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There are two major alternatives for violating the (usual) Lorentz invariance at large (Planckian) energies or
momenta—either not all inertial frames (in the Planck regime) are equivalent (e.g., there is an effectively pre-
ferred frame) or the transformations from one frame to another are (nonlinearly) deformed (“doubly special rel-
ativity”). We demonstrate that the natural (and reasonable) assumption of an energy-dependent speed of light
in the latter method goes along with violations of locality/separability (and even translational invariance) on
macroscopic scales. © 2003 MAIK “Nauka/Interperiodica”.
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1. Introduction. The observation that there is no
invariant energy (or length, etc.) scale in special relativ-
ity, on the one hand, and the expected physical signifi-
cance of the Planck scale, on the other hand, has moti-
vated the suggestion that the (usual) Lorentz invariance
might be broken at large (Planckian) energies [1–7]. It
has also been suggested [1–10] that several yet unex-
plained observations, such as the indications for ultra-
high energy cosmic rays (UHECR) with energies above
the Greisen–Zatsepin–Kuzmin (GZK) cutoff [11, 12]
of order 2(1019 eV) induced by the interaction with the
cosmic microwave background, could be interpreted as
empirical evidence for deviations from the Lorentz
invariance at high energies. Furthermore, variable
speed-of-light (VSL) cosmologies [13, 14], which also
require breaking the local Poincaré symmetry, have
been considered as alternative solutions of the cosmo-
logical problems, which lead to the idea of inflation.
In  particular, in the first case, one needs to explain
the  apparent large gap between the energy range of
those phenomena 2(1019 eV) and the Planck scale
2(1028 eV), but we are not going to discuss these phe-
nomenological issues here (for phenomenological con-
straints on Lorentz violation, see, e.g., [15, 16] and ref-
erences therein, cf. [17]).

There are two major alternatives for breaking the
Lorentz invariance: either not all inertial frames (in the
Planck regime) are equivalent (e.g., there is an effec-
tively preferred frame) or the transformations from one
frame to another are different (deformed). In the fol-
lowing paper, we shall consider the second possibility
in more detail and discuss some consequences which
arise thereof. For the sake of simplicity (and since the
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masses of all known “elementary” particles are small
compared to Planck scale), we shall only consider
massless particles, such as photons. In addition, we
shall work in 1 + 1 dimensions (unless otherwise
noted).

The main idea of doubly special relativity (DSR;
see, e.g., [1–7, 18]) is to replace the usual linear Lorentz
transformation + by the following nonlinear represen-
tation F ° + ° F–1, i.e.,

(1)

with some nonlinear function F: R2  R2

(2)

which reduces to the identity for small energies

(3)

Note that the group structure of the deformed transfor-
mations in Eq. (1) is the same as that of the ordinary
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Lorentz group. This appears quite reasonable as the
only suitable six-parameter extension (cf. [6, 7, 18]) of
the group SO(3) of spatial rotations, which we want to
retain, seems to be the Lorentz group itself, especially
since we want to reproduce the usual Lorentz transfor-
mations at small energies. It should also be mentioned
here that this approach relies on the particle picture—
there is no unique and well-defined field-theoretic for-
mulation at this stage.

2. Field-theoretic example. Unfortunately, there
has so far been no unique prescription for translating
the behavior in momentum space (E, p) into position
space (t, x), which is required for formulating a corre-
sponding field theory. There is not even consistency in
the literature regarding the velocity of propagation of
Planckian particles: in [19], it is argued that the speed
of light does not depend on the energy (i.e., that all
massless particles have the same velocity c) in all DSR
theories. Work [20], on the other hand, arrives at the
(natural) result that the propagation speed is given by
the group velocity v g = dE/dp. In [6], however, the
phase velocity v p = E/p is used instead (in some limit).
This depends on whether (and how) one modifies the
commutators such as [x, p] = i" and, hence, the identi-
fications ip  "∂/∂x, etc., or not (see, e.g., [21, 22]).

However, let us consider one possible example for a
field-theoretic formulation motivated by an analogy to
condensed matter systems. The propagation of sound
waves is governed by a dispersion relation, which is lin-
ear at low energies and shows deviations (sub- or super-
sonic) at high energies (cf. also [23–25]). Although
there certainly exists a preferred frame in such systems,
one might (formally) perform the same steps as
described in the previous section and parameterize the
nonlinear dispersion relation E(p) with a nonunique
function F as in Eq. (2) by E2 = c2p2 (although here c
denotes the speed of sound). In this somewhat artificial
way, the usual linear Lorentz transformation + in the
(E, p)-space can be used to define transformations
from one frame to another. In order to conduct a
Lorentz transform of the field φ(t, x) (e.g., a wave
packet), one first does a Fourier transform ^ assuming
ip  "∂/∂x, etc., then applies the nonlinear Lorentz
transformation, and finally transforms back:

(4)

Since the function F and its inverse F–1, as well as the
dispersion relation E(p), are nonpolynomial in general,
the above procedure is clearly nonlocal in position
space (t, x) (see also Sections 4 and 5 below).

3. Energy of composite systems. As mentioned in
the Introduction, one of the main motivations for
deforming the usual Lorentz boosts is to require that not
only the speed of light (at low energies) but also the
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Planck scale is invariant1 under the modified transfor-
mations, hence the notion “doubly special relativity”.
Since the usual linear Lorentz boosts + do not possess
any fixed points (in E, p) except zero and infinity, and
Eq. (3) connects E = p = 0 to E = p = 0, the Planck scale
must be mapped by the function F–1 to infinity in order
to be invariant. As we shall see below, this property has
rather dramatic consequences for composite systems.

Demanding that energy-momentum conservation in
one frame has to be equivalent to energy-momentum
conservation in all frames implies the following nonlin-
ear composition law2 

(5)

i.e., one has to add Ei and pi (see, e.g., [7, 18]). The
subscript (N) indicates that the function F(N) could be
modified, i.e., differ from F.

Let us first discuss the implications of using the
same [18] function as in the one-particle case F(N) = F:
since F maps infinity to the Planck scale, the total
energy can never exceed the Planck energy, which is a
weird result and raises serious questions concerning the
physical significance of such an energy concept (see,
e.g., [7]). Moreover, a Galilei-type argument points out
another contradiction if the velocity of propagation
depends on energy (see also the next section): if two or
more particles have equal energies E and, hence, veloc-
ities v

 

, then the speed of the composite system obvi-
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tion for considering E and p instead of E and p could
be that the former quantities, E and p, are related to the
spacetime behavior and determine the energy-depen-
dent velocity of propagation, etc., whereas the latter, E
and p, are not.

4. Energy-dependent speed of light. Since the dis-
persion relation E(p) must assume the same form in all
frames, it can be derived from the usual invariant E2 =
c2p2 (remember m = 0) of the linear Lorentz transfor-
mations +. Owing to the nonlinear function F, the dis-
persion relation can involve a rather complicated
dependence E(p) with a possibly changing speed of
light (cf. the VSL cosmologies). As indicated above, a
varying velocity of propagation seems to be the only
possible way for the quantities E and p to acquire more
physical significance than E and p.

Obviously, the particle picture, which the whole
approach is based on, and the concept of a velocity of
propagation derived therefrom do only make sense if
we are able to localize the particle under consideration
with a (space/time) uncertainty much smaller than the
length of the particle’s world line. For example, we may
derive the velocity of a Planckian particle by determin-
ing its position within a few Planck lengths and follow-
ing its propagation over a macroscopic time duration
and distance. Here, macroscopic means much larger
than the Planck length/time (we want to retain the usual
spacetime translation symmetry and the concept of
internal motion).

As motivated in the previous section, the inverse
function F–1 diverges at the Planck scale and, hence,
cannot be written as a polynomial (polynomials are reg-
ular everywhere). In general, one would expect E(p) to
be singular at the Planck scale as well, also displaying
a nonpolynomial behavior, and, therefore, nonlocal
effects to arise. At a first glance, one might argue that
these nonlocalities occur in the Planck regime only and
are, therefore, not problematic. However, as we shall
now demonstrate, these nonlocal effects arise on a mac-
roscopic scale, provided that the particles under consid-
eration can travel a distance much larger than the
Planck length (see the arguments above).

Let us consider the two limiting cases: for higher
and higher energies, the speed of light goes to zero
(subluminal dispersion) or to infinity (superluminal). In
the first case, the particle basically stops moving and
just sits there. Now, if we can localize this highly
Planckian particle within a few Planck lengths for a
finite time duration (i.e., much longer than the Planck
time), this clearly singles out a preferred frame, since
we are supposed to know how Lorentz boosts act on
macroscopic (i.e., sub-Planckian) scales!

In order to further study this apparent contradiction,
let us consider a concrete example. Here, one encoun-
ters a problem, since, as mentioned in Section 2, the
velocity of propagation is not uniquely determined. In
the following, we assume that the speed of the particle
JETP LETTERS      Vol. 78      No. 7      2003
                                     

is given by the group velocity dE/dp (cf. Section 2 and
[20]) and choose a dispersion relation which is linear in
some interval p ∈  [p1, p2], though not with the usual
proportionality factor c, say,

(6)

If we assume a very small boost velocity v  ! c (Galilei
limit), the Lorentz transformation in Eq. (1) acts as

(7)

i.e., with v  and c being replaced by v /2 and c/2.

Since the dispersion relation E2 = c2p2/4 arising
from Eq. (6) is linear (between p1 and p2), the Lorentz
transformation in position space (t, x) ought to be the
same as in momentum space (E, p)—no matter whether
we consider a particle with p1 ≤ p ≤ p2 or a wave packet
(cf. Section 2) with support in the interval [p2, p3]. In
this way, the presence of the Planckian particle with
p1 ≤ p ≤ p2 traveling over a long distance enforces a
Lorentz boost with v /2 and c/2 instead of v  and c—at
macroscopic (sub-Planckian) scales!

Evidently, the same phenomenon occurs for a super-
luminal (speed of light goes to infinity) dispersion rela-
tion. Any Planckian particle with a sub- or superluminal
velocity of propagation either introduces a preferred
frame or necessitates the modification of the Lorentz
transformation on its travel time and distance, i.e., on
macroscopic (sub-Planckian) scales, which demon-
strates the occurrence of large-scale nonlocality [27].

5. Loss of coincidence. The fact that the presence of
a Planckian particle affects the Lorentz transformations
has further bizarre consequences. If we go to 3 + 1
dimensions, the position-space representation of the
deformed Lorentz transformation described in Eq. (4)
of Section 2 acts as

(8)

The nonlinearity in E(E', p') and p(E', p') results in a
very strange behavior under spacetime translations. For
the sake of illustration, we again (as in the previous sec-
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tion) consider a function F, which is linear both for low
momenta and in some interval p ∈  [p1, p2]

(9)

Now, let us follow the evolution of two wave packets:
one (t, r) is decomposed of sub-Planckian energies

p2 !  and the other one (t, r) contains
momenta in the interval p ∈  [p1, p2] only. In this situa-
tion, the transformation in Eq. (8) can be calculated eas-
ily, and in the Galilei limit v ! c, we obtain (cf.
Eq. (7))

(10)

Note that the relativistic corrections to the time coordi-
nates in the first arguments on the right-hand side are
different due to the nonlinearity. Consequently, if we
change the origin of our spatial coordinate system, we
introduce a relative time shift

(11)

between the two wave packets. Ergo, if the velocities of
the two wave packets and the boost direction v  are lin-
early independent and the two wave packets hit each
other (i.e., coincide within their width at some space-
time region) in one coordinate system, they may miss
each other (one wave packet comes too late) in another
coordinate representation!

Of course, this breaking of translational (i.e.,
Poincaré) invariance, again on large scales, has been
demonstrated using the special field-theoretic represen-
tation described in Section 2; and one could argue that
the above effect is an artifact of the special construction
in Section 2 and that in a different representation, this
problem can be avoided. However, in order to prove this
assertion, one has to provide another explicit field-the-
oretic example and to study its consequences. It seems
that one faces similar difficulties, breaking of transla-
tional invariance xµ  xµ + aµ (see, e.g., [28]) and
deviations from the usual behavior on large scales xµ @
LPlanck, when introducing noncommuting coordinates
via

(12)

(instead of [xµ, xν] = ζgµν, for instance), as it is done,
for example, in [21, 22] in relation to DSR theories.

We would also like to stress that the counterargu-
ment presented in the previous section is independent
of any field-theoretic representation (and would, there-
fore, not go away).

F E

p 
 
  E : p2

 ! p1
2

E/2 : p1
2 p2 p2

2> >



p 
 
 
 
 
 

.=

φlow'

p1
2 φPlanck'

φlow' t r,( ) φlow t' r' v/c2⋅+ r' vt'+,( ),=

φPlanck' t r,( ) φPlanck t' 2r' v/c2⋅+ r' vt'/2+,( ).=

r' r' a ∆t+ a v/c2,⋅=

xµ xν,[ ] Λ µνρxρ=
6. Summary. Apart from the weird properties of
composite systems discussed in Section 3, the theory of
“doubly special relativity” goes along with violations
of locality and separability if the speed of light depends
on energy, since the presence of a single Planckian par-
ticle can modify the action of the Lorentz transforma-
tion at macroscopic scales3 (i.e., much larger than the
Planck length; see Sections 4 and 5). On the other hand,
if the speed of light does not depend on the energy (e.g.,
the dispersion relation is E2 = c2p2), then there is no dis-
cernible reason to assign E more physical significance
than E (see Section 3). Although one should bear in
mind that the whole approach purely relies on the par-
ticle picture (not a field theory), one would expect that
the energy, defined as the generator of the time-transla-
tion symmetry, is an additive quantity for independent
systems (which brings us back to the question of local-
ity and separability).

In search of alternatives, one could imagine that,
even though the (still to be found) underlying theory
(including quantum gravity) might not possess a pre-
ferred frame, the physical state of the system describing
the actual gravitational field, etc., indeed does intro-
duce an effectively preferred frame with respect to the
interaction with Planck-scale photons, for example,
that propagate within the gravitational field.
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After finishing the work on our manuscript, we
found that several other authors (based on different
approaches and assumptions) have also pointed out
strange consequences of DSR and/or concluded that
DSR is either inconsistent with our present understand-
ing of physics or trivial (i.e., indistinguishable from
ordinary special relativity; see [29–32]).
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A theoretical investigation for the conductivity of single walled nanotube films is carried out with an effective
medium model in the Terahertz region. The results are compared with the recent experiment and a decrease of
the real conductivity with increasing frequency is predicted. Meanwhile, the off-diagonal components of the
dielectric function of single-walled carbon nanotube films based on the magnetooptical effects are also shown.
© 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.67.Ch; 78.66.-w; 78.20.Ls 
Recently, terahertz (THz) technology is becoming a
very attractive research field because its applications
have involved semiconductor, label-free genetic analy-
sis, cellular-level imaging, biological sensing, and so
on [1]. Its applications in nanotubes appear to be open-
ing up a new field, since the nanotubes have been rec-
ognized as a fascinating material for their many unique
properties. Studies of T-ray interaction with nanotubes
will explore the potential application of T-ray in nano-
structures. It is possible to measure both the diagonal
and off-diagonal components of the complex conduc-
tivity tensor due to the current advances in THz spec-
troscopy [2, 3]. The electronic and optical properties of
nanotubes in low frequency have been reported by
some works [4–7] so far, but few studies are performed
in the THz region. In this paper, we report on a theoret-
ical analysis of the conductivities of the single-walled
carbon nanotube films in the THz region from 0.1 to
10 THz.

In the recent experiment, Jeon and his collaborators
[7] measured the absorption and index of refraction of
the SWNT films using an optoelectronic THz beam
system from 0.1 to 0.8 THz. The conductivity of the
film is thereby learned. The experiment indicates that
the real conductivity increases with increasing fre-
quency. The previous investigations have done some
research about the far-infrared characteristic of SWNT
films [8–10]; however, the results are not consistent
when considering the overlapping frequency region.

As we know, the optical properties of metal and
semiconductors usually satisfy the simple Drude the-
ory. However, the SWNT film cannot be interpreted
within a simple Drude model because of its special
characters. In this work, we employ the effectivity

¶ This article was submitted by the authors in English.
0021-3640/03/7807- $24.00 © 20436
medium approximation (EMA) method, which is also
known as the Maxwell–Garnett (MG) model [11, 12],
to interpret the experimental results. The EMA is
denoted as the following:

(1)

where the filling factor f defines the volume fraction of
the insulator; εi and εm(ω) are the host-medium dielec-
tric function and the metal dielectric function, respec-
tively. Usually, the EMA is used to describe the dielec-
tric constant of the structures that metal particles are in
a continuous insulating matrix of and the insulators for
a continuous medium. Here, the SWNT films are con-
sidered as CNTs embedded in an effective dielectric
medium. In our calculation, f = 0.6 is given, and εi and
εm(ω) can be determined from the Drude–Lorentzian
(DL) model. From the DL model, the dielectric func-
tion is given by

(2)

where εc represents the frequency-independent optical
dielectric constant. The second term is a Drude term
which defines the delocalized charge component; ωp

and Γ are the plasma frequency and the relaxation rate
of the charge carries, respectively [10, 13]. The motion
of localized charge carriers is ascribed to the third term,
the Lorentz harmonic oscillators, where ωpj, ωj, and Γj

are the center frequency, spectral width, and oscillator
strength, respectively. The metallic particles εm(ω) can
be defined by the Drude term, the host-medium εi can
be represented by a Lorentz term adding εc with the rel-
evant parameters. Parameters for the model calculation
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are defined by εc = 5.5, ωp = 0.03 eV, ωpj = 0.02 eV, Γ =
0.0035 eV, ωj = 0.004 eV, and Γj = 0.02 eV, which based
on the analysis of Jeon’s experiment. A filling factor f =
0.6 is considered [14].

The best fits for Jeon’s experiment are presented in
Fig. 1. The dielectric function is calculated by the MG
approach, the power absorption and the real part of the
conductivity of SWNT films are obtained through a
Kramers–Kronig (KK) transformation. In the insets of
Fig. 1, as shown, the absorption and the conductivity
increase with increasing frequency within 0.1 to
1.0 THz, which agrees with the experimental results.
The conductivity displays a strong peak at about
1.0 THz, corresponding to a localized absorption.
When the frequency is greater than 1.0 THz, the fitting
curve gives a decrease with increasing frequency,
which is not represented in Jeon’s experiment due to the
limit of the device. However, this decline has been
reported by the experiments [7, 11]. In general, the
electronic structure of individual SWNT is specified by

Fig. 1. The power absorption [α(ω)] (a) and the real parts of
the conductivity [σ1(ω)] (b) of SWNT film are obtained by
a Kramers–Kronig analysis of the dielectric function. The
insets are below 1.0 THz.

(b)

(a)
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a pair of integers (n, m). Hamada et al. [15] pointed out
that armchair SWNTs of n = m are gapless and should
be metallic, while zigzag or chiral SWNTs of n ≠ m
have a gap depending on the wrapping vector. These
gaps could be reasonable for the features of nanotubes.
In our calculations, the sample of the single walled nan-
otube film is a composite consisting of a random mix-
ture of tubes of different types, oriented rather ran-
domly at least within the plane of the film. Moreover,
we have performed an MG calculation with different
filling factors f, shown in Fig. 2, which assumed a dif-
ferent constituent of nanotube films, and found that a
peak still appeared. Therefore, we conclude that the gap
is essential to the sample constituent and also gives rise
to the optical conductivity peak at 1.0 THz [9].

We remark that, although the purified and pristine
samples, and also different orientations are measured in
Jeon’s experiment [7], our interest is in the purified
sample. We find that the conductivity has the same ten-
dency for different orientations. The optical conductiv-
ity curves calculated for several filling factors f are
given in Fig. 2. The different f stands for the volume
fraction and shapes of metallic tubes with εm, and in
some degree we also consider that it reflects the effect
of orientations. In Fig. 2, the results of calculations
closely resemble the measurement conductivity as f
between 0.3 and 0.8. When the frequency is above
4.0 THz, the real part of the conductivity is essentially
frequency-independent. This indicates a Drude conduc-
tivity with a pronounced scattering rate above 4.0 THz.

The measurements of optical reflection can be used
to determine the diagonal elements of the dielectric ten-
sor. However, it is not permitted to obtain the off-diag-
onal components. Therefore, another method based on
the magnetooptical Kerr effect technique could be used
[2]. The magnetooptical properties of the films will

Fig. 2. The real part of optical conductivities [σ1(ω)] calcu-
lated with different filling factor f.
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offer more information about the off-diagonal compo-
nents when a static magnetic field is perpendicular to
the sample surface.

In order to find the change of the optical conductiv-
ity of the SWNT films when they are in an external
magnetic field B, we present our model calculation
with the Drude theory [2, 17]. In a Cartesian coordinate

Fig. 3. Dielectric constant and Kerr effect rotation and ellip-
ticity calculated by the Drude model with the fitting param-
eters based on Jeon’s experiment.
frame, taking the z axis as normal to the sample surface
and considering B parallel to the z direction, the non-
zero elements of the dielectric tensor in the Drude
model are given by the formulas

(3)

(4)

(5)

where ωc = eB/m* is the cyclotron frequency, which can
be determined from measurements of the absorption or
reflection of circularly polarized electromagnetic
waves with frequency ω. The absorption or reflection
increase strongly when ω = ωc. In our calculations, ωc =
0.0018 eV is taken when supposing the magnetic field
of B = 0.5 T. The off-diagonal part of the dielectric ten-
sor εxy, which arises from interband and intraband tran-
sition, is reasonable for the magnetooptical effects [16].
The Kerr rotation φ and ellipticity ϕ can be calculated

from [17, 18]: θ + iφ = εxy/[ (1 – εxx)]. In Fig. 3, the
curves show the real, imaginary part of the diagonal
elements of the dielectric function, the Kerr rotation,
and ellipticity with the aforementioned parameters.
From Fig. 3, we found that at the plasma resonance
ωp = 7.26 THz εxx disappears, and εxx is equal to 1.0 at
8.0 THz. In this region, the signals of the magnetoopti-
cal Kerr effect are enhanced. The dispersion in the diag-
onal part of the dielectric tensor and the influence of the
plasma resonance may induce the strength of the mag-
netooptical Kerr effect. This phenomenon has also been
investigated in some other metallic materials [17]. The
off-diagonal elements of the conductivity tensor are
crucial to the material Hall effect and transport proper-
ties in our investigation. The magnetooptical measure-
ment technique, especially in the THz region, and an
effective theoretical interpretation are a useful resource
for studying the unknown properties of nanotubes.

In summary, we have theoretically interpreted the
optical characteristic of SWNT films based on Jeon’s
experiment, and predicted that the conductivity of the
similar sample will decrease with increasing frequency
when the frequency is above 1.0 THz. Moreover, we
discussed the dielectric function of single-walled nano-
tube films in an external magnetic field and found that
it exhibits a pronounced magnetooptical Kerr effect.
The results display a resonant enhancement of Kerr
rotation and ellipticity due to magnetoplasma reso-
nance in the films. It is also shown that the combination
of Maxwell–Garnett and Drude–Lorentz model is an
effective medium approach, and that it can describe

εxx εyy εc 1
ωp
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more remarkable results in the THz region for the
research of optical properties of materials.

This project was supported by the Major Project of
Knowledge Innovation Program of the Chinese Acad-
emy of Sciences (project no. KJCX2-SW-N02).
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Novel Superconducting Niobium Beryllide Nb3Be 
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New niobium beryllide Nb3Be with A15 structure and lattice parameter a = 0.5187 ± 0.0007 nm, coexisting (3–
5%) with a tetragonal phase, presumably, of an ordered solid solution with parameters a = 0.5414 ± 0.0008 nm
and c = 0.6378 ± 0.0009 nm, was synthesized by thermal treatment (875–1100°C) of amorphous film coatings
containing 26.8–32.4 at. % Be and formed from short-period Nb and Be layers by magnetron sputtering. The
domain of existence of the Nb3Be phase and the critical superconducting transition temperature (10.0 K and a
transition width of 2.5 K) were determined and the X-ray structural data for structure identification were
obtained. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.78.Db; 74.70.Ad
It was established in [1, 2] that film systems pre-
pared from short-period Nb–Sn, Nb–Al, and Nb–Pb
layers by the magnetron technique include α-Nb-based
solid solutions, in which the concentrations of the sec-
ond metal corresponded to the domain of existence of
intermetallic phases. In turn, the obtained compositions
served as starting materials for the diffusionless synthe-
sis of intermetallic superconducting films with the A15
lattice at temperatures appreciably lower than the tem-
peratures used in other methods. The lattice parameters
a found for Nb3Sn and Nb3Al intermetallides prepared
by the above-mentioned method were in compliance
with the tabulated data, and their superconducting char-
acteristics were confirmed [1].

The lattice parameters determined for the Nb3Pb
intermetallide [2] were different from the literature
data. In [3], this intermetallide was assigned the value
a = 0.5256 nm, and the critical superconducting transi-
tion temperature Tc varied from 1.2 K [4] to 9.6 K [5].
To our knowledge, works devoted to the simultaneous
determination of the structure and critical properties of
this intermetallide are now lacking. Cryogenic studies of
the Nb3Pb film with structure A15 and a = 0.5952 nm,
synthesized by us in [2], showed that Tc = 5.6 K and the
transition width was 0.2 K (see below).

It follows from the comparison of the Tc values
known for a number of niobium p2-metal intermetal-
lides with lattice parameters a that a and Tc are related
to each other by a simple power law. Our measurement
of the parameters of the superconducting Nb3Pb inter-
metallide confirms the assumption made in [6] that the
Tc temperature of the only as yet unsynthesized pure
Nb3Si intermetallide of this series with A15 lattice and
expected lattice parameter a = 0.5210 nm can be as high
0021-3640/03/7807- $24.00 © 20440
as 25 K. In turn, the lattice parameter of these intermet-
allides is determined by the atomic size of the second
metal; namely, Tc increases with a decrease in this size.
In this respect, of interest was to synthesize niobium-
based A15 intermetallides with light metals having
small atomic sizes. Since the Be atoms have the small-
est size (0.1246 nm), we undertook a successful attempt
to synthesize niobium beryllide of the formula Nb3Be,
determined its structure and critical temperature Tc, and
obtained the data for compound identification.

The Nb–Be system is known to include five interme-
tallic compounds: Nb3Be2, NbBe2, NbBe3, Nb2Be17,
and NbBe12. The Nb3Be2, NbBe3, and Nb2Be17 com-
pounds melt congruently at >1700, >1650 ± 50, and
1800 ± 50°C, respectively. The NbBe2 and NbBe12
compounds are prepared through the peritectic reac-
tions at 1630 ± 30 and 1672 ± 5°C, respectively. No
compounds exist at Nb concentrations higher than
60 at. % [7].

In our experiments, Nb of 99.95 wt % purity and Be
of 99.99 wt % purity were used. Films formed from the
short-period nanosized layers of the components were
deposited onto polycore (α-Al2O3) substrates at tem-
peratures up to 150°C. The overall thickness of the lay-
ers in the films was 1000 nm. On assumption that the
expected Nb3Be intermetallide has a homogeneity
region, samples with sub- and overstoichiometric com-
positions were prepared and used for the investigation
in the Be concentration range 22.8–32.4 at. %. In the
course of coating, the ratio of the deposited compo-
nents was monitored by the weight method from the
sputtered and deposited amount of each metal. The syn-
thesis of Nb3Be in the resulting coatings was initiated
by heating at a pressure of 10–1–10–2 Pa. Thermal treat-
003 MAIK “Nauka/Interperiodica”
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ment of the primary compositions was accomplished
by cyclic heating of the samples at temperatures from
500 to 1100°C with a step of 25°C and phase-state con-
trol after each annealing procedure. The X-ray struc-
tural studies were carried out on a diffractometer with
cobalt radiation λkα = 0.179021 nm and a graphite
monochromator. The lattice parameters were calculated
as averages over all diffraction reflections used for a
given phase.

The coatings with beryllium contents of 22.8 and
23.8 at. % represented solid solutions with the α-Nb
structure and a = 0.3336 ± 0.0004 and 0.3345 ±
0.0002 nm, respectively. The coatings with 26.4, 28.8,
29.0, 29.1, and 32.4 at. % of Be were amorphous.

In accordance with the phase diagram [7], heating of
the film samples of solid solutions to 600°C gave rise to
the Nb3Be2 phase, which had the tabulated lattice
parameter and coexisted with α-Nb (a = 0.3311 ±
0.0003 nm) in the coating. Further thermal treatment of
these samples did not reveal any changes in the film
phase composition over the entire temperature range
studied.

In the amorphous films with Be content ranging
from 26.4 to 32.4 at. %, the amorphous phase converted
at 500°C into a solid solution with the α-Nb structure
and a = 0.3280 ± 0.0003 nm. The rise in the annealing
temperature to 650°C was accompanied by the isola-
tion of a tetragonal phase with a = 0.5414 ± 0.0008 nm,
c = 0.6378 ± 0.0009 nm, and an estimated content of 3–
5%, whose presence was presumably due to a partial
ordering of the solid solution. In addition to α-Nb (a =
0.3292 ± 0.0003 nm) and the above-mentioned tetrago-
nal phase with its parameters, a cubic phase with the
A15 structure and a = 0.5187 ± 0.0007 nm appeared at
875°C. After annealing at 950°C, the coating included
only the A15 and tetragonal phases, with an unchanged
amount and structure of the latter (Fig. 1). At a temper-
ature of 1050°C, the A15 phase started to convert into
α-niobium, and, after reaching 1100°C, the coatings
were mixtures of α-niobium (a = 0.3279 ± 0.0004 nm),
the tetragonal phase (in an amount of 25–30%) with lat-
tice parameters a = 0.5376 ± 0.0012 nm c = 0.6474 ±
0.0011 nm, and the traces of the A15 phase. The X-ray
data for the identification of niobium beryllide Nb3Be
are given in the table.

The relative intensities given in the table do not fully
conform the standard distribution because of the pres-
ence of film texture.

The cryogenic electrical-resistance four-probe tests
of the sample annealed at 950°C with a starting Be con-
tent of 26.4 at. % showed that its critical superconduct-
ing transition temperature was 10.0 K and the transition
width was 2.5 K (Fig. 2).

Taking into account that the Nb-to-Be ratio in the
films was close to its stoichiometric value, that the lat-
tice structure of the prepared intermetallide was of the
A15 type, and that the coatings showed superconduct-
JETP LETTERS      Vol. 78      No. 7      2003
ing properties, we concluded that the synthesized phase
corresponded to the Nb3Be compound.

Evidently, such synthesis is possible only if the
components are mixed at a temperature appreciably
lower than the activation threshold for the formation of
any phases in the system, as it occurred in our study.
Then the question arises of the conditions for the appli-
cability of phase diagrams obtained by the method of
mixing initial components through melting (melting-
type diagrams) to the prediction of phase distributions
using low-temperature mixing of components by the
magnetron technique.

In our opinion, when estimating the possibility of
using melting-type phase diagrams as a basis of phase-
equilibrium analysis of the systems obtained through

Fig. 1. Temperature-induced phase transformations in the
Nb–Be sample with 29.13 at. % of Be: (a) 500, (b) 700, and
(c) 950°C. (*) Polycore; (d) solid solution of Be in Nb;
(r) tetragonal phase with a = 5.414 Å and c = 6.378 Å
(ordered solid solution); and (.) Nb3Be phase with the A15
structure.

Interplanar spacing in the Nb3Be phase

Angle,
Θ°

Interplanar 
distances
dhkl, nm

Plane indices
(hkl)

Relative 
intensities

I/I0

14.12 0.3669 (110) 1.46

20.20 0.2592 (200) 7.28

22.70 0.2319 (210) 100

25.01 0.2117 (211) 3.62

29.24 0.1832 (220) 0.13

33.10 0.1639 (310) 0.21

36.70 0.1498 (222) 0.61

38.45 0.1439 (320) 1.54

40.20 0.1387 (321) 1.04

43.68 0.1296 (400) 2.31
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the low-temperature mixing of components, one should
bear in mind that, in melting, the system components
mix at temperatures higher than the activation threshold
for the possible irreversible intermetallization reac-
tions. The second Hume–Rothery rule, according to
which the formation of stable intermediate compounds
narrows the region of the primary solid solutions, leads
to the same conclusion, although in different terms. It
follows that, when using the low-temperature mixing
technique followed by heating, the well-known melt-
ing-type phase diagrams can be supplemented by

Fig. 2. Temperature dependences of electrical resistances of
the (1) Nb3Pb and (2) Nb3Be coating samples.
phases which cannot be formed by the melting-type
mixing technology, as was demonstrated in this work.

Thus, new niobium beryllide Nb3Be with the A15
structure has been synthesized by thermal treatment of
the amorphous film system obtained by the magnetron
technique from short-period Nb–Be layers in the Be
concentration range 26.8–32.4 at. %; the temperature of
existence was found to range from 875 to 1100°C; the
critical superconducting transition temperature was
determined (10.0 K); and the X-ray structural data for
structure identification were obtained.
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Statistics of Eigenfunctions of Chaotic Billiards Taking Account 
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It is demonstrated, both analytically and numerically, that eigenfunction statistics in chaotic billiards with spin–
orbit interaction fundamentally depend on the ratio of the squared spin–orbit interaction constant. If this ratio
is small, one of the eigenstate components is a random Gaussian field, whereas another is not universal and
depends on the billiard type. In the opposite case, the statistics of both components is described by the indepen-
dent random complex Gaussian fields with the same variances. In the intermediate case, both eigenfunction
components do not satisfy Gaussian statistics. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 05.45.Mt; 73.21.La
In typical III–V semiconductor heterostructures,
electrons form two-dimensional electron gas between
layers [1, 2]. At helium temperatures, the coherence
length is as high as several microns. By appropriately
choosing the shape of surface electrode, one can con-
fine electrons in an arbitrarily shaped quantum dot,
which will be called a two-dimensional billiard. Such
heterostructures are characterized by the Rashba spin–
orbit interaction (SOI) [3], which modifies the Hamil-
tonian as

(1)

where m* is the electron effective mass. The SOI con-
stant K is proportional to the averaged interface electric
field 〈E〉 = 〈–(1/e)(dEc/dz) + Ei〉 , where Ec is the conduc-
tion band profile along the z axis perpendicular to the
interface plane and Ei is the electric field between the
donor impurities and two-dimensional electron gas [4].
Typically, one has for "2K = (1–10) × 10–7 meV cm [5–
7]. Apart from the Rashba SOI, there is an additional
contribution caused by the inhomogeneous (confine-
ment) potential that forms a billiard [8, 9]. However, if
the confinement potential is approximated by hard
walls, this contribution to the SOI can be ignored [9].

We use the billiard size R as the characteristic scale
to rewrite Eq. (1) in the dimensionless form

(2)
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where β = 2m*KR and all dimensionless coordinates
are normalized to R. Then the Schrödinger equation for
the spinor components takes the form

(3)

where the operator L = –∂/∂x + i(∂/∂y). Problem (3) was
studied in great detail for the systems without SOI (see,
e.g., Stöckmann’s monograph [10] or review [2]). His-
torically, McDonnel and Kaufmann [11] were the first
to discover numerically that the complex spatial struc-
ture of real Bunimovich billiard eigenfunctions is
described by the Gaussian distribution. The density
probability (square of eigenfunction) statistics obeys
the Porter–Thomas distribution [12]. These statistics
were repeatedly observed in microwave [10, 13] and
acoustic resonant [14] cavities.

In this work, we examine what happens to the statis-
tics of two-component eigenfunctions in the presence
of SOI. The energy-level statistics of a rectangular bil-
liard, which becomes nonintegrable in the presence of
SOI, was considered by Berggren and Ouchterlony in
[15]. In that work, the eigenfunction node statistics
were also considered and it was shown that they coin-
cide with the statistics of nodal points of open chaotic
billiards. For the numerical solution, we will use the
boundary integral method [16]. A chaotic billiard was
modeled by a cardioid with the boundary determined
by the following equation in the Cartesian coordinate
system [17]:

(4)

The Bunimovich stadium was also considered. Since
all results obtained for the latter do not differ from the
cardioid, we present here only the cardioid results. The

∇ 2φ– βLχ+ eφ,=

∇ 2χ– βL+φ+ eχ ,=

x2 y2 λ2–+( )2
x2 y2 2λx λ2.+ + +=
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spinor components |φ| and |χ| for the energy eigenvalue
e = 522.251 and β = 0.25 are shown in Fig. 1. Hereafter,
the cardioid parameter λ is taken to be 0.45. The num-
ber of boundary elements was chosen to be 1000. Note
that, due to the Kramers theorem, all states of closed
billiards with SOI are doubly degenerate. For this rea-
son, the second degenerate state behaves exactly as
shown in Fig. 1, although |φ| and |χ| should be reversed.

Although both components show chaotic behavior,
there is a fundamental difference in their spatial behav-
ior. Namely, one can see from Fig. 1 that the |χ| compo-
nent is spatially nonuniform. This fact can be under-
stood if one considers the perturbative solutions to the
Schrödinger equation (3). For a free two-dimensional
electron gas, the smallness parameter for SOI is given
by [8]

(5)

where k is the wave number. We will use the same
parameter for a billiard. For small α, the solution to
Eqs. (3) can be approximated by

(6)

α βk/e β/ e,= =

φ ψb O α2( ),+=

χ β 1
2
--- x iy+( )ψb Cψb+=

=  
β
2
--- x x0–( ) i y y0–( )+[ ]ψ b,

(a)

(b)

Fig. 1. Spatial structures of (a) the first |φ| and (b) the second
|χ| components of the spinor eigenfunction of a cardioid
with parameter λ = 0.45 for e = 522.251 and β = 0.25. The
smallness parameter α = 0.005.
where ψb is the billiard eigenfunction in the absence of
SOI: –∇ 2ψb = ebψb. At first glance, the constant C can
be found from the normalization condition

 = 1. However, since the accuracy of

the components is proportional to the SOI constant, the
normalization condition includes only ψb that is already
normalized. Because of this, the constant C (more pre-
cisely, the constants x0 and y0) was determined by fitting
the statistics together (see below).

Solution (6) demonstrates that the second compo-
nent χ(x, y) linearly increases in the billiard region, as
it is clearly seen from the numerical solution shown in
Fig. 1. It also follows from Eq. (6) that, if ψb is a ran-
dom Gaussian field (RGF), the first component φ is also
an RGF, whereas the second component χ is not. Since,
in the presence of SOI, each component of the spinor
eigenfunction is a complex quantity, we can represent
the solution in the form

(7)

The distributions shown in Fig. 2 for all four functions
demonstrate that u and v  are actually the RGF, whereas
the t and w statistics differ appreciably from the Gaus-
sian distributions.

To analytically derive the distributions for the sec-
ond component χ, we write, according to Eq. (6), its
real part as t(x, y) = (β/2)(x – x0)ψb and the imaginary

d2x φ 2 χ 2+( )∫

φ r( )
χ r( ) 

 
  u r( ) iv r( )+

t r( ) iw r( )+ 
 
 

.=

Fig. 2. Distributions of the real and imaginary parts of
spinor components (7) for e = 2509.7 and β = 0.25. The
smallness parameter α = 0.005. The dashed curves in (a)
and (b) correspond to Gaussian distribution (9). In panels
(c) and (d), the dashed curves correspond to distribution
(10) for x0 = –0.3 and y0 = 0.4.

v /〈v2〉
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part as w(x, y) = (β/2)(y – y0)ψb. The distribution func-
tion for t is written as

(8)

where A is the billiard area. Assume that the eigenfunc-
tion ψb of a chaotic billiard is a real RGF u(x). Then, by
integrating Eq. (8) with the Gaussian distribution

(9)

one obtains from Eq. (6)

(10)

A similar expression can be obtained for the distribu-
tion f(w) of the imaginary part. Hence, the distributions
for the second component χ are not universal if the
Rashba SOI constant β is small, because they depend
on the particular shape of a chaotic billiard. In Fig. 2,
distribution (10) obtained by the numerical integration
with β = 0.25 is shown by the dashed line. The con-
stants x0 and y0 were found by fitting analytic distribu-
tions (10) to their numerical values. The results pre-
sented in the caption to Fig. 2 coincide with the results
obtained for the constant C through the direct numeri-
cal solution of Eq. (2).

The numerically calculated matrix

(11)

where 〈F〉  =  and N is the number of points

inside the billiard (200 000 in these computations) indi-
cates that the second component is strongly correlated
with the first one. In the numerical computations, we
assumed that the eigenstate is normalized; i.e.,

 = 1.

f t( ) δ t t x y,( )–( )〈 〉 1
2π
------ dµ eiµ t t x y,( )–( )〈 〉

∞–

∞

∫= =

=  
1

2π
------ dµ 1

A
--- dx yeiµ t t x y,( )–( ),d∫

∞–

∞

∫

f u( ) 2π
u2〈 〉

---------- u2

2 u2〈 〉
--------------– 

  ,exp=

f t( ) 1
A
--- dx y

2t2

β2 x x0–( )2 u2〈 〉
-------------------------------------–

 
 
 

.expd∫=

K

u2〈 〉 uv〈 〉 ut〈 〉 uw〈 〉

v u〈 〉 v 2〈 〉 v t〈 〉 v w〈 〉

tu〈 〉 tv〈 〉 t2〈 〉 tw〈 〉

wu〈 〉 wv〈 〉 wt〈 〉 w2〈 〉 
 
 
 
 
 
 

=

=  

0.292 0.038 0.024– 0.015–

0.038 0.198 0.015– 0.011

0.024– 0.015– 0.005 0

0.015– 0.011 0 0.004 
 
 
 
 
 

,

1
N
---- F j( )

j∑

φ j( ) 2 χ j( ) 2+( )
j∑
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The distributions of real components u and t of
spinor eigenstate (7) are shown in Fig. 3 for a moderate
value β = 2 of the SOI constant. These distributions
indicate that, with an increase in small parameter α, the
statistics remains Gaussian for large wave-function
amplitudes and is added by nonuniversal statistics (10)
at small amplitudes. The statistics of the imaginary
parts v  and w are exactly the same as for the real eigen-
state parts. For this reason, they are not shown in Fig. 3
(or Fig. 4).

In the opposite case α @ 1, one can ignore the
kinetic energy operators in Eq. (3). Then, surprising as
it may seem, Schrödiner equation (3) again reduces to
the Laplace equation for both components φ and χ

(12)

with the sole difference that the eigenvalues are now
equal to β2e2. Hence, both components are equivalent in
that they are RGFs with identical variances. The
numerical solutions for β = 100 fully confirm this con-
clusion. However, at β ≥ 10, all four functions in eigen-
spinor (7) are, practically, RGFs, as it is seen from
Fig. 4.

L+L φ
χ 

 
 

∇ 2 φ
χ 

 
 

– β2
e

2 φ
χ 

 
 

= =

Fig. 3. Distributions of the real parts of the cardioid eigen-
states for e = 2501.6 and β = 2. The SOI smallness parame-
ter is α = 0.04. The solid curves correspond to Gaussian dis-
tribution (9). The dashed curves correspond to distribution
(10) for x0 = –0.050.

Fig. 4. Distributions of the real part of the cardioid eigen-
states for e = 2497.4, β = 10, and α = 0.2. The solid curves
correspond to Gaussian distribution (9).
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Correlation matrix (11) was calculated for e =
2499.2, β = 10, and α = 0.2 to give

(13)

This matrix shows that, at β ≥ 10, all amplitudes
become almost mutually independent RGFs with the
same distributions.

We now estimate the small parameter α for the
quantum dots based on the semiconductor
GaSb/InAs/GaSb heterostructure, for which the SOI
constant is the greatest among the known systems:
"2K = 9 × 10–7 meV cm and m* = 0.055m [5]. Substi-
tuting these data into the SOI constant β = 2m*KR =
"2K/E0R and E0 = "2/2m*R2, one finds that only the
quantum dots with sizes R ~ 10 µm have β ~ 10, for
which, as shown in Fig. 4, all eigenspinor components
are described by the RGF. The electron Fermi energy in
the dot should not exceed 1 meV. Note that R ~ 10 µm
is the limiting attainable size for which the electron
motion can be assumed to be ballistic. For the quantum
dots of micron size or smaller, the eigenfunction statis-
tics in spin–orbit problem (1) are described by nonuni-
versal distribution (10).

This work was supported by the Russian Foundation
for Basic Research, project nos. 01-02-16077 and 03-
02-17039. One author is grateful to Prof. Karl-Fredrik
Berggren (Linköping University, Sweden) for discus-
sions.
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Motivated by recent experiments, we analyze transport of Cooper pairs through a double-island Josephson
qubit. At low bias in a certain range of gate voltages, coherent superpositions of charge states play a crucial role.
Analysis of the evolution of the density matrix allows us to cover a wide range of parameters, including situa-
tions with degenerate levels, when dissipation strongly affects the coherent eigenstates. At high noise levels, the
so-called Zeno effect can be observed, which slows down the transport. Our analysis explains certain features
of the I–V curves, in particular, the visibility and shape of resonant peaks and lines. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 74.50.+r; 03.65.Xp; 85.25.Cp
Among various proposals for the realization of
qubits, solid-state devices appear particularly promis-
ing, since they can be easily scaled up to large qubit
registers and integrated in electronic circuits [1].
Recent experiments have demonstrated quantum coher-
ent oscillations in Josephson-junction devices. How-
ever, in such devices, due to the host of microscopic
modes, decoherence processes are more difficult to
control, and understanding of the decoherence mecha-
nisms requires further analysis. Further, improvements
of the quantum measurement procedure are needed to
allow monitoring of the qubit’s state with little influ-
ence on the qubit’s dynamics before the readout. Here,
we analyze recent experiments [2, 3], in which the dis-
sipative dynamics of a Josephson charge qubit was
probed by Cooper-pair transport. This experiment pro-
vides data for understanding of the dissipation in typi-
cal superconducting charge devices, and its analysis is
similar to that for quantum charge detectors.

We focus on the analysis of Josephson circuits in the
charge limit, in which the typical electrostatic energy
needed to charge a superconducting island (~(2e)2/2CΣ,
where CΣ is the total capacitance) is higher than the
Josephson energy, which controls the charge tunneling.
If the system is biased close to a point where two charge
states with lowest energies are degenerate, at low tem-
peratures and operation frequencies one can neglect the
higher charge states, and the system reduces to two lev-
els (qubit). The matrix element between these levels is
controlled by Josephson tunneling. In the simplest
design, a Cooper-pair box [4], the quantum state of this
qubit can be manipulated by voltage and current pulses

¶ This article was submitted by the authors in English.
0021-3640/03/7807- $24.00 © 20447
[5]. The measurement of the quantum state can be per-
formed, for example, by coupling the qubit to a single-
electron transistor (SET) and monitoring its current [1].
Here, we study a circuit, which can be described as a
charge qubit inside a SET. Transport in this device
probes typical time scales of the qubit dynamics, and its
analysis may show new possibilities to perform the
readout. Our results explain experimentally observed
features of transport (the visibility and shape of reso-
nant lines and peaks) and predict new specific behavior
in a low-bias regime, in which coherent properties of
the double-island qubit are probed.

The circuit and its description. Following the
experimental work [2, 3], we study the system shown in
Fig. 1. It consists of a Josephson junction, with a rela-
tively strong coupling EJ, connected to further super-

conducting leads via weaker junctions, with  ! EJ.
The transport is controlled by a bias V between the
external leads and gate voltages Vg1, Vg2, with gate

ẼJ

Fig. 1. The double-island system.
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capacitances much lower than those of the junctions,
Cg ! CJ. The transport of Cooper pairs through a simi-
lar system with a single island between the leads (a
superconducting SET) was studied, for instance, in [6–
9]. Transport at a finite bias implies dissipation, which
can be provided by various mechanisms. Here, we
focus on low voltages and temperatures, at which the
contribution of quasiparticles is negligible [3]. We
study the influence of the electromagnetic environment,
i.e., effective impedances in the circuit. Since Cg ! CJ,
the impedance of the transport voltage circuit is
expected to dominate dissipation (see Fig. 1).

In [7–9], the analysis was limited to the evolution of
occupations of the eigenstates (the diagonal entries of
the density matrix in the eigenbasis of the nondissipa-
tive Hamiltonian). The dynamics were described in
terms of incoherent transitions between these states.
This approach is sufficient as long as fluctuations pro-
vide only a weak perturbation (the incoherent rates are
lower than the coherent level splittings). However, in a
system with almost degenerate eigenstates, this
approach may fail, since the system crosses over to the
so-called Zeno regime [10]. To illustrate this concept,
we consider a situation relevant for the analysis below:
often the charge transport may be described as a chain
of transitions between various charge configurations.
Under certain conditions, one link in this chain is a pair
of degenerate charge states, with the coupling δ
between them, coupled by incoherent transitions, with
rate ~Γ, to further states. As long as δ @ Γ transport
within the pair is fast, and the current magnitude is set
by Γ. However, if the coupling δ becomes weaker than
Γ, the dynamics change dramatically: frequent “obser-
vation” (fast dephasing) by the transitions destroys the
coherence and slows down the evolution. The system is
blocked for a long time in one of the charge states in the
pair, with the typical transition rate ~δ2/Γ, which now
sets the current magnitude. The density matrix of the
two-state system quickly becomes diagonal in the
charge basis, while in the eigenbasis diagonal and off-
diagonal entries of the density matrix are strongly cou-
pled (cf. [1]). In order to describe the behavior of the
system in both limits, we analyze the system using the
master equation for the evolution of all entries of the
density matrix.

We describe the state of the system by the charges
en1, en2 of the central islands and introduce the charge
em transferred across the system of three junctions (see
below for a precise definition). In the Hamiltonian,

(1)

the charging part is given by

(2)

H HC HJ Hdiss,+ +=

HC
en– CgVg–+( )2

4 3CJ Cg+( )
------------------------------------

en+ CgVg++( )2

4 CJ Cg+( )
------------------------------------ QintV ,–+=
where

and

(3)

is the charge operator that couples to the voltage source.
The Josephson part of the Hamiltonian is

(4)

where θ1, θ2 are the phase drops across the left and the
right junctions, respectively, and exp(iΨm): |m〉  ° |m +
2〉  is the counting ladder operator. One can see from
Eq. (4) that tunneling of a Cooper pair across the cen-
tral junction changes m by 2.

Finally, the dissipative part of the Hamiltonian reads
(cf. [11, 12])

(5)

Here, φ is the phase drop across the impedance Z(ω)
and Cint is the capacitance between its leads. The linear
environment is presented here as a parallel connection
of LC-oscillators, with the constraint

where ωα = 1/ .

We obtained a Hamiltonian description in terms of
the phases θ1, θ2, φ and the conjugate charges en1, –en2,
and q, the latter being the total charge passed through
the voltage source relative to the equilibrium charge
CintV on the plates of the capacitor Cint. At the relevant
low frequencies, the interaction with the bath reduces to
Hint = –QintδV, where δV ≡ (q – m)/Cint is the fluctuating
part of the transport voltage. A dissipative Hamiltonian
of the form (5) provides for the proper high-frequency
regularization of the effective bosonic bath, with cutoff
frequency ωc = (RCint)–1, where R is the real part of
Z(ω).

Qualitative analysis of the low-voltage reso-
nances. In this section, we provide qualitative analysis
of the transport properties and illustrate the discussion
by the results of a numerical simulation described
below. We study resonances at transport voltages below
the superconducting gap, eV < ∆, but assume that the
voltage is high enough so that the features related to the
supercurrent through the system are not relevant. The
discussion and figures correspond to a positive bias V >
0. To understand the origin of possible resonances, let
us first discuss the stability diagram for the charge
states (see Fig. 2), neglecting the Josephson couplings.

n± n1 n2, Vg± Vg1 Vg2,+≡±≡

Qint
en– 2CJ Cg+( )
2 3CJ Cg+( )

----------------------------------
en+Cg

2 CJ Cg+( )
-------------------------- em+ +≡

HJ –ẼJ θ1cos θ2cos+( ) EJ θ2 θ1– Ψm+( ),cos–=

Hdiss
Qint q–( )2

2Cint
------------------------

qα
2

2Cα
---------

"
2

e2
-----

φα φ–( )2

2Lα
---------------------+ .

α
∑+=

Z 1– ω( ) iLα ω ωα i0+±( )[ ] 1– ,
α ±,
∑=

LαCα
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In the unbiased case, the stability conditions define
a honeycomb pattern in the gate–voltage plane. Inside
each hexagon, a certain charge state has the minimal
energy. At the vertices, three charge states are degener-
ate. When a transport voltage V is applied, these points
grow into triangles, within which the system is unstable
with respect to sequential tunneling of Cooper pairs: |0,
2, m〉   |0, 0, m〉   |2, 0, m〉   |0, 2, m + 2〉  ….
(In the experimentally relevant limit of Josephson cou-
plings and temperatures below the charging energy, in
the vicinity of one vertex, only three charge states
|n1, n2〉  are relevant: |2, 0〉 , |0, 2〉 , and |0, 0〉 .) However,
this gives a low current since the incoherent tunneling

through the left and right junctions  is slow.
A much higher current can be achieved in resonant

situations. One can expect resonant points (peaks) and
lines in the Vg±-plane. At the peaks, defined by two con-
straints on Vg±, three charge states are in resonance. On
the lines, only two charge states are degenerate. The
resonant conditions determine the positions of possible
peaks and lines. To evaluate the current at the resonant
peaks, we note that, for typical parameters, the bottle-
neck of transport is associated with the incoherent tran-
sitions between triples of resonant states; the rate of
these transitions is given by the golden rule and defines
the current. However, the analysis of the shape of the
peaks/lines (the decay of current away from reso-
nances) is more subtle. It may require the analysis of
the Zeno regime and of the crossover to this regime.
Below, we develop a suitable master-equation
approach. We begin with a qualitative discussion of the
results.

Consider, for instance, the three-state resonance
shown in Fig. 3, which corresponds to the upper vertex
of the triangle in Fig. 2. In this case, the Cooper pairs
tunnel incoherently in the central junction only, and
coherently through two other junctions. The coherent

couplings  exceed the rate of incoherent transitions,
which can be evaluated using the golden rule:

(6)

where RQ ≡ h/(2e)2, and we assumed T ! 2eV. This rate
defines the current magnitude at resonance, 2eΓr.

Tuning the gates away from this resonance peak,
one may still keep two levels degenerate along a reso-
nant line. For instance, one may lift the state |0, 0, m〉
with respect to the degenerate |0, 2, m〉  and |2, 0, m〉  (see
Fig. 3; if |0, 0〉  descends, the system may get Coulomb-
blocked in this state). In this configuration, the trans-
port involves a second-order coherent tunneling (cotun-
neling) |0, 2, m〉   |2, 0, m〉  and incoherent relaxation
|2, 0, m〉   |0, 2, m + 2〉 . To estimate the current, we
evaluate the second-order coherent coupling between

|0, 2, m〉  and |2, 0, m〉  and find δ ~ /∆E, where ∆E
denotes the distance to the |0, 0〉-state (see Fig. 3). As

ẼJ

ẼJ

Γ r
4π
9

------ R
RQ
------

EJ
2

2eV
----------,≈

ẼJ
2
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discussed above, the current remains to be 2eΓr as long
as δ > Γr. However, for δ < Γr, the system is in the Zeno
regime, and the relaxation rate |2, 0〉   |0, 2〉  defines
the current ~2eδ2/Γr. Thus, along the resonant line, the
current stays at the peak level and then drops fast. The
deviation from the peak at which the current drops can
be estimated from the condition δ ~ Γr; further behavior
is governed by the Zeno physics. For the typical param-
eters [2] (see below), this gives a very short line (it is
also very narrow, cf. below). This may explain why this
resonant line was not detected.

If the threefold degeneracy in Fig. 3 is lifted in other
ways (with two states still in resonance), the transport
involves higher-order incoherent processes and the cur-
rent is much weaker [3]. However, there exist other res-
onant peaks, which are located at two lower vertices of
the triangle: one can say that in Fig. 3 the voltage drops
at the central junction, but it can also drop at the
left/right junction. The respective rate of incoherent
Cooper-pair tunneling can be evaluated using Eq. (6)

with the substitution EJ  , i.e., the current at these
peaks is much lower. However, our analysis shows that
the resonance lines originating from these peaks are

ẼJ

Fig. 2. The honeycomb stability diagram of charge states.
The solid dots and dashed lines denote the resonance peaks
and lines, respectively.

Fig. 3. Three charge levels at resonance. The (00) and dotted
arrows denote a passage along a resonant line.
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much longer (and wider, cf. below) and may reach the
neighboring hexagons’ vertices, as was indeed found
experimentally. The reason is that at these peaks the
incoherent rate is much lower, the coherent coupling
stronger, and only at a greater distance away from the
peak does the coherent coupling fall below the incoher-
ent rate (crossover to the Zeno regime). Thus, we find,
in agreement with the experimental data, that only
oblique (but not horizontal) resonant lines should be
visible and allow us to evaluate the shape of the reso-
nances.

The widths of the resonant lines were evaluated in a
similar way, with results in at least semi-quantitative
agreement with the experimental data. We remark that
the width is not set by the condition of resonance as
such (which requires a charge-level splitting lower than
the coupling and would define very narrow lines [3]). In
fact, during the separation of two resonant states, the
transport changes from coherent to incoherent. At this
crossover point, the incoherent rate is higher than the
respective Γr. Only at a greater distance from the line
does it drop below Γr and slow the transport. The
respective width scales linearly with V, similar to the
experiment [2].

So far, we analyzed transport at voltages V much
higher than the Josephson couplings and used the
charge basis. Now, we focus on transport at lower volt-
ages and find that, due to the coherent Josephson cou-
pling of the charge states, the triple resonance of Fig. 3
appears only at voltages above a certain threshold.

At lower 2eV ~ EJ, it is convenient to work in the
eigenbasis of the double island. Near the triangle in
Fig. 2, the difference U in charging energies of the
states |2, 0, m〉  and |0, 2, m + 2〉  is small, and one finds
the ground and excited eigenstates of the double island,

where tan2γ = EJ/U.

g m 2+,| 〉 γ 2 0 m, ,| 〉cos γ 0 2 m 2+, ,| 〉 ,sin+=

e m,| 〉 γ 2 0 m, ,| 〉sin γ 0 2 m 2+, ,| 〉 ,cos+–=

Fig. 4. Resonances with the double-island’s eigenstates.
The right panel shows the peaks’ positions in the Vg±-plane.
A peak emerges at V = EJ/2e (the solid dot in the middle)
and splits as the bias V increases. The dashed lines show the
cotunneling resonances.
The respective resonance configuration is shown in
Fig. 4. Since the minimal energy splitting between the
ground and excited states is EJ, the resonant conditions
of Fig. 4 require 2eV ≥ EJ. At V = EJ/2e, the peak is
located at the lower side of the triangle (see Fig. 4).
Above this threshold, the equation Ee – Eg = EJ/sin2γ =
2eV (0 < γ < π/2) has two solutions, and the peak splits:
the main peak with γ > π/4 enters the triangle, and the
other, secondary peak (γ < π/4) leaves it. At strong bias
2eV @ EJ, the main peak reaches the upper vertex of the
triangle, while the secondary becomes very narrow and
joins one of the oblique resonant lines. (Note that the
triangle itself slides and grows with the increase of V.)

Let us estimate the current magnitude at these reso-
nances. The relaxation rate |e, m〉   |g, m + 2〉  is given
by Eq. (6), and the matrix element between the states
|e, m〉  and |g, m〉  to |0, 0, m〉  due to HJ is Ecoupl =

( /2)sinγ, of order  for the main resonance d and

weaker, ~ EJ/(2eV), for the other one.

If  @ (R/RQ)EJ, the incoherent relaxation inside
the double-island is the bottleneck (the slowest stage)
of the transport for both peaks, Γr ! Ecoupl, i.e., the peak
height is Imax ≈ 2eΓr. However, the peaks’ sizes are dif-
ferent due to different Ecoupl and can be found from an
analysis similar to that shown above. The external peak
s is much narrower at 2eV @ EJ.

For  ! (R/RQ)EJ, one finds that Γr @ Ecoupl for the
secondary peak, and also for the main resonance at
voltages V close to EJ/2e. The Zeno effect is expected
under these circumstances [10], the transport is slowed
down, and transitions in the outer junctions define the

current Imax ~ 2e /Γr.

Master equation and numerics. The dynamics
reduce to propagation along the chain of eigenstates
with decreasing energy and growing m. To evaluate the
current, we analyze the dynamics of the reduced den-
sity matrix , retaining the indices n1, n2, m and tracing
over the environment’s degrees of freedom. Using the
real-time Keldysh diagrammatic technique (cf. [13,
14]), we find the master equation

(7)

with the bare Liouville operator L0 ≡ i[·, H0], H0 ≡ HC +
HJ. In the first (Born) approximation, we obtain

(8)

where α(t) = α'(t) + iα''(t) is given by

(9)

ẼJ ẼJ

ẼJ

ẼJ

ẼJ

Ecoupl
2

σ̂

td
d σ̂ t( ) L0σ̂ t( )– t'Σ t t'–( )σ̂ t'( ),d

∞–

t

∫=

Σ t( ) α' t( )Linte
L0t

Lint iα'' t( )Linte
L0t

M int,–=

α t( ) 2e( )2 δV t( )δV 0( )〈 〉≡ ωd
π

------- J ω( )e iωt–

1 e
"ω/kBT–

–
---------------------------,∫=
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the low-frequency spectral density J(ω) = 2πωR/RQ,
and Lint ≡ i[·, Qint/2e], Mint ≡ i[·, Qint/2e]+. The last term
in Eq. (8) violates the translational symmetry m 
m + 2. The invariance is restored after a regularization,

due to the counterterm /2Cint in Eq. (5) (cf. [15]).

We label the entries of the self-energy matrix Σ by

four triples  and , where, e.g., ν– = ( , , m–).

Here, the sign  refers to a Keldysh branch; the
(un)primed indices refer to the time t' (t). Most of these
indices vary over finite ranges. Indeed, only the lowest
charge states n1, n2 participate in the low-frequency
dynamics, and strongly off-diagonal entries, with large
m– – m+ and m' – – m'+, are suppressed. The regularized
self-energy is translationally invariant and does not
depend on the sum m– + m+ + m' – + m'+. The Fourier
transform with respect to (m– + m+ – m' – – m'+)/2 gives
a finite matrix for each value of k.

We use the Laplace-transformed master equation:
s (k, s) – (k) = (k, s) to find the current

I = s2 , where  = i∂kTr (k = 0, s) =

iTr(s – Π)–1∂kΠ(s – Π)–1 . Here, Π(k, s) ≡
L0(k) + Σ(k, s), and  is the initial condition. The
numerical analysis can be simplified by taking the
needed derivatives analytically and working in the
eigenbasis of H0. We ascribe a counting index  to
eigenstates (rather than charge states) and organize
them into zones with fixed values of  [7, 8]. The
eigenstates of the total Hamiltonian (1) have only a
finite m-spread, and one can use  to evaluate the dc
current.

In our analysis, we used the following parameters:

CJ = 0.8 fF, Cg = 8 aF,  = 25 mK, EJ = 0.5 K, R = 50 Ω
[3]. Figure 5 shows the shape of two peaks and reso-
nance lines for the bias V just above the threshold
EJ/2e ≈ 21.5 µV, in agreement with the estimates above.

Discussion. In our calculation, we neglected the
influence of the 1/f noise due to background-charge
fluctuations. This very low frequency noise dominates
the pure dephasing (that leads to energy fluctuations
without transitions; its ohmic part is included in our
numerical analysis). Our estimates show that these
effects should not change the results substantially.

In conclusion, using the methods that allow one to
cover the (Zeno) dynamics of coherent systems under
strong dissipation, we analyzed the Cooper-pair trans-
port through a double-island structure. We found sepa-
rate peaks and resonant lines, whose visibility and
shapes match the experimental observations. We fur-
ther predict a double-peak structure near a threshold
transport voltage, observation of which would be a
probe of coherent properties of the double-island qubit.
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We study the spin relaxation (SR) of a two-dimensional electron gas in the quantized Hall regime and discuss
the role of spatial inhomogeneity effects on the relaxation. The results are obtained for small filling factors
(ν ! 1) or when the filling factor is close to an integer. In either case, SR times are essentially determined by a
smooth random potential. For small ν, we predict a “magneto-confinement” resonance manifested in the
enhancement of the SR rate when the Zeeman energy is close to the spacing of confinement sublevels in the
low-energy wing of the disorder-broadened Landau level. In the resonant region, the B-dependence of the SR
time has a peculiar nonmonotonic shape. If ν . 2n + 1, the SR is going nonexponentially. Under typical con-
ditions, the calculated SR times range from 10–8 to 10–6 s. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 72.25.Rb; 73.43.Cd
1. In order for the relaxation of electron spins to
occur, two conditions have to be met: the first one is the
presence of an interaction mixing different spin states
in the system studied; the second is the availability of a
mechanism which makes the relaxation process irre-
versible. Both conditions can be realized in a rich vari-
ety of ways, and even in the case of two-dimensional
(2D) electrons, one finds a wide scatter of experimental
data [1] and theoretical results [2–10] devoted to spin
relaxation (SR) problems. Besides, in the magnetic
field, the SR process is actually the relaxation of the
Zeeman energy  (B || , ∆Sz = Sz – S0 is the
spin deviation of the Sz component from the equilib-
rium value S0).

Theoretically, the relaxation problem of a flipped
spin in a semiconductor heterostructure in a high per-
pendicular magnetic field seems to have been first for-
mulated by Frenkel [4], who considered the relativistic
part of the phonon field acting directly on electron spin
as the interaction mixing the electron spin states. One
could estimate that, in the case of another mechanism
due precisely to the spin–orbit (SO) coupling reformu-
lated for the 2D case [2, 3], the relevant spin-flip transi-
tion matrix element is greater by at least one order of
magnitude. However, the work [4] caused some misun-
derstandings even almost a decade after its publication
(see [9] and references therein).

Any properties of a 2D electron gas (2DEG) in the
quantum Hall regime crucially depend on the filling

factor ν = N/Nφ, where N and Nφ = L2/2π  are the num-
bers of electrons and magnetic flux quanta, respectively

¶ This article was submitted by the author in English.
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(L × L is the 2DEG area, lB is the magnetic length). In
this article, we consider the SR problem in two formu-
lations.

First, we solve the problem of one-electron spin flip
in the presence of a random potential, and in so doing
we study the SR in a lateral quantum dot in a high mag-
netic field, where the effects of interplay between the
localization and the Zeeman coupling are essential. We
emphasize that we deal with a weak confinement in the
presence of strong B. Therefore, much smaller energies
are relevant (~1 K) than, e.g., in the case of the usual
interplay of Fock–Darwin states [11]. (The latter is
based on competition of confinement and cyclotron
energies which are *10 K.) The most striking manifes-
tation of the “magneto-confinement” effect occurs
when the single-electron Zeeman energy is close to the
spacing of lowest-energy levels in a quantum dot or in
a potential minimum. This results in strong enhance-
ment of the SR rate. The studied one-electron problem
is actual for small filling factors, ν ! 1, but, in strong
magnetic fields, it may also be extended in terms of the
Hartree–Fock approach to a vicinity of an even filling
factor, when ν . 2n.

Second, we report on the results for the SR in a
strongly correlated 2DEG when it presents a quantum
Hall ferromagnet (QHF), i.e., when the filling factor ν
is close to an odd integer (ν . 2n + 1). In this case, we
study a new mechanism of relaxation of the total 2DEG
spin, where the cause of irreversibility is neither elec-
tron–phonon interaction [6] nor inter-spin-wave scat-
tering [7] but a disorder. We will see that, in real exper-
imental regimes, this disorder relaxation channel must
significantly prevail over the phonon one.
003 MAIK “Nauka/Interperiodica”
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In both SR problems, the temperature is assumed to
be equal to zero which actually means that it is lower
than the single-electron Zeeman energy eZ = |g|µBB.

2. We consider a smooth random potential (SRP) as
the disorder. The total single-electron Hamiltonian is

thereby as follows: * = "2 /2  – eZ /2 + u(r) +

HSO + Ue–ph, where  = –i∇  + eA/c and r = (x, y) are 2D
vectors, u(r) is the SRP field, the HSO and Ue–ph terms
respond to the SO and electron–phonon interactions
(see below). If the SRP is assumed to be Gaussian, then
it is defined by the correlator K(r) = . We
choose also  = 0 which means that the SRP
energy is measured from the center of the Landau level.
In terms of the correlation length Λ and Landau level
width ∆, the correlator is

(1)

In the realistic case, ∆ ~ 10 K, Λ ~ 30–50 nm; therefore,
∆ * "2/ Λ2. We study the case ∆ ! "ωc (ωc is the
cyclotron frequency) and Λ @ lB. In the SRP field, the
electron drifts quasi-classically along an equipotential
line. However, before the spin flip, it relaxes to an SRP
minimum. Estimates for this relaxation time (due to
phonon emission without any spin flip) yield values not
exceeding 1 ns.

For simplicity, we model the SRP in the vicinity of
a minimum by a parabolic confinement potential u =

ω2r2/2, and to describe the electron states, we use
the symmetric gauge basis (A = r × B/2):

(2)

where  is a Laguerre polynomial; note also that only
the states with n + m ≥ 0 are considered in the follow-
ing. Regarding the length a, a = ("/2 Ω)1/2 should be

substituted, where Ω = . The system thus
becomes equivalent to a lateral quantum dot [8, 10],
and we deal with the Fock–Darwin states [11] with
energies En, m = "(2n + m + 1)Ω – "ωcm/2. The appro-
priate quantity is also the level spacing δ = "(Ω – ωc/2) ≈
"ω2/ωc, concerning the m ≥ 0 states which belong to the
same number n. We calculate the total rate of the tran-
sition of an electron initially occupying the upper spin
sublevel to any final state of the lower spin sublevel. At
first sight, we should consider the spin-flipped state
|0, 0, ↓〉  as the initial one. However, a correction of the
states due to the SO coupling has to be taken into
account. We use the SO Hamiltonian specified for the
(001) GaAs plane: HSO = α(  × )z + β(  – ).

q̂2 me* σ̂z

q̂

u r( )u 0( )〈 〉
u r( )〈 〉

K r( ) ∆2 r2/Λ2–( ).exp=

me*

me*

n m σ, ,| 〉 n!
n m+( )!

--------------------
e imϕ– r

2/4a
2–

a 2π
--------------------------=

× ir

2a
---------- 

  m

Ln
m r2/2a2( ) σ| 〉 ,

Ln
m

me*

ω2 ωc
2/4+

q̂ ŝ q̂y σ̂y q̂x σ̂x
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This expression is a combination of the Rashba term [2]
(with the coefficient α) and the crystalline anisotropy
term [3, 5–10] (  are the Pauli matrices). Assum-
ing that α and β are small (α, β ! "ωclB), we find, after
perturbative treatment, the spin-orbitally corrected
states before and after the spin flip:

(3)

(4)

where 0 ≤ m < eZ/δ (the Zeeman energy eZ has been
neglected as compared to "ωc). The coefficients Ci, m

are defined as follows: let T = αδ /a"Ω(eZ – δ) and

Pm = 2 , then C1, m =  and C2, m =

i . Here, the resonance mixing
of the “spin-up” and “spin-down” states (if eZ . δ) has
been properly taken into account. Note that the behav-
ior of the states (3), (4) in the vicinity of the resonance

(namely, in the interval ∆B/B & α  & 0.1) is
governed only by the Rashba SO mechanism.

In the resonance region, C1, 1 ~ |C2, 1 |, and |i〉  is
thereby a well-hybridized spin state. The |i〉   |f0〉
transition then is not due to the SO coupling, and this
should lead to the SR enhancement. The final state |f0〉
is the almost “pure” spin-state. In fact, we may always
set C1, m = 1 and C2, m = 0 in the expression for |fm 〉 .
Indeed, though the spin hybridization of the |f1〉  state is
significant, it plays a negligible role in the SR process
because of vanishing of the relevant phonon momen-
tum (eZ – δ)/cs. Then, we find the matrix element

 and, using the Fermi golden rule, obtain
the SR rate within a certain SRP minimum,

Here,

where the index s labels phonon polarization, V is the

sample volume, and  is the renormalized (in the 2D
layer) vertex, which includes the deformation and
piezoelectric fields created by the phonon [6, 12]. The

σ̂x y z, ,

i| 〉 C1 1, 0 0 ↓, ,| 〉 C2 1, 0 1 ↑, ,| 〉+=

+
β

"Ω 2a
------------------- 1 1 ↑,–,| 〉 ,

f m| 〉 C1 m, 0 m ↑, ,| 〉 C2 m, 0 m 1– ↓, ,| 〉+=

–
iα

"Ω 2a
------------------- 1 m 1– ↓, ,| 〉

+
βδ m 1+

"Ω 2a δ eZ+( )
-------------------------------------- 1 m 1+ ↓, ,| 〉 ,

2

1 T2m+ 1/2 1/Pm+

δ eZ–( )sgn 1/2 1/Pm–

me*/"3ωc

f m Ue-ph i〈 〉

1/τω
2π
"

------ f m Ue-ph i〈 〉 2δ "csk eZ–( ).
m k,
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summation over s involves averaging over directions of
the polarization unit vector for both components of the
electron–phonon interaction, and this may be reduced

to  = π"csk/ τA(k), where  =  +

5 (q2  + )/k6 (see [6]). The nominal times
for the deformation and piezoelectric interactions in
GaAs are τD ≈ 0.8 ps and τP ≈ 35 ps [6, 12]. The nomi-
nal momentum is p0 = 2.52 × 106 cm–1 [12]. (We also
refer to [6, 12] for details concerning the meaning of
these quantities and their expressions in terms of the
GaAs material parameters.) Finally, in the general
expression for 1/τω, we perform the summation and,
after a routine treatment, arrive at the result

(5)

where

Uss∑ 2
p0

3 τ A
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Calculations of SR time τeff in a 2DEG are carried out for

α = β/3 = 10–6 K cm and cs = 3.37 × 105 cm/s (other mate-
rial parameters are given in the text). In the inset, the posi-
tion of the SR peak corresponds to the condition eZ = δ. The
evolution of B-dependences of the spin relaxation time τeff
with the parameter ω0 is shown in the main picture.
The estimate for α and β depends on the effective layer
width [2, 3]. The rate 1/τω as a function of B at ω = 5 K
is shown in the inset of the figure for realistic parame-
ters indicated in the caption.

At ω = 0 (i.e., in the “clean” limit), the summation
in formula (5) is carried out over all numbers m = 0, 1,
…, ∞, and expression (5) is reduced to

(6)

where

The bold curves in the inset and in the main picture of
the figure show the corresponding B-dependences.

Note that, if eZ = 0, then, at any r0, the projection
3(r0) =  vanishes when calculated at a
finite ω in the leading order in the SO constants. (It does
not occur for the “clean” states, i.e., if in Eqs. (3) and
(4) we pass to the ω  0 limit before equating eZ to
zero.) Such a vanishing is a manifestation of the general
feature [8, 10]: at zero Zeeman energy, the effects of the
SO coupling in the leading order and of the orbital mag-
netic field are similar. In particular, in a quantum dot
(where δ > eZ!), the first-order SO approximation in the
eZ  0 limit results only in a small rotation of eigen-
states in the spin space. With decreasing B, we get 3 ∝
B3/2 (if eZ ! δ ! ωc) and obtain a sharper fall of the
relaxation rate as compared to the “clean” case (6).

In the presence of the SRP, we have to carry out

averaging 1/τeff = , where the distribution

function F(ω) is the probability that the confinement
frequency will take a certain value ω. One may prove
that, in the case of a Gaussian potential u(r), it should
be chosen in the form

(The value ω2 is proportional to the curvature ∇ 2u, and
a routine analysis yields ω0 = 61/4(∆/ )1/2/Λ.) Calcu-
lating 1/τeff with this function, we obtain the final result
(see figure). As it has to be, in comparison with τω, the
resonant behavior of 1/τeff is smoothed, but, at actual
values of ω0, it results in nonmonotonic B-dependence
of τeff. Beyond the resonance region, the behavior is as
follows: (i) at small magnetic fields (when eZ !

" /ωc ! ωc), only one final state |f0〉  participates in

1
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the SR, and we find that τeff ∝  B–5; (ii) at high fields
(when eZ @ δ0), there is a large but finite number of pos-
sible states |fm〉  into which the confined spin-flipped
electrons could relax, and the SR time is always longer
than τ0 but approaches this with increasing magnetic
field. Note that, exactly in this high-field regime, the
one-electron model becomes relevant for fillings ν .
2n. Then, the total 2DEG spin is determined only by a
small amount |ν – 2n|Nφ of effectively “free” elec-
trons/holes belonging to the (n + 1)st/nth Landau level.

3. So, the problem has been solved when the total
2DEG spin is well smaller than Nφ. Now, we study the
opposite case: in the ground QHF state, the spin num-
bers attain the maximum S = Sz = Nφ/2. This case is also
remarkable, since, to the first order in the ratio rc =
(e2/εlB)/"ωc, the low-lying excitation is again known
exactly: these are 2D spin waves or spin excitons (SEs).
The most adequate description of the SE states is real-
ized by spin-exciton creation

and annihilation Qq =  operators [13]. In this def-
inition, aσp stands for the Fermi annihilation operator

corresponding to the |n, p, σ〉 = L–1/2eipyϕn(x + p ) state
in the Landau gauge (ϕn is the nth harmonic oscillatory

function). So, the one-exciton state is |0〉 , where |0〉
stands for the ground state. At small 2D momentum
(qlB ! 1), the one-exciton state has the energy %q = eZ +
(qlB)2/2Mn (now, we need only this small momenta
approximation; see also general expressions for the 2D
magneto-excitons at integer filling factors in [14]). Mn

is the SE mass at ν = 2n + 1, namely in the rc  ∞
limit: 1/M0 = (e2/εlB) , 1/M1 = 7/4M0, …. Note that

the sum S– =  lowering the spin number Sz by 1
(i labels the electrons), when considered to be projected
onto the nth Landau level, is simply proportional to the

“zero” exciton creation operator . When the SO cou-
pling is ignored, any state (S–)N|0〉  is the eigenstate inde-
pendently of the rc magnitude and of the presence of a
disorder.

The SO interaction HSO and the SRP field u(r) may
be accounted perturbatively as usual. Meanwhile, now
the unperturbed part of the Hamiltonian involves the
Coulomb interaction. For present purposes, the approx-
imation in the context of the projection onto a single
Landau level is quite sufficient (cf. [6]). We note also
that the QHF state |0〉  is resistant to the SRP disorder.
Such a stability is determined by the exchange energy
(~e2/κlB), which is much larger than the amplitude ∆.
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There are two fundamentally different alternatives
that provide the initial perturbation of spins. The first
one is the perturbation of the spin system as a whole
when the S number is not changed: ∆S = 0, but ∆Sz ≠ 0.
This is a Goldstone mode, which presents a quantum
precession of the vector S around the B direction. In
terms of the SE representation, |∆Sz | = Nφ/2 – Sz is the
number of “zero” SEs excited in a 2DEG. Let |∆Sz | = N;

the corresponding state is (S–)N|0〉  ∝  |0〉 , and it
has the energy NeZ. (Note that “zero” SEs do not inter-
act among themselves; besides, the stability of the
(S−)N|0〉  state with respect to the disorder is identical to
that for the |0〉  state because of u(r) and S– commuting.)
The second case of the perturbation is the ∆S = ∆Sz type
of the deviation. This does not change the symmetry
and involves the excitation of “nonzero” SEs, where
each SE changes the spin numbers by 1: S  S – 1,
Sz  Sz – 1. In contrast to zero SEs, the nonzero ones
interact. This interaction [7] and/or the direct exciton–
phonon coupling [6] governs the nonzero SE annihila-
tion which should go faster than the nonzero SE annihi-
lation process.

The SRP inhomogeneity does not essentially affect
the SE energy and the nonzero annihilation. Indeed, the
exciton is neutral, and the interaction with the SRP

incorporates the energy Ux–SRP ~ q ∆/Λ (the nonzero

SE possesses the dipole momentum e [q × ]; see
[14]). The latter may be negative but is always smaller
than the nonzero SE energy %q. If the SE were to anni-
hilate, the energy conservation condition %q + Ux-SRP =
0 would not be satisfied except for at negligible rare
points, where the gradient ∇ u is accidentally large.
Therefore, the SRP leads to only small corrections (on
the order of Ux–SRP/%q) to the other mechanisms of the
nonzero SE relaxation [6, 7].

A distinctly different process contributes to the SR
in the case of the first type of the spin perturbation. This
is an effective interaction of zero SEs among them-
selves arising due to the SO coupling [6]. Such an inter-
action does not preserve the total number of excitons N:
at an elementary event, two zero excitons merge into
one nonzero (the spin momenta change following the
rule Sz  Sz + 1, S  S – 1). In other words, the SO

coupling and the SRP field mix the initial |i 〉  = |0〉

and the final |fq 〉  = |0〉  states. These “many-
exciton” states have to be normalized (see the normal-
ization factors in [6, 13]). So, the SRP plays the same
role as the phonon field studied previously [6]. Now, the
energy conservation condition takes the form 2eZ ≈ %q,
where the interaction of nonzero SE with the SRP is
ignored as compared to other members of this equation.

If solving this for q, we obtain q = q0 ≡ /lB.

Q0
†( )N

lB
2

lB
2 ẑ

Q0
†( )N

Qq
† Q0

†( )N 2–

2MneZ
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The detailed calculation of the SR rate is truly simi-
lar to that performed in [6]. Indeed, the Fourier expan-

sion u(r) =  looks like the phonon field cre-
ated by “frozen” (of zero frequency) phonons. Then,
this SRP field and the SO Hamiltonian are treated per-
turbatively. In so doing, it is convenient to present them
in terms of the excitonic operators. We calculate the rel-
evant matrix element between the |i 〉  and |fq 〉  normal-

ized states and obtain  = N2(α2 +

β2) /("ωc)2Nφ. Finally, again with the use of the
Fermi golden rule, we find after summation over all
states |fq 〉  that the SR rate takes the same form as in the
case of the phonon mechanism [6], dSz/dt =
(∆Sz)2/τSRPNφ, but incorporates a different time con-
stant:

Here,  stands for the Fourier component of the corr-

elator [the equivalence (q) = L2 /4π2 has been
employed]. The SR follows the law

where  =  + , because the relaxations of both
types proceed in parallel. A natural question is: What is
the ratio of the times τph and τSRP? If T & "csq0 (in fact,
this means that T & 1 K) and B < 15, then the SR time
τph depends weakly on T and B. In particular, at ν = 1,
we find that τph . 10 µs [6, 7]. The ratio of interest is

determined only by the Fourier component :

τph/τSRP = 0.24πτpp0∆2Λ2 /"2cs (for , we have
substituted the value calculated with help of Eq. (1)).
So, for the actual parameters τph/τSRP ~ 100–1000, i.e.,
exactly the “disorder” time (τSRP ~ 10–8–10–7 s) governs
the breakdown of this Goldstone mode. In conclusion,
we underline that the relaxation is going nonexponen-

u q( )eiqr
q∑

}i f q→
2

qu q( ) 2

τSRP
1– 16π2 α2 β2+( )Mn

2
eZK q0( )

"
3ωc

2lB
4

-------------------------------------------------------------.=

K

K u q( ) 2

∆Sz t( )
∆Sz 0( )

1 t ∆Sz 0( ) /τ srNφ+
--------------------------------------------,=

τ sr
1– τph

1– τSRP
1–

K q0( )

e
Λ2

q0
2/4–

K

tially and the actual time is increased by a factor of
Nφ/∆Sz(0).
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We show that radiative heat transfer between two solid surfaces at short separation may increase by many orders
of magnitude when the surfaces are covered by adsorbates. In this case, the heat transfer is determined by res-
onant photon tunneling between adsorbate vibrational modes. We propose an experiment to check the theory.
© 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.20.Ci; 78.68.+m; 44.40.+a
It is well known that for bodies separated by d @
dT = c"/kBT, the radiative heat transfer between them is
described by the Stefan–Boltzmann law

(1)

where T1 and T2 are the temperatures of solids 1 and 2,
respectively. In this limiting case, the heat transfer is
connected with traveling electromagnetic waves radi-
ated by the bodies and does not depend on the separa-
tion d. For d < dT, the heat transfer increases by many
orders of magnitude due to the evanescent electromag-
netic waves that decay exponentially into the vacuum;
this is often referred to as photon tunneling. At present,
there is an increasing number of investigations of heat
transfer due to evanescent waves in connection with
scanning probe microscopy under ultrahigh vacuum
conditions [1–7]. It is now possible to measure
extremely small amounts of heat transfer into small vol-
umes [8]. Scanning tunneling microscope (STM) can
be used for local heating of the surface, resulting in
local desorption or decomposition of molecular spe-
cies, and this offers further possibilities for the STM to
control local chemistry at the surface.

The efficiency of the radiative heat transfer depends
strongly on the dielectric properties of the media. In [3,
5, 6], it was shown the heat flux can be greatly
enhanced if conductivities of the material are chosen to
maximize the heat flow due to photon tunneling. At
room temperature, the heat flow is maximal at conduc-
tivities corresponding to semimetals. In fact, only a thin
film (~10 Å) of a high-resistivity material is needed to
maximize the heat flux [5]. Another enhancement
mechanism of the radiative heat transfer can be con-
nected with resonant photon tunneling between states

¶ This article was submitted by the authors in English.
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localized on the different surfaces. Recently, it was dis-
covered that resonant photon tunneling between sur-
face plasmon modes give rise to extraordinary enhance-
ment of the optical transmission through subwave-
length hole arrays [9]. The same enhancement of
surface modes can be expected for the radiative heat
transfer (and the van der Waals friction [10]) if the fre-
quency of these modes is sufficiently low to be excited
by thermal radiation. At room temperature, only the
modes with frequencies below ~1013 s–1 can be excited.
Recently, enhancement of the heat transfer due to reso-
nant photon tunneling between surface plasmon modes
localized on the surfaces of the semiconductors was
predicted [7]. Other surface modes, which can be
excited by thermal radiation, are adsorbate vibrational
modes.

In this paper, we study the radiative heat transfer
between small particles, e.g., adsorbed molecules, or
dust particles, considered as point dipoles, and situated
on the surfaces of different bodies. Using an electro-
magnetic approach, in the dipolar approximation, we
derive a general expression of the radiative heat power
exchanged between the particles. We show that if the
particles have resonance frequencies which are
matched, the heat transfer can be enhanced by many
orders of magnitude in comparison with the heat trans-
fer between clean surfaces of good conductors.

Let us consider two particles with dipole polariz-
abilities α1(ω) and α2(ω) and with the fluctuating

dipole moments  and  normal to the surfaces.
According to fluctuation–dissipation theorem [11], the
spectral density function for the fluctuating dipole
moment is given by

(2)

p1
f p2

f

pi
f p j

f〈 〉 ω
"
π
--- 1

2
--- ni ω( )+ 

  Imα i ω( )δij=
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where the Bose–Einstein factor

(3)

applies. Assume that the particles are situated opposite
each other on two different surfaces, at temperatures T1
and T2, respectively, and separated by the distance d.
The fluctuating electric field of a particle 1 does work
on particle 2. The rate of work is determined by

(4)

where E12 is the electric field created by particle 1 at the
position of particle 2:

(5)

From Eqs. (2)–(4), we get P12, and the rate of cooling
of particle 2 can be obtained using the same formula by
reciprocity. Thus, the total heat exchange power
between the particles is given by

(6)

Let us firstly consider some general consequences
of Eq. (6). There are no constraints on the particle
polarizability α(ω) = α' + iα'' other than that α'' is pos-
itive, and α' and α'' are connected by the Kramers–Kro-
nig relation. Therefore, assuming identical surfaces, we
are free to maximize the photon-tunneling transmission
coefficient

(7)

This function is a maximum when

(8)

so that t = 1/4. Substituting this result in (6) gives the
upper boundary for the heat transfer power between
two particles as

(9)

This result is a particular case of the more general state-
ment [3] which says that there is a maximum heat flow
in a given channel. A simple interpretation can be given
for Eq. (9). The energy transfer between the particles
can be considered as a result of the collisions. The max-
imal rate of energy transfer is of the order of magnitude
of the product of the characteristic thermal energy on
the frequency of the collision, equal to the maximal fre-

ni ω( ) 1

e
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πkB
2

3"
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2 T2
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quency of the vibration which can be thermally excited,
thus Pmax ~ kBTkBT/". For adsorbed molecules at the
concentration na = 1019 m–2, when one surface is at the
temperature of zero and the other is at room tempera-
ture, the maximal heat flux due to the adsorbates Smax =
naPmax = 1012 W/m2, which is nearly ten orders of mag-
nitude larger than the heat flux due to black body radi-
ation, SBB = σT = 4 × 102 W/m2.

We rewrite the denominator of the integrand in
Eq. (6) in the form

(10)

The conditions for resonant photon tunneling are deter-
mined by equation

(11)

Close to resonance, we can write

(12)

where

Assuming |α''/β±| ! ω±, we get the following contribu-
tion to the heat transfer:

(13)

Close to a pole, we can use the approximation

(14)

where a is a constant. Then, from the resonant condi-
tion (11), we get

For the two-poles approximation to be valid, the differ-
ence ∆ω = |ω+ – ω– | must be greater than the width η of
the resonance, so that 8a/d3 > η.

For η ! 8a/d3, from Eq. (6) we get

(15)

Using Eq. (15), we can estimate the heat flux between
identical surfaces covered by adsorbates with concen-
tration na: S ≈ naP. Interesting, the explicit d depen-
dence has dropped out of Eq. (15). However, P may still
be d-dependent, through the d-dependence of ω±. For
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"ω± ≤ kBT, the heat transfer will only be weakly dis-
tance independent.

For 8a/d3 < η, we can neglect multiple scattering of
the photons between the particles, so that the denomi-
nator in the integrand in Eq. (6) equals unity. For d @ l,
where l is the interparticle spacing, the heat flux
between two surfaces covered by adsorbates with con-
centration na1 and na2 can be obtained after integration
of the heat flux between two separated particles. We get

(16)

Assuming that α can be approximated by Eq. (14), for
ω0 ! η, Eq. (16) gives the heat flux between two iden-
tical surfaces:

(17)

We note that Eq. (17) can be obtained directly from the
heat flux between two semi-infinite solids [3, 5, 6]. In
such approach, the contribution to the heat flux from
adsorbates can be taken into account by appropriate
modification of the Fresnel formulas for the reflection
factors [12].

For d > dT, the dipole field is determined by the
expression in the wave zone. The simplest way to
obtain contribution of adsorbates to heat flux in this
case is to use a macroscopic approach. However, with-
out calculation, it is clear that, in this region, the surface
contribution to the heat transfer due to adsorbates will
be negligibly small in comparison to the volume contri-
bution, because, in the limit of the large wavelength, the
reflection amplitudes of the electromagnetic waves are
reduced to classical Fresnel formulas, which do not
contain information about the surface region. For black
bodies, this volume contribution is determined by the
Stefan–Boltzmann law. The heat transfer between the
clean surfaces of good conductors was investigated in
detail in [13].

In the case of ionic adsorption, the dipole polariz-
ability is given by

(18)

where e* is the ionic charge, M is the ionic mass, and
ω0 and η are the vibrational frequency and damping
constant, respectively. For the K/Cu(001) system, ω0 =
1.9 × 1013, and at low coverage, e* = 0.88 [14], which
gives a = e*2/2Mω0 = 7 × 10–17 m3/s. For η = 1012 s–1

and d < 10 Å, when one surface has T = 300 K and the
other T = 0 K, we get distance independent P ≈ 10–9 W.
In this case, for na = 1018 m–3, the heat flux S ≈
109 W/m2. With the same conditions, the heat flux
between two clean surfaces Sclean ≈ 106 W/m2. Thus, the
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photon tunneling between the adsorbate vibrational
states can strongly enhance the radiative heat transfer
between the surfaces.

Let us describe the physical origin of the different
regimes in resonant photon tunneling between adsor-
bate vibrational modes. At sufficiently small separa-
tion, when 8a/d3 > η, the photons go back and forth sev-
eral times in the vacuum gap, building up coherent con-
structive interference in the forward direction much as
would occur in resonant electron tunneling. In this case,
the vibrational modes on the isolated surfaces combine
to form collective vibrational modes (diatomic “mole-
cules”), where the adsorbates vibrate in phase or out of
phase. This will result in a very weak distance depen-
dence of the heat flux, because the transmission proba-
bility for a photon depends very weakly on d in this
case (see above). For large d, when 8a/d3 < η, sequen-
tial tunneling is more likely to occur, where the photon
excited in an adsorbate vibrational mode tunnels to the
adsorbate vibration at the other surface and then cou-
ples to the other excitations in the media and exits.

The above discussion is for a special case of match-
ing adsorbate vibrational frequencies (ω1 = ω2 = ω0),
but the picture still applies in the nonsymmetric case
(ω1 ≠ ω2). Here, adsorbate vibrational modes on the two
surfaces have different frequencies and, instead of a
vibration mode for diatomic homopolar molecules, we
have a diatomic heteropolar molecule.

Finally, let us suggest an experiment to probe the
photon-tunneling heat transfer theory. Consider a solid
surface (substrate) at low temperature with a low con-
centration of weakly adsorbed atoms (e.g., noble gas
atoms) or molecules. The position of the atoms can be
mapped out relative to the substrate using an STM.
Next, the surface of another solid at higher temperature
(e.g., room temperature) is brought in the vicinity (sep-
aration d) of the substrate. The heat transfer (via photon
tunneling) to the substrate will result in a temperature
increase on the substrate surface. This will result in the
diffusion of the weakly bound adsorbates. The (aver-
age) diffusion distance will be a function of the heat
transfer. If the two bodies are separated after a given
time period, and if the new position of the adsorbates is
determined using the STM [15], it is possible to infer
the heat transfer from the hot to the cold surface as a
function of the separation d. This experiment is conve-
niently performed using as the second (warm) body an
atomic force microscope (AFM) with a wide flat tip,
such as the type recently produced and used for studies
of contact mechanics [16].

In summary, we have presented a detailed theoreti-
cal study of the heat transfer between surfaces covered
by adsorbates. We have shown that resonant photon
tunneling between adsorbate vibration modes can give
rise to extraordinary enhanced heat transfer, in compar-
ison with the heat transfer between clean surfaces of
good conductor. This result can be used in the scanning
probe microscopy for local heating and modification of
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the surface. Finally, we have suggested an experiment
by which the radiative heat transfer due to photon tun-
neling can be measured.
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The traditional approach to the development of instability of a weakly charged helium surface needs correction.
It is shown that the well-known electrostatically “equipotential” Frenkel–Tonks scenario should be transformed
to a more general sequence of events that would remain reasonable when the 2D charge density tends to zero.
Under these conditions, the priorities change and the instability development through nucleation (with the for-
mation of separate multicharged dimples) becomes preferable. The experiment qualitatively confirms the pre-
dictions of the theory. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 67.55.-s
To date, the problem of instability and reconstruc-
tion of a charged helium surface has been well elabo-
rated. The original Frenkel–Tonks results [1–3] con-
cerning the surface oscillations and stability in a
charged metallic fluid were extended by Gor’kov and
Chernikova to the helium surface with 2D electrons [4,
5]. More recently, the same authors have developed the
theory of equipotential reconstruction of a charged fluid
surface (see [6]). They found that the flat state of a
charged fluid boundary transforms to the corrugated
state. The theory predicted the lattice type, the lattice
parameter, the corrugation amplitude as functions of
the degree of supercriticality (the excess of electric field
over its critical value), etc. In this case, the perturbed
fluid surface remains electrically equipotential.

In the alternative reconstruction scenario, the
charged helium surface is divided into a system of iso-
lated many-electron dimples [7]. Each of them has a
charged nucleus, beyond which the fluid surface is neu-
tral. The interaction between dimples can align them in
various clusters and, in particular, cause their periodic
distribution along the surface.

Despite the long-standing “coexistence” of the
reconstruction variants, the priority of the equipotential
scenario has not been questioned so far. This was also
aided by the paper of Mel’nikov and Meshkov [8],
where it was shown that the equipotential reconstruc-
tion changes to dimple reconstruction as the supercriti-
cality increases under conditions that the total number
of electrons is conserved.

The experiments performed mainly with the use of
charges near the helium surface show a good agreement
with predictions [1–5] about the stability boundaries of
a charged fluid surface (see [9]). Later on, the most
interesting (most sensitive to electron density) portion
of the surface oscillation dispersion curve has been
measured carefully to confirm all the expected details
0021-3640/03/7807- $24.00 © 20461
[10]. Finally, the existence of periodic [11] and aperi-
odic [12] reconstruction variants was proved for a fluid
conducting boundary.

Nevertheless, one cannot assert that all is right with
the scenario under discussion. First, the results of per-
turbative calculations of the equipotential periodic
reconstruction on the assumption that the surface corru-
gation amplitude is smaller than the capillary length are
valid only for a weakly charged helium surface in the
so-called soft reconstruction regime (the perturbation
amplitude is much smaller than the capillary length
[6]). By the charging or the surface-filling factor one
implies the ratio ν of the mean 2D-electron density ns

to its critical value  (see Eq. (6)). At the same time,
the periodic reconstruction over the entire accessible
helium surface can be experimentally observed [11]
only in the vicinity of maximal values ν ≤ 1, where a
hard reconstruction regime occurs (the corrugation
amplitude is scaled by the capillary length). This incon-
sistency, of course, would not be dramatic but that there
is a second fact. At small ν ! 1, the observed recon-
struction is not periodic. The helium surface is not cov-
ered here with a periodic corrugation effecting the
entire liquid mirror, as it would follow from the predic-
tions made in [6, 8]. By contrast, according to the
observations in [12], the charges are grouped into one
or more many-electron dimples occupying only a small
portion of the helium surface. Evidently, the dimplelike
reconstruction is energetically more favorable in the
region ν ! 1, and this fact calls for special analysis.

It is shown in this work that, for small filling factors,
the reconstruction process displays the properties of
first-order phase transition. For transformations of this
type, the intersection of chemical potentials of the com-
peting phases determines a binodal stability point
(line), near which the major phase nucleates in a fluctu-

ns
max
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ative way. With helium, this process consists in the
nucleation of many-electron dimples on the back-
ground of a uniform near-critical charged surface state
of a fluid. In addition, there is an absolute instability
point (line) (spinodal) that appears in the dynamic
equations for transition and manifests itself without any
threshold expectations. For a charged liquid, spinodal
coincides with the Frenkel–Tonks dynamic instability
threshold. In the phase diagram, the binodal, as a rule,
occupies a rather large phase volume, although the
nuclei appear after a certain activation time. The spin-
odal transition is stimulated by an abrupt jump of any
external parameter into the spinodal region in the dia-
gram, after which the time evolution of instability
should follow the characteristic exponential law. The
problem of the points of coexistence of binodal and
spinodal has no general solution. Sometimes they coex-
ist and sometimes not.

If the suggested picture is true, then all the presently
known experiments with the reconstruction of a weakly
charged helium surface were carried out in the binodal
region. In this case, only the separate dimples appear.
With an increase in ν, dimples are grouped into com-
plexes (dimple clusters) with internal periodicity. In the
region ν  1, the cluster area tends to the total area of
the liquid mirror (see figures in [12]). As to the spinodal
instability mechanism, it has not yet been observed.

1. Before proceeding to the particular results, we
first write the existing solution [1–5] to the problem of
the electrically equipotential stability of a fluid bound-
ary. For the system shown in the figure, electric fields
E– over and E+ under the charged helium surface are

(1)

(2)

where σ = ens and V is the potential difference between
the cell plates (figure).

E–
V
h
--- 4πσd

h
---,–=

E+
V
h
--- 4πσh d–

h
------------,+=

Schematic of a cell with 2D electron system and the follow-
ing geometric notation: h is the separation between metallic
electrodes and d is the thickness of helium film. 2D elec-
trons are situated at the fluid surface.
If the external field over helium is completely
screened, i.e., if E– = 0 and, hence,

(3)

the electric field E+ is

(4)

Conditions (3) and (4) are fulfilled in a metallic fluid
with infinite conductivity (see [1–3]). In this case, the
field E– inside the medium is zero by definition, so that
the surface charge is determined by Eq. (3), as was
pointed out even in the original works [4, 5] devoted to
this problem. The distinguishing feature of the prob-
lems on the charged helium boundary is that the param-
eter ns can be varied, starting with its infinitesimal val-
ues, independently of V. In this case, the metallic limit
(3) and (4) is possible as a limiting case, although only
at large ν values (for detail, see below).

In terms of E– and E+, the electrically equipotential
stability of a charged fluid is determined by the condi-
tion

(5)

where E– and E+ are given by Eqs. (1) and (2), respec-
tively; α and ρ are, respectively, the surface tension of
liquid helium and its density; g is the gravitational
acceleration; and κ–1 is the capillary constant. In reality,
the potential difference V and the electron density ns are
the independent parameters of this problem. However,
since the phase diagram in the (ns, E–) coordinates is
rather pictorial, these variables are often chosen, some-
what artificially, as independent variables.

If E– = 0 (complete screening), then

and the maximal electron density  over helium is
determined from Eq. (5),

(6)

By introducing the filling factor

(7)

one brings Eq. (5) to the form

(8)

At e–  0, one has

(8a)

In the opposite limit ν  0,

(8b)

The positions of points (8a) and (8b) in the (ν, e–) plane
correspond to the limiting values of the function ν(e–).

4πσ V /d ,=

E+ V /d .=

4πens( )2 E+ E–+( )2+ 16πκα, κ2 ρg/α ,= =

E+ V /d 4πens,≡=

ns
max

σmax
2 κα /2π, E+

max( )2
8πκα.= =

ν σ/σmax,=

ν2
e+ e–+( )2+ 2, e± E±/4πσmax.= =

ν e– 0( ) 1.

e– ν 0( ) e+ ν 0( ) 1/ 2.=
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In actuality, limit (8b) makes no real sense for func-
tion (8), because the condition for electrical equipoten-
tiality of a distorted helium surface ceases to be fulfilled
as this limit is approached. This requirement

(9)

should be replaced by a more general condition

(10)

where ζ is the chemical component of the 2D charges
over helium in general definition (10) of the electro-
chemical potential µ.

The structure of ζ in a system with finite electron
density ns is a separate problem, which now still calls
for a more distinct solution. Since we present below
only the qualitative conclusions and appeal only to the
low electron-density limit, we use the explicit expres-
sion for ζ in the form

(11)

Here, T is the electron temperature coinciding with the
temperature of the liquid substrate, m is the charge-car-
rier effective mass, and n(x) is the local electron den-
sity.

In the problem on equilibrium of a charged helium
surface, the dominant part (including large logarithm
(11)) of condition (10) enters into the set of equations
determining the spatial equilibrium of an unperturbed
system “electrons + flat fluid boundary.” The corre-
sponding calculations [13, 14] provide information on
the distribution of quasi-free electrons over the charged
helium surface. As to the stability problem, only the
perturbation δζ(x) caused by the deformation of fluid
boundary is significant in this case. As a result, defini-
tions (10) and (11) for the oscillating part of the prob-
lem are simplified,

(12)

By using linearized relations (12) and the Poisson equa-
tion, one can easily determine the electric potential
ϕ−(x) proportional to the small perturbation ξ(x) of the
fluid surface profile:

(13)

(13a)

ϕ const=

µ eϕ ζ+ const,= =

ζ T nT /n x( )[ ] , nTln– mT /2π"
2,= =

nT /n x( ) @ 1.

eE–ξ x( ) eϕ– x( ) Tδn x( )/ns–+ const,=

n x( ) ns δn x( ),+=

eE–ξ x( ) eϕ– x( )+ eE+ξ x( ) eϕ+ x( ),+=

δn x( ) xd∫ 0.=

ϕ– x z,( ) ϕ– q( )eiqxeqz, z 0,>=

ϕ– q( ) 1 2πe2ns/qT+( ) = 2πe2ns 1 eE–/qT+( )ξq,
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where ξq is the Fourier component of the perturbation
ξ(x), with

The limits of electrically equipotential approxima-
tion (9) and (8) can be estimated from Eq. (13a). This
approximation is valid if

(14)

where q is the characteristic wave number of the pertur-
bation ξ(x).

In the opposite limit, the chemical part of the condi-
tion (12) for equipotentiality becomes dominant, and
the dispersion law for small surface oscillations takes
the form

(15)

One can readily see that dispersion law (15) transforms
at η2  0 to the proper asymptotic form for ω(q) in
the absence of Coulomb forces.

As in the Frenkel–Tonks problem, the oscillations
with dispersion law (15) lose stability. However, this
occurs in a different region, namely, at

(16)

The scale of characteristic density  separating the

two limiting screening situations is given by  . 104–
105 cm–2 for the wave numbers on the order of capillary
length and the temperature on the order of one degree.

According to Eq. (16), to make a weakly charged
helium surface unstable, the field should increase as

E⊥  ∝  with decreasing ns. This statement is quali-
tatively different from the “equipotential” predictions
(see asymptotic behavior (8b)). Consequently, the
behavior of the e–(ν) spinodal at small ν values termi-
nates not at the point (8b) but is extended, following the
root law, up to e–  ∞.

It is worthwhile to note that instability (16) is prima-
rily developed at small wave numbers (and not at the
capillary length, as in the case of (5)).

2. In the problem of a binodal in the reconstruction
process, the dimple energy competes with the electro-
static energy of a capacitor with 2D electrons filling the
whole accessible fluid surface. Such a statement of this
problem is ambiguous, because, in the general case, the
charge of a fluctuatively appeared dimple is arbitrary.
The situation is relatively simple only in the limiting
case ν ! 1. The maximal energy gain corresponds to
the transition of all free electrons to a single dimple.
This happens in conditions where the Coulomb energy
Vc of the electron subsystem occupying a circle with
radius L between the capacitor plates (figure) becomes

ξ x( ) xd∫ 0.=

2πe2ns/qT  @ 1,

ρω2/α κ 2 η2–( )q q3, η2+ nsE+
2 /αT .= =

η2 κ2, E+ . E– . V /h.>

ns
c

ns
c

ns
1/2–
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comparable to the energy W of a many-electron dimple
with the same charge Q:

(17)

(18)

where Ei(x) is the integral exponential function and E⊥
is the electric field pressing electrons down to the sur-
face at a finite electron density E⊥  . E+. The value of R
in Eq. (18) is found by minimizing the energy W (18)
with respect to R.

At L @ h, the energy Vc (17) is rather low, so that,
instead of the general (competing with Vc) expression
(18) for W, one can use its expansion near the zero point

(18a)

As a result, by equating the competing energies

(19)

one determines the value of smax. Since the left-hand
part of Eq. (19) is small, smax is close to so.

The electric field , being related to smax by
Eqs. (18), determines the abscissa on the (ν, e–) plane
(in this region, E⊥  = E+ . E– = V/h) where the binodal
terminates at ns  0. This field, of course, is indepen-
dent of ns (the quantity ns ∝  Q drops out of definition
(19)). Consequently, the binodal goes “under” the
asymptotic curve (16) for the spinodal in the limit
ns  0. In other words, the instability in this region
should develop in a dimplelike way, which is the
required result.

3. In summary, we can state that the reconstruction
process at small ν values is mainly of dimple origin. In
the ν  0 limit, the instability, being stimulated by a
finite value of V/h, gives rise to an isolated dimple that
accumulates all surface electrons, rather than to the
periodic reconstruction. As ν increases, the number of
dimples can increase to form eventually a dimple crys-
tal, as observed experimentally in [12].

It is worth noting that the incomplete screening
effect (in our case, replacement of Eq. (9) by Eq. (10))
more than once attracted the attention of researchers in
the field of low-dimensional phenomena. This effect
proved to be essential for the properties of quasi-one-

Vc Q2 h d–( )d

L2h
--------------------, Q πL2ens,= =

W Q2κ s
x2

2
----- 

  Ei x2

2
-----– 

 exp 1
x
---– ,=

s 1/ 2κ R*( ), x κR,= =

R*
2 πα/ eE⊥

2( ), E⊥  . V /h,=

W so xo,( ) 0, so 1.05, xo 0.72,= = =

W s xo,( ) . 
∂W
∂so

-------- s so–( ).

Q2 h d–( )d

L2h
-------------------- ∂W

∂so

-------- smax so–( ),=

E+
max
dimensional degenerate conducting channels with a
parabolic confining potential [15–18]. Simultaneous
measurements of the Shubnikov–de Haas oscillations
and the dipolar plasma eigenfrequency in these chan-
nels give two essentially different values for the curva-
tures of parabolic potentials determining the discrete
electronic levels in the well and the dipolar plasma fre-

quency ω1 in it: ko and k1 @ ko. It was found that  is
proportional to the bare curvature k1, while the quanti-
zation of one-electron motion in the parabolic well
depends on the degree of screening of the initial poten-
tial V(x) forming the channel. For the quasiclassical
channel width w @ ab, where ab is the Bohr effective
radius, the equilibrium electron-density profile inside
the channel satisfies the requirement for electrostatic
equipotentiality (requirement of the form (9)). In this
case, the electron motion inside the channel is virtually
nonquantized, and, hence, it has no effect on the Shub-
nikov–de Haas oscillations. If, however, w ≥ ab, the
screening in the channel zone ceases to be purely cou-
lombic, and the effective parabolic potential with cur-
vature ko ≤ k1 appears to quantize (along with a mag-
netic field) the electron motion and affect the Shubni-
kov–de Haas oscillations.

Another series of publications have been devoted to
studying the screening properties of a degenerate 2D
system in the vicinity of metal–insulator transition (see,
e.g., [19, 20]). As expected, the requirement (9) for
purely electrostatic screening of the external action
changes, with a gradual decrease in electron density, to
the combined requirement of form (10), with the
exchange interaction playing the role of chemical addi-
tion ζ(ns) in the degenerate systems, to give ζ(ns) ∝

.

This work was supported in part by the Russian
Foundation for Basic Research, project no. 03-02-
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The effects caused by vapor inhomogeneity over liquid helium are considered. Both pure isotopes have surface
levels, whose population increases with temperature T. We separated their contribution to the temperature
dependence of surface tension σ3(T) and σ4(T) and compared our theoretical results with the results of Japanese

experimental works [1–3]. For liquid He3, one has σ3(T) = σ3(0) – T2 at 0.2 K < T < 1 K and σ3(T) =

σ3(0) − T2 exp(–∆3/T) at T < 0.2 K, with ∆3 ≈ 0.25 K. For liquid He4, σ4(T) = σ4(0) – AT7/3 –

T2exp(−∆4/T) at T < 2 K, where A is the Atkins constant and ∆4 ≈ 4 K. The parameters , , and 
depend on the fluid properties. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 67.55.Cx; 68.03.Cd
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0 α3
∞ α4
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1. In works [1–4], surface tension of pure helium
isotopes was studied experimentally in detail. For liq-
uid He4, the Atkins law [1, 5]

(1)

was found to be valid at T < 1 K.

For liquid He3, σ3(T) depends quadratically on T at
0.16 K < T < 0.9 K [2]:

(2)

According to the data presented in [3], σ3(T) is inde-
pendent of T at low temperatures T < 0.16 K, and the
extrapolation of the law (2) for T = 0 has an accuracy of
3 × 10–3. These experimental findings have been a puz-
zle over 15 years. As the experimental accuracy was
improved, a weak maximum was revealed at T ≈ 0.1 K
in the temperature curve σ3(T). This nonmonotonic fea-
ture has the order of 3 × 10–4 [4].

In this work, the theory of surface tension of liquid
helium is developed on the basis of a physical principle
common to both isotopes over a wide temperature
range. It is assumed that the localized atomic states,
which will be called, by convention, the fog states, exist
at the liquid–vapor interface. This term is conventional
because fog can equally be related to fluid and vapor
[6]. The presence of fog is evident, at least, for liquid
He4. Indeed, the nonmonotonic temperature depen-
dence of surface tension for the solutions of helium iso-
topes is explained by the contribution from the bound
atomic states of He3 at the surface of liquid He4

(Andreev impurity levels) [7]. This effect is caused by

σ4 T( ) σ4 0( ) AT7/3–=

σ3 T( ) σ3 0( ) α3
∞T2.–=
0021-3640/03/7807- $24.00 © 20466
the van der Waals attraction of He3 atoms to the liquid
He4. Since the He4 atom is 4/3 times heavier than the
He3 atom, He4 should have a surface level if the latter
exists for the lighter He3 atom. In this case, the atomic
statistics are immaterial, because, to a first approxima-
tion, liquid helium is a quantum nondegenerate fluid,
and its surface does not distinguish between its own and
foreign atoms [8, 9]. Note that, contrary to the situation
considered in [7], the energy of surface levels is higher
than the chemical potential. For this reason, the surface
levels are not occupied at T = 0. The existence of sur-
face levels is confirmed by the analysis of the experi-
mental data on electron mobility over liquid helium.
The experiment and theory are at variance in the tem-
perature range, where, as it may seem at first glance,
only the electron scattering by vapor atoms is signifi-
cant [10].

2. The wave function of the expected surface state
has the form

(3)

where the coordinates r and z correspond, respectively,
to the atomic movement along and transverse to the
fluid surface. The boundary condition ϕ(∞) = ϕ(–∞) =
0 is the natural property of a localized surface state.
Function (3) corresponds to the spectrum

(4)

where M is the effective atomic mass and ε0 is the
energy of localized level. For liquid He3, the contribu-

ψk r z,( ) ϕ z( ) ikr( ),exp=

ε k( ) ε0 k2/2M,+=
003 MAIK “Nauka/Interperiodica”
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tion from states (3) to the surface tension σ3(T) is deter-
mined by the thermodynamic potential Ω3(µ3, T) [6]:

(5)

where µ3(T) is the chemical potential of liquid He3.
From Eqs. (4) and (5), one obtains the following
expression for Ω3:

(6)

where ∆3 is the level energy measured from the chemi-

cal potential: ∆3 ≡  – µ3. The parameter ∆3 in Eq. (6)
is to be determined by comparison between theory and
experiment. To a first approximation and ignoring the
temperature dependence of ∆3, one has from Eq. (6) at
T ! ∆3

(7)

It it clear from this expression why the surface tension
becomes temperature-independent at T ! ∆3 ≈ 0.25 K,

as it was observed in [3]. Setting M3 = , where 
is the mass of He3 atom, one obtains numerical value

 = 27.2 mdyne/cm2.

At T @ ∆3, one gets from Eq. (6)

(8)

The numerical value  = 22.4 is in agreement with the

measured value  = 22.3 [2]. The qualitative σ(T)
dependence explaining the experimental data reported
in [2, 3] has the form

(9)

The estimate  ≈ 0.25 K is obtained from the com-
parison of Eq. (7) with the experimental data [3], and

the value µ3(0) = –2.5 K is the energy  = µ3(0) +  ≈
–2.25 K of the bound surface state.

In the next approximation, one should take into

account the dependence of parameter  =  – µ3 on
T. The temperature dependence of chemical potential
µ3 = µ3(T) is determined using the exact equation [6]

(10)

where  is the free energy per atom, P is the pressure,
and nL is the fluid density. If the temperature is not too

σ3 T( ) σ3 0( ) Ω3 µ3 T,( ),+=

Ω3 µ3 T,( ) 2T 1
µ3 ε3 k( )–

T
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 exp+ 
  d2k

2π"( )2
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x ∆3/T+( )exp 1+

--------------------------------------------,
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∞
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0
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0exp–
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∞

σ3 T( ) σ3 0( ) α3
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high, then P = nvT, where nv is the vapor density. Since
nv ! nL, the second term in Eq. (10) is small, so that the
T dependence of µ3 can be found from the expression
[6]

(11)

where C3(T) is the heat capacity per one He3 atom. We
first carry out the qualitative analysis of the effects
responsible for the temperature dependence ∆3(T). At
low temperatures, C3(T) = T/TF, and one gets from
Eq. (11)

(12)

where TF is the He3 degeneracy temperature TF ≅
0.36 K [11]. According to the theory of nondegenerate
quantum liquids [8, 9], the temperature dependence of

 is dominated by the spin entropy Sσ = ln2:

(13)

The temperature dependence of energy  can be
estimated by considering the fog nonideality in a first
virial approximation:

(14)

where V3 is the phenomenological interaction potential
between He3 atoms, and the fog density n3(T) is given
by the expression

(15)

From Eqs. (4) and (15), one obtains

(16)

The equation for the parameter ∆3(T) follows from
Eqs. (11), (14), and (16):

(17)

At high temperatures T > TF, one obtains from Eqs. (13)
and (17)

(18)
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With allowance for the smallness ∆3(0) ≈ 0.25 K, it fol-
lows from Eq. (18) that ∆(T) ~ T, irrespective of the sign
of interaction V3 at high T > TF, and it is seen from
Eqs. (5) and (6) that σ3(T) – σ3(0) ~ T2.

Thus, allowance for the temperature dependence of
the parameter ∆3 in Eq. (6) does not contradict the
experimental law (2) at high T > TF. Although the
parameter ∆3(0) is found from the data [2, 3] with a very
high accuracy, their is an ambiguity in the definition of
λ3 in Eq. (17) and M3 in Eq. (6), because even the first

approximation ∆3 = 0 and M3 =  is accurate to 3 ×
10–3. Next we restrict ourselves to the ideal fog model
(λ3 = 0) (17), while the temperature dependence µ3(T)

M3
0

Fig. 1. Comparison of (solid line) the temperature depen-
dence defined by Eq. (21) for the surface tension σ3(T) of

liquid He3 with (points) the experimental data from [2, 3] at
low temperatures. The proposed theory accounts for the
deviation of the σ3(T) dependence from the quadratic law at

T < .∆3
0

Fig. 2. Comparison of the calculated T dependence of σ3
with the experimental data from [2, 3] over a broad temper-
ature range.
will be determined exactly using Eq. (11) and experi-
mental data for C3(T) [11]. We present below the ana-
lytic expression for ∆3(T) = ∆3(0) – µ3(T), because the
data in [11] agree well at T < 2 K with the formula

(19)

The theoretical substantiation of Eq. (19) is given in
[9]. Equations (11) and (19) are used to determine the
dependence ∆3 = ∆3(T):

(20)

where temperature is in K.
Numerical integration using Eq. (11) and the data

[11] for C3(T) confirms expression (20) to an accuracy
of 10–2 at T < 1.5 K, and the comparison of Eqs. (5) and
(6) with the experimental data for σ3(T) [2, 3] yields the

value M3 = 2.25  for the effective mass in the ideal
fog model. With a precision of 3 × 10–4, the dependence
σ3 = σ3(T) at T < 0.4 K has the form (Fig. 1)

(21)

where σ3(0) = 155.3 mdyne/cm and  =
61.2 mdyne/(cm K2).

In a broader temperature range T < 2 K, the temper-
ature dependence σ3(T) given by Eqs. (21) and (20) is
shown in Fig. 2, where the experimental data obtained
in [2, 3] are also presented. To substantiate the ideal fog
model, we take the value of density n3(T) given by
Eq. (16) for T = 1 K: n3(1) = 1.44 × 1014 cm–2. Fully sat-
urated (close-packed) fog corresponds to (n03)2/3 = 6.5 ×
1014 cm–2, where n03 is the density of liquid He3. Since
n3(1) ! (n03)2/3, the λ3 = 0 approximation in Eq. (17)
applies, at least, at low temperatures. The model of
interest given by Eqs. (20) and (21) does not account
for the nonmonotonic σ3(T) dependence at T ≈ 0.1 K,
i.e., for the effects on the order of ≈3 × 10–4 [4]. For this
reason, our model should be improved by introducing
Fermi-liquid corrections that were already considered
in [12–15]. However, the temperature dependence
σ3(T) given by Eq. (2) for high T > TF, where He3 is a
quantum though nondegenerate liquid [8, 9], cannot be
explained within the framework of the Fermi-liquid
theory.

3. To determine the surface tension σ4(T) of liquid
He4, the contribution σS(T) from the surface layers

C3 T( ) 0.2T= ) 0.105
T

T2 T0
2+

-----------------; T0+ 0.21 K=

∆3 T( ) 0.25 0.2T2 0.5T
T
T0
-----arctan+ +=

– 0.053 1 T2

T0
2

-----+
 
 
 

,ln

M3
0

σ3 T( ) σ3 0( ) α3
0T2 x xd

x
∆3

T
-----+ 

 exp 1+

---------------------------------------,

0

∞

∫–=

α3
0
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should be separated on the background of ripplon con-
tribution σR(T) = –AT7/3 at T < 1 K [5]:

(22)

Similar to Eqs. (6) and (16), one can determine σS(T)
and n4(T) [6]:

(23)

where M4 is the effective atomic mass of He4 and ∆4 is
the surface-level energy measured from the chemical

potential µ4: ∆4 =  – µ4. The µ4 = µ4(T) dependence
is given by expression (11) with the replacement
C3  C4. Contrary to C3(T), the spin contribution to
the heat capacity C4(T) is small, so that one can put
µ(T) = µ(0) = –7.15 K at T < Tλ. In the ideal fog model,

the parameters ∆4 ≈ 4 K and M4 ≈ 2.6 , where  is
the He4 atomic mass, are obtained from the comparison
of Eqs. (22) and (23) with the experimental data of [1].
The temperature dependence σ4(T) at T < Tλ has the
form (Fig. 3)

(24)

where σ4(0) = 354.4, the Atkins constant is A = 6.8, and

 = 47. The corresponding surface-level energy is

 ≈ –3.15 K.

An intriguing possibility of determining the ripplon
contribution to σ4(T) at T > Tλ follows from Eqs. (23)
and (24) and the data [1] (Fig. 4):

(25)

Since the superfluid transition temperature Tλ is not
specified for σS(T), Eq. (23) is valid at T > Tλ. However,
as seen in Fig. 4, the transition through the T = Tλ point
is highly critical to σR(T). At T > Tλ, ripplons are
strongly damped because of a high viscosity η of nor-
mal He4. The ripplon damping constant γ can be esti-
mated from the relationship between γ, η, and the fluid

density ρ [16]: γ = 2η /ρ. The characteristic heat
pulse kT is found from the condition "ω(kT) ≈ T, where

σ4 T( ) σ4 0( ) σR T( ) σS T( ).+ +=

σS T( ) T2 M4

π"
2

---------–
x xd

x
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ω2(kT) = σ /ρ. The smallness γ(kT) < ω(kT) is possible
if the inequality

(26)

is fulfilled.
For He4, the following criterion follows from

Eq. (26):

(27)

where η4 is in g/(cm s). Since η4(T) > 2 × 10–5 for nor-
mal He4, inequality (27) does not hold for He4 at T > Tλ.

kT
3

2η T( )
σ2/3

--------------- T
"ρ
------ 

 
1/3

1<

η4 T( )T1/3 4× 104 1,<×

Fig. 3. (Solid line) Temperature dependence of the surface
tension σ4 determined from Eq. (24) for liquid He4 and
(dotted line) the ripplon contribution to σ4(T). Points are the
data from [1].

Fig. 4. Ripplon contribution σR(T) to the surface tension
σ4(T), as determined on the basis of Eqs. (23) and (25) and
the experimental data from [1].
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For liquid He3, a similar inequality has the form

(28)

According to the experimental data [17] and the theory
[9], the dependence η3 = η3(T) at T < 2 K is given by the
expression

(29)

It is seen from Eqs. (28) and (29) that the thermal rip-
plons in liquid He3 are strongly damped at all tempera-
tures, and not only at T ! TF, where η3(T) ~ 1/T2 (29).
For this reason, the surface thermodynamics of liquid
He3 is fully governed by the contribution of surface lev-
els at T < 2 K (Fig. 2). For liquid He4, the ripplon con-
tribution to σ4(T) dominates at T < 1 K and becomes
insignificant at T > 2.5 K (Fig. 4). Note that the expla-
nation of the fact that the σ4 = σ4(T) dependence does
not fit the Atkins law (1) at T > 1 K because of the pres-
ence of a roton minimum in the ripplon spectrum [17]
is inconsistent with our positions. One can see from
Fig. 4 that σR ~ T7/3 for all T < Tλ.

In conclusion, we have suggested a qualitative the-
ory of surface phenomena in liquid helium. The theory
is in a very good agreement with the results of a series
of excellent works [1–3] carried out in Japan and
explains for the first time the observed temperature
dependence of the surface tension of pure isotopes of
liquid helium.
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