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Abstract—Rigorous and approximate methods are considered for solving the problem of harmonic plane wave
scattering from a plane surface arbitrarily perturbed along one dimension on a finite interval. This problem is
treated using the Fredholm integral equations of the second kind and the Kirchhoff and Rayleigh approxima-
tions. The estimates of the computational efficiency of the integral equation method and the Rayleigh approx-
imation are compared by calculating fields scattered from random rough surfaces in the resonance region (i.e.,
when the roughness height is comparable to or smaller than the incident wavelength) for an arbitrary incidence
of a plane wave. Scattering patterns calculated using the integral equations and the Kirchhoff approximation are
discussed in the case of large-scale random rough surface scattering. Particular attention is paid to scattering at
near-grazing incidence. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Electromagnetic and acoustic scattering from ran-
dom rough surfaces has been extensively investigated
(e.g., see references in [1–4]). The Kirchhoff and Ray-
leigh approximations and the rigorous approach based
on the integral equation method are the best known
methods for simulating wave scattering from a large-
scale (the roughness height is large in terms of wave-
length) or resonant (the roughness height is comparable
to or smaller than the wavelength) rough surface. It is
known that the Kirchhoff approximation is efficient for
simulating scattering from large (in terms of the inci-
dent radiation wavelength) roughness asperities at
small incidence angles. However, at near-grazing inci-
dence, which is typical for many radar problems, the
Kirchhoff approximation cannot be applied because of
the surface shadowing and multiple scattering from the
surface elements. A numerical method based on the
Rayleigh approximation provides exact data for the
fields scattered from surfaces with low slopes in the res-
onance region, i.e., when the incident wavelength and
the roughness dimensions have the same order of mag-
nitude. The integral equation method, whose applica-
bility is not restricted within the framework of classical
electrodynamics, is quite efficient for solving scattering
problems in the resonance region but meets certain
computational difficulties in the short-wavelength
region.

The main purpose of this work is to find the domain
of applicability of the methods mentioned above by
analyzing the numerical solution to the problem of
1063-7842/00/4501- $20.00 © 20001
plane wave scattering from a perfectly conducting
plane surface arbitrarily perturbed along one dimension
on an interval of finite width. The roughness height and
slope constraints are discussed in the case when the
integral equations and the Rayleigh approximation are
employed. We pay special attention to the plane wave
scattering at near-grazing angles.

FORMULATION OF THE PROBLEM

Consider the two-dimensional scattering problem
for the plane wave, incident on random rough surface
Σ, ui(P) = exp(iα0x – iβ0y), where α0 = ksinΘ0, β0 =
kcosΘ0, Θ0 is the incidence angle, k is the wave num-
ber, and P = (x, y) is an observation point. The analysis
is performed in the frequency domain with exp(– iωt) as
the time-dependent factor. Surface Σ is described by a
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Fig. 1. Geometry of the scattering surface and notations.
000 MAIK “Nauka/Interperiodica”



 

2

        

ZALIPAEV, KOSTIN

                                                                                                             
smooth function y = f(x) (Fig. 1). An arbitrarily per-
turbed surface fragment is located on the interval x ∈
(−a, a), a > 0, i.e., f(x) ≡ 0 for |x | > a. Total wave field
u(P), which is the electric or magnetic z-component of
a linearly polarized electromagnetic wave, is a solution
to the Helmholtz equation

(1)

and satisfies the Dirichlet,

(2)

or Neumann,

(3)

boundary condition in the case of electric or magnetic
polarization, respectively. Represent total field u in the
form

(4)

where urm = εexp(iα0x + iβ0y) is the plane wave regu-
larly reflected from the plane y = 0; ε = –1 and ε = 1 for
boundary conditions (2) and (3), respectively; and us is
the scattered component of the total field.

THE INTEGRAL EQUATION METHOD

In the case of electric polarization, we look for com-
ponent us(P) in the form of the double layer potential
with unknown density ν(M')

(5)

satisfying the boundary condition

(6)

and in the case of electric–magnetic polarization, we
look for us(P) in the form of the simple layer potential
with density µ(M')

(7)

satisfying the boundary condition

(8)

In formulas (5) and (7), M' = (x', y') is an integration
point on scattering surface Σ, ∂/∂n' is the normal

derivative calculated at M', (x) is the zero-order
Hankel function of the first kind, R(P, M') =

 is the distance between P and
M', and ds is the differential of the arc length. Employ-
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ing the known properties of the limiting values of the
double layer potential and the normal derivative of the
simple layer potential at P  M ∈ Σ  (see, for exam-
ple, [5]), we obtain the following integral equations of
the second kind for unknown functions ν(M) and µ(M):

(9)

(10)

where the integrals are taken in the sense of their prin-
cipal values and the right-hand sides are specified by

For the convenience of the subsequent analysis, we
represent integral equations (9) and (10) in a form
where all the functions depend on the horizontal coor-
dinate. Calculating the normal derivative in (9) and (10)
yields the following integral equations for the electric
and magnetic polarizations:

(11)

(12)

with the kernels

(13)

(14)

where R(x, x') =  and

(x) is the first-order Hankel function of the first
kind.

When deriving (11) and (12), we used the expres-
sion for the differential of arc length ds =

dx'. One can see that kernels (13) and (14)
of equations (11) and (12) are continuous functions.
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Integral equations (11) and (12) have no solutions
expressed in an explicit form. Since the integration
domain in (11) and (12) is unbounded, applying numer-
ical methods for solving these equations creates an
obvious problem. In order to overcome this difficulty,
we should take into account that the scattered field us is
due to the perturbation of the horizontal plane y = 0
localized on the interval x ∈  (–a, a). Therefore, the
Fredholm integral equations of the second kind can be
obtained on the interval x, x' ∈  (–b, b), b > a [6]

(15)

(16)

Quantizing these equations with respect to x and x'
results in a system of linear algebraic equations
(SLAE), which is solved numerically. For |x | > b, the
potential density can be computed by the formulas

In some papers devoted to the problem under con-
sideration, for example in [7], a singular integral equa-
tion of the first kind is used. However, this approach is
hampered when calculating fields scattered by rough
surfaces with high slopes, especially at grazing inci-
dence [6]. On the other hand, the method based on
Fredholm equations of the second kind (15) and (16) is
free from these drawbacks.

Using the integral representation for the Hankel
function

where β =  and Imα ≥ 0 for the scattered field
at the observation points located above surface Σ, we
obtain from (5) and (7) the scattered field in the form of
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the integral decomposition in terms of plane waves

(17)

where amplitude spectrum A(α) in the integrand is
specified by

(18)

for the electric polarization and by

(19)

for the magnetic polarization. When potential densities
ν(x) and µ(x) are determined by numerically solving
integral equations (15) and (16), amplitude spectrum
A(α) can be computed from (18) and (19).

In fact, uniform plane waves, for which –k < α < k,
are of practical interest. Nonuniform waves contribute
to scattered field us(P) only in the proximity of Σ. Tak-
ing into account only uniform waves, representation
(17) can be recast as

(20)

where amplitude spectrum A(Θ) is given by

(21)

and

(22)

for the electric and magnetic polarizations, respec-
tively. In these formulas, angle Θ is specified by the fol-
lowing relationships: α = ksinΘ, β = kcosΘ, and
−π/2 < Θ < π/2.

The scattered field can be represented in another
form which is rather efficient in the case when observa-
tion point P(x, y) is far from the perturbed region. Using
in formulas (5) and (7) the asymptotics of Hankel func-

tion (x) for large arguments
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and the asymptotic formula for the distance

where x = rcosΘ and y = rsinΘ, yields the expression
for the principal term in the representation of the scat-
tered field us(x, y) in the form of a cylindrical wave,

(23)

This formula implies that scattering pattern S(Θ),
which is proportional to the scattered field intensity, is

Thus, the values of A(Θ) calculated from the numer-
ical solution of integral equations (15) and (16) deter-
mine the scattering pattern, the latter being a physical
quantity of practical interest.

For an arbitrary roughness profile and angle of inci-
dence Θ0, the amplitude spectrum satisfies the relation-
ship

(24)

which is known in scattering theory as the optical theo-
rem (see, for example, [7]).

In order to control computations, it is convenient to
employ this identity in the form

(25)

Expression (25) is called the energy balance crite-
rion (EBC). The deviation of ∆E(Θ0) from zero charac-
terizes the accuracy of computations. Note that the con-
dition ∆E(Θ0) ≡ 0 is necessary but, rigorously speaking,
it is insufficient for the correctness of computations of
the amplitude spectrum.

THE RAYLEIGH APPROXIMATION 
METHOD

According to the Rayleigh hypothesis, which is well
known in scattering theory, the integral decomposition
of the scattered field in plane waves

is assumed to be valid everywhere up to the scattering
boundary surface Σ. Then, the Fredholm integral equa-
tion of the second kind with continuous kernels can be
obtained for the amplitude spectrum A(α, α0) of uni-
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form waves [8]. For electric polarization, this equation
has the form

(26)

where the right-hand side and the kernel are specified
by

(27)

Similarly, for magnetic polarization, we obtain

(28)

where

(29)

THE KIRCHHOFF APPROXIMATION

The Kirchhoff approximation is the simplest and
most widespread method for investigating scattering
from large-scale undulations. According to this approx-
imation, it is supposed that the field at any point of the
scattering surface is the same as in the case when the
surface at this point is replaced by the corresponding
tangential plane. Thus, for electric polarization, the
normal derivative of the total field is expressed by
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Using Green’s formula yields the explicit integral
representation for the amplitude spectrum of the scat-
tered field [9]

(30)

In this approximation, the absolute value of the
amplitude spectrum and, hence, the scattering pattern
are independent of the incident wave polarization.

NUMERICAL IMPLEMENTATION AND RESULTS 
OF COMPUTATIONS

Solving the integral equations obtained above pre-
sents no principal problems. On the other hand, the
application of numerical methods for solving integral
equations arising in scattering analysis meets certain
computational difficulties. The problem is that the ker-
nels and right-hand sides of (15) and (16) are rapidly
oscillating functions. Numerical simulations show that
integral equations (15) and (16) should be discretized
under the condition N ≥ 8(2b/λ), where N is the number
of discretization points. Thus, even in order to calculate
fields scattered from an undulation of the width 2a ≈
100λ, one needs to solve a SLAE with a complex 103 ×
103-matrix. Solving this SLAE by the Gauss technique
requires ≈109 operations with complex numbers and
about 8 MB of a PC RAM for storing the matrix. In
fact, actual technical problems involve scattering from
surfaces with roughness regions (bright areas) of about
104λ in width. In this situation, the stored matrix occu-
pies at least 95 GB of the RAM, and solving the corre-
sponding SLAE requires approximately 1015 arithmetic
complex operations, which is a challenge for even mod-
ern computers. In addition, one should keep in mind
that numerous scattering problems are formulated sta-
tistically; i.e., it is necessary to simulate scattering
using an ensemble of surfaces and, then, to compute the
required scattering parameters. On the other hand, the
obvious progress in computer technology allows us to
hope that the difficulties mentioned above will be over-
come in the near future.

The integral equations of the Rayleigh hypothesis
are simpler for computational implementation than the
integral equations of the rigorous method. The discret-
ization interval for integral equations (26) and (28) of
the Rayleigh approximation should be chosen depend-
ing primarily on the required resolution of the calcu-
lated scattering pattern. In addition, one should take
into account that the time of computing one element of
the corresponding matrix is proportional to 2a. The
most time-consuming operation involved in the numer-
ical implementation of the Rayleigh approximation is
calculating the matrices corresponding to the integral

A Θ Θ0,( ) ε
k 1 Θ Θ0+( )cos+[ ]
2π Θcos Θ0cos+( )
------------------------------------------------=

× i α 0 α–( )x[ ] i β β0+( ) f x( )–[ ]exp 1–{ } x.dexp

a–

a

∫
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equations. It should be noted that the frequency of the
amplitude spectrum variations increases with the width
of the illuminated region. Therefore, in order to calcu-
late the amplitude spectrum on increasingly wider sur-
faces, it is necessary to increase N even if one does not
need to provide a resolution as high as this.

The methods for calculating scattering patterns
described above (the numerical solution of rigorous
integral equations (9) and (10), and the direct calcula-
tion of the scattering pattern using equations (26) and
(28) of the Rayleigh hypothesis and representation (30)
of the Kirchhoff approximation) are implemented in
computer codes for IBM PC/AT. We present the results
of calculations for two typical situations in order to find
the domains of applicability of the discussed methods,
which is important for future numerical simulations of
actual scattering problems.

The scattering pattern is calculated for the cylindri-
cal surface described by the function

(31)

where V(x) is a patch function specified by

The corresponding values of ∆E(Θ0), which charac-
terize the relative accuracy of computations (the extent
to which the EBC is fulfilled) are given in the figure
captions. Quantity ∆E(Θ0) is denoted by ∆ED and ∆EN

for the TE and TM polarizations, respectively. All the
geometric parameters of the problem are expressed in
terms of wavelength.

In the first series of calculations, we investigate the
domain of validity of integral equations (26) and (28)
obtained in the Rayleigh approximation. As known, for
the infinite periodic surface f(x) = A0cos(2πx/d), the
condition of applicability of this approximation has the
form 2πA0/d < 0.448 [10]. Our computations show that
this condition is necessary. When the EBC is fulfilled to
within the maximum permissible error ∆E ≤ 0.05, A0 in
(31) cannot exceed 0.2. This is illustrated by Fig. 2,
which shows the scattering pattern for profile (31) with
the parameters a = 50, c = 45, A0 = 0.1, and d = 2 for the
incidence angle Θ0 = 89°. This pattern is calculated for
both polarizations using integral equations (26) and
(28) of the Rayleigh hypothesis and rigorous integral
equations (15) and (16). The results obtained by both
methods are in good agreement. In this case, a differ-
ence between two polarizations observed in scattering
patterns for near-grazing incidence is manifested in dif-

f x( ) A0 2πx d⁄( )V x( ),cos=

V x( )

a x+
a c–
------------

1
2π
------ 2πa x+

a c–
------------ 

  , if xsin– a– c–,( )∈

0 c a<≤
1, if x c– c–,( )∈

a x–
a c–
-----------

1
2π
------ 2πa x–

a c–
----------- 

  , if xsin– c a,( )∈

0, if x a– a,( ).∉

=
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ferent scale coefficients but not in pattern behavior. The
Kirchhoff approximation, surely, cannot be applied to
this geometry.

Thus, in order to calculate fields scattered from shal-
low rough surfaces with low slopes in the resonance
region, integral equations (26) and (28) of the Rayleigh
hypothesis can be used as a simpler (for computational
implementation) alternative to the rigorous integral
equation method.
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Fig. 2. Plane wave scattering pattern for profile (31) with the
parameters a = 50, c = 45, A0 = 0.1, and d = 2 calculated for
the incidence angle Θ0 = 89°. Results obtained using inte-
gral equations (26) and (28) of the Rayleigh approximation
(solid lines) and integral equations (15) and (16) of the rig-
orous method (dotted lines). EBC: ∆ED = 4.9 × 10–2, ∆EN =

4.0 × 10–2 (the Rayleigh approximation), ∆ED = 1.1 × 10–4,

∆EN = 1.1 × 10–5 (the rigorous integral equation method).
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Fig. 4. Plane wave scattering pattern for profile (31) with the
parameters a = 70, b = 75, c = 65, A0 = 15, and d = 30 cal-
culated using rigorous integral equations (15) and (16) at the
incidence angle Θ0 = 45° for the TE (solid line) and TM

(dotted line) polarizations. EBC: ∆ED = 4.5 × 10–4, ∆EN =

2.5 × 10–4.
In the second series of calculations, we investigated
the applicability of the rigorous integral equation
method for computing fields scattered from large-scale
rough surfaces. As mentioned above, the key problem
typical for these computations is the rapidly (propor-
tionally to (2a)3) increasing number of arithmetic oper-
ations necessary for solving the integral equations. In
addition, the integral equations should be discretized
using a more refined mesh as the slopes of irregularities
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104
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15 30 45 60 75 90

Fig. 3. Plane wave scattering pattern for profile (31) with the
parameters a = 70, b = 75, c = 65, A0 = 15, and d = 30 cal-
culated for the incidence angle Θ0 = 0. Results obtained
using rigorous integral equation (15) for the TE polarization
(solid line) and the Kirchhoff approximation (30) (dotted
line); EBC: ∆ED = 3 × 10–6 (the rigorous integral equation
method), ∆E = 0.39 (the Kirchhoff approximation).
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Fig. 5. Plane wave scattering pattern for profile (31) with the
parameters a = 70, b = 75, c = 65, A0 = 15, and d = 30 cal-
culated for the incidence angle Θ0 = 89°. EBC: ∆ED = 2.6 ×
10– 4, ∆EN = 2.5 × 10– 4.
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RIGOROUS AND APPROXIMATE METHODS 7
on the scattering surface increase. However, the draw-
backs of the rigorous integral equation method are
compensated for by high accuracy and reliability of
results. Figures 3–5 show scattering patterns for the
large-scale surface with high slopes characterized by
the following parameters: a = 70, b = 75, c = 65, A0 =
15, and d = 30. Figure 3 displays the scattering patterns
calculated for the incidence angle Θ0 = 0° using the rig-
orous integral equation method for the TE polarization
and the Kirchhoff approximation. Due to the symmetric
geometry under consideration, the scattering pattern is
an even function of the scattering angle Θ for normal
incidence, and, therefore, we show the pattern only in
the range 0° ≤ Θ ≤ 90°. One can see that even in the case
of normal incidence, the Kirchhoff approximation pro-
vides sufficiently accurate results only in the proximity
of the symmetric reflection direction. This fact can be
attributed to the existence of multiple scattering from
surface elements, which is ignored in the Kirchhoff
approximation. Figures 4 and 5 demonstrate the corre-
sponding scattering patterns for the TE and TM polar-
izations when the incidence angles are Θ0 = 45° and
89°. The accuracy of these computations remains very
high including the grazing incidence when a long
shadow region is formed at x > a. The scattering pat-
terns affected by the presence of this region can be cor-
rectly determined by reducing initial integral equations
(11) and (12) with the infinite integration domain to
equations (15) and (16) involving integrals over a finite
interval. The latter equations take into account the
effect of the perturbed surface fragment (–a, a) on the
plane part of the surface |x | > b.

CONCLUSION

The results of computations demonstrate that the
Rayleigh approximation is efficient for determining
fields scattered from shallow rough surfaces with low
slopes. The accuracy of these computations proves to
be sufficiently high for an arbitrary incidence of the
plane wave including near-grazing angles. However,
the computation error abruptly increases with the
roughness height, namely, at A0 > 0.2, when the Ray-
leigh approximation becomes invalid.
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Comparing the results of computations performed
using integral equations (9) and (10) of the potential
theory and the Kirchhoff approximation, we can see
that, in the proximity of the symmetric reflection direc-
tion, the Kirchhoff approximation rather accurately
describes the fields scattered from large-scale rough
surfaces with low slopes in the case of incidence far
from grazing. Computations show that the Kirchhoff
approximation cannot even qualitatively describe scat-
tering from surfaces with large roughness height and
high slopes or scattering in the case of near-grazing
incidence. At the same time, the rigorous approach
based on the Fredholm integral equations of the second
kind is the only one among tested methods that solves
this complicated problem, providing a high accuracy of
computations in the whole range of the incidence and
scattering angles.
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Abstract—The first screw extruder capable of continuously forming macroscopic solid hydrogen particles to
be injected into the plasma of thermonuclear devices was created and successfully tested. A model of noniso-
thermal hydrogen flow in the screw channel was developed and used to calculate the extruder efficiency as a
function of the system parameters. The results of calculations and experimental data are presented for the extru-
sion of 500 cm3 of solid hydrogen using an extruder with a working volume of 8 cm3 operating at a rate of
63 mm3/s. Temperature dependences of the viscosity and shear strength of solid hydrogen were studied in the
temperature interval from 10 to 13 K, where solid hydrogen behaves like a Bingham fluid. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

A fuel can be supplied to the plasma of thermonu-
clear setups either by admitting gaseous hydrogen or by
injecting macroparticles of solidified hydrogen iso-
topes. The injection of particles into a reactor operating
in the stationary regime must be performed at a fre-
quency of 1–10 kHz [1]. A device recently suggested
for this purpose is based on the periodic formation of
macroparticles by rapid freezing of liquid drops deliv-
ered into the injector channel through a porous sleeve
[2, 3]. An alternative injector system employs three
sequentially operating piston extruders for processing
preliminarily frozen hydrogen into a rod, followed by
cutting this rod into macroparticles [4]. The system of
fuel supply by macroparticle injection used in the ITEP
reactor has to meet high requirements with respect to
the reliability of operation (99%) [5]. This circum-
stance stimulates the search for the most simple and,
hence, reliable methods of the hydrogen macroparticle
formation. In 1990–1994, we studied the process of
fuel extrusion under the action of pressure developed in
the gas phase [6]. Experimental data gained in that
work were used to develop a new method for the mac-
roparticle formation using the principle of a screw
extruder.

EXTRUSION PROCESS: 
DESCRIPTION AND MODEL

In a conventional screw extruder, a material to be
processed is supplied to the screw channel in the solid
state. As the material is pressed and transferred to the
discharge head, the temperature is increased so as to
provide for a decrease in the shear strength and viscos-
ity necessary for the extrusion process. In the case of
hydrogen extrusion, the temperature must be decreased
on approaching the head in order to provide for the
hydrogen condensation and solidification in the screw
1063-7842/00/4501- $20.00 © 20106
channel. A decrease in the temperature is accompanied
by increase in the strength and viscosity of hydrogen,
but the compression at a pressure exceeding 5 MPa
(necessary for the hydrogen extrusion [3, 6]) leads to a
considerable heat evolution. This phenomenon fre-
quently causes local heating and melting of hydrogen,
which results in cessation of the extrusion process
[7, 8]. Therefore, a mathematical model used to
describe the process must allow for a nonisothermal
character of flow and compression in solid hydrogen
and take into account the temperature dependence of
hydrogen viscosity and shear stress.

For determining the rheological characteristics of
solid hydrogen, we used the data obtained previously
[6] on the behavior of hydrogen extruded through a thin
narrowing channel. Our analysis of numerous models
describing the flow of non-Newtonian fluids showed
that the flow of plastic hydrogen in the temperature
interval 10–13 K under a pressure of 2.5–10 MPa can
be described using a model of viscoplastic Bingham’s
fluid. According to this model, the material behaves as
an absolutely hard body unless the shear stress τ
exceeds a certain threshold τ0, and as a viscous fluid,
when the stress is above this threshold level:

Here and below  denotes the shear strain rate, µ is the
plastic viscosity, and τ0 is the threshold (shear onset)
stress. The isothermal steady-state flow of a viscoplas-
tic medium along the z-axis in a straight tube with a
variable radius R is described by the following equa-
tion:

(1)

where P is the pressure in a cross-section with the coor-
dinate z (P is assumed to be constant across the tube,

γ̇ 0 for τ τ 0, µγ̇≤ τ τ 0 for τ– τ0.>= =

γ̇

dP
dz
-------

1
r
---

d rτ rz( )
dr

-----------------,=
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i.e., independent of the radial coordinate r) and τrz is the
strain tensor component. Assuming small conicity of
the tube, equation (1) can be used in all cross sections
with the current values of radius R. Expressing dP/dz
through a constant flow rate Q and numerically inte-
grating with respect to z, we obtain a relationship
between P and Q. In the case of a tube with constant
cross section, this relationship reduces to the well-
known Buckingham formula [9]:

(2)

where ∆P is the pressure drop along the path l. Taking
the results of experiments on the hydrogen extrusion
[6], which are depicted by points in Fig. 1, and using
the procedure of sequential iterations, we may calculate
the variation of the shear onset stress τ0 and the viscos-
ity µ as functions of the temperature. The initial
approximation for τ0 was determined by the pressure
corresponding to a zero extrusion velocity, and the ini-
tial µ value was estimated from the maximum flow rate.
The iterative process leads to the following approxi-
mate relationships:

(3)

where T is the current temperatures of hydrogen in the
interval 10–13 K, and Ts is the temperature correspond-
ing to a triple point.

Solid curves in Fig. 1 show the plots of calculated
extrusion velocity versus temperature for various pres-
sures. The good coincidence of theory and experiment
is evidence that the flow in solid hydrogen during extru-
sion at temperatures in the 10–13 K interval is satisfac-
torily described by a model of the Bingham fluid type
with the parameters indicated above. It should be noted
that the shear onset stresses calculated by formula (3)
virtually coincide with the yield points of solid hydro-
gen determined in the 10–12 K interval and exceed
these values by 30% on approaching 13 K [10]. The
second formula (3) presents for the first time an esti-
mate of the plastic viscosity coefficient not reported
previously for solid hydrogen [10, 11].

We will use the above estimates for τ0 and µ in mod-
eling the hydrogen flow in a screw extruder. The extru-
sion process is described using a system of coordinates
related to the screw. In this system, the immobile screw
is situated inside a cylinder rotating in the reverse direc-
tion and solid hydrogen moves along the screw channel
toward the discharge head. The screw channel is repre-
sented by a developable surface with neglect of its cur-
vature. The position of a point in the channel is charac-
terized by a set of coordinates (Fig. 2): x and y are the
coordinates in a cross section of the screw channel (0 ≤
x ≤ w; 0 ≤ y ≤ h) having width w and depth h, and z is
the coordinate along the channel. As is known [12], a
screw with the diameter D = 2R and h ! Dw is satisfac-

Q
πR

4

8µ
---------∆P

l
------- 1

4
3
---

2τ0l
R∆P
----------- 

 –
1
3
---

2τ0l
R∆P
----------- 

 
4

+ ,=

τ0 0.026 0.28 Ts T–( )[ ]  MPa,exp=

µ 0.0027 0.44 Ts T–( )[ ]  MPa s,exp=
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Fig. 1. The plots of hydrogen extrusion velocity versus tem-
perature at various pressures (MPa): (1) 10; (2) 5.5; (3) 2.5;
symbols represent experimental points, solid curves show
the results of calculation.
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Fig. 2. Schematic diagrams of (a) a screw extruder and (b) a
developable screw channel surface with extrusion velocity
projections.
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torily described with neglect of both the end effects and
the curvature. In this approximation, the motion of a
substance in the screw channel is equivalent to a flow
between two planes moving relative to one another. The
equation of motion and the corresponding boundary
conditions (formulated assuming v y = 0 in the whole
cross- section) are as follows:

(4)

Here and below,  is the angular velocity of the screw
rotation and ϕ is the screw thread angle. The efficiency
(or the volume hydrogen consumption rate) of the
extruder Q is given by the formulas

(5)

where qx and qz are the components of hydrogen flux
per unit width w of the screw channel. In the absence of
losses through a gap between the screw ridges and
extruder cylinder walls, the flux component qx is zero
and the pressure developed by every turn of the screw
can be calculated from the system of equations (4) and
(5). Considering a pressure drop between two neigh-
boring turns, the loss flux can be approximately deter-
mined using the following system of equations:

(6)

where s is the width of the screw ridge and δ is the gap
width between screw and cylinder, which typically
amounts to (0.001–0.002)R [13]. The hydrogen flux
component along the z-axis in the gap does not signifi-
cantly contribute to the loss flux and, hence, can be
ignored. In order to make a correction for the loss flux
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in the extruder efficiency, the finite flux qx = qxδ has to
be used instead of qx = 0 in equations (5).

Equations (4)–(6) describe a relationship between Q
and dP/dz. Figure 2b shows a typical pattern of distri-
bution of the velocities v x and v z along the channel
height y. According to a special feature of the Bingham
fluid, the flow contains an immobile (or moving as a
whole) core (with τ < τ0) and one or two zones of vis-
cous friction.

The motion of a viscoplastic medium in the plastic
strain region is accompanied by heat evolution at a
local rate given by the formula

(7)

The extruder is cooled by a flow of helium with the
temperature T1, the heat exchange coefficient α, and
the heat transfer rate g = cpG, G and cp being the helium
flow rate and heat capacity at constant pressure, respec-
tively. Because the extruder cylinder has thin copper
walls, we may assume the temperature to be constant
across the cylinder and equal to the hydrogen tempera-
ture in the same cross section. The temperature of
hydrogen along the y-axis is also assumed constant due
to intensive mixing. The thermal balance equations
written with an allowance for the heat conduction in the
extruder material, the enthalpy transfer with the flow of
hydrogen, and the heat exchange are as follows:

(8)

Here, S is the wall cross-section area; λ is the coeffi-
cient of thermal conductivity of the cylinder material
(copper); ρ is the hydrogen density; H is the enthalpy
of hydrogen with an allowance for the heat of crystalli-
zation; and T is the temperature in a given cross section
of the cylinder. It is suggested that hydrogen is supplied
to the extruder in a liquid state at the temperature of
crystallization.

Consistent solution of the system of equations (4)–
(8) allows the extruder efficiency to be calculated for
various system geometries and process parameters.

RESULTS OF CALCULATIONS 
AND EXPERIMENTS

The main characteristic of a screw extruder repre-
sents a relationship between its efficiency and a pres-
sure developed by the screw. Figure 3 (curves 1–4)
shows the extruder characteristics for various screw
rotation speeds. The calculations were performed for
the following set of parameters: screw radius R = 6 mm;
screw channel depth h = 2 mm; screw thread pitch wl =
12 mm; liquid helium flow rate g = 5 l/h; helium tem-

W µ γ̇xy( )2 γ̇yz( )2
+[ ] .=

d
dl
----- SλdT

dl
------– ρQH+ 

  2πR W yd
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perature at the input of the extruder heat exchanger
T1 = 5 K; gap width between screw and cylinder δ =
0.05 mm; screw ridge width s = 2 mm. As the screw
rotation speed increases from 10 to 25 rpm, the maxi-
mum extruder efficiency grows, but the hydrogen com-
pression induced by the screw drops. If the output hole
diameter in the discharge head equals the internal diam-
eter of the cylinder, then P = 0 and the extruder effi-
ciency reaches 160 mm3/s. As the output hole diameter
decreases, the pressure produced by the screw grows to
reach 25– 60 MPa at small Q values. The working point
of the extruder is determined by a discharge head resis-
tance that can be calculated using equation (2). Lines a
and b in Fig. 3 (and in the other figures) represent the
characteristics of a discharge head with an output hole
diameter of 2 mm and a channel length of 4 mm oper-
ating at a temperature of 10 and 11 K, respectively. The
points of intersection of these lines with the extruder
characteristics determine the efficiency of an extruder
equipped with this discharge head and the hydrogen
pressure developed by the screw. Since the process of
hydrogen ice extrusion at 10–11 K requires a pressure
exceeding 10 MPa [6], the working parameters of the
extruder should be selected for the intersection points
occurring above this value. As seen from Fig. 3, a
steady-state regime of extrusion with an efficiency of
60–115 mm3/s with respect to solid hydrogen can be
provided by rotating the screw at a speed of 10–25 rpm
and cooling the discharge head to a temperature of
10−11 K. As the screw rotation speed increases above
the interval indicated, the extrusion process slows down
and eventually ceases. This effect is explained by
increased hydrogen heating as a result of intensive mix-
ing, which leads to a decrease in the medium viscosity
and a drop of the pressure developed by the screw. The
excess heat supplied to helium causes more rapid heat-
ing of the coolant and renders it uncapable of cooling
the same amount of hydrogen in the extruder from
melting point to the preset discharge head temperature.
In terms of the working extruder length (which is the
distance at which hydrogen carried by the screw cools
from the melting point to the discharge head tempera-
ture), an increase in the screw rotation speed decreases
the working extruder length and the effective number of
screw turns compressing solid hydrogen (Fig. 4). This
number of turns is insufficient to produce a pressure
level required for maintaining the extrusion process;
moreover, liquid hydrogen filling a part of the extruder
above the working screw turns may lead to instability in
the extruder operation.

Figure 5 shows an example illustrating the influence
of the cooling rate on the efficiency of an extruder oper-
ated at a screw rotation speed of 15 rpm. An increase of
the helium flow rate in the heat exchanger shifts the
working point of the extruder toward greater efficiency.
This is also accompanied by increase in the hydrogen
compression induced by the screw, which ensures sta-
bility of the extrusion process within broader range of
conditions.
TECHNICAL PHYSICS      Vol. 45      No. 1      2000
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Fig. 3. The characteristics of (a, b) a discharge head oper-
ated at a hydrogen temperature of (a) 10 K and (b) 11 K and
(1–4) a screw extruder operated at various screw rotation
speeds ω (rpm): (1) 10; (2) 15; (3) 20; (4) 25.
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Fig. 4. The plots of working extruder length L versus effi-
ciency Q at various screw rotation speeds ω (rpm): (1) 15;
(2) 20; (3) 25.

40

P, MPa

20

30

0 80

10

40

Q, mm3/s

1 2 3

a

Fig. 5. The characteristics of (a) a discharge head operated
at a hydrogen temperature of 10 K and (1–3) a screw
extruder operated at various helium flow rates in a heat
exchanger (l/h): (1) 5; (2) 10; (3) 15.
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Figures 6 and 7 illustrate the effects of the channel
depth and radius of the screw. To make the results of
calculations comparable for various screw channel
depths h, we maintained constant the product h  =
3 mm/s, while the data for various screw radii R were
compared under the conditions of constant wlR  =
36 mm2/s and wl = 2R. During the extrusion under iso-
thermal conditions, a pressure developed by the screw
in hydrogen increases with decreasing channel depth.
In a real nonisothermal process, a decrease in the chan-
nel depth is accompanied by a sharp growth in the heat
evolution, which leads to a decrease in hydrogen vis-
cosity and a drop in the pressure. As seen from Fig. 6,
the screws with 2- and 3-mm-deep channels produce
approximately the same pressures at an efficiency of
Q = 75 mm3/s, but the screw with a smaller channel
depth is advantageous by providing a more homoge-
neous temperature distribution along the channel
height and a decrease in the amount of hydrogen (or tri-
tium in the future systems) in the extruder.
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Fig. 6. The characteristics of (a) a discharge head operated
at a hydrogen temperature of 10 K and (1–3) screw extrud-
ers with various screw channel depths (mm): (1) 1; (2) 2;
(3) 3.
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Fig. 7. The characteristics of (a) a discharge head operated
at a hydrogen temperature of 10 K and (1–3) screw extrud-
ers with various screw radii (mm): (1) 5; (2) 6; (3) 7.
An increase in the screw radius improves the condi-
tions of heat exchange from hydrogen to helium and
leads to a growth in the pressure developed in the
extruder (Fig. 7), These factors favor an increase in sta-
bility of the extruder operation.

Based on the results of calculations performed for a
2-mm-diam rod of solid hydrogen extruded at a veloc-
ity of 20 mm/s, we have designed a screw extruder with
the following set of parameters: screw radius R = 6 mm;
screw channel depth h = 2 mm; screw thread pitch wl =
12 mm; extruder length L = 150 mm; gap width
between screw and cylinder δ = 0.05 mm; screw ridge
width s = 2 mm; output hole diameter in discharge head
2 mm; head length 4 mm; head temperature 10–11 K;
efficiency Q = 60–115 mm3/s; extrusion pressure P =
10–20 MPa, screw rotation speed  = 10–25 rpm;
hydrogen volume in the extruder <8 cm3. The vapors of
liquid helium, upon cooling the extruder processing
solid hydrogen, were used in an additional heat
exchanger to convert hydrogen from gaseous to liquid
state prior to charging it into the extruder. The extruder
design and the experimental methods used to study the
device operation were described elsewhere [14]. In
these experiments, the extrusion process was sus-
pended and renewed without delay by switching off/on
a motor rotating the screw. The extruder head tempera-
ture was maintained on a level of 10–11 K throughout
the experiment. Gaseous hydrogen was supplied from a
gas container into the extruder chamber. After freezing
and extrusion, evaporated hydrogen was evacuated
from the system by a roughing vacuum pump. The
duration of continuous extrusion exceeded one hour
and was limited only by volume (100 cm3) of the cham-
ber to which solid hydrogen was admitted upon extru-
sion. The chamber was periodically purged by pulsed
admitting of room- temperature helium, which acceler-
ated the evaporation of extruded solid hydrogen and
increased the working chamber volume for discharge of
a new portion of solid hydrogen. The extruded hydro-
gen rod was transparent, which indicated a good quality
of the hydrogen ice. The total volume of hydrogen ice
extruded in a continuous regime exceeded 500 cm3

without any visible evidence of deterioration of the ice
quality. Since the total volume of hydrogen ice present
in the extruder at one instant did not exceed 8 cm3, we
may speak of attaining a steady-state continuous
regime of hydrogen freezing and extrusion.

The extruded hydrogen rod was periodically cut
with a sharp edge of a thin-wall tube to obtain hydrogen
macroparticles. These particles were accelerated by a
flow of compressed helium supplied to the same cham-
ber. In this way, a total of several thousand macroparti-
cles with an average size of about 2 mm were success-
fully formed at a frequency of 1 to 5 Hz and accelerated
to a velocity of 0.3–0.6 km/s. Upon acceleration, the
particles were photographed in a diagnostic chamber.
Analysis of the photographs showed that the quality of
extruded hydrogen ice and macroparticles formed upon

ω
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extrusion did not adversely change with time during
continuous operation of the extruder.

Figure 8 shows a plot of data (points) on the extru-
sion velocity experimentally measured for various val-
ues of the screw rotation speed. A solid curve in the
same figure represents the theoretical extrusion veloc-
ity calculated as a function of the screw rotation speed
for a hydrogen temperature of 10 K at the extruder out-
put. As the screw rotation speed increases above
25 rpm, the extrusion velocity grows at a slower rate
and then even begins to decrease. These results confirm
the above conclusion concerning a significant effect of
the heat evolution during the compression of hydrogen
upon the pressure produced by the screw and upon the
extrusion velocity.

The most stable regime of extruder operation was
observed for a screw rotation speed of 15 rpm, whereby
the hydrogen extrusion velocity was 20 ± 4 mm/s and
the average efficiency was 63 ± 13 mm3/s. As seen from
Fig. 3, this efficiency falls within the region of extruder
parameters determined by calculation.

CONCLUSION

A method of the fuel macroparticle production
based on the screw extruder can be used in the injectors
of all types used for the fuel supply to thermonuclear
devices. The proposed extruder model allows the sys-
tem parameters to be calculated proceeding from a pre-
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20

Fig. 8. The plot of extrusion velocity versus screw rotation
speed; symbols represent experimental points, solid curve
shows the results of calculation. 
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set geometry and the macroparticle injection frequency.
The results obtained for the production of a 2-mm-diam
hydrogen rod in the screw extruder operated at an effi-
ciency of 63 mm3/s demonstrated a good agreement
between calculated and experimental data.
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Abstract—A new principle of creating multiplex systems of active oscillator microcavity fiber-optic sensors is
considered. The results of experimental studies of a multiplex system with two measuring channels are pre-
sented. © 2000 MAIK “Nauka/Interperiodica”.
As demonstrated by Burkov et al. [1, 2], fiber-optic
active oscillator systems employing the resonant inter-
action of radiation produced by an erbium fiber laser
(EFL) with optically excited micromechanical cavities
(MCs) provides an opportunity to create microcavity
fiber-optic transducers (MFOTs) of physical quantities
with frequency data encoding. The necessary condition
of resonant interaction in an EFL–MC system can be
represented as frel ≈ f/n, where frel is the frequency of
relaxation oscillations in the EFL; f is the natural fre-
quency of the microcavity; and n = 1, 2, 3, …. The EFL
self-modulation frequency is given by F ≈ f/n. Under
these conditions, active oscillations usually arise within
discrete areas in the space of parameters characterizing
optical, acoustic, and thermoelastic properties of the
EFL and the MC. Lasers with complex optical cavities
may be characterized by sets of frequencies of relax-
ation oscillations corresponding to different mode
groups [3]. Consequently, we can assume that reso-
nance conditions, freli ≈ fi, can be satisfied for each
microcavity MCi in a complex EFL optical cavity con-
sisting of a multimirror system based on microcavities.
This circumstance allows a multiplexed system of
MFOTi to be created with the use of EFLs.

As is well known [4], the frequency of relaxation
oscillations of EFL radiation intensity can be written as

(1)

where r is the relative pump level of the EFL active
medium, τ is the photon lifetime in the EFL fiber-optic
cavity with the length of the fiber equal to L and the
length of the active fiber equal to l, τM is the lifetime of
the metastable level of active particles, c is the speed of
light in the optical fiber, and N and σ are the concentra-
tion and the cross section of radiative transitions
between the working levels of active particles.

Note that relationship (1) was derived with an
assumption that the active section of the fiber is uni-

f rel r 1–( ) τphτM 1 σNcτphl L⁄+( )⁄[ ] 1/2
,≈
1063-7842/00/4501- $20.00 © 20112
formly pumped and the fiber cavity is isotropic. The
photon lifetime in this case is τph ≈ 2L(α – lnR), where
α – lnR is the coefficient of nonresonant optical losses
per single pass of the fiber cavity with allowance for the
coefficients of losses and transmission coefficients of
laser mirrors. As can be seen from expression (1), the
quantity frel(r, L) in the case of an active medium with
given parameters and a cavity with fixed optical param-
eters can be controlled by varying the pump level r and
the cavity length. We will consider the principle of the
proposed multiplexing method by analyzing the opera-
tion of a two-channel measuring system (Fig. 1), which
can be employed as a basis for differential MFOT
schemes. In the case under consideration, the EFL cav-
ity, including a single-mode fiber-optic X-coupler, is a
complex (three-cavity) system consisting of sections
MXM1 and MXM2, which represent partial cavities with
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F1, 2

2 3
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X

Fig. 1. Diagram of a two-channel multiplex system: (1)
erbium fiber laser; (2) DL1; (3) DL2; I(t), DL1,2 injection
current; X, single-mode fiber-optic coupler; Li, segments of
single-mode fibers; ACi, fiber-optic autocollimators; MCi,
microcavities; (4) spectrum analyzer; (5) photodetector; (6)
frequency meter; M1, M2, mirrors of the composite fiber-
optic EFL cavity.
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lengths L1, 2 and losses α1, 2. As is well known [1, 2],
resonant self-modulation may arise in different regimes
of optical feedback (OF) between the EFL and the MC.
For example, a Fabry–Perot interferometer and an auto-
collimator (AC) can be used for this purpose. Conse-
quently, both Fabry–Perot interferometers and autocol-
limators with microcavities may serve as mirrors M1, 2
(with reflection coefficients R1, 2) in the considered
scheme. Since MFOTs with autocollimators are char-
acterized by a high stability with respect to various
destabilizing factors and are very promising from the
practical point of view, we will restrict our consider-
ation below to MFOTs based on autocollimators.
Reflecting surfaces of microcavities MC1, 2 character-
ized by natural frequencies f1, 2 play the role of mirrors
M1, 2 in this case. When the sections MXM1, 2 have close
optical parameters and microcavities MC1, 2 are charac-
terized by close efficiencies of optical excitation, one
can expect that self-excited oscillations should arise in
the EFL–MC1, 2 system either at the frequency F1 ≈ f1 or
at the frequency F2 ≈ f2 when the resonance conditions
(1) frel1 ≈ f1 or (2) frel2 ≈ f2 are satisfied and when the rel-
ative EFL pump levels r1, 2 fall within the ranges corre-
sponding to the discrete areas where self-excited oscil-
lations exist, r1 ∈  O1 and r2 ∈  O2. Thus, we can estab-
lish a one-to-one correspondence between excitation
states of microcavities MC1, 2 and the pump levels of
the EFL in the regime of self-excited oscillations: self-
excited oscillations arise in MC1 when r1 ∈  O1 = ( ;

), and MC2 is excited when r2 ∈  O2 = ( ; ).
Figure 2 illustrates the evolution of the states of the
considered active oscillator system corresponding to a
gradual increase in the relative pump level r(t). As the

level  is achieved at the moment of time , self-
excited oscillations with the frequency F1 ≈ f1 arise in
the system in the “soft” regime. These oscillations are

quenched at the moment of time , when the level 
is achieved. The system resides in the nonexcited state

within the time interval (  – ). Then, when the level

 is achieved at the moment of time , self-excited
oscillations with the frequency F2 ≈ f2 arise. These

oscillations are quenched at the moment of time ,

when the pump level  is achieved. Next, the pump is
decreased down to the initial level, and the above-
described cycle can be repeated. Note that there are
several factors limiting the scanning rate of the EFL
pump level. First, with an abrupt increase in the EFL
pump level with a duration of the leading edge of the
pump pulse less than 10 ms, the dynamics of lasing in
an EFL becomes rather complicated [5]. Second, time

intervals ( ; ) and ( ; ) when the pump levels
correspond to the excitation areas O1(O2) should
exceed the duration of the time interval required for the
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establishment of steady-state self-excited oscillations

in the system. Consequently, the inequalities (  – ) @

Q1/f1 and (  – ) @ Q2/f2 should be satisfied for
MC1, 2 with acoustic finesse values equal to Q1, 2. Third,
measurement (averaging) time exceeding certain mini-
mum time interval is required to ensure the adequate
accuracy of measurements of oscillation frequencies.
Our estimates show that, for microcavities with typical
parameters Q1, 2 = 100 and f1, 2 > 50 kHz, the pump
increase rate dr/dt is mainly limited by the first factor,
which imposes the restriction dr/dt ! 102 s–1. Thus,
scanning the pump level of a fiber laser, we can sequen-
tially excite oscillations in the system and determine
the frequencies of these oscillations, which permits the
multiplexing of MFOTs.

The possibility of optical multiplexing of MFOTs
was investigated with the use of the experimental setup
shown in Fig. 1. We were able to vary the mean output
radiation power of the EFL (λ = 1.54 µm) pumped with
a diode laser (DL, λp ≈ 0.98 µm) within the range of
0−40 mV. An AB segment of a single-mode fiber doped
with erbium (Er+3) and ytterbium (Yb+3), where ytter-
bium played the role of an effective activator, served as
an active medium in the EFL. The active medium was
optically pumped by counterpropagating radiation
fluxes of diode lasers DL1, 2 (λp = 0.98 µm), which were
coupled into the active fiber with the use of fiber-optic
couplers X1, 2. This symmetric pump scheme ensures a
higher uniformity degree of pump radiation intensity
distribution along the considered segment of the active
fiber. The segment of the active fiber has a length l =
5 m and the concentration of erbium  ≈ 300 ppm.

The total length of the EFL fiber-optic cavity can be
varied within a broad range by attaching segments of
passive single-mode fibers to the ends of the active seg-
ment at points A and B by means of arc welding. Typi-
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Fig. 2. Time dependence of the relative EFL pump level:
O1, 2 show areas of self-excited oscillations with resonance
frequencies of microcavity structures, F1, 2 ≈ f1, 2.
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cally, the segments of passive fibers have a numerical
aperture NA ≈ 0.15, the core diameter dc ≈ 6.5 µm, the
diameter of quartz cladding D ≈ 125 µm, the cutoff
wavelength λcut ≈ 1.2 µm, and the magnitude of losses
at the working wavelength (λ = 1.54 µm) of no higher
than 0.5 dB/km. The threshold injection current of
DL1, 2 was Ith ≈ 110 mA. Lasing in the EFL was
observed under these conditions with currents I > Ig ≈
200 mA, and the dependence of the output optical
power of DL1, 2 on the injection current was close to a
linear function. We were able to vary the current I
within the range of 0–600 mA. The corresponding
range of variation in the relative EFL pump level was
estimated in accordance with the formula r ≈ (I –
Ith)/(Ig – Ith) as 0–5. To measure the dependence r(t)
shown in Fig. 2, we defined the corresponding wave-
form of the DL1, 2 injection current I(t). In these exper-
iments, we employed MFOTs with an autocollimator
based on graded-index rod lenses, which shaped
collimated Gaussian beams with an effective diameter
of 400–500 µm and an angular divergence of (2–3) ×
10–3 rad. The magnitude of losses in the symmetric
X-coupler did not exceed 0.5. The length of the MXM1

section was L1 = 12 m, and the length of the MXM2 sec-
tion was varied from 14 to 30 m. Experiments were per-
formed with microcavities of different topologies
(micromembranes, microcantilevers, and micro-
bridges) manufactured by means of anisotropic etching
of single-crystal silicon with natural frequencies of
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Fig. 3. (a) Dependece of the frequency of the signal at the
output of the detector on the EFL injection current and
transform functions for (b) temperature and (c) pressure.
transverse oscillations f = 20–170 kHz and finesse val-
ues Q = 50–200 (in air) [2]. Thin films of different met-
als (Al, Ni, Ti, etc.) 20–300 nm thick coated on MC sur-
faces by means of magnetron deposition served as mir-
rors of composite microcavities. Angular and linear
alignment devices were employed to ensure the
required initial orientation of MCs with respect to the
collimated beam. Note that self-excited oscillations
with frequencies F ≈ f = 170 kHz were observed in our
experiments for EFL–MC systems with microcavities
with a sufficiently large thickness, h ≈ 20 µm, in which
decay length for the temperature wave is δ = 13 µm,
which corresponds to the ratio h/δ ≈ 1.6. This finding
confirms the high efficiency of the excitation of MC
oscillations based on the resonant interaction with a
fiber laser. The nonlinearity of the considered system
may give rise to the interference of measuring channels
due to the presence of ultra- and subharmonics of
microcavity resonance frequencies in the spectrum of
EFL intensity modulation. One can expect that, in the
case of considerable detunings of MC1, 2 natural fre-
quencies meeting the condition |f2 – mf1| @ (f2Q2 +
mf1Q1), this interference is insignificant. Figure 3 pre-
sents the results obtained in experiments with
EFL−MC1, 2 systems where the microcavities MC1, 2
had a topology of a microbridge and a microbridge on
a micromembrane with frequencies f1 ≈ 37 and f2 ≈
55 kHz. Dependences of the frequency of the signal at
the output of a photodetector on the DL injection cur-
rent shown in Fig. 3 were measured with scanning rates
of the injection current not exceeding 1 A/s. For I ∈
350–420 mA, self-excited oscillations with a frequency
F1 ≈ f1 arise in the system under study (L1 = 12 m, L2 =
14 m). These oscillations are quenched with the current
I = 420 mA. Self-excited oscillations are not observed
within the range of 420–450 mA. The further increase
in the EFL pump dives rise to the establishment of self-
excited oscillations with the MC2 natural frequency
F2 ≈ f2. These oscillations are quenched with I = 530 A.
Thus, in accordance with the scenario considered
above, the scanning of the EFL pump sequentially
leads to the excitation of oscillations with the natural
frequencies of microcavities. We should emphasize that
the signal-to-noise ratio at the output of a photodetector
within the band of 100 kHz for the considered EFL–
MC1, 2 systems in the regime of self-excited oscillations
usually ranges from 20 to 30 dB, which is less than the
signal-to-noise ratio characteristic of EFL–MC systems
with two-mirror cavities [1]. More detailed studies are
required to reveal the mechanisms responsible for the
lowering of noise. However, one of the factors that
leads to the increase in the noise level is obviously asso-
ciated with a strong interaction of mode groups in par-
tial cavities through the active medium of an EFL.

A remarkable feature of the considered EFL–MC1, 2
systems is associated with the fact that, when micro-
cavities are subject to some external perturbations
changing the natural frequencies of the microcavities
TECHNICAL PHYSICS      Vol. 45      No. 1      2000
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within some limited ranges ∆f1, 2 (|∆f1, 2 /f1, 2 | < 0.1),
relations F1 ≈ f1 and F2 ≈ f2 are satisfied for both inde-
pendent action on MC1, 2 and simultaneous action keep-
ing intact the transfer functions of individual measuring
channels, ∆F1, 2 /F1, 2 ≈ ∆f1, 2 /f1, 2 (Fig. 3), with a relative
level of frequency fluctuation 〈∆F1, 2 /F1, 2〉  < 2 × 10–4.
This property of the considered systems allows us to
propose them as a basis for the development of multi-
plex MC fiber detectors of sensors of physical quanti-
ties. Note that an important advantage of the proposed
multiplexing method is that this technique makes it
possible to increase the number of measuring channels
in the system. For this purpose, one has to optimize
parameters of the elements in the multiplex system
(EFL, MC, autocollimating system, and single-mode
fibers) in such a way as to ensure the maximum number
TECHNICAL PHYSICS      Vol. 45      No. 1      2000
of areas where self-excited oscillations of individual
MCs may exist for a given range of acceptable changes
in the EFL pump level.
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Abstract—The possibility of diagnosing an ion beam by light emission from the drift chamber is demonstrated
using a 2-MeV H– ion beam as an example. For a local gas puffing and negligible beam losses, spatial charac-
teristics of the beam and the time behavior of the current pulse were monitored and the falling of a small number
of ions onto the vacuum-chamber wall was recorded. A profilometer for recording the emission from individual
layers of the observed region is described. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nonperturbative diagnostics of charged-particle
beams often use either photons emitted from the com-
ponents of a residual gas or a probing beam of a corpus-
cular target (see, e.g., [1–7]). From this point of view,
of great interest is light emission, which provides the
possibility of obtaining information on the beam
parameters in inaccessible regions of the drift chamber
or in the presence of external electromagnetic fields.
The diagnostics are based on determining the beam
profiles by the spatial distribution of the photon flux or
the time behavior of light emission. In particular, when
this distribution is recorded in several planes crossing
the beam at different places along the beam, it is possi-
ble to reconstruct the transverse and longitudinal emit-
tances of the beam [1–3, 5]. The maximum accuracy of
such diagnostics is achieved when the recorded pho-
tons come from thin (about 5 µm in diameter) radiating
filaments moving across the beam at a known velocity;
these filaments barely impair the beam parameters in
the course of measurements [6]. Depending on the ion
energy, the diagnostics use the luminescence, transient,
or Cherenkov radiation. The total number of the emit-
ted photons substantially exceeds the number of other
particles produced during the interaction of ions with
the filament. In low-intensity beams, the efficiency of
measurements with the use of radiating filaments and
foils is low. At the same time, with high-power beams,
problems of inadmissible ion losses and radiative heat-
ing and destruction of the probing targets arise. In this
case, of special interest are less accurate methods based
on the two-dimensional tomography of charged-parti-
cle beams with the use of light emission from the com-
ponents of a residual gas [1–3, 5]. The two-dimensional
density distribution of the ion current over the cross
section is reconstructed by the inverse-problem method
from several (usually 3 or 4) one-dimensional profiles

† Deceased.
1063-7842/00/4501- $20.00 © 0116
of the beam images measured at some different angles
in the cross-sectional plane.

One of the main difficulties in using the above meth-
ods for diagnosing the H– ion beam is the lack of pub-
lished theoretical and experimental information on the
mechanisms for emission from a gas target interacting
with weakly bound negative ions. However, it is the
mechanism for the target excitation that determines the
reliability of the information on the beam parameters
and provides the gas density required to diagnose the
beam. In particular, the beam image can be a result of
either the direct interaction of ions with the gas compo-
nents in the vacuum chamber or the gas excitation by
the secondary particles generated in the course of this
interaction. For example, if the optical image of the
beam is produced due to the target ionization by elec-
trons (this process has a substantially higher excitation
cross section than other processes), the photon flux is
proportional to the gas pressure squared and the image
is usually distorted by the spatial charge of ions.

In this paper, we experimentally study the method
for nonperturbative diagnostics of a charged-particle
beam by light emission from the drift chamber, using a
2-MeV H– ion beam as an example.

2. THE NATURE OF LIGHT EMISSION 
FROM GAS TARGETS AND ITS USE 

TO MONITOR THE PARAMETERS 
OF AN H– ION BEAM

In the course of experiments carried out in 1989 in
Sukhumi at the Institute for Physics and Technology,
the working gas (N2, H2, or He) was puffed locally for
the purpose of monitoring. The pressure used was
<10−3 torr so that the ion loss for stripping was negligi-
ble.

N2 molecules are one of the main components of the
residual gas in the accelerator. In addition, the photon
emission in the wavelength range corresponding to the
2000 MAIK “Nauka/Interperiodica”
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first negative (1–) band system of the  ion (transition

B   X , λ = 3580–5230 Å, τγ = 63 ns) is best
suited for the diagnostics. This is associated with a rel-
atively large radiation cross section of these bands for
the interaction of N2 with high-energy charged parti-
cles, short radiation time, and the fact that these bands
fall within the sensitivity region of most types of pho-
tocathodes (λp ≈ 3000–7500 Å) and are sufficiently
well isolated from the slow components (1+ and 2– band
systems of nitrogen, λ = 5974–9183 Å, τγ = 14 µs),
which have comparable radiation cross sections. Anal-
ysis of the background conditions shows that the radia-
tion of CO molecules of the residual gas (transitions
B2Σ+  A2Πi, τγ = 52 ns and A2Πi  X 2Σ+, τγ = 4 µs
of the CO+ ion) and H2O molecules (transition
A2Σ+  X 2Π of the OH radical, τγ = 0.8 µs), whose
excitation cross sections are close to that of the men-
tioned 1– system, also falls in the wavelength range of
this system. The relative intensity of this background
radiation is governed by the partial pressures of CO,
H2O, and N2.

Hydrogen and helium, which are also components
of the residual gas, are of interest by themselves from
the point of view of the formation of supersonic jet tar-
gets with a high density and good spatial localization.
The wavelength region λp in question contains the fol-
lowing lines of these gases: the Balmer series of hydro-
gen (λ = 3880, 3970, 4100, 4340, 4861, and 6563 Å,
τγ = 5–160 ns), the radiation of the Fuhler molecular
series and dissociative continuum of H2 with the life-
time of radiative levels τγ = (3–4) × 10–8 s, and intense
helium lines (λ = 3965, 5016, 5876, and 6678 Å, τγ =
10–8–10–7 s).

The schematic of the experiment is shown in
Figs. 1a and 1b. An H– ion beam from the outlet of the
accelerator (1) with high-frequency quadruple focusing
entered the drift chamber either directly or through a
shaping aperture (2). The beam current was monitored
by an inductive gauge (3) and a Faraday cup (4), in
which the secondary emission was suppressed by the
magnetic field. The current value was ≤30 mA. The
working gas was supplied (up to the necessary pressure
in the observation region) through a valve (5) of the
measurement unit (6) with differential pumping on the
ends. To provide a good uniformity of the gas density
in the observation region, the gas-puff valve was
located at some distance from this region, so that the
pressure changed slowly with time. The differential-
pumping facilities were located at a distance substan-
tially exceeding the characteristic size of the measure-
ment region. The operation of the gas-puff valve and
arrangements for displacement and replacement of the
shaping apertures was controlled remotely. The light
emission was recorded by two interchangeable detec-
tors (7, 8) located along the horizontal (y) and vertical
(x) directions. One of them (FEU-110) served to moni-
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Σ2 +
u Σ2 +
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tor the time behavior of the photon flux, the other (8)
measured the cross-section distribution of the flux
along, e.g., the x coordinate. The image of the emitting
region of the drift chamber was reduced by the optical
system (9) and projected onto the input of a multichan-
nel fiber array (10) oriented along the x coordinate,
each channel being connected to an individual FEU-
128 photomultiplier with a PA amplifier. At a given
time instant, information on the pressure in the mea-
surement unit and amplified signals from all of the radi-
ation and ion-beam detectors (3, 4) were led to a per-
sonal computer (PC) through analog-to-digital convert-
ers. The signals were digitized every one microsecond.
The adjustment and calibration of the detector 8 was
carried out using a luminous filament parallel to the
z-axis and moving along the x and y coordinates.
The spatial resolution measured near the center of the
drift chamber with ∆Y = ±2-cm displacement was ∆X =
2–3 mm.

Experiments showed the linear dependence of the
ratio of the photomultiplier signal to the signal from the
collector of H– ions on the working-gas pressure in the
interaction chamber over the entire pressure range
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Fig. 1. (a, b) Schematic of experiments on the use of light
emission from the drift chamber for diagnosing an H– ion
beam. (c) The general view of the profilometer based on the
photon recording.
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(10−6–10–3 torr). The shape of the photomultiplier sig-
nals corresponded well to the time behavior of the
beam current (Fig. 2). A weak transverse magnetic field
(H ≈ 100 Oe) imposed in the observation direction had
no effect on the luminous region of the working gas in
the beam at different pressures (see, e.g., Fig. 3a); but,
if a small portion of ions fell on the vacuum-chamber
wall, this field essentially changed the intensity distri-
bution throughout the channels of the fiber array
(Fig. 3b). Special experiments with an ion beam of lim-
ited aperture that fell on the chamber wall showed that
the spatial distribution and radiation intensity were
independent of the working-gas pressure in the entire
pressure range and were determined by the wall mate-
rial and the value and sign of the applied magnetic field.
With fixed magnetic field and residual-gas pressure, the
subtraction of the background radiation from the corre-
sponding emission distributions during the gas puffing
allowed us to single out the region of the luminous gas
in the beam and to obtain dependences similar to those
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Fig. 2. Time dependences of (1) the H– ion beam current
signals and (2) the photomultiplier signals recorded by light
emission from the drift chamber (a) at the background gas
pressure Pb = 3 × 10–6 torr and (b) with an H2 gas target at
PH = 2 × 10–4 torr. The signals are normalized to the ampli-
tude.
presented in Fig. 3a. Taking into account the spatial res-
olution ∆X of the detector channel, the characteristic
cross section of the luminous region agrees well with
that obtained by the direct measurement of the beam
profile with the multilamella current receivers. Since
we did not measure the gas density distribution in the
measurement unit directly, such agreement points to
the appropriate choice of the unit design and the exist-
ence of a fairly uniform target in the observation region.
From the above results, a conclusion can be made that
the optical image of an H– ion beam obtained with the
use of H2, He, and N2 gas targets in the pressure range
under study is produced as a result of the direct interac-
tion of the target atoms or molecules with the beam ions.
Consequently, in the region with a sufficiently uniform
gas density, this image can be associated with the corre-
sponding spatial distribution of the beam current.

We present typical examples of the response of the
detector 8 to the change in the beam characteristics.
Figure 4a shows the distributions of the emission inten-
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Fig. 3. Distribution of the amplitudes of the photomultiplier
signals over the recording channels (with the number N)
during the passage of an H– ion beam through the region of
the drift chamber with a residual gas at the pressure Pb = 3 ×
10–6 torr (open rhombuses and circles) and with a working
gas (N2) at the pressure PN = 3 × 10–4 torr (closed circles
and crosses) (a) without interaction with the wall and (b)
when an insignificant part of the peripheral region of the
beam falls onto the wall for H = 0 (solid curves) and H =
200 Oe (dashed curves).
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sity from the chamber for N2 used as a working gas for
different positions of a blind, which was displaced in
the x-direction at the accelerator outlet and cut off some
portion of the beam. It was found that a negligibly small
portion of ions (too small to be recorded by the collec-
tor 4) fell onto the upper wall of the vacuum chamber
in the observation region of the drift channel. When a
weak perpendicular magnetic field (H = 100 Oe) with
one or the other polarity along the y-axis was applied to
the drift region, the above effect was either completely
eliminated or enhanced without the change in the
recorded ion current. To simulate the shift of the ion
flux in the transverse direction, we singled out different
regions of the beam at the accelerator outlet with the
use of a diaphragm. The corresponding distributions of
radiation are presented in Fig. 4b for the residual (back-
ground) gas pressure Pb = 3 × 10–6 torr and nitrogen
puffing up to the pressure PN = 8 × 10–4 torr.

For all of the working gases used in experiment, we
obtained results similar to those presented in Figs. 2–4.
Both the absence of a lengthened trailing edge of N2
radiation and experiments with the filter that cuts off
the long-lived radiation components of 1+ and 2– band
systems of nitrogen point to the small contribution of
these components to the photomultiplier signal for the
ion energy Ei = 2 MeV. The same experiments with the
filter allow us to conclude that the contribution of Hα
radiation from fast hydrogen atoms born as a result of
stripping of a small portion of H– ions by the gas target
is small. Thus, fairly simple experiments showed that,
for the local gas puffing and negligible beam losses, the
photomultiplier signals and the distribution of their
amplitudes over the channels of the fiber array give an
adequate pattern of the time evolution of the H– ion
beam current, the shift of the beam in the transverse
direction, and the redistribution of the current over the
beam cross section. These signals also permit a high
sensitivity of the recording of an insignificant fraction
of ions falling onto the wall of the drift chamber. The
results obtained show that the light emission can be
used for the on-line monitoring of the ion loss and opti-
mal matching of the individual sections of the acceler-
ator where the beam energy is still small.

3. BEAM PROFILOMETRY BY LIGHT EMISSION 
FROM THE DRIFT CHAMBER

The upper boundary of the ion energy measured by
light emission from the beam is determined by the
beam current, the density of the gas target, and the sen-
sitivity of the detection system. The number of photons
producing the optical image of the beam on the detector
surface for the time ∆t is estimated as

(1)

where Ii  is the beam current [A], τi and f are the dura-
tion [s] and the frequency [Hz] of pulses, σγ is the radi-

Nγ 2 10
35

IiσγPbτ i f i∆tLγΩγη t 4π,⁄×≈
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ation cross section of photons in the measured spectral
range [cm2], Pb is the background gas pressure in the
interval in question [torr], Lγ is the effective length of
the observed interaction region [cm], Ωγ is the average
solid angle of light collection, and ηt is the transmit-
tance of the optical system.

A relatively high light-collection power and high
spatial resolution permit the profilometer to record pho-
tons from individual layers of the beam (Fig. 1c). The
necessary photon separation is achieved with the use of
a multilayer collimator (LC) consisting of thin trans-
parent plates with rough absorbing surfaces. The fil-
tered photon flux passes through the collimator, is
transported by a focone (FK) to the image amplifier
(IA), and is recorded by a charge-coupled-device
(CCD) array. Spatial resolution of the profilometer at
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Fig. 4. Distribution of light-emission intensity over the
channels of the fiber array (N) for different positions of (a)
the blind and (b) the aperture along the x-axis at the acceler-
ator outlet for H = 0 at Pb = 3 × 10–6 torr (dashed curves)
and at PN = (a) 10–4 and (b) 8 × 10–4 torr (solid curves).
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the distance L from the collimator input is evaluated as

(2)

where ∆Xt , nt, and Lt are the thickness of the plate, its
refractive index, and the length along the y-axis,
respectively.

If the plate width along the z-axis is Lz, we obtain

Lγ = Lz[1 + 2ntL . In the general case,
the average solid angle of the light collection from the
observed beam layer is described by a cumbersome
expression inconvenient to analyze. To make estimates,
we can use the lower bound for Lγ and Ωγ, which corre-
spond to nt = 1:

(3)

where A1 = , A2 = 1 + 2L/Lt, and A3 =

.

For Lz = 5 cm, L = Lt = 10 cm, nt = 1.4, and ∆X =
1 mm, we obtain ∆Xt ≈ 250 µm, Lγ|min ≈ 15 cm, and
Ωγ|min ≈ 2 × 10–4 sr. Contemporary detectors allow high-
accuracy measurements of the one-dimensional spatial
distribution of photons for a number down to Nγ ≈ 104.
In this case, for ηt = 0.8, Pb = 5 × 10–7 torr, and the ion

beam with an average current of  = 5 × 10–4 A, the
potentialities of the profilometer in question are evalu-
ated by relation (1) as σγ∆t ≈ 10–18 cm2 s. We will
assume that, in the spectral range of 1– band system of

 nitrogen ions, for nonrelativistic H– ions
with energy Ei [keV], the dependence σγ ≈ 6.4 ×
10−15 ln(4.7 × 10–2Ei) (cm2) is valid. Then the non-
perturbative measurements of the beam profile during
one second is possible up to the energy Ei ≈ 50 MeV.
The expression used for σγ is based on the averaged
dependence for the protons with energy Ei = 100 keV–
1 MeV (this dependence is obtained by taking the data
from different experiments [8] and extending them to
greater energies) and on the measured cross-section
ratio σγ(H–)/σγ(H+) ≈ 3 for Ei = 100 keV–2 MeV [9].

∆X ∆Xt 1 2Lnt Lt⁄+( ),≈

Lt
2

Lz
2

nt
2

1–( )–

Ωγ min Ωγ nt 1=( )=

=  
2∆Xt

A2 L Lt+( )
------------------------- A1

1–
A2

2–
A1

1–
Lz 2⁄ L Lt+( )A3–( )–[

– 4L 1 L Lt⁄+( )Lz
1–
A2

2–
A3

1–
A1

1–
Lt Lz⁄–( ) ] ,

1 Lt Lz⁄( )2
+

1 Lz 2 L Lt+( )⁄[ ] 2
+

Ii

N2
+

Ei
1–
The estimate presented for the upper bound on the H–

ion energy is somewhat speculative and changes with
the use of different functional dependences for σγ at
Ei > 2 MeV. A certain arbitrariness is also associated
with a large scatter in the known data on the proton
cross sections; the scatter in data is approximately one-
and-a-half, because different procedures were used for
calibrating the radiation detectors in experiments.
It should be also noted that the ratio σγ(H–)/σγ(H+) =
1.30 ± 0.26 obtained in [10] for Ei = 1 MeV differs from
that used in our paper. In our opinion, the ratio obtained
in [10] is unreliable, because the measurement proce-
dure used there leads to the dependence of this ratio and
the photon cross sections on the nitrogen pressure when
the nitrogen interacts with H– ions and H0 atoms. The
stripping cross sections for these particles, which are
presented in that paper, differ substantially from the
well-known cross sections used in the literature.
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Abstract—A new nonequilibrium allotropic protein modification (for brevity, hereafter called a protos)
obtained by in vitro self-assembly of cluster protein films and identified with in vivo protein folding1 has been
experimentally observed and described in detail [1–7]. In vitro visualization of the dynamics of protein conden-
sation in an open protein–water system under the nonequilibrium conditions (at a relatively fast water evapora-
tion) both on the micro- and macrolevels provided the establishment of the chaotic nonlinear dynamics of the
process. The protein film has no long-range order and is characterized by a morphologically new highly struc-
turized order at the nano- and macrolevels. A number of new structural, electric, and magnetic properties of a
protein considerably different from the properties observed for crystalline proteins formed under the equilib-
rium conditions have been established. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In the recent decade, we witness the rapid develop-
ment of a new direction in science—self-assembly of
molecular cluster films under the nonequilibrium ther-
modynamic conditions of matter condensation [8, 9].
It should be emphasized that such films acquire the
same characteristic properties irrespectively of their
composition (organic or inorganic) [10]. This process is
interpreted in terms of the concept of biological self-
organization or the so-called biomimetics. On the other
hand, the still unsolved key problem of protein folding
[11] underlying this concept seems to be aside of this
new direction and the nonequilibrium dynamics itself,
although the importance of this theoretical concept for
establishing the folding mechanism is quite clear, so
that the problem should be solved within this field of
modern physics (the science of self-assembly of thin
films) [12, 13]. At the same time, the functioning of
three-dimensional protein structures is still studied in
biology solely under the equilibrium conditions provid-
ing protein crystallization [14] despite the fact that the
theory of self-assembly (i.e., nonequilibrium thermo-
dynamics) requires the creation of strongly nonequilib-
rium conditions [15–17]. This is also true for self-
assembly of cluster films [8, 9]. Therefore, it is very
important to perform in vitro experiments on growth of
protein films in the simplest protein–water systems
under nonequilibrium conditions, i.e., conditions close
to those set by the theory of self-assembly. Also, this
would allow to compare self-assembly of protein films

1 Protein “folding” usually means spontaneous self-organization,
where three-dimensional spiral structures of operating biologic
machines arise from peptides inoperable in solutions.
1063-7842/00/4501- $20.00 © 20121
with self-assembly of cluster films of other materials,
which is more important in view of the fact that all liv-
ing biological structures can exist only under nonequi-
librium conditions [15–17]. The morphology of the
films (plates) of living organisms is an essential charac-
teristic [8, 9, 12], e.g., for elastic vessel and mitochon-
drial membranes.

EXPERIMENTAL

In this work, we visually studied the dynamics of
protein condensation and phase transitions in an open
protein–water system under nonequilibrium condi-
tions, i.e., far from thermodynamic equilibrium. We
used proteins of different chemical compositions such
as albumin, globulin, hemoglobin, cytochrome,
lisozyme, crystallin, and some other human and animal
proteins.

In the experiments on solid substrates (glass, plastic,
wood, and iron) performed under atmospheric pressure
at room temperature, water readily evaporated from the
solid substrates, thus facilitating protein precipitation.
Altogether, 8500 experiments were performed by vari-
ous scientists. The process was visualized by various
micro- and macroscopic techniques including the opti-
cal and polarization methods, scanning electron
microscopy (a JEOL electron microscope, confocal
scanning laser, and electron microscopes). The speci-
mens were also subjected to X-ray diffraction study [7].
We determined some other characteristics of the speci-
mens such as their magnetic sensitivity [6], current–
voltage characteristics of liquid and solid proteins
under nonequilibrium conditions, and the ability of
000 MAIK “Nauka/Interperiodica”



 

122

 

TECHNICAL PHYSICS

 

      

 

Vol. 45

 

      

 

No. 1

 

      

 

2000

 

RAPIS

 

proteins toward laser fluorescence (in a confocal micro-
scope) [7].

RESULTS

Under qualitatively close experimental conditions,
the reproducibility of the results was very high. The
experiments allowed us to follow the dynamics of pro-

tein condensation. During the experiments, we
observed the continuous motion of the front of self-
maintained oscillations (auto-oscillations) with the
alternating zones of different protein densities [17].
Experimentally, this manifested itself in the optical
phenomenon of the formation of three-color interfer-
ence bands (rings) reflecting the existence of the zones
of different protein densities corresponding to auto-
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Fig. 1. (Contd.)
oscillations. The liquid-crystal phase of the protein
changed color (red, yellow, green) in a jumpwise man-
ner similar to the well-known oscillating changes in
films or the variations in the elasticity characteristics of
biopolymer gels [18, 19]. At the critical protein density,
we observed the formation of structural defects caused
by nucleation phenomena. In turn, this effect resulted in
the formation of spontaneous radial, helical, and chiral
symmetry and asymmetry in three-dimensional cluster
protein films. In this case, the morphological cellular
structures or domains with nuclei (one nucleus per
domain) were formed. These observations indicate
spontaneous nucleation in the film (Fig. 1). Around the
nucleus, thin three-dimensional rolling films are
formed with helical defects (similar to grain bound-
aries) in between, and also some vortices. Later, some
of the nuclei are divided into smaller ones [20]. It is
seen from Fig. 1, (1) and (2) that a nucleus of such a
vortex is “cut” by linear defects into two or four smaller
“daughter vortices” B, which, in turn, consist of even
smaller rolled soliton-type films (2, G). One can also
distiguish the regions where individual fragments are
     Vol. 45      No. 1      2000
linked (indicated by arrows). At the macrolevel, it is
seen that these vortices have stepped “faces” built by
repeating films. Similar patterns are also observed at
the microlevel [7]. The corresponding scanning elec-
tron micrographs revealed films in the shape of paral-
lelepipeds with heights of 10–20 µm with pronounced
periodicity and oriented layers forming vortices (Fig. 1,
(3) the view from above). These formations are remi-
niscent of macrolevels (the specimen wholeness is
partly disrupted). One can also see rolled films, fine
striation, and a relief with the nucleus in the center. The
side view (the cleavage) of the same specimen is shown
in Fig. 1, (4). One can see piles of similar films cut into
equal parts by dislocation-type defects and smooth
steps with islandlike aggregates in the bulk (accumula-
tions of white dots and “snowflakes”).

Morphologically, we managed to identify some
blocks (multilayer piles of thin films of various dimen-
sions) with smooth edges in certain end zones. As a
rule, the external parts of the films were cut by treelike
defects forming new structures having similar shapes
but on a smaller scale, which seems to reflect the fractal
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Fig. 2. (1–3) Macrolevel (magnification 7 × 40), (4) (magnification 10 × 40), (5) microlevel (magnification 1 × 1000.36 µm).
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Fig. 3. (1, 2) Macrolevel (magnification 8 × 40), (3) microlevel (magnification ×10000.38 mm).
properties of the specimen. At both macro- and
microlevels, we usually observed a specific “discontin-
uous symmetry” (which received the name “porcupine
symmetry”) with a regularly decreasing “conical gaps”
(Fig. 2). Both at the macro- (Fig. 2, (1–4)) and the
microlevels (Fig. 2, (5)), one observes rolling treelike
films and dichotomic division (A), the zones of defects
passing through all the film layers and separating the
attraction zones. The alternating zones form structures
characterized by helical (σ), chiral (A), and porcupine
TECHNICAL PHYSICS      Vol. 45      No. 1      2000
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(B) symmetries. There are also defects with dimensions
decreasing in a jumpwise manner along the external
edge of the film; at a certain angle, the films show trans-
verse striation resembling fingerprints (B). All these
features are observed both in the in vitro and in vivo
experiments (B) (a slice of a native crystalline lens).

Another characteristic feature of these films is their
strong adhesion to solid substrates. Figure 3, (1 and 2)
shows small (10 nm) details and the helical, chiral (A),
and porcupine (B) symmetries, with the latter being
interpreted as an energy gap from +2 to 0). In Fig. 3, (2)
these gaps are indicated by arrows. In this case as well,
the adhesion between the protein film and the solid sub-
strate is very strong: it is seen that the larger part of the
film surface is cleaved, whereas the layer directly adja-
cent to the substrate is preserved with all its numerous
fine details. Figure 3, (1) illustrates the fractal proper-
ties of the structures. It is seen that the elements located
far from the structure base are of smaller dimensions,
and the structure reminds a skeleton of an extremity.
This is especially well seen in the zones of the linkage
of fractal elements, which are similar to the self-com-
plementing key-to-lock-type linkage well known
for fragments of biological objects. (The latter struc-
tures were obtained by condensation of protein films
onto nylon substrates). Figure 3, (3) shows an electron
micrograph obtained in a scanning electron micro-
scope, which demonstrates the fractal properties of the
protein on a microlevel—self-similarity, the reduction
of the volumes of the aggregate complexes during their
division depending on the distance from the structure
base (the accumulations of “snowflakes” at the side
edges of the films). At the nanolevel, one can also see
vortices with (a) ~10 nm-large nuclei in the centers.

The supramolecular structure of the films showed
considerable birefringence in polarized light. The
bright green luminescence spontaneously appearing in
the light beam in a confocal laser scanning microscope
[7] indicates the high optical activity of the material. In
denser materials, one observes sudden (avalanche-like)
formation of similar cone-shaped films that are dichot-
omically divided with the formation of treelike branch-
ing structures (Fig. 4). These structures synchronously
growing in the helical direction are similar to solitons.
The self-similarity of these structures, the changes in
the dimensions of some details (from larger to smaller
and vice versa) accompanied by the formation of cone-
shaped patterns with the variations in the volumes of
the individual elements depending on their distance
from the base indicate that such structures can have
fractal properties. We also observed the formation of
three-dimensional terracelike, tubular, branching tree-
like, and cone-shaped chiral structures and also tubes in
tubes and helices in helices with the clearly pronounced
asymmetry. The pairs of such structures form vortices
twisted in the opposite directions with linear defects in
between. In each of these vortices, the branches twisted
in opposite directions are linked. Figure 4 (1) shows
cone-shaped (peaked) fractal films of a continuously
TECHNICAL PHYSICS      Vol. 45      No. 1      2000
decreasing size (A), helical and cone-shaped films
resembling helical cockles (B). Figure 4 (2) shows thin
treelike films with synchronously and coherently grow-
ing dissipative fractal structures (a, b, c). The most
numerous and characteristic micro- and macrostruc-
tures were spatially divided double-tubular helical
blocks forming straight anisotropic rods with a clearly
oriented conical top (Fig. 4, (3)) similar to well-known
diblocks observed in polymers. Such a diblock forming
a cone is shown in Fig. 4 (3). One can clearly see the
thickening linkage regions (A), a rolling helical film
(σ), and their discrete and dichotomic character (A, 1).

It should be emphasized that the structures observed
in in vitro experiments, their architecture, and behavior
were repeated in all the details at both macro- and
mesoscopic levels also in the in vivo experiments on
living biological systems and proteins (Fig. 2, (4)) [7].
A clear example here is the well-known property of
self-complementarity in the key-to-lock protein linkage
usually observed in in vitro experiments on living
organisms in the condensed phase (Fig. 3, (1)). We also
managed to observe the dynamics of self-assembly:
small dots forming large agglomerates of supramolec-
ular forestlike structures (Fig. 4, (2)) and other struc-
tures that could also be observed at the macrolevel.

It is seen that these observations confirm our con-
cept of the formation of nanostructures with the prop-
erties dependent on their dimensions. The specific fea-
tures of these structures are observed only at the
nanolevel because of the formation of new weak chem-
ical bonds. These new structures and their properties
are preserved up to the attainment of the “functioning
macrolevel” [9, 13, 22, 23]. This also explains the for-
mation of a new nanoenergetic level (nanomagnetism)
[9, 13] determining the functioning of protein “macro-
machines.”

It should also be emphasized that the recent exami-
nation of the experimental and theoretical data on the
formation of nanostructures in the films of some other
materials allowed one to predict the properties of pro-
tein nanostructures [22]. These theoretically predicted
properties—three-dimensionality, strong adhesion
between the protein film and the substrate, shape for-
mation, etc.—completely coincide with the properties
of the above structures (Figs. 1–4).

The experimentally observed similarity of mesos-
copic (10–100 Å) and macrodimensional structures and
the coincidence of theoretically predicted and experi-
mentally observed data give grounds to believe that
condensation really takes place during self-assembly of
cluster films and reflects the property of protein folding
occurring from the nanolevel up to the functioning
macrolevel. Therefore, we can state that the experimen-
tally observed self-assembled film structures should be
considered as dissipative protein nanostructures
formed during protein condensation and folding in the
nonequilibrium systems.
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Fig. 4. Micrographs obtained on a microscope with the violet filter. (1, 3) (magnification 8 × 40), (2) (magnification 7 × 20).
It was also established that a solid protein film has a
mixed structure—mainly amorphous with some crys-
talline islands. The X-ray diffraction analysis showed
that this structure is ordered only at levels of 10.5 and
4.33 Å. In polarized light, protein films show consider-
able anisotropy (birefringence in crossed Nicol prisms
[1, 2]) and bright green fluorescence in laser light (in a
confocal laser microscope [7]). The current–voltage
characteristics of protein films are similar to those of
high-resistance semiconductors [7].
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DISCUSSION

Our experiments showed that a protein film with the
above properties can be formed solely under nonequi-
librium conditions. For comparison, we also condensed
proteins under more equilibrium conditions—in a
closed system with a slow removal of the solvent.
Under a microscope (at the macrolevel), the thus
formed crystalline protein material looked either like a
defect-free monolith or like a material with single
defects.

Our experiments showed that protein condensation
in a closed system yields quite different results: the pro-
tein net thus formed showed birefringence (Figs. 5 and
6 in [4]).

Different properties of solid proteins formed under
equilibrium and nonequilibrium conditions can be
interpreted within the framework of the classical phys-
icochemical theories of protein and gel formation [24]
or the theories of colloidal suspensions in the phase of
anisotropic nematic liquid crystals [25] and elastic
films [13, 21 26, 27]. These theories consider a protein
in the liquid phase as a colloidal suspension, because
the dimensions of protein macromolecules are always
comparable to the dimensions of particles forming the
colloidal suspension. Such a suspension can have a
phase of a nematic liquid crystal only under nonequi-
librium condensation conditions [25]. The nematic liq-
uid phase of the protein is always characterized by for-
mation of gels and disperse structures possessing vari-
ous interesting properties [24]. It is shown that there
exist only two types of solidification in colloidal sys-
tems. Within the framework of the above theories, it
was established that, under conditions of the slow
removal of the solvent or its preservation in the solution
 PHYSICS      Vol. 45      No. 1      2000
(i.e., under conditions close to equilibrium), the so-
called condensed–crystallized solid phase of the pro-
tein is formed (the Izmailova–Rebinder classification
[24]). This phase has a rigid gel-like framework with
disperse particles being strongly bound to one another
and thus forming a continuous protein layer whose
X-ray diffraction pattern clearly indicates the formation
of the molecular lattice [28]. Thus, in this case, an equi-
librium protein crystal structure is formed under more
equilibrium conditions.

On the other hand, it was established that the fast
removal of the solvent provides the formation of non-
equilibrium conditions leading, in turn, to the forma-
tion of a heterophase system. In this case, disperse
structures of the second type with quite different prop-
erties are formed. Moreover, recent studies showed that
the colloidal suspension of an anisotropic nematic liq-
uid crystals is, in fact, a metastable colloidal liquid
phase whose stabilization is determined by the repul-
sive forces and defect formation [25, 29]. It is shown
that these properties are closely related to the supramo-
lecular process of aggregation of charged particles with
the formation of dipoles similar to magnetic ones on the
nanometer scale [13]. In a solid protein, these aggre-
gates are characterized by polydisperse structures, high
mechanical strength and fragility, and the thermody-
namic instability [23, 29, 30] caused by the existence of
high internal stresses (absent in the equilibrium struc-
tures).

On the whole, the data obtained indicate the exist-
ence of some common (“unified”) nonlinear and dissi-
pative properties inherent in all the proteins formed
under nonequilibrium conditions and dependent,
rather, on the nonequilibrium conditions during protein
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condensation and aggregation than on the chemical
characteristics of the primary protein structures.

It should also be indicated that under nonequilib-
rium conditions, all the transient phases are, in fact, dis-
sipative systems, such as the liquid phase of a colloidal
suspension or a water–protein system [7], the film of an
anisotropic nematic liquid crystal [25], an elastic film
[27], and a film of unstable fragile solid material (sim-
ilar to the films of other materials) [23, 29, 30]. Such a
behavior of all the protein phases is explained by the
presence of pronounced internal stresses dependent on
the nonequilibrium conditions of the material forma-
tion in all the dissipative systems forming dissipative
structures. It is well known that, minimizing the energy,
these dissipative structures also play the role of energy
sources [15, 17]. This makes it clear why the dissipative
structures are necessarily formed at all the stages of
protein condensation—they provide the energy for the
functioning of “biological machines.”

Since we consider here a condensing protein film, it
is highly probable that the concrete form of the dissipa-
tion of the internal-stress energy of the protein would
affect the protein elasticity, in full accordance with the
elasticity theory [31]. In other words, there are grounds
to believe that protein folding determining the mecha-
nism of its functioning is of a nonlinear nature. It seems
that we encounter here a new allotropic protein modifi-
cation, which is formed as a result of the nonclystalline
self-assembly of a cluster film with a morphologically
new highly structurized order.

This new protein modification was obtained in this
study by varying the kinetics of film formation via the
fast removal of the solvent from the protein–water sys-
tem. This procedure is quite consistent with modern
concepts of modifying film structures (in particular,
carbon-containing ones) with the aim of obtaining
materials with modified properties by varying the
kinetic conditions of their formation [32, 33].

The above speculations allow one to realize why
real protein folding and the allotropic protein modifica-
tion were reproduced in all the experiments (100%
reproducibility). It seems that both energy accumula-
tion and energy dissipation are provided by a specific
mechanism acting under rather simple conditions vary-
ing within a rather wide range. Fast water evaporation
from an open protein–water system under the conven-
tional conditions (atmospheric pressure and room tem-
perature) of the in vitro experiment leads to a complex
process of molecular interactions and aggregation via
self-assembly of nonequilibrium cluster protein films.
It is seen that these conditions are close to the in vivo
conditions for living systems.

The formation of protein films occurs under simple
conditions, whereas the formation of films of nonpro-
tein materials proceeds only under specific conditions,
where the chaotic dynamics is observed only at high
temperatures and pressures, etc. [8, 29].
The common (“unified”) physical and chemical
properties of protein molecules and macromolecules
irrespective of the chemical nature of various proteins
create the unique active media in water-containing sys-
tems and determine the “ranges” of the conditions nec-
essary for nonequilibrium self-organization. Thus, the
minimum requirements for the external conditions,
their natural and simple character, the ability of the
material to accumulate stresses “from nothing” and
then dissipate the energy during the condensation pro-
cess determine the place of the new allotropic protein
modification in the hierarchy of compounds with
“spontaneous energy sources” providing the formation
and functioning of living systems.

Thus, the critical conditions for self-assembly of
cluster protein films include nonequilibrium condi-
tions, the hierarchy of the length scales, concentration,
etc. Of special importance are the rate of the solvent
removal and the solvent adhesion to the substrate.

The in vitro experiments showed that the dynamics
of condensation and self-assembly of protein films
acquires the characteristics typical of living objects,
namely, the discontinuous helical and chiral symmetry
and asymmetry (similar natures of defect formation),
the morphological self-similarity of structurized speci-
mens, nucleation, “bronchial growth,” and fractal
nature of treelike films. On the whole, the process is
characterized by a nonlinear chaotic dynamics and
manifests coherence, spontaneity, synchronism, etc. It
should be emphasized that in vitro experiments showed
that all the above protein properties can be attained in
simple protein–water systems without the use of any
enzymatic or energetic ingredients of living organisms.
This indicates that the formation of allotropic protein
and, thus, also “of simplest biological structures is pos-
sible under the abiotic conditions” (E. Braudo). This
gives grounds to believe that the protein properties
(at least, the morphological framework ones) are deter-
mined, to a large extent, by the protein–water system
used.

CONCLUSION

Thus, we have established and qualitatively (phe-
nomenologically) estimated the supramolecular pack-
ing in protein films self-assembled under nonequilib-
rium conditions. On the whole, the behavior and the
structure of the material are consistent with the general
theory of liquid-crystal and elastic cluster films [8, 12,
30], but, at the same time, also have some specific fea-
tures.

The experiments performed allow us to state that,
contrary to equilibrium conditions, nonequilibrium
conditions provide the formation of a new liquid-crys-
tal, elastic, or solid phases of the film with highly struc-
turized order at both meso- and macrolevels, a thermo-
dynamically nonequilibrium state with the formation of
dissipative systems and structures characterized by a
TECHNICAL PHYSICS      Vol. 45      No. 1      2000



        

SELF-ASSEMBLY OF CLUSTER PROTEIN FILMS 131

                                                                                                 
new nonlinear chaotic dynamics and the fractal geom-
etry, and new chemical and energy properties charac-
teristic of the new allotropic protein modification
formed under the nonequilibrium conditions (dissipa-
tive nanostructures).

We believe that we have taken only the first steps in
the qualitative study of the new allotropic protein mod-
ification. However, the simplicity of the method also
provides the determination of its quantitative character-
istics, very useful for solving the problem of energy
control in living systems (both in norm and pathology),
which, in turn, can be useful for the development of
nanorobotronics, an important field of technology imi-
tating functioning of protein molecules [34].
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BRIEF COMMUNICATIONS
Degassing of Water by Means of a Household Filament Lamp
B. G. Emets
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Received October 19, 1998

Abstract—It was shown with the method of nuclear magnetic resonance that half-hour illumination of water
by a 30-W filament lamp decreases the amount of dissolved and free air (bubbles) by 12% and 45%, respec-
tively. The air content in water regains its initial value by diffusion, i.e., relatively slowly. The need for taking
into account the illumination level in experiments with liquid media is indicated. © 2000 MAIK “Nauka/Inter-
periodica”.
Along with dissolved air, water always contains air
in the free state (bubbles) [1]. The air content in these
two states is important in many technical and biological
applications. For example, the tensile strength of a liq-
uid increases with a decrease in the amount of air bub-
bles [2], while the lack of dissolved oxygen can be fatal
for hydrobionts. It will be shown that the content of
both dissolved and free air substantially drops when
water is illuminated by a household filament lamp
(HFL).

Efficient degassing of water by low-power micro-
wave radiation was reported in [3]. The air was
removed by the thermocapillar bubble mechanism. The
same mechanism should undoubtedly be responsible
for degassing of water illuminated by an HFL.

A 0.6-cm3 sample of distilled water was placed into
a glass test tube and illuminated through a lens with a
30-W HFL for 30 min. The diameter of the light sport
produced by the lens on the side wall of the test tube
was 5 mm, and the incident light power, 60 mW. The
experiments were carried out in the laboratory condi-
tions at room temperature (20°C). Thirty-minute illu-
mination raised the sample temperature by 4.5°C. (Fur-
ther increase in the illumination time practically did not
change the sample temperature.)

The method of nuclear magnetic resonance (NMR)
was used to separately measure the concentrations of
dissolved and free air in water [4]. The rates of spin-lat-

tice proton magnetic relaxation, , and spin-spin

proton magnetic relaxation, , in water are known to
be proportional to the concentration of paramagnetic
impurities [5]. We obtained the empirical relationships
between the relaxation rates and the number N of oxy-
gen molecules dissolved in 1 m3 of water (molecules of
paramagnetic oxygen):

(1)

(2)

T1
1–

T2
1–

T1
1–

N( ) 0.258 7.44 10
25–

N ,×+=

T2
1–

N( ) 0.308 12.27 10
25–

N .×+=
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The values of  were measured with the standard

three-pulse method, while those of  were obtained
by using the Carr–Parcell multipulse method modified
by Meiboom and Gill [5]. The working frequency of an
NMR relaxometer was 15.9 MHz. Relationships (1)
and (2) were derived by measuring the dissolved oxy-
gen concentration, which was varied as follows:
A water sample was first kept in a thermostat at a high
temperature over a long period of time and then sharply
cooled down to room temperature. (The effect of low-
ering the solubility of gases in water with increasing
temperature was employed). Relationships analogous
to (1) and (2) with slightly different numerical coeffi-
cients were reported in [6]. The discrepancies are
explained by the fact that the samples were variously
prepared: in [6], oxygen was introduced into prede-
gassed water under pressure, while we kept our sam-
ples under normal atmospheric pressure. It was found
[4] that relationship (1) can be used to determine the
concentration of the dissolved air, while the amount of
the free air (in the form of bubbles) can be obtained
from (1) and (2). Our measurements showed that the
volume of the free air in 1 m3 of the unilluminated
water was (4.7 ± 1.3) × 10–8 m3 at 20°C. (More accurate
evaluations performed for the equisized bubbles gave
the number of bubbles in one cubic meter of water
equal to 2 × 1015 and the average radius of a bubble,
approximately to 2 × 10–8 m.) The latter value is close
to 5.23 × 10–8 m3, measured by a nephelometer [7]
(the confidence interval was not indicated). Our mea-
surements imply that, at 20°C, the concentration of
the dissolved oxygen is (1.7 ± 0.11) × 1023 m–3. This
means that one cubic meter of the water contains 1.83 ×
10–2 m3 of dissolved air, which is in agreement with the
literature data [8].

Since 30-min illumination heats up the sample by
4.5°C, as was mentioned above, the illuminated sample
was placed for 10 min into a 16-l water thermostat with
a temperature of 20°C. This let the temperature of the
sample return to its initial (before illumination) value,

T1
1–

T2
1–
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20°C. Only after this procedure did we measure the
rates of proton magnetic relaxations to evaluate the
amount of the dissolved and free air. It was found that,
after HFL illumination, the volume of the free air per m3

of the water became equal to (2.6 ± 1.3) × 10–8 m3; i.e.,
it decreased almost by half. The concentration of the
dissolved oxygen was (1.49 ± 0.15) × 1023 mole-
cules/m3 [the volume of the dissolved air was (1.61 ±
0.16) × 10–2 m3]; i.e., it decreased by 12%. This value is
consistent with the literature data [8] on the oxygen sol-
ubility in water, which indicate that it drops when a
temperature rise equals that observed in our illumina-
tion experiments.

The decreased gas content in the water after illumi-
nation persisted at least 30 min. The fact is that the ini-
tial air concentration in the water is restored by diffu-
sion, i.e., relatively slowly.

Thus, such a seemingly minor influence on water as
illumination by a 30-W HFL provides substantial
degassing of the liquid. This should be taken into
account in treating results of experiments with liquids
where light sources were used.
TECHNICAL PHYSICS      Vol. 45      No. 1      2000
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Microelectronic Crossed-Field Cold-Cathode Amplifier
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Abstract—The results of theoretical investigation of the structure of a microelectronic two-compartment
crossed-field SHF amplifier with distributed cold cathode are presented. © 2000 MAIK “Nauka/Interperiod-
ica”.
Technological achievements of the past decades,
which led to the development of thin-film cold-cathode
vacuum microtubes of various types, might seem to
open unlimited possibilities for the creation of new
superminiature amplifier and generator tubes for SHF
and UHF ranges based on the classical triode schemes
[1]. These devices were expected to possess higher sta-
bility with respect to radiation and temperature factors
as compared to their solid-state counterparts. In addi-
tion, it was hoped that the free motion of electrons in
the new devices would allow their working frequency
to be markedly increased. However, the level of param-
eters of the cold-cathode triodes actually reached at
present is by no means sufficient to compensate for the
increased losses in microelectronic devices, which are
markedly greater in miniature tubes than in ordinary
ones because of the small thickness of conducting
films. Moreover, a large input capacitance of the cold-
cathode triodes restricts their working frequency to
such a great extent that this parameter is frequently
even lower as compared to that for the analogous solid-
state devices. A natural consequence is the rejection of
triode schemes in favor of the classical schemes of SHF
electronics based on the long-time interactions of elec-
tron beams with retarded waves.

Below we will consider the possibility of realizing
these interactions in a microelectronic variant of the tri-
ode amplifier with crossed electric and magnetic fields,
based on a thin-film cold cathode. A usual scheme of
such an amplifier [2, 3], with a distributed cold cathode
situated in the interaction space in front of the retarding
system, is not quite acceptable for microelectronic
devices. In this scheme, the current flowing from a
cathode to the interaction space increases along the
cathode. Initially, the current is small and the build-up
rate of the field generated by the electron beam is also
rather low. As a result, the length of the interaction
space corresponding to the field saturation is so large
that the existing decrement (which, as noted above, is
markedly greater in microelectronic retarding systems
than in the usual ones) reduces the amplification effect
1063-7842/00/4501- $20.00 © 20134
almost to zero. Note that an increase in the microcath-
ode length is extremely undesirable for technological
reasons.

A more effective solution is offered by a two-com-
partment amplifier tube in which the distributed cold
cathode is situated in the first compartment and a flat
conducting electrode is mounted on the same place in
the second compartment. A signal to be amplified is
applied to a segment of the retarding system in the first
(input) compartment. The input compartment with a
small length serves only as a source of electron
bunches. Electrons leaving the cathode move by cyc-
loid trajectories, their average velocities being close to
the wave velocity in the retarding system. The electrons
falling within the accelerating phase of electric field in
the retarded wave move back and are absorbed by the
cathode. The electrons within the retarding phase of the
field are carried away to reach the retarding system.

Thus, the proposed system produces selection of the
emitted electrons and modulation of the electron flux.
Electrons in the acceleration phases, which might sub-
sequently take the energy from the field, are excluded
from the interaction process. Note that this selection
takes place at a comparatively small field amplitude
and, hence, is virtually independent of the decrement in
the input compartment. The modulated electron flux
enters the output section and induces a field in the sec-
ond retarding system. Since the interactions from the

Table 1.  Limiting (minimum) values of the magnetic field
strength in crossed-field two-compartment cold-cathode
amplifiers

f, GHz B, T

10 0.18

50 0.9

100 1.8

200 3.6

400 7.2
000 MAIK “Nauka/Interperiodica”
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very beginning involve electrons emitted from the
whole cathode, the length of the interaction space
reaching the field saturation state is markedly lower as
compared to that in a single-compartment device.

Before proceeding to the results of calculations, it is
necessary to consider one special feature inherent in the
microelectronic variant of crossed-field devices. In the
tubes of usual size, the distance h from anode to cath-
ode is markedly greater compared to the cyclotron
radius of electrons. For this reason, the cyclotron
motion of electrons rather weakly affects their interac-
tion processes. In contrast, the cathode to anode spac-
ing in the microelectronic devices is small and the elec-
trons moving by these trajectories may immediately
strike the anode and escape from the interaction pro-
cess. The limiting (minimum) values of the magnetic
field B and anode voltage U0 corresponding to this phe-
nomenon may be determined from a relationship
between the parameters of cycloidal motion and the
static field values, assuming that the average electron
beam velocity equals to the retarded wave velocity:

Here r = R/h. R is the cycloid radius, h is the distance
from cathode to retarding system, f is the frequency
(GHz), y = βh, β = 2fn/c, n is the retardation factor, and
c is the velocity of light. The limiting (minimum) val-
ues of the magnetic field strength (for y = 4) and anode
voltage are listed in Tables 1 and 2, respectively.

According to Table 1, the limiting magnetic field
strength falls within the range f really achievable values
(at least for the frequencies below 200 GHz). Table 2
indicates that, for the microelectronic variant under
consideration not to require the application of very high
voltages, the retardation factor must be sufficiently
large (significantly exceeding the values for usual SHF
systems). Fortunately, the microelectronic thin-film
retarding systems are characterized (see, e.g., [4]) by
high retardation factors (n ≈ 20–80) because of the
presence of insulating substrates.

The amplifier was calculated in a two-dimensional
approximation using a method of large particles con-
ventionally used in SHF electronics. Distributed flux
from a cold cathode was modeled by a set of planar
ejects with the escape coordinates uniformly distrib-
uted along the cathode. Every ejected beam was repre-
sented as a set of noninteracting “large” rodlike parti-
cles. The retarding system parameters were specified
using the data from [4].

The results of calculations are illustrated in Figs. 1
and 2. Figure 1 shows distribution of the gain coeffi-
cient G along the interaction space length l for the
amplifiers with one and two compartments, which
demonstrates efficacy of the preliminary modulation of
the electron beam. For a set of parameters selected, this
modulation leads to decrease in the field saturation
length for the output compartment (by a factor of
almost 2.5) and to the resulting increase in the maxi-

r 0.036 f By( )⁄ , U0 5.11 10
5

rn
2( )⁄ .×= =
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mum amplifier gain (by 7 dB) as compared to the sin-
gle-compartment device. Figure 2 shows the plots of
maximum gain coefficient Gmax of a two-compartment
amplifier versus the linear current density J0 of the
cold- emission microcathode and the parameter of
losses L in the retarding system. It is important to note
that quite satisfactory Gmax vales are achieved with not
too high (i.e., realistic) parameters of the microcathode
and rather large losses in the retarding system.

The results of calculations (obviously having an
estimation character) indicate that the electron interac-
tions with crossed fields offer a promising approach to
the development of microelectronic amplifiers for the
SHF and UHF frequency ranges, with high parameters

G, dB

20

10

0 1 2 3 4 l, mm

1

2

Fig. 1. Gain coefficient distribution along the interaction
space in (1) single-compartment and (2) two-compartment
amplifiers calculated for f = 50 GHz, n = 46, l1 = 1 mm, h =
0.04 mm, U0 = 600 V, and B = 2.3 T.

Gmax, dB

20

15

10

5
0 0.0125 0.0250 0.0375 J0, A/mm

L = 3 dB/mm

6 dB/mm

8 dB/mm

Fig. 2. The plots of maximum gain versus linear current
density from the cold cathode for various values of the
parameter of losses in the retarding system. 

Table 2.  Limiting (minimum) values of the anode voltage in
crossed-field two-compartment cold-cathode amplifiers

n U0, kV

10 10.2

20 2.55

30 1.23

50 0.41
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achievable at the present-day state of vacuum micro-
electronics.
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Abstract—Specific features of inhomogeneous ionization resulting from radioactive pollution in the lower
atmosphere are investigated. A model of track ionization of air is proposed that allows for such elementary pro-
cesses as kinetics, molecular diffusion, and drift of ions in an electric field. The applicability limits of the model
are determined. © 2000 MAIK “Nauka/Interperiodica”.
Atmospheric air under the action of hard ionizing
radiation is a low-temperature nonequilibrium recom-
bining plasma that contains a great number of various
charged and neutral components with concentrations
unusual for normal conditions [1]. It is commonly
accepted that gaseous media are simpler with respect to
ion–molecular processes than are liquids and solids,
because, due to the low specific mass of gases, the track
effects are almost absent when high-energy particles
propagate in a gas, so that the primary products of radi-
olysis (electrons, ions, free radicals, and exited mole-
cules) are uniformly distributed in space [2]. This sig-
nificantly simplifies the theoretical analysis of ion–
molecular kinetics in gases. Therefore, when analyzing
the processes of radiochemical conversion of atmo-
spheric air, it is usually supposed that ionization is spa-
tially uniform [3–5]. Nevertheless, if the pressure is
rather high (0.1–1 MPa), microscopic regions with a
high concentration of ionized particles can form in air
at room temperature. These are so-called tracks pro-
duced by high-energy corpuscles (protons, α- and β-
particles, etc.); the radiolysis products are mainly local-
ized in these tracks [1, 2]. Thus, when investigating the
processes of the production of negative and positive
ions in air at radioactive pollution, one should distin-
guish between the volume ionization by X- or γ-rays
and the local track ionization by high-energy particles.

The main effect of ionizing radiation on air is due to
secondary electrons emerging when atoms and mole-
cules are ionized. The energy of these electrons lies in
the range from the thermal energy to the energy of fast
primary particles. The track structure depends on the
particle species and energy that is spent on the produc-
tion of secondary electrons emitted from the primary
track and forming spur tracks. When the track is pro-
duced by an α-particle or a fission fragment, the spurs
are located so close to each other that a continuous ion-
ized region is formed around the main track.
1063-7842/00/4501- $20.00 © 20137
The purpose of this paper is to study the influence of
a track structure on the kinetic processes occurring in
ionized atmospheric air.

Currently, there is no consistent theory describing
the processes occurring in the tracks of ionizing parti-
cles. Therefore, the results of experimental investiga-
tions of the elementary processes in tracks are often
interpreted in terms of simplified theoretical models by
Onsager and Jaffe. The first model was developed to
describe recombination processes in the tracks of high-
energy particles in dense gaseous media at a pressure of
~20 MPa [6]. The second model [7], which is aimed at
a description of recombination processes in tracks of
α-particles in gas at a pressure of ~1 MPa, is more
appropriate for a description of processes in the tropo-
sphere. The main thesis of the Jaffe theory is that the
ions resulting from propagation of a particle are con-
tained in a cylinder surrounding the trajectory of the
particle. Ion–molecular processes in such tracks can
differ from those in the case of volume ionization
caused by X- or γ-rays.

For lower layers of the troposphere, we will suppose
that positive and negative ions are uniformly distributed
in the cylindrical volume around the particle trajectory.
To estimate the diameter of the track, we assume that it
is determined by the average length of spurs, i.e., tracks
of secondary electrons forming an ionized region
around the main track.

The cross section for ionization of air by α-particle
is σ ~ 5.1 × 10–16 cm2 [8]. For the mean free path l of
the α-particle in air with respect to ionization events
(i.e., for the average distance between the spurs), we
obtain l = 1/(σNL) = 7.3 × 10–5 cm, where NL = 2.69 ×
1019 cm–3 is the Loschmidt number. The total mean path
length Z of an α-particle with an energy of Eα ~ 5 MeV
in the troposphere is less than 4 cm; thus, the average
energy loss ∆E per one ionization event is ∆E =
(L/l)−1Eα ≈ 100 eV. The same value pertains to the
energy of the secondary electrons. Using the Bethe–
000 MAIK “Nauka/Interperiodica”
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Born approximation (its applicability to the electrons is
validated by a high velocity of the incident electron
compared to the velocities of the atomic electrons), we
determine the cross section for ionization of air mole-
cules by the secondary electrons. According to [9], we
have

(1)

where l = 15.58 eV is the ionization potential and ξ = 6
is the number of equivalent electrons in the nitrogen
molecule.

The minimal radius of the track will be assumed to
be equal to the mean free path of secondary electrons,

r =  ≈ 1.3 × 10–4 cm. Then, the track volume

will be V = πr2L ≈ 2 × 10–7 cm3.

Let us determine the density of electron–ion pairs
produced by the incident particle in this volume. The
velocity of an α-particle in air can be found from the

kinetic energy formula as v  =  ≈ 1.5 ×
109 cm/s, where M and Eα are the mass and energy of
the α-particle, respectively. Taking into account that
the mean time of flight of the particle is t = L/v  ≈ 2 ×
10–9 s, the averaged (over the time of flight) rate of the
energy deposition is w = Eα /Vt ≈ 3 × 103 W/cm3. The

ionization frequency is defined as ν =  ≈ 11 s–1,

where Ei is the energy needed to produce one ion–elec-
tron pair in air (~34 eV). Finally, for the initial electron
density in the α-particle track in air, we have Ne =
νNLt ≈ 1012 cm–3.

σ2 4 10
14– ξ ∆E I⁄( )ln

∆EI
------------------------ 3 10

16–
 cm
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1
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Major elementary ion–molecular processes in the ionized
troposphere (T = 300 K, Te = T)

Reac-
tion 
no.

Reaction Rate α, 
cm3 s–1

Refer-
ences

1  + e  O + O 2.2 × 10–7 [4]

2  + e  N + N 2.9 × 10–7 [4]

3 e + O2 + O2  
2.5 × 10–30 

(cm6 s–1) [4]

4   O2 + O2 + e 2.0 × 10–10 [4]

5  + O2   + N2 2.0 × 10–11 [4]

6 A+ + B–  A* + B 10–6 [4]

7 H2O+ + H2O  H3O+ + OH 1.2 × 10–9 [2]

8 e + H3O+  H2 + O + H 1.3 × 10–6 [2]

O2
+

N2
+

O2
– O2

*+

O2
– O2

*+

N2
+ O2

+

Generally speaking, the dimension and lifetime of
the track are determined by both the ambipolar diffu-
sion of ions from the initial track volume and recombi-
nation of primary ions in this volume. We note that, due
to the small track volume, the probability for minor
gaseous atmosphere components (with densities
of ≤108 cm–3) to participate in ion–molecular processes
is almost zero. Hence, we can limit the number of mol-
ecules and ions under study. In the model used, until the
track decays, we can consider (without significant loss
of accuracy) only the main ion–molecular processes
involving the ions of major air components (N2 and O2),
as was done in [3]. The concentrations of these major
air components are stable and exceed the concentration
of other possible minor gaseous components by several
orders of magnitude. The influence of water vapor mol-
ecules H2O on the ion–molecular processes and ion
production should also be taken into account.

In the table, we present the list of elementary pro-
cesses in a track that are accounted for in our model.
Note that here we consider a simplified kinetic model
of a track. In reality, the electron–ion recombination
rates substantially depend on the electron temperature
Te and, since the electron temperature in the track can
be fairly high, the recombination rates can be lower
than those given in the table. The set of equations
describing the ion kinetics in a track with allowance for
molecular diffusion and ion drift in an electrical field,
being written in the cylindrical coordinates, has the
form

(2)

where ni , Di, and µi are the densities, diffusion coeffi-
cients, and mobilities of electrons, positive and nega-

tive ions, and excited molecules ([e], [ ], [ ],

[ ], [ ], [H2O+], and [H3O+]); αij are the ion–
molecular reaction rates; ρ is the charge density; E is
the electrical field; and r is the coordinate across the
track.

Fig. 1 presents the results of the numerical solution
of the above set of equations. It is seen that the most
significant recombination processes involve positive
and negative oxygen ions, because all of the positive
ions rapidly transform into positive oxygen ions as a
result of the charge-exchange reaction (5) (see table).
Electron attachment to neutral oxygen molecules pro-
ceeds at almost the same rate. The rate of formation of
the positive H3O+ ions is several orders of magnitude
lower; thus, this process weakly affects the main pro-
cesses, which occur during 1 ns. Then, the density of
negative ions decreases due to recombination and
molecular diffusion (ions leave the reaction region).
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TECHNICAL PHYSICS      Vol. 45      No. 1      2000



SPECIFIC FEATURES OF THE IONIZATION OF ATMOSPHERIC AIR 139
For comparison, Fig. 2 presents the time evolution of
the radial profile of the density of negative oxygen ions.
The lifetime of the track region in which the degree of
ionization is quasi-uniform can be estimated from the
figure as the time during which the ion density on
the track axis decreases by a factor of e. The volume of
the quasi-uniform ionization region increases due to
diffusive spreading approximately by a factor of 2.5,
reaching the value of Vm ~ 5 × 10–7 cm3 for the time
tm ~ 125 ns.

Allowance for the track structure of air ionization is
important in solving certain specific problems, e.g., in
the analysis of active gaseous media for lasers with
nuclear pumping [10] or a radar pulse reflection from
an ionized cloud formed due to radioactive pollution
[11].

An overlapping of the tracks can serve as a “strong”
criterion for the necessity of taking into account the
track structure of air ionization. If we denote the quan-
tity characterizing the number of the tracks produced in
a unit volume per second (i.e., the volume density of
nuclide activity) by aα, β, then the condition under
which the tracks do not overlap can be written as
aα, βVmtm ! 1. Otherwise, if aα, βVmtm @ 1, the tracks do
overlap and the influence of the track structure can be
neglected. In other words, if the ionization rate is suffi-
ciently high, the tracks merge and ionization can be
regarded as spatially uniform. Thus, it is easily seen
that, for an α-active pollution source, the above crite-
rion is violated when the concentration of radioactive
substances is such that aα, β ~ 500 Ci/cm3, which corre-
sponds to a volume ionization rate of ~1018 cm–3 s–1.
Such levels of radioactive pollution can be observed
only during major accidents [12]. Therefore, according
to the strong criteria, tracks of nonuniform ionization
will always be observed in the troposphere under mod-
erate levels of radioactive pollution.

The effect of track ionization must certainly be
taken into account in calculating the ion kinetics. The
corresponding criterion can be defined as the level of
radioactive pollution of the atmosphere above which
the relaxation kinetic processes change their character.
According to the proposed track ionization model, in
the initial stage of ionization, all of the ion–molecular
processes with the participation of primary ions involve
the basic air components (N2 and O2) and occur in the
vicinity of the tracks of high-energy particles. In these
processes, which occur while the track exists, the reac-
tions of electron–ion and ion–ion recombination are
dominant. Only after 10–7 s, does the track blur out and
do the ions generated in it mix with the bulk of union-
ized air and start to react with neutral molecules of
minor gaseous components of the atmosphere, e.g.,
nitrogen- or carbon-containing compounds. Depending
on the concentration balance between the primary ions
produced in the tracks and minor gaseous components
that are present in the whole volume, either the pro-
cesses of ion–ion recombination or reactions of ions
TECHNICAL PHYSICS      Vol. 45      No. 1      2000
with neutral molecules can prevail. These two cases are
characterized by different production rates and final
concentrations of the dominant ions in the atmosphere
[1].

Such a “weak” criterion can be expressed as fol-
lows:

(3)

where Ni is the averaged density of ions in the track,
NNO is the density of the most abundant minor gaseous
components of the atmosphere (e.g., the typical con-
centration of nitrides in the troposphere is ~1010 cm–3),
α6 is the ion–ion recombination rate constant (see
table), and α ~10–10 cm3 s–1 is the rate constant of reac-
tions between ions and neutral molecules [1].

If X > 0, then the track structure can be neglected,
because the relaxation process proceeds, at first, mainly
through the ion–ion recombination channel and no new
specific features appear in the relaxation kinetics of
media. If X < 0, then the track ionization can, in princi-
ple, affect the relaxation, because, in this case, the reac-
tions of ions with neutral molecules are the dominant
processes of the ion relaxation and they can lead, e.g.,

X Ni
2α6 α NiNNO,–=
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Fig. 1. Time variations of the densities of electrons and
major ions in the track caused by molecular diffusion and
recombination. The oxonium ion density is scaled up by a
factor of 2 × 102.
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Fig. 2. Density of negative ions of molecular oxygen in the
track as a function of time and distance from the track axis.
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to the fast production of stable  ions that are spe-
cific to the troposphere. However, the last assumption
requires additional investigation. Probably, this crite-
rion will also be found to be too strong.

In the case of α-active pollution, the critical value of
the radioactivity density, according to (3), will be
~10−2–10–3 Ci/cm3, which corresponds to an ion pro-
duction rate of ~1012 cm–3 s–1. Similar estimates can
easily be obtained for β-particles. For β-active pollu-
tion, we obtain ~10– 4 Ci/cm3 and ~109 cm–3 s–1, respec-
tively. Since, in the case of real radioactive pollution,
the sources of the α-, β-, γ-, and other kinds of radiation
are present simultaneously, it is appropriate to average
our estimates and consider an ion production rate of
109–1012 cm–3 s–1 as the boundary value for the “weak”
criterion. Expressed in units of the power of the
absorbed radioactive emission, this corresponds to
~4.2 × 10–3 Gy/s.

In this paper, we have analyzed the specific features
of nonuniform ionization of air resulting from radioac-
tive pollution of the lower atmosphere. A model for
describing the track ionization of the atmosphere is
proposed, and the applicability limits of the model are
determined.

NO3
–
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ATOMS, SPECTRA, AND RADIATION
Observation of a Circular Dichroism of an Ensemble of Triplet 
Metastable Helium Atoms in a Na–He Gas-Discharge Plasma 

with Laser-Oriented Sodium Atoms
S. P. Dmitriev, N. A. Dovator, R. A. Zhitnikov, V. A. Kartoshkin, and V. D. Mel’nikov
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Abstract—We describe an experiment on the observation of a circular dichroism of an ensemble of triplet
metastable helium atoms in a sodium–helium gas-discharge plasma where Na atoms are optically oriented with
circularly polarized radiation of a laser tunable around the resonant sodium doublet (with wavelength of 589.0
and 589.6 nm, corresponding to the 32S1/2  32P1/2 and 32S1/2  32P3/2 transitions). Conditions of obser-
vation and the polarization degree of 23S1 atoms are determined. © 2000 MAIK “Nauka/Interperiodica”.
Ensembles of spin-polarized atoms in gases and
gas-discharge plasmas can be prepared not only by
means of direct optical orientation, i.e., under the
action of resonant circularly polarized radiation, but
also with the use of other methods based on the transfer
of spin polarization from an ensemble of optically ori-
ented atoms of one element to an atomic ensemble of
another element. Such a polarization transfer in gases
and gas-discharge plasmas may be associated with sev-
eral spin-dependent processes accompanying collisions
of various paramagnetic atomic particles [1]. Polariza-
tion of an ensemble of triplet metastable helium atoms
in an alkaline–helium plasma through the optical orien-
tation of alkaline-metal atoms is one of such indirect
polarization methods. Spin polarization can be trans-
ferred from optically oriented n2S1/2 alkaline-metal
atoms to 23S1 metastable He atoms through several
simultaneous spin-dependent processes of interatomic
and electron–atom collisions. These processes include
the spin-dependent Penning ionization of alkaline-
metal atoms in the interaction of these atoms with
metastable helium atoms and interatomic spin
exchange accompanying elastic collisions of these
atoms [2–6]. Collisions of metastable helium atoms
with electrons polarized in the process of spin exchange
between free electrons in a plasma and an ensemble of
optically oriented alkaline-metal atoms may play an
important role in the polarization of an ensemble of
metastable helium atoms [2, 3, 5, 6].

This method was employed to prepare ensembles of
spin-polarized metastable He atoms excited in Cs–He
[3], Rb–He [2, 6] and K–He [5] plasmas under condi-
tions of pulsed high-frequency discharge, which were
later used in physical experiments and devices of quan-
tum electronics. Alkaline-metal atoms were optically
oriented in these studies with circularly polarized radi-
ation of spectral lamps containing the relevant alkaline
1063-7842/00/4501- $20.00 © 0014
metals. Polarization of helium atoms was detected as
the change in the absorption of pump radiation by alka-
line-metal atoms under conditions when this polariza-
tion decayed due to a magnetic resonance excited in the
23S1 state of He atoms.

In this study, we implemented a spin polarization of
triplet metastable helium atoms in a sodium–helium
plasma excited by a continuous high-frequency dis-
charge under conditions of optical orientation of 32S1/2
Na atoms with circularly polarized radiation of a tun-
able laser. We propose a method of direct optical detec-
tion of the polarization of metastable He atoms thus
induced based on the observation of the circular dichro-
ism of an ensemble of 23S1 helium atoms arising due to
the polarization of the magnetic moments of these
atoms.

A diagram of the experimental setup is shown in
Fig. 1. Sodium atoms were optically oriented with radi-
ation of a continuous-wave tunable Rhodamine 6G dye
laser. Radiation of a tunable laser polarizes Na atoms
by the emission of one of the D lines of the resonant
doublet (we were able to use either D1 or D2 lines with
wavelengths 589.0 and 589.6 nm, respectively). As a
pump laser, we employed an LGN-404a argon laser.
The cavity of the tunable laser included a Lyot filter and
a thin etalon. The power of the pump laser was about
≈4 W. The radiation power of the tunable laser at the
wavelength of one of the lines of the sodium resonant
doublet (Λ1 = 589.6 nm and Λ2 = 589.0 nm) was about
≈70 mW. The bandwidth of laser radiation was
≤0.01 nm. The laser beam passed through a quarter-
wave plate (Λ/4). Orientation of this plate determined
the sign of the circular polarization (σ+ or σ–) of laser
radiation. Mechanically rotating the quarter-wave plate
(Λ/4) in the plane perpendicular to the pump laser
beam, we were able to periodically change the sign
(σ+  σ–) of the circular polarization of laser radia-
2000 MAIK “Nauka/Interperiodica”
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tion. The rotation frequency was Ω ≈ 100 Hz, and the
sign of light polarization (σ+  σ–) was changed
with a frequency equal to 2Ω . The circularly polarized
pump beam thus produced entered an absorption cham-
ber. The absorption chamber (a glass cylinder with a
length of 5 cm and a diameter of 5 cm) contained metal-
lic sodium and HE gas (at a pressure of 1 torr). A glass-
enclosed electrode placed inside the chamber excited a
continuous high-frequency (45 MHz) discharge. We
were able to vary the concentration of metastable
helium atoms by changing the high-frequency dis-
charge current. The absorption chamber was placed in
a glass thermostat, which ensured the heating of the
chamber up to a temperature of about 150°C, allowing
the density of Na vapor corresponding to the concentra-
tion of sodium atoms equal to approximately ≈1011 cm–3

to be achieved. The thermostat with the chamber was
positioned at the center of a multilayer cylindrical fer-
romagnetic screen. A system of Helmholtz rings inside
the screen induced a magnetic field H0 ≈ 40 mOe
directed along the screen axis. The pump beam
employed for the optical orientation of sodium atoms
was directed along H0. The spin polarization of sodium
atoms thus induced is transferred to metastable helium
atoms through collision processes, giving rise to a cir-
cular dichroism of an ensemble of 23S1 He atoms at the
wavelength λ = 1083 nm of the relevant helium line
(23S1–23P0, 1, 2 transitions). The direction of magnetiza-
tion of an ensemble of helium atoms under these condi-
tions depends on the direction of spin orientation of Na
atoms, i.e., on the sign of the σ± polarization of pump
radiation of sodium atoms. The spin polarization of
23S1 He atoms induced in collision processes was
detected with the use of a light beam of a helium lamp
directed along the field H0 in the direction opposite of
the pump beam (the line at λ = 1083 nm was separated
with an interference filter placed in front of the photo-
detector). Nonpolarized light of the helium lamp
passed through the absorption chamber, reaching a cir-
cular analyzer (λ/4, P), which was adjusted in such a
way as to transmit σ+-polarized helium light. Variations
in the intensity of detecting light arising in response to
changes in the orientation of the spin moments in the
ensemble of He atoms [(σ+  σ–) changes in the
sign of the polarization of laser radiation employed for
the orientation of Na atoms] were registered with a
photodetector, narrow-band amplifier, and a synchro-
nous detector tuned to the frequency 2Ω , equal to twice
the modulation frequency. This detection scheme
offered important advantages over the detection
scheme employed earlier, where the polarization of
helium atoms was detected from variations in the
absorption of pump radiation by alkaline-metal atoms,
as the above-described detection scheme was insensi-
tive to the noise of laser radiation in the detection path
and excluded the influence of direct optical orientation
or alignment of helium atoms by detecting radiation on
the signal being registered. To detect the signals corre-
TECHNICAL PHYSICS      Vol. 45      No. 1      2000
sponding to the variation in the intensity of detecting
radiation (the line at λ = 1083 nm) under conditions of
optical orientation of sodium atoms with σ±-polarized
laser radiation, we tuned the wavelength of laser radia-
tion around one of the resonant lines in the sodium dou-
blet (Λ) by means of a thin wavelength etalon (Λ1, 2).

Figure 2 displays the variation in the intensity of
detecting radiation as a function of Λ with fixed ana-
lyzer orientation (λ/4, P) corresponding to σ+-polarized
helium light in the case when the sign of the circular
polarization of pump radiation changes (σ+  σ–)
with the frequency 2Ω . As can be seen from Fig. 2,
when the wavelength of laser radiation (Λ) coincides

F
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Λ/4 (Ω)

D
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Fig. 1. Diagram of the experimental setup: (1) argon pump
laser; (2) tunable laser (Λ); (3) absorption chamber;
(4) high-frequency oscillator; (5) thermostat; (6) Helmholtz
rings; (7) detecting helium lamp; (8) detection scheme; D,
photodetector; F, interference filter (λ = 1083 nm); Λ/4,
rotating quarter-wave plate (Λ = 589 nm); and λ/4, P, circu-
lar polarization analyzer (λ = 1083 nm).

1
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589.0 589.6 Λ, nm

0.01 nm

Fig. 2. Dependence of the intensity of detecting light (λ =
1083 nm) on the wavelength of laser radiation around spec-
tral lines corresponding to the sodium resonant doublet: (1)
around the D1 line of the doublet and (2) around the D2 line
of the doublet.
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with one of the lines in the resonant doublet of sodium
atoms, the signal corresponding to the absorption of
helium-lamp detecting radiation by an ensemble of
spin-polarized 23S1 metastable helium atoms changes.
The amplitude of these signals in the case when sodium
atoms are pumped by the emission of the D1 line
(589.6 nm) was three times higher than in the case
when sodium atoms are pumped by the emission of the
D2 line (589.0 nm), which indicates a more efficient
polarization of spin momenta in the 32S1/2 state of Na
atoms induced by the emission of the D1 line as com-
pared with polarization induced by the emission of the
D2 line with the same intensity. The ratio of the ampli-
tude of the detected signal δI to the difference ∆I0 of the
intensities of helium radiation in the cases when the
discharge is switched on and off was equal to δI /∆I0 =
0.002 (or 0.2%). This ratio characterizes the stationary
absorption of helium radiation by an ensemble of meta-
stable atoms. The relative absorption of the line at λ =
1083 nm, which characterizes the concentration of 22S1
helium atoms, was equal to ∆I0/I0 = 0.35 (where I0 is
the intensity of detecting radiation in the absence of
metastable helium atoms). The ratio (1/2)(δI /∆I0) can
be employed to estimate the degree of spin polarization
in an ensemble of 23S1 He atoms due to collision pro-
cesses in a Na–He plasma under conditions of optical
orientation of sodium atoms. We should emphasize that
the possibility of determining the ratio δI /∆I0 is one of
the main advantages of the implemented detection
scheme over the schemes employed in earlier studies
[2–6].

The signals of absorption variation δI were
observed within the range of temperatures t from 80 up
to 140°C. The temperature dependence of δI is pre-
sented in Fig. 3. The increase in the amplitude of sig-
nals with temperature growth is due to the increase in
the concentration of sodium atoms, which serve as a
source of spin polarization of metastable He atoms. The
fact that the growth of the amplitude of δI slows down
for temperatures above 120°C can be accounted for by

1

11090 100 120 130 140

2

3

4

t, °C

δI, arb. units

Fig. 3. Temperature dependence of the amplitude of the sig-
nal δI in the case when emission of the D1 line of sodium is
employed for pumping.
the decrease in the polarization degree of sodium atoms
due to the growth in the optical density of metal vapor,
lowering the effective pump rate of sodium atoms in the
volume of the absorption chamber.

We should note that the above-described experi-
mental scheme provides an opportunity to determine
the bandwidth of laser radiation corresponding to the
lines of the sodium resonant doublet with an apparatus
width equal to the bandwidth of the absorption line of
Na atoms. Indeed, taking into account that the band-
width of the absorption line of sodium atoms under our
experimental conditions is much less than the band-
width of laser radiation, we can determine the band-
width of laser radiation from the width of the detected
signals (Fig. 2). In the case under consideration, this
width was about 0.007 nm. This experimental tech-
nique is of certain interest because the detected signal
is initiated by the absorption of laser radiation by
sodium atoms, determining the apparatus width in mea-
surements of the laser-line bandwidth. At the same
time, detection is performed with a radiation of a low-
noise helium lamp at the line with λ = 1083 nm, which
lies far from the sodium doublet. This circumstance is
of special importance when the laser beam is character-
ized by a high level of intensity noise associated with
the laser itself and with optical elements employed in
the experimental setup. In the proposed scheme, laser
radiation under investigation has no influence on the
photocurrent of the detector.

Thus, in this paper, we observed a circular dichro-
ism of an ensemble of triplet metastable helium atoms
excited in a Na–He gas-discharge plasma where
sodium atoms were optically oriented with circularly
polarized laser radiation. We determined the observa-
tion conditions and the magnitude of the circular
dichroism induced by atomic collisions in a plasma and
proposed a method for measuring the bandwidth of
laser radiation employed as pump light for optical ori-
entation of sodium atoms.
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Abstract—Electroconvective instability of a nonisothermal layer of a weakly conductive liquid with a free
boundary whose surface tension depends linearly on temperature is considered for the case where charge injec-
tion is performed through this surface. When calculating the unperturbed stationary distribution of the charge
and field, we supposed that the injector is separated from the liquid by an air gap of finite thickness. It was,
however, assumed when analyzing the stability of the system that the motion in the air gap has no effect on the
motion in the liquid phase and the disturbances of the electric field and charge in the air gap decay rapidly
because of its high conductivity. © 2000 MAIK “Nauka/Interperiodica”.
1. Studies of the problems of electroconvective
instability of the motion of fluids (liquids and gases) is
related to numerous applications in various fields of
engineering and technology. The greatest interest in
this problem due to the development of the theory of
breakdown and prebreakdown states. The occurrence
of motion in the liquid layer sharply changes the charge
transfer through it and the breakdown conditions.
Mathematical simulation of this problem may lead to a
better understanding of the related physical processes.

In recent years, new technologies have been devel-
oped for the intensification of heat and mass transfer in
weakly conducting liquids using electric fields. On the
one hand, an electric field creates a bulk ponderomotive
force in the liquid, and, on the other hand, the charges
present in the liquid take part in convective motion,
forming convective electric currents. For the interaction
of the electric and hydrodynamic fields, a space charge
should be present in the liquid.

There are two models describing the mechanism of
the formation in the liquid of a space charge that partic-
ipates in the process of charge transfer: the conductivity
model and the mobility model. In the first case, the for-
mation of a free charge occurs as a result of dissocia-
tion–recombination; in the second case, the charge is
formed due to injection through a boundary. Corre-
spondingly, the laws of charge transfer prove to be dif-
ferent. In this work, we consider the injection mecha-
nism of the formation of a free charge in a liquid.

When a liquid with a spatial distribution of charge is
placed in an electric field, a ponderomotive force is
developed, which is similar to gravity. Upon a nonuni-
form distribution of the spatial charge, the mechanical
equilibrium of the liquid may prove to be unstable,
leading to the appearance of a convective flow.

The convective instability of an isothermal layer of
a weakly conductive liquid placed between two flat
1063-7842/00/4501- $20.00 © 20017
solid electrodes in the case of the injection mechanism
of the formation of space charge was studied in some
detail by Atten and Moreau [1]. The authors [1] report
the threshold values of the electrical analog of the Ray-
leigh number for the monotone instability for two lim-
iting cases: strong injection and weak injection. The
stability of an isothermal liquid layer with a free bound-
ary through which injection was performed was studied
in [2, 3]. The injector was located on the free boundary.
The critical value of the Rayleigh number and the
related wave number were found.

In a nonisothermal liquid with a free boundary, a
mechanism of instability arises, which is related to the
thermocapillary effect. If there is formed a temperature
gradient along the free boundary, then a tangential
force that is capable of causing a convective motion in
the liquid is developed due to the temperature depen-
dence of surface tension. The linear theory of the ther-
mocapillary instability of the equilibrium of a liquid
layer in the presence of a transverse temperature gradi-
ent was considered in [4–8]. It was shown that, when
heating was performed from the solid-boundary side,
only a monotone instability could exist, whereas upon
heating from the free-boundary side, an oscillatory
instability mode can exist if the boundary is capable of
deforming.

This work is devoted to studying these two mecha-
nisms of instability. Charge injection was effected
through the free deformable surface of nonisothermal
liquid with surface tension linearly depending on the
temperature.

2. Let us consider a flat horizontal layer of a weakly
conductive viscous incompressible liquid of thickness
h located between two plane-parallel electrodes sepa-
rated by a distance of H. The origin is placed at the bot-
tom solid surface; the x axis is oriented horizontally,
and the z-axis is directed upward. Charge injection into
000 MAIK “Nauka/Interperiodica”
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the liquid is performed through the air gap located
above the liquid. The coefficient of surface tension of
the interface between the two media depends linearly
on temperature and can be described by the formula σ =
σ0 – σ1T. The equation of motion of liquid and of heat
and mass transfer may be written as follows:

(1)

(2)

(3)

(4)

Here, v is the vector of liquid velocity; p is the pressure
excess above the hydrostatic pressure; T, the tempera-
ture; E, the electric field strength in the liquid; J, the
flux density of free charges; φ, the electric potential in
the liquid; q, the density of free charges; ρ, the material
density; ν and χ, the kinematic viscosity and thermal
diffusivity, respectively; ε, the dielectric constant of the
liquid; and b, the charge mobility in the liquid. The
macroscopic motion in the air gap will be ignored,
since this motion virtually has no effect on the transfer
of charged particles [3] and has only a weak effect on
the mechanical motion in the liquid. In this approxima-
tion, it is sufficient to write equation for the field and
current in the air layer as follows:

(5)

The index a here specifies quantities that refer to air.
The boundary conditions for the set of equations

(1)–(5) will be written as follows. At the injector, a con-
stant value of the electric potential is maintained and
the condition for the unipolar injection is fulfilled:

(6)

For the unperturbed stationary state, the interface is
assumed to be isothermal and equipotential; the tem-
perature and the potential in the liquid are measured
from the temperature and the potential of the interface,
respectively. Thus, at the interface between two media,
the following equalities are assumed to be fulfilled for
the ground state:

(7)

For the system of two weakly conductive media with an
injection law of conductivity in the absence of specific
mechanisms of the formation of surface charge, a situ-
ation is realized where the surface charge is zero [3].
This is explained by the fact that with the injection
mechanism of conductivity, the free charge that creates

∂v
∂t
------ v ∇ v( )+

1
ρ
--- ∇ p– ν∆v

qE
ρ

-------, div v+ + 0,= =

∂T
∂t
------ v∇ T+ χ∆T ,=

div E
q
ε
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∂q
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-----, Ea ∇ φa, Ja– qabaEa.= = =

z H: φa UH, Ea 0.= = =

z h: φa φ 0, T 0,= = = =

εaEa εE– 0, Ja J .= =
the compensation field is distributed throughout the
entire insulator. A jump in the mobility at the boundary
of the two media is accompanied by a jump in the spa-
tial density of the free charge, which compensates the
change in the mobility. The normal component of the
electric field induction proves to be continuous.

The boundary condition at the collector is written as
follows:

(8)

The temperature of the lower boundary may be both
positive and negative. The set of equations (1)–(5) with
the boundary conditions (6)–(8) has an equilibrium
solution corresponding to the quiescent liquid (v  = 0)
with a linear temperature distribution

(9)

The distributions of the electric potential and charge
density for the two media have the following solutions:
for air,

(10)

for weakly conductive liquid,

(11)

The parameter C is written as

(12)

The current density may be found from the condi-
tion of the equality of the potentials at the interface
between the two media:

(13)

As was shown by calculations, the current J0
decreases with increasing thickness of the air layer.

3. To study the stability of the equilibrium state (2)
and (8) of a liquid layer, the method of small perturba-
tions may be used. The charge and field perturbations in
the air layer are rapidly decaying, in view of the rela-
tively high charge mobility (b/ba ≤ 10– 4 for an air–
organic liquid system) and may be ignored. Let v, p, T,
φ, and q be small perturbations of the velocity, pressure,
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temperature, potential, and charge density in the liquid,
respectively.

Let us discuss the boundary conditions at the free
surface. We assume that under the effect of perturba-
tions, the initially flat free surface can be deformed:

(14)

Assuming the deformation to be small as compared
to h, the boundary conditions at z = h + ξ may be
replaced by those at z = h using a Taylor expansion.

The normal component of the stress tensor will be
written as follows:

(15)

The absence of the electric term in the tangential
component of the stress tensor permits us to write this
equation in the form

(16)

These conditions should be supplemented by the
kinematic relationship

(17)

When formulating boundary conditions for the tem-
perature perturbations, we assume that the thermal con-
ductivity of the liquid is much greater than that of the
upper medium and, although there is some heat transfer
at the free surface, we may assume that the temperature
disturbances in the liquid do not change the heat flux
through the air gap and the free boundary is thermally
insulated against disturbances (the Biot number is
equal to zero). This condition is most favorable for the
development of thermocapillary instability [8]. Thus,
the boundary condition for temperature disturbances is
written as

(18)

The requirement that the potential and field distur-
bances vanish at the interface with the air gap at the flat
boundary z = h is written (to the first order perturbation)
as

(19)

The boundary conditions at the solid isothermal
equipotential interface for the velocity, temperature
perturbations, and potential are as follows:

(20)
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As the units of measure for the distance, time, veloc-
ity, pressure, temperature, potential, and the densities
of charge and current, we take h, h2/ν, χ/h, ρχν/h2, Θ,
U, εU/h2 and εbU2/h3, respectively. We will investigate
the stability of equilibrium distributions with respect to
small “normal” perturbations:

(21)

Here, λ is the complex perturbation decrement, and k is
the wave number. We linearize equations (1)–(4) in the
perturbations and write the equations and the boundary
conditions in the dimensionless form:

(22)

(23)

(24)

The problem contains six dimensionless parame-
ters: the Ra number, which is an electrical analog of the
Rayleigh number; the Marangoni number Ma; the
Prandtl number Pr; the Bond number Bo; the capillary
parameter Cr; and the number Pj, which describes the
mobility of charges,

(25)

The spectral problem (22)–(24) defines the charac-
teristic numbers λ as functions of the wave number and
the parameters of the problem. The numerical solution
of the differential equations was performed by the step-
by-step integration using the Runge–Kutta–Merson
method. To ensure the linear independence of the solu-
tions, the orthogonalization of the partial solutions at
each step of solution was used.
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4. Let us now study the stability of the state of equa-
tions (22)–(24) with respect to monotone perturbations.
In the above calculations, a relation was found between
three main parameters: the Ma and Ra numbers and the
wave number k for the marginal stability at other
parameters being fixed. By determining the minimum
numbers Ram and km for a given value of the Ma num-
ber, we can determine the influence of the thermocapil-
lary effect on the electrical mechanism of instability.

Figure 1 displays the results of calculations of sev-
eral neutral curves (λ = 0) at H = 2, Cr = 10–5, and Bo =
10–1 for two lower modes of the injection instability and
various values of the Marangoni number. Curves (1)–(4)
correspond to Ma = –50, 0, 50, and 75, respectively.
The upper three curves refer to the perturbations with a
two-level system of cells. The instability region lies
above these curves. The limiting case of Ma = 0 corre-
sponds to the isothermal liquid subjected to injection
from the free-boundary side. At Cr = 0 (flat boundary),
the results obtained agree with the values reported in

[2],  = 99 and  = 4.0.

With increasing the positive values of the
Marangoni number (heating from the solid-boundary
side), the critical value of the electrical analog of the

Rayleigh number  of the first mode is reduced and
becomes zero at Ma = 80, which corresponds to the
conventional problem of the development of the
Marangoni convection. The threshold value of the wave
number is km = 2. Upon heating from the free-boundary
side (negative Marangoni numbers), an increase in the

threshold value for the first mode  occurs. For the
second level of instability, there occurs an increase in
the minimum value of Ram with increasing positive

Marangoni numbers, whereas at negative Ma, the 
decreases.
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Fig. 1. Neutral stability curves for the monotone mode.
Figure 2 displays a map of the stability with respect
to the principal mode for two values of the current
J0 ≅ 1.261 and 1.116, corresponding to the relative
thicknesses of the air gap H = 2 and 50.

The changes in the shape of the convective cells
along the vertical with changing values of the
Marangoni number are shown in Fig. 3. The odd num-
bers at the curves mark the profiles of the vertical com-
ponent of the velocity for the first instability mode; the
even numbers correspond to the second mode. As is
seen, the differences in the structure of motion charac-
teristic of the first and second modes vanish with
increasing absolute value of the Marangoni number.

5. An oscillatory thermocapillary instability in a
layer with a deformable free boundary can only exist,
as was shown in [6], when heating is performed from
the free-surface side. The results shown in Fig. 1 indi-
cate that with increasing absolute magnitudes of the
negative Marangoni numbers, the neutral curve
increases for the first instability mode and decreases for
the second mode. At a certain negative value of the
Marangoni number (|Ma | ≅  120), they contact each
other, and the layer becomes unstable with respect to
oscillating perturbations. The characteristic neutral
curves are given in Fig. 4a. At Cr = 10–5, Bo = Pr = Pj =
10–1, curves (1)–(4) correspond to Marangoni numbers
Ma = 0, –100, –150, and –250, respectively. The dashed
line delineates the marginal stability to oscillatory per-
turbations. For the above-specified parameters, the
oscillatory instability in the absence of an electric field
occurs at Mam ≅  –104 and km ≅  0.1 [6]. The region of the
oscillatory instability arises in a certain range of wave
numbers at such values of the Marangoni number, at
which the values of the Ra number corresponding to the
two different instability modes become equal to one
another. Note that a similar transition from two levels
of a monotone instability to an oscillatory instability

50

25

100

150

50 75 1000–25–50
Ma 

H = 50

H = 2

Ram

Fig. 2. Variation of the critical Rayleigh number Ram as a
function of the Marangoni number for the monotone insta-
bility mode. The instability region is above the curves.
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was also observed in the case of gravitational convec-
tive instability in a two-layered systems of immiscible
liquids heated from below [9].

Figure 4b displays the wave frequencies ω as func-
tions of the wave number for the neutral curves (3) and
(4) shown in Fig. 4a. With increasing heating from the
free-boundary side, the region of the oscillatory insta-
bility expands, mainly toward the shorter wavelengths.
The frequency of oscillatory perturbations increases
with increasing Marangoni number.

6. The above calculations show that the interaction
of the electroconvective mechanism of instability of the
injection and thermocapillary types upon heating of the
system from the solid-surface side disturbs the stability
of the system toward monotonically growing perturba-
tions. At negative values of the Marangoni number
(heating from the free-surface side), the stability of the
system increases. 

With a further increase of heating from the free-
surface side, the critical values of the Rayleigh number
for the principal monotone mode of stability and for
the  instability to perturbations with a two-level cell
becomes closer to one another. At a certain negative
value of the Marangoni number, a single oscillatory
mode develops instead of two monotone instability
modes. The frequency of the oscillating perturbations
increases from zero with increasing Marangoni num-
ber. With increasing electrode spacing (width of the air
gap) at a fixed potential difference, an increase in the
threshold values of the Rayleigh number is observed.
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Fig. 3. The profiles of the vertical component of velocity for
two lower modes of the monotone instability as a function
of the coordinate z for various Marangoni numbers: (1, 2)
Ma = 0; (3, 4) Ma = –100; (5, 6) Ma = –150 at k = 4.
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Instability of a Charged Plane Interface between Two Liquids 
with Respect to the Tangential Discontinuity 

of a Time-Dependent Velocity Field
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Abstract—The differential equation that describes the evolution of perturbations of a charged plane boundary
between immiscible liquids when the upper liquid moves relative to the lower one with a time-dependent
velocity parallel to the boundary is the Hill equation. In this system, the interface can exhibit instabilities of
three types at various values of physical parameters: the Kelvin–Helmholtz, Tonks–Frenkel, and parametric
instability. When physical parameters have certain values, the interface that is unstable with respect to surface
charge and the tangential discontinuity of the velocity field across the interface can be parametrically stabilized.
© 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Analyses of the Kelvin–Helmholtz and Tonks–Fren-
kel instabilities are motivated by numerous applica-
tions in geophysics, technical physics, and chemical
technology [1–4]. One problem of current interest is the
instability of a tangential discontinuity between half-
spaces occupied by immiscible liquids with different
densities, ρ1 and ρ2, in the case when the upper liquid
moves with a velocity U = U(t) parallel to the interface
and the interface carries an electric charge character-
ized by a constant surface density σ. This problem
combines the classical Kelvin–Helmholtz and Tonks–
Frenkel instabilities with the parametric instability. It
provides an adequate mathematical and physical model
of St. Elmo’s fire, which appears during storms in the
neighborhoods of tall objects covered by water film or
droplets and exposed to winds [5].

1. The analysis presented below is conducted in the
simplest case of inviscid incompressible liquids. In this
system, the evolution of capillary waves can be deter-
mined by solving a problem for the harmonic velocity
potentials of wave motion in the upper and lower liq-
uids, Ψ1(r, t) and Ψ2(r, t), in the Cartesian coordinate
system with the plane XOY aligned with the unper-
turbed interface and the axis OZ directed downwards
(parallel to the gravitational force) [3, 6, 7]:

(1)

(2)

(3)

(4)

∆Ψ j 0; j 1 2;,= =

z ∞– Ψ1 xU t( ) const– 0;=

z ∞ Ψ2 const 0;=

z ξ x; t( ): 
∂Ψ1

∂z
---------- U

∂ξ
∂x
------ ∂ξ

∂t
------;+≈=
1063-7842/00/4501- $20.00 © 20022
(5)

(6)

where ρ(x, t) is an interface perturbation associated
with thermal capillary wave motion, which can be
treated as independent of the coordinate y without loss
of generality [3, 6, 7]; U = U(t) is the velocity of the
upper liquid relative to the lower one, uniform with
respect to x and z; the vector U defines the direction of
the axis OX; α is the surface tension of the interface;
Pσ = 4πσ2kξ is the electrostatic pressure on the inter-
face [7] associated with the surface perturbation z = ξ;
and k is the wavenumber.

The velocity potential of the liquid motion induced
by the directional motion of the upper liquid defined by
equation (7) below has the form xU(t), which is taken
into account in writing boundary condition (2). The
total potential of the velocity field in the upper liquid
has the form

where the component (r, t) describes the capillary
wave motion in the upper liquid.

To derive the differential equation that describes the
evolution of the amplitude of a harmonic of the thermal
capillary wave driven by the electric-field pressure and
the tangential discontinuity across the interface, we use
the fact that the velocity potentials in both liquids van-
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ish as the distance from the interface is increased to

infinity. According to [7–9], this implies that (r, t) ~

exp(kz) and (r, t) ~ exp(–kz). This requirement
leads to the relations

(7)

Next, we note that an interface perturbation induced
by capillary wave motion must have the periodic form

(8)

and substitute (7) and (8) into boundary conditions (4)
and (5) to obtain

(9)

(10)

where i is the imaginary unit.
Now, we substitute (9) and (10) into (6) and use lin-

ear approximation with respect to ξ to derive the
desired differential equation describing the evolution of
a capillary-wave amplitude:

(11)

When U(t) = U0 = const, this reduces to an ordinary
differential equation with constant coefficients describ-
ing the evolution of a capillary-wave amplitude under
the conditions of the Kelvin–Helmholtz and Tonks–
Frenkel instabilities. Its solution is

(12)

The criteria for both instabilities are determined by
setting the function F(k) to zero. They can be readily
obtained by means of a standard analysis (see a detailed
description in [6, 7]).
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2. To make the analysis that follows more specific,
consider a particular form of the time dependence of
the upper-liquid velocity:

(13)

Substituting (13) into (11), we obtain a differential
equation with variable coefficients that characterizes
the evolution of a capillary-wave amplitude. To find its
solutions, we perform a change of the dependent vari-
able [9]:

(14)

As a result, (11) is rewritten as

(15)

When U0 and U∗  are arbitrary nonzero quantities,
the resulting equation with time-dependent coefficients
is the Hill equation. It has either parametrically stable
or parametrically unstable (exponentially increasing
with time) solutions, depending on the relation between
the coefficients F, D, and L and the frequency ω0. In the
inviscid approximation considered here, the parametric
instability develops when the amplitude U* of the vari-
able velocity component is arbitrarily small. In a real
liquid, the parametric instability will manifest itself
starting from a certain threshold value of U* depending
on the capillary-wave wavelength and the liquid viscos-
ity [9–13].

When U0 = 0, the upper liquid executes an oscilla-
tory motion parallel to the interface. Under this condi-
tion, D(k) = 0 in equation (5). Therefore, one obtains
the Mathieu equation

(16)

The domains where it has stable and unstable solu-
tions have been analyzed and described in sufficient
detail (e.g., see [10]). A detailed analysis of the solution
to equation (15) for D(k) = 0 was presented in [9]. In
particular, these analyses have demonstrated that, when
h ! 1, the instability domains of solutions to (16) are
narrow zones in the neighborhoods of the points
defined by the equation (2ω/ω0) = n, where n is an inte-
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ger. The widths of the instability zones, being deter-
mined by the parameter h, rapidly decrease with
increasing n. In the second-order approximation with
respect to h, the first three zones of instability are deter-
mined by the relations (see [11])

Here, ω should be interpreted as a capillary-wave
frequency. When the lower liquid is treated as a viscous
one characterized by a kinematic viscosity ν, in which
case the capillary-wave decrement is given by the well-
known expression γ ≡ 2νk2 [6], there exists a threshold
value of U∗  (as indicated above), or an equivalent
threshold value of h for equation (16), which corre-
sponds to the critical condition for the parametric insta-
bility. The threshold values increase with the instabil-
ity-zone number n. For the first three zones, the critical
values of h are determined by the following relations
derived in [11]:

for the first zone,

for the second zone,

for the third zone,

Since h is treated here as a small parameter, these
relations are applicable only when the decrement γ is
small.

When U0 @ U∗ , equation (15) can be linearized
with respect to the small parameter (U∗ /U0) and, once
again, reduced to a Mathieu equation similar to (16),
but with a parametric-excitation frequency lower by a
factor of 2. In this case, the results obtained above for
solutions to (16) remain valid up to the corrections due
to the lower value of the parametric-excitation fre-
quency.

When U∗  = 0 (i.e., when the relative velocity of the
upper liquid is constant), the coefficients D and L van-
ish, (15) becomes an ordinary differential equation, and
its solution, which can be used to determine the critical
conditions for the Kelvin–Helmholtz and Tonks–Fren-
kel instabilities corresponding to F(k) ≤ 0 (ω2 ≤ 0) is
identical to (12) by virtue of (14).
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In the general case, when neither U0 nor U∗  van-
ishes, solutions to the Hill equation (15) are also unsta-
ble in the greater part of the domain ω2 ≤ 0 (where cap-
illary waves are essentially unstable in the absence of
parametric excitation, because the Kelvin–Helmholtz
and Tonks–Frenkel instabilities develop when ω2 ≤ 0).
Nonetheless, there exists a domain of stable solutions
to equation (15) [14] in the vicinity of the origin in the
coordinate plane (U∗ , ω2) when ω2 ≤ 0. The capillary
waves that are unstable in the Kelvin–Helmholtz and
Tonks–Frenkel sense are parametrically stabilized in
this domain. This observation suggests that the unstable
behavior can be controlled and underlines the impor-
tance of the problem analyzed here.

CONCLUSION

When a tangential discontinuity of velocity across a
charged interface between two liquids has a time-depen-
dent component, the domain of instabilities that can
develop in the system may expand, and the critical condi-
tions for the instabilities can be controlled through para-
metric damping of unstable capillary waves.
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GAS DISCHARGES, PLASMA
Application of Wide-Aperture Resonators 
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of a Tokamak Plasma by the Laser Photoionization 
Technique
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Abstract—To increase the sensitivity of the photoionization diagnostics, efficient laser systems for plasma
probing are developed based on stable resonator configurations with small diffraction loss. The systems meet
the requirements for multipass intracavity probing and make it possible to increase the resonator length to con-
form to a large size of the tokamak chamber. Demonstration experiments were carried out in the FT-1 tokamak.
The results obtained confirm the possibility of reliable measurements of the hydrogen neutral density in the
range 108–109 cm–3 in tokamak plasmas. © 2000 MAIK “Nauka/Interperiodica”.
1. DESIGN PRINCIPLES OF LASER 
DIAGNOSTIC SYSTEMS

In previous papers [1, 2], we presented experiments
with the use of a new diagnostic technique based on
laser photoionization of excited hydrogen atoms in a
tokamak plasma. For further development of these
diagnostics, it is necessary to improve the accuracy of
measuring a weak light signal produced by photoion-
ization in the presence of the intrinsic plasma radiation,
which is attained by increasing the probing energy. It is
worthwhile to increase the energy even under the satu-
ration conditions, when the recorded photoionization
signal becomes independent of the probing power. In
this case, the sensitivity of the diagnostics can be
increased by increasing the generation duration, the
number of generated pulses, and the number of emit-
ting atoms in the probing plasma volume due to an
increase in the diameter of the laser beam. To suit these
requirements, laser systems based on resonators with
small diffraction loss and tailored for diagnostic exper-
iments in tokamaks were developed.

The development of these systems is based on two
principles. The first principle is a multipass plasma
probing with the use of a pair of mirrors situated on
each side of the discharge chamber of a tokamak. In
this case, the probing energy increases with the number
of passes. The second principle is to introduce a plasma
under study into the closed laser cavity. This allows us
to obtain a low generation threshold because of small
end loss and, consequently, to increase the generation
energy. Both principles can be realized separately;
however, the most effect can be attained if these princi-
ples are used simultaneously. It is suggested that there
are at least two coupled resonator sections, one of
which is intended to contain the active medium, and
1063-7842/00/4501- $20.00 © 20025
another one is intended to contain the diagnosed
plasma. Such a separation of the resonator to the sec-
tions coupled with the help of a matching lens ensures
the generation regimes with smallest loss. The higher
order modes provide the worst confinement of a beam.
As a result, the diffraction loss per pass has a sharp
mode boundary, which depends on the Frenel number N.
For the confocal configuration, the loss near the bound-
ary mode j0 can be presented as a function of the

Fresnel number  [3]. For N @ 1, the loss
almost vanishes as soon as the length of the resonator
section reduces by half and, accordingly, the Fresnel
number increases by half. Thus, the increase in the
number of sections, provided that the total length of the
composite resonator remains the same, leads to the pro-
portional increase in the Fresnel number for each sec-
tion and is beneficial for energy confinement, espe-
cially, in the case of an inhomogeneous active medium.

2. ARRANGEMENT AND TEST RESULTS 
OF DIAGNOSTIC LASER SYSTEMS

2.1. System with a Semiconfocal Resonator

The basic requirements of the systems with multi-
pass intracavity plasma probing are that they should
allow increasing the resonator length to conform to a
large size of the tokamak discharge chamber and they
should have a low generation threshold. These two con-
flicting requirements can be satisfied if most stable res-
onator configurations close to the confocal ones [4] are
used. Two versions of the system in which the tokamak
plasma is situated inside a long semiconfocal resonator
are shown in Fig. 1. Here, the role of a spherical mirror
is played by a catadioptric system consisting of a flat

e
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mirror 1 and a matching lens 4. An active element from
∅ 45 × 300 neodimium phosphate glass and a phototro-
pic shutter with an initial transmission of nearly 90%
are positioned between the lens and the mirror. By
varying the focal length of the matching lens, it is pos-
sible to vary the system configuration over a wide range
from the concentric to the flat one. The maximum gen-
eration occurs when the confocality conditions are
accurately fulfilled, and the focus of the catadioptric
system is made coincident with a flat mirror 6. The
scheme of the semiconfocal resonator with a total
length of ~10 m, which is shown in Fig. 1b, meets the
requirements for the multipass plasma probing. This is

(b)

(a)

1
2

3
4 5

6

6
5

74
321

Fig. 1. Optical scheme of the semiconfocal resonator (a) in
the absence and (b) in the presence of the multipass probing
system: (1) flat mirror, (2) phototropic shutter, (3) active ele-
ment, (4) objective, (5) plasma volume, and (6, 7) flat mir-
rors.
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Fig. 2. Total probing energy E2 for (1) 4, (2) 6, and (3) 8
passes of the beam through the plasma volume versus the
pumping energy E1.
achieved by zigzag ray trajectories inside the resonator.
In the figure, six (three direct and three reverse) passes
of the ray through the plasma volume are shown; how-
ever, the system was easily adjusted for four and eight
passes. In the confocal scheme, we obtained the multi-
pulse generation regime, in which the number of pulses
in the train during the pumping was above 10 and the
energy of each pulse was up to 6.5 J. In this case, the
individual pulses were amplitude modulated with a
period of ~70 ns in accordance with the time of phase-
conjugation of the wave front in the resonator. The
number of the amplitude-modulation periods reached
30 during the pulse of ~2 µs full duration. Such a great
number of the laser beam passes through the resonator
is evidence of a low level of divergence loss. The low
loss level is also evidenced by a low generation thresh-
old. Compared to a resonator of flat configuration used
in the first experiments [1, 2], the threshold pumping
energy reduced from 15 to 2.7 kJ. However, a deterio-
ration was observed in energy confinement if the reso-
nator length was longer than 10 m, which corresponded
to more than 6 passes of the probing beam through the
plasma. This effect is more typical for the regimes with
a high pumping power, when thermal distortion leads to
violation of the confocality condition. It is seen from
Fig. 2 that, for the number of passes between 4 and 6,
the gain in the total pumping energy is about 30%. As
the number of passes is further increased (to eight),
even a somewhat decrease is observed in the total prob-
ing energy. Thus, the increase in selective loss due to
thermal aberrations did not allow us to efficiently use
the scheme when the number of the probing-beam
passes was increased above six. Nevertheless, in spite
of the limitation of the number of passes, the presented
scheme of the semiconfocal resonator has an evident
advantage over the flat resonator configuration with
respect to the values of the threshold pumping energy
and the total energy of plasma probing.

2.2. System with a Composite Confocal 
Resonator 

The schemes of resonators shown in Figs. 3 and 4
use the principle of sectioned composite resonator. Fig-
ure 3 illustrates the scheme of coupling of two resona-
tor sections. If the focus of a lens 2 coincides with a flat
mirror 3, then the position of waists is uniquely deter-
mined by the focal lens planes [5]. Minimum loss in the
section I containing a plasma is attained if we form the
confocal configuration (R0 = 2L0) by making the
focuses of the spherical mirror 1 and the lens 2 coinci-
dent.

Writing the confocality parameter [3] of a Gaussian
beam in terms of the curvature radii of wave fronts at
the spherical mirror (section I) and the lens (section II),
we obtain the coupling equation for the section lengths
and the corresponding radii of curvature

(1)b 2 L1 R1 L1–( ) 2 L0 R0 L0–( ) 2L0.= = =
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In the special case of equal lengths L0 = L1 = f, equa-
tion (1) has a unique solution R1 = 2L1, and the config-
uration becomes symmetric if the field distribution in
all three resonator sections is exactly the same. In the
case L0/L1 @ 1 or L0/L1 ! 1, the solutions for section II
correspond to either the flat or concentric resonator
configurations. The ratio of the beam diameters at both
mirrors and in the waists can be easily calculated. From
the known law of propagation of a Gaussian beam [3]
and the lens formula, we can derive the ratio of the
beam diameters for any pair of the resonator compo-
nents. Thus, if the beam cross size is limited by an aper-
ture diaphragm d at the flat mirror 1, the beam diame-
ters at the other components are equal to D =

d , d0 = dL0/f, and D0 = d L0/f, respec-
tively. The preference should be given to the configura-
tion in which the beam diameter best matches the lim-
iting diaphragms. Tokamak windows situated inside the
section I and the working diameter of the active ele-
ment situated in section III play the role of such dia-
phragms.

For testing, we prepared a scheme, presented in
Fig. 4, with a coupling lens of focus f = 2 m and a spher-
ical mirror with a curvature radius R = 3.3 m. An active
element 3 and a phototropic shutter 2 were positioned
near a flat mirror 1. The total length of the composite
resonator, with allowance for the refraction of the
active medium, was 5.76 m. In our case, the beam was
limited by the size of the active element d = 45 mm, and
the beam diameters at the lens, in the waist, and at the
spherical mirror, according to the above expressions,
were equal to D = 58 mm, d0 = 37 mm, and D0 = 53 mm.

In the optical scheme shown in Fig. 4b, there is an
additional component, which represents a flat mirror 7
used for multipass plasma probing. The flat mirror is
placed in the focal plane of a spherical mirror 6, thereby
forming an additional section representing a semicon-
focal resonator. The multipass system is adjusted for
four additional passes of the probing beam through the
plasma volume. Unlike in the configuration presented
in Fig. 1b, the implementation of the multipass probing
in this sectioned system does not involve a decrease in
the Fresnel number and diffraction loss. The loss
increases primarily due to the additional optical com-
ponents and can be reduced to minimum by employing
highly reflecting coatings and antireflection lens optics.
This is confirmed by the results of measurements of the
number of generated pulses for various values of the
pumping power (Fig. 5). As is seen, the presence of the
multipass system has little effect on the number of gen-
erated pulses and, consequently, does not lead to a
noticeable increase in energy loss. As a result, the mul-
tipass probing gives the evident gain in the plasma-
probing energy. The saturation observed in the probing
energy at high pumping energies is a consequence of
the formation of a thermal lens that leads to the viola-
tion of the confocality condition.

1 L0 f⁄( )2
+ 2
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The scheme demonstrated the low level of selective
loss, which resulted in the low value of the threshold
pumping energy ~1.9 kJ. This made it possible to real-
ize the multipulse regime with a great number of gen-
erated pulses at sufficiently low values of the pumping
energy. For a given resonator length, it is possible to
vary the diameters of the beam at the components of
this system over a wide range without decreasing the
generation energy and, thereby, to achieve the optimum
filling of the active element and the tokamak windows
by radiation.

3. DEMONSTRATION EXPERIMENTS
IN A TOKAMAK

Demonstration experiments were carried out in the
FT-1 tokamak (R = 62.5 cm, a = 15 cm) under the stan-
dard discharge conditions with the use of the scheme of
recording the emission of the Hβ line, presented in the
previous papers [1, 2]. The scheme of intracavity mul-
tipass plasma probing with the use of the semiconfocal
resonator with a total length of ~10 m is shown in

L1 = fL2 = f L0

d

R2 R1 R0

D0
D

3 2
1

II IIII
d0

(a)

1 2 3 4 5 6

(b)

6574321

Fig. 3. Composite resonator: (1) spherical mirror, (2) lens,
and (3) flat mirror; R0 is the curvature radius of the spherical
mirror, R1 and R2 are the curvature radii of the beam wave
fronts on the right and left from the lens, respectively; L0,
L1, and L2 are the lengths of the resonator sections I, II, and
III, respectively; D and D0 are the beam diameters at the
lens and the spherical mirror, respectively; d and d0 are the
beam-waist diameters, and f is the focal length of the lens.

Fig. 4. Optical scheme of the composite confocal resonator
(a) in the absence and (b) in the presence of the multipass
probing system: (1) flat mirror, (2) phototropic shutter,
(3) active element, (4) lens, (5) plasma volume, (6) spherical
mirror, and (7) flat mirror.
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Fig. 6. Here, it is also shown how the tokamak windows
with a 20 × 40 mm cross section are filled by radiation
for 6 beam passes through a plasma. In spite of an addi-
tional nonselective loss arising because the tokamak
chamber is placed inside the resonator, we obtained the
high parameters of probing radiation. At a moderate
pumping energy of 15 kJ, the number of pulses in the
train was N ≥ 10, and the pulse energy in a single was
5–6 J. In Fig. 7, the peak value of the power density of
probing radiation and the total probing energy in the
multipass system are shown as functions of the pump-
ing energy. The observed saturation of the power den-
sity corresponds to the increase in the number of gener-
ated pulses. The power-density level attains
6.5 MW/cm2, which markedly exceeds a saturation
value of ~2 MW/cm2 under the discharge conditions of
the FT-1 tokamak [2]. The obtained generation param-
eters significantly improve the diagnostic potentialities
of the method in comparison with the previous experi-
ments [1, 2]. In the previous measurements, the energy
of individual pulses was 3–5 J for a maximum pumping
energy of ~40 kJ. In addition, the duration of probing
pulses increased by more than twofold and reached
~1 µs at a half-maximum.

An increase in the duration of probing can substan-
tially increase the sensitivity of the diagnostics. As a
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Fig. 5. (a) Number of generated pulses and (b) total probing
energy for the composite confocal resonator in the presence
(dashed curve) and absence (solid curve) of the multipass
system.
result, it became possible to record signals for each
pulse of the train of laser pulses in the presence of the
plasma noise. This is seen from Fig. 8, in which the
oscillograms of the photoionization signals corre-
sponding to the sequence of laser pulses generated dur-
ing the pumping time are presented. These results of
measurements correspond to the plasma region in
which the density of unexcited hydrogen atoms are
below 1010 cm–3. The averaging of signals over a series
of pulses in the train allows us to carry out reliable mea-

A A

A–A

1 2 3 4

5

6
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9

Fig. 6. Schematic of the experiment in the FT-1 tokamak
with the use of a semiconfocal resonator: (1) flat mirror,
(2) phototropic shutter, (3) active element, (4) objective,
(5) deflecting prism; (6, 7) flat mirrors, (8) plasma, (9) light-
collecting system; A–A is the projection of the beam cross
section onto the center of the plasma column for 6 passes of
plasma probing.
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Fig. 7. (1) Power density of probing radiation and (2) prob-
ing energy as functions of the pumping energy.
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surements in the density range 108–109 cm–3 typical of
the central region of the plasma column.

4. CONCLUSION

A new diagnostic system is developed for measur-
ing the neutral component of tokamak plasmas by the
laser photoionization technique. The testing experi-
ments carried out in the FT-1 tokamak demonstrated
the advantage of the laser systems based on the confo-
cal resonator configurations over the flat resonator con-
figuration with respect to the most important parame-

1 µs

Fig. 8. Oscillograms of the photoionization signal.
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ters. Since the confocal resonators have a small diffrac-
tion loss, less stringent requirements are imposed on
the inhomogeneity of the active element. As a result,
the scheme becomes more stable against thermal opti-
cal distortions and misalignment. In the experiments, a
marked gain was obtained in the threshold pumping
energy and the duration and energy of probing pulses.
This makes it possible to carry out reliable measure-
ments in the density range 108–109 cm–3 typical of the
central region of the plasma column.
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Mesoscopic- and Macroscopic-Level Plastic Deformation 
and Fracture of Ion-Modified Ni50Ti40Zr10 Alloy 

with the Shape-Memory Effect
L. L. Meisner, V. P. Sivokha, Yu. P. Sharkeev, S. N. Ku’lkov, and B. N. Gritsenko

Tomsk Institute for Physics of Strength and Materials Science, Siberian Division, 
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Abstract—The influence of the ion-modified surface layer on the ductility, shape-memory effect, and meso-
scopic structure of the surface of fracture was studied for Ni50Ti40Zr10 alloy. It was found that ion implantation
increases the microhardness of the surface layer about 1 µm thick but makes the bulk of the alloy more ductile.
The mesoscopic structures of the fracture surfaces of the initial and implanted specimens suggest the formation
of a specific layer immediately under the irradiated surface. Its thickness is a multiple of the grain size of the
B2 phase. The mesorelief of this layer and its ductile properties differ from those of the nonirradiated speci-
mens. After such a surface treatment, the shape memory effect parameters do not degrade, and the temperature
cycling resistance is even improved. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION
It is well known that deformation in alloys with the

shape memory effect depends largely on the ductility of
the initial phase. In a low-ductility material, the forma-
tion of martensite due to stress or temperature varia-
tions, as well as the reorientation or retwinning of mar-
tensite grains, may give rise to grain-boundary crack-
ing, lower the resistance to temperature cycling, and
cause premature fracture [1]. The initial ductile param-
eters of a material can be changed by modifying the
microstructure and chemical composition of the sur-
face.

High-dose implantation of ions into the surface is an
efficient technique to strengthen metallic materials.
The modified phase and structure of the near-surface
layers change such mechanical properties of the irradi-
ated materials as microhardness, wear resistance, and
coefficient of friction. Such a treatment, impeding the
formation and propagation of microcracks, signifi-
cantly affects the development of plastic deformation
and failure of the materials on all characteristic scales
(i.e., on micro-, meso-, and macroscopic levels) [2].

The deformation of alloys with the shape memory
effect (SME alloys) under loading has been extensively
studied on the microscopic level [3–5]. The formation
of a thin modified near-surface layer in these alloys
would be expected to produce a significant effect both
on the overall ductility (macroscopic level) and on their
ductile properties on smaller, micro- and mesoscopic,
levels. In the literature, there are no data as to how thin
modified near-surface layers influence the evolution of
plastic deformation and fracture of SME materials on
different scales. This paper is aimed at studying the
effects of the modified surface layers on the ductility,
1063-7842/00/4501- $20.00 © 20030
SME, and postfracture evolution of the Ni50Ti40Zr10
strained structure. It is also important to reveal the char-
acteristic features of the strained structure on different
scale levels.

MATERIALS AND EXPERIMENTAL 
TECHNIQUE 

The choice of Ni50Ti40Zr10 alloy was dictated by the
following: (1) in this alloy, martensite transformation
responsible for the shape-memory effect proceeds
according to the simple scheme B2  B19', (2) the
characteristic temperatures of the martensite transfor-
mation and shape-memory effect lie within the temper-
ature ranges convenient for study, and (3) the alloy is
promising for applications. Earlier [4, 5], we studied in
detail “high-temperature” SME Ni50Ti50 – xZrx alloys. It
was found that the fundamental inelastic properties of
this system are the most pronounced for the composi-
tion Ni50Ti40Zr10 and that the alloy offers high work-
ability.

As an implant, we chose molybdenum, which forms
a continuous series of solid solutions with β-Ti titanium
[6] and is known as one of the best plasticizers of tita-
nium-based β alloys [7].

The preparation of ingots and specimens are
described in [4]. In our work, the specimens were nee-
dles (average size 1 × 1 × 20 mm) and flat platelets (1 ×
10 × 20 mm). Their surfaces were electrolytically pre-
polished in a hot 89 ml H2O + 2 ml HF + 2 ml HNO3
solution.

The ion processing of the surface was performed
with a Diana-2 vacuum arc pulsed ion source. Molyb-
000 MAIK “Nauka/Interperiodica”
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denum ions were implanted at an accelerating voltage
of 50 kV with a pulse repetition rate of 50 pulses per
second. The first and second rated implantation doses
were 1017 and 5 × 1017 ion cm–2, respectively. During
the implantation, the specimen temperature did not
exceed 100–150°C. Two side faces of the needles and
one side of the platelet were treated simultaneously.
The needles were clamped into a package so as to pro-
vide complete processing of their side faces.

The mechanical properties were studied with a
Reverse Torsion Pendulum setup in the torsion mode.
This technique makes it possible to study the mechani-
cal properties of surface layers, which are the first to
deform during torsion. Three groups of needlelike
specimens (three per group) were tested: with the initial
(unmodified) surface, with the side surfaces irradiated
by the first dose, and with the side surfaces irradiated
by the second doses. The test temperature was main-
tained above the point of direct strain martensite trans-
formation (Md) and was equal to 170°C. This allowed
us to maintain the single-phase B2 state in the speci-
mens and eliminate the effect of martensite-transforma-
tion-related inelastic components on deformation.

In the experiment, a needle was placed into the setup
and loaded (twisted through a certain fixed angle. Then,
the specimen was unloaded, and the angle set after par-
tial stress relief was measured. The general, γG, and
residual, γR, strains were calculated from the relation-
ship

γ d∆n
2lR
----------= ,

380

2.0
h, µm

1.81.61.41.21.00.80.6

400

420

440

Hµ, åê‡

1

2

3

Fig. 1. Alloy microhardness versus indentation depth: (1)
starting specimen, (2) first-dose, and (3) second-dose
implantation.
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where d and l are the mean values of the specimen
diameter and length, respectively; R ≡ const is a con-
stant accounting for the setup geometry; and ∆n is the
difference between the maximum twist and that set in
after unloading (in the units of the setup scale).

We repeated the loading and unloading procedures,
increasing the twist to specimen failure.

The microhardness of the starting and irradiated
alloys was measured on the platelets by a PMT-3M1
instrument. The indentation load was varied within the
range 0.02–0.3 N.

To determine the grain size in the starting material,
the platelets were ground, electrolytically polished, and
then ion-etched in a VUP-5 general-purpose vacuum
unit. The surface microstructure and the grain sizes
were studied with a Neofit-32 optical television com-
plex. The surfaces of fracture were examined by an
SEM-200 scanning electron microscope.

EXPERIMENTAL RESULTS

In the initial state, the alloy quenched from 800°C
had the following phase composition: ~90 vol % B2 +
~10 vol % (B19' + secondary phases). The Vickers
microhardness of the alloy was about 40 kg/mm2, and
the mean grain size of the main B2 phase was 30–
40 µm.

The implantation of molybdenum ions significantly
improved the surface microhardness of the Ni50Ti40Zr10
alloy as compared to that for the initial state (Fig. 1). At
small indentation loads, an increase in the microhard-
ness is related to the contribution from the near-surface,
irradiated layers. At higher loads (≥0.1 N), the contri-
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Fig. 2. Residual plastic strain versus applied load for load-
ing–unloading cycles under torsion: (a) general view and (b)
initial portion of the curves (small loads). For (1)–(3), see
Fig. 1.
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bution from the lower layers is dominant. The micro-
structure of the latter must differ from that in the initial
state [2]. Owing to the “long-range interaction effect,”
a specific microcrystalline state with a modified dislo-
cation structure is formed in these layers. In such a
zone, the ductility, strength, microhardness, etc.,
change. According to the Hµ(h) plots presented in
Fig. 1, the depth at which the modified microcrystalline
layer forms in Ni50Ti40Zr10 is about 1 µm and does not
depend on the implantation dose. At loads exceeding
0.2 N, the microhardness is determined mainly by the
still lower layers with the unchanged microscopic and
mesoscopic structures rather than by the doped layer
and the layer with the modified microstructure. In this
situation, the Hµ(h) plots for the irradiated and nonirra-
diated specimens coincide (Fig. 1).

The results of the torsion tests as the strain (γR)–
stress (γG) curves are presented in Fig. 2. Note that the
experimental values of γR and γG coincide to within the
experimental error in all the tests both for the starting
and for the irradiated specimens. It turned out that the
γR(γG) curves for the starting and irradiated specimens
run in a similar way, except for the extreme regions (the
beginning and the end of the tests for each of the
groups)—see Fig. 2a. In the irradiated specimens, the
residual strains appear at the lower applied load and the
rate of their accumulation in the low-load region (at γG

ranging from zero to about 5%) is higher than in the
starting specimens (Fig. 2b). For all types of the speci-
mens, the accumulation of residual strains in this load
range is a nonlinear process. When γG exceeds 5%, all
the γR(γG) curves for the starting and irradiated speci-
mens coincide and the residual strains are accumulated
linearly. An important feature of the γR(γG) curves is the

significantly different maximum values, , of the
residual strains accumulated before fracture (these val-
ues for the three kinds of surface processing are indi-
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543210
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Fig. 3. Maximum plastic deformation  to fracture in

the Ni50Ti40Zr10 alloy versus ion-beam intensity.

γR
max
cated by arrows in Fig. 2a). The values of  for the
irradiated specimens turned out to be higher than those
for the nonirradiated ones by 10% on average. The
larger values were found for the specimens irradiated
by the first dose (Fig. 3). Thus, the γR(γG) curves sug-
gest that the accumulation of the residual strain after
the implantation proceeds in the same manner. At the
same time, the strain ranges where γR ≥ 0 expand
toward lower values of γG at small loads and toward
higher values of γG at large loads. These results imply
that the ductility of the irradiated specimens becomes
appreciably higher as compared to the starting speci-
mens.

The surface of fracture of the starting specimen sug-
gests that they underwent plastic intergranular fracture.
Figure 4 clearly shows pitting in the center of the spec-
imen, which is typical of such fracture, and the evi-
dence of strong local deformation of the material along
the interfaces and grain boundaries. In the near-surface
regions, the image is more smeared owing to the high
ductility of the material.

In the central parts of the fractograms taken from the
irradiated (Figs. 5a and 6a) and starting (Fig. 4) speci-
mens, the surface relief is almost identical. As in the
former case, the irradiated specimens, exhibiting high
ductility, underwent plastic intercrystalline fracture
with the formation of the typical relief, once irrevers-
ible deformation had exceeded 50%. An important fea-
ture of all of the irradiated specimens is the net-shaped
relief due to brittle fracture of the B2 phase grains
because of cleavage along the crystallographic planes
(Figs. 5b and 6b). This net-shaped relief appears along
the specimen perimeter immediately under the modi-
fied surface. In the specimens irradiated by the first
dose, the width of the brittle fracture zone is nearly
equal to the grain size of the B2 phase (about 40 µm).
In the case of second-dose implantation, this zone is
wider, covering three or four layers of grains. Thus, the

γR
max

250 µm

Fig. 4. Surface of fracture of the starting alloy.
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extent and properties of the region formed under the
modified microstructural layer cannot be treated on the
microlevel. On the other hand, this region does not
embrace yet the whole specimen and therefore can be
referred to as a mesostructural deformation layer in
ion-doped Ni50Ti40Zr10 alloy (following the concepts
put forward by Panin [8]). The mechanical properties of
such a mesostructural layer (microhardness, ductility,
and fracture surface morphology) are qualitatively dif-
ferent from those of the bulk material. The depth of this
layer depends on the irradiation dose.

The SME parameters in the starting and irradiated
specimens were similar. The SME temperature range is
also the same. The amount of inelastic strain also
remains unchanged and attains the maximum possible
value for the given composition (about 10–11%) in all
the specimens under study. However, the modified
specimens fail due to temperature cycling at stresses

100 µm

50 µm

(a)

(b)

Fig. 5. Surface of fracture of the irradiated alloy: (a) central
part of the section and (b) region under the side surface
modified by the first dose.
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exceeding the applied load by 10–15%. The general
strain accumulated at these loads is compensated for by
the plastic component.

CONCLUSION

Ion modification significantly improves the general
ductility of the material. At the early stages of deforma-
tion in the modified specimens, the surface layers are
involved in the process of plastic deformation at lower
loads. The ductility of the whole material increases
because of the modified strained structure, which forms
in these layers and prevents cracking. The existence of
the mesostructural strained layer with specific ductility
that lies immediately under the modified surface fol-
lows from the fractograms taken of the alloy. The struc-
ture and properties of such a layer, being one grain
thick after the first dose and three or four grains thick
after the second dose, vary. This suggests that a grain of

(a) 200 µm

100 µm(b)

Fig. 6. Surface of fracture of the irradiated alloy: (a) central
part of the section and (b) region under the side surface
modified by the second dose.
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the initial B2 phase can take part as a whole in an ele-
mentary act of plastic deformation and be the main
strained element of Ni50Ti40Zr10 alloy on the mesos-
copic structural level. The enhanced ductility of the ini-
tial B2 phase after Ni50Ti40Zr10 surface modification
improves the resistance to fracture due to high-load
temperature cycling without affecting the SME param-
eters.
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Energy Exchange between Four Copropagating 
Light Waves under Conditions of Diagonal Bipolar 
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Abstract—Stationary energy exchange between four copropagating light beams in a medium with diagonal
bipolar nonlinearity is studied. This type of nonlinearity is common in nematic liquid crystals. Solutions of
underlying Hamilton’s equations are thoroughly analyzed with the phase-plane approach for different wave-
vector mismatches. The existence of an unstable eigenmode is demonstrated geometrically. This mode results
from the considerable difference between the temperature dependences of the ordinary and extraordinary
refractive indexes. Exact analytic solutions related to various regions of the phase plane are presented. Optical
switching is demonstrated to be feasible under the stated conditions. It is found that the energy exchange essen-
tially depends on the input phase mismatch. Intensities required for observing the predicted effects are evalu-
ated. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Optical switching, bistability, multistability, modula-
tion instability, etc., have become burning issues. Pro-
duced by the interaction between intense laser radiation
and matter, nonlinear optical phenomena are important
in terms of both fundamental science and engineering. In
all probability, they will provide practical means of con-
trolling light with light, thus contributing to the progress
in optical communications and computing [1, 2].

Quite a few studies, both theoretical and experimen-
tal, in the field of optical switching have been reported.
Without intending to give a comprehensive overview of
them, we cite a number of relevant interactions in vari-
ous media where the effect occurs: wave interactions in
tunnel-coupled waveguides [3, 4], the nonlinear propa-
gation of differently polarized waves through a single-
mode birefringent fiber or crystal [5], wave interactions
at two or three different frequencies under second-
order nonlinearity [2, 6, 7], and two-, three-, or four-
wave mixing under third-order nonlinearity [8–14]. In
media whose third-order susceptibility is governed by
the nonlinear electron response to an electromagnetic
wave, the last-named interaction offers a switching
time (the transition time of nonlinear response) of an
order of 10–13 s. On the other hand, the light-beam
intensity necessary for optical switching to be observ-
able is so large that it may cause optical damage of the
sample. In conventional nonlinear optical media, the
input power can be lowered by increasing the interac-
tion length to centimeters or even hundreds of centime-
ters. This makes the practical implementation of this
effect very expensive.
1063-7842/00/4501- $20.00 © 20035
Recently, interest in nonlinear phenomena in liquid
crystals has gained momentum [15–20]. It has been
found that the mesophases may give dramatically high
values of the third-order effective susceptibility χ(3).
Nematic liquid crystals are remarkable in this respect.
Compared to isotropic liquids, the susceptibility of
nematics may be larger by six to ten orders of magni-
tude. Such a strong third-order nonlinearity may stem
from orientation [21] or photoconformation [22]
effects. Thermal effects [23, 24] are also important,
since the refractive indexes of nematics are very sensi-
tive to temperature variations.

Due to very high third-order susceptibilities, many
well-known nonlinear phenomena, such as self-focus-
ing, stimulated light scattering, and four-wave mixing
(FWM), can be obtained in spite of a very small inter-
action length, available in optical experiments with liq-
uid crystals. As is known, it is strongly dependent on
the orientation inhomogeneity of the samples and is
significantly limited by severe light scattering in the
mesophase; in practice, the interaction length is shorter
than 100 µm. Nevertheless, under certain conditions,
the nonlinear phenomena are feasible at a very low
energy density of the incident radiation, such as that
provided by milliwatt cw gas lasers. This fact both sim-
plifies the design of the experimental setup and facili-
tates creating optical devices with extremely low
switching powers.

This paper presents a detailed study of stationary
energy exchange between four light beams under diag-
onal bipolar nonlinearity [25]. It was demonstrated [26]
that such a nonlinearity may be associated with a ther-
mal effect, namely, the dissipation of light energy in
nematic liquid crystals. We will give both the phase
000 MAIK “Nauka/Interperiodica”
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portraits and the exact analytic expressions for solu-
tions to a system of FWM equations at different wave-
vector mismatches.

BASIC EQUATIONS

Liquid crystals are known to have a remarkably
strong dependence of the refractive indexes on temper-
ature: ∂n||/∂T ≈ –(4–6) × 10–3 deg–1, whereas ∂n⊥ /∂T is
positive but more than 4 or 5 times smaller in magni-
tude. Therefore, light-dissipation nonlinearities become
significant once the intrinsic absorption of the liquid
crystal has attained a high level [21, 25, 26]. In a homo-
geneous nematic, a temperature variation causes local
variations in the refractive indexes n|| and n⊥ , but the
orientation of the director remains uniform.

The permittivity tensor  of a liquid crystal is usu-
ally a uniaxial tensor of the form

(1)

where εa = ε|| – ε⊥  is the permittivity anisotropy, ni are
the Cartesian components of the unit vector aligned

with the optical axis, ε⊥  = , and ε|| = .

For the principal components of , the local varia-
tions due to light absorption are δε⊥ , || = ∂ε⊥ , ||/∂TδT,
where δT is the variation of the sample temperature.

The temperature field evolves according to the dif-
fusion equation

(2)

where ∆ is Laplacian, σ is the absorption coefficient
(cm–1), ρCp is the heat capacity per unit volume
(erg/cm2 deg), χ ~ 10–3 cm2/s is the thermal diffusivity,
Γ–1 is the temperature transition time when external
heat sources are applied to the sample, Γ ~ χ(a–2 +
(π2/L2)), a is the beam diameter; L is the cell length, and
|E |2 is the intensity of the interacting light waves. The
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Fig. 1. FWM geometry. The angles δ and δ' are due to bire-
fringence.
cell is assumed to easily dissipate heat through the
walls, which is allowed for by the term ΓδT if heating
is uniform.

Figure 1 shows the energy exchange geometry. Two
elliptically polarized waves are incident on a uniaxial
nematic liquid crystal, where each of them splits into
linearly polarized waves of the ordinary and the
extraordinary type. We thus have four frequency-
degenerate light waves propagating in the z direction.
The optical axis of the crystal is oriented in the y direc-
tion. The extraordinary waves propagate at the angles Θ
and Θ', whereas the directions of the ordinary waves are
rotated through the angles δ and δ', respectively. The
total wave amplitude inside the crystal is

(3)

where ex , ey, and ez are the Cartesian unit vectors; e1 and
e3 are the polarization unit vectors of the extraordinary
waves; E2 and E4 are the ordinary-wave amplitudes;
and E1 and E3 are the extraordinary-wave amplitudes.

Over the length λ = (2π)/k, the amplitudes E1, E2,
E3, and E4 vary far more slowly than exp(ikr).

Light dissipation results in the modulation of the
refractive indexes. In what follows, we neglect the con-
tribution from the z-components of the extraordinary
waves, assuming Θ and Θ' to be small. In the context of
this study, only the diagonal components of the permit-
tivity tensor are variable: δεxy = δεyx = 0, δεxx = δε⊥ , and
δεyy = δε|| [25]. We also assume that the tensor is much
less sensitive to director rotation than to light dissipa-
tion. Substituting (3) into (2), we obtain an approxi-
mate solution as follows:

(4)

where

(5)

Here, Γo = χ(k2 – k4)2 and Γe = χ(k1 – k3)2. This approx-
imate solution of (2) is valid under the assumption that
Γ/Γo , Γ/Γe ! 1 (the spatial period is much less than the
length of the medium or the beam radius) and that the
light amplitudes are constant.
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Assume |k2 – k4 | and |k1 – k3 | ! |k1|, |k2 |, |k3 |, and
|k4 |. Then, time-independent FWM equations have the
form

(6)

(7)

(8)

(9)

where Θ0 = Ao(|E2 |2 + |E4 |2) + Ae(|E1|2 + |E3 |2); Dkz =
(k2 + k3 – k1 – k4)z is the projection of the wave-vector
mismatch onto the propagation direction (z-axis); λ is
the wavelength of the interacting waves;

σ = (σo + σe)/2 is the mean absorption coefficient; Ao =
σono/σ, Ae = σene/σ, bo = Γ/Γo, and be = Γ/Γe; and Co

and Ce are coupling constants. The coefficients Ao, Ae,
bo, and be are real. The difference between Ao and Ae

stems from the absorption dichroism of the ordinary
and extraordinary waves. The coefficients bo and be

determine the efficiency of recording stationary ther-
mal gratings as against the case of uniform heating
(bo , be < 1). The bipolar property implies that Co > 0
and Ce < 0; hence Co = |Co | and Ce = |Ce |.

FWM in bipolar-response media was examined in
[25], where the conditions for efficient energy
exchange between the waves were analyzed in terms of
recording of static thermal gratings under zero pump
depletion. Our report presents a thorough theoretical
study of the energy exchange in view of input condi-
tions, specifically, the input phase mismatch and the
distribution of the input total power over the light
waves. For example, under certain conditions, a seem-

dE1

dz
---------

iπCe

λ Θcos
2

------------------ Θ0 Aebe e1e3( ) E3
2

+( )E1 Θcos
–=

+ Aobo Θ'E2E3E4* iDkzz( )
expcos ,

dE2

dz
---------

iπCo

λ Θ δ+( )cos
------------------------------- Θ0 Aobo E4

4
+( )E2

=

+ Aebe e1e3( )E1E3*E4 i– Dkzz( )exp 
 ,

dE3

dz
---------

iπCe

λ Θ'cos
2

-------------------- Θ0 Aebe e1e3( ) E1
2

+( )E3 Θ'cos
–=

+ Aobo ΘE1E2*E4 i– Dkzz( )expcos 
 ,

dE4

dz
---------

iπCo

λ Θ' δ'+( )cos
--------------------------------- Θ0 Aobo E2

2
+( )E4

=

+ Aebe e1e3( )E1*E2E3 iDkzz( )exp 
 ,

Co
σc

4πρCpΓ
--------------------- dno dT⁄( ); Ce

σc
4πρCpΓ
--------------------- dne dt⁄( );= =
TECHNICAL PHYSICS      Vol. 45      No. 1      2000
ingly insignificant variation in this distribution dramat-
ically amplifies two of the four waves at the output, thus
providing optical switching. Also, the energy exchange
between the waves appears to be highly sensitive to the
input phase mismatch.

PHASE-PLANE APPROACH

System (6)–(9) admits of the following integrals of
motion:

(10)

(11)

, (12)

where

Formula (10) can be viewed as the conservation of
total power with allowance for the “dispersion” of the
medium. Formulas (11) and (12) indicate that energy
quantum exchange is possible only between differently
polarized waves, such as the ordinary and extraordinary
waves, occurring in the crystal. Let us change over to

the variables qi (i = 1–4) defined by E1 = q1 , E2 =

q2 , E3 = q3 , and E4 = q4 . Then, inte-
grals (10)–(12) take the form |q1|2 + |q2|2 + |q3|2 + |q4|2 = 1,
|q1|2 – |q2 |2 = d1, and |q3 |2 – |q4 |2 = d2, where d1 = D1/P
and d2 = D2/P. Using the new variables and the integrals
of motion, we replace (6)–(9) by as few as two equa-
tions for the real-valued functions η(s) = |q2 |2 and
ψ(s) = ks + ϕ2 + ϕ3 – ϕ1 – ϕ4:

(13)

a E1
2

E2
2

b E3
2

c E4
2

+ + + P,=

a E1
2

E2
2

– D1,=

b E3
2

c E4
2

– D2=

a
AebeCone Θ e1e3( )cos

2

AoboCeno Θ δ+( ) Θ'coscos
----------------------------------------------------------------- ,=

b
AebeCone Θ' e1e3( )cos

2

AoboCeno Θ δ+( ) Θcoscos
---------------------------------------------------------------- ,=

c Θ' δ'+( ) Θ δ+( ).cos⁄cos=

P a⁄
P P b⁄ P c⁄

dη
ds
------

=  ψ η η d1+( ) 1 d1– d2 2η–+( ) 1 d1– d2– 2η–( ),sin

dψ
ds
------- ψcos=

×
d1 η+( ) 1 d1– d2 2η–+( ) 1 d1– d2– 2η–( )

2 η
-------------------------------------------------------------------------------------------------------------





–
d1 η+( ) 1 d1– d2– 2η–( )

1 d1– d2 2η–+
------------------------------------------------------------------
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(14)

where s = zρ, k = Dkz/ρ, and ρ = (πCeAoboP /λ cosΘ) ×
. The coeffi-

cients ri (i = 1–4) depend on nothing more than param-
eters of the medium and interaction geometry.

In the context of this study, cosΘ = cosΘ', cos(Θ +
δ) = cos(Θ' + δ'), and (e1e3) ≈ 1 in (13) and (14). There-
fore, we simply have r1 = r3 = 1/r2 = 1/r4 =
ConecosΘ/Cenocos(Θ + δ). Generally, ri (i = 1–4) do
not strictly meet these relationships, because the above
conditions for cosΘ, cosΘ', cos(Θ + δ), cos(Θ' + δ'),
and (e1e3) ≠ 1 are not quite correct. However, these dis-
crepancies are small and were neglected. As for |q1|2,
|q3 |2, and |q |2, they can be expressed in terms of η
through the integrals of motion d1 and d2: |q1|2 = η + d1,
|q3 |2 = (1 – d1 + d2 – 2η)/2, and |q4 |2 = (1 – d1 – d2 –
2η)/2.

Note that (13) and (14) are Hamilton’s equations
(dη/ds = –∂H/∂ψ and dψ/ds = ∂H/∂η) for the canonical

+
η 1 d1– d2 2η–+( ) 1 d1– d2– 2η–( )

2 d1 η+
--------------------------------------------------------------------------------------------

–
η d1 η+( ) 1 d1– d2 2η–+( )

1 d1– d2– 2η–
---------------------------------------------------------------------





– η r1 r2 r3 r4+ + +( ) r1

1 d1– d2–
2

-------------------------+

+ r2

1 d1– d2+
2

------------------------- r4d1– k,+

Θ δ+( ) Θ Θ' δ'+( ) Θ'coscos⁄coscos

0.1

10

ηe

 k
50–5

0

0.2

0.3

0.4

–10

ψe = πψe = 0

Fig. 2. Bifurcation diagram showing the effect of the wave
mismatch on the FWM eigenmodes.
conjugates η and ψ, the Hamiltonian being

(15)

The value of H, defined by the input conditions,
remains constant as the waves propagate in the
medium. This enables us to obtain both analytic and
phase-plane solutions of (13) and (14) at given d1 and
d2. In the right-hand side of (15), the first term corre-
sponds to the parametric term in (6)–(9), which is
responsible for energy exchange, and the others
(including η2 and η), to the nonparametric terms, which
represent self- and cross-phase modulation. In this
study, the constants involved in the Hamiltonian of the
two-dimensional oscillator are as follows: d1 = 0.1, d2 =
0.1 (in general, d1 and d2 range between –1 and 1), A =
r1 + r2 + r3 + r4 = 8.5, and B = r1(1 – d1 – d2)/2 + r2(1 –
d1 + d2)/2 – r4d1 = 1.7. Drawing trajectories on the
phase plane tangibly facilitates understanding exact
analytic solutions of the set (13)–(14).

The shape of phase-plane trajectories is essentially
dictated by the number of Hamiltonian extreme points
(∂H/∂  = ∂H/∂  = 0), if any, and their stabil-
ity. They are known as the eigenmodes of (13)–(14)
[6−12, 19, 20]. Figure 2 shows the dependence of the
eigenmodes on the dimensionless wave mismatch k.
Notice that there exist two eigenmodes, with η ≠ ηmax
and the input phase mismatch ψe = 0 or ψe = π. Their
stability is governed by the Hamiltonian parameter A
[see (15)]. If A is larger than a certain critical value Acr
(Acr = 4.33 for the given d1 and d2), the diagram of the
eigenmode with ψe = π includes an instability segment
(the dashed line in Fig. 2). If A < Acr, the eigenmode
with ψe = π is stable for any k. If A > Acr, then, at certain
k, this eigenmode splits into three (two stable and one
unstable) eigenmodes. In the context of this study,
A > Acr. Note that the presence of an unstable eigen-
mode under the stated FWM conditions stems from the
significant difference between the “strengths” of the
gratings recorded by the ordinary and extraordinary
waves (Ce is much larger than Co in magnitude). Other
media with diagonal bipolar nonlinearity may be free
from an unstable FWM eigenmode if A < Acr (the cou-
pling coefficients in all the four equations for this pro-
cess are nearly equal). As indicated by Fig. 2, the unsta-
ble mode with ψe = π is eliminated if k is sufficiently
large. However, the unstable case seems to be of imme-
diate interest.

In what follows, we consider the cases k = 0 and
k = 0.4. Figure 3 shows the phase portraits of the
respective solutions to (13)–(14). Stable eigenmodes

H η d1 η+( ) 1 d1– d2 2η–+( ) 1 d1– d2– 2η–( )=

× ψcos η2

2
----- r1 r2 r3 r4+ + +( )–

+ η r1

1 d1– d2–
2

------------------------- r2

1 d1– d2+
2

------------------------- r4d1– k+ + 
  .

ψηe ψe, ηηe ψe,
TECHNICAL PHYSICS      Vol. 45      No. 1      2000



TECH

ENERGY EXCHANGE BETWEEN FOUR COPROPAGATING LIGHT WAVES 39
0.4

0.2

0

–0.2

–0.4 –0.2 0 0.2 –0.2 0 0.2 0.4–0.4
η cosψ

η sinψ

A A

(a) (b)

Fig. 3. Phase portraits at k = (a) 0 and (b) 0.4. Point A is the unstable eigenmode.
are represented by stable center points, and unstable
eigenmodes, by unstable saddle points, such as point A.
The saddle point gives rise to a two-loop separatrix,
whose constituent trajectories are drawn with heavy
lines.

The convenience of the phase-plane approach to
(13)–(14) is that it provides a visual tool to control the
input power distribution and phase mismatch so that the
energy exchange be maximum. Ideally, i.e., in the case
of maximum energy exchange, there should be a phase
trajectory going through the points η = 0 and η =
ηmax = 0.4. However, such a trajectory is nonexistent
(see Fig. 3). On the other hand, one can easily find the
phase-plane regions where the energy exchange is max-
imum for given d1 and d2. From the phase portraits for
a two-dimensional oscillator with Hamiltonian (15), it
follows that, if the input conditions situate the initial
phase point close to stable eigenmodes, the energy
exchange is insignificant. Conversely, if the initial point
approaches the two-loop separatrix, the energy
exchange may grow considerably.

Look at Fig. 3 to compare the shapes of the separa-
trix trajectories at the two values of the wave mismatch.
Analytically, the two trajectories can be exactly
described in terms of hyperbolic functions. Both of
them asymptotically tend to point A, which is the unsta-
ble eigenmode for both k’s. In Fig. 3a, the separatrix
consists of a larger and a smaller loop. In Fig. 3b, the
loops are nearly equal in size. In both cases, the larger
loop avoids the region where cosψ is positive. Switch-
ing from k = 0 to k = 0.4 restructures the entire phase
portrait, as indicated by the shape of the two-loop sep-
aratrix.
NICAL PHYSICS      Vol. 45      No. 1      2000
The phase planes in Fig. 3 are divided into three
regions with differing closed trajectories. Each closed
trajectory represents a periodic solution, which can be
expanded in elliptic functions. This property also fea-
tures the trajectories (on both of the phase portraits)
that leave the circle at the point with η = 0.4 and ψ =
3ψ/2 and return to the circle at the point with η = 0.4
and ψ = π/2. In the coordinates ηcosψ and η sinψ, we
cannot display the trajectories in every detail. Note that
these can be called simple separatrices, since they sep-
arate slightly different types of periodic solutions. Spe-
cifically, they serve as boundaries for the trajectories
with ψ ranging from 0 to 2π and for those with ψ lying
in a narrower interval.

In Fig. 3, a representative point moves toward larger
magnitudes of η, when being in the upper half-plane
(sinψ > 0), and toward smaller η’s when sinψ < 0.
For example, a point on the larger loop (Fig. 3a)
moves  clockwise, whereas that on the smaller loop
counterclockwise.

ANALYTIC SOLUTIONS

Consider the analytic solutions corresponding to
Fig. 3. It is useful to note that equations (13) and (14)
describe the motion of a material point in a one-dimen-
sional potential field. System (13)–(14) with Hamilto-
nian (15) yields the integral representation

(16)

where η0 = η(s = 0) and f(x) is the potential field. Gen-

A
2

4
------ 4– s

xd

f x( )
---------------,

η0

η

∫=
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Fig. 4. One-dimensional potential f (η) at k = 0 for (a) H = Huns and (b) H < Huns.

f(η)

–0.0004
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erally, f(x) = –x4 + α1x3 + α2x2 + α1x + α0, where

(17)

(18)

(19)

and

(20)

Thus, solving (13)–(14) implies finding and analyz-
ing the roots of f(x) = 0. Since this problem takes much
effort in the general case, it is expedient to use a graphic
approach. For the unstable eigenmode, the Hamiltonian
takes on the value H ≈ 0.05 at k = 0 or H ≈ 0.14952 at
k = 0.4. The corresponding plots of f(x) are presented in
Figs. 4a and 5a, respectively. Hereafter, the roots of
f(x) = 0 are denoted by a, b, c, and d, with a > b > c > d.
As follows from Fig. 4, c = b and f(x) can be expanded
as f(x) ≈ (0.38855 – x)(0.2 – x)2(x – 0.01145) at k = 0
and f(x) ≈ (0.3978 – x)(0.29975 – x)2(x – 0.0445) at
k = 0.4. It is seen that the material point is confined to
one of two regions [where f(x) ≥ 0] bounded by the
points d and c = b and the points c = b and a. The
motion within the first region is depicted by the smaller

α3

4 2d1 1–( ) A B k+( )+

A
2

4
------ 4–

------------------------------------------------------ ,=

α 2

1 6d1– 5d1
2

d2
2

– B
2

– k
2

– HA– 2Bk–+

A
2

4
------ 4–

------------------------------------------------------------------------------------------------- ,=

α 1

d1 2d1
2

– d1
3

d1d2
2

– 2H B k+( )+ +

A
2

4
------ 4–

--------------------------------------------------------------------------------- ,=

α 0
H

2

A
2

4
------ 4–

---------------.–=
loop in Fig. 3a and a trajectory to the right of point A in
Fig. 3b. The motion within the second region is
depicted by the larger loop in Fig. 3a and a trajectory to
the left of point A in Fig. 3b. These solutions can be rep-
resented as follows (for a + d ≠ 2b). For the trajectory
to the left of point A in Fig. 3b,

(21)

and for that to the right of point A in Fig. 3b,

(22)

In (21) and (22),

and

Note that the arch values are positive. For U1, the
plus and the minus signs correspond, respectively, to
the cases where the trajectory starts from the upper
half-plane (sinψ > 0) or the lower half-plane (sinψ < 0).
For U2, the reverse holds.

η b
2 b d–( ) a b–( )

a d–( )coshU1 2b a– d–+
----------------------------------------------------------------- ,+=

η b
2 a b–( ) b d–( )

a d–( )coshU2 a d 2b–+ +
------------------------------------------------------------------ .–=

U1 arccosh η0 a d 2b–+( )((±=

+ b a d+( ) 2ad ) a d–( ) η0 b–( )( )⁄– )

– a b–( ) b d–( ) A
2

4⁄ 4     –  s , ×

U2 arccosh η0 a d 2b–+( )((±=

+ b a d+( ) 2ad ) a d–( ) b η0–( )( )⁄– )

– a b–( ) b d–( ) A
2

4⁄ 4–      s . ×                          
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Fig. 5. One-dimensional oscillator potential for a material point involved in stationary energy exchange at k = 0.4 for (a) H = Huns
and (b) H < Huns.
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f(η)
          
If a + d = 2b, (21) and (22) can be recast into a very
simple form. This is the case when k = 0 with the given
d1, d2, A, and B (see the preceding section). We have the
following numerical expressions for the phase trajecto-
ries forming the two-loop separatrix:

(23)

(24)

where the plus and the minus correspond to the larger
and the smaller loop, respectively, and U =
±arccosh(0.18855/(|0.2 – η0 |)) – 0.7070625s. In the
expression for U, the plus sign applies if the represen-
tative point initially lies on the smaller loop and in the
lower half-plane or on the larger loop and in the upper
half-plane, and the minus sign applies in the converse
case.

Now, consider the case H < Huns (Huns is the Hamil-
tonian for the unstable eigenmode). Figures 4b and 5b
show the corresponding plots of f(x) at k = 0 or k = 0.4,
respectively. The former is drawn for H = 0.02,
and  the  latter, for H = 0.145. Having evaluated the
roots of f(x) = 0, we can factorize f(x). For example,
f(x) ≈ (0.39715 – x)(0.32175 – x)(0.0782499 – x)(x –
0.00285) at k = 0. The plots demonstrate that a material
point η may move within one of two regions of
the potential field f(η). These regions are bound by
the points d and c and the points a and b, respectively.
At  k = 0, the trajectories corresponding to the
first  region are inside the smaller loop in Fig. 3a,
and  those  corresponding to the second region are

η 0.2
0.18855
coshU

-------------------,±=

ψcos
1.2591 cosh

2
U–

cosh
2
U 0.8888–( ) cosh

2
U 0.395–( )

-------------------------------------------------------------------------------------------- ,=

ψsin
1.111 sinh U

cosh
2
U 0.8888–( ) cosh

2
U  –  0.395 ( ) 

-------------------------------------------------------------------------------------------- ,
 

±
 

=
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outside the larger loop. Consider the motions between
d and c. By switching from x to y =

arcsin , the integral
in (16) is brought into a tabulated form [27]. We thus
obtain the solution

(25)

where sn(U; r) is the elliptic sine, r =

 is the modulus of the

elliptic function, U = s /2  ± 
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is in the lower half-plane.

Having computed 
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, we can find the remaining vari-
ables: 
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Consider the motions between 

 

a

 

 and 

 

b

 

. (The region
where the material point 

 

η 

 

can move is determined
by  the input conditions, the value of the Hamiltonian
being conserved during the motion.) By switching from

 

x 

 

to 

 

y 

 

= arcsin , the
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a c–( ) b d–( ) A
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4⁄ 4–

a c–( ) η0 d–( )( ) c d–( ) a η0–( )( )⁄

η 0.0299 sn
2
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Fig. 6. One-dimensional potential f(η) at k = 0 for (a) H = Hst and (b) Huns < H < Hst. The phase-plane trajectories for Fig. 6b are
inside the larger loop (Fig. 3a).
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Fig. 7. One-dimensional potential f(η) at k = 0.4 for (a) H = Hst and (b) Huns < H < Hst. The phase-plane trajectories for Fig. 7b
encircle the separatrix (Fig. 3b).

f(η)

f(η)
integral in (16) is brought into a tabulated form. We
thus obtain the solution

(27)

where U = ±F(µ0; r) –  ×
s/2, r =  is the
modulus of the Jacobian elliptic function, and µ0 =

arcsin . The sign
in the expression for U is dictated by the phase-plane
region from which the material point starts (Fig. 3).

Solutions (25) and (27) go over into solutions (22)
and (21), respectively, as H  Huns – 0. Such behavior
could be predicted from Fig. 3.

η d a b–( )sn
2

U; r( ) a b d–( )+

a b–( )sn
2

U; r( ) b d–+
-------------------------------------------------------------------- ,=

a c–( ) b d–( ) A
2

4⁄ A–

a b–( ) c d–( )( ) a c–( ) b d–( )( )⁄

b d–( ) b η0–( )( ) a b–( ) η0 d–( )( )⁄
Quite a different situation is observed in the case
Huns < H < Hst, where Hst is the value of the Hamiltonian
at the stable eigenmode with ψe = 0. The plots of f(x) for
H = Hst and Huns < H < Hst at k = 0 and k = 0.4 are shown
in Figs. 6 and 7. Notice that only two roots of f(x) are
real. If H = Hst, the solution is the simplest: η(s) = ηe.
At k = 0, the corresponding factorization is f(x) ≈ (0.2 –
x)2(–x2 + 0.4x – 0.149511). However, as follows from
Figs. 6 and 7, of special interest is the case H – Huns ≈ 0,
when the energy exchange is maximum. Figures 6b and
7b are obtained, respectively, for H = 0.051, k = 0 and
H = 0.155, k = 0.4. At k = 0, the H value corresponds to
a trajectory inside the larger loop. At k = 0.4, we have a
trajectory encircling the two-loop separatrix (Fig. 3b).
After the roots of f(x) are evaluated, we can factorize
f(x). For example, f(x) ≈ (x – 0.01175)(0.38825)(x2 –
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0.4x + 0.040544) at k = 0 and H = 0.051. By switching

from x to y = 2arccot , the inte-q a x–( )( ) p x b–( )( )⁄
TECHNICAL PHYSICS      Vol. 45      No. 1      2000
gral in (16) is brought into a tabulated form. We thus
arrive at the solutions
(28)η p q+( ) qa pd+( )sn
2

U; r( ) 2 pq a d+( )cn
2

U; r( ) 2 pq a d–( )cn U; r( )±+

p q+( )2
sn

2
U; r( ) 4 pq cn

2
U; r( )+

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ,=
where U = s ± F(α 0; r), p2 = (b' – a)2 +
b''2; q2 = (b' – d)2 + b''; b = b' + ib'' (complex root), α0 =

2arccot , and r =

0.5 .
Formula (28) gives two analytic solutions of system

(13)–(14). The sign in the expression for U before
F(α0; r) is chosen according to the location of the initial
point on the phase plane. To be specific, take the solu-
tion defined by (28) with the plus sign preceding
cn(U; r). If the initial point is in the upper half-plane,

then U = s – F(α0; r). Otherwise, U =

 + F(α0; r). The converse rule applies
to the solution with the minus sign before cn(U; r). If
H  Huns + 0, then solutions (28) go over into (21) and
(22); i.e., we have the phase trajectories constituting the
two-loop separatrix.

In the next section, the phase-plane and the analytic
approach will be used to consider optical switching. We
believe that the predicted effects will find practical
application.

OPTICAL SWITCHING

Consider the FWM at k = 0. Figure 8 gives the
power of the ordinary wave E2 plotted against the dis-
tance z traveled by the light waves inside the crystal.
The values of E2 and z are normalized to the total input
power Pin and to the length L of the medium, respec-
tively. Here, Pin = |E10 |2 + |E20 |2 + |E30 |2 + |E40 |2, where
E10, E20, E30, and E40 are the input strengths of the
waves. Unlike P in (10), the total power Pin varies with z.
Curve 1 is obtained for the input phase mismatch ψ0 =
ψ(z = 0) = 0, whereas curve 2 corresponds to ψ0 = π,
other parameters being equal; both of the curves are
computed at ρL = 50. The input total power is distrib-
uted as follows: |E10 |2/Pin = 0.1728, |E20 |2/Pin = 2.023 ×
10–3, |E30 |2/Pin = 0.757, and |E40 |2/Pin = 0.06815. Notice
that |E2 |2/Pin has a sharp peak if ψ0 = 0, in contrast to the
case ψ0 = π. The gain in E2 is as high as 33.4 times
when the length of the medium and the total input
power are selected appropriately. Under the same con-
ditions, the extraordinary wave E1 is also amplified, by
a factor of about 4.4, whereas the waves E3 and E4,
which originate from the second incident wave, lose
their energy. Such a large difference between the gains

pq A
2

4⁄ 4–

q d η0–( )( ) p a η0–( )( )⁄

p q+( )2
a d–( )2

+( ) pq⁄

pq A
2

4⁄ 4–

pq A
2

4⁄ 4–
for E2 and E1 primarily stems from the difference in dis-
persion properties of ordinary and extraordinary waves,
which affects Co and Ce. The high sensitivity of the
energy exchange to the input phase mismatch can be
understood with the help of the phase-plane and the
analytic approach, using Fig. 3a or exact solutions (25)
and (27), respectively. The matter is that curves 1 and 2
in Fig. 8 correspond to solutions of (13)–(14) from
qualitatively differing regions in the phase plane. The
considerable dependence of the energy exchange on the
input phase mismatch can physically be explained by
the fact that nonlinearity (4)–(5) behaves so that each
grating is read out by the waves of both polarizations.
The process where a grating recorded by extraordinary
waves is read out by an ordinary wave gives the para-
metric term in (6)–(9) that represents energy exchange.
The process where a grating recorded by ordinary
waves is read out by an ordinary wave gives the term
representing cross-phase modulation. The wave E2 is
the sum of two waves: the transmitted wave and the
wave E4, which is reflected from the grating recorded
by the extraordinary waves E1 and E3. If the two waves
are added in phase (ψ0 = 0), the wave E2 is materially
amplified if z/L is not very large (see curve 1 in Fig. 8).
If they are added in antiphase, the energy exchange is
virtually zero (see curve 2 in Fig. 8).

We now discuss the FWM conditions when optical
switching is pronounced. Figure 9 shows another
power diagram for the ordinary wave E2, the coordi-
nates being the same as in Fig. 8. The input phase mis-
match is zero for each curve (ψ0 = 0). The input total
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Fig. 8. Normalized power of the wave E2 vs. normalized dis-
tance.
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power is distributed as follows: |E10 |2/Pin = 0.7579,
|E20 |2/Pin = 0.0682, |E30 |2/Pin = 0.174, and |E40 |2/Pin =
0.002. Curve 1 corresponds to the case where the input
conditions place the initial phase point inside the larger
loop, whereas curve 2 is plotted for the initial point out-
side the separatrix (Fig. 3a). The difference in η0 =
|E2(z = 0)|2/Pin between curves 1 and 2 is no more than
10–6 (Fig. 9). The period of curve 1 is seen to be nearly
twice as large as that of curve 2. Given the crystal
length, the input total power can be adjusted so that the
switch is in the ON or the OFF state at the output,
depending on the input conditions. The ON state is
characterized by (|E2(z = L)|2 = |E2(z = 0)|2), and the
OFF state, by (|E2(z = L)|2 ≈ 0). The ON to OFF power
ratio is 33.4 for the ordinary waves and 4.3 for extraor-
dinary ones. Curve 3 is plotted for the input conditions
that place the initial point just on the two-phase separa-
trix, with |E2(z) |2/Pin asymptotically approaching the
unstable-mode level.

Finally, we shall give some computed data. Let a =
0.1 cm, L = 100 µm (length of the medium), Λ =
0.5 µm, ρCp ≈ 1.5 × 107 erg/cm3, ne = 1.71, no = 1.51,
Ao ~ Ae = 1, and bo ~ be = 0.5. Also, take a moderate
value of absorption: σ = 5 cm–1. Then we have Γ =
103 s–1. Two-wave amplification is observable at an
input intensity of ~7.7 × 104 W/cm2, and liquid-crystal
FWM switching is possible with intensities larger
than ~8.8 × 104 W/cm2. On the other hand, the
switching time (the transition time of static gratings)
in this case is ~10–3 s. Although this value cannot
compete against that for bulk crystals, it is worth bear-
ing in mind that the minimum switching intensity
required by liquid crystals is lower by seven orders
of magnitude.

0.20

0.06

0.04

0.02

0.4 0.6 0.8 1.0

2

1

z/L

|E2|2/Pin

3

Fig. 9. Normalized power of the wave E2 vs. normalized dis-
tance as applied to optical switching.
CONCLUSION

The stationary energy exchange between four light
beams propagating under diagonal bipolar nonlinearity
was studied by means of Hamilton’s equations. The
phase-plane and the exact analytic representations of
their solutions were obtained. An unstable eigenmode
with the phase mismatch ψe = π was disclosed. This
mode results from the considerable difference between
the coefficients in the equations describing the variation
of the ordinary and extraordinary amplitudes along the
propagation direction. The effect of input conditions on
FWM dynamics was analyzed in various cases. It was
found that the energy exchange can be both high
(ψ0 = 0) and near-zero (ψ0 = π). It was demonstrated
that optical switching can be performed by means of
liquid crystals with thermal nonlinearity. The power
required to observe the predicted effects was evaluated.

To the best of our knowledge, no experimental evi-
dence for the effects has been reported. We hope that
the theory and recommendations presented here will be
of practical value. For example, they may find applica-
tion in optical switches using nematic liquid crystals.
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OPTICS, QUANTUM ELECTRONICS
Optical Aberrations 
in a Bent-Crystal Spectrometer

V. A. Bryzgunov
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Abstract—Aberrations in a bent-crystal X-ray spectrometer were studied by the methods of analytical geom-
etry. Trigonometric equations describing aberrations in a real spectrometer were derived and solved by approx-
imate techniques. The cases of crystal analyzers possessing spherical, toroidal, and cylindrical surfaces were
considered. The investigation was aimed at evaluation of the resolving power of a spectrometer with an
extended radiation source (tokamak plasma). © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

X-ray spectrometers used for hot plasma monitoring
are typically based on the Johann scheme [1]. Measure-
ments of the Doppler broadening and shift of the spec-
tral line emitted by a small admixture of heavy ions
allow the ion temperature and rotation rate in the hydro-
gen plasma of tokamaks to be determined [2, 3]. Toka-
maks featuring a deuterium–tritium thermonuclear
reaction exhibit a manifold increase in intensity of the
neutron and gamma emissions. In connection with this,
radical measures have to be taken for reducing the
background emission level for the X-ray spectroscopic
measurements to be performed on large thermonuclear
setups such as the International Thermonuclear Exper-
imental Reactor (ITER) currently under construction.
Using spherical or toroidal bent crystal analyzers
instead of the conventional cylindrical crystals mark-
edly reduces divergence of the X-ray beam at the spec-
trometer input. This, in turn, allows a decrease in cross-
section of the input channel in the reactor protection
system by which the spurious radiation may enter
(together with the X-ray beam) the spectrometer. Plac-
ing a selective polycrystalline graphite mirror [4] in the
path of the weakly diverging beam provides additional
increase in the signal-to-noise ratio [5, 6].

The X-ray spectrometers for the laser plasma inves-
tigations usually employ spherical bent crystal analyz-
ers collecting radiation from a small emitting volume,
which are capable of measuring the spectrum using a
few short-time (100 fs) emitted pulses [7].

This analyzer system based on a crystal bent in two
dimensions provides extremely favorable conditions
for carrying out experiments on a modern level requir-
ing both a large relative aperture and a high spectral res-
olution. Using modern technologies for manufacturing
a crystal analyzer, it is possible to retain perfect struc-
1063-7842/00/4501- $20.00 © 20046
ture of the initial material [8]. However, high-aperture
spectrometers may still feature considerable geometric
distortions of the spectral lines.

Development of the Johann spectrometer scheme,
as well as other focusing systems suggested many years
ago [1], always involved the need in increasing resolv-
ing power of the instruments and, hence, was accompa-
nied by solving the task of reducing aberrations in the
focusing spectrometers [9]. Aberrations in the classical
spectrometer with cylindrical crystal analyzer have
been thoroughly analyzed (see, e.g., [10]). At the same
time, the problem of aberrations in a crystal analyzer
with two-dimensional (2D) bending is still insuffi-
ciently studied [11, 12].

APERTURE ABERRATIONS

The Johann scheme does not provide for the ideal
X-ray beam focusing. The appearance of aperture aber-
rations in a spectrometer based on a spherically bent
crystal analyzer with the curvature radius R is illus-
trated in Fig. 1. The crystal analyzer 1 expands the
spectrum over a cylindrical surface on which a one-
dimensional radiation detector 2 is placed. The base of
this cylinder is the focal circle 3 (the Rowland circle)
containing the pole P of the crystal. Consider an
orthogonal coordinate system xyz with the origin at a
point 0 on the circle (0P = R). The X-ray v reflected
from an arbitrary point C of the crystal analyzer is reg-
istered by the detector at a point D. The orthogonal
coordinates of point C are determined by the radius
vector R and the polar angles ε and ω. The position of
point D with respect to height (ZD = DE) is determined
by the reflection angle Φ.

We must bear in mind that the beam is reflected at
the Bragg angle ϑ  = arcsinλ/2d (λ is the radiation
wavelength, and d is the interplanar distance in the
crystal). A monochromatic beam PE lying in the coor-
000 MAIK “Nauka/Interperiodica”
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dinate plane xy (the median plane of spectrometer)
determines point E on the focal circle, which corre-
sponds to the radiation with the wavelength λ. The
reflection angle for this beam is Φ = Φλ = π/2 – (ϑ  + α).
Aberrations in this spectrometer are created by beams
for which ∆Φ = Φ – Φλ ≠ 0. The beam shift by an angle
∆Φ corresponds to an arc of the focal circle ∆s = R∆Φ.
In the given spectrometer scheme, this shift is equiva-
lent to a change in the radiation wavelength by ∆λ =
−λ∆Φ/tanϑ  and, hence, in the Bragg angle by ∆ϑ  =
−∆Φ.

The reflected beam v forms an angle π/2 – ϑ  with
respect to the normal N to the crystal surface. There-
fore, we obtain the scalar vector product

(1)

At the same time, the normal N to the spherical crys-
tal surface is collinear with (or antiparallel to) the
radius vector R, so that N = –R. If the reflecting surface
makes an angle α with the crystal surface (oblique
reflection), the normal to the reflecting plane does not
coincide with R. In this case, an expression for the unit
normal vector is

, (2)

where i, j, and k are the unit vectors of the coordinate
axes x, y, and z, respectively. For the spherically bent
crystal, equation (1) yields

(3)

Upon solving equation (3) by numerical methods,
we may readily find the values of Φ for all reflected
beams. Then, by integrating over the entire crystal sur-
face, we will determine the intensity of the reflected
monochromatic radiation as a function of ∆ϑ  = Φλ – Φ,
that is, the instrumental function. It should be noted that
real crystals exhibit a mosaic character, which results in
that the reflection takes place within a certain angular
interval near the Bragg angle. This factor accounts for
additional broadening of the spectral line. The total
instrumental function is obtained as a mathematical
convolution of the two functions.

In a real spectrometer, the relative size of the crystal
analyzer with respect to the Rowland circle radius is
usually small. Taking this fact into account and neglect-
ing high orders of small parameters in the expansions,

v N⋅ v N ϑ .sin=

n α ωsinsin α ε ωcossincos–( )i=

– α ωcossin α ε ωsinsincos+( ) j α εkcoscos+

ϑ Φsin
2
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2

– 2 εZD R⁄cos ZD
2

R
2

1+⁄+ )
=  α 1 εZD R⁄cos– ε Φ Φ ω+( )sinsinsin–( )cos[

– α Φ Φ ω+( )cossinsin ] 2
.

TECHNICAL PHYSICS      Vol. 45      No. 1      2000
we obtain an approximate solution to equation (3) in
the following form:

(4)

Upon introducing small changes into the scheme of
Fig. 1, one may readily calculate aberrations for a spec-
trometer with cylindrical bent crystal analyzer. Here,
the equation describing the aberrations according to (1)
and the approximate solution are as follows:

(5)

(6)

Note that, for α = 0, equation (6) coincides with the
expression derived in [10].

Similar considerations are used to calculate aberra-
tions for a spectrometer with toroidal bent crystal ana-
lyzer. Here, the reflecting surface is formed by a circle
of radius Rs rotated about the z-axis, with the center of
this circle occurring at a distance of R – Rs from the
z-axis. The meridional radius R determines (as in Fig. 1)
the diameter of the focal circle. In the particular case of
α = 0, equation (1) for a toroidal crystal analyzer
acquires the following form:
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Fig. 1. Schematic diagram of the X-ray beam trajectory in a
spectrometer with bent crystal analyzer: (1) crystal ana-
lyzer; (2) detector; (3) Rowland circle.



48 BRYZGUNOV
(7)

The corresponding beam shift in a spectrometer
with toroidal crystal is

(8)

CALCULATION RESULTS 
AND DISCUSSION

Using modern computational facilities, it is not dif-
ficult to solve the exact trigonometric equations (3), (5),
and (7) by numerical methods. However, fast estima-
tion and qualitative analysis of the aperture aberrations
are conveniently performed using approximate solu-
tions in the form (4), (6), and (8), respectively.

Figure 2 shows a schematic diagram of aberrations
in a spectrometer employed for measuring the ion tem-
perature in a thermonuclear reactor using the Doppler
shift of a resonance line from the helium-like krypton
[6]. The wavelength λ = 0.9454 Å corresponds to a
Bragg angle of ϑ  = 35.6°. For a reflecting surface area
of 6 × 8 cm2 bent with a curvature radius of R = 6 m, the
level of aberrations is comparable with the natural
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Fig. 2. Schematic diagram of aperture aberrations for a
quasimonochromatic spectral line (λ = 0.9454 Å) in a spec-
trometer with (a) spherical and (b) cylindrical bent crystal
analyzer. 
broadening of the spectral line, the line halfwidth cor-
responding to the Bragg angle variation within ∆ϑ  =
±5.6″. In this scheme, the role of the crystal analyzer
type is clearly manifested.

In a spectrometer with spherical bent crystal ana-
lyzer, the monochromatic beam produces an arc-
shaped trace on the detector. For α = 0, the width of this
arc is determined by dimensions of the crystal. The nar-
rower the reflecting surface, the smaller the trace width.
In order to retain the relative aperture of the spectrom-
eter on a high level, it is necessary to increase the height
of the crystal, which does not influence the level of
aberrations. The aberrations can be also reduced by
using an oblique-cut crystal analyzer with α ≈ π/2 – ϑ ;
this method is used for the measurements at large
Bragg angles. In addition, the arc-shaped distortions in
a spectrometer can be compensated in a scheme
employing a two-coordinate detector.

Aberrations of a different type appear in a spectrom-
eter with cylindrical bent crystal analyzer. These distor-
tions markedly exceed the aberrations observed for the
spherical bent crystal, the difference being especially
pronounced at large Bragg angles. The large aberra-
tions are manifested at a considerable divergence of
beams necessary for the spectrometer filling with radi-
ation. In practice, the tokamak plasma diagnostics is
performed via a horizontal beryllium slit window,
which restricts the divergence of the X-ray beam (thus
decreasing the level of aberrations) at the expense of at
least a twofold loss in the relative aperture. Note that
the sphere and cylinder can be considered as particular
cases of the toroidal surface, and the toroidal bent crys-
tal analyzer possesses intermediate characteristics
between the two.

It should be recalled that our analysis referred to the
case of X-ray radiation emitted from an extended
source. The beam path in the spectrometer can be
reversed to find the contour of a virtual diaphragm
through which the radiation fills the spectrometer. The
X-ray beams from a point source placed on the focal
circle are reflected from a small part of the crystal ana-
lyzer. For example, the reflection zone on a cylindrical
surface has a X-cross shape (see also [13]). The aper-
ture aberrations observed for a local source depend on
the working surface area of the crystal analyzer.
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Abstract—Variation of the velocity of ultrasound propagation in polycrystalline aluminum under plastic defor-
mation is studied. The dependences of the velocity of ultrasound on the strain and the actual stress are found to
consist of three distinct stages. The study of the complex shapes of these dependences allows one to reveal addi-
tional stages in the parabolic stress–strain curve of the plastic flow, these features being impossible to observe
by conventional methods. The behavior of the ultrasonic velocity observed in the experiment is explained by
the changes in the defect structure of the material under deformation. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The commonly accepted concepts of the process of
plastic deformation are based on the data testifying that
it occurs in stages [1], and the adequacy of the models
developed for describing this process implies a strict
correspondence between the stages and the governing
microscopic mechanisms. The determination of the
boundaries of these stages and the corresponding
mechanisms presents a complicated problem, espe-
cially for polycrystals, because, in most cases, reliable
and informative external manifestations of the changes
in the deformation mechanisms are absent. For such
purposes, the data on the integral characteristics of the
material, e.g., magnetization and electric resistance,
can be useful. They are especially valuable, because, in
contrast to microscopic studies, they can be obtained
immediately in the course of mechanical tests without
any additional operations related to the preparation of
special samples for the analysis.

From this point of view, acoustical methods of
studying the properties of solids are quite promising. In
addition to the commonly used effects such as the
acoustic emission from mechanically loaded samples
[2] or the amplitude dependence of internal friction [3],
which can be interpreted on the basis of specially devel-
oped theoretical models, it is possible to use a more
easily measured characteristic, namely, the velocity of
ultrasound propagation V. In the experiments with Al
single crystals [4], it was found that the ultrasonic
velocity slowly varies at the beginning of the tensile
deformation of these crystals. Other experiments [5]
revealed the variations of the resonance frequency pro-
portional to V in Al single crystals in the process of
their bending. These variations were explained by the
changes that occurred in the attenuation with increasing
dislocation density in the course of the plastic flow.
Evidently, such an effect cannot be large, because
1063-7842/00/4501- $20.00 © 0050
V ≈ (E/ρ0)1/2, but neither the elastic modulus E nor the
density ρ0 exhibit any considerable variations in the
process of the plastic flow [6]. However, with modern
equipment, these variations can be measured to a fair
accuracy [7].

Below, we present the data on the dependences of
the velocity V on the total strain ε and the actual stress
σ for deformations up to fracture (the range of defor-
mations exceeding that studied before [4, 5]). The ultra-
sonic velocity was measured for transverse waves of
frequency 2.5 MHz in samples subjected to tension on
an Instron-1185 test machine. The measurements were
performed by the method of autocirculation of ultra-
sonic pulses with the use of a specially designed instru-
ment [7]. The measurement accuracy was ~10– 4. The
distance between the piezoelectric transducers was
fixed and did not change as the sample was elongated
under tension. The samples had the form of a double
spade with the working part of length 50 mm. The
material was polycrystalline aluminum (the grain size
5–10 mm) whose stress–strain curve in the state of flow
is nearly parabolic in the entire range of deformation
[1, 8]. In most cases, the studies of this material
revealed no particular stages of its flow.

EXPERIMENTAL RESULTS

The measurements were performed in the course of
the entire process of tension at 0.5% intervals. The
analysis of the dependences V(ε) and V(σ) revealed a
number of interesting effects. It was found that the
ultrasonic velocity considerably varies with tension,
and the dependences V(ε) and V(σ) are fairly compli-
cated. For example, the curve V(ε) obtained for poly-
crystalline aluminum and shown in Fig. 1 is N-shaped
with three well-defined stages [9]. Such a shape testi-
fies to the difference between the mechanisms govern-
2000 MAIK “Nauka/Interperiodica”
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ing the relation between V and ε in the corresponding
intervals of plastic deformation.

The dependence V(σ) obtained for the same sample
and shown in Fig. 2 also exhibits three stages, and, at
each stage, the quantities V and σ are related by a linear
law. The breakpoints indicated in the curves of Figs. 1
and 2 by the symbols A, B, B', and C divide the stress–
strain curve of the flow (Fig. 1) into stages. The behav-
ior of the experimental dependences V(ε) and V(σ)
points to the fact that the stress–strain curve of the plas-
tic flow has a more complex shape than that of the
parabola σ ~ ε1/2. The representation of the portion
B−B' of the stress-strain curve on an enlarged scale
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Fig. 1. Stress–strain curve of the plastic flow for an Al poly-
crystal and the dependence of the velocity of ultrasound
propagation in it on the strain.
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(Fig. 3) reveals a linear stage σ ~ ε within this interval.
Earlier [8], it was found that, at a temperature of 77 K,
the stress–strain curve of the plastic flow of aluminum
samples consists of two parabolic parts separated by the
stage of linear strain hardening. The latter stage
becomes shorter with increasing temperature and virtu-
ally vanishes at 300 K. There is reason to believe that
the ultrasonic method will allow one to detect this very
moment of transition between the two parabolic stages,
such a detection being impossible by using only the
dependence of the hardening coefficient on the strain.

Figure 4 generalizes the data on the behavior of the
velocity V along the entire stress–strain curve of the
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Fig. 2. Dependence of the ultrasonic velocity on the actual
stress in polycrystalline Al.
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Fig. 4. Variations of the ultrasonic velocity along the stress–
strain curve of the plastic flow of an Al polycrystal.
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plastic flow σ(ε). Near the end of the tension process, a
drop in the deformation force is observed. It is well
known that such a drop corresponds to the formation of
a macroscopic neck. From Figs. 1 and 2, one can see
that, in this region, the ultrasonic velocity increases.
The increase in the ultrasonic velocity begins before the
appearance of a noticeable neck and is an indication of
the precritical state of the deformed material. This state
may also be identified by the appearance of a localized
maximum of the components of the plastic distortion
tensor [10, 11], which can be detected well before the
appearance of the neck and is evidence of the formation
of a center of viscous fracture. The strain values corre-
sponding to these two effects coincide. Hence, with the
use of the two methods in parallel, the predictions of
the moment of fracture will be more reliable.

DISCUSSION

From Fig. 2, it follows that the quantities V and σ are
related by a linear law

(1)

where the constants V0 and ξ are different for different
portions of the dependence V(σ). Since, according to
the experimental data, the coefficient ξ changes sign in

V V0 ξσ,+=
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Fig. 5. Density of moving dislocations [10] and the behavior
of the coefficient D(ε) (schematic representation) as func-
tions of strain.
the process of the plastic flow, it should depend on
some parameter of the material that behaves in a similar
way in this process. In the case of plastic deformation
under study, the number of such parameters is limited.
However, it is known that the dependence of the density
of moving dislocations ρ on the strain exhibits a peak
(Fig. 5a) [12], and, hence, the derivative of ρ with
respect to time t (or to strain ε, because, in the case of
an active loading, ε ~ t) should change sign. In the case
under study, it is appropriate to introduce the derivative
d/dt(1/ρ) ≡ D(ε) having the dimensionality of the “diffu-
sion coefficient” (m2/s). The variation of the quantity
D(ε) with time (Fig. 5b) agrees well with the above spec-
ulations concerning the sign of the coefficient ξ. The
meaning of D(ε) should be discussed separately. In our
previous papers [10, 11], we showed that every stage of
the plastic flow has its own specific pattern of localized
plastic deformation. These patterns were interpreted as
autowaves of plastic deformation [10, 11]. The reac-
tion-diffusion differential equations describing the
autowaves [13] involve the coefficient D(ε) related to
the density of moving dislocations and determining
the process of the propagation of plastic deformation.
The dimensionality of the coefficient ξ in (1) is
[L]2[T][M]−1 (m2 s kg−1). Taking into account that the
velocity of the elastic wave propagation in a material is
related to the density ρ0 of this material, we apply the
analysis of dimensionality and obtain the following
relation:

(2)

Here, the quantity Li is interpreted as the spatial
scale of the current internal level of plastic deformation
[14] (the characteristic size of the region of the defor-
mation nonuniformity). Then, relation (2) formally
explains the discrete variation of the coefficient ξ by
switching to another scale level of the process [14],
while the behavior of D(ε) determines the change of sign
of ξ in the process of plastic deformation. Evidently,
the slopes of the portions of the dependence V(σ)
remain constant only when the condition Li/D(ε) = const
is satisfied.

Using relation (2) for the proportionality coefficient
ξ and introducing the wave resistance of the medium
Z = Vρ0 [15], we represent equation (1) in the form

(3)

From this expression, it follows that the wave resis-
tance of the material varies under the plastic deforma-
tion in response to the variations in the parameters of
the internal structure of the material from one stage of
the process to another. This conclusion was confirmed
by the experiment in which, simultaneously with
recording the stress–strain curve at small strains, not
only the velocity of ultrasound was measured, but also
the X-ray topographic data were obtained on the
motion of large-size structure elements in single grains

ξ Li ρ0D
ε( )

.⁄∼

∆Z Z Z0– Li D
ε( )⁄( )σ.= =
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of the Al polycrystal [16]. The X-ray topographs were
obtained by the Fujiwara method [17] in the course of
tension of a polycrystalline aluminum sample (without
unloading). The results obtained by measuring the
ultrasonic velocity under such conditions are presented
in Fig. 6. The analysis of the behavior of the grain frag-
ments by their Laue reflections showed that, with
increasing strain at ε < ε*, the misorientations of the
grain fragments are enhanced; simultaneously, the
ultrasonic velocity rapidly increases. As the strain
exceeds the critical value ε*, an inverse rotation of the
fragments is observed, and the increase in the ultra-
sonic velocity becomes slower.

Phenomenologically, the variation of the ultrasonic
velocity is explained by the presence of a mosaic of
stressed regions in the deformed medium with their dis-
tribution and size varying in the process of the plastic
flow. Let us estimate the possible velocity variations by
using the model proposed in [18]. Owing to the elastic
stresses, a transverse ultrasonic wave is split into two
beams with the polarizations perpendicular to each
other (acoustic birefringence). The beams propagate
with different velocities v 1 and v 2. For these beams, the
path-length difference per unit path will be [18]

(4)

On the other hand, the path-length difference
depends on the difference between the principal
stresses σ2 and σ1 in the crystal [18]:

(5)

where ω is the frequency of ultrasonic vibrations and v s

is the velocity of the propagation of transverse ultra-
sonic waves in an unstressed crystal.

Introducing the notation ∆V = v 2 – v 1 and v 2v 1 ≈ 
and using expressions (4) and (5), we obtain the varia-
tion of the ultrasonic velocity

. (6)

Using expression (3), we obtain the variation of the
wave resistance

(7)

Thus, the velocity variation observed in the experi-
ment testifies to the changes in the parameters of the
stressed regions of the medium in the process of the
plastic flow. This behavior can be attributed to the for-
mation of dislocation ensembles or relatively large-
scale features of the deformation structure such as an
ordered (self-organizing) system of stationary mesos-
copic localization centers of plastic deformation
[10, 11], which is typical of the plastic deformation of
aluminum [19].

δ ω 2π⁄( ) 1 v 2⁄ 1 v 1⁄–( ).=

δ ω 4⁄ πρ0v s
3( ) σ2 σ1–( ),=

v s
2

∆V σ2 σ1–( ) 2ρ0v s⁄≈

∆Z σ2 σ1–( ) 2v s.⁄≈
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CONCLUSION

It is evident that the analysis of the variation of
ultrasonic velocity under the tensile deformation
reveals additional stages in the stress–strain curve of
the plastic flow. These stages are presumably deter-
mined by the difference in the types of the dislocation
ensembles (cells, fragments, etc. [14]) formed in the
material at different stages of the plastic flow. It is
believed that the change from one stage to another in
the dependence V(σ) is related to the formation of dis-
location ensembles of different characteristic dimen-
sions Li and with different internal stress levels in the
cell or in a fragment. It is this phenomenon that deter-
mines the dependence of the ultrasonic velocity on the
strain or stress. Such changes in the deformation mech-
anisms have virtually no effect on the behavior of the
stress–strain curve of the plastic flow and the coeffi-
cient of strain hardening, while their effect on the ultra-
sonic velocity proves to be substantial. The in situ mea-
surements of the ultrasonic velocity in the course of
mechanical tests of materials may provide important
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additional information on the physics of the deforma-
tion processes.

The effect observed in our experiments is fairly uni-
versal. Similar variations of the ultrasonic velocity
were observed by us in the course of a tensile plastic
deformation of the samples of Al–Mg–Li alloy in dif-
ferent structural states, Zr + 1.5%Nb alloy, and iron sili-
cide (Fe + 3%Si). As an example, we present the depen-
dence V(σ) for the latter material in Fig. 7. This depen-
dence only quantitatively differs from that shown in
Fig. 2. In all aforementioned cases, the stress–strain
curve of the plastic flow had different stages that could
not be revealed immediately from the shape of the
curve.

Thus, the measurements of the velocity of ultra-
sound propagation in materials subjected to plastic
deformation allow one to analyze the stages of the
stress–strain curves of the plastic flow in the course of
the experiment and to predict, for example, the transi-
tion to the state of viscous fracture prior to the appear-
ance of its visible signs.
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Abstract—It is shown, using a thin magnetic film of a tetragonal antiferromagnet as an example, that indirect
spin–spin exchange via the long-range field of quasi-static magnetoelastic deformations with allowance for the
magnetocrystalline anisotropy results in qualitatively new types of nonexchange propagating spin waves, both
surface and bulk. The case of an isolated magnetic film and a magnetic film with a one-sided or two-sided coat-
ing is studied. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It was shown previously [1–4] that, if the indirect
spin–spin exchange in a thin magnetic film is effected
through the magnetodipolar interaction, then the rigor-
ous allowance for the magnetocrystalline anisotropy
may lead to new types of propagating magnetic excita-
tions—anisotropic dipole spin waves. However,
because of the exchange weakening of the magnetodi-
pole interaction, the efficiency of this mechanism of the
formation of nonexchange spin-wave excitations is
reduced sharply in antiferromagnetic films. At the same
time, it was shown in [5] that, if the frequency of spin
waves ω and the projection of their wave vector k onto
the magnetic film plane (k⊥ ) satisfy the elastostatic cri-
terion [6]

(1)

where s is the minimum phase velocity of the sound
wave propagation, then an indirect exchange-enhanced
(in the antiferromagnets) spin–spin exchange through
the long-range field of quasi-static magnetoelastic
deformations may become an alternative to the magne-
todipolar mechanism of the formation of nonexchange
spin waves. The corresponding class of propagating
nonexchange spin-wave excitations may be called elas-
tostatic spin waves (ESSWs) [5], since condition (1) in
the continuum elasticity theory corresponds to the elas-
tostatic approximation, and the conditions of the for-
mation of ESSWs are mainly similar to the formation
of magnetostatic spin waves (MSSWs). However, the
conditions for the formation and the dispersion proper-
ties of all ESSWs that were studied heretofore, both the
surface and the bulk ones, were independent of the
nature of the magnetocrystalline anisotropy of the real
magnetic sample. Therefore, from this viewpoint, they
may be called isotropic elastostatic spin waves
(IESSWs).

The aim of this work is to determine the necessary
conditions under which the effect of magnetocrystal-
line anisotropy on the character of spin–spin exchange
through the field of “elastostatic phonons” may lead,

ω ! sk ⊥ ,
1063-7842/00/4501- $20.00 © 0055
when subject to condition (1), to the formation of a new
class of propagating bulk and surface spin-wave excita-
tions in finite magnets—anisotropic spin waves
(AESSWs).

BASIC RELATIONSHIPS

As an example, we consider a two-sublattice model
of an easy-plane tetragonal antiferromagnet (AFM)
with sublattice magnetizations M1 and M2 [7, 8]. The
specific features of the spin dynamics of this class of
magnetic crystals is known to be related to the exist-
ence of the Dzyaloshinskiœ interaction, which depends
on the parity of the antiferromagnetic structure with

respect to the fourfold axis (0Z). If this axis is odd ( ),
then, in the terms of the vectors of ferromagnetism (m)
and antiferromagnetism (l), this interaction Dikmilk con-
tains the invariants (|M1| = |M2 | = M0)

(2)

In terms of a phenomenological approach, the
energy density W in the discussed model of an arbitrary
two-sublattice antiferromagnet, which takes into
account the interaction of the spin and elastic sub-
systems, may be represented by a functional of the vec-
tors m and l, their spatial derivatives, and the tensor of
elastic deformations uik. In order to clearly demonstrate
the effect of magnetocrystalline anisotropy on the for-
mation of elastostatic spin waves, we assume the mag-
netoelastic and elastic properties of the crystal to be
isotropic:

(3)
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Everywhere below, we also assume that the condi-
tion

(4)

is fulfilled.
Following [8], we can show that, under condition (1),

both the linear and nonlinear elastoexchange spin
dynamics of the discussed model of a magnet may be
described using the following set of dynamic equations
that couple the vector of antiferromagnetism l and the
vector of elastic lattice displacements u:

(5)

The effective energy of magnetic anisotropy Wa for
the vector l in this case is

(6)

whereas the vector of ferromagnetism m may be deter-
mined from the equation

(7)

If we write the set of dynamic equations (5) as a set
of Euler–Lagrange equations, then the density of the
corresponding Lagrangian function L may be written as

(8)

Since we are interested in the elastoexchange
dynamics of a thin magnetic film, then to solve the
boundary value problem the set of dynamic equations
(5) and (6) should be supplemented with appropriate
boundary conditions. In the case of a thin isolated anti-
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ferromagnetic film of thickness d and fully free spins,
such a set of boundary conditions has the form

(9)

If, on the contrary, the sample is completely “con-
strained,” then the following set of boundary conditions
should be used along with (5) and (6):

(10)

Using the condition |l | = 1, it is convenient to repre-
sent the set of dynamic equations (5) and (6) and the
corresponding boundary conditions (9) or (10) in terms
of polar (ϑ) and azimuthal (ϕ) angles, which are deter-
mined from the relation

(11)

In this case, as follows from (5) and (6), the easy-
plane character of the equilibrium orientation of the
antiferromagnetism vector corresponds to β < 0.
Depending on the character of anisotropy in the basal

plane (determined by the magnitude of ), the ground
state corresponds to the following equilibrium orienta-
tion of the antiferromagnetism vector l:

(12)

or

(13)

Since in this work we are interested in the condi-
tions for the formation of anisotropic ESSWs, we, to
obtain analytical expressions, restrict ourselves to the
consideration of the geometry of the propagation of
spin waves such that u ⊥  k. From (12) and (13) and a
comparison of the results obtained with the conditions
for the existence of “isotropic” ESSWs [5], we obtain
that new “anisotropic” types of propagating elastostatic
spin waves arise at u || l. In this case, however, the struc-
ture of the spectrum of these types of traveling nonex-
change spin-wave excitations substantially depends on
the equilibrium orientation of the antiferromagnetism
vector in the XY plane, according to (12) and (13).

ISOLATED MAGNETIC FILM

If ϑ  = π/2 and ϕ = 0 (or ϕ = π/2) (see (12)), the indi-
rect spin–spin exchange through the field of elastostatic
phonons with lattice displacements ux ≠ 0 (uy ≠ 0) leads
to the formation of bulk anisotropic ESSWs whose
wave vector is k ∈  YZ (k ∈  XZ) and the number of
modes ν is an infinite denumerable many. A specific
feature of this type of spin-wave excitations is that the
constituting modes at a fixed ν and 0 < k⊥  < ∞ form two
nonoverlapping frequency bands. If we designate the
frequency of the excitation of the “high-frequency”
bulk mode by ω+ and the “low-frequency” mode by ω−,

∂l
∂ξ
------ 0; σiknk 0; ξ 0 d .,= = =

∂l
∂ξ
------ 0; ui 0; ξ 0 d .,= = =

lx ϑ ϕ ; lycossin ϑ ϕ ; lzsinsin ϑ .cos= = =

b̃

ϑ π 2⁄ , ϕ 0 π 2⁄ , b̃, 0>= =

ϑ π 2⁄ , ϕ π 4⁄ 3π 4⁄ , b̃, 0.<= =
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then the regions of existence of the “high-frequency”
(ω+) and “low-frequency” (ω–) bands of the spectrum
of bulk anisotropic ESSWs at 0 < k⊥  < ∞ are determined
by the conditions

(14)

respectively.
The frequencies ωa – d are the condensation points of

the spectrum of the discussed class of nonexchange
spin-wave excitations at k⊥   0 and can be deter-
mined from the dispersion relations. An analysis shows
that the frequency ranges of existence of these types of
nonexchange magnetic excitations do not overlap
(ωb < ωc) and are determined by the magnitude of the
magnetic anisotropy. The character of the dispersion
curve of each of the branches depends on the relative
orientation of the normal to the film surface n and the
direction of the equilibrium vector of antiferromag-
netism l. Qualitatively different situations occur at

n || 0Y and n || 0Z (4c2 = g2 δα,  = c2γ2 /µα):

(15)

(16)

(17)

If we now investigate, using (15)–(17), the character
of the dispersion curves of the thus-found nonexchange
spin-wave modes, we may easily show that, at n || 0Y,
the high-frequency anisotropic bulk ESSW is a wave of
the forward type (∂ω/∂k⊥  > 0; ω+(k⊥   0)  ωc;
ω+(k⊥   ∞)  ωd). An opposite situation takes
place for the considered spectrum of anisotropic bulk
ESSWs at n || 0Z. The low-frequency branch of the
spectrum is simultaneously a backward-type wave
(∂ω/∂k⊥  < 0) (ω–(k⊥   0)  ωb); ω–(k⊥  ∞) 
ωa). The situation reverses for n || 0Z. In this case, the
high-frequency modes, defined by (15)–(17) with ν ≠ 0,
are waves of the backward type (ω+(k⊥   0)  ωd);
ω+(k⊥   ∞)  ωc), whereas the low-frequency
modes with ν ≠ 0 are forward-type waves (ω–(k⊥  
0)  ωa; ω–(k⊥  ∞)  ωb). As to the anisotropic
ESSW modes with ν = 0, their excitation frequency in
the considered nonexchange approximation (c  0)
is independent of the magnitude of k (k ∈  YZ) both at
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n || 0Y and n || 0Z; with allowance for (15)–(17), it is
determined by the relation

(18)

Let us now consider how the spectrum of the above-
found bulk anisotropic elastostatic spin waves will
change if the direction of the normal n to the magnetic
film surface lies as before in the YZ plane but makes an
angle ψ with the 0Z-axis (0 < ψ < π/2). As calculations
show, now the structure of the spectrum of bulk ESSWs
induced by the indirect spin–spin exchange through the
long-range field of elastostatic phonons with u || l is
determined for a given ψ by the equation that coincides
in the limiting cases (ψ = 0 or ψ = π/2) with (15)–(17)
at ν ≠ 0:

(19)

(20)

The spectrum of the zeroth mode of the spectrum of
bulk anisotropic ESSWs with allowance for (19) and
(20) consists of four branches:

(21)

Thus, the range of the existence of anisotropic bulk
ESSWs propagating in the YZ plane, as before, consists
of two bands that satisfy conditions (14) and (15), i.e.,
“high-frequency” (ω+) and “low-frequency” (ω–)
bands, but there are now four rather than two types of
branches of the spectrum of bulk ESSWs (Fig. 1). At
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Fig. 1. 0 < ψ < π/2; ϑ  = π/2; ϕ = 0, π/2; t = l = 0.
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ν ≠ 0 in (19) and (20), the structure of the spectrum of
propagating bulk anisotropic ESSWs changes as fol-
lows. At k⊥   ∞, four points of condensation exist
now in the ESSW spectrum at k⊥   ∞, whose values
correspond to ωa – d, whereas, at k⊥   0, the number
of condensation points is two, as before, although their
values are ω±∗ . The following relationships exist
between all these characteristic points of the spectrum
of bulk anisotropic ESSWs with ψ ≠ 0:

(22)

It follows from (19) and (20) that the branches of the
spectrum of anisotropic bulk ESSWs at ω∗ + < ω < ωd

and ω∗ – < ω < ωb correspond to the high-frequency
and low-frequency waves of the forward types
ω+(k⊥  0)  ω∗ +, ω+(k⊥   ∞)  ωd,
ω−(k⊥  ∞)  ωb, and ω–(k⊥   0)  ω∗ –,
whereas, at ωc < ω < ω∗ + and ωa < ω < ω∗ –, they corre-
spond to the high-frequency and low-frequency waves
of the backward types ω+(k⊥   0)  ω∗ +,
ω+(k⊥  ∞)  ωc, ω–(k⊥   ∞)  ωa, and
ω−(k⊥  0)  ω∗ –. The spectrum of bulk ESSWs
with ν = 0 (21) contains four branches (which are dis-
persionless in the nonexchange approximation), and
their frequencies coincide with ωa – d. The analysis
shows that the zeros of (19) and (20) in the limiting
cases (ψ = 0 or ψ = π/2) coincide with ωa – d and the
structure of the spectrum of propagating anisotropic
bulk ESSWs completely corresponds to the above con-
sidered set of equations (15)–(18) at any ν. Additional
types (apart from those found in the phase with ϕ = 0 or
ϕ = π/2) of anisotropic ESSWs arise in cases where the
equilibrium orientation of the antiferromagnet vector is
determined by condition (14) at ϕ = π/4, ϑ  = π/2.

For the same relative orientations of the vectors n
and l as in (15)–(17), the dispersion relations that deter-
mine the spectrum of anisotropic ESSWs with k ⊥  l || u
in the phase with ϕ = π/4, ϕ = π/2 are written as (  =
6dc2/α)

(23)
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(24)

(25)

In this case, as in (15)–(17), high-frequency and
low-frequency bands of propagating bulk AESSWs (κ2

> 0) that satisfy conditions (14) and (15) may be
formed. In this case, the dependence of their dispersion
characteristics on the orientation of the antiferromag-
netism vector l relative to the orientation of the normal
to the magnetic film surface n does not differ qualita-
tively from that considered above for the phase with
ϑ = π/2, ϕ = 0. However, a fundamentally new feature
of the considered spectrum of exchangeless spin-wave
excitations in comparison with (15)–(17) is the forma-
tion of two branches of anisotropic surface ESSWs
(κ2 < 0). It follows from (23)–(25) that these branches
are due to the indirect spin–spin interaction through the
field of elastostatic phonons with u || l under conditions
where there exists, among magnetic interactions in the
crystal, an interaction that violates the Lorentz invari-
ance of a given magnetic system. In the case at hand,
this effect is induced by the presence of the Dzy-
aloshinskii interaction with Dik ≠ εikjdj . In the
exchangeless approximation used in our case, all these
branches (just as the modes with ν = 0 in the case of the
anisotropic ESSWs of the bulk type) are dispersionless.
Let us designate the frequencies of these branches of
the anisotropic surface ESSWs in the order of increas-
ing frequency Ωs± (Ωs– < Ωs+). Then, we have from
(23)–(25) that the following conditions are fulfilled for
0 < k⊥  < ∞ at both n || 0Z and n ⊥  0Z with allowance for
(14) and (15):

(26)

Note here that the characteristic frequencies ωa – d
should be determined now from (23)–(25) at k⊥   0
and k⊥   ∞. Let us now analyze, for the given mag-
netic phase (ϑ  = π/2, ϕ = π/4), the structure of the spec-
trum of anisotropic ESSWs propagating in the plane
with the normal along l but with an arbitrary orientation
of n in this plane, specified by the angle ψ measured
from the 0Z-axis. The corresponding dispersion equa-
tion, which simultaneously describes the structure of
the spectrum of bulk and surface ESSWs, may be writ-
ten for an arbitrary ψ (0 < ψ < π/2) as

(27)
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(28)

(29)

As in the phase with ϑ ≡ π/2, ϕ ≡ 0 (see (19), (20))
at ψ ò 0, the spectrum of propagating anisotropic bulk
ESSWs does not differ qualitatively from that found at
ψ ≠ 0 in the phase with ϑ  = π/2, ϕ = 0 (∆ = A11A22 –

ω2 ).

In particular, it follows from (27)–(29) that, at
k⊥  ∞, there exist four condensation points ωa – d,
and, at k⊥   0, only two points (ω∗ ±), which are inter-

related by a set of inequalities analogous to (22). With
allowance for the above introduced designations (Ωs±
are surface waves), at 0 < k⊥  < ∞, the frequency ranges
of existence of both surface and bulk anisotropic
ESSWs in this case satisfy the set of inequalities

(30)

As in the case of the phase with ϑ  = π/2 and ϕ = 0,
the branches of the spectrum of anisotropic bulk
ESSWs for the phase with ϑ  = π/2, ϕ = π/4 correspond
to high-frequency and low-frequency waves of the for-
ward types at ω∗ + < ω < ωd and ω∗ – < ω < ωb, respec-

tively, and to high-frequency and low-frequency waves
of the backward types at ωc < ω < ω∗ + and ωa < ω < ω∗ –,

respectively. The spectrum of bulk ESSWs with ν = 0
contains four dispersionless (in the exchangeless
approximation) branches, and their frequencies coin-
cide with ωa – d . As follows from (27)−(29), in the lim-
iting cases of ψ = 0 or ψ = π/2, the frequencies ω∗ ±

coincide with ωa – d, respectively, and the structure of
the spectrum of anisotropic bulk ESSWs completely
corresponds to the above-considered set of equations
(23)–(25) (Fig. 2).

Up to this point, when considering the conditions of
the formation of anisotropic types of ESSWs, we
restricted ourselves to the analysis of the case of a thin
isolated magnetic film. At the same time, the efficiency
of the discussed “phonon” mechanism of the formation
of exchangeless spin waves may be affected by changes
in the elastic boundary conditions at the surface of the
magnetic film. For example, this may be a one-sided or
two-sided coating having a continuous acoustic contact
with the surface of the magnet.
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MAGNETIC FILM WITH A ONE-SIDED 
OR TWO-SIDED NONMAGNETIC COATING

The set of boundary conditions (9) changes in this
case as follows (the parameters of the magnetic and
nonmagnetic, elastoisotropic medium will be denoted
by indices 1 and 2, respectively; bs is the constant of
surface magnetic anisotropy):

—for the one-sided coating,

(31)

—for a two-sided coating,

(32)

In order to study how the presence of a nonmagnetic
coating affects the conditions of the formation and the
dispersion properties of anisotropic ESSWs existing in
an isolated magnetic film, we investigate the case of
k⊥  ⊥  l || u. As calculations show, the presence of a one-
sided (31) or a two-sided (32) nonmagnetic coating
changes the dispersion equation for the advancing
anisotropic ESSWs in the phase with ϑ  = π/2, ϕ = 0
(k ∈  YZ) as follows:

—for the one-sided nonmagnetic coating,

(33)

—for the two-sided nonmagnetic coating,

(34)

where µ|| and µ⊥  at n || 0Z or n || 0Y are determined by
relations (16) and (17), and a ≡ µ1/µ2.
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Fig. 2. 0 < ψ < π/2; ϑ  = π/2; ϕ = π/4, 3π/4; t = l = 0.
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It follows from (33) and (34) that the condensation
points of the spectrum of propagating anisotropic bulk
ESSWs (ωa – d) are solutions to equations (33) and (34)
at k⊥   0 and k⊥   ∞. With their help and using
(33) and (34), it may be shown that at 0 < k⊥  < ∞, just
as in the case of an isolated magnetic film, the spectrum
of bulk ESSWs contains both low-frequency modes
(ω−) (ωa < ω < ωb) and high-frequency modes (ω+)
(ωc < ω < ωd). As before, at n || 0Y the high-frequency
branches of the spin-wave excitations refer to the waves
of the forward type (∂ω/∂k⊥  > 0), and the low-fre-
quency branches correspond to the waves of the back-
ward type (∂ω/∂k⊥  < 0). If n || 0Z, then the opposite sit-
uation takes place: ω+(k⊥   0)  ωd, ω+(k⊥  
∞)  ωc, ω–(k⊥   0)  ωa, and ω–(k⊥  
∞)  ωb. An analysis of (33) and (34) shows that the
presence of a nonmagnetic coating most strongly
changes the spectrum of quasi-uniform (across the
thickness of the magnetic film) bulk spin-wave modes
(ωa – d), which in the spectrum of the isolated film (18)
were associated with modes with ν = 0. Both branches
of this mode of bulk exchangeless spin waves become
dispersionless, and the type of the wave (forward or
backward) is directly opposite to the type of the modes
with greater numbers ν > 1 and traveling in the same
frequency range. Finally, at n || 0Y (for ω–) or at n || 0Z
(for ω+) and k⊥   0, the range of existence of quasi-
uniform (across the film thickness) anisotropic elasto-
static spin-wave modes becomes dependent on the ratio
of the thicknesses and elastic shear moduli of the mag-
netic and nonmagnetic layers.

It can be deduced from (33) and (34) that the indi-
rect coupling via the long-range field of quasi-static
magnetoelastic deformations in the presence of a non-
magnetic coating having a continuous acoustic contact
with the surface of the magnetic film results in the for-
mation of a qualitatively new type of propagating non-
exchange spin-wave excitations—internal ESSWs. The
spectrum of these ESSWs depends on the ratio of the
thicknesses of the magnetic film and the nonmagnetic
coating and in the case of (33) and (34) consists of one
(Ωi) or two (Ωi±) branches depending on whether the
film carries a one- or two-sided nonmagnetic coating.
At 0 < k⊥  < ∞, the range of the existence of these inter-
nal ESSWs lies in the interval (ωb , ωc) in the case of
both (33) (one branch) and (34) (two branches). There-
fore, for ϑ  = π/2, ϕ = 0 at 0 < k⊥  < ∞, the frequencies of
the bulk and internal ESSWs with k ⊥  l || u in the film
of a tetragonal AFM are located in the case of both (33)
and (34) as follows:

—for a two-sided nonmagnetic coating,

(35)

—for a one-sided nonmagnetic coating,

(36)

ωa ωb Ωi– Ωi+ ωc ωd,< < < < <

ωa ωb Ωi ωc ωd.< < < <
Let us now consider the effect of a nonmagnetic
coating on the conditions of the formation and disper-
sion properties of anisotropic bulk and surface
exchangeless ESSWs in the phase with ϑ  = π/2 and ϕ =
π/4. Using the set of dynamic equations (6) and bound-
ary conditions (31) and (32), we may show that, at
k ⊥ l || u, the indirect spin–spin coupling via the field of
“elastostatic” phonons leads to the following dispersion
equation for the propagating nonexchange anisotropic

ESSWs (κ2 ≡ (µ⊥ /µ||) ):

—for the one-sided nonmagnetic coating,

(37)

for the two-sided nonmagnetic coating,

(38)

where µ|| and µ⊥  at n || 0Z or n || 0Y are determined by
relations (24) and (25), and s = 1 or s = –1 correspond
to the positive or negative values of the projection of the
wave vector of the traveling spin wave k⊥  on the film
plane.

A qualitatively new feature of this spectrum of prop-
agating anisotropic ESSWs as compared to (33) and
(34) is the appearance of two branches of internal
ESSWs (Ωi±). If we, as before, denote by ωa – d the char-
acteristic frequencies of the propagating bulk ESSWs
defined by (37) and (38) at k⊥   0 and k⊥   ∞, we
can show that, at 0 < k⊥  < ∞, the ranges of the existence
of the internal and bulk anisotropic ESSWs obey the set
of inequalities analogous to (26)

(39)

Important features of the considered spectrum of
anisotropic surface and bulk ESSWs (37) and (38) that
are associated with the presence of a nonmagnetic coat-
ing (one- or two-sided) are the lack of reciprocity with
respect to the inversion of the direction of the wave
propagation (ω(k⊥ ) ≠ ω(–k⊥ )) and the possibility of the
formation of regions with a zero group velocity at
k⊥  ≠ 0. 

If we now consider the case where, in the phase with
ϑ  = π/2, ϕ = π/4, the normal to the film surface (n ⊥  l)
makes an angle ψ which is not equal to zero or π/2 with
the 0Z-axis, then, with allowance for (27)–(29), the dis-
persion equation that determines the spectrum of aniso-
tropic ESSWs of a thin magnetic film can be written in
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the following form (κ2 ≡ –(  – µ⊥ µ||) / ):

—for the one-sided nonmagnetic coating,

(40)

—for the two-sided nonmagnetic coating,

(41)

If, as before, the above-introduced designations for
the condensation points of the spectrum of high-fre-
quency (ω+) and low-frequency (ω–) bulk modes of
ESSWs (ωa – d) and for the mode of the spectrum of
internal ESSWs (Ωi±) are valid, then, as follows from
(40) and (41), the spectra of the corresponding
exchangeless ESSWs satisfy the set of inequalities

(42)

Here, at ν > 1, the bulk forward-type ESSWs are
formed at ω∗ + < ω < ωd and ω∗ – < ω < ωb, whereas the

bulk waves of the backward type are located in the
intervals ωa < ω < ω∗ – and ωc < ω < ω∗ +. In addition,

at k⊥  ≡ k±∗ , the dispersion curves of both internal
ESSWs determined by equations (39)–(41) may
smoothly pass into corresponding dispersion curves for
the quasi-uniform (across the film thickness) modes of
the anisotropic bulk ESSWs (Figs. 3, 4). For this to
occur, it is necessary that the dispersion curves of the
modes belonging to the spectrum of low-frequency
elastostatic bulk waves (ω–) were forward-type waves
(∂ω/∂k⊥  > 0) and the dispersion curves of the modes
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Fig. 3. 0 < ψ < π/2; ϑ  = π/2; ϕ = 0, π/2; t = l = ∞.
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belonging to the spectrum of high-frequency elasto-
static bulk waves were of the backward-wave character
(∂ω/∂k⊥  < 0). The formation of the above-found modes
of exchangeless internal elastostatic spin waves is

impossible if the conditions µ|| = 0 and a2  > 1 (at t =

l = ∞) are fulfilled simultaneously.
The results of the above-considered elastostatic

approach to the analysis of spectra of spin-wave excita-
tions in a thin magnetic film also remain important
when taking into account the nonuniform exchange
interaction.

EFFECT OF NONUNIFORM EXCHANGE 
COUPLING

The calculation of the dispersion equation that
describes the elastoexchange spin dynamics of a thin
magnetic layer (isolated or carrying a nonmagnetic
coating) is intricate but represents no large difficulties.
Naturally, its analysis requires the application of
numerical methods, but on a qualitative level the struc-
ture of the spectrum of propagating elastoexchange
spin waves can be studied by comparing (at the same
values of k⊥ ) the frequency ranges of existence of the
above-found ESSWs (see (14), (22), (26), (30), (35),
(36), and (42)) and of propagating exchange spin-wave
excitations. It can be shown that, in the complete anal-
ogy with the exchange–dipole dynamics of thin mag-
netic films, a necessary condition for the formation of a
nonuniform spin–spin resonance with the participation
of traveling elastostatic and exchange modes is the
allowance for the modes of the spectrum of exchange
bulk spin waves. The interaction of these waves leads,
in the range of degeneration of the spectra, to “elbow-
ing” of the dispersion curves of the above modes and
the formation in the resonance range of propagating
elastoexchange spin waves. With increasing magnetic
film thickness, the distances between neighboring
exchange modes of the spectrum of bulk spin waves of

µ*
2

v  = 2

v  = 1

v  = 2

v  = 1

v  = 1

v  = 2

v  = 2

v  = 1

ω2

ω2
d

ω2
∗ +

ω2
c

k⊥

Ωi_

Ωi+

ω2
a

ω2
∗ −

0

ω2
b

Fig. 4. 0 < ψ < π/2; ϑ  = π/2; ϕ = π/4, 3π/4; t = l = ∞.
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a magnetic film will decrease and, subject to condi-
tion (1), the above-found types of elastoexchange spin
waves will gradually transform into resonance levels
against the background of a continuous spectrum of
bulk spin waves. In another limiting case, upon a
decrease in the thickness of the magnetic film, the dis-
tance between the neighboring exchange modes will
increase infinitely, which, at d < d∗ , will make it impos-
sible to realize the above nonuniform spin–spin reso-
nance of the elastoexchange type in the film. If the
range of existence of the above anisotropic surface
ESSWs and internal ESSWs lies below that of the spec-
trum of the bulk spin modes, then, when solving the
complete elastoexchange boundary problem, they
transform into elastoexchange coupled spin-wave
states. If the above-found anisotropic backward-type
ESSWs can be formed below the range of the existence
of exchange bulk modes of the thin magnetic film, then
the sequential solution of the elastoexchange boundary
problem will result in the formation of a minimum in
the dispersion curve of the corresponding bulk elas-
toexchange spin mode propagating along the film.

CONCLUSION

Thus, the proper allowance for the magnetocrystal-
line anisotropy can substantially affect the character of
the indirect spin-spin coupling via the field of elasto-
static phonons in thin magnetic films, resulting in new
types of exchangeless spin-wave excitations of aniso-
tropic bulk, surface, and internal elastostatic spin waves
that never have been studied previously.

It should be noted that the case of an antiferromag-
net of tetragonal symmetry is by no means the only type
suitable for the formation of the above anisotropic
types of elastostatic spin waves. In particular, an analy-
sis of thin magnetic films with an orthoferrite structure,
subject to condition (1), shows that the above calcula-
tion of the spectrum of anisotropic ESSWs of a tetrag-
onal antiferromagnet in the phase with ϑ  = π/2, ϕ = 0
remains valid in the case where the ground state of the
uniformly magnetized film is one of the weakly ferro-
magnetic phases of the orthoferrite (GxFz or GzFx). As
to the spectrum of anisotropic ESSWs in the tetragonal
antiferromagnet phase with ϑ  = π/2, ϕ = π/4, in the
orthoferrite an analogous case is realized if the ground
state of the orthoferrite film is a canted phase. For the
experimental study of the above-found types of
exchangeless spin-wave excitations, the condition
TN < TD between the Néel and Debye temperatures
should be fulfilled in view of (1). Here, however, we
should note that if a hyperfine interaction exists in the
crystal (A ≠ 0, where A is the hyperfine field constant),
then, as was shown in [9], the results of analyzing the
conditions of the formation of elastostatic spin waves in
the electron subsystem will also be completely applica-
ble to the spectrum of nuclear spin-wave excitations to
the accuracy of the substitution of the frequency of spin
waves ω by an effective frequency ω∗  defined by the
condition

(43)

where ωT is the dynamical shift of the nuclear magnetic
resonance (NMR) frequency, and ωn is the unshifted
NMR frequency.

Since the NMR frequency is smaller by a factor of
several orders of magnitude than the frequency of the
uniform AFMR, the conditions for the exchangeless
approximation can be fulfilled much more easily for
nuclear anisotropic ESSWs even in those crystals in
which the analogous approximation for electron
ESSWs is unrealistic. With the above in mind, one of
the possible objects of searching for anisotropic
ESSWs discovered in this work may be a film (isolated
or with a nonmagnetic coating) of a tetragonal antifer-
romagnet MnF2 in the spin-flop phase, for which
nuclear spin waves were experimentally studied previ-
ously [10].
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Abstract—The radiation damping ratio and the transmission coefficient were calculated for a passive compres-
sor of microwave pulses that is built around a length of an oversized waveguide with a helical-corrugated inter-
nal surface. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

For passive compression of microwave pulses [1], a
ring cavity designed on an axially symmetric metal
structure (see figure) that consists of sections having
different diameters and connected by tapered
waveguide segments was proposed [2]. The cavity
itself is a slightly expanding part of a tube. A wave
passing through the system and an operating mode of
the cavity are coupled by a helical-corrugated internal
surface [3, 4]. In this work, we develop an approximate
theory of such a compressor.

OPERATING MODES IN THE CAVITY 
AND THE WAVEGUIDE

Let the waveguide H-mode

(1)

(where k = ω/c, hj = , µmn is the nth root
of the derivative of an mth-order Bessel function, and
R(z) is the radius of the undisturbed cavity surface) and
the cavity E-mode (optimal from the viewpoint of elec-
tric strength)

Ew Re C j z( )E j iωt( )exp{ } ,=

Hw Re C j z( )H j iωt( )exp{ } ,=

E⊥ j ik
R

µmn

-------- 
  2

∇ ⊥ Hzj z0,[ ] ,–=

H⊥ j ih j
R

µmn

-------- 
  2

∇ ⊥ Hzj,–=

Hzj Jmj

µmn

R
--------r 

  im jϕ– ih jz–( )exp=

k
2 µmn R⁄( )2

–

Er Re BSES iωt( )exp{ } ,=
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(2)

(where hs(z) =  and νmn is the nth root
of the mth-order Bessel function) be the operating
modes.

We assume that the cavity length far exceeds the
wavelength λ = 2πc/ω, which allows us to neglect the
radial and azimuth components of the electric field of
the operating single-humped quasi-cutoff mode in
comparison with the longitudinal component. For the
latter, the z dependence is described by a slowly vary-
ing real function F(z), satisfying the nonuniform-string
equation [5, 6]

and exponentially decaying outside the cavity.

COUPLING BETWEEN THE CAVITY 
AND WAVEGUIDE OPERATING MODES

The corrugation-induced disturbance is taken into
account by introducing surface magnetic current im [3, 5]

(3)

where n is the normal unit vector directed inward to the
metal, l(z) = b(z)cos( ϕ + z) is the corrugation pro-
file, and b is the corrugation depth.

According to formula (3), the magnetic current
induced on the corrugated surface by the cavity operat-
ing mode (2) has a harmonic corresponding to the syn-

Hr Re BSHS iωt( )exp{ } ,=

H⊥ s ik
R

νmn

-------- 
  2

∇ ⊥ Ezsz
0[ ] ,=

Ezs Jms

νmn

R
--------r 

  imsϕ( )F z( )exp=

k
2 νmn R⁄( )2

–

d
2
F z( )
dz

---------------- hs
2

z( )F z( )+ 0=

im 1
4π
------ n iωl n H,[ ], c∇ Enl( )+[ ] ,=

m h
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chronous waveguide mode (1) under the condition
(cf. [3])

(4)

where  and d are the number of starts and the corru-
gation pitch, respectively.

The reradiation into spurious modes is suppressed
by the utilization of modes with opposite directions of
rotation (opposite signs of mj and ms) in the cavity and
the waveguide.

CAVITY FREE OSCILLATIONS FOR RADIATION 
INTO THE WAVEGUIDE: AN ENERGY 

APPROACH

Find the complex amplitude of a waveguide mode
excited by the cavity eigenmode field (2) from the
equation [7]

(5)

where dσ = Rdϕ, Nj = –cRe z0dS⊥ /2π is the

norm of the waveguide operating mode and dS⊥  = rdrdϕ.

Substituting formulas (1) and (2) into (3) and then
(3) into (5), neglecting the derivatives of the slowly
varying functions (∂Cj(z)/∂z, ∂R/∂z, and ∂b/∂z) and the
fast-oscillating terms, and taking into account condition
(4), we obtain from equation (5), at Cin = Cj(–∞) = 0, the
amplitude Cout = Cj(∞) of the wave radiated from the
cavity,

where K1 = kmj (νmn)/2(  – )νmnRJmj(µmn)

and I1 = (z)F(z)dz, and the power radiated from

the cavity into the waveguide,

(6)

From formula (6), we find the radiation damping
ratio  = Pj/2Ws (where Ws = |Bs |2Ns/2 is the mean
energy stored in the cavity and determined by (2) and

m j ms– m, h j h≈ 2π
d

------,= =

m

dC j z( )
dz

----------------
1
N j

------ imH j* σ,d∫°–=

E j H j*,[ ]∫

Cout K1I1Bs,=

µmn
2

Jms' µmn
2

m j
2

b
∞–

+∞∫

P j

Cout
2

N j

4
-----------------------.=

ωs''

Model of the cavity.

Cin Cout

z

Bs
 Ns = dV/4π = dV/4π is the norm of the

cavity operating mode):

(7)

where M = hj /8R2Ir and Ir = (z)dz. Hence, the

radiation Q-factor is given by the cavity

Similar formulas are also obtained for the case when
the operating mode of the cavity is the E-mode:

CAVITY TRANSMISSION COEFFICIENT

The transmission of a lossless ring cavity is
described by the universal formula [8]

(8)

where ωs0 is the undisturbed eigenfrequency of the cav-

ity and  is the radiation damping ratio, for which, in
this case, formula (7) is valid.

We can arrive at the same result by solving the self-
consistent set of equations for excitation of the
waveguide [equation (5)] and the cavity:

(9)

Substituting (1) and (2) into (3) and then (3) into (5)
and (9) and neglecting the derivatives of the slowly
varying functions (∂Cj(z)/∂z, ∂R/∂z, and ∂b/∂z) and the
fast-oscillating terms, we obtain, in view of (4), the set
of equations for the amplitude Cj(z) of a wave passing
through the cavity and for the amplitude Bs of the cavity
eigenmode:

(10a)

(10b)

where Cin = Cj(–∞) is the amplitude of the
wave  exciting the cavity, K2 = ωmjhjνmnJmj(µmn)/ 4k ×

R (νmn)Ir,  = (z')F(z')dz', and I2 =

(z)Cj(z)F(z)dz.

Passing in formula (10a) to the amplitude of the
transmitted wave, Cout = Cj(∞); substituting (10a) into

Es
2∫ Hs

2∫

ωs''
ωM

µmn m j⁄( )2
1–

----------------------------------,=

I1
2

F
2

∞–

+∞∫

Qs

µmn m j⁄( )2
1–

2M
----------------------------------.=

ωs''
ωk

2
M

h j
2

---------------, Qs
1

2M
--------.= =

T ω( )
Cout

Cin
---------

ω ωs0– iωs''+

ω ωs0– iωs''–
---------------------------------,= =

ωs''

Bs
i

2 ω ωs0–( )Ns

-------------------------------- imHs* σ.d∫°–=

C j z( ) Cin K1I1Bs,+=

Bs

iK2I2C j z( )
ω ωs0–

--------------------------,=

µmn
2

Jms' I1 b
∞–

z∫
b

∞–
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(10b); and integrating by parts, we obtain the set of
equations for Cout and Bs:

(11a)

(11b)

From system (11), the universal transmission T =
Cout /Cin in the form of (8) can be derived.

CONCLUSION
Since the transmission of the device shown in the

figure is described by relationship (8), which is applica-
ble to any ring cavity, this device can be applied to com-
press microwave pulses with the standard method
described in [1, 8].
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Abstract—The dynamics of switching to the resistive state of several types of comparators based on tunnel
Josephson junctions is analyzed by the method of numerical modeling. The expediency of utilizing the scheme
of the balance comparator in the mode of single-quantum pulses for attaining higher performance as the hys-
teresis of the voltage–current characteristics (VCCs) decreases is demonstrated. © 2000 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

Superconducting stroboscopic converters are
designed according to a conventional scheme [1], in
which single Josephson junctions or interferometers
created on their basis play the role of the Esaki diodes.
The first stroboconverters were designed using two tun-
nel junctions, one of them acting as a generator of short
pulses and the other as a comparator. Such a design of
stroboconverters was proposed by Faris and allowed
one to improve substantially the parameters of known
semiconductor stroboconverters even in the first exper-
iments [2].

Since the time resolution of stroboconverters with a
comparator based on the single Josephson junction is
determined through the strobopulse duration, further
improvement of converters is connected with the
increase of density jc of the critical current. The best
results were reported in [3]: at jc = 30 kA/cm2, the pulse
duration was 3.7 ps, the time resolution was 2.1 ps, and
the sensitivity δI ≈ 1 mkA/Hz1/2. In the opinion of the
authors of papers [3] and [4], by further increasing the
density of the current, one may attain a subpicosecond
resolution. Therefore, the study of the dynamics of
comparators employing tunnel junctions with high den-
sity jc of the current is a topical problem.

In order to enhance the noise immunity of strobo-
converters, a balance scheme was proposed, in which
two Josephson junctions are coupled using the princi-
ple of the Gauto pair [5] and the comparator is strobed
by the voltage overfall. It is also of interest to investi-
gate the balance property of the Faris scheme and to
compare the characteristics of both schemes.

In this paper, I present the results of numerical mod-
eling of the dynamics of processes for several types of
comparators based on the Josephson junctions in a
wide range of variation of their parameters. I also com-
pare their performance as applied to the possibility of
1063-7842/00/4501- $20.00 © 20066
designing the Josephson converters with a record time
resolution and sensitivity.

SCHEME OF THE FARIS COMPARATOR 
AND CALCULATION TECHNIQUE

The scheme of the comparator with the Faris gener-
ator is shown in Fig. 1. Josephson junction J4 is con-
nected to a two-contact interferometer with junctions J1
and J2 via resistor R and forming unit J3. The interfer-
ometer is switched by choosing feeding current Ie and
control current Icont. A sharp transition, which is
obtained as a result of switching the interferometer to
the resistive state, is enhanced by small junction J3.
A short strobopulse (a short pulse of current) is formed
and sent to comparator J4, where it is added to signal
current Is and feedback current Ifb.

In order to investigate the dynamics, the perfor-
mance of this system was simulated numerically using
the software Personal Superconductive Circuit Ana-
lyzer (PSCAN) developed at the laboratory of cryoelec-
tronics of the Department of Physics of the Moscow
State University [6]. PSCAN is intended for the analy-
sis of circuits with Josephson junctions. The base sub-
routine of PSCAN, which simulates the system behav-
ior with a variable time step, calculates, within the

Icont
L/2 R

Ie

J3

Ifb Is

J4

J2J1

L/2

Fig. 1. The comparator based on tunnel Josephson junction
J4 connected to a two-contact interferometer (J1, J2) via
resistor R and forming unit J3.
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framework of the chosen model, Josephson phases ϕ at
all nodes of the scheme; the time step is chosen so that
the maximum phase increment at every point of the
scheme would not exceed π/100. All calculations are
performed using the microscopic Wertchamer model,
according to which each junction is characterized by
five parameters [6]: critical current I0; slot voltage Vg;
the characteristic voltage Vc = IcRN, where RN is the nor-
mal resistance of the junction; and the capacity param-

eter β = 2πIc C/Φ0, where C is the junction capacity.
The junction is also characterized by Q-factor κ of the
tunnel junction, which is defined as the ratio of the qua-
siparticle resistance in the preslot domain to the normal
resistance of the Josephson junction, κ = Rj/RN.

NUMERICAL RESULTS
A typical strobing pulse consists of two main parts:

the triangular body of the pulse and the tail in the form
of the Josephson oscillations that follows the body. The
best parameter that characterizes such a shape of the
pulse is the ratio of the difference between the ampli-
tude of the triangular part and the oscillation amplitude
to the amplitude of the body, δa = δA/A. The dynamics
of the two-contact interferometer is governed by the
values of feeding current Ie and capacity parameter β;
therefore, it is convenient to perform the analysis in the
(β, ie) plane, where ie = Ie/Ic. The results of calculations
presented in Fig. 2 by solid lines show that, for typical
values of parameters (κ = 9, R ~ RN1, 2 = 1, and l = 3,
where l is the geometric inductivity of the interferome-
ter in units Φ0/2πIc), decreasing β deteriorates δa and
the working range with respect to current ie narrows
down. For small β (3 < β < 8), the left boundary of the
working domain in the (β, ie) plane can be extended by
setting R = 2 (dashed curves in Fig. 2). For other values
of κ = 3, an abrupt shift of the boundary to the right is
observed, which means that the quality of tunnel junc-
tions exerts a pronounced effect on the system dynam-
ics. Figure 3 shows the lines of equal front in the (β, ie)
plane.

Geometric inductivity l of the two-contact interfer-
ometer is one the most important parameters that influ-
ence the dynamics. It is known [7] that, when the volt-
age  = ("/2e)ω0, a narrow almost vertical peak
appears on the voltage–current characteristic (VCC) of
the two-contact interferometer, which is connected
with intense forced oscillations with the frequency ω0 =
(C1 + C2)/LC1C2 in the system formed by the induc-
tance of the interferometer and capacitance of junc-
tions. The height of this peak depends on Φe and may
reach 0.6Ic+, where Ic+ is the critical current of the two-
contact interferometer. The amplitude of oscillations
excited in the circuit when the interferometer is
switched to the resistive state depends on the ratio of
the feeding current to the peak amplitude and on the
speed of passing over the width of this peak ε = dω/dt.

RN
2

V
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According to the theory of oscillations, the swing of the
amplitude in the contour is determined, in the linear
approximation, by the formula [7]

(1)

where ω0 is the eigenfrequency of the oscillatory circuit
and Q is its Q-factor.

Substituting into (1) the Q-factor of the system
recalculated taking into account the Josephson induc-
tance and using the expression for ε, we obtain the rela-
tionship

(2)

for a symmetric interferometer. As follows from this
expression, at small κ, β, and l, intense eigenoscilla-
tions can be easily excited in the contour, which ham-
pers useful dynamics of the process. Since the values of
parameters κ and β are governed by the technology of
manufacturing the junctions, it seems convenient to
decrease the amplitude of the excited oscillations by
increasing inductivity l. However, the results of calcu-
lations show that the strobopulse duration increases

∆B
B
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ω0

2

Q
2

------1
ε
---,

∆B
B

-------  . 
1

κ 2β l 1+( )
-------------------------

1.2
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1.6

2.0
0.2 0.3 δα = 0.5

β
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Fig. 2. Variation of parameter δa of the strobing pulse in the
(β, ie) plane.
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Fig. 3. Lines of equal duration of the strobopulse front in the
(β, ie) plane.
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together with l (Fig. 4). Therefore, I think that the val-
ues of l chosen in [4] are optimal.

Resistance R also exerts a pronounced effect on the
shape of the obtained strobopulse. The value of the
resistance is chosen using the following considerations:
since the rate of increase of the current through a small
junction is determined by the resistance, this rate
should provide the fulfillment of the inequality

(3)

where τ0 is the time during which critical current IcM of

the junction is attained, τ0 = IcM/ ; τD is the time of
delay in the case of a linear increase of the current
through the small junction [7]; and τN is the time of
switching to the resistive state (duration of the front of
the rectangular voltage pulse when the interferometer is
switched), τN = RNC.

Explain the physical sense of inequality (3): during
the time of existence of the front of the rectangular volt-
age, the formation of the front and top of the
strobopulse must terminate; i.e., the current through the
small junction must reach the critical value, and the
delay interval must pass, after which the voltage on the
junction attains a noticeable level. Taking into account

that  = Vg/RRNC and introducing dimensionless quan-
tities r = R/RN , ξ = IcM/Ic, and v g = Vg/Vc, rewrite rela-
tionship (3) to obtain

(4)

where ωcτD is determined as

The analysis of these formulas shows that in order to
provide the validity of (4) for decreasing β, it is neces-

τ0 τD τN ,≤+

İ
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r 1
ωcτD
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Fig. 4. The strobopulse duration vs. inductivity l of the inter-
ferometer. 
sary to increase r. This statement is confirmed by the
results of calculations obtained for medium attenuation
(β ~ 3, Fig. 2).

The calculations have demonstrated that when
β < 3, parameter δa characterizing the shape of the
pulse deteriorates (δa & 0.1) and the working
range  with respect to the current strongly decreases
(∆I /Ic+ ~ 0.1). One should not use such strobopulses,
because rapidly increasing signal Is, when added to rel-
atively strong oscillations of the tail, may switch the
comparator to the resistive state, which may cause
errors in measurements of the current value of the sig-
nal. Thus, one may conclude that it is inexpedient to
employ the Faris generator at small β (β < 3).

SCHEME WITH SINGLE-QUANTUM PULSES

Another version of utilizing tunnel junctions with
high densities of the current for generating short pulses
is connected with peculiarities of the dynamics of a
two-contact interferometer when it is switched from the
main superconducting state to the neighboring super-
conducting state. Taking Ie to be lower than threshold
value IQ [7] and choosing the appropriate Icons, one can
obtain a single-quantum pulse with the area

, (5)

amplitude ~2Vc, and duration ~π/ωc. Current Iconst is
directed so as to provide the passage of the quantum
through the right junction. In this version, it is not nec-
essary to use a small junction, which simplifies the
scheme. One should choose the resistance according to
the following condition: the inverse current generated
after switching the comparator to the resistive state
must be less than the critical current of the right junc-
tion of the interferometer,

(6)

The necessity of employing an external clocked
feeding source, which complicates the scheme even
more, constitutes the main disadvantage of the genera-
tors of short pulses described above. A resistive single-
quantum scheme proposed in [8] is free of this draw-
back; a similar scheme was used in [9] as a strobopulse
generator. Another important direction of improving
the parameters of stroboconverters with tunnel junc-
tions is the enhancement of their immunity to different
kinds of noise and temperature fluctuations. With this
purpose, a balance scheme was proposed, in which the
Josephson junctions are coupled using the principle of
the Gauto pair [5, 9]. Such a design enables one to
exclude distortions connected with nonideality of the
strobing signal. The time resolution of a strobocon-
verter is determined by the duration of the front of the
input voltage overfall. The dynamics of the processes in
one of the schemes employing an internal clock gener-

V td∫ Φ0
"
2e
------ 2 mV ps= = =

r
v g

1 ie 2⁄–
-------------------, ie iQ.<≥
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ator (a relaxator with the Josephson junction) and a bal-
ance comparator with tunnel junctions were investi-
gated in [10].

The scheme of the Faris generator is universal in the
following sense: replacing small junction 3 (Fig. 1)
with the junction which is equivalent to the comparator
(or vice versa), one obtains a balance scheme. The
dynamics of the balance comparator is governed by the
value of signal current Is and the rate of increase of the
current through junctions, which is determined by the

front of the input strobing voltage overfall . It is
important to construct the switching characteristic of

the balance comparator in the ( , Is) plane, i.e., to deter-
mine the boundary, above which only one junction is
switched. Calculations show that Is is a linear function

of 1/R. Thus, as the rate  = Vg/RRNC ~ 1/R increases,
the signal current should be increased in order to satisfy
the following condition: during the time of switching
the first junction, the current through the second junc-
tion must not reach the critical value, i.e.,

(7)

It is interesting to note that, according to the results
of calculations, formula (4) obtained for resistance R
remains valid, which means that the system dynamics
does not change when the Faris scheme is transformed
to a balance scheme.

Thus, one may state that the scheme of the generator
shown in Fig. 1 is universal; namely, the Faris genera-
tor, the generator of single-quantum pulses, and the bal-
ance comparator constitute particular cases of this gen-
eral scheme.

İ

İ

İ

Is İ  * τN; is * v g r⁄ .⁄
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CONCLUSION
I have performed numerical modeling of several

types of comparators based on tunnel Josephson junc-
tions. I have determined the ranges of useful work of
comparators versus the scheme parameters. I have
demonstrated that, when density jc of the critical cur-
rent reaches large values corresponding to β < 3, utili-
zation of the Faris scheme aimed at creation of a highly
sensitive and fast stroboconverter becomes inexpedi-
ent, because the strobopulse parameters deteriorate.
A transition to single-quantum schemes and the use of
the balance principle for designing comparators pro-
vide a better time resolution [8, 9] and high sensitivity.
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Abstract—Electrostatic systems whose field is a superposition of two two-dimensional fields with the plane of
symmetry (midplane) in common are considered. It is assumed that these fields overlap in the region through
which a charged particle beam passes. The basic property of these systems is that they perfectly (without angu-
lar aberrations) conserve the parallelism of charged particle beams that are homogeneous in terms of energy-
to-charge ratio and pass in the midplane of the field. A four-electrode system where each of the electrodes con-
sists of two plates symmetric with respect to the midplane is an example of the new-class electrostatic systems.
© 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION 

It is known that plane-parallel homogeneous (in terms
of energy-to-charge and mass-to-charge ratios) beams of
charged particles perfectly (without aberration) retain
their parallelism after passing through two-dimensional or
conic static electromagnetic fields (see, for example,
[1, 2]). In these cases, the particles move in the midplane,
which is the plane of symmetry (antisymmetry) for the
electric (magnetic) fields. The two-dimensional fields are
described by scalar potentials independent of one of the
Cartesian coordinates, and the conic fields, by potentials
that depend only on the angular variables in the spherical
coordinate system. We demonstrated [3] that there is one
more class of electrostatic fields that conserve the parallel-
ism of planar charged-particle beams homogeneous in
terms of energy-to-charge ratio. In what follows, the
beams homogeneous in terms of energy-to-charge ratio
will be referred to as homogeneous for brevity. 

In this paper, we analyze in more detail the elec-
tronic and optical properties of fields of the new class.
In particular, it is shown that the four-electrode electro-
static system described in [3] can effectively be used as
a small-size electrostatic prism, a large-deflection-
angle mirror, and a lens with the straight optical axis
that perfectly conserves the parallelism of a wide planar
beam of charged particles with a large spread in energy. 

ELECTRONIC AND OPTICAL PROPERTIES 
OF A SUPERPOSITION 

OF TWO TWO-DIMENSIONAL FIELDS 
WITH THE MIDPLANE IN COMMON

Let the mutual midplane of two two-dimensional
fields coincide with the plane z = 0 of a Cartesian
1063-7842/00/4501- $20.00 © 20070
coordinate system x, y, z and these fields be described
by potentials ϕ1(x, z) and ϕ2(y, z), respectively. In the
nonrelativistic approximation, the Hamilton–Jacobi
equation for the motion of a charged particle in the mid-
plane of the superposition of these fields that is
described by the scalar potential ϕ = ϕ1 + ϕ2 has
the form 

(1)

Here e, m, and S0 are, respectively, the charge, mass,
and constant total energy of the particle; ϕ1(x, 0) ≡
Φ1(x); ϕ2(y, 0) ≡ Φ2(y); and S = –Et + S0 is the truncated
action function, where S is the action function and t is
time. 

The variables in equation (1) are separable. Substi-
tuting S0 in the form of the sum S0(x, y) = S1(x) + S2(y)
into equation (1), we obtain

(2)

where λ is an arbitrary constant. 

From equalities (2), we determine the momenta Px =
m  = dS1/dx and Py = m  = dS2/dy and then the total
integral of the Hamilton–Jacobi equation. Whereupon,
the equation for particle trajectory is found in quadra-

1
2m
-------

∂S0

∂x
-------- 

 
2 ∂S0

∂y
-------- 

 
2

+ eΦ1 x( ) eΦ2 y( )+ + E.=

1
2m
-------

dS1

dx
-------- 

 
2

eΦ1 x( ) E–+

=  
1

2m
-------

dS2

dy
-------- 

 
2

– eΦ2 y( )– λ ,=

ẋ ẏ
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tures by the well-known method,

(3)

and the relationship between the coordinate x and time
t is obtained:

(4)

Here, W is the kinetic energy of the particle, θ is the
angle between the particle velocity and the y-axis, and
the subscript 0 denotes the initial values of the vari-
ables. The subscript i0 means that the ith potential
(i = 1, 2) is calculated at the initial point of the trajec-
tory. The angle θ at any point of the trajectory of a par-
ticle moving in the midplane can be determined from
equalities (1)–(3):

(5)

It follows from this equality that a homogeneous
parallel beam of charged particles moving in the mid-
plane perfectly (without angular aberrations) retains its
parallelism after passing through the field. This is one
of the basic properties of the electron–optical systems
under consideration. The required electronic and opti-
cal properties of this field in the direction perpendicular
to the midplane can be ensured, as in the case of the
two-dimensional field, by properly choosing the elec-
trode potentials. In particular, we can choose condi-
tions under which a three-dimensional homogeneous
beam retains its parallelism (telescopy conditions). The
parameters characterizing the properties of such a sys-
tem in the direction perpendicular to the midplane are
calculated from general formulas for midplane elec-
tron–optical systems [4, 5]. 

Comparing the right-hand side of equality (5) with
the expression for sin2θ that was derived for the known
electrostatic system consisting of two electron–optical
elements whose two-dimensional fields do not overlap
in the region where a charged particle beam passes
[1, 6], we easily find that these expressions coincide.
Therefore, the angular spread in energy, as well as the
angular and linear magnifications in the midplane, is
also the same in these systems. 

Below is a simple example of the proposed system. 

sgn ẋ x( )( ) xd

W0 θ0sin
2

e Φ10 Φ1–( )+
--------------------------------------------------------------

x0

x

∫

– sgn ẏ y( )( ) yd

W0 θ0cos
2

e Φ20 Φ2–( )+
---------------------------------------------------------------

y0

y

∫ 0,=

t t0– m
2
----

sgn ẋ x( )( ) xd

W0 θ0sin
2

e Φ10 Φ1–( )+
-------------------------------------------------------------- .

x0

x

∫=

θsin
2 W0 θ0sin

2
e Φ10 Φ1–( )+

W0 e ϕ0 Φ1– Φ2–( )+
---------------------------------------------------------- .=
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ELECTRON–OPTICAL SYSTEM 
WITH THE FIELD IN THE FORM 

OF A SUPERPOSITION 
OF TWO TWO-DIMENSIONAL ELECTROSTATIC 

FIELDS 

We consider a four-electrode system whose field-
generating surfaces are parallel to the midplane and d/2
distant from it (Fig. 1). Each of the electrodes consists
of two equicharged plates symmetric with respect to the
midplane. It is assumed that the interelectrode gaps are
very small and can be neglected in an analysis of the
electron–optical properties. In the cases of practical
interest, this gap is usually ≈0.1d. When projected onto
the midplane, the plates of the first, second, third, and
fourth electrodes occupy the quadrants x < 0, y < 0;
x > 0, y < 0; x > 0, y > 0; and x < 0, y > 0, respectively.
The electrode potentials are denoted as V1, V2, V3, and
V4, respectively. It is easy to conclude that the potential
ϕ for two two-electrode systems with the two-dimen-
sional field can then be represented in the form of the
sum of two potentials ϕ1(x, z) and ϕ2(y, z) if condition 

(6)

is fulfilled. 
The potential distribution in the first two-electrode

system is found by solving the Dirichlet problem for
the two-dimensional Laplace equation with the bound-
ary conditions ϕ1 = V1 at x < 0 and ϕ1 = V2 at x > 0 on
the planes z = ±d/2. For the second two-electrode
system, the boundary conditions have the form
z = ±d/2 ϕ2 = 0 at y < 0 and ϕ2 = V3 – V2 at y > 0 on the
planes z = d/2. For each of the two-electrode systems,
the potential distributions in terms of elementary func-
tions are well known (see, for example, [5, 6]). The
potential distribution in our four-electrode system can
be represented in the form 

(7)

The function ϕ – (V1 + V3)/2 is even with respect to

V3 V2– V4 V1–=

ϕ ϕ1 ϕ2+
V1 V3+

2
------------------

V2 V1–
π

------------------arctan
sinh πx d⁄( )

πz d⁄( )cos
----------------------------+= =

+
V 3 V2–

π
------------------arctan

sinh πy d⁄( )
πz d⁄( )cos

----------------------------.

V4

V1

V2

V3

Fig. 1. Four-electrode electrostatic system. 
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V1

V4 V1

V2

Fig. 2. Axial beam trajectory in the four-electrode electro-
static system used as a prism. 

y

x

V1 V2

V3V4

Fig. 3. Axial beam trajectory in the four-electrode electro-
static system used as a mirror. 

y

x

V1 V2

V3V2

Fig. 4. Beam trajectories in the four-electrode electrostatic
system used as a direct-axis lens. 
the variable z and odd with respect to x and y. Its values
on the plates of the first, third, second, and fourth elec-
trodes are equal to (V1 – V3)/2, (V3 – V1)/2, (V2 – V4)/2,
and (V4 – V2)/2, respectively. 

The two-dimensional field of either system rapidly
decays outside the interelectrode gaps. For example, if
it is required that the field strength of the four-electrode
system not exceed 0.01% of its maximum at the bound-
ary of the field region, the field of the system in the mid-
plane can be considered to be located in the cross-
shaped region 

Outside this region, the particle trajectories can be
viewed as rectilinear for most applications. The beam
refraction at the entrance to and the exit from the field
can be disregarded. As for two-dimensional fields gen-
erated by electrodes separated by straight gaps (see, for
example, [1, 6]), one can easily select the shapes and
sizes of the plates such that the field in the region
through which a beam passes coincides with the calcu-
lated value. The problem of beam introduction into and
extraction from the system is readily solved if the
potentials of the electrodes upstream and downstream
of the beam coincide with those of the object and image
spaces, respectively. The design solution to this prob-
lem depends on what objective is to be pursued by an
electron–optical system. If the system is used, for
example, as a prism in a dihedral electrostatic prismatic
energy analyzer, the potentials of the object and image
spaces coincide with the potentials of the electrodes of
the collimating and focusing lenses adjacent to the
prism. Similar design solutions are found elsewhere
[1, 6]. 

The dashed lines in Figs. 2–4 are the axial trajecto-
ries of charged particles in the midplane of the pro-
posed four-electrode system when it is used as a prism
with equal potentials of the object and image spaces
(Fig. 2), a mirror (Fig. 3), and a lens (Fig. 4). Figure 4
displays also two adjacent trajectories (solid lines). 

In the prism (Fig. 2), two two-dimensional fields are
superimposed in the region through which a beam
passes. For this reason, such a prism can be consider-
ably smaller than the known prism with nonoverlap-
ping two-dimensional fields [1, 6]. At the same time,
the basic electron–optical property of the former prism
remains: when deflected, a homogeneous charged-par-
ticle beam moving in the midplane of prism’s field
totally retains its parallelism. 

In the mirror (Fig. 3), the deflection angle is equal to
180° at any θ0. Such a mirror can be made also with the
use of two nonoverlapping two-dimensional fields.
However, the superposition of the fields again enables
us to reduce the mirror sizes while conserving the par-
allelism of a reflected planar homogeneous beam. 

In the specific case when V2 = V4 = (V1 + V3)/2, there
is one more plane of field symmetry, x = y, which is per-

x
d
--- 3, y

d
--- 3.≤ ≤
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pendicular to the midplane. In this case (Fig. 4), the
system can be used as a lens with the direct axis, which
is the line of intersection of the planes of symmetry;
i.e., it intersects the y axis at an angle of 45°. In the mid-
plane, this lens is a telescopic system without interme-
diate focus. The angular magnification of the lens, as
follows from equality (5), is equal to W0/Wb, where Wb

is the kinetic energy of the particles leaving the field of
the lens. It follows from the Lagrange–Helmholtz for-
mula that the linear magnification of the lens is equal to

. A parallel beam of charged particles mov-
ing in the midplane and entering the field of the lens at
an angle of 45° to the y axis remains plane-parallel
regardless of its width; i.e., it leaves the field of the lens
at the same angle to the y axis. The telescopy condition
in the midplane is fulfilled for any Wb/W0 value, but the
linear and angular magnifications depend on this ratio.
Lenses with such properties cannot be implemented in
a system with nonoverlapping two-dimensional fields. 

CONCLUSION 
In this study, we covered electron–optical systems

on which various devices with high focusing properties
can be built. Among them are mass and energy analyz-
ers, systems for charged particle beam transport, etc.
Charged-particle spectrometers are expected to have
high resolution and sensitivity if the parallelism-con-

Wb W0⁄
TECHNICAL PHYSICS      Vol. 45      No. 1      2000
serving systems are used in combination with low-
aberration focusing elements, such as transaxial elec-
trostatic lenses [6]. 
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Abstract—Generalized equations are derived that describe the linear stage of the resistive firehose instability
of a relativistic electron beam whose radius and current change along the pulse. Such factors as reverse current,
the perturbations of the plasma channel, and the evolution of the plasma conductivity due to impact ionization,
avalanche ionization, and recombination are taken into account. © 2000 MAIK “Nauka/Interperiodica”.
1. New areas for applications of relativistic electron
beams (REBs) make further research on the dynamics
of electron-beam transport in gas–plasma media worth-
while [1–13]. Among the problems related to the guid-
ing of REBs, of special interest is the problem of inves-
tigating large-scale instabilities of the beams, the most
dangerous of which is the resistive firehose instability
(RFI). This is the mode with azimuthal wavenumber
m = 1, which manifests itself as growing bending oscil-
lations of a beam [1–8].

Here, we generalize the linear theory of the RFI of
an REB, which was developed previously in [2, 3], to
the case of a beam with time-dependent radius and cur-
rent. We also assume that the radial profiles of the
plasma current, the beam current, and the current flow-
ing in the conducting channel are all arbitrary and take
into account the effect of the bending oscillations of an
REB on the conductivity of the background plasma.

2. We consider a paraxial axisymmetric monoener-
getic REB propagating in a gas–plasma medium with
scalar conductivity σch0(ξ) along the z-axis of a cylin-
drical coordinate system (r, θ, z), where ξ = v zt – z is the
distance from the beam front to the beam cross section
of interest, v z is the z-component of the beam electron
velocity, and t is the time.

We restrict ourselves to treating highly conducting
background media such that the main part of an REB is
completely charge-neutralized, 4πσch0Rb/c @ 1, where
Rb is the characteristic beam radius and c is the speed of
light. We also assume that the equilibrium current den-
sities of the beam and of the background plasma, Jb0(r)
and Jp0(r), and the ohmic conductivity of the plasma,
σch0(r), are all smooth functions of r.

3. We use the traditional model of a “rigid” beam,
which implies that the transverse displacement of an
REB causes no deformation of the radial profile of the
1063-7842/00/4501- $20.00 © 20074
beam current density [2, 3]. However, unlike papers
[2, 3], we assume that the plasma conductivity σch

changes due to the transverse displacement of the beam
and the processes of impact ionization, avalanche ion-
ization, and recombination [10]. We also assume that
the net beam current Ib(ξ) and the characteristic beam
radius Rb(ξ) both depend on time. We switch from the
two independent variables (t, z) to (ξ, z) to obtain the
following equations, describing the dynamics of the
RFI of a paraxial quasisteady REB in the linear stage:

(1)

(2)

(3)

Here, Y is the amplitude of the transverse oscillations of
the beam, Jb0 and Jb1 are the monopole and dipole com-
ponents of the beam current density, Jp0 is the density
of the equilibrium reverse current, Az0 and Az1 are the
equilibrium and perturbed z-components of the vector
potential of an electromagnetic field, σch1 is the per-
turbed plasma conductivity, and IA = c3βγm/e is the lim-
iting Alfvén current with e and m the charge and mass
of an electron, γ the Lorentz factor, and β = v z/c.

In the model of a rigid beam, we can write

(4)
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(5)

(6)

where D and Ych are the transverse displacements of the
symmetry axis of the collective magnetic field of a
beam–plasma system and of the axis of the plasma
channel, respectively.

With allowance for (2), (4), and (5), from (1) we can
readily obtain the equation

(7)

where

(8)

is the squared wavenumber of the beam electron hose
oscillations and Jn0 = Jb0 – Jp0 is the net equilibrium
(monopole) current density in a beam–plasma system.

To derive the expression for the net current In in the
system,

(9)

we take the product of the monopole component of
Ampère’s law (2) with rJn0 and integrate the resulting
equation over r from 0 to ∞. After some manipulations,
we obtain the following equation for the net current

In(ρ, ξ) = η2πηJn0(η, ξ) flowing in a tube of radius

ρ in a beam–plasma system:

(10)

where

(11)

is the monopole skin depth and
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(13)

(14)

Equation (10) differs from the corresponding equa-
tions derived in [8, 9] in that it contains an additional
(third) term on the right-hand side and the quantities ξ0

and  are specified in a more general form. We inte-
grate equation (3) multiplied by ∂Az0/∂r over r from 0
to ∞. Going through some lengthy manipulations and
taking into account (4)–(6) yields

(15)

where

(16)

is the dipole skin depth, the functions F(ξ) and ξ0 are
defined by (12) and (11), and

(17)

Unlike the familiar results of [8, 9], equation (15)
contains terms with the coefficients F(ξ) and S(ξ),
which, in our model, stem from ∂Ib/∂ξ ≠ 0 and
∂Rb/∂ξ ≠ 0. Additionally, the parameter  is specified
in a more general form, and all of the coefficients can
be evaluated for arbitrary radial profiles of Jb0(r, ξ),
Jp0(r, ξ), and σch0(r, ξ).

The equation describing the dynamics of the trans-
verse oscillations of the axis Ych of the plasma channel
can be derived from the evolutionary equation for the
plasma conductivity,

(18)
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Here, Ψ . 3 × 106 [cm/(A s)] is the rate of impact ion-
ization of the background gas by the beam electrons;
αav is the avalanche ionization rate, which depends on
|E |/ρ, where E is the collective electric field of the
beam–plasma system and ρ is the background gas den-
sity [10]; and βr . 7 × 10–15(ρ/ρn) [s/cm] with ρ/ρ0
being the ratio of the gas density to its value under nor-
mal conditions.

With allowance for (4)–(6), the dipole component of
the evolutionary equation (18) for the plasma conduc-
tivity has the form

(19)

We integrate (19) multiplied by r∂Az0/∂r over r from
r to ∞ and perform the necessary manipulations with
allowance for (2) to arrive at

(20)

(21)

(22)

(23)

(24)
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∞
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(25)

Equation (20) with (21)–(25) generalizes the equa-
tions obtained in [8] to the case in which both recombi-
nation and avalanche ionization are taken into account
and all the parameters of the problem are time-depen-
dent.

Hence, we have derived the equations that describe
the dynamics of the RFI and generalize the familiar
results of [8] to the case in which the beam radius and
beam current are both time-dependent. We have
obtained general formulas for evaluating monopole and
dipole skin depths and the equation describing the
transverse dynamics of a plasma channel with nonzero
conductivity governed by the processes of impact ion-
ization, avalanche ionization, and recombination.
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Abstract—The current–voltage characteristics of organic compounds at a tip platinum emitter have been stud-
ied in 0.2–1.0 V/Å fields. It is shown that the parameter (V – ϕ) does not affect the formation of the desorption
ion barrier in the field ionization of atoms and molecules under a high potential gradient providing electron tun-
neling to the Fermi level of the emitter material and, therefore, the probability of the ion desorption cannot
explicitly depend on this parameter. © 2000 MAIK “Nauka/Interperiodica”.
Earlier, it was assumed that the theory of surface
ionization would be applicable to all the instances of
field ionization under a high potential gradient, includ-
ing the ionization of inert-gas atoms in ionic projectors.
This assumption was confirmed by the well-known
experimental data on ionization of alkali metals in
fields with a strengths up to 0.07 V/Å [1].

We studied the current–voltage characteristics of
organic compounds on a tip platinum emitter (ϕ =
532 eV) at the field strength ranging from 0.2 to
1.0 V/Å. The results obtained allowed us to estimate
the relative contributions of tunneling (field) and ther-
mal effects to the ionization mechanism of these
objects.

Consider the dependence of the degree of surface
ionization on the electric-field strength using the
method described in the well-known monograph on
surface ionization [1]. Introduce the following nota-
tion: I is the ionic current from an emitter; U is the
applied potential difference between the emitter and the
counterelectrode; e is an electron or an electron charge;
V is the energy of a molecule (atom) ionization far from
the emitter surface; V ' is the energy of a molecule
(atom) ionization in the vicinity of the emitter surface;
ϕ is the work function; x is the distance from an emitter;
x0 is the distance from the emitter at the maximum of
the potential barrier; xk is the critical recharge distance;
xp is the equilibrium distance of an adsorbed particle
from the surface; F is the electric-field strength; Fk is
the strength of the field providing the compensation of
the barrier of the ion desorption caused by the image
forces; k is the Boltzmann constant; T is the tempera-
ture; Epn is the polarization energy of a molecule (atom)
at F ≠ 0; E0 is the energy of the Fermi level; µ is the
dipole moment; µ0, µ+, and me are the thermodynamic
potentials of a molecule (atom), an ion, and an electron,
respectively; l+ and l0 are the isothermal heat of evapo-
ration of an ion and an uncharged molecule (atom) at
1063-7842/00/4501- $20.00 © 20077
F ≠ 0; l0+ and l00 are the isothermal heat of evaporation
of an ion and an uncharged molecule (atom) at F = 0;
q0 is the work done to move an adsorbed particle
located at xp to xk at F = 0; q is the work done to move
an absorbed particle located at xp to xk at F ≠ 0; λ+ and
λ0 are the work done to move a desorbed ion and an
uncharged molecule (atom) located at xk to x = ∞ at
F ≠ 0; λ0+ and λ00 are the work done to move a desorbed
ion and uncharged molecule (atom) located at xk to
x = ∞ at F = 0; αe is the molecule (atom) polarizability;
ν+ and ν0 are the flows of ions or uncharged molecules
(atoms) from the unit area of the adsorbent surface per
unit time; ν = ν+ + ν0 is the total particle flow from the
surface; α = ν+/ν0 is the degree of surface ionization;
and β = ν+/ν is the surface ionization coefficient
defined as

(1)

In the theory of surface ionization, the dependence
of the degree of surface ionization on the field strength
and the temperature is obtained proceeding from the
reaction

(2)

The condition for thermodynamic equilibrium is
written in the form

(3)

whence follows the expression for the degree of the sur-
face ionization

(4)

β 1
1 1 α⁄+
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M M
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where the preexponential factor takes into account the
statistical sums of a neutral (Q0) and an ion (Q+) and
also the reflection from the barrier (R+, R0).

To illustrate the further transformations, consider
the schematic potential curves for the adsorbent–neu-
tral (A + M) and the adsorbent–positive ion (A– + M+)
systems in a nonzero (F ≠ 0) and the zero (F = 0) fields
(Fig. 1). It is seen from Fig. 1 that

(5)

(6)

(7)

l0 q λ0,+=

l+ q λ0 e V ϕ–( ) ∆U ,–+ +=

l0 l+– e ϕ V–( ) ∆U ,+=

xp xk x0

E

0
A– + M+ eU(x0)

eU(x)eUd(x)

∆U
x

λ0+

λ+

e(
V

 –
 ϕ

)

eFxk

l+

l0+

λ0
l00l0q0

q

A + M

e(V ' – ϕ)0

e(V ' – ϕ)

λ00

Fig. 1. Curves of potential energy for the systems  A + M
and A– + M+ in an applied accelerating field F (solid lines)
and at F = 0 (dashed lines).

Table 1.  Field strength (F0), distance from the surface (x0),
and the work of the image forces (e2/4x0) at the maximum of
the ion-desorption barrier

x0, Å F0, V/Å e2/4x0, erg × 1012

3.0 0.4 1.9

3.4 0.3 1.7

4.0 0.22 1.4

4.3 0.19 1.3

5.0 0.14 1.1

5.8 0.1 1.0

10.0 0.03 0.6
where

(8)

at the point of intersection

(9)

whence

(10)

Substituting x0 from (10) into (8), we have

(11)

Table 1 lists the x0 and e2/4x0 values for various F.
Equation (11) confirms the decrease of the Schottky
ion-desorption potential barrier. Then, formula (4)
takes the form well known from the theory of surface
ionization

(12)

Here, ∆x is the correction for the work of the polariza-
tion forces, which takes into account the additional
interactions with the surface. At F > Fcr , the theory of
surface ionization yields

(13)

Since the tunneling transition of an electron from a
molecule (atom) into the emitter metal is an isoener-
getic process, formula (4) takes the form

(14)

In this case, the neutral is desorbed from a lower
vibrational level, whereas an ion, from the critical
recharge distance, because, at distances from the sur-
face less than xk, it can exist only as a neutral. Strictly
speaking, this is valid only at T = 0, whereas, at higher
temperatures, one also has to take into account the
Fermi distribution. The quantity l0 in (14) can be repre-
sented as

(15)

Some values of the polarization energy are listed in
Table 2.
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From the diagram shown in Fig. 1, it follows that

(16)

or that

(17)

Finally, we have

(18)

For atoms and nonpolar molecules, we obtain

(19)

Formula (14) is valid in the case where the probabil-
ity of the electron penetration through the potential bar-
rier equals unity. If it is not so, the exponent in (14)
should be preceded by an appropriate probability fac-
tor.

The probability of ionization P(t) for time t in the
theory of field ionization (which considers the phenom-
enon of electron penetration through the potential bar-
rier) is given by the expression [2]

(20)

where τ = 1/Dν, and ν is the frequency of electron col-
lisions with the barrier equal to 1016 s–1.

If the time t is short in comparison with the duration
of the preionization state, we have

(21)

If the potential barrier of an electron is represented

by an equilateral triangle of height (V – 2 ) and the
base (V – ϕ)/eF, the probability of the electron penetra-
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tion through the barrier D is given by the expression

(22)

Then formula (14) takes the form

D 4.55 10
7

V 7.6F
1 2/

–
V ϕ–

F
-------------×– .exp=

F (V/A)
1 2⁄

–13

3.3

logI

logU

–11

–10

–9

–12

3.4 3.53.2

1

2

3

Fig. 2. Logarithmic current–voltage characteristics of a tip
platinum emitter for methanol. (1) Total ionic current within
an angle of ion accumulation ~π (rad), (2) ionic current
within an angle of ion accumulation π/6 (rad), (3) ionic cur-
rent at the exit of a mass spectrometer calculated from the
total intensity of all the spectrum lines.
(23)α
1 R+–( )
1 R0–( )

-------------------
Q+
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------P t( )

l00 1/2α eF
2 µF eFxk– e eF– e

2
/4xk– ∆x+ + +

kT
--------------------------------------------------------------------------------------------------------------------- .exp=
Unlike (12), expression (23) contains no term
describing the contribution (V – ϕ) to the ion-desorp-
tion barrier.

Now, estimate the contributions of the terms in the
numerator of the exponent depending on the field
strength for ethanol (Table 3).

The critical recharge distance was estimated from a
simplified Muller equation [2], which is quite justified
because of the smallness of the polarization-energy
contribution,

(24)eFxk V ϕ–( ) e
2

4xk.⁄–=
Similar to (12), the values of the exponential factor
in (23) are inconsistent with the experimental data on
field ionization for organic compounds, in particular,
with the fields necessary for appearance of molecular
ions. Now, compare the theoretical versions of (12) and
(23) with the experimental data (Fig. 2).

Using the data on the field ionization of inert gases,
the ionic current from the emitter can be represented by
the product of two functions—that of influx of the par-
ticles to the emitter surface (Z) and that of the ioniza-
tion probability (β)

(25)I Zβ.=
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The function Z was determined from the experimen-
tal points on a mildly sloping segment of the current–
voltage characteristic (U > U') in the form

, (26)

where β = 1. The correlation coefficient exceeded 0.99.
Then, the function β on the segment U < U' was deter-
mined numerically by dividing I into Z,

(27)

The experimental β values are listed in Table 4. We
transformed the scale of applied voltages into the scale
of field strengths using the current–voltage characteris-
tic for methanol, whose characteristic was obtained by
Beckey [4] in the logarithmic “current–field strength”
coordinates.

The values of the field strength corresponding to the
inflection points of the current–voltage characteristics
determined for various substances (in V/Å) are 0.69 for

logZ K n log U+=

β I Z⁄ .=
CH3OH, 0.64 for C2H5OH, 0.48 for C6H6, 0.42 for
C7H8, and 0.40 for (C2H5)2NH (Table 2). The critical
ionization distances for all the compounds calculated
by (24) with the use of the above F-values were almost
the same, 7.2 Å (Table 4), which is quite understand-
able, because xk characterizes the width of the barrier
that should be overcome by an electron in the tunneling
transition into the metal, whereas an electron cannot
“recognize” any concrete object (potential well) from
which it would perform this transition.

Figure 3 shows the dependence of the field strength
sufficient for attaining the value xk = 7.2 Å on the
parameter (V – ϕ) (line 2) and the dependence of the
field strength providing the attainment of the value x0
on the same parameter (line 1). These dependences lead
to a conclusion that, for all the ionization objects (mol-
ecules and atoms) whose values (line 2) lie under line 1
(V – ϕ > 0.35 eV), the critical recharge distance should
lie on the falling branch of the ion-desorption barrier.
Table 3.  The values of the individual terms of the exponent in equation (23) for ethyl alcohol, in erg × 1012 (δE = l00 + 1/2αeF
2 +

µF – eFxk +  – e2/4xk)

F1 = 0.1 V/Å F2 = 0.3 V/Å F3 = 0.5 V/Å F4 = 1 V/Å

µF 0.06 0.17 0.28 0.56

1/2αe, F2 0.003 0.03 0.08 0.04

xk, Å 51.5 17.15 10.27 5.11

0.11 0.33 0.56 1.13

eFxk 8.23 8.22 8.21 8.16

1.9 3.3 4.1 5.8

λ00 = ∆H (295) 0.7

δE –4.92 –3.65 –2.91 –1.13

4 × 10–54 3 × 10–40 2 × 10–32 8 × 10–13

e eF

e2

4xk
--------

e eF

δE
kT
------exp

Table 2.  Polarization energy of molecules in an intense electric field Epn = µF + 1/2αeF
2, erg × 1013

Compound CH3OH
(Methanol)

C2H5OH
(Ethanol)

C6H6
(Benzene)

C7H8
(Toluene)

(C2H5)2NH
(Diethylamine)

Polarizability [3]
αe × 10–24, cm3

3.29 5.41 10.32 12.3 10.2

Dipole moment [3] µ[D] 1.7 1.69 0 0.375 0.92

Field strength F, B/Å 1 0.69* 1 0.64* 1 0.48* 1 0.42* 1 0.4*

µF 5.7 4.0 5.6 3.6 – – 1.2 0.5 3.1 1.2

1/2αeF
2 1.8 0.9 3.0 1.3 5.7 1.3 6.8 1.2 5.6 0.9

Epn 7.5 4.9 8.6 4.9 5.7 1.3 8.0 1.7 8.7 2.1

* Position of the inflection point of the current–voltage characteristic.
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Since there is no ion-desorption barrier, the exponential
factor is eliminated, and formula (23) takes the form

(28)

or

(29)

where the factor A takes into account all the F-depen-
dent terms, and D is given by (22).

α
1 R+–( )
1 R0–( )

-------------------
Q+

Q0
------P t( )=

α AD,=

2

0.4

0.5

0.3

3 41 5

0.1

0.2

F, V/Å

V – ϕ, eV
0

1 2

Fig. 3. Field strengths providing (1) the equality xk = x0 and
(2) the values xk = 7.2 Å as functions of the ionization
parameter.
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Equating the exponents in (22) and (12), we arrive
at the equation for the ratio of the ionization parameters
(V – ϕ) and F providing their equal contributions to ion-
ization. If V and ϕ are given in electron volts and F is in
volts per angstrom, the equation at 300 K takes the
form

(30)

Figure 4 shows this dependence for field ionization

0.455 V 7.6F
1/2

–( )
1/2

V ϕ–( )

=  36.4 V ϕ–( )F 1.38F
3/2

.–

10

0.10

0.05

200

F, V/Å

V – ϕ, eV

Fig. 4. Curve separating the regions where the tunneling and
the thermal ionization mechanisms for the tip platinum
emitter act.
Table 4.  Function βF calculated from the experimental data for some organic compounds

Methanol CH3OH Ethanol C2H5OH Benzene C6H6 Toluene C7H8
Diethylamine 
(C2H5)2NH

lnI F, V/Å lnI F, V/Å lnI F, V/Å lnI F, V/Å lnI F, V/Å

–5.68 0.44 0.67 –8.19 0.36 0.60 –6.90 0.32 0.56 –7.01 0.27 0.52 –8.68 0.24 0.49
–4.60 0.49 0.70 –7.30 0.38 0.62 –4.60 0.34 0.59 –4.92 0.30 0.55 –8.15 0.25 0.50
–3.27 0.53 0.73 –6.60 0.40 0.63 –2.56 0.37 0.61 –3.14 0.32 0.56 –6.69 0.28 0.53
–2.30 0.56 0.75 –6.42 0.40 0.63 –1.04 0.40 0.63 –2.92 0.32 0.57 –4.63 0.30 0.55
–1.00 0.61 0.78 –5.01 0.43 0.65 –0.63 0.42 0.65 –0.83 0.35 0.60 –4.17 0.32 0.56
0.0 0.69 0.83 –3.84 0.45 0.67 0.0 0.48 0.69 –0.22 0.40 0.63 –2.51 0.34 0.58

–1.2 0.49 0.70 –0.17 0.42 0.65 –0.41 0.37 0.61
–0.69 0.50 0.71 –0.21 0.40 0.64
–0.28 0.54 0.73
–0.23 0.56 0.75

0.0 0.64 0.80

A = 1.3 × 103 3.6 × 103 1.1 × 103 1.5 × 103 6.6 × 102

lnA = 7.2 8.2 7.0 7.3 6.5
xk, Å at β  1

7.3 7.27 7.12 7.13 7.35

F F F F F



82 GRISHIN
on a platinum emitter. As is seen, the dependence is
nonmonotonic: for atoms and molecules with high ion-
ization energies, the dependence of F on (V – ϕ) is a
slightly varying function decreasing with a decrease in
(V – ϕ). Beginning with (V – ϕ) ≈ 2 eV, it starts increas-
ing, thus showing an increase in the relative contribu-
tion of thermal ionization. Then, it asymtotically tends
to the value (V – ϕ) = 1.66 eV. The ionization objects
with the (V – ϕ) values much lower than the above
value are ionized above the barrier according to (12),
whereas, at the (V – ϕ) values exceeding the above
value, they are ionized during tunneling according to
formula (29). The ratio of the parameters F and (V – ϕ)
above the curve correspond to the prevalent tunneling
mechanism. At (V – ϕ) < 1.6 eV at 300 K, the above-
the-barrier mechanism becomes more probable than
tunneling.

In accordance with the logic of the derivation of (23),
the current from the emitter is determined by the well-
known formula of the theory of surface ionization [1]:

(31)

whereas the ionic current normalized to the molecule
inflow, by the formula

(32)

I eν+ eβν eν

1 1
α
---+

-------------,= = =

I eβ e

1 1
α
---+

-------------.= =

Fig. 5. Ionization probability as a function of the applied
field. Theoretically calculated curves for (1) diethylamine
and toluene (almost coincide), (2) benzene, (3) ethanol,
(4) methanol, and (5) the curve of the surface ionization
coefficient. Experimental data for d methanol, h ethanol,
n benzene, × toluene and * diethylamine.
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lnβ

0
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1 2⁄
 Function β from (32) corresponds to the β values
listed in Table 4. The function α is given by (29); A can
be determined as the proportionality coefficient
between the β values calculated theoretically by (32)
and obtained experimentally (Table 4). Thus, at β = 0.5,
we have α = 1 and lnβ = –0.69. Then, using the data
from Table 4, one can determine the field strength at
which the experimentally obtained β value would equal
0.5 and, using (22), also the D value at this field
strength and, finally, using (29), also the value of A. The
A value can also be chosen by checking the consistency
of all the experimental data, e.g., with the aid of the
least squares method (Table 4).

Since our aim is to verify the adequacy of the theo-
retical models of the field and surface ionization to the
experimental data, it is convenient to represent the data

obtained as functions of , i.e., as the characteristic
function taken from the theory of surface ionization
[formula (12)]. Then, at low values of the surface-ion-
ization coefficient (β < 0.5) and in view of formulas

(12) and (32), the quantity lnI is a linear function of 
and has a constant slope coefficient at a fixed tempera-
ture.

Figure 5 shows function (32) theoretically calcu-
lated using D from (22) and the constant coefficient A
from Table 4 (solid curves) and the experimentally
determined ionization coefficients β listed in Table 4
(various symbols). The dashed line shows the surface
ionization coefficient calculated in the same way from
(32), where the α value was calculated by (12). In the
latter case, the coefficient A attained an incredible value
of 5.2 × 1038, which corresponds to e90. This fact alone
indicates the inadequacy of formula (12) to the real
physicochemical situation and confirms the assumption
that the factor (V – ϕ) is not a component of the barrier
of ion desorption from the emitter surface at (V – ϕ) >
1.66 eV.

The experimentally obtained β values fit the theoret-
ical curves of the tunneling probability (Fig. 5) with
only one essential stipulation—in the vicinity of the sat-
uration of the current–voltage characteristic (β  1), the
experimental β-values are higher than the theoretically
calculated ones in all the cases, which indicates that
this fact is not of an accidental nature.

A similar phenomenon was also observed earlier.
Thus, studying the field ionization for adsorbed hydro-
gen layers and measuring the ionic current from indi-
vidual faces of an emitter, Gomer [5] revealed alternat-
ing maxima and minima despite the fact that depen-
dence of the total ionic current had the conventional
form. He attributed these fluctuations in the current to
the adsorption effect.

To confirm this assumption, we studied the current–
voltage characteristics within a complete solid angle of
ion collection (~π, rad), the current–voltage character-
istics determined during recording of ionic currents in
front of the exit slit of the field ion source of the mass-

F

F
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spectrometer (angle π/6), and the current–voltage char-
acteristics at the exit of the mass spectrometer mea-
sured as sums of the intensities of all the lines of the
mass spectrum. The data obtained for methanol (Fig. 2)
are well consistent with the Gomer data [5].

Performing experiments at different temperatures,
inlet pressures, field strengths, and amplitudes and
duration of desorbing pulses with simultaneous record-
ing of the corresponding mass spectra, we confirmed
the effect of adsorption on the slope of the current–volt-
age characteristics. Thus, the deviation of the experi-
mental points from the theoretically calculated curves
in Fig. 5 is quite regular.

The results obtained can be interpreted in the fol-
lowing way. During field ionization of atoms and mol-
ecules under a high potential gradient providing elec-
tron tunneling to the Fermi level of the emitter material,
the parameter (V – ϕ) does not participate in the forma-
tion of the ion-desorption barrier, and therefore the
probability of ion desorption does not explicitly depend
on this parameter.

For the ionization objects with (V – ϕ) > 0.35 eV, the
critical recharge distance lies on the decreasing branch
of the desorption barrier, and therefore, if the ionization
proceeds by the tunneling mechanism, a desorption
barrier is absent. At (V – ϕ) > 1.66 eV and at the tem-
perature 300 K, this condition is fulfilled.
TECHNICAL PHYSICS      Vol. 45      No. 1      2000
In the fields that cannot provide electron tunneling
to the emitter material, (V – ϕ) < 1.66 eV, only surface
ionization occurs [formula (12)]. In this case, the exter-
nal field promotes the reduction of the Schottky poten-
tial barrier of ion desorption.

The discrepancy between (12) and the experimental
data on ionization in an electric field with a high poten-
tial gradient is explained by the fact that the theory of
surface ionization is developed for thermodynamically
equilibrium systems, whereas the tunneling ionization
is a typical irreversible process.
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Abstract—An equation is derived describing small-amplitude vibrations of an arbitrary curved diaphragm,
whose surface is considered as a two-dimensional Riemannian space. The derivation is based on the variational
principle, from which the motion equation and conservation law follow in a form invariant with respect to arbi-
trary transformations of coordinates on the diaphragm surface. It has been shown that the wave equation, along
with the two-dimensional Laplace–Beltrami operator, includes an additional term proportional to the scalar cur-
vature of the diaphragm surface. As an example, the equations are considered for a spherical diaphragm and a
catenoid-shaped diaphragm with a minimal surface of revolution. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The problem of determining the natural and forced
vibrations of curved diaphragms arises when certain
matters are considered concerning applied acoustics,
hydroacoustics, aero- and hydrodynamics. However,
formulation of the problem itself and solving it go far
beyond the scope of purely practical matters and are
themselves of scientific interest.

The surface of an arbitrarily curved diaphragm may
be considered as a two-dimensional (2D) Riemannian
space embedded in an ordinary (3D) Euclidean space.
Parametric definition of this surface uniquely defines a
curvilinear coordinate system and metric-tensor com-
ponents in a 2D Riemannian space. If we are interested
in small deviations of the curved diaphragm from equi-
librium, then the problem must be reduced to solving
the wave equation within the curved 2D space under
consideration. The shape assumed by the curved dia-
phragm after the boundary conditions and external
static forces are specified will be referred to as an equi-
librium shape. For example, the diaphragm may be
stretched over a rigid contour representing a curve in a
3D space, which is equivalent to imposing the corre-
sponding boundary conditions. If no external forces are
present, then the equilibrium shape of the diaphragm
must correspond to its minimal surface energy. For the
ideal uniform diaphragms with no flexural rigidity con-
sidered in this paper, this corresponds to their minimal
surface areas. Thus, in the absence of external forces,
an ideal diaphragm must assume the minimal-surface
shape. Since the diaphragm surface area and its other
integral characteristics are independent of the method
of parameterization of its surface, all equations
obtained must be invariant under arbitrary transforma-
tions of coordinates (parameters); i.e., they must have a
generally covariant form. The latter may be obtained
1063-7842/00/4501- $20.00 © 20008
using the technique of covariant or absolute differenti-
ation.

In this paper, a unified invariant approach is devel-
oped to solve the problem of small-amplitude vibra-
tions of an arbitrarily curved diaphragm. The basis for
this approach is the variational principle, from which
the motion equation and conservation law follow
immediately in a generally covariant form. As degrees
of freedom characterizing small deviations of the dia-
phragm from the equilibrium, the diaphragm displace-
ments along the normal to the surface at every point are
considered. With respect to an arbitrary transformation
of coordinates on the diaphragm surface, such a quan-
tity behaves as a pseudoscalar. It is shown in this paper
that the vibration equation, along with the Laplace–
Beltrami operator, includes an additional term propor-
tional to the scalar curvature of the diaphragm surface.
As an example, the equations are considered for a
spherical diaphragm and catenoid-shaped diaphragm
having a minimal surface of revolution. The results
obtained can be used for calculating the natural and
forced vibrations of diaphragms of arbitrary shape and
also for analyzing the stability of interface-containing
systems.

THE CURVED-DIAPHRAGM SURFACE 
AS A TWO-DIMENSIONAL RIEMANNIAN SPACE

Consider a curved diaphragm in a plane 3D space.
Let x be a radius vector of an arbitrary point of this
space. The diaphragm surface can be represented in a
parametric form using the following vector equation:

(1)

where ξα (α = 1, 2) are arbitrary independent parame-
ters.

x x ξ1 ξ2,( ),=
000 MAIK “Nauka/Interperiodica”
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If Cartesian coordinates are chosen in the 3D space
under consideration, then this equation is equivalent to
three equations for the projections of the radius vector
on the corresponding coordinate axes xi = xi(ξ1, ξ2) (i =
1, 2, 3).1 The parameters ξα in these equations play the
role of curvilinear coordinates on the diaphragm sur-
face, and families of the curves ξ1 = const and ξ2 =
const determine the corresponding coordinate grid.
Therefore, the diaphragm surface can be considered as
a 2D Riemannian space with a specified curvilinear
coordinate system ξα.

Consider two infinitely near points x and x + dx on
the diaphragm surface. According to (1),

where aα = dx/dξα represents two vectors (α = 1, 2) that
lie in the plane tangent to the diaphragm surface at the
point x and form a local generally nonorthogonal basis
at this point. The squared distance between these two
points is determined by the expression

(2)

It follows from here that the quantities

(3)

symmetrical with respect to the index permutation, rep-
resent components of a metric tensor of the Rieman-
nian space under consideration [1]. They are also
termed coefficients of the first quadratic form of the
surface. If the surface metric is known, the diaphragm
surface area is determined by the integral

(4)

where G = det ||Gαβ ||.
When arbitrary transformations of the curvilinear

coordinates are performed, ξαaα are transformed as
vector components. However, their ordinary derivatives
are not components of any tensor; only covariant (abso-
lute) derivatives, which we denote by the symbol ∇ α,
are transformed as tensor components. Thus, the cova-
riant derivative of aβ with respect to ξα is determined by
the expression

(5)

1 Here and below, the roman indices i, k, l, … assume values 1, 2,
and 3; Greek indices α, β, γ, … assume values 1 and 2; for doubly
ocurring indices, summation is performed from 1 to 3 and from 1
to 2, respectively, unless otherwise stated. Since the metric of the
3D space is Euclidean, we will make no distinction between cova-
riant and countervariant components of the 3-tensors and all
roman indices will be superscribed.

dx
dx

dξα---------dξα aαdξα
,= =

dl
2

dx2 aα aβdξα
dξβ⋅ Gαβdξα

dξβ
.= = =

Gαβ aα aβ⋅ dx
i
dx

i

dξα
dξβ------------------,= =

σ G ξ 1 ξ2
,dd∫=

∇ αaβ
∂aβ

∂ξα-------- Γαβ
γ aγ,–=
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where  = (1/2)Gγσ(∂Gσα /∂ξβ + ∂Gσβ/∂ξα –
∂Gαβ /∂ξσ) are the coefficients of connection or Christ-
offel symbols [1].

Along with the basis vectors aα, at each point of the
diaphragm surface, we can determine the normal unit
vector that is perpendicular to them:

(6)

It can be easily verified that the vector satisfies the
following conditions:

(7)

(8)

When an arbitrary coordinate transformation is per-
formed, ξα is multiplied by ±1 depending on the sign of
the Jacobian of transformation; i.e., in the 2D Rieman-
nian space under consideration, it is a pseudoscalar.
This becomes apparent if its components are written as

where eikl and εαβ are, respectively, the 3D and 2D
Levi–Civita symbols (e123 = 1, ε12 = 1).

Since the covariant and ordinary derivatives coin-
cide for the scalars and pseudoscalars, the following
relation is valid:

(9)

Along with the coefficients of the first quadratic
form Gαβ, the coefficients of the second quadratic form
bαβ, which are components of the symmetric pseudot-
ensor, play an important role in the theory of surfaces.
They appear in the so-called derivational formulas of
Gauss and Weingarten [1]:

(10)

(11)

To determine bαβ, we will use formula (10). Multi-
plying scalarwise the left and right sides of this equa-
tion by n, we obtain

(12)

Here we use relations (5), (7), and (8) and take into
account that ∂aβ/∂ξα = ∂2x/∂ξα∂ξβ.

This formula allows explicit calculation of the coef-
ficients bαβ if the surface is specified parametrically
(formula (1)). We may represent it in a form that is
more suitable for practical calculations if we take into
account that in the right side of (12), in accordance with

Γαβ
γ

n
a1 a2×[ ]

G
---------------------.=

n aα⋅ 0 α 1 2,=( ),=

n n⋅ 1.=

n
i 1

2
---e

ikl
aα

k
aβ

l εαβ

G
--------,=

∇ αn
∂n

∂ξα--------.=

∇ αaβ bαβn,=

∇ αn G
βγ

bαβaγ.–=

bαβ
∂2x

dξα∂ξβ------------------n.=
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(6), a mixed vector product is present that can be writ-
ten in the form of the determinant

(13)

The coefficients of the second quadratic form allow
us to calculate the Riemann–Christoffel curvature ten-
sor

and the scalar curvature

(14)

Here Gαβ are the countervariant components of the met-

ric tensor GαβGβγ = , and  are components of the
unit tensor. The mean H and Gaussian K curvatures,
usually used in the theory of surfaces, are determined
by the relations

(15)

(16)

where b = det ||bαβ ||.
They are related to the principal radii of curvature R1

and R2 by the known formulas

With respect to arbitrary transformations of coordi-
nates in the 2D Riemannian space, H behaves as a sca-
lar and K is a scalar.

THE VARIATIONAL PRINCIPLE 
AND THE EQUILIBRIUM SHAPE 

OF THE DIAPHRAGM

When calculating the equilibrium shape of the dia-
phragm, we proceed from the principle that, with no
external forces present, the diaphragm assumes the
shape with which its surface energy U0 is minimal. For
ideal diaphragms, this energy is proportional to the dia-
phragm area (formula (4)):

(17)

Here, T is the surface tension of the diaphragm, and the
integration is performed over the region limited by the

bαβ
1

G
--------

∂2
x

1

∂ξα∂ξβ----------------- ∂2
x

2

∂ξα∂ξβ----------------- ∂2
x

3

∂ξα∂ξβ-----------------

∂x
1

∂ξ1
-------- ∂x

2

∂ξ1
-------- ∂x

3

∂ξ1
--------

∂x
1

∂ξ2
-------- ∂x

2

∂ξ2
-------- ∂x

3

∂ξ2
--------

.=

Rαβγσ bαγbβσ bαβbβγ–=

R G
αγ

G
βσ

Rαβγσ.=

δγ
α δγ

α

H
1
2
---G

αβ
bαβ,=

K
b
G
----

1
2
---R,= =

H
1
2
--- 1

R1
----- 1

R2
-----+ 

  , K
1

R1R2
------------.= =

U0 T G ξ1 ξ2
.dd∫=
rigid contour, over which the diaphragm is stretched.
The energy is minimal on the condition that the first
variation of functional (17) with respect to x(ξ1, ξ2)
vanishes:

(18)

Here we use the formula δG = GGαβδGαβ and, when
integrating by parts, i.e., applying the Green theorem,
we take into account that, for a rigidly fixed diaphragm,
the integration-boundary variation δx(ξ1, ξ2) = 0.
Owing to the arbitrariness of δx(ξ1, ξ2), a nonlinear
equation follows from (18), which determines the equi-
librium shape of the diaphragm; i.e., the equation of the
minimal surface area

(19)

In the presence of external forces due, for example,
to the difference of pressures on the two sides of the
diaphragm ∆p0, the variation in the surface energy δU0
should be equal to the work performed by these forces
in displacing the diaphragm by δx(ξ1, ξ2) [2]:

(20)

In this case, the equilibrium shape of the diaphragm
is determined from the solution of the equation with a
right-hand side

(21)

The latter can be written componentwise as

(22)

Let us show that only one of the three equations of
system (22) is independent. For example, if x3(ξ1, ξ2)
satisfies equation (22), then two other equations for
x1(ξ1, ξ2) and x2(ξ1, ξ2) are identically true. In order to
do this, we will multiply the left and right sides of equa-
tion (10) by Gαβ:

Here, we take into account that the components of the
metric tensor can be placed under the sign of covariant
differentiation. In view of (5), this equation can also be

δU0 T δ G ξ1 ξ2
dd∫=

=  T GG
αβ ∂x

∂ξβ-------- ∂
∂ξα--------δx 

  ξ 1
d ξ2

d∫

=  T
∂

∂ξα-------- GG
αβ ∂x

∂ξβ-------- 
  δx ξ1 ξ2

dd∫– 0.=

1

G
-------- ∂

∂ξα-------- GG
αβ ∂x

∂ξβ-------- 
  0.=

δU0 ∆ p0nδx G ξ1 ξ2
.dd∫–=

1

G
-------- ∂

∂ξα-------- GG
αβ ∂x

∂ξβ-------- 
  ∆ p0

T
---------n.=

1

G
-------- ∂

∂ξα-------- GG
αβ ∂x

i

∂ξβ-------- 
  ∆ p0

T
---------n

i
i 1 2 3, ,=( ).=

∇ αG
αβaαβ G

αβ
bαβn.=
TECHNICAL PHYSICS      Vol. 45      No. 1      2000



ON THE THEORY OF SMALL-AMPLITUDE VIBRATIONS 11
represented as

(23)

It follows from this that the mean curvature of the
minimal surface H = 0. Multiplying scalarly both sides

of (23) by ∂x/∂ξγ
 and taking into account orthogonality

condition (7), we arrive at the identity

Assuming that x3(ξ1, ξ2) satisfies equation (21), we
will write this identity in the following form:

In accordance with orthogonality condition (7),

As a result, we obtain

(24)

Since it is assumed that det ||∂xi/∂ξγ|| ≠ 0 (i = 1, 2 and
γ = 1, 2), the only solutions to the system of two homo-
geneous equations (24) for the bracketed quantities are
zero solutions. This condition is equivalent to identi-
cally true equation (22) for i = 1, 2.

THE EQUATION FOR SMALL-AMPLITUDE 
VIBRATIONS OF CURVED-SURFACE 

DIAPHRAGMS

As dynamic variables characterizing small devia-
tions of the diaphragm from its equilibrium, we will
consider time-dependent displacements of the dia-
phragm along the normal to its surface u(ξ1, ξ2, t). We
assume that, under the equilibrium condition (u = 0),
the diaphragm surface is specified parametrically by
the function x = (ξ1, ξ2) that, generally, satisfies equa-
tion (21). Let x(ξ1, ξ2) be the coordinate of an arbitrary
point on the surface of a diaphragm, which is in the
equilibrium state. In this case, as a result of a dia-
phragm deformation (a small displacement along the
normal), this point acquires the coordinate x' = x + un.
The radius vector connecting two infinitely near points
on the surface of the deformed diaphragm is defined by
the expression dx' = dx + udn + ndu, and the squared
distance between them is

(25)

1

G
-------- ∂

∂ξα-------- GG
αβ ∂x

∂ξβ-------- 
  G

αβ
bαβn.=

1

G
-------- ∂

∂ξα-------- GG
αβ ∂x

∂ξβ-------- 
  ∂x

∂ξγ-------- 0.=

1

G
-------- ∂

∂ξα-------- GG
αβ ∂x

i

∂ξβ-------- 
  ∂x

i

∂ξγ--------
i 1=

2

∑ ∆ p0

T
---------n

3∂x
3

∂ξγ--------+ 0.=

n
3∂x

3

∂ξγ-------- n
i ∂x

i

∂ξγ--------.
i 1=

2

∑–=

1

G
-------- ∂

∂ξα-------- GG
αβ ∂x

i

∂ξβ-------- 
  ∆ p0

T
---------n

i
–

∂x
i

∂ξγ--------
i 1=

2

∑ 0.=

dl'
2

dx'
2

dx2
2udxdn u

2
dn2

du
2
.+ + += =
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Here, we use relations (7) and (8), from which it fol-
lows, in particular, that ndx = 0 and ndn = 0. According
to equations (9) and (11),

and, therefore,

These relations allow us to determine the metric of

the deformed-diaphragm surface . Substituting
them into (25) and taking into account (2) results in

where

Here, Gαβ and bαβ are the coefficients of the first and
second quadratic forms of a nondeformed, i.e., equilib-
rium-state, diaphragm. The surface energy of a
deformed diaphragm is determined by the equation

where  = det || ||.

Assuming u to be small, let us develop  as a
series in u and restrict our consideration to the terms
that are quadratic with respect to displacement. As a
result, we have

The first term on the right side of this expression
determines the energy of a nondeformed diaphragm U0
(formula (17)), the second, the energy resulting from its
deformation; H and R are, respectively, the mean and
scalar curvatures of a nondeformed diaphragm (formu-
las (15), (14), and (16)). In the absence of external
static forces, when the diaphragm has a minimal-sur-
face shape whose mean curvature is H = 0, this expres-
sion involves no term that is linear with respect to u.

Thus, as a result of deformation, the surface energy
of the diaphragm changes by

If the equilibrium pressures on both sides of the dia-
phragm differ by ∆p0, then, upon deforming, the dia-

∂n

∂ξα-------- bαβG
βγaγ–=

dxdn bαβdξα
dξβ

, dn2
– bαγbβσG

γσ
dξα

dξβ
.= =

G̃αβ

dl'
2

G̃αβdξα
dξβ

,=

G̃αβ Gαβ 2bαβu– bαγbβσG
γσ

u
2 ∂u

∂ξα-------- ∂u

∂ξβ--------.+ +=

U T G̃ ξ1 ξ2
,dd∫=

G̃ G̃αβ

G̃

U T G ξ1 ξ2
dd∫≈

+
1
2
---T G

αβ ∂u

∂ξα-------- ∂u

∂ξβ-------- 4Hu– Ru
2

+ 
  G ξ1 ξ2

.dd∫

∆U U U0–=

=  
1
2
---T G

αβ ∂u

∂ξα-------- ∂u

∂ξβ-------- 4Hu– Ru
2

+ 
  G ξ1 ξ2

.dd∫
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phragm does the work

Here, we use formula (20), in which we have assumed
δx = nu. According to (21) and (23), the mean curvature
H of the diaphragm and pressure difference ∆p0 are
related by the expression (the Laplace formula [2])

Therefore, the total change in the diaphragm energy
caused by its deformation is

(26)

The absence of a term that is linear with respect to u
in this expression is not accidental and reflects the fact
that, even when external static forces are present, the
minimum of the energy ∆E must correspond to the dia-
phragm equilibrium when u = 0.

When deriving the equation describing small-ampli-
tude vibrations of a curved diaphragm, we will proceed
from the principle of least action. As the action, we will
consider the functional

(27)

where the Lagrangian is

(28)

The first term on the right side of the expression
defines the density of the kinetic energy of the dia-
phragm (ρ is the surface density of the diaphragm); the
second term defines the density of its potential energy
(formula (26)); the third term takes into account the
effect of the external forces due to the difference of
pressures on both sides of the diaphragm ∆p, which is
excessive with respect to the effect exerted on the equi-
librium diaphragm ∆p0. Varying (27) with u and assum-
ing δS = 0, we arrive at the following Euler–Lagrange
equation, which describes small-amplitude vibrations
of the curved diaphragm:

(29)

Here we introduce the notation ν2 = T/ρ and, when
deriving the equation itself, we take into account that,
at the limits of integration, δu = 0. Equation (29)
extends the known equation for small-amplitude vibra-
tions of a plane diaphragm to an arbitrary shaped dia-
phragm. The metric-tensor components Gαβ and scalar
curvature R in this equation are determined by the equi-
librium shape of the diaphragm (formulas (3), (13), and

∆W ∆ p0u G ξ1 ξ2
.dd∫=

∆ p0 2TH .=

∆E ∆U ∆W+=

=  
1
2
---T G

αβ ∂u

∂ξα-------- ∂u

∂ξβ-------- Ru
2

+ 
  G ξ1 ξ2

.dd∫

S L G ξ1 ξ2
t,ddd∫

t1

t2

∫=

L
1
2
---ρ ∂u

∂t
------ 

 
2 1

2
---T G

αβ ∂u

∂ξα-------- ∂u

∂ξβ-------- Ru
2

+ 
 – ∆pu.–=

1

G
-------- ∂

∂ξα-------- GG
αβ ∂u

∂ξβ-------- 
  Ru–

1

ν2
-----∂2

u

∂t
2

--------–
∆p
T

-------.=
(16)). The invariance of equation (29) with respect to
arbitrary transformations of the parameters ξα is obvi-
ous, because R is a scalar and the left-side Laplace–Bel-
trami operator can be written in the explicitly covariant
form

It should be noted that the character of the solution
of the wave equation obtained depends on the sign of R
and, therefore, is different for diaphragms with positive
(e.g., sphere) and negative (pseodosphere) curvature.

ENERGY DENSITY AND ENERGY-FLUX 
DENSITY OF THE FIELD OF DISPLACEMENTS: 

CONSERVATION LAW

In the absence of external dynamic forces (∆p = 0),
the total energy of the vibrating diaphragm, i.e., the
energy of the field of displacements u(ξ1, ξ2, t), must
not vary with time. In the field theory, the energy-con-
servation law follows immediately from the differential
conservation law (equation of continuity) relating tem-
poral variation of the field-energy density W to spatial
variation of the energy-flux density Sα. This law is in
turn the consequence of the invariance of action under
infinitely small time shifts [3]. For the u(ξ1, ξ2, t) field
under consideration, which is specified on the surface
of a curved diaphragm; i.e., in a 2D Riemannian space,
it is appropriate to write it in a generally covariant form

or, on expanding the covariant derivative, as

(30)

If the field Lagrangian is specified, then the energy
density and the energy-flux density can be determined
using the known relations [3]

Substitution of the Lagrangian (28), in which ∆p = 0,
into these expressions gives

By direct testing, we ascertain that the obtained W
and Sα satisfy the conservation law (30) on the condi-
tion that u(ξ1, ξ2, t) is a solution to field equation (29)
with a zero right side.

1

G
-------- ∂

∂ξα-------- GG
αβ ∂u

∂ξβ-------- 
  ∇ α ∇ α

u.=

∂W
∂t

-------- ∇ αS
α

+ 0=

∂W
∂t

--------
1

G
-------- ∂

∂ξα-------- GS
α( )+ 0.=

W
∂L

∂ ∂u ∂t⁄( )
-----------------------∂u

∂t
------ L, S

α
–

∂L

∂ ∂u ∂ξα⁄( )
---------------------------∂u

∂t
------.= =

W
1
2
--- ρ ∂u

∂t
------ 

 
2

T G
αβ ∂u

∂ξα-------- ∂u

∂ξβ-------- Ru
2

+ 
 + ,=

S
α

TG
αβ ∂u

∂ξβ--------∂u
∂t
------.–=
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A SPHERICAL DIAPHRAGM
Consider a spherical diaphragm with the center of

the sphere at the origin of coordinates and the radius of
curvature R0. As independent parameters ξ1 and ξ2,
which determine the position of any point on the sur-
face of this diaphragm, it is convenient to use spherical
angles Θ and ϕ(ξ1 = Θ, ξ2 = ϕ). In this case, the surface
of the diaphragm is specified by the parametric equa-
tions

Relations (3) and (13) allow one to determine the
coefficients of the first Gαβ and second bαβ quadratic
forms of this surface. Direct calculations give the fol-
lowing results:

From these relations and formula (16), it follows
that the scalar curvature of the spherical surface R =

2/ . In accordance with this, equation (29) describing
small-amplitude vibrations of a spherical diaphragm
assumes the form

As one can see, this equation admits solutions cor-
responding to purely radial vibrations if Θ and ϕ
boundary conditions are not specified and the dia-
phragm is a sphere.

A CATENOID-SHAPED DIAPHRAGM
Consider a diaphragm with the shape of a minimal

surface of revolution, namely, that of a catenoid, whose
axis is directed along the axis x3 The availability of the
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axis of revolution allows one to use the cylindrical
coordinates ρ and ϕ as parameters determining the
positions of points on the surface of the diaphragm
(ξ1 = ρ, ξ2 = ϕ). In this case, the diaphragm surface is
specified by the parametric equations

which are the solutions to the equations of the minimal
surface (19). The constants a and b are found from the
boundary conditions, which fix the position and equi-
librium shape of the diaphragm. For the coefficients of
the first and second quadratic forms of the catenoid sur-
face, we have, respectively,

The scalar value of the surface under consideration
is negative and depends on ρ: R = –2(a2/ρ4). Substitu-
tion of the obtained values into (29) results in the fol-
lowing equation describing the small-amplitude vibra-
tions of the diaphragm:

where r = ρ/a is a dimensionless parameter (1 ≤ r < + ∞).
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SURFACES, ELECTRON AND ION EMISSION
Effect of Shock Compression of Solid Insulators on the Injection 
of Valence Electrons in Strong Magnetic Fields

Yu. N. Vershinin, D. S. Il’ichev, and P. A. Morozov
Institute of Electrophysics, Ural Division, Russian Academy of Sciences, 

ul. Komsomol’skaya 34, Yekaterinburg, 620049 Russia
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Abstract—A correlation was shown to exist between the velocity of impulsing discharge from the anode,
shock-wave parameters, electric-field strength, elastic properties, and the probability of ionization in the
valence band of insulating solids. Using NaCl and KCl crystals as examples, a quantitative estimation of
these  dependences was performed for the interval of discharge speeds of 5 × 103–106 m/s. © 2000 MAIK
“Nauka/Interperiodica”.
It was indicated in [1, 2] that the process of electric
breakdown in insulators can be affected by shock com-
pression. The development of shock waves in this pro-
cess was usually related to the arc stage of discharge,
which follows the short-circuiting of the disruptive gap
through the breakdown path. The last mechanism is
known to be the basis for the spark-discharge (elec-
troimpulsing) methods of boring and grinding of
rocks [2].

At the same time, intense shock waves may also be
generated at the stage of propagation of a discharge fil-
ament. This follows from the supersonic velocities νad

of the impulsing anode discharge in condensed insula-
tors [3], which are accompanied by the supersonic
propagation of the front of the first-order insulator–
plasma phase transition [4].

The development of plasma in the anode-discharge
filament is a consequence of electron transformation
from the valence-electron state into a quasi-free state.
The process of their intense injection will occur in this
case not only under the action of strong electric fields,
but also under conditions of strong compression of the
insulator by a shock wave generated by the front of the
phase transition.

The above-mentioned features of pulsed anode dis-
charge suggest the existence of a dependence between
the discharge velocity νad, the parameters of the shock
wave, the elastic properties of the insulator, and the
probability of the electrostatic ionization ω = n/N, s–1

(n is the number of electron–hole pairs formed per unit
volume per unit time, and N is the number of valence
electrons per unit volume). The possibility for such a
relation to exist is, in particular, evidenced by the
dependence of the radius r0 of the anode discharge fila-
ment on not only the energy gap, but also the compress-
ibility K of solid insulators [5].
1063-7842/00/4501- $20.00 © 20084
Upon compression of crystalline insulators and
semiconductors, the energy gap width Eg(p) =  is
known [6] to change as

(1)

depending on the magnitude and sense of the pressure
coefficient ap. In direct-transition substances, including
alkali-halide crystals, the coefficient ap is proportional
to the compressibility K

(2)

and is negative. Upon isothermal compression in a
range of 9 × 10–12 ≤ K ≤ 200 × 10–12, the coefficient γ
changes in narrow limits of –2.3 × 10–19 < γ < –1.3 ×
10−19 J and has an average value of –2 × 10–19 J [7].

Upon shock-wave compression, the average value
of γ increases to –3 × 10–19 J. The negative value of the
pressure coefficient ap indicates that the energy gap of
the substance decreases upon compression. Corre-
spondingly, it is that region of a direct-transition semi-
conductor that is subject to a shock wave that will be,
under other conditions equal, the primary source of
injected electrons. If the width of this region is l, then
the degree of ionization of the insulator upon shock
compression will be

(3)

The investigation of a one-dimensional crystal-lat-
tice model [8] showed that the width of a shock wave
depends on its velocity and at large velocities
approaches a constant value. The intensity of the shock
wave in this case decreases by a factor of e on distances
of about ∆l = (2–4)d0, where d0 is the lattice parameter.

The probability of ionization ω and injection cur-
rents in solids were studied in numerous works, which
were generalized, e.g., in monographs such as [9, 10].

Eg*

Eg* Eg ap p+=

ap γK–=

xe ω l νad⁄( ).=
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For the case of tightly bound electrons, the correspond-
ing equations were suggested in [11, 12].

On the assumption that these equations remain also
valid under shock-compression conditions, we may
write [12]

(4)

Here, α is the ratio of the energy-gap width to the
valence-band width; and  and d* are the effective
values of the energy gap and lattice parameter, respec-
tively, upon shock compression. The values d* = d0(p)
can be calculated from experimental adiabats of con-
crete insulators [13, 14], which are usually approxi-
mated by expressions such as

(5)

from which we obtain

(6)

In (5) and (6), d0 and ρ0 are the lattice parameter and
the density of the unperturbed insulator, and a and b are
empirical coefficients. Their values for some insulators
for a pressure range of 1010 < p < 1011 Pa are given in
Table 1.

In the model of an ionizing shock wave, the conduc-
tivity of the insulator in front of the leading edge of the
wave is σ = 0. In this case, the field strength and the
critical degree of ionization of the insulator at the phase
surface may be assumed, to the first approximation, to
be constant in the entire range of acting stresses and,
correspondingly, velocities νad [5].

As was noted in [3], the velocity νad in crystalline
insulators depends on two initial conditions of the dis-
charge development: on the critical breakdown voltage
U0 at the time instant t0 and on the rate of pulse rise
dU/dt(t0). In such insulators, the minimum velocities
νad usually exceed the longitudinal sound velocity in
the corresponding direction by a factor of 1.25–1.3.

In alkali-halide crystals, the maximum velocities
(νad ≥ (3–5) × 105 m/s) are achieved upon the action of
nanosecond pulses with a front length τ of less than
5 ns and amplitude voltage U ≥ 150 kV. No explicit
dependence of νad on τ was observed in this case (see
Fig. 1).
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The use of the above relationships for the estimation
of the interconnection of parameters that affect the pro-
cess of ionization of a solid insulator is illustrated using
NaCl and KCl crystal as examples (see Table 2).

In both cases, the disruptive distance was h ≥ 10–2 m;
the width of the shock-compression region, ∆l = 3d0;
and the coefficient of proportionality γ in (2), –3 ×
10−19 J. The pressure pmin was determined in the detona-
tion approximation as

(7)

at constants k = 3.83 for NaCl and 3.55 for KCl calcu-
lated by the method described in [14]. Under these con-
ditions, we have

(8)

where ωmin is the probability of ionization at νad, min, and
ωn is the probability of ionization at νad, n > νad, min.

The general appearance of the surfaces of the varia-
tion of the ionization probability ω, pressure p, and field
strength E is given in logarithmic coordinates in Fig. 2
for NaCl as an example; the region of parameters cor-
responding to the adopted initial data is marked by a
solid line in it.

Figure 3 displays the dependence of the pressure
during shock compression on the velocity νad and

related changes in the effective energy gap  at the
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Table 1

Coefficients LiF NaCl KCl KBr NaI CsI

a, 109 Pa 11.73 4.31 1.819 1.710 5.245 4.554

b 5.082 4.993 5.475 5.282 4.033 4.015
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degrees of ionization xe(NaCl) = 0.256 for NaCl and
0.252 for KCl. The results obtained do not contradict
those previously reported. Thus, the quantum-mechan-
ical estimates of the electrical conductivities of KI,
CsCl, CsBr, and CsI crystals have shown [6] that at
pressures p = (1.6–2.7) × 1010 Pa the effective energy
gap  is equal to (0.8–0.6)Eg, 0. From Fig. 3, it fol-

lows that in this pressure range we have  = (0.82–
0.64)Eg, 0.

Note that, at νad = const,  is almost independent
of the pressure p and the individual properties of the
insulator. This effect needs a special investigation. On
a qualitative level, it can be explained as follows.

As was noted in [3], an important parameter that
determines the dynamic characteristics of the anode
discharge in solid dielectrics is the compressibility of
the crystal. Probably, the above velocity dependence of
the effective energy gap (νad) is also a consequence
of a complex influence of the elastic properties of the
insulator on the process of discharge propagation.
Thus, the velocity νad at U0 = const, dU/dt = const is
directly proportional to the ratio K/Eg, 0 [3]. It can easily
be shown that, for the homologous series of alkali
halide crystals, we have Eg, 0 ~ K–1 [7], and at νad =
const, we obtain p ~ K (Fig. 3). Then, the velocity νad is

Eg*

Eg*

Eg*

Eg*

14.37

12.09

9.81
11.0

10.3

9.6 9.29
9.53

9.76

logElogp

logω

Fig. 2. The (ω, p, E) surface in logarithmic coordinates.

Table 2

Parameters of the process Units of 
measure NaCl KCl

Critical breakdown voltage U0 kV 57–320 45–320

Discharge velocity vad 103 m/s 6–850 5–1150

Electric field strength E0 [5] 109 V/m 3.34 2.61

Energy gap Eg,0 10–19 J 13.6 13.44

Compressibility K [7] 10–12 Pa 42.73 54.91

Pressure pmin at νad, min 1010 Pa 1.6 1.1
                                                        

proportional to K2, and expression (1) can be rewritten
in the form

(9)

where x and y are the coefficients of proportionality.

The adopted relation νad ~ K2 does not contradict
experimental data. Indeed, at U0 = 220 kV and dU/dt = 0,
we have νad = (5.8–6.0) × 105 m/s for NaCl and (9.0–
9.4) × 105 m/s for KCl. The ratio of these velocities is
equal to 1.55–1.62, and the ratio of the corresponding
compressibilities is 1.65.

The above calculations indicate the necessity of tak-
ing into account the impact compressibility of solid
insulators when analyzing pulsed breakdown of such
materials. It should, however, be emphasized that these
results have only an estimative, semiquantitative char-
acter. The reason is that a correct quantitative account
of the compressibility effect on the process of electron
injection in solid insulators is connected with the
necessity of carrying out a whole number of special
experimental and theoretical investigations. First of all,
this refers to the study of pressure effects on the elec-
tron-band structure of wide-bandgap insulators.1 This
will permit us, in particular, to more rigorously deter-
mine the values of the pressure coefficients ap. It may
be expected that dependence (1) will be nonlinear in a
wide range of pressures. We also should estimate the
potential of equation (5) at high levels of injection with
degrees of ionization close to unity. It cannot be ruled
out that, under these conditions, these equations will
have another structure and, at large velocities νad and
corresponding pressures, the degree of ionization xe

and the charge numbers of the ions will be more than
unity.

1 A review of analogous work on semiconductors and narrow-
bandgap insulators was given by H. Drickamer [6, ch. 12].
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Abstract—The design of a new quantum magnetometer for geomagnetic fields, an outgrowth of the idea of the
so-called HFS magnetometer that uses microwave transitions between hyperfine sublevels of alkaline atoms, is
presented. In contrast to the ordinary HFS magnetometer, which measures the frequency difference of two inde-
pendent transitions, the new Λ-HFS magnetometer is based on the excitation of two transitions with a common
level. The design under discussion retains the principal advantages of the prototype (negligible systematic
errors and the absence of dead zones for a single sensor), with the electronic circuits being simplified signifi-
cantly and the requirements on the short-term frequency stability of the reference oscillator being relaxed sub-
stantially. An analysis of the new scheme is based on the solution of the equation for the density matrix of a
multilevel system without constraints on the power of the microwave fields. © 2000 MAIK “Nauka/Interperi-
odica”.
INTRODUCTION

The so-called HFS magnetometer [1, 2] proposed in
the 1970s, which uses microwave transitions between
magnetic sublevels of the ground state of an alkaline
metal that belong to different hyperfine components,
stands out among the many types of resonance, opti-
cally pumped magnetometer (OPM). Such a magne-
tometer (in its most perfect balanced modification) is
remarkable for the absence of systematic errors at a
level of random errors of the order of 1 pT. In addition,
this is a unique instrument without dead zones for a sin-
gle sensor. This circumstance makes the HFS magne-
tometer completely nonorientable, which is the most
valuable property when used on movable platforms.
However, the electronic part of the HFS magnetometer
is much more complex than that of the conventional
OPMs. The reason is that, first, a microwave frequency
is measured (to within a few hundredths of a hertz) in
this magnetometer rather than a radio frequency, as in
ordinary magnetometers, which makes the require-
ments on the stability of the grid of reference frequen-
cies three or four orders of magnitude more stringent.
Second, the frequencies of two independent microwave
transitions (whose subsequent subtraction removes the
effect of light and collisional atomic-level shifts) in a
balanced magnetometer are measured simultaneously.
The presence of two automatic-frequency-control
loops almost doubles the volume of the electronic cir-
cuits. The enhanced complexity of the electronic equip-
ment has prevented the HFS magnetometer from com-
ing onto the market for twenty years, and only now has
the successful industrial development of two versions
of a potassium instrument been reported.

In this paper, we discuss a new version of a balanced
HFS magnetometer which retains the basic advantages
1063-7842/00/4501- $20.00 © 20088
of the prototype but has only one automatic-frequency-
control loop and does not require an ultrahigh fre-
quency stability of the microwave field. To this end, we
propose to excite two transitions with a common upper
level that form a Λ scheme with the inherent effect of
coherent population trapping [3, 4] rather than two
independent microwave transitions.

QUALITATIVE DESCRIPTIONS 
OF THE DESIGN

Figure 1 schematically shows the sublevels of the
n2S1/2 ground state of an alkaline metal atom in an
external magnetic field (the most common case of an
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Fig. 1. Diagram of magnetic sublevels for an alkaline atom
with a nuclear spin of 3/2: F00 is the frequency of hyperfine
splitting; f1 and f2 are the frequencies of the magnetic tran-
sitions used in a conventional HFS magnetometer.
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atom with a nuclear spin of 3/2 is presented). The two
hyperfine F = 1 and F = 2 levels, which are separated
by a hyperfine microwave interval in a zero field, are
split, respectively, into three and five magnetic sublev-
els in a magnetic field. These sublevels are nearly equi-
distant in weak fields: the spectrum of the ∆F = 0,
∆mF = ±1 transitions represents a tight group of lines
whose frequencies are expressed by a series in powers
of the magnetic induction H with the dominant linear
term a identical for all lines (to within a few tenths of a
percent) and equal to ≈7 × 109 Hz/T. The small nonlin-
ear corrections to the frequencies of these transitions
are proportional to the powers of the ratio x = aH/f00,
where f00 is the hyperfine splitting in a zero field. It is
these radio lines that are used in conventional quantum
magnetometers with optical pumping by circularly
polarized light.

The ∆F = ±1, ∆mF = 0, ±1 transitions between the
magnetic sublevels belonging to different hyperfine
states lie in the microwave range. Their frequencies in
the linear approximation are f00 + (mF + )aH, form-
ing nine lines with frequencies from f00 + 3aH to f00 –
3aH; two of these lines with f00 + aH and f00 – aH are
degenerate in pairs and differ in frequency only by
small correction terms. Until recently, only the so-
called 0–0-transition has been used in quantum elec-
tronics from this entire spectrum: F = 2, mF = 0 

F ' = 1,  = 0. In the linear approximation, this transi-
tion does not depend on the magnetic field and, conse-
quently, is of interest in frequency standardization: the
existing atomic frequency standards and atomic clocks
use such a transition in hydrogen, cesium, and rubid-
ium atoms.

It is convenient to explain the essence of the design
of the Λ-HFS magnetometer by using an idealized
three-level scheme, in which levels 1 and 2 are associ-
ated with the mF = ±1 sublevels of the lower (F = 1)
hyperfine level, while level 3 is associated with the
mF = 0 sublevel of the upper (F = 2) hyperfine level. A
sufficiently intense optical excitation of the upper
hyperfine level is assumed, which provides a much
faster relaxation of level 3 than the relaxation of levels
1 and 2. We therefore assume that, in the absence of
microwave excitation, all atoms are concentrated at the
lower hyperfine level and that the absorption of the
pumping light is at a minimum. The separate excitation
of the microwave 1  3 or 2  3 transitions is
accompanied by the appearance of absorption in the
pumping channel. In both cases, the change in the fre-
quency of the applied field in the vicinity of the corre-
sponding resonance allows us to obtain the resonance
contour whose width is limited by the rate of the dom-
inant optical relaxation caused by the optical excitation
of level 3. However, the combined effect of two micro-
wave fields changes radically the pattern, revealing the
phenomenon of coherent population trapping or Λ res-
onance, where the difference of frequencies f13 and f23

mF'

mF'
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is equal to the frequency of the F12 transition between
levels 1 and 2. Figure 2 shows the calculated behavior
of the coefficient of absorption of the pumping light
versus detuning δ from the exact Λ resonance, where
δ = F12 – (f23 – f13), and three resonance curves that cor-
respond to different detunings of the ∆ microwave res-
onance, where ∆ is equal to the difference between the
frequency F13 of the 1  3 transition and the fre-
quency f13 of the applied field. All curves are character-
ized by a narrow dip centered at the frequency of the ∆
resonance, i.e., at point δ = 0. The dip width is limited
by the widths of levels 1 and 2. It is assumed to be equal
for both levels and a fact of 10 smaller than the width
of level 3 attributable to the optical excitation.

The curves in Fig. 2 were obtained from the results
of an exact solution of the problem of two-frequency
resonance in a three-level system. The analytical solu-
tion is too cumbersome to be reproduced. The expres-
sion for the coherence of sublevels 1 and 2 is given in
[5]. We note only the most important features of the Λ
resonance.

(1) Its width is abnormally small: the width of the
resonance remains close to the natural width γ of
levels 1 and 2, despite the microwave field which is
strong enough to broaden the ordinary resonance 1  3
or 2  3 with a much larger width Γ (by a factor of
10 in Fig. 2).

(2) For a symmetric detuning δ of each of the micro-
wave fields (i.e., when the condition of the Λ resonance
holds), the resonance pattern changes only slightly as
long as the detuning remains within the width of the
upper (broad) level, i.e., for ∆ ≤ Γ.
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Fig. 2. Signal of absorption of the pumping light in an ide-
alized Λ magnetometer for the scanning of the microwave-
field frequency δ proportional to the measured magnetic
field for three detunings of the microwave synthesizer rela-
tive to the frequency of hyperfine splitting F00. The natural
width of the lower levels γ is 20 Hz, and the width of the
upper (common) level Γ is 200 Hz; ∆, Hz: (1) 0, (2) 100,
(3) 150.
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It is easy to see that the Λ resonance allows us to
construct a Λ-HFS magnetometer possessing all the
advantages of the prototype, with the requirements on
the stability of the reference oscillator being relaxed
significantly and with the design being simpler. A block
diagram of the magnetometer is shown in Fig. 3.
Appealing so far to an idealized scheme as before, we
assume that the frequencies of the resonances 1  3
and 2  3 are linearly related to the magnetic induc-
tion, so the resonance frequencies are f13 = f00 + aH and
f23 = f00 – aH, respectively. In this case, the reference
frequency f0 is chosen to be f00. The voltage of this fre-
quency is subject to a balanced modulation by the sig-
nal of a controlled radio-frequency oscillator at fre-
quency F, so two harmonics f00 ± F appear at the mod-
ulator output. By introducing an additional frequency
modulation into the signal F at a low frequency Ω and
simultaneously recording the intensity of the pumping
light after the passage of the working cavity, it is easy
to get the control signal of frequency F in order to hold
it automatically at the center of the narrow dip. Measur-
ing this frequency corresponds to measuring the mag-
netic induction.

By contrast to the well-known balanced HFS mag-
netometer, the modification we propose contains only
one feedback loop and requires an appreciably lower
stability of the reference oscillator, because the drifts of
its frequency within the upper-level width do not affect
significantly the characteristics of the Λ resonance. At
the same time, the upper level can be artificially broad-
ened through a high pumping rate, with this having no

1

2

3 7 6

8

5

4

F00

F00 + F, F00 – F

F

F

Ω

Ω

Fig. 3. Block diagram of the Λ-HFS magnetometer. The
microwave field exciting the resonance in the sensor is
formed at the output of the mixer from the signal of the
microwave synthesizer with F00 ≈ 6834.6 MHz and the sig-
nal of the radio-frequency oscillator with frequency F. The
frequency F proportional to the measured magnetic field is
fed to the frequency meter. (1) Microwave synthesizer,
(2) mixer, (3) radio-frequency oscillator, (4) 85Rb lamp,
(5) 87Rb sensor, (6) preamplifier, (7) low-frequency modu-
lator, and (8) synchronous detector.
effect on the width of the narrow dip, i.e., on the mag-
netometer sensitivity.

MODELING AN ACTUAL SYSTEM

In contrast to an idealized three-level scheme, any
actual alkaline atom introduces significant complica-
tions in the design associated with a more complex sys-
tem of levels and with nonlinearity of their magnetic
splitting. The former factor influences the intensity of
calculated resonance signals, because the presence of
the F = 1, mF = 0 level unaffected by a microwave field
in the ground state results in a considerable accumula-
tion in this state of atoms that are not involved in the Λ
resonance. Furthermore, allowance for additional lev-
els shows that, apart from the Λ resonance F ' = 1,  =

−1  F = 2, mF = 0  F ' = 1,  = 1, we should
reckon with the presence of the similar (in frequency)
V resonance F = 2, mF = –1  F ' = 1,  = 0 
F = 2, mF = 1.

The latter factor, the nonlinearity of magnetic split-
ting, leads to the fact that the reference frequency f0,
from which the frequencies f1 and f2 producing the Λ
resonance are synthesized, is no longer equal to f00, but
slightly differs from this value by a relatively small cor-
rection that quadratically depends on the measured
field induction. However, it is easy to cope with this dif-
ficulty. It will suffice to estimate the range of the half-
sum of frequencies f1 and f2 in the working range of
magnetic fields and to require that the light broadening
of the upper hyperfine F = 2 level be larger than this
parameter. In this case, the reference frequency can be
chosen once and for all somewhere in the middle of the
range.

At first glance, the effect of the V resonance is also
insignificant, because it produces radio-frequency
coherence of the sublevels of the broad upper hyperfine
level intensively depopulated by light. However, since
the frequency of this resonance is close to the Λ reso-
nance, it, being broad, may result in an effective shift of
the Λ-resonance center, i.e., in a systematic error.
Therefore, this issue should be considered quantita-
tively.

Finally, because of the presence of the populated
F = 1, mF = 0 level, we should take into account the fact
that the balanced modulator producing two harmonics,
f0 ± F, from the reference frequency f0 is not ideal. In
fact, the f0 harmonic, which is capable of causing a 0−0-
transition will always be present at the modulator out-
put to some extent. However, this may also turn out to
be useful as a counterbalance to the above effect of
accumulation of atoms at the F = 1, mF = 0 sublevel.

We analyze the case of 87Rb, for which the scheme
of effective hyperfine pumping by the light of a 85Rb
lamp is known: as a result of the combination of isoto-
pic and hyperfine shifts of resonance lines, the emission

mF'

mF'

mF'
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of the 85Rb lamp excites only the upper hyperfine level
of the 87Rb ground state.

The calculation was carried out primarily to find
optimum conditions for obtaining a maximum steep-
ness dS/df of the Λ resonance. Furthermore, it is neces-
sary to find out how the frequency stability of the
microwave synthesizer influences the position and
steepness of the Λ resonance with allowance for the
close proximity of the 2  7 and 2  5 resonances
(see Fig. 1 for the level notation).

The problem is solved in the formalism of the den-
sity matrix for 87Rb pumped by unpolarized light,
which excites atoms from the F = 2 level. The calcula-
tion is carried out for a cell filled with a buffer gas,
which suggests a complete mixing of the magnetic lev-
els in the excited state and, accordingly, the same
repopulation of all magnetic levels of the ground state
in each pumping cycle. Optical pumping for the F = 2
(k = 4, …, 8) levels interacting with light is introduced
through the additional relaxation of populations Nk

caused by light,

The term Q = γ + ΣkNkIp describes the level repopu-
lation through the upper state and is proportional to the
intensity of the pumping light Ip absorbed per unit time.
The F = 1 (i = 1, 2, 3) levels do not interact with the
light,

Here, 2πγ is the inverse time of thermal population
relaxation.

The interaction with the radio-frequency microwave
fields V16 and V36, the quasi-resonance transitions
between the 1  6, 2  7, and 3  6, 2  5
levels, respectively, is specified in the rotating-field
approximation

where  is the intrinsic Hamiltonian of the atom and

 is the operator of interaction with the field.

The transition frequencies in the hyperfine structure
depend on the induction H of a constant magnetic field
and can be calculated using the Breit–Rabi formula. We
use a expansion into a series to within the terms qua-
dratic in H

d
dt
-----Nk γ I p+( )Nk– Q 8.⁄+=

d
dt
-----Ni γNi– Q 8.⁄+=

i
d
dt
-----ρik Ĥ ρ̂,[ ] ik, Ĥ Ĥ0 V̂ ,+= =

Ĥ0

V̂

F16 F00 aH bH
2
, F36+ + F00 aH– bH

2
,+= =

F27 F00 aH a'H–( ) bH
2
,+ +=

F25 F00 aH a'H–( )– bH
2
,+=
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where F00 = 6834.6 MHz is the frequency of hyperfine
splitting in a zero magnetic field [6], a = 702.4 ×
107 Hz/T, a' = 2.8 × 107 Hz/T, b = 502.5 × 108 Hz/T 2,
and b' = 574 × 108 Hz/T 2.

In the Earth’s field (H = 20–80 µT), the transition
frequencies F27 and F25 are close to the frequencies that
form the Λ resonance and are shifted by a'H ≈
28 Hz/µT. The frequency of the 0–0 transition F36 in a
nonzero constant magnetic field differs from the mean
frequency (F16 + F36)/2 by (b – b')H2 ≈ 71.5 Hz/T2.

We first assume that the microwave synthesizer gen-
erates a signal of the frequency FHFS = (F16 + F36)/2 =
F00 + bH2 equal to the mean frequency of transitions F16
and F36 which form the Λ resonance. Using the method
of balanced modulation by a signal of radio frequency
F = (F16 – F36)/2, we obtain an output signal whose
spectrum contains two frequencies, f16 and f36. The
detuning δ describes the scanning of the frequency F ≈
aH of the radio signal that modulates the synthesizer
frequency FHFS in an effort to detect the Λ-resonance
signal. The frequency shifts of the microwave synthe-
sizer with respect to the mean frequency of transitions
F16 and F36 attributable to the frequency instability of
the quartz oscillator are described by means of the
detuning ∆. The appearance of detuning ∆ ≠ 0 leads to
the fact that the frequencies f16 and f36 turn out to be
equally detuned with respect to their transitions.

The detunings obtained in the rotating-field approx-
imation with respect to the frequencies of the corre-
sponding transitions are the following: δ61 = ∆ + δ,
δ63 = ∆ – δ, δ72 = ∆ + δ + a'H, δ52 = ∆ – δ – a'H. The
complete equation for the density matrix includes the
pumping, interaction with the microwave field, and
relaxation

where the relaxation operator ( ρ)ik = (1/2)(Γi + Γk)ρik

for i ≥ 4, and Γi = γ + Ip for j = 1, 2, 3.

We are interested in a steady-state solution, thereby
reducing the problem to the solution of a set of 20 equa-
tions, seven of which describe the evolution of popula-
tions (levels 4 and 6 turn out to be equivalent), another
12 are responsible for six coherences, and one equation
is for the quantity Q(δ), which is proportional to the
signal observed in the light. The steady-state values of
the density-matrix elements are determined for a given
constant magnetic field H.

The most important parameter that determines the
quality of the Λ resonance is the ratio Γ/γ = (γ + Ip)/γ,
which relates the pumping rates and the rate of dark
relaxation. In the calculations, we chose Ip = 200 Hz
and γ = 20 Hz, which closely match the values attain-

F36 F00 b'H
2
,+=

i
d
dt
-----ρik Ĥ ρ,[ ] ik i Γ̂ρ( )ik,–=

Γ̂
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able in practice. The Rabi frequency of the radio-fre-
quency field V = V16 = V36 was varied in order to find a
maximum of the steepness of the Λ resonance. We also
studied the influence of detuning ∆, which describes the
“quartz” drifts destroying the Λ resonance, on its steep-
ness and shift. The calculation of the signal in a con-
stant magnetic field of 50 µT showed that the optimum

value is V = Vopt ≈ . The dependence of the signal
Q(δ) is shown in Fig. 4 both for the exact resonance
∆ = 0 and for the detuning ∆ = 150 Hz of the synthe-
sizer frequency (which corresponds to the relative fre-
quency instability ∆FHFS/FHFS = 3 × 10–8 for 87Rb).
A shift in the peak of the Λ resonance by approximately
0.1 Hz caused by the proximity of the ordinary 2  5
and 2  7 transition is observed.

As the detuning ∆ increases to 150 Hz, the shift
increases to 0.12 Hz, while the steepness of the Λ reso-
nance decreases by a factor of 1.65. Note that the steep-
ness of an ordinary resonance (when one of the fields
forming the Λ resonance is turned off) under optimum
conditions is a factor of 12.5 smaller. The signal from
two interfering spurious resonances is comparable in
magnitude to the signal of the Λ resonance but has a
considerably smaller steepness. However, the presence
of a nearby superfluous resonance in automatic track-
ing and search systems may cause substantial inconve-
niences. When a detuning ∆ comparable to the width Γ
of the upper levels is introduced, the signals produced
by the transitions f25 and f27 turn out to be permitted,
which further complicates the overall picture. To sup-
press the signal from the transitions f25 and f27, we pro-
pose to introduce an additional quasi-resonance micro-
wave field with the frequency f26 corresponding to the
transition between levels 2 and 6. As a first approxima-
tion, such a radio-frequency field depopulates level 2

Γγ

Q, arb. units
75

70

65

60

55

50

45
–2500 –2000 –1500 –1000 –500 0 500

δ, Hz

∆ = 0

∆ = 150

Fig. 4. Calculated signal of absorption of the light. The nat-
ural width Γ is 20 Hz, the magnetic sublevels of the F = 2
hyperfine state are additionally broadened by the pumping
light with Ip = 200 Hz, and the Rabi frequency of the micro-
wave field was chosen to be optimal in steepness, V = 65 Hz.
(F = 1, mF = 0), reducing the intensity of spurious res-
onances. In this case, the synthesis circuit does not
become more complicated; we now simply do not
require a complete balance from the device that gener-
ates the signals with frequencies F16 and F36. By appro-
priately choosing the modulation index, we can vary
the proportion between the spectral components F36,
F16, and F26 over a wide range.

A more rigorous analysis shows that introducing an
additional field V26 causes nonlinear resonances
described by the coherences ρ12, ρ23, ρ56, ρ67, and even
ρ15, ρ17, ρ35, and ρ37. To estimate the efficiency of this
proposal, we carried out computer simulations by

including the field  in the interaction operator. In
this case, the total number of equations for the density
matrix is 38, of which seven describe the populations,
another 30 are responsible for the 15 coherences, and,
finally, one equation gives the sought-for signal Q(δ).
The results of our calculation of the dependence Q(δ) in
a constant magnetic field of 50 µT for the same values
of Ip , V, ∆, and γ as in Fig. 4 are shown in Fig. 5. Here,
we again seek the maximum steepness of the Λ reso-
nance, depending on the Rabi frequency of fields V16,
V36, and V26. It turns out that the maximum steepness is
reached at V26 ≈ V16 ≈ 65 Hz. As the detuning ∆ changes
from 0 to 150 Hz, the shift in the peak of the Λ reso-
nance changes from 0.138 to 1.142 Hz, while the steep-
ness of the resonance decreases by a factor of 1.4.

In addition, we studied the form of the signal of the
Λ resonance for constant magnetic fields of 20 and
80 µT, i.e., at the limits of the terrestrial range for sim-
ilar variation scales of the detuning ∆. The following
conclusions can be drawn from these calculations. In a
weak terrestrial field of 20 µT, the noticeable proximity
of the 2  5 and 2  7 transitions to the Λ reso-

V̂26

Q, arb. units
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δ, Hz

∆ = 0

∆ = 150
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Fig. 5. Signal calculated for the case where an additional
microwave field with the Rabi frequency V26 = 65 Hz, which
destroys the V resonance, was introduced. The calculation
was carried out with the same parameters as those for Fig. 4.
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nance results in a slightly larger shift and in its depen-
dence on detuning ∆; the shift varies in the range 0.83–
0.91 Hz. The steepness in this case essentially matches
that for a constant field of 50 µT. In the strongest terres-
trial magnetic field H = 80 µT, the variation in the shift
is small, 0.02–0.023 Hz, while the steepness decreases
by a factor of 1.75; this is explained by the elimination
of the 0–0 resonance from the interaction because of
the increase in its quadratic detuning.

CONCLUSION

We propose an essentially new version of a balanced
magnetometer which uses hyperfine-state transitions
(HFS magnetometer). It is based on a new principle
with a nonlinear Λ resonance forming its basis. While
retaining the unique properties inherent in this type of
instrument, namely, the absence of dead zones (the sen-
sor is nonorientable) and the suppression of light shifts,
this version of a HFS magnetometer allows us to con-
siderably simplify the electronic circuit of frequency
synthesis by removing the requirement of active fre-
quency stabilization of the reference quartz oscillator.
To verify the fruitfulness of the idea, we performed
computer simulations of the Λ resonance signal. The
simulations revealed shifts in the resonance, depending
TECHNICAL PHYSICS      Vol. 45      No. 1      2000
on frequency drifts of the reference oscillator; however,
these shifts are small, of the order of a few hundredths
of a nanotesla. This type of instrument can be used both
in magnetic search problems and in the metrology of
the terrestrial-range magnetic field.
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Abstract—The influence of a cross-linking agent, diamine, and C60 fullerene on the antifriction and wear prop-
erties of a solid lubricant made of trifluorochloroethylene–vinylidene fluoride copolymer was studied for steel-
to-steel sliding friction. The wear characteristics are improved in the whole range of loads investigated, while
the antifriction properties, only at small loads. A qualitative wear test method is proposed in which the test-
period-averaged friction coefficient of a hybrid specimen (coating plus metal substrate) is measured with a stan-
dard friction machine. A model that considers the combined interaction of the substrate and the coating with
the roller was used to calculate the linear wear rate of steel and the probabilistic parameter of wear. © 2000
MAIK “Nauka/Interperiodica”.
Trifluorochloroethylene (TFCE)–vinylidene fluo-
ride (VIF) copolymer is widely used in antifriction and
wear-resistant coatings [1]. It is known that intermolec-
ular cross-linking of polymer coatings enhances their
wear resistance [2] and the addition of C60 fullerene to
lubricating oils improves not only the wear resistance
of friction couples but also the antifriction characteris-
tics of triboassemblies [3–6]. In this work, we studied
the combined effect of diamine as a cross-linking agent
and C60 fullerene on the wear and antifriction properties
of the TFCE–VIF copolymer used as a solid lubricant.

MATERIALS AND TEST TECHNIQUES

The materials used were F-32 LON industrial lac-
quer (NPO Okhtinskiœ Khimkombinat, St. Petersburg),
which is a 3% solution of the copolymer (with a molec-
ular weight of 5 × 104 and a TFCE-to-VIF chain link
ratio of 83 : 17) in ethyl acetate; reagent-grade 3,3'-
diaminodipropylamine NH(CH2CH2CH2NH2)2; and
C60 fullerene obtained by extraction from fullerene soot
[7] produced in an arc discharge [8]. In the final prod-
uct, the fraction of C60 extracted by preparative chro-
matography was 96–98% [7].

Diamine was dissolved in the lacquer directly, and
the fullerene was dissolved in toluene, which was then
mixed with the lacquer. The resulting solution was
applied on a 0.5-mm-thick St-30 steel sheet and dried
in air at 190°C for 80 min with subsequent slow cooling
(1°C/min). The amount of the solution was taken such
that the coatings were ~70 µm thick. The coatings were
prepared of the pure copolymer, a mixture of the copol-
ymer with diamine (at a copolymer-to-diamine weight
ratio of ~100 : 5), and a mixture of the copolymer with
1063-7842/00/4501- $20.00 © 20094
diamine and C60 (copolymer : diamine : C60 ~
100 : 5 : 1).

The studies were carried out with a 2070 SMT-1
standard roller friction machine. A test specimen was a
cylindrical steel roller 50 mm in diameter tightly
wrapped by a ~0.5-mm-thick St-30 steel sheet. The
outer surface of the sheet was coated (or uncoated for
comparison) by the lubricant (Fig. 1). Another roller,
46 mm in diameter and 16 mm wide, made of wear-
resistant 18Kh2NChMA steel (State Standard 4543-71)
rotated with an angular velocity ω = 400 min–1, which
corresponds to the linear sliding velocity of 1 m/s. The
tests were performed under dry friction conditions.

FN

bM

bC

3
2

1

4

ω

Fig. 1. Friction assembly employed in the tests: (1) fixed
roller, (2) steel sheet, (3) coating, and (4) rotating roller; bM
and bC are the widths of the wear grooves, used to determine
the groove areas and the volumetric wear.
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Normal loads applied to the specimens were FN =
10, 40, 80, and 120 N. At each of the loads, three or four
tests for 300 s were performed. With this test duration,
the coatings were completely worn away and a wear
spot appeared on the steel substrate for all of the loads.
The dependence of the moment of friction Mfr on time
t was recorded in each test. The carriage of the friction
machine lifted every 300 s, and the geometric parame-
ters of the wear spot were determined with a measuring
magnifier. A set of friction and wear characteristics of
the coating and the substrate was calculated from these
experimental data. In what follows, the subscripts C
and M will refer to the coating and substrate parame-
ters, respectively.

RESULTS AND DISCUSSION

An idealized dependence Mfr(t) is shown in Fig. 2a.
Initially, within fractions of a second (this time can be
neglected), the friction moment sharply increases and
then stabilizes at a level determined by the friction
coefficient of the coating. It remains virtually constant,
growing only slightly for a time tC when the coating
wears out. Next, coating wear gives way to substrate
wear during some transition time ttr when the friction
moment noticeably increases. Finally, substrate wear
takes place for a time tM; the friction moment continues
to increase but more slowly than in the transition
regime. Over the period (ttr + tM), the coating acts as a
solid lubricant. Thus, in principle, the friction and wear
characteristics of the coating and the metal substrate
can be determined separately.

The initial value fi of the friction coefficient was
determined within the first 1–3 s of the tests. The coat-
ings wore out in 10–130 s (depending on the coating
type and the load applied); thus, fi characterizes the fric-
tional properties of the coatings (Fig. 3). As usual, fi
decreases at elevated loads but remains nearly
unchanged as scoring is approached in the load range
investigated. All of the coatings significantly reduce the
steel-to-steel dry friction coefficient (curve 1), but their
antifrictional properties differ only slightly (curves 2–4).

The wear properties of the coatings were difficult to
determine, because the idealized dependence, shown in
Fig. 2a, is observed only at small loads for wear-resis-
tant coatings; actually, an Mfr(t) dependence is similar
to that presented in Fig. 2b.

The time instant when the metal surfaces come into
contact was hard to reveal with certainty. First, the area
SM of the metal–metal contact is always much less than
the total area of the friction contact (see table); second,
once the metal surfaces have come in contact, the coat-
ing begins to act as a solid lubricant: its thin layer is
continually applied to the contact surface by the rotat-
ing roller. Also, in most cases, the wear time of the coat-
ings was very short (different for the different coatings)
and could be measured with a great scatter.
TECHNICAL PHYSICS      Vol. 45      No. 1      2000
Therefore, the wear resistance of the coatings can be
characterized by the wear time only for small loads; for
high loads, such an approach fails. Consider first the
results obtained at small loads.

The Mfr(t) curves for different specimens at FN =
10 N are given in Fig. 4. Each is obtained by averaging
over the test results from three or four specimens and is
also somewhat idealized, because noise is not shown.
While the wear time for the coating from the pure
copolymer equals 80 s, it increases to 100 and 130 s for
the coating with diamine and that with diamine and
C60, respectively. This means that the wear resistance
of the coatings rises in the same sequence. The value of
Mfr at short times is nearly the same for all the three
types of the coatings; i.e., their antifriction properties
differ insignificantly (Fig. 3).

The transition time also increases in the same
sequence (from 50 to 55 and 90 s, respectively), most
noticeably for the coating with C60. This coating is
characterized by the smallest rate of increase Mfr and
the least value of Mfr throughout the transition period.
Hence, being used as a solid lubricant, this coating
offers the best antifriction and wear properties.

On the completion of the transition stage, the values
of Mfr remain the least for the coatings with C60, and the
coatings apparently continue to act as a solid lubricant.

Mfr

tC ttr
tM

te = 300 s

(a)

t

Mfr

(b)

te = 300 s

Fig. 2. Mfr(t) dependences: (a) idealized curve and (b) curve
typical of most of the cases studied.
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Fig. 3. Dependences of the initial friction coefficient fi on
the load applied to the friction assembly for the contact of
steel with the (1) bare steel, (2) pure copolymer coating on
the steel substrate, (3) copolymer + diamine coating, and
(4) copolymer + diamine + C60 coating.
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This follows from the fact that Mfr is still much lower
than in the case of steel-to-steel dry friction (cf. curve 1
in Fig. 4).

Thus, at small loads, the coatings with diamine and
C60 offer improved antifriction and wear properties. As
determined by the wear time, the antiwear properties of
these coatings are 30% higher than those of the coat-
ings with diamine only. As solid lubricants, they have
both better antifriction characteristics (the friction
moment is lower by 30–50% in the transition regime)
and better wear parameters (the transition time as
increased by 65%).

In the range of high loads, a number of methodical
difficulties appear; therefore, we examined the wear
properties of “hybrid” (i.e., coating plus metal) speci-
mens, supposing that the presence of the different coat-
ings would markedly change these properties. From the
load dependence of the total volumetric wear VW of the
hybrid specimens (Fig. 5), one can distinctly see the
varying effect of the coatings: the addition of diamine
and C60 leads to a reduction of VW by 30–50%.

Mfr, Nm
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Fig. 4. Mfr(t) curves for friction of steel with the (1) bare
steel, (2) pure copolymer coating on the steel substrate,
(3) copolymer + diamine coating, and (4) copolymer +
diamine + C60 coating.
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Fig. 5. Dependences of the volumetric wear of the “hybrid”
(coating plus metal) specimens on the load applied to the
friction assembly: (1) pure copolymer coating on the steel
substrate, (2) copolymer + diamine coating, and (3) copoly-
mer + diamine + C60 coating.
Although the volumetric wear of the substrate is much
smaller than that of the coating, the measured values of
VW cannot characterize the coating wear alone, since it
is greatly affected by the much higher wear resistance
of the substrate.

To qualitatively characterize the wear resistance of
the coating, we also used the following method. The
friction coefficient fav derived from the friction moment
averaged over the test duration was plotted as a func-
tion of load (or pressure). The higher the wear resis-
tance of the coating, the more its wear time, the longer
acts its relatively low friction coefficient against the
steel, and the less is fav. As the load grows, the wear time
of the coating decreases and fav increases. This increase
competes with the general trend of the friction coeffi-
cient to drop with load (Fig. 6, curves 1 and 2). Thus,
the fav(FN) curves peak (Fig. 6, curves 3 and 4). The
existence of the maximum and its position depend on
the test duration, range of applied loads, and wear resis-
tance of the coating. Figure 6 shows that, under our test
conditions, the curve obtained for the pure copolymer
coating does not exhibit any maximum, the curve for
the copolymer with diamine has a weak gently sloping
maximum, and the curve for the copolymer with
diamine and C60 has a distinct maximum. To obtain a
maximum in the curve characterizing the pure copoly-
mer coating, either very small loads had to be used
(unachievable with our friction machine) or the test
duration had to be cut to approximately 50–100 s.

Once the coating has been worn out and the metal
surfaces have come in contact, the coating acts as a
solid lubricant. From the behavior of the fav(FN) curves
at high loads (see Fig. 6), one can conclude that the
antifriction properties of all of the coatings are very
similar, but their wear characteristics again differ. It
was of interest to see how the solid lubricant influences
the wear characteristics of the steel, such as the linear
wear rate Ih and the recently introduced parameter Q
[9]. The latter is the probability that a contact spot of a
friction couple will turn into a wear particle when the
counterfaces are shifted by the mean diameter of the
contact spot. This parameter characterizes the optimi-
zation of a friction surface in terms of wear reduction.

However, the determination of Ih is of no sense and
that of Q is impossible if the pressure immediately at
the metal–metal contact is unknown. Once a wear spot
has appeared in the middle of the specimen, the pres-
sure is gradually redistributed between the coating and
the substrate as the spot grows. Using Hooke’s law, one
can write the following relationships for the substrate
and the coating:

(1)

(2)

where FM and FC are the normal loads at the metal–
metal and metal–coating frictional contacts, respec-
tively; ε0 is the total strain of the coating and the sub-

FM ε0EMSM,=

FC ε0ECSC,=
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strate; EM and EC are Young’s moduli; and SM and SC are
the wear spot areas on the metal and coating surfaces,
respectively.

Normalizing the sum of loads and the sum of wear
spot areas to unity, one can write equations (1) and (2)
in the form

(3)

(4)

where ϕM and ϕC are the shares of the total force and χM

and χC are the shares of the total area of the wear spots.
Then, equation (4) can be written as

(5)

Dividing (5) by (3), one obtains

(6)

Putting EC ≈ 600 MPa [10] and EM ≈ 2 × 105 MPa
[11], one can easily derive a relationship between the
forces FM and FC at any time instant of the test, having
experimentally determined associated wear spot areas.
For an ideal contact between the substrate and the roller
and an ideally uniform coating thickness, the wear spot
areas on the substrate and the coating can be uniquely
related from purely geometric considerations (Fig. 1).
However, because of the contact nonideality and a
specimen-to-specimen scatter in coating thickness, we
used the experimentally found values, which are listed
in the table. At the final stage of the tests, most of the
load (90–98%) always appears to be applied to the sub-
strate.

The linear wear rate for a linear initial contact was
defined as Ih = 2h/3L [12], where h is the depth of a
wear groove and L is the friction path over the test dura-
tion. The latter was determined as L = πDωt, where D

ϕM ε0EMχM,=

ϕC ε0ECχC,=

1 ϕM–( ) ε0EC 1 χM–( ).=

1 ϕM–( ) ϕM⁄ EC EM⁄( ) 1 χM⁄ 1–( ).=

fav
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Fig. 6. Dependences of the averaged friction coefficient fav
on the load applied to the friction assembly for the contact
of steel with the (1) bare steel, (2) pure copolymer coating
on the steel substrate, (3) copolymer + diamine coating, and
(4) copolymer + diamine + C60 coating.
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is the diameter of the rotating roller and t was taken to
be equal to (ttr + tM) when it could be measured or 300 s
otherwise.

The load dependence of Ih for the metal–metal con-
tact is given in Fig. 7. The linear wear rate for steel-to-
steel dry friction is shown for comparison. The addition
of diamine and fullerene into the coating significantly
decreases Ih compared to the pure copolymer coating.
As for the coatings with diamine only and with diamine
and fullerene, one can see that C60 lowers Ih by 35% at
very small loads and by ~15% for the others.

The value of Q was calculated from the relationship
[9]

(7)

where PN = FM/SM is the contact pressure, HB is the
Brinell hardness, and g/d is the ratio of the mean height
of a wear particle either to the mean diameter of a con-
tact spot or (if the spot turned into the wear particle) to
the diameter of the particle. It was assumed that g/d ≈ 1,
i.e., that wear particles are lumpy, which is often
observed in the case of metals. The value of HB for St-
30 steel equals 1790 MPa [11].

Q vs. load curves for the metal–metal contact run
similarly to the Ih(FN) ones. Here, too, the addition of
fullerene C60 into the lubricant improves the wear prop-
erties by ~20%. The pressure dependences of Ih and QM

for the metal–metal contact that were calculated within
the combined interaction model are presented in the
table. These data also indicate that the wear properties
of the coatings are improved with the addition of
diamine and C60. The reduction of Q can be viewed as
the optimization of the wear properties of the surface.
The values of Q decrease nearly 1000 times as com-
pared to those typical of steel-to-steel dry friction. For

Ih 3 PNQ HB⁄( ) g d⁄( ),=

Ih, 10–8
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Fig. 7. Dependences of the linear wear rate Ih of the steel on
the load applied to the (1) uncoated steel–steel contact and
to the contact of the steel with (2) pure copolymer,
(3) copolymer with diamine, and (4) copolymer with
diamine and C60.
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The influence of load and coating type on some parameters

Friction couple FN , N ϕM FM , N SM, mm2 SC, mm2 χM PM , MPa Ih, 10–8 QM, 10–7

Steel–steel 10 1 10 18.5 – 1 0.6 19 1900

40 1 40 23.8 – 1 1.9 33 1000

80 1 80 32.6 – 1 3.1 62 1200

120 1 120 37.8 – 1 4.0 81 1210

(F-32 LON)–steel 10 0.95 9.5 0.7 11.5 0.054 13.6 2.5 11

40 0.97 38.8 2.1 23.7 0.081 18.5 3.3 11

80 0.98 78.4 3.1 26.2 0.106 25.2 3.6 8

120 0.98 117.6 5.4 31.2 0.148 21.8 4.1 11

(F-32 LON with amine)–
steel

10 0.95 9.5 0.6 9.7 0.058 15.8 1.8 6.7

40 0.97 38.8 1.4 16.7 0.077 27.7 1.8 3.8

80 0.97 77.6 2.4 26.3 0.084 32.3 1.8 3.3

120 0.98 117.6 3.7 27.7 0.118 31.8 1.9 3.6

(F-32 LON with amine 
and C60)–steel

10 0.89 8.9 0.3 12.5 0.024 29.7 1.1 2.1

40 0.96 38.4 1.5 18.6 0.072 26.5 1.5 3.3

80 0.97 77.6 2.1 24.0 0.080 36.7 1.6 2.5

120 0.98 117.6 3.3 25.9 0.113 35.6 1.7 2.9

Note: ϕM is the total load share on the metal contact, FM is the load applied to the metal contact, SM is the area of the wear spot on the
substrate, SC is the area of the wear spot on the coating, χM is the substrate share of the wear spot area, PM is the pressure acting on
the metal contact, Ih is the linear wear rate of the substrate at the metal contact, and QM is the stochastic substrate parameter as
applied to the metal contact.
the coatings with diamine and diamine plus C60, the
values of Q, ~2 × 10–7 and ~1.6 × 10–7, respectively, are
even slightly better (all other things being the same)
than for steel-to-steel friction lubricated by a liquid
industrial oil, ~2.5 × 10–7 [13]. However, they are still
1000 times higher than the reference value of Q ~2 ×
10–10, achieved for lubricated babbitt-to-steel fric-
tion [9].

Considering the high price of C60 fullerene, its addi-
tion to the diamine-containing coatings appears to be
efficient only in steel-to-steel dry friction units working
at low pressures. The use of much cheaper fullerene
soot may result in the same results, because its effect on
liquid lubricants is nearly identical to that of pure C60
fullerene [4].
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Abstract—Central methodical and hardware problems in taking spectra of different types with a scanning tun-
neling microscope in air are briefly discussed. Ways to overcome these problems are considered. A procedure
for recording a new type of tunneling spectra, namely, voltage–height (U–H) curves, which allow the estimation
of the probe–specimen gap, is offered. It is suggested that the current flowing in the course of measurements in
air is of electrochemical nature. Different tunnel spectra for metal, oxide, carbon, and polymer materials,
including heterogeneous substances, are presented to illustrate the experiments. © 2000 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

In the last fifteen years, scanning tunnel micro-
scopes (STMs) and related probe nanoscopes have
become available laboratory instruments and are
applied for the most part for studying surface topogra-
phy with a high resolution [1]. STM-based tunnel
spectroscopic instruments [2–4] with a more complex
hardware have found limited application. Their poten-
tialities for fundamental physicochemical surface
investigations are not fully exploited because of data
processing problems and methodical difficulties in
obtaining reliable and reproducible results.

This article considers hardware and software imple-
mentations of several kinds of tunnel spectroscopic
measurements, as well as concerns the optimum modes
of topographical investigations and image reliability
control. These issues are extremely essential, e.g.,
for STM investigation of solid surface morphology in
air at room temperature, when condensed films and/or
adsorbed monolayers (contamination, moisture, etc.)
cover the surface in the tunnel gap. For brevity, these
films will be referred to as condensates.

METHODS OF RECORDING 
TUNNEL SPECTRA

A tunnel spectrum, uniquely characterizing the
properties of a particular sample–gap–probe system,
represents, generally speaking, a three-dimensional
current–voltage–height (I–U–H) diagram. As a rule,
two-dimensional (I–U and I–H) sections of these spec-
tra, i.e., tunnel voltage–current curves (VCCs) and tun-
nel current–height (or rise) curves, are taken in experi-
ments. The determination of the absolute value of a tun-
nel gap is a challenging task and calls for special
techniques. It is obvious that the equilibrium position
of the probe for given I and U is defined by the elec-
1063-7842/00/4501- $20.00 © 0099
tronic state of the sample surface and thus is material-
dependent. Moreover, the position of the sample–air
interface is a matter of convention because of a compli-
cated spatial distribution of the electronic density.
Thus, in comparing the height dependences, one should
take into account uncertainties in experimental values
of H.

Voltage–Current Curves [I = f(U), H = const]

The control circuit of a conventional tunnel micro-
scope keeps the gap current constant by varying the
probe–sample distance [4]. In taking the VCCs, when
the current changes, the electronic system of the micro-
scope will inevitably alter the value of H, which distorts
the results of measurements. We can fix H by discon-
necting the negative feedback loop of the microscope
or substantially narrowing its bandwidth, thus lowering
the speed of system response to external disturbances.
The complete disconnection of the negative feedback
will bring the system into the state of unstable equilib-
rium, and the probe height may uncontrollably vary.
Transients in the microscope’s electronic circuits aris-
ing at the instant of feedback disconnection have an
additional destabilizing effect.

Thus, the narrowing of the feedback bandwidth is
the only reasonable way to provide the H = const mode.
The maximum achievable operating time of the feed-
back circuit is several seconds. One should take into
account that the displacement of the probe begins much
earlier than the circuit begins to respond; thus, the dura-
tion of the nonequilibrium state must be within a frac-
tion of a second. On the other hand, at fast measure-
ments, the contribution of the capacitive component to
the current being measured increases. This component
depends on both the capacitance of the probe–sample
system and the uncompensated input capacitance of the
measuring system. In the case of 1-pF capacitance and
2000 MAIK “Nauka/Interperiodica”
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10-pA current, the charging time for the effective
capacitor is estimated at 0.1 s.

Measurements in the H = const mode are thus pos-
sible only in a very narrow time interval. This makes
accurate and detailed measurements unfeasible and
calls for the significant redesign of the microscope.

To meet these mutually contradictory requirements,
we used pulsed measurements of the VCCs. The equi-
librium state of the system (Ub , Ib, and Hb) for which
the spectral properties are measured will be called
basic. It is necessary to emphasize that any correlations
should be made for the same basic state. After switch-
ing the feedback circuit to a narrow bandwidth, the sys-
tem is reset (for 2–10 s) to the equilibrium state. Then,
Π-shaped pulses of variable height with a duration t1
(Fig. 1) are applied to the system. The time between the
pulses (when the tunnel voltage is reset to the basic
state) is t2. The pulse duration is selected in such a way
as to ensure a low value of the capacitive component of
the tunnel current and, at the same time, to prevent the
action of the feedback loop. The tunnel current is mea-
sured during the last quarter of a pulse, and the associ-
ated pair of values is considered as a point in the volt-
age–current curve for a given basic state. The time
between pulses (holdup time) for a basic voltage
(t2 @ t1) is experimentally selected such that the system
is brought back to its equilibrium state. For our system,
the values of t1 = 0.5–1 ms and t2 = 250–500 ms were
found to be optimum.

A comparison between the VCCs obtained for the
pulse mode and for a linear variation of the tunnel volt-
age has proved the validity of the pulse measurements.
For our tunnel microscope (Litscan II [5]), the typical
ramp rates of the tunnel voltage that exclude the drift of
the feedback loop were 20–40 V/s for ∆Utun = ±0.5 V in
reference to the basic state and 500–700 V/s for ∆Utun =
±1.0 V. In the latter case, essential distortions of the
curves due to high capacitive charge currents were
observed. The accuracy of measurements was also
reduced because of large conversion times of the setting
and detecting units of the instrument (for a ramp rate of
the tunnel voltage of ~500 V/s, no more than 30 or
40 points in a curve could be detected). For ∆Utun >
±1 V, only the pulse-mode measurements were possi-
ble.

t1 t2

U1

Ub

Measurement

Fig. 1. Variation of the probe potential during VCC mea-
surements.
The STM operation is inevitably associated with
noise of a different nature. The noise becomes signifi-
cant at high values of the tunnel current; therefore, the
obtained data must be averaged and smoothed, which
adversely affects the measurement accuracy. In partic-
ular, this makes the differentiation of the curves, which
is routinely used in tunnel VCC processing, difficult.

Obviously, for any system studied at fixed basic val-
ues of Ub and Ib, the resultant VCC will pass through
two singular points. The first one corresponds to the
zero current at the zero potential (U = 0, I = 0), and the
second, to the basic current and potential values (U =
Ub, I = Ib). For the systems with metal conductivity, the
point with the coordinates U = –Ub, I = –Ib is singular
by virtue of the VCC symmetry. Thus, the VCC shape
and slope can be varied in a very wide range by varying
basic current and potential values (Fig. 2). For the
majority of metal-conductivity systems, the VCCs at
the identical basic conditions essentially coincide
within a scatter of data points. Hence, these data cannot
be used to determine the composition and the state of a
sample. The probability of distinguishing the VCC
curves grows when their singular points are as close to
each other as possible, that is, at Ub and Ib approaching
zero. In this case, however, a special low-current (sev-
eral picoamperes) head with an extremely wide
dynamic range (the upper limit to several nanoamperes)
is required. At typical values of Ub (several hundred
millivolts) and Ib (several hundred picoamperes), the
VCCs are practically insensitive to the surface condi-
tions, for instance, to a condensed contamination film
formed in air.

The VCC differential form is undoubtedly more
informative. However, a significant scatter of data
points, which is inherent in conventional STMs, makes
exact and reproducible differentiation impossible.

Actually, tunnel VCCs carry information only upon
comparing the properties of objects differing in electro-
physical nature, such as metals and semiconductors
(Figs. 2 and 3). In topographical investigations of semi-
conductors with an STM, VCC measurements can be
useful as a simple technique for choosing optimum Ub

and Ib. The diode properties of a number of semicon-
ducting substrates (Si, SnO2, and TiO2) make correct
measurements impossible even at low values of Ib with
the cutoff voltage across a p–n junction.

Current–Height Curves [I = f(H), U = const] 

Here, the temporary restrictions are identical to
those for the VCC measurements.

For a precise variation of the tunnel gap (for micro-
scopes operating in air, this gap usually ranges from 1
and 10 nm), a separate piezoceramic driver is used. It is
either connected to the main driver, which is responsi-
ble for the equilibrium state of the system (typical dis-
tances are 500–1000 nm), or has a separate channel for
TECHNICAL PHYSICS      Vol. 45      No. 1      2000
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Fig. 3. VCCs of the semiconducting sample (SnO2 on the
conducting In–Sn oxide substrate) at a basic tunnel current
of 400 pA and basic voltages of (1) 0.5, (2) 0.6, (3) 0.7, (4)
0.8, (5) 0.9, and (6) 1.0 V.
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Fig. 4. Current–height curves in the (a) absence and (b, c) presence of the condensate. In the case (c), pulse-mode measurements are
performed for the highly mobile condensate.
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Fig. 2. Doubly smoothed VCCs of the Pt–polyaniline–air
gap–Pt system at a basic tunnel current of 400 pA and basic
tunnel voltages of (1) –1, (2) –1.25, (3) –1.5, (4) –1.75, and
(5) –2 V. Dashed lines, singular point coordinates.
setting the potential of the piezoceramic. When the cur-
rent through the system changes, the negative feedback
loop causes the main (topographic) driver to reverse.
This results in a distortion of the curves obtained. As in
the previous case, the way out of this situation is to
increase the response time of the feedback, which, in
turn, imposes limitations on the duration of stay of the
system in the nonequilibrium state.

On the other hand, the mechanical system of a scan-
ning head has its own specific time—the time the head
takes to set in a given position (tens or hundreds of
microseconds, resonant frequency 10–100 kHz).

To correctly measure the current–height characteris-
tics, we developed a pulse procedure similar to the one
used for the VCC measurements. We recorded rise
curves, when the tunnel gap increased. In the case of
noncomplicated tunneling, the tunnel gaps usually
measure shares of a nanometer; therefore, the displace-
ment of the probe toward the sample may result in
mechanical contact and hence damage the probe tip.
TECHNICAL PHYSICS      Vol. 45      No. 1      2000
When a condensate is absent, typical current–height
curves exhibit an abrupt exponential drop in current
(Fig. 4a) within a distance of hundredths of a nanome-
ter. If an insignificant amount of a condensate is
present, the curves are of the same shape but with a
lesser slope. In the presence of a mobile condensate, it
will be entrapped by the contacting tip, as the tunnel
gap increases, and detached from the tip at consider-
ably larger gaps. In this case, the curves show the initial
plateau with a subsequent abrupt drop (Fig. 4b). For the
pulse-mode measurements, noisy unsmooth curves
with sporadic extrema (Fig. 4c) due to the stochastic
character of condensate separation from the tip may be
observed.

Experimental data obtained for different samples of
highly oriented pyrographite are presented in Fig. 5.
Most of the curves show the presence of a condensate
on the surface (Figs. 3 and 4). In the case of the sample
surface carefully prepared by cleavage, the curve is
close to exponential (curves 1 and 2). It is in this case
that acceptable atomic-resolution topographic results
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are obtainable. Being exposed to air or other contami-
nating media, the surface accumulates a condensate,
and the plateau in the current–height curves is gradu-
ally extended (Fig. 5, curves 3 and 4), causing the STM
images to degrade. Under the conditions corresponding
to curve 4 in Fig. 5, topographical measurements
become impossible.

As a rule, the height of an effective tunnel barrier is
estimated from the slope of the initial portion of the I–
H curves by the equation [6]

(1)Veff
"

2

8me

--------- d Iln
dH

----------- 
 

2

,=

–300
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I, pA

∆H, nm
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1 2 3 4

Fig. 5. Current–height curves for highly oriented
pyrographite with various amounts of the condensate on the
surface.
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Fig. 6. Three-dimensional current–voltage–height diagram
for a bipolar variation of the tunnel current. In the UH plane,
I = const sections are shown.
where " is Planck’s constant and me is the mass of an
electron.

Even for the as-prepared surface of pyrographite,

when the greatest values of  are used, one fails to

obtain the value of Veff in excess of several tenths of
electronvolt; usually, Veff is under 0.1 eV. These values
are much smaller than those obtained in a vacuum
and/or in low-temperature STM experiments for the
same substrate materials and tip [7]. They are close to
Veff’s obtained in situ in electrochemical STMs, having
a polar liquid in the tunnel gap [8]. A condensate in an
STM operating ex situ in air seems to be an analog of
such a medium, because it is believed, starting from the
literature data, that, in this case, the tunnel barrier low-
ers due to intermediate-state, or step, tunneling [9].
From our standpoint, there is also another reason,
which is discussed in the next section.

The standard practice used for removing a conden-
sate (heating of samples and purging of the chamber)
cannot fully desorb contaminants but, probably, makes
condensate films thinner and changes its properties, in
particular, the effective viscosity. It is essential that, as
a rule, the presence of relatively thin condensate films
does not reduce the topographic potentialities of an
STM when the resolution is not too high. In the case of
the as-prepared surface of graphite, one can obtain
atomic-resolution images even within 15–20 min after
cleavage, although the values of Veff are lower than the
“vacuum” ones and further decline with time. However,
the quality and the resolution of the images degrade as
the film thickens and extended current plateaus in the
H–I curves appear. It should be noted that the quality of
STM images considerably depends on the composition
and physicochemical properties of the condensate on
the sample surface. For many samples (especially for
those prepared from solutions), the portion of the curve
where the current smoothly decays covers 2–10 nm.
However, in the absence of the initial plateau, good
topographic data with a fairly high resolution are
obtainable even from such samples [5]. Here, the deg-
radation of STM images also correlates with the length
of the initial plateau in the H–I curves. This correlation
is well explained in terms of the above assumption that
the tip is in direct contact with a condensate and the
meniscus is pulled off.

Voltage–Height Curves [H = f(U), I = const] 

So far as we know, the third section of the three-
dimensional tunnel spectrum has not been discussed in
the literature; moreover, the associated curves have not
been directly taken. A three-dimensional dependence
of the tunnel current on the probe voltage and the tunnel
gap is schematically shown in Fig. 6. The H–U curves
must asymptotically tend to the straight line U = 0 and
gradually rise with increasing U. The fundamental
physical interpretation of H–U curves in terms of avail-

d Iln
dH

-----------
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Fig. 7. H–U curves obtained for (a) highly oriented pyrographite, (b) platinum foil, (c) conducting polymer (polyaniline) film on
platinum, and (d) SnO2 film on conducting In–Sn oxide substrate.
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able theoretical concepts is still in the future. In the lit-
erature, the associated data are lacking. The reason is
likely to be that in a vacuum, where spectroscopic mea-
surements are usually conducted, the condensate on the
sample surface is absent. In this case, the tunnel gaps
are usually tenths of a nanometer and the correspond-
ing height differences in the H–U curves do not exceed
hundredths of a nanometer. It is difficult to detect such
distances by conventional topographic systems. At the
same time, our experiments showed that, in air, the
height differences in the H–U curves are 2–100 nm and
can be easily detected with a standard STM topogra-
phy-recording channel.

The major advantage of the new mode for measur-
ing the tunnel spectra is that the maintenance of the tun-
nel current at a constant level by varying the probe posi-
tion is routine in tunnel microscope operation. Accord-
ingly, neither special hardware requirements nor
stringent time restrictions are imposed: the measure-
ments can be carried out with any tunnel microscope
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operating in air. However, the physical interpretation of
the obtained curves is very difficult.

It should be noted that, even in bipolar measure-
ments, very low values of the potential difference
between the probe and a sample are impermissible to
avoid short circuit conditions. In our experiments, the
minimum difference between the probe and sample
potentials was 50 mV; that is, the measurements were
performed for |U | > 50 mV. The measured values of ∆H
are relative; to compare the obtained curves, they must
be normalized by either of two methods. It is best if the
tip position before the measurement is taken as zero
(when U = Ub and I = Ib). We chose another, simplified,
way—normalization to the minimum height on the
curve.

The shape of H–U curves and their extent heavily
depend on the nature of a sample and surface prepara-
tion (Fig. 7). For as-cleaved pyrographite (Fig. 7a), the
shape of the curve is consistent with theoretical
assumptions and its specific height is about 2 nm. When
the sample is exposed to air (accumulation of a conden-
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sate), the height of the curve gradually grows and the
quality of STM images is deteriorated. In the case of a
platinum foil, the characteristic heights approach
10 nm (Fig. 7b). For chemically active samples or those
synthesized in a water medium, the curves are much
higher: for a polyaniline film electrodeposited on the
surface of platinum, their heights are 30–70 nm
(Fig. 7c). For samples chemically active in air, the char-
acteristic heights grow to 100–500 nm and the curves
often show sharp changes in the height (Fig. 7d). It
should be emphasized that the chemical activity of
samples can be defined not only by their basic compo-
nent but also by impurities.

As was indicated, the measured heights are relative
values; however, the curves suggest that, for the stan-
dard operating mode of a tunnel microscope, the tunnel
gap is no less than the height difference in an H–U
curve. Thus, even for highly oriented pyrographite, the
tip–sample distances are such that direct electron tun-
neling is unlikely, but some intermediate-state mecha-
nisms are quite possible. In the case of vacuum micro-
scopes, where direct electron tunneling takes place, the
associated distances are one order of magnitude less
[4, 7].

In the system discussed, tunneling through a set of
intermediate centers [9] cannot be ruled out. These cen-
ters may be condensate molecules. The probability of
step tunneling for an electron is the product of the prob-
abilities of tunneling through each of the centers. Thus,
the probability drastically decreased with increasing
number of the centers; therefore, this model cannot
explain the effect of long-range tunneling (tens or hun-
dreds of nanometers), for which hundreds of the inter-
mediate centers are necessary. It seems that the pro-
cesses taking place in air tunnel microscopes are simi-
lar to those occurring in electrochemical scanning
microscopes [10]. The operation of the latter is based
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Fig. 8. H–U curves obtained with the copper-cluster-coated
probe for the Pt + polyaniline sample. (1) As-deposited
polyaniline film and (2) after several measurements.
on keeping the Faraday current through probe ultrami-
croelectrodes fixed.

A condensate film on the sample surface is, in
essence, an electrolyte of unknown composition. The
STM probe dipped into the condensate and the surface
form a two-electrode electrochemical cell. When the
potential difference between the probe and the sample
is changed, redox processes giving rise to the Faraday
current in the system occur at the electrodes. In this
case, the equilibrium probe–sample distance is deter-
mined by the ohmic resistance of the condensate and
the nature of the electrode processes. Such an approach
allows us to explain the abrupt height fluctuations in the
H–U curves observed in the experiment (Fig. 7d). As
the interelectrode voltage increases, so do the electrode
potentials; therefore, at some moment, additional redox
processes begin to proceed. This results in a drastic
increase in the current (the total resistance decreases),
and the tip abruptly bounces back from the surface.

By way of illustration, let us consider the following
experimental result. If an electrochemically active (Cu)
cluster is deposited on the surface of a Pt–Ir probe, the
second rise appears in the H–U curves at the positive
potentials of the probe (Fig. 8, curve 1). This region,
absent in the curves obtained with a usual probe
(Fig. 7c), can be related to the anodic dissolution of
copper. After several such measurements, the copper
ions are accumulated in the condensate film and a spike
also appears in the negative branch of the H–U curve
(Fig. 8, curve 2). It apparently corresponds to the
cathodic reduction of the copper ions. Once the tip has
been shifted by 1–2 µm along the surface, the spike on
the negative branch dies away and arises again only
after the accumulation of products of anodic dissolu-
tion.

Sometimes, the H–U curves are distorted by thermal
drift of a sample. If, during the measurements, the ref-
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Fig. 9. H–U curves for highly oriented pyrographite that are
distorted by thermal drift immediately after the positioning
of the sample.
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erence voltage is varied linearly with time, the curves
show a systematic approach of the probe to the surface
(Fig. 9). After a lapse of 15–20 min taken for thermal
equilibrium to establish, these distortions disappear. It
follows that the H–U dependences can also be applied
to reveal thermal drift of a sample and prevent distor-
tions in the geometrical sizes of objects under study.

Thus, the H–U curves can be useful in finding opti-
mum conditions for the topographic measurements and
in controlling the surface condition. It is necessary to
stress that the measurements should not be performed
at probe voltages when the height abruptly increases in
the H–U curves, because, under these conditions, the
system is in unstable equilibrium. As a result, the topo-
graphic data will be heavily distorted by sharp spikes.
For a number of samples, two equilibrium probe posi-
tions are observed in the near-spike region (at the peak
and the bottom of a spike). The distance between these
positions may vary from 300 to 400 nm. Under these
conditions, the topographic measurements are nearly
impossible. The optimum parameters correspond to the
smooth extended portions of the curves with a moder-
ate inclination.

CONCLUSION
With a conducting film of a condensate present on

the sample surface, in an STM operating ex situ, the
scanning electrochemical microscopy mode is realized.
This mode, whose application was pioneered by Bard
et al. [10], is based on the detection of Faraday currents
through ultramicroelectrodes. Topographic images
obtained under this mode offer a fairly high resolution;
here, the film-coated solid surface, rather than a con-
ducting condensate exposed to air, is visualized. In the
strict sense, this is the limiting case of the step-tunnel-
TECHNICAL PHYSICS      Vol. 45      No. 1      2000
ing mechanism, which occurs when the separation
between neighboring centers of intermediate electron
localization is small.
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