the pressure can change these
patterns and even generate a multitude of higher-order com-
mensurate superstructures in the stacking direction �devil’s
staircase�.29 To explain these phenomena we proposed a 3D
extension of the Ising sector with additional competing cou-
plings between the nearest and next-nearest planes.24 In the
limit J� the Ising sector reduces to two identical interpen-
etrating decoupled 3D ANNNI models. Although inclusion
of the competing interlayer couplings accommodates the ex-
planation for the observed stacking charge order in the
framework of the spin-SAF �in-plane� mechanism of the
transition in NaV2O5 , a deeper understanding of the critical
properties of a very complicated model with the 3D Ising
sector warrants further study.
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1�We use the term ‘‘frustration’’ in a broad sense,1 meaning only that there is

no spin arrangement on an elementary plaquette which can satisfy all
bonds.

2�The well-studied ANNNI phase diagram with the FM and antiphase
ground states1,10,11 is an analog of the lower part of the fourth quadrant
�FM-SFAF� of our diagram in Fig. 2.

3�According to this notation, the antiphase of the 2D ANNNI model is (1
�4). For the same reasons we give for our case, the floating phase of that
model exists only within the antiphase ground-state region.

4�By analogy with the triangular Ising case of Refs. 4 and 5, we expect the
transverse field to bring about new exotic phases near the frustration planes
FP, FP�, where the ground state of our model is also infinitely degenerate.

5�A linear coupling 
�(T1�T2) with some Gaussian mode � results in an
effective anti-/ferrro-magnetic interaction between T1 and T2 . Such terms
can create or renormalize the couplings of the Ising effective Hamiltonian.
In his context the Ising model with two NNN couplings of different signs
is less academic than it might appear.

6�Since in applications to NaV2O5 the Ising pseudospins T represent charge
displacements, the appropriate names for the phases are ‘‘paraelectric’’
�PE� and ‘‘super-antiferrolelectric.’’ We keep the same abbreviation SAF
for the latter.

7�This type of coupling is allowed by the symmetry of the original NaV2O5

lattice.6 Numerical estimates of � from a microscopic Hamiltonian are
given in Ref. 25. Note also that � effectively couples the spin chains.
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The interaction of a magnetic vortex with the frustration created by a magnetic defect is
investigated in a discrete Heisenberg model of a two-dimensional antiferromagnet with easy-
plane anisotropic exchange. Numerical solutions are obtained for the static Landau-
Lifshitz equations describing the spin distribution in a system with magnetic frustration and a
vortex. It is found that the energy of the magnet is minimum in the case when the center
of the vortex coincides with the position of the magnetic impurity. It is shown that as a result of
the attraction between the vortex and frustration, a two-dimensional solitonic bound state
localized at the magnetic defect—a frustrated vortex—arises in the magnet. The energy of such a
vortex is lower than that of the free vortex, and this effect can be manifested in features of
the behavior of the EPR linewidth in two-dimensional magnets. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2008133�
I. INTRODUCTION

The class of quasi-two-dimensional antiferromagnets
comprising metalorganic compounds can evidently be
supplemented by high-Tc superconductors in the magneti-
cally ordered phase.1 The CuO2 planes in high-Tc supercon-
ducting compounds such as YBa2Cu3O6�x and
La2�xSrxCuO4�y are two-dimensional Heisenberg layers of
antiferromagnetically coupled copper spins with a value
close to 1/2.2 The superexchange J between Cu2� ions takes
place through the oxygen ions O2�. These almost isotropic
two-dimensional layers are coupled by a weak exchange J�

�J of the same order as the easy-plane magnetic
anisotropy.3 It is known4 that the electronic state of the CuO2

planes and, hence, the character of the magnetic exchange
between Cu2� ions depend substantially on the oxygen con-
tent in high-Tc superconductors. In particular, it has been
established for lanthanum and yttrium superconductors that
variation of the oxygen concentration leads to the formation
of ‘‘holes’’ in the CuO2 plane. These ‘‘holes’’ are charge
carriers in the superconducting phase,5 and in the opinion of
Aharony and co-authors,2 their localization at the oxygen in
the magnetic phase leads to a change in character of the
superexchange between the Cu2� ions, from antiferromag-
netic with J�1000 K to ferromagnetic with J���3000 K.3

The resulting frustration6 destroys the long-range magnetic
order.

The quantum description of these phenomena is a very
laborious task,7 and for that reason the analytical approach
usually turns to the framework of classical Heisenberg
models.8 In the Heisenberg XYZ model the magnetic inter-
actions in the copper planes in YBa2Cu3O6�x are described
by a Hamiltonian of the form

H0�J�
r,a

�Sr
xSr�a

x ��Sr
ySr�a

y ��Sr
zSr�a

z � , �1�

on a square lattice, where Sr is the classical spin, the sum-
mation is over lattice sites and nearest neighbors, the con-
7351063-777X/2005/31(8–9)/5/$26.00
stant ��1 corresponds to easy-plane anisotropy, and the
constant � is introduced to take into account a weak anisot-
ropy in the plane: 1���1���1. It will be understood that
the results obtained below are applicable primarily to yttrium
compounds, for which ��0.99, whereas for lanthanum com-
pounds it is important to take the Dzyaloshinski–Moriya in-
teraction into account as well. For yttrium compounds, since
the spins of two nearest-neighbor copper planes interact an-
tiferromagnetically with an exchange J� , we shall assume
when studying the static configurations that the nearest spins
in different planes are pairwise antiparallel.

The static spin distributions are solutions of the follow-
ing Landau-Lifshitz equations:

Sr�Fr�0, Fr��
	H

	Sr
, �2�

where Fr is the effective field at site r, and H is the Hamil-
tonian of the magnetic system. In the presence of a bond
defect �the exchange constant between two spins has a dif-
ferent sign from the interaction in the host matrix�, as a result
of frustration, the ground state can be nonuniform �in the XY
model this is a threshold effect in the parameter J�/J).7 Such
a state, with a nonuniform distribution of the antiferromag-
netic vector field localized near the defect is called a Villain
ground state.6 On the other hand, such a localized spin struc-
ture can also be interpreted naturally as a two-dimensional
magnetic soliton localized at the defect. Therefore, the term
magnetic frustration has come to denote a solitonic spin dis-
tribution arising near an effective frustrated bond.2 Such
frustrations can influence the magnetic characteristics of
high-Tc superconducting �HTSC� compounds, in particular,
the temperature of the Néel phase transition in
YBa2Cu3O6�x �Ref. 9�, and can contribute to the suscepti-
bility of the crystals. Direct experimental measurement of the
susceptibility of the CuO2 planes is difficult because of the
large values of the exchange constants J and J�. However, it
has become possible to estimate the susceptibility of the
© 2005 American Institute of Physics
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CuO2 layers in an indirect way thanks to the discovery of a
new class of HTSC compounds containing rare-earth �R�
ions: GaBa2Cu3O6�x , Nd2�xCexCuO4 , etc.,10,11 in which
the rare-earth ions neighbor the CuO2 planes. A soliton ap-
proach to the treatment of questions related to the structure
of magnetic frustrations in the CuO2 layers of HTSC com-
pounds and their rare-earth analogs in the presence of mag-
netic field was proposed in Refs. 12 and 13; the contribution
of frustrations to the magnetic susceptibility of magnets was
investigated, and the magnetic fields induced by the field of a
frustration in the rare-earth ion layers were found. Since the
characteristic interactions in the rare-earth layers are substan-
tially smaller than the exchange J in the CuO2 plane, the
magnetic properties of the planes containing the Ga, Nd, etc.
ions are studied by conventional techniques. Susceptibility
measurements in compounds of the class R2CuO4 have
revealed11 weak ferromagnetism, one of the causes of which
may be that frustrations having a magnetic moment are
present in the CuO2 planes. Since frustrations in the CuO2

planes influence the magnetic ordering in the adjacent rare-
earth layers,13 one expects that frustration contributions will
also be manifested in magnetic resonance experiments.

On the other hand, it is well known that magnetic vortex
solitons can exist in two-dimensional isotropic and easy-
plane magnets.14,15 In the case of weak anisotropy these vor-
tices have a structure with spin components that come out of
the plane.16 Such solitons can contribute to the EPR line
broadening in quasi-two-dimensional magnets.17,18 Their in-
teraction with magnetic and nonmagnetic defects of substi-
tution has become a topic of research only recently.19–23

In this paper we investigate the character of the interac-
tion of a magnetic frustration and a vortex in an easy-plane
antiferromagnet and predict the formation of their bound
state—a frustrated vortex. Such nonlinear excitations can
contribute to the resonance and thermodynamic characteris-
tics of quasi-two-dimensional magnets and HTSC com-
pounds in the magnetically ordered phase.

II. TWO-DIMENSIONAL HEISENBERG MAGNET WITH A
FRUSTRATING IMPURITY

The use of a planar model for describing magnetic
frustration,2,8,12 raises the question of the correctness of re-
placing the almost isotropic Heisenberg Hamiltonian custom-
arily used for HTSC compounds by the XY model. The im-
portant circumstance that calls the applicability of such an
approximation into question is this: two-dimensional
solitons—magnetic vortices—can exist in easy-plane
magnets.14,16 If the anisotropy is not small, then the vortex
spin configuration is planar. In the almost isotropic case,
which corresponds to the CuO2 plane, the vortex configura-
tion acquires spin components that come out of the plane.
This naturally raises the questions of how the magnetic frus-
trations will behave in an almost isotropic Heisenberg model,
and what will be the nature of the interaction of a frustration
and a magnetic vortex in such a system?

To answer these questions, we formulate the following
classical model describing the interaction of the spin of a
hole and the spins of the copper in the CuO2 plane �see also
Ref. 7�. The Hamiltonian �1� is supplemented with a term
appropriate to such an interaction:
H�H0�H fr , H fr� J̃Sh•�Sr1
�Sr2

�, �3�

where Sh is a hole spin, and the exchange J̃ between the hole
spin and a copper spin is assumed, for the sake of definite-
ness, to be antiferromagnetic, i.e., J̃�0. �We recall that all of
the spins have been replaced by classical unit vectors, and
their absolute value S�1/2 is subsumed in the renormaliza-
tion of the exchange constants.� This model explicitly takes
into account the interaction of the magnetic impurity with the
spins of the host and admits a transition in terms of this
parameter to the defectless case, J̃→0. We note that the
static Landau-Lifshits equation for the hole spin,

Sh��Sr1
�Sr2

��0 �4�

has the obvious solution in accordance with the fact that the
hole spin is antiparallel to the sum of the copper spin vectors:

Sh��
Sr1

�Sr2

�Sr1
�Sr2

�
. �5�

Therefore, in the proposed model the frustrated contribution
of the hole to the interaction between the statically distrib-
uted copper spins is equal to H fr�� J̃�Sr1

�Sr2
�. We note

that the effective interaction of the copper spins via the hole
spins turns out to be of a ferromagnetic character indepen-
dently of the initial sign of the interaction of the hole spin
and copper spin �see also Ref. 2�. Here we note that, unlike
the models using the frustrated bond approximation,2,8 which
lead to results that are equivalent for ferro- and antiferromag-
nets to within a change of the signs of the exchange con-
stants, the present model pertains specifically to antiferro-
magnets, since it is due to the inevitable frustrating influence
of an interstitial magnetic impurity on the antiferromagnetic
ordering of the host spins.

The solution �5� of equation �4� suggests a numerical
algorithm that permits effective solution of the static equa-
tion �2� in the general case. An iterative method of solving
the static Landau–Lifshitz equations for arbitrary values of
the spins S and arbitrary interactions governing the equilib-
rium state of the system �in particular, spin distributions like
two-dimensional magnetic frustrations and vortices� is based
upon the following idea. It follows from Eq. �2� that the
vector Sr should always be parallel to the effective field Fr ,
and the elementary iteration step can therefore be written as

Sr
i�1�S•Fr

i /Fr
i , �7�

where Fr
i is the length of the vector Fr

i , and the index i is the
number of the iteration. If the initial spin distribution if suf-
ficiently close in form to a magnetic frustration or vortex,
then the iterative calculation converges very rapidly and
leads to a stable solution of Eqs. �2�.

III. INTERACTION OF A MAGNETIC FRUSTRATION AND A
VORTEX IN A TWO-DIMENSIONAL ANTIFERROMAGNET

In this paper we report a numerical investigation of the
equilibrium spin configurations in the framework of the dis-
crete Heisenberg model �3� on a 41�40 spin matrix (n ,m)
�the lattice constant is taken equal to unity�. First we ob-
tained solutions describing magnetic frustrations; they turned
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out to be practically the same as in the planar model,2,8,12,13

i.e., localized in the easy plane at for arbitrarily weak anisot-
ropy �see Fig. 1�. This circumstance permits a complete jus-
tification of the use of the planar model for calculating the
structure of the frustrations in the presence of magnetic
field.12,13 We note that in the purely isotropic case (���
�1), all the spins of the frustration also lie in a single plane,
but there is degeneracy with respect to rotation of that plane
around an arbitrary axis. In the frustration model with inter-
action �3� a nonuniform ground state arises at arbitrarily
small values of the parameter W� J̃/J . For W�0 the energy
of the uniform antiferromagnetic ground state of a 41�40
matrix of spins in units of J has the value E0��3199. The
energy of the system with frustration, E fr , initially falls off
quadratically as a function of the parameter W but then, after
W�3, its decline becomes practically linear �Fig. 2�. Thus
the energy of the system with frustration is lowered by an
amount 
E fr�E fr�E0 , which is naturally called the self-
energy of a frustration. For example, for W�3 the energy

E fr��2.08.

The proposed numerical method is efficient for calculat-
ing the structure of a vortex with components that come out
from the easy plane, since in that case the spin distributions
in the course of the iterations converge rapidly to the stable
solutions. As the initial distribution for the vortex in the cal-
culations we used approximate analytical expressions for
easy-plane vortices from Ref. 16. The numerical calculation

FIG. 1. A 13�12 fragment of the spin distribution at a magnetic frustration.
The positions of the central spins are the sites �21,20� and �21,21�, between
which is located the spin of a magnetic impurity.

FIG. 2. Energy of an antiferromagnet with frustration E fr , measured in units
of J , as a function of the frustration interaction parameter W .
for the energy of a free vortex �i.e., in the system without a
frustrating impurity, W�0) for a 41�40 spin matrix gives

Ev�Ev�E0�9.51.

The next step consists in the calculation of the interac-
tion of a magnetic vortex and a frustration in the framework
of the proposed model. For this the problem is stated for the
following physical situation: a hole is introduced into a sys-
tem of spins with a vortex at the center and is moved to
different distances from the center of the vortex. It was as-
sumed in the calculations that the anisotropy constants �
�1 and ��0.99, and the ratio of exchange constants W
�3. For the stable configuration obtained, the energy of the
system was found. Figure 3 shows the dependence of that
energy on the distance R between the hole spin and vortex
center. It is seen that the interaction is of an attractive char-
acter. It follows from an analysis of the spin distributions
obtained that at large distances between the hole spin and
vortex center the presence of frustration is practically unno-
ticeable �see Fig. 4�, and outwardly the vortex differs little
from the free vortex.16 At the same time, the vortex turns out
to be strongly deformed in the energetically most favorable
state, when the vortex center lies on the axis between two
copper spins, coinciding precisely with the position of the
hole spin �Fig. 5�. Such a bound state of the magnetic vortex
and an impurity spin is naturally called a frustrated vortex.
The strong frustrating influence of the magnetic impurity on
the deviation of the components of the vortex from the easy
plane is clearly seen in Fig. 6, which shows the modulus of
the Sr

z components of the host spins.
To find the energy 
E f v of a frustrated vortex, one must

subtract from the total energy E f v��3192.31 the energy

FIG. 3. Energy of an antiferromagnet containing a vortex and a frustration,
measured in units of J , as a function of the distance between their centers.

FIG. 4. Modulus of the projection Sr
z on the coordinates in an antiferromag-

net containing a vortex and a magnetic frustration in the case when the
impurity spin is located between sites �11,20� and �11,21�.



738 Low Temp. Phys. 31 (8–9), August–September 2005 M. M. Bogdan
E fr��3201.08 of a nonuniform ground state of the system
with an isolated frustration. The energy obtained, 
E f v
�8.77, is less than the energy 
Ev of a free vortex by the
amount of the binding energy, 
Eb��0.74, which amounts
to around 8% of the vortex energy. As is seen in Fig. 3, these
calculations are equivalent to finding the binding energy in a
frustrated vortex by subtracting from E f v �the total energy at
R�0) the energy of the system with the magnetic frustration
removed to a large distance and the free vortex.

Returning to the initial physical statement of the prob-
lem, we emphasize that introducing a hole into a CuO2 plane
containing a free vortex leads to the formation of their bound
state—a frustrated vortex, and lowers the energy of the sys-
tem as a whole by an amount 
E��2.82, which consists of
the energy of a frustration and the binding energy.

Thus, for given dimensions of the lattice �or density of
vortices and holes� and values of the exchange interactions, a
numerical estimate of the energy of a frustrated vortex shows
that the decrease of the system energy due to the introduction
of a hole into it and the localization of the vortex at the hole
is of the order of 30% of the energy of a free vortex.

Such a decrease might be detected in EPR experiments
in layered magnets—rare-earth analogs of HTSC com-
pounds. Upon localization of the magnetic impurity at a site
in a metalorganic antiferromagnet one observes temperature
broadening of the EPR line. One of the possible explanations

FIG. 5. A 13�12 fragment of the distribution of the projections of spins in
a frustrated vortex. The arrows indicate the components of the vectors Sr in
the XY plane. The impurity spin is located in the middle between sites
�21,20� and �21,21�.

FIG. 6. Frustrated vortex with center of localization at a magnetic defect.
The dependence of the modulus of the projection Sr

z on the coordinates is
shown.
for this is that this broadening of the resonance line includes
a contribution from magnetic vortices.17 An estimate of the
energy of the vortices can be obtained from the temperature
dependence of the EPR linewidth.18 In HTSC compounds
EPR directly on the copper ions is not observed; this remains
one of the unexplained mysteries of the physics of high-
temperature superconductivity.24,25 This may be because of
the very strong broadening of the resonance line in these
compounds, which may include a contribution from mag-
netic vortices. The resonance is observed in the rare-earth
analogs of HTSC compounds,11 and the contribution of frus-
trated vortices might be observed indirectly through the
fields induced in the planes of the rare-earth ions, as in the
simpler case of a replica of a magnetic frustration.13 It should
be noted, however, that for further generalization of the re-
sults to the lanthanum compounds La2�xSrxCuO4�y it is
necessary to take the Dzyaloshinski–Moriya interaction into
account in a consistent way, and also the possible motion of
the holes, which requires consideration of more-complex
spin Hamiltonians.26,27

IV. CONCLUSIONS

We have formulated a discrete classical Heisenberg
model of a two-dimensional antiferromagnet with easy-plane
anisotropy of the exchange with an interstitial magnetic im-
purity. Such a model can describe the behavior of magnetic
copper layers of the HTSC compound YBa2Cu3O6�x with
holes in the CuO2 planes. We have investigated the interac-
tion of a magnetic frustration and a magnetic vortex in the
framework of this model and obtained the following results.

1. We have proposed an efficient algorithm for numerical
solution of the static Landau–Lifshitz equations for calcula-
tion of the equilibrium stable spin configurations of magnetic
systems with an arbitrary character of the spin interactions.

2. The solutions of the Landau–Lifshitz equations corre-
sponding to magnetic frustration and a magnetic vortex with
spin components coming out of the easy plane have been
found numerically, and the energy characteristics of these
solutions have been calculated as functions of the model pa-
rameters.

3. We have shown that the energy of a magnet contain-
ing a vortex and frustration is minimum in the case when the
center of the vortex coincides with the position of the hole.
As a result of the attraction between the vortex and frustra-
tion a two-dimensional bound state localized at the magnetic
defect—a frustrated vortex—appears. The energy of such a
vortex is lower than that of the free vortex.

4. This effect can be detected in EPR experiments, since
an estimate of the energy of magnetic vortices can be ob-
tained from the temperature dependence of the resonance
linewidth, to which these nonlinear excitations give an expo-
nential contribution.

Thus in two-dimensional antiferromagnetic systems with
interstitial impurities �such as holes in HTSC compounds�
the magnetic frustrations and vortices can form bound states
having a substantial influence on the thermodynamics and
resonance properties of these systems.

The author thanks N. F. Kharchenko and J. M. Tran-
quada for helpful discussions and advice.
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In terms of spinless fermions and spin waves, we describe the magnetic properties of a spin-1/2
ferromagnetic-antiferromagnetic bond-alternating chain which behaves as a Haldane-gap
antiferromagnet. On the one hand, we employ the Jordan–Wigner transformation and treat the
fermionic Hamiltonian within the Hartree–Fock approximation. On the other hand, we
employ the Holstein–Primakoff transformation and modify the conventional spin-wave theory so
as to restore the sublattice symmetry. We calculate the excitation gap, the specific heat, the
magnetic susceptibility, magnetization curves, and the nuclear spin-lattice relaxation rate with
varying bond alternation. These schemes are further applied to a bond-alternating
tetramerized chain which behaves as a ferrimagnet. The fermionic language is particularly
stressed as a useful tool for investigating one-dimensional spin-gapped antiferromagnets, while the
bosonic one works better for ferrimagnets. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2008134�
I. INTRODUCTION

Haldane1,2 sparked renewed interest in one-dimensional
Heisenberg antiferromagnets, predicting that their low-
energy structures should vary qualitatively depending on
whether the constituent spins are integral or fractional. A
magnetic excitation gap immediately above the ground state,
which is referred to as the Haldane gap, was indeed observed
in quasi-one-dimensional spin-1 Heisenberg antiferromag-
nets such as CsNiCl3 �Ref. 3� and Ni(C2H8N2)2NO2(ClO4)
�Refs. 4, 5�. A rigorous example of such a massive phase was
also given theoretically.6,7 Significant numerical efforts8–12

were dovoted to detecting the Haldane gap in the higher-spin
systems. Competition between massive and massless phases
in low-dimensional quantum magnets was extensively stud-
ied especially by the nonlinear-sigma-model quantum field
theory,13–23 and a wide variety of spin gaps-energy gaps in
magnetic excitation spectra-were further predicted. There
followed stimulative findings, including quantized plateaux
in zero-temperature magnetization curves,24–26 gap forma-
tion in coupled spin chains27,28 and the dramatic crossover
from one- to two-dimensional quantum antiferromagnets,29

and an antiferromagnetic excitation gap with a ferromagnetic
background.30–33

Besides the sigma-model study, analytic approaches
played a crucial role in revealing the nature of Haldane-gap
antiferromagnets. The valence-bond-solid model13,14 stimu-
lated considerable interest in matrix-product
representation34–40 of the Haldane phase. The Lieb–
Schultz–Mattis theorem41 was generalized24 to clarify a
mechanism for gap formation in a magnetic field. However,
these arguments were essentially restricted to the ground-
state behavior and can hardly be extended to finite-
temperature properties. Numerical tools such as quantum
Monte Carlo and density-matrix renormalization-group tech-
niques are indeed useful for such a purpose, but an analytic
7401063-777X/2005/31(8–9)/8/$26.00
strategy is still indispensable to low-temperature thermody-
namics especially of spin-gapped antiferromagnets, where
grand canonical sampling is hardly feasible numerically.
Then we are led to describe massive spin chains in terms of
conventional languages such as the Jordan–Wigner fermions
and the Holstein–Primakoff spin waves.

The Jordan–Wigner transformation is an efficient ap-
proach to low-dimensional quantum magnetism. Spin-1/2 ar-
rays with uniform42 and alternating43–45 antiferromagnetic
exchange interactions between nearest neighbors were thus
investigated and their energy structures, magnetization
curves, and thermodynamic properties were indeed revealed
well. Two-leg antiferromagnetic spin ladders were also dis-
cussed within this scheme46,47 and the interchain-coupling
effect on the lowest-lying excitation was elucidated. More
refined fermionization was further proposed for coupled spin
chains. Ordering spinless fermions along a snake-like path,
Dai and Su48 succeeded in interpreting massive and massless
excitations with varying number of the ladder legs. Their
idea was generalized to investigate zero-temperature magne-
tization curves49 and thermodynamic quantities.50 In such
circumstances, we consider fermionizing an spin-1/2
ferromagnetic-antiferromagnetic bond-alternating chain,
which converges to the spin-1 antiferromagnetic Heisenberg
chain as the ferromagnetic coupling tends to infinity and
therefore reproduces many of observations common to
Haldane-gap antiferromagnets.

Bosonic theory has significantly been developed for one-
dimensional quantum magnets in recent years. While the
Schwinger-boson mean-field theory is unable to distinguish
fractional-spin chains from integral-spin ones, it is still use-
ful in predicting the asymptotic dependence of the Haldane
gap on spin quantum number51 and explaining quantum
phase transitions of Haldane-gap antiferromagnets in a
field.52 The Schwinger-boson representation was further ap-
plied to ferrimagnetic spin chains53,54 and ladders.55 It was a
© 2005 American Institute of Physics
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major breakthrough leading to the subsequent development
of the spin-wave theory in low dimensions56–62 that
Takahashi63 gave a spin-wave description of the one-
dimensional ferromagnetic thermodynamics introducing an
additional constraint on the number of spin waves. This
modified spin-wave scheme was further applied to spin-
gapped antiferromagnets50,64,65 and qualitatively improved
for one-dimensional ferrimagnets.66,67 The antiferromagnetic
modified spin-wave theory is less quantitative than the ferri-
magnetic version,54,68 but it enlighteningly interpreted novel
observations such as the temperature dependence of the
Haldane gap64,65 and the field dependence of the nuclear
spin-lattice relaxation rate.69 Such spin-wave understanding
is well supported by other analytic descriptions.70–72 As for
finite-temperature calculation of spin-gapped antiferromag-
nets, the Schwinger-boson mean-field theory is of no use,
while the modified spin-wave theory maintains its validity to
a certain extent.54 Thus, we apply the modified spin-wave
scheme to the spin-1/2 ferromagnetic-antiferromagnetic
bond-alternating chain with particular emphasis on a com-
parison between fermionic and bosonic descriptions of spin-
gapped antiferromagnets.

Our theoretical attempt is much motivated by existent
bond-alternating chain compounds such as IPACuCl3 �IPA
�isopropylammonium�(CH3)2CHNH3� �Ref. 73� and
(4-BzpipdH)CuCl3 �4-BzpipdH�4-benzylpiperidinium
�C12H18N� �Ref. 74�.

These materials behave as spin-1 Haldane-gap antiferro-
magnets at low temperatures,75–78 while such spin-1 features
are broken up into paramagnetic spin 1/2�s with increasing
temperature.79–81 Besides the thermal crossover from quan-
tum spin 1�s to classical spin 1/2�s, their enriched ground-
state properties82–86 and novel edge states87 are of great in-
terest to both theoreticians and experimentalists.

II. FORMALISM

We consider the ferromagnetic-antiferromagnetic bond-
dimeric spin-1/2 Heisenberg chain, whose Hamiltonian is
given by

H� �
n�1

N

��JAFS2n�1•S2n�JFS2n•S2n�1�

�g�BH�S2n�1
z �S2n

z �� . �1�

The ground-state properties88–91 and low-lying excitations92

of this model were well investigated by numerical tools and
variational schemes. In particular, the string order parameter
originally defined for spin-1 Heisenberg chains93 was gener-
alized to this system88–90 and the breakdown of a hidden
Z2�Z2 symmetry was extensively argued.84,85 As the ferro-
magnetic coupling tends to infinity, the string order remains
finite and the Haldane gap converges to that originating in
decoupled singlet dimers.

On the other hand, the thermodynamic properties have
much less been calculated so far87,94 and there is no guiding
theory for extensive experimental findings. Employing two
different languages, we calculate various thermal quantities
and give rigorous information on their low-temperature be-
havior.
A. Fermionic approach

In accordance with the bond dimerization, we introduce
two kinds of spinless fermions through the Jordan-Wigner
transformation

S2n�1
� �an

† exp� i�� �
m�1

n�1

am
† am� �

m�1

n�1

bm
† bm� � ,

S2n
� �bn

† exp� i�� �
m�1

n

am
† am� �

m�1

n�1

bm
† bm� � ,

S2n�1
z �an

†an�
1

2
, S2n

z �bn
†bn�

1

2
. �2�

Decomposing the fermionic Hamiltonian at the Hartree-Fock
level, we obtain a mean-field Hamiltonian as

HHF�E0��JAF�JF�

� �
n�1

N � � db�
1

2 � an
†an�� da�

1

2 � bn
†bn�

�JAF �
n�1

N � � 1

2
�pAF� an

†bn�H.c.�
�JF �

n�1

N � � 1

2
�pF� bn

†an�1H.c.�
�g�BH �

n�1

N

�an
†an�bn

†bn�, �3�

where da��an
†an	HF , db��bn

†bn	HF , pAF��bn
†an	HF , pF

��an�1
† bn	HF , and

E0��JAF� �pAF�2�dadb�
1

4 ��JF� �pF�2�dadb�
1

4 �
�g�BH�N , �4�

with � . . .	HF denoting the thermal average over the Hartree-
Fock eigenstates. Defining the Fourier transformation as

an�
1

�N
�

k
eik�n�1/4�ak ,

bn�
1

�N
�

k
eik�n�1/4�bk �5�

and then a unitary transformation as

� ak

bk
��� uk vkei
k

vke�i0k �uk
� � �k

�k
� , �6�

where

uk��1

2 � 1�



�
2���k�2� ,

vk��1

2 � 1�



�
2���k�2� ,
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�k���k�ei
k�JAF� 1

2
�pAF� eik/2�JF� 1

2
�pF*� e�ik/2,

��
1

2
�JAF�JF��da�db�1 �,


�
1

2
�JAF�JF��da�db�, �7�

and twice the lattice constant is set equal to unity, we can
diagonalize the Hamiltonian as

HHF�E0��
k

��k
��k

†�k��k
��k

†�k�, �8�

where the dispersion relations are given by

�k
�����
2���k�2�g�BH . �9�

In terms of the fermion distribution functions n̄k
�

��e�k
�/kBT�1��1, the internal energy, the total magnetiza-

tion, and the magnetic susceptibility are expressed as

E�E0��
k

�
���

�k
�n̄k

� , �10�

M��
k

�
���

n̄k
��N , �11�

��
�g�B�2

kBT �
k

�
���

n̄k
��1� n̄k

��, �12�

respectively. Another quantity of wide interest is the nuclear
spin-lattice relaxation rate 1/T1 . Considering the electronic-
nuclear energy-conservation requirement, the Raman process
usually plays a leading role in the relaxation, which is for-
mulated as

1

T1
�

4��g�B��N�2

��me�Em /kBT �
m ,m�

e�Em /kBT��m���
n

�AnS2n�1
z

�BnS2n
z ��m	�2

��Em��Em�h�N�, �13�

where An and Bn are the dipolar coupling constants between
the nuclear and electronic spins, �N��NH is the Larmor
frequency of the nuclei, with �N being the gyromagnetic
ratio, and the summation �m is taken over all the electronic
eigenstates m with energy Em . Assuming the Fourier com-
ponents of the coupling constants to have little momentum
dependence as �n exp(ikn)An�Ak�A and �n exp(ikn)Bn�Bk

�B, we obtain the fermionic expression of the Raman relax-
ation rate as

1

T1
���g�Bh�N�2/�N2

��
k ,k�

�A2�B2�2AB cos�
k��
k��

� �
���

n̄k
��1� n̄k�

�
����k�

�
��k

��h�N�. �14�
B. Bosonic approach

Next we consider a single-component bosonic represen-
tation of each spin variable at the cost of the rotational sym-
metry. We start from the Holstein-Primakoff transformation

S4n�4��
� ��2S�a�:n

† a�:na�:n ,

S4n�4��
z �S�a�:n

† a�:n ,

S4n�2��
� �b�n

† �2S�b�:n
† b�:n,

S4n�2��
z ��S�b�:n

† b�:n , �15�

where ��1,2; that is, we assume the chain to consist of four
sublattices. Under the large-S treatment, the Hamiltonian can
be expanded as

H��2�JF�JAF�S2N�E1�E0�H1�H0�O�S�1�,
�16�

where Ei and Hi give the O(Si) quantum corrections to the
ground-state energy and the dispersion relations, respec-
tively. The naivest diagonalization of the Hamiltonian �16�,
whether up to O(S1) or up to O(S0), results in diverging
sublattice magnetizations even at zero temperature. In order
to suppress the quantum as well as thermal divergence of the
number of bosons, we consider minimizing the free energy
constraining the sublattice magnetizations to be zero:56–58

�
n�1

N

�
��1,2

�a�:n
† a�:n�b�:n

† b�:n��4SN . �17�

Within the conventional spin-wave theory, spins on one sub-
lattice point predominantly up, while those on the other pre-
dominantly down. The condition �17� restores the sublattice
symmetry. In order to enforce the constraint �17�, we first
introduce a Lagrange multiplier and diagonalize

H�H�JAF�S �
n�1

N

�
��1,2

�a�:n
† a�:n�b�:n

† b�:n�. �18�

We define the Fourier transformation as

a�:n�
1

�N
�

k
e�ik�n�5/8��/4�a�:k ,

b�:n�
1

�N
�

k
eik�n�1/8��/4�b�:k , �19�

and then the Bogoliubov transformation as

,

�20�

where four times the lattice constant is set equal to unity. We
determine the coefficients � i:k

� so as to diagonalize H up to
order O(S) and take H0 into account in the calculation
perturbationally.95 Then the Hamiltonian �16� is written as
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FIG. 1. The spinless-fermion �SF�, modified-spin-wave �MSW�, quantum Monte Carlo �QMC�, and numerical-diagonalization �Exact� calculations of the
ground-state energy �the left� and the excitation gap immediately above the ground state �the right� for the bond-alternating dimerized chain, where L�2N is
the number of spins.
E1��2JAF�1�����SN�JAF�
k

�
���

�k
� ,

E0�2JAF�2���������1����2���2��2� ,

H1�JAF�
k

�
��1,2

��k
���k

† ��k��k
��� ,k

† �� ,k�,

H0�JAF�
k

�
��1,2

���k
���:k

† ��:k���k
���:k

† ��:k�

�Hirrel�Hquart , �21�

where ��JF/JAF,

�k
��S��1�����2�1��2�2��k,

��k
�����������1�����]� 1�

��

�k
� 1����

�k
�

�������
����k

�k
� ������

��k�� sin2
k

2

��k�k
� ,

��
1

4N �
k

�
���

� � 1�
��

�k
� 1����

�k
� �1�

�

�1�������k cos2
k

2
�������k��k

� sin2
k

2

�k
2�����2��k�sin2

k

2

,

��
1

4N �
k

�
���

��k�� sin2
k

2

��k�k
� ,

��
1

4N �
k

�
���

� � 1�
��

�k
� 1����

�k
� �1� , �22�

with �k
���k

�/S and �k��(1����)2�sin2(k/2)�1/2. Hirrel

and Hquart in H0 contain off-diagonal one-body terms such as
��:k��:k and residual two-body interactions, respectively,
both of which are neglected in the perturbational treatment.

At finite temperatures we replace ��:k
† ��:k and ��:k

† ��:k

by their canonical averages ���:k
† ��:k	� n̄�:k

� and ���:k
† ��:k	
�n̄�:k
� , respectively, which are expressed as n̄�:k

� � n̄k
�

��eJAF(�k
�

���k
�)/kBT�1��1. Here the Lagrange multiplier �

is determined through

�
k

�
���

� 1�
��

�k
� 1����

�k
� �1�2 n̄k

���2N�1�2S �.

�23�

Then the internal energy and the magnetic susceptibility are
given by96

E�Eg�2�
k

�
���

�̃k
�n̄k

� ,

��
2�g�B�2

3kBT �
k

�
���

n̄k
�� n̄k

��1 �, �24�

where Eg��2(JF�JAF)S2N�E1�E0 .

III. CALCULATIONS

First we calculate the ground-state energy Eg and the
lowest excitation gap Egap and compare them with numerical
findings in Fig. 1. The spinless fermions are much better than
the modified spin waves at describing both quantities. As JF

goes to zero, the fermionic findings are refined and end up
with the exact values Eg /N��3JAF/4 and Egap�JAF . The
modified spin waves considerably underestimate the spin
gap. They can not distinguish massive spin chains from
massless critical ones54 to begin with, but they are still useful
in qualitatively investigating dependences of the Haldane
gap on temperature and spin quantum number.65

Secondly we calculate the thermodynamic properties.
Figure 2 shows the temperature dependences of the zero-field
specific heat and magnetic susceptibility. Due to the signifi-
cant underestimate of the spin gap, the modified spin-wave
description is much less quantitative than the fermionic one
at low temperatures. Furthermore, the modified spin waves
completely fail to reproduce the antiferromagnetic Schottky-
type peak of the specific heat. Because of the Lagrange mul-
tiplier �, which turns out to be a monotonically increasing
function of temperature, the dispersion relations �22� lead to
endlessly increasing energy and thus nonvanishing specific
heat at high temperatures. The spinless fermions succeed in
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FIG. 2. The spinless-fermion �SF�, modified-spin-wave �MSW�, and quantum Monte Carlo �QMC� calculations of the specific heat �the upper three� and the
magnetic susceptibility �the lower three� as functions of temperature for the bond-alternating dimerized chain, where L�2N is the number of spins.
reproducing the overall thermal behavior. The present ap-
proaches have the advantage of giving the low-temperature
behavior analytically. Equation �9� shows that the dispersion
relation of the low-lying excitations reads

�k
����Egap�JAFvk2��g�BH , �25�

provided g�BH�Egap , where

Egap��JAF
2 p̃AF

2 �JF
2 p̃F

2 �2JFJAFp̃Fp̃AF,

2Egapv�JFp̃Fp̃AF , �26�

with p̃F�Re pF�1/2 and p̃AF�Re pAF�1/2. Then the low-
temperature properties are calculated as

C

NkB
�� kBT

�vJAF
e�Egap /kBT� � Egap

kBT � 2

�
Egap

kBT
�

3

4� ,

�JAF

�g�B�2N
�� JAF

�vkBT
e�Egap /kBT. �27�

These features are found in the antiferromagnetic
Heisenberg two-leg ladder as well50,72 and can be regarded as
common to spin-gapped antiferromagnets. The power-law
prefactor to the activation-type temperature dependence,
which can hardly be extracted from numerical findings, is
essential in estimating the spin gap experimentally.
Next we consider the total magnetization as a function of
an applied field and temperature. We compare the fermionic
description of magnetization curves with numerical findings
in Fig. 3. The spinless fermions again work very well. Quan-
tum Monte Carlo sampling becomes less and less feasible
with decreasing temperature, while we have no difficulty in
calculating Eq. �11� even at zero temperature. The ground-
state magnetization turns out to behave as M�(H�Hc)1/2

near the critical field g�BHc�Egap �Ref. 97�. Magnetization
plateaus of multi-leg spin ladders49 and mixed spin chains98

are also well interpreted in terms of the spinless fermions.
On the contrary, in the modified spin-wave theory, the num-
ber of sublattice bosons are kept constant and therefore we
have no quantitative information on the uniform magnetiza-
tion as well as the staggered one. Though the Schwinger-
boson mean-field theory,51,54,99,100 which consists of a rota-
tionally invariant bosonic representation, still works with an
applied field and/or existent anisotropy52,101,102 to a certain
extent but rapidly loses its validity with increasing
temperature.54

Thus we are fully convinced that the spinless fermions
are superior to the modified spin waves in investigating
quantum and thermal properties of spin-gapped antiferro-
magnets. Lastly in this section, we calculate the nuclear spin-
FIG. 3. The spinless-fermion and quantum Monte Carlo calculations of magnetization curves for the bond-alternating dimerized chain, where L�2N is the
number of spins.
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FIG. 4. The spinless-fermion calculations of the nuclear spin-lattice relaxation rate as a function of temperature �the left� and an applied magnetic field �the
right� for the bond-alternating dimerized chain.
lattice relaxation rate 1/T1 in terms of the spinless fermions
in an attempt to stimulate further experimental interest in this
system. If we again employ the approximate dispersion �25�
at moderate fields and temperatures, kBT�Egap�g�BH , Eq.
�14� can be further calculated analytically as

1

T1
�

�g�B��N�2

2��vJAF
�A�B �2e�Egap /kBT

�cosh
g�BH

kBT
K0� ��N

2kBT � , �28�

where K0 is the modified Bessel function of the second kind
and behaves as K0(x)�ln 2���ln x for 0�x�1 with � be-
ing Euler’s constant. Considering the significant difference
between the electronic and nuclear energy scales (��N

�10�5 J), there usually holds the condition ��N�kBT . At
low temperatures, 1/T1 also exhibits an increase of the acti-
vation type but with logarithmic correction, which is much
weaker than the power correction in the case of the suscep-
tibility. Such a pure spin-gap-activated temperature depen-
dence of 1/T1 , which is shown in Fig. 4, should indeed be
observed experimentally, unless magnetic impurities mask
the intrinsic properties. Equation �28� further reveals a
unique field dependence of 1/T1 : With increasing field, 1/T1

first decreases logarithmically and then increases exponen-
tially, which is visualized in Fig. 4. The initial logarithmic
behavior comes from the Van Hove singularity peculiar to
one-dimensional energy spectra and may arise more gener-
ally from a nonlinear dispersion relation at the band bottom.
Therefore, besides spin-gapped antiferromagnets, one-
dimensional ferromagnets and ferrimagnets may exhibit a
similar field dependence.69,72,103,104 Relaxation-time mea-
surements on spin-gapped chain antiferromagnets such as
IPACuCl3 and (4-BzpipdH)CuCl3 are strongly encouraged.

IV. BOND-ALTERNATING FERRIMAGNETIC CHAIN

Before closing our comparative study, we briefly men-
tion a bond-alternating but ferrimagnetic chain calculated
within the same schemes. We take another interest in
the ferromagnetic-ferromagnetic-antiferromagnetic-antiferro-
magnetic bond-tetrameric spin-1/2 Heisenberg chain, whose
Hamiltonian is given by
H� �
n�1

N

�JAF�S4n�3•S4n�2�S4n�2•S4n�1�

�JF�S4n�1•S4n�S4n•S4n�1�� . �29�

Cu(3�Clpy)2(N3)2�3-Clpy�3-chloropyridine�C5ClH4N�
�Ref. 105� is well described by this Hamiltonian106 and be-
haves as if it is a ferrimagnet of alternating spins 3/2 and
1/2.68 In the conventional spin-wave scheme, the spin devia-
tions in each sublattice, �a�:n

† a�:n	 and �b�:n
† b�:n	 , diverge in

the antiferromagnetic ground state but stay finite in the fer-
rimagnetic one. Without quantum divergence of the sublat-
tice magnetization, it is not necessary to diagonalize the ef-
fective Hamiltonian �29�. In an attempt to keep the
dispersion relations free from temperature, we may simply
diagonalise the original Hamiltonian �18� and then introduce
a Lagrange multiplier so as to minimize the free energy.54

For ferrimagnets such an idea is much superior to the origi-
nal antiferromagnetic modified spin-wave scheme.56–58

Figure 5 shows the thus-modified spin-wave calculations
as well as the Hartree–Fock calculations in terms of the spin-
less fermions in comparison with numerical findings. The
ferrimagnetic modified spin waves work very well, contrast-
ing with the antiferromagnetic ones. They reproduce the
Schottky-type peak of the specific heat and the ferrimagnetic
minimum of the susceptibility-temperature product at inter-
mediate temperatures. Although the modified spin-wave de-
scription of the antiferromagnetic increase of �T is some-
what moderate, it converges into the paramagnetic value
S(S�1)/3 at high temperatures. The description is more and
more refined with decreasing temperature and is expected to
be accurate at sufficiently low temperatures.67 The T1/2 initial
behavior of C and the T�2-diverging behavior of � are both
correctly reproduced.66 Besides static properties, T1

measurements107 on a ferrimagnetic chain compound
NiCu(C7H6N2O6)(H2O3)•2H2O was elaborately interpreted
in terms of the modified spin waves.108

On the other hand, the spinless fermions misread the
low-temperature properties of ferrimagnetic chains. A fatally
weak point of their description is the onset of a Néel-ordered
state. With increasing JF , the transition temperature Tc goes
up and the applicability of the Hartree-Fock fermions is re-
duced. Indeed the fermionic description is not so bad away
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FIG. 5. The spinless-fermion, modified-spin-wave, and quantum Monte Carlo calculations of the specific heat �the left� and the magnetic susceptibility �the
right� as functions of temperature for the bond-alternating tetramerized chain, where L�4N is the number of spins. The Hartree-Fock fermions encounter a
paramagnetic-to-Néel-ordered phase transition with decreasing temperature and the transition temperature is indicated by arrows.
upward from Tc , but it is much less complementary to nu-
merical tools in ferrimagnetic systems.

V. SUMMARY

We have comparatively discussed fermionic and bosonic
descriptions of the bond-dimeric Heisenberg chain as an ex-
ample of spin-gapped antiferromagnets. The fermionic lan-
guage is based on the Jordan–Wigner spinless fermions
within the Hartree–Fock approximation, while the bosonic
formulation consists of constraining the Holstein–Primakoff
bosons to restore the sublattice symmetry. The spinless fer-
mions well describe both ground-state and finite-temperature
properties. The zero-field specific heat and magnetic suscep-
tibility behave as

C��kBT ��3/2e�Egap /kBT

and

���kBT ��1/2e�Egap /kBT,

respectively, at sufficiently low temperatures, while the re-
laxation rate behaves as

1/T1�e�Egap /kBT cosh�g�BH/kBT ��0.80908

�ln���N /kBT ��

at moderately low temperatures and fields. On the other
hand, the modified spin waves give much poorer findings. In
particular, they significantly underestimate the spin gap and
fail to reproduce the Schottky-type peak of the specific heat.
The same schemes have further been applied to the bond-
tetrameric ferrimagnetic chain, where the modified spin
waves work very well and are superior to the spinless fermi-
ons both qualitatively and quantitatively. The fermionic lan-
guage is useful in describing disordered ground states and
their excitations, whereas the bosonic one in depicting or-
dered ground states and their fluctuations.

The modified spin-wave theory is fully applicable to
higher-spin systems. The Jordan–Wigner transformation can
also be generalized to higher-spin systems,109 where spin-1
chains, for instance, are mapped onto an extended t – J model
of strongly correlated electrons. However, the double-graded
Hubbard operators such as c̃n ,↑�(1�cn ,↓

† cn ,↓)cn ,↑ demand
that we should treat the fermion and boson degrees of free-
dom in the same footing.99,110–112 The present naive fermi-
onic representation is highly successful for spin-1/2 gapped
antiferromagnets, including various bond-alternating and/or
coupled chains. It is complementary to numerical tools espe-
cially at low temperatures and allows us to readily infer both
static and dynamic properties of spin-gapped antiferromag-
nets.
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dens. Matter 10, 11033 �1998�.
68T. Nakanishi and S. Yamamoto, Phys. Rev. B 65, 214418 �2002�.
69S. Yamamoto and H. Hori, J. Phys. Soc. Jpn. 73, 822 �2004�.
70Th. Jolicoeur and O. Golinelli, Phys. Rev. B 50, 9265 �1994�.
71J. Sagi and I. Affleck, Phys. Rev. B 53, 9188 �1996�.
72M. Troyer, H. Tsunetsugu, and D. Wörtz, Phys. Rev. B 50, 13515 �1994�.
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Ternary CePt3Si crystallizes in the tetragonal P4mm structure which lacks a center of inversion.
Antiferromagnetic order sets in at TN�2.2 K followed by superconductivity �SC� below Tc

�0.75 K. Large values of Hc2� ��8.5 T/K and Hc2(0)�5 T were derived, referring to Cooper
pairs formed out of heavy quasiparticles. The mass enhancement originates from Kondo
interactions with a characteristic temperature TK�8 K. CePt3Si follows the general features of
correlated electron systems and can be arranged within the Kadowaki–Woods plot next
to the unconventional SC UPt3 . NMR and �SR results show that both magnetic order and SC
coexist on a microscopic scale without having spatial segregation of both phenomena.
The absence of an inversion symmetry gives rise to a lifting of the degeneracy of electronic
bands by spin-orbit coupling. As a consequence, the SC order parameter may have uncommon
features as indicated from a very unique NMR relaxation rate 1/T1 and a linear temperature
dependence of the penetration depth �. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2008135�
I. INTRODUCTION

Electron correlations in solids are a ‘‘magic door’’ to the
discovery of unexpected features and phases of metals, inter-
metallics and oxides at low temperatures. Of particular im-
portance are phase transitions at T�0. Critical fluctuations
associated with such a phase transition can lead to strong
renormalization of normal metallic properties and novel ex-
otic phases may emerge from these strongly fluctuating en-
vironments. One of the most exciting features in this context
is the occurrence of superconductivity �SC�.

The appearance of SC in such a scenario can deviate
from the common BCS type in many essential aspects.
Strong correlation effects responsible for the heavy electron
behavior from narrow f -electron bands, may hamper the pos-
sibility of conventional Cooper pairing, i.e., pairing in the
most symmetric (s-wave� form as it is favored by electron-
phonon interaction. In turn, magnetic fluctuation may pro-
vide the necessary attractive interaction in a different angular
momentum channel. This means that Cooper pairs may have
either spin-singlet or spin-triplet configuration and the orbital
angular momentum may lead to a highly anisotropic gap
with zero nodes. Almost all previously studied SC exhibiting
strong electron correlations in the normal state region are
characterized by a center of inversion in its crystal structure.
This allows us to distinguish spin-singlet and spin-triplet
components of the SC order parameter and consider them
separately. Superconductivity in materials having no inver-
sion symmetry is rare. This lack of a inversion center invali-
7481063-777X/2005/31(8–9)/9/$26.00
dates some aspects of the scheme of symmetry classification
and leads to a mixture of singlet and triplet pairing in gen-
eral.

A recently discovered example in this respect is CePt3Si
with the tetragonal space group P4mm �No. 99�,1 the first
heavy fermion SC without a center of inversion. The absence
of inversion symmetry induces peculiar band splittings, as
we will discuss below, which are detrimental to certain kinds
of Cooper pairing channels. In particular, spin triplet pairing
becomes unlikely under these circumstances.2

The aim of the present paper is to provide a review of
results of current research dedicated to the various physical
properties of CePt3Si in both the normal and superconduct-
ing states and to locate the system in the standard generic
phase diagram of heavy fermion compounds.

This paper is organized as follows. After a discussion of
normal state properties of CePt3Si, the SC features of
CePt3Si are examined before theoretical considerations con-
cerning the SC order parameter are made.

II. RESULTS AND DISCUSSION

A. Normal state properties

Physical properties of ternary CePt3Si are dominated by
the onset of long range, presumably antiferromagnetic order
below TN�2.2 K, followed by SC below Tc�0.75 K. This
intriguing coincidence of two ordering phenomena in
CePt3Si have to be considered in the context of crystal elec-
tric field �CEF� splitting and Kondo interaction which sub-
© 2005 American Institute of Physics
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stantially modify Hund’s j�5/2 ground state of the Ce ion.
The response of the system associated with the mutual inter-
play of these mechanisms will be highlighted below.

Substantial information concerning the magnetic and the
paramagnetic properties of CePt3Si can be deduced from the
temperature-dependent magnetic contribution to the specific
heat Cmag(T). The latter may be defined by the difference
�Cp between CePt3Si and isostructural nonmagnetic refer-
ence LaPt3Si, with �Cp	Cmag . Plotted in Fig. 1 is �Cp /T
versus T of CePt3Si together with the raw data of LaPt3Si.
The low temperature behavior of the latter can be accounted
for in terms of the Debye model with 
D�255 K together
with a Sommerfeld value ��9 mJ/mol•K2. �Cp(T) of
CePt3Si defines three regimes: the SC state of CePt3Si below
Tc�0.75 K; the magnetically ordered range below TN

�2.2 K, and the paramagnetic region above TN . This region
is characterized by a Schottky-like anomaly with a weak lo-
cal maximum around 40 to 50 K. Such numbers imply a CEF
level approximately 100 K above the ground state doublet.
However, since Cp(T) of LaPt3Si slightly exceeds the spe-
cific heat data of CePt3Si, �Cp(T)	Cmag(T) becomes nega-
tive, and hence a reliable evaluation of CEF level scheme is
not possible, at least, considering this quantity only. The in-
tegrated entropy Smag �right axis, Fig. 1� reaches R ln 2
around 25 K, and the entropy of 8.7 J/mol•K2 integrated up
to 100 K is slightly less than R ln 4�11.5 J/mol•K2. These
results confirm again that the ground state of Ce3� ions is a
doublet with the first excited level above about 100 K. The
twofold degeneracy of the ground state doublet, however, is
lifted by magnetic order as well as by Kondo type interaction
spreading entropy to higher temperatures.

The second interesting aspect in the paramagnetic tem-
perature range of CePt3Si is an almost logarithmic tail of
�Cp /T above TN , extrapolating to about 12 to 13 K. The
logarithmic temperature dependence observed just above the
magnetic transition may be considered as hint of non-Fermi
liquid �nFl� behavior. Therefore, it is a unique observation at
ambient pressure that non-Fermi liquid behavior, magnetic
ordering and eventually a SC transition consecutively arises

FIG. 1. Temperature-dependent magnetic contribution to the specific heat,
�Cp of CePt3Si plotted as �Cp /T on a logarithmic temperature scale �filled
circles�. The phonon contribution to define �Cp is taken from Cp(T) of
LaPt3Si �filled diamonds�. The long-dashed line represents the magnetic
entropy �right axis�. The short-dashed line is a guide to the eye and roughly
indicates the non-Fermi liquid behavior. The solid line is a fit according to
Eq. �1� and the dotted-and-dashed line is a fit according to �Cp	T3.
on the same sample upon lowering the temperature. To cor-
roborate the nFl property deduced for CePt3Si from the spe-
cific heat data and to exclude short range order effects and
inhomogeneities above the magnetic phase transition, Cp(T)
was studied for diluted Ce0.2La0.8Pt3Si as well. Results are
shown in Fig. 1 as �Cp versus ln T �squares�. This diluted
sample—without magnetic ordering—exhibits a similar
logarithmic contribution to the specific heat, like the parent
CePt3Si, and thus establishes this feature as an intrinsic
property.

In order to analyze in more detail the magnetically or-
dered region of CePt3Si, a model by Continentino3 is applied
for the specific heat well below Tmag :

Cmag�T ��g�SW
7/2 T1/2 exp���SW /T ��1�

39

20 � T

�SW
�

�
51

32 � T

�SW
� 2� . �1�

This expression is based on antiferromagnetic magnons
with a dispersion relation ����SW

2 �D2k2, where �SW is
the spin-wave gap and D is the spin-wave velocity; g

1/D3
1/�3, and � is an effective magnetic coupling be-
tween the Ce ions. A least squares fit of Eq. �1� to the data
below TN �solid line, Fig. 1� reveals �SW�2.7 K, a reason-
able gap value with respect to the ordering temperature. A
recent neutron diffraction study carried out on CePt3Si con-
firmed antiferromagnetic ordering below TN�2.2 K with a
wave vector k�(0,0,1/2), i.e., doubling of the magnetic unit
cell along the c direction.4 A second model calculation with
simple antiferromagnetic spin waves, yielding Cmag
T3,
again gives reasonable agreement with the heat capacity
data. Using both models, one can estimate a Sommerfeld
coefficient of 0.42 and 0.39 J/mol•K2 for the former and
latter model, respectively. Such figures are in excellent
agreement with an extrapolation of high field specific heat
data where SC is already suppressed by the applied magnetic
field. These strongly enhanced Sommerfeld values character-
ize CePt3Si as a typical heavy fermion compound.

Considering Kondo type interactions to be responsible
for the significant renormalization of electrons, the tempera-
ture dependent magnetic entropy Smag(T) allows one to esti-
mate the Kondo temperature TK . Applying results derived
from the renormalization group technique5 for effective spin-
1/2 systems to Smag(T) derived for CePt3Si yields TK

�7.2 K. A second possible estimate for TK follows from the
competition of the RKKY interaction and the Kondo effect,
which leads to a significant reduction of the specific heat
jump at T�TN . Following the procedure developed in Ref.
6 gives TK�9 K, in reasonable agreement with the previous
estimate.

The temperature-dependent electrical resistivity �(T) of
CePt3Si is plotted in Fig. 2a together with �(T) of isostruc-
tural LaPt3Si. �(T) of CePt3Si drops to zero from a residual
value of 5.8 ��•cm with Tc

mid�0.75 K, thus indicating su-
perconductivity. At high temperatures, �(T) is characterized
by a negative logarithmic contribution, followed by pro-
nounced curvatures around 75 K and 15 K, which may re-
flect crystal electric field effects in the presence of Kondo
type interactions. Further evaluation of �(T) requires knowl-
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edge of the phonon contribution �ph which, in a first approxi-
mation, may be derived from homologous and isotypic
LaPt3Si. LaPt3Si is metallic in the temperature range mea-
sured and �(T)La��0

La��ph
La(T) (�0 is the residual resistiv-

ity� can simply be accounted for in terms of the Bloch Grün-
eisen model with the Debye temperature 
D�160 K �solid
line, Fig. 2a� and �0�10.7 ��•cm. According to Matthies-
sen’s rule, �(T) of CePt3Si can be expressed as �(T)Ce

��0
Ce��ph

Ce(T)��mag(T). The temperature-dependent mag-
netic contribution to the resistivity, �mag(T), then follows
simply from the difference of �(T)Ce and �(T)La, assuming
�ph

Ce��ph
La . Furthermore, �0

La is subtracted. �mag(T) exhibits a
distinct logarithmic contribution for T�100 K; the maxi-
mum around 80 K may indicate the overall crystal field split-
ting of the j�5/2 Ce 4 f 1 state �dashed line, Fig. 2a, right
axis�.

Figure 2b exhibits low-temperature features of the elec-
trical resistivity of CePt3Si. Besides the onset of supercon-
ductivity, there is a distinct change of the slope in �(T)
around 2 K, which becomes more evident from a d�/dT plot
�right axis, Fig. 2b�. In the context of the specific heat study,
this anomaly is interpreted as a signature of the onset of
long-range magnetic order. A least-squares fit according to
���0�AT2 reveals the residual resistivity �0�5.2 ��
•cm and a material-dependent constant A�2.35 ��
•cm/K2.

To account for the magnetically ordered region of
CePt3Si in more detail, the above indicated model of Conti-
nentino can be adopted for the temperature dependent elec-
trical resistivity, where conduction electrons are scattered on
antiferromagnetic magnons3

���0�A�SW
3/2 T1/2 exp���SW /T ��1�

2

3 � T

�SW
�

�
2

15 � T

�SW
� 2� . �2�

Again, �SW is the spin-wave gap. A least squares fit of Eq.
�2� to the experimental data above Tc and below the ordering
temperature yields an equally good agreement �dot-and-dash
line, Fig. 2b� as the earlier model �solid line, Fig. 2b�. The

FIG. 2. Temperature-dependent electrical resistivity � of CePt3Si and
LaPt3Si plotted on a logarithmic temperature scale. The magnetic contribu-
tion �mag(T) �dashed line� refers to the right axis �a�. Low-temperature
details of �(T) of CePt3Si. The solid and the dotted-and-dashed lines are
least squares fits �see text� and the dashed-line shows d�(T)/dT �b�.
spin gap obtained from this fit, �SW�2.77 K, agrees excel-
lently with that value obtained from specific-heat analysis.

The coefficient A derived is much larger than usually
observed for simple metals like K or Cu, and thus evidences
again that the low temperature state of CePt3Si is dominated
by heavy quasiparticles. In fact, considering the electron-
electron interaction in terms of the Barber model indicates
A
(N(EF))2, where N(EF) is the electronic density of
states at the Fermi energy. Since also the Sommerfeld value
depends on the same quantity, it is natural to arrange certain
systems according their A and � values. Such a classification
was made for the first time by Kadowaki and Woods,7 and
many highly correlated electron systems have been shown to
satisfy this scheme.8 A closer inspection yields for the ratio
A/�2�1�10�5 ��•mol2•K2

•mJ�2. Arranging CePt3Si in
such a Kadowaki-Woods plot, see Fig. 3, obviously shows
that the present compound is found at the very same site as
the unconventional superconductor UPt3 .

Temperature-dependent magnetic susceptibility provides
information concerning the effective magnetic moments �eff

involved in a particular system, the interaction strength be-
tween these moments via the paramagnetic Curie tempera-
ture 
p , and about phase transitions present in a certain

FIG. 3. A plot of the T2 coefficient of the electrical resistivity A versus the
T-linear specific heat coefficient �. Solid and dashed lines represent
A/�2�1�10�5 ��•cm•mol2 K2 mJ�2 and A/�2�0.4�10�6 ��•cm
•mol2 K2 mJ�2 �figure taken from Ref. 8�.
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sample. Results taken from a SQUID measurement per-
formed at �0H�1 T are shown in Fig. 4 together with an ac
susceptibility measurement in the inset of this figure. At el-
evated temperatures, �(T) of CePt3Si exhibits a Curie-Weiss
behavior—and the anomaly around 2.2 K �inset, Fig. 4� in-
dicates a magnetic phase transition. To account qualitatively
for the region above about 50 K, a least-squares fit according
to the modified Curie-Weiss law, i.e.,

���0�
C

T�
p
�3�

was applied. �0 represents a temperature independent Pauli-
like susceptibility and C is the Curie constant.

Results of this procedure are shown by the solid line in
Fig. 4. The effective magnetic moment deduced from the
Curie constant C matches the theoretical value associated
with the 3� state of cerium, thereby implying a rather stable
magnetic moment. The paramagnetic Curie temperature 
p

��46 K is large and negative, being indicative of strong
antiferromagnetic interactions. In the Kondo picture, already
adopted to explain the large Sommerfeld value �, the value
of 
p suggests a Kondo temperature of the order of 10 K
(TK��
p�/4).

Very large values of 
p (H��100� and H��001�) were
also deduced from a previous investigation4 of single crys-
talline CePt3Si, confirming the substantial antiferromagnetic
interaction strength.

For better understanding of the magnetic ground state
and expected localized character of Ce 4 f electrons, neutron
inelastic scattering experiments were performed. In order to
accurately and reliably determine magnetic scattering from
the magnetic moments of Ce, both CePt3Si and LaPt3Si were
investigated in powder form under identical conditions. For a
proper phonon subtraction, two well-established methods
were used,10 yielding almost identical results.

The intensity shown in Fig. 5 for a sample temperature
T�6.4 K is expected to be solely of magnetic origin as the
phonon contribution has been subtracted from the data. In

FIG. 4. Temperature-dependent susceptibility of CePt3Si plotted as 1/� ver-
sus T . The solid line is a least-squares fit according to the modified Curie-
Weiss law. The inset shows the low temperature behavior deduced from an
ac susceptibility study �Ref. 9�.
order to account for the excitations observed, the standard
CEF Hamiltonian for Ce3� with C4v point symmetry is con-
sidered:

HCEF�B2
0O2

0�B4
0O4

0�B4
4O4

4. �4�

Bl
m and Ol

m are the CEF parameters and the Steven operators,
respectively. Due to CEF effects, the 6-fold degenerate
ground state of the Ce3� ions is split in tetragonal symmetry
into 3 doublets. Applying Eq. �4� to the data shown in Fig. 5
reveals CEF parameters B2

0��0.4972 meV, B4
0

�0.0418 meV, and B4
4�0.2314 meV. These parameters are

consistent with levels at �1�13 and �2�20 meV and per-
mit a reasonably good description of the magnetic scattering
�solid line, Fig. 5�. Keeping the CEF parameters unchanged,
the data obtained at 94 K are equally well explained. More-
over, the two CEF excitations centred at 13 and 20 meV are
also consistent with the heat capacity data as discussed
above. We furthermore studied low energy excitations using
lower incident energy to find a weak feature around 1.4 meV.
The dispersion of that intensity at T�5 K, particularly
around Q�0.8 Å�1 is a signature for the development of
short-ranged magnetic correlations and can be considered as
origin of the anomalous behavior of the specific heat above
magnetic ordering. At higher temperatures (T�30 K) scat-
tering becomes Q-independent. This feature is completely
absent in non-magnetic LaPt3Si. Unlike our study performed
at the instrument HET of ISIS �UK�, the inelastic neutron
scattering experiment reported in Ref. 4 indicated two CEF
peaks at 1.0 and 24 meV. Based on the latter, a set of CEF
parameters was deduced, sufficient to account for isothermal
magnetization and the temperature dependent magnetic sus-
ceptibility. However, this latter CEF level scheme does not
properly describe the temperature dependent magnetic con-
tribution to the specific heat and magnetic entropy. Such a
discrepancy is rather serious, since, different to magnetiza-
tion and susceptibility, not any theoretical model is necessary
for the calculation, except basic thermodynamics. In order to
get more reliable data for the analysis, particularly at low

FIG. 5. Magnetic scattering obtained at 6.4 K with the incident energy of 35
meV. The dashed line is for the elastic component with FWHM�2.4 meV
while the short-dashed line represents the quasi-elastic component with
FWHM�0.8 meV. The dotted-and-dashed line is for the sum of two
Lorentzian components centered at 13 and 20 meV with FWHM
�10.0 meV �Ref. 17�.
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energy excitations, neutron inelastic measurements with high
resolution and low incident energy neutrons are in progress.

B. Superconducting properties of CePt3Si

Signs of bulk SC of CePt3Si below Tc�0.75 K are nu-
merous: zero resistivity, diamagnetic signal in the suscepti-
bility, a jump in the specific heat and NMR relaxation rate at
Tc .

Substantial information concerning the superconducting
state is provided by heat capacity data taken at low tempera-
tures for CePt3Si. Results are shown in Fig. 6 as Cp /T ver-
sus T . The phonon contribution is negligible in the tempera-
ture range shown. Besides the already mentioned magnetic
phase transition at TN�2.2 K and the logarithmic contribu-
tion above that temperature, the superconducting transition at
Tc�0.75 K is the most prominent feature.

The Sommerfeld coefficient �n�0.39 J/mol•K2 of
CePt3Si at zero field, obtained from an extrapolation of the
antiferromagnetically ordered region, evidences the large ef-
fective masses of the charge carriers involved. The extrapo-
lation shown in Fig. 6 �dashed line� satisfies the basic re-
quirement of superconductivity, the entropy balance between
the SC and normal state regions. Another careful extrapola-
tion of the heat capacity of data within the superconducting
temperature range towards zero yields about �n*
�210 mJ/mol•K2. This nonvanishing contribution within
the SC state may hint at two mechanisms: not all electrons
are involved in the SC condensate, rather, roughly half of
them (�s��n*) are forming normal state long range mag-
netic order, which then co-exists with superconductivity on a
microscopic scale; a somewhat gapless superconducting
state. This would cause finite values of the Sommerfeld con-
stant and power laws of the thermodynamic and transport
properties instead of an exponential behavior as in typical
BCS systems. The coexistence of both states is evidenced
from �SR spectroscopy and a superconducting state with
nodes in the gap �gapless at certain sites� is supported by
magnetic penetration depth �(T) measurements �see below�.

The jump of the specific heat anomaly associated with
superconductivity, �Cp /T�Tc

�0.1 J/mol•K2, leads to
�Cp /(�nTc)�0.25, which is significantly smaller than the
figure expected from the BCS theory (�Cp /(�Tc)�1.43).

FIG. 6. Temperature-dependent specific heat Cp /T of CePt3Si; the dashed
line is a T3 extrapolation of Cp(T) at 0 T.
Even using the electronic specific heat coefficient in the SC
state, �s�0.18(1) J/mol•K2, we obtained �Cp /(�sTc)
�0.55 that is still below the BCS value.

Again, two scenarios may explain the substantial reduc-
tion of �Cp /(�Tc) with respect to the BCS value; strongly
anisotropic gaps yield a reduced magnitude of �Cp /(�Tc)
�Ref. 11�, and not all electrons condense into Cooper pairs,
and the rest stay essentially normal. This may imply that the
electrons responsible for normal state features, such as anti-
ferromagnetic order, coexist with those forming the Cooper
pairs. In fact, the finite value of �s�0.18 J/mol•K2 provides
evidence that even at T�0 K a significant portion of the
Fermi surface is still not involved in the SC condensate.

Very recently, a specific-heat study was performed on a
well heat-treated polycrystalline CePt3Si sample, revealing
two consecutive phase transitions at Tc1�0.8 and Tc2

�0.55 K. The extreme different field response for both tran-
sitions, however, are possibly indicative of two different su-
perconducting states.12

The upper critical field Hc2(0) and the slope dHc2 /dT
�Hc2� are indispensable quantities for the determination of
microscopic parameters describing the superconducting
state. The temperature- and field-dependent specific heat
Cp(T ,H) of CePt3Si is shown for the low-temperature range
in Fig. 7a.

The application of magnetic fields reduces Tc , resulting
in a rather large change of dHc2 /dT��8.5 T/K, in good
agreement with the conclusion drawn from electrical resis-
tivity �see Fig. 7b�. An extrapolation of Tc(H) towards zero
yields Hc2(0)�5 T, well above the paramagnetic limiting
field Hp�1.1 T.1 Furthermore, an estimation of the Som-
merfeld coefficient from the high field data gives
0.36 J/mol•K2, in fair agreement with the value obtained
from an extrapolation of the normal state in the zero field
data �see Fig. 6�. The upturn of Cp /T at the lowest tempera-
tures, that gets stronger with increasing magnetic field, de-
rives from the nuclear contribution of 195Pt.

In order to derive a set of parameters characterizing the
superconducting state of CePt3Si the BCS theory is
adopted.13,14 Although substantial deviations from a spherical
Fermi surface are expected for tetragonal CePt3Si, reason-

FIG. 7. Temperature-dependent specific heat Cp /T of CePt3Si for various
values of applied fields; the dashed line is a T3 extrapolation of Cp(T) at 0
T �a�. Temperature dependence of the upper critical field Hc2 . The solid
straight line yields Hc2� ��8.5 T/K; the dashed line is a guide to the eye
�Ref. 1�. PL indicates the Pauli-Clogston limiting field �b�.
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able physical parameters can be expected �compare, e.g.,
Refs. 14 and 15�.

The starting parameters are �s�0.18(2) J/mol•K2 �as a
lower limit�, Hc2� ��8.5 T/K and �0�5.2 ��•cm.

The effective Fermi surface Ss is then computed �Eq. �2�
in Ref. 14� as Ss

cl�3.7�1020 m�2 within the clean limit and
Ss

dl�3.5�1020 m�2 for the dirty limit. Considering the dirty
limit only, one gets Hc2� ��0.77 T/K, a value rather low
with respect to the experimentally derived slope Hc2� �
�8.5 T/K. This indicates that CePt3Si is not a typical dirty-
limit superconductor. Thus, the further calculations are based
on clean-limit results. Combining the Fermi surface with �s

gives the Fermi velocity vF�5300 m/s and in the context of
the residual resistivity, �0�5.2 ��•cm, a mean free path
l tr�8�108 m can be estimated. The coherence length �0 for
T→0 was obtained from two independent relations. One fol-
lows from the BCS equation, �0�0.18hvF /(kBTc)�9.7
�10�9 m. A second expression stems from the well known
formula �0Hc2��0 /(2��0

2), yielding �0�8.1�10�9 m, in
reasonable agreement with the former.

The evaluation of the Ginzburg-Landau parameter �GL

��/� requires knowledge of the thermodynamic critical
field �0Hc(0)�26(2) mT, which can be calculated from
the free energy difference between the superconducting and
the normal state:

�F�T ��Fn�Fs��0Hc
2�T �/2

��
Tc

T �
Tc

T� �Cs�Cn�

T�
dT�dT�.

Cs is obtained from the zero-field specific heat, and Cn is
taken from the T3 extrapolation, as indicated by the dashed
line in Fig. 6. With Hc2(0)�5 T one derives a value for
�GL�Hc2(0)/�2Hc)�140, which, in turn, determines the
London penetration depth �L(T→0)�1.1�10�6 m. Since
the evaluation of the various parameters is based on s-wave
models, care has to be taken when using their absolute val-
ues; nevertheless the right order of magnitude can be antici-
pated.

Evaluating Eq. �A.13� of Ref. 14 with �max�100 ��
•cm yields ShT�3.1�1021 m�2, the Fermi surface at el-
evated temperatures. The discrepancy between Ss and ShT

suggests that only a part of the Fermi surface is involved in
forming Cooper pairs while the remaining one engages in
normal state magnetic correlations. This finding seems to be
convincingly supported from the lessened value of
�Cp /(�Tc). In terms of the coexistence of both supercon-
ductivity (Tc�0.75 K) and long-range magnetic order (TN

�2.2 K), the downsized specific heat jump at Tc may ex-
plain, at least partly, that the Fermi surface is likely to be
subdivided into a superconducting part �related to �s) and a
normal-state region. Microscopic evidence for the latter con-
clusion can be found from zero-field �SR spectroscopy data
obtained in the magnetic phase below and above Tc in the
magnetic phase �Fig. 8�. At temperatures much above TN ,
the �SR signal is a characteristic of a paramagnetic state
with a depolarization solely arising from nuclear moments.

Below TN the �SR signal indicates that the full sample
volume orders magnetically. High statistic runs performed16
above and below Tc did not show any change of the mag-
netic signal, supporting the view of a microscopic coexist-
ence between magnetism and SC.

This points to a novel state for SC Ce-based heavy-
fermion systems at ambient pressure, for which, to date,
magnetism was found to be either absent18 or strongly com-
peting against SC.19 The observed coexistence is reminiscent
of the situation observed in UPd2Al3,

20 where a model of two
independent electron subsets, localized or itinerant, was pro-
posed in view of similar microscopic data.21

Additional microscopic information about the SC state
can be obtained from the temperature-dependent 195Pt
nuclear spin-relaxation rate 1/T1 .22 Results in the form of a
plot of (1/T1T)/(1/T1T)Tc

versus T/Tc are shown in Fig. 9
for 8.9 and 18.1 MHz. The relaxation behavior 1/T1T of
CePt3Si is reminiscent of a kind of Hebel–Slichter
anomaly,23 indicating coherence effects as in conventional
BCS SC. The peak height, however, is significantly smaller
than that observed for conventional BCS SC and, addition-
ally, shows no field dependence at the 8.9 MHz (H	1 T)

FIG. 8. Zero field depolarization rate of CePt3Si at various temperatures
�Ref. 17�.

FIG. 9. A plot of (1/T1T)/(1/T1T)Tc
versus T/Tc at 8.9 MHz (H	1 T� and

18.1 MHz (H	2 T). The dashed line is for the Balian-Werthamer model
�BW isotropic triplet SC state� with a value of 2�/kBTc�4. The dotted line
assumes a point-node model with 2�/kBTc�3.6, and the dotted-and-dashed
line represents a fit by a line-node gap model with 2�/kBTc�5.1 �Ref. 17�.
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and 18.1 MHz (H	2 T) run. Notably, CePt3Si is the first HF
SC that exhibits a peak in 1/T1T just below Tc .

1/T1T at H	2 T seems to saturate at low temperature,
which can be assigned to the presence of vortex cores where
the normal-state region is introduced. 1/T1T at 8.9 MHz
(H	1 T), however, continues to decrease down to T
�0.2 K, the lowest temperature yet measured. Neither an
exponential law nor the usual T3 law, reported for most of
the unconventional HF SC �see, e.g., Ref. 24 and references
cited therein�, is observed for the data down to T�0.2 K
(�0.3Tc). However, further studies at temperatures below
0.2Tc are required to make any definite conclusion on the
specific behavior of 1/T1 .

The nuclear spin-lattice relaxation rate 1/T1 in the super-
conducting state can be expressed as

1

T1
�

2�A2

� �
0

�

�Ns
2�E ��M s

2�E �� f �E ��1� f �E ��dE ,

�5�

Ns is the density of states and describes the distinct features
of an isotropic, polar or axial SC state; M s is the anomalous
density of states arising from coherence effects which can be
calculated from

M s�E ��
N�0 �

4� �
0

2��
0

� ��
 ,��

�E2��2�
 ,��
sin 
d
d� , �6�

with ��0,�� the direction-dependent energy gap. M s is ex-
pected to exist only in s-wave superconductors.

To account for the relaxation behavior below Tc in non-
centrosymmetric CePt3Si, three unconventional models were
adopted for a description of the temperature dependence of
1/T1 at H	1 T. The dashed line in Fig. 9 represents a fit
according to the Balian–Werthamer model �BW isotropic
spin-triplet SC state� with 2�/kBTc�3.9.25 Note that the
peak of the BW model in 1/T1T originates from the presence
of an isotropic energy gap. The dotted-and-dashed line is a fit
using a line-node model with 2�/kBTc�5.1. The dotted line
refers to a point-node model with 2�/kBTc�3.6. The mod-
els used, however, failed to give satisfactory description of
the observed temperature dependence of 1/T1 over the entire
temperature range.

The data seem to start following the line-node model at
the lowest measured temperatures. However, the data are de-
scribed reasonably well by the BW �nodeless� model just
below Tc . The experimentally observed peak in 1/T1T
would indicate the presence of an isotropic energy gap, even
though a coherence effect—inherent for the isotropic spin-
singlet s-wave pairing state—is absent.

In almost all previous studies on either conventional and
unconventional SC, it was assumed that the crystal has an
inversion center, which allows separate consideration of the
even �spin-singlet� and odd �spin-triplet� components of the
SC order parameter. In CePt3Si, however, a center of sym-
metry is absent. Therefore, the novel relaxation behavior
found below Tc hints at a possibly new class of a SC state
being realized in noncentrosymmetric heavy fermion com-
pounds.

An important probe of the structure of the superconduct-
ing energy gap is the temperature dependence of the mag-
netic penetration depth �(T). Figure 10 shows results ob-
tained using a tunnel diode oscillator system running at 9.5
MHz, for a polycrystalline CePt3Si sample at temperatures
down to 0.049 K.26 Figure 10a depicts the normalized varia-
tion of ��(T)/��0 versus T/Tc in the whole temperature
region below Tc . Here ��(T)��(T)��(0.049 K) and
��0 is the total penetration depth shift. Figure 10b displays
��(T) versus T/Tc in the low-temperature range T�0.6Tc

for polycrystalline CePt3Si and Cd samples. Cadmium is a
classic s-wave superconductor, for which the low tempera-
ture dependence of �(T) is exponential. The inset to Fig. 10b
is a close-up of ��(T) versus T/Tc for the CePt3Si sample
for temperatures T�0.3Tc , where it can be clearly seen that
the penetration depth data of the CePt3Si sample follow a
linear temperature behavior below 0.17Tc . We remark here
that the low-temperature behavior of �(T) is not affected by
the type of sample �single crystal, powder, etc.� in which the
measurement is performed, if the sample is of high
quality.27–29

For a clean, local superconductor the penetration depth
is given by

FIG. 10. Normalized variation ��(T)/��0 versus T/Tc in a polycrystalline
CePt3Si sample �a�. Low-temperature behavior of ��(T) in polycrystalline
CePt3Si and Cd samples. �(T) is independent of temperature below 0.28Tc

in cadmium, as expected for an s-wave superconductor. The inset displays a
linear low-temperature behavior of �(T) in CePt3Si �b�.
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�2�0 �

�2�T �
��1�2	 �

�

�

dE
� f

�E

E

�E2��2�T ,
 ,��

 � . �7�

Here �...� represents an angular average over the Fermi sur-
face, and f is the Fermi function. Evidently the temperature
dependence of �(T) depends on the topology of the gap
structure. For line nodes in the energy gap the penetration
depth is expected to be linear in the low temperature limit,
where the temperature dependence of the energy gap can be
neglected. Assuming that CePt3Si is both a clean (l��0) and
a local (�(0)��0) superconductor, as was discussed above,
the penetration depth experimental result points out to the
existence of lines of nodes in the structure of the supercon-
ducting pairing state and, hence, to unconventional supercon-
ductivity in CePt3Si. For this material with a tetragonal crys-
tal lattice a p-wave pairing symmetry, like d(k)� x̂ky� ŷkx

proposed earlier by Frigeri et al., will not be consistent with
line nodes, because for materials with strong spin-orbit cou-
pling all the spin-triplet states are predicted to have point
nodes.30 Thus, the T-linear variation of the penetration depth
suggests possibly a d-wave �spin-singlet� type of pairing
symmetry in the energy gap.

A broad shoulder in ��(T) just below Tc , like the one
observed in Fig. 10a, is usually associated in polycrystalline
samples to intergrain or proximity effects. However, this ef-
fect is not expected to be relevant in the present case, be-
cause of the high quality of the polycrystalline sample and
the very small measuring magnetic fields �about 5 mOe�.27

��(T) for this sample has an inflection point around 0.52 K
temperature that is near to the second superconducting tran-
sition �0.55 K� recently found in CePt3Si.12 Thus, it is tempt-
ing to relate the shoulder to this second transition. However,
the inflection point—or similar feature—does not seem to be
present in preliminary results �obtained by one of the au-
thors� in a sedimented powder sample, where the intrinsic
behavior is thought to be more pronounced. Thus, no conclu-
sions can be drawn on the second transition from the present
measurements of the penetration depth.

C. Symmetry aspects

Time reversal invariance and inversion symmetry are es-
sential ingredients for superconductivity. They allow us to
distinguish pairing with spin singlet and spin triplet configu-
ration and even and odd parity. Due to Fermion antisymme-
try of the Cooper pair wavefunction these are uniquely com-
bined into even parity spin singlet and odd parity spin triplet
pairing states. The formation of Cooper pairs with vanishing
total momentum relies on the availability of degenerate elec-
tron states of opposite momentum on the Fermi surfaces. It is
generally believed that for spin singlet Cooper pairing time
reversal invariance provides the necessary conditions, while
spin triplet pairing needs additionally an inversion center.2

The absence of inversion symmetry removes, however, the
distinction of even and odd parity and leads immediately to a
mixing also of the spin channels.31

The absence of inversion symmetry gives rise to anti-
symmetric spin–orbit coupling. In the case of CePt3Si the
generating point group is C4v , which implies that there is no
reflection symmetry z→�z , where z is the fourfold tetrag-
onal rotation axis. This is incorporated into band structure by
a Rashba-like term

�k�0→�k�0��� ẑ�k�•� �8�

with �0 as the unit matrix and � as the Pauli matrices in the
electron spinor space. The electron bands split into two,
yielding two different Fermi surfaces with opposite spinor
orientation as depicted in Fig. 11. Obviously there is now a
clear restriction on the possible spin configurations for zero
momentum Cooper pairs.

The mixing of the spin singlet and spin triplet channel
for this electron band structure leads to an non-vanishing
spin susceptibility at T�0 in any case.31–33 Thus the absence
of paramagnetic limiting would be naturally explained. It
was suggested, however, by Kaur and collaborators that in
high magnetic fields perpendicular to the z-axis a novel su-
perconducting phase with a helical order parameter could be
realized which would leave its traces in the temperature de-
pendence of the upper critical field.34

So far the symmetry of the order parameter remains an
open question. However, theoretical considerations suggest
that the lack of inversion symmetry introduces several
complications in the microscopic discussion of
superconductivity.31,32,35–39

III. SUMMARY

We summarize that non-centrosymmetric CePt3Si is a
heavy-fermion SC with Tc�0.75 K that orders magnetically
at TN�2.2 K. Specific heat, NMR, and �SR studies indicate
that superconductivity and long range magnetic order coexist
on a microscopic scale and may be originated by two differ-
ent sets of electrons. The NMR relaxation rate 1/T1 shows
unexpected features which were neither found before in con-
ventional nor in heavy fermion SC, indicative of very un-
usual shapes of the SC order parameter. Unconventional SC
is backed also by the present penetration depth studies. In
fact, the various theoretical scenarios developed for this
compound support these conclusions.

This work was supported by the Austrian FWF P16370,
P18054, and by FONACIT of Venezuela under Grant No.
S1-2001000639.

FIG. 11. Fermi surface splitting. The lack of inversion symmetry gives rise
to antisymmetric spin-orbit coupling which leads in general to a splitting of
the spin degeneracy of the electronic states. The figure depicts schematically
the splitting of the Fermi surfaces for the generating point group C4v
CePt3Si. The spinor states are k-dependent in the way that the spin quanti-
zation axes lie perpendicular to the Fermi surface and the z axis with the
spin pointing in opposite direction for the two Fermi surfaces. This feature is
essential for the possible spin configuration of the pairing states which can
be constructed from two electrons on the same Fermi surface.
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The mechanism of high-temperature superconductivity �HTS� and the correlation between the
antiferromagnetic long-range order �AFLRO� and superconductivity �SC� are the central
issues of the study of HTS theory. SC and AFLRO of the hole-doped two-dimensional extended
t-J model are studied by the variational Monte Carlo method. The results show that SC is
greatly enhanced by the long-range hopping terms t� and t� for the optimal and overdoped cases.
The phase of coexisting SC and AFM in the t-J model disappears when t� and t� are
included. It is concluded that the extended t-J model provides a more accurate description for
HTS than the traditional t-J model does. The momentum distribution function n(k) and
the shape of Fermi surface play critical roles for establishing the phase diagram of HTS
materials. © 2005 American Institute of Physics. �DOI: 10.1063/1.2008136�
I. INTRODUCTION

The two-dimensional �2D� t-J model was proposed to
provide the mechanism of superconductivity �SC�1,2 right af-
ter the discovery of high-temperature superconductivity
�HTS�. This idea quickly gained momentum when varia-
tional calculations showed that the doping dependence of
pairing correlation3,4 and the phase diagram of the antifer-
ranagnetic long-range order �AFLRO� and SC seem to agree
with experimental results fairly well.5 However, the calcula-
tion beyond variational method showed that SC of the pure
2D t-J model was not large enough to explain such high
transition temperature of the cuprates.6 Up to now, this issue
has still not been settled.7–9

Interplay between the d-wave SC and AFLRO is another
one of the critical issues in the physics of HTS.10,11 Early
experimental results showed the existence of AFLRO at tem-
perature lower than the Néel temperature TN in the insulating
perovskite parent compounds of the cuprates. When charge
carriers are doped, AFLRO is destroyed quickly and then SC
appears. In most thermodynamic measurements for hole
doped cuprates, AFLRO does not coexist with SC12 and dis-
appears completely around doping density �h�5%. How-
ever, recent experiments such as muon spin rotation and elas-
tic neutron scattering show that the spin density wave �SDW�
may compete, or coexist with SC.13–18 These results suggest
that AFLRO may coexist with SC, but the possibility of in-
homogeneous phases is not completely ruled out.

For the theoretical part of this issue, analytical and nu-
merical studies of the t-J model show that at half-filling, the
7571063-777X/2005/31(8–9)/6/$26.00
d-wave resonating valence bond �RVB� state with AFLRO is
a good trial wave function �TWF� and that SC is absent due
to the constraint of no double occupancy. Upon doping, the
carriers become mobile and SC sets in while AFLRO is
quickly suppressed. However, AFLRO will survive until the
hole density �h�10%, which is much larger than the critical
density observed by experiments. SC and AFLRO coexist in
the very underdoped regime.5,19–22

The discrepancies imply that the t-J model may be in-
sufficient to describe the physics of HTS. On the other hand,
there are several experimental and theoretical studies sug-
gesting the presence of the next- and third-nearest-neighbor
hopping terms t� and t� in cuprates. For example, the topol-
ogy of the large Fermi surface �FS� and the single-hole dis-
persion studied by angle-resolved photoemission spectros-
copy �ARPES�, and the asymmetry of phase diagrams of the
electron- and hole-doped cuprates can be understood by in-
troducing these terms.23

It is suggested that the longer range hopping terms may
play important roles on the mechanism of HTS. Results of
band-structure calculations24,25 and experimental analysis26

show that Tc is enhanced by the next-nearest neighbor hop-
ping t�/t , and the highest Tc ,max for different monolayer hole
doped cuprates strongly correlates with t�/t . However, this
contradicts with previous results27,28 of exact calculations
that for the hole doped systems, introducing t� into the t-J
model will suppress pairing.

We will discuss the model and the trial wave function in
Sec. 2, and the variational Monte Carlo �VMC� method re-
© 2005 American Institute of Physics
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sults for SC, AFLRO, and the shape of the Fermi surface in
Sec. 3. At last we will make a summary in Sec. 4.

II. THE MODEL AND THE WAVE FUNCTIONS

The Hamiltonian of the extended t-J model is

H�Ht�HJ���
i j

t i j� c̃ i ,�
† c̃ j ,��H.c.�

�J�
	i , j


� Si•Sj�
1

4
nin j � , �1�

where t i j�t , t�, t�, and 0 for sites i and j that are nearest,
next nearest, and third nearest neighbors and other sites, re-
spectively. 	i , j
 in HJ means the spin-spin interaction occurs
only for nearest neighbors. c̃ i ,��(1�ni ,��)ci ,� satisfies the
no-double-occupancy constraint. At half-filling, the system is
reduced to the Heisenberg Hamiltonian HJ . As carriers are
doped into the parent compound, Ht is included in the
Hamiltonian.

To solve the ground-state wave function of this Hamil-
tonian, three mean-field order parameters are introduced:21,29

the staggered magnetization ms�	SA
z 
��	SB

z 
 , where the
lattice is divided into A and B sublattices, the uniform bond
order parameters ��	��ci�

† c j�
 , and the d-wave RVB
(d-RVB� order parameter ��	c j↓ci↑�c j↑ci↓
 , if i and j are
n.n. sites in the x direction, and �� for the y direction. The
Lee-Shih wave function, which is the mean-field ground-
state wave function, is

�
LS
�Pd� �
k�SBZ

�Akak↑
† a�k↓

† �Bkbk↑
† b�k↓

† � � Ns/2

�0
 ,

�2�

where Ns is the total number of sites and

Ak��Ek
�1 ��� k̃�/�k , Bk���Ek

�2 ���k
��/�k

with

Ek
�1 ����k

�2��k
2�1/2, Ek

�2 ����k
�2��k

2�1/2.

Here �k� 3
4J�(cos kx�cos ky). The energy dispersions for

the two SDW bands are

�k
������k���2��Jms�

2�1/2���

with

�k��2� t��
3

8
J� � �cos kx�cos ky�.

ak���kck����kck�Q�

and bk�����kck���kck�Q� , where Q�(� ,�),

�k
2�

1

2
�1����k����/��k

�������,

�k
2�

1

2
�1����k����/��k

�������,

are the operators of the lower and upper SDW bands, respec-
tively,

�����4tv� cos kx cos ky�2tv��cos 2kx�cos 2ky�,
where � is the chemical potential determining the number of
electrons, and tv� and tv� are variational parameters corre-
sponding to the next and third nearest neighbor hoppings. tv�
and tv� are not necessarily equal to the bare values t� and t�
because the constraint strongly renormalizes the hopping am-
plitude. Note that the summation in Eq. �2� is taken over the
sublattice Brillouin zone �SBZ�. The operator Pd enforces
the constraint of no doubly occupied sites for cases with
finite doping.

For the half-filled case, ��t��t��0 and the optimal
variational energy of this trial wave function �TWF� obtained
by tuning � and ms in the VMC simulation is �0.332 J per
bond, which is within 1% of the best estimate of the ground-
state energy of the Heisenberg model.30 For the case of pure
AFLRO without �, the energy per bond is about 3 to 4%
higher.

Upon doping, there are two methods of modifying the
TWF: one is to use a nonzero � to control the filling of the
SDW bands,29 the other is to create charge excitations from
the half-filled ground states.31 For the former method, the
TWF is optimized by tuning �, ms , tv� , tv� , and �. Note that
for larger doping densities, AFLRO disappears (ms�0) and
the wave function reduces to the standard d-RVB wave func-
tion. For the latter method, the wave function is the ‘‘small
Fermi pocket’’ state �
p
:

�
p
�Pd� �
k�SBZ ,k�Qp

�Akak↑
† a�k↓

† �Bkbk↑
† b�k↓

† � � Ns/2

�0
 .

�3�

The k-points in Qp are the momenta of the electron singlet
pairs �with momenta and spin (k↑ ,�k↓) removed from the
half-filled FS. Thus the number of holes is twice of the num-
ber of k-points in Qp , �, tv� and tv� are identical to zero in
Eq. �2� because the size and shape of FS are determined by
the choice of Qp . Note that no matter what k’s are chosen in
Qp , the total momentum of the wave function is zero. The
k’s can be viewed as ‘‘hidden quantum numbers’’ of the
wave function.

In general, for the ground state the set Qp should be
determined variationally. As we expected, it agrees well with
the rigid band picture for very underdoped systems.31 For
example, there is only one point in the two-hole system.

The variational energies for several choices of k in a
12�12 lattice are shown in Fig. 1. It can be seen that for
both the (t�,t�)�(�0.1,0.05)t �full circles� and (t�,t�)
�(�0.3,0.2)t �open circles� cases, the k with lowest energy
is ��/2,�/2�. The k’s with the second-lowest energy are �2�/
3,�/3� and ��/2,�/3� for (t�,t�)�(�0.1,0.05)t and (t�,t�)
�(�0.3,0.2)t , respectively.

According to the rigid-band assumption, we expect that
the best choice of Qp for the 4-hole system is �(�/2,�/2),
(��/2,�/2)�. And the Qp’s for the 6-hole system with

� t�,t�����0.3,0.2�t and� t�,t�����0.1,0.05�t

are

���/2,�/2�,���/2,�/2�,��/2,�/3��,

and



759Low Temp. Phys. 31 (8–9), August–September 2005 Shih et al.
���/2,�/2�,���/2,�/2�,�2�/3,�/3��,

respectively.
Figure 2 shows the choices of Qp’s for several doping

densities �0–10 holes� for the (t�,t�)�(�0.3,0.2)t case. The
validity of the rigid-band picture has been checked by com-
paring several Qp’s for the same number of holes for these
very underdoped cases.

Another issue is that the choice of Qp may change the
total symmetry of the wave function. For example, Fig. 2e
shows that Qp for 8 holes is

���/2,�/2�,���/2,�/2�,��/2,3 �,���/2,��/3��.

We can also choose

FIG. 1. Energies for two holes in a 12�12 lattice for J/t�0.3, (t�,t�)
�(�0.1,0.05)t �filled circles� and (t�,t�)�(�0.3,0.2)t �unfilled circles�. k
is the ‘‘hidden quantum number’’ corresponding to the momentum of the
pair removed from the half-filled Fermi surface. Note that the total momenta
of all the wave functions are zero.

FIG. 2. Choices of Qp �unfilled circles� for several doping densities for
t�/t��0.3 and t�/t�0.2 in k space. The filled circles are the occupied
k-points: 0 �a�, 2 �b�, 4 �c�, 6 �d�, 8 �e�, 10 �f� holes.
Qp����/2,�/2�,���/2,�/2�,��/2,�/3�,��/3,�/2��.

The variational energies of these two wave functions,
long-range pair-pair correlation, and staggered magetization
are almost identical �within error bars�. Since k�(��/2,
��/3) and (��/3,��/2) are all degenerate for the two-
hole system, the wave function could also be degenerate for
those Qp’s with k-points (��/2,��/2) and any two of k
�(��/2,��/3) and (��/3,��/2) for the 8-hole system.
This conjecture has been verified numerically. Thus the best
TWF should be a linear combination of all these wave func-
tions. For simplicity, we choose only one of the Qp in the
following calculation. The properties of SC and AFLRO are
not affected by this simplification.32

III. RESULTS AND DISCUSSION

The staggered magnetization

	M 
�
1

Ns
� �

j
eiQ"RjSRj

z � , �4�

the momentum distribution function

n�k��
1

Ns
�
i j�

eik•�Ri�Rj �	ci�
† c j�
 , �5�

and the d-wave pair-pair correlation

Pd�R��
1

Ns
� �

i
�Ri

† �Ri�R� , �6�

where

�Ri
�cRi↑

�cRi� x̂↓�cRi� x̂↓�cRi� ŷ↓�cRi� ŷ↓�

are measured for J/t�0.3 and �a� t��t��0, �b� (t�,t�)
�(�0.3,0.2)t and �c� (t�,t�)�(�0.1,0.05)t cases for the
12�12 lattice with periodic boundary condition. Pd

ave is the
averaged value of the long-range part (�R��2) of Pd(R).
The optimal wave function for different densities are deter-
mined by minimizing the variational energies among
�
p(ms ,� ,�Qp�)
 and �
LS(ms ,� ,tv� ,tv� ,�)
 . We will dis-
cuss the results for these three cases in this section.

A. t�Ät�Ä0

It can be seen in Fig. 3a that in the underdoped region
for the J/t�0.3, t��t��0 case, AFLRO coexists with SC
for density smaller than �c�10%. The �c is smaller than the
weak-coupling mean-field result �15%,21 but is still larger
than the phase boundary of AFLRO determined by experi-
ments (�c�5%). The energies of �
LS
 are lower than
those of �
P
 for all doping densities in this case. This result
is also consistent with the results reported by Himeda and
Ogata.22 Comparison of the VMC result with that of the
weak-coupling one seems to indicate that the rigorous no-
double-occupancy constraint suppresses the AFLRO faster
than the constraint-relaxed mean-field approximation.

Pd
ave shows a dome-like shape which agrees well with

the experiments except in the slightly doped AFLRO region.
It is well known that the variational method usually overes-
timates the order parameters. Our previous studies using cal-
culations beyond VMC show that Pd

ave will be suppressed
greatly when the wave function is projected to the true



760 Low Temp. Phys. 31 (8–9), August–September 2005 Shih et al.
ground state. Note that the two-hole binding energy becomes
positive �no binding� in the thermodynamic limit.6

B. t�ÕtÄÀ0.3 and t�ÕtÄ0.2

Now we examine the phase diagram for J/t�0.3, t�/t
��0.3, and t�/t�0.2, parameters for YBCO and BSCO
compounds. The results are shown in Fig. 3b. It was found
that level crossing occurs at �c�0.06. For �h�0.06, �
P
 is
the ground-state wave function and 	M 
 is a little larger than
in the t��t��0 case, while Pd

ave is suppressed by one order
of magnitude. Thus there is AFLRO but no SC in this re-
gime. For �h larger than 0.06, the RVB state (ms�0 in
�
LS
) optimizes the energy. Pd

ave increases, and 	M 
 drops
sharply to zero. Unlike the t��t��0 case, there is no region
optimized by �
LS
 with nonzero ms . In conclusion, there is
no coexistence of AFLRO and SC for the (t�,t�)
�(�0.3,0.2)t case.

To show that �
LS
 and �
P
 belong to two different
types of wave function, we calculate their overlap.
	
LS�
P
/(�
LS��
P�) is only 0.0113�4�.33 The near-
orthogonality of the two wave functions implies that the
ground-state wave functions switch at the critical density.

The result that the critical �h for negative t�/t is smaller
than that of the t��0 case is consistent with the results
evaluated by exact diagonalization,35,36 and the suppression
of coexistence of AFLRO and SC is consistent with the
slave-boson mean-field theory.37

FIG. 3. 	M 
 �filled circles� and Pd
ave �unfilled circles� for J/t�0.3: t��t�

�0 �a�, (t�,t�)�(�0.3,0.2)t �b�, and (t�,t�)�(�0.1,0.05)t �c� for a hole-
doped 12�12 lattice. The vertical dashed lines show the critical doping
densities of level crossing. P (�
P
), LS (�
LS
), and RVB (�
LS
 with
ms�0) represent the best TWFs of each region.
For a little larger doping density 0.06��h�0.15, it can
be seen that Pd

ave starts to grow but is still smaller than that in
the t��t��0 case. The suppression of Pd

ave by t� and t� in
the underdoped regime is consistent with the results27,28 ob-
tained the density matrix renormalization group �DMRG�
method. Interestingly, for even larger �h , Pd

ave grows greatly
and reaches the maximum at �h�30%, and the SC region
extends to �h�0.4. The maximal Pd

ave is larger than the t�
�t��0 value at the same density by almost one order of
magnitude, and about 2.5 times larger than the maximum of
the optimal value of the t��t��0 case. The enhancement of
Pd

ave may come from the deformation of the Fermi surface.
The electron occupation at the k-points near ��,0� is in-
creased by a negative t�. The results from exact diagonaliza-
tion and slave-boson mean-field theory also show similar
behavior.34

The great enhancement of pairing due to t� may provide
a possible mechanism for HTS. But the doping density �max

with maximal Pd
ave is too large (�30%) in comparison with

experiments �15%�. This discrepancy may disappear for the
real ground state of the extended t-J model. From our expe-
rience, if we do the calculation beyond VMC, the amplitude
of Pd

ave will be suppressed and �max will move to a smaller
value.6 If this trend is true for the t-J type models, we expect
that �max may move toward the more physical value. This
conjecture will be investigated in the future.

C. t�ÕtÄÀ0.1 and t�ÕtÄ0.05

For the lanthanum materials with t�/t��0.1 and t�/t
�0.05, the behaviors are more complex. It can be seen from
Fig. 3c that for hole density �h�4%, �
P
 optimizes the
variational energy, and the phase in this region is ARFLO but
not SC. For 4%��h�10%, �
LS
 is the best TWF with
nonzero ms and �. AFLRO and SC coexist in the ground
state of this density interval. At even larger dopings, ms in
�
LS
 vanishes and the phase becomes pure SC. The maxi-
mum of the SC dome is at �h�20%, and the maximal Pd

ave

is about 1.5 times larger than the t��t��0 value.
Since the phase transition comes from the level crossing

of the two classes of states �
P
 and �
LS
 , it is a first-order
phase transition. It is quite natural to have inhomogeneity in
the system near the critical point.38 It may also lead to other
more novel inhomogeneous states such as a stripe phase.39

Another interesting result of our study is that the non-
coexistence of SC and AFLRO is much more robust for sys-
tems with larger values of t�/t and t�/t , such as YBCO and
BSCO.25 For LSCO, where t�/t and t�/t are smaller, the
tendency toward coexistence is larger and the possibility of
an inhomogeneous phase will become much more likely.

D. Shape of the Fermi surface

Figure 4 shows the FS of both under- and overdoped
systems with the parameter sets we discussed above. For the
underdoped systems (�h�6/144), there is a large FS for the
t��t��0 case �Fig. 4a� and a clear ‘‘Fermi pocket’’ for the
t�/t��0.3, t�/t�0.2 case �Fig. 4b�, whose ground-state
wave function is �
P
 . The shape of the FS for t�/t�
�0.1 and t�/t�0.05 �Fig. 4c� is placed between the previous
two cases. The ground-state wave function is �
LS
 but the
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pocket-like feature is still obvious. Lack of a large FS is one
of the possible reasons for the suppression of Pd

ave by t� in
the underdoped region.

For the overdoped systems (�h�44/144), the ground-
state wave functions for all the three cases are �
LS
 . They
all have large FSs but with different shapes determined
mainly by the parameters tv� and tv� . It is clear that the dis-
tortion of the FS makes n(k�(� ,0)) for the t�/t��0.3 and
t�/t�0.2 �Fig. 4e� case much larger than the other two. The
shapes of the FS for t��t��0 �Fig. 4d� and t�/t��0.1 and
t�/t�0.05 �Fig. 4f� are similar and the occupations near
��,0� are both small. For the d-wave SC, the electron pairs
with momenta near ��,0� contribute to SC most. Thus Pd

ave

for t�/t��0.3 and t�/t�0.2 case is much larger than the
other two.

Our results show that Pd
ave is closely correlated with

n(k) and thus with the shape of the FS. Figure 5 plots the
maximal possible value of Pd

ave for all doping densities as a
function of t�. The maximal Pd

ave is proportional to t� in the
range 0�t���(0.3– 0.4). Beyond these values pairing is
no longer enhanced. Coincidentally, these values are about
the same value of t�/t for mercury cuprates, as estimated by
Pavarini et al.,25 but much larger than those reported in Ref.
24. Among all the cuprate series, mercury cuprate has held
the record of having highest Tc for almost a decade.

The decrease of Pd
ave for �t��0.4 in the overdoped re-

gime such as ��0.31 is also likely a consequence of the
change of the FS. n(k�(� ,0)) is almost saturated at �t�
�0.4 and remains unchanged for larger �t�. It is not diffi-
cult to recognize that as �t� becomes much larger than t ,
electrons will occupy separate regions around k�(�� ,0)

FIG. 4. Contour maps of n(k): t��t��0 �a�, �d�; (t�,t�)�(�0.3,0.2)t
�b�,�e�; (t�,t�)�(�0.1,0.05)t �c�,�f�. The hole densities are 6/144 for �a�,
�b�, �c�, and 44/144 for �d�, �e�, �f�, respectively.
and k�(0,��). Hence the FS becomes disjoint pieces. Al-
though at �t�/t�0.4 the FS is still connected, this tendency
is already observed. The density of states starts to decrease,
and this is probably the reason for the suppression of pairing
beyond �t�/t�0.4.

IV. SUMMARY

In summary, a new wave function �
P
 is proposed for
the extended t-J model for very low hole densities. The size
and shape of the FS and of �
P
 are determined by the
choice of pairs with the momenta k�Qp removed from the
half-filled system. The chosen k’s are around the ��/2,�/2�
region in k space for hole-doped materials. The behavior of
�
P
 is very different from that of �
LS
 which optimizes
the energy for the t-J model. In contrast to �
P
 , the FS for
the states of �
LS
 is controlled by the chemical potential �
and the effective long-range hopping terms tv� and tv� .

There are three remarkable effects of t� and t� for the
extended t-J model. First, the critical density where AFLRO
vanishes is moved to more physical values. Second, the
phase of coexisting AFLRO and SC is suppressed. If t� and
t� are large enough �corresponding to the YBCO or BSCO
materials�, the coexisting phase will disappear. Third, Pd

ave is
enhanced for the optimal and overdoped region, and sup-
pressed for the underdoped region. This resolves the conflict
between the DMRG and band structure calculation results.
The enhancement of Pd

ave can be explained by the electron
occupation near ��,0� and FS. These results offer a possible
mechanism for HTS.

The work is supported by the National Science Council
in Taiwan with Grant Nos. NSC-93-2112-M-029-001-, 93-
2112-M-007-009-, 93-2112-M-001-018-, and 93-2112-
M029-009. Part of the calculations are performed in the IBM
P690 and PC clusters in the National Center for High-
Performance Computing in Taiwan, and the PC clusters of
the Department of Physics and Department of Computer Sci-
ence and Engineering of Tunghai University, Taiwan. We are
grateful for their help.

*E-mail: ctshih@mail.thu.edu.tw

1 P. W. Anderson, Science 235, 1196 �1987�.
2 F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 �1988�.

FIG. 5. Maximal Pd
ave for different t� with t���t�/2 for 8�8 �unfilled

circles� and 12�12 �filled circles� lattices.



762 Low Temp. Phys. 31 (8–9), August–September 2005 Shih et al.
3 C. Gros, Phys. Rev. B 38, 1196 �1988�.
4 F. C. Zhang, C. Gros, T. M. Rice, and H. Shiba, Supercond. Sci. Technol.
1, 36 �1988�.

5 T. K. Lee and S. P. Feng, Phys. Rev. B 38, 11809 �1988�.
6 C. T. Shih, Y. C. Chen, H. Q. Lin, and T. K. Lee, Phys. Rev. Lett. 81, 1294
�1998�.

7 S. Sorella, G. B. Martins, F. Becca, C. Gazza, L. Capriotti, A. Parola, and
E. Dagotto, Phys. Rev. Lett. 88, 117002 �2002�.

8 T. K. Lee, C. T. Shih, Y. C. Chen, and H. Q. Lin, Phys. Rev. Lett. 89,
279702 �2002�.

9 S. Sorella, A. Parola, F. Becca, L. Capriotti, C. Gazza, E. Dagotto, and G.
Martins, Phys. Rev. Lett. 89, 279703 �2002�.

10 P. W. Anderson, The Theory of Superconductivity in the High-Tc Cuprates,
Princeton University Press, Princeton, NJ �1997�.

11 S. C. Zhang, Science 275, 1089 �1997�.
12 C. M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Rev. Mod.

Phys. 70, 897 �1998�.
13 B. Lake, H. M. Rønnow, N. B. Christensen, G. Aeppli, K. Lefmann, D. F.

McMorrow, P. Vorderwisch, P. Smeibidl, N. Mangkorntong, T. Sasagawa,
M. Nohara, H. Takagi, and T. E. Mason, Nature �London� 415, 299
�2002�.

14 R. I. Miller, R. F. Kiefl, J. H. Brewer, J. E. Sonier, J. Chakhalian, S.
Dunsiger, G. D. Morris, A. N. Price, D. A. Bonn, W. H. Hardy, and R.
Liang, Phys. Rev. Lett. 88, 137002 �2002�.

15 J. E. Sonier, K. F. Poon, G. M. Luke, P. Kyriakou, R. I. Miller, R. Liang,
C. R. Wiebe, P. Fournier, and R. L. Greene, Phys. Rev. Lett. 91, 147002
�2003�.

16 Y. Sidis, C. Ulrich, P. Bourges, C. Bernhard, C. Niedermayer, L. P. Reg-
nault, N. H. Andersen, and B. Keimer, Phys. Rev. Lett. 86, 4100 �2001�.

17 J. A. Hodges, Y. Sidis, P. Bourges, I. Mirebeau, M. Hennion, and X.
Chaud, Phys. Rev. B 66, 020501�R� �2002�.

18 H. A. Mook, P. Dai, S. M. Hayden, A. Hiess, J. W. Lynn, S.-H Lee, and F.
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I. INTRODUCTION

The discovery of antiferromagnetism as a physical phe-
nomenon is inextricably connected to the Kharkov period of
activity of L. V. Shubnikov and L. D. Landau. There can be
no doubt that the experimental discovery of a new magnetic
phase transformation between identical crystal structures not
manifesting a macroscopic magnetic moment M or, in mod-
ern terminology, a paramagnet-antiferromagnet transition,
belongs to Trapeznikov and Shubnikov, who observed an
anomaly of the heat capacity of anhydrous ferrous chloride
and linked it to the magnetic properties of this substance.1

Landau, apparently learning of this research from the authors
prior to publication of the results, laid out the basic concepts
of the antiferromagnetic state. Based on these concepts, he
developed a phenomenological theory of such a magnetic
state of the crystal, in which one ferromagnetic sublattice is
exactly compensated by another, so that, on the whole, spon-
taneous magnetization of macroscopic regions �ferromag-
netism� does not arise after the transition.2 It would later be
found that the class of antiferromagnets, in which, by defi-
nition, the total magnetization M�0 although the mean
spins �Sn��0 at the sites n are finite and ordered, includes
an enormous number of both metallic and insulating systems,
with an extremely great diversity of magnetic structures �see,
e.g., Ref. 3�.

Among the antiferromagnetic insulators a special place
is held by solid oxygen. First, it is one of a very few mo-
lecular magnets �if not the only one�, since the O2 molecule
has spin S�1 in its ground state. Second, also uniquely, the
antiferromagnetism of this cryocrystal is realized in a uni-
form �homomolecular� medium. Third and last, the equilib-
rium phases ��, 	, and 
� of this crystal in the absence of
external pressure P display different magnetic properties,
and the magnetic �exchange� component makes a real con-
tribution to the intermolecular interaction, significantly stabi-
lizing the crystal structure of the � and 	 phases of solid
oxygen.4

It should be noted that research on the thermal
7631063-777X/2005/31(8–9)/14/$26.00
properties—the heat capacity,5 thermal expansion,6 and ther-
mal conductivity7,8—of solid O2 has not only confirmed the
results of the pioneering magnetic measurements of Borovik-
Romanov et al.9,10 but also yielded new results, in particular,
on the order of the �-	 transition. It is now accepted �though
not conclusively proven� that it is a first-order, close to
second-order, transition, and it occurs not only between dif-
ferent crystal structures but also between different magnetic
orderings. While the lowest-temperature (T�23 K) phase at
P�0, the monoclinic � phase, is characterized by a collinear
two-sublattice magnetic structure with easy-axis anisotropy,
the rhombohedral 	 phase is an example of a three-sublattice
120° magnetic structure with easy-plane anisotropy and
correlation-type �short-range� ordering. This triangular struc-
ture in solid O2 was predicted by one of the authors11 and is
known as the Loktev structure.

A theory of the magnetocrystalline phase transformation
between the spin-collinear � phase and the spin-noncollinear
	 phase was proposed in Ref. 12, based on taking into ac-
count the dependence of the exchange �Heisenberg� pair in-
teraction on the intermolecular distance in the framework of
the linear theory of elasticity. That theory showed that the
magnetoelastic transition arising in such a model can provide
a correct description of both the crystal and magnetic struc-
tures of the � and 	 phases on the qualitative �and even
semiquantitative� level. Nevertheless, a treatment of the 	
phase as an antiferromagnet with long-range dipolar mag-
netic order does not completely fit in with the modern view
of the magnetism of easy-plane structures in crystals of re-
duced dimensionality.

The point is that, to a significant degree, 	 oxygen is
among those degenerate two-dimensional magnetic systems
that cannot exhibit an isotropic magnetoelastic gap, and so
long-range spin ordering in the usual sense cannot arise in it
�see, e.g., Ref. 13�. However, it has been shown14–16 that in
view of the above-listed special properties of the Loktev
structure, which can exist as right or left polarized, the sign
of the polarization �and not the Néel order� can be preserved
© 2005 American Institute of Physics
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in it over macroscopic distances. This introduces a physical
characteristic that can serve as a measure of the ordering in
the absence of long-range vector order. This ordering is
called ‘‘correlation ordering,’’ since it is of the nature of
highly developed short-range correlations corresponding
completely to the Loktev structure. These correlations admit
description in the framework of the Landau phenomenologi-
cal approach.

By the mid-1980s to the early 1990s it seemed that the
basic experimental and theoretical research on the magnetic
and structural features of solid oxygen had been done, and
the most important physical parameters characterizing the
crystal and magnetic �sub�lattices had been determined. But
the development of high-pressure technique substantially ex-
panded the realm of standard problems in the physics of
cryocrystals, ushering in the study of new crystal structures
arising under external mechanical pressure in substances that
had seemingly been studied already. Again, by virtue of its
molecular structure and unusually strong magnetic interac-
tions, solid oxygen has turned out to be a unique system
among cryocrystals in that diverse phases, both magnetic and
nonmagnetic, arise at high pressure, which differ in their
crystal structure and electronic properties, as well.

A comprehensive and exhaustive review of the experi-
mental data concerning the thermodynamic properties of the
solid phases of O2 and the existing theoretical models was
recently given by Freiman and Jodl.17 Without going into the
details presented in that review, let us note that the theoreti-
cal studies of this topic have predominantly taken a micro-
scopic or semi-microscopic approach based on a concrete
form for the intermolecular interaction potentials. Ap-
proaches of this type, which to a certain extent includes the
studies mentioned above,12,14–16 have succeeded, for ex-
ample, in elucidating the leading role of magnetic interac-
tions in the �-	 transition and, through analysis of the lattice
dynamics, have led to the prediction of a jumplike change of
the lattice parameters at the �-	 and �-� transitions.18 A
good complement to these microscopic models, which per-
mit rather exact calculation of the parameters of the crystal in
the framework of some restrictions on the range of the inter-
actions, the forms of the potentials, etc., is the phenomeno-
logical �in essence, thermodynamic� theory, which gives a
quantity picture of the phase transitions and the features that
appear on the macroscopic observables at those transitions.
Below we attempt to treat the sequence of phase transforma-
tions in solid oxygen specifically from the standpoint of the
general phenomenological theory in the spirit of the Landau
theory of phase transitions, which, as far as we know, has not
been applied to solid O2 before. The approach is based on
general symmetry concepts without recourse to a concrete
form of the intermolecular interaction, in conformity with
Occam’s razor—simplicity without trivialization. A feature
of the proposed approach is that the thermodynamic potential
is of a form for which one can take into account the finite
�and non-small� lattice distortions arising in solid oxygen
under pressure, which are not describable in the framework
of the standard theory of elasticity. We shall also consider the
question of the influence of external magnetic field on the
structure of the phases and the macroscopic properties of
their lattices in different ranges of pressure and temperature.
II. CHOICE OF THE ORDER PARAMETER

Solid oxygen, as we have said, is a unique physical sys-
tem in which the character of the magnetic ordering has a
substantial influence on the crystal structure; the relative dis-
placements of the atoms at phase transitions induced by ex-
ternal pressure are so large that the lattice strain tensor can-
not be considered small, and the standard harmonic
approximation is insufficient to describe it. In addition, from
a symmetry standpoint not all the Fedorov �space� groups of
the observed phases are in a subgroup relationship �for ex-
ample, the 	 and � phases, the space groups of which are
D3d

5 and D2h
23 , respectively�. All of these features make it a

nontrivial problem to choose the order parameter �or param-
eters� and the form of the corresponding thermodynamic po-
tential adequate to describe the whole sequence of transitions
between the 	, �, and � phases of solid oxygen �we begin
with the lattice of 	-O2 as the most symmetric of these
phases�.

A. Order parameter of the structural phase transition

All three phases considered below, the � and 	 phases
and the � phase that arises under pressure, have a layered
structure in which the oxygen molecules can all be consid-
ered to be oriented parallel to each other and perpendicular to
the close-packed atomic planes.19 The molecules solidify in
such a position exclusively on account of quantum �valence
and exchange� interactions, since the other substantial
interaction—the quadrupole-quadrupole—leads to a noncol-
linear mutual orientation of the molecules.4

If we ignore the distortions of vectors lying in the basal
plane and the relatively small changes of the interplane dis-
tances, then it seems obvious that each of the phases in the
sequence of phase transitions 	→�→� can be obtained and
in reality arises through a simple shift of the hexagonal
close-packed planes relative to each other �see Fig. 1�, from
an initial right-angle stacking �i.e., stacking such that in the
direction perpendicular to the planes the atoms are located
one above the other�.

The initial ‘‘unshifted’’ ordering of the hexagonal planes
can be regarded as some virtual �not observed in reality�
phase �the paraphase, in the terminology of Ref. 20�, the
symmetry group D6h

1 of which includes the symmetry groups
of the 	, �, and � phases as subgroups.

Choosing the reference unit cell to be one constructed on
the basis vectors of the lattice of the paraphase, one can
describe all the experimentally observed changes of the crys-
tallographic structure with the use of a uniform finite-strain
tensor containing five independent components �since the
twofold symmetry axis in the basal plane is preserved�. As
the finite distortions one can choose, e.g., the relative change
of the lengths of the basis vectors, the distortion of the basal
plane determined by the hexagonality parameter (&hab
�a)/a , and the relative displacement of the close-packed
planes 
�c cos 	/a, where a ,b ,c , 	 specify in the general
case a monoclinic lattice with mutually perpendicular vectors
a, b in the basal plane. Only the last of these listed param-
eters �independently of its magnitude� can be used to de-
scribe the sequence of phase transitions between the 	, �,
and � phases using general symmetry arguments in accor-
dance with the canons of Landau theory. The quantity 
,
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which need not be small, is considered below as an order
parameter for these transitions.

For a rigorous symmetry analysis instead of the param-
eter 
 we consider the relative displacement vector u charac-
terizing the mutual position of two adjacent planes in the
different phases �upon a displacement of the order of �u��

along one of the twofold axes�. Since the states in which two
parallel atomic planes are displaced by a vector multiple of
the lattice period are physically equivalent and in essence
identical, the vector u is defined up to a translation vector of
the lattice in the basal plane.1� This imposes certain symme-
try restrictions on the dependence of the internal energy on
u.

For example, let us consider the interaction potential
V (12)(u) of two adjacent close-packed planes, which, by vir-
tue of the periodicity properties mentioned above, can be
written in the form of a series

V �12��u���
n ,m

Vnm
�12� exp� ignmu� �1�

in the reciprocal lattice vectors gnm�nb1�mb2 , parallel to
the basal plane. The functions �nm�exp(ignm•u) form a rep-
resentation of the symmetry point group of the ‘‘unshifted’’
paraphase, and their linear combinations can be chosen as the
order parameter of the phase transitions described.2� For the
sequence of transitions between the 	, �, and � phases con-
sidered in this paper it is sufficient to choose as the order
parameters of the structural transition the functions
�01 ,�10 ,� 1̄1 , the transformations of which under the opera-

FIG. 1. Crystal structure of the antiferromagnetic phases of solid oxygen:
hypothetical nonmagnetic paraphase �a,c�, 	-O2 �b,d�, �-O2 �e�, and �-O2

�f�. The arrows indicate the direction of the shift �the vector u�. The hori-
zontal lines on diagrams �c�–�f� correspond to the close-packed basal planes.
tions of the group D6h
1 are presented in Table I. The indicated

order parameter is uniform in the sense that the relative dis-
placement of any two adjacent planes is identical in both
magnitude and direction.3�

B. Description of the magnetic structure

In accordance with the experimental data currently avail-
able, which are presented rather completely in Freiman and
Jodl’s review,17 the spin moments localized on the oxygen
molecules form a noncollinear triangular structure in the
basal plane, with short-range order in the 	 phase �Fig. 2a�
and an antiferromagnetic collinear structure in the � and �
phases �Fig. 2b�. The mutual orientation of the moments in
adjacent close-packed layers is not uniquely determined and
can be parallel or antiparallel �see, e.g., Ref. 21�. A symme-
try analysis of the two-dimensional magnetic structures com-
patible with hexagonal ordering of the atoms �molecules�
within the plane was carried out in the papers by Vitebskii
et al.,14–16,22 and it was shown in a paper by Gaididei and
one of the authors12 that the wave vectors specifying the
magnetic superlattices of the � and 	 phases correspond to a
minimum of the quasi-classical magnetic energy of the crys-
tal when the only exchange interactions taken into account
are those between nearest neighbors in the basal plane. We
note that those results remain valid for the � phase in the
two-dimensional approximation.

However, for studying the mutual influence of the mag-
netic and structural phase transitions arising in solid oxygen
under pressure it is important to take into account not only
the intralayer but also the interlayer exchange interaction,
which is more sensitive to the relative shift of adjacent
atomic planes. Accordingly, we shall classify the magnetic
structures of the 	, �, and � phases in irreducible represen-
tations of the symmetry group of the paraphase, D6h

1 , i.e., a
substantially three-dimensional rather than a two-
dimensional lattice, and we write the wave vectors of the
magnetic superstructures in terms of the vectors b1

�(2�/a ,2�/)a ,0), b2�(0,4�/)a ,0), b3(0,0,2�/c) of

TABLE I. Transformation of the functions �nm , n ,m�0,1, under the op-
erations of the generating elements of the group D6h

1 .

FIG. 2. Orientation of the magnetic moments of solid oxygen in the basal
plane of the 	 phase �a� and of the � and � phases �b�.
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the reciprocal lattice of the hexagonal lattice with vectors
a1�(a ,0,0), a2�(�a/2,)a/2,0), a3�(0,0,c) �see Fig. 3�.

The experimentally observed phases are compatible with
the following representations of the magnetization vector
M(rj) at the point rj :

1. In the 	 phase �Fig. 2a�

M�	��rj��Re�� l1
�	��il2

�	��exp� iq	•rj�� ,

where the orthogonal vectors l1
(	) ,l2

(	) satisfy the normaliza-
tion conditions

� l1
�	��2�� l2

�	��2�M 0
2,

where M 0 is the saturation magnetization per unit volume.
These vectors can be regarded as a two-component4� order
parameter, and the transition wave vector q	 coincides with
the representation of one of the single-ray stars �in Kovalev’s
notation�23 of the group D6h

1 : k13�(b1�b2)/3 or k15�(b1

�b2)/3�b3/2. The antiferromagnetic vectors l1
(	) ,l2

(	) can
also be regarded as the nonzero linear combinations of sub-
lattice magnetic moments that determine the transition to the
magnetically ordered phase, the number of sublattices being
equal to three or six, depending on the star (k13 and k15 ,
respectively�, of the transition.

2. In the � and 	 phases �Fig. 2b�

M����rj�� �
k�1

3

lk
��� exp� iqk

���
•rj�

and

M����rj�� �
k�1

3

lk
��� exp� iqk

���
•rj�. �2�

The antiferromagnetic vectors lk
(�) , k�1,2,3 form the three-

component order parameter, corresponding to the star k12

�b1/2 with the three arms

q1
����

b1

2
, q2

�����
b2

2
, q3

����
b2�b1

2
,

and each of the antiferromagnetic vectors corresponds to one
of the arms. Analogously, the vectors lk

(�) , k�1,2,3 corre-
spond to the three-arm star k14�(b1�b3)/2, with the arms

qj
����qj

����
b3

2
.

FIG. 3. Orientation of the direct and reciprocal lattices in the basal plane.
The channel of a possible transition contains only one of the
three arms �i.e., only one of the vectors l1,2,3

(�) is nonzero�, and
in this case the normalization conditions reduce to the rela-
tion (lk

(�))2�M 0
2 �analogously for the � phase�. In practice

the different antiferromagnetic vectors (l1
(�) ,l2

(�) , or l3
(�)) cor-

respond to different domains of the same magnetically or-
dered phase. As to a description in terms of magnetic sublat-
tices, according to the experimental data in the � phase the
number of such sublattices is two �the star k12), while in the
� phase it is four �the star k14).

The star pairs (k13 ,k15) and (k12 ,k14) correspond to the
same antiferromagnetic ordering of magnetic moments in the
basal plane of the crystal but differ in respect of the mutual
orientation of the spins in adjacent planes: parallel for the
stars k12 and k13 , and antiparallel for k15 and k14 . As we
have said above, the majority of experiments done to date do
not permit an unambiguous determination of the type of star
(k13 or k15) that characterizes the magnetic structure in the 	
phase. Contributing to this is the absence of long-range order
in the basal planes themselves, although the short-range or-
der corresponds unambiguously to the Loktev structure �see
Ref. 17�. As to the collinear magnetic structure of the � and
� phases, the spin configurations we have chosen above
agree not only with the direct magnetic measurements21 but
also permit explanation of the observed19 jump of the order
parameter at the �-� transition �see below�. Nevertheless, it
should be kept in mind that a two-sublattice magnetic struc-
ture is also compatible with the lattice of the � phase.

Upon application of an external magnetic field a macro-
scopic moment arises in the crystal. In the exchange approxi-
mation the magnetization vector m transforms according to
the unit irreducible representation, corresponding to the vec-
tor k�0. In the description in terms of a multi-sublattice
model the vector m is equal to the sum of the magnetic
moments of all the sublattices.

III. THERMODYNAMIC POTENTIAL

On the phenomenological level the sequence of magne-
tostructural transitions between low-temperature phases of
solid oxygen can be described on the basis of the Landau
theory of phase transitions, i.e., by analysis of the corre-
sponding thermodynamic potential � �the Gibbs potential in
the presence of external fields and the Helmholtz free energy
in the absence of field�.

In view of the the strong coupling between the magnetic
and structural subsystems of solid oxygen, as internal param-
eters describing the thermodynamic state of the crystal one
can choose the magnetic moment density M(k)(r) (k
�	 ,� ,�), the structure functions �nm �which depend on the
shift vector of the atomic planes�, the specific volume v of
the crystal, and the components of the strain tensor u jk . As
the variables responsible for the phase transitions �primary
order parameter�, besides the magnetic vectors lj

(k) ( j
�1,2,3), we choose the real part of the functions
�01 ,�10 ,� 1̄1 and the relative volume change �v/v , and the
remaining combinations will be assumed to be secondary
order parameters.5� The main parameters responsible for the
phase transitions and the accompanying parameters are listed
in Table II.
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The thermodynamic potential represented as a function
of the internal and external parameters can be written in the
form of a sum of terms �mag and �str which depend only on
the magnetic and only on the structural parameters, respec-
tively, and also a term � int that takes the interaction between
them into account:

���str��mag�� int . �3�

In principle, the thermodynamic potential � contains yet an-
other component associated with the orientation of the oxy-
gen molecules. However, we have not written it down be-
cause it does not directly influence the sequence of
magnetostructural phase transitions under consideration, al-
though by changing from phase to phase �and also with
changes in temperature and pressure� it can contribute to the
observed values of the coefficients of volume expansion, etc.
�see below�.

To take into account the features of the phase transitions
observed in solid oxygen, we write the structure �lattice� po-
tential �str in the form

�str��K2�v ��cos 2�
1�cos 2�
2�cos 2��
1�
2��

�
1

4
K4�cos 4�
1�cos 4�
2�cos 4��
1�
2��

� f �v ,T ��P
�v
v

. �4�

In this expression the quantities 2�
1,2�b1,2•u are propor-
tional to the projections of the shift vector u onto the vectors
of the hexagonal lattice, f (v ,T) is some function of the spe-
cific volume v and temperature T which models the depen-
dence of the internal energy of the crystal on the interatomic
distances, and P is the external hydrostatic pressure.

Expression �4� is in essence an analog of the Landau-
theory expansion of the thermodynamic potential in powers
of the order parameter, which is invariant with respect to the
symmetry operations of the most symmetric of the phases.
However, unlike the orthodox theory, here the expansion is
in periodic functions of the shift vector u �actually in Fourier
harmonics; cf. formula �1��, where it is assumed that the
coefficients K2 ,K4 ,. . . of the expansion fall off in magnitude
with increasing number of the harmonic, so that, as usual, it
is sufficient to keep only the first few terms of the series. In
the limit of small strains, these coefficients can be expressed
in terms of the shear modulus6� c44 and the anharmonicity
constants.

Formula �4� differs from the standard Landau approach
in another way as well. Usually for description of a phase
transition due to a change of temperature, it is sufficient to
assume that one of the expansion coefficients �for example,

TABLE II. Primary and secondary order parameters implementing irreduc-
ible representations of the group D6h

1 of the paraphase.

K2) has a power-law dependence on temperature, while the
other coefficients are assumed constant. For solid oxygen
one can choose the main parameter ‘‘controlling’’ the phase
transformations to be the specific volume v , since both the
value of the exchange magnetic interactions and the interac-
tion between adjacent atomic planes depend substantially on
the intermolecular distances and, as a consequence, on v .
That is the reason why we have assumed that the coefficient
K2 depends on the external parameters indirectly, through
the relative volume change �v/v . From a thermodynamic
point of view, however, the volume itself is an internal pa-
rameter of the crystal, and for establishing the relation with
temperature and pressure the function f has been introduced
in �4�. In spite of the fact that with variation of the external
parameters the specific volume of solid oxygen varies very
strongly and the quantity �v/v certainly cannot be consid-
ered a small parameter, this function can be approximated to
good accuracy by the expression

f � �v
v

,T ��
1

2�T
� �v

v � 2

�
1

�T
� �v

v � �
0

T

	P�T��dT�, �5�

where the ‘‘bare’’ �not including the contributions due to the
phase transitions� coefficient of thermal expansion 	P(T) at
constant pressure and the isothermal compliance �T gener-
ally speaking change on going from one temperature and
pressure range to another,7� and the volume change is reck-
oned from some reference state, e.g., from the state with T
�0, P�0. The presence of an integral in the last term in �5�
is due to the fact that, according to the experimental data, the
coefficient of thermal expansion depends substantially on
temperature. In the limit of a weak dependence 	P(T)
�const, expression �5� agrees with the analogous contribu-
tion to the free energy in the Landau model.30 In an analo-
gous way the coefficient K2 can be assumed to be a linear
function of volume, with a phenomenological coefficient

K2�v ��K0��v

�v
v

.

In expression �4� for the structural contribution to the
free energy of solid oxygen only two of the five independent
parameters governing the finite strain of the crystal �see
above� are taken into account explicitly: the relative dis-
placement vector of adjacent planes, since it determines the
order parameter of the phase transitions 	-�-� , and the rela-
tive volume change, since this parameter is isomorphic to the
external parameters—the temperature and pressure.

When only the exchange interactions are taken into ac-
count, the magnetic energy can be written in the form of a
sum

�mag��J�k13��
j�1

2

� lj
�	��2�J�k12��

j�1

3

� lj
����2

�J�k14��
j�1

3

� lj
����2�m"H, �6�

where J(kj)�0, j�12,13,14 are the Fourier components of
the exchange integral with the corresponding wave-vector
representatives of the stars �see Sec. 2.2�. The last term in �6�
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arises on account of the the interaction of the macroscopic
magnetic moment m with the external magnetic field H.

The phenomenological quantities J(kj) include a contri-
bution from the exchange excitation both between nearest
and, generally speaking, between more remote neighbors in
the basal plane, and also the interlayer exchange. However,
taking into account the experimentally established17 fact that
the exchange interaction between nearest neighbors is domi-
nant, we can assume approximately that J(k12)�J(k13)
�J(k14)�J0 .

The interaction between the magnetic and structural sub-
systems, as we have said, is of a magnetoelastic nature and,
in accordance with the symmetry of the paraphase, is mod-
eled by the potential:

� int���	�
�v
v �

j�1

2

� lj
�	��2�����

�v
v �

j�1

3

� lj
����2

�����
�v
v �

j�1

3

� lj
����2�� �

����� l1
����2 cos 2�
1

�� l2
����2 cos 2�
2�� l3

����2 cos 2��
1�
2��

�� �
����� l1

����2 cos 2�
1�� l2
����2 cos 2�
2

�� l3
����2 cos 2��
1�
2�����

�����uxx�uyy�� l1
����2

�2uxy�� l2
����2�� l3

����2���� �
�����uxx�uyy�� l1

����2

�2uxy�� l2
����2�� l3

����2��. �7�

The coefficients � (k) (k�	 ,� ,�) are responsible for the
volume effect arising at the transition between different mag-
netic phases, while the terms with the coefficients � �

(�) and
� �

(�) are responsible for the magnetoelastic contribution,
which describes the change of the interlayer exchange inter-
action upon a mutual displacement of the basal planes. The
last two terms, with ��

(�) and ��
(�) , describe the result of

Ref. 12 for the dependence of the intraplane exchange inter-
action on the corresponding intraplane shift of the rhombic
strain �see Ref. 12�, uxx�uyy , which lifts the degeneracy of
the intermolecular distances in the basal plane. Unlike the
exchange constants J(kj) introduced above, all of the coef-
ficients of the magnetoelastic interaction that appear in ex-
pression �7� are governed predominantly by the long-range
structural order. For our model it is important that these co-
efficients are substantially different for the collinear �� and �
phases� and triangular �	 phase� magnetic structures.

IV. EQUILIBRIUM PHASES AND TRANSITIONS BETWEEN
THEM

For determination of the thermodynamic equilibrium
phases and the conditions of their stability we use the stan-
dard condition of a minimum of the free energy potential �3�,
namely:

��

�xp
�0, � �2�

�xp�xq
��0 �8�

with respect to the parameters 
1,2 , �v/v , lj
(k) , k�	 ,�; j

�1,2,3 �all denoted xp in Eq. �8��. Here it is unnecessary to
minimize the free energy with respect to the wave vectors of
the magnetic superstructures, since only those of them cor-
responding to the observed magnetic structures have been
taken into account in expression �4�.

Analysis of the expressions appearing in Eq. �3� shows
that the most symmetric state, which in the given case cor-
responds to a hypothetical nonmagnetic paraphase, corre-
spond to zero values of the structural and magnetic param-
eters:


1�
2�0, l1,2
�	��l1,2,3

��� �0. �9�

This unobserved phase will not be considered further.
The less-symmetric 	, �, and � phases, which neverthe-

less preserve the symmetry with respect to twofold rotation
around one of the directions a1�a2 , a1�2a2 , or 2a1�a2 in
the basal plane, correspond to three equivalent sets of param-
eters with

1) 
1��
2 , 2) 
1�2
2 , 3) 2
1�
2 . �10�

In the 	 phase all of the states indicated in �10� are physi-
cally indistinguishable, and the multivaluedness arises be-
cause of additional symmetry of the paraphase—the close-
packed state of two adjacent hexagonal planes can be
obtained with the aid of a shift along any of the directions
indicated above.8�

In the � and � phases the different states �10� correspond
to different structural domains of the same phase, differing
by the direction of the twofold symmetry axis in the basal
plane. For definiteness we shall consider the first of the pos-
sibilities indicated in Eq. �10�, corresponding to the direction
a1�a2 �the other two can be analyzed in the same way�.

For further analysis we write conditions �8� for a mini-
mum of the potential �3� with respect to the variables 

�
2�
1/2 and �v/v in explicit form �the analogous condi-
tions for the magnetic vectors lj

(k) are trivial and are not
shown�:

��

�

�4� sin 2�
�K2�v ��1�2 cos 2�
�

�K4 cos 2�
�1�2 cos 4�
�

�2�� �
���� l1

����2�� �
���� l1

����2�cos 2�
��0;

��

���v/v �
�

1

�T

�v
v

�
1

�T
�

0

T

	P�T��dT��P��v�2 cos 2�


�cos 4�
����	��
j�1

2

� lj
�	��2������I1

����2

������I1
����2�0, �11�

where we have taken into account that in the � and � phases
the magnetic state is determined solely by one antiferromag-
netic vector, l1

(�) and l1
(�) , respectively.

The conditions of stability against small perturbations of
the parameters are obtained from �8�; they have the form



769Low Temp. Phys. 31 (8–9), August–September 2005 E. V. Gomonay and V. M. Loktev
�2�

�
2 �16�2�K2�v ��cos 2�
�2 cos 4�
�

�K4�cos 4�
�2 cos 8�
��2�� �
���� l1

����2

�� �
���� l1

����2�cos 4�
��0;

�2�

�
2 �
�2�

�
���v/v �
�16�2�T

2�v
2 sin2 2�
�1

�2 cos 2�
�2, �T�0. �12�

A. � phase

It is seen from Eqs. �11� that the possible equilibrium
values of the order parameter 
 depend on the type of mag-
netic ordering realized in the crystal. In particular, if it is the
triangular Loktev magnetic structure, described by the vec-
tors l1,2

(	) , with (l1
(	))2�(l2

(	))2�M 0
2, and l1

(�)�l1
(�)�0, then

the first of Eqs. �11� has the solution 
�1/3, corresponding
to the 	 phase, in which the adjacent planes are shifted rela-
tive to each other by (a1�a2)/3. The stability of this phase
with respect to the long-wave shear vibrations and hydro-
static pressure is determined by the relation

Keff��v� �
0

T

	P�T��dT���TP��0; K4�0; �T�0,

�13�

where for convenience we have introduced the effective con-
stant

Keff�K0�K4�
3

2
�T�v

2��T�v��	�M 0
2. �14�

Since, as will be seen from the following, �v�0, the stability
conditions �13� are strengthened with increasing temperature
and weakened with increasing pressure; taken all together,
this is in complete agreement with the observed existence
region of the 	 phase �see Ref. 17�.

The appearance �in comparison with the paraphase� of a
nonzero order parameter leads to a lowering of the symme-
try: the rotations about the sixfold axis vanish, while the
rotations about the threefold axis, which are weighted by the
operation of translation by the lattice vector a1�a2 in the
basal plane, remain. Of the order parameters corresponding
to the transition, only those appear which transform accord-
ing to the irreducible representation Ag1 , i.e., hydrostatic
�isomorphic� compression-extension in the basal plane �the
parameter uxx�uyy) and the change of the interplane dis-
tances �determined by uzz).

The important characteristic of the 	 phase is the tem-
perature and pressure dependence of the relative volume
change of the crystal:

�v
v

�T ,P �	
	

��
0

E

	P�T��dT���TP��T��	�M 0
2

�
3

2
�T�v . �15�

The linear dependence of the specific volume on P is
observed experimentally17 over a wide range of pressures, as
can be seen, for example, in Fig. 4. A comparison with ex-
periment also allows one to determine the dependence
	P(T). For example, on the basis of an analysis of the data
of Ref. 6, at atmospheric pressure

	P�T ��
 1.6•10�4 1/K, T�11 K,

6.66•10�5T�5.72•10�4 1/K, 11

K�T�43.5 K.

�16�

B. � phase and the �-� transition

If the magnetic structure of the crystal is two-sublattice,
with �l1

(�)��M 0 , then Eqs. �11� have a solution with an order
parameter that, depending on the external parameters, lies in
the range 1/3�
�1/2, corresponding to the � phase. The
value of 
 is determined by the following equation, which is
written for convenience in terms of the variable ��1
�2 cos 2�
, which from a macroscopic point of view can be
considered to be the order parameter of the phase transitions
examined below, since its value in the 	 phase is equal to
zero:


 Keff��� �
�����T�v���	��������M 0

2

��v� �
0

T

	P�T��dT���TP � � ��
3

2
K4�2

�
1

2
�K4��T�v

2��3�� �
���M 0

2. �17�

The structural stability of the � phase with respect to varia-
tion of 
 is then determined by the condition

Keff��v� �
0

T

	P�T��dT���TP � �K4�2� �
���M 0

2

��T�v��������	��M 0
2, �18�

and the energetic favorability, by the inequality

FIG. 4. Pressure dependence of the relative change of the specific volume at
room temperature. The points are experimental,17 the solid line is a linear
approximation with the coefficient �T�0.27�10�11 cm3/dyn.
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����	��
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2�
1

2
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1

8
�K4��T�v

2��4

�� �
���M 0

2� ��
1

2
�2��

1

2�T
� � �v

v �
	

2

�� �v
v �

�

2 ��0, �19�

which can be inferred from a comparison of the thermody-
namic potentials of the two phases at fixed values of the
external parameters �cf. Ref. 12, where similar relations were
written for the case T�0, P�0). The sign of the quantities
on the right-hand side of inequality �18� are in essence de-
termined by the interplay of several constants and can be
positive or negative. According to our estimates �see Table
III�, the last term on the right-hand side is negligible, and the
first two terms are positive. Thus inequality �18�, which de-
termines the stability region of the � phase, is not incompat-
ible with �and is even weaker than� the existence condition
of the 	 phase �Eq. �13��. In other words, the two phases can
coexist in a certain interval of temperature and pressure.

What, then, leads to the observed �-	 transition in the
framework of the phenomenological description?

As we see from Eq. �17�, the ‘‘driving force’’ of this
transition, analogous to an ‘‘external field,’’ is the possibility
of lowering the free energy by a change of the magnetic
structure, specifically: owing to the term � �

(�) due to the
collinear magnetic ordering, the solution with ��0, corre-
sponding to the 	 phase, vanishes on the right-hand side of
this equation. Since, when the collinear magnetic order is
‘‘switched on,’’ the ‘‘driving force’’ immediately takes on
some finite value, the �-	 transition must inevitably occur as
a first-order transition �although close to second-order in the
Landau classification�. From a physical standpoint the fact

TABLE III. Values of the main phenomenological coefficients.
 that this magnetostructural transition is close to second-order
is apparently due to the fact that the ‘‘heavy’’ �inertial�
subsystem—the molecular lattice—can undergo an �-	
transformation continuously. However, it does not occur be-
fore the initiation of a jumplike rearrangement of the mag-
netic ordering of the ‘‘easy’’ spin �and hence, electronic� sub-
system of the oxygen. We note that the scenario of a smooth
�-	 transformation was set forth in Ref. 17.

Here it should be emphasized that the isolation of the
role of magnetic interactions in the �-	 transition is of a
conventional character. Actually there is a simultaneous
change of the crystalline �a shift and straining of the basal
planes� and magnetic �transition from the noncollinear to the
collinear structure� subsystems caused by the energetic fa-
vorability of the new state. There is no doubt that an impor-
tant role in this transformation is played by the specific vol-
ume change, which in the � phase is described by the
expression

�v
v

�T ,P �	
�

�
�v
v

�T ,P �	
	

��T��������	��M 0
2

�
1

2
�T�v�2, �20�

where (�v/v)	 is given by formula �15�. It is seen that at the
transition to the � phase the specific volume of the crystal
should decrease in a jump �both terms on the right-hand side
are negative�. This decrease is due to both the difference of
the magnetoelastic volumes effects in the � and 	 phases
�the second term in �20�� and to the incipient shift of the
basal planes �the last term�.

It is seen from an analysis of expression �7� and Table II
that the appearance of ��0 due to the change of the mag-
netic structure �the appearance of l1

(�)�0) also leads to
straining of the basal plane �described by the quantity uxx

�uyy), but a treatment of the corresponding effects is be-
yond the scope of this paper.

Furthermore, the specific volume v actually causes the
effective exchange interaction constants Jeff �i.e., the coeffi-
cient of M 0

2, which in the given model determines the stabil-
ity of the magnetic subsystem and the value of the magnetic
susceptibility� to depend on the external parameters. We note
that in the model adopted �see formulas �4� and �5�� the
influence of temperature and pressure are equivalent. How-
ever, for definiteness, in considering the �-	 transition we
shall treat temperature as the control parameter, assuming the
pressure to be fixed and equal to atmospheric. The features
of the �-	 transition arising at other values of the external
pressure are discussed below in Sec. 4.3.

The linear character of the dependence Jeff(v) is con-
firmed, for example, by the the experiments of Refs. 6 and
24, the results of which were used to construct the plots of
the inverse magnetic susceptibility �actually JeffM0

2) as a
function of the specific volume change of the crystal in the �
and 	 phases �at atmospheric pressure� in Fig. 5. In accor-
dance with expressions �6� and �7� and with the assumptions
made above as to the short-range character of the intraplane
exchange interaction, we have for the effective exchange
constant
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Jeff�
 J0�� �
��� cos 4�
������v/v , ��O2 ,

J0���	��v/v , 	�O2 .
�21�

Approximating the experimental data according to �21� al-
lows one to estimate the values of the constants appearing in
it �see Table III�. The corresponding value of the ‘‘bare’’
exchange interaction J0M 0

2�3�108 erg/cm3, which, with
allowance for the value of the saturation magnetization M 0

�133 G �calculated from the data of Ref. 6�, gives an esti-
mate for the spin-flip field of the order of 230 T, in complete
agreement with the value 227 T given in the review.17

From relations �21� and Fig. 5 it is clearly seen that a
change of the magnetic structure can occur only with a si-
multaneous change of the crystal structure. For example, it is
obvious that at certain values of the external parameters the
spin coefficient that corresponds to the larger �in absolute
value� effective exchange interaction constant is realized,
since here �2�/�M 0

2�0. Hence on the basis of formula �21�
we obtain the condition of stability of the collinear magnetic
structure corresponding to the � phase:

��������	��
�v
v

�� �
��� cos 4�
�0, �22�

where the relative change of volume is driven by expression
�20�. Inequality �22� holds in the case when the order param-
eter 
 exceeds a certain critical value


�
cr�
3

8
�

��������	��

4�� �
���

�v
v

. �23�

Thus the transition to the � phase is possible only when
conditions �18� and �22� are satisfied simultaneously. The
first condition means that the lattice is ‘‘soft’’ enough to shift
the required amount under the influence of the comparatively
small magnetic forces, and the second means that during
such a rearrangement of the lattice the exchange interactions

FIG. 5. Dependence of the inverse magnetic susceptibility on the relative
volume change, constructed according to the data of Refs. 6 and 24. The
solid lines are the theoretical curves calculated according to formula �21�
with the parameters J0M 0

2�2.54�108 erg/cm3, � (	)M 0
2�0.82

�109 erg/cm3, � (�)M 0
2�8.2�109 erg/cm3.
favor the onset of a two-sublattice �type �� and not three-
sublattice �type 	� magnetic structure. Because of the pres-
ence of this mutual influence of the magnetic and lattice
subsystems, the phase transition is, as we have said, decid-
edly first-order: the relative displacement of the close-packed
planes varies in a jump from 
�1/3 �in the 	 phase� to 

�
cr �in the � phase�. The point at which this phase transi-
tion occurs at fixed external parameters is determined from
the condition of equality of the thermodynamic potentials
�see Eq. �19��.

The temperature dependence of the order parameter �
introduced in Eq. �17� and calculated according to that for-
mula is shown in Fig. 6 by the solid curve. The values of the
phenomenological constants �see Table III� were determined
mainly from the dependence of the lattice parameters on
pressure �from the data of Ref. 19�, and the coefficient of
thermal expansion was calculated from the empirical relation
�16�. The points show the same dependence constructed ac-
cording to the values6 of the lattice constants.9� It is seen that
the calculated dependence correctly reflects the character of
the decline of the order parameter with temperature. The
transition to the � phase occurs at the value 
�0.367, which,
it must be acknowledged, is in fair agreement �considering
the substantial error that unavoidably arises in the calculation
of the order parameter� with the value 
cr�0.376 calculated
according to formula �23�. It should be noted, however, that
the range of variation of the order parameter in the � phase is
substantially less than its absolute value, as is seen in the
inset of Fig. 6.

The temperature dependence of the relative change of
the molar volume calculated according to formulas �15�,
�20�, and �16�, is shown in Fig. 7. The points are experimen-

FIG. 6. Temperature dependence of the order parameter ��1�2cos 2�
,
calculated according to the values of the lattice constants from Ref. 6
�points�. The arrow indicates the temperature of the �-	 transition. The solid
line is the result of a calculation according to formulas �17� and �16�. The
inset shows the same dependence, which shows the range of variation of �
in the � phase.
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tal data.6 The dashed line shows the extrapolation of the
curve for the 	 phase into the low-temperature region ac-
cording to formulas �15� and �16�; this corresponds to the
thermal expansion of the lattice if the rearrangement of the
lattice at the phase transition is not taken into account.

As is seen from a comparison with experiment, the pro-
posed model satisfactorily describes the main features of the
observed phase transformation—the jump of the specific vol-
ume and the nonlinear dependence on temperature in the
transition region.

We note another important circumstance. A symmetry
analysis based on the model developed indicates that the �-	
transition should be first-order, since a fundamental rear-
rangement of the magnetic structure occurs �a transition from
three-sublattice to two-sublattice; see above�. Nevertheless,
from an experimental point of view the �-	 transition can be
first- or second-order,17 since the heat of transition is small
�not more than 100 J/mole, which when expressed per unit
volume comes out to 5�107 erg/cm3). However, the evi-
dence pointing to a first-order transition comes not only from
qualitative but also from quantitative arguments. For ex-
ample, it follows from expression �19� that the difference of
the thermodynamic potentials of the � and 	 phases is deter-
mined by the difference of two contributions which are close
in value: a positive contribution due to the jump of the spe-

FIG. 7. Temperature dependence of the relative change of the specific vol-
ume �at atmospheric pressure�. The points are experimental, the solid curve
shows the approximation according to formulas �15�, �20�, and �16�. The
dashed curve is the extrapolation of the dependence for the 	 phase into the
lower-temperature region. The inset shows the change of the molar volume
on cooling in the vicinity of the �-	 transition point �according to the data
of Ref. 25�. The solid curve is an approximation with a single fitting param-
eter, 	P(T)�3.0�10�3 1/K.
cific volume �the last term in �19��, the value of which at the
transition point (T�23.5 K,P�0) equals 8�107 erg/cm3,
and a negative contribution due to the appearance of the
order parameter �all the other terms�, the value of which is
5�108 erg/cm3. Since the estimation of all the phenomeno-
logical parameters is rather crude �not better than 10%�, the
heat of transition thus obtained corresponds to an upper
bound on the experimentally observed values.

Another argument in favor of a first-order transition is
the coexistence region of the � and 	 phases predicted by the
model, and the consequent possibility of hysteresis effects.
The inset in Fig. 7 shows the change of the molar volume on
cooling in the vicinity of the �-	 transition point, plotted
according to the data of Ref. 25. The solid curve corresponds
to the theoretical approximation with a coefficient 	P(T)
�3.0�10�3 1/K and, apparently, it is precisely in the coex-
istence region �where the theory of phase transitions is tech-
nically correct� that the � phase is described by the same
phenomenological parameters as the 	 phase. On further de-
crease of temperature the value of the coefficient of thermal
expansion 	P(T) changes substantially; this cannot be inter-
preted in the given model.

C. � phase and phase transitions under pressure

Equation �11� has yet another ‘‘crystalline’’ solution,
which formally does not depend on the type of magnetic
ordering. If 
�1/2 �or ���1) then the crystal structure
corresponds to the �orthorhombic� � phase, in which the mol-
ecules in every alternate basal plane lie directly above one
another �see Fig. 1f�. Also entering the stability condition of
the � phase are the constants determining the magnetoelastic
interactions �cf. Eq. �18��:

Keff��v� �
0

T

	P�T��dT���TP � �K4�2� �
���M 0

2

��T�v��������	��M 0
2. �24�

Analysis of Eqs. �17�, �11� and condition �24� shows that
there are two ways of getting to the � phase in solid oxygen:
directly from the 	 phase �through rearrangement of the
magnetic structure�, and from the � phase �through a gradual
shift of the close-packed planes�. The parameter that deter-
mines which of these paths is realized for given values of the
pressure and temperature is again the specific volume of the
crystal, the relative change of which �relative to the state
with T�0, P�0) is equal to

�v
v

�T ,P �	
�

�
�v
v

�T ,P �	
	

��������T��	��M 0
2

�
1

2
�T�v . �25�

Indeed, as we have said, the 	 phase loses stability be-
cause of a change of the magnetic structure. In turn, the
collinear magnetic ordering becomes energetically favorable
to the Loktev structure only when condition �23� is satisfied.
In other words, the value of the basal plane shift that arises
simultaneously with the collinear magnetic structure must
again exceed a certain critical value that depends on the
value of the specific volume. At low pressure and low tem-
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peratures the value of the critical shift 
cr lies in the range
3/8�
cr�1/2, and the unstable 	 phase transforms only to
the � phase. However, with increasing pressure an increase
of the negative volume change occurs10� �see Eqs. �15� and
�25�� and, accordingly, 
cr grows to a limiting value of 1/2
after the stimulated transition from the 	 phase to the � phase
occurs under the influence of the magnetic interaction and
the magnetic rearrangement. This transition, like the �-	
transition, is first-order and should be accompanied by the
release of heat �cf. the analogous expression for the � phase,
Eq. �19��:

����	��
1

2
Keff�

5

8
K4�

1

8
�T�v

2�
1

2
� �

���M 0
2

�
1

2�T
� � �v

v �
	

2

�� �v
v �

�

2� . �26�

Let us now consider the question of how the �-� transi-
tion occurs. Analysis of Eq. �17� shows that the value of the
order parameter �i.e., the shift vector� depends substantially
on the pressure. This fact is illustrated in Fig. 8, which shows
the pressure dependence of � at T�19 K �the corresponding
values of the phenomenological parameters11� are given in
Table III; �T�0.75�10�11 cm/dyn). It is seen that an in-
crease of pressure causes a gradual �but not small� shift of
the close-packed planes. When the limiting value 
�1/2 is
reached, the symmetry of the crystal increases to orthorhom-
bic. This also corresponds to the transition to the � phase.

The critical pressure above which the symmetry of the
lattice no longer changes12� is calculated as 9 GPa. Generally
speaking, such a transition could occur as a second-order
transition, since �under the condition that the magnetic struc-
ture of the � and � phases is identical� the two phases are
found in a subgroup relationship, and the order parameter
can vary in a continuous manner.

FIG. 8. Pressure dependence of the order parameter ��1�2 cos 2�
 at
T�19 K �points�, calculated using the values of the lattice constants from
Ref. 19. The solid curve is the theoretical approximation calculated accord-
ing to formula �17�. The dashed line shows the region of the transition
between the � and � phases.
The experimental data19 plotted in Fig. 8 show, however,
that in reality the pressure-induced transition from the � to
the � phase occurs earlier, at a pressure of �6.5– 7 GPa �the
transition region is denoted in the figure by the vertical
dashed line�, and the order parameter changes in a jump at
that point. Such behavior of the parameter � permits the
assertion that, in accordance with the observations,21 the
magnetic structure of the � phase, although collinear, is dif-
ferent from that of the � phase �see Sec. 2.2�. Formally it
follows from this that the corresponding magnetoelastic in-
teraction constants (� (�),� (�),� �

(�) ,� �
(�)) in the two phases

are different. The condition for loss of stability of the collin-
ear two-sublattice structure containing the � phase, accord-
ingly, has a form analogous to expression �22�:

�����������
�v
v

�� �
��� cos 4�
�� �

����0, �27�

which gives the estimate � �
(�)��3�109 erg/cm3.

The jumplike character of the �-� transition at high pres-
sures is also discernable on the pressure dependence of the
relative volume change shown in Fig. 9. The theoretical
curve �solid line� calculated according to formulas �25� and
�15� gives good agreement with the experimental data19

�points� up to 6 GPa, after which a significantly smoother
dependence of �v/v(P) is observed.

Thus the �-� transition occurs as a first-order phase tran-
sition. The cause of this, as for the transition between the �
and 	 phases, is a rearrangement of the magnetic structure of
the crystal from two collinear sublattices to four.

V. PHASE TRANSITIONS IN THE PRESENCE OF EXTERNAL
MAGNETIC FIELD

As we have said more than once, an important role in the
sequence of transitions between the �, 	, and � phases of
solid oxygen is played by the magnetic interaction. This

FIG. 9. Pressure dependence of the relative change of the specific volume at
T�19 K, calculated according to the values of the lattice constants from
Ref. 19. The solid curve is the theoretical approximation calculated accord-
ing to formula �20�. The dashed line shows the region of the transition
between the � and � phases.
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naturally raises the question: Can these transitions be con-
trolled by applying to the crystal an external magnetic field
sufficient to alter the magnetic structure of the crystal?

Since all three of the phases of solid oxygen ��, 	, ��
discussed in this paper �in the absence of external magnetic
field� are compensated antiferromagnets, the application of
an external magnetic field will lead, first, to a change of the
absolute value of the antiferromagnetic vector. Taking into
account the normalization conditions l2�m2�M 0

2 �l is one
of the antiferromagnetic vectors introduced above, in the �
or � phase� and (l1

(	))2�(l2
(	))2�m2�M 0

2, and also the re-
lation m�H/HE �m is the magnetization, HE�227 T is the
collapse field7�, it is easy to obtain expressions for determin-
ing the order parameter and the phase equilibrium conditions
in an external field. For this one should make the following
substitution in all the formulas obtained previously:

M 0
2→M 0

2� 1�
H2

HE
2 � .

Thus the magnetic field, as it were, decreases the ‘‘driv-
ing force’’ �see expression �17�� that leads to a shift of the
basal planes, but it also influences the phase stability condi-
tions �expressions �18� and �24�� and the value of the specific
volume �expressions �15�, �20�, and �25��. In particular, as an
analysis of Eq. �17� shows, the application of a field in the �
phase can lead to an additional shift of the basal planes ‘‘in
the direction’’ of the � phase �i.e., to an increase of 
�. The
corresponding curves of the order parameter and specific vol-
ume as a function of external field for different values of the
external pressure (T�19 K), calculated according to for-
mula �17�, are shown in Fig. 10. It should be emphasized that
the curves shown are more of a qualitative character, since
because of the lack of data they do not take into account the

FIG. 10. The value of the order parameter ��1�2 cos 2�
 �a� and relative
change of the specific volume �b� as functions of the crystal magnetic field
at P�0 ���, 2 ���, and 5 �*****� GPa. Temperature T�19 K; spin-flip
field 227 T.
contribution to the change in specific volume from the ap-
pearance of a mean magnetic moment. Nevertheless, even on
the basis of the available data one can conclude that �in any
case, in a defectless crystal� the field dependence of the spe-
cific volume should be only of a quadratic character. Further-
more, it can be assumed that at high enough pressures, close
to the region of the transition to the � phase, the �-� struc-
tural transition can also be induced by a field �the proposed
phase transition point at P�5 GPa is indicated by an arrow
in Fig. 10�.

The application of a magnetic field at P�0 can lead to a
thermomagnetic effect: specifically, a shift of the temperature
of the 	-� transition by an amount

�T�
� �

���M 0
2�1���

�v	P�T �� � H

HE
� 2

, �28�

which at a field H�20 T should amount to around 2 K.
Interestingly, according to the model, a magnetic field should
shift the transition point to higher temperatures, i.e., it seem-
ingly should broaden the existence region of the 	 phase
according to the predictions of Ref. 31, which were based on
an analysis of the magnon spectrum. However, as is seen
from Eq. �17�, the term of a magnetic nature (� �

(�)M 0
2) to-

gether with the temperature and pressure renormalizes the
constant Keff , which determines the stiffness of the crystal
with respect to the magnetic ‘‘driving force.’’ Ultimately, the
sign of �T is determined by the balance of the two tenden-
cies indicated, specifically, the weakening of the exchange
interaction responsible for the antiparallel ordering of the
magnetic moments in the external field and the increase of
the compliance of the lattice with respect to a shift of the
close-packed planes. Nevertheless, the precise behavior of
the lines of phase transitions and their dependence on the
external parameters can be established only experimentally.
The possibilities of both the microscopic and the phenom-
enological approaches still remain limited.

It is also not ruled out that the external magnetic field
can have a noticeable influence on the value of the shear
modulus �and, as a consequence, on the velocity of trans-
verse sound�, which is determined by the constant Keff , but
the discussion of that question is beyond the scope of this
paper.

6. CONCLUSION

In this paper we have analyzed on the basis of a phe-
nomenological model the phase stability conditions and the
conditions for phase transitions between different magneto-
crystalline structures of solid oxygen over a wide range of
pressure, temperature, and external magnetic field.

We have shown that the sequence of observed transitions
between the �, 	, and � phases can be described with the use
of a single structural order parameter—the shift vector of
two adjacent close-packed basal planes. As the main param-
eter that determines the dependence of the value of the shear
vector on the external thermodynamic parameters—the tem-
perature and pressure—one can use the specific volume of
the crystal �or, from a microscopic point of view, the change
of the intermolecular distances�, the change �v of which can
be rather large (�v�v).
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The character of the magnetic ordering also has a sub-
stantial influence on the crystal structure. For example, it
follows from an analysis of the conditions for a minimum of
the thermodynamic potential that collinear ordering is com-
patible only with the crystal structure of the � and � phases.
Furthermore, the value of the shift vector is also influenced
by the character of the collinear magnetic ordering �two- or
four-sublattice�. The substantial dependence of the structural
parameter on the character and form of the magnetic struc-
ture is what makes it so that the phase transitions between
the 	 and � phases and between the � and � phases can
occur only as first-order transitions, accompanied by a jum-
plike change of the value of the shift vector13� and also of the
specific volume and other observables, e.g., the lattice pa-
rameters, the energies of the different elementary excitations,
etc.

Since the ‘‘driving force’’ of the structural transforma-
tions considered is necessarily a change of the magnetic or-
dering, then we assume that an external magnetic field, by
changing the mutual orientation of the spins, can �and
should� also lead to a change of the crystal structure. In
particular, the proposed model predicts a change of the mag-
nitude of the shift vector and a displacement toward the �
phase on the phase diagram upon application of magnetic
field �and pressure� to a crystal found in the � phase. One
also expects a noticeable change of the specific volume in a
magnetic field, and the character of this dependence should
be quadratic. It is not ruled out that the application of mag-
netic field can lead to displacement of the temperature of the
�-	 transition, but the lack of available experimental data
does not permit an unambiguous determination of whether
this displacement is to higher or lower temperatures.

As we have demonstrated, the proposed approach allows
one on a qualitative and, under certain conditions �semi-
�quantitative level to describe and systematize the rather
large amount of experimental material that has been accumu-
lated to date concerning the properties of solid oxygen. How-
ever, the domain of applicability of the model is restricted, at
minimum, by the assumptions that a number of parameters
remain unchanged or change little, and also by the fact that
the values of the phenomenological coefficients used are
only estimates and not rigorous quantitative values, and, pos-
sibly importantly, we have neglected effects due to the
change of the mutual orientation of the oxygen molecules.
Another important circumstance that can limit the applicabil-
ity of the phenomenological model is its independence of the
dimensionality of the crystal, since the model is essentially
based on the self-consistent field theory. At the same time, it
is well known that at least the magnetic characteristics of
solid O2 are close to two-dimensional, and that requires a
certain care, especially for the description of phase transi-
tions �see Ref. 17�. The satisfactory agreement obtained
above between the calculated and observed parameters asso-
ciated with the volume change for practically all the low-
temperature phases of solid O2 is apparently due to the phe-
nomenological allowance for the temperature dependence of
the coefficients of volume thermal expansion, which most
likely implicitly include the contribution of correlation ef-
fects.

On the whole, one can say that the phenomenological
approach first proposed by Landau for the description of an-
tiferromagnetically ordered systems remains applicable for
such an unusual object from the theoretical and experimental
standpoints as solid oxygen, where the coupling of the mag-
netic and elastic subsystems in principle cannot be neglected.
Therefore the Landau phenomenological theory requires a
certain modification due to the fact that the value of the
relative shifts of the crystal �basal� planes is not small. In this
paper we have attempted to go beyond the standard Landau
theory, which relies on the smallness of the order parameter
and, in particular, the linear theory of elasticity, and to de-
scribe the properties of the antiferromagnetic phases of solid
oxygen arising under the influence of high pressures.

We are sincerely grateful to Yu. A. Freiman for acquaint-
ing us with the content of his review article17 prior to its
publication; that was the stimulus for our studies. Freiman
made a number of concrete critical comments that helped us
state the results presented above in a more precise way. This
work was done partially as part of a plan of scientific re-
search of the National Technical University of Ukraine
‘‘Kiev Polytechnical Institute’’ �State Registration No.
N105U001280�. One of us �E.V.G.� thanks A. A. Maly-
shenko for financial and technical support during the perfor-
mance of this study.
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1�We note that this requirement differs from the condition of translational

invariance of the crystal as a whole, since we are talking about the relative
shift of only two planes, while the position of the others remains un-
changed.

2�The idea of choosing a periodic function of the shift vector as the order
parameter was put forth in Refs. 26–28.

3�Nonuniform shifts of this type usually give rise to the so-called polymor-
phic structures,29 the best-known example of which is the case of the fcc
and hcp lattices, with layer alternations of ABCABC . . . and ABAB . . . .

4�In the exchange approximation, with accuracy up to rotations of the mag-
netic moments relative to the crystallographic axes.

5�This is meant in the sense that the appearance of the order parameter
responsible for the transition entails the appearance of parameters propor-
tional to it which transform according to the same irreducible representa-
tion.

6�The shear modulus is defined by the value of the second derivative of the
potential �str with respect to the vector u, taken at the equilibrium value of
the latter.

7�Such a dependence of the phenomenological coefficients in the case of
solid oxygen can be due to both anharmonicity of the intermolecular in-
teraction potential and to dependence on the orientation and degree of
overlap of the electron shells of the oxygen molecules. The latter circum-
stance can turn out to be important at high pressures.

8�This degeneracy is lifted if the interaction of planes farther apart than
nearest neighbors is taken into account.

9�The value of 
 was calculated from the experimental data as follows: 

�c•cos 	/a, where the quantities a ,b ,c , 	 specify the monoclinic lattice
of the � phase.

10�We note that in solid oxygen the specific volume changes very strongly;
for example, at T�19 K and P�0 one has v�20 cm3/mole, while at
P�7 GPa, v�14 cm3/mole.

11�The values of the coefficients Keff , K4 , � �
(�) were determined by approxi-

mating the experimental data19 by the theoretical dependence �17�, while
�T and �v were obtained by approximating the dependence of the specific
volume on the external pressure according to formulas �20� and �25�.

12�We note that a further shift of the basal planes in the same direction would
lead to a lowering of the symmetry and to a ‘‘retro’’ �from a symmetry
standpoint� transition to the � phase.

13�If it were possible to ‘‘turn off’’ the magnetic interactions that lead to
antiferromagnetic order in the solid oxygen crystal �e.g., on account of
spin-flip of the magnetic sublattices in an external field�, then the phase
transitions mentioned could in principle also occur as second-order tran-



sitions, with a smooth change of the shift vector.
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INTRODUCTION

In a recent article in which he summarizes his remark-
able career and his many seminal contributions to our under-
standing of optical properties of the condensed phases,1 Don
McClure writes:

...But I was an unreconstructed academic and re-
turned to academic life after receiving an offer from the
University of Chicago in 1962. There, among other
things, we built a pulsed magnet capable of producing
fields of 20 T and saw the Zeeman effect in the triplet
states of organic molecules.

More interesting though was the effect of these high
fields on the absorption spectrum of MnF2 and similar
transition metal compounds whose thermodynamic
properties Willard Stout had been studying. We found
that some of the spectra lines were split in the field as
expected, but that others were not—a surprise which
could be explained in terms of the antiferromagnetic
structure of the crystal. While we were learning that
there were such things as magnons as well as excitons
in these crystals, a group of students of Art Schawlow
at Stanford published a paper on the spin-wave side-
bands �magnon side bands� of MnF2 . We were in sec-
ond place again but our paper nicely confirmed their
interpretation. We never learned why they picked up
MnF2 just when we did . . . .

The paper McClure alludes to concerned the first obser-
vation of a magnon-induced sideband in a magnetically or-
dered material.2 The identification of these sidebands by a
pair of young students and two post-docs illustrates how ser-
endipity, a touch of good luck and reckless youthful enthu-
siasm often plays a role in scientific discovery. In this article,
we describe the events that led to these developments in the
hope that they will answer McClure’s curiosity on this sub-
ject.

THE STANFORD HANSEN MICROWAVE LABORATORY

The authors became acquainted with each other at Stan-
ford in the Fall 1962; at that time, one of us �RMW� was in
midst of his PhD thesis work in Marshall Sparks’ theory
group while the other �WMY� had just joined Art
Schawlow’s group in spectroscopy as a Research Associate.
7771063-777X/2005/31(8–9)/3/$26.00
Schawlow had arrived earlier in the year at Stanford from
Bell Labs and was assigned temporary lab space in the
Hansen Microwave Lab and began establishing those pro-
grams which were later to be recognized with a Nobel Prize.
The Microwave Lab was housed in a ‘‘temporary’’ building
dating from the Second World War and the lab was ex-
tremely crowded; the forced contact in these close quarters
led to considerable socialization between members of the six
or seven different research groups utilizing Hansen and re-
sulted in some beneficial interactions, as exemplified by our
discovery of magnon sidebands.

Schawlow’s interests at the time centered on the optical
properties of various dopants in insulating solids which
could be used for solid state lasers. Yen and other members
of the group were given the task of understanding the ther-
mal dependence of the widths and positions of the sharp line
spectra of transition metals and rare earths in solids. These
studies resulted in a number of publications in which the
thermal broadening and shifts of the spectra were identified
as arising from phonon-ion interactions. Of significance to
this article, in Imbusch et al.,3 the isotope shifts of the Cr3�

R-lines in Al2O3 and MgO were related to changes in the
phonon frequencies induced by the differences in the masses
of the hosts and the reflection of these changes in the phonon
sideband structure. In addition, in Yen et al.,4 observation of
phonon sideband structure was first reported for a rare earth
based material (3H4 to 3P0 absorption of LaF3 :Pr3�).

White’s thesis involved extending Suhl’s theory of spin-
wave instabilities in ferrites to antiferromagnets. Although
the magnetic properties of antiferromagnets had been de-
scribed by Néel in 1932, at that time they were more of a
curiosity than a material with technological applications as
were the ferrites. This is not the case today where antiferro-
magnets play a critical role in providing the giant magnetore-
sistance �GMR� so important in magnetic recording heads.
White’s thesis also explored the possibility of phonon insta-
bilities which developed his appreciation for analogies be-
tween magnons and phonons.

THE VARIAN LABS AND THE OASIS

The new Physics Building at Stanford, the Varian Build-
ing, was finished in 1963 and Schawlow’s spectroscopy
group moved over from Hansen. At that time, it was custom-
© 2005 American Institute of Physics
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ary for a group of us Physics graduate students and post-docs
to stop for a night cap at a local watering spot �‘‘The Oasis’’
or affectionately ‘‘The O’’� following our usual late evenings
at the lab; there normally would be a whole table reserved to
accommodate us and both authors were frequent attendees of
these gatherings. The topic of conversation at them was wide
ranging, even including physics problems at times! On one
of these gatherings, about the time the two publications men-
tioned above were submitted, a discussion on phonon-
induced sidebands arose during which White first raised the
possibility of observing a magnon-induced sideband; our dis-
course then shifted to the practicality of observing such a
feature in magnetically ordered materials and on the appro-
priate materials which would allow the observation of these
assisted transitions. The first requirement, of course, was that
the material possess good optical properties and secondly
that its crystalline and magnetic properties be well character-
ized. At that time there were no obvious ferromagnets with
the desired optical properties.

Eventually, White settled on the antiferromagnet, MnF2 ,
which was being investigated at Bell Labs from the reso-
nance point of view and whose magnetic properties had been
established. In fact, Vince Jaccarino once refered to MnF2 as
the ‘‘fruit fly’’ of magnetics research. It is reasonably trans-
parent and has a Néel temperature that is not too low. In
addition, the room temperature spectra of the Mn2� in MnF2

had been determined by Stout.5

The ‘‘luck’’ we referred to above also had to do with
selecting MnF2 . MnF2 has the rutile crystal structure, which
does not have a center of symmetry between Mn pairs. It is
these pairs that are excited in the sideband. This lack of
symmetry enables a relatively strong electric dipole transi-
tion, without which this effect might not have been observ-
able. This was subsequently pointed out by Tanabe et al.6

White actually purchased a sample of MnF2 using his
advisor’s theory funding to launch this exploration. Crystals
and boules of MnF2 were also listed as available in a cata-
logue from SemiElements, a small company in Pennsylvania.
We purchased a whole boule from this company; though we
later obtained samples from Howard Guggenheim �Bell
Labs� and from Bob Feigelson �Stanford�; curiously, the
samples derived from this boule proved to be the best
samples we ever investigated. We never learned the origin of
the boule as SemiElements went out of business soon after.

Samples in different orientations, �, �, and � were cut
from the boule, and initial surveys of the absorption spectra
were done at low temperature using a photographic B&L
spectrograph. Initial results were first reported at the 1963
APS Winter Meeting in Berkeley;7 in that paper, we first
reported sharp structure in the vicinity of the first two excited
states of Mn2� (4T1g and 4T2g) and very strong absorptions
in the 4A ,4E region, but no clearly identifiable magnon-
assisted transitions. The paper attracted very little attention,
but the preliminary results were encouraging enough to war-
rant continued interest on our part. Our activities attracted
the attention of three members of the Schawlow group, ini-
tially Warner Scott and then Darrell Sell and Rick Greene;
we began an earnest effort to obtain high resolution, low-
temperature spectra of MnF2 using a scanning spectrometer
and electronic detection in the winter of 1964.
1964 was an exceptional active year for both the authors.
White had obtained an NSF postdoctoral fellowship and

had joined C. Kittel’s group at UC Berkeley. Again guided
by analogy with phonon sidebands he developed a theory for
the shape of the magnon sideband. This characteristic asym-
metric line shape became critical in the subsequent identifi-
cation of the sideband in experimental data.

Yen, on the other hand, had begun a program to investi-
gate optical energy transfer processes in rare earth activated
systems and was in the process of interviewing for a perma-
nent position; he was to accept an offer from Wisconsin-
Madison in the Spring of 1965. We were able to revisit the
MnF2 only occasionally during this period, but fortunately
both Darrell Sell and Rick Greene began to show an in-
creased interest in this problem as 1964 progressed and it
eventually became the subject of their PhD theses.

PHYSICS OF QUANTUM ELECTRONICS CONFERENCE AND
THE DISCOVERY

These activities produced a small problem for Art
Schawlow, since none of his grants provided coverage for
these investigations. He discussed these difficulties with Yen
just prior to their departure for Puerto Rico to attend the
Physics of Quantum Electronics Conference �PQEC, June
28–30, 1965�; it was agreed during that discussion that the
project would be transferred to Wisconsin when Yen as-
sumed his faculty position there in the Fall of 1965 but that
we would continue our investigations at Stanford until our
return from the PQEC meeting. Schawlow also was aware
that R.E. Dietz, L.F. Johnson and others at Bell Labs had
been investigating the properties of magnetically ordered
materials and suggested that Yen discuss our ideas with them
to resolve any conflicts if any existed. Yen’s paper on line-
width studies of energy transfer mechanisms8 was scheduled
in the same session as that of Dietz et al. which was entitled
‘‘Fluorescence from Magnetic Crystals’’ (NiF2 , CoF2 ,
MnF2).9 During the question period, Bob Dietz was specifi-
cally asked by Yen whether he had observed any effects re-
latable to the collective magnetic excitations of the simple
fluorides he investigated; before he could answer, Willi Lowe
of the Hebrew University responded for him and empatheti-
cally stated that ‘‘magnetic interactions were notoriously
weak and there was absolutely no chance they would couple
to electronic transitions.’’ It is likely that at that point,
Schawlow wrote off our effort as a lost cause.

As noted earlier, however, we had strong and tantalizing
hints of sharp structure accompanying the lower 4T transi-
tions of Mn2� in MnF2 ; before his departure for PQEC, Yen,
Sell and Greene mapped out a schedule of experimentation
during his absence which included He �-point temperature
runs on a high resolution Jarrell–Ash scanning spectrograph
with emphasis on the lowest 4T1g state of MnF2 . Yen also
scheduled himself for a week of vacation in St. Thomas fol-
lowing the PQEC meeting to extend the time before our
efforts at Stanford were to be shut down. As it turns out, the
additional week was not needed; Sell’s lab book entry for the
observation of what would later be definitely identified as
magnon sidebands, shown in Fig. 1, was June 29, 1965,
likely the very day of the session alluded to above! When
these traces were shown to Schawlow in early July, he im-
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mediately understood the importance of the observation, and
shutting down the effort was, of course, never considered
again. Schawlow’s enthusiasm was also responsible for
White returning to Stanford as an Assistant Professor in the
fall of 1965.

CONCLUSIONS

A complete description of the magnon sideband phe-
nomenon was published in 1967.10 The fact that the peak of
the sideband is directly related to the frequency of magnons
at the Brillouin zone boundary enables one to study these
modes quite easily, which previously could only be done by
neutron scattering. At least half a dozen theses on various
aspects of the spectra of magnetically ordered materials from
Stanford and from Wisconsin followed in the following de-
cades; this work contributed to a comprehensive understand-
ing of the static and dynamic optical properties of ordered
magnetic systems. These studies included studies on the lu-
minescence properties of pure and doped MnF2 ,11,12 the ob-
servation of induced photomagnetism,13 of magnon-induced
broadening of optical transitions,14 of circular and magnetic
circular dichroism15 and the discovery of biexciton annihila-
tion in this material.16 And recently, we have been able to
identify sublattice splittings in MnF2 induced by dipolar in-
teractions predicted earlier by one of us �RMW�.17,18

It is interesting how often new concepts in science ap-
pear almost simultaneously in different contexts. While we
were looking for what we now call an exciton-magnon exci-
tation in MnF2 at Stanford, the very similar phenomenon of

FIG. 1. Absorption spectrum of MnF2 in the range of 18.550 cm�1. The
absorptions E1 and E2 are pure electronic transitions of Mn2�. The absorp-
tions �1, �2, and �1 are the first identified magnon-assisted transitions in a
magnetic material.
two-magnon excitation in the infrared was unknowingly be-
ing observed in FeF2 by I. Silvera at Berkeley19 and later in
CoF2 at Bell Labs.20 In fact, the Berkeley IR absorption data
with its anamolous peak at 154 cm�1 was presented in the
very same session of the 1963 APS meeting in Berkeley at
which we presented our first optical spectra of MnF2 . And,
as indicated by McClure’s quote at the beginning of this
article, his group was also studying the optical spectra of
MnF2 and had been puzzled by the observation of transitions
which did not split in a magnetic field.21 Now that we under-
stand this process we know that all these phenomenon are
related, and their existence provides a very useful technique
for studying magnon dynamics22 as well as energy transfer in
solids.23
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Direct excitation of two and three magnons is observed in mid-infrared absorption and Raman
scattering spectra of �-Fe2O3 crystals. These polarization characteristics and the spectra
themselves are shown to be understood from group-theoretical point of view. The microscopic
mechanism of three-magnon excitation is proposed in addition to that of well-known two-
magnon excitation process. © 2005 American Institute of Physics. �DOI: 10.1063/1.2008139�
I. INTRODUCTION

Transition-metal oxide with open d-electron shells have
shown many interesting magnetic and transport phenomena
of strongly correlated d-electrons.1 Optical absorption due to
phonon-assisted two-magnon excitation was observed for
transition-metal oxides of quasi-two-dimensional La2CuO4 ,
Nd2CuO4 , Sr2CuO2Cl2 ,2 La2NiO4 ,3 YBa2Cu3O6 ,4 and
two-leg-ladder (Ca,La)14Cu24O41 crystals.5 On the other
hand, phonon-assisted particle-hole excitation of the spinons
was confirmed in quasi-one-dimensional Sr2CuO3 crystal.6

Here the oscillator strength of the optical phonon makes the
optical excitation of two magnons possible through the
magnon-phonon interaction.7

We have observed direct mid-infrared absorption by
two- and three-magnon excitation in �-Fe2O3 crystal.8 This
is due to the effective electric dipole moment induced by the
combined effect of the electronic transition of the d-electron
and the exchange interaction between the neighboring Fe3�

ions.9,10 The magnon energy as well as the absorption coef-
ficient of �-Fe2O3 are much larger than those of MnF2 with
Néel temperature TN�67.3 K and absorption coefficienct of
a few cm�1 �Refs. 11, 12�.

Magnetic properties of �-Fe2O3 have been well
studied,13 and the origin of weak ferromagnetism was pro-
posed from the studies of this crystal.14,15 The magnon dis-
persion has been obtained from inelastic neutron scattering
investigation16 and also from its theoretical analysis.17 On
the other hand, the phonon structure of �-Fe2O3 is also ob-
tained by the infrared reflection spectrum,18 Raman
scattering19 and lattice dynamics study.20 Two-magnon Ra-
man scattering in this crystal had been a controversial point
but this was also clarified by the effects of pressure and
isotope substitution on the Raman spectrum.21–23 Magnetic
structure of this crystal was found to change at Morin tem-
7801063-777X/2005/31(8–9)/6/$26.00
perature TM�261 K.24 Below TM , the four sublattice mag-
netizations are parallel to the threefold c axis of the corun-
dum structure with the space group D3d

6 (3̄ 2(/m)), and this
phase shows pure antiferromagnetism. Between TM and the
Néel temperature TN�960 K, the four sublattice magnetiza-
tions are almost in the ab plane, and the weak ferromag-
netism is induced in the direction of the twofold a axis. Here
the space group is monoclinic C2h(2/m).

In the present paper, we shall supplement the previous
report on the mid-infrared absorption due to magnons8 by
supplying the observed polarization dependence and tem-
perature dependence of the Raman spectrum. Then we can
confirm the assignment of the two-magnon excitation at the
D point at the Brillouin zone edge to the effective �ex-
change� dipole moment �Si•Sj . This will be given in Sec. 2.
The three-magnon excitation was assigned to originate from
the effective dipole moment, like in �DM

•(Si�Sj).10 We
will give all the terms that contribute to the three-magnon
excitation in Sec. 3 and discuss its microscopic mechanism
in Sec. 4. Last, Sec. 5 is for conclusion and discussion.

II. MID-INFRARED AND RAMAN SCATTERING SPECTRUM

The samples used were prepared from single crystals of
good-quality natural hematite, which were also used in Ref.
8. These crystals have been sliced and polished by using
diamond powder and finally by aluminate powder with a
diameter 0.1 �m. The samples used have thickness ranging
from 50 �m to 140 �m.

The measurement of the mid-infrared absorption spec-
trum was performed with a Bruker IFS 113 V Fourier-
transform spectrometer in the energy range 350 to
2400 cm�1. We observed several prominent features on the
high-energy side of the single phonon modes,18 as shown in
© 2005 American Institute of Physics
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Figs. 1 and 2. The first important characteristics is that the
absorption peak just above 1500 cm�1 shows strong polar-
ization dependence: no signal is observed for E�c axis while
the strong signal for E�c axis. On the other hand, the signal
around 2200 cm�1 is observed under both polarizations. Sec-
ond, both of these peaks show blue shift with decreasing
lattice temperatures, e.g., the absorption peak of 1500 cm�1

at room temperature shifts to 1570 cm�1 at 30 K. Third,
three absorption peaks are observed on the high energy side
of the single phonon modes,18 i.e., 1160 cm�1, 1050 cm�1,
and 920 cm�1. These energies are almost independent of the
lattice temperature in contrast to those at 1500-1 and

FIG. 1. The polarization dependence of mid-infrared absorption spectrum of
�-Fe2O3 crystal with a crystal thickness 120 �m at 30 K and 300 K �a�. The
incident beam is polarized in the ab plane and in the c direction �b�.

FIG. 2. The temperature dependence of the transmission spectrum for the
polarization E in the ab plane for the same sample thickness 120 �m as in
Fig. 1. The inset shows the sample-thickness dependence around 800 cm�1

at 30 K. A single Eu magnon is expected at 782 cm�1 while combination
modes of two phonons are at 780 cm�1 (TO2�LO3), 805 cm�1 (TO3

�LO2) and 851 cm�1 (TO3�LO1�).
2200 cm�1. From these polarization and temperature depen-
dence, we may speculate that the signals at 1500 cm�1 and
2200 cm�1 come from the elementary excitations different
from others.

As a matter of fact, on the basis of the assignment of
single phonon modes18 observed by the infrared reflection
spectrum and the magnon dispersion obtained from neutron
inelastic scattering, we can assign the 1160 cm�1 signal to a
combination of TO4 (524 cm�1)�LO4 �or LO2�)
(662 cm�1), the 1050 cm�1 signal to that of TO4

(524 cm�1)�TO2� (526 cm�1), and the 920 cm�1 signal to
that of TO3 (437 cm�1)�TO2� (494 cm�1). Each of the
transverse and longitudinal Eu modes is numbered from the
lower to higher energy side, and LO2� and TO2� correspond to
the A2u modes. The energies of 1500 cm�1 and 2200 cm�1

are nearly equal to two and three magnons, respectively, ob-
tained from the neutron data.17 We are interested in the wave
number region around 800 cm�1 to check whether a single
magnon is observed in the absorption spectrum. The trans-
mission spectrum is observed as shown in the inset of Fig. 2
by reducing the sample thickness from 120 �m to 100 and
80 �m.

In order to confirm these assignments, Raman spectrum
has been observed with Stokes shift in this energy range.
This gives information to supplement the mid-infrared ab-
sorption spectrum. Figures 3a, b give the Raman spectrum
observed by using He–Ne laser as incident beam at room
temperature and nitrogen temperature, respectively. A dou-
blet structure is observed with Stokes shift 1460 cm�1 and
1540 cm�1 at room temperature, as shown in Fig. 3a, and

FIG. 3. Raman spectrum of �-Fe2O3 at room temperature �a� and 77 K �b�
with incident beam 633 nm from He–Ne laser. A , B and C describe Lorent-
zian fittings with �central wave number, width at half maximum, relative
intensity��(1320 cm�1,60 cm�1,60) for A , (1460 cm�1, 80 cm�1, 9� for
B , and (1540 cm�1, 70 cm�1, 18� for C in �a�, and (1327 cm�1, 45 cm�1,
110� for A , (1500 cm�1, 90 cm�1, 38� for B , and (1580 cm�1, 90 cm�1,
45� for C in �b�. The thick solid line describes superposition of Lorentzian
curves A , B , and C .
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showing a blue shift similar to that in the mid-infrared ab-
sorption spectrum at nitrogen temperature, as shown in Fig.
3b. The stronger signal at 1320 cm�1 is almost independent
of the lattice temperature and is well assigned to overtone of
two LO4 phonons (2�662 cm�1). These two-phonon exci-
tations at 1160, 1050 and 920 cm�1 and at 1320 cm�1 obey
Loudon’s selection rule of combination and overtone modes,
respectively, for the infrared and Raman scattering process.25

The doublet structure around 1500 cm�1 is observed under
the configuration b(a ,c) b̄ but not for b(a ,a) b̄ nor for
b(c ,c) b̄ , while the signal at 1320 cm�1 is allowed for both
configurations. This means that the elementary excitation
with doublet structure around 1500 cm�1 has the symmetry
Eg .

The second task of the present paper is to understand
two- and three-magnon excitations both in the mid-infrared
and Raman spectrum from both group-theoretical and micro-
scopic points of view. These will be discussed in the follow-
ing sections.

III. SELECTION RULES

The mid-infrared absorption peak due to two-magnon
excitation is observed more strongly than a single magnon
absorption. This is expected simply from two reasons: �i� the
joint density of states for a pair of excitation k and �k,
which diverges at the high-symmetry points on the Brillouin
zone �BZ� edges, becomes much larger than that of a single
elementary excitation near the � point; �ii� and the two-
magnon excitation in the antiferromagnet is accompanied by
rather large electronic dipole moment due to the mechanism
different from a single magnon excitation, as discussed in
Ref. 9. The total symmetry of the two excitons �magnons� at
the high-symmetry points of the BZ edge may be determined
as given in the literature.26,27

The magnetic unit cell of �-Fe2O3 consists of four sub-
lattices both below and above TM . The effective dipole mo-
ment to excite two magnons is associated with the antiferro-
magnetic pair of the neighboring magnetic ions coupled by
the superexchange interaction.9

Loudon26,27 has shown how to derive the selection rules
for the two-magnon absorption. The procedure is to reduce
the representation at the � point, whose bases are two-
magnon states at the high-symmetry point of the BZ bound-
ary, and to see whether the decomposition contains the rep-
resentation to which the dipole moment operator belongs. If
it does, the excitation of two magnons at the boundary will
be allowed, intensified there by the high density of states.

This conventional procedure can be applied to optical
excitations of two magnons at high-symmetry points in the
Brillouin edge for antiferromagnets with two magnetic sub-
lattices such as in MnF2 . However, in the case of �-Fe2O3

where the magnetic unit cell contains four sublattices, we
must exclude the processes of two-magnon excitation from
the pair with ferromagnetic coupling. As a result, the selec-
tion rule is modified as shown in Ref. 10. The modified se-
lection rule for direct optical excitation of two magnons in
�-Fe2O3 is summarized as follows. Symmetry put in a
double bracket on the right-hand side is forbidden, either
because the final state is antisymmetric or because it corre-
sponds to the creation of two magnons both within the up- or
down-sublattices. In the antisymmetric combination denoted
by 	
, two contributions cancel out each other.

�a� Z point with aconstic Z2 and optical Z3 magnons:

�Z2
2���Z3

2��A1u���Eg�� , 	Z2
2
�	Z3

2
���A2u�� , �1�

Z2�Z3�A1g�A2g���Eu��; �2�

�b� D point with acoustic D1�D3 and optical D2�D4 mag-
nons:

D1
2�D3

2�D2
2�D4

2�A1g�Eg���A1g�Eg�� , �3�

2D1�D3�2D2�D4�2��A2g�Eg�� , �4�

D1�D2�D3�D4�A1u�Eu���A1u�Eu�� , �5�

D1�D4�D2�D3�A2u�Eu���A2u�Eu��; �6�

�c� A point with acoustic A1 and optical A1 magnons:

�A1
2����A1g�A2g�2Eg���A1u�Eu , �7�

A1
2���A2u�Eu�� , �8�

for each mode, and

A1�A1�A1g�A2g�2Eg���A1u�A2u�2Eu�� �9�

for the simultaneons excitation of the acoustic and optical
mode.

For D3d , the states of allowed electric dipole transition
are Eu for a- and b-polarized light and A2u for c polariza-
tion, and the allowed states of Raman scattering are Eg and
A1g . We have already obtained the eigenvectors at high-
symmetry points,10 and we also have the eigenenergies of the
magnon at these points16 as shown in Table I.

Now we can assign the two-magnon excitation from the
experimental results of mid-infrared absorption and Raman
scattering as well as from the selection rule together with
Table I. First, we can eliminate the contribution from the Z
point to the mid-infrared absorption of two-magnon excita-
tion because ��A2u�� in Eq. �1� and ��Eu�� in Eq. �2� come
from two magnons within the up- or down-spin sublattices.
Furthermore, Raman scattering with Eg symmetry is absent
from the contribution at the Z point. Second, the dipole-
allowed transition with Eu symmetry is possible from the D
and A points, as seen from Eqs. �5�, �6�, and �7�, respectively.
However, the doublet structure of Eg Raman scattering is
acceptable for the D point because the splitting between two

TABLE I. Representations and excitation energies of magnons at high-
symmetry points.
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acoustic magnons D1�D3 and two optical magnons D2

�D4 in Eq. �3� give the doublet structure of Eg symmetry
with a splitting energy of 10 meV, in agreement with the
observed value. The Raman signal in Eq. �9� comes from one
optical and one acoustic magnon, and the splitting of the two
Eg modes may be speculated to be smaller than the splitting
1.4 meV between acoustic and optical magnons. Although
we cannot eliminate the possibility to assign the doublet Ra-
man signal to the two-magnon excitation at the A point, two-
magnon excitation from the D point looks most probable.

Let us discuss the possibility of this assignment from a
numerical standpoint. A combination energy of infrared-
active (D1�D3) and (D2�D4) is 189 meV (1533 cm�1),
while two overtones of Raman-active D1

2�D3
2 and D2

2�D4
2

are 184 meV (1482 cm�1) and 194 meV (1565 cm�1), re-
spectively. The systematic difference between the observed
energies and the sum of corresponding energies given in
Table I is about 30 cm�1 and may be attributed to the bind-
ing energy of two magnons.28 While a combination of acous-
tic and optical magnons D1�D4�D2�D3 in Eq. �6� may be
excited by both polarized light E�c axis (Eu) and E�c axis
(A2u), the effective dipole moment of this process is an or-
der of magnitude smaller than that of Eq. �5�.10 Therefore,
the mid-infrared absorption due to two-magnon excitation
should be observed dominantly under polarization E�c axis
through Eu in Eq. �5�.

We shall show that three-magnon excitation is accessible
by both incident beams with the polarization parallel and
perpendicular to the c axis. The three-magnon excitation
may be possible for the combination of an optical magnon
with Eu symmetry at the � point and two magnons at the
opposite BZ edges. We may use D points as the BZ edge
point with high symmetry. Then the three-magnon excita-
tions have the following symmetry:

Eu��D1
2�D3

2��Eu��D2
2�D4

2��A1u�A2u�2Eu

���A1u�A2u�2Eu�� , �10�

Eu��D1�D2�D3�D4��Eu��D1�D4�D2�D4�

�A1g�A2g�2Eg

���A1g�A2g�2Eg�� . �11�

As a result, three-magnon excitations Eu�(D1
2�D3

2) and
Eu�(D2

2�D4
2) are excited by the incident beam both for

polarization parallel (A2u) and perpendicular (Eu) to the c
axis. The excitation energy, which is estimated as a sum of
the corresponding magnon energies in Table I, extends from
281 meV (2266 cm�1) to 291 meV (2349 cm�1). The en-
ergy difference of the observed one from these is a little
larger than 30 cm�1 �the binding energy of two magnons28�
and may be attributed to the binding energy of three mag-
nons.

IV. MICROSCOPIC MODEL

The possibility of electric dipole transition due to two-
and three-magnon excitation has been confirmed by the
group-theoretical consideration and the magnon dispersion
obtained by the neutron diffraction. In the two-magnon exci-
tation, the superexchange interaction between the neighbor-
ing antiferromagnetic ions is accompanied by the electric
dipole transition within the transition-metal ion or the
charge-transfer transition between the empty 3d orbital of
the magnetic ion and the 2p orbitals of the surrounding oxy-
gen ion.9 We use the expression in Ref. 9 to estimate the
two-magnon absorption coefficient. The charge transfer ex-
citation gives the absorption coefficient of the order of
104 cm�1 around 2 eV. The superexchange interaction is as-
sumed to be of the order of the Néel temperature 960 K �0.1
eV�, and we use this value for the off-diagonal exchange
matrix element. Then the absorption coefficient for two-
magnon excitation is estimated to be of the order of
102 cm�1. This value is reasonable to explain the observed
results in Fig. 1. The advantage of direct optical excitation of
two magnons in �-Fe2O3 over MnF2 is speculated to arise
from the large charge-transfer matrix element between the
O(2p) and Fe3�(3d) orbitals, and its low excitation energy
�E of the order of 2 eV for �-Fe2O3 . This large matrix
element at the same time results in large absorption coeffi-
cient of the order of 104 cm�1 and high Néel temperature
960 K through the large superexchange integral 2J . This is
in contrast to the Néel temperature of MnF2 , which is 67.3
K.

The dipole moment of two-magnon excitation is de-
scribed by �(i , j)Si•Sj . As to the three-magnon excitation,
we first remember that Moriya15 has derived the so-called
Dzyaloshinski-Moriya interaction d•(Si�Sj) as the �off-
diagonal� exchange interaction �2JSi•Sj between the ions i
and j , modified by the �off-diagonal� spin-orbit interaction
�(S"L). The magnitude of d here may be estimated very
roughly as (�/�E)�(�2J), where �E is the energy of
electronic excitation from the ground �0
 to the excited state
�n
. This suggests that there may also exist an effective dipole
moment such as �DM(i , j)•(Si�Sj), which may be regarded
as derived from the exchange dipole moment �(i , j)Si•Sj

�responsible for the two-magnon absorption� perturbed by
the spin-orbit interaction. The magnitude of �DM may then
be given roughly by (�/�E)�� . Note here that Si�Sj con-
tains, e.g., a term like (Six�iSiy)S jz�Siz(S jx�iS jy) which
gives rise to three-magnon excitation.

The expression for the effective dipole moment PDM of
three-magnon excitation is expressed as

P�DM ��Pi* j
�DM �

�Pj*t
�DM � , �12�

Pi* j
�DM �

��
n

� �00�Hso�n0
�n0�Pi* j�00

Ei0�Ein

�
�00�Pi* j�n0
�n0�Hso�00


Ei0�Ein
� �13�

with the exchange dipole Pi* j defined in Ref. 9. That is,

Pi* j� �
nn�m

�� i;n�←n , jm �si�n�←n �•sjm , �14�

si�n�←n �� �
mm�

cin�m�
† cinm�m��s�m
 . �15�

When we assume that the ion i is excited by the light to the
lowest orbital state �n
���T1g�
 from its ground state �0

��A1g
 , we have the following matrix element:
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�n0�Pi* j�00
���n0,00��S�1M s
0�� i�SM s
•�0�Sj�0
 ,

�16�

��n0,00�� �
nn�m

�� i;n�←n , jm �

�
��4T1g��si�n�←n ��6A1g


�S�1���S
2S
. �17�

In terms of operator equivalent for off-diagonal
elements,29,30 Hso may be replaced by

�6A1gM s�Hso��4T1gM 0s�
���0n ��SM s��†�S�1M s
0


•�A1g��†��T1g�
 , �18�

where ��0n ��
�6A1g�Vso��4T1g


�S��†�S�1
•�A1g��†��T1g

, �19�

��T1g���A1g
��A1g��†��T1g
�i) , �20�

�S�1���S
���S��†�S�1
���2S�1 �/2. �21�

The reduced matrix element of the spin-orbit interaction op-
erator Vso is found in Ref. 31:

�6A1g�Vso��4T1g
�6i� , �22�

with � being the spin-orbit coupling parameter for the 3d
orbital. The operator � is defined as

���A1g
�i��T1g�
 , �23�

�A1g���
†��i��T1g��, �24�

for ��� ,� ,� , and

�n�Hso�0
���0n �*�S�1M s
0���SM s
•��T1g����A1g
 ,

�25�

where S�5/2.
We now have

Pi* j
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��
n

� �00���0n �� i
†
•� i

†�n0
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† �n
� i�
† � i�S j�� , �26�

because �(0n)*��(0n).
We then obtain
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Si�

1

S�2S�1 �
Qj•Si� , �27�

where we have made use of

��
† ������/6��S� ,S��/4S�Q��/2S�2S�1 �, �28�

Q���
1

2
�S�S��S�S������

1

3
S�S�1 �, �29�

and

�Qi•Sj����
�

Qi;��S j� . �30�

Here we evaluate ��(n0,00) by choosing ��T1ga�1
 in the
trigonal basis32 as �n
 , because this is the orbital state excited
by Pi* j of Eq. �13� in the magnetically ordered phase. Ex-
panding the 3d orbital in the trigonal field in terms of real �,
�, � and the u ,v orbitals in the Oh field,33 we find that �
�(n0,00) is complex. As a consequence, both the vector
product term (Si�Sj) and the tensor term Qi•Sj and Qj•Si

term in Eq. �27� can contribute to the three-magnon excita-
tion. The three-magnon excitation due to Qi•Sj and Qj•Si

terms as well as Si�Sj term is always accompanied by the
single magnon excitation by Sj or Si with a common coeffi-
cient. We have not yet observed clear evidence of the single-
magnon excitation around 800 cm�1 because the tail part of
large absorption coefficient due to single phonons below
700 cm�1 prevent clear observation of the single magnon, as
shown in the inset of Fig. 2. The first term in Eq. �27� cor-
responds exactly to �DM(i , j)•(Si�Sj) obtained in Refs. 8
and 10 simply following Moriya’s derivation of the DM in-
teraction. These spin operators are rewritten in terms of the
magnon creation and annihilation operators through the Bo-
goliubov transformation. Then we realize that the Si�Sj

term as well as the Qi•Sj and Qj•Si terms contribute to the
three-magnon excitation.8 Note also that the coefficients of
both spin-product operators in the transition dipole moment
in Eq. �27� is naturally real. From this derivation, we can
answer a question where the oscillator strength of three-
magnon excitation comes from. That is, when one of the two
Fe3� ions participating in two-magnon excitation is per-
turbed by off-diagonal elements of the spin-orbit interaction,
three-magnon mid-infrared absorption becomes possible us-
ing the effective exchange dipole moment �(i , j). The mag-
nitude of three-magnon absorption due to this process is es-
timated as follows. The spin-orbit coupling parameter
�(0n)��(0n)/2S is related to �, the atomic one, by �(0n)
���/S . When we use ��410 cm�1 for Fe2� of magnitude
for � and the excitation energy �E�8000 cm�1,
(�(0n)/�E)2 is estimated to be of the order of 10�2 – 10�3.
Here either one of the Fe3� ions which contribute to two-
magnon excitation may well accompany the third magnon
excitation under the additional action of spin-orbit interac-
tion. Taking into account this fact, the ratio of the absorption
coefficient Iabs(3 magnons)/Iabs(2 magnons) is estimated to
be of the order of 10�2 in agreement with the observed re-
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sults. At the present stage, we cannot judge theoretically
which plays the more important role in the three-magnon
excitation, Re � or Im � in Eq. �27�.

V. CONCLUSION

We conclude that two- and three-magnon excitation is
induced around 1500 cm�1 and 2200 cm�1, respectively, by
the electric dipole moment in the antiferromagnetic
�-Fe2O3 . Two magnons at the D point have been assigned
to contribute to the mid-infrared absorption and Raman scat-
tering processes from the polarization dependence and the
group-theoretical consideration.

In some crystals with a center of inversion such as the
layered perovskites, e.g., La2CuO4 , the mid-infrared absorp-
tion due to two-magnon excitation through the exchange di-
pole moment is not allowed, but phonon-assisted two-
magnon excitation was observed using the oscillator strength
of the phonon. However, this is not the case with �-Fe2O3 ,
whose unit cell contains four Fe3� ions with, e.g., �1� up, �2�
down, �3� down, and �4� up Fe3� spins on the c axis. Al-
though centers of inversion are located at the midpoints be-
tween the 2nd and 3rd and between the 4th and 1st Fe3�

ions, two magnons may be excited from the antiferromag-
netic pair of the 1st and 2nd or 3rd and 4th Fe3� ions, with
no inversion symmetry around the midpoints. Note that these
are the first-neighbor pairs. Actually, we have more impor-
tant 3rd- and 4th-neighbor �antiferromagnetic� pairs of ions
with larger coupling16 if we take neighboring unit cells into
account. No inversion symmetry is found for each of these
pairs, which allows them to make significant contributions to
the direct optical excitation of two magnons in this crystal.10

On the contrary, we find that many layered perovskite crys-
tals such as La2CuO4 and YBa2CuO6 have the center of
inversion between the antiferromagnetic pair of ions, so that
only phonon-assisted two-magnon excitations are possible.

The polarization dependence and the absorption spec-
trum itself of the two-magnon excitation do not change so
much above and below the Morin temperature as shown in
Figs. 1 and 2, where the sublattice magnetization rotates by
�/2. This may be explained as follows: the magnon
dispersion17 and optical response of two magnons10 can be
well described by Heisenberg model. This is consistent with
the fact that the spin anisotropy energy and anisotropic ex-
change interaction are much smaller than the isotropic ex-
change energy.13 As a result, optical response of two- and
three-magnon excitation depends only on the relative angle
between the neighboring spins but not on the absolute angle
of the sublattice magnetization relative to the crystal axis.
This can explain the other mystery why the polarization
characteristic of two-magnon excitation does not change at
TM .



LOW TEMPERATURE PHYSICS VOLUME 31, NUMBERS 8–9 AUGUST–SEPTEMBER 2005
Circular dichroism and Raman optical activity in antiferromagnetic transition-metal
fluorides

K. R. Hoffman

Department of Physics, Whitman College, Walla Walla, Washington 99362, USA

D. J. Lockwood*

Institute for Microstructural Sciences, National Research Council, Ottawa, ON K1A 0R6, Canada

W. M. Yen

Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA
�Submitted February 17, 2005�
Fiz. Nizk. Temp. 31, 1032–1041 �August–September 2005�

The Raman optical activity �ROA� of magnons in rutile-structure antiferromagnetic FeF2 (TN

�78 K) is studied as a function of temperature and applied magnetic field. For exciting
light incident along the c axis, ROA is observed for magnons but not for phonons. In zero field,
a small splitting (0.09 cm�1) of the two acoustic-magnon branches is observed for the first
time by inelastic light scattering. The splitting in applied magnetic field is found to reduce with
increasing temperature in accordance with theory. No ROA is detected for two-magnon
excitations. In optical absorption measurements performed over thirty years ago, a very small
circular dichroism �CD� was observed in the magnon sidebands of other simple rutile
antiferromagnetic fluorides (MnF2 and CoF2). The origin of this CD was not understood at the
time. The Raman studies of the one-magnon Raman scattering in FeF2 have demonstrated
that in zero field the degeneracy of the antiferromagnetic magnon branches is lifted by a weak
magnetic dipole-dipole interaction, as predicted by Pincus and Loudon and by White four
decades ago. The source of the observed CD in the magnon sidebands can now be traced to this
same magnetic-dipole induced splitting. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2008140�
I. INTRODUCTION

In 1965, the discovery of the one-magnon sideband in
the visible absorption spectrum of MnF2 �Ref. 1� and the
two-magnon absorption of the far-infrared spectrum of FeF2

�Ref. 2� spurred many investigations into the optical proper-
ties of antiferromagnetic insulators. The theoretical frame-
work regarding these two processes was developed by
Tanabe et al.3 and Allen et al.4 In these materials, coupling
between the various intrinsic excitations of the lattice, i.e.,
excitons, magnons and phonons, leads to the formation of
cooperative transitions which can account for much of the
spectral structure. An article discussing this work appears
elsewhere in this special issue of Low Temperature Physics.
In addition to absorption and luminescence measurements,
magnon lines were also observed in Raman scattering
measurements.5,6 Raman scattering measurements permit the
physical properties of magnons to be studied without the
additional contributions due to electronic states associated
with optical emission or absorption. A comprehensive review
of Raman theory and experimental results for antiferromag-
nets is presented in the book by Cottam and Lockwood.7

The magnetic character of the magnon transitions led to
the utilization of circularly polarized light to explore the di-
chroic properties of these materials. In the early 1970s, a
series of papers reported on their magnetic circular dichroism
�MCD� in an applied magnetic field.8–10 The authors re-
7861063-777X/2005/31(8–9)/8/$26.00
ported at that time the observation of circular dichroism
�CD� in certain magnon sidebands of MnF2 �Ref. 8� and
CoF2 �Ref. 10� but not in FeF2 �Ref. 9�; CD occurs in the
absence of an applied magnetic field and corresponds to zero
field MCD though the origins of the dichroism may arise
from different sources. The authors were able to eliminate
experimental artifacts as the source of the observed CD, but
were not able at that time to identify the physical basis for
the unexpected observation. Recently, we revisited this prob-
lem and showed that the source of the CD is to be found in
the dipolar interactions that exist between the antiferromag-
netic sublattices, which render them inequivalent.11

Raman optical activity �ROA� characterizes the differ-
ence in the Raman line intensity when excited with right and
left circularly polarized light. The earliest experiments to
combine Raman spectroscopy with chirality in solids were
performed in the 1970s on CdS under resonance excitation
conditions.12 Attempts were also made to observe a similar
effect in antiferromagnetic fluoride materials but the experi-
mental sensitivity was insufficient. At about the same time
ROA was also measured in a chiral molecule.13 The chiral
structure of some molecules makes them naturally suited to
couple more strongly to either right or left circularly polar-
ized light. The theoretical14 and experimental developments
in this field have been reviewed in the literature.15,16 A series
of Raman papers in the 1980s on the magnetic properties of
dilute magnetic semiconductors employed the use of circular
© 2005 American Institute of Physics
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polarization to isolate spin flip transitions of Mn ions.17,18

The improvement in detector sensitivity over a period of
twenty years afforded us the opportunity in the 1990s to
revisit the question of ROA in antiferromagnetic insulators.
We were able to observe ROA in the one-magnon line of
FeF2

19–21 and several phonon lines in rutile-structure
materials.22,23 In addition, we demonstrated for the first time
that Raman scattering could be used to measure a zero field
splitting of the magnon branches in antiferromagnetic
FeF2 .24 These results were then utilized to reinterpret the CD
measurements completed in the early 1970s that were al-
luded to above.11

In the following Sections, we present our current under-
standing of the dichroic properties of antiferromagnetic insu-
lators possessing the rutile structure. The focus of this review
will be on ROA measurements to explore the magnetic prop-
erties of these materials. We start with a summary of the zero
field dichroism measurements in MnF2 , CoF2 , and FeF2 be-
cause the CD studies prompted one of us �W.M.Y.� to ex-
plore the use of ROA in antiferromagnetic fluorides. We then
present a more thorough review of the ROA measurements,
techniques, and analysis in FeF2 . Here we mention first the
work on phonons before focusing on the one- and two-
magnon scattering results, including a revised assessment of
the results from the temperature dependence and zero mag-
netic field studies of FeF2 .

II. OPTICAL DICHROISM IN RUTILE ANTIFERROMAGNETS

Dichroism in a material is defined as the difference in
the absorption coefficient of a medium for two related polar-
izations; thus CD arises from the difference in the absorption
for right- and left-circularly polarized radiation. When these
differences are induced by the application of an external
magnetic field, the effect is termed MCD. In both CD and
MCD, a unique direction is necessary in order to define the
sense of circulation in the circularly polarized light; this is
provided by some unique crystalline axis or by the direction
of the applied magnetic field. Materials showing CD are nor-
mally called ‘‘optically active’’ and such crystals are rela-
tively rare, whereas MCD is quite common in paramagnetic
systems possessing a unique axis. MCD is conjugated to Far-
aday rotation by the Kramers–Kronig relations and consti-
tutes the resonant rather than the dispersive phenomena in
the transformation.

The compounds that we wish to discuss here are the
common difluorides, MnF2 , CoF2 , and FeF2 , all of which
possess the rutile crystal structure. Below the Néel tempera-
ture TN these materials are describable as simple two sublat-
tice antiferromagnets and in principle they are ideal systems
on which to study magnetically dichroic phenomena. The
ground states of ions in each sublattice as well as the collec-
tive magnetic excitations �magnons� are identical to each
other in every respect except their polarization. The sole re-
maining energy degeneracy, which will respond to an applied
magnetic field, is that of the two sublattices; hence, the ori-
gin of magnetic dichroism in these systems is directly related
to the lifting of this energy equivalence both in the electronic
�exciton�, the spin �magnon� or the combined �magnon side-
band� systems.
For simple antiferromagnets in their ordered state, the
ground state of each sublattice is non-degenerate and is iden-
tical to the other except for their sense of magnetization with
respect to the unique crystalline axis. If the state for the ‘‘up’’
or A sublattice is given by �L ,M � then the corresponding
‘‘down’’ or B sublattice is represented by �L ,�M � . For pure
electronic transitions, the appropriate dipolar transition op-
erators for circular polarized radiation transform as L�

�2S� , where the ��� and ��� subscripts refer to right and
left circular polarizations, respectively. If ions in one of the
sublattices have a nonvanishing transition probability be-
tween two states for one of these operators, then the ions in
the opposite sublattice will have an identical element for the
corresponding conjugated operator. In the absence of a mag-
netic field, the sublattices are degenerate in energy and no
CD should be observed. However, weak interactions between
the sublattices, such as magnetic dipole-dipole interactions,
can produce a small anisotropy between the two sublattices
that results in CD. At low temperatures, a very small zero-
field CD signal was observed in two of the three compounds
investigated and it is the origin of these signals that will be
addressed in this paper.

III. EXPERIMENTAL RESULTS FOR CIRCULAR DICHROISM
MEASUREMENTS

A finite CD was observed at low temperatures in two of
the three difluorides studied. Signals were observed in the
magnon sidebands of the 6A1g ground state to 4T1g and
(4A1g , 4Eg) absorptions of MnF2 and of the 4T1 to 2A , 2T1

(2P) of CoF2 ; no CD signals were observed in FeF2 . As
noted earlier, the origins of CD and MCD are different; as a
consequence, CD can be subtracted from MCD in order to
determine the magnetic field induced splittings. When this is
done the, the residual or pure MCD signal can be fitted ac-
curately with a differential line shape; this indicates that in
our cases the MCD arise simply from the lifting of the sub-
lattice degeneracy, as per our expectation.

Figure 1 shows the absorption of a magnon sideband of
the (2A , 2T1) transition of CoF2 along with the observed CD
and MCD in a 2 T applied magnetic field. The CD is also
purely differential in shape and is estimated to be an additive
intrinsic splitting of the order of ���0.015 cm�1. The CD
in CoF2 becomes unobservable in the vicinity of 10 K.

Figure 2 shows the absorption spectrum of the so-called
�1 and �2 sidebands accompanying the ground state to 4T1g

transition in MnF2 . These transitions are 	-polarization ac-
tive. A small CD signal is observed that is clearly related to
this transition. The zero-field splittings for the sidebands
were determined to be ��(�1)�0.07 cm�1 and ��(�2)
��0.05 cm�1, respectively.

The negative sign in ��(�2) signifies that the sense of
the splitting in this sideband is out of phase with that of �1 .
Such a change in the sense of splitting is also observed when
uniaxial stress is applied to MnF2 along the �110� direction in
the basal plane. The behavior of the CD was studied as a
function of basal plane stress allowing the intrinsic strain in
the basal plane of ordered MnF2 to be estimated: 
��d/d
�1.2�10�5. This result highlights the advantages of chiral
techniques for exploring interactions in antiferromagnets.
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FeF2 was studied in the 21500– 28500 cm�1 spectral re-
gion. The observed transitions without exception exhibited
MCD signals consistent with a simple sublattice splitting and
with a linear dependence on magnetic field. No CD signals
were encountered in any of the 	-active transitions investi-
gated. The sensitivity of our apparatus places an upper limit
of 10�3 cm�1 on any splitting that might occur in this com-
pound at 4 K.

IV. RAMAN OPTICAL ACTIVITY

Raman optical activity is observed experimentally in the
difference in a Raman line intensity when excited by right
and left circularly polarized light, respectively. The circular
intensity difference �CID� is normally used to quantify
ROA:14

FIG. 1. The CD spectrum of the one-magnon sideband near 22,800 cm�1 of
CoF2 at 4 K and the corresponding absorption spectrum of the sideband.

FIG. 2. The absorption and CD spectra of the so-called �1 and �2 sidebands
of MnF2 at 2 K; these traces connect the observed CD to the magnon
sidebands.
�	�
I	

R�I	
L

I	
R�I	

L , �1�

where I	
R and I	

L represent the scattered light intensity with 	
polarization due to incident right (R) or left (L) circularly
polarized light. The normalization term permits a simple
comparison of data from different spectroscopic systems.
One major difficulty of ROA measurements is the sensitivity
of the technique to intrinsic or extrinsic depolarization ef-
fects. Care must be taken to account for any birefringent
effects in the steering and focusing optics. Additionally, the
crystal itself can contribute to significant depolarization ef-
fects that appear as CID in spectra that normally would not
be expected to produce any difference. We will discuss this
effect in more detail in the next Section of the paper.

Fundamentally, the source of Raman scattering is the
modulation of the induced polarizability of a medium by
fundamental excitations in the medium. To couple the inci-
dent light to the medium, its susceptibility is expanded in
terms of phonon or magnon operators. This results in a
modulation of the polarizability at the frequency of the fun-
damental excitation. In the case of magnons, the inclusion of
spin operators results in a change of the overall angular mo-
mentum component along the z axis: �m j��1. Figure 3
illustrates the important mechanism for magnon light scatter-
ing from antiferromagnetic fluorides. The energy levels
shown in the picture belong to the transition metal ions on
the two sublattices. These transitions obey the same selection
rules that contribute to CD or MCD signals. The circularly
polarized light couples to different sublattices in the Raman
process as well, thus providing a way of distinguishing be-
tween the two sublattices. The figure shows energy levels for
both sublattices in the medium and illustrates that left and
right circular polarizations create magnons on different sub-
lattices.

Symmetry arguments can be applied to determine selec-
tion rules for the various scattering processes and are sum-
marized in the form of Raman scattering tensors. The scat-
tering tensors for the tetragonal antiferromagnetic fluorides
are presented in Table I.

The tensors have been transformed so that they are ap-
propriate for �R ,L ,z� incident polarizations and �x ,y ,z� scat-
tered polarizations. The Raman tensors describe the scattered

FIG. 3. The electronic levels of the magnetic ions in antiferromagnetically
ordered rutile materials responsible for the observed ROA signal. The two
sets of lines correspond to the two antiferromagnetic sublattices. In both
cases a magnon is generated during the scattering process.
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TABLE I. The Raman tensors for circularly polarized incident light that is analyzed for linearly polarized light scattered at 90°.
electric field amplitudes and thus the scattered light intensity
in a specific polarization is calculated through multiplication
of the tensor by its conjugate value. To describe the expected
CID spectrum, we need to calculate the difference between
two intensity terms. For example, the A1g phonon mode
should not generate a CID signal for scattered light polarized
along the x axis:

�x�A1g��
Ix

R�Ix
L

Ix
R�Ix

L �
a2�a2

a2�a2 �0. �2�

In the case of the magnon scattering we can calculate the
CID for each sublattice separately. In the case of the �3

�

band, we obtain the following CID expression:

�z��3��
��*���*2��*���2����*���*2��*���2�

��*���*2��*���2����*���*2��*���2�

�
�*2��2

2��*��
. �3�

Likewise for the �4
� magnon band we get a similar re-

sult:

�z��4���
�*2��2

2��*��
. �4�

The negative sign reflects the coupling of left circular
polarization to this particular sublattice. Notice that if the
energies of the two magnon bands are equal and the line
profiles equivalent, the total CID is the sum of these terms
and will be zero. The application of a magnetic field lifts the
degeneracy of the magnon branches. As a result, the CID of
the two branches will no longer completely cancel. This re-
sult is analogous to the differences observed between MCD
and CD spectra. The important distinction is that the Raman
spectra are determined only by the energies of the magnon
bands with no interference from the excited states of the ion.

V. RAMAN OPTICAL ACTIVITY EXPERIMENTS

The experimental arrangement, shown in Fig. 4, used the
standard 90° Raman scattering geometry. The incident beam
was the 488-nm line of a continuous-wave Spectra Physics
166 argon–ion laser. The focused laser power density at the
sample was 150 kW/cm2, well below the damage threshold
of the materials used. A Conoptics 370 electro-optic modu-
lator �EOM� was used to alternate between right and left
circular polarization. The scattered light was dispersed by a
Spex 1401, 0.85-m double monochromator and detected us-
ing a cooled RCA 31034-A02 photomultiplier. The signal
was measured using a Stanford SR-400 dual-gated photon
counter and stored on a computer. The signals counted on the
two gates, corresponding to the two incident polarizations,
were stored separately, permitting both IR�IL and IR�IL to
be easily calculated. Low temperatures were achieved using
a Cryosystems closed-cycle refrigerator. A permanent mag-
net assembly located inside the refrigerator applied a con-
stant magnetic field parallel to the crystal c axis. The mag-
nets were drilled through so that the incident laser beam
could be focused in the crystal collinear with the applied
field and allowed to pass on through the refrigerator.

The crystals used in this study were the rutile-structure
fluorides FeF2 and MgF2 . These materials are uniaxial, with
FeF2 undergoing an antiferromagnetic phase transition at
TN�78 K. The MgF2 crystal orientation was determined
from x-ray Laue diffraction measurements before the cuboid
sample was cut �to within a 1° accuracy� and polished. The
c-axis orientation for the FeF2 sample was found using a
polariscope. In addition, a polished crown glass cube was
used as a reference material to check for instrumental arti-
facts.

Rayleigh and Raman CID in MgF2 and FeF2

Our measurements of the magnon and phonon CID in
FeF2 generated several signals that were difficult to under-
stand initially. Figure 5 shows the difference spectrum IR

�IL as well as the separate IR and IL spectra from FeF2 with
no applied magnetic field. What is curious about these mea-
surements is that the magnon exhibits no apparent differen-
tial scattering but the B1g phonon mode does. When the
spectrum is enlarged to encompass all of the phonon modes
and the Rayleigh line, we observe a similar CID spectrum for
the A1g and B2g modes and the Rayleigh line but the sign of
the difference signal is opposite to that of the B1g mode.
Referring back to the Raman tensors, no CID is expected
from any of the phonon modes nor should Rayleigh scatter-

FIG. 4. The experimental setup for the ROA measurements. The laser light
was directed vertically through the sample to align the beam path with the
entrance slit of the spectrometer.
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ing exhibit CID. MgF2 is also a rutile-structure fluoride, but
it does not exhibit any magnetic ordering. It showed a similar
differential scattering pattern. An isotropic glass sample was
used to check for instrumental artifacts and none were found.

To explain the CID spectra of the phonons we looked
carefully at the effects of birefringence in the crystal on the
scattered intensity. Light propagating along the c axis will
experience an isotropic index of refraction so that no change
in the polarization occurs as it moves through the sample. A
slight misalignment results in distinct indices of refraction
parallel and perpendicular to the plane containing the c axis.
As a result, circularly polarized light becomes elliptically
polarized as it moves through the sample. The changes in
polarization affect the relative amplitude of the x and y com-
ponents of the incident light. The crucial point is that
changes of Ix and Iy are different for left and right circular
polarization so that any scattering that depends on only one
of these terms will exhibit a CID spectrum. This result per-
mits a very sensitive tool for aligning the samples for ROA
measurements so that intrinsic birefringence effects can be
eliminated.

Raman optical activity of magnons in FeF2

Figure 6 presents the conventional Raman and ROA
spectrum of the one-magnon line of FeF2 in an applied mag-
netic field. The modest applied field, B�0.6 T, is too small
to observe the splitting of the magnon branches within the
magnon linewidth using conventional �linearly polarized
light� Raman techniques. However, the magnon line exhibits
a clear CID spectrum. To determine the energy difference
between the two branches we fit the data using offset Gauss-
ian line shapes to describe the one magnon scattering peak.
In this manner we can calculate the energy difference as a
function of temperature. Figure 7 shows the temperature de-
pendence of the frequency splitting between the two magnon
branches in FeF2 . As the temperature increases, the energy
splitting between the branches decreases, while the linewidth
increases resulting in a larger uncertainty for the energy split-
ting between the branches.

Theoretically,28 the energy splitting between the two
branches is given by

FIG. 5. The ROA spectrum of FeF2 at 4 K. The presence of a CID spectrum
in the B1g phonon mode indicates a misalignment of the incident laser and
the crystalline c axis.
���T ��2�g
B�J� ��H �5�

where H is the applied magnetic field along the crystal c
axis, � � is the parallel susceptibility per spin site, 
B is the
Bohr magneton, J is the dominant nearest neighbor ex-
change, and g is the Lande g factor. At low temperatures, � �

is nearly zero, so

���T�0 ��2g
BH �6�

whereas at temperatures near TN , � ��g
B /2J so:

���T�TN��g
BH . �7�

This theory predicts that the splitting between the branches
should change by a factor of two when going from low tem-
perature to the phase transition temperature. Using param-

FIG. 6. The low-temperature ROA spectrum of FeF2 in the presence of an
applied magnetic field. The upper trace shows the conventional Raman spec-
trum. The lower trace is the measured CID spectrum.

FIG. 7. The temperature dependence of the magnon branch splitting ob-
tained from ROA measurements in FeF2 . The theoretical points are calcu-
lated using applied fields of 0.59 �filled diamonds� and 0.55 T �filled
circles�. The error bars on the theoretical points derive largely from the
uncertainty in the applied magnetic field strength.
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eters obtained from the experiment or the literature the the-
oretical curve shown in Fig. 7 was obtained. The theoretical
curve accurately describes the temperature variation of the
energy splitting between the magnon bands, but overall there
is a general offset between the measured data and the theo-
retical curve. The primary uncertainty for this measurement
arises from determining the actual value of the magnetic field
inside the refrigerator. The magnetic field of 0.59 T for the
permanent magnet gap was measured at room temperature.
The magnet will be at a much lower temperature during the
Raman measurement, but the affects of the lower tempera-
ture on the gap field strength is not known.

These measurements highlight the sensitivity of this
technique in measuring magnon branch splittings. The line-
widths of the two peaks at 62 K were greater than 10 cm�1,
but the separation between the peaks was only 0.4 cm�1.

For a simple antiferromagnet, we would not expect to
observe any CID spectrum in zero applied field ROA mea-
surements. However, careful measurements revealed a small
but repeatable CID spectrum in FeF2 . Figure 8 shows the
CID spectrum and the separate IR and IL Raman signals of
FeF2 . Care was taken to eliminate all of the depolarization
effects by using the Rayleigh scattering spectrum to ensure
alignment of the crystal c axis with the incident laser light.
The solid-line fit determined the zero field splitting between
the two magnon branches to be ���(0.09�0.02) cm�1. To
our knowledge this result is the first measurement of a zero
field splitting of the magnon branches in antiferromagnets
using Raman scattering. Again the high sensitivity and reso-
lution of this technique is highlighted in obtaining this result.

Finally, ROA measurements of the two-magnon scatter-
ing peak in FeF2 showed a null result. The lack of any CID
signal confirms that the dominant mechanism for two-
magnon scattering involves exchange coupled magnons on
opposite sublattices. Other possible sources of two-magnon
scattering are higher order processes that would be expected
to be much weaker than the one-magnon scattering. Multiple
spin-flip transitions have been observed in dilute magnetic
semiconductors in the paramagnetic phase under resonance

FIG. 8. The zero-field ROA spectrum of the one magnon line in FeF2 . The
solid line is a fit modeling the small CID apparent in this spectrum.
excitation conditions.17,18 These transitions were observed in
a forward scattering geometry where the scattered light was
analyzed for the circular polarization as well. The intensities
of the two spin flip signals are much lower than the single
spin flip signals consistent with a higher-order interaction.

VI. MAGNETIC DIPOLE-DIPOLE INTERACTIONS

In 1963 Loudon and Pincus25 examined the effect of the
classical dipole-dipole interaction between magnetic mo-
ments on the spin wave spectrum of a simple uniaxial anti-
ferromagnet. In the absence of an applied magnetic field, as
discussed above, the spin wave branches are degenerate in
these systems. The magnon dispersion relation is given by

����HA
2 �2HAHE�2HE

2 b2k2�1/2 �8�

where ��g
B is the gyromagnetic ratio, HA is the uniaxial
single-ion internal anisotropy field, and HE is the effective
exchange field; k is the wave vector and b�az�1/2, with a
the nearest-neighbor distance and z the number of nearest
neighbors. On inclusion of the dipolar fields, Eq. �8� splits
into two modes with their dispersions given by:

�1���HA
2 �2HEHA�2HE

2 b2k2�1/2, �9�

�2���HA
2 �2�HA�HEb2k2��HE�4�M s sin2 �k��1/2

�10�

where M s is the sublattice magnetization and �k is the angle
between the easy axis (z) of magnetization and the direction
of propagation k of the spin wave. Only the frequency of the
second mode is affected by the dipolar interaction. For spin
waves with k�0, Eqs. �9� and �10� reduce to

�1���HA�HA�2HE��1/2 �11a�

�2���HA�HA�2HE�8�M s sin2 �0��1/2. �11b�

In the case of longitudinal spin waves �0�0, and there is
no dipolar effect. For the transverse spin waves, however,
�0��/2, and the dipolar effects are at a maximum.

Subsequently, Harris26 has shown that Eq. �10� is an ap-
proximate result and has derived the full expression for the
spin wave dispersion in the presence of a dipolar field. How-
ever, the difference between Eq. �10� and the complete result
only becomes important when 4�M s is comparable to HE ,
which is not the case here.

The Loudon and Pincus calculation is based on a mo-
lecular field approach that neglects the affect of the Lorentz
field of one sublattice upon the other sublattice. When this
effect is included, White27 showed that the resonant frequen-
cies for k�0 are given by:

��k�0 �1,2����HA� HA�
8

3
�M s��2HA�HE

�4�M sNx��1/2

, �12a�

��k�0 �3,4����HA� HA�
8

3
�M s�

�2HA�HE�4�M sNy��1/2

�12b�
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and for k�0 by

��k �1,2����HA
2 �2HAHE�HE

2 �1�� k
2�

�
8

3
�M s�HA�HE�1��k���1/2

, �13a�

��k �3,4����HA
2 �2HAHE�HE

2 �1�� k
2�

�8�M s� 1

3
�sin2 �k� �HA�HE�1��k���1/2

�13b�

where N is the demagnetization dyadic,27 and �k is defined
as (1/z)�� exp(ik"�), where the �’s are the vectors to the z
nearest neighbors.

Notice that for the uniform spin precession (k�0) in a
sphere (Nx�Ny�Nz�1/3), the Lorentz field just cancels the
surface demagnetizing field. Therefore, there is no shift in
the resonant frequency as compared to non-dipolar cases.
The symmetric occurrence of Nx and Ny in Eq. �12� is due to
the fact that the normal modes labeled 1, 2 and 3, 4 are
characterized by net transverse magnetizations that are lin-
early polarized in the x and y directions, respectively. Notice
also that although the 1, 2 spin wave modes are independent
of � they are shifted by the Lorentz field.

Since the samples used in the optical studies had rectan-
gular cross sections in the basal plane, there will be dipolar
splittings of the magnons. Thus, from Eq. �12�,

��k�0��1��3�
4�M sHA�Nx�Ny�

�2HAHE�HA
2

. �14�

The demagnetizing factors are given by integrals over
the surface.27 In order to obtain estimates of these splittings
we approximate Nx and Ny by 1/2 and 1/4, respectively,
based on the sample dimensions. The parameter values used
in the calculations and the resulting splittings are listed for
MnF2 , CoF2 , and FeF2 in Table II.

VII. COMPARISON OF THEORY WITH EXPERIMENT

Optical circular dichroism

The calculated splittings given in Table II are quite small
compared with the magnon energies in these compounds.
Given the nature of the natural linewidths, splittings of this
magnitude are difficult to measure and they have been re-
solved only recently using Raman spectroscopy.11,15

The calculated values for �� in MnF2 and CoF2 �see
Table II� are of similar magnitude to those found experimen-
tally for the magnon sidebands in the visible region:
0.02 cm�1 for CoF2 and 0.07 and 0.05 cm�1 for MnF2 .
Thus the origin of the observed splittings reported in the CD
measurements is well encompassed by the effects of the
magnetic dipole-dipole interaction in these simple rutile an-
tiferromagnets. The size of the splittings detected by sponta-
neous magnetic CD cannot be compared directly with those
calculated in Table II, as the processes involved in the for-
mation of magnon sidebands are not as simple and direct as
those encountered in Raman scattering. For MnF2 , for ex-
ample, the sideband involves a combination of an exciton on
one sublattice with essentially zero dispersion25 with a mag-
non on the other with nearly 50 cm�1 dispersion; k conser-
vation requires the creation of exciton-magnon pairs with
equal and opposite wave vectors from throughout the Bril-
louin zone. Although the splitting is mostly uniform across
the Brillouin zone, the CD is, in effect, sampling the deriva-
tive of the joint density of states. It follows that an accurate
calculation of the CD requires the use of Eq. �13�, but the
theory needs to be extended to include specific symmetry
points in the Brillouin zone and an appropriate summation
over the entire zone.

Conceivably, another possible cause of CD in these com-
pounds could be a slight tilting of the spins away from their
ordered positions along the c axis. However, at low tempera-
tures and in zero applied magnetic field, all experimental
results to date point to collinear spin alignment in all of these
compounds.29

Raman circular intensity difference

In the Raman equivalent of the CD measurements dis-
cussed above, a �� of (0.09�0.02) cm�1 was observed in
FeF2 at low temperatures using a 90° scattering geometry.
From Eq. �11�, the theoretical splitting for magnons propa-
gating at approximately 45° to the c (z) axis is ��
�0.15 cm�1, which, considering the expected large uncer-
tainty in M s , is in good agreement with the experimental
results. Including the Lorenz field correction, Eq. �14� gives
���0.065 cm�1 �see Table II�, which is in even closer
agreement with experiment. The zero-field splitting of the
magnon branches observed in FeF2 is thus attributed to the
magnetic dipole-dipole interactions that can be important for
long wavelength magnons.27

Another way to quantitatively describe the interaction is
to define it in terms of an effective anisotropy field, H�, that
is treated in the same manner as an external magnetic field.
In this approach the energy of the magnons shows up in
much the same form as presented in Eq. �6� except that the
splitting is now due to H�.

���T�0 ��2�H��0.09 cm�1 . �15�

TABLE II. Magnetic parameters at low temperature for various transition-
metal fluorides possessing the rutile structure. The calculated dipole-dipole
induced splittings, ��k�0 and ��k��/2 , are also given.
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Using the parameter value ��1.05 cm�1/T �Table II� we
calculate the anisotropy field to be: H��(0.04�0.01) T.

By comparing Figs. 8 and 6 we see that the CID spectra
have opposite signs for the case of H�H� and H�Happlied

�H�, respectively. Since the energy splitting of the two
magnetic sublattices switches sign with the external field, the
direction of the applied field must be opposite to the direc-
tion of the effective anisotropy field. Going back to the tem-
perature dependence of the magnon branch splitting we can
now correct for the presence of the effective anisotropy field
in the material. Equation �5� becomes

���T ��2�g
B�J� ���Happlied�H��

�2�g
B�J� ���0.55 T�. �16�

The second theoretical curve shown in Fig. 7 uses this
new value for the magnetic field and gives better agreement
with the measured data.

8. CONCLUSIONS

The magnon sideband CD observed in rutile-structure
antiferromagnets can be quite readily explained as being the
result of magnetic dipole-dipole interactions breaking the de-
generacy of the two spin wave branches. These optical mea-
surements performed three decades ago are seen now to rep-
resent the first observation of such splittings, as first
predicted by Loudon and Pincus in 1963. It would be infor-
mative to perform further experiments to confirm the sin2 �
dependence of the splitting by varying the angle �0 from 0 to
�/2, i.e., the incident light direction is varied from along to
perpendicular to the easy axis, and also the sample shape
effect on the splitting.

The ability to measure an effective anisotropy field in
FeF2 highlights the sensitivity of ROA measurements for de-
termining small splittings between the magnon branches in
antiferromagnets. The measurement of such a splitting due to
magnetic dipole-dipole interactions in FeF2 has permitted a
final resolution of questions concerning the origins of CD in
optical measurements completed over thirty years ago. The
high sensitivity of ROA also permits the study of antiferro-
magnetic branch splittings for low applied magnetic fields.

The precise experimental work of Professor F. L. Scar-
pace and Dr. Y. H. �Russ� Wong from thirty years ago is
noted with appreciation. We thank Professors R. M. White
and M. G. Cottam for useful discussions and the National
Science Foundation for continued support spanning these
three decades.
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We study the formation of antiferromagnetic magnetoelastic domains in easy-plane
antiferromagnets of the iron-group dihalides, in which the infinite degeneracy of the spatial
orientation of the antiferromagnetic vector in the basal plane is lifted on account of the spontaneous
magnetostriction. In these crystals the domains differ from each other not only by the
direction of the antiferromagnetic vector L in them but also by the related directions of the
principal axes of the spontaneous magneostrictive strain. The system of antiferromagnetic domains
turns out to be identical to the system of elastic domains. It is shown that the processes of
magnetization and the induced striction in a magnetic field in the multidomain antiferromagnetic
state are interconnected. Data on the field dependence of the induced magnetostriction in
the multidomain state of the easy-plane antiferromagnets CoCl2 and NiCl2 are presented and
analyzed. It is shown that although the magnetostriction in the cycles of imposition and
removal of the magnetic field includes both reversible and irreversible contributions, the reversible
being the main one. It is shown that the magnetoelastic-striction domains are responsible for
reversibility �equilibrium� of the multidomain state. The field dependence of the magnetostriction
of the uniform and multidomain states and the behavior of the magnetization of the crystals
are described. For description of the rearrangement of the multidomain state, the approximation of
a continuous distribution of domains with respect to the orientations of their L vector in the
easy plane of the crystal in the absence of external magnetic field. It is shown that the matching of
the elastic fields of the system of domains and the elastic fields of defects can bring about
the formation of a reversible multidomain state, i.e., it can make such a state energetically
favorable. The results of the analysis are in satisfactory agreement with the experimental
data. © 2005 American Institute of Physics. �DOI: 10.1063/1.2008141�
I. INTRODUCTION

Many of the fundamental aspects of the magnetoelastic-
ity resulting from the lowering of the symmetry upon the
magnetic ordering of high-symmetry magnets with multiple
spatial degeneracy of the directions of the order parameter
have not been adequately studied. First and foremost, this
applies to the formation of magnetic domains in them. This
paper is devoted to an examination of these questions for the
example of layered easy-plane antiferromagnetic crystals of
iron-group dihalides.

II. BASIC PROPERTIES OF LAYERED ANTIFERROMAGNETIC
IRON-GROUP DIHALIDES

A. Properties of the crystals

Easy-plane antiferromagnetic crystals of iron-group di-
halides MeX2 �Me is a metal ion, Co or Ni, and X is a
halogen ion, Cl or Br� have a layered crystal structure in
which each layer of Me2� metal ions are surrounded by two
layers of halogen ions X�, coupled with the Me2� ions by
ionic-covalent bonds. The set of such sandwiches, coupled
together by van der Waals bonds, for a crystal. A threefold
symmetry axis C3 passes perpendicular to the layers, and in
the basal plane, which coincides with the plane of the layers,
there are two sets of twofold axes C2 , three equivalent axes
in each. The layeredness leads to anisotropy of the physical
7941063-777X/2005/31(8–9)/13/$26.00
properties both in the elastic subsystem of the crystals—the
values of the elastic constants in the direction perpendicular
to the layer are an order of magnitude smaller than those
within the layer—and in the magnetic subsystem—the ex-
change interactions of the magnetic ions in the layer are
much larger than those between ions of adjacent layers. The
inter-sandwich stacking of different crystals of this group can
be somewhat different. For example, CoCl2 and NiCl2 have
spatial symmetry D3d

5 �isomorphic to CdCl2),1 while CoBr2

has space group D3d
3 �isomorphic to CdI2).2

The majority of the crystals discussed3–5 are easy-plane
�EP� two-sublattice antiferromagnets �AFMs� with hard axis
C3 . The Me2� ions lying in one plane belong to one sublat-
tice, and the ions of adjacent planes belong to the other.
Owing to the EP anisotropy L�C3 , L�s1�s2 is the antifer-
romagnetic vector, and s1 and s2 are the sublattice magneti-
zation vectors. The anisotropy due to the departure of the
vectors s1 and s2 from the EP is much larger than the anisot-
ropy within the EP, and for a number of these crystals it is
even large compared to the exchange. As to the anisotropy
within the EP, according to the neutron scattering datea3 the
easiest directions for L in the EP correspond to the three
equivalent C2 axes of one set �sixfold spatial degeneracy�,
while the three C2 axes of the other set are harder, i.e., there
is some anisotropy. In NiCl2 this anisotropy, although ex-
tremely weak, is nevertheless manifested in the angular de-
© 2005 American Institute of Physics
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pendence of the low-frequency branch of the antiferromag-
netic resonance �AFMR�,4 in CoCl2 no such manifestation
could be discerned. The assertion that the in-plane anisotropy
is extremely weak can also be made from the observations of
the magnetization, which is actually independent of the mag-
netic field direction in the basal plane.5 Thus the vector L
can take practically any direction in the easy plane by over-
coming this small anisotropy.

One should also take into consideration the possible
modification of the in-plane magnetic anisotropy by the
fields of defects of the corresponding structure of the AFMs
studied. Point defects of a different type �vacancies or impu-
rity atoms� can enhance or weaken the 6-fold anisotropy
mentioned and can even cause a change of sign. Disloca-
tions, including screw, and disclinations will also alter the
anisotropy mentioned in the region around them. Thus de-
fects can suppress the weak in-plane anisotropy if its local
modulation caused by them exceeds its small initial value.

The parameter � in the Curie-Weiss law for the tempera-
ture dependence of the paramagnetic susceptibility and also
the temperature of AFM ordering �the Néel temperature TN)
in these crystals is mainly determined by the intralayer fer-
romagnetic exchange, while the interlayer AFM exchange is
considerably weaker.5

B. Spontaneous lowering of symmetry. AFMR. Domains

It follows from the neutron diffraction observations that
the AFM ordering in CoCl2 , CoBr2 , and NiCl2 in the pres-
ence of orientational degeneracy of the directions of the vec-
tor L in the plane is accompanied by the separation of the
crystal into antiferromagnetic domains3 with different direc-
tions of L in the EP. Within each domain L is uniform.
According to the data of Ref. 3, the values of the angles
between directions of L are predominantly equal to 60°, re-
flecting, it would seem, the orientation of L within each do-
main with its easiest axis. However, even the neutron diffrac-
tion data do not imply that the distribution functions of the
directions of L of the different domains are completely con-
centrated only near these directions, and the residual stresses
are not represented. In a magnetic field H lying in the EP a
gradual transition to a uniform �single-domain� state with
L�H occurs. It is reached in a field H f f , much less than the
sublattice collapse fields. When the field is removed the mul-
tidomain state is is restored, though not completely. The vol-
ume of the domains with L normal to the imposed field is
greater than the volumes of domains with other orientations
of L.

AFMR studies of these crystals4,6–8 have shown that the
low-frequency �LF� branch of the AFMR in them has a finite
gap, the value of which is much larger than would be ex-
pected from the small in-plane anisotropy. Besides the data4

for NiCl2 , where the angular dependence of the frequency of
the LF AFMR was found to contain a weak contribution due
to the angle between H in the EP and the C2 axes, no mani-
festations of this anisotropy in the corresponding angular de-
pendences of the frequency of the LF AFMR has been dis-
cerned in other crystals of this group. Such behavior of the
LF AFMR is typical9,10 for the spontaneous lowering of the
symmetry on account of the magnetoelastic �ME� interac-
tion, in an AFM with infinite spatial degeneracy of the ori-
entations of L. A spontaneous anisotropy of the magneto-
striction arises in the crystal, with the principal axes of the
strain tensor lying in the EP in the directions perpendicular
and parallel to L. The in-plane magnetoelastic anisotropy
due to the magnetostriction lifts the spatial degeneracy for
the directions of L, leading to the formation of a gap for fast
oscillations of L and M in the plane (M�s1�s2). Impor-
tantly, this ‘‘anisotropy’’ for the crystals studied turns out to
be much greater than the initial in-plane magnetic crystallo-
graphic anisotropy discussed above.

Comparison of the field of this anisotropy �magnetoelas-
tic field� with the exchange field shows that in order of mag-
nitude the magnetoelastic energy amounts to some percent of
the exchange energy. It is expected that when the values of
the elastic constants of the crystals are taken into account,
the values of the anisotropic spontaneous magnetostriction in
them will be anomalously large, as was observed in Ref. 11:
it reaches values of 10�4 – 10�3. A magnetostriction of simi-
lar magnitude observed in rare-earth magnets is sometimes
called ‘‘giant.’’ 12

Observation of the LF AFMR in CoCl2 has revealed
practically no manifestations of angular dependence �depen-
dence on the direction of H in the EP� of the frequency in
either the single-or the multidomain state. The magnetic-field
dependence of the LF AFMR can be described on the as-
sumption that the value of the MS gap is independent of field
at the transition to the single-domain state. Consequently, in
the multidomain state, domains with different directions of
the MS coexist without creating mutual elastic stresses that
influence the value of the gap of the LF AFMR.

The multidomain character is manifested in the magne-
tization of the structures.13 At high magnetic fields in the
single-domain state the samples behave as Néel two-
sublattice AFMs with linear dependence of the magnetization
on field. In the multidomain state one observes a nonlinear
trend of these dependences with a noticeable decrease of the
magnetic susceptibility for H→0.13 These features of the
magnetization had not been explained before.

It was shown in Refs. 14–19 that the AFM domains in
the crystals studied have a magnetoelastic nature. In those
papers, and also in Refs. 20 and 21, it was established that it
is the elastic aspect of the multidomain state that is respon-
sible for its essential reversibility. Below we give a brief
review of the papers mentioned and carry out additional
proofs of the magnetoelastic nature of the AFM domains in
layered iron-group dihalides.

C. Causes of the formation of domains in layered AFMs

The formation and stability of AFM domains have been
discussed in many papers.22–25 The multidomain character of
the AFM is not due, as in the case of ferromagnets, to mag-
netostatic fields �of a dipolar nature�26,27 The cost in ex-
change energy in the domain walls should make this state
energetically unfavorable. Therefore the AFM domains are
most often metastable, thermodynamically nonequilibrium,
and are not restored after the crystal has been brought to the
single-domain state by an external magnetic field.

The AFM domains arising at orientation phase transi-
tions in uniaxial AFMs was studied in Refs. 28 and 29. In a
magnetic field the transition from the state with easy-axis
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AFM orientation of the sublattice spins to the state with
spins tilted toward the field and oriented almost perpendicu-
lar to the easy axis, both these states are observed simulta-
neously, i.e., an intermediate AFM state is realized.29 This
multidomain state formed in the magnetization of an AFM is
described with allowance for the magnetostatic energy.

Various mechanisms have been proposed22 to explain the
formation of an equilibrium multidomain state in an AFM,
but apparently none of them applies to all AFMs. The most
universal, at first glance, is the entropy mechanism,30 accord-
ing to which the energy cost due to the exchange interaction
in the wall is compensated by a lowering of the free energy
T�S owing to the increase in entropy in the multidomain
state (T is the temperature and �S is the entropy increase�.
This contribution vanishes at T→0, although in a number of
cases it does permit an explanation of the formation of an
equilibrium multidomain state at high temperatures, close to
the Néel point.22

In many AFMs the equilibrium �or almost equilibrium�
multidomain AFM state exists in the temperature interval
from TN to T→0. It is most often linked with the influence
of defects. Domains of this kind have been observed by dif-
ferent methods, e.g., they have been visualized optically.31,32

AFM domains are formed upon twinning of the crystal,
when the domain structure is a combination of antiferromag-
netic and structural domains. The formation of a multido-
main state is possible when the order of succession of the
sublattices is disrupted, e.g., in the presence of edge disloca-
tions, when the defect is a half plane of atoms with magnetic
moments belonging to one of the magnetic sublattices. In
Refs. 33 and 34 it was shown that a screw dislocation in an
AFM leads to the formation of a spin disclination, which,
when the anisotropy is taken into account, leads to the for-
mation of AFM domains. Defects can also stabilize the mul-
tidomain state of a kinetic nature that arises in the course of
the AFM ordering, when domains form because there are
many centers for the formation of the AFM state at TN .35

The simplest case of the influence of defects on the for-
mation of a multidomain state involves the so-called ‘‘met-
allurgical defects,’’ which, distorting the lattice, locally alter
the direction of the anisotropy fields and the local orienta-
tions of the vector L. We shall not consider that case but
restrict the investigation to multidomain states formed as a
result of the ME interaction of the magnetic subsystem with
the elastic fields of defects in rather perfect crystals, which
has been fully studied.

It is not obvious why it is optimal for a system of AFM
domains to form in which each of the domains suffers spon-
taneous ms that is anisotropic in the plane, with different
directions of the principal axes of the strictive strains. If the
directions of the striction are different in different directions,
then stresses should arise on the walls of adjacent domains to
counteract the differently directed spontaneous MS in them.
And although the directions of the principal axes of the strain
tensors can be matched for two adjacent domains, but it can-
not be done where more than two domains come together at
a point. Such a point is surrounded by elastic stresses that
add to the energy cost to the crystal. However, if the place
where three or more domains come together coincides with a
structural defect, which is also a source of elastic stresses
and strains, then the energy cost of the structural defect can
be reduced by having the signs of their elastic fields match
those of the stresses caused by the junction of the domains.
In that case the total energy of the crystal can even decrease
provided the cost of the exchange energy in the domain walls
is less than the benefit in the elastic energy.

The possibility of stabilization of the multidomain mag-
netoelastic state owing to the benefit in the surface energy of
a sample without any changes of its outward form was con-
sidered in Refs. 20 and 21. This mechanism may be appli-
cable to AFM samples of very small size. Therefore, we shall
not analyze it in detail here.

In the analysis of the induced MS of the crystal as a
whole, it is necessary to distinguish two regions: the low
field region, where the observable, aggregate MS is mainly
due to rearrangement of the multidomain state, and the high
field region, where in the single-domain state the MS that
appears is due solely to the rotation of the sublattice magne-
tizations toward the magnetic field and their ultimate col-
lapse at a field H f f�2HE . For some of the crystals consid-
ered, the values of 2HE are small and accessible in
experiments.

III. FIELD AND TEMPERATURE DEPENDENCE OF THE
INDUCED MAGNETOSTRICTION AND THE MAGNETIZATION
OF THE EASY-PLANE AFMs

A. Dependence of the induced MS in crossed magnetic
fields

The magnetostriction of CoCl2 , CoBr2 , and NiCl2 has
been studied by means of a capacitive dilatometer.36 The
crystals were grown by the slow cooling of the melt in a
sealed quartz ampoule. Prior to sealing, the ampoule contain-
ing the ‘‘chemically pure’’ �grade ChDA� powder was
pumped down at a temperature close to the melting point for
dessication. The crystals are easily delaminated along the
plane perpendicular to the C3 axis; the directions of the C2

axes in the basal plane of the crystals was not monitored.
Samples in the form of 5�5�1 mm rectangular slabs were
cut from flat wafers obtained by cleaving. The variation of
the length of one of the sides of the slab in magnetic field
was measured.

To obtain data on the reversible and irreversible �after a
cycle of imposition and removal of the magnetic field� parts
of the induced MS, we used a system of crossed supercon-
ducting magnets. The sample was mounted so that the fields
of both coils lay in plane of the sample, one in the direction
along the side of the slab measured by the dilatometer, the
other perpendicular to it. The maximum magnetic fields
equaled 65 and 13 kOe. This set of solenoids made it pos-
sible to investigate the MS while rearranging the domain
structure and also to determine the part that lies ‘‘hidden’’ in
the spontaneous MS of the sample before the magnetic field
is applied. The sample temperature was set at values ranging
from 4.2 to 70 K.

Figure 1 shows the curves of the relative elongation
�(H)��l /l for CoCl2 and NiCl2 �the curve for CoBr2 is
analogous to that for CoCl2) in an imposition-removal cycle
of the crossed magnetic fields at a temperature of 4.2 K. Here
l is the length of the sample and �l is its change in the
field. Curves 1 and 2 in Fig. 1 correspond, respectively, to



797Low Temp. Phys. 31 (8–9), August–September 2005 Kalita et al.
the measurements of ��(H) during the imposition and re-
moval of the field H perpendicular to the measured side of
the crystal, and curves 3 and 4 to the measurements of � �(H)
during the subsequent imposition and removal of a field H
along that direction. It is seen that the striction is anisotropic
with respect to the field direction and that the curves of the
MS thus obtained have the form of hysteresis loops with a
remanent MS, the sign of which is determined by the direc-
tion of the removed field.

The curves shown in Fig. 1 correspond to the variation
of the MS during the rearrangement of the multidomain state
and a transition to a uniform state under the influence of
magnetic field. In the AFM state an anisotropic spontaneous
MS is realized for these samples. However, in the multido-
main state the differently directed spontaneous strains of the
individual domains average out almost to zero over the crys-
tal as a whole. At high fields the spontaneous MS of the
crystal is restored in a transition to the single-domain state.
After the field is removed, the multidomain state is largely
restored, and the MS decreases to a small remanent striction.
This remanent MS is also absent prior to the first imposition
of the field. In the multidomain state, as we have said, the
AFMR data11 indicate that the domains individually are

FIG. 1. Relative elongation of CoCl2 �a� and NiCl2 �b� during the imposi-
tion and removal of a magnetic field lying in the easy-plane perpendicular to
the direction of the measured side of the crystal �curves 1 and 2� and the
subsequent imposition and removal of a field along the measured direction
�curves 3 and 4�.
spontaneously strained, as is reflected in the observed gap in
the spectrum of the LF branch. This means that the domains
retain the spontaneous MS without creating substantial
stresses on each other, although the spontaneous MS of the
whole crystal in the multidomain state is close to zero.

It is also seen in Fig. 1 that the signs of the contribution
from the induced MS in the single-domain state are opposite
to the signs of the initial spontaneous MS for both crystals
and both orientations of the magnetic field. Therefore, the
� �(H) curve has a maximum and the ��(H) curve a mini-
mum near the field at which the single-domain state is estab-
lished in the sample. In NiCl2 the � �(H) and ��(H) curves
are practically antisymmetric at the transition from the mul-
tidomain to the single-domain state. In CoCl2 , as in CoBr2 ,
this antisymmetry is noticeably distorted. For CoCl2 and
CoBr2 the field of the maximum Hmax is constant larger than
the field of the minimum Hmin , and � �(Hmax)����(Hmin)�.

These results were explained in Ref. 14 as follows. The
strains of different domains add together, forming the strain
of the crystal in the direction of measurement. Since for the
spontaneous MS the strains of the crystal along L and per-
pendicular to it must be equal in magnitude and opposite in
sign, the total spontaneous MS anisotropic in the basal plane
for the crystal in the multidomain state averages to zero for
H�0 if it is assumed that the domains are uniformly distrib-
uted over equivalent directions of L. After the induced tran-
sition of the crystal to the single-domain state for L�H, the
dependence of the induced MS on the field is determined
solely by the canting of the sublattice magnetizations toward
H. For the data shown in Fig. 1, this stage begins at H
	10 kOe and ends at H�H f f �the data for H�H f f are not
shown in Fig. 1�. The differences between the curves during
imposition and removal of the field in Fig. 1, corresponding
to the remanent spontaneous MS of the crystal as a whole,
reflect the partial irreversibility of the rearrangement of the
domain structure in this cycle.

B. Field dependence of the MS at low fields

Figure 2 shows the dependence of the MS of the multi-
domain state of CoCl2 and NiCl2 on the square of the mag-
netic field strength during the removal of the field at low
fields. For H�2.5 kOe the curves can be described by the
expression

� � ,���r� ,��
 � ,�H � ,�
2 , �1�

where �r� ,� is the remanent striction in the plane for mea-
surements along ��� and transverse to ��� the magnetic field,
��r����r��, but �r����r� ; 
 ���
� are empirical param-
eters. The �(H) curve for the first imposition of the field is
also described by Eq. �1�, but with �r�0. The curves drawn
according to Eq. �1� are shown by the solid lines in Fig. 2.
The quadratic character of the field dependence of the MS
shows that the rearrangement of the multidomain state, i.e.,
the increase of the volume of domains with the favorable
orientations of the sublattice spins �relative to the direction
of H� and the decrease of the volume of domains with an
unfavorable orientation occurs mainly through the motion of
domain walls.
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C. Behavior of the MS in the uniform state

The rearrangement of the multidomain state is com-
pleted in a magnetic field higher than the characteristic value
of the field for bringing the sample to the single-domain state
�in our case �10 kOe), by a transition to a single-domain
state with L�H. Figure 3 shows the relative elongation of
the crystals as a function of the magnetic field strength for a
field H�65 kOe parallel to the side being measured. The
MS of the single-domain state can be described by the
expression17,37

� ��H ����S ��1���H/H f f �
2�, �2�

where � (S) is the striction that would be realized in the crys-
tal at H→0 if the sample were in a uniform state, and � is an
empirical parameter. The value of � (S) should be regarded as
spontaneous anisotropic MS, which can be obtained from the
assumption continuation of the � �(H) curve into the region
H→0. For NiCl2 and CoCl2 the cases ��1 and ��1 are
realized, respectively. As was shown in Refs. 14, 17, and 37,
this is due to the different relative contribution to the MS
from the inter- and intra-sublattice magnetoelastic interac-
tions.

In CoCl2 an orientational phase transition is reached in
the given field interval, at H�H f f , when the spins of both
sublattices become parallel along H. After that, the field de-
pendence of the MS changes in connection with the parapro-
cess. According to Ref. 1 and our data, H f f�32 kOe in
CoCl2 . In NiCl2 , according to the AFMR data, H f f

FIG. 2. Dependence of the induced magnetostriction of CoCl2 �a� and NiCl2

�b� versus the square of the magnetic field strength during removal of the
field.
�129 kOe,38 and it was not reached in our experiments; we
therefore used the published value for H f f in determining the
value of the parameter � in Eq. �2�.

C. Temperature dependence of the MS

Figure 4 shows the field dependence of the relative strain
of CoCl2 in the direction along the magnetic field, which was
oriented in the EP, for temperatures from 4.2 to 24 K. The
influence of temperature is manifested in the value of the MS
strain: it decreases with increasing T . The field of the tran-
sition to the single-domain state �the region of the maximum
on the curves� also decreases with increasing T , as does the
field H f f .

FIG. 3. Field dependence of the magnetostriction of CoCl2 �a� and NiCl2 �b�
crystals; the measurements were made during removal of a field lying along
the direction of measurement of their relative elongation.

FIG. 4. Field dependence of the magnetostriction of CoCl2 for the first
imposition of the magnetic field at different temperatures.
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Figure 5 shows the MS in CoCl2 , normalized to the
value of the spontaneous anisotropic MS, i.e., �̃(T ,H) �

��(T ,H) � /� (S)(T), for different temperatures as a function
of the square of the magnetic field �for field directed parallel
to the side being measured�, normalized to the square of the
collapse field at the corresponding temperature: H̃ �

2

�H �
2/H f f

2 (T). It is seen that, when normalized in this way,
the curves for different temperatures in the single-domain
state all coincide. This means that in the uniform region the
MS obeys relation �2� with a parameter � this is independent
of T . Then the variation of � �(H) with temperature should
be due to the influence of temperature on � (S)(T) and H f f(T)
only. This is easy to understand, since the induced MS of the
single-domain state is due solely to the canting of the sub-
lattice spins.

In the region where the rearrangement of the multido-
main state occurs, the dependence of MS on magnetic field
has a different character. Figure 6 shows the dependence of
the induced MS of CoCl2 on the square of the magnetic field
strength during the first imposition of the field (�r�0). They
obey expression �1� but with a coefficient 
 that depends on
T . Here the trend of the MS can be represented in the form

� � ,����S ��T �
H � ,�

2

Hd
2 , �3�

where Hd is a parameter having dimensions of magnetic field
strength. For agreement with experiment the value of Hd

should be chosen the same for all temperatures and equal to
5.7�0.3 kOe. If an entropy mechanism of the multidomain
state or a mechanism involving the influence of the surface
elastic energy is realized in the crystal, then the parameter
Hd would be temperature-dependent.

FIG. 5. Magnetostriction �̃ � of the uniform state of CoCl2 , normalized to its
spontaneous value, versus the square of the magnetic field in the plane,
normalized to the collapse field, for different temperatures.
E. Field dependence of the magnetization in the
multidomain state

The magnetization was measured using an LDJ-9500 vi-
brating magnetometer. NiCl2 samples with dimensions of 5
�4�0.2 at the were studied. The applied field did not ex-
ceed 12 kOe, which was sufficient for the transformation of
NiCl2 from a multidomain to a single-domain state.17 The
samples used in the magnetostriction and magnetization
measurements were grown at different times. Because NiCl2
crystals are hygroscopic, the samples were stored in a dessi-
cated medium. In view of the possible differences in the
growth and storage conditions, it cannot be said for certain
that the samples were identical from the standpoint of the
possible number of defects. Measurements made in the
cycles of field imposition and removal have shown the ab-
sence of remanent magnetization. Consequently, our AFM
crystals, like those in Ref. 39, did not have ferromagnetic
inclusions.

Figure 7 shows the magnetization curve of a NiCl2
single crystal during the imposition of a field H�C3 . It is
seen that the magnetization depends nonlinearly on H . The
dashed line in Fig. 7 shows the straight line expected for the
dependence of the magnetization on H in a single-domain EP
AFM with no in-plane anisotropy.40 The experimental depen-
dence m(H), on the contrary, has a characteristic ‘‘sag’’ be-
low this straight line in the region where the rearrangement
of the multidomain structure occurs. Initially the difference
between the calculated and experimental m(H) curves grows
and the curves diverge from each other, but then �for H
�5 kOe) they draw closer together and practically merge at
H�10 kOe. The m(H) curve of the multidomain state for
H→0 is well approximated by the expression

FIG. 6. Magnetostriction of CoCl2 versus the square of the magnetic field
during its removal at different temperatures in the region of the multidomain
state.
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m�
dH� 1�
H2

Hm
2 � , �4�

where 
d is the magnetic susceptibility of the multidomain
state for H→0, and Hm is an empirical parameter. A fitting to
experiment gives 
d�0.44 e.m.u./(g•kOe), Hm�4.3
�0.6 kOe.

By integrating m(H) over H , one can determine the
work done by the magnetic field in magnetizing the crystal.
The work done by the field in taking a unit volume of an
AFM from the multidomain to the uniform state18 will be the
difference between the work of magnetization of a uniform
and a multidomain segment. For the numerical integration
we use the experimental dependence shown in Fig. 7. We
compute

�A�
1

2� �
eHe
2��

0

He
m�H �dH� , �5�

where � is the density of the crystal, 
e is the magnetic
susceptibility of the uniform state, which, line the magneti-
zation m(H), is normalized per unit mass of the sample, and
He is the field at which the uniform state is attained �we used
the value He�10 kOe).

The energy E per unit volume of a multidomain antifer-
romagnet in a magnetic field can be written as a sum E
�e1�e2�e3�e4 , where e1 is the AFM exchange energy,
e2 is the Zeeman contribution, e3 is the domain-wall energy,
and e4 is the energy of matching of the local elastic fields of
defects of the crystal and the elastic strains due to spontane-
ous MS domains. The local matching of the elastic strains of
the spontaneous MS of the domains with defects promote the
formation of multiple domains, and therefore e4 can be
called the energy ‘‘source’’ of the multidomain character. An
equilibrium multidomain state corresponds to a minimum of
the energy E . In that case the energy increments e3 and e4

upon the formation of the multidomain state must have op-
posite signs.

Let us consider the difference of the energies E of a
crystal in the states prior to application of the magnetic field
and in the field He , i.e., �E��e1��e2��e3��e4 .
Hence �A���e3(H�0)��e4� , where we have taken into

FIG. 7. Magnetization of NiCl2 as a function of the magnetic field lying in
the EP. The dots are experimental �result of the first imposition of the field�,
the dashed line is the expected dependence for a single-domain crystal with
reversible domain structure.
account that for H�He the state of the crystal is uniform
�almost uniform for our calculation using He�10 kOe),
e3(H�He)�0, and �e3�e3(H�0)�e3(H�He)�e3(H
�0)�e3 . According to Eq. �5�, �A�0, and the formation
of domain walls is unfavorable for the exchange interactions,
and therefore e3�0. It follows from the arguments presented
above that �e4�0, and ��e4��e3 . Since �e4�e4(H�0)
�e4(H3), we obtain e4(H�0)�e4(H3). Such a feature of
the energy source e4 of the multidomain character is a nec-
essary condition for the formation of an equilibrium magne-
toelastic multidomain state.

The energy benefit of the multidomain state at H�0 can
be determined from Eq. �5�. Its value is equal to the square of
the figure enclosed between the straight line of uniform mag-
netization and the m(H) curve in Fig. 7. According to our
calculations, the ratio of this energy benefit to the exchange
energy of the inter-sublattice interactions in NiCl2 equals
5.7�10�4.

Thus one can conclude that in the presence of defects
causing local elastic stresses, the multidomain magnetoelas-
tic state is energetically favorable and, consequently, should
be reversible, i.e., in a state of thermodynamic equilibrium.
That state is realized in the given AFM.

Before turning to an analysis of the multidomain state,
let us analyze the behavior of the MS of a uniform state.
Moreover, at small values of H f f the contribution from the
canting of the sublattice spins in the rearrangement of the
multidomain state cannot be neglected.

IV. PHENOMENOLOGICAL DESCRIPTION OF THE MS OF
THE UNIFORM STATE

In the phenomenological description of the induced MS
of the uniform state we shall assume that its value depends
only on the orientation of the sublattice spins.19,37 We shall
take into account only the magnetoelastic interactions which
are anisotropic in the easy plane. When the symmetry of
these crystals is taken into account, the sum of the magneto-
elastic and elastic contributions to the energy can be written
in the form

E� �

	�

�
��T ��n
xn�x�n
yn�y��Uxx�Uyy�

� �

	�

�
��T ��n
xn�y�n�xn
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	�

�
��T �

��n
xn�x�n
yn�y��Uxx�Uyy��
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2
C11�Uxx

2

�Uyy
2 ��C12UxxUyy��C11�C12�Uxy

2 , �6�

where n
x ,n
y and n�x ,n�y are the direction cosines of the
sublattice magnetization vectors s
 and s� , the x and y axes
lie in the EP, �, �, and � are temperature-dependence param-
eters of the magnetoelastic interactions, the indices 
 ,�
�1,2 enumerate the sublattices, and the Ui j are components
of the strain tensor. The terms containing the constants C11

and C12 describe the elastic contribution to the energy of the
crystal. In Eq. �6� the terms with 
�� and 
�� pertain to
the intra- and inter-sublattice magnetoelastic interactions, re-
spectively.



801Low Temp. Phys. 31 (8–9), August–September 2005 Kalita et al.
In the uniform state and in a magnetic field oriented in
the EP, the spins of both sublattices lie in that plane and are
tilted in the same way with respect to H. Then the direction
cosines in �6� are proportional to H/H f f . The dependence of
the strain on H is easily found by minimizing �6� with re-
spect to Ui j . The expressions obtained for Uyy , when H lies
along y or x , have the form14,17,37

Uyy�H�y ,x ���
2�11

C11�C12
�

�12

C11�C12

�� �12

C11�C12
�

2�11

C11�C12
� � 1�2

H2

H f f
2 � , �7�

where the upper sign corresponds to H�y , when the field is
parallel to the strain being measured, Uyy , and the lower
sign to H�x , when the field is perpendicular to that strain.

In the MS measurements the length of the side of the
crystal at H�0 is taken as the reference point, and the iso-
tropic contributions to the strain in �7� are not reflected in the
measurements. Therefore, expressions for the MS of the rela-
tive elongation of the sides of the crystal in the easy plane of
an EP AFM in the directions along and transverse to the
magnetic field take the form

�d� ,�����S �� 1�2�1�� � ,��
H � ,�

2

H f f
2 � . �8�

Here the MS of the uniform state at H�0 should satisfy the
relations �d�(H ��0)�� (S) and �d�(H��0)��� (S) , where
� (S)�(2�11��12)/(C11�C12). The values of � � ,� in �8� are
expressed in terms of the parameters of the magnetoelastic
interactions:

� ���12 /�2�11��12���12�C11�C12�/�2�11��12�

��C11�C12�,

����12 /�2�11��12���12�C11�C12�/�2�11��12�

��C11�C12�.

The dependence �8� is in good agreement with the empirical
relation �2�.

For �12�0 and �12�0 the derivative

��d��H2�/��H �
2�����d��H2�/��H�

2 �,

since � ���� , as it characteristic for CoCl2 .16,19 In that
compound ��2(1�� � ,�)�1, and the intra-sublattice mag-
netoelastic interactions are dominant. In NiCl2 the slopes of
the �d�(H2) and �d�(H2) are, to within the error limits,
equal in magnitude and opposite in sign. Here ��2(1
�� � ,�)�1, which corresponds to dominance of the inter-
sublattice magnetoelastic interactions which are isotropic in
the EP.17 This difference of the magnetoelastic interactions in
these crystals is apparently due to the fact that in NiCl2 the
orbital moment of the ions is almost completely frozen, and
the single-ion anisotropy is much less than the intra-
sublattice exchange.41 In CoCl2 , on the contrary, total freez-
ing of the orbital moment of the ions does not occur, and
therefore the single-ion anisotropy in it is comparable to the
intra-sublattice exchange,41–44 and that leads to dominance
of the intra-sublattice magnetoelastic interactions.
V. DESCRIPTION OF THE REARRANGEMENT OF THE
MULTIDOMAIN MAGNETOELASTIC STATE OF AN AFM

A. System of magnetoelastic domains in an AFM

It follows from the director presented that for a qualita-
tive discussion of the multidomain nature of these crystals
the distribution over orientations of the L vectors of the
AFM domains in the EP can be treated as continuous. Gen-
erally speaking, because of the influence of the small in-
plane anisotropy it should be anisotropic, but taking that an-
isotropy into account, in view of its smallness and the
presence of three equivalent ‘‘easiest’’ axes in the EP, it does
not affect the magnetic-field dependence of the MS in the
multidomain state.17 We shall therefore disregard the in-
plane anisotropy to avoid complicating the calculations. We
shall also adopt an approximation of the probability density
distribution of the domains over orientations of L by assum-
ing that prior to the first application of the field the domains
�the L vectors in them� are distributed equiprobably over all
directions in the EP.

The orientation of the L vectors of the domains in the EP
will be specified by an angle � between the magnetic mo-
ment vector M of the domain and the vector H �see Fig. 8�,
the angle � being defined in the EP. For H→0 the angle �
should be taken to be the angle between the direction corre-
sponding to limH→0M and the direction of H. The density of
the domain distribution p(�) we define as the ratio of the
volume of domains with orientation � to the volume of the
crystal. It is normalized, i.e., 1/� ���/2

�/2 p(�)d��1.
As we have said, the MS of a uniform easy-plane AFM

is anisotropy in the easy plane. It is equal to � (S) in the
direction perpendicular to L and to �� (S) in the direction
along L. Using p(�), we write an expression for the MS of
the crystal as a whole in the multidomain state:

��
1

� �
��/2

�/2

�� �
�S ��H �cos2 ����

�S ��H �sin2 ��p���d� .

�20�

For a domain with ��0 the magnetic field moment M is
not parallel to H and is equal to �M��
eH cos �. Its projec-
tion on H is equal to M H�
eH cos2 �. Therefore the mag-
netization of the crystal as a whole will be

FIG. 8. Scheme of the orientations of s1 and s2 and of L and M of a domain
relative to the magnetic field H.
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m�
1

� �
��/2

�/2


eH cos2 �p���d� . �21�

For NiCl2 the field H f f is much greater than the width of
the region of fields in which the rearrangement of the multi-
domain state occurs. Therefore we can assume � �

(S)(H)
�const, � �

(S)(H)�const. The MS in NiCl2 is almost com-
pletely antisymmetric �see Fig. 1�. Therefore � �

(S)(H)�
���

(S)(H)�� (S). Then the relation between the mean mag-
netization and the MS in the multidomain state will have the
form18

m�H ��
1

2

eH� 1�

� ��H �

��S � � . �22�

If the experimental values18 of the relative elongation of the
crystal along H in the region of rearrangement of the multi-
domain state, � �(H), are substituted into Eq. �22�, we obtain
a curve for m(H) that is close to the experimental curve for
the magnetization of the crystal, presented in Fig. 5. One can
also carry out the inverse procedure, substituting m(H) into
Eq. �22�. Then one can obtain from the magnetization data
the expected behavior of the relative elongation of the crys-
tal. The curve thus obtained for the striction also turns out18

to agree well with the experimental dependence.
Thus the magnetic-field dependences of the magnetiza-

tion and the MS in the multidomain AFM state are interre-
lated and reflect the process of the rearrangement of that state
under the influence of the field. This is a consequence of the
magnetoelastic nature of the AFM domains in these crystals.

At low magnetic fields the domain distribution that gives
satisfaction agreement with the experimental data on the
field dependences of the MS and magnetization has the form

p����
1

� �1�4� �r

��S � �
H2

Hd
2� � cos2 ��

1

2 � � . �23�

During the removal of the magnetic field or its repeated im-
position in the same direction the dependence of the magne-
tization at low fields will have the form

m�
1

2

eH� 1�

�r

��S � �
H2

Hd
2� . �24�

If the remanent striction �r→0, then the magnetic suscepti-
bility 
d at the beginning of the rearrangement of the domain
structure, for H starting from zero, should be smaller by half
than the susceptibility of the uniform state, 
d�
e/2. The
experimental value of 
d is close to 
e/2, although it is
slightly larger, reflecting the existing irreversible contribu-
tion to the structure of the multidomain state. Furthermore,
one would expect that Hd�Hm . The difference of the values
of the parameters Hd and Hm is 15%. As we have said, the
crystals used in our investigation of the MS and magnetiza-
tion were grown at different times, and their defect state,
which determines the values of Hd and Hm , could have been
different.

B. Reversible and irreversible components of the
rearrangement of the multidomain state

The distribution of domains over orientations of their L
vectors �23� contains two terms. The first is due to �r and
pertains to the irreversible component of the rearrangement
of the multidomain state, while the second is due to the re-
versible component. The MS of the crystal as a whole can be
written as the sum

��H ��� rev�H ���unr�H �, �25�

where � rev(H) is the reversible contribution to the resultant
striction, and �unr(H) is the irreversible component; both
components depend on the magnetic field and the stage of its
imposition-removal cycle, although, starting at a certain
value of the applied field, �unr(H) should apparently cease to
depend on it. We assume that in the removal of the field the
irreversible part of the MS in the whole field interval in
which the AFM state exists, remains constant and equal to
the remanent MS: �unr(H)��r�const.

The � rev(H) and �unr(H) curves obtained for CoCl2 and
NiCl2 on the basis of these ideas from the experimental data
�Fig. 1� are shown in Fig. 9. The reversible component does
not have hysteresis in the cycles of imposition and removal
of the crossed magnetic fields. For CoCl2 the � rev(H) curve
becomes more non-antisymmetric in comparison with the
curves obtained directly from experiment, whereas for NiCl2
the � rev(H) curve remains antisymmetric. The irreversible
component �unr(H) is hysteretic for both crystals. The closed
part of the loop for �unr(H) in Fig. 9 �in the first quadrant�
was constructed on the basis of the properties of antisymme-
try of the MS at low fields, since the data for that part is
missing in Fig. 1.

We approach the magnetization in an analogous way,
writing it as the sum

FIG. 9. Field dependence of the reversible � rev and irreversible �unr compo-
nents of the magnetostriction of CoCl2 �a� and NiCl2 �b�.
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m�H ��m rev�H ��munr�H �, �26�

where m rev(H) and munr(H) are the reversible and irrevers-
ible contributions to the resonant magnetization, respectively.
We define the irreversible fraction of the MS as the ratio
�unr

MS��r /� (S). For our NiCl2 samples �unr
(S)�0.16. We shall

assume that an equal fraction of the sample volume consists
of domains that contribute to the irreversible MS. This frac-
tion of the domains during the removal or the repeated im-
position of the field in the same direction will be magnetized
with the susceptibility 
e of the uniform state �with L�H).
Comparing the experimental value of the magnetic suscepti-
bility 
d of the multidomain state for H→0 and its expected
value 
e/2, we find the fraction of the irreversible contribu-
tion to the magnetization, �unr

m �2
d /
e�1. The value ob-
tained for NiCl2 , �unr

m �0.14 turned out to be close to �unr
MS .

Let us determine the field dependence of the reversible
contribution to the magnetization of NiCl2 . The relative vol-
ume of domains that contribution to it is � rev�1��unr . A
plot of m rev(H) for NiCl2 is given in Fig. 7 (m rev was cal-
culated per unit mass of the sample�. The magnetic suscep-
tibility of this part of the domains for H→0 is 
e/2. The
value of Hm determined from m rev(H) better satisfies the
condition Hd�Hm .

The increase of the volume of domains with the favor-
able orientation in magnetic field and the decrease of the
volume of the other domains should be regarded first as the
result of the motion of the domain wall in the field. The
motion occurs on account of the stresses acting on the walls
on account of the magnetic field.19 In equilibrium the pres-
sure exerted on the walls by the field will be compensated by
‘‘reaction forces,’’ which ensure equilibrium of the multido-
main structure at H�0. If a defect lies in the path of the
wall, then the wall will bend, and surface forces arise which
will prevent further displacement of the wall. The parameters
of those, essentially quasi-elastic forces are determined by
the characteristics of the elastic interaction of the wall and
defects. For each value of the field there exists a certain
balance of the volumes of domains with different directions
of L. If defects are responsible for the multidomain charac-
ter, then equilibrium in a field corresponds to the appearance
of certain elastic stresses in the crystal due to the mismatch
of the elastic fields of the defects and the elastic fields of MS
strains in the domains.

The irreversible part of the rearrangement of the do-
mains is most likely due to the part of the domains where the
orientation L is not maintained by counterbalancing quasi-
elastic forces. To distinguish the reversible and irreversible
components of the rearrangement of the multidomain state,
we write the distribution function of the domains in the form
of a sum,

p�����1���p rev�����punr���, �27�

where � is the fraction of the volume occupied by domains
whose magnetic moment M is oriented along the magnetic
field and do not cause ‘‘reaction forces.’’

An expression for the distribution function of the do-
mains over the angle � was obtained in Ref. 19:

p rev����
1

I�H/H0�
exp� H2

2H0
2 cos2 � � , �28�
where

H0�Hd /�2& � and

I�H/H0���
��/2

�/2

exp� H2

2H0
2 cos2 � � d� .

We see that expression �28� leads to a �-function-like
concentration of the distribution function around ��0 as the
field increases for H�Hd .

C. Rearrangement of the reversible component of the
multidomain state

Expression �28� for the density of the distribution func-
tion enables one to obtain the field dependence of the revers-
ible part of the relative elongation of the crystal during the
imposition of a field over the whose interval of fields of
transition of the multidomain state to the uniform state. The
field dependence of the reversible MS of the multidomain
state in the approximation of an ideal multidomain state
(�unr�0) will be described by the expression

� ��H �

��S � �
1

I�H/H0�
�

��/2

�/2 � � 1�2�1�� ��
H2 cos2 �

H f f
2 �

�cos2 ��� 1�2�1����
H2 cos2 �

H f f
2 � sin2 ��

�exp� H2

H0
2 cos2 � � d� . �29�

An analogous expression can be written down for the
MS perpendicular to the applied field.

For H/H0�1 Eq. �29� gives a quadratic field depen-
dence of the MS, similar to �3�.

Figure 10 shows a comparison of the experimental
� � rev(H) and �� rev(H) curves for CoCl2 with the curves
� �(H) calculated according to formula �29� and ��(H) cal-
culated by an analogous formula. The parameters � (S), H f f ,
and � � were taken from the MS data for the uniform state,
Hd from the data for the reversible component of the MS,
and the parameter �� was chosen so as to satisfy the ob-
served degree of non-antisymmetry of the field dependences
of the longitudinal and transverse MS in CoCl2 . The thin
curves in Fig. 10 show the field dependence of the MS for

FIG. 10. Field dependence of the model magnetostriction of the uniform
�d� ,� and multidomain � � ,� states of CoCl2 . The light solid curves show the
dependence of �d� ,� , the heavy solid curves � � ,� , and the points are ex-
perimental.
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the uniform state, calculated for the same parameters accord-
ing to Eq. �8�. The calculated curve for the longitudinal MS
is in good agreement with the experimental data over the
entire range of fields causing rearrangement of the multido-
main state. There is some disagreement with experiment for
the calculated curve of the transverse MS, but it does not
exceed the error of measurement.

Let us use Eq. �28� to calculate the dependence of the
magnetization of the crystal as a whole in a magnetic field
lying in the EP. If the irreversible component of the rear-
rangement of the multidomain state is neglected (��0), the
expression for the magnetization takes the form

m�H �

M s
�

1

I�H/H0�

H

H f f
�

��/2

�/2

cos2 � exp� H2

2H0
2 cos2 � � d� ,

�30�

where M s is the magnetization of the uniform state of the
crystal for H�H f f .

In Fig. 11 the dashed curve shows m(H)/M s calculated
according to Eq. �30� for the same parameters of the distri-
bution function as were used in the MS calculation. The solid
straight line shows m(H)/M s for a uniform state with L�H.
The calculated curve for the multidomain state has a charac-
teristic sag below the dependence for the uniform state and
agrees with the experimental data17 on m(H) for NiCl2 �see
Fig. 7�.

Differentiation of Eq. �30� with respect to H gives the
calculated magnetic susceptibility 
calc(H). The dotted curve
in Fig. 11 shows a plot of 
calc(H)/
e . For H�Hd it is
proportional to H2, it has a maximum for H�Hd , and with
further increase in field it tends toward the value for the
uniform state 
e . The maximum on 
(H) is due to the rapid
change of p(�) near H�Hd . Figure 12 shows the experi-
mentally obtained curve of the magnetic susceptibility for
NiCl2 .45

D. Magnetoelastic mechanisms for the influence of defects
on the formation of AFM domains

In the treatment above we assumed an equiprobable dis-
tribution function for directions of the L vector of the AFM
domains at H�0. To present a picture of the mutual arrange-
ment of domains, domain walls, and defects for such a dis-
tribution is rather difficult. To fill a plane with domains hav-
ing boundaries with matched MS strains is impossible. At

FIG. 11. Model curves of the magnetization, normalized to its limiting
value, and magnetic susceptibility, normalized to its value in the uniform
state, as functions of the field in the multidomain state.
points where more than two domains come together, elastic
stresses will arise. However, if those places coincide with the
locations of defects of the crystal structure that create a stress
of the opposite sign around them, then the additional elastic
energy due to these stresses will be lessened, and the system
of AFM domains can turn out to be energetically favorable.
Let us demonstrate such a situation for the hypothetical ex-
ample of a distribution of magnetoelastic domains with sev-
eral equivalent ‘‘easiest’’ directions of the L vectors in the
EP.

Such a structure was considered in Ref. 15 for the case
of an equilibrium distribution of domains with L vectors
lying at an angle of 120° (60°) and is illustrated in Fig. 13.
The easy plane of the crystal is represented by a set of hexa-
gons. Their boundaries are shown by solid lines. The spon-
taneous MS of the hexagons leads, for example, as in the
figure, to elongation of the hexagons along their diagonal
that is parallel to L. An exception is the region where three
domains come together, where the uncompensated �for the
example shown, tensile� mechanical stresses cannot be elimi-
nated. These regions are formed where domains belonging to
different ‘‘triads’’ come together �one such triad is shaded in
Fig. 13�. As a result of the strain the hexagons become biax-
ial, with C3 symmetry of the local extension at those sites.

FIG. 12. Dependence of the magnetic susceptibility of NiCl2 on field during
its removal in the region in other words rearrangement of the multidomain
structure.

FIG. 13. Hypothetical structure of magnetoelastic domains in an easy plane
AFM. The two-headed arrows show the directions of the sublattice magne-
tizations in the domains. The solid lines show the boundaries of the domains
prior to the spontaneous striction, and the dotted lines after. The shaded triad
of domains is an element forming the domain walls of the crystal transition.
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In the ideal crystal such domain structure in the form of
a set of deformed hexagons leaves the domains partially
stressed. The presence of the triangles of extension at the
points where three domains come together means that the
strain does not conserve the volume of the domains. How-
ever, the estimates made in Ref. 15 show that the cost in
magnetoelastic energy for these nonuniform strains of the
hexagons is only a few percent of the magnetoelastic energy
of the uniform state. Therefore, the structure illustrated in
Fig. 13 can be regarded as a rather good approximation of
the ME domains with the minimal elastic stresses and with
the minimal cost in elastic energy.

If tensile point defects are placed at junctions of three
domains, then the matching of the strains generated by the
defects and the ME strains of the domains will lead to partial
or complete compensation of the stresses created by these
sources. The volume of the region of the crystal deformed by
the defect and the energy cost associated with the defect
decrease. Point defects that appear during growth increase
the elastic energy of a crystal. Superposition of the location
of the defects with the junctions of three domains decreases
this contribution to the energy, i.e., it makes the multidomain
state preferable. Analogous elastic matching can be achieved
if the junction of three domains is threaded by disclinations
perpendicular to the EP.46 We emphasize that in both the case
of point defects and the case of disclinations the stress that
these defects exert on the domain walls is independent of
temperature, which account for the observed temperature-
importance of the parameter Hd in CoCl2 .

The geometry structure of the domains illustrated in Fig.
13 presupposes the presence of defects isotropically extend-
ing the crystal in the EP. In that case the defect does not
specify the directions for the L vectors in the domains but
preserves the orientational degeneracy in the EP. If the spon-
taneous MS of the domains is opposite in sign, then a region
of compression will form at the junctions of three domains.
For stabilizing such a structure one needs defects of another
type, e.g., vacancies.

The ‘‘triad’’ model has a different distribution function
of the domains over orientations of L than that considered in
Sec. 5.1. Nevertheless, all of the qualitative features of the
behavior of the induced MS and magnetization of the crystal
in the region of rearrangement of the multidomain state will
be present in this model also, although the details will be
somewhat different.

The mechanism of surrounding defects by triads of do-
mains does not take into account the actual interaction of the
defects, which can promote equilibrium of the multidomain
state.

Let us consider the interaction of the defects19 in the
simplest case of a planar isotropic medium, when the energy
of interaction between the neighboring defects �numbered i
and j) depend only on the distance between them, e
�e(ri j). Suppose that during the equilibrium of the uniform
AFM order a uniform spontaneous anisotropic MS occurs
which is is positive and equal to � (S) along the x axis and
negative, and with the same magnitude, along the y axis,
�� (S) �both lie in the EP�. The total energy of interaction
between defects in this case will be
E��
i j

e�ri j���
i j

e�r0i j���
i j

	 �e

��xi�x j�
�x0i�x0 j�

�
�e

��yi�y j�
�y0i�y0 j�
 ��S �

�
1

2 �
i j

	 �2e

��xi�x j�
2 �x0i�x0 j�

2

�2
�2e

��xi�x j���yi�y j�
�x0i�x0 j��y0i�y0 j�

�
�2e

��yi�y j�
2 �y0i�y0 j�

2
 ���S ��2. �31�

The first sum in �31� is equal to the interaction energy E0

between defects prior to the spontaneous anisotropic MS. In
the approximation that the anisotropic strain is independent
of the local positions of the defects, the second sum in �31�
should be equal to zero. The expression multiplying the
square of � (S) in the third sum will be denoted by k . The
interaction energy between defects after the anisotropic MS
takes the form

E�E0�k���S ��2. �32�

If we consider growth defects, which can be assumed
almost equilibrium, then the energy of interaction between
them will satisfy a minimum principle. In that case k�0, and
the uniform spontaneous anisotropic MS, which is advanta-
geous for a defectless crystal, increases the interaction en-
ergy of the defects. That is, the dependence of the interaction
energy of the defects on the magnetostrictive displacements
crates a quasi-elastic restoring force.

Since defects cannot move through the crystal, it follows
from �32� that they will prevent the formation of the single-
domain state of an AFM with anisotropic MS. The crystal
will break up into regions with uniform, but differently di-
rected, MS in them. Thus the two mechanisms for the ME
interaction of defects and domains promote the equilibrium
of the multidomain AFM state.

VI. CONCLUSION

Analysis of the data on the induced MS and magnetiza-
tion of multidomain AFM state in layered easy-plane AFMs
of the ion dihalide group shows that the system of AFM
domains in them is due to the ME interactions of spontane-
ously strained domains and the elastic fields of defects. In the
multidomain state the spontaneous MS of the crystal as a
whole is close to zero in the absence of magnetic field, while
the domains retain their spontaneous MS. The spontaneous
lowering of the symmetry upon the establishment of AFM
order in the presence of many-fold degeneracy for spatial
orientation of the antiferromagnetic vector comes about in
the given case through the formation of a nonuniform mul-
tidomain state. This multidomain state is reversible in the
imposition and removal of magnetic field, i.e., it is a state of
thermodynamic equilibrium.

It is known that the spontaneous lowering of the symme-
try in an AFM occurs because the uniform anisotropic MS
lowers the magnetic energy of the crystal linearly as a func-
tion of the magnitude of the strictive strains. In that case the
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elastic energy of the crystal increases quadratically in those
strains. As a result, the total energy of the crystal reaches a
minimum at some equilibrium spontaneous MS. In real crys-
tals the elastic energy is supplemented by the interaction be-
tween the elastic fields of defects separated by distances
much greater than the lattice parameter. Therefore the cost in
elastic energy upon spontaneous MS may be lessened if the
MS strains are not uniform but matched with the elastic
fields of the defects. This may turn out to be sufficient to
compensate the cost in exchange energy in the domain walls.
In other words, the formation of a multidomain magnetoelas-
tic state in a crystal containing defects is a consequence of
the presence of long-range elastic forces due to the defects.
This leads to a nonuniform elastically strained state of the
crystal, which entails inhomogeneity of the magnetic state. It
is that nonuniform state that gives a minimum of the total
energy of the crystal upon spontaneous MS. We note that this
should be the case not only in easy-plane AFMs but also in
ferromagnets with spontaneous magnetostriction. In the lat-
ter, however, the formation of the method state is stimulated
primarily by the magnetostatic forces, while the contribution
due to defects and magnetoelasticity turns out to be second-
ary or, at least, masked.
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The transformation of various properties of gadolinium ferroborate single crystals at phase
transitions, both spontaneous and induced by magnetic fields up to 200 kOe, is investigated
theoretically and experimentally. Particular attention is paid to elucidating the role of
magnetoelectric interactions and the change in them at spin-reorientation transitions accompanied
by a change of magnetic symmetry. With that goal the magnetoelastic and magnetoelectric
properties of the system are investigated over a wide range of temperatures for two orientations
of the magnetic field, H�c and H�c , and a fundamental difference of the character of the
field dependences of the magnetostriction and electric polarization is found. In the framework of
a symmetry approach a description of the magnetic structures and their transformations in
the system GdFe3(BO3)4 is proposed, and an interpretation of the experimentally observed
properties is given. © 2005 American Institute of Physics. �DOI: 10.1063/1.2008142�
INTRODUCTION

Rare-earth ferroborates RFe3(BO3)4 , isostructural to the
natural mineral huntite, have a rhombohedral structure and
belong to the hexagonal space group R32 (D3

7).
These compounds have attracted particular interest in re-

cent years in connection with the prospects for their practical
use, particularly in laser technique1,2 and for optical second-
harmonic generation,3 and also because of the discovery of
unusual magnetic properties and diverse phase transitions in
them.4–6 According to measurements of the temperature de-
pendence of the magnetic susceptibility7 and heat capacity,8

three phase transitions are observed in gadolinium ferrobo-
rate: a structural phase transition at TC�156 K, a magnetic
ordering of the Fe3� ions at TN�38 K, and a spin-
reorientation phase transition at TR�10 K.7 The existing
data in the literature nevertheless do not permit one to reach
definite conclusions as to the nature of the phase transitions
observed in these compounds.

In regard to the magnetic structure of gadolinium fer-
roborate the data in the literature are contradictory. In Ref. 9
it was stated on the basis of a study of antiferromagnetic
�AFM� resonance that the magnetic phase transition of the
Fe3� ion subsystem at TN corresponds to two-sublattice spin
ordering of the easy-plane type, and, as the temperature is
lowered below TR , the interaction of the iron and gado-
linium subsystems brings about a reorientation of the Fe3�

spins from easy-plane to easy-axis �the c axis�. The magnetic
unit cell of the system is doubled along the c axis in com-
parison with the crystalline unit cell in hexagonal coordi-
nates.
8071063-777X/2005/31(8–9)/7/$26.00
In Ref. 7 the magnetic behavior of gadolinium ferrobo-
rate was investigated in the framework of three-sublattice
ordering �of the triangular type� of the iron subsystem. The
spins of the Fe3� ions in the temperature interval 10 K�T
�38 K were found to lie in the ‘‘easy plane’’ at an angle of
120° to one another. Below 10 K, according to Ref. 7, under
the influence of an interaction with the gadolinium sub-
system, the Fe3� spins are reoriented from the easy plane in
the direction toward the c axis, forming a cone with axis
along c . Since nothing was said about any change in the unit
call at the magnetic phase transition, and the system re-
mained antiferromagnetic over the whole temperature inter-
val, the opening angle of the cone �the tilt angle of the Fe3�

spins toward the c axis for compensation of the magnetiza-
tion of the gadolinium subsystem� should ‘‘follow’’ the in-
crease of the magnetic moment of the Ge3� ions with de-
creasing temperature. For an orientation of the external
magnetic field H�c at T�10 K a field-induced reorientation
of the Fe3� spins from the c axis to the easy plane was
observed.5,7

We carried out additional experimental and theoretical
investigations of the transformation of various properties of
gadolinium ferroborate single crystals at the spontaneous and
field-induced phase transitions at high magnetic fields up to
200 kOe. Particular attention was paid to investigation of the
role of magnetoelectric interactions and their changes at the
spin-reorientation transitions. An interpretation of the antifer-
romagnetic properties of the system was given in the frame-
work of a thermodynamic approach. Studies of the magneto-
elastic and magnetoelectric properties of the system for two
© 2005 American Institute of Physics
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orientations of the magnetic field: H�c and H�c �for which
at present there is absolutely no information in the literature�.
We expected that gadolinium ferroborate, which has a non-
centrosymmetric space group, would exhibit substantial
manifestations of the magnetoelectric interactions and their
change at the spin-reorientation transitions, which are ac-
companied by a change of magnetic symmetry.

EXPERIMENTAL RESULTS

We studied the electric polarization Pi and magnetostric-
tion � i as functions of magnetic field up to 200 kOe in the
temperature interval 4.2–50 K for H�c and H�c by the tech-
nique described in Ref. 10, and also the temperature depen-
dence of the thermal expansion of GdFe3(BO3)4 .

Figure 1 shows isotherms of the dependence of the lon-
gitudinal magnetostriction of the gadolinium ferroborate
single crystal at H�c . It is seen that in the low-temperature
region T�10 K at a certain critical value of magnetic field
H�Hcrit(H�c) there are jumps in the magnetostriction,
where, according to Refs. 7 and 9, a magnetic-field-induced
spin reorientation from the c axis toward the easy plane was
observed. At high temperatures 10�T�TN�38 K the mag-
netostriction does not exhibit anomalies and depends qua-
dratically on the field. The threshold fields Hcrit at which the
magnetostriction jumps appear decrease with increasing tem-
perature and agree with the fields at which the magnetization
jumps were observed at the field-induced reorientation of the
spins from the c axis to the easy plane.7

FIG. 2. Isotherms of the longitudinal electric polarization in a gadolinium
ferroborate single crystal for H�c .

FIG. 1. Isotherms of the dependence of the longitudinal magnetostriction of
the GdFe3(BO3)4 single crystal for H�c .
Our studies of the magnetoelectric properties of
GdFe3(BO3)4 single crystals have shown that in the course
of the spin-reorientation transition at T�10 K for a field
orientation H�c there are also jumps of the electric polariza-
tion �Fig. 2�, evidently due to the change of the magnetoelec-
tric interactions as a result of the change of magnetic sym-
metry. The spin-reorientation transition induced by a
magnetic field H�c is accompanied by hysteresis with re-
spect to the the field, which indicates that the transition is a
first-order phase transition. Figure 3 shows the H-T phase
diagrams obtained from measurements of the magnetoelec-
tric and magnetoelastic properties for H�c , which demon-
strated good agreement with the values of the threshold
fields. The character of the field dependence of the magne-
tostriction and electric polarization differs strongly for H�c
and H�c . Figure 4 shows the dependence of the longitudinal
magnetostriction for H�a . It is seen that at T�5 K the mag-
netostriction initially depends weakly on field, and then, at
Hcrit�37 K, it increases in a jump to 1�10�5. With increas-
ing temperature the threshold field decreases monotonically.
Starting at temperatures T�10 K and on up to 38 K the
magnetostriction increases in a sharp jump even in weak
magnetic fields �2 kOe and then behaves monotonically.
The magnetic-field dependence of the electric polarization is
of an analogous character �Fig. 5�, and the threshold fields
agree with each other, as is seen on the H-T phase diagrams
�Fig. 6� constructed from the data of the �(H) and P(H)
measurements. Thus for H�c and H�c a strict correlation of

FIG. 3. H-T phase diagram obtained for GdFe3(BO3)4 from measurements
of the longitudinal magnetostriction and electric polarization for H�c .

FIG. 4. Isotherms of the longitudinal magnetostriction for a GdFe3(BO3)4

single crystal at H�a .



809Low Temp. Phys. 31 (8–9), August–September 2005 Kadomtseva et al.
the magnetoelectric and magnetoelastic properties is estab-
lished. It should be noted that in measurements of the tem-
perature dependence of the thermal expansion we observed a
sharp �-shaped anomaly at a temperature of 156 K �Fig. 7�.
Recent measurements11 have shown that at T�156 K there
is also a jumplike change of the dielectric constant, which
apparently indicates the onset of spontaneous electric order-
ing at that temperature.

THEORETICAL PART

In view of what we have said above, it is best to take a
symmetry approach to the theoretical description of the prop-
erties of the GdFe3(BO3)4 system. On the one hand, it al-
lows one to explain the behavior of that system in a unified
way and to identify the active and passive degrees of free-
dom responsible for the change of its magnetic and crystal-
line symmetry, the corresponding order parameters, and the
interactions of the latter both among themselves �leading to
phenomena such as weak ferromagnetism, intrinsic magne-
toelectric effect, etc.� and with external fields. At the same
time, it is exceptionally efficient for predicting new effects
�according to the ‘‘possible-impossible’’ principle from con-
siderations of whether the space-time symmetry in the be-
havior of a particular system is broken or preserved�.

The group-theoretical approach used here �in the spirit of
the Landau theory of phase transitions� permits one to de-
scribe in an exhaustive way all the possible types of mag-

FIG. 5. Curves of the dependence of the electric polarization on magnetic
field H�a for a GdFe3(BO3)4 single crystal at various temperatures.

FIG. 6. H-T phase diagram obtained from measurements of the longitudinal
magnetostriction and electric polarization for H�a , for the single crystal
GdFe3(BO3)4 .
netic structures that, depending on the concrete form of the
exchange interactions �and also the features of the aniso-
tropic interactions� can appear in the ferroborate
GdFe3(BO3)4 below the magnetic ordering temperature. We
begin with a discussion of the features of the magnetic phase
transition at the temperature TN �at which the moments of the
Fe3� ions order�. We recall that the unit cell of RFe3(BO3)4

in the rhombohedral scheme contains one R3� ion �position
1a) and three Fe3� ions �position 3d). If the space diagonal
of the elementary rhombohedron is assumed to be directed
vertically, then the crystal structure of the RFe3(BO3)4 sys-
tem will be a set of rhombohedrally shifted identical hori-
zontal layers �oblique with respect to the vertical but parallel
to each other� alternating along the vertical. The distance
between two adjacent equivalent layers is one-third of the
vertical period c of the structure, which is the height of the
unit cell of RFe3(BO3)4 in the hexagonal crystallographic
coordinates �Fig. 8�. But then the hexagonal unit cell of the
RFe3(BO3)4 system �which is doubly body-centered and
tripled in volume as compared to the rhombohedral cell� con-
tains three formula units (Z�3), or, in other words, three
translationally equivalent R3� ions �position 3a) and, ac-
cordingly, nine Fe3� ions �position 9d). Since the rhombo-
hedral �truly primitive� crystal cell of GdFe3(BO3)4 contains

FIG. 7. Dependence of the thermal expansion for a GdFe3(BO3)4 single
crystal along the c axis in the region of the structural transition TC

�156 K.

FIG. 8. Fragment of the Bravais lattice of the system RFe3(BO3)4 with the
rhombohedral �primitive� and hexagonal �unit� cells shown explicitly. The
lattice sites �ellipses� correspond to the positions of the R3� ions.
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only one R3� ion, which will be magnetic for R�Gd, Nd,
and our system is antiferromagnetic at all temperatures be-
low TN , we shall assume that the elementary translations of
the magnetic Bravais lattice a1

ma2
ma3

m of the GdFe3(BO3)4

system will be related to the elementary translations
a1 ,a2 ,a3 of its crystal lattice �Fig. 8� by the relations

a1
m�a2�a3 , a2

m�a3�a1 , a3
m�a1�a2 . �1�

It follows from relations �1� that the magnetic primitive cell
of GdFe3(BO3)4 will be a rhombohedron doubled in volume
in comparison with the high-temperature primitive crystal
cell. In fact, the volume Vm of the magnetic cell is found
from the relation Vm�a1

m
•�a2

m�a3
m��(a2�a3)•�(a3�a1)

�(a1�a2)��2Vc, where Vc is the volume of the primitive
crystal cell. In principle, since in our case the appearance of
antiferromagnetic order in the system from the standpoint of
magnetic symmetry corresponds to a change of the Bravais
lattice on account of the appearance of anti-translations in it
�doubling of a certain number of primitive translations of the
initial crystal lattice�, besides the case �1� considered above,
in terms of exchange symmetry there are two more possibili-
ties, fundamentally different from the first: 1� when only one
of the primitive translations is doubled, while the other two
remain unchanged; 2� when some pair of the three transla-
tions doubles, while the third translation remains unchanged.
One is readily convinced that the two cases mentioned would
lead, as a result of a phase transition, to the ‘‘loss’’ of a
threefold symmetry axis and, accordingly, to a change of the
symmetry class of the system from hexagonal to monoclinic.
For the existing ideas about the hierarchy of exchange inter-
actions �intralayer and interlayer�, in our system the realiza-
tion of these possibilities is improbable. For that reason we
shall restrict the discussion to case �1�. If one is working with
the hexagonal unit cell �which is more natural from an ex-
perimental standpoint� for this system, the change of mag-
netic symmetry �1� leads to doubling of the height of the
GdFe3(BO3)4 unit cell. Since no concrete change of the
crystal symmetry �micro- and, accordingly, macroscopic� of
the system at TC�156 K has been established
experimentally1� �while such a change could in principle oc-
cur with a doubling of the unit cell, as, e.g., in the case of
BiFeO3), we assume that the doubling of the unit cell of the
GdFe3(BO3)4 system occurs at the Néel temperature TN .

As we have said, at high temperatures the rare-earth fer-
roborates belong to the rhombohedral space group R32
(D3

7). Taking the change of the unit cell at TN into account,
for describing the magnetic properties of our system �con-
struction of the corresponding irreducible representations of
the group R32) we consider six Fe3� magnetic moments
characterized by spins S1�S6 . The first three of them—
S1 ,S2 ,S3—belong to one horizontal layer, and the other
three—S4 ,S5 ,S6—lie in the adjacent layer parallel to the
first at a distance of c/3 from it. As is done in Landau theory,
in describing the magnetic phase transition it is necessary to
go over from the individual spins S1�S6 to their symme-
trized combinations �basis functions of the corresponding ir-
reducible representations of the group R32), each of which
describes one of the possible types of magnetic ordering—
either collinear �in the case of a one-dimensional representa-
tion� or noncollinear �for two- and three-dimensional repre-
sentations�. Under the condition that in hexagonal
coordinates the vector of the AFM structure appearing at the
Néel point is equal to k��0,0,1/2�, we obtain the following
relations:

B1�)�S1�S2��)�S4�S5�,

B2�S1�S2�2S3�S4�S5�2S6 ,

B̃1�)�S1�S2��)�S3�S5�,

B̃2�S1�S2�2S3�S4�S5�2S6 ,

L�S1�S2�S3�S4�S5�S6 .

F�S1�S2�S3�S4�S5�S6 . �2�

Since we are interested not only in the magnetic but also
the magnetoelastic and magnetoelectric properties of the
GdFe3(BO3)4 system, in the corresponding column of the
table of irreducible representations of the group R32 �Table
I� we also give the basis functions of the ‘‘nonmagnetic’’
representations �corresponding to structural macro-variables
of the system—to the components of the strain tensor and
electric polarization vector�.

In accordance with formulas �2�, the pair of functions
�B1 ,B2�, corresponding in the exchange approximation to a
two-dimensional representation �odd with respect to a shift
by a period along the c axis�, will itself describe an
exchange-noncollinear AFM structure of the triangular type,
with the closest three moments, those belonging to the Fe3�

ions found at the center of the sides of the elementary tri-
angle of Gd ions of one layer, directed at an angle of 120° to
one another, and the moments of the next-nearest layer anti-
parallel to the moments of the first layer. Another pair of
functions, �B̃1 ,B̃2�, corresponding in the exchange approxi-
mation to yet another two-dimensional representation �even
with respect to vertical translation�, will describe another
exchange-noncollinear AFM structure, also of the triangular
type, that is possible from the standpoint of symmetry. Being

TABLE I. Basis functions of the irreducible representations �structural,
magnetic, and exchange� of the group R32.

Note: The primed representations are odd with respect to translation along
the c axis.
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ordered �as in pair of functions �B1 ,B2�) antiferromagneti-
cally within each layer, the moments of adjacent layers will
be coupled ferromagnetically, and the resulting magnetic
structure will be antiferromagnetic, with coincident magnetic
and crystal cells. If one goes by the magnetizations of the
layers, the function L describes two-sublattice �and formally
speaking, six-sublattice� collinear AFM ordering in which all
the moments of one layer are coupled ferromagnetically and
those of the next layer are also coupled ferromagnetically
among themselves, but are opposite to the moments of the
initial layer, etc. �this corresponds to the case k
��0,0,1/2�). The function F is the magnetization vector of
the magnetic unit cell. It follows from what we have said that
the dominant role of the antiferromagnetic interlayer ex-
change �brought about by the interaction of nearest spins
lying in neighboring layers� leads to the appearance, as the
temperature is lowered, first of 1D magnetic ordering along
the corresponding helical chains, parallel to the c axis, of
iron ions surrounded by distorted oxygen octahedra.6 De-
pending on the character of the intralayer exchange of near-
est spins of the Fe3� ions �and, hence, the exchange between
individual ordered chains�—ferromagnetic or
antiferromagnetic—our system on the whole in the exchange
approximation will be either a collinear antiferromagnet
�which, in the main approximation, exhibits traits of a two-
sublattice antiferromagnet� or an exchange-noncollinear an-
tiferromagnet of the triangular type. There are no other pos-
sibilities for the aforementioned change of magnetic
symmetry �1�.

Following Ref. 9, in our discussion below we shall give
preference mainly to the case of collinear ordering. Then the
magnetic ordering that appears at the temperature TN will be
characterized by a vector L. Nevertheless, for the sake of
completeness �since more-detailed studies of the system are
still warranted� we shall write the thermodynamic potential
of the system �the subsystems of ordering moments of the
Fe3� ions� to second order in the exchange approximation
with allowance for the characteristic energy of all possible
magnetic modes of our system:

	ex
�2 ��

1

2

1

�2 �L2�
1

2

2

�2 ��B1
2�B2

2��
1

2

3

�2 �F2�
1

2

4

�2 �

��B̃1
2�B̃2

2�. �3�

We obtain the relativistic �magnetically anisotropic� contri-
bution taking into account not only the independent magnetic
modes, after explicitly separating out the terms correspond-
ing to the case k��0,0,1/2�,

	 rel.ind
�2 � �

1

2
�1

�2 �LZ
2�

1

4
�1

�4 �LZ
4�

1

2
�2�B1Y�B2X�2

�
1

2
�3�B1X�B2Y �2�

1

2
�4�B1Y�B2X�2

��B1X�B2Y �2, �4�

�in Eq. �4� we have explicitly taken into account the aniso-
tropic contributions of both second and fourth order only for
the mode L of interest to us, which, as we know,12 will be
responsible for possible spin reorientation� but also the
mixed contributions �‘‘mixing’’ the different magnetic
modes� of second order, which describe the simplest charac-
teristic interactions of the different magnetic modes of our
system,

	 rel.int.��1�LX�B1Y�B2X��LY�B1X�B2Y ��

��2LZ�B1X�B2Y �. �5�

Furthermore, we write the main intrinsic �in the absence
of magnetic field� magnetoelectric contributions of both ex-
change and relativistic nature,

	ME�
0�PX�L"B2��PY�L"B1���
1�PX�Lx
2�LY

2 �

�2PYLXLY��
2LZ�PXLY�PYLX�

�
3PZLZ�B1Y�B2X�. �6�

We also take into account the simplest magnetoelastic con-
tributions:

�	Mel��1
1uZZLZ

2��1
2uZZ�LX

2 �LY
2 ���2

1�uXX�uYY �LZ
2

��2
2�uXX�uYY ��LX

2 �LY
2 ���3��uXX�uYY �

��LX
2 �LY

2 ���4uXYLXLY]��4�uYZ�LX
2 �LY

2 �

�2uXZLXLY � . �7�

The establishment of collinear AFM order in the system
at the Néel temperature TN means, in the ideology of the
Landau theory, that the following inequalities hold:


1
�2 ��TN��0, 
2

�2 ��TN��0, 
3
�2 ��TN��0,


4
�4 ��TN��0. �8�

Assuming that in the temperature region 10 K�T
�38 K the system is an easy-plane antiferromagnet, we must
assume that the inequality �1

(2)(T)�0 holds in that tempera-
ture interval. Then the point of the spin-reorientation transi-
tion TR will correspond to the condition �1

(2)(TR)
��1

(4)(TR)�0,12 and the system goes from easy-plane to
easy-axis at temperatures T�TR , for which �1

(2)(T)
��1

(4)(T)�0.
It follows from the results of Ref. 8 that as the tempera-

ture is lowered in the region T�20 K the subsystem of mo-
ments of the rare-earth ions Gd will begin to play a role in
the magnetism, the interaction of the subsystem of Fe spins
with it having a substantial influence on the spin-
reorientation transition in our system, although no actual
magnetic ordering occurs in the rare-earth subsystem itself.
Let us give some special attention to this fact. We start for
the temperature region T�10 K, i.e., where the system is
still an easy-plane antiferromagnet. Since the magnetic unit
cell of the GdFe3(BO3)4 system is doubled at the phase tran-
sition at the Néel point �and then contains two Gd ions�, for
describing the interaction of the disordered subsystem of mo-
ments of the Gd ions with the ordered system of moments of
the Fe ions, we introduce an antiferromagnetic vector L̃ for
the gadolinium subsystem also. Taking into account the sym-
metry of the sites of the two gadolinium ions in the magnetic
unit cell of our system, we easily see that the vectors L̃ and
L correspond to equivalent representations of the exchange
symmetry group of our system, and so the energy of the f -d

exchange interaction, E��L̃"L will be an invariant of the
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group R32. The mean energy of the f -d exchange, averaged
over the vector L̃, i.e., �E����L̃�•L, because of the disor-
dered nature of the gadolinium subsystem, does not itself
contribute to the thermodynamic potential of the system.
Nevertheless, the antiferromagnetic order induced by the f -d
exchange in the gadolinium subsystem can give an effective
contribution to the thermodynamic potential on account of
the corresponding correlations of the longitudinal �lying in
the easy plane� component of the vector L̃ in the second
order of perturbation theory:

�	cor��2
1

�
�L̃2��LX

2 �LY
2 �, �9�

where � is the characteristic mean energy of spin waves of
the gadolinium subsystem. It is seen that the correlation con-
tribution to the thermodynamic potential of the system will
be positive independently of the sign of �. The physical
meaning of the energy �	cor is that the correlations tend to
make it unfavorable for the vector L to lie in the horizontal
plane. As the temperature is lowered and the antiferromag-
netic vector of the gadolinium sublattice L̃ induced by the
f -d exchange increases, an anisotropic contribution of oppo-
site sign will appear in the thermodynamic potential of the
system and compete with the initial �easy-plane� one. Then at
the corresponding temperature TR the resultant anisotropy
constant will change sign, and an ‘‘easy plane to easy axis’’
spin-reorientation transition will occur in the system �it is
known5 that this transition is not observed in the case of the
nonmagnetic ions R�Y, La�.

DISCUSSION OF THE RESULTS

Our proposed expression �7� for the magnetoelastic en-
ergy of the system allows an easy explanation of the experi-
mentally observed behavior �Figs. 1 and 4� of the magneto-
striction for the magnetic field directions H�c and H�c ,
both for the temperature region T�10 K and for 10 K�T
�38 K. Indeed, at a temperature T�10 K, when the vector
L is directed along the c axis and the field H�c , at a certain
value of the field Hcr a spin-reorientation transition occurs,
and the vector L lies in the plane without changing its length.
The lower the temperature, the larger the value of the thresh-
old field. Starting from formula �7�, one can conclude that at
that point the magnetostriction has a jump, and �C�(�1

2

��1
1)L2.
At the same field orientation H�c but for T�10 K the

vector L lies in the easy plane, and the magnetostriction
behaves in a monotonic manner �quadratically in the field;
Fig. 1�. For the field direction H�c in the temperature region
T�10 K the magnetic field H acting on the gadolinium sub-
system disrupts the mechanism of the spin reorientation that
is observed at temperature TR and tips the vector L over into
the basal plane, but perpendicular to the field �the in-plane
anisotropy is extremely small�, so that in this case the mag-
netostriction �C will exhibit a jump ��C�(�2

2��2
1)L2.

At temperatures T�10 K the vector L lies in the plane,
and in the general case there will be six types of domains in
the system �in accordance with the three equivalent easy di-
rections in the plane�, so that the mean magnetostriction over
the sample will be equal to zero. At low magnetic fields,
when the vectors L of all the domains align counter to the
field, the magnetostriction exhibits jumplike behavior ��a

��3L2. For the field direction H�c the magnetostriction be-
haves monotonically, in accordance with expression �7�.

Analysis of the magnetoelectric contributions �6� permits
a detailed interpretation of the behavior of the planar com-
ponent of the electric polarization vector �Fig. 5�. On the
whole, the theory �expression �6� and Table I� permits the
assertion that a quadratic magnetoelectric effect should be
observed in our system. It is noteworthy here that the discus-
sion of the magnetoelectric effect in the framework of the
symmetry space group R32 with the invariant contributions
�6� taken into account does not permit a satisfactory descrip-
tion of the behavior of the vertical component of the electric
polarization vector, PC . The similarity of its behavior with
that of the magnetostriction �C argues, in particular, that for
the magnetically ordered state the vector PC should be an
invariant �i.e., our system belongs to a polar class�. In the
absence of unambiguous analysis of the change of the crystal
symmetry of the system at the point of the structural phase
transition TC�156 K, this remains an open question.

It follows from expression �6� that the symmetry of the
system admits yet another magnetoelectric contribution �
2

�of a relativistic nature�, which is responsible for the spin-
reorientation transition in an electric field. Indeed, for the
state in which the antiferromagnetic vector lies in the basal
plane �for the region T�TR) the transverse component of the
electric field applied in the basal plane induces the appear-
ance of a component of the vector L directed along the c axis
and, accordingly, in the temperature region T�TR this con-
tribution brings about a reorientation of the antiferromag-
netic vector from the easy axis to the easy plane under the
influence of a transverse electric field.

Finally, the features of the symmetry of our system are
such that, in principle, under certain conditions �in particular,
in the presence of antiferromagnetic intralayer exchange� an
antiferromagnetic phase transition could occur at the Néel
point with the formation of a fundamentally noncollinear
structure of the triangular type, described by a two-
dimensional representation �by the basis vectors B1 and B2

mentioned previously�. In this case it would not require very
much effort to describe the spin-reorientation transition and
so forth in the framework of the thermodynamic approach.
However, the realization of an easy-plane triangular AFM
structure in the temperature interval 10 K�T�38 K would
lead, for both the cases of weak and strong easy-plane
anisotropy,13 to the existence of yet another spin-
reorientation phase transition in the high-temperature region
at moderately high fields H�c �completely achievable in our
experiments�. Since no such transformation was observed in
principle in our studies, we shall assume, as in Ref. 8, that
the features of our system are such that collinear AFM or-
dering is realized at the Néel point. We complete the discus-
sion of the properties of the thermodynamic potential of the
system �3� by calling attention to the presence of specific
cross contributions in it that are capable of ‘‘admixing’’
exchange-noncollinear components to the fundamental col-
linear AFM mode both above and below the spin reorienta-
tion point. One can see that each of these noncollinear com-
ponents corresponds to a different chirality �right or left
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‘‘handedness’’�.14 This, in particular, attests that the magne-
tooptical properties of our system will be different on differ-
ent sides of the spin reorientation point.

On the whole, the above-mentioned features of the be-
havior of the system GdFe3(BO3)4 permit the assumption
that it is a multiferroic compound.
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1�After this article went to press, the preprint of an article entitled ‘‘Evidence

for structure differentiation in the iron-helicoidal-chain in GdFe3(BO3)4 ,’’
by S. A. Klimin, D. Fausti, A. Meetsma, L. N. Besmaternykh, P. H. M. van
Loosdrecht, and T. T. M. Palstra �to be published in Acta Cryst. B�, came
out, which contained a detailed description of the change of the crystal
system at the point Tc ; however, taking that change into account would
not alter the basic conclusions found in our paper.
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Neutron scattering studies on powder and single crystals have provided new evidence for
unconventional magnetism in Cu2Te2O5Cl2 . The compound is built from tetrahedral clusters of
S�1/2 Cu2� spins located on a tetragonal lattice. Magnetic ordering, emerging at TN

�18.2 K, leads to a very complex multi-domain, most likely degenerate, ground state, which is
characterized by an incommensurate �ICM� wave vector k��0.15,0.42,1/2� . The Cu2�

ions carry a magnetic moment of 0.67(1)�B /Cu2� at 1.5 K and form a four-helix spin
arrangement with two canted pairs within the tetrahedra. A domain redistribution is observed when
a magnetic field is applied in the tetragonal plane (Hc�0.5 T), but not for H�c up to 4 T.
The excitation spectrum is characterized by two well-defined modes, one completely dispersionless
at 6 meV, the other strongly dispersing to a gap of 2 meV. The reason for such complex
ground state and spin excitations may be geometrical frustration of the Cu2� spins within the
tetrahedra, intra- and inter-tetrahedral couplings having similar strengths and strong
Dzyaloshinski–Moriya anisotropy. Candidates for the dominant intra- and inter-tetrahedral
interactions are proposed. © 2005 American Institute of Physics. �DOI: 10.1063/1.2008143�
INTRODUCTION

Reduced dimensionality, geometrical frustration and low
spin values lead to quantum fluctuations often resulting in
interesting new ground states and spin dynamics.1 The most
famous examples are based on triangular units �triangular
and kagomé lattices2� in two dimensions �2D� and tetrahedral
clusters �FCC and pyrochlore lattices3� in 3D. The nature of
the ground state in such systems is a subject of current strong
interest, especially for the extreme quantum mechanical case
S�1/2.

The copper tellurate Cu2Te2O5X2 (X�Cl, Br, space
group P-4; Ref. 4� belong to a new family of such com-
pounds. Their structure can be viewed as a stacking of layers
of Cu4O8Cl4 clusters along c . The four Cu2� ions within
such a cluster, Cu1 (x ,y ,z), Cu2 (1�x ,1�y ,z), Cu3 (y ,1
�x ,�z), and Cu4 (1�y ,x ,�z), form an irregular tetrahe-
dron with two longer �Cu1–Cu2, Cu3–Cu4� and four shorter
edges. The tetrahedra have a 2D square arrangement within
the ab layers.

The Cu2Te2O5Cl2 system attracted much attention as the
first magnetic susceptibility data fitted well a model of iso-
lated tetrahedra.4 The observed broad maximum between
20–30 K and a rapid drop at lower temperatures indicated a
strength of the intra-tetrahedral coupling J�38.5 K. Raman
spectroscopy, however, indicated a substantial inter-
tetrahedral coupling along the c axis5,6 and the data analysis
have been performed7 in terms of a dimerized model with the
two pairs of Cu2� spins: Cu1–Cu2 and Cu3–Cu4. Further
8141063-777X/2005/31(8–9)/5/$26.00
magnetic susceptibility and specific heat measurements5 in-
dicated an onset of antiferromagnetic �AF� order at TN

�18.2 K, thus confirming the importance of inter-tetrahedral
couplings. Recent neutron diffraction studies8 revealed the
details of the magnetic order: it is incommensurate and very
complex.

In spite of considerable progress in experimental studies,
the relevant intra- and inter-tetrahedral magnetic interactions
in Cu2Te2O5Cl2 remain a puzzle due to the rather complex
3D exchange topology �Fig. 1�. The intra-tetrahedral spin
interactions are mediated via the superexchange paths
Cu–O–Cu and can be described by J1 and J2 exchange con-
stants. It was suggested9 according to the Goodenough rules,
that the J2 interaction should be weakly antiferromagnetic if
not ferromagnetic, while J1 is antiferromagnetic and rather
weak.9 From the band structure calculations10 it is expected
that within the ab layers the Ja and Jd inter-tetrahedral cou-
plings are substantial �see Fig. 1� and mediated by the halo-
gen p orbitals. Between the adjacent layers the tetrahedra
interact through the super-superexchange paths
Cu–O...O–Cu and the corresponding inter-tetrahedral cou-
plings are as well important.

The nature of the magnetic ordering transition is also
still unclear. A strong spin-lattice coupling near TN has been
suggested from magnetic susceptibility and thermal conduc-
tivity studies.11 However, the infrared spectroscopy study,12

as well as high-resolution neutron diffraction study8 gave no
evidence of any lattice distortion.

We present neutron diffraction and inelastic scattering
© 2005 American Institute of Physics
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results, which supply new information on the magnetic
ground state, spin-orbit coupling and spin dynamics. We
hope this will provide a better starting point for theoretical
modeling.13–17

EXPERIMENTAL

High-purity powder and single crystals of Cu2Te2O5Cl2
were prepared by the halogen vapor transport technique, us-
ing TeCl4 and Cl2 as transport agents. Neutron powder dif-
fraction �NPD� patterns were collected in the temperature
range 1.5–30 K on the DMC instrument, with a neutron
wavelength of ��4.2 Å and on the high-resolution HRPT
instrument (��1.889 Å) at SINQ, Villigen, Switzerland.
The neutron single crystal diffraction �NSCD� experiments
on two crystals of dimensions 2.5�3�5 mm and 2�3.5
�6 mm were carried out using the diffractometers TriCS at
SINQ (��1.18 Å) and D15 (��1.17 Å) at the high-flux
ILL reactor, France. The NSCD with applied magnetic field

FIG. 1. The xy projection of the Cu2Te2O5Cl2 crystal structure (z�
�1/2—1/2) with the J1 , J2 and possible intertetrahedral exchange paths.10

The double-line segment is normal to the incommensurate component of the
wave vector k�.8
were performed on a larger 1 cm3 crystal on TriCS (�
�1.18 and 2.4 Å� for three field directions H�a , b , and c .

The inelastic neutron scattering experiment was carried
out on 15 g powder on neutron time-of-flight spectrometer
FOCUS (��2.8 and 4 Å� at SINQ and on a large 1.5 cm3

crystal on the IN8 thermal neutron three-axis spectrometer at
ILL. IN8 was configured with doubly focusing monochro-
mator and analyzer with a 5 cm graphite filter in k f and fixed
final neutron energy of 14.7 meV.

RESULTS

Diffraction

Below TN�18 K tiny magnetic peaks appeared �Fig. 2�
in DMC neutron diffraction patterns of Cu2Te2O5Cl2 , as al-
ready reported in Ref. 8. Moreover, the onset of magnetic
order at TN can be followed from the structural peaks in the
HRPT data. The lattice constant a(b) significantly decreases
with temperature above TN and changes very little below TN

�Fig. 2, inset�. This implies that the spin-lattice coupling is
substantial, but no changes of the crystal structure could be
determined from the neutron patterns.

To determine correctly the magnetic ground state it is
very important to elucidate the magnetic symmetry. The
�001� projection of neutron diffraction pattern of a typical
Cu2Te2O5Cl2 single crystal is presented in Fig. 3. Up to 16
magnetic satellites of the �0,0,0� reflection have been ob-
served. The reflection set denoted by black circles arises
from four arms of the star of the incommensurate �ICM�
wave vector k��0.150,0.422,1/2� . The reflections denoted
by dotted circles correspond to the star of another wave vec-
tor k����0.150,0.422,1/2� . The k and k� vectors are not
related by the symmetry elements of the group P-4, and
could belong to growth crystallographic twins. Since for sev-
eral crystals studied the k� reflections are absent, we con-
clude that the k and k� sets are independent. Interestingly,
the intensity ratio between the two first magnetic reflections
for the k and k� sets is different, implying that the magnetic
structures associated with these two stars are different.
FIG. 2. The 18 and 4 K DMC NPD patterns of Cu2Te2O5Cl2 (��4.2 Å), arrows point to magnetic reflections. Inset: temperature evolution of the lattice
constants from HRPT NPD data (��1.889 Å).
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We further tried to clarify if the magnetic structure is
single-k or multi-k . In the case of a single-k magnetic struc-
ture the k(k�) set contains contributions of four configura-
tion domains. The configuration domains must all have the
same structure but possibly different populations. Each of
them could have two 180 deg domains and two chiral do-
mains. In the case of multi-k structure, the four arms of the
star build one magnetic structure.

It is possible to distinguish the single-k or multi-k cases
by studying the variation of magnetic intensities as a func-
tion of an applied magnetic field H . We performed such
study for fields along a , b , and c crystal directions. For H
along c the intensities of the magnetic reflections hkl with
l�0 increase and for l�0 they decrease, but all reflections
persist up to 4 T. This implies a change of the spin arrange-
ment with respect to the zero-field magnetic structure, but
without domain redistribution and/or meta-magnetic transi-
tion. For H�a a transition occurs at Hc�0.5 T: the intensi-
ties of the (�	 ,�
 ,�l/2) reflections vanish, while the
magnetic reflections of the type (�
 ,�	 ,�l/2) change
their intensities smoothly �Fig. 4�. Flipping the field to �a
results in the same behavior. Switching off the field restores
partly the vanished peaks. A similar picture is observed for
H�b , but now the (�
 ,�	 ,�l/2) reflections vanish at
�0.5 T. Our results imply that 0.5 T applied in the tetrago-
nal plane is enough to depopulate the domains with the
propagation vector nearly normal (90�10 deg) to the field
direction. This supports the idea that the magnetic structure
is a single-k and not a multi-k structure.

The model for the k� magnetic structure has been re-
cently elaborated in Ref. 8. The only symmetry constraint is
imposed by the commensurate component of the wave vec-
tor. It implies that the ab layers of tetrahedra alternating
along c carry oppositely oriented spins. The magnetic mo-
ments of the four Cu2� ions in the unit cell can be indepen-
dent and a generalized helix characterizing the spin arrange-
ment of each of them in the crystal is expressed as

S j�A cos�k"rj����B sin�k"rj���.

The spin components are modulated by the wave vector k,
and rj is the radius vector to the origin of the j th unit cell. A
and B are orthogonal vectors, which define the magnitude
and direction of the axes of the helix, while � defines its
phase. For the most general case 27 independent parameters

FIG. 3. The �001� projection of the reciprocal space of a Cu2Te2O5Cl2

single crystal. The black circles correspond to the k magnetic reflections and
the dotted circles—to the k� set; 	�0.15, 
�0.422.
should be considered. Since the available number of experi-
mental observations does not allow to refine with confidence
all of them, we imposed physically sound constraints: iden-
tical moment value for all four independent Cu2� ions and a
circular envelope of the helices. This lowered the number of
independent parameters to 12.

Very good fits were obtained for a model �Fig. 5� in
which the four Cu2� moments in each tetrahedron form two

FIG. 4. The TriCS � scans of the (�0.15,�0.42,�1/2) �a� and (0.42,
�0.15,1/2) �b� magnetic reflections (��2.4 Å) at H�0 T and H�0.5 T
along a .

FIG. 5. The xy projection of the Cu2Te2O5Cl2 magnetic structure with the
spin tetrahedra at the z�0 layer.
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canted pairs: Cu1–Cu2 and Cu3–Cu4. The two spins of the
pair share a common �A, B� plane, but the associated helices
have different phases �. The difference between the phases
defines the canting angle between spins of the pair 	. The
canting angle for the first pair is 	12�38(6) deg and for the
second pair 	34�111(14) deg. The amplitude of the mag-
netic moment carried by each Cu2� ion is 0.67(1)�B at 1.5
K. It is interesting that the vector sum of the spins of one pair
is the same for all tetrahedra in the crystal (m12

�1.27(6)�B , m34�0.76(14)�B), while the local magnetic
moment of the tetrahedra is not zero and changes from one
unit cell to another. For an isotropic exchange the spin state
of the tetrahedra would be zero, so our model might suggest
that the two intra-tetrahedral couplings J1 and J2 are differ-
ent and that the J2 interaction is stronger.

Such a particular magnetic ground state might be a con-
sequence of one dominant interaction or result from contri-
butions of several inter-tetrahedral couplings of similar
strengths. We tried to attribute the observed reciprocal wave
vector k��(�0.15,0.42,1/2) to some specific exchange
inter-tetrahedral path in the structure and found a simple cor-
relation not to k�, but to the vector (�0.15,�0.58,0). As
this vector is related by a lattice translation to the vector
(�0.15,0.42,0), the two vectors mean a different choice of
unit cell of the same magnetic structure. The ICM compo-
nent is orthogonal to a specific set of planes containing the
Cu2� ions. One of these planes, presented by a double-line
segment in Fig. 1, passes through the Cu2–Cu4 ions of the
adjacent tetrahedra. This corresponds to the Ja coupling,
which according to Ref. 10 is substantial and is mediated by
the halogen orbitals. Based on these considerations we sug-
gest that Ja is the dominant inter-tetrahedral coupling.

INELASTIC SCATTERING

Several inelastic neutron scattering studies have been
performed to investigate the excitation spectrum of the
Cu2Te2O5Cl2 system. Spectra from powder revealed in the
ordered phase below TN a spherically averaged density of
states extending to a maximum at 6 meV, above which no
significant scattering was detected up to 15 meV �Fig. 6�.

FIG. 6. Inelastic powder neutron scattering of Cu2Te2O5Cl2 integrated be-
tween 0.8 Å�1 and 3.3 Å�1 for four temperatures between 2 and 30 K. With
incident energy Ei�10.4 meV inelastic focusing was adjusted to provide
optimal resolution at 5 meV of 0.45 meV �full-width-half-maximum�.
Raising the temperature above TN , spectral weight shifted
downwards to a broad quasi-elastic peak.

For single crystal neutron spectroscopy a single crystal
was aligned with �3,1,0� and �0,0,1� in the horizontal scatter-
ing plane, such that �0.42,0.15,1/2� and the equivalent mag-
netic Bragg peaks were accessible given the wide
(�5 deg) vertical resolution. Scans performed along the Q
�(h ,h/3,3/2), �0.45,0.15,1�, and �0,0,1� directions revealed
two well defined excitation modes. One mode is completely
dispersionless at 6.0 meV and shows no variation in intensity
as a function of Q . The other mode displays strong disper-
sion along both accessible directions from a maximum en-
ergy close to the flat mode down to a minimum energy gap
of 2.1 meV at the same positions in Q as the ICM magnetic
Bragg peaks.

While more detailed modeling of the excitation spectrum
is under way, several important conclusions can be read di-
rectly off the figure. If the system would be a collection of
very weakly coupled tetramers, one would expect a series of
essentially dispersionless modes. The strong dispersion ob-
served in our measurements imply strong inter-tetrahedral
coupling both within the ab plane and along the c axis.
Secondly, a classical ordered magnetic structure with con-
tinuous symmetry of the order parameter should have gap-
less spin waves emerging from the magnetic Bragg peaks.
The rather large energy gap must involve strong anisotropy
terms in the Hamiltonian, whose origin remains to be deter-
mined.

SUMMARY

The presented results of neutron diffraction and inelastic
neutron scattering evidence new details of the magnetic or-
dering in the Cu2Te2O5Cl2 compound. The idea of a single-
k magnetic structure is strongly supported by the observed
magnetic domains redistribution in an applied magnetic field.
The presence of two different k and k� structures suggests
that a number of ground states with equal or close energies
might exist. The discovered relation between the incommen-
surate component of the wave vector and the inter-tetrahedral
coupling Ja invites a theoretical revision of the Cu2Te2O5X2

system. The peculiar features of the spin excitation spectrum
deserve further study.
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I. INTRODUCTION

Mixed-valence manganites with a perovskite structure
are the model objects for the physics of strongly correlated
electronic systems. The interest in the study of manganites is
due to a variety of phase states and transitions and intrinsic
correlation of the crystal structure, magnetic, and transport
properties. The nature of the interplay between the crystal
structure, magnetic, and transport properties of manganites is
still a matter of discussion in spite of numerous investiga-
tions. Several models have been proposed to explain a mag-
netic state evolution under hole doping as well as a metal-
insulator transition at the Curie point. In the double-
exchange model of Zener, simultaneous ferromagnetic and
metallic transitions have been qualitatively explained by the
fact that electrons tend to move between Mn3� and Mn4�

ions having the same spin orientation, therefore electron de-
localization favors the ferromagnetic order.1 More recently
Millis et al. pointed out that double exchange alone cannot
account for many of the experimental results.2 They showed
that a Jahn-Teller-type electron-phonon coupling should play
an important role in explanation of the colossal magnetore-
sistance effect. Another mechanism of antiferromagnet-
ferromagnet phase transitions in manganites was proposed
by Nagaev.3 He assumed that the intermediate phase can be
described as a inhomogeneous magnetic state driven by an
electronic phase segregation. In this scenario the ferromag-
netic regions contain an excess of holes and are metallic.
Goodenough et al. argued that the magnetic properties of
manganites were determined by the type of orbital state.4

According to the rules for 180° superexchange, if the elec-
tronic configuration correlates with vibrational modes,
Mn3�

uO2�
uMn3� interactions are antiferromagnetic in

case of the static Jahn-Teller effect and ferromagnetic when
the Jahn-Teller effect is dynamic. Thus, antiferromagnet-
8191063-777X/2005/31(8–9)/6/$26.00
ferromagnet phase transitions can occur going through a
mixed state of phases with different orbital dynamics.

The recent magnetic phase diagrams of the
La1�xSrxMnO3 and La1�xCaxMnO3 systems were con-
structed assuming a homogeneous canted magnetic state in a
low doping range.5,6 On the other hand, there are numerous
experimental data which indicate the existence of phase
separation in manganites. The results of nuclear magnetic
resonance,7,11 neutron diffraction,11,12 muon spin
relaxation,13 x-ray absorption,14 scanning tunneling
spectroscopy,15 and electron microscopy16 experiments give
evidence of magnetic and structural inhomogeneities, but the
driving force of magnetic phase separation in manganites is
still not fully clear. In order to contribute to the solution of
this problem we have investigated the features of the
antiferromagnet-ferromagnet phase transition in low-doped
La0.88MnOx , La1�xSrx(Mn1�x/2Nbx/2)O3 , Nd1�xCaxMnO3 ,
and Bi1�xCaxMnO3 manganites.

II. RESULTS AND DISCUSSION

A. La0.88MnOx system

Tentative magnetic phase diagram of the La0.88MnOx

�(2.82�x�2.96) manganites is shown in Fig. 1. The most
strongly reduced sample La0.88MnO2.82 is an antiferromagnet
with a Néel temperature of 140 K. Its properties are found to
be similar to the properties of stoichiometric LaMnO3 . Both
compounds have very close unit cell parameters, the same
magnetization value, and close temperatures of both mag-
netic (TN�140 K) and orbital orderings (TOO�750 K).
The existence of orbital ordering in the A-type antiferromag-
netic structure of La0.88MnO2.82 is corroborated by neutron
diffraction measurements.17 With increasing oxygen content
up to the x�2.85 sample, the magnetic and orbital ordering
temperatures lower while the magnetization increases
© 2005 American Institute of Physics
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slightly. Results of the neutron diffraction measurements car-
ried out for the x�2.84 sample confirm the appearance of a
ferromagnetic component. A further increase of the oxygen
concentration leads to a significant enhancement of the fer-
romagnetic contribution. The transition temperature to the
paramagnetic state begins to increase and the transition be-
comes broader. Neutron diffraction data obtained for the x
�2.87 sample indicate that ferromagnetic coupling becomes
predominant. No long-range antiferromagnetic order has
been observed for this compound. At the same time, the re-
fined magnetic moment is lower than that expected for the
full spin arrangement. Besides, the relatively large magnetic
anisotropy at low temperature assumes the presence of an
anisotropic magnetic coupling which differs from the isotro-
pic ferromagnetic one. This can be attributed to existence of
either short-range antiferromagnetic clusters or a spin-glass
phase. No pronounced thermomagnetic irreversibility indi-
cating the anisotropic magnetic interactions is observed start-
ing from the x�2.92 sample. The values of magnetization
estimated for the monoclinic compounds are close to those
expected for full spin alignment. The ground state of all the
orthorhombic compounds 2.82�x�2.90 is insulating. It
should be noted that the appearance of metallic conductivity
does not coincide with the transition to monoclinic phase.
Simultaneous first-order magnetic transition and metal-
insulator transition at TC are observed for x�2.92 com-
pounds.

A strong correlation between the magnetic and structural
properties of La0.88MnOx (2.82�x�2.96) manganites is ob-
served. The hypothetical structural phase diagram of
La0.88MnOx (2.82�x�2.96) constructed using x-ray, neu-
tron diffraction, Young’s modulus, resistivity, and DTA data
is shown in Fig. 2. For La0.88MnO2.82 , the sharp anomalies
of the Young’s modulus and resistivity are associated with
the removal of cooperative orbital ordering; it is observed at

FIG. 1. Magnetic phase diagram of the La0.88MnOx (2.82�x�2.96) sys-
tem. Orth—orthorhombic crystal structure, M—monoclinic crystal struc-
ture; PI, AFI, FI, and FM—paramagnetic insulating, antiferromagnetic insu-
lating, ferromagnetic insulating, and ferromagnetic metallic states,
respectively. Areas 1 and 2 correspond to the concentration regions where an
antiferromagnetic or ferromagnetic phase predominates, respectively.
approximately 650 K. The DTA measurements revealed the
release of latent heat in the range 650–730 K. Neutron dif-
fraction data indicate the coexistence of orbitally ordered OI

and orbitally disordered O phases at T�700 K. Another
thermal anomaly connected with the transition to the mono-
clinic phase is observed in the temperature range 915�T
�960 K. With the increase of the oxygen content to x
�2.83, the temperatures of both orbital order-disorder and
orthorhombic-monoclinic phase transitions decrease signifi-
cantly. The range of coexistence of OI and O phases becomes
broader, while the width of the anomaly associated with the
temperature-induced orthorhombic-monoclinic transition re-
mains practically constant. Starting from the x�2.84 sample,
the differential thermal analysis does not show any signifi-
cant heat effect, which could be interpreted as a transition to
a pure orbitally disordered state; however, the anomaly re-
lated to the transition from an orthorhombic to a monoclinic
phase remains well pronounced. Neutron diffraction data
coupled with Young’s modulus measurements indicate the
existence of predominantly static Jahn-Teller distortions at
room temperature and two-phase character of the crystal
structure above T�470 K. Inhomogeneous structural states
are observed up to 650 K. Above this temperature the mono-
clinic phase is stabilized. A further increase of the oxygen
concentration leads to the broadening and gradual disappear-
ance of the anomaly which relates to the transition to the
orbitally ordered state. The neutron diffraction study per-
formed for the La0.88MnO2.87 compound indicates that the
value of the MnO6 octahedron distortion increases with de-
creasing temperature to 200 K. However, even in the case of
T�200 K, where the worst agreement factors for one-phase
structural model have been observed, the introduction of the
second orthorhombic phase was unsuccessful. Apparently,
even at 200 K, the orbitally ordered clusters are still too
small and separate to distinguish the OI phase in the diffrac-
tion experiment. The temperature of orthorhombic-
monoclinic phase transition gradually decreases as the oxy-
gen content increases and starting from the x�2.91 sample,
the monoclinic phase is stabilized �Fig. 2�. It is necessary to
mention that the x-ray and neutron diffraction experiments
can reveal a two-phase structural state rather in the case of
macroscopic structural phase separation. In the cases of local
structural inhomogeneities or nanometer scale structural
clusters, these experiments give only an average picture of a
structural state.18 Thus, the correlation between the orbital
state and magnetic properties of the La0.88MnOx manganites
is prominent. The static Jahn-Teller distortions are respon-
sible for the A-type antiferromagnetic structure, while dy-
namic orbital correlations lead to ferromagnetism.

It is worth noting that there are two alternative models of
orbital state corresponding to ferromagnetic ordering in man-
ganites: 3D dynamic d3z2�r2 orbital correlations and stag-
gered ordering of d3z2�r2 and dx2�y2 orbitals. Neutron dif-
fraction studies have shown that LaMnO3 undergoes a
structural transition from OI-orthorhombic to
O-orthorhombic phase at TJT�750 K.19 The MnO6 octahe-
dron in the O-orthorhombic phase becomes nearly regular,
i.e., the orbital ordering disappears.19 However, x-ray absorp-
tion near the edge structure and the extended x-ray absorp-
tion fine structure at the MnK-edge measurements have re-
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vealed that the MnO6 octahedrons in LaMnO3 remain
tetragonally distorted at T�TJT .20 The empty Mn3� elec-
tronic d states were shown to be unaltered through the Jahn-
Teller transition. The lowest energy for the eg electron cor-
responds to the three possible distortions giving to three
degenerate vibronic states, dx2�r2, dy2�r2, and dz2�r2, being
the electronic orbitals of the vibronic state. The thermally
excited electron jumps between these states above TJT and is
localized in an ordered state below TJT . The orbital ordering
proposed for LaMnO3 arises then from the ordering of the
local Jahn–Teller distortions. The high temperature �O-
orthorhombic� phase can be described as a dynamical locally
distorted phase with the strong antiferrodistortive first-
neighbor coupling.20

A similar situation seems to be observed for
Mn4�-doped manganites. The atomic pair-density function
of La1�xSrxMnO3 manganites (0�x�0.4), obtained by
pulsed neutron diffraction, indicates the existence of tetrago-
nally distorted MnO6 octahedrons even in the rhombohedral
metallic phase, when the crystallographic structure shows no
JT distortions.21 This is possible only in the case of the dy-
namic orbital correlations described above. One can assume
that when one puts non-Jahn–Teller Mn4� ions in the back-
ground of the Mn3� ions, the eg orbitals of all the Mn3� ions
surrounding the localized hole (Mn4�) tend to be directed
towards it, forming an orbital polaron.22 Due to the strong
antiferrodistortive Mn3� first-neighbor coupling,20 dynamic
correlations of the d3z2�r2 orbitals should arise.

According to the rules for 180° superexchange the dy-
namic orbital correlations lead to ferromagnetic interaction
between the Mn3� ions.4 Hence, one can expect that ferro-
magnetism in manganites can arise even in the absence of
Mn4� ions, if only the JT effect is dynamic. For instance,
Mn substitution with non-Jahn-Teller diamagnetic Nb5�,
Al3�, Sc3�, etc, ions should result in the appearance of fer-

FIG. 2. Crystal structure phase diagram of the La0.88MnOx (2.82�x
�2.96) system. OI, O, and M are orbitally ordered orthorhombic, orbitally
disordered orthorhombic, and monoclinic phases, respectively. Areas 1 and
2 correspond to the concentration regions where the static Jahn-Teller dis-
tortions or dynamic orbital correlations predominate, respectively.
romagnetic order. Below we show that this assumption is
correct.

The second possibility lies in description of the orbital
state as a hybridization of the d3z2�r2 and dx2�y2 orbitals as
cos(�/2)�3z2�r2	�sin(�/2)�x2�y2	 . Such an orbital order-
ing was recently proposed experimentally and theoretically
in the ferromagnetic insulating phase of La0.88Sr0.12MnO3

and Pr0.75Ca0.25MnO3 .23–25 The difficulties in determination
of priority of the present models are conditioned by the fact
that staggered ordering of d3z2�r2 and dx2�y2 orbitals can
exhibit itself in experiments in the same way as 3D dynamic
d3z2�r2 orbital correlations.

B. La1ÀxSrx„Mn1ÀxÕ2NbxÕ2…O3 system

A hypothetical magnetic phase diagram of
La1�xSrx(Mn1�x/2Nbx/2)O3 is shown in Fig. 3. The parent
LaMnO3 compound shows the spontaneous magnetization
value at 5 K corresponding to magnetic moment of 0.07
B

per Mn3� ion. The Néel point, where spontaneous magneti-
zation develops, is 143 K. According to Ref. 26 the sponta-
neous magnetization has a relativistic nature. Substitution of
Mn with Nb leads to an enhancement of the spontaneous
magnetization whereas the temperature of transition into
paramagnetic state slightly decreases. In accordance with the
magnetization data the La0.8Sr0.2(Mn0.9Nb0.1)O3 and
La0.7Sr0.3(Mn0.85Nb0.15)O3 samples are ferromagnets with
the magnetic moment per chemical formula around 2.3
B

and 2.6
B , respectively. Neutron diffraction study has re-
vealed the magnetic moment of Mn3� in the parent LaMnO3

antiferromagnetic compound to be close to 3.5
B ,27 whereas
Nb5� is a diamagnetic ion, and hence the expected moment
should be close to 3
B per formula unit, in rather good
agreement with the observed value. The Nb doped sample
(x�0.3) has a well-defined Curie point: 123 K. Both Curie
point and spontaneous magnetization start gradually to de-
crease when the Nb content exceeds 15% of the total number
of sites in the manganese sublattice. The magnetic state
changes cardinally as the concentration of niobium reaches
25%. We have observed the magnetic susceptibility of the
x�0.5 sample dramatically decreases. ZFC magnetization
shows a peak at 30 K. Below this temperature FC magneti-
zation practically does not change. Taking into account the

FIG. 3. Magnetic phase diagram for La1�xSrx(Mn1�x/2Nbx/2)O3 series �A is
antiferromagnet, F is ferromagnet, P is paramagnet, SG is spin glass; OI and
O are orbitally ordered and orbitally disordered phases, respectively�.
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character of M (H) dependence we have concluded that the
sample x�0.5 can be considered as spin glass with T f

�30 K. We can explain the collapse of long range ferromag-
netic ordering by a diamagnetic dilution of the Mn sublattice.
According to resistivity versus temperature measurements
La1�xSrx(Mn1�x/2Nbx/2)O3 samples are semiconductors. Be-
low the Curie point a large value of the magnetoresistance is
observed.

The results presented here deal with the facts that the
Nb-doped La1�xSrx(Mn1�x/2

3� Nbx/2
5�)O3 samples enriched

with Mn3� ions are ferromagnetic and show a large magne-
toresistance. It is worth noting that the possibility of the ex-
istence of ferromagnetic ordering in the manganites, despite
the absence of Mn3� ions, reject the double exchange and
the electronic phase separation concepts. The result obtained
indicates an important role of ferromagnetic superexchange
via oxygen scenario of magnetic interactions in manganites.
According to the superexchange mechanism the
Mn3� – O– Mn3� and Mn3� – O– Mn4� 180° magnetic inter-
actions are strongly ferromagnetic for the orbitally disor-
dered state whereas the Mn4� – O– Mn4� ones are strongly
antiferromagnetic.4 The Curie point associated with
Mn3� – O– Mn3� positive superexchange may be close to
room temperature for manganites with perovskite structure
because our samples contain diamagnetic Nb5� ions, which
should strongly decrease the Curie point. The stoichiometric
compound LaMn3�O3 also shows ferromagnetic interactions
between Mn3� ions when cooperative Jahn-Teller distortions
have vanished at T�750 K. The orbital ordering changes the
character of superexchange magnetic interactions, which in
the orbitally ordered state become anisotropic.4,28

C. Nd1ÀxCaxMnO3 system

The hypothetical magnetic phase diagram of the
Nd1�xCaxMnO3 system at low Ca doping level is presented
in Fig. 4. Neutron diffraction shows that the samples with
x�0.08 consist mainly of antiferromagnetic phase while at
x�0.08 the ferromagnetic component dominates. Under hole
doping the temperature of the transition into paramagnetic

FIG. 4. Magnetic phase diagram of the Nd1�xCaxMnO3 low-doped manga-
nites: wF is weak ferromagnet, F is ferromagnet, P is paramagnet, Teff is the
effective temperature of the reorientational phase transition.
state at first decreases and then around x�0.1 increases. We
have observed two magnetic phase transitions in the range
0.06�x�0.1 as temperature decreases.

The Nd1�xCaxMnO3 solid solutions contain two types of
magnetically active sublattices: neodymium and manganese
ones. At first we discuss the Nd contribution into magnetic
properties. The f - f exchange interaction in rare-earth sublat-
tice is as a rule rather weak in comparison with d-d interac-
tion between manganese ions. One can expect that neody-
mium magnetic moments should order as a result of f -d
exchange interactions between neodymium and manganese
sublattices. The study of magnetic properties of
Nd1�xCaxMnO3 samples confirm this viewpoint. According
to neutron diffraction data the magnetic moments of neody-
mium ions start to be ordered slightly below TN . The mag-
netic moment of the Nd ion is about 1.2
B at 2 K and is
directed opposite to weak ferromagnetic vector in NdMnO3 ,
while in the sample x�0.12 the orientation of the Nd and
Mn magnetic moments is the same. In the range 0.06�x
�0.10 metamagnetic behavior was observed in large mag-
netic fields �triple hysteresis loops with a negative remanent
magnetization�.

According to our hypothesis, samples in the range 0.06
�x�0.10 consist of antiferromagnetic �weak ferromagnetic�
and ferromagnetic phases which are exchange coupled at the
boundary. The neodymium sublattice in both weak ferromag-
netic and ferromagnetic phases orders nearby the Néel point
�Curie point�. However, the orientation of neodymium mag-
netic moments in these two phases is different: f -d exchange
is positive for the ferromagnetic phase, whereas it is negative
in weak ferromagnetic phase. The ferromagnetic phase
strongly affects magnetic properties of weak ferromagnetic
phase due to exchange coupling at the boundary. This inter-
action may induce a reorientational transition from antipar-
allel orientation of neodymium moments and weak ferro-
magnetics vector to parallel one. We believe that nearby
certain temperature the ground state of the Nd3� ions be-
comes degenerate because opposite contributions from ex-
change coupled ferromagnetic and weak ferromagnetic
phases at Nd site become equal. According to theoretical
consideration this state should be unstable thus leading to
magnetic structure transformation.29 A neutron diffraction
study carried out for the x�0.08 sample is in agreement with
this interpretation of the low-temperature phase transition.

On the basis of magnetization data we propose an H-T
magnetic phase diagram of the Nd0.92Ca0.08MnO2.98 com-
pound �Fig. 5�. Depending on the prehistory in the wide
range of magnetic field the phases with parallel or antiparal-
lel orientation of neodymium and manganese sublattices in
weak ferromagnetic phase can be realized. One can see that
the value of magnetic field required for the change of relative
orientation of the Nd and Mn magnetic moments in the weak
ferromagnetic phase increases as temperature rises. The
width of a field range in which the hysteresis is observed
practically does not depend on a temperature. This type of
magnetic phase diagram is in agreement with crossover of
energy sub-levels of Nd ions.

D. Bi1ÀxCaxMnO3 system

Figure 6 presents a magnetic phase diagram of the
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Bi1�xCaxMnO3 manganites. As the calcium content in the
Bi1�xCaxMnO3 system increases, the latter passes through
three different magnetic states, namely, ferromagnetic (x
�0.1), spin-glass (0.15�x�0.25), and antiferromagnetic
(x�0.25). In the case of antiferromagnetic compositions,
the magnetic-ordering and structural-transformation tem-
peratures vary only weakly within the concentration interval
from x�0.25 to 0.6. The ferromagnetic ordering in BiMnO3

is most likely due to cooperative ordering of the dx2�y2

orbitals.30,31 With orbital ordering of this type, according to
the Goodenough–Kanamori rules, ferromagnetic ordering
becomes more energetically favorable than antiferromagnetic
ordering. We may recall that rare-earth manganites exhibit
orbital ordering of the dz2 type, which stabilizes the A-type
antiferromagnetic structure.4 Orbital disorder in BiMnO3 sets
in, apparently, at a fairly high temperature, near 760 K. Re-
placement of bismuth ions by calcium results in the forma-
tion of quadrivalent manganese ions, which should be ac-
companied by destruction of orbital ordering due to the
appearance of non-Jahn-Teller Mn4� ions in the lattice.
However, the orbitally disordered phase in manganites
should be ferromagnetic,4,28 whereas we observed a state of
the spin-glass type. A direct transition from the antiferromag-
netic to the spin-glass phase without passing through the

FIG. 5. The H-T magnetic phase diagram for the Nd0.92Ca0.08MnO2.98 com-
pound.

FIG. 6. Magnetic phase diagram of the Bi1�xCaxMnO3 manganites: A is
antiferromagnet, F is ferromagnet, P is paramagnet, SG is spin glass, CO is
charge-ordered state.
ferromagnetic state was observed to occur in the rare-earth
manganites Sm1�xBaxMnO3 and Y1�xCaxMnO3

(x�0.12).32,33 It should be pointed out that at approximately
this concentration of rare-earth ions, the ferromagnetic-spin
glass transition takes place in Bi1�xCaxMnO3 .

There is more than one opinion on the nature of ex-
change interactions in manganites. The antiferromagnetic
state certainly forms through oxygen-mediated superex-
change interactions of the type Mn– O– Mn. Most research-
ers believe that the ferromagnetic state in manganites is cre-
ated through double exchange, i.e., via direct carrier transfer
between various lattice sites. In order for such an exchange
mechanism to operate, manganese ions in different valence
states must be present and the electrical conductivity must be
high. The presence of manganese ions of different valencies
is not a sufficient condition for high electrical conductivity;
indeed, the 3d orbitals of manganese and the 2p orbitals of
oxygen should also overlap strongly. It is believed that this
parameter is controlled by the Mn– O– Mn bond angle.4,30

The larger the lanthanide ion, the larger should be the
Mn– O– Mn angle, the wider the 3d band, and, accordingly,
the higher the magnetic ordering temperature and the electri-
cal conductivity. It was observed that the magnetic state of
the manganites also depends on the difference between the
ionic radii of the rare-earth and the lanthanide ions. A large
difference between the radii lowers, as a rule, the magnetic
ordering temperature as a result of competition between vari-
ous exchange interactions characterized by a large difference
in the Mn– O– Mn angles. This is why the spin-glass state
sets in in the Sm1�xBaxMnO3 system, wherein the average
radius of the Sm and Ba ions is far larger than that between
the Y and Ca cations in the Y1�xCaxMnO3 system.32,33 How-
ever, in all rare earth manganites, the Mn3� – O– Mn4� ex-
change coupling in the orbitally disordered phase is appar-
ently ferromagnetic. The Mn– O– Mn angles in
bismuthbased manganites are fairly large, which is supported
by structural studies31 and the quite high Curie temperature
of BiMnO3 . Hence, in the case of an orbitally disordered
phase, one can expect the ferromagnetic part of exchange
interactions to be dominant, which is at odds with experi-
ment. Therefore, we believe that, in contrast to the rare-earth
manganites, no orbitally disordered phase forms in the
BiMnO3 system in the concentration interval 0.1�x�0.3.
The spin-glass state forms in the Bi1�xCaxMnO3 system
most likely as a result of competition between ferromagnetic
interactions in BiMnO3-type clusters and antiferromagnetic
coupling in clusters in which the Mn3� orbitals are frozen in
random orientations. As the Ca2� concentration increases, a
new type of antiferromagnetic clusters, apparently due to
charge ordering, appears. The existence in Bi0.75Ca0.25MnO3

of large clusters, charge-ordered in a similar way to those in
Bi0.5Ca0.5MnO3 , is suggested in studies of its elastic proper-
ties. Despite the presence of the spin-glass-type ground state,
there is a certain fraction of states characterized by short-
range order of the type of a charge-ordered phase, which is
indicated by the fact that the Young modulus minima for the
x�0.25 and 0.35 compositions are close in temperature. We
believe that the extremely high stability of the orbitally and
charge-ordered states in bismuth-based manganites derives
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from the strongly anisotropic character of the Bi– O covalent
bonding.

CONCLUSIONS

The magnetic and structural phase diagrams of
La0.88MnOx , La1�xSrx(Mn1�x/2Nbx/2)O3 , Nd1�xCaxMnO3 ,
and Bi1�xCaxMnO3 manganites have been proposed. It has
been shown that the magnetic properties of the samples un-
der study are determined by the type of their orbital state.
The dynamic correlations of d3z2�r2 orbitals favor ferromag-
netic ordering in the manganites, while A-type antiferromag-
netic structure is typical for the static Jahn-Teller distortions.
It has been argued that concentrational transition from an
antiferromagnetic to a ferromagnetic state occurs via the for-
mation of inhomogeneous state due to structural phase sepa-
ration mechanism.
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The two-sublattice tetragonal antiferromagnetic crystal manganese fluoride is found to exhibit
dichroism induced by a magnetic field H�C4�Z for linearly polarized light propagating
along the tetragonal axis of the crystal also. The observed effect is odd with respect to the sign
of the z projection of the field and the operation of reversing the directions of the sublattice
magnetic moments of the antiferromagnet. The effect can be used for optical visualization of 180-
degree �time-reversed� antiferromagnetic domains in MnF2 . © 2005 American Institute of
Physics. �DOI: 10.1063/1.2008145�
INTRODUCTION

Manganese fluoride is a well-known model case of a
purely spin two-sublattice tetragonal antiferromagnet
�AFM�. It has long served as a test object for checking the-
oretical ideas about the magnetic and elastic1–3 properties of
AFM crystals and their optical properties that result from the
interaction of photons with the magnetic subsystem of the
AFM and are manifested in the transparency region4,5 and in
the absorption6–12 and scattering12–14 of light.

Since the resultant orbital moment of the five 3d elec-
trons of divalent manganese in MnF2 is equal to zero and the
spin of the Mn2� ion is maximum, all of the electric-dipole
transitions within the 3d5 configuration are doubly
forbidden—by parity and by spin. The lowest-energy al-
lowed electric-dipole transitions are of the type 6S(3d5)
�6P(3d44p), and the charge-transfer transitions with the
participation of the fluorine ions lie in the vacuum
ultraviolet.15 The zero value of the orbital moment in the
ground state of the ion and the remoteness of the allowed
electric-dipole optical transitions make for an extremely
small value of the Faraday magnetooptic effect. Even in the
visible range the contribution to the magnetic resonance tran-
sition effect is predominant over the electric-dipole
contribution.5

For intra-configuration d-d transitions the spin selection
rules are softened by the spin-orbit coupling. The parity for-
biddenness is lifted in the presence of local static and dy-
namic breaking of inversion, in particular, for the simulta-
neous excitation of an exciton and magnon or of an exciton
and odd phonon. In the exciton-magnon excitations the for-
biddenness of the electric-dipole transition mechanism is
lifted with respect to both parity and spin. Because of these
mechanisms the absorption spectra of MnF2 throughout the
visible region exhibit weak excitonic magnetic-dipole transi-
tions and their stronger electric-dipole satellites: exciton-
magnon and exciton-phonon.6–12 We note that the first obser-
vation of an exciton-magnon satellite in the absorption
8251063-777X/2005/31(8–9)/6/$26.00
spectrum of an antiferromagnet was made on the MnF2

crystal.6

Manganese fluoride is attracting attention not only in
connection with opportunities for basic research.16,17 In re-
cent years there has been intensive study of the features of
the magnetic hysteresis properties of magnetic heterostruc-
tures characterized by exchange-shifted magnetic hysteresis
loops and containing ferromagnetic �FM� nanolayers or nan-
odots deposited on a crystalline slab or single-crystal film of
an AFM. Research is being done on the mechanisms of ex-
change interaction between neighboring layers and the
mechanisms giving rise to uniaxial magnetic anisotropy in
the FM layer. Manganese fluoride, in particular, is used for
the AFM base of these structures.17 The presence of 180-
degree �time-reversed� AFM domains in the AFM layer sub-
stantially alters their unidirectional magnetic properties.
Therefore, in the creation of FM/AFM structures with speci-
fied hysteresis properties and also for creating structures with
provisions for switching those properties, it is very desirable
to have the possibility of visual monitoring and purposeful
manipulation using 180-degree AFM domains.

The magnetic symmetry of AFM transition-metal fluo-
rides allows effects which are sensitive to opposite orienta-
tions of the AFM vector. Because the anti-inversion opera-

tion 1̄� is not among the symmetry elements of these
crystals, the forbiddenness is lifted from unconventional
magnetooptic effects—birefringence linear in the magnetic
field or the linear magnetooptic effect �LMOE�, and
quadratic-in-magnetic-field rotation �QMR� of the plane of
polarization of light. The LMOE and QMR have been
observed19 in the isostructural crystals CoF2 and FeF2 . With
the help of those effects, the 180-degree, or collinear antifer-
romagnetic domains have been visualized by an optical
method;20 previously those domains had been observed in
these same crystals by a topographic method utilizing polar-
ized neutron diffraction.21

In manganese fluoride neither the LMOE nor the QMR
have been observed. The present study is devoted to the de-
© 2005 American Institute of Physics
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tection of the LMOE in the MnF2 crystal. In the transparency
region the expected effect is too small to be measured by the
standard method. However, it was expected that the LMOE
might manifest itself in the regions of the optical transitions,
in effects which are odd in the field: magnetic linear birefrin-
gence and magnetic linear dichroism �MLD�. The detection
of LMOE could make it possible in principle to make optical
observations of the collinear AFM domains in MnF2 , where
they have been visualized previously only by methods of
neutron topography. A test for the effects in question could
be the presence of properties characteristic of the LMOE—
oddness with respect to reversal of the field direction and
oddness with respect to switching of the antiferromagnetic
states (AFM� and AFM��I�•AFM�), connected to each
other by the time inversion operation I�. The effect can be
manifested most clearly in the longitudinal experimental ge-
ometry, H�k�C4 (k is the wave vector�, for which in the
absence of magnetic field there is neither linear birefringence
nor linear dichroism.

The inevitability that LMOE will be manifested in the
MnF2 crystal in the longitudinal experimental geometry can
be seen from the following considerations. The magnetic
point group of the AFM crystal, 4�/mmm�, differs from the
point group of the paramagnetic crystal, 4/mmm�•I�, by the
circumstance that its tetragonal axis is an axis of symmetry
only in combination with the time inversion operation. Since
the symmetry group of the magnetic field does not contain
the operation 4�, in a magnetic field H�C4 the tetragonal
crystal must, according to the Curie-Neumann symmetry
principle, lower its symmetry to rhombic mm�m� and be-
come optically biaxial. The appearance of LMOE is due to
the lifting of the energy quasi-degeneracy of the magnetic
sublattices by the magnetic field. The unit cell of MnF2 con-
tains two magnetic ions, Mn2�(1) and Mn2�(2). The fluo-
rine ions surrounding the manganese ions form distorted oc-
tahedra with symmetry mmm(D2h). The octahedra for the
Mn2�(1) sites are slightly elongated along the �110� axis,

and those for the Mn2�(2) sites are elongated along �11̄0� .
It can be assumed that the Mn2�(1) and Mn2�(2) sites form
two interpenetrating optically biaxial subsystems possessing
birefringence in the direction of the crystallographic axis C4 .
Since the subsystems are rotated with respect to each other
around C4 by an angle of �/2, their birefringent properties in
the direction of that axis are completely compensated. At
temperatures below the Néel temperature TN the spin mo-
ments of the magnetic ions lie along the tetragonal axis C4

antiparallel to each other. In a magnetic field H�C4 the sub-
systems with spins directed along the field and the sub-
systems with spins directed counter to the field are no longer
equivalent, and the compensation of the birefringent proper-
ties is broken. The dichroism and birefringence arising in
magnetic field should be odd with respect to reversal of the
magnetic field direction and at low fields should be propor-
tional to the field strength, and their signs should be different
for the antiferromagnetic states AFM� and AFM� of the
crystal. Together with the expected MLD, in the longitudinal
geometry of the experiment there is also the usual magnetic
circular dichroism �MCD�, which was observed in Refs. 9
and 10. The presence of the two types of dichroism is
equivalent to elliptical dichroism, which can always be rep-
resented as a superposition of circular and linear dichroisms.
MLD, unlike MCD, is odd with respect to reversal of the
directions of the magnetic moments of the sublattices.

LMOE is described by an axial c-tensor qi ja which is
symmetric with respect to permutation of the first two indi-
ces and has components that change sign under the time
inversion operation. The components of the tensor are iden-
tically zero in all antiferromagnets whose magnetic space
group contains the antitranslation �•I� or anti-inversion Ī�.
The tensor qi ja has the same symmetry as the tensor describ-
ing the piezomagnetic effect. The matrices of the tensor for
all magnetic crystals described by Shubnikov groups are
given in Ref. 18. For a crystal with symmetry 4�/mmm� the
tensor qi ja has only three nonzero components, qyzx�qxzy

and qxyz . For H�C4 the LMOE is described by increments to
the components of the dielectric tensor, ��xy���yx

�qxyzH . The field-induced dichroism for linearly polarized
light is determined by the imaginary part of the tensor qxyz .

In this paper we report the observation of magnetic field-
induced dichroism of linearly polarized light in the region of
three groups of absorption bands of the MnF2 crystal, de-
noted in the literature as the A , C , and D groups. These
groups are formed by the intra-configuration electronic tran-
sitions from the ground state 6A1g(6S5/2) of the Mn2� ion to
excited states split by the crystalline field and the spin-orbit
coupling:

6A1g(6S5/2)�4T1g(4G)—the A group �in the
18480 cm�1 region�

6A1g(6S5/2)�4A1g , 4Eg(4G)—C group �in the
25300 cm�1 region�

6A1g(6S5/2)�4T2g(4D)—the D group �in the
28050 cm�1 region�.

EXPERIMENT AND DISCUSSION

The manganese fluoride single crystals from which the
samples were prepared were grown at the P. L. Kapitza In-
stitute of Physics Problems. The samples were in the form of
parallelepipeds with a base of around 2�2 mm and thick-
ness 1.63 mm �for the spectral measurements in the A group
of bands� and 0.19 mm �for measurements in the region of
the C and D groups�. With a double monochromator a spec-
tral resolution in the MLD spectra of 2 cm�1 or better was
obtained. The measurements were made by a modulation
method with the use of a Jobin Yvon piezooptic modulator.
The modulation frequency of the polarization of the light
beam was 18 kHz. There was a provision for rotating the
modulator around the optical axis of the apparatus so that the
azimuths of the polarization axes of the light beam at the
extremal phases of the modulation could be aligned parallel
to specified orthogonal directions in the crystal. The samples
were mounted in a capsule that was placed in a cold finger
located in the evacuated cavity of a superconducting sole-
noid. The temperature of the sample was varied from 6 to
100 K by means of a heater mounted on the cold finger, and
the measurements were made with a semiconductor ther-
mometer glued to the capsule containing the sample.

The angle between the C4 axis of the crystal and the
direction of the light beam and also the angle between the C4

axis and the axis of the solenoid were monitored visually by
observation of the conoscopic figures. The axis of the light
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beam made an angle of less than 1° with the tetragonal axis
of the sample. The cone angle of the irised light beam was
not more than 1°. The optic axis of the crystal �the C4 axis�
was deviated from the magnetic-field direction by an angle
close to 2°. The plane formed by the C4 axis and the H
vector was close to the �110� plane.

The presence of transverse magnetic-field components
Hx and Hy gave the hope that, owing to the longitudinal
magnetization M z�CzxyHxHy induced by them, which is
sensitive to the orientation of the antiferromagnetic vector, a
uniform antiferromagnetic state will form in the sample22

when it is cooled in a magnetic field Hx ,Hy ,Hz to tempera-
tures below TN . The discovery of the LMOE has made it
possible to monitor a measure of the uniformity of the anti-
ferromagnetic sample. As subsequent experiments showed,
antiferromagnetic states close to the single-domain AFM�

and AFM� states actually do form in the sample. The sample
was heated to a temperature of around 100 K, i.e., above the
Néel temperature TN�67 K, and then a magnetic field was
applied (Hx	1.5 kOe, Hy	1.6 kOe, Hz��50 kOe or Hz

��50 kOe), and the sample was cooled in that field to a
temperature of 6 K.

The spectral measurements of the dichroism �D(
)
�(I1�I2)/(I1�I2) were carried out at a temperature of 6 K
�here I1 and I2 are the intensities on emergence from the
sample, of the light beams which on incidence had been
polarized along the crystallographic directions �110� and

�11̄0� , respectively�. In measurements of the circular di-
chroism, I1 and I2 correspond to right and left circular po-
larization of the incident beams. The spectral resolution in
the measurements was close to 2 cm�1, and the error of
determination of the absolute values of the photon energies
was around 5 cm�1. The values given here for the energies
of the optical transitions and the oscillator strengths are the
standard values taken from Ref. 8.

The values of the MCD and MLD are proportional to the
splitting of the absorption bands in the magnetic field. The
splitting of the exciton absorption band differs little from that
of the absorption band at the intra-ion electronic transition,
which is equal to

�Eex�2��H�g0S0�gexSex��2�BH�S0�g0�gex��gex� .

Here g0 ,S0 and gex ,Sex�S0�1 are the g factors and spins
of the ground and excited states, and �B is the Bohr magne-
ton. The splitting of the exciton-magnon band,

�Eex�m�2�BH�g0S0�gexSex��2�Bg0H

�2�BH�g0�gex�Sex

is much smaller, since the g factors of the ground and excited
states of the Mn2� ion are close in value. Splitting of the
exciton-magnon bands was not observed in the spectroscopic
experiments.7,8 It was determined from the value of the MCD
in the band.9,10 The value of the dichroism is proportional not
only to the splitting but also to the intensity of the band, and
the magnetic dichroisms of the exciton and exciton-magnon
bands can therefore be close. In the experiments the MCD of
the exciton band in the C group was approximately 3 times
larger than the MCD of the exciton-magnon satellites.10 In
the A group the MCD of the exciton-magnon band was
larger than the MCD of the exciton band, while the values of
the dichroism differed less.9 In our experiments the qualita-
tive relationship between the values of the MCD in the ex-
citon and exciton-magnon bands of these groups was the
same, although the quantitative difference for the bands in
the C group was smaller. The spectra of the MLD measured
in this study reflected the structure of the groups of bands,
but the relationship between the contributions of the exciton
and exciton-magnon transitions was different.

Figure 1 shows the results of a measurement of the MLD
in the C group in different states of the sample. Curves 1 and
2 were obtained in a field Hz��61 kOe with light passing
through different parts of the sample, which had not been
subjected to thermomagnetic treatment and was separated
into AFM� and AFM� domains. It is seen that in one part
�curve 1� the MLD is close to zero; light passes through
domains of both AFM states, and the path of the light in the
AFM� domain is slightly longer than the path in the AFM�

domain. In the other part �curve 2� the AFM� domain is
predominant. Curve 3 was obtained at the same field but with
the sample prepared in a uniform AFM� state beforehand.

Figure 2 gives the spectra of the MLD of this same
group, obtained in a single-domain sample in magnetic fields
of different strength. One notices that in the absence of field
the linear dichroism actually vanishes in the region of some
absorption bands but remains well noticeable in the region of
other bands. The cause of this behavior of the linear dichro-
ism can be linked to different sensitivity of the optical tran-
sitions to the deviation from the ideal sample orientation
C4�k�H and to the presence of macroscopic strains in the
sample. The variation of the value of the dichroism at the
extrema of the spectrum with increasing field is close to lin-
ear.

Figure 3 shows the spectra of the MLD in the region of
all three absorption groups. Prior to the measurements a suit-
able thermomagnetic treatment of the samples was carried
out to prepare a uniform AFM state in them. The spectra of
the MLD and the absorption spectrum of the MnF2 crystal in
the region of the A group of bands, formed by the so-called

1 and 
2 magnon satellites of the electronic magnetic di-

FIG. 1. Spectra of magnetic linear dichroism of MnF2 in the region of the
optical transition 6A1g(6S5/2)�4Eg , 4A1g(4G) �the C group of bands�, ob-
tained at a field strength Hz��61 kOe for different states of the sample.
Curves 1 and 2 were obtained for different parts of a sample that had not
been subjected to thermomagnetic treatment and contained collinear AFM
domains. Curve 3 was obtained after a single-domain state AFM� had been
created in the sample.
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pole transitions 6A1g(6S5/2)�4T1g(4G) are presented in Fig.
3a. The electronic transitions �not seen in the � spectrum�
occur upon the absorption of photons with energies of
18418 cm�1 and 18435 cm�1 and have close values of the
oscillator strength (3.4�10�11 and 3.0�10�11). Electrons
from the almost unsplit ground state 6A1g(t2g

3 eg
2) of the man-

ganese ion make a transition to the orbital components B2

and B3 of the excited state 4T1g(4G), which is split by the
spin-orbit coupling and the orthorhombic crystalline field.
The electronic configuration of the excited states is close to
t2g

4 eg
1 . The arrows indicate the positions of the maxima of

the bands of their electric-dipole satellites �18476 and
18484 cm�1). These absorption bands �the oscillator
strengths are 1�10�9 and 1.4�10�9) are due to the simul-
taneous excitation of an exciton and a magnon, which propa-
gate through different sublattices in opposite directions along
the crystallographic axes �001� and �111�. Here the absorp-
tion of light is excited primarily by excitons and magnons
with the maximal momenta, which correspond to the points
Z and A in the Brillouin zone.

The induced linear dichroism in this group reaches its
largest value (2.5�10�2 at a field strength Hz�50 kOe) in
the vicinity of the first exciton-magnon transition. The sign
of the field-induced dichroism changes when the direction of
the magnetic field is reversed while the direction of the an-
tiferromagnetic vector remains the same. This property is
demonstrated in Fig. 3a. A sign change of the MLD also
occurs when the antiferromagnetic state is changed from
AFM� to AFM�. The switching of the AFM states occurred,
as expected, after the sample was heated to a temperature
above the Néel point and then cooled in magnetic field. The
prepared AFM state of the sample persisted as metastable in
the oppositely directed field up to a strength of 61 kOe �the
maximum field strength in the experiment� if the sample
temperature was low enough (T�6 K). This is attested by
the fact that the MLD spectra recorded for the AFM� and
AFM� states at the same magnetic field are almost com-
pletely identical �up to the sign�; see Fig. 3b. However, if the
sample temperature was high enough �25–30 K�, then in the
geometry we used, a partial switching of the AFM state oc-
curred as the field was increased—domains of the other,

FIG. 2. Spectra of magnetic linear dichroism of MnF2 in the region of the C
group of bands, measured for different values of the magnetic field strength.
The sample was found in the AFM� state.
magnetically reversed �time-reversed� AFM state formed,
and the value of the magnetic dichroism decreased.

Figure 3b shows the MLD spectra and the absorption
spectrum of the C group of bands, formed by the transitions
6A1g(6S5/2)�4Eg , 4A1g(4G). The electronic configuration
of the excited electronic states is close to t2g

3 eg
2 . The energies

of two electronic �excitonic� magnetic-dipole transitions, M 1

and M 2 �25245 and 25260 cm�1), with oscillator strengths
0.5�10�8 and 0.9�10�8, and their satellites �25295 and
25311 cm�1), with oscillator strengths 0.3�10�7 and 0.9

FIG. 3. Spectra of magnetic linear dichroism induced by a longitudinal
magnetic field H�C4 :k in the MnF2 crystal in the region of the optical
transitions 6A1g(6S5/2)�4T1g(4G) �the A group of bands� �a�; 6A1g(6S5/2)
�4Eg , 4A1g(4G) �the C group of bands� �b�; 6A1g(6S5/2)�4T2g(4D) �the D
group of bands� �c�. The absorption spectrum is shown in the lower part of
each panel. Prior to the measurements a uniform AFM state was created in
the samples. The curves with data points in the form crosses were obtained
at H�0.
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�10�7, are indicated, along with the transition M 3 at
25404 cm�1, which apparently is also purely electronic �see
Refs. 8 and 10�. According to Ref. 8, the excited electronic
states M 1 and M 2 are orbital components of the 4Eg state,
split by the z component of the orthorhombic crystalline
field, while the M 3 state comes out of 4Ag �Ref. 10�. The
field-induced dichroism is clearly seen not only in the region
of strong electric-dipole exciton-magnon satellites but also in
the region of weak magnetic-dipole transitions having a large
g factor. We note that these transitions are much less visible
in the � absorption spectrum than in the dichroism spectra.
The largest value of the MLD is reached at an energy of
25310 cm�1 in the region of the second exciton-magnon
band, where it is close to 1.7�10�2 in a magnetic field H
�50 kOe.

The spectral dependence of the MLD in the region of the
D group of bands is shown in Fig. 3c. This part of the spec-
trum of the MnF2 crystal is formed by optical transitions
between the states 6A1g(6S5/2) and 4T2g(4D). The fraction of
the t2g

3 eg
2 configuration in the configurations of the excited

states of the ion is appreciable, close to 0.83. The absorption
band with maximum near 28026 cm�1 is attributed to an
exciton-magnon transition.8 The oscillator strength of this
transition in the 
 spectrum is 0.17�10�7. Odd MLD was
recorded in the region of this band. The figure shows the
MLD spectra obtained for the AFM state of the sample in
magnetic fields of opposite directions. The curves demon-
strate the change of sign of the MLD for the same AFM state
when the direction of the magnetic field is reversed. The
maximum value of the dichroism, scaled to 50 kOe, in this
band is close to 3.5�10�3. We note that the amplitude of the
anomalies on the curves are noticeably different. The differ-
ence is most likely due not to a partial switching of the
AFM� state and the formation of AFM� domains but rather
to the circumstance that in the higher energy region of the
spectrum, the more-stringent tolerances on the deviations of
the light beam from the tetragonal axis and on the allowable
macroscopic stress in the sample are exceeded. A similar but
less pronounced asymmetry is also observed in the spectra of
the C group.

The stated properties of the MLD, viz., oddness with
respect to a reversal of the field direction and with respect to
switching of the AFM states, attest to the fact that the ob-
served dichroism is indeed a manifestation of a linear mag-
netooptic effect.

The values of the MLD in all groups of absorption bands
is of the same order as the usual magnetic circular dichroism.
Figure 4 shows the MCD spectra which we obtained in the
region of the A , C , and D groups of bands. The form of the
MCD spectra in the region of the A and C groups is close to
the form of the MCD spectra measured previously in Ref. 9
(A group� and 10 (C group�, but the differences in the details
are significant. The dispersion curves of the MLD and MCD
are close for the A and D groups but noticeably different for
the C group. In the A group both the MLD and MCD spec-
tra, in addition to the features corresponding to exciton-
magnon transitions, have a feature at 18465– 18470 cm�1,
which is the position of the magnetic-dipole excitonic tran-
sition that was predicted and observed in Ref. 6. Near
18456– 18457 cm�1 a feature which was also observed in
Ref. 9 is seen in the MCD spectrum �but not in the MLD�.

In the exciton-magnon bands the MLD is noticeably
larger than the MCD, and therefore the values of the g fac-
tors for the exciton-magnon satellites and for magnons,
which were determined on the basis of the values of the
MCD of the corresponding absorption bands,9,10 must be cor-
rected with the MLD taken into account. In our opinion, the
question of spontaneous magnetic circular �and linear� di-
chroism, which is discussed in Refs. 9 and 11, requires ad-
ditional careful experimental study.

CONCLUSION

In the antiferromagnetic manganese fluoride crystal a
longitudinal magnetic linear dichroism is observed in the ex-

FIG. 4. Spectrum of magnetic circular dichroism �MCD� induced by a lon-
gitudinal magnetic field in the region of the optical transitions. The curves
with filled dots are the MCD, the dotted curves are the MLD: 6A1g(6S5/2)
�4T1g(4G) (A group�, H�50 kOe �a�; 6A1g(6S5/2)�4Eg , 4A1g(4G) (C
group�, H�50 kOe �b�; 6A1g(6S5/2)�4T2g(4D) (D group�, H�33 kOe �c�.
The absorption spectrum is shown in the lower part of each panel.
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citon and exciton-magnon absorption bands: a magnetic field
induces a different absorption of linearly polarized light
propagating along the magnetic field vector parallel to the
tetragonal axis of the crystal. It is found that the magnetic
linear dichroism is odd with respect to reversal of the mag-
netic field direction and to switching of the antiferromagnetic
state, i.e., to a reversal of the directions of the magnetic
moments of the sublattices of the antiferromagnetic crystal.
The largest MLD, close to 0.5�10�3 kOe�1, was observed
in the region of the first exciton-magnon satellite in the A
group of bands of the absorption spectrum. The value of the
effect is sufficient for visual observation of AFM domains in
the MnF2 crystal with the use of modern techniques for op-
tical visualization of low-contrast objects and the methods of
high-resolution spectroscopy.

It is clear that the MLD and MCD spectra complement
each other and can be useful for determining the wave func-
tions of the excited states and for revealing subtle differences
in the behavior of excitons and magnons in magnetic field.

*E-mail: kharchenko@ilt.kharkov.ua
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Viktor Grigor’evich Bar’yakhtar „on his 75th birthday…
�DOI: 10.1063/1.2044810�
On August 9, 2005 the prominent theoretical physicist
Viktor Grigor’evich Bar’yakhtar, Member of the National
Academy of Sciences of Ukraine, turned 75. In the course of
over forty years he has published a paper that has been semi-
nal in various fields of theoretical physics, carried on an
enormous amount of scientific organizational activity within
the NAS Ukraine system, served on government and inter-
national committees and scientific councils and on the edito-
rial boards of journals, and taught at the Universities of
Kharkov, Donetsk, and Kiev. He is the Director of the Insti-
tute of Magnetism of the NAS Ukraine, which was founded
by him.

Bar’yakhtar obtained ground-breaking results in the
theory of magnetism and phase transitions. In particular, he
constructed a theory of magnetoacoustic resonance, a theory
of the intermediate state near a first-order phase transition in
8311063-777X/2005/31(8–9)/1/$26.00
magnetic field, a phenomenological description of relaxation
processes in magnets, and a theory of the superconducting
transition under pressures altering the topology of the Fermi
surface. His scholarly activity is reflected in numerous ar-
ticles, conference proceedings, and monographs. He has cre-
ated an active and successful school of theoretical physicists.

Bar’yakhtar has been awarded the Order of Merit of
Ukraine in Science and several State and Academy of Sci-
ences prizes, orders, and medals.

Viktor Grigor’evich possesses great magnetism owing to
the wealth of his scientific ideas and his sterling personal
qualities. We heartily congratulate him on his birthday and
wish him many more years of good health, creative activity,
and charisma.

Editorial Board of Low Temperature Physics
© 2005 American Institute of Physics
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Radii Nikolaevich Gurzhi „on his 75th birthday…
�DOI: 10.1063/1.2044811�
August 11, 2005 is the 75th birthday of the prominent
theoretical physicist and Laureate of the State Prize of
Ukraine, Radii Nikolaevich Gurzhi. The quantum kinetic
equation for electrons, obtained by Gurzhi when a graduate
student, became the basis for his well-known results in metal
optics which extended the concepts of Landau’s theory of the
Fermi liquid into the region of relatively high frequencies.

Gurzhi’s most important scientific ideas were announced
during his work at the Ukrainian Physico-Technical Institute
�from 1958�. In his first paper, published in 1963, a system of
quasiparticles in a solid was treated as a Poisueille fluid
whose behavior is described by the equations of hydrody-
namics. The term ‘‘Gurzhi effect’’ has long been used in the
literature for manifestations of hydrodynamic phenomena in
electrical conduction. Another unexpected effect predicted
by Gurzhi and observed experimentally is the role of anhar-
monicities of arbitrarily high order in the thermal conductiv-
ity of ferromagnetic insulators. Gurzhi and his students have
studied a wide range of problems in solid-state kinetics under
conditions such that normal collision processes of quasipar-
8321063-777X/2005/31(8–9)/1/$26.00
ticles dominate or compete with processes leading to mo-
mentum relaxation. The numerous results obtained on that
topic have been presented in monographs and text books and
have found wide experimental confirmation. Since his arrival
in 1974 at the Institute for Low Temperature Physics and
Engineering of the National Academy of Sciences of
Ukraine, his ideas have been applied to new solid-state
objects—nanostructures of reduced dimensionality. He has
shown that lowering the dimensionality of the space radi-
cally alters the character of electron-electron scattering in
conductors.

His colleagues and students who are celebrating this
birthday value his special combination of scholarly and hu-
man qualities: his ability to frame unexpectedly simple ques-
tions in complex problems, and his informal, intelligent, and
human style of personal contact irrespective of station. We
esteem and love our dear Radii Nikolaevich and wish him
long years of fruitful scientific activity.

Editorial Board of Low Temperature Physics
© 2005 American Institute of Physics
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Erratum: Evgenii Stanislavovich Borovik on the ninetieth anniversary of his birth
†Low Temperature Physics 31, 183 „2005…‡

V. V. Eremenko and V. S. Borovikov

Due to a translation error, on page 183, in the third paragraph of the text, the title of the
Candidate’s Dissertation has been corrected. The correct title should read The Heat Conductivity
of Liquids ...
8331063-777X/2005/31(8–9)/1/$26.00 © 2005 American Institute of Physics
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