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The effective energy functional for nuclei near the nucleon stability boundary is modified by taking into account
that the functional parameters corresponding to interaction in the surface region depend on the neutron and pro-
ton chemical potentials µn and µp, respectively, in a nucleus. By the example of several long isotope chains, it
is shown that the µ dependence of the effective interaction results in shifting the neutron stability boundary
toward large N – Z values. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 21.60.–n; 21.65.+j
Nuclei near the nucleon stability boundary have
been intensively studied experimentally in the last two
decades. Until recently, the analysis of their properties,
as well as the calculation of the position of this bound-
ary, was exclusively based on phenomenological
approaches, in which the parameters were determined
from experiments. The Hartree–Fock method with
effective forces [1, 2], self-consistent theory of finite
Fermi systems [3, 4], and the energy functional method
[5] are among these approaches. All these approaches,
particularly the last one, describe stable nuclei quite
well. However, the use of the parameters fitted to the
properties of stable nuclei seems to be questionable for
nuclides far from the β stability valley.

As was recently pointed out in [6, 7], the energy
dependence (more precisely, dependence on, respec-
tively, the chemical potentials µn and µp of the neutrons
and protons in the nucleus under consideration) of the
surface parts of those components of effective NN
interaction which form the central part of the self-con-
sistent nuclear field is substantial for the determination
of the nucleon stability boundary. It is easy to illustrate
the origin of the effect by the example of the self-con-
sistency condition for the mass operator Σ, single-parti-
cle Green’s function & and effective pair interaction 8
in the theory of finite Fermi systems [8]. This condition
has the symbolic form

(1)

where only the substantial energy variables are explic-
itly indicated. As usual, the symbolic multiplication in
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Eq. (1) implies the integration with respect to coordi-
nates and summation over the spin and isospin indices.

In [9], Eq. (1) for ε = µ was renormalized by the
Landau method [10]. As a result, the block 8 is
replaced by the effective amplitude F(µ, µ) of the Lan-
dau–Migdal interaction. The simplest Hartree–Fock-
like version of the renormalized equation

(2)

relates the mean field U, Landau–Migdal amplitude F,
and the density ρ to each other. In the approximation of
zeroth harmonics, which are principal for the Landau–
Migdal amplitude [11], the central mean field U is gen-
erated by the following part of F:

(3)

where the normalization factor C0 = (dn/dεF)–1 is the
inverse density of states on the Fermi surface. In stable
nuclei, µn = µp = µ . –8 MeV can be taken. In this case,
the isotopic symmetry and the relations fnn = fpp = f + f '
and fnp = fpn = f – f ' following from it are valid with a
high accuracy.

The strong coordinate dependence of the scalar–
isoscalar amplitude f0 is of fundamental importance for
the effect under discussion. Migdal [11] was the first to
suggest for this amplitude in the theory of finite Fermi
systems the following simplest interpolation from the
internal value f in to the external value f ex with the linear
density dependence:

(4)

where ρ0 = ρ(r = 0). It turned out that the external con-
stant corresponds to strong attraction (f ex . –3) and
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exceeds f in in the absolute value by an order of magni-
tude. The effective forces used in [1–5] correspond to a
more complex density dependence. However, |f ex| con-
siderably exceeds |f in| for each of these forces. A coor-
dinate dependence similar to Eq. (4) is also substantial
for the scalar–isoscalar amplitude  [12, 13], but
the difference between the internal f ' in and external f ' ex

constants is not too drastic.

As was shown in [14], the external constants f ex and
f 'ex (and corresponding spin amplitudes) can be
expressed in terms of the off-shell T matrix of free NN
scattering for negative total energy E = 2µ. In the limit
r, r'  ∞, F  T (E = 2µ). More precisely, the com-
ponents of the Landau–Migdal amplitude are expressed
in terms of the combinations of T matrices with isos-
pins 0 and 1. This asymptotically exact relation is rap-
idly reached to provide the external Landau–Migdal
constants close to the known empirical values. This
equality is obviously approximate, because there are
several different sets of these constants. The chemical
potentials µn and µp are markedly different for nuclei
near the stability boundary. In particular, µn is zero at
the neutron stability boundary, while the absolute value
of µp exceeds the value for stable nuclei. As a result, the
isotopic symmetry is broken, and the above asymptotic
relation for the Landau–Migdal amplitude takes the
form

(5)

(6)

(7)

Obviously, relations (5) and (6) involve the T matrix
for the isospin I = 1, while relation (7) includes a com-
bination of TI =  1 and TI =  0. Since TI =  1(E) dependence

is resonant for small E values, the parameters  and

 can widely differ near the stability boundary. In

particular, the absolute value of  increases strongly
near the neutron stability boundary, and this behavior
must be taken into account.

In [6, 7], the effect under discussion was taken into
account by modifying the quasiparticle Lagrangian
method [9, 15]. This method is a variant of the self-con-
sistent theory of finite Fermi systems, where the quasi-
particle Lagrangian is used to include the energy
dependence for the interaction between quasiparticles,
while the Hartree–Fock method with effective forces is
based on the Hamiltonian formalism. By an example of
tin isotopes, it was shown that the neutron stability
boundary is shifted toward large N – Z values.

f 0' r( )
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In this work, we modify, in a similar way, the energy
functional method with pairing in the coordinate repre-
sentation, which was proposed in [16] and developed in
detail by Fayans et al. (see, e.g., [5, 17]). This method
is known as most accurately reproducing the masses
and, particularly, radii of stable spherical nuclei. More-
over, it has an advantage over the quasiparticle
Lagrangian method and Hartree–Fock method in that it
accurately includes pairing effects in the coordinate
representation. This feature is particularly important for
nuclei near the stability boundary, because of the vicin-
ity of continuous spectrum. For this reason, it is inter-
esting to test whether the predictions made in [6, 7] are
valid in this case.

The central part

(8)

of the energy functional is significant in the problem
under consideration. Here, ρ+, – = ρn ± ρp and a+, – and

 are dimensionless parameters. The total energy
functional [5, 17] includes, in addition to central part
(8), gradient terms, pairing term, spin–orbit term, and
other spin-dependent components. According to the
well-known Landau formula, the scalar part of the Lan-
dau–Migdal amplitude is equal to the second variation
of expression (8) with respect to the density. In this pro-
cedure, the asymptotic (“external”) values of the ampli-
tudes f, f ' are, obviously, obtained from those terms of
expression (8) which depend most slightly (quadrati-
cally) on the density. This part of the functional has the
form

(9)

The relations f ex = a+/2 and f 'ex = a–/2 are obviously
valid. Modification of the functional by taking into
account both the dependence of external constants (4)–(6)
on chemical potentials and the corresponding breaking
of the isotopic symmetry, we arrive at the simple gener-
alization of Eq. (9) 

(10)

For clarity, we explicitly present two-particle energies
entering into expressions (4)–(6) for the external con-
stants. According to interpolation (4), a change of func-
tional (9) to functional (10) with the use of Eqs. (5)–(7)

changes not only the external amplitudes ( , etc.) but
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also their internal analogues ( , etc.), while differ-

ences (  – , etc.) remain unchanged. The modifi-
cation

(11)

of Eq. (10) with changing only the external amplitudes
seems to be more reasonable.

The simplest method of including the dependence of
the energy-functional parameters on chemical poten-
tials is the replacement of Eq. (9) by Eq. (10) or (11).
However, in this case, a new fit of all functional param-
eters is necessary, because external constants obtained
from Eqs. (5)–(7) for µn = µp = µ0 = –8 MeV differ from
the empirical parameters [5, 17]. Indeed, the constants
obtained from Eqs. (5)–(7) are equal to f ex = –2.62 and
f 'ex = 1.47, while the respective parameters in Eq. (8)
are a+/2 = –3.21 and a–/2 = 2.71. The difference in
isovector constants is most pronounced. The difference
is particularly due to the fact that the functional pro-
posed in [5, 17] includes, in addition to the terms of
form (8), pure surface terms involving density gradi-
ents. The addition of these terms is equivalent to a

change in the parameters  and . To minimize
changes for stable nuclei without variation in other
parameters of the functional, we take into account the
dependence of the scalar Landau–Migdal amplitudes
on µn and µp by changing total functional (8) to

(12)

where

(13)

Obviously, the term δ%int is zero for µn = µp = µ0.
Although it is difficult to a priori select variant I or II,
the second variant is intuitively preferable. However,
calculations were carried out for both models. All terms
of the functional that are additional to Eq. (8), particu-
larly its pairing part, were taken in the form given in [5,
17]. The same is true for the calculation procedure. 

Figure 1 shows the neutron chemical potentials of a
long chain of tin isotopes. Calculations for variants I
and II are compared with the experimental data for
|µn| = –S2n, where S2n is the separation energy of two
neutrons. Calculation [5] with the standard energy
functional and the calculation made in [6], where the µ
dependence of the Landau–Migdal amplitude was
included by modifying the quasiparticle Lagrangian
model, are also shown. The result of calculations made
in [1–4] using other traditional approaches for the
nuclei far from the β stability valley are close to the
results obtained in [5]. In any case, all calculations pre-
dict a neutron stability boundary near the mass number
A = 176, corresponding to the magic neutron number
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N = 126. As is seen, the inclusion of the effect under
consideration in our calculation, as in [6], strongly
shifts the stability boundary. In the more realistic vari-
ant II, the µ effect is weaker but also allows overcoming
the magic gap for N = 126.

Figures 2 and 3 show similar results for lead and cal-
cium isotopes, respectively. These results are qualita-
tively similar to the results for tin; i.e., the µ effect is
considerable and weaker for variant II.

Of course, this calculation cannot be treated as a
numerical prediction. The point is that energy func-
tional (8) and, particularly, identification of its coeffi-
cients with the invariant terms of the Landau–Migdal
amplitude are directly associated with the Landau qua-
siparticle concept. In turn, this concept is based on the
assumption that the mass operator Σ(ε), as well as the

Fig. 1. Chemical potentials for even Sn isotopes. Lines with
h, s, n, and , correspond to variants I, II, functional from
[5], and quasiparticle Lagrangian method [6], respectively.
Solid circles are experimental data taken from [18].

Fig. 2. The same as in Fig. 1, but for Pb isotopes.
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corresponding effective interaction of fermions, has no
singularities near ε = µ. As a function of the total energy
E = 2ε, the free T matrix determining interaction
between quasiparticles near the surface has a singular-
ity (virtual pole) near zero in the isovector channel.
Because of proximity to this singularity, the neutron
mean field becomes deeper and nuclei with low |µn| val-
ues become more stable. In the limit µn  0, the neu-
tron mean field calculated in the proposed scheme can
infinitely increase, and the scheme becomes inapplica-
ble. Estimates show that the improvement of the
scheme with a more correct inclusion of the ε depen-
dence in Eq. (1) must weaken the effect under consid-
eration. However, the enhancement of two-neutron
interaction at the surface for low |µn| values, which was
pointed out in [6, 7], as well as the necessity of includ-
ing this effect as the neutron stability boundary is
approached, is confirmed by this calculation and, in our
opinion, is definite.

This work was supported by the Ministry of Indus-
try and Science of the Russian Federation, project
no. NSh 1885.2003.2.

Fig. 3. The same as in Fig. 1, but for Ca isotopes.
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Observation of Deep Subbarrier Resonances in 232Th Fission
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Pronounced subbarrier 232Th fission induced by resonance neutrons was observed. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 25.85.Ec
Thorium fission has attracted attention for more
than five decades in view of the problem of self-consis-
tent description of its properties, primarily, resonance
effects near the top of the potential fission barrier. The
probability of the process was measured with high
energy resolution in the region of so-called beta vibra-
tion resonances excited by fast neutrons with energies
En = 1.5–2.2 MeV. Based on these measurements, the
existence of octupole hyperdeformed states in heavy
nuclei, as well as the splitting of the outer barrier hump,
can be hypothesized [1]. However, further observations
of low-lying fission resonances (En = 0.8–1 MeV) [2]
showed that the general pattern is much more complex.
Indeed, the parameters of the so-called second and third
barrier wells turned out to be virtually inconsistent with
each other. In turn, this fact shows that the adequacy of
the available theoretical concepts of the actinide cold
fission on the whole and, in particular, of the arisen tho-
rium anomaly is doubtful. Therefore, further experi-
ments for gaining additional information are of current
interest.

Study of deep subbarrier fission in the capture of
resonance neutrons (En < 1 keV) by thorium nuclei is
quite important. The cross section for the process is
expected to be very small, about 1 µb [3]. The fission
cross sections for impurity nuclei, such as 235U that are
inevitably present in any samples are equal to hundreds
of barn. This circumstance imposes stringent require-
ments on a neutron beam and on the purity of irradiated
targets.

The experiment was carried out on the SVZ-100
lead slowing-down 100-t high-transmission spectrome-
ter at the Institute for Nuclear Research (INR), Russian
Academy of Sciences. The extremely high flux density
of resonance neutrons on the target position
(~109 n/cm2 s), energy selection of neutrons according
to deceleration in lead, and targets from superpure
materials (235U admixture in 232Th did not exceed 10–9)
provided the observation of effects reported below.
0021-3640/03/7806- $24.00 © 20347
When interacting with a lead target in the SVZ-100
[4], a pulsed proton beam from the INR accelerator
generates a pulsed neutron flux. We used the proton
beam with an energy of 209 MeV, a pulse duration of
1–2 µs, and a pulse repetition frequency of 50 Hz. In
this case, the intensity of the neutron source is equal to
~1013–1014 n/s, which corresponds to the flux density
109–1010 n/cm2 s of above-thermal neutrons in a mod-
erator. The source is situated in the massive 100-t mod-
erator made of superpure (99.99%) lead with measure-
ment channels. The moderator is a 3.3 × 1.8 × 1.7-m
elongated lead prism with a target constructed from
lead blocks with a mass of about 1 t and displaced from
the center. The measured resolution of the setup is
equal to 30–31% for energies below 1 keV and to
28.5% for energies about 10 eV, which is the best reso-
lution among the existing slowing-down spectrometers
and is close to the theoretical limit (~26%). Since the
measurement channels were far from the target, the
background from γ rays and fast neutrons induced by a
proton pulse was removed. A channel, where measure-
ments were carried out, was placed near the prism cen-
ter at a distance of 90 cm from the target. This arrange-
ment provided the maximum neutron-flux intensities
for energies below 10 keV and minimum flux-density
gradients.

Fast ionization chambers, whose cathodes were cov-
ered with 232Th (130 µg) and 235U oxides, were used as
fragment detectors. Test measurements showed that the
fission detection efficiency is equal to 98%.

Figure 1 shows the measured results. A pronounced
resonance structure of subbarrier 232Th fission is
observed almost over the entire neutron energy range
studied. We emphasize that the subbarrier fission is par-
ticularly intense in the energy range En ~ 40 eV, which,
as is known, contains a group of weak resonances cor-
responding to the neutron radiative capture, which
competes with fission [5]. One can assume that a state
or group of states responsible for the observed reso-
003 MAIK “Nauka/Interperiodica”
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nance is formed in the second well of the thorium fis-
sion barrier. This circumstance considerably increases
the barrier penetrability. We call attention to the follow-
ing implicit reason for this assumption. The width of
the observed resonance structure slightly exceeds 27%,
which, as was mentioned above, is close to the limiting
resolution of the spectrometer. One real resonance,
whose natural width must be equal to about 0.2%, is
likely to effectively contribute to the pattern [1]. The

Fig. 1. Cross section for neutron-induced fission of (a) 235U
and (b) 232Th nuclei vs. the neutron energy. The thick solid
line below 25 eV is the least squares approximation of the
spectrum.

(a)

(b)cr
os

s 
se

ct
io

n

amplitude of this resonance is easily estimated at about
0.4 mb. This is an enormous value for thorium. As is
seen in Fig. 1, there is no correlation between the data
for the 232Th and 235U samples. Therefore, the pattern
observed in the 232Th spectrum cannot be assigned to
the 235U admixture. The direct observation of the fission
232Th resonances is important and provides information
about the structure of this nucleus.

We emphasize that the high density of neutrons
from SVZ-100 over the entire resonance energy range
allows very important observations. In particular, the
resonance structure detected in 232Th subbarrier fission
determines the investigation direction on high-resolu-
tion setups such as the n_TOF neutron source [6] at
CERN, where similar experiments are planned in fall
2003.

We are grateful to the Administration of the Institute
for Nuclear Research, Russian Academy of Sciences,
for interest in this work, to Accelerator and Experimen-
tal Divisions for a successful run in May 2003, and to
O.V. Karavichev and V.N. Marin for created fast elec-
tronics that facilitated observation of the results.
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The string correction to the interquark interaction at large distances is derived using the field theory approach
to a heavy–light quark–antiquark system in the modified Fock–Schwinger gauge. © 2003 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 12.38.Aw; 12.39.Ki
Quantum chromodynamics at large distances is
believed to be a string theory with the effective
extended object—the QCD string—formed by nonper-
turbative gluons, which play an important role in had-
ronic phenomenology. It was demonstrated in a number
of approaches that an account of the proper dynamics of
the QCD string strongly affects hadronic spectra and is
necessary to explain the correct Regge trajectory slopes
[1–3], to resolve puzzles with the identification of new
states [4], and so on. At large interquark distances,
these dynamics can be encoded in the so-called string
correction [2, 5], well known in the theory of the
straight-line Nambu–Goto string with the tension σ and
with massive quarks at the ends. The Lagrangian of this
system is

(1)

which leads to the center-of-mass. Hamiltonian, at
large interquark distances r = |x1 – x2|, for M @ m [2], 

(2)

where, for the sake of convenience, we synchronize the
quark times, x10 = x20 ≡ x0, and fix the reparametrization
invariance of the Lagrangian (1) by the laboratory
frame condition t = x0. The nonperturbative spin–orbit
interaction comes from the area law for the Wilson loop
[6],

(3)

¶ This article was submitted by the author in English.
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and should be added to the Hamiltonian (2). The expan-

sion in Eq. (2) is valid for m @ . Perturbative Cou-
lomb interaction, as well as extra spin-dependent terms
due to the latter, can be taken into account, and the
resulting model appears rather successful in describing
hadronic spectra (see, for example, [7], where the
Hamiltonian (2) supplied by the perturbative interac-
tion, but without the string correction, was used). A
more sophisticated approach based on einbein field for-
malism [8] is also well known in the literature [2]. This
method possesses several advantages as compared to
the Hamiltonian (2) since, in this case, the correspond-
ing Hamiltonian is given in terms of the effective
dynamically generated quark masses µ’s, given by the
extremal values of the corresponding einbeins [9]. For
light quarks, such a dynamical mass appears of order of

the interaction scale, µ ~ , that is, much larger than
the current quark mass—the latter can even be put to
zero.

Recently, another approach to heavy–light systems
was suggested, based on the Schwinger–Dyson series
for a light quark in the presence of a static antiquark
[10, 11]. Namely, the Schwinger–Dyson equation, in
Euclidean spacetime,

(4)

was derived in the modified Fock–Schwinger gauge
[12],

(5)

where the self-energy part M(x, z) and the light-quark
Green’s function (also playing the role of the 

σ

σ

–i∂̂x im–( )S x y,( ) i d4zM x z,( )S z y,( )∫–

=  δ 4( ) x y–( ),

A4 x4 0,( ) 0, xA x4 x,( ) 0,= =

qQ
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Green’s function) are given by [10]

(6)

The interaction kernel Kµν can be expressed in terms
of the irreducible field strength correlator

 [13],

(7)

where the second term ∆(1) is a full derivative and does
not contribute to confinement. As we are interested in
the long-range force, we consider only the term propor-
tional to D(x – y) in (7) which, in contrast to ∆(1), con-
tributes to the area law with the string tension

(8)

Finally, for the kernel Kµν in the gauge (5), one has
(τ = x4 – y4) [10, 11]:

(9)

Using a consequent expansion of Eq. (4) for a large

quark mass m (m @  and mTg @ 1 [11, 14], where
Tg is the gluonic correlation length), one can derive the
interquark interaction, which is in agreement with the
Eichten–Feinberg–Gromes results [15, 16]. Then,
applying the Foldy–Wounthuysen (FW) transformation
to the resulting interaction, it is easy to derive a Hamil-
tonian of the heavy–light system, at r @ Tg, in the form
[11, 14]:

(10)

where the ellipsis denotes terms O(σr/mTg) suppressed
in the limit mTg @ 1 [14, 17].

The Hamiltonian (10) coincides with the Hamilto-
nian of the quantum-mechanical quark–antiquark sys-
tem connected by the Nambu–Goto string supplied by
the nonperturbative spin-dependent interaction given
by Eqs. (2), (3). In the meantime, an important ingredi-

iM x z,( )– Kµν x z,( )γµS x z,( )γν,=

S x y,( ) 1
NC

------- ψβ x( )ψβ
+ y( )〈 〉 .=

Fµν
a x( )Fλρ

b y( )〈 〉

Fµν
a x( )Fλρ

b y( )〈 〉 δ ab 2NC

NC
2 1–

----------------=

× D x0 y0– x y–,( ) δµλδνρ δµρδνλ–( ) ∆ 1( ),+

σ 2 τ λ D τ λ,( ).d

0

∞

∫d

0

∞

∫=

K44 τ x y, ,( ) xy( ) α βD τ α x βy–,( ),d

0

1

∫d

0

1

∫=

Ki4 τ x y, ,( ) K4i τ x y, ,( ) 0,= =

Kik τ x y, ,( )

=  xy( )δik yixk–( ) α α β βD τ α x βy–,( ).d

0

1

∫d

0

1

∫

σ

HFW M m
p2

2m
------- σr

sL

4m2r
------------– …,+ + + +=
ent mentioned above—the string correction—is still
missing in the formula (10). The aim of the present
paper is to resolve this inconsistency and, therefore, to
complete matching of the two approaches: one, based
on the quantum-mechanical string model, and the other,
following from the field theoretical treatment of the
heavy–light quark–antiquark system.

Following the path integral ideology, we consider
the trajectory of the quark, r(t), such that the two con-
sequent positions of the latter are x = r(t1) and y = r(t2).
Therefore, for close t1 and t2, one can use the expansion

(11)

where p is the momentum of the quark. Due to the rota-
tional invariance, the function D from Eq. (7) actually
depends on a certain combination of its arguments,
D(τ, λ) = D(τ2 + λ2). In our case, τ = t2 – t1 and λ =
|αx − βy|, so that, with the help of the expansion (11),
one easily finds

(12)

where r ≡ x, L is the angular momentum, L = [r × p],
and the constant τ0 = α(β – α)(rp)/m(1 + α2p2/m2) can
be excluded using an appropriate shift of the time vari-
able τ, so we omit it below.

The confining spin-independent interaction, at large
interquark distances and in the limit mTg @ 1, is given
by the formula [10, 11, 14]:

(13)

Using the relations (9), one can easily calculate that

(14)

y r t2( ) r t1 τ+( ) r t1( ) ṙ t1( )τ+≈ x
p
m
----τ ,+= = =

τ2 λ2+ τ2 α β–( )r ατ p
m
----+

2

+=

=  1 α2 p2

m2
-----------+ τ τ 0–( )2 α β–( )2

1 α2 p2

m2
-----------+

--------------------- r2 α2 L2

m2
------+ ,+

V conf r( ) γµ
1 γ0+

2
--------------γν τKµν τ x y, ,( ) y x→ .d

0

∞

∫=

τK00 τ x y, ,( ) y x→d

0

∞

∫ r2 τ α βd

0

1

∫d

0

1

∫d

0

∞

∫=

× D τ 1 α2 p2

m2
-----------+ α β–( )

r2 α2L2

m2
-----------+

1 α2 p2

m2
-----------+

----------------------,

 
 
 
 
 
 

≈ r 2 τ' λD τ' λ,( )d

0

∞

∫d

0

∞

∫ 
 
 

r @ Tg
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and, similarly,

(15)

where the definition of the string tension (8) was used,
as well as the case n = 0 of the general formula

which holds for an arbitrary function f(α, β), provided
f(α, α) ≠ 0.

Therefore, the confining interaction (13), in the limit
mTg @ 1, becomes

(16)

or, after the FW rotation, this corresponds to the confin-
ing potential

(17)

The first term of the interaction (16), (17) was
obtained in [10, 11, 14, 17], whereas the second term
was missing due to the immediate substitution of y = x
in the formula (13), which holds up to the order 1/m but,
as demonstrated above, fails in the next order, 1/m2. As
a result, the string correction was lost, although a more
accurate expansion of the correlator D, performed in
this paper, allows one to reproduce the confining poten-
tial, including its part due to the proper string dynamics.
Therefore, we conclude that, indeed, the string correc-
tion accompanies the linear confinement potential of
whatever approach is used to derive the latter, provided
the string picture of confinement is adopted. Mean-
while, the suggested approach is rather inconvenient for
further investigations of the confining interaction in the
approach of the Schwinger–Dyson nonlinear equation (4).
On the other hand, a promising step is made in the
paper [18] where a contour gauge is introduced which
generalizes the gauge condition (5) for the case of an
arbitrary trajectory of the heavy particle. Formally,
Eqs. (4), (6) remain valid, though the kernel of the
interaction becomes contour-dependent. In the mean-

× αd

1 α2L2

m2r2
-----------+

-------------------------

0

1

∫ σr
σL2

6m2r
------------,–≈

τKik τ x y, ,( ) y x→d δik nink–( ) 1
3
---σr

σL2

10m2r
---------------– 
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∞

∫
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1
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an 1+
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0
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V conf r( ) 5
6
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1
6
---γ0+ 

  σr
11
60
------

1
60
------γ0– 

  σL2

m2r
---------,–=

V conf
FW r( ) σr

σL2

6m2r
------------.–=
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time, the form of the contour depends on the heavy par-
ticle trajectory, that is, it is defined dynamically, and the
problem becomes self-consistent. Consequent expan-
sion of the aforementioned contour around the straight-
line form may provide a way to systematically account
for the (1/m)n and (1/M)n corrections in this approach.
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The procedure of measurement followed by the reconstruction of the quantum state of a three-level optical sys-
tem is implemented for a frequency- and spatially degenerate two-photon field. The method of statistical esti-
mation of the quantum state from a solution to the likelihood equation and the analysis of the statistical prop-
erties of the obtained estimators is developed. Using the root method of estimating quantum states, the initial
two-photon (qutrit) wave function is reconstructed from the measured fourth-order field moments. © 2003
MAIK “Nauka/Interperiodica”.
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Introduction. The ability of measuring quantum
states is no doubt of fundamental interest because it
provides a tool for the analysis of basic concepts of
quantum theory, such as the fundamentally statistical
character of its predictions, the superposition principle,
the Bohr’s complementarity principle, etc. By the mea-
surement of quantum state we will imply a two-step
measurement and computation procedure. The first
step is a genuine measurement consisting of a set of
operations under the representatives of a quantum sta-
tistical (pure or mixed) ensemble, as a result of which
the experimenter acquires a set of frequencies with
which particular events occur. The second step consists
of the mathematical procedure of reconstructing the
quantum state of an object using the combination of the
obtained statistical data.

This work is devoted to the state reconstruction for
optical three-level systems. Such states are obtained,
e.g., in the polarization representation of a frequency-
and spatially degenerate biphoton field [1]. The neces-
sity of properly measuring the states of such systems is
dictated by the applied problems. For example, increase
in the key distribution security in quantum cryptogra-
phy is associated with the increase in the dimensional-
ity of Hilbert space for the states in use [2]; in this
respect, certain hopes are pinned on the three-level sys-
tems (qutrits) [3, 4].

1. Biphotons as three-level systems. A biphoton
field is a coherent mixture of the biphoton Fock’s states
|1k, 1k'〉  and the vacuum state |vac〉  [5]:

(1)Ψ| 〉 vac| 〉 1
2
--- Fk k', 1k 1k',| 〉 ,

k k',
∑+=
0021-3640/03/7806- $24.00 © 20352
where the coefficients Fk, k' are called biphoton ampli-
tudes [6], and |1k, 1k'〉  denotes the state with one (signal)
photon in the k ≡ ks mode and one (idler) photon in the
k' ≡ ki mode. We will consider the collinear and degen-
erate regimes, for which ks ≈ ki, ωs ≈ ωi ≈ ωp/2, and
ωs + ωi = ωp, where ωp is the laser pump frequency. The
method of producing, transforming, and measuring
these states is described in detail in [7–10]. The initial
state to be measured and reconstructed has the follow-
ing form:

(2)

Here, we use the representation of a biphoton-light
polarized state (1) in the Fock’s basis. For example, the
notation |2, 0〉 indicates that both photons are in the hor-
izontal (H) polarization mode, while no photons are
present in the vertical (V) mode.

The state of a three-level system in quantum infor-
mation theory has come to be known as qutrit. The
properties of biphoton qutrits and their mapping on the
Poincaré sphere were described in [8].

The idea of producing and measuring state (2) was
put forward in [9, 10]. The system for detecting bipho-
ton qutrits includes a beam splitter and a pair of detec-
tors whose outputs are connected to the photocount
coincidence circuit (figure). An event is considered
detected if a pulse appears at the output of the coinci-
dence circuit. In approximately one half of all cases,
one of the photons (signal, by convention) of a biphoton
is led to one of the detectors, while another (idler pho-
ton) is led to the second detector. In the remaining
cases, both photons occur in the same beam-splitter
arm, and these events are not detected because they do

Ψ| 〉 c1 2 0,| 〉 c2 1 1,| 〉 c3 0 2,| 〉 .+ +=
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not coincide. The polarization transformations are
accomplished using a quarter-wave plate and a polariz-
ing prism placed ahead of each detector. It was shown
in [9, 10] that, if the qutrit state is unknown, one is
forced to make nine moment-projection measurements
to reconstruct the initial mixed (in the general case)
state. These moments have the form [11]:

(3)

where  and  are, respectively, the photon cre-
ation and annihilation operators for the signal and idler
modes j = s, i after the transformation and χj and γj are
the setting parameters (plate and polarizing-prism ori-
entation angles, respectively).

The time (as a rule, 100 ms) it took for measuring
each of the nine moments was one of the experimental
parameters. Each measurement was made in triplicate
and consisted in the taking of 700–800 averages,
whereupon the scheme was reset; namely, the χj and γj

angles were set according to the tomographic protocol
(Table 1), after which the cycle was repeated. Thus, the
mean photocount coincidence rates R1, 2, …, 9 were the
output data of the measuring setup. To compare the
results of reconstruction with the parameters of the
input states, which should be known with a high accu-
racy, we used the following method of state prepara-
tion. The biphotons were produced in the process of
collinear frequency-degenerate spontaneous paramet-
ric down conversion in lithium iodate crystal. The
polarization of both created photons was vertical; i.e.,
the state

(4)

was generated. Next, this state was transformed using a
quartz plate with a given thickness h = 824 ± 1 µm.
Upon turning this plate in the plane perpendicular to the
incident biphoton beam (the plate optical axis lied in
this plane), the state (2) transformed according to the
rule

(5)

where the matrix

(6)

describes the action of a plate with effective transmit-
tance t and reflectance r, t = cosδ + isinδcos2α and
r = isinδsin2α. In this expression, the optical thickness
δ = π|no – ne|h/λ and α is the angle between the plate
optical axis and the vertical. For crystalline quartz,
|no − ne| = 0.0089 at the wavelength λ = 702 nm,
whence it follows that δ = 32.82 ± 0.04.

Rs i, bs'( )† bi'( )†bs'bi'〈 〉∼ R χs γs χ i γi, , ,( ),=

b j'( )† b j'

c'| 〉 0 2,| 〉=

c| 〉 in G c'| 〉 ,=

G
t2 2tr r2

2tr*– t 2 r 2– 2t*r

r*2 2t*r*– t*2 
 
 
 
 

=
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So, unitary transformation (5) gave a set of states
cin(α) that was fed into the measuring unit of the setup.
The purpose of this work was to reproduce these states.

2. Statistical reconstruction of biphoton states
from the results of mutually complementary mea-
surements. When analyzing the experimental data, we
will use the so-called root method of estimating quan-
tum states [12–14]. This method is designed specially
for the analysis of mutually complementary measure-
ments.1 The advantages of this method consist in the
possibility of reconstructing states in a high-dimen-
sional Hilbert space and posing fundamental limits on
the accuracy of reconstruction of an unknown quantum
state. The use of asymptotically efficient algorithms
allow one to achieve a reconstruction accuracy close to
its fundamental limit.

The set of mutually complementary measurements of
a biphoton-field state was implemented in accordance
with the tomographic protocol presented in Table 1. The
event-generation intensity Rν, ν = 1, 2, …, 9, is the main
quantity accessible for the measurement. The moments
Rν are the coincidence frequencies measured in fre-
quency units (Hz). The number of events occurring in
any given time interval obeys the Poisson distribution.
Therefore, the quantities Rν specify the intensities of
the corresponding mutually complementary Poisson
processes and serve as estimators of the Poisson param-
eters λν (see below).

1  In the sense of the Bohr’s complementarity principle.

Schematic of experimental setup. (1) Argon laser (λp =
351 nm); (2) lithium iodate crystal in which the biphotons
with a central wavelength of 702 nm are generated; (3)
quartz phase plate with parameters (α, δ = 32.82); (4) beam
splitter directing (conventionally) the signal photons to the
right and the idler photons downward; (5) quarter-wave
plates (χs, i, δ = π/4); (6) polarizing prisms (γs, i); (7) detec-
tors operating in the photon counting mode; (8) double
coincidence circuit; (9) deflecting mirror; (10) mirror trans-
mitting the radiation at a wavelength of 351 nm and reflect-
ing at a wavelength of 702 nm; and (11) mode selection iris.
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Table 1

ν
Parameters of experimental setup Amplitude

of the process

χs γs χi γi Mν

1 0° –90° 0° –90°

2 0° –90° 0° 0°

3 0° 0° 0° 0°

4 45° 0° 0° 0°

5 45° –45° 0° 0°

6 45° –45° 0° –90°

7 45° 0° 0° –90°

8 –45° –22.5° 45° –22.5°

9 –45° –45° 45° 45°

c1

2
-------

c2

2
----
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2
-------

1

2 2
----------c2

i
2
---c3–

1

2 2
----------c2

1
2
---c3–

1
2
---c1

1

2 2
----------c2–

1
2
---c1

i

2 2
----------c2–

1

2 2
----------c1

i

2 2
----------c3+

1

2 2
----------c1

1

2 2
----------c3–
For each process, the event-generation intensity can
be represented as a squared absolute value of the corre-
sponding amplitude:

(7)

Although the amplitudes of the processes cannot be
measured directly, they are of the greatest interest as
quantities describing the fundamental relationships of
quantum physics. From the superposition principle, it
follows that the amplitudes are linearly related to the
state-vector components. It is the purpose of quantum
tomography to reconstruct the amplitudes and state
vectors that are hidden from direct observation.

The linear transformation of the state vector c into
the amplitude of the process M is described by a certain
matrix X, which can easily be obtained from Table 1:

(8)

Rν Mν*Mν, ν 1 2 … 9., , ,= =

X

1/ 2 0 0

0 1/2 0

0 0 1/ 2

0 1/ 2 2( ) i/2–

0 1/ 2 2( ) 1/2–

1/2 1/ 2 2( )– 0

1/2 i/ 2 2( )– 0

1/ 2 2( ) 0 i/ 2 2( )

1/ 2 2( ) 0 1/ 2 2( )– 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.=
Then the set of all nine amplitudes of the processes can
be expressed by a single matrix equation

(9)

We call matrix X the instrumental matrix of a set of
mutually complementary measurements, by analogy
with the conventional instrumental function. In statisti-
cal terms, Eq. (9) is the linear regression equation. A
distinctive feature of the problem is that only the abso-
lute value of the right-hand side of the equation is mea-
sured in the experiment. The estimate of the absolute
value of the amplitude is given by the square root of the
corresponding experimentally measured coincidence
frequency:

(10)

where kν is the number of events detected in the νth pro-
cess during exposure time t.

It is worth noting that, by the action of root-square
procedure on a Poisson random value, one obtains the
random variable with a uniform variance, i.e., at the
variance stabilization [13, 15]. Note also that, since we
deal not with event probabilities but with their frequen-
cies or intensities, it is convenient to use nonnormalized
state vectors. These vectors allow the coincidence
counting rate (event-generation intensities) to be
derived directly from the formulas given in Table 1,
without introducing coefficients related to the biphoton
generation rate, detector efficiencies, etc. The dimen-

sionality of the vector state thus obtained is .

Xc M.=

Mν
exp kν/t,=

1/ time
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The final state vector obtained by the reconstruction
procedure, nevertheless, will be normalized to unity.

Considering that the variances of different |Mν|exp

are independent and identical, one can apply the stan-
dard least-squares estimator to Eq. (11) [16]:

(11)

Contrary to the traditional least-squares method, the
relation obtained cannot be used for explicit estimation
of the state vector c, because it is to be solved by the

iteration method. The absolute value of  is known

from the experiment (  = |Mν|exp), and its phase is
determined by the iteration procedure (it is assumed
that the phase of vector Xc at the ith iteration step deter-

mines the phase of the vector  at the (i + 1)th step).
It turns out that, in the Gaussian approximation for the
Poisson’s quantities, this least-squares estimator coin-
cides with a more exact and rigorous maximum likeli-
hood estimator considered below.

3. Maximum likelihood method. The likelihood
function is defined by the product of Poisson probabil-
ities:

(12)

where ki is the number of coincidences observed in the
ith process during exposure time ti, and λi (i = 1, 2, …,
9) are the unknown theoretical event-generation inten-
sities (photocurrent coincidences), whose estimation is
the subject of this work.

The logarithmic likelihood (logarithm of the likeli-
hood function) is, except for an insignificant constant,

(13)

We also introduce the matrices with elements
defined by the following formulas:

(14)

(15)

The matrix I is determined from the experimental pro-
tocol and, thus, is known a priori (before the experi-
ment). It coincides with so-called Fisher information
matrix (see below). On the contrary, the matrix J is
determined by the experimental values of ki and by the
unknown event-generation intensities λi. In terms of
these matrices, the condition for the extremum of func-
tion (13) can be written as

(16)

ĉ X+X( ) 1–
X+M̂.=

M̂

M̂ν

M̂

L
λ iti( )

ki

ki!
---------------e

λ i ti–
,

i

∏=

Lln ki λ iti( )ln λ iti–( ).
i

∑=

Isj tiXis*Xij,
i

∑=

Jsj

ki

λ i

----Xis*Xij, s j,
i

∑ 1 2 3., ,= =

Ic Jc,=
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whence it follows that

(17)

We will call the latter relationship the likelihood equa-
tion. This is a nonlinear equation, because λi depends
on the unknown state vector c. Because of the simple
quasi-linear structure, this equation can easily be
solved by the iteration method [12–14]. The operator
I−1J can be called a quasi-identity operator. Note that it
acts as the identical operator on only one vector in the
Hilbert space, namely, on the vector corresponding to
solution (17) and representing the maximum possible
likelihood estimator for the state vector. The condition
for existence of the matrix I–1 is a condition imposed on
the initial experimental protocol.2 The resulting set of
equations automatically includes the normalization
condition, which is written as

(18)

This condition implies that, for all processes, the total
number of detected events is equal to the sum of the
products of event detection rates into the exposure time.

The elements of Fisher information matrix are
defined as the average products of the derivatives of the
logarithmic likelihood function [12–14]

(19)

where lnL is given by Eq. (13). We will average in
Eq. (19) on the assumption that the event detection
obeys the Poisson law. Therefore,

(20)

After going, in accordance with Eq. (7), from the
event-generation frequencies (intensities) to the ampli-
tudes of the processes, the expression for the Fisher
information matrix is greatly simplified and takes the
form of Eq. (14).

If the exposure times for all processes are the same
(t = ti = const), then

(21)

Thus, the Fisher information matrix, in fact, is deter-
mined by the observation time for the statistical ensem-
ble. In other words, time plays the role of the most fun-
damental measure of information.

2  This theory is valid not only for an X matrix of the particular
form (8) but also in the general case.

I 1– Jc c.=

ki

i

∑ λ iti( ).
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∂λ i

∂c j

-------
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Table 2

No. α angle, deg 

Number

of events 

State vector

F χ2
Theory

c1, c2, c3

Experiment
c1, c2, c3

1 17.5 2012 0.3094, 0.3549, 0.9946 15.925*

0.6248 + 0.1921i, 0.5620 + 0.2684i,

0.5713 + 0.3880i 0.5467 + 0.4328i

2 22.5 1997 0.4702, 0.4961, 0.9990 3.6482

0.6649 + 0.2368i, 0.6444 + 0.2486i,

0.4105 + 0.3349i 0.4017 + 0.3399i

3 25 6119 0.5518, 0.5234, 0.9979 16.384*

0.6548 + 0.2566i, 0.6637 + 0.2446i,

0.3289 + 0.3045i 0.3687 + 0.2997i

4 27.5 1281 0.6310, 0.6466, 0.9976 7.4987

0.6248 + 0.2744i, 0.6184 + 0.2897i,

0.2497 + 0.2717i 0.2521 + 0.2281i

5 30 2245 0.7053, 0.7266, 0.9921 26.977*

0.5758 + 0.2901i, 0.5890 + 0.1900i,

0.1754 + 0.2368i 0.2224 + 0.1992i

6 32.5 2753 0.7724, 0.7953, 0.9967 11.239

0.5094 + 0.3036i, 0.5107 + 0.2519i,

0.1083 + 0.2002i 0.1217 + 0.1685i

kν
ν 1=

9

∑

4. Analysis of experimental data. The examples of
reconstruction of the qutrit states by the maximum like-
lihood method are given in Table 2. In the next-to-last
column, the values of the fidelity parameter F defined
as

(22)

and indicating, in our case, the measure of correspon-
dence between the theoretical and experimental state
vectors are presented. The asterisk (*) denotes the
experimental χ2 values that exceed the critical value
11.345 at a confidence level of 99%. For these experi-
ments, one can state with a guarantee of 99% accuracy
that the uncertainties in setting the measurement
parameters and their instabilities are statistically signif-
icant. In other words, a comparison of the reconstruc-
tion results with the fundamental statistical level of
accuracy can serve as a basis for some problems such
as the setup adjustment, operation stability control, rev-
elation of foreign interference in the system, etc. Thus,
for a small sample size, statistical errors prevail,
whereas for large sample sizes, the setting errors and
the instability of protocol parameters dominate. In our
case, the observation time was such that both these
types of errors played a significant part. For some
experiments, the χ2 values were lower than the critical
level, and for some other experiments, these values
were higher than the critical level. The larger the sam-

F c ρ c〈 〉 ccalc cexp〈 〉 2= pure state
ple size for which the setup operation errors and insta-
bilities are as yet insignificant, the higher the quality of
the experiment.3 The process of quantum information
accumulation is described by Eqs. (14) and (21); as the
measurement time increases, the quantum states of the
greater and greater number of ensemble representatives
break and information about the object of interest pro-
gressively increases. Accordingly, the statistical error
becomes more and more small. Therefore, only the
errors of the first (statistical) type bear a fundamental
quantum character. The errors of the second (setting
error) type are, fundamentally, classical, because they
are caused by the researcher’s incomplete knowledge;
i.e., a more exact information exists, in principle, but it
is inaccessible to the experimenter.

The state-preparation procedure considered in Sec-
tion 1 assumes that only pure states of the form (2) are
fed into the measuring unit of the setup. The same con-
clusion can be drawn from the data analysis: a compar-
ison of the results of reconstructing quantum state in the
approximation of a pure ensemble with the results of
the separation of a mixture into two components (so-
called quasi-Bayes algorithm [14]) indicates that the
estimator for a pure state vector is very close to the esti-
mator for the major density-matrix component.

3 The corresponding number of experiments can be called coher-
ence volume.
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Conclusions. The procedure of measuring the quan-
tum state of a three-level optical system formed by a
frequency- and spatially degenerate biphoton field has
been considered in this work. The method of statistical
estimation of the quantum state through solving the
likelihood equation and examining the statistical prop-
erties of the resulting estimators has been developed.
Based on the experimental data (fourth-order field
moments) and the root method of estimating quantum
states, the initial wave function has been reconstructed
for biphoton qutrits. The inaccuracy in setting the mea-
surement parameters are analyzed for the cases where
their instability is statistically significant.

This work was supported in part by the Russian
Foundation for Basic Research (project nos. 02-02-
16843 and 03-02-16444) and INTAS (grant no. 2122-
01).
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We propose a practical method for distinguishing stochastic and regular subsystems in the entire set of particles
for numerical modeling of the development of physical instabilities in collisionless systems with self-consistent
fields. The method of subdividing the phase space into subsystems is based on the comparison of the results of
two computational experiments with identical initial conditions but different realizations of rounding errors. An
example of establishing the spatial and temporal domains of the development of collective instability and deter-
mining the instability increments is offered by a gravitating disk. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 95.10.Ce; 04.40.-b
Collisionless gravitational and plasma systems can
exhibit self-organization, in the course of which the
system passes from the initial unstable state to a new
state which is stable under given conditions. Investiga-
tions of the instability of such systems are performed,
in particular, in terms of the equation of conservation of
the phase volume (the Vlasov–Lioville equation) and
the equation of long-range self-consistent field (the
Poisson equation) [1]:

This system of equations is usually numerically solved
by particle techniques [2, 3] based on the calculation of
self-consistent dynamics of a finite but very large num-
ber of particles. The particle trajectories are determined
by a computational code even in cases of modeling self-
organization and dynamical chaos. This situation dif-
fers from that of experiments under real conditions,
where random perturbations additionally contribute to
the dynamics. For this reason, calculations involved in
the analysis of collective particle dynamics encounter a
problem recognizing physical instabilities on the back-
ground of nonstationary stable solutions. Attempts to
impose additional finite perturbations on the particle
trajectories for checking their stability encounter ques-
tions concerning multiplicity of the solutions of initial
equations and the dependence of solutions on the initial
data.

This paper describes a new method intended for the
investigation of instabilities. The proposed method nei-

∂f
∂t
----- v∇ f a

∂f
∂v
------+ + 0,=

∆Φ 4πGρ.=
0021-3640/03/7806- $24.00 © 20358
ther involves additional perturbations, nor depends on
the form of initial conditions, nor requires theoretical
analysis of increments in a many-body system. This
method distinguishes the elements of regular motions
from stochastic and subdivides particles into regular
and stochastic subsystems within the same computer
realization of the process of instability development. In
the course of computational experiments involving up
to 109 more particles [4], our approach consists in the
possibility and necessity of analyzing the dynamics of
all particles. For the comparison, the number of stars in
galaxies reaches 1010 and above.

According to the idea of the proposed method, a
computer is considered as a physical experimental
setup. In this setup, the phase coordinates of particles
involve rounding errors in the form of physical fluctua-
tions. The fluctuations are deterministically set by the
computational code and the computer type in the form
of a particular random sequence. For a regular stable
trajectory, the accumulation of such errors is deter-
mined by a stable (in the computational sense) algo-
rithm. These errors appear in the last, lowest decimal
digits of the mantissa. The error magnitudes depend
primarily on the number of operations, while particular
values are still retained in the lowest digits. If the
motion of a particle for some reason becomes unstable,
the accumulation of rounding errors in the values of
coordinates is determined by increments of instability
development. For particles involved in the unstable
motion, the algorithm transfers random rounding errors
of the phase coordinates to the higher digits of the man-
tissa determining the main part of a value. By virtue of
instability, the phase trajectories of particles acquire
003 MAIK “Nauka/Interperiodica”
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stochasticity. It is possible to separate the accumulated
random parts of values and, hence, to distinguish stable
regular and unstable stochastic trajectories by perform-
ing and comparing two identical calculations with dif-
ferent realizations of rounding errors. The stable trajec-
tories of particles in the two calculations will coincide,
whereas the unstable trajectories will exhibit recession
(in configuration space as well). The rounding errors
can be changed on a program level. However, most sim-
ple and physically clear calculations of this kind are
performed using the same program with equal word
lengths and identical initial data on computers with
principally different processors (e.g., AMD vs. Intel or
Intel vs. Alpha 21264). The results of calculations per-
formed by different processors will coincide for prob-
lems of searching for stable solutions and will differ for
simulations involving physical instability development.

For implementing the approach outlined above, it is
necessary for a numerical model to satisfy certain
requirements, such that physical instabilities will be
distinguished from various numerical instabilities of
algorithms deprived of any physical sense. First, a
numerical model intended for studying physical insta-
bilities has to meet the condition of approximation for
the initial equations of mathematical physics. Second,
the model must obey the condition of convergence for
the solutions obtained on refined calculation grids.
Third, the model should retain sensitivity to variation of
the initial data. Fourth, the condition of stability of a
numerical method in the linear approximation must be
violated at least locally. Evidently, the above require-
ments differ from the conditions of approximation and
stability of the Lax theorem [5], which are necessary
for ensuring convergence of a numerical solution to the
solution of the initial problem. The Lax theorem under-
lying the numerical methods of solution of many prob-
lems in mathematical physics and separating numerical
instabilities from nonstationary solutions is inapplica-
ble to the calculations of physical instabilities. This
leads to the fifth requirement, according to which com-
putational experiments involved in the investigation of
instability in many-body systems must obey all the laws
of conservation (for mass, momentum, moment
momentum, and energy). From the standpoint of com-
putational physics, violation of the laws of conservation
in a collisionless method of coarse particles presents a
serious problem [6]. An analysis of this problem
allowed us to find approaches to the solution [7–9]
based on the creation of codes meeting the aforemen-
tioned requirements [10].

As an example of self-organization, we have calcu-
lated the scenarios of instability development for a
gravitating disk with the central body. A nonstationary
process in this system is modeled in numerical experi-
ments involving 107 or a greater number of particles.
The problem is solved in a thin disk approximation [1],
whereby the particles are characterized by polar coordi-
nates and two velocity projections, without motion
along the axis. The Poisson equation is solved in D
JETP LETTERS      Vol. 78      No. 6      2003
space. The initial nonequilibrium condition corre-
sponds to solid-state rotation with a power density pro-
file. The distribution of particle velocities did not obey
the Tumre stability criterion [1]. The variables were
rendered dimensionless using a certain mass, the initial
disk radium R, and the constant of gravitation. In these
units, the initial mass of the central body is 0.4, the disk
mass is 1.0 for particles and the same for the gas, the
disk rotation speed is 1.0, and the velocity dispersion is
1.0. For a disk without central body, one turn would
take 4.0 units of time. The spatial grid has 120 × 256 ×
101 cells with dimensions 0.075 × (2π/256) × 0.1. The
time step τ was selected so as not to exceed the average
time required for the particles to travel through the cal-
culation cell. This time is significantly smaller than
1/50 of the period of rotation about the central body.
This condition is sufficient to avoid separatrix sto-
chastization due to a discrete procedure of trajectory
calculation [11]. The number of steps required for a
particle on a stable trajectory to lose memory about the
initial position as a result of rounding errors for an
8-byte value is estimated at 1019 [12]. The Jeans insta-
bility with respect to initial conditions must be mani-
fested for a cold disk without central body during the
first turn, which corresponds to 103 calculation steps.

The comparative calculations were performed on
AMD and Intel processors using a program with 1.2 ×
106 particles at an 8-byte length of values, and using a
parallel program for MPI run on two Intel or Alpha
21264 processors. A pseudorandom number generator
was incorporated into the program. The initial condi-
tions were strictly identical. The results of self-organi-
zation proceeding from a nonequilibrium state are pre-
sented in Fig. 1 showing the particle number density at
T = 0 (initial moment) and at T = 7.5. The gray scale
gradation is logarithmic, with white differing from
black by five orders of magnitude. The density distribu-
tion reveals dynamically stable filament-like structures
with bent ends approaching a rapidly rotating compact
disk surrounding the central body. In addition, the bot-
tom right corner diagonal exhibits a stable soliton-like
density wave formed as a result of interaction of several
like waves appearing at earlier moments of time.

Figures 2 and 3 present the results of analysis of the
regular (a) and stochastic (b) trajectories for the
moments of T = 2.5 and 5.0. Square areas with a side
length of 6R show the densities constructed for the cor-
responding subsystems of particles. Regular and sto-
chastic motions are distinguished based on the criterion
of trajectory recession for each jth particle by more than
0.1 of the cell size:

As can be seen from Fig. 2, both regular and stochastic
particles at T = 2.5 occupy the same region of the con-
figuration space (in the disk plane). For the stochastic
particles, Fig. 2 reveals the main spatial zone in which
the trajectories become unstable. This zone is sur-

r j' t( ) r j'' t( )– 0.1min hr hϕ,( ).≥
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(‡) (b)
T = 0 T = 7.5

Fig. 1. Diagrams of (a) initial (T = 0) and (b) new (T = 7.5) particle density in the disk.

(‡) (b)
T = 2.5 T = 2.5

Fig. 2. Particle density distribution in the disk at T = 2.5: (a) regular particles; (b) stochastic particles.
rounded by “evaporated” particles. By the moment of T
= 5.0 (Fig. 3), the influence of stochastic particles
spreads over almost the whole density pattern. These
particles form new stable soliton-like structures
(Fig. 3b). Particles with the regular trajectories are
retained on the periphery and in a narrow zone sur-
rounding the central body (Fig. 3a). By the moment of
T = 7.5 (Fig. 1b), there are almost no regular particles
in the system.

Figure 4 illustrates the time variation of the absolute
value of the difference between densities n' and n" for
the two calculations, summed over the entire region of
calculation:

∆ t( ) n' r t,( ) n'' r t,( )– xd y.d

S

∫=
As can be seen from this plot, the instability in the lin-
ear stage develops with an exponent of γ ~ 9.57 (with a
characteristic time amounting to approximately 0.03 of
the disk rotation time indicated above) up to a time of
T  ≈ 2.3. The density fluctuations increase by nine
orders in magnitude relative to the initial level, reaching
10–6. After that, spreading of the trajectories of unstable
particles begins, accompanied by accumulation of the
density difference and by modification of the fields.
Until T ≈ 3.1, new particles are brought into stochastic
motion and the regular particles pass to new trajecto-
ries. Subsequently (until T ≈ 6), the system exhibits a
nonlinear stage of instability saturation and the forma-
tion of a new solution. Beginning at approximately this
time, the solutions begin to diverge, demonstrating the
appearance of a new dynamical state (Fig. 1, T = 7.5).
JETP LETTERS      Vol. 78      No. 6      2003
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(‡)
T = 5 T = 5

(b)

Fig. 3. Particle density distribution in the disk at T = 5: (a) regular particles; (b) stochastic particles.
The results of control calculations using the same
processor (AMD) with various operational systems and
a translator (UNIX + GNU Fortran and Windows
2000 + Watcom Fortran) showed the trajectories to be
perfectly identical in all temporal stages, despite differ-
ent computation speeds. Analogous identical results
were obtained with various AMD processors (Duron,
800 MHz and Athlon, 1600 MHz). The results of calcu-
lations using a parallel variant of the program appeared
as if corresponding to a new particle velocity distribu-
tion (that is, to different particle trajectories) realized
by a qualitatively different computational algorithm. At
the same time, a comparison of the results of calcula-
tions obtained using two Intel or Alpha 21264 proces-
sors showed a dynamical pattern that allowed particles
involved in the regular and stochastic motions to be dis-
tinguished.

Summarizing the results of computational experi-
ments, we may conclude that the possibility of dividing
particles into regular and stochastic for the given pro-
gram is determined by the processor. For the other algo-
rithms, the properties of the compiler may also influ-
ence realizations of the rounding errors and provide a
means of distinguishing the trajectories calculated
using processors of the same type.

Numerous calculations using variable parameters
showed that, in the course of instability development,
deviations from the initial state as a result of random
fluctuations exhibit exponential initial growth. The
growth of deviations is accompanied by change of the
self-consistent fields acting upon particles. Some parti-
cles pass from regular to stochastic trajectories. As the
instability develops, the number of such particles
increases. Thus, fluctuations (usually small) become
enhanced to a nonequilibrium level. Among these,
some are selected to form a new state in the stage of
P LETTERS      Vol. 78      No. 6      2003
instability saturation. Collisionless damping and weak
collisions decrease the remaining fluctuations to a ther-
modynamically equilibrium level of random noise in
the new state. In the new established self-consistent
field potential, particles occur in the regimes of either
regular motion or a dynamic chaos.

For the computer calculations in the stage of a phys-
ical instability development, the random rounding
errors significantly influence realizations of the particle
trajectories. Outside the framework of the instability
development in time and space, these errors are not
manifested for a given numerical criterion. A physical
instability is manifested through local accumulation of
stochastic particles. Regions of the phase space con-
taining such particles are essentially the zones of insta-
bility. Using a change in the density of stochastic parti-
cles (in our example, in projection of the phase space

Fig. 4. Time variation of the total difference between parti-
cle densities in the two calculations.
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onto the configuration space), it is possible to calculate
a local value of the instability increment γ(r, t):

The time during which the particles may become sto-
chastic can be defined as the time of instability devel-
opment. This time is determined in computational
experiments by transfer of the coordinates and veloci-
ties from one computer to another, modeling the initial
data for the given time, followed by the discrimination
of stochastic particles. In this way, the stability of tra-
jectories is established for real physical problems
involving arbitrary numbers of particles.

Thus, we have propose a practical method for study-
ing instabilities, based on the determination of recess-
ing stochastic trajectories (RSTs). Using this method, it
is possible to establish both spatial and temporal limits
of instability and determine increments averaged over
all particles and over separate spatial groups, including
a single particle. It is also possible to determine average
macroscopic functions of a given system at the instabil-
ity onset time. This method allows the “conditions of
transition to stochasticity” to be studied without limita-
tions inherent in the well-known criteria formulated for
the systems with two degrees of freedom [12]. Since the
motion of particles in a self-consistent gravitational
field of the central body with rotation coincides to
within a transformation with the motion in electromag-
netic fields [13], the proposed approach can be applied
to the analysis of instabilities in electrodynamics as
well. It would also be of interest to use this approach for
the analysis of the hypothesis concerning the possible
transient nature of spiral structures in galactic disks
[14]. Here, it is important to establish whether the stel-
lar spirals can appear in a fast sequence of particular
evolutionary cycles, each including the development of
instability followed by dissipation in the interstellar
gas. Another important example is offered by a mecha-
nism responsible for self-sustaining stellar disks of real
galaxies occurring in a quasistationary equilibrium
state with slow dynamical evolution [15]. In modeling
substantially unstable structures such as protoplanet
disks, the proposed method can help finding general-
ized parameters of the process of gas–dust bunch for-
mation [16].
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The measured and calculated data obtained in this and earlier works for the intensity ratio G3 = I[Kβ2]/I[Kβ1]
of the intercombination and resonance Kβ lines corresponding to the 1s3p3P1  1s21S0 (Kβ2) and
1s3p1P1  1s21S0 (Kβ1) transitions in the coronal plasma spectrum of Ar16+ ions were compared with each
other. In this work, the G3 ratio was measured on the TEXTOR (Julich, Germany) tokamak equipped with high-
resolution Bragg spectrometers and other diagnostic instruments. The calculations carried out within the frame-
work of the radiative-collision model using the ATOM, MZ, and GKU programs developed in the Lebedev
Physical Institute, Russian Academy of Sciences, are in agreement, to the experimental accuracy, with all the
data obtained on the PLT (Princeton, USA), ALCATOR-C (Cambridge, USA), and TEXTOR tokamaks. It is
shown that the previously observed factor of 1.3–2 discrepancies between the measured and G3 values calcu-
lated using the HULLAC code and appreciably exceeding the experimental error are caused by the use of inac-
curate atomic data and simplified atomic kinetics in those works. The results presented in this work are evidence
for the high accuracy of our atomic data (transition rates) and for the possibility of effectively using, on their
basis, the Kβ lines of multicharged ions in X-ray spectrum diagnostics of electron temperature and density in
laboratory and astrophysical coronal plasma sources. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.25.Os; 52.70.La; 52.80.Hc
1. The K-emission spectra caused by the nl–1s tran-
sitions of an optical electron filling a vacancy in the 1s
shell of a multicharged ion are widely used in the study
of high-temperature plasmas. The X-ray spectroscopy
methods based on the analysis of relative intensities in
the measured K-emission spectra allow one to deter-
mine the electron temperature and density, the distribu-
tion over ionization steps, and other parameters that are
necessary for studying the fundamental and applied
problems of plasma physics. In some cases, e.g., for
astrophysical objects, X-ray spectra prove to be the
only sources of information on the structure and
dynamics of plasma formations. However, in spite of
the fact that the first works devoted to the Kα emission
from the n = 2 levels (see, e.g., [1–3]) appeared more
than a quarter of century ago, the error in the measured
parameters still remains a quite topical problem.

The accuracy of the spectroscopic diagnostic tech-
niques and even the very possibility of their use depend
on the accuracy of the atomic data and the plasma-radi-
ation models based on the equations of atomic kinetics
and plasma dynamics. For multicharged ions with
charge z > 10, the direct (beam) measurements of the
collisional and radiative characteristics necessary for
the calculation and interpretation of the K spectra are
0021-3640/03/7806- $24.00 © 20363
now practically absent. The only information sources
on both binary and hydrodynamic processes are, thus,
provided by the spectra of rarefied (coronal) plasmas in
the devices of the EBIT type and tokamaks. Due to the
narrow spectral lines, a plasma-beam EBIT source is
traditionally used for the measurement and verification
of the methods of calculating the electron–ion cross
sections, the lifetimes of metastable states, and the
wavelengths (see, e.g., [4, 5]). The TEXTOR studies of
the Kα radiation showed that the tokamak spectra can
be efficiently used not only for the diagnostic purposes
but also for verification of the data on the Maxwellian-
averaged rates of elementary processes in plasmas. The
spectra of the He-like argon ions (z = 16) calculated
using, on the one hand, the ATOM and MZ program
packages [6] and, on the other, the SUPERSTRUC-
TURE and DW programs [7] proved to be in agreement
with the measured spectra to within an experimental
error of ~10%. The accuracy of R-matrix calculation of
the collisional characteristics of the He-like argon and
iron ions was estimated in [8] at ~20%. A similar accu-
racy of ~10–20% was reported in [9] for the excitation
cross sections of the n = 2 levels of ions with charge
z = 22–26 calculated by the DW method on the basis of
EBIT measurements (Livermore, USA). At the same
003 MAIK “Nauka/Interperiodica”
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time, the intensity ratios G3 = I[Kβ2]/I[Kβ1] of the inter-
combination and resonance lines, calculated for the
transitions from n = 3 using the numerical HULLAC
code and measured for the argon ions on the PLT toka-
mak [10] and the Livermore EBIT device [9] and for
the argon and chlorine ions on the ALCATOR-C toka-
mak [11], differ from one another by approximately a
factor of two. It is also worthy of note that the ab initio
HULLAC calculations of the G3 ratio are at variance, to
within a factor of 1.3–2, with the experimental data
reported in [12] for dense (laser) plasma. Such a dis-
crepancy between the theory and experiment apprecia-

Fig. 1. (a) Time dependences of the plasma parameters and
integrated Kα and Kβ intensities of argon ions in the appro-
priate spectral intervals. Argon atoms were ejected into
plasma during 5–5.2 s, and the Kα- and Kβ-emission spec-
tra of argon ions were observed in the time interval between
5.2 and 5.6 s. (b) Measured (crosses) Ar16+ Kβ-emission
spectrum and its approximation by the Voigt curves (solid
line).
bly exceeds the measurement error and, thereby, casts
doubt on the accuracy of the calculated atomic data
underlying the high-temperature plasma diagnostic
techniques based on the plasma K spectra.

This work is devoted to analysis of the reasons for
the above-mentioned discrepancies between the theory
and the experiment. To this end, the Ar16+ Kβ-line inten-
sities were measured with a high accuracy (~10%) at
low temperatures (~1 keV) on the TEXTOR tokamak
simultaneously with the Ar16+ Kα spectra, and the pro-
cesses responsible for their formation in the tokamak
plasmas were analyzed in detail. It is shown below that
the results obtained within the framework of the radia-
tive-collision model using the ATOM and MZ codes are
in agreement, to within the error of measurements, with
all the experimental data obtained on the PLT,
ALCATOR-C, and TEXTOR tokamaks. The possible
explanations for the discrepancies in the interpretation
of the EBIT [9] and laser-plasma experiments [12] are
also given.

2. The argon K spectra were studied on the
TEXTOR tokamak equipped with a high-resolution
X-ray spectrometer/polarimeter [13] incorporating two
(horizontal and vertical) Bragg spectrometers designed
for making polarization measurements of the radiation
from the same central region of the tokamak plasma in
the Johann scheme. The horizontal instrument, whose
dispersion spanned the tokamak equatorial plane, was
used to measure the Kα spectra, while the vertical (per-
pendicularly arranged) instrument was used in our
experiment for recording the Kβ-emission lines. The
radius of curvature, the Bragg angle, and the spectral
resolution λ/∆λ were, respectively, 3850 mm, 54°, and
5000 for the horizontal and, respectively, 4630 mm,
43.3°, and 2000 for the vertical spectrometer. In both
channels, the radiation was recorded using proportional
counters. The electron temperature in the plasma core
region was derived both from the Kα spectra and, inde-
pendently, from the Thomson scattering. The results of
both measurements agree to within 5–10%. The Kβ
data obtained on the TEXTOR tokamak at temperatures
Te ~ 1 keV, in conjunction with the PLT measurements
at Te ~ 2.3 keV [10], made it possible to study the tem-
perature dependence of the above-mentioned G3 ratios.

The time evolution of plasma parameters and the
total Ar16+ Kα- and Kβ-emission intensities in the
TEXTOR experiment are presented in Fig. 1 together
with an example of a measured contour covering the
Ar16+ Kβ1 and Kβ2 lines. The experimental points in
Fig. 1b were approximated by two Voigt contours with
allowance for the instrumental function and the radial
distribution of ion temperature.

3. The observed line intensities Iif of an optically
thin plasma are expressed in terms of the luminosity
function εif (Te, Ne) (in cm–3 s–1) as

(1)εif NiAif
r ,=
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where Ni [cm–3] is the population density of the upper
(i) level of the emitting ion; in the general case, it is
determined from the system of rate equations

(2)

where  is the probability of spontaneous radiative

i  f transition; Wmn = NeCmn +  is the total
m  n transition probability; Ne is the electron den-
sity; Cmn = 〈vσmn〉  [cm3 s–1] is the collision-induced
m  n transition rate equal to the cross section σmn

averaged over the electron distribution in velocity v ;
and the integer indices n, m, i, etc. number the energy
levels of an ion with charge z and quantum-number
set α.

In this work, the relative Kβ-line intensities of Ar16+

ions were determined through the calculation of line
luminosities as functions of electron temperature and
density in equilibrium plasma (dNi/dt = 0) with Max-
wellian electron velocity distribution. The radiative-
collision model allowed for electron-impact excitation
and ionization, as well as for dielectronic and radiative
recombinations. The energy-level system used in the
calculations for the Ar16+ ion included 53 1snl states
with n ≤ 6 and l ≤ 5. The first 41 levels with n ≤ 4 were
described using quantum numbers α = 1snl (LSJ), and
the levels with principal quantum numbers n = 5 and
n = 6 were grouped into LS terms. The high-lying Ryd-
berg states with n > 6 were taken into account by
extrapolating the rates of elementary processes to the
large quantum numbers n.

The excited-level populations were calculated using
the GKU program [14], which was designed for numer-
ically solving the set of Eqs. (2). The atomic character-
istics (level energies, radiative transition probabilities,
and the appropriate cross sections and rates) necessary
for modeling the Kβ-emission spectra of the argon ions
were obtained using the ATOM and MZ programs.

The MZ program is based on the perturbation theory
with a small parameter 1/Z (Z is the nuclear charge) and
the hydrogen-like basis set including all configurations
(the complex) of the same parity for a given set of prin-
cipal quantum numbers. This program was used to cal-
culate the energy levels and the (radiative and autoion-
ization) decay probabilities that are necessary for deter-
mining the dielectronic recombination rates of an
He-like ion. The ion level energies EJ and the eigenvec-
tors CJ are determined by diagonalizing the total
Hamiltonian of the system with the relativistic correc-
tions taken in the form of the Breit Hamiltonian. The
coefficients CJ thus obtained correspond to the interme-
diate coupling scheme with allowance for the intercon-
figuration interaction.

In the ATOM calculations of the electron-impact-
induced transitions between the levels of He-like argon,

dNi

dt
--------- NmWmn

m i≠
∑ Ni Win,

n i≠
∑–=

Aif
r

Amn
r
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the Coulomb–Born exchange approximation modified
by the additional orthogonalization of the continuum
and bound-state wave functions for the exchange
amplitude was used. The configuration interaction
between the target states was taken into account by
using the coefficients CJ obtained with the MZ pro-
gram. The resonance contribution to the rates of transi-
tion to the n = 2 levels was taken into account within the
framework of the rate Eqs. (2). The ATOM program
was also used to calculate the radiative transition prob-
abilities between the Ar16+ levels and the radiative
recombination rates of the He-like 1snl levels. A more
detailed description of the radiative-collision model
and the above-mentioned methods of atomic data cal-
culation, as well as the discussion of the possible errors
in determining the luminosity functions will be given
elsewhere. Note that the collisional characteristics
obtained in this work are in agreement with the results
obtained by the other (DW, R-matrix [8], etc.) methods
to within 10%.

4. In the tokamak spectrum, the ratio of radiation
fluxes L and L' of two characteristic peaks correspond-
ing, respectively, to the l and l' lines in the spectral
intervals [L] and [L'] including these lines can conve-
niently be written as

(3)

where  is the relative intensity of the lines l and l'
making the major contribution to L and L':

(4)

Here, εl is the lth-line luminosity defined by Eq. (1) and
taken as a function of the electron temperature T = Te(0)
in the tokamak central zone (r = 0); the correction coef-
ficient φ accounts for the contribution from the blend-
ing lines falling within the intervals [L] and [L']; and

 is the factor depending on the radial distributions of
electron density Ne(r) and temperature Te(r).

The temperature dependences calculated for the
ratio G3(Te) in equilibrium plasma with electron density
Ne ≈ 1013–1014 cm–3, for which the coronal approxima-
tion is true and which corresponds to the densities in the
TEXTOR plasma, are shown in Fig. 2 for the case
where the contributions from the complete recombina-
tion and upper-level cascades were ignored. From the
results presented in Fig. 2 it is seen that the direct exci-
tation makes the main contribution (≈85%) in the range
of electron temperatures Te ~ 1 keV, while the 1s3p
recombination and the radiation cascades comprise,
respectively, ≈10% and ≈5%. At higher temperatures
where Te ~ 2 keV, the contribution from the direct exci-
tation, recombination, and cascades is distributed in the
ratio of ≈70%, 20%, and 10%, respectively.

iL
L' T( ) il

l' T( )φγL
L' ,=

il
l' T( )

il
l' T( ) εl' T( )/εl T( ).=

γL
L'
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Expressions (3) and (4) and the Kβ1- and Kβ2-line
luminosities calculated using the equilibrium plasma

model gave the ratio G3 =  as a function of tem-
perature. The temperature dependences of the ratio G3
calculated in this work and in [10] and [5] are presented
in Fig. 3a. The ratio G3 obtained in this work is close to
the results obtained in [15] and is at variance with the
latter to within 10% in the temperature range consid-
ered. Note that the atomic characteristics were obtained
in [15] also using the ATOM program. The observed
discrepancies are, likely, due to the fact that the contri-
bution from the Kβ dielectronic recombination was not
taken into account in that work.

The results of calculations carried out in [10] using
the numerical HULLAC package differ appreciably (by
approximately a factor of two) from the other results
presented in Fig. 3a. This discrepancy (≈50%) is
explained in part by the fact that the contributions from
the upper-level radiation cascades and Ar16+ excited-
level recombination were not taken into account in
[10]. The remaining discrepancy is caused by the differ-
ence between the direct excitation rates of the Kβ1 line
(≈10%) and between the branching ratios of the Kβ2
line (0.22 in this work and 0.17 in [10]).

5. The results of the TEXTOR and PLT measure-

ments of the ratios  defined in Eq. (3) are also pre-
sented in Fig. 3a for the temperatures Te ~ 1 keV and
Te ~ 2.3 keV [10], respectively. Curve 4 in this figure is
for the theoretical ratio with allowance made for the
coefficient φ including a contribution from the dielec-
tronic satellites due to the transitions of the 1s3pnl 

il
l' T( )

iL
L'

Fig. 2. Illustration of the contributions of various processes
to the Te dependence of the intensity ratio G3 =
I[Kβ2]/I[Kβ1]: (1) full calculation; (2) calculation without
taking into account the cascades from the upper levels 1snl
with n ≥ 4; and (3) the same as in (2) but without taking into
account the recombination of the He-like 1s3l ion levels.
1s2nl type with n ≥ 4 and converging to the Kβ1 and Kβ2

lines as n increases. The contribution of satellites to the
G3 ratio was obtained on the basis of the results
reported in [5], where the spectra of these satellites
were directly measured on an EBIT device. One can see
from this figure that the inclusion of blending satellites
enhances the G3 ratio by approximately 10% at temper-
ature Te ~ 1 keV and makes virtually no contribution to
this ratio at Te ≥ 2 keV. Analysis of the experimental

conditions show that the factor  has no effect on theγL
L'

Fig. 3. (a) Comparison of the theoretical ratios G3(Te)

obtained by different authors for the Ar16+ Kβ lines in low-
density plasmas and the results of the TEXTOR measure-
ments at temperatures Te ~ 1 keV (this work) and the PLT
measurements at Te ~ 2.3 keV [10]: (1) this work; (2) calcu-
lations in [15]; (3) HULLAC calculation [10]; (4) the same
as in curve 1, but with allowance for the contribution from
the blending dielectronic satellites. (j) The experimental
data. (b) The G3 ratio in a dense plasma; d and j are the

experimental points for the densities Ne = 6 × 1020 cm–3 and

Ne = 1.1 × 1021 cm–3 [12], respectively; the solid line corre-

sponds to the calculations with Ne = 6 × 1020 cm–3 and the

dashed line is for Ne = 1.1 × 1021 cm–3.
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G3 ratio to within a few percent and, thus, is disregarded
in this work. It should be noted that the possible devia-
tion from the equilibrium conditions as a result of ion
transport and charge exchange on neutrals in plasma, as
observed in the Kα spectra of argon ions, introduces an
error of about 5% when measuring on the TEXTOR
tokamak in a temperature range of 1–2.5 keV. There-
fore, the comparison shows that the model used in our

work allows the measured ratio  to be described
within the experimental accuracy. A more detailed dis-
cussion of the transport effects in the K spectra is
beyond the framework of this study and will be given
elsewhere.

One should also note the work [11], where the chlo-
rine and argon He-like K spectra were measured on the
ALCATOR-C tokamak, while the theoretical interpre-
tation of the experimental results was carried out using
the HULLAC code. In that work, the Cl15+ G3 ratio was
measured at the temperature Te ≈ 1.2 keV and the elec-
tron density Ne ≈ 1.8 × 1014 cm–3 to give a value of
~0.05, whereas the theoretically predicted value is G3 ~
0.03. For the Ar16+ ions, the ratio G4 = I[Kγ2]/I[Kγ1] of
the Kγ-lines corresponding to the 1s4p3P1–1s2 (Kγ2

line) and 1s4p1P1–1s2 (Kγ1 line) transitions was also
observed in [11] for the plasma parameters Te ≈
2.05 keV and Ne ≈ 1.1 × 1014 cm–3. The measured value

was , whereas the HULLAC calculations
gave G4 ≈ 0.029. Our calculations and estimates of the
G3 ratio for chlorine ions and the G4 ratio for argon ions
give, respectively, ≈0.048 and ≈0.045, in agreement
with the measured values to within an experimental
error. A systematic underestimate of the theoretical
results for the Ar16+ and Cl15+ G3 ratios and the Ar16+ G4
ratio, as compared to the results of the PLT, ALCA-
TOR-C, and TEXTOR measurements, probably indi-
cates that the numerical HULLAC code is a common
source of these errors.

The G3 values calculated for the densities Ne = 6 ×
1020 cm–3 and Ne = 1.1 × 1021 cm–3 are presented in
Fig. 3b, where they are compared with the theoretical
and experimental data reported in [12]. In [12], the cor-
responding ratios were measured in laser plasma with
gaseous targets, for which the C3H8 and C5H12 com-
pounds were used. The calculations in [12] were per-
formed using the HULLAC code, and the theory also
showed a sizable discrepancy (up to a factor of two)
with the experiment. One can see in Fig. 3b that the G3
ratio calculated in our work for the electron density
Ne = 1.1 × 1021 cm–3 with inclusion of the contribution
from the dielectronic satellites (φ factor) agrees well
with the measurements in [12] to within the experimen-
tal error. The presence of three experimental points
with a rather large scatter in a narrow temperature inter-
val at Ne = 6 × 1020 cm–3 impedes the interpretation of

iL
L'

G4
exp 0.05≈
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these experiments. Nevertheless, our calculations are,
on average, in good agreement with the experiment.

The atomic data obtained in this work were also
used to compare the theoretical ratio G3 with its exper-
imental value measured in the beam experiment on an
EBIT device [9]. The cited experiment gave the value

 = 0.161 for the Ar16+ ion. The electron-beam
energy Eb = 3800 eV was chosen to be near the excita-
tion threshold of the resonance Kβ1 line to avoid the
occupation of the n = 3 levels through the radiation cas-
cades from the n ≥ 4 levels. In this case, the line lumi-
nosities can be represented as

(5)

where Nf is the ground-state population of the He-like
ions; Kr(i) is the branching ratio for the ith level; and Cif

is the f  i excitation rate. The HULLAC calculations
made in [9] gave a value of 0.071 for the ratio G3, and
G3 = 0.085 was obtained in [16]. The ratio G3 = 0.11
obtained in our work is in better agreement with the
experiment than the above-mentioned results. A dis-
crepancy of ≈30% between the results of this work and
the experiment is likely explained by the fact that the
contributions from the resonances of the 1s4l 'nl (n ≥ 4)
types to the excitation cross sections near the subse-
quent reaction thresholds were not taken into account.

Note, in conclusion, that the results presented in this
work are evidence both of a high accuracy of the atomic
data calculated using the above-mentioned methods
and corresponding program packages (ATOM and MZ;
SUPERSTRUCTURE and DW; R-matrix method) and
of the possibility of efficiently using, within the frame-
work of a comprehensive atomic model, the relative
Kβ-line intensities of the He-like ions for X-ray spec-
tral diagnostics of the laboratory and astrophysical
plasma sources.

This work was supported by the Russian Foundation
for Basic Research (project nos. 03-02-16053 and 02-
02-16613) and by the program of the Section of Physi-
cal Sciences of the Russian Academy of Sciences
“Optical Spectroscopy and Frequency Standards.”
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The maximal supercurrent Im of a short Josephson junction formed by an edge contact of two superconducting
films is calculated for the case where the junction is placed in a periodic field produced by a chain of magnetic
nanoparticles. The commensurability effects occurring when the magnetic flux of a homogeneous external field
H0 through an elementary cell is equal to an integral number of magnetic flux quanta Φ0 are considered. The
effects give rise to additional maxima in the Im(H0) dependence. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.50.+r; 74.78.-w
Studies of magnetic nanostructures (arrays of mag-
netic dots [1] or thin ferromagnetic layers [2]) interact-
ing with a superconductor show that such hybrid sys-
tems exhibit some interesting phenomena due to the
interaction of the magnetic and superconducting sub-
systems. If no proximity effect occurs between ferro-
magnet and superconductor, the interaction between
the subsystems proceeds through slowly decaying stray
fields [3]. A highly inhomogeneous magnetic field pro-
duced by magnetic dots partially penetrates into the
superconductor to induce Meissner screening currents
in it. In turn, these currents affect the magnetization dis-
tribution and can form different types of magnetic
ordering [2] or cause the transformation of the domain
structure in a ferromagnet [4].

A strong effect of the preliminary magnetization of
Co particles on the maximal current of an edge Joseph-
son junction was observed in [5], which allowed us to
propose a new interference method for determining the
local parameters of the nanoparticle magnetization dis-
tribution. The method is based on one of the properties
of Josephson junctions, namely, on the appearance of
the magnetic-field-induced diffraction and interference
caused by the wave properties of Cooper pairs and the
phase coherence of order parameter on both sides of the
junction [6]. Note that the extremely high sensitivity of
the Josephson current to magnetic field provides the
basis for the most important applications of the Joseph-
son effect and also allows one to study in detail the
properties of the junction itself [7].

This paper presents a theoretical study of the influ-
ence of a chain of magnetic particles on the dependence
of the critical current of an edge Josephson junction on
the external magnetic field for different orientations of
the particle magnetic moments.
0021-3640/03/7806- $24.00 © 20369
Consider a short Josephson junction (W ! λJ =

) formed at the edge contact of two thin
superconducting (SC) films whose thickness d is much
smaller than the London penetration depth λ (Fig. 1). In
the above expression, jc is the critical current density of
the junction. Let a chain of point magnetic dipoles be
placed at a height h above the SC film and at a distance
b from the junction plane y = 0. The dipole magnetic
moment M is assumed to lie in the plane parallel to the
SC films. First of all, we determine the magnetic field
of the dipoles in the junction plane and the gauge-
invariant phase difference ϕM produced by this field at
the junction.

Taking into account that, when d ! λ, the distribu-
tions of the vector potential A and the current j through-
out the SC film do not depend on the transverse coordi-

cΦ0/16π2λ jc

Fig. 1. Schematic diagram of a Josephson junction with a
chain of magnetic dipoles M.
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nate z, let us consider the screening of the dipole mag-
netic field by the SC plane z = 0. The screening current
density g = jd is expressed through the vector potential
A as

(1)

and the vector potential, in its turn, satisfies the follow-
ing equation over all space:

(2)

Here, Mm = Mδ(R – Rm) is the magnetic moment of a
dipole positioned at point Rm, and Λ = λ2/d is the effec-
tive penetration depth determining the screening prop-
erties of thin superconducting film [8]. The vortex
source S in Eq. (2) depends on the gradient of phase dif-
ference at the junction ϕM(x) [9]:

(3)

Since the magnetic dipole field decreases relatively fast
with distance, the effect of film edges can be ignored
[10].

Equations (1)–(3) should be complemented with a
boundary condition in the Josephson junction plane. If
the supercurrent through the junction depends on the
phase difference in the simplest harmonic manner as j =
jcsin(ϕ), the component of the current g along the nor-
mal to the junction should satisfy the following condi-
tion in the plane y = 0:

(4)

Assuming that critical current jc is small, we seek
the distributions of phase difference ϕM and vector
potential A on the assumption that the junction is fully
impenetrable, so that it can be replaced by an infinitely
narrow discontinuity of the SC film. In this approxima-
tion, the screening current cannot flow through the sur-
face y = 0, and boundary condition (4) is simplified:

(5)

By virtue of the linearity of Eqs. (1)–(3) and (5), the
desired distribution of vector potential A can be repre-
sented as the sum

(6)

where AM describes the vector potential of a system of
point magnetic dipoles positioned near the infinite thin
SC film and Aϕ describes the distortions caused by the
film discontinuity at the Josephson junction plane.

g gx gy,( ) c
4πΛ
----------- S A–( )δ z( ),= =

∇ ∇ A
1
Λ
----Aδ z( )+×× 4π∇ Mm

m

∑ 1
Λ
----Sδ z( ).+×=

∇ S×
Φ0

2π
------dϕM

dx
----------δ y( )z0, ∇ S⋅ 0.= =

gy x 0,( ) jcd ϕM x( )( ).sin=

gy x 0,( ) 0.=

A AM Aϕ ,+=
Using Eqs. (1) and (6), the corresponding distribution
of screening current g can be represented in the form

(7)

In the absence of magnetic dipoles, initial equation (2)
can be reduced to the equation for the magnetic-field

projection  = {∇ × Aϕ}z onto the normal to the SC
film:

(8)

where the source on the right-hand side is determined
by the desired phase-difference distribution ϕM(x).
Note that Eq. (8) describes the distribution of magnetic
field in a long Josephson junction (W @ λJ) between
two thin SC films contacting along the edge [9, 11].
Using the solutions obtained in the cited publications,

we can express the y component Jϕ = (x, 0) of the
current gϕ at the discontinuity surface through the Fou-
rier spectrum

of the phase difference ϕM(x) at the junction:

(9)

(10)

The relation between the current Jϕ and the phase dif-
ference ϕM proves to be of the integral type, which
reflects the strong influence of slowly decaying stray
fields [9].

The distribution of the vector potential AM of mag-
netic dipoles in the presence of the SC film can be
determined by setting S = 0 on the right-hand side of
Eq. (2). Let us first consider a single magnetic dipole M
positioned at a height h above the film surface. Using
the Fourier transformation, we obtain the following
expressions for the screening current components lon-
gitudinal (||) and transverse (⊥ ) with respect to the mag-
netic moment M at an arbitrary point of the film; i.e.,

gM =  +  (see inset in Fig. 1):

(11)

g gM gϕ ,+=

gM c
4πΛ
-----------AM; gϕ–

c
4πΛ
----------- S Aϕ–( ).= =

Bz
ϕ

Bz
ϕ 2Λ

∂Bz
ϕ

∂z
---------–

Φ0

2π
------dϕM

dx
----------δ y( ),=

gy
ϕ

φM q( ) Λ 1– xϕM x( ) ι qx/Λ( )expd∫=

Jϕ cΦ0

4π4Λ2
--------------- qe ι qx/Λ– q2φM q( )Q q( ),d∫=

Q q( ) 4q2 1– / 1 2 q+( )( )arctan

4q2 1–
-------------------------------------------------------------------.=

g||
M g⊥

M

g||
M cM

4πΛ3
------------- 2α( ) u

u2J2 ur/Λ( )
1 2u+

----------------------------e uh/Λ– ,d

0

∞

∫sin–=
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(12)

where J0, 2 are the zero-order and second-order Bessel
functions, respectively, and α is the angle between the
direction of the dipole moment M and the radius vec-
tor r in the film plane.

This solution can easily be generalized to the case of
an infinite chain of point magnetic dipoles M = Mxx0 +
Myy0 spaced at a distance a and oriented in the same
(but arbitrarily chosen) direction in the film plane, as
shown in Fig. 1. For convenience, the subsequent calcu-
lations are performed with dimensionless quantities
and the distances are expressed in units of effective
penetration depth Λ: x, y, a, b, h, R  x/Λ, y/Λ, a/Λ,
b/Λ, h/Λ, R/Λ. Taking into account the periodicity and
choosing the origin of coordinates at one of the dipoles,
we represent the distribution of the screening current

component perpendicular to the junction, JM = (x, 0),
as a Fourier series in spatial harmonics qa = 2π/a:

(13)

where µx = Mx/M, µy = My/M, M = , and the

amplitudes of the spatial harmonics  can be
expressed as

(14)

(15)

g⊥
M cM

4πΛ3
------------- 2α( ) u

u2J2 ur/Λ( )
1 2u+

----------------------------e uh/Λ–d

0

∞
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1 2u+
-------------------------------------------e uh/Λ– hΛ2

r2 h2+[ ] 3/2
--------------------------–d

0

∞

∫ 



,

gy
M

JM x( ) cM

4πΛ3
------------- µxGx
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The corresponding distribution of the phase difference
ϕM(x) induced at the junction by the chain of magnetic
dipoles can be obtained from boundary condition (5) at
the discontinuity surface,

and, in turn, can also be represented as a Fourier series
expansion:

(16)

(17)

Formulas (14)–(17) obtained above determine the
gauge-invariant phase-difference ϕM caused by an infi-
nite chain of point magnetic dipoles M at the Josephson
junction formed between two thin SC films. Figure 2
shows the phase-difference distributions ϕM(x) calcu-

qy x 0,( ) Jϕ x( ) JM x( )+ 0,= =

ϕM x( ) M
Φ0Λ
----------- µxPx

n nqax( )cos[
n 1=

∞

∑=

– µyPy
n nqax( ) ] ,sin

Px y,
n π2

2n2qa
2Q nqa( )

--------------------------------Gx y,
n .=

Fig. 2. Phase-difference distribution ϕM(x) in the junction
for two orthogonal directions of the magnetic moment of
particles ((1) M ⊥  x0 and (2) M || x0) and different distances
between the particles and the junction: b = (a) 0.2 and
(b) 0.4 µm. For comparison, the dashed lines show the
phase-difference distribution ϕ0(x) (Λ = 0.1 µm, W = 5 µm,
a = 1 µm, and h = 0.1 µm).
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lated from Eqs. (14)–(17) for two orthogonal directions
of magnetic dipole moment, M || x0 (µx = 1, µy = 0) and
M ⊥ x0 (µx = 0, µy = 1), and for different distances b
between the magnetic particles and the junction. For
comparison, the dashed curves present the phase distri-
butions ϕ0(x):

(18)

where the dipole magnetic field B0 = ∇ × A0 in the junc-
tion region is calculated without taking into account the
screening currents in the superconductor:

(19)

One can readily see that the distribution ϕM(x) notice-
ably differs from ϕ0(x) and that a considerable influence
of magnetic particles on the junction is retained at dis-

tances r =  much greater than those predicted
by simple estimates (18) and (19). This result is
explained by the fact that the screening current density
in the superconductor and the magnetic field compo-
nent tangential to the SC film surface decrease slowly
with increasing distance from a magnetic dipole. The
difference between the distributions ϕM and ϕ0 is partic-
ularly large if the distance between the magnetic parti-
cles and the junction is great (r @ Λ).

The current through the Josephson junction depends
both on the phase difference ϕM caused by the magnetic

dϕ0

dx
---------

4πΛ2

Φ0
-------------Bz

0 x 0 0, ,( ),=

A0 M R Rm–( )×
Λ2 R Rm– 3

----------------------------------.
m

∑=

b2 h2+

Fig. 3. Dependence of the maximal current Im through the
junction on the effective external field γH0 for two orthogo-
nal directions of the magnetic moment M of the infinite
chain of particles; the solid line refers to M || x0 and the
dashed line, to M ⊥  x0. The dotted line represents the max-
imal supercurrent in the absence of magnetic particles. I0 =

jcdΛ, M = 10–10 erg/G, Λ = 0.1 µm, W = 5 µm, a = 1 µm,
b = 0.2 µm, and h = 0.1 µm.

(G)
field of the particles and on the strength H0 of the exter-
nal magnetic field applied normally to the SC film sur-
face. If we assume that the external field inside the
junction is homogeneous and equal to γH0, where γ is
the dimensionless demagnetizing factor [12, 13], the
phase-difference distribution in the junction can be rep-
resented as

(20)

Assuming that the Josephson current density jc is uni-
form throughout the cross section, the total current I
through the junction of width W = wΛ is determined by
the expression

(21)

where the parameter ϕ0 depends on the bias current
through the junction. The determination of the maximal
current through the Josephson junction is reduced to
finding the value of parameter ϕ0 at which integral (21)
reaches its maximum. Figure 3 shows the dependences
of the maximal Josephson current Im through the junc-
tion on the field γH0 for two orthogonal directions of the
dipole moment M of the infinite chain of particles. For
comparison, the dotted curve represents the depen-
dence of the maximal supercurrent through the Joseph-
son junction on the external field in the absence of mag-
netic particles. The magnetic field ∆H0 corresponding
to the period of “diffraction structure” is determined by
the junction width W [7]:

In the case that the Josephson junction is placed in the
periodic field of magnetic particles, the dependence
Im(γH0) changes qualitatively. It exhibits additional
maxima whose widths are equal to the width of the
main maximum and positions are determined by the
resonance condition for the spatial Josephson current
wave j ~ sin(hx) and the periodic distribution of the
phase difference ϕM(x) produced at the junction by the
magnetic particles—h = qan, where n is an integer.
From the latter equality, it follows that the additional
maxima arise when the magnetic flux Φa of effective
field γH0 through a elementary cell Sa = 2Λ × a is equal
to integral number of magnetic flux quanta Φ0:

(22)

Similar commensurability effects were observed in the
experimental study of the influence of periodic defects
on the critical current of a long Josephson junction in an
external magnetic field [14].

In closing, it should be noted that the assumption
about the homogeneity of the external field H0 inside
the junction does not always apply to the film geometry

ϕ x( ) ϕM x( ) hx, h+
2πΛ2

Φ0
-------------γH0.= =

I jcdΛ x ϕ x( ) ϕ0+( ),sind

w/2–

w/2

∫=

∆H0 Φ0/2πγΛW .=

Φa nΦ0, Φa γH0Sa.= =
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under consideration with a large demagnetizing factor
[15]. The inhomogeneity of an external field in the
junction region primarily manifests itself near the
points where Im(H0) becomes zero and can noticeably
distort the field dependence for the maximal current of
the junction. However, the commensurability effects,
resulting in the appearance of additional maxima, will
occur in this case as well.

I am grateful to A.A. Fraerman and A.S. Mel’nikov
for useful discussions. This work was supported by the
Russian Foundation for Basic Research (project no. 03-
02-16774) and the program “Quantum Macrophysics”
of the Russian Academy of Sciences.
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Variation of the velocity of Ca6+ ions with initial energies of 5.9 and 11.4 MeV/nucleon has been experimentally
studied in the course of ion stopping in a solid aerogel target. The method is based on measuring the Doppler
shift in the K-shell spectrum of decelerated Ca19+ and Ca18+ ions. High spatial resolution (30–50 µm) in the
direction of the ion beam propagation achieved simultaneously with high spectral resolution (λ/∆λ = 1000–
3000) in the X-ray wavelength interval of 2–4 Å allowed the ion beam dynamics in the solid target to be directly
measured. By measuring variations in the relative intensity of spectral lines, it is possible to monitor the redis-
tribution of the ions over charged states during their motion in the target. © 2003 MAIK “Nauka/Interperiod-
ica”.

PACS numbers: 79.20.Rf; 32.30.Rj; 34.50.Bw
1. Investigation of the process of interaction
between heavy multicharge ions and solid targets or
biological objects is currently an important task. The
exact knowledge of characteristics such as the general
stopping range and the ion velocity distribution at any
point of the interaction volume is necessary both for
better understanding of the physics of this process and
for ion beam applications in thermonuclear synthesis
[1], cancer therapy [2, 3], etc.

The time-of-flight methods used so far [4, 5] do not
allow the dynamics of the process of ion stopping in a
solid target to be directly observed. In order to solve
this problem, we propose a new X-ray technique [6, 7]
based on measuring the Doppler shift in the K-shell
spectrum of ions decelerated in the target under condi-
tions of high spatial resolution in the direction of ion
beam propagation.

It should be noted that the effective charge of ions in
the beam, which is an important basic characteristic, as
well as the dynamics of variation of this quantity in the
course of beam–solid interaction, can be calculated
using the experimental data on the ion distribution over
charged states and velocities in the target [1, 8].

A principal difficulty encountered in the investiga-
tion of ion beam stopping dynamics in solids is a very
small stopping range (~50 µm) of ions in such targets,
0021-3640/03/7806- $24.00 © 20374
which poses strict requirements on the spatial resolu-
tion of the method and instrumentation. In connection
with this, we suggest using aerogel targets—solids pos-
sessing extremely low density, which increases the ion
stopping range and, hence, decreases the spatial resolu-
tion requirements to an acceptable limit.

2. Application of the proposed method to the inves-
tigation of solid aerogel targets has became possible
due to the use of focusing X-ray spectrometers with
spatial resolution, employing spherically bent crystals
as X-ray dispersive elements [9]. These devices com-
bine the geometric properties of a usual spherical mir-
ror with the Bragg reflection properties of a crystal sur-
face.

Based on focusing X-ray spectrometers with spatial
resolution, we implemented a dispersion scheme suc-
cessfully combining high spatial resolution (λ/∆λ =
1000–3000) with high spatial resolution (30–50 µm) in
the direction of the ion beam propagation. In addition,
a high aperture ratio (brightness) of these spectrometers
allowed variations in the relative intensity of spectral
lines and, hence in the ion distribution over charged
states in the course of stopping to be monitored during
ion beam propagation in the target.

In order to calculate the ion velocity using the mea-
sured spectral shift, we used the well-known relation
003 MAIK “Nauka/Interperiodica”
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taking into account both longitudinal and transverse
Doppler effects:

(1)

Here, λD is the wavelength measured, λ0 is the true
wavelength of the ion transition, v  is the velocity of
impinging ions, c is the velocity of light, ϕ is the angle
between the normal to the beam and the direction of
observation, and ∆t and ∆d are the contributions of the
transverse and longitudinal Doppler effects to the total
line shift, respectively. The latter contributions vary
depending on the position of the spectrometer, which
noticeably modifies the shape of the spectrum mea-
sured. This technique is described in more detail else-
where [6].

The proposed method provides data on relative ion
velocities. Absolute values are obtained by calibrating
to the beam velocity at the entrance of the radiating vol-
ume, which is assumed to be equal to the ion velocity
in the beam extracted from an accelerator.

3. The experiments were performed on the UNILAC
(GSI) linear accelerator of heavy ions (Darmstadt, Ger-
many). The stopping dynamics were observed during
the interaction of Ca6+ ions with SiO2 (aerogel targets
possessing a density of 0.15 g/cm3 [10]) in a vacuum
chamber at a pressure of 10–6 mbar. The incident ions
with an energy of 5.9 or 11.4 MeV/nucleon were
focused into a spot with a diameter of 1–2 mm on the
edge face of a target positioned with a high-precision
manipulator. Beam pulses had a duration of 1–3 ms, a
current of 0.1–0.5e– µA, and a repetition rate of ~3 Hz.
The exposure time amounted to 5–7 h, during time
which the X-ray radiation from the target was detected
by a film (Kodak DEF). The film in the cassette was
protected from UV radiation and visible light by two
layers of 1-µm-thick polypropylene film with a
0.2-µm-thick aluminum metallization layer.

Figure 1 presents the experimental arrangement for
observations in the direction perpendicular to the beam.
These measurements were performed with a quartz
crystal 11(–2)0 (2d = 4.92 Å) with a curvature radius of
R = 150 mm and a working area of 14 × 48 mm. The
dispersion scheme was adjusted to operate in the first
order of reflection for the measurement of Ca19+Lyα and
Ca18+Heα lines in a wavelength interval of 2.9–3.5 Å.
The beam propagation direction x occurs in the plane of
spatial resolution. Dashed contours in Fig. 1 indicate
various possible positions of the spectrometers
arranged at various angles relative to the ion beam.

4. We present the results of measurements of the
velocity and charge redistribution between XX and
XIX states for calcium ions in the beam stopped in the
aerogel target. The observations were performed per-

λD λ0
1

1 v /c( )2–
----------------------------- v /c( ) ϕsin

1 v /c( )2–
-----------------------------+ 

 =

=  λ0 ∆t ∆d+( ).
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pendicularly to the beam, in which case only the ∆t

component is nonvanishing in formula (1) and the line
shape is influenced only by the transverse component
of the Doppler shift.

Figure 2a illustrates the line shape formation and
position. Being decelerated in the target, ions lose
energy and this is reflected by a decrease in the Doppler
shift with increasing depth of ion penetration into the
target. Then, a sloped line is registered, provided that
the spectrometer ensures spatial resolution in the ion
beam propagation direction. It is known that a trans-
verse shift accounts for the line shift toward increasing
wavelength. In Fig. 2, the values of the ∆t component
and the corresponding wavelength characteristic of the
beginning (input surface) and end of the radiating vol-
ume are indicated by subscripts 1 and 2, respectively.

Figure 2b shows the experimental results. The spec-
tra display CaLyα and CaHeα transition lines to the
K-shell, shifted toward longer wavelengths. The posi-
tions of nonshifted lines correspond to 3.0239 and
3.1769 Å, respectively. Switching the ion beam energy
from 5.9 to 11.4 MeV/nucleon significantly changed
the spectrum. An increase in the initial energy resulted
in a greater wavelength shift and in a greater X-ray
source size in the sagittal plane, which corresponds to
an increase in the ion stopping range.

The measured part of the ion stopping range, during
which the K-shell emission takes place, was 1.2 and
1.8 mm long (measured at 0.1 peak intensity level) for
the incident ion energies of 5.9 and 11.4 MeV/nucleon,
respectively. The accuracy of measuring these values,
as determined by spatial resolution, falls within 50 µm.

Fig. 1. The arrangement of the X-ray spectrometer for
observations of the transverse Doppler shift. Dashed con-
tours indicate the positions of spectrometers for the mea-
surements with allowance of the longitudinal Doppler shift
component.
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Fig. 2. Observations of the transverse Doppler shift: (a) a scheme illustrating the formation of shape and position of a spectral line
with allowance of the Doppler effect; (b) the typical spectra and densitograms of the emission due to K-shell transitions in stopped
Ca19+ and Ca18+ ions with the initial energies 5.9 and 11.4 MeV/nucleon.
Densitograms corresponding to various depths
reflect the dynamics of the ion velocity variation in the
course of stopping. Measuring the Doppler shift δλD of
the spectral line maximum at the observation point rel-
ative to that at the input surface and using formula (2),
we calculate a change in the ion velocity relative to the
initial value. Dashed lines in Fig. 2 indicate the total
interval of observed shifts of the spectral lines. For cal-
ibrating the absolute values of ion velocities, it is
assumed that the position of the Heα line peak in the
densitogram of a 100-µm-thick surface layer corre-
sponds to the emission from ions possessing an energy
provided by the particle accelerator. This assumption is
based on the fact that a 100-µm-thick layer of the aero-
gel target is equivalent in density to a 6-µm-thick layer
of a continuous solid.

The accuracy of the ion velocity measurements, as
determined by the spectral resolution, varies from 2 to
25% when the velocity changes from 0.16 to 0.06 of the
velocity of light. Based on these considerations, we
plotted experimental profiles of the velocity of H- and
He-like calcium ions versus the depth of ion penetra-
tion into a target for the incident beam energy of
11.4 MeV/nucleon (Fig. 3a). From here, a velocity at
which ions in the observed charged states cease to radi-
ate amounts approximately equal to 6% of the velocity
of light (which corresponds to 2.0 MeV/nucleon) can
be determined. The results of numerical calculations
for a continuous SiO2 target [11] show that the electron
cross section exhibits a sharp drop for an ion energy of
1.5–2.0 MeV/nucleon.

The results obtained in our experiments demonstrate
that, owing to the high aperture ratio (brightness) of the
spectrometers employed, it is possible to analyze the
redistribution of ions over charged states by measuring
relative intensities of the K-shell transitions in the spec-
tra of differently charged ions.

Figure 3b shows variation of the relative intensity of
Lyα and Heα lines for Ca18+ and Ca19+ ions propagating
in the target. As can be seen, the maximum concentra-
tions of these ions are observed at a depth of 0.4 and
0.9 mm, respectively. 

According to theoretical predictions, the maximum
concentrations of high charged states must be observed
in the initial subsurface region of the stopping range.
The discrepancy that can be explained by the influence
of internal boundaries present in the aerogel structure
requires further investigations of related processes in
model structured media. Further experimental investi-
gation of the ion velocity and charge redistribution as
functions of the penetration depth, supplemented with
JETP LETTERS      Vol. 78      No. 6      2003
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theoretical description of these processes, are important
tasks for future research.

In order to provide for a more precise calibration,
we suggest introducing reference lines in the spectrum

Fig. 3. Ion stopping dynamics in the aerogel target, showing
(a) variation of the velocities and (b) redistribution over
charged states for the Ca19+ and Ca18+ depending on the
penetration depth.
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by irradiating specially selected targets with electron
beams generated by electron guns. The targets should
be selected so that the emission from ionized ions
would fall within the wavelength range of stopped ions.
Another variant is offered by an experimental geometry
implementing two identical spectrometers arranged at
various observation angles, with comparative analysis
of the results of simultaneous measurements. The pat-
tern of characteristic spectra measured in such a
configuration is depicted in Fig. 4. The value of
5.6 MeV per nucleon obtained from these data coin-
cides to within 5% with the beam energy measured by
the standard method.

5. To summarize, we have directly measured the
variation of velocity and redistribution over charged
states in an ion beam stopped inside a solid target. The
dynamics of ion stopping were observed due to the
implementation of high-brightness X-ray diagnostics at
high spectral and spatial resolution and due to the use
of solid aerogel (SiO2) targets of low density
(0.15 g/cm3).

We determined the velocity profiles of Ca19+ and
Ca18+ ions at target depth in the velocity interval from
0.16 to 0.06 of the velocity of light. The dynamics of
ion stopping for both charged states coincide to within
the experimental error. For a Ca6+ ion beam with the ini-
tial energies 5.9 and 11.4 MeV per nucleon, the exper-
imentally determined ion stopping range is 1.2 and
1.8 mm, respectively.

We have detected a redistribution of charged states
by measuring relative intensities of the corresponding
spectral lines. The maximum concentrations of H- and
He-like calcium ions are observed at a depth of 0.9 and
0.4 mm, respectively, which indicates that the process
Fig. 4. The results of measurements with allowance of the longitudinal Doppler shift component for two identical spectrometers
arranged symmetrically (±10°) relative to the normal to the ion beam. The ion velocities were determined using a difference ∆λRB
between the results of the red and blue shift observations.

(Å)
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of ionization for ions stopped in the aerogel target con-
tinues up to a depth of about 1 mm.
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A model is proposed for vortex pinning in a superconducting film with a rough surface. The model relates the
critical current to the steepness of the surface relief and, at a high vortex concentration, to the distance between
neighboring steepness maxima on the paths of vortex motion. The dependence of the critical current density on
the thickness of a high-Tc superconducting film is measured in a weak magnetic field. Its behavior can be
explained by the pinning at the stepped surface relief. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.78.-w; 74.25.Sv; 74.25.Qt
1. It is well known that, in good (continuous) super-
conducting films, the critical current density decreases
as the film thickness increases (see, e.g., [1]). There is
reason to assign this effect to the surface pinning (see,
e.g., [2, 3]). Namely, if the latter predominates over the
bulk pinning, it should balance the Lorentz force,
which acts over the entire length of the vortex line, i.e.,
is proportional to the integral of the current density over
the thickness. As a result, the effective (mean) critical
current density Jc is inversely proportional to the film
thickness D. However, there is no theoretical model that
accounts for the value of the critical current and the
character of its decrease with increasing vortex concen-
tration (approximately, as the inverse square root of the
concentration [4]). The existing theory [2] provides no
estimate for the critical current level and, in addition, it
assumes that the vortex concentration is high (so that
the distance between vortices is much smaller than D).

This paper reports the results of measuring the
dependence Jc(D) for high-Tc superconducting films in
magnetic fields below 1 Oe, i.e., in the conditions of a
sparse vortex system, to which the formulas derived in
[2] do not apply. The studies of the film surface showed
that it consists of terraces whose heights are multiples
of the unit-cell height.

A model proposed in this work for the vortex pin-
ning by the surface roughness is the simplest in the
sense that the vortices are described in the London
approximation and the superconductor is assumed to be
isotropic and homogeneous (the latter means that the
bulk pinning by the random potential of structural inho-
mogeneities is ignored). The interpretation of the
experimental results in terms of our model shows that
the measured critical current corresponds to the pinning
at the edges of the surface terraces.
0021-3640/03/7806- $24.00 © 20379
2. In Fig. 1, the empty circles correspond to the crit-
ical current density at a temperature of 77 K for four
YBaCu films of different thickness. The films belong to
the same series grown on the SrTiO3 substrates by laser
ablation. The critical temperatures of the films were
close to 86 K. The value of Jc was obtained from the
complex susceptibility of the films, which was mea-
sured in an alternating field Hac ≤ 0.8 Oe with a fre-
quency of 10 kHz in the absence of a bias field (more
precisely, in the terrestrial magnetic field). The experi-
mental technique and the method of determining Jc

were described in [5, 6]. The curve shown in Fig. 1 rep-
resents the theoretical dependence Jc(D) derived below.

Fig. 1. Experimental (empty circles) and theoretical (solid
line) dependences of the critical current density Jc of
YBaCu films on their thickness D. The inset is explained in
the main body of the paper (Section 2).
003 MAIK “Nauka/Interperiodica”
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Using atomic force microscopy, we studied the sur-
faces of 20 films which had the same thickness of
100 nm and were grown under similar conditions. The
inset in Fig. 1 shows the average step height 〈h〉  of the
surface relief in units of unit-cell height versus the sam-
ple number in order of increasing 〈h〉 . Despite averag-
ing, these data clearly demonstrate the stepped struc-
ture of the surface relief (also observed in, e.g., [4, 7]).

3. A simple surface pinning mechanism is quite evi-
dent. Vortices intersecting the surface roughness are
forced to locally increase their length and, hence, their
energy. As a result, the surface roughness gives rise to a
potential barrier network. Let us analyze the efficiency
of this mechanism.

Let the film lie in the XY plane and let a (transport or
Meissner) supercurrent flow through the film along the
Y axis, so that it moves the vortices (which “pierce” the
film) in the X direction. Surface corrugation transverse
to the current would not lead to the vortex pinning. For
this reason, we consider a film with a surface corru-
gated transverse to the vortex motion, as shown in
Fig. 2. Evidently, the maxima of the model relief shown
in Fig. 2 must be identified not with the maxima of the
actual two-dimensional roughness but with its saddle
points (maxima in X for the minima in Y). Correspond-
ingly, φ is the characteristic angle of ascending to the
saddles. Further, we assume that the condition h ! λ is
satisfied, where λ is the penetration depth and h is the
saddle height. The ratio of h to the minimal thickness D
(see Fig. 2) is not necessarily small, and, therefore, we
introduce the mean thickness  = D + h/2. In the case
of a layered high-Tc superconductor film with the axis
C || Z, the quantity λ should be interpreted as λa, b.

Since vortex bending in the YZ plane is energetically
unfavorable, the vortex core lies in the XZ plane; i.e., it
can be parametrized by a certain function x = X(z). If
the surface relief is given by the function z = Z(x) and

D

Fig. 2. Schematic representation of the film cross section
along a chain of minima and saddles of the surface relief by
the XZ plane that is perpendicular to the current direction.
The thick line represents the configuration of a vortex core
ascending the saddle.
the current density is denoted as J = J(x, z), the vortex–
current interaction energy is expressed as

(1)

(the general expression for Ei was discussed in [8, 9]).
Under the condition h ! λ, the current is virtually inde-
pendent of x and remains constant in the roughness
region:

(2)

where  is the mean current density (the relative cor-
rection to Eq. (2) caused by the roughness does not
exceed ~hmin(D, λ)/4λ2).

Exact expressions for the self-energy Es of Abriko-
sov vortex in a film (plate) of an arbitrary thickness can
be obtained from the formulas presented in [10, 8]. We
use the “local approximation” for the self-action of a
bent vortex. Within the framework of this approxima-
tion, the energy Es is proportional to the vortex core
length L:

(3)

Here, e is the vortex elasticity (energy per unit core
length); Ee is the energy of vortex ends [8], i.e., the
energy of the vortex magnetic field outside the super-
conductor (its value is approximately constant); and
other notation is standard. This approximation was
used (see, e.g., [2, 8, 9, 11, 12]) starting at least with
[13]. Computer calculations confirm that its error does
not exceed a few percent even when the core curvature
radius is small, R ~ 0.1λ [9].

Equations describing the evolution of curved vorti-
ces were considered in [9]. We are interested only in the
stationary states of a plane-curved vortex. In such a
state, the sum of all forces acting on the core is zero,
δE/δX = 0, where E = Es + Ei is the total vortex energy.
Let us introduce the characteristic current-density
scale:

In approximation (3), we obtain

(4)

Here, R = R(t, z) is the local curvature radius of the core
(its positive values correspond to the rightward convex
of the core) and the prime denotes differentiation with
respect to z: X ' ≡ ∂X/∂z, X '' ≡ ∂2X/∂z2. The boundary
conditions to the equation δE/δX = 0 consist in that the
core be perpendicular to the surface at the points where
it reaches the surface [13] (this is a result of the interac-

Ei
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tion of the core ends with their reflections in the super-
conductor boundary, i.e., with the deformation of the
vortex self-current lines near the boundary [9]).

For the stationary configuration, Eq. (4) with the
substitution of Eq. (2) and integration with respect to z
yields

(5)

Here, Z is the z coordinate of the core intersection with
the upper (corrugated) surface. The expression takes
into account that |Z – | ! λ, because h is small. By
virtue of the aforementioned boundary conditions, we
have X'(0) = 0 at the lower (flat) surface. As for the
upper surface, the left-hand side of Eq. (5) can be
reduced to the form:

(6)

where φ(Z) is the roughness slope at the point of core
intersection with the surface. Equation (5) has solutions
only when the mean current density is sufficiently
small:  < Jc. If the relief of saddle chain is described
by a smooth function Z(x), the desired root of Eq. (5)
lies between the levels D and z0 = Z(x0), where x0 is the
inflection point of Z(x). From Eqs. (5) and (6), we
obtain the following estimate of the critical current den-
sity Jc for both thick (  * λ) and thin (  ! λ) films:

(7)

where φmax is the maximal saddle slope (at the inflection
point).

4. For illustration, we consider a piecewise linear
relief shown in Fig. 2 for the case of a thin film (D & λ),
where J ≈ const. Then, the equality δE/δX = 0 means
that the core of a pinned vortex has the form of a seg-
ment of a circle with radius

(8)

The upper end of the core is exactly at the base of the
slope, i.e., ∆X = 0 in Fig. 2. In fact, from the orthogo-
nality of the core to the surface and from simple geo-
metric considerations (see Fig. 2), it follows that, in the
case of a displacement ∆X > 0, the curvature radius of
the core should be equal to

(9)

i.e., it should differ from radius (8). One can readily see
that vortex pinning becomes impossible if the radius
Rstac, when decreasing with growing J, becomes equal
to Rc. Then, for the critical current density, we obtain

(10)
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To verify the above statements, we calculate the energy
difference ∆E between the pinning state characterized
by radius (8) and zero displacement ∆X = 0 and the
depinning state with radius (9) and a small positive dis-
placement ∆X > 0. Simple calculations give

(11)

where Jc is given by Eq. (10). The ∆X-independent part
of ∆E (two first lines in Eq. (11)) represents the poten-
tial barrier between the pinning state and the critical
state with the radius of curvature Rc and zero displace-
ment (in the case of a smooth relief, the critical state
corresponds to the situation where the core intersects
the surface at the inflection point of Z(x)). The
∆X-dependent part of ∆E represents the barrier between
the critical state and the depinning state. Both ∆E com-
ponents are positive if the current density is smaller
than its critical value given by Eq. (10), and they
become equal to zero at J = Jc. Hence, when J < Jc, state
(8) corresponds to the local minimum of the total
energy functional and, therefore, is stable.

The application of Eq. (5) to the given relief shows
that Eq. (10) is also valid for a thick film. In any case,
one can see that the critical current density is inversely
proportional to the effective thickness. The latter may
take on any value between D and D + h, depending on
the type of roughness.

5. The interaction of vortices is essential if their
number is greater than the number of valleys in the sur-
face relief, i.e., if

(12)

where n is the vortex concentration and Bz is the corre-
sponding magnetic induction. The problem of collec-
tive pinning by real roughnesses is nontrivial, because
the vortex lattice is inhomogeneous in all three coordi-
nates. Here, we only consider the following estimate.

We assume that the film is divided into cells with
length d and area d2, which are bounded along the X
axis by the neighboring saddles (see Fig. 2), along the
Y axis, by similar saddles, while the corners of the cells
correspond to the relief peaks. Evidently, ~N vortices

occurring in the cell form ~  rows with ~  vorti-
ces in each of them. In the presence of pinning, only the
extreme (right-most) vortex of each row is pinned to the
potential barrier (saddle), while the inner vortices are
held by it. The latter means that the force with which
the extreme vortices act on the inner ones compensates
the transport current force. If the extreme vortices had
the same configuration as the inner ones, they would
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have experienced a counteracting force of approxi-
mately the same magnitude. Consequently, in the vicin-
ity of the extreme vortex core, in addition to the current

J, an extra current whose average value is about J
flows in the same direction. Therefore, the configura-
tion of the extreme vortex is determined by the total

current Jsum ≈ J + J  (as well as by the geometry of
the obstacle). The pinning is possible unless the
Lorentz force caused by this current is smaller than the
elastic force due to the distortion and stretching of the
core.

Thus, to estimate the critical current, we return to
the previous consideration by replacing J by Jsum. As a
result, we obtain

(13)

Here, we ignored the effect of the vortices from other
cells, which is possible when the distribution of Bz is
macroscopically homogeneous and the currents of
these vortices in a given cell compensate each other. If
the homogeneity is violated, the local pinning condition
will have the form

where Jnu is the inhomogeneity-caused addition to the
local current density.

6. The situation becomes different when the steep-
ness of the relief has several maxima, e.g., when the
ascent to a saddle consists of several steps (see the inset
in Fig. 2). Then, a vortex row may fall into several
trains, each of which is pinned by one of the steps. In
this case, the angle determining the pinning force is
actually close to 90°. Correspondingly, in estimates
(13), (7), and (10), sinφ should be replaced by unity and
the length scale d should be replaced by the typical step
width δ (see the inset in Fig. 2). The average slope of
the ascent will be indirectly included in the result
through δ.

Strictly speaking, real steps (see above) are too
small to trust the London approximation. However, one
can expect that, in any more adequate theory, the possi-
bility of an easy exit of the vortex magnetic flux
through the gap between an undistorted superconduct-
ing plane and a plane interrupted by a step will cause
the vortex line (the phase singularity line of the order
parameter) to bend approximately in the same way as in
the situation considered above. Then, the estimates
given above should remain valid.

It is important to note that a small step height does
not lead to a smallness of the depinning potential bar-
rier, because the process is determined by the interplay
of the whole core length and the whole film thickness.
For a step, according to Eq. (11), we can write

(14)

N

N

Jc
ec

Φ0D
----------- φsin
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i.e., the barrier height is determined by an energy scale
that is giant in terms of temperature units: eD ~ 104–
107 K. The quantity given by formula (14) may even
exceed the barrier of the bulk pinning by line defects
threading the film (see, e.g., [12]).

At the same time, unlike the bulk pinning, surface
pinning does not require any rigid fixation of the core.
The amplitude of core deformations that may occur at
pinning by steps is comparable with D, i.e., almost
always much greater than the amplitude of thermal

fluctuations of the core, δX ~ , where T is tem-
perature (this estimate can easily be obtained in terms
of approximation (3)). This means that the difference
between the configuration entropies of the core in the
states under the barrier and beyond the barrier is not as
great as in the case of the pinning by line defects.
Hence, the surface pinning must be less affected by
depinning due to thermal fluctuations (the entropy
instability [12]).

7. Comparing the theory and the experiment, it is
worthwhile to take into account the possibility of one or
another correlation between the film thickness and the
film surface structure, specifically, between the param-
eters d and φ or δ. Otherwise (without information on
the steepness of the surface relief) an unambiguous
comparison of the theoretical and experimental depen-
dences of Jc on D is impossible. Since the actual relief
is random, a question arises: what statistical meaning
should be ascribed to the aforementioned parameters?
The most suitable answer seems to be one in terms of
the percolation theory: φ is the minimal angle (d or δ is
the maximal width) such that the saddles with smaller
slope angles (greater widths) form a continuous net-
work of paths (an infinite cluster).

One should also take into account violations of film
continuity, which are possible in thin films with D <
100 nm (see [1]) and may cause changes in the effective
values of d or δ. In addition, if the bulk pinning is con-
siderable (e.g., pinning by dislocations or pores), its
contribution should be included in the theoretical esti-
mates of Jc when comparing them with the experiment.
According to Eq. (10), if Jc is much greater than
ec/Φ0D, such a contribution must be present.

In our case (see Section 2), the parameters d and/or
δ drop out of consideration. Judging from the micros-
copy data, thin and thick films had approximately the
same structure and surface quality. Hence, we can use
formula (10). The solid line in Fig. 1 showing the theo-
retical dependence of Jc on D was plotted using this for-
mula at λ/ξ = 90° and sinφ/λ2 = 4.8, where λ is in
microns. From the latter equality, substituting the esti-
mate of the penetration depth λ ≈ 0.45 µm at T = 77 K
and Tc = 86 K, we obtain sinφ ≈ 1.

8. Thus, we showed that the critical current of an
individual surface pinning is determined by the elastic-
ity of the vortex line and the angle of ascent of the ele-
vations (saddles) of the surface relief. For collective

TD/e
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pinning in a dense vortex system, the number of vorti-
ces in a train pinned by one elevation is also essential.
The maximal effect is achieved at a stepped relief,
while the potential barrier of depinning is governed by
the film thickness and is independent of the step height.

The comparison of theory and experiment (illus-
trated in Fig. 1) and the above discussion suggest the
following conclusions: first, the theory and the experi-
ment prove to be in good agreement, and, second, the
level of the measured critical current can be understood
in terms of the geometric surface pinning by stepped
relief without considering the bulk pinning.

This result justifies the neglect of the internal inho-
mogeneity of the film in our consideration. At the same
time, it underlines the topicality of studying the interac-
tion of surface and bulk pinning mechanisms (in this
connection, see, e.g., [3]).
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We show that many observable properties of high-temperature superconductors can be obtained in the frame-
work of a one-dimensional self-consistent model with included superconducting correlations. Analytical solu-
tions for spin, charge, and superconductivity order parameters are found. The ground state of the model at low
hole doping is a spin–charge solitonic superstructure. Increased doping leads to a transition to the supercon-
ducting phase. There is a region of doping where superconductivity, spin density wave, and charged stripe struc-
ture coexist. The charge density modulation appears in the vicinity of vortices (kinks in the 1D model) in the
superconducting state. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.20.Mn; 75.30.Fv; 74.25.Qt; 72.15.Nj
Recently discovered stripe phases in doped antifer-
romagnets (cuprates and nickelates) [1] have attracted
attention to the problem of coupled spin and charge
order parameters in the electron systems. Theoretical
[2–5] and experimental [6–10] evidences indicate the
possibility that their ground state exhibits spin and
charge density waves (SDW and CDW), either compet-
ing, or coexisting with superconductivity. Numerical
mean-field calculations [2–4] suggest a universality of
the spin–charge multimode coupling phenomenon in
repulsive electronic systems of different dimensionali-
ties. Families of the cuprate high-transition-tempera-
ture superconductors show antiferromagnetism and
superconductivity. For the La2 – xSrxCuO4 family, there
is another ordering tendency—unidirectional charge–
spin density waves, i.e., “stripes.” The recent neutron
scattering experiment of Lake et al. [6] shows that mod-
erate magnetic field makes fluctuating stripes quasi-
static. An important development in the theory of the
cuprate superconductors is the prediction that, in addi-
tion to antiferromagnetism and superconductivity, there
is a tendency toward stripe ordering [2–4]. This predic-
tion is corroborated by experiments [1, 11]. A recent
neutron scattering experiment shows that a moderate
magnetic field can turn a fluctuating stripe order into a
quasi-static one in optimum doped cuprates [7]. The
vortex state can be regarded as an inhomogeneous mix-
ture of a superconducting spin fluid and a material con-
taining a nearly ordered antiferromagnet.

In this paper, we present the one-dimensional effec-
tive model describing stripe phase at low hole doping
and superconductivity state at higher doping. An exact

¶This article was submitted by the author in English.
0021-3640/03/7806- $24.00 © 20384
analytical solution of the Hartree–Fock problem at and
away from the half-filling is found. Our theory predicts
an amazing duality between the spin density wave and
superconducting order, and implies the presence of
stripes near a superconducting vortex, and supercon-
ductivity near a stripe dislocation.

The Hamiltonian H = H0 + Hs consists of two parts:
the Hubbard Hamiltonian with on-site repulsion U > 0:

(1)

and the interaction part including superconducting cor-
relations

(2)

where ∆s is the superconducting order parameter and µ
is the chemical potential. The case of the Hubbard
model (1) was considered in detail earlier [12]. The
self-consistent analytical solution for the charge–spin
solitonic superstructure was found to be a function of
hole doping. It was shown that effects of commensura-
bility led to a pinning of stripe structure at rational fill-
ing points |ρ – 1| = m/n.

In the continual self-consistent approximation, the
effective Hamiltonian can be derived similarly [12]. We
obtain

H0 t ci σ,
† c j σ,

i j,〈 〉 σ
∑ U n̂i ↑, n̂i ↓,

i

∑ µ n̂i σ, ,
i σ,
∑–+–=

Hs ∆s i( )ci ↑,
† ci ↓,

†

i

∑ h.c.,+=

H x Ψσ
† i

∂
∂x
------– 

  σ̂zΨσ ∆ x( )Ψσ
† σ̂+Ψσ+





d∫=
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(3)

where λ = 2α/π is a dimensionless spin coupling con-
stant, λs is a dimensionless superconductor coupling
constant,  are the Pauli matrices,  =  ± ,
α = U/4t; the Plank constant is taken as unity, and the
length is measured in the units of the lattice (chain)
period a. In these units, momentum and wave vector are
dimensionless, and velocity and energy possess one

and the same dimensionality. The vector  ≡ (Ψσ+,
Ψσ–) is defined in terms of the right–left-moving Ψσ±,
which constitute the wave function

, (4)

where σ = ±1 for a spin ↑  and ↓ , respectively. The
Fermi-momentum is kF = π /2, where, in the case of
half-filling, the average number of electrons per site
equals  = 1, i.e., kF = π/2. The slowly varying real
functions ∆(x) and ρ(x) are defined as  = ρ(x),

 = –∆(x)cos(πx)/α. The continual approxima-
tion requires that α, λ, λs ! 1 (weak coupling limit).
Note that the constraint λ = 2α/π for the Hubbard
model is not necessary in a general case, our results
remain valid for independent α, λ, λs ! 1.

Introduce  and  as ρ(x) =  + (x),  = 0.

Then, the term  in Eq. (3) is the shift of the

chemical potential or the energy, and the term 
can be excluded by the unitary transformation (see [12,
13])

Under this transformation, the spin order parameter

modifies as ∆(x)  exp ∆(x).

We can diagonalize the total Hamiltonian H = H0 + Hs

by performing unitary Bogoliubov transformations

, (5)

+ ∆* x( )Ψσ
† σ̂–Ψσ αρ x( )Ψσ

† Ψσ+

+ ∆s Ψ+ ↑,
† Ψ– ↓,

†– Ψ– ↑,
† Ψ+ ↓,

†+( )

+ ∆s* Ψ– ↓, Ψ+ ↑,– Ψ+ ↓, Ψ– ↑,+( )

+ ∆ 2

πλ
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∆ s
2

πλs
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α
2
---ρ2–+
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,

σ̂z x, 2σ̂± σ̂x σ̂y

Ψσ
T

Ψσ x( ) Ψ+ σ, e
ikFx

σΨ– σ, e
ikFx–

+=

ρ

ρ
n̂ x( )〈 〉

Ŝ
z

x( )〈 〉

ρ ρ̃ ρ ρ̃ ρ̃ x( ) xd∫
αρΨ†Ψ

αρ̃Ψ†Ψ

Ψ± x( ) iα ρ̃ x'd

x
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 

Ψ± x( ).exp

2iα ρ̃ x'd
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Ψσ x( ) γn σ, un σ, x( )
n

∑ σγn σ–,
+ v n σ–,* x( )–=
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which have the form

(6)

in terms of right and left components u±, v± defined as

(7)

New operators γ, γ+ satisfy the fermionic commuta-
tive relations {γn, σ, } = δm, nδσ, σ'. The transforma-
tions (5) must diagonalize the Hamiltonian H:

(8)

where Eg is the ground state energy and en > 0 is the
energy of excitation n.

Following [14], we obtain the eigenvalue equations

(9)

where

χT = (u+, u–, v+, v –), and self-consistent conditions

(10)

(11)

(12)

where f = 1/(exp[e/T] + 1). We omitted spin indices
since, in our representation for wave functions, all
equations are diagonal over spin.

At first, consider homogeneous state with constant
∆ = |∆|exp[iϕ], ∆s = |∆s|exp[iϕs], and ρ(x) =  ≡ N/L.
The average spin density has the form 〈Sz〉 ∝

Ψ± σ, γn σ, u±

n
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+ v +−*±=
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Re(∆exp(2ikFx)). Neglecting trivial dependence on ,

we obtain two branch spectrum  = k2 + (|∆| ± |∆s|2)2,
with wave functions u, v  ∝  exp[ikx] satisfying the sym-
metry relations

(13)

The self-consistent equations read

(14)

where F± = [(|∆| ± |∆s|)/e±]tanh[e±/T]. At zero tem-

perature, we obtain

(15)

The second equation is derived from the first one by
substituting λ  λs, ∆  ∆s. The minimum of the
ground state energy Eg is achieved at the state ∆ =
2eFexp[–1/λ], ∆s = 0 for the case λ > λs, and ∆s =
2eFexp[–1/λs], ∆ = 0 for the case λ < λs.

In general, parameters λ, λs depend on the doping
concentration h = |ρ – 1|. It is well known that the cou-
pling constant λ monotonically decreases with doping
from λ0 at ρ = 1 to the value λ0/2 in the limit |ρ – 1| @
∆/vF (due to the absence of Umklapp scattering at ρ ≠ 1)
[15]. If we suppose that the superconducting part Hs

comes from neighboring site repulsion (as considered
for 2D CuO plane model) Hs ~ Vρnρn ± 1, then the self-
consistent equation becomes ∆s ~ V〈Ψn, ↓Ψn ± 1, ↑〉 
2VcoskFa〈Ψ↓(x)Ψ↑(x)〉  in the continual approximation.
The coupling constant λs ~ (2/π)Vcos(πρ/2) increases
with hole doping h = 1 – ρ. If the ground state of an
undoped system is antiferromagnet state (λ > λs), phase
transition to the superconducting state will take place at
some doping hc where λ = λs. Two phases (SDW and
SC) with ∆ = ∆s ≠ 0 can coexist at this point. For
detailed investigation of the phase transition, more rig-
orous consideration of quantum fluctuations is neces-
sary.

So far, we have considered the uniform state with ∆,
∆s = const. Since symmetry relations between wave
function components (13) are independent of absolute
values (|∆|, |∆s|), we assume that these relations are
valid also in a general case of nonuniform order param-
eters. Substituting (13) to (9), we obtain, in the case of
constant phases ϕ, ϕs, equations

(16)

where uT = {u+, u–},  = (∆ ± ∆s)exp[iϕ]. These equa-
tions are eigenvalue equations for the Peierls model and

ρ
e±

2

v + u– i ϕ ϕ s–[ ] ,exp±=

v – u+ i ϕ ϕ s+[ ] .–exp±=

∆ λ
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--- F+ F–+[ ] , ∆s
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4eF
2
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∆ ∆s+
--------------------- .log+=

–iσz
d
dx
------ ∆̃σ+ ∆̃*σ–+ + u eu,=

∆̃

                        
were studied in [15, 16]. The dependence on ρ in (1)
was excluded by means of wave function transforma-

tion u±, v±  exp u±, v±. The term

 in the total energy Eg is responsible for com-

mensurate effects and pinning of the system at rational
doping (h = m/

 

n

 

) points [12].

Consider the system with 

 

λ

 

 > 

 

λ

 

s

 

. At  = 1, the
ground state is an antiferromagnet with constant 

 

∆ 

 

= 
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0

 

,

 

ρ 

 

= , and 

 

∆

 

s

 

 = 0. As a result of doping, kink states are
formed with local level 

 

e

 

 = 0 at the center of the gap 2

 

∆

 

.

The single kink solution of (1) is  = 
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/2) with
arbitrary shift 

 

a

 

. The wave functions and the excitation
spectrum read

(17)
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where 
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/2. The order parameters 
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form

For the case 
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 = 0, we obtain 
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tanh
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1/cosh
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. It is the one stripe solution found in [12].
The shift 0 < 

 

a

 

 

 

! 

 

1 leads to the appearance in the region
around the stripe of 

 

∆

 

s

 

 

 

≠

 

 0, so that 

 

ρ ∝

 

 1/cosh2∆0x, ∆s ∝
a/cosh2∆0x. The quasiparticle spectrum is independent
of a; therefore, the equilibrium position a is defined by
minimization of the potential energy

(19)

The minimum of energy (19) is reached at a = 0 for γ ≡
απλλs/4|λ – λs| – 2.5 < 0. For small a, the inequality
γ < 0 is possible if λ and λs are not very close to one
another (|λ – λs| * αλλ s). The nontrivial minimum a ≠ 0
exists only in the small region |λ – λs| & αλλ s around
the transition point λ = λs, where γ > 0. Stripe and
superconductivity phases coexist in this region: ∆s, ∆,

ρ(x) ≠ 0. The equilibrium shift a is small—a ∝   if
γ ! 1—but it logarithmically diverges a ∝  logγ in the
limit λs  λ.
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So, we find that increased doping for the system
with λ > λs, γ < 0 at ρ = 1 leads to the formation of a
periodic structure of charged kinks ∆ = ∆0tanh∆0x,
which acquires the form h = |ρ – 1| @ vF/∆0 [12]

where K(k) is the elliptic integral of the first kind,
sn(., k) is the Jacobi elliptic function, |  – 1| =

∆0/2K(k) .

The superconducting order parameter ∆s ≠ 0 appears
in the case considered at some higher doping level
where γ becomes positive. In a small region, |λ – λs| &
αλλ s around the transition point λ = λs, where γ > 0,
superconductivity and spin/charge orders coexist: ∆s, ∆,
ρ(x) ≠ 0. In the particular case of a model with α = 0,
this region is reduced to the point h = hc. A more com-
plicated analysis beyond the scope of the used mean
field approximation is required at this point to take into
account strong quantum fluctuations, including the zero
mode due to the degeneration of the ground state with
respect to the shift a of two sublattices.

The opposite region λ < λs can be studied using the
duality properties of the model. It is easy to see that
eigenvalues en of equations (9) are invariant under
transformation ∆  ∆s. Indeed, if we simultaneously
exchange ∆  ∆s and u–(x)  v+(x) in Eq. (9), the
Hamiltonian (9) is not changed (without unimportant
terms with ρ(x)). Therefore, the ground state energy Eg

in (8) is invariant under the transformations ∆  ∆s,
λ  λs. Thus, we can apply solutions obtained above
for the superconductivity phase. We find that, in the
region γ > 0, the ground state is a superconductor with
∆s = const, ∆ = 0. The one-dimensional analogue of the
vortex in a two- or three-dimensional systems is the
kink: ∆s = ∆0tanh∆0x.

Due to the duality symmetry, the charge density ρ(x)
has the same expression as the kink in the spin density
wave. Therefore, we obtain that the charge density is
not zero in the vicinity of the kink

(20)

Similar to the previous case (λ > λs), we find that,
near the transition point (λ ~ λs, γ > 0), a stripe structure
can arise. In the limit 0 < γ ! 1, |  –1| @ ∆0/vF, we
obtain

To conclude, we have found the self-consistent mean-
field analytical solution for the ground state structure of

∆ ∆0 ksn ∆0x/ k k,[ ] , ρ x( ) ρ ∆2 ∆2
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ρ
k
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∆ x( ) π ρ 1– x, ρ̃ x( ) 2π ρ 1– x,cos∝sin∝

a γ.∝
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the quasi-one-dimensional electronic system with spin,
charge, and superconducting correlations. We have
found that, for an appropriate choice of parameters, the
ground state is a striped charge/spin density wave struc-
ture with low hole doping. The stripe configuration is
pinned at rational points |ρ – 1| = m/n with the pinning
energy ∝ exp(–Cn) substantial for small n, which can
lead to the stability of the stripe picture. The phase tran-
sition to the superconductivity state takes place at some
doping level. Both superconductivity and spin/charge
density wave order parameters can coexist in a small
region near this point.

The model is self-dual: The eigenfunction equations
are invariant with respect to transformations λ  λs,
∆  ∆s. Therefore, properties of a superconducting
state can be derived from the low doping consideration.
In particular, we found that charge stripes can exist in
low doping spin density wave state as in superconduct-
ing states, in the vicinity of spatially nonuniform con-
figurations of ∆s such as vertices (kinks in one dimen-
sion).

Though this one-dimensional model can be applied
to quasi-one-dimensional systems rather than to high-
temperature quasi-two-dimensional anisotropic super-
conductors, it shows some properties peculiar to high-
temperature superconductors (one-dimensional stripe
structure at low doping and superconductivity at a
higher doping, etc.). Therefore, our results can be use-
ful for understanding high-temperature phenomenon.
For describing anisotropic properties of real systems,
consideration of a two-dimensional model is required
to take into account the important contributions from
nodal quasiparticles.

I thank A.V. Balatsky, I. Martin, S.I. Mukhin, and
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of Spatial Modulation of Hyperfine Fields
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A complicated spin-echo spectrum was observed for 209Bi nuclei in a ferroelectric antiferromagnet BiFeO3 in
zero external field. This spectrum is the first example of nuclear quadrupole resonance of a system of diamag-
netic atoms in a hyperfine magnetic field produced by the spatially modulated Fe3+ spin system and varying in
orientation and magnitude. An attempt is undertaken to theoretically simulate the spectrum. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 76.60.Lz; 75.25.+z
Interest in bismuth ferrite BiFeO3 is caused by sev-
eral facts. First, in its properties, it is related to so-called
ferroelectric magnets, i.e., to the materials simulta-
neously possessing long-range magnetic spin and elec-
tric-dipole orders [1]. The interaction between the elec-
trical and magnetic subsystems renders BiFeO3 an
interesting object for studying the magnetoelectric
effect [2–4]. Second, it possesses a unique magnetic
structure with spatial spin modulation of the cycloid
type, which is quite uncommon for weakly distorted
cubic compounds with perovskite structure. The spin-
modulated structure was observed by neutron diffrac-
tion in [5] and confirmed recently by the 57Fe NMR
studies [6–8]. The appearance of ferroelectricity and
magnetic cycloid is in agreement with the symmetry of
the BiFeO3 unit cell, which, being “stretched” along
one of the threefold axes of an ideal perovskite cube,
transforms it into rhombohedron. The Fe3+ and Bi3+ cat-
ions are positioned in the cell in such a way that the cen-
ter of symmetry disappears, so that spontaneous polar-
ization can occur (Curie temperature TC ≈ 1118 K [9]).
The magnetic antiferromagnetic order appears in the
system of Fe3+ ions at a lower temperature (Néel tem-
perature TN ≈ 653 K). At T < TN, the unit-cell symmetry
of BiFeO3 is described by the space group R3c and by
the corresponding point-group symmetry 3m that con-
tains a threefold symmetry axis (c axis) and three lon-
gitudinal symmetry planes. The room-temperature
parameters of the bimolecular rhomohedral unit cell of
BiFeO3 are as follows: a = 3.96 Å and α = 89°28′ in the
hexagonal system with ahex = 5.5876 Å and chex =
13.876 Å [10]. A free-energy analysis of the magnetic
properties of BiFeO3 with allowance for the symmetry
0021-3640/03/7806- $24.00 © 20389
of BiFeO3 crystal suggests that the spatial cycloid-type
spin-modulated wave propagating with equal probabil-
ity in the longitudinal planes m with the wave vector
perpendicular to the c axis can appear at T < TN [11, 12].
In such a magnetic structure, the spin system retains the
G-type antiferromagnetic order in the nearest surround-
ings but changes along the cycloid propagation direc-
tion in such a way that the antiferromagnetic vector L
turns in the longitudinal symmetry plane with a period
λ = 620 ± 20 Å (according to [5]) that is incommensu-
rate with the lattice constant.

A change in the angle θ between L and the c axis
directed along the cycloid preparation (x axis) has the
form [11, 13]

, (1)

where sn(x, k) is the Jacobi elliptic function, k is its
parameter, and K(k) is the complete elliptic integral of
the first kind. The spatial rotation of the local hf field at
the 57Fe nuclei obeys the same law. The rotation of spin
system results in the hf-field anisotropy, which com-
prises about 1% of the total hf field at the 57Fe nuclei
(545 kOe at 4.2 K). The presence of this anisotropy and
the specific features of the hf-field density distribution
along the cycloid coordinate x (1) give rise to the 57Fe
NMR spectrum in a certain frequency interval with two
asymmetric edge absorption peaks and a characteristic
dip between them. The properties of this spectrum were
studied in [6–8].

Apart from the system of magnetic Fe3+ ions, the
BiFeO3 structure contains nonmagnetic Bi3+ atoms. An

µ θ x( )cos sn
4K k( )

λ
---------------± x k, 

 = =
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effort thus can be made to use the nuclei of the 209Bi iso-
tope, having 100% abundance and spin I = 9/2, as an
additional microscopic probe for gaining new informa-
tion about the spin-modulated structure in BiFeO3. The
data on such studies are lacking in the literature. In this
paper, the first results on 209Bi NMR in BiFeO3 are pre-
sented and analyzed. The preliminary results were
reported at the conference “Physics of Magnetism” on
July 1–5, 2002 (Poznan, Poland [14]).

Spin echo in zero external magnetic field was
observed using two radiospectrometers; one of them
was of the coherent type with accumulation and point-
by-point frequency scanning, and another was an ISSh-
1-13M spectrometer of the superheterodyne type
(designed at the Special Design Office of the Institute
of Radio Engineering and Electronics, Russian Acad-
emy of Sciences) with a continuous record of the echo
amplitude as a function of frequency. Three samples of
crushed BiFeO3 ceramics prepared by the same stan-
dard technique, though at different times, were studied.
They differed only in the degree of 57Fe-isotope enrich-
ment: 95.43, 10.0, and 2.2 (natural abundance) wt %
and were designed for studying the iron NMR spectra.
All earlier iron NMR studies [6–8] were repeated on the
sample with 95.43% of 57Fe. More detailed data on the
sample preparation and certification are presented in
the cited works.

The 209Bi spin echo spectrum of BiFeO3 at 4.2 K is
shown in Fig. 1. It spans a broad frequency range (40–
130 MHz) and consists of many asymmetric lines. With
a rise in temperature, the echo-signal intensity
decreases rapidly, because the spectrum-averaged
spin–spin relaxation time T2 shortens from 36–50 µs at
4.2 K to 3–10 µs at 10 K. At higher temperatures, the
spectrum becomes unobservable. Note that such a com-
plicated structure of the spectrum was repeated exactly

Fig. 1. The experimental 209Bi spin echo spectrum in
BiFeO3 at 4.2 K (points) and its theoretical simulation
(shifted to the bottom of the figure).
for all three BiFeO3 samples prepared at different times
and was confirmed by the independent measurements
on both spectrometers.

If the 209Bi nuclei are subjected to a uniformly
directed local magnetic field Hloc, whose Zeeman
energy far exceeds the quadrupole energy, the NMR
(AFMR) spectrum of the 209Bi nuclei with spin I = 9/2
must consist of nine lines: the most intense central line
at the so-called Larmor frequency νL corresponding to
the Hloc at the 209Bi nuclei and eight side lines (four
pairs situated to the right and left of the central line)
with decreasing intensities. However, the observed
spectrum obviously differs from this simplest situation.
It is structurally much more complicated, which can
naturally be explained by the spatial variation of the
direction and magnitude of Hloc in BiFeO3.

The local field Hloc at the 209Bi nuclei was estimated
from the frequency of maximal intensity in the middle
portion of the spectrum near 85 MHz to give a value of
124 kOe (the gyromagnetic ratio of the 209Bi nucleus is
γ/2π = 0.6842 MHz/kOe).

To analyze the reasons for the appearance of a
strong local field Hloc at the 209Bi nuclei, we consider
the structural data. In a rhombohedrally distorted per-
ovskite, to which BiFeO3 belongs, the 209Bi nuclei can
be subjected both to the inhomogeneous electric fields
of the surrounding atoms (quadrupole interaction) and
to the hf magnetic and dipole fields. The Fe environ-
ment of the Bi atom in BiFeO3 is schematically shown
in Fig. 2, according to the data from [15] (oxygen atoms
are not shown). The Fe and Bi atoms form a chain along
the c axis with alternating separation k = 3.0617 Å and
l = 3.872 Å. The remaining six Bi–Fe distances are
3.3071 Å (three m bonds) and 3.5793 Å (three n bonds).
The Fe atoms form layers perpendicular to the c axis,
with the parallel spin orientation within each layer (at a
given cycloid point) and the antiparallel orientation
between the neighboring layers. Note that the magnetic
contributions in an undistorted cubic perovskite are
mutually compensated because of the perfect cubic Fe
environment of the Bi atoms (k = l = m = n). For the
same reason, the electric field gradient (EFG) should be
zero. It follows from Fig. 2 that the low-symmetric
arrangement of the neighboring magnetic Fe atoms in
the BiFeO3 structure provides not only a nonzero EFG
at the 209Bi nuclei, but also a nonzero contribution to the
local field from both the dipolar interaction (Hd) and the
direct hf-field transfer Htr: Hloc = Hd + Htr. Since the
dipole field in magnetic oxides usually does not exceed
a few kOe, the experimentally observed high value
Hloc = 124 kOe should be assigned mainly to the hf field
Htr appearing as a result of the uncompensated hf-field
transfer due to the overlap between the orbitals of the
neighboring Bi3+ and Fe3+ atoms along the k, l, m, and
n bonds.
JETP LETTERS      Vol. 78      No. 6      2003
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We will calculate the spectrum with allowance for
the fact that the polar angle θ between the magnetic
field Hloc and the EFG principal axis (c axis) in our case
is not a constant value but changes following Eq. (1);
i.e., it is a function of the coordinate x along the cycloid
propagation direction. To simplify the calculation, we
assume that the azimuthal angle between Hloc and the
EFG axis and the EFG asymmetry parameter are zero.
We also ignore the possible dependence of Hloc on the
angle θ (Hloc anisotropy).

Under these conditions, the resonance m  m – 1
transition frequency is equal, in the approximation of a
high magnetic field and quadrupole perturbation, to

(2)

where νQ is the quadrupole frequency and m is the mag-
netic quantum number. From Eq. (2) it follows that

(3)

where eQ is the nuclear quadrupole moment (e is the
electron charge), eqzz is the EFG component along the
axis z || c, and h is the Planck’s constant.

The line shape in the δ-function approximation is
sought in the form

(4)

From Eqs. (1) and (3) one obtains

(5)

(6)

Substitution of Eqs. (5) and (6) into Eq. (4) gives

(7)

Function (7) has singularities at the following frequen-
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The theoretical spectrum shown by the solid line at
the bottom of Fig. 1 is the superposition of spectra (7)
corresponding to all m  m – 1 transitions of spin
I = 9/2. The spectrum was calculated in the reduced
coordinates and superposed on the experimental spec-
trum so as to obtain approximate agreement with the
experiment for the side peaks on both sides of the cen-
tral peak at frequency νL ≈ 85 MHz corresponding to
Hloc = 124 kOe. The best agreement between the exper-
imental and theoretical spectra is achieved for the cyc-
loid anharmonicity parameter k = 0.95, which coincides
with the value obtained earlier from the iron NMR
spectra [6–8].

In conclusion, we should state that, despite the
apparent similarity of the spectra, the assumptions
adopted in our calculations proved to be insufficient for
the experimental and theoretical spectra of the 209Bi
nuclei in BiFeO3 to be adequate. In particular, this
refers to the neglect of the Hloc(θ) anisotropy, which
plays an important part in the formation of the iron
NMR spectrum. Recent 57Fe NMR studies in BiFeO3
have shown [8] that the spatial modulation of iron mag-
netic moments is accompanied by the modulation of the

ν3 νL
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---νQ m

1
2
---– 

  3

k2
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 The Bi atom (central circle) surrounded by the Fe
atoms (black circles) in the BiFeO
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spin–spin interaction and the local line width, indicat-
ing that these factors must be taken into account in the
spectrum analysis. In this connection, we note that
measurements of the 209Bi spin–spin relaxation times in
different spectral intervals at 4.2 K showed that the T2
values differ substantially for peaks and dips (for exam-
ple, T2 ≈ 50 µs at the maximum at 85 MHz and T2 ≈
36 µs at the minimum at a frequency of 88.2 MHz; see
Fig. 3). In addition, the dynamic interactions between
nuclei should reveal themself at the temperature of liq-
uid helium in systems with a 100% abundance of mag-
netic isotope, which also can affect the structure of the
spectrum. These problems should be clarified in further
studies.

This work was supported by the Russian Foundation
for Basic Research, project no. 02-02-16369.

Fig. 3. Curves for echo decay with increasing the time inter-
val τ12 between the pulses, as measured at frequencies of 85
and 88.2 MHz. The initial amplitudes are normalized to the
same value.
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Structural Transformations in Liquid, Crystalline, 
and Glassy B2O3 under High Pressure¶ 
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We present in situ (x-ray diffraction) and ex situ (quenching) structural studies of crystalline, liquid, and glassy
B2O3 up to 9 GPa and 1700 K, drawing equilibrium and nonequilibrium phase diagrams of B2O3. Particularly,
we have determined the melting curve, the stability regions for crystalline B2O3 I and B2O3 II modifications,
the regions of transformations, such as densification or crystallization, for both the liquid and glassy states,
including the region of sharp first-order-like transition in liquid B2O3 to a high-density phase near 7 GPa.
Quenching experiments also show that the transition to the high-density liquid can occur at much lower pres-
sures in nonstoichiometric melts with an excess of boron. B2O3 is the first glassformer whose transformations
in the disordered state have been comparatively studied for both liquid and glassy phases. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 64.70.Kb; 62.50.+p; 61.43.-j; 61.50.Ks
1. In contrast to phase transitions in crystals, trans-
formations in disordered condensed media, such as liq-
uids and glasses, have not been adequately studied to
date at broad variations of temperature and pressure [1].
There are very few examples of disordered substances
with sharp structural changes and thermodynamic
anomalies under pressure, e.g., the melts of P, Se, Bi,
and Te, supercooled melts of Si and Ge, supercooled
water and amorphous ices [1], which could be clearly
associated with transformations similar or equivalent to
the first-order transitions. For the amorphous ice H2O
[2] and liquid phosphorus [3], the macroscopic mixture
of two amorphous or liquid phases, respectively, was
observed at the transformation, which is direct evidence
for the first-order phase transition. However, in the
majority of simple liquids, such as melts of alkali met-
als, and in ordinary glasses, such as a-SiO2 and a-GeO2,
broad transformations between two disordered states
are observed under pressure [1, 4, 5]. Only for H2O ice
and water are the structural changes in liquid and disor-
dered solid states clearly compared (e.g., see [1] and
references therein). For glass-forming substances, there
are still no examples of simultaneous comparative stud-
ies of phase transformations in the liquid and glassy
states, due to high melting temperatures of readily
glass-forming substances, like SiO2 and GeO2 and, on
the other hand, due to low stability temperatures of ele-
mentary amorphous substances and glasses based on P,
Se, Bi, and Te.

¶ This article was submitted by the authors in English.
0021-3640/03/7806- $24.00 © 20393
In the present work, boron oxide B2O3 is chosen for
study of transformations in the disordered medium.
This substance easily vitrifies and, at the same time, has
low melting temperature Tm ≈ 750 K at normal pres-
sure. The glass and melt of B2O3 have network struc-
tures that in many respects makes them similar to
archetypical glasses and melts, such as SiO2 and H2O
[6]. Stable B2O3 I crystalline phase (sp. gr. P31, a =
4.336 Å, c = 8.340 Å, and density ρ ≈ 2.55 g/cm3) has
a structure consisting of “ribbons” formed by B2O3 tri-
angles [7]. The denser B2O3 II phase (sp. gr. Ccm21, a =
4.613 Å, b = 7.803 Å, c = 4.129 Å, and ρ ≈ 3.11 g/cm3

at normal conditions), with an orthorhombic structure
based on distorted BO4 tetrahedrons, can be synthe-
sized at high pressures (P > 4 GPa) and temperatures
(T > 1000 K) [8]. The threefold boron coordination 3
(by oxygen) and the twofold oxygen coordination 2 (by
boron) in B2O3 I are changed to 4 and to an intermediate
between 2 and 3, respectively, in B2O3 II [7, 8]. The
pressure–temperature phase diagram of B2O3, includ-
ing relative stability of these phases and the melting
curve, has been rather scantly studied up until now [9–
11]. Ordinary B2O3 glass is obtained from melt at very
low cooling rates. This glass has the opened structure
and low-density ρ ≈ 1.85 g/cm3 [6]. It is believed that
the structure of this glass is based on low-coordinated
boron atoms (Z = 3) and has a considerable fraction
(~20%) of ring-shaped boroxol groups B3O6 [6, 11, 12].
The high-pressure treatment of B2O3 glass and quench-
ing from melt under pressure allow one to obtain denser
003 MAIK “Nauka/Interperiodica”
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glass with densities 10 to 20% higher than ordinary val-
ues [11, 13]. At normal pressure, the densified glass
relaxes to its normal state at 300 to 600 K, depending
on the history of its preparation [11, 13]. The study of
the structure of densified B2O3 glass suggests that the
densification was mainly associated with the breakup
of boroxol groups and buckling of “ribbons” formed by
B2O3 triangles [14, 15].

There are quite a few studies concerning the temper-
ature dependence of the structure of B2O3 glass and liq-
uid [16, 17]. The molecular dynamic simulation of
B2O3 points to a possibility of structural coordination
changes in the melt under pressure and acceleration of
self-diffusion in a melt during compression [18].
Recently, we have found indirect experimental evi-
dence for a decrease of viscosity and corresponding
increase of diffusion in B2O3 melt under pressure [19].
The Raman and Brillouin study of B2O3 glass has been
performed up to 14 GPa at room temperature [20, 21].
However, up to date, there were no in situ studies of the
structures of liquid, glassy, or even crystalline B2O3
under pressure.

The purpose of the present work is the in situ high-
pressure x-ray study of liquid, glassy, and crystalline
B2O3, supported by quenching experiments, in order to
study possible structural changes and phase transitions,

Fig. 1. The pressure–temperature phase diagram of B2O3,
where symbols correspond to experimental points and lines
are interpolations. The melting curve is shown by solid
(in situ study) and open (DTA, TBA, and quenching exper-
iments) circles and dash-and-dot line; the crystallization
line (for times of the order of several minutes) of com-
pressed ordinary glass, by open diamonds and thick dash-
and-dot line; the crystallization line of quenched at high
pressure glasses, by solid diamonds and thick dashed line;
the I  II and II  I kinetic transition lines, by solid
and open triangles, respectively, and thin dashed lines,
where orientation of the triangle shows the direction of
movement on the pressure–temperature plane. Open and
solid squares correspond to points, where I and II crystalline
phases, respectively, do not transit to each other, i.e., are
experimentally stable nearby the triple point I–II-melt.
When experimental bar is not shown, it is comparable or
less than the size of the symbol.
to compare the behaviors of liquid and glassy states, to
attain insight into the nature of B2O3 glass densifica-
tion, and to examine the equilibrium and nonequilib-
rium phase diagrams of B2O3.

2. B2O3 ordinary glass, crystalline B2O3 I, and B2O3
II modifications (the last was specially obtained under
pressure) were used as the starting phases for in situ
experiments. Commercially available original B2O3
glasses contain, as a rule, several percent H2O in the
bound state (e.g., in H3BO3). Heat treatment of B2O3
glass at T ≈ 600–700 K during 20 to 30 h or at T ≈ 800 K
during 5 to 10 h made it possible to obtain dehydrated
specimens that were rapidly (<1 min) mounted into a
high-pressure cell. The cylindrical specimens with
diameter of 2 to 3 mm and height of 1 to 3 mm were
placed into containers of BN, Pt, or Ta or directly into
a graphite heater. Hermetic thick-wall Pt ampoules
were used for the very high-temperature experiments
(>1700 K) to avoid the partial decomposition of B2O3
compound and oxygen leakage. The “toroid” high-
pressure chambers were used for the synthesis of crys-
talline phases and dense glasses, as well as for thermo-
dynamic study by differential thermal and thermobaric
analysis (DTA and TBA) up to 8 GPa and 2100 K.
In situ structural experiments were carried out at the
cubic multianvil press using the x-ray dispersive
method (Spring-8, MAX-80 press, BL14B1 Beamline).
The melt, crystalline phases, and glasses of B2O3 were
studied to 5 GPa at high temperatures up to 1700 K and
to 9 GPa at room temperature. In situ x-ray diffraction
patterns were obtained at 11 pressure–temperature
points for liquid B2O3, 44 points for glassy B2O3, and
almost 100 points for the B2O3 I and B2O3 II crystalline
phases. The structure of quenched glass at normal pres-
sure was studied by x-ray diffraction (Bruker AXS).
The density of the glasses was measured by the bottle
method and by sinking the dense liquid mixtures. Hard-
ness was measured using the PMT-3M microhardness
tester. The index of refraction was studied by the
immersion technique. The details of high-pressure
experiments will be presented elsewhere.

3. The equilibrium phase diagram of B2O3 (Fig. 1) is
one of the main results of this study. The positions of
the melting curve and I–II transition line established
here noticeably differ from those on the earlier versions
of the phase diagram [9, 10]. We are the first who
observed in situ the II  I transition in crystalline
B2O3 during pressure release at high temperatures,
which unambiguously confirms that B2O3 II is thermo-
dynamically a high-pressure phase. Analysis of the
in situ diffraction patterns for the crystalline phases
allowed us to estimate their bulk moduli, B ≈ 55 ±
15 GPa for B2O3 I and B ≈ 90 ± 15 GPa for B2O3 II, and
their expansion coefficients, α ≈ (2 ± 0.5) × 10–5 K–1 for
both the phases.

4. The in situ measured temperature of crystalliza-
tion of the compressed ordinary B2O3 glass has a max-
JETP LETTERS      Vol. 78      No. 6      2003
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imum at the pressures of 3.5 to 4.5 GPa (Fig. 1), which
is possibly related to the attainment of a rigid and
unstressed glassy state [22]. The activation energy for
the glass crystallization process at P = 1.3 GPa is Eact ≈
120 ± 15 kJ/mole. The crystallization temperatures of
glasses prepared by quenching from melt under high
pressure exceeds those for compressed pristine ordi-
nary glass by 100 to 150 K (Fig. 1), indicating that the
quenched high-pressure glasses are closer to the quasi-
thermodynamic equilibrium state of glass at the corre-
sponding pressures.

5. The typical x-ray diffraction patterns for the B2O3
glasses and liquid are shown in Fig. 2. The in situ struc-
tural study of liquid B2O3 displays diffuse transforma-
tion under pressure within the 0.5 to 2.5 GPa range,
which is clearly supported by a noticeable growth of the
residual densification of glasses obtained by quenching
from melt (Figs. 3a, 3b). The compressed ordinary
B2O3 glass at room temperature reveals noticeable par-
tially irreversible changes of the short-range order
structure (Figs. 2a, 2b), and the residual densification
of quenched samples starts at pressure 5 to 6.5 GPa. At
elevated temperatures T > 500 K, these irreversible
changes start at 1 to 1.5 GPa. A comprehensive analysis

Fig. 2. X-ray diffraction patterns for ordinary B2O3 glass at

P = 10–4 GPa and T = 300 K (a), compressed ordinary glass
at 8.42 ± 0.07 GPa and 300 K (b), liquid B2O3 at 4.0 ±
0.4 GPa and 1460 ± 20 K (c), high-density nonstoichiomet-
ric glass with the composition B2O2.6 quenched from the
B2O3-based melt at 5.7 ± 0.4 GPa and 1800 ± 100 K in a
graphite container (d), and high-density stoichiometric
B2O3 glass mixed with new crystalline phase (its reflections
are cut of), where the sample was quenched from the melt at
7.0 ± 0.5 GPa and 1900 ± 100 K in a thick Pt container (e).

(Å–1)
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of the structural data with the calculation of the radial
distribution functions will be presented elsewhere.

The unusual pressure dependence of the position of
the first x-ray diffraction peak at 3 to 5 GPa in the B2O3

liquid (Fig. 3c) shows that, besides the diffuse struc-
tural transformation at 0.5 to 2.5 GPa, one more liquid–
liquid structural transformation is possible at higher

(Å
–1

)
(Å

–1
)

Fig. 3. Density (a) and refractive index (b) for B2O3 glasses
quenched from the melt and position of the first x-ray dif-
fraction peak for different cases (c) and (d) as functions of
in situ pressure or pressure from which the sample was
quenched (depending on the comments). (c) The in situ data
for liquid near melting curve (open squares) and for com-
pressed ordinary glass (solid circles) are compared. (d) The
same data for liquid B2O3 as in (c) are compared with those
for stoichiometric (open circles) and nonstoichiometric
(solid triangles) glasses quenched from the melt to the nor-
mal conditions, where solid squares correspond to the
extrapolation from the quenched glasses to in situ melt (see
the text). All lines are guides to the eye.
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pressures. To check this suggestion, we studied the
structure and properties of B2O3 glasses prepared by
quenching from melt at 1 to 7.5 GPa. The glasses
obtained at 4.5 to 6.5 GPa have the density ρ ≈ 2.2–
2.4 g/cm3, whereas the glasses obtained at P > 7 GPa
have the density 2.8–2.9 g/cm3, which exceeds the den-
sity of original glass by 55% (Fig. 3a). The x-ray dif-
fraction study of these high-density glasses (Fig. 2e)
points to substantial changes in the short-range order
structure (Fig. 3d). Taking into account the compress-
ibility of the glasses and their thermal expansion, it is
possible to estimate the position of the first x-ray dif-
fraction peak for the corresponding melts (Fig. 3d). The
decrease of B2O3 melt viscosity under pressure [19]
results in the formation of a crystal–glass mixture dur-
ing quenching (103 K/s) instead of pure glass at P >
4.5 GPa. At 4.5 to 6 GPa, the mixture of both crystalline
modifications B2O3 I and B2O3 II together with glass
was formed after rapid cooling, whereas at higher pres-
sures the densest modification B2O3 II with a small part
of glass admixture was obtained after melt quenching.
The data obtained for the structure and density of the
highly densified B2O3 glass strongly evidence the exist-
ence of one more sharp phase transition in liquid B2O3

at P ≈ 7 ± 0.5 GPa, accompanied by the volume anom-
aly ∆V/V ≈ 20% and a change in the short-range order
structure. The high-density glass has a rather high index
of refraction (Fig. 3b), n ≈ 1.61–1.63 (the original glass
has n ≈ 1.46–1.47), which is in good agreement with the
extrapolations of the refraction index vs. density depen-
dence established in [23, 24]. This glass has unusually
high stability at normal pressure, and upon heating it
slowly transforms to the ordinary B2O3 melt at T >
800 K. In this respect, the densified B2O3 glass obtained
by pressure–temperature quenching from a solid state
relaxes to the ordinary glassy state at temperatures 300
to 350 K at normal pressure, whereas the densified

Fig. 4. Approximate regions of transformations in liquid
B2O3 mapped on the pressure–temperature phase diagram
of B2O3 (see details in Fig. 1).
glasses prepared by quenching from melt at P <
6.5 GPa lose their excessive density at 400 to 700 K.
High stability of the high-density glass correlates with
high thermal stability of the B2O3 II high-pressure
phase at normal pressure, which also transforms to the
B2O3 melt at T ≈ 800 K without transition to the more
stable B2O3 I phase.

6. If we use nonhermetic containers (graphite,
h-BN, thin-wall Pt or Ta ampoules) for high tempera-
ture (>1700 K) experiments under pressure, a partial
oxygen leakage results in nonstoichiometric composi-
tion of boron oxide. The composition of the quenched
glasses in this case varies from B2O3 to B2O with most
reproducible composition around B2O2.5 (see example
of x-ray diffraction in Fig. 2d). In h-BN and thin-wall
Pt or Ta ampoules, oxygen leakage at heating occurs at
P > 5.5 GPa, and in graphite containers it occurs at
P > 1.5 GPa. Rapid quenching of the nonstoichiometric
oxygen-depleted melt results in the formation of high-
density glass with a density of 2.8 to 2.95 g/cm3 and
index of refraction of 1.62 to 1.65 in a wide region of
synthesis pressure from 1.5 to 7 GPa. This glass has
rather high hardness H ≈ 9.5 GPa in comparison to that
of the ordinary glass (H ≈ 3 GPa). At normal pressure,
this nonstoichiometric high-density glass is unusually
stable; it crystallizes at T ≈ 1100 K to new modifica-
tions and decomposes under melting at T ≈ 1250 K. The
results of the detailed study of the structure and proper-
ties of the nonstoichiometric high-density glasses and
new boron oxide crystalline modifications will be pre-
sented elsewhere.

7. One can suppose that high-density B2O3 glass and
the corresponding liquids contain a large fraction of
fourfold coordinated boron atoms. Therefore, at least
two structural transformations should occur in liquid
and possibly in glassy B2O3 under compression
(Fig. 4). The first diffuse transformation results in a
decrease of the fraction of boroxol groups without
noticeable changes in the first coordination spheres of
B and O atoms. The second sharper transformation is
accompanied by drastic changes in the short-range
coordinations of B and O atoms. The influence of pos-
sible oxygen leakage for the second transition is not yet
clear.

Thus, B2O3 is the first example of a substance, for
which the in situ study was performed for both liquid
and glassy states. The change of short-range order
structure with the corresponding coordination increase
seems to be a general phenomenon for crystalline, liq-
uid, and glassy states. It would be of interest in the
future to carry out an in situ structural study of liquid
B2O3 up to 10 GPa and glassy B2O3 up to 20 GPa to elu-
cidate the high-pressure structural transformations and
to acquire quantitative information about coordination
changes. These investigations, as well as comprehen-
sive study of the structure and properties of high-den-
sity B2O3 glass, are now in progress.
JETP LETTERS      Vol. 78      No. 6      2003
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We propose to use the radiofrequency single-electron transistor as an extremely sensitive probe to detect the
time-periodic ac signal generated by a sliding electron lattice in the insulating state of the two-dimensional elec-
tron gas. We also propose to use the optically-pumped NMR technique to probe the electron spin structure of
the insulating state. We show that the electron effective mass and spin susceptibility are strongly enhanced by
critical fluctuations of the electron lattice in the vicinity of the metal–insulator transition, as observed in exper-
iment.© 2003 MAIK “Nauka/Interperiodica”.
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Detecting electron lattice with the single-electron
transistor. The metal–insulator transition (MIT) in the
two-dimensional electron gas (2DEG) attracts consid-
erable interest [1, 2]. In this paper, we focus on physics
of the insulating phase. The great majority of experi-
ments are transport measurements, and only a few are
thermodynamic. Dultz and Jiang [3] measured com-
pressibility κ of the 2DEG as a function of carrier con-
centration n and found that it tends to vanish in the insu-
lating phase, i.e., the phase is incompressible. The
experimental dependence κ(n) was semiquantitatively
reproduced within both the scenario of electron local-
ization (E-LOC) in disordered potential [4] and the sce-
nario of electron lattice (E-LAT) formation [5]. We use
the term E-LAT to denote any state with local periodic
modulation of electron density. The Wigner crystal
(WC) and the charge-density wave (CDW) are the lim-
iting cases of E-LAT, where the modulation amplitude
is comparable to n and is much less than n, respectively.
For simplicity, we call these carrier electrons, even
though they may actually be holes.

Ilani et al. [6, 7] measured compressibility locally,
using the single-electron transistor (SET) as a micro-
scopic probe. They found that µ(n) has a series of quasi-
random jumps, which become very strong in the insu-
lating phase. These jumps were interpreted as single-
electron charging events [6, 7] within the E-LOC sce-
nario. Alternatively, the jumps can be interpreted as a
manifestation of E-LAT [7]. When the average carrier
concentration n is changed by the back gate, the period
l of E-LAT must adjust, because it is proportional to the

average distance between electrons a = 1/ . How-

¶ This article was submitted by the authors in English.

n
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ever, because E-LAT is pinned by impurities, it cannot
adjust its period continuously. Instead, E-LAT accumu-
lates stress until it overcomes the pinning force and
then makes a sudden local rearrangement of the lattice,
which results in a jump of the local potential. Both the
E-LOC and E-LAT scenarios are plausible, and it is dif-
ficult to decide between them on the basis of known
experimental data. Here, we propose a modification of
the experiments [6, 7], which may help to distinguish
between the two scenarios.

In [8], Pudalov et al. observed a very nonlinear cur-
rent–voltage (I–V) relation in the insulating phase of
the 2DEG in Si-MOSFET. Almost no current I flows
until electric field reaches the threshold field %t, and
then I sharply surges at % > %t, accompanied by broad-
band noise. Pudalov et al. interpreted their findings in
terms of collective sliding of E-LAT depinned by the
strong electric field % > %t, which produces the large
current I and generates the broadband noise due to local
slip-stick motion. The I–V nonlinearity was found to be
extremely sharp, with the differential conductivity
increasing by a factor of 106, in the samples with the
highest mobility and rounded in the samples with poor
mobility [9]. These results suggest that the transition to
the insulating state is not driven by disorder, as
assumed by the E-LOC theories, but by E-LAT forma-
tion. The I–V nonlinearity was also observed in GaAs
samples [10]. It was shown that the MIT deduced from
the temperature dependence of resistivity is the same
one as deduced from the I–V nonlinearity [11].

We propose to combine the SET experiment with
the nonlinear I–V experiments. Suppose a strong pull-
ing electric field % > %t is applied, and E-LAT slides.
003 MAIK “Nauka/Interperiodica”
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Then, the SET would register a time-periodic ac signal
with the frequency ν = v /l produced by E-LAT of the
spatial period l, which slides with the velocity v. This
effect is nothing but the narrow-band noise (NBN),
well-known for CDW in quasi-one-dimensional (Q1D)
conductors [12]. Unlike in the Q1D conductors,
attempts to observe the NBN in regular transport mea-
surements in the 2DEG failed thus far [13]. We propose
that the SET is a better tool for detecting the NBN,
because of its very high sensitivity and because it is a
local, microscopic probe, unlike the macroscopic cur-
rent leads. In the experiment [7], the SET was situated
at the distance d = 400 nm from the 2DEG. This dis-
tance is comparable to the average distance between the

carriers a = 1/  = 100 nm in the experiment [7] per-
formed on p-GaAs with the typical hole concentration
in the insulating phase n = 1010 cm–2. Because d and l ~
a are comparable, the SET should experience a notice-
able time-dependent signal when the periodically-mod-
ulated electron charge density slides past the SET.
Reducing d and bringing the SET closer to the 2DEG
would further increase sensitivity.

Let us estimate the frequency ν = v /l of the ac sig-
nal. The E-LAT period l is of the order of the average

distance between the carriers l ~ a = 1/ . The sliding
velocity v  is related to the current density j = I/W = env,
where I is the total current and W is the transverse width
of the sample. Thus, we find

(1)

For a crude estimate of the current density in the sliding
regime, we use the data from [10] j = I/W .
0.4 nA/0.4 mm = 1 nA/mm. (The data from [8] give a
similar estimate.) Substituting these numbers into
Eq. (1), we find ν . 600 kHz. The frequency scale is
similar to that of the Q1D CDW [12]. Unfortunately,
the frequency range of a typical SET is limited to less
than 1 kHz. Thus, it is necessary to use the radiofre-
quency SET (RF-SET) [14], which can operate from dc
up to 100 MHz. With this experimental setup, it should
be possible to detect the ac signal at the frequency ν.

Equation (1) shows that ν is proportional to the cur-
rent I carried by the sliding E-LAT, and the slope of that

dependence is proportional to 1/ . An experimental
observation of this effect would be the definitive proof
of the existence of E-LAT in the dilute 2DEG. Period-
icity in time is the direct consequence of periodicity in
space, and the E-LOC scenarios cannot produce a peri-
odic ac signal from the dc current. Although disorder
destroys the long-range order of E-LAT [15, 16], the
local periodicity is preserved and would produce the
NBN peak in the Fourier spectrum. On the other hand,
even if the RF-SET does not find a time-periodic signal,
the measured time series would provide important
microscopic information about electron conduction,

n
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such as the variable-range hopping. For example,
uncorrelated single-electron hops would generate the
Poisson stochastic process in the simplest case.

Probing spin order with the optically pumped
NMR. Besides the question of charge ordering in the
insulating state of the MIT, there is a question of spin
ordering in that state. One of the great tools for obtain-
ing information about electron spins is the nuclear mag-
netic resonance (NMR). In the quantum Hall regime,
the optically-pumped NMR measurements on the 71Ga
nuclei in n-GaAs detected formation of skyrmions in
the electron spin configuration for small deviations
from the filling factor ν = 1 [17]. In the ν = 1 state, elec-
trons are spontaneously spin-polarized and produce a
significant effective magnetic field on the nuclei by
means of hyperfine interaction. Thus, the NMR line of
the nuclei in contact with the 2DEG experiences the
measurable Knight shift proportional to the spontane-
ous spin polarization of electrons [17, 18].

We propose to use a suitable modification of the
same method to study the spin properties of the 2DEG
in the insulating state of a zero-effect magnetic field. A
magnetic field is needed for NMR, but we want to elim-
inate its effect on electrons. This can be achieved by
engineering a situation where the electron g-factor is
zero. For example, this is the case for a magnetic field
parallel to the [100] surface of p-GaAs [19, 20]. It is
also possible to achieve g = 0 by applying hydrostatic
pressure [21].

For the Wigner crystal, different types of spin order-
ing were proposed theoretically: ferromagnetic [22],
antiferromagnetic [22], and various exotic orderings
[15]. In the ferromagnetic state, the NMR line should
experience a measurable Knight shift, detection of
which would be the proof of spontaneous spin polariza-
tion of electrons. In the antiferromagnetic state, the
NMR line would broaden, because the nuclei experi-
ence a staggered hyperfine field from the electrons.
This method is routinely used to detect formation of
spin-density waves (SDWs) in Q1D conductors [12].
On the other hand, when a strong electric field % > %t

is applied, it forces SDWs or the E-LAT to slide. Then,
the nuclei experience the time-averaged hyperfine mag-
netic field produced by electrons, and the NMR line
becomes narrow again [23] (the so-called motion nar-
rowing). An observation of these effects in NMR would
provide a great deal of information about spin ordering
of electrons in the insulating state and would put the
ongoing theoretical discussion of the subject on firm
experimental ground.

Enhancement of the effective mass and spin sus-
ceptibility. Experiments [2, 24–28] consistently show
that the electron effective mass m* and the effective
spin susceptibility χ* strongly increase when n  nc

from the metallic side, where nc is the critical density of
the MIT. This phenomenon has a simple explanation
within the E-LAT scenario. The theory was developed
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in [29–31], and here we only briefly summarize the
main physical idea.

The experiments [8, 9] show that the threshold field
%t and the thermal activation gap of resistivity continu-
ously vanish at n  nc. Thus, the phase transition
between the metallic phase at n > nc and the insulating
phase at n < nc is of the second order. More precisely, it
was found to be slightly of the first order [32], as
expected by the symmetry reasons for a triangular or
hexagonal lattice [33]. These results are in qualitative
agreement with the self-consistent Hartree–Fock calcu-
lations [5], which show that E-LAT continuously
evolves from the CDW limit to the WC limit with the
decrease of n < nc.

Assuming that the system has a tendency to form
E-LAT with the wave vector qc ~ 1/a, we can write the
charge response function S0(q) = S(q, w = 0) in the fol-
lowing form [33] in the vicinity of the phase transition
for n > nc:

(2)

where C1 is a constant. Electrons can interact via
exchange of the critical fluctuations (2). This interac-
tion manifests itself in the Landau interaction function
f(θ) ∝  S0(|p1 – p2|), where p1 and p2 are the momenta of
the interacting electrons, and θ is the angle between p1
and p2. Substituting this formula in the Landau equa-
tion for the effective mass m* [34], we find

(3)

where C2 ∝  C1 is another constant. Taking into account
that |p1| = |p2| = pF, where pF is the Fermi momentum,
and assuming that qc ≈ 2pF, we see that the integral in
Eq. (3) is peaked around θ = π, where cosθ < 0. Because
of the Fermi statistics, the exchange interaction origi-
nating from the positive Coulomb repulsion is negative,
so C2 < 0. Thus, the interaction term in Eq. (3) causes
an increase in the effective mass m*, and this enhance-
ment grows when n  nc.

Specifically, taking qc = 2pF we obtain

(4)

The integral in Eq. (4) diverges as (n – nc)–1/2 near θ ≈
π, and m* diverges even earlier [29–31]:

(5)

where C3 > 0 is another constant. However, these diver-
gences should not be taken too literally, because they
would be cut off by the weakly first-order character of
the phase transition [32]. Thus, m* increases steeply

S0 q( ) . 
C1

n nc q qc–( )2+–
----------------------------------------,

1
m*
------- 1

m
---- C2

θ θdcos

n nc– p1 p2– qc–( )2+
---------------------------------------------------------,∫–=

1
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m
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θ θdcos

n nc– pF* 1 θcos+( )2
/4+

------------------------------------------------------------.∫–=

m
m*
------- 1

C3

n nc–
------------------,–=
when n  nc, but does not necessarily go to infinity.
The spin susceptibility is also enhanced via the stan-
dard relation χ* = g*m*. The qualitative agreement
between the theory and experiment gives an argument
in favor of the E-LAT scenario for the MIT in the
2DEG.

This theory is also applicable to other systems expe-
riencing transition from a liquid to a crystalline phase.
Such a transition is observed in the 2D 3He, and the
experiment [35] finds a very strong enhancement of m*
in the vicinity of the transition. Note that there is no dis-
order in liquid 3He, so the E-LOC scenario is irrelevant
in this case.

Conclusions. We propose to use the radiofrequency
single-electron transistor (RF-SET) [14] as an
extremely sensitive probe [6, 7] to detect the time-peri-
odic ac signal generated by sliding E-LAT at % > %t in
the insulating state of the 2DEG. An observation of this
narrow-band-noise effect would be the definitive proof
of E-LAT formation in the dilute 2DEG. We also pro-
pose to use the optically-pumped NMR technique [17]
to probe the electron spin structure of the insulating
state, which may have ferromagnetic, antiferromag-
netic, or exotic types of spin ordering. NMR can be per-
formed in a magnetic field without disturbing the elec-
tron spins in a situation where the electron g-factor is
engineered to be zero [19, 21]. Within the Landau the-
ory of Fermi liquids, we show that critical fluctuations
of E-LAT near the MIT produce a strong enhancement
of the effective mass m* and spin susceptibility χ* [29–
31] in qualitative agreement with experiments in the
2DEG [24–28], as well as in the 2D 3He [35]. This is an
argument in favor of the E-LAT scenario.

Although we concentrated on physics of the 2DEG
in zero magnetic field, the same ideas also apply to the
Wigner crystal in a nonzero magnetic field perpendicu-
lar to the 2DEG [36, 37].

The authors are grateful to S. Das Sarma for criti-
cally reading the manuscript and giving many valuable
comments and to V.M. Galitski for discussions. The
authors thank the Kavli Institute for Theoretical Phys-
ics for the opportunity to start this collaboration. V.A.K.
thanks the Condensed Matter Theory Center for arrang-
ing his visit to the University of Maryland.

This work was supported by NSF (grant nos. DMR-
0137726 and PHY-0140316), by the McDonnell Center
for Space Sciences, and by the Russian Ministry of
Industry and Science (grant no. NS-1885.2003.2).

REFERENCES
1. E. Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev.

Mod. Phys. 73, 251 (2001).
2. S. V. Kravchenko and M. P. Sarachik, cond-

mat/0309140.
3. S. C. Dultz and H. W. Jiang, Phys. Rev. Lett. 84, 4689

(2000).
4. J. Shi and X. C. Xie, Phys. Rev. Lett. 88, 086401 (2002).
JETP LETTERS      Vol. 78      No. 6      2003



PHYSICS OF THE INSULATING PHASE 401
5. S. Orozco, R. M. Méndez-Moreno, and M. Moreno,
Phys. Rev. B 67, 195109 (2003).

6. S. Ilani, A. Yacoby, D. Mahalu, and H. Shtrikman, Phys.
Rev. Lett. 84, 3133 (2000).

7. S. Ilani, A. Yacoby, D. Mahalu, and H. Shtrikman, Sci-
ence 292, 1354 (2001).

8. V. M. Pudalov, M. D’Iorio, S. V. Kravchenko, and
J. W. Campbell, Phys. Rev. Lett. 70, 1866 (1993).

9. V. M. Pudalov, J. Phys. IV 12, Pr9-331 (2002).
10. J. Yoon, C. C. Li, D. Shahar, et al., Phys. Rev. Lett. 82,

1744 (1999).
11. A. A. Shashkin, S. V. Kravchenko, and T. M. Klapwijk,

Phys. Rev. Lett. 87, 266402 (2001).
12. G. Grüner, Density Waves in Solids (Addison-Wesley,

New York, 1994).
13. Recently the NBN has been observed in the 2DEG in a

high magnetic field in the quantum Hall regime, albeit
with the frequency ν several orders of magnitude lower
than given by Eq. (1); K. B. Cooper, J. P. Eisenstein,
L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 90,
226803 (2003).

14. R. J. Schoelkopf, P. Wahlgren, A. A. Kozhevnikov, et al.,
Science 280, 1238 (1998).

15. S. Chakravarty, S. Kivelson, C. Nayak, and K. Voelker,
Philos. Mag. B 79, 859 (1999); K. Voelker and
S. Chakravarty, Phys. Rev. B 64, 235125 (2001).

16. B. Spivak, Phys. Rev. B 64, 085317 (2001); Phys. Rev.
B 67, 125205 (2003).

17. S. E. Barrett, G. Dabbagh, L. N. Pfeiffer, et al., Phys.
Rev. Lett. 74, 5112 (1995).

18. P. Khandelwal, N. N. Kuzma, S. E. Barrett, et al., Phys.
Rev. Lett. 81, 673 (1998).

19. M. Rahimi, M. R. Sakr, S. V. Kravchenko, et al., Phys.
Rev. B 67, 081302 (2003).

20. R. Winkler, S. J. Papadakis, E. P. De Poortere, and
M. Shayegan, Phys. Rev. Lett. 85, 4574 (2000).

21. W. Kang, J. B. Young, S. T. Hannahs, et al., Phys. Rev. B
56, R12 776 (1997); H. Cho, J. B. Young, W. Kang, et al.,
Phys. Rev. Lett. 81, 2522 (1998).
JETP LETTERS      Vol. 78      No. 6      2003
22. X. Zhu and S. G. Louie, Phys. Rev. B 48, 13 661 (1993).
23. E. Barthel, G. Kriza, G. Quirion, et al., Phys. Rev. Lett.

71, 2825 (1993).
24. T. Okamoto, K. Hosoya, S. Kawaji, and A. Yagi, Phys.

Rev. Lett. 82, 3875 (1999).
25. A. A. Shashkin, S. V. Kravchenko, V. T. Dolgopolov, and

T. M. Klapwijk, Phys. Rev. Lett. 87, 086801 (2001);
Phys. Rev. B 66, 073303 (2002); cond-mat/0302004.

26. S. A. Vitkalov, M. P. Sarachik, and T. M. Klapwijk, Phys.
Rev. B 65, 201106 (2002).

27. V. M. Pudalov, M. E. Gershenson, H. Kojima, et al.,
Phys. Rev. Lett. 88, 196404 (2002).

28. O. Prus, Y. Yaish, M. Reznikov, et al., Phys. Rev. B 67,
205407 (2003).

29. V. R. Shaginyan, Pis’ma Zh. Éksp. Teor. Fiz. 77, 104
(2003) [JETP Lett. 77, 99 (2003)].

30. V. M. Galitski and V. A. Khodel, cond-mat/0308203.
31. V. A. Khodel, V. R. Shaginyan, and M. V. Zverev, Pis’ma

Zh. Éksp. Teor. Fiz. 65, 242 (1997) [JETP Lett. 65, 253
(1997)].

32. V. M. Pudalov and S. T. Chui, Phys. Rev. B 49, 14062
(1994).

33. S. A. Brazovskii, Zh. Éksp. Teor. Fiz. 68, 175 (1975)
[Sov. Phys. JETP 41, 85 (1975)].

34. E. M. Lifshitz and L. P. Pitaevskiœ, Course of Theoretical
Physics, Vol. 9: Statistical Physics (Nauka, Moscow,
1978; Butterworth-Heinemann, Oxford, 1999), Part 2.

35. A. Casey, H. Patel, J. Nyéki, et al., Phys. Rev. Lett. 90,
115301 (2003).

36. H. W. Jiang, R. L. Willett, H. L. Stormer, et al., Phys.
Rev. Lett. 65, 633 (1990); V. J. Goldman, M. Santos,
M. Shayegan, and J. E. Cunningham, Phys. Rev. Lett.
65, 2189 (1990); Y. P. Li, T. Sajoto, L. W. Engel, et al.,
Phys. Rev. Lett. 67, 1630 (1991); F. I. B. Williams,
P. A. Wright, R. G. Clark, et al., Phys. Rev. Lett. 66,
3285 (1991); H. W. Jiang, H. L. Stormer, D. C. Tsui, et
al., Phys. Rev. B 44, 8107 (1991).

37. B. G. A. Normand, P. B. Littlewood, and A. J. Millis,
Phys. Rev. B 46, 3920 (1992); X. Zhu, P. B. Littlewood,
and A. J. Millis, Phys. Rev. B 50, 4600 (1994).



  

JETP Letters, Vol. 78, No. 6, 2003, pp. 402–404. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 78, No. 6, 2003, pp. 854–856.
Original Russian Text Copyright © 2003 by Zakharov, Zverev, Izotov.

                                                                                         
Nature of EPR Line Asymmetry in La0.70Ca0.25Ba0.05MnO3

D. V. Zakharov*, D. G. Zverev, and V. V. Izotov
Kazan State University, Kazan, 420008 Tatarstan, Russia

*e-mail: Dmitri.Zakharov@ksu.ru
Received August 21, 2003

It was pointed out in some works that asymmetry of an electron paramagnetic resonance (EPR) line is generally
caused by both the electrical conduction and the nondiagonal elements of the dynamic susceptibility of a mag-
netic subsystem. Direct measurements of the temperature dependences of the conductivity and the EPR line
shape in a La0.70Ca0.25Ba0.05MnO3 sample showed that the conduction makes the predominant contribution to
the EPR line asymmetry © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.47.Lx; 76.30.Fc; 76.30.Kg
Manganites, i.e., substances with the general for-
mula Ln1 – xAxMnO3, where Ln is a rare-earth ion, and
A is an alkaline-earth ion, have drawn much attention
from researchers [1] because of their unusual electrical
and magnetic properties. Another interesting feature of
manganites is that some characteristics of their conduc-
tion are identical to those observed in the normal phase
of cuprate-based high-temperature superconductors.
However, particular interest in manganites arose when
it was found that their isotope composition and an
external magnetic field had an exceedingly strong
effect on the electrical conduction in the vicinity of the
Curie point [2, 3]. Electron paramagnetic resonance
(EPR) is one of the effective methods for the investiga-
tion of manganites. It was shown in a number of works
[4, 5] that the EPR line of manganites is asymmetric.
Two alternative causes of this asymmetry were sug-
gested: skin effect and the effect of the nondiagonal
elements of dynamic susceptibility [8]. The goal of
this work is to consider this alternative for a
La0.70Ca0.25Ba0.05MnO3 single crystal.

The sample under study was provided by Professors
J.-P. Clerc and J.-C. Grenet (France). It was prepared
from a mixture of MnO3, La2O3, CaCO3, and BaCO3.
The concentration of MnO3 in the mixture exceeded by
10% the required value to compensate Mn sublimation
during heating. The mixture was heated for 12 h to
1450°C and then slowly cooled at a rate of 0.2 K/min.
Then, a cylindrical sample was grown by zone melting.
X-ray structural analysis revealed a single pseudocubic
phase with slight monoclinic distortions. The lattice
parameters were: a = 7.783 ± 0.001 Å, b = 7.787 ±
0.001 Å, c = 7.782 ± 0.001 Å, and β = 89.838 ± 0.002°.
The sample under study had the shape of a disk 3.9 mm
in diameter and 0.8 mm thick. It was cut so that one of
the crystallographic axes was perpendicular to the disk
plane.
0021-3640/03/7806- $24.00 © 20402
Experiment. Constantan plates were deposited on
parallel faces of the cylindrical sample. A pair of wires
were soldered on each plate to create a four-wire resis-
tance measuring circuit. Magnetoresistance (MR) and
dc resistivity were measured using a B7-34A universal
digital voltmeter. The results of measuring the dc resis-
tivity at 1 mA in a temperature range from 77 to 460 K
are given in Fig. 1. The temperature dependences of
electrical resistivity in a magnetic field of 15 kOe and
of the magnetoresistance are also shown in Fig. 1. It can
be seen that, at temperatures T > 230 K, the resistivity
is independent of the magnetic field. Thus, the asym-
metry of the EPR line in the field Hres ≅  3.4 kOe can be
calculated using the value of zero-field resistivity.

The EPR spectra of the sample under study were
measured using a Bruker ESP 300 commercial 3-cm-
range spectrometer. Measurements in a temperature

Fig. 1. Temperature dependence of the dc resistivity of
La0.70Ca0.25Ba0.05MnO3 at 1 mA in a magnetic field of
15 kOe and in zero magnetic field. The dot line is the tem-
perature dependence of the magnetoresistance.
003 MAIK “Nauka/Interperiodica”
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range from 100 to 460 K were made in an ER 4111 VT
EPR nitrogen cryostat with a temperature accuracy of
±0.5 K. The sample was glued to a high-purity quartz
rod. The EPR spectrum reflects the dependence of the
absorbed microwave energy P on the external static
magnetic field H. Usually, spectrometers record the
derivative dP/dH to increase the signal-to-noise ratio.
Typical EPR spectra for the compound under consider-
ation are shown in Fig. 2.

Results and discussion. A broad exchange-nar-
rowed absorption line was observed in the paramag-
netic range T > 230 K. This line is well described by the
Dyson equation [6, 7]:

(1)

This is an asymmetric line of Lorentz shape. Equation
(1) takes into account the energy dispersion in the sam-
ple: α is the dispersion-to-absorption ratio (D/A).

Such asymmetric line shapes are usually observed
in metals, where, due to the skin effect, dispersion is
admixed to the absorption spectra. For samples small

compared to the skin depth δ ≅  , a symmetric
absorption line (α = 0) is expected. On the contrary, if
a sample is large compared to the skin depth, absorp-
tion and dispersion are of equal strength (α ≈ 1), lead-
ing to the strong asymmetry of the resonance line. The
second possible cause of asymmetry (especially typical
for insulators) is due to the effect of nondiagonal ele-
ments of the dynamic susceptibility, which leads to a
characteristic distortion of the absorption line shape.
This distortion depends on the frequency and orienta-
tion of the exciting microwave field [8] and can be
approximated using Eq. (1).

The EPR line of the compound under study is isotro-
pic; the resistivity of the crystal varies from 4.73 Ω cm
at 245 K to 0.49 Ω cm at 450 K, which corresponds to
the skin depth δ ≅  0.8–0.26 mm. Thus, to reveal the cor-
relation between the resistivity and the EPR line asym-
metry, EPR spectra were measured in an external
microwave field H1 applied parallel and perpendicular
to the plane of the sample. In the first case, the size of
the sample is 5 times greater than the skin depth, which
should lead to a considerable EPR line asymmetry
without any significant temperature dependence.
Experiments showed that the ratio α was indeed close
to unity over the entire temperature range and slowly
increased with increasing temperature. In the second
case (H1 perpendicular to the plane of the 0.8-mm thick
disk sample), the skin depth becomes comparable to the
sample size at 245 K; as the temperature increases, the
skin depth is reduced by a factor of ~3. The correlation
between the sample resistivity and the EPR line asym-
metry can be revealed by comparing their temperature

dependences. Taking into account that α ~ 1/δ ~ 1/ ,
the comparison was performed between the tempera-

dP
dH
------- d

dH
-------

∆H α H Hres–( )+

H Hres–( )2 ∆H2+
-------------------------------------------

 
 
 

.∝

ρ/µow

ρ
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ture dependences of these two values (Fig. 3). This
allows one to conclude that the absorption line becomes
asymmetric due to the skin effect.

It should be noted that the nondiagonal elements of
the dynamic susceptibility probably also have an effect
on the absorption line asymmetry. However, this effect
is weaker and manifests itself only in very broad lines
(Hres ≈ ∆H). It can be observed, for example, in
La0.95Sr0.05MnO3, where the asymmetry parameter D/A
assumes, in some cases, negative values, which cannot
be explained by the skin effect.

We are grateful to Professors J.-P. Clerc and
J.-C. Grenet for the single-crystal sample, Yu.K.
Rosenzweig for assistance in preparation of the sample
for measuring resistivity, and M.V. Eremin and
E.A. Gan’shina for stimulating discussion.

This work was supported by the State Program
“Universities of Russia” (project no. UR.01.01.023)

Fig. 2. Typical EPR spectra for La0.70Ca0.25Ba0.05MnO3 at
different temperatures.

Fig. 3. Comparison of the temperature dependences of the

EPR line asymmetry parameter α and  for

La0.70Ca0.25Ba0.05MnO3.
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The method of preparing entangled quantum spin states of a free electron and nucleus by laser resonant step
photoionization of free atoms is proposed and analyzed. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.65.Ud; 32.80.Fb; 32.10.Fn; 03.67.-a
In recent years, quantum information science has
been intensively studied, because it provides, in princi-
pal, the possibility of computing (“computability”) the
problems that cannot be solved in a reasonable time by
any classical algorithm, allows the creation of informa-
tion channels that are fundamentally protected from
eavesdropping, etc. (see, e.g., [1–3]). For many applica-
tions of quantum information, an important role is
played by the nonlocal entangled states of many-parti-
cle quantum systems—the states whose wave function
cannot be represented as a direct product of the wave
functions of their subsystems (a good review can be
found in [4]). One classical example of such states is
given by the famous Einstein–Podolsky–Rosen’s pair
of particles flying apart [5] and its spin modification
analyzed by Bohm in [6]: two particles with spins 1/2
in a singlet state with the total spin equal 0. However far
these particles fly apart in space, they are still described
by the nonlocal collective wave function

for which neither of the particles can be assigned a cer-
tain spin projection s1 or s2.

Apart from quantum computers, the nonlocal entan-
gled states are used in teleportation, in checking Bell’s
inequalities, etc., and many schemes of generating such
states have been suggested and practically imple-
mented [1–4]. The purpose of this paper is to propose
and analyze the methods of preparing the entangled
states for two spins of different nature, namely, nuclear
and electron spins. It will be shown that these states can
be efficiently produced by using an appropriate scheme
of laser resonant multistep atomic-beam photoioniza-
tion with allowance for hyperfine splitting.

The experimental scheme for creating the indicated
entangled states is a conventional scheme of high-reso-

S 0=| 〉

=  
1

2
------- s1 1/2=| 〉 s2 1/2–=| 〉 s1 1– /2=| 〉 s2 1/2=| 〉–( ),
0021-3640/03/7806- $24.00 © 20405
lution laser resonant multistep atomic photoionization.
A particular example of such experiments is given, e.g.,
in our work [7]; see also monograph [8] for a review of
the whole method.

We first consider the stable thallium 203, 205Tl iso-
topes, both having nuclear spin I = 1/2. At the first pho-
toionization step, it is natural to use the resonance
62P1/2–72S1/2 transition at a wavelength of 377.6 nm that
is well mastered by the present-day laser technique. At
this step, neither the polarization nor the narrow-band
(high-resolution) laser radiation is required; i.e., all hf
components of the upper 72S1/2 level are equally occu-
pied. At the second resonant-photoionization step, light
polarization is again immaterial, but the spectral line
should be rather narrow for the optical transition to ter-
minate at the n2P1/2 (n = 8, 9, …) state on its F = 0 hfs
sublevel (conventional notation F = I + J is used; since
the 0–0 transition is known to be forbidden, the atom
should initially be in the F = 1 state. The desired laser
wavelengths for these and the other transitions dis-
cussed in this work can be found from the literature
and, thus, are omitted for brevity). To my knowledge,
the data on the hf splitting of the corresponding upper
n2P1/2 (n = 8, 9, …) levels are lacking in the literature;
however, based on the 62P1/2 hf splitting (12.2 and
12.3 GHz for the 203Tl and 205Tl isotopes, respectively;
see, e.g., [9] and references cited therein), together with
the well-known trend toward a decrease in the hf split-
ting with increasing principal quantum number n (see,
e.g. [10]) and the characteristic spectral resolution (on
the order of 100 MHz [7, 8]) of the photoionization
experiment in the geometry of a perpendicular atomic
beam, one can anticipate that this excitation should
present no problems.

As a result of this procedure, an atom occurs in the
n2P1/2 (F = 0) state, which, being a combination of the I
and J states, is the entangled Bell’s (as well as Bohm’s)
003 MAIK “Nauka/Interperiodica”
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state of a nuclear spin and the total angular momentum
of valence electron:

The next step consists in using the linearly polarized
laser radiation for inducing the atomic transition to the
Rydberg N2S1/2 level (N is on the order of twenty to
thirty) followed by its ionization in a (quasi)static elec-
tric field [8]. The hf interaction in this highly excited
state is negligible [10]; in other words, the I–J coupling
is broken: the optical transition does not change nuclear
spin and its projection and only changes J and mJ (this
situation is quite analogous to the production of polar-
ized electrons in photoionization: if the L–S coupling in
the continuum or autoionizing state is inefficient, only
the electron orbital moment L, and not its spin S,
changes upon the corresponding optical transition (see,
e.g., [11])). The linearly polarized laser radiation
changes the projection mJ by ±1, and, hence, the mJ =
−1/2 state undergoes a transition to mJ = +1/2. Since
L = 0 and J = S for the N2S1/2 level, mJ = +1/2 implies
that ms = +1/2. Similarly, the initial mJ = +1/2 state
undergoes transition to ms = –1/2. In turn, the subse-
quent electric-field-induced atomic ionization does not
change spins (both nuclear and electron) and changes
only the electron orbital moment.

Therefore, after the above-mentioned procedures,
one obtains a free electron and a free ion whose spin
state is described by the entangled wave function

This function is not an eigenfunction of the operator I +
S of the total spin, but has all characteristic features of
a nonlocal state described by Einstein–Podolsky–
Rosen–Bohm in [5, 6]; an individual particle cannot be
assigned any certain spin projection, while the mea-
surement of this projection changes the state of the
other particle.

The entangled state for the nuclear spin 3/2 can be
produced in a similar way. In this respect, the stable gal-
lium 69,71Ga isotopes are a suitable system. The hf-split-
ting data for the gallium isotopes can be found in [12–
14]. Without specifying the situation, we recall that the
hf splitting and spectral resolution of a laser multistep
photoionization experiment in the geometry of perpen-
dicular atomic beam are such that the hf- resolved tran-
sitions in gallium atoms can occur at the first two pho-
toionization steps.

In this case, a circularly polarized (for definiteness,
σ+) narrow-band radiation inducing the F = 1 – F = 1

h1
1

2
------- mJ 1/2=| 〉 mI 1/2–=| 〉(=

– mJ 1/2–=| 〉 mI 1/2=| 〉 ) ,

h2
1

2
------- ms 1/2–=| 〉 mI 1/2–=| 〉(=

– ms 1/2=| 〉 mI 1/2=| 〉 ) .
transition must be used even at the first 42P1/2–52S1/2

photoionization step at a wavelength of 403.4 nm. Tak-
ing into account the selection rules ∆mF = +1 for the F
projection, one has mF = 0, +1 in the excited state. Next,
at the second photoionization step we also use the σ+

laser radiation to induce the F = 1 – F = 1 transition
between the 52S1/2 and n2P1/2 (n = 6, 7, …) levels, result-
ing in a state with mF = +1. In I and J terms, this is an
entangled state of a nuclear spin and the total electron
angular momentum

(the coefficients are the corresponding Clebsch–Gor-
dan factors). Similar to the above-mentioned thallium
isotopes, the following entangled spin state of a free
electron and nucleus is obtained upon the linearly
polarized radiation inducing the transition to the Ryd-
berg N2S1/2 state followed by the electric-field-induced
ionization:

The generation of entangled states for the nuclear
spin I = 1 can be illustrated by the example of stable 6Li
isotope. In this case, one can use a two-step laser reso-
nant photoionization scheme. At the first step, the
σ+-polarized laser radiation induces the 22S1/2–22P1/2,
F = 1/2  F = 1/2 transition. For the indicated levels,
the lithium hf splitting is small (228 and 26 MHz; see
[15] and references therein), but, as was demonstrated
experimentally in [15], it is quite sufficient for the spec-
tral resolution of all hfs components in the geometry of
well-collimated perpendicular atomic beam.

After the first photoionization step, lithium atoms
occur in a state with projection mF = +1/2, which can be
written in I and J terms as

The second quantum of the linearly polarized laser
radiation carries it to the Rydberg N2S1/2 state, whose
ionization by a quasi-static electric field gives rise to

h3
3

2
------- mJ 1– /2=| 〉 mI 3/2=| 〉=

–
1
2
--- mJ 1/2=| 〉 mI 1/2=| 〉

h4
3

2
------- ms 1/2=| 〉 mI 3/2=| 〉=

–
1
2
--- ms 1– /2=| 〉 mI 1/2=| 〉 .

h5
2

3
------- mJ 1– /2=| 〉 mI 1=| 〉=

–
1

3
------- mJ 1/2=| 〉 mI 0=| 〉 .
JETP LETTERS      Vol. 78      No. 6      2003



PREPARATION OF ENTANGLED SPIN STATES 407
the following entangled spin state of an electron and
nucleus:

Thus, I have demonstrated that the entangled spin
states of a free electron and nucleus can be efficiently
created without difficulty by laser resonant step atomic
ionization. Of course, the examples presented in this
work cover neither the list of atoms suitable for creating
the appropriate entangled states nor the corresponding
photoionization schemes. These schemes can be used
similarly to the other entangled states that are actively
elaborated today. In particular, due to the nonlocality
(the uncoupled electron and ion rapidly fly apart at
macroscopically large distances), the nuclear spin-state
(a system much more complicated than a photon) tele-
portation using the corresponding entangled electron as
an ancila (auxiliary quantum system) is of considerable
interest; cf. [1–4].
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The possibility of detecting an atom by a single photon with nanometer spatial resolution and nanosecond time
resolution is studied. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 39.25.+k; 81.16.Ta
The use of a photon for the detection of a single
quantum object in gedanken experiments was dis-
cussed by Heisenberg and von Neumann [1, 2] as early
as in the 1920s in the context of quantum mechanical
restrictions on the action of quantum mechanical mea-
surement on a measured object. Owing to the recent
development of optical and laser technologies, experi-
ments on the investigation of the action of a single pho-
ton (localized in the cavity mode) on a single atom have
become possible [3]. The light field in the mode of a
high-Q cavity with energy on the order of one photon
makes it possible to detect and localize single atoms [4,
5]. There are several proposals for using the light field
in the high-Q cavity for the detection of an atom with a
spatial resolution better than the light wavelength [6–
10]. The position of an atom in the standing light wave
of a high-Q cavity closely correlates with the wave
phase, because the atom is polarized in the light field
which, in turn, changes the light-wave phase. The mea-
surement of a change in the light-wave phase when the
atom passes through the light field provides informa-
tion about the atomic position with respect to the stand-
ing-wave antinode. Spatial overlap of the atomic wave
packet with the light-field mode restricts the spatial res-
olution of this method [11].

In this work, we analyze the possibility of using the
light field with single-photon energy for the detection
of a single atom with nanometer spatial resolution and
nanosecond time resolution. Figure 1 shows the layout
of such an atom nanoprobe. A high-Q optical cavity is
formed by two mirrors M1 and M2. Laser radiation
enters into the cavity through the mirror M2. The mirror
M1 has a hole with diameter 2a, which is much smaller
than the wavelength of radiation entering the cavity.
Such a hole is called the Bethe hole [12]. As will be
shown below, it does not noticeably change the cavity
Q factor. The atom can penetrate into the cavity through
this hole and interact with the light field of the cavity
mode. The atom inside the cavity mode changes the res-
onant properties of the cavity, and a fraction of laser
0021-3640/03/7806- $24.00 © 20408
radiation is reflected from the cavity. The reflected radi-
ation is detected by a photodetector. A photodetector
signal carries information about the atom inside the
cavity mode. The spatial resolution of such an atom
probe is determined by the hole size, whose minimum
size is limited by the atomic size and the characteristic
length of interatomic interaction; i.e., it lies in the
nanometer range. The time resolution of the atom nan-
oprobe is no worse than the atomic time of flight
through the cavity and lies in the nanosecond range for
the cavity length lr = λ/2 and thermal atomic velocities.
The volume of atomic localization is V . –πa2l ! λ3.
As will be shown below, the light-field energy of one
photon is sufficient for the reliable detection of an atom
in the nanoprobe.

The behavior of the system atom + cavity is prima-
rily determined by four parameters: (i) the coupling
constant g0 (single-photon Rabi frequency), (ii) the
radiative width 2γ of atomic transition, (iii) the cavity
decay rate κ, and (iv) the time of interaction between
the atom and the cavity-field mode. A single atom can
noticeably change the resonant properties of the cavity

Fig. 1. Layout of an atom nanoprobe.
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only in the so-called good cavity limit and in the strong-
coupling regime (g0 @ γ, κ) [13]. When the frequency
of laser radiation coincides with the cavity-mode fre-
quency, the cavity is transparent to the radiation and,
therefore, the reflected radiation on the photodetector is
absent. The presence of the atom in such a cavity
noticeably changes the resonant frequency and, as a
result, laser radiation is reflected from the cavity.

Let us consider the qualitative dynamics of interac-
tion between a two-level atom and the light field of the
cavity mode. The cavity-field mode is assumed to be in
the coherent state |α0〉 , which has complex amplitude

α0 = |α0|  and is excited by an external laser. In this
case, the Hamiltonian of interaction between the atom
and field has the form [14]

(1)

Here, ωa and ωc are the atomic-transition frequency and
eigenfrequency of the cavity mode, respectively; σz =
|e〉〈 e| – |g〉〈 g|, where |e〉  and |g〉  are the eigenstates of the
Hamiltonian of the unperturbed atom; they correspond
to the excited and ground atomic levels, respectively; a+

and a are the creation and annihilation operators of the
cavity-field mode, respectively; and g = g0 f (r) is the
coupling constant of the cavity mode, where the func-
tion f(r) describes the spatial distribution of the cavity-
field mode in the standing light wave with the Gaussian
transverse profile and allowance for a change in the
standing-wave field on the Bethe hole [15], and

Here, µ is the matrix element of the dipole atomic tran-
sition moment, e0 is the permittivity of free space, and
ε0 is the so-called vacuum electric field. The Hamilto-

nian  describes the coupling of the atom with other
modes through spontaneous radiation. The Hamilto-
nian HD describes the mode excitation by the external

laser. The function v(t) =  describes the

switching-on and switching-off of the interaction
between the atom and the field mode, where tf l is the
time of flight of the atom through the cavity. For the
very short cavity (l = λ/2) under consideration, the
interaction time is much shorter than both the atomic
excited-state spontaneous lifetime and the characteris-
tic cavity decay time (tr = 1/κ). In this case, the sponta-
neous decay of the excited atomic state can be ignored,
and the role of external laser radiation reduces to the
formation of the initial state for the cavity-field mode
before the atom enters the cavity. Thus, the dynamics of

e
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the system atom + cavity is fully determined by the first
three terms in Hamiltonian (1). The time evolution of
the system is described by the Schrödinger equation
[14]

(2)

with the state vector

(3)

where |e, n〉  is the state of the system with an atom in
the excited state |e〉  and n photons in the field mode. The
state |g, n〉  is the state of the system with an atom in the
ground state |g〉  and n photons in the field mode. The
equations for the amplitudes ce, n and cg, n can be
obtained by substituting Hamiltonian (1) into Eq. (3)
[14]; in the interaction representation, they take the
form

(4.1)

(4.2)

where δ = ωa – ωc. Under the assumption that the atom
is initially in the ground state, the solution to Eqs. (4)
has the form

(5.1)

(5.2)

where Ωn =  is the generalized Rabi
frequency.

The probability of the presence of n photons in the
cavity modes in the presence of the atom is determined
by the expression

(6)

The average number of photons in the cavity at time t is
equal to

(7)
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If the cavity-field mode (without atom) is prepared in the
coherent state, the coefficients |cn(0)|2 in expression (6)
are specified by the Poisson distribution

(8)

where the average number 〈n0〉  of photons in the cavity
mode in the absence of an atom is determined by the
external laser radiation.

cn 0( ) 2 n0〈 〉 ne
n0〈 〉–

n!
-------------------------,=

Fig. 2. Time evolution of the inverse population of an atom
passing with the velocity v  = 20 m/s through the cavity with
the average number of photons 〈n0〉  = 10 before the atom
enters the cavity. The lower time scale is in units of sponta-
neous lifetime τsp of the excited atomic state. The upper
time scale is in units of atomic time of flight through the
cavity.

Fig. 3. The same as in Fig. 2, but for the average number of
photons in the cavity.
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mode. The inverse population of the atom is determined
by the expression

(9)

Figures 2 and 3 illustrate the time evolution of the
inverse population of atomic levels and the average
number of photons in the cavity mode, respectively,
when the atom passes with the velocity v  = 20 m/s
through the cavity with a comparatively large number
of photons 〈n0〉  = 10. The complex temporal dynamics
of cavity-field mode and inverse population are
explained by the fact that the Rabi frequency depends
on the number n of photons. This dynamics lead to the
well-known collapse effect and to restoring the inverse
population of the atomic levels [16, 17], which is
clearly demonstrated in Fig. 2, where the effect of
atomic interaction time at a relatively low atomic veloc-
ity is seen. The presence of an atom changes the cavity
properties. The transmittance T and, therefore, reflec-
tance R of the cavity become time-dependent [13]:

(10)

where X(t) is the amplitude of cavity-field mode and
Y is the amplitude of the pumping laser field. In the
atom nanoprobe scheme under consideration, informa-
tion about the atom is carried by the radiation reflected
from the cavity, which depends on the atomic and cav-
ity parameters as

(11)

where the average number 〈n(t)〉  of photons in the cav-
ity mode is given by Eq. (7), nph is the average number
of photons in the cavity before the atom enters it, V is
the cavity-mode volume, S is the mode cross section,
F is the cavity finesse, and c is the speed of light.

Figure 4 shows the time dependence of the photon
flux reflected from the cavity containing one photon
(〈n0〉  = 1), having finesse F = 5 × 105, and through
which the atom passes with velocities v  = 20, 50, and
100 m/s. The oscillatory behavior of the reflected pho-
ton flux is caused by the fast energy exchange between
the atom and the cavity field. Figure 5 shows the time
dependence of the integral signal

(12)

of reflected photons for atomic velocities v  = 20, 50,
and 100 m/s and 〈n0〉  = 1. As is seen, the number of
reflected photons reaches 5 even for a sufficiently high
atomic velocity of 100 m/s. In this case, the detection
time is tdet = –0.08τsp.
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Fig. 4. Time dependence of the photon flux reflected from the cavity containing one photon on average (〈n0〉  = 1) and through which
the atom passes with the velocities v  = (a) 100, (b) 50, and (c) 20 m/s.

Fig. 5. The same as in Fig. 4, but for the number of photons reflected from the cavity.
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In conclusion, we discuss the possibility of practical
realization of the atom nanoprobe discussed above. To
estimate the effect of a small hole on the cavity Q fac-
tor, we use the calculations of radiation transmittance
through a screen with a small hole [12, 15, 18]. Trans-
mittance through a hole for the black screen (which is
maximal compared to other screen types) is [18]

(13)

where τ2 = 11.07. Transmittance through a small hole
(ka ! 1) is independent of the hole size and is Ttr ≈
1/8π2. Power passing through the hole is determined by
the ratio of the hole size a to the cavity-mode size ω0:

(14)
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8π2
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  1 τ2 ka( )2 …+ +[ ] ,

Ptr Pin
a2
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2
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where Pin is the laser radiation power incident on the
screen. Therefore, the transmittance of a mirror with a
hole is 

(15)

The corresponding cavity finesse is determined by the
expression

(16)

For the cavity-mode radius ω0 = 10λ and a = 0.1λ, the
cavity finesse is no worse than F = 8 × 105, which cor-
responds to the Q factor of the best available cavities [4,
5]. Thus, a small hole does not change noticeably the
cavity Q factor in the atom nanoprobe.

The production of a nanometer hole in the cavity
mirror is a difficult problem. The atom nanoprobe
scheme based on a three-mirror cavity can be more effi-
cient. A metallic foil having a small hole parallel to one

T Ptr/Pin T tr a2/w0
2( ).= =

F
π R
1 R–
------------  . 

π
T
--- 8π2w0

2

a2
------.= =
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of the cavity mirrors and located at a distance of half-
wavelength from the mirror can serve as the third mir-
ror. In this scheme, the size of the light field interacting
with the atom is determined by the distance between the
foil and the cavity mirror. A small size of the cavity
ensures a large coupling constant g @ γsp. The require-
ments on the Q factor of the basic cavity are not too
stringent in the three-mirror scheme. The total finesse
of a three-mirror cavity [19] for the same reflectances
of all mirrors is 

(17)

and can be high even for moderate mirror reflectances.
In particular, F = 1.2 × 105 for R = 0.99. The use of
metallic foil with the reflectance R . 0.96–0.98 would
make it possible to achieve the required total finesse of
the composite cavity (g0 @ κ) and, therefore, to realize
the necessary condition for a noticeable reflection from
the cavity.
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This review is devoted to the application of electron paramagnetic resonance (EPR) in the study of fluctuating-
valence materials, which are characterized by a narrow gap in the electron energy spectrum (Kondo insulators
or Kondo semiconductors). The authors’ papers on studying classical objects of this field of solid-state physics,
SmB6 and YbB12, are considered as an illustration of the potentiality of the EPR method. Temperature depen-
dences of the gap width in these materials were obtained, the static and dynamic Jahn–Teller effects on Sm3+

ions in SmB6 were detected, and the formation of Yb3+ ion pairs and the spontaneous breaking of cubic sym-
metry in YbB12 were observed. The results obtained indicate that preference should be given to the exciton–
polaron model developed by Kikoin et al. for the ground state of Kondo insulators. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 75.30.Mb; 76.30.-v
1. Introduction. Electron paramagnetic resonance
(EPR) is a very informative and highly sensitive
method of studying spin correlations in solid state.
Therefore, it was natural to turn to this technique in
studying materials with a fluctuating valence, so-called
Kondo insulators, in which electron correlations—in
particular, spin-dependent ones—play a decisive role.

Kondo insulators with a narrow gap in the energy
spectrum (Kondo semiconductors) have been drawing
researchers’ attention for several decades due the prop-
erties of their ground state, which at low temperatures
is a coherent, that is, macroscopic quantum state. Rare-
earth ions in Kondo insulators exhibit a nonintegral
valence due to its fluctuations with a frequency of 1012–
1013 Hz between the states M2+  M3+, where the M3+

state is magnetic (in thulium compounds, the valence
fluctuates between two magnetic states M3+  M4+).

The best known compounds of this class are samar-
ium hexaboride SmB6 (with a mean valence of samar-
ium of 2.6), ytterbium dodecaboride YbB12 (with a
mean valence of ytterbium of 2.9), and the golden
phase of samarium sulfide SmS (with a mean valence of
samarium of 2.6). SmB6 is a classical object of investi-
gations; YbB12 is considerably less understood; and the
golden phase of SmS is still less understood, apparently
because of the difficulties of obtaining it. All these
materials form crystals with a cubic structure. Samar-
ium hexaboride has the CsCl-type lattice constructed of
samarium ions and boron octahedra connected to each
other with homopolar bonds into a firm skeleton,
whereas ytterbium dodecaboride is crystallized in the
NaCl-type structure in which ytterbium ions and boron
cuboctahedra alternate. More recently, studies of
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numerous cerium-based Kondo insulators (CeNiSn,
CeRhSb, etc.) have been started.

At present, the nature of the ground state of Kondo
insulators cannot be considered to be completely
understood. Therefore, it is useful to apply the whole
variety of known experimental methods to its investiga-
tion. Among these, magnetic spectroscopy techniques,
particularly EPR, turned out to be very informative. In
this review, the potentialities of EPR in solving the
problems of the ground state of Kondo insulators, as
well as their interesting properties discovered with the
use of EPR in the last six years, are demonstrated by the
examples of SmB6 and YbB12.

The valence in Kondo insulators fluctuates with a
frequency of 1012–1013 Hz; transitions between the
magnetic and nonmagnetic states of the system proceed
with the same frequency. Because the frequency of an
EPR spectrometer (1010 Hz) is significantly lower than
the fluctuation frequency of the magnetic moment, the
EPR signal on these rare-earth ions cannot be observed.
Therefore, EPR in Kondo insulators is commonly stud-
ied by the spin marker technique, by introducing para-
magnetic ions with a stable valence (Gd3+, Eu2+, Er3+,
etc.) into the crystal lattice. The observation of EPR on
these ions allows one to determine their g

 

 factor and
line width; to study the dependence of these parameters
on temperature, dopant concentrations, and other fac-
tors; and to judge the properties of the matrix into
which spin markers were doped, that is, the properties
of the Kondo insulator. In general, it is not necessary to
introduce a paramagnetic impurity. We managed to
observe EPR signals on crystal-lattice samarium Sm

 

3+

 

ions in SmB

 

6

 

 [1] and ytterbium Yb

 

3+

 

 ions in YbB

 

12

 

 [2].
Any crystal, even the most perfect one, always contains
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defects or an uncontrolled impurity, which stabilizes
the valence of some of the lattice ions [3].

2. On the nature of the energy gap. The nature of
the energy gap in Kondo insulators was one of the prob-
lems in studying these materials that was solved by the
EPR method. As a result of intensive studies by various
methods, including EPR [4–6], it was found that samar-
ium hexaboride SmB6 [7–10] and ytterbium dode-
caboride YbB12 [11–14] are fluctuating-valence com-
pounds with an energy gap of 10–25 meV at low tem-
peratures. However, while the fact that a narrow gap
exists in Kondo insulators is beyond doubt, the question
of its nature, or, fundamentally, the question of the
ground state of Kondo insulators, remains debatable.
Various theories were proposed to account for the ori-
gin of the gap. The gap was related to df hybridization
[15], Wigner crystallization [16], and excitonic cou-
pling of d electrons with f holes [17]. There is a sub-
stantial discrepancy between theoretical results at finite
temperatures. Thus, the hybridization gap does not vary
with temperature, and the excitonic gap arises as a col-
lective effect and disappears at temperatures on the
order of the gap itself.

Experimental data that point to the disappearance of
the gap at high temperatures, that is, to the collective
nature of the gap, were first obtained in [6, 18] in study-
ing SmB6. Recently, the same measurements were car-
ried out for another classical object of the physics of
Kondo insulators, YbB12 [19].

The measurements were performed in SmB6 pow-
ders containing paramagnetic gadolinium Gd3+,
europium Eu2+, and erbium Er3+ ions with various con-
centrations and in YbB12 samples doped with Gd3+ ions.
For comparison, LaB6 and LuB12 powders containing
Gd3+ ions were also prepared. The investigations were
carried out in the temperature range 1.7–150 K for

Fig. 1. Temperature dependence of the line width of EPR on
the gadolinium Gd3+ ions in (s) YbB12 and (d) LuB12. The

concentration of Gd3+ ions is 1 at. %. Theoretical calcula-
tions are shown by the solid line.
                                            

SmB
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 and 1.7–80 K for YbB
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 at the frequency 

 

ν

 

 =
9.4 GHz.

Gd
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 ions exhibit purely spin magnetism (the
ground state is 4

 

f

 

7

 

, 

 

8

 

S

 

7/2

 

); therefore, their 

 

g

 

 factor is
close to 2.00 and, because of long relaxation times, the
EPR signal can be seen up to relatively high tempera-
tures (see Fig. 1).

The measurements showed that there are more sim-
ilarities between the temperature dependences of the
EPR line width for rare-earth ions in SmB

 

6

 

 and YbB

 

12

 

Kondo insulators than between the corresponding char-
acteristics in hexaborides (SmB

 

6

 

 and LaB

 

6

 

) and dode-
caborides (YbB

 

12

 

 and LuB

 

12

 

). The shape of 

 

δ

 

H

 

(

 

T) in
lanthanum and lutetium borides is linear, which is char-
acteristic of metals, and is determined by the Korringa
relaxation mechanism. The temperature dependence of
the line width in Kondo insulators (samarium and ytter-
bium borides) demonstrates completely different
behavior. From the viewpoint of studying the ground
state of Kondo insulators, the behavior of the EPR sig-
nal at T > 15–20 K, where the resonance line is broad-
ening almost exponentially with increasing tempera-
ture and then goes to saturation, seems to be most inter-
esting. This behavior is caused by the existence of a gap
in the spectrum of electronic excitations of these semi-
conductors. However, calculations in the model of f–d
hybridization with a constant gap did not lead to a sat-
isfactory description of δH(T). At the same time, the
behavior of δH(T) somewhat resembled the behavior of
the line width in superconductors; there were also the-
oretical arguments in favor of the collective nature of
the gap in SmB6 [17].

To interpret the results, a specific model, namely, the
model of an excitonic insulator with large-radius
(Mott–Wannier) excitons composed of a d electron and
an f hole was assumed for the origination of the gap in
[18]. In general terms, the Khaliullin–Khomskiœ calcu-
lations followed the model of electron pair correlations
in superconductors. It is natural that, as in the theory of
superconductivity, a temperature-dependent gap in the
spectrum of an excitonic insulator arises in this model.
A comparison with the experiment allows one to deter-
mine this dependence. For the spin relaxation rate, the
following equation was obtained:

(1)

where ∆ = ∆(T) is the excitonic gap, Jd and Jf are the
exchange integrals of the interaction of Gd with a d
electron and an f hole, Nd and Nf are the densities of
states of the corresponding bands at the Fermi level, τ
is the momentum relaxation time (correlation decay
time). Good agreement with the experiment was

T2
1– 2πTf ∆( ) bd

2 b f
2+( )=

× 1 α 1 f ∆( )–[ ] ∆ /2T( ) 2∆τln+{ } ,

f ∆( ) 1 ∆/T( )exp+[ ] 1– , bi JiNi,= =

α bd b f+( )2/ bd
2 b f

2+( ),=
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obtained, and quite reasonable values were found for
the parameters (Jd, Jf, Nd, and Nf) and for the shift of the
g factor ∆g. The gap at low temperatures in SmB6
equals 2∆ = 100 K and remains almost constant up to
50–70 K, then it starts to decrease sharply and disap-
pears at 150 K. The gap in YbB12 at low temperatures
equals 2∆ = 140 K, it remains almost constant up to
40 K and disappears at 115 K (see Fig. 2). The magni-
tude of the gap is close to the critical temperature Tc ≈
115 K in agreement with theoretical expectations.

Beginning in the mid-1980s, the model of an exci-
tonic insulator has been advantageously developed by
Kikoin and Mishchenko [20, 21] for the description of
the ground state of a Kondo insulator with a fluctuating
valence. As a result, an exciton–polaron model has
emerged that is based on the idea that the ground state
of the system represents a superposition of an f 6 state
and an f 5p state. The f 6 state corresponds to a Sm2+ ion,
and the f 5p state corresponds to an intermediate-cou-
pling exciton in which the hole belongs to the f shell of
the samarium ion (Sm3+) and the electron occupies an
orbital that represents a linear combination of p states
of the boron atoms surrounding the samarium ion (in
the first coordination sphere). As a whole, this combi-
nation has the same symmetry as the hole state. The
exciton resides in the singlet (that is, nonmagnetic)
state. Valence fluctuations can be described as quantum
beating between the two configurations of the system
described above. Correlation in the states of excitons at
different sites is due to the exchange interaction of exci-
tons, which is absent in the mean-field approximation.
Thus, a macroscopically coherent state forms. The gap
in the electronic spectrum in the Kikoin–Mishchenko
model appears as a result of the renormalization of the
purely hybridization gap through the Coulomb interac-
tion of electrons and holes, which leads to the appear-
ance of excitons.

Fig. 2. Temperature dependence of the energy gap ∆(T) in
YbB12.
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The exciton–polaron model allowed its authors to
explain the anomalies in the phonon spectrum [20] and
the dispersion of magnetic excitations [22] studied by
inelastic neutron scattering, as well as the optical
absorption and dispersion in the submillimeter range
[23] in SmB6 (also see the studies of transport proper-
ties [24, 25]). Unfortunately, the spin relaxation rate in
a Kondo insulator was not calculated in the Kikoin–
Mishchenko model; therefore, in our work [19], we
again had to use the Khaliullin–Khomskiœ theory in
order to interpret the experimental results. Based on
good agreement with the experiment, it may be sug-
gested that the difference between the effects of the
intermediate-coupling excitons and the Mott–Wannier

excitons on the relaxation rate  of the Gd3+ spins
introduces no crucial changes in the comparison
between the theory and the experiment. Emphasize that
it was already noted in [18] that the experimental
dependence is only slightly sensitive to the preexpo-
nential factor in Eq. (1). The essential feature required
for the achievement of agreement between the theory
and the experiment was the introduction of a tempera-
ture-dependent gap.

At low temperatures, a characteristic kink is
observed in the temperature dependence of the EPR
line width for all levels of doping YbB12 samples with
gadolinium (Fig. 3) [19]. It is interesting to note that we
also observed a similar kink in SmB6 at the same tem-
peratures. It was also independent of the concentration
of the impurity [18]. Apparently, the increase in the line
width at a temperature of 13–14 K is associated with
the properties of the ground state of the system, for
example, with the formation of a bound polaron whose
existence was considered in the paper by Curnoe and
Kikoin [21]. The states inside the energy gap in SmB6
were observed in [25]. Their origination is related in
this work with correlation between exciton–polaron

T2
1–

Fig. 3. Temperature dependence of the line width of EPR on
the Gd3+ ions in YbB12. The concentrations of Gd3+ ions are
(n) 0.1 at. %, (m) 0.5 at. %, and (s) 1 at. %.



416 AL’TSHULER, BRESLER
complexes arising at various lattice sites. Magnetic
excitations with energies lying inside the energy gap of
SmB6 were also observed in this Kondo insulator in
[26]. These states were assigned to the interaction of
the ground state of the Sm3+ ion with mixed phonon
modes and valence fluctuations (Jahn–Teller effect).

3. The Jahn–Teller effect on SmB6 ions in samar-
ium hexaboride. It is known that the Jahn–Teller effect
consists of spontaneous breaking of the symmetry of a
high-symmetry configuration of a molecule or a cluster
(in solid state). This leads to splitting of the degenerate
state and to a decrease in the energy of the system. A
cluster, in this case, means a particular ion and its near-
est surroundings—most frequently the ions of the first
coordination sphere whose displacement just leads to
the breaking of symmetry. This breaking is due to the
interaction of the ion in a degenerate state with the
eigenmodes of the cluster atoms whose symmetry is
lower than the symmetry of the identical representation
(totally symmetric mode).

However, it was commonly assumed that the Jahn–
Teller effect could not be observed in EPR of rare-earth
ions [27]. The reason for this statement was the opinion
that the symmetric configuration is stabilized in rare-
earth ions because of strong spin–orbit interaction.
Therefore, the observation of the dynamic Jahn–Teller
effect in SmB6 by a group of physicists from the Darm-

Fig. 4. Deformation of a cluster of fluctuating samarium
ions surrounding a paramagnetic ion with a stabilized
valence (Sm3+) in the case of the Jahn–Teller effect in
SmB6. There are three types of distorted clusters corre-
sponding to displacements along the x, y, and z axes.
stadt Technical University was a complete surprise; this
effect was not observed in materials with stable
valences like BaB6, CaB6, and YbB6 [28].

Recall what the static and dynamic Jahn–Teller
effects are. The Jahn–Teller effect in SmB6 consists of
a spontaneous deformation of the octahedron (cluster)
composed of the fluctuating Sm ions surrounding the
spin marker, which was in a degenerate state before the
rise of the deformation (Fig. 4). The spin markers were
the Er3+ ion in [28, 29], the Gd3+ ion in [30], and the
Sm3+ ion in our work [1]. The boron atoms form a firm
skeleton bound by covalent bonds and do not partici-
pate in the Jahn–Teller effect. The deformation of the
octahedron represents compression (or extension)
along one of the principal cubic axes, which results in
the splitting of the symmetric quartet state Γ8 of the
trivalent ion into two doublets Γ6 (or Γ7) with parame-
ters determined by the parameters of the starting quar-
tet. The states corresponding to deformations along the
x, y, and z axes are degenerate; therefore, anisotropic
doublets of three types must be observed in the EPR
spectrum at low temperatures. The degenerate states are
separated from each other by potential barriers, which
hinder the free rearrangement of the cluster at low tem-
peratures from configuration x to configuration y or z.
This spontaneous breaking of symmetry is called the
static Jahn–Teller effect. With increasing temperature,
the oscillations of the metal ions near their new (dis-
placed) equilibrium positions become stronger, and the
system that consists of the paramagnetic ion and its dis-
torted environment starts to tunnel between the states
corresponding to deformations along the different
cubic axes. The sixfold degenerate vibronic state (three
equivalent doublets) is split upon tunneling into the
quartet Γ8 (with parameters that, generally speaking,
differ from those of the starting quartet) and the doublet
Γ6 (or Γ7). The experiment shows that the quartet state
lies below the doublet state and is separated from it.
This phenomenon averaging the previous doublet states
is referred to as the dynamic Jahn–Teller effect. The
quartet state Γ8 of the Er3+ ion was observed in [28]
with parameters that were considerably less anisotropic
than could be expected, which was interpreted as a
manifestation of the dynamic Jahn–Teller effect. The
observation of the dynamic Jahn–Teller effect in [28,
30] was a remarkable result; however, a certain dissat-
isfaction remained associated with the fact that the
static Jahn–Teller effect, which must predominate at
low temperatures, was not observed. This puzzle was
resolved in [1], in which we managed to observe both
the static and the dynamic Jahn–Teller effects on Sm3+

ions.

The measurements of EPR were performed in the X
range of frequencies (1010 Hz) at T = 1.6–4.2 K. Pure
single crystals of samarium hexaboride and crystals
doped with rare-earth paramagnetic impurities of dif-
ferent valences (Gd3+, Er3+, and Eu2+) with concentra-
JETP LETTERS      Vol. 78      No. 6      2003
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tions c ~ 0.01–0.05 at. % were used. EPR signals were
observed for both the paramagnetic impurities and
trivalent samarium ions.

All the lines were narrow, which provided indirect
evidence of the high quality of the crystals. However,
even such a crystal contains defects. These defects were
the reason for the transformation of some (c ~ 0.04 at. %)
of the fluctuating samarium ions to the stable trivalent
state. The stabilization of the valence of samarium Sm3+

in doped crystals (c ~ 0.1 at. %) is also due to the intro-
duced impurity.

Depending on the direction of the magnetic field
with respect to the crystal axes in the (100) plane, three
lines E, F, and G (Fig. 5) from the doublets Γ6x, Γ6y, and
Γ6z were observed in all the studied crystals at the tem-
perature T = 1.6 K. Apart from these lines, two more
lines from the quartet Γ8 (A and B in Fig. 5) are seen in
the pure SmB6 crystal and in the crystal doped with
bivalent europium. The remaining positions of the
quartet lines are shown in the figure in a dashed line.
Transition C is forbidden or semiforbidden at all the
angles θ. Transition D was outside the available region
of magnetic fields (more than 16 kOe). For the same
reason, it was possible to observe transition A only in a
narrow region of angles θ (from 30° to 60°) between the
direction of the magnetic field and the [100] crystal
axis.

An analysis of the parameters of the EPR spectrum
showed that the doublet states (corresponding to the
static Jahn–Teller effect) originate from the quartet
states (described by the dynamic Jahn–Teller effect),
which are split by the deformation. 

The ratio of intensities of the quarter I4 and the dou-
blet I2 transitions (the most intense lines were chosen)
is proportional to the statistical weights of quartets I4
and doublets I2 and to the probability of the tunnel tran-
sition between the doublet states separated by the
potential barrier Eb

(2)

The experiment showed that the relative amount of
quartets with respect to doublets increases with increas-
ing temperature up to 4.2 K, as should be expected
under conditions of the Jahn–Teller effect. The height
of the barrier between the deformation wells separating
the doublet states can be estimated from the variation of
the ratio of concentrations of quartets and doublets
N4/N2 with temperature. It was found to be approxi-
mately 2 K. The ratio N4/N2 and the barrier height only
slightly differed in the cases of the doped and undoped
samples. This indicates that the observed phenomena
are correctly explained by the Jahn–Teller mechanism
rather than random deformations for which the number
of doublets and quartets in different crystals could dif-
fer rather strongly.

The interpretation of the results in the paper [28]
and in the dissertation [29] was based on the conven-

I4/I2 N4/N2( ) Eb– /kT( ).exp∼
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tional theory of the Jahn–Teller effect, which takes into
account the interaction of the trivalent ion with cluster
vibrations. A somewhat different mechanism of the
dynamic Jahn–Teller effect observed in [28] was con-
sidered in [31]. The mechanism in [31] was based on
the effect of valence fluctuations on the symmetric state
of the ion. However, because the static Jahn–Teller
effect arises only in the conventional theory presented
in [29], it was this theory that we used for the descrip-
tion of our results.

When a trivalent ion interacts with cluster vibra-
tions, these modes become coupled because the fre-
quencies of the lattice vibrations and the valence fluc-
tuations are close to each other. At the same time, the
force constants responsible for lattice vibrations
become softer [20]. It is this mode softening that is
apparently the main reason for the occurrence of the
Jahn–Teller effect in SmB6 and its absence in stable-
valence materials. Because the model in [29] was con-

Fig. 5. Angular dependence of the resonance line positions
for the Sm3+ ion in a SmB6 single crystal with respect to a
rotation of the magnetic field in the (100) plane. T = 1.6 K.
Experimental line positions are designated by black squares
for undoped SmB6, black circles for SmB6 doped with

Eu2+, and triangles and light circles for SmB6 doped with

Gd3+ and Er3+, respectively. Lines A, B, C, and D are the
line positions theoretically calculated for the Γ8 quartet;
lines E, F, and G are the line positions theoretically calcu-
lated for the Γx, Γy, and Γz doublets.
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structed by the invariant method with regard to only the
symmetry of the normal cluster vibrations, we believe
that it is not actually related to the conventional lattice
vibrations but is also valid in the case of mixed lattice–
electronic modes. From the viewpoint of the exciton–
polaron model, the manifestation of the Jahn–Teller
effect can be interpreted as the existence of “spin
polarons,” that is, spin states of an impurity ion dressed
with a cloud of mixed exciton–polaron excitations of
the matrix. In more common terms of the Jahn–Teller
effect, these are vibronic states of the cluster at whose
center a Sm3+ ion is located.

The results of EPR studies that we carried out on the
Er3+ and Gd3+ ions coincided with those reported in [28,

Fig. 6. EPR spectrum in an YbB12 single crystal at various
temperatures for the magnetic field directed along the [001]
axis in the (110) plane.

Fig. 7. Angular dependence of the resonance line positions
in a YbB12 single crystal with respect to a rotation of the
magnetic field in the (110) plane. T = 1.6 K. Black and white
circles indicate the positions of the extreme spectral lines
(pairs), crosses indicate the position of the weak isotropic
line related to the Γ6 doublet. Theoretical calculations are
shown in dashed lines.
30]; that is, the EPR spectra of these ions are described
by the dynamic Jahn–Teller effect. On the Sm3+ ions in
SmB6 doped with trivalent ions, we observed the static
Jahn–Teller effect, whereas both the static and dynamic
Jahn–Teller effects were simultaneously observed on
the Sm3+ ions in pure SmB6 and in SmB6 doped with
bivalent europium. Thus, the EPR of the trivalent ions
(Er3+, Gd3+, and Sm3+) in SmB6 can be described from
a unified viewpoint if the Jahn–Teller effect is taken
into account. At the same time, if bivalent Eu2+ ions are
doped into SmB6, the Jahn–Teller effect is not observed
on these ions. The mean valence of the fluctuating Sm
ion in SmB6 equals +2.6; that is, it is closer to the
valence of the Er3+ and Gd3+ ions than to that of the
bivalent Eu2+. However, it is the insertion of the erbium
and gadolinium ions (and the appearance of Sm3+ ions)
that perturbs the state of the lattice more strongly than
the insertion of the Eu2+ ions with a larger ionic radius.
As was shown in the excitonic model of a fluctuating-
valence semiconductor (Kondo insulator), the fluctuat-
ing Sm ion retains an electron in the nearest coordina-
tion sphere even when the electron leaves the f shell,
that is, when the formal valence of the samarium ion
equals +3. Actually, a small-radius exciton is formed in
this case, and its size can be close to the radius of an ion
with a valence of +2. Thus, the excitonic model of a
Kondo insulator explains the tendency of the ions with
a valence of +3 to break the local symmetry of the lat-
tice (Jahn–Teller effect), whereas the Eu2+ ion retains
the cubic symmetry of the environment (that is, its
unperturbed state).

Summing up the first two sections of the review, we
may state that the results of the EPR studies described
above provide convincing evidence in favor of the exci-
ton–polaron model of a Kondo insulator.

4. Formation of pairs and the spontaneous
breaking of cubic symmetry in YbB12. For a long
time, the properties of another classical representative
of Kondo insulators, YbB12, have been studied in poly-
crystalline samples. Only the synthesis of high-quality
YbB12 crystals by the Japanese physicists Iga, Shimizu,
and Takabatake [12] allowed EPR to be studied in a sin-
gle crystal of this semiconductor. EPR signals on the
Yb3+ ions in a specially undoped YbB12 single crystal
were detected in [2] at temperatures of 1.6–4.2 K. It
was inferred that, as in SmB6, a certain concentration of
ions with a stabilized valence of 3+ is present in the
crystal. A comparison of the EPR signal in the YbB12
single crystal with a standard showed that the concentra-
tion of the Yb3+ ions reached approximately 0.3 at. %.
The investigation of EPR in YbB12 revealed three
unusual facts: (1) two closely spaced intense lines and
a weak line between them were detected (Fig. 6) rather
than the expected single line of the EPR signal (similar
to the results [32, 33], the Yb3+ ion can occur in the Γ6
doublet state); (2) whereas the Γ6 doublet must give an
JETP LETTERS      Vol. 78      No. 6      2003
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isotropic EPR signal (with respect to a rotation of the
magnetic field in the (110) plane), the observed extreme
EPR lines in fact exhibited a complicated angular
dependence described by the third-order Legendre
polynomial Y30(cosφ) (Fig. 7); only the weak central
line gives an isotropic signal from the Γ6 doublet; (3)
because of relatively long relaxation times, the EPR
spectra from the Yb3+ ion have been observed up to the
temperature of liquid nitrogen (–77 K); the intensity of
the EPR signal in YbB12 drops on heating from 1.6 to
4.2 K by almost two orders of magnitude, so it is hardly
seen at liquid-helium temperature (Fig. 6).

An analysis of the results showed that intense lines
arise from the splitting of a state with a g factor of
approximately 2.6 and with a weak anisotropic interac-
tion characteristic of the Γ6 state. The splitting of a sin-
gle line into two ones pointed to the existence of two
similar interacting oscillators, that is, the existence of
pairs of Yb3+ ions. However, the isotropic exchange
interaction of two Sm3+ ions does not lead to the split-
ting of the frequencies of the triplet state of the ion pair
[34]. At the same time, anisotropic exchange gives an
angular dependence of the positions of resonance lines
described by the first rather than the third Legendre
polynomial. Therefore, the Hamiltonian that took into
account the ion pair interaction

(3)

should be supplemented with the term

(4)

which describes the experimental angular dependence.
Here, T = S1 + S2 is the total spin of the pair, and Tz is
its z projection. The anisotropic part of interaction is
thus associated with the dipole–dipole (the first term)
and the exchange (the second term) pair interactions.
Thus, the formation of ion pairs and a spontaneous
breaking of cubic symmetry were found in a Kondo
insulator: all the pairs were aligned in the same direc-
tion, as a result of which the cubic symmetry of the
crystal lowered to the axial symmetry. The reasons for
such a peculiar phase transition are unclear at present;
it could be associated with both dipole–dipole ordering
that resembles the emergence of nuclear ordering [35]
or with the properties of the ground state of a Kondo
insulator considered in the Kasuya model with Wigner
crystallization [16].

A strong (close to exponential) temperature depen-
dence of the EPR intensity was also observed in [2]
(Fig. 6). At the same time, neither the behavior of the
magnetic susceptibility nor the temperature-indepen-
dent angular dependence of the resonance-line posi-
tions allows the conclusion that a magnetic or structural
phase transition takes place in the studied temperature
range. Therefore, the obtained temperature dependence
of the EPR intensity should be assigned to a variation
of the concentration of the EPR-active centers, that is,
the concentration of the Yb3+ ions with a stabilized

H gµHzTz 1/2( )ℑ T T 1+( ) 3/2–{ }+=

a 3T1zT2z T1T2–( ) T2H( ) 3a/2( ) T1T2( ) T2H( ),–
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valence. The experimental data obtained can be
explained by the liberation of electrons captured by
traps with a binding energy of 12 K as the temperature
increases; the liberated electrons compensate the
charge of Yb3+ ions, transforming them into fluctuating-
valence ions, which are inactive in EPR.

The results of the study of EPR in YbB12 are
reported in more detail in [36].

5. Conclusions. The results obtained by the authors
and described in this review demonstrate ample poten-
tialities of the EPR technique in studying Kondo insu-
lators—materials with strong electron correlations—
especially in studying the most puzzling of their prop-
erties, namely, their ground state. Unfortunately, the
papers on EPR in this area are small in number; as other
examples, we indicate papers on studying cerium-
based Kondo insulators [33, 37].

The results cited in this review were obtained within
the projects supported by the Russian Foundation for
Basic Research, project nos. 97-02-16235 and 00-02-
16080. The writing of this review was also supported
by the Russian Foundation for Basic Research, project
no. 03-02-17453.
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ERRATA
Equation (6) should read

(6)

Equation (7) should read

(7)

On page 649, second column, second paragraph, the expression 3(d2W/dξ2) + [1 – exp(φ) – λ]W = 0 should be
replaced by 3(d2W/dξ2) + [1 – exp(τφ) – λ]W = 0.
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The first of Eqs. (2) should read

Equation (11) should be

In Fig. 2, the legends for curves 1 and 2 correspond, respectively, to curves 3 and 4, and vice versa. These mis-
prints does not change the main result of the work: the probability of neutron depolarization in traps increases
appreciably upon neutron reflection from the walls positioned in a nonuniform magnetic field. 

φ̇̇ ω2 ia– a2t2+( )φ+ 0,=

φ +∞( ) 2 . 9
4
--- ξ2 ξ'2+( ).
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