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Abstract—It is shown that the interaction of order parameters when subcritical and supercritical phase transi-
tions take place simultaneously may result in a self-organized critical state and cause a 1/f α fluctuation spec-
trum, where 1 ≤ α ≤ 2. Such behavior is inherent in potential and nonpotential systems of nonlinear Langevin
equations. A numerical analysis of the solutions to the proposed systems of stochastic differential equations
showed that the solutions correlate with fractional integration and differentiation of white noise. The general
behavior of such a system has features in common with self-organized criticality. © 2000 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

Fluctuations with a spectrum that is inversely pro-
portional to frequency (1/f α noise, 0.5 ≤ α ≤ 1.5) are
observed in various systems. 1/f 2 spectra are typical of
current fluctuations in radiophysical devices, biological
systems, and geophysical processes [1–4]. Recently,
intense 1/f noise has been detected in a system of two
interacting nonequilibrium phase transitions [5, 6].
This situation was realized when the superconductor–
conductor phase transition due to Joule self-heating
was imposed on the critical transition from nucleate
boiling to film boiling of liquid nitrogen, which cools
down the superconductor.

Despite the fact that 1/f noise occurs widely and
interest in random processes with low-frequency spec-
tral divergence has not been lost, a commonly accepted
mathematical model is lacking and mechanisms of 1/f α

noise generation are poorly understood. Different mod-
els are used to explain 1/f noise in various processes.

It is generally accepted that 1/f noise in radiophysics
and solid-state physics arises from an exponentially
wide distribution of relaxation times. In this model, the
noise is treated as a superposition of random relaxation
processes [1–4]. Electronic conductivity fluctuations
with a 1/f α spectrum in solids are often related to heat
conduction mechanisms as well [7]. However, this
approach frequently fails to explain experimental
results [1, 2]. Therefore, nonlinear heat sources in the
heat conduction equation were taken into account in
[8]. Thermal generation of 1/f α noise in metals was
considered in [9], where the appearance of 1/f noise
was associated with the nonlinear interaction of diffu-
sive and heat-conducting modes. In [10], 1/f noise was
explained by strong fluctuations of the relaxation and
1063-7842/00/4510- $20.00 © 21231
dissipation rates, whereas in [11], it was interpreted as
the result of Brownian motion in a space of limited
dimensionality.

It is well known that a random process with a 1/f
spectrum can be obtained by the fractional (of the order
1/2) integration of white noise [3, 4]. This technique
implies that a system remembers an infinite number of
past events. Therefore, such an approach to the 1/f noise
problem has not been adequately reflected in physical
terms.

In [12], the idea of self-organized criticality was
proposed to give insight into the appearance of 1/f
noise. This concept was illustrated with the model of
“sand-pile” cellular automata. The theory of self-orga-
nized criticality implies that systems with 1/f α noise
should be in a critical state. However, the critical state
is a steady state of the system, and there is no need for
fine adjustment of control parameters. The concept of
self-organized criticality [12] attracted considerable
interest and became widely used in statistical physics.

Earlier, we proposed a mathematical model of two
superimposed phase transitions to explain experimental
data for the generation of intense 1/f noise in a system
consisting of a current-carrying superconductor and a
boiling coolant. The model is represented by a set of
two coupled nonlinear Langevin equations that con-
verts white noise into two modes of stochastic oscilla-
tions with spectra proportional to 1/f and 1/f 2 [6, 13].

In this paper, we report a numerical study of the sys-
tem of two coupled nonlinear Langevin equations.
A correlation between the behavior of this system, frac-
tional integration of white noise, and the concept of
self-organized criticality was found.
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1/f NOISE IN A SYSTEM UNDERGOING 
TWO PHASE TRANSITIONS

Intense 1/f noise was detected when thin-film high-
temperature superconductors cooled by boiling nitro-
gen lost their superconducting properties when heated
[5, 6, 14]. This noise was observed in the region where
the subcritical nonequilibrium phase transition from
nucleate boiling to film boiling of the nitrogen was
superimposed on the critical or supercritical supercon-
ductor–conductor phase transition due to Joule self-
heating. In these experiments, both transitions are
localized in space and the system can be considered as
lumped.

In the case of superimposed noninteracting super-
critical and subcritical phase transitions with order
parameters x and y, respectively, a lumped system is
described by the potential

(1)

where the coefficients a1, a2, b1, and b2 are positive.
The interaction of the phase transitions can formally

be taken into account by nonlinear transformation of
variables. Let us introduce interacting order parameters
X and Y that are related to x and y by the simple rela-
tions x ≡ X and y2 ≡ XY. Then, potential (1) takes the
form

(2)

Figure 1 shows the potential surface Φ(X, Y); and
Fig. 2a, the potential “bottom” levels.

Under the additive action of white noise on the sys-
tem, random walks in potential (2) are described by the
set of Langevin equations

(3)

where ε1(t) and ε2(t) are Gaussian δ-correlated noises
with a zero mean and a standard deviation D.

System (3) was solved numerically by the Euler
method, where Gaussian random-number sequences
were used as ε1(t) and ε2(t).

If system (3) is integrated in the absence of external
noise and close-to-zero initial conditions, the variables
X(t) and Y(t) first linearly increase and then, at t  ∞,
behave asymptotically: X(t)  t –1/2 and Y(t)  t –1/2.
As numerical integration shows, the introduction of
weak noises ε1(t) and ε2(t) into system (3) just makes
the above trajectories noisy but does not affect the sys-
tem behavior qualitatively. The phase paths change
qualitatively when the intensity of external noise
exceeds a certain value. The transition from the relax-
ation behavior of the dynamic variables X(t) and Y(t) to

Φ x y,( ) 1
4
---a1x4 1

2
---a2x2 1

2
---b1y4 b2y2,–+ +=

Φ X Y,( ) 1
4
---a1X4 1

2
---a2X2 1

2
---b1X2Y2 b2XY .–+ +=

dX
dt
------- b1XY2– b2Y a1X3– a2X– ε1 t( ),+ +=

dY
dt
------ b1X2Y– b2X ε2 t( ),+ +=
steady random processes is observed. There exists a
range of the dispersion of external white noise where
the fluctuation spectral densities of the variables X(t)
and Y(t) have the form SX(f) ~ 1/f and SY ~ 1/f 2, respec-
tively. On further increasing the noise intensity, the
divergent 1/f α spectra turn into Lorentz spectra with a
characteristic “plateau” at low frequencies. The fre-
quency range where the 1/f α spectra are observed rap-
idly extends with decreasing integration step. Simulta-
neously, so does the range of white noise intensities
where the 1/f α spectra of the variables X(t) and Y(t) are
observed. Figure 3 shows the 1/f spectrum of the vari-
able X(t) that results from the Fourier transform for the
numerical solution of system (3) at a1 = a2 = b1 = b2 = 1
and the external noise dispersion D2 = 25 (the integra-
tion step ∆t = 0.01, and the number of steps N =
262143). The corresponding spectrum of the variable
Y(t) has the form SY ~ 1/f2. Figure 4 shows the phase
portrait of the system.

Thus, the interaction of subcritical and supercritical
phase transitions that is defined by potential (2) (Fig. 1)
may lead to the transformation of additive white noise
into steady stochastic processes with 1/f α-type spectral
densities. In our model, fluctuations with a 1/f spectrum
result from the Brownian behavior of a system sub-
jected to two-valley potential (2).

Sets of Langevin equations yielding 1/f α noise need
not be potential. A simple nonpotential system generat-
ing 1/f noise has the form [6]

(4)

where the parameter λ > 1.
For λ = 1, system (4) describes random walks in the

potential

(5)

The level lines of this potential are shown in Fig. 2b.
However, in this case, the system does not exhibit
(λ = 1)1/f α behavior, and the spectra of the variables
X(t) and Y(t) have the Lorentzian form. In order for 1/f α

spectra with divergent low-frequency asymptotic to
appear, one should break the symmetry of the determi-
nate force components in the Langevin equations. In
system (4), this is achieved by introducing an additional
force not related to the potential (λ is other than 1).
Physically, it may mean the presence of uncompensated
fluxes in an open system. Numerical simulations
showed that there are no qualitative differences in the
behavior of systems (4) and (3). Moreover, solutions
close to those of (4) are obtained if the second-degree
factors in the first terms of the determinate forces in
Eq. (4) are changed to fourth- or sixth-degree ones and

dX
dt
------- XY2– Y ε1 t( ),+ +=

dY
dt
------ X2Y– λX ε2 t( ),+ +=

Φ X Y,( ) 1
2
---X2Y2 XY .–=
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the linear terms are changed to third- or fifth-degree
terms. In all the cases, the mean value 〈X(t)Y(t)〉  . 1,
whereas the relaxation asymptotic for t  ∞ in noise-
less systems of elevated degree is different but also
fractional-power (t –1/4 and t 3/4 or t –1/6 and t 5/6, respec-
tively).

Note also that the rotation of the phase plane in
Eq. (4) through the angle π/4 by the linear transforma-
tion u = (x + y)/2 and v = (x – y)/2 produces the new
system

(6)

which yields similar (but not the same) stochastic pro-
cesses with spectra Su(f) ~ f –1.5 and Sv(f) ~ f –1.5 in a
wide range of white noise intensities. Rotation through

du
dt
------

1
2
---u3–

3
2
---u

1
2
---uv 2 1

2
---v ε1 t( ),+ + + +=

dv
dt
-------

1
2
---v 3–

3
2
---v

1
2
---u2v

1
2
---u– ε2 t( ),+ +–=

Fig. 1. Potential surface Φ(X, Y) defined by (2).
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another angle may yield other values of the low-fre-
quency divergence α in the range 1 ≤ α ≤ 2. The form
of system (6) indicates that it, like potential system (3),
corresponds to the superposition of two interacting
phase transitions: subcritical (parameter u) and super-
critical (parameter v). However, in contrast to system
(3), the determinate force components in (6) contain
nonpotential terms due to the presence of an uncom-
pensated flux. It is clear that the same physical meaning
may also be assigned to system (4). The interaction of
the subcritical and supercritical phase transitions in
these systems leads to the critical behavior in a rather
wide range of white noise intensities, as evidenced by
the low-frequency divergence of the spectral densities
of the order parameters.

Thus, there is a wide class of sets of nonlinear Lan-
gevin equations that provide 1/f α spectra of variables.
Their common features are nonlinear interaction and
asymmetry of the equations. Further, we will analyze
the simplest case of systems (4) at λ = 2.

CRITICALITY OF A SET OF LANGEVIN 
EQUATIONS

Numerically integrating system (4) by the Euler
method, we found that computational instability
appears with increasing integration step even in the
absence of external noise [6]. The Euler system can be
made stable for an arbitrary integration step and arbi-
trary initial conditions if one takes the value of Xi in the
first term of the first equation at the finite point of a step
∆t instead of at the initial one. In this case, we come to
the system

(7)

where ξi and ηi are sequences of Gaussian
random numbers with a zero mean and a standard devi-
ation D.

Xi 1+ Xi XiYi
2– Yi+( )∆t 1 Yi

2∆t+( ) 1– ξ i∆t,+ +=

Yi 1+ Yi Xi
2Yi– 2Xi+( )∆t η i∆t,+ +=
(a) (b)
Y Y

00

0 X X0

Fig. 2. Level lines of the potential “bottom” according to (a) formula (2) and (b) formula (5).
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The same form of the first equation in (4) can be
obtained more rigorously. One should take into account
jumps not only of the first, but also of all subsequent
derivatives while integrating with a finite step ∆t:

X t ∆t+( ) X t( ) dX
dt
-------∆t

1
2
---d2X

dt2
---------∆t2 … .+ + +=

–6

–4 –3

logSX(f )

log f–2 –1 0 1
–8

–4

–2

0

2

Fig. 3. 1/f spectral density of the order parameter X(t) from
system (3). The dashed line stands for SX(f) ~ 1/f.

–4

–2 0 2 X

0

4

Y

Fig. 4. Phase portrait of the system in the (X, Y) plane
obtained by numerical integration of (3).
Having expressed the derivatives in terms of the
functions X and Y and summed the convergent geomet-
ric series, we obtain (7).

Note that, if an integration step is changed n-fold,
one should change the standard deviation of white
noise D by the factor n–1/2. If an integration step is
decreased n-fold, the time sample size (number of
steps) for which the 1/f α behavior is observed can be
increased by a factor of more than n; i.e., one can trace
the divergence of the spectra at lower frequencies.

Consider the characteristics of the solution of sys-
tem (4) in greater detail. First, it is worth noting that the
mean value 〈X(t)Y(t)〉  . 1 in the wide range of white
noise parameters where the 1/f α spectra are observed.
This means that the time-averaged determinate force in
the first equation of system (4) is equal to 0. The zero
value of the determinate force in the Langevin equa-
tions corresponds to the critical state. In other words,
system (4) adjusts the first equation to the critical state.

As was mentioned in the Introduction, 1/f noise may
result from the fractional integration of white noise;
i.e., a stochastic process with a 1/f spectrum can be con-
sidered as the result of anomalous Brownian motion.

In [15], we noticed the correlation between
time series X(t) and fractional integration (of the order
1/2) of white noise that affects the first equation of
system (4).

The 1/2-order fractional integral of white noise ε(t)
is given by the expression

(8)

where Γ is the Euler gamma function.

A random process defined by (8) is steady and
exhibits a 1/f spectrum, strictly speaking, only for t  ∞.
Figure 5 shows the numerical solution X(t) of system (7)
and the result of calculation by formula (8) for ∆t = 0.1,
D = 4.3, and N = 1000. From Fig. 5, it follows that the
fractional integral of white noise is a fairly good
approximation of the numerical solution to the set (7)
of Langevin equations for short realizations. The Pear-
son coefficient for the vectors Xi and Ii is Kp . 0.75.
A stronger correlation can hardly be achieved in this
case, since formula (8) disregards the determinate force
components appearing in sets (4) and (7).

Much stronger correlations were found between the
rates of change of the dynamical variables appearing in
the set (7) of Langevin equations and the functionals of
white noise that contain fractional derivatives. This
property may be used to find solutions of system (7).
We will dwell on this feature.

I1/2 t( ) 1
Γ 1/2( )
---------------- ε t'( )

t t'–
-------------- t',d

0

t

∫=
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The 1/2-order fractional derivative of white noise is
defined as the first-order derivative of the fractional
integral

(9)

The evaluation of the fractional integral [and, hence,
the fractional derivative by formula (9)] requires much
computer time for a large number of integration steps.
This time is much greater than that required for inte-
grating the initial set of Langevin equations which is
Markovian and has no memory. Therefore, for long
realizations, we used the following approximation for
the fractional derivative:

(10)

where r limits the number of terms in the sum.
The results of calculation by formula (10) turned out

to be almost identical to those obtained by directly
computing the fractional derivative from formula (9),
whereas the required time was much less. For steps
∆t > 0.1, r can be within several tens.

A remarkable feature of system (7) is that the rate of

change of the stochastic variable  = (Xi + 1 – Xi)/∆t
obtained by the numerical solution of (7) strongly cor-
relates with the 1/2-order fractional derivative of the
sequence of random numbers ξi appearing in the first
equation of (7). The Pearson coefficients for these
quantities were KP = 0.92–0.99 for arbitrary realiza-
tions and sequences ξi. This result was virtually inde-
pendent of which formula [(9) or (10)] is used for eval-
uating the fractional derivative.

As for the second equation of system (7), the rate of

change of the variable  = (Yi + 1 – Yi)/∆t for small inte-
gration steps (∆t ≤ 0.1) was found to correlate strongly
with the values of the random sequence numbers ηi

appearing in this equation. Here, the Pearson coeffi-
cients were KP . 0.95 and, unlike the first equation,
depended on ∆t. Namely, they were close to 1 for small
steps and decreased with increasing step (or with
increasing sample size for a fixed step).

Thus, at least for small integration steps ∆t, the
determinate force component in the second equation of
system (7) is automatically adjusted to zero under the
action of external noises. Since such behavior is stable
to variations of the system coefficients and is observed
in a certain (rather wide) range of external noise inten-
sities, we can speak about the self-organized critical
state.

In order to find other properties of system (7), we
studied the correlation of various combinations of the
stochastic variables Xi and Yi with combinations of the

D1/2 ε( ) d1/2ε t( )
dt1/2

------------------≡
dI1/2 t( )

dt
-----------------.=

D1/2 ξ i( ) ξ j 1+ ξ j–( ) i j–( ) 3/2– ,

j
0, i r≤
i r , i r>–




=

i 1–

∑=

Ẋi

Ẏ i
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noises ξi and ηi and their fractional derivatives. The
vector XiYi was found to correlate strongly with the dif-
ference ∆µi = D1/2(ξi) – ξi between the 1/2-order deriv-
ative of white noise in the first equation of (7) and the
noise itself. Hence, the approximate equality

(11)

is true.

Equality (11) holds with the Pearson coefficient
KP = 0.92–0.98. Expression (11) makes it possible to
approximate one of the system variables with such an
accuracy if the other variable and noise that acts on the
first Eq. of (7) are known. However, approximated

XiYi . 1 ∆µiYi+

0

0 20 t40 60 80

0

X

I1/2

0

0 t1000 2000

0

Y

Y
~

Fig. 5. Numerical solution X(t) of system (7) and 1/2-order
integral of white noise.

Fig. 6. Numerical solutions Y(t) of system (7) and (t) of
stochastic Eq. (13).

Ỹ
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equality (11) turned out to be insufficiently accurate to
separate the variables in (7). Therefore, we considered

the correlations of the difference  – ηi with noise
combinations and found that the approximate equality

(12)

was true with the correlation KP = 0.95. The third term
on the left-hand side of (12) involves the constant factor
m. It varied from m = 2 for the step ∆t = 0.1 to m = 0.5
for ∆t = 0.5. This term does not affect the Pearson coef-
ficient to the second decimal place. However, it takes
into account the asymmetry of the probability distribu-
tion of the product XiYi about zero in the first order. Cor-
relation (12) is equivalent to the equation

(13)

Equation (13) adequately approximates the second
equation of (7) but, unlike (7), involves only one

unknown stochastic function (t). In the second term

on the right-hand side of (13), 1/  is replaced by

/(1 + ) to avoid singularity. This substitution pro-
vides a better correlation between the noiseless behavior
of (7) and (13). For short realizations (to 4000 points),

the correlation between the solutions Yi of (7) and  of
(13) is KP . 0.95. However, if system (7) experiences
the action of single noise (ξi = ηi) instead of two, the

solutions Yi and  virtually coincide for as many as
several tens of thousands of steps (KP = 0.98–0.99)
(Fig. 6).

In fact, the analysis of various correlations between
the stochastic variables of system (7) and combinations
of noises made it possible to separate the variables in
this system in the first order of the correlations. The

corresponding stochastic equation for (t) has the
form

(14)

where z(t) = ε1 – d1/2ε1/dt1/2 is the difference between
the noise that acts on the first equation of (4) and the
1/2-order derivative of this noise. In the case of white
noise, the fractional derivative should be treated in
terms of generalized functions [16]. Stochastic differ-
ential Eq. (14) is multiplicative, and its physical inter-
pretation is more complicated than that of system (4).
However, it demonstrates the self-adjustment of the
determinate force component to the zero value, so that
the approximate equality dY/dt . ε2(t) holds, providing
self-organized criticality.

Ẏ i

1 Yi
2 ∆µi( )2– mYi∆µi . Yi Ẏ i η i–( )+

Ỹ i 1+

=  Ỹ i Ỹ i
∆t

1 Ỹ i
2

+
--------------- Ỹ i ∆µi( )2∆t– m∆µi∆t η i∆t.+ ++

Ỹ

Ỹ i

Ỹ i Ỹ i
2

Ỹ i

Ỹ i

Ỹ

dY
dt
------ Y

1 Y2+
--------------- Yz2 t( )– mz t( ) ε2 t( ),+ +=
CONCLUSION

The superposition of subcritical and supercritical
phase transitions with interacting order parameters may
result in the self-organization of the critical state of the
system. Random walks in corresponding two-valley
potential (2) split additive white noise into two modes
of stochastic oscillations with 1/f and 1/f 2 spectral den-
sities. To these random walks, there corresponds a class
of sets of nonlinear Langevin equations with both
potential and nonpotential determinate force. 1/f α sto-
chastic processes with any α in the range from 1 to 2
can be obtained by the linear transformation of vari-
ables (rotation about the axis of symmetry). Although
the derived set of stochastic differential equations is
Markovian, their solutions correlate strongly with the
fractional integral of white noise. The essential feature
of this integral is the presence of system memory. The
numerical analysis of the solutions to the set of nonlin-
ear Langevin equations and the found correlations
show that the system behavior has much in common
with self-organized criticality. In contrast to conven-
tional models of self-organized criticality, such as the
sand pile model, which are spatially distributed, the
proposed model of interacting phase transitions does
not involve spatial coordinates, and the corresponding
set of stochastic differential equations is a point set.
The self-organization of the critical state and the gener-
ation of 1/fα noise (under conditions that two phase
transitions in lumped systems interact) allow the inter-
pretation of the experimental data [5, 6, 13–15] and the
experimental search for systems with critical behavior
and 1/fα noise.
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Abstract—The dipole moment of each of two uncharged conducting spheres with radius R in an external elec-
tric field was calculated. The distance between the centers of the spheres is 2l. It was shown that, if R/l & 0.8,
the influence of higher multipole moments is negligible. © 2000 MAIK “Nauka/Interperiodica”.
We consider two identical isolated uncharged, per-
fectly conducting spheres with radius R placed in an
external homogeneous electric field E0 in vacuum. The
centers of the spheres lie on the z-axis and stay at a dis-
tance 2l from each other. Each sphere acquires a dipole
moment p related to the external field strength as fol-
lows:

(1)

Let us calculate the factor a called the effective
polarizability. For an isolated sphere, this value is
known to equal the radius cubed. When other conduc-
tors, e.g., another sphere, are present at finite distances,
the homogeneous component of the electric field in the
vicinity of the first sphere is different from E0. When
the spheres are far from each other (R ! l), only their
direct dipole–dipole interaction is significant. When
only this interaction is taken into account, the effective
polarizability is easily calculated, resulting in

(2)

(3)

Formulas (2) and (3) are valid only when the exter-
nal field is directed along, or perpendicular to, the
z-axis, respectively. In the general case, the influence of
multipole moments of higher orders has to be taken into
account. The field created by the dipole distribution of
charge on the first sphere is inhomogeneous around the
second sphere with a spatial inhomogeneity scale of the
order of l. The second sphere acquires higher multipole
moments, which then change the homogeneous compo-
nent of the field around the first sphere. It is interesting
to calculate their contribution to the effective polariz-
ability numerically, because such effects turn out to be
appreciable in the electrostatic interaction of close
charged metal spheres [1].

p aE0.=

azz
R3

1 R/l( )3/4–
-----------------------------,=

axx ayy
R3

1 R/l( )3/8+
-----------------------------.= =
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A solution method based on a series expansion in
spherical harmonics [2] results in an infinite system of
linear algebraic equations for multipole moments
which cannot be solved analytically. Therefore, this
method is used only for approximate calculations of the
polarization of clusters consisting of more than two
metal particles. The problem with two spheres has an
analytical solution in the bipolar coordinates [3] α, β,
and φ related to the Cartesian coordinates as follows:

(4)

The surfaces of the spheres are defined by the equa-
tions β = ±β0, where  = l/R. In addition, c = (l2 –
R2)1/2. The potential outside the spheres is written as a
sum of the external field potential –E0r and the poten-
tial ϕ' created by the charge distribution on the surfaces
of the spheres. When the external field is directed along
the z-axis, the solution has the form [3]

(5)

where Pn(cosα) is the Legendre polynomial and

(6)

Let us denote

(7)

x
c α φcossin
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---------------------------------, y
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---------------------------------,= =

z
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-------------------------------------------Pn αcos( ),exp
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--------------------------------------------------------------------,
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∑=
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n 1/2+( )β0[ ]cosh
--------------------------------------------------------------------.
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∞

∑=
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As we have calculated, the potential created by the
spheres in an external field directed along the x-axis has
the form

(8)

where (cosα) is the associate first-order Legendre
polynomial.

Let us now analyze (5) and find the dipole moment
p of each of the two spheres that is directed along the
z-axis. Direct calculation using the charge distribution
on the surface of a sphere is possible but rather cumber-
some. It is easier to obtain it by analyzing the behavior
of ϕ' at large distances. Indeed, at x = y = 0 and z  +∞,
i.e., at α = 0 and β ~ 2c/z  0, the potential produced
by both spheres has the asymptotic form 2p/z2 ~
β2p/(2c2). Hence, using Pn(0) = 1, we find p and the
effective polarizability

(9)

Similarly, from the asymptotic expression of (8) at
β = 0 and α ~ 2c(x2 + y2)–1/2  0, the effective polar-
izability in an external field directed perpendicular to
the line connecting the centers of the spheres is found
as follows:

(10)

For small values of R/l, formulas (9) and (10) lead to
the approximate expressions

(11)

which are in excellent agreement with (2) and (3).
The figure contains the graph of the effective polar-

izability as a function of the distance between the cen-
ters of the spheres calculated by using (9) and (10). It is
evident that the approximate expression (2) works well
up to R/l ≈ 0.8, while (3) is close to the exact expression
for all possible values of R/l. It is in agreement with the
fact that a description of the effective dielectric con-
stant of thin metal films using the formulas where only
the direct dipole–dipole interaction between separate
metal islands is taken into account [4] (the influence of
the substrate is also considered in the model of interac-
tion between real dipoles and dipole images [5]) is ade-
quate to interpret the experimental data in a wide
domain of values of the ratio between the size of the
metal islands and the spatial period of the periodic sur-
face structure composed of them [6]. Of course, this

ϕ' = 2 2 β 2 αcos–cosh( )1/2E0c n 1/2+( )β0–[ ]exp
n 0=

∞

∑
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1
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spatial period must be much smaller than the incident
radiation wavelength in order to calculate the effective
dielectric constant in the quasi-static approximation.

Finally, we will study the solutions in the limit of very
close spheres. The parameter β0 = ln[l/R + (l2/R2 – 1)1/2]
now tends to zero. The method of calculating the corre-
sponding asymptotic behavior of the functions F(±)(q, β0)
by means of the Mellin integral transform is described
in [3]; note that the result for F (–)(1, β0) given there con-
tains an arithmetic error. Using the asymptotic expres-
sions from the Appendix, we find the following approx-
imate expressions for the effective polarizability of
each of two spheres in an external field directed along
the z-axis:

(12)

or perpendicular to it

(13)

where ζ(s) is the Riemann zeta function and C =
0.577… is the Euler constant. When the external field
is directed perpendicular to the z-axis, the effective
polarizability differs by less than 2% from the value
given by approximate formula (3), however close the
spheres are. When the field is parallel to the z-axis, the

azz R3 2ζ 3( ) ζ 2( )2

C 2/ l2/R2 1–( ) 1/2–[ ]ln+
-----------------------------------------------------------–≈

axx R2 3ζ 3( )
4

--------------
2ln

2
-------- l2/R2 1–( )– ,≈

2.0

1.5
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0 0.2 0.4 0.6 0.8 1.0

I
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1
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R/l

a/R3

The dots 1 and 2 represent the values of the effective polar-
izabilities azz and axx, respectively, calculated by the exact
formulas. The curves I and II are associated with approxi-
mate relations (2) and (3), respectively, while III is the
asymptotic expression (12).
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effective polarizability remains finite but its derivative
with respect to R/l has a singularity. However, the
domain of sharp variation of azz is small. Formulas (12)
and (2) yield the same azz values at R/l ≈ 0.95. As the
distance between the spheres increases further, the
approximation taking into account only the direct
dipole–dipole interaction gets better and its deviation
from the exact result becomes less than 1%, starting at
R/l ≈ 0.80. We believe that the main qualitative result
following from the exact solution of the electrostatic
problem obtained in this paper is that the contribution
to the effective polarizability of the indirect interaction,
including the induction of higher multipoles at the
neighboring sphere, is small.
APPENDIX

The asymptotic form of functions (7) for argument β0 tending to zero are as follows:
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Abstract—Approximate 1.5-dimensional MHD equations are derived that describe the quasi-adiabatic com-
pression of a thin plasma column by a longitudinal magnetic field. The parameters of the compressed plasma
are obtained analytically as functions of the initial conditions and longitudinal field. The stability of plasma
compression against the Rayleigh–Taylor instability is investigated. It is shown that, in the Z–Θ-pinch geome-
try, increasing the longitudinal magnetic field makes it possible to achieve radial compression ratios of 20–30
without violating the cylindrical symmetry of the column. The possibility of thermonuclear ignition in a thin
plasma column in a Z–Θ-pinch configuration is studied. The ranges of the initial plasma densities and temper-
atures and the initial lengths of the plasma column that are needed to achieve ignition in a plasma compressed
by a factor of 20–30 are determined. The parameters of the electromagnetic energy source required to achieve
such a high plasma compression are estimated. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In the 1960s, the problem of adiabatic compression
of a plasma column by a longitudinal magnetic field
was investigated both theoretically and experimentally
(see, e.g., [1] and other monographs). The main diffi-
culty in achieving thermonuclear ignition in this way is
associated with the onset of instabilities in a com-
pressed plasma, so that the linear compression ratio is
restricted to δ ~ 3–5. In addition, high temperatures are
difficult to achieve because of the outflow of heat along
open magnetic field lines toward the ends of the cham-
ber via electron heat conduction.

Rapid technological progress in the 1980s and
1990s increased interest in the dynamic stability of
plasma compression in various systems [2–4]. In par-
ticular, in the Z–Θ-pinch geometry, the plasma shell
was compressed to δm ~ 22 [5]; the theoretically pre-
dicted compression ratio was δm ~ 30 [6].

The advances achieved in deep stable compression
of plasma shells make it relevant to analyze the pros-
pects for adiabatic compression of a plasma column by
its own longitudinal magnetic field in a Z–Θ-pinch con-
figuration. Making the longitudinal field pulse more
than ten times peakier than the current pulse that com-
presses the plasma shell [7] reduces thermal plasma
losses due to electron heat conduction. Investigations in
this area are very important because of the possibility
of generating current pulses with an amplitude of up to
200 MA (at present, 50-MA current pulses are achiev-
able) and a front rise time of about 3.5 µs [8].

Compression with the velocity v0 ≅  r0 /tm (where r0
is the initial plasma radius and tm is the compression
1063-7842/00/4510- $20.00 © 21241
time), which is lower than the magnetosonic velocity

vm ≅   (where vS is the speed of sound and vA

is the Alfvén speed), is adiabatic in nature. The momen-
tum and pressure are carried from the plasma boundary
toward the plasma center by small-amplitude magneto-
sonic waves. The subject of our paper is the process of
slow quasi-adiabatic compression with running magne-
tosonic waves. The small parameter of the problem,
r0/(vmtm), makes it possible to reduce the two-dimen-
sional MHD equations to a set of quasi-one-dimen-
sional equations.

Among the instabilities that arise in a plasma com-
pressed by a longitudinal magnetic field, the fastest
growing one is the Rayleigh–Taylor instability, which
does not perturb the magnetic field lines [4]. For an infi-
nitely long plasma column, the quasi-one-dimensional
MHD equations reduce to a set of ordinary differential
equations, which permit the problem of the stability of
compression to be solved analytically.

Since the acceleration rates during compression are
high, small-amplitude magnetosonic waves can
strongly affect the stability of compression without a
significant impact on the adiabatically varying plasma
density and pressure. When analyzing the prospects for
thermonuclear ignition, this circumstance allows us to
study plasma compression as an adiabatic process (i.e.,
to neglect inertial terms in describing the motion per-
pendicular to the magnetic field), in which case the
maximum possible compression ratios should be esti-
mated by solving the stability problem. An ignition fac-
tor of W ≅  0.3–1 serves as a criterion for thermonuclear
ignition of a plasma [9].
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The plasma may be preheated in different ways:
through the absorption of laser light in a D–T gas, by a
shock wave (in the case of a stepped Θ-pinch), via the
absorption of laser light in a plasma ablated from a
laser-irradiated solid target, etc.

BASIC EQUATIONS

We consider a plasma column of length L that is
confined in vacuum by the axial magnetic field B =
Bs(t). If the magnetic field diffusion is neglected, then
the plasma density ρ, plasma temperature T, and the
radial (vr , Br) and axial (vz , Bz) components of the
plasma velocity and magnetic field should be deter-
mined by solving the ideal MHD equations with
γ = 5/3:

(1)

where  is the electron thermal conductivity along the
magnetic field lines and Qr is the power of the volume
radiative energy losses. We neglect the ion and electron
cross-field thermal conductivities in Eqs. (1) and deter-
mine the plasma pressure from the equation of state P =
2AρT, where A is the gas constant per unit mass. From
the condition div(B) = 0, we estimate Br as

(2)
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where rs is the radius of the plasma column. For a thin
column (rs/L ! 1), we can neglect the effect of Br on
the plasma motion and ignore the longitudinal gradient
of the transverse velocity vz∂vr/∂z in comparison with
the transverse gradient vr∂vr/∂r. Then, Eqs. (1) can be
simplified to

(3)

We assume that, at the initial instant, the plasma is
homogeneous and immobile; i.e., the plasma density is
ρ|t = 0 = ρ0, the plasma pressure is P |t = 0 = P0, the veloc-
ity components are vr |t = 0 = vz |t = 0 = 0, and the axial
magnetic field component, which satisfies the condition

(4)

is determined from the equality  =  – 2µ0P0,
where B0 = Bs |t = 0.

A representative solution to Eqs. (3) for an infinitely
long plasma column (∂/∂z ≡ 0, vz ≡ 0) is illustrated in
Fig. 1, which shows the waveforms of the dimension-

less coordinate  = rs/r0, velocity ϑ  = vrtm/r0, and
acceleration g = ∂ϑ /∂τ + ϑ∂ϑ /∂r' of the plasma bound-
ary (here, r0 is the initial plasma radius, tm is the com-
pression time, and τ = t/tm) at the dimensionless Alfvén
speed ϑA = [B0tm/(µ0ρ0r0)]1/2 = 30 for the plasma

parameter β = (2µ0P0)/  = 0.5. Against the back-
ground of slow adiabatic compression, we can see
high-frequency oscillations, which are especially pro-
nounced in the waveform of the acceleration. The oscil-
lations are associated with the excitation of magneto-
sonic waves, which carry the momentum and pressure
from the plasma boundary toward the plasma center.

Analysis of the spatial profiles shows that, for ϑA ≥ 10,
the amplitude of the magnetosonic waves is small. This
indicates that the jumps in the plasma density and pres-
sure associated with magnetosonic waves distort the
adiabatic profiles only slightly. Consequently, as a first
approximation, we can assume that the plasma is com-
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pressed uniformly, so that ρ(z, r, t) = ρ(z, t), P(z, r, t) =
P(z, t), and the continuity equation in (3) gives

(5)

From expressions (5) and the last equation in (3), we
obtain the following relationship of vr to the axial com-
ponent of the magnetic field in a plasma Bz or, equiva-
lently, to the radius rs of the plasma column:

(6)

where

Substituting vr from (6) into the first, third, and
fourth equations in (3) yields

(7)

In order to close the set of Eqs. (7), which describe
quasi-adiabatic compression of a thin plasma column,
we need to relate the radius rs of the plasma column to
the plasma parameters. This relationship can be found
from the equation for radial plasma motion in (3) and
expressions (5):

(8)

We integrate (8) over dr from 0 to rs and take into
account boundary condition (4) to obtain

(9)

v r r z t, ,( ) v s z t,( ) r
rs z t,( )
----------------,=

v s z t,( )
∂rs z t,( )

∂t
-------------------, v z r z t, ,( ) v z z t,( ).= =

v r 0.5S z t,( )r,–=

S z t,( ) 1
Bz z t,( )
-----------------

∂Bz z t,( )
∂t

---------------------,=

Bz z t,( ) B0
2

2µ0P0–
r0

2

rs
2

z t,( )
----------------.=

∂ρ
∂t
------

z∂
∂ ρv z( )+ ρS z t,( ),=

ρ
∂v z

∂t
--------- v z

∂v z

∂z
---------+ 

  ∂P
∂z
------,–=

∂P
∂t
------

z∂
∂

v zP( )+ γ 1–( )
z∂

∂ λ||
e∂T
∂z
------ 

 =

– P
∂v z

∂z
--------- Qr– γPS z t,( ),+

S z t,( ) 1
Bz z t,( )
-----------------

∂Bz z t,( )
∂t

---------------------,=

Bz z t,( ) B0
2

2µ0P0–
r0

2

rs
2

z t,( )
----------------.=

ρr
∂v s

∂t
--------- rs r∂

∂
P

Bz
2

2µ0
--------+ 

  .–=

m
∂v s

∂t
--------- 2πrs P r 0=( )

Bz
2

r 0=( )
2µ0

------------------------
Bs

2

2µ0
--------–+ 

  .=
TECHNICAL PHYSICS      Vol. 45      No. 10      2000
We estimate the plasma mass per unit length as m =

2π  ≅  π ρ (r = 0). In the uniform compression

approximation, which implies that ρ = ρ(r = 0), P =
P(r = 0), and Bz = Bz(r = 0), we use relationship (6) to
obtain

(10)

To solve Eqs. (7) and (10), we need to specify the
boundary conditions at the ends of the plasma column.
We assume that the column terminates at the rigid end
plates, where –vz(z = 0, L) = 0 and the heat fluxes

−( ∂T/∂z)|z = 0 = q1 and –( ∂T/∂z)|z = L = q2 or the
temperatures T |z = 0 = T1 and T |z = L = T2 are assumed to
be given.

A comparative analysis of numerical solutions to
Eqs. (3), (4), (7), and (10) for an infinitely long plasma
column shows that magnetosonic waves in the exact
analytic solution correspond to uniform macroscopic
oscillations of the system parameters in the quasi-adia-
batic model. In other words, the quasi-adiabatic model
yields a solution that is accurate to the time required for
a magnetosonic wave to pass from the plasma center to
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Fig. 1. Waveforms of (a) the coordinate, (b) velocity, and (c)
acceleration of the boundary of the plasma column.
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the plasma boundary. In the limit ϑA  ∞, the quasi-
adiabatic amplitudes of the oscillations of the velocity
and acceleration asymptotically approach the exact
amplitudes. For ϑA ≥ 10, the exact and quasi-adiabatic
waveforms of the acceleration (which experiences the
most pronounced oscillations) differ by no more than
40% (Fig. 1). This circumstance enables us to examine
the stability of compression of the plasma column by
applying the quasi-adiabatic model.

ANALYSIS OF THE SOLUTION

For an infinitely long plasma column and Qr = 0,

Eqs. (7) and (10) for the dimensionless parameters  =
rs/r0, τ = t/tm , ρ' = ρ/ρ0, p = P/P0, H = Bz/B0, and f(τ) =
Bs(τ)/B0 reduce to

(11)

where we introduce the notation  = ∂2 /∂τ2 and

/∂τ,  = ∂ /∂τ.

To linearize the first equation in (11), we represent
 as (Fig. 1)

(12)

where r0(τ) is the solution to Eqs. (11) in the limit
ϑA  ∞ (below, this solution will be referred to as the
adiabatic solution).
We substitute (12) into (11) and expand the right-hand
side of the resulting equation in a Taylor series in the
vicinity of the point  = r0 to arrive at the following
equations for r1(τ):

(13)

Here, the mean (adiabatic) radius r0 of the plasma col-
umn is determined from the first equation and is then
inserted into the second equation to find a rapidly oscil-
lating correction from magnetosonic waves. For dia-
magnetic (β = 1) and magnetized (β = 0) plasmas,
Eqs. (13) give
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Let us consider three ways of amplifying the axial
magnetic field.

(i) The field component Bs is produced by a linearly
increasing solenoidal current, as is the case with a clas-
sical Θ-pinch:

(15)

(ii) The magnetic flux is compressed by an acceler-
ated cylindrical liner:

(16)

This method is implemented in magnetocumulative
generators (MCG) [10]. In (15) and (16), the factor α =
Bm/B0 reflects the amplification of the magnetic field.

(iii) The magnetic flux is compressed by a cylindri-
cal liner accelerated by the current, as in a Z–Θ-pinch
[6]. In this case, for the current J(t) = Jmh(τ), the wave-
form of the magnetic field pulse can be represented as
f(τ) = ξ2, where the dimensionless radius 1/ξ(τ) of the
liner is to be found by solving the equation [7]

(17)

Here, m is the liner mass per unit length and a0 is the
initial radius of the liner. For a magnetized plasma
(β ! 1), the quantity b ≅ α 1/2 is close to the maximum
compression ratio δ of a plasma. If, in the range 10 ≤
α ≤ 100, the current depends on time as h(τ) =
sin(π/2τ), then the compression will be maximum for
a ≈ 4 at the time τ ≈ 1.1.

In the quasi-adiabatic approximation, Eq. (14) in the
limit ϑA  ∞ is solved by expanding in powers of
1/ϑA [11]. For a Θ-pinch and MCG, we retain only the
first terms of the series expansion to obtain

(18)

where (τ) is the acceleration during adiabatic motion

and the initial velocity (0) of the plasma boundary is

equal to (0) = –(α – 1)/α1 for a Θ-pinch and (0) =
–2/α1(α – 1)/α for an MCG.

For a Z–Θ-pinch, the first three derivatives of the

adiabatic radius r0 vanish at τ = 0 and we have (0) =

f τ( ) 1 α 1–( )τ .+=
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3/2 τ( )+≅=

× 2α1ϑ A f τ'( ) τ'd

0

τ

∫ 
 
 

,sin
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Fig. 2. Waveforms of the acceleration at  = 103 and β = (a) 0 and (b) 1 for (1) classical Θ-pinch with α = 16, (2) MCG with α =
16, and (3) Z–Θ-pinch with α = 400.

ϑ A
2

–π2a/α1 [see (7)]. To within terms of order , we
obtain

(19)

Figure 2 shows the waveforms of the acceleration
that were obtained by solving Eq. (11) and the enve-
lopes of the waveforms that were obtained from (18)
and (19) for sin(…) and cos(…) = ±1. We can see that
the waveforms g(τ) for an MCG and Z–Θ-pinch are
described well by expansions (18) and (19). For a
Θ-pinch (Fig. 2a), the deviation of the asymptotic solu-
tion from the exact one stems from two causes: the

ϑ A
4–
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ṙ̇̇ 0 0( )
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increase in the expansion coefficients and the larger
value of α. Refining the asymptotic solution requires
taking higher order terms in the series expansion into
account.

Hence, the solution to our problem can be repre-
sented as the sum of a slowly varying (adiabatic) part
and a rapidly oscillating part, whose oscillation fre-
quency increases with time. The coordinate of the
plasma boundary is primarily determined by the first
term of the series expansion. The rapidly oscillating
part describes acceleration of the plasma boundary; i.e.,
it allows us to investigate whether or not the plasma
compression is stable, depending on the compression
mechanism. For a classical Θ-pinch and MCG, the
acceleration of the plasma boundary is described by the
rapidly oscillating part of the solution, whereas, for a
Z–Θ-pinch, it is described by the adiabatic part. In other
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words, for a classical Θ-pinch and MCG, the amplitude
gm of the rapidly oscillating component of the acceler-
ation increases linearly with increasing Alfvén speed
ϑA, whereas, for a Z–Θ-pinch, the amplitude gm is
inversely proportional to the square root of ϑA, so that
the solution asymptotically approaches the adiabatic
solution.

STABILITY OF COMPRESSION

In the linear stage of compression, the relative
growth rate of the perturbations is estimated from the
formula

(20)

In a plasma compressed by a longitudinal magnetic
field, the growth rate of the Rayleigh–Taylor instabil-
ity is

(21)

We assume that the cylindrical symmetry of the
compressed column is violated at Γ = Γm = 100 [2].
Assuming that g(τ) is governed by its rapidly oscillat-
ing component [see (18)] and that the radius of the
plasma column changes adiabatically, i.e., (τ) ≅

r0(τ) = , we obtain the following expression for a
Θ-pinch and MCG:

(22)

In the limit ϑA @ 1, the right-hand side of (22) can
be estimated by the sum over the sine half-periods.
Then, switching from summation to integration over
dτ, we obtain

(23)
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For a strongly magnetized plasma (β = 0; i.e., α1 = 2),
this formula assumes an especially simple form:

(24)

From (20), (24), (15), and (16), we obtain the fol-
lowing stable compression conditions for a magnetized
plasma:

(25)

As ϑA and m increase, the plasma compression
becomes less stable. At ϑA = 10 and m = 1, the maxi-
mum extent to which the magnetic field can be ampli-
fied without violating the cylindrical symmetry of the
compressed column is α = 3.6 (δ ≅ 2) for a Θ-pinch and
α = 5.5 (δ ≅ 2.4) for an MCG. This indicates that, for a
Θ-pinch and MCG, the plasma column cannot be com-
pressed quasi-adiabatically (ϑA ≥ 10) to δ ≥ 3 without
violating the cylindrical symmetry. The compression of
a diamagnetic plasma column may be inherently more
stable, because the rapidly oscillating part of g(τ) is
partially suppressed by electron heat conduction.

For a Z–Θ-pinch, g(τ) is primarily governed by the
adiabatic part of the solution. The solution to Eqs. (14),
(17), (20), and (21) is illustrated in Fig. 3, which shows
the maximum possible amplification factor α of the
magnetic field as a function of ϑA for different values of
m. We can see that the values of α are much higher than
those attainable in a Θ-pinch and MCG.

The maximum achievable compression ratio is gov-
erned by the highest growing mode of the Rayleigh–
Taylor instability. The growth of Rayleigh–Taylor
modes with large numbers m is partially suppressed by
dissipative processes: transverse diffusion, plasma
resistance, plasma viscosity, etc. [1, 12]. The compres-
sion conditions are improved by imposing a slightly
sheared magnetic field, such that it has essentially no
effect on the compression dynamics [4]. Let us estimate
the maximum possible compression ratios δ when the
Rayleigh–Taylor modes are partially suppressed by a
sheared magnetic field.

In the presence of a constant current I0 flowing
along the plasma surface, the azimuthal magnetic field
near the plasma boundary evolves according to the law

(26)

For uniform compression of a plasma with an azi-
muthal magnetic field (26), the growth rate σ(t) of the
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Rayleigh–Taylor instability has the form [4, 12]

(27)

where |k | = 2π/λ and λ is the perturbation wavelength
along the plasma axis.

Taking into account (11), we can write the dimen-
sionless growth rate σ(τ) = σ(t)tm as

(28)

where k' = kr0, g(τ) = g(t) /r0, B⊥  = I0/(2πr0B0), and
f(τ) satisfies Eq. (17).
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Fig. 3. Maximum possible amplification factor α of the
magnetic field vs. the Alfvén speed ϑA for different values
of m. Cases (a) and (b) are the same as in Fig. 2.
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The second and third terms on the right-hand side of
(28) describe the stabilization of Rayleigh–Taylor
modes with large numbers m due to additional tension
of the lines of the sheared magnetic field in a plasma
and vacuum, respectively.

Figure 4 shows a comparison of the growth rates of
the Rayleigh–Taylor modes with different numbers m
for a magnetized plasma (β = 0) at ϑA = 15 for B⊥  = 0,
0.02, and 0.03. In the calculations performed for B⊥  ≠ 0,
we adjusted the parameter k' (k' ! 1) so that the mode
with a fixed number m grows at the highest possible
rate. The larger the mode number m, the lower the level
at which the mode is saturated by a sheared magnetic
field. For B⊥  = 0.02, the profile of the total growth rate
of the Rayleigh–Taylor instability peaks at the mode
number m = 21, whereas, for B⊥  = 0.03, the fastest
growing mode is the one with the number m = 12. As a
result, the maximum possible compression ratio
increases from δ = 5.69 (α = 32.3) to δ = 15.7 (α = 243).
As ϑA increases during compression, the compression
stability improves. For B⊥  = 0.02, the compression ratio
δ = 30 is achieved at ϑA ≅ 27; and for B⊥  = 0.03, this
ratio is achieved at ϑA ≅ 17.5. In the Z–Θ-pinch geom-
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Fig. 4. Total growth rate of the Rayleigh–Taylor instability
vs. the mode number at ϑA = 15 and β = 0 for (a) B⊥  = 0.02
and α = 32.3 and (b) B⊥  = 0.03 and α = 247. The solid and
dashed curves are for B⊥  = 0 and B⊥  ≠ 0, respectively.
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etry for ϑ  ≥ 20, the stability of compression of the
plasma column is actually governed by the stability of
compression of the plasma shell, where the compres-
sion ratio is δm ≅ 22–30 [5, 6].

For a diamagnetic plasma (β = 1), each mode with
the number m is characterized by its own parameter

(29)

which drives the stabilizing term in (28) to zero. This
indicates that, in a diamagnetic plasma, the sheared
magnetic field is ineffective in saturating the Rayleigh–
Taylor modes with larger numbers m at lower levels.
Figure 5 presents the maximum possible compression
ratio as a function of β. We can see that the stable com-
pression conditions are nearly optimum in plasmas
with β ≤ 0.5.
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Fig. 5. Maximum possible compression ratio vs. degree of
plasma magnetization for (1) ϑA = 25 and B⊥  = 0.02 and
(2) ϑA = 15 and B⊥  = 0.03.

Fig. 6. Profiles of the ignition factor as a function of the
product of the initial plasma density and the compression
time for β = 0.1, δ = 20, and T0 = 232 eV.
PROSPECTS FOR THERMONUCLEAR 
IGNITION

Here, we analyze whether it is possible to ignite a
heated 50–50% D–T fuel plasma in the Z–Θ-pinch
geometry. The criterion for thermonuclear ignition of a
plasma with mass M can be formulated as the following
condition on the ignition factor W [9]:

(30)

where Qnf is the released fusion power deposited in a
unit plasma volume and ET is the internal energy per
unit mass of a compressed plasma (this energy is calcu-
lated for a cold gas, without consideration of fusion
power release).

We assume that neutrons freely leave the plasma
and do not contribute to Qnf. In the longitudinal mag-
netic field Bz = B0(r0/rs)2 = B0δ2 of the plasma column,
the Larmor radius rα = (2Eαmα)1/2/(eBz) of an α-particle
with the energy Eα ~ 3.5 MeV is determined by

(31)

where the initial magnetic field strength H0 and the ini-
tial radius r0 of the plasma column are expressed in MG
and cm, respectively. For H0 ≥ 0.1 MG and δ ≥ 10, we
have rs ≥ rα (r0 ~ 1 cm), so that α-particles always
remain in the plasma column.

The power Qr of the radiative energy losses is gov-
erned by internal bremsstrahlung, which is most
intense in the soft X-ray spectral range. The energy
losses associated with magneto-bremsstrahlung can be
neglected, because the emitted infrared, visible, and
ultraviolet radiations can propagate in a plasma only
over short distances and are reflected by the liner sys-
tem [13].

In studying thermonuclear ignition processes, we
neglect the rapidly oscillating part of the solution (this
is equivalent to omitting inertial terms when describing
the motion perpendicular to the magnetic field). As a
result, Eq. (10) reduces to the following equation for
the axial magnetic field Bz:

(32)

For an infinitely long plasma column, investigating
the prospects for thermonuclear ignition in terms of
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Eqs. (7), (30), and (32) reduces to analyzing the solu-
tion to the equations

(33)

where n0 is the initial plasma density; tm is the time at
which the field component Bs(t) becomes maximum;
η = ρ/ρ0 is the degree of compression of the plasma col-
umn at the time τ; qnf (cm3/s) = Qnf /(EαnDnT) is the rate
constant of the D–T reaction; Eα ≅  3.5 MeV is the
energy of an α-particle; qr (erg cm3/s) = Qr/n2 is the rate
coefficient for energy losses due to bremsstrahlung; and
n, nD, and nT are the densities of plasma particles and
deuterium and tritium ions, respectively (n = nT + nD).

Solution (33) is determined by the parameters β, T0,
n0tm, and b ≅  δ (β ! 1). Figure 6 displays a representa-
tive profile of the ignition factor as a function of the
parameter n0tm. During long-term plasma compression,
bremsstrahlung-induced energy losses increase and the
plasma density becomes higher. As a result, the func-
tion W(n0tm) increases, reaches its maximum Wm, and
then decreases. For the above values of the parameter β
and compression ratio δ, the maximum Wm and the
value of n0tm at which the maximum is reached are both
determined by the initial plasma temperature T0. When
δ = 20 and β = 0.1, the maximum Wm = 1 is achieved
for T0 ≅  230 eV at (n0tm) = (n0tm)opt = 6 × 1013 s/cm3.
This is the optimum parameter value for satisfying the
thermonuclear ignition criterion for the compression
ratio δ = 20. For δ = 30 (β = 0.1), we have T0 ≅ 130 eV,
so that (n0tm)opt = 4.2 × 1013 s/cm3. We can conclude
that, for a fixed compression ratio, the parameter n0tm

determines the optimum condition for igniting a pulsed
system, in analogy with the Lawson criterion (nτ) for
controlled nuclear fusion. The parameters required to
achieve ignition (Wm ≅  1) can be estimated from the for-
mulas

(34)

Thus, for the source described in [8] (tm ≅  3.5 µs)
and for δ = 20, we have n0 = 1.7 × 1019 cm–3, B0 =
1.8 MG, and Jm ≅  360 MA, where the initial radius of
the outer liner is R0 = 2 cm. For δ = 30, the correspond-
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ing parameter values are n0 = 1.2 × 1019 cm–3, B0 =
1.1 MG, and Jm ≅ 340 MA. We can see that the current
required to achieve Wm ≅  1 is slightly sensitive to the
maximum possible compression ratio δ, because the
increase in δ is canceled by a decrease in the initial tem-
perature T0 and density n0 of the plasma. The above
estimates refer to the value β = 0.1. For β equal to 0.4
(Fig. 5), the initial magnetic field B0 and current Jm can
be lower by a factor of approximately two [see formu-
las (34)].

In order to investigate how the energy losses associ-
ated with heat outflow toward the chamber walls via
electron heat conduction affect plasma compression,
we solved Eqs. (7) and (32) with the boundary condi-
tions T |z = ±L/2 = 0 (corresponding to the maximum
losses) at the ends of the plasma column. Figure 7
shows representative spatial profiles of the plasma
parameters at different times. The profiles were calcu-
lated for r0 = 1 cm, β = 0.1, δ = 20, and tm = 3.5 µs,
where the initial plasma density and temperature were
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Fig. 7. Spatial profiles of (a) the velocity, (b) density, and (c)
temperature of the plasma at the instants (1) 0.5tm, (2) tm,
and (3) 1.086tm (the time of maximum compression).
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n0 = 2.5 × 1018 cm–3 and T0 = 100 eV. As the end plates
cool and the plasma pressure is equalized by hydrody-
namic plasma motion, low-temperature dense plasma
layers form near the plates.

The effect of the finite dimensions of the plasma
column on the value of the ignition factor defined in
(30) is illustrated in Fig. 8. For each value of δ, the ini-
tial plasma temperature and density were chosen so as
to achieve the value Wm = 1 in the limit L  ∞. For
compression ratios in the range δ = 20–30, the values
Wm ≥ 0.3 are reached in a plasma column of length L ≥
10–15 cm.

CONCLUSION

We have derived equations describing the compres-
sion of a thin plasma column by a longitudinal mag-
netic field Bs(t) in the quasi-adiabatic approximation.
We have investigated the stability of compression
against the Rayleigh–Taylor instability. During the
time tm in which the field Bs(t) is increased by a linearly
increasing solenoidal current (in the case of a Θ pinch)
or by compressing the magnetic flux by an accelerated
cylindrical liner (e.g., in the case of an MCG), the com-
pression stability worsens, whereas, in the Z–Θ pinch
geometry, the compression stability improves as Bs(t)
increases.

For a Θ-pinch and MCG, the plasma column cannot
be compressed quasi-adiabatically (tm ≥ 10r0/vm) to δ ≥ 3
without violating the cylindrical symmetry. For a Z–Θ-
pinch and tm ≥ 15r0/vm, it is possible to achieve com-
pression ratios of several tens without violating the
cylindrical symmetry. In fact, in a Z–Θ-pinch configu-
ration, the maximum possible plasma compression
ratios are governed by the maximum achievable com-
pression ratios δm ≅ 20–30 of the liner system.
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Fig. 8. Profiles of the ignition factor as a function of the
length of the plasma column for r0 = 1 cm.
To achieve thermonuclear ignition conditions for
compression ratios of 20–30 in the Z–Θ-pinch geome-
try requires preheating of a D–T fuel plasma with the
parameter n0tm ≅  4–6 × 1013 s/cm3 to a temperature of
about T0 ≅ 130–230 eV. To ensure these conditions for
tm = 3.5 µs requires a plasma column of length L ≥ 10–
15 cm, initial axial magnetic field B0 ≅ 0.5–1 MG, and
initial current Jm ≅  170–180 MA (β = 0.4). At present,
it is possible in principle to generate current pulses with
an amplitude of up to Jm ≅ 200 MA (50-MA current
pulses have already been produced) [8].
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Abstract—The plasma composition of a discharge sustained by a pulsed ionization source of µs duration is
computed. It is shown that, within a time interval of ~10–6 s after the ionization pulse, the dependences of the
ion densities on the electric field and ionization source power show features that should be taken into account
when developing laser systems for controlling electric discharges in long air gaps. The effect of the plasma com-
position on the efficiency of electron photodetachment from negative  ions is investigated by the example
of a discharge initiation system consisting of two lasers with different pulse durations and wavelengths. Plas-
mochemical processes under conditions of enhanced electron photodetachment from negative  ions are sim-

ulated. It is shown that photodetachment can increase the electron density for a time of <10–5 s. © 2000 MAIK
“Nauka/Interperiodica”.
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INTRODUCTION

In recent years, electric discharges in air have been
actively studied with the aim of plasmochemical clean-
ing of atmospheric air to remove harmful impurities
[1, 2]. Both experimental and theoretical investigations
of long-gap discharges, including those controlled by
lasers, are now being studied [3, 4]. The first field
experiments on the initiation of lightning with powerful
CO2 and Nd lasers have been carried out (see, e.g., [5]).
A high-power laser pulse causes an optical breakdown
in air which is accompanied by the formation of a
beaded plasma structure (long laser spark). Experi-
ments have confirmed the space and time correlation
between the creation of the spark plasma channel and
the initiation of lightning [5]. One of the theoretical
problems that needs to be solved for successful contin-
uation of experiments on controlling electric discharges
is an understanding of the physical processes occurring
in air plasma. Most of the published data on this issue
concern modeling of the plasma composition and an
analysis of the processes occurring in either low- and
intermediate-pressure discharges [1] or quasi-steady
discharges [2]. At the same time, solving the problem
of controlling a breakdown in a long air gap requires
the investigation of a non-self-sustained discharge at
atmospheric pressure.

When modeling a laser spark in the presence of an
atmospheric electric field, laser spark beads are consid-
ered to be the sources of external photoionization of the
surrounding air [6]. A photoionization pulse with a
characteristic duration of ~10–6 s creates electrical con-
ductivity, which determines the rate of polarization of
the laser spark plasma in the electric field. After the
1063-7842/00/4510- $20.00 © 21251
external ionization source is switched off, the plasma
conductivity drops by one order of magnitude in a time
of τa ~ 10–7 s and is then controlled by ion–ion recom-
bination. The rate of both ion–ion and electron–ion
recombination is known to depend on the ion composi-
tion [1, 7], which influences the plasma channel con-
ductivity and the effect of the laser spark on breakdown
development.

Since the photodetachment cross sections depend
substantially on the radiation wavelength and ion spe-
cies [8], data on the plasma composition are important
for evaluating the efficiency of electric-discharge laser
initiation systems (under development) in which a sec-
ond laser is used to cause photodetachment of electrons
from negative ions [9].

The aim of this paper is to numerically simulate
plasmochemical processes in a non-self-sustained
atmospheric-pressure discharge in an N2 : O2 : H2O
mixture that is close to air in composition. Attention is
mainly focused on the analysis of the plasma composi-
tion dynamics in a discharge sustained by an ionization
source of µs duration. The computed data on the plasma
composition under various external conditions are
important for the development of laser systems for con-
trolling electric discharges.

DESCRIPTION OF THE MODEL 
AND AN ANALYSIS OF THE PROCESSES

The mathematical model of plasmochemical and
charge kinetics in electric discharges in mixtures of
molecular gases was described in detail in [10–12].
Based on this model, the CHARM (Chemical Reac-
000 MAIK “Nauka/Interperiodica”
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tions of Molecules) numerical code was developed.
The code analyzes the list of possible reactions and pre-
pares a system of differential balance equations for the
densities of the plasma components, taking into
account the incorporated reactions and the data on their
rate constants. The system is solved by Gear’s proce-
dure. The code allows modifications to account for
changes in the chemical composition of the medium
and the external conditions and to include external ion-
ization sources and particle fluxes, in both continuous
and pulsed regimes.

The model incorporates about 300 reactions for 50
plasma components. The rate constants for plasmo-
chemical reactions were taken from [1, 2, 7, 8, 13–26].
To calculate the rates of reactions involving electrons,
the Maxwellian electron energy distribution function
and the corresponding cross sections were used. The
cross sections for electron-impact ionization of N2, O2,
H2, and NO molecules; dissociative attachment to O2,
H2O, NO, and N2O molecules; and excitation of

N2(A3 ) and N2(a'1 ) metastable nitrogen levels
were taken from [17–20]. The cross sections for direct
ionization of H2O molecules and H, N, and O atoms
and step ionization from metastable levels of N2 mole-
cules were calculated according to the Thomson for-
mula [21].

In the computations, we took into account the
dependences of the coefficients of three-body attach-
ment [22] and electron–ion recombination [7, 14, 21]
on the electron temperature Tc and the dependence of
the detachment coefficients on the electric field E [2].
Altogether, the model incorporates 30 processes whose
rates depend on Tc and E. The dependence of the elec-
tron temperature on the electric field in air [27] was
used to coordinate these parameters. In accordance
with [7, 26], it was assumed that recombination rates of

H3O+ · H2O,  · H2O, and H3O+ · OH ion clusters do
not depend on the electron temperature and are equal to
~10–6 cm3 s–1.

The initial mixture composition is N2 : O2 : H2O =
4 : 1 : 0.05. The electric field E(t), gas temperature
Tg(t), and ionization source power q(t) are the model
parameters that determine the external conditions. In
the computations, the gas temperature Tg = 300 K and
the electric field were time-independent; the latter was
varied within the range 0–15 kV/cm.

Let us consider the main channels for the generation
and loss of charged particles in air plasma, among
which ionization, electron attachment, and electron
detachment are of primary importance. The ionization
rate in a non-self-sustained discharge is determined by
an external source. In this study, the ionization source
pulse q(t) was assumed to have a rectangular shape, a
duration τ = 10–6 s, and an amplitude q0 = 1017–
1021 cm−3 s–1. The q0 value was chosen so as to fit the
calculated electron density to the measured one [28].

Σu
+ Σu

–

O2
+

The estimations based on photocurrent measurements
show that the electron density in the shell of a plasma
bead of the laser spark decreases with distance from the
bead. The measured photocurrent densities of ~10–1–
102 mA/cm2 are consistent with electron densities of
109–1012 cm–3 [28].

The processes of ionization by an external source
are represented in the model by monomolecular reac-

tions of the type O2   + e, for which the ioniza-
tion rate νi(t) is regarded as the reaction rate constant.
The source power q(t) is related to the ionization rates
as follows:

where summation is performed over the neutral plasma
components N2, O2, H2O, N, O, and NO, whose photo-
ionization is incorporated into the model; νi, j is the ion-
ization rate (to calculate the photoionization rates, we
used data from [10]); and nj is the density of the jth
component.

The main channels for electron losses in air at atmo-
spheric pressure are the reactions of three-body elec-
tron attachment to O2 molecules, with O2, H2O, or N2
molecules as the third body,

(1)

(2)

(3)

and the reactions of dissociative attachment

(4)

(5)

In the above reactions, it is indicated that the rate
constants k(E) depend on the electric field discharge
and the corresponding source references are given.
Note that the rate constants of three-body attachment
decrease and those of dissociative attachment increase
with the electric field. At E ≈ 4 kV/cm, the rates of
three-body attachment and dissociative attachment
become equal to each other. At lower values of E, the

processes of  ion formation dominate over those of
O– and H– ion formation, whereas, at higher values of
E, the situation is the opposite.

The main electron detachment channels are colli-
sions of negative ions with N2 and O2 molecules of the
initial gas mixture:

(6)

(7)

O2
+

q t( ) ν i j, t( )n j,
j

∑=

O2 e O2 O2
– O2, k E( ) [22],+ + +

O2 e H2O O2
– H2O, k E( ) [22],+ + +

O2 e N2 O2
– N2, k E( ) [22],+ + +

O2 e + O– O, k E( ) [19],+ +

H2O e + H– OH, k E( ) [19].+ +

O2
–

O2
– O2 O2 O2 e, k E( ) [2],+ + +

O2
– N2 O2 N2 e, k E( ) [2],+ + +
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(8)

(9)

(10)

A large group of reactions consist of detachment
reactions involving chemically active particles of O, N,
H, and O2(a1∆), which are created in the discharge
[13, 14]. As a rule, their rate constants are two to three
orders of magnitude higher than those of reactions (6)–
(9); however, their role in charge kinetics depends on
their production rate, which is determined by the spe-
cific energy input into the discharge.

Ion conversion reactions change the plasma compo-
sition. Conversion of positive ions proceeds via the fol-
lowing reaction chain:

(11)

(12)

(13)

(14)

(15)

The conversion can proceed in several steps, whose
characteristic times are about 10–9–10–7 s [12], where
the ion densities are determined by the gas mixture
composition and the duration of the pulse exciting the
discharge.

Conversion of negative ions via the reactions

(16)

(17)

(18)

O– O2 O3 e,+ +

k 1.0 10 12–  cm3 s 1–  [14],×=

O– N2 N2O e,+ +

k 1.0 10 12–  cm3 s 1– [14],×=

H– O2 HO2 e,+ +

k 1.0 10 9–  cm3 s
1–
 [14].×=

N2
+ 2N2 N4

+ N2,+ +

k 7.2 10 29–  cm6 s 1–  [13],×=

H2O+ H2O H3O+ OH,+ +

k 1.0 10 9–  cm3 s 1–  [13],×=

O2
+ 2O2 O4

+ O2,+ +

k 2.8 10 30–  cm6 s 1–  [13],×=

O4
+ H2O O2

+ H2O O2,+⋅+

k 1.2 10 9–  cm3 s 1–  [13],×=

O2
+ H2O H2O H3O+ OH O2,+⋅+⋅

k 1.0 10 9–  cm3 s 1–  [13].×=

O– O3 O3
– O,+ +

k 5.3 10 10–  cm3 s 1–  [13],×=

O2
– O3 O3

– O2,+ +

k 3.5 10 10–  cm3 s 1–  [13],×=

O2
– NO2 NO2

– O2,+ +

k 1.9 10 9–  cm3 s 1–  [13],×=
TECHNICAL PHYSICS      Vol. 45      No. 10      2000
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proceeds more slowly than that of positive ions,
because it involves the products of plasmochemical
reactions O3 and NO2, which are absent in the initial
gas mixture.

According to the energy approach to the consider-
ation of ion reactions [26], in the course of exothermic
reactions, positive ions convert into positive ions with a
lower recombination energy and negative ions convert
into other negative ions with a higher attachment
energy (electron affinity). Ion conversion leads to sub-
stitution of the primary ions with large ion complexes
(clusters), which increases the rate of electron–ion
recombination [7]. The model under consideration does
not incorporate the processes of the formation of H3O+ ·

nH2O and NO+ · nH2O ion clusters for n > 1 or  ·
nH2O and OH– · nH2O ion clusters [26]. These pro-
cesses make the picture of ion conversion more compli-
cated but do not change its main tendency.

An analysis of plasmochemical processes reveals a
significant role of water vapor, even though its fraction
is relatively low. For example, at E = 5 kV/cm and a
water molecule concentration of 3 vol %, the contribu-
tion of water vapor to the total electron-impact ioniza-
tion rate amounts to ≈10%. Moreover, the rate of three-
body and dissociative attachment reactions involving
H2O molecules is about 40% of the total attachment
rate. Hence, an increase in the water content of air
increases electron losses. Electron detachment cannot
compensate for electron losses due to attachment. This
is confirmed by the experimental results of [2].

Note that a key reaction determining the important
role of water in the discharge is the ion conversion reac-
tion

(20)

If this reaction is not incorporated into the model,
detachment reaction (10) almost completely compen-
sates for the process of dissociative attachment (5). As
a result, the balance between the generation and loss of
electrons shifts toward generation. In this case, an
increase in the water content of the mixture would lead
to a higher electron density, which contradicts the
experimental results [2].

RESULTS OF COMPUTATIONS

Figure 1 presents the calculated time evolution of
the positive ion density obtained at an ionization source
power of q0 = 7 × 1018 cm–3 s–1 and electric field of E =
5 kV/cm. It is seen that the characteristic time of ion
conversion is 10–9–10–8 s. Within this time interval, the

NO2
– H2O M NO2

– H2O M,+⋅++

k 1.0 10 28–  cm6 s 1–  [13]×=

O2
–

H– H2O OH– H2,+ +

k 3.8 10 9–  cm3 s 1–  [2].×=
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densities of most ions reach their steady value, except
for H3O+, H3O+ · OH, H3O+ · H2O, and NO+ · H2O. The
densities of these ions keep rising during the entire ion-

ization pulse. Quasi-steady densities of , , ,

H2O+,  · H2O, and  ions are determined by the
ionization source power and the rates of ion conversion
reactions (11)–(15), whereas those of H3O+ and H3O+ ·
OH ions are determined by the source power and the

effective recombination coefficient n0, i = . After
the ionization pulse, the plasma composition changes
rapidly due to processes (11)–(15). In a time τ ~ 10–8 s,

the densities of ,  · H2O, H2O+, , , and 
ions fall by several orders of magnitude. Further change
in the ion composition is determined mainly by the
effective recombination coefficients for the ion species.
The densities of H3O+ · H2O and NO+ · H2O ions
decrease more slowly via the reactions

N2
+ O2

+ N4
+

O2
+ O4

+

q/kr i,

O4
+ O2

+ N4
+ O2

+ N2
+

H3O+ H2O H2 H3O+ H2O H2,+⋅++

k 5.0 10 27–  cm6 s 1–  [26],×=

10– 10 10–9 10–8 10–7 10–6 10–5

107

109

1011
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ni, cm–3

t, s
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+ • H2O

NO+ • H2O

H3O
+ • OH
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+
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+
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+
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+

O2
+

O4
+

Fig. 1. Time evolution of the positive ion densities.
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Fig. 2. Time evolution of the negative ion densities.

H3O
+

2

3

The calculated densities of negative ions , ,

O–, N  · H2O, OH–, H–, N , and N  are shown in
Fig. 2. Several characteristic time intervals are seen in
the dynamics of the negative ion composition. The time
in which the steady-state densities of electrons and O–

and H– ions are established is τ1 ≈ 10–7 s. The moment
τ2 ≈ 10–6 s, at which the ionization source is switched
off, coincides with the time in which the steady-state

densities of  and OH– ions are established. After the
ionization pulse, in a time τ3 ≈ 5 × 10–7 s, the electron
density drops by two orders of magnitude due to attach-
ment to oxygen molecules. As a result, electron detach-
ment is balanced out by attachment. Further change in
the electron density is determined by the balance
between the processes of impact ionization and recom-
bination. The increase in the NO– · H2O ion density due
to reactions (18) and (19) continues for 2 µs after the
ionization pulse.

The electric field is one of the basic parameters that
determine the conditions of experiments on laser con-
trol of a breakdown in a long air gap. In nature, a thun-
der cloud can generate an electric field as high as
~102 V/cm near the earth’s surface [5]. Since investiga-
tions of lightning control require high electric fields,
special measures to increase the field are undertaken.
For example, laser beams are focused on a tower tip [5],
where the electric field can attain ~103–104 V/cm. In
this connection, the investigation of the dependences of
both electron and ion densities on the electric field
(Fig. 3) is of interest, because these densities determine
the plasma channel conductivity and the time constant
of laser spark polarization [6]. The dependences com-
puted for the instant t = 5 µs and q0 = 7 × 1018 cm–3 s–1

show a slight variation of the electron density and the

densities of , N  · H2O, OH–, and N  ions in the
range E = 3–10 kV/cm. Here, the main process of elec-
tron generation is electron detachment with the partici-
pation of an oxygen atom:

At E = 5 kV/cm, its contribution to the total rate of
electron generation is higher than 60%. The electron
losses are determined mainly by dissociative attach-
ment reaction (4), whose contribution is higher than
50%. The contributions of electron-impact ionization
and recombination to the general charge-kinetics bal-
ance are less than 2 and 3%, respectively. The drop in

the density of  ions in the range E = 1–6 kV/cm is
caused by the decrease in the rate constants of reactions

NO+ H2O M NO+ H2O M,+⋅++

k 2.0 10 28–  cm6 s 1–  [13].×=

O2
– O3

–

O2
– O2

– O3
–

O2
–

O3
– O2

– O2
–

O2
– O O3 e,+ +

k 3.3 10 10–  cm3 s 1–  [14].×=

O2
–
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(1)–(3). The increase in the electron density with elec-
tric field at E > 10 kV/cm stems from the increasing
role of detachment processes (6) and (7).

The ionization source power q0 is related to the
plasma density in the beads of a long laser spark [6, 28].
Experiments on laser initiation of lightning [5] require
the formation of plasma channels with a high plasma
density in the beads. Thus, investigation of the parame-
ters of a non-self-sustained discharge as functions of q0
is necessary to formulate the required characteristics of
a laser spark and laser system for discharge control.
Calculations of the plasma composition for t = 5 µs and
E = 5 kV/cm show that, as the source power increases
from 1019 to 1021 cm–3 s–1, the growth of the ion densi-
ties saturates and the ion composition changes radically
(Fig. 4). The increase in the ionization power stimulates
conversion of negative ions in the discharge, which

results in substitution of  ions by N  · H2O and 
ions. The saturation is related to the nonlinear depen-
dence of the ion recombination rate on the ion density.
Using the well-known solution to the recombination

equation dni(t)/dt = –kr (t), we find that the time

required for the ion density to decrease from  to

 is t1 = (  – )/ / /kr. If  @ , then

t1 ≈ 1/ /kr; i.e., this time does not depend on .

At  = 1012 cm–3 and kr = 10–6 cm3 s–1, we have t1 =
10−6 s; i.e., in a time of about 1 µs, the ion density drops
to ~1012 cm–3, whatever the initial density. In a time of
100 µs, the ion density drops to ~1010 cm–3. Hence, the
increase in the plasma density in the beads of a laser
spark can increase the charged particle density to more
than 1012 cm–3, but only during the ionization pulse and
for 1 µs after the pulse.

The data on the plasma composition of a non-self-
sustained discharge allow us to consider in detail the
other methods of forming conducting channels to con-
trol an electric discharge in air. From this point of view,
the combination of UV and visible lasers is of most
interest for initiating a high-voltage discharge at atmo-
spheric pressure [9]. A UV laser pulse with wavelength
of 248 nm and duration of less than 1 µs produces three-
photon ionization of oxygen molecules and four-pho-
ton ionization of nitrogen molecules, thus forming a
needle-shaped zone of ionized air in the region of a
high electric field. A laser pulse with a wavelength of
750 nm and duration of more than 5 µs produces pho-
todetachment of electrons from negative ions and thus
maintains the free-electron current. According to the
calculations of [9], the time required for plasma polar-
ization, which is responsible for the formation of a fast
ionization wave due to field amplification at the plasma
channel end, amounts to several microseconds.

Let us consider the electron photodetachment pro-
cesses, taking into account the plasma composition.

O2
– O2

– O3
–

ni
2

ni
0( )

ni
1( ) ni

0( ) ni
1( ) ni

0( ) ni
1( ) ni

0( ) ni
1( )

ni
1( ) ni

0( )

ni
1( )
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Radiation with a wavelength of 750 nm (photon energy
of 1.64 eV) can produce photodetachment of electrons

from , H–, and O– ions, whose electron affinity is
0.44, 0.75, and 1.46 eV, respectively. Efficient electron

photodetachment from OH–, , N , and N  · H2O
ions, whose electron affinity ranges from 1.83 to 3 eV
[26], is expected to occur with a radiation wavelength
no longer than 700 nm [8]. Simulations of the plasma
composition (Figs. 2–4) show that the effect of radia-
tion with a wavelength of 750 nm is most pronounced

in the detachment of electrons from  ions. To verify
this result, we modeled plasmochemical processes in a
discharge, taking into account the photodetachment

reaction   O2 + e. For comparison, Fig. 5 pre-
sents the results obtained with and without incorporat-

O2
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O3
– O2

– O2
–

O2
–

O2
–
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Fig. 3. Negative ion densities vs. electric field.
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ing photodetachment. For a photodetachment rate of
1010 s–1 and electric field of E = 5 kV/cm, the density of

 ions decreases by three to four orders of magnitude.
In this case, the electron density first increases several
times, then rapidly drops, and, after t ≈ 6 µs, becomes
even less than when photodetachment is neglected.
This can be explained by the fact that, at the high neg-
ative ion density in the discharge, the electron density
is maintained via detachment. The disappearance of
negative ions shifts the balance between detachment
and attachment; this leads, first, to speeding up of elec-
tron generation and then to an increase in their loss rate.
Thus, the calculations show that the use of the other
laser for electron photodetachment can increase the
electron density only for some limited time. A final
conclusion about the efficiency of the method in ques-
tion requires numerical simulations that take into
account the real values of the laser intensity and cross

sections for electron photodetachment from , H–,
and O– ions at a wavelength of 750 nm.

CONCLUSION

An analysis of the main channels for the generation
and loss of charged particles in a non-self-sustained
discharge plasma has shown that, regardless of the rel-
atively low concentration of water molecules in the
mixture, they play a significant role in the processes of
attachment and ion conversion. The densities of pri-
mary ions are determined mainly by the balance
between photoionization and ion conversion. The den-
sities of complex ions originating via the chain of ion–
molecular reactions are bound above by recombination.
Calculation revealed a relatively high contribution from

reactions involving oxygen atoms and molecular 
ions to electron detachment.

O2
–

O2
–

O2
–

10– 7 10–6 10–5

107

109

1011

1013

ni, cm–3

t, s

e

O2
–

O2
–

e

Fig. 5. Time evolution of electron density and  ion den-

sity with (light curves) and without (heavy curves) taking
into account photodetachment for E = 5 kV/cm and q0 = 7 ×
1018 cm–3 s–1.

O2
–

The dependences of the ion densities on the electric
field and ionization source power for ~10–6 s after the
ionization pulse show features that should be taken into
account when developing laser systems for controlling
electric discharges in long air gaps. Slight variations in
the electron and ion densities in the range E = 3–
10 kV/cm lead to slight variations in both the plasma
conductivity and the time constant of polarization of a
long laser spark in the electric field. An increase in the
source power from 1019 to 1021 cm–3 s–1 results in satu-
ration of the growth of the ion density at a level of
1012 cm–3. The saturation is related to the nonlinear
dependence of the ion recombination rate on the ion
density.

Modeling plasmochemical processes under condi-
tions of enhanced electron photodetachment from neg-

ative  ions has shown that photodetachment can
increase the electron density for a time of <10–5 s.
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Abstract—The development of a self-sustained volume gas discharge is studied numerically. Special attention
is paid to the formation and stability of the cathode sheath. It is shown that the high-voltage threshold for the
ignition of a volume discharge is determined by the onset of cathode sheath instability. The methods for sup-
pressing cathode sheath instability are discussed. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The creation of pulsed high-pressure gas lasers has
stimulated investigations of volume discharges (VDs).
Within a short time, methods for VD initiation were
developed [1–3], the energy and time characteristics of
a VD were studied [3–5], mechanisms for the contrac-
tion of a VD were proposed [6–9], and VD-based lasers
with an active volume of hundreds of liters were cre-
ated [10, 11]. In spite of the large amount of data
obtained, the physical picture of the development of a
VD from the instant the voltage is applied to the forma-
tion of the plasma column and cathode potential drop is
still poorly understood.

There are many theoretical and experimental studies
devoted to this problem. In [12], it was found that, after
applying a dc voltage to an air gap of d = 0.3 cm at
atmospheric pressure, an intermediate stage with a
higher discharge voltage and lower discharge current
existed for about 1 µs before the formation of the dis-
charge channel [12]. Electron-optical measurements
revealed the existence of the cathode potential drop,
negative glow, and Faraday dark space at this stage and
identified this stage as an ordinary glow discharge
[13−16].

The use of photomultipliers allowed a substantial
increase in the sensitivity of the diagnostic equipment
and revealed the following stages of discharge develop-
ment: a series of avalanches leading to the creation of a
positive space charge near the anode, giving rise to the
first ionization wave; passage of several ionization
waves, which increased the gap conductivity up to the
value determined by the discharge circuit; and cathode
sheath formation by the last but one ionization wave
[17]. It is assumed that, after the last stage, a glow dis-
charge is formed. Thus, in [12–17], the general physical
picture of the development of both steady and pulsed
glow discharges ignited within the Townsend overvolt-
age range was revealed. In contrast to ordinary low-
pressure glow discharges, the pulsed high-pressure dis-
charge was called a transient glow discharge [18]. Note
1063-7842/00/4510- $20.00 © 21258
that this discharge is more frequently called a pulsed
glow discharge.

Unexpected results were obtained in [19, 20], where
a discharge with a steplike voltage drop at a streamer
overvoltage of ~100% was observed in a 0.2-cm air gap
in which ~104 electrons were created 60 ns before the
initiation of the main discharge and where the dis-
charge would apparently take the form of a channel.
Electron-optical measurements carried out at a high
overvoltage and high initial electron density confirmed
the existence of a discharge stage with a fairly homoge-
neous glow occupying nearly the entire working vol-
ume between the electrodes [21]. Further, this stage
was observed in the nonspark mode and was referred to
as a “volume” discharge. Here, the term “volume”
stresses the fact that the discharge parameters are deter-
mined only by the discharge itself, and not by its inter-
action with the chamber wall (as in an ordinary glow
discharge).

In [22], it was shown that, in fact, a VD is developed
from a single ionization wave and that its realization
requires preionization of the entire gas volume [22]. In
[23], a model of the fast development of a VD was pro-
posed. The model assumes that the discharge is formed
due to the overlapping of electron avalanches whose
sizes have reached a certain critical value. Later, based
on this model, criteria were obtained for the develop-
ment of a VD according to which an initial electron
density of n0 > 106 cm–3 must be produced in a gas
before applying the high-voltage pulse [24–26].

The model of the formation of a plasma column pro-
posed in [27, 28] agrees better with the experimental
results. The model takes into account that electron drift
is considerably faster than electron diffusion across the
electric field; therefore, the initial electrons, which ion-
ize the gas, give rise to a train of avalanches following
one another and forming thin current filaments. As soon
as the filament radius becomes equal to the Debye
length, electron diffusion is replaced with ambipolar
diffusion and the filament almost stops widening within
000 MAIK “Nauka/Interperiodica”
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the time interval of interest (~10–7 s). The minimum
electron density that enables the overlapping of the cur-
rent filaments can be found by setting the filament
radius equal to the Debye length. The model allows one
to explain both the dependence of the maximum energy
input in the discharge on the initial electron density and
the presence of the current filaments in a discharge
[29]. However, this model fails to explain the higher
ignition voltage of a VD compared to both ordinary and
transient glow discharges [24, 25]. It also does not pro-
vide a complete explanation of the possible contraction
of a VD in the early stage of its development. For this
reason, in this paper, we study the development of a VD
numerically, under the assumption that the discharge is
homogeneous (the current filaments overlap) and
discuss the possible reasons for the above features
of a VD.

FORMATION OF THE CATHODE SHEATH

To analyze the dynamics of discharge development,
we solve the following set of equations consisting
of Poisson’s equation and the balance equations for
the densities of electrons ne, ions ni, and excited mole-
cules n∗ :

(1)

(2)

(3)

(4)

with the boundary conditions at the cathode

(5)

and at the anode,

(6)

where ϕ is the potential; E is the electric field; µe and µi

are the electron and ion mobilities, respectively; νi, νa,
and νe are the rates of ionization, dissociative attach-
ment, and excitation, respectively; γi is the secondary
ion–electron emission coefficient; and γph is the photo-
emission coefficient.

A similar approach was used earlier, e.g., in [30] to
analyze the processes in the cathode region of a VD in
a XeCl laser, where the plasma column was considered
within the 0D approximation. The model allows a self-
consistent description of the processes occurring in
both the plasma column and the cathode sheath. It

∂ne

∂t
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e
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ϕ 0, je γiµiEni γph
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d

∫+= =

ϕ U t( ),=
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incorporates the equations for the discharge circuit
(Fig. 1a) with parameters corresponding to the experi-
mental conditions [31]: the discharge volume of 0.5 ×
0.5 × 8 cm3 was filled with a CO2 : N2 : He = 1 : 1 : 3
mixture at atmospheric pressure. The initial electron
density n0 was 108 cm–3.

The rate constants of the processes involving elec-
trons were determined from the electron energy distri-
bution function obtained by numerically solving Boltz-
mann’s equation. The reaction cross sections were
taken from [32, 33]. The parameter νi in Eqs. (1) and (2)
is the total ionization rate of all the components. When
determining this rate, the whole positive charge was

assigned to C  ions formed in the reactions

(7)

(8)

(9)

Since the rate constants of these reactions are fairly
high (~10–9 cm3/s [33]) and, therefore, the correspond-

O2
+
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+ CO2 CO2

+ N2,+ +

He+ CO2 CO+ O He,+ + +

CO+ CO2 CO2
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Fig. 1. (a) Schematic of the discharge circuit corresponding
to experiment [31] (Cs is the storage capacitor, Cp is the
peaking capacitor, and L1 and L2 are the inductances) and
(b) the calculated time evolutions of (1, 3) the discharge
voltage and (2, 4) current density with (curves 1, 2) and with-
out (curves 3, 4) taking photoemission into account.
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ing characteristic times (~10–10 s) are one order of mag-

nitude less than the ionization time, we exclude the 
and He+ ions from consideration. Dissociative attach-
ment was also not included in an explicit form. The
point is that the created oxygen ions are quickly neu-
tralized in the reactions

(10)

(11)

The rate constant of reaction (11) is 5 × 10–7 cm3/s,
which is one order of magnitude larger than the rate
constant of electron–ion recombination

(12)

Consequently the term in Eq. (2) accounting for the
generation of positive ions can be rewritten in the same
form as in Eq. (1). Note that the product νane accounts
for the loss of positive ions via reactions (10) and (11),
which enables us to exclude the equations for negative
ions.

Figure 1b presents the calculated time evolutions of
the discharge voltage and current density. The results of
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Fig. 2. The profiles of (a) the electron density and (b) the
positive ion density in the discharge gap for t = (1) 22, (2)
34, (3) 36, and (4) 38 ns; x is the distance from the cathode.
the calculations agree well with the experimental data
with respect to the amplitudes and durations of the
pulses [31]. When studying the processes occurring at
the stage of the voltage rise (the formation of the cath-
ode sheath and the onset of instability), we eliminated
the discharge circuit equation to reduce the computa-
tion time and approximated the discharge voltage by
the function

(13)

where τf is the voltage rise time and U0 is the voltage
pulse amplitude.

The profiles of the electric field and electron and ion
densities during the development of the discharge are
shown in Figs. 2 and 3. It is seen that, at the initial stage,
when the electron density in the gap is relatively low,
the plasma column is 0.25 cm away from the cathode.
The rapid increase in the electron density is accompa-
nied by the formation of a charge-depleted region
between the cathode and the plasma column, in which
the ion density is higher than the electron density. The
ions partially shield the external field, thus reducing the
field in the plasma column and increasing it in the cath-
ode region. As a result, the electron density and, conse-
quently, the current density in the plasma column, grow
at a lower rate (Fig. 1b). The increase in the ionization
rate in the cathode region leads to a fast (in a time of
34–38 ns) propagation of the ionization wave (plasma
column) toward the cathode, thus resulting in the for-
mation of the cathode potential drop. At the peak of the
discharge current, the electric field in the cathode
sheath reaches a maximum value of ≈2 × 106 V/cm,
whereas the depth of the cathode sheath drops to a min-
imum value of 2.4 × 10–3 cm (Fig. 3).

The fact that the ion density in the cathode region
remains low (~108 cm–3) for a relatively long time inter-
val (Fig. 2b) determines the type of emission processes
governing the conduction current in the discharge gap.
The results of calculating the ratio between the photoe-
mission and ion–electron emission currents are shown
in Fig. 4. It is seen that, during the first 36 ns, the pho-
toemission current is considerably higher than the ion–
electron emission current. Note that, later on, in con-
trast to an ordinary glow discharge, photoemission also
plays a significant role in extracting electrons from the
cathode.

Neglecting the photoemission current (Fig. 1b,
curves 3, 4) leads to a sharp decrease in the velocity of
the ionization wave propagating toward the cathode.
This is accompanied by a decrease in the current den-
sity to <10–3 A/cm2 and an increase in the discharge
delay time. A delay of ≈740 ns between application of
the voltage and the stage of rapid current rise is in dis-
tinct contradiction to the available experimental data

U t( )
U0

τ f

------t, t τ f<

U0, t τ f ,≥





=
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[31]. Note that, in this case, for better stability of the
computation scheme, we eliminated the equations for
the discharge circuit and assumed that the discharge
voltage was constant during the propagation of the ion-
ization wave toward the cathode.

The existence of a stage in which the conduction
current is determined by the photoemission current dis-
tinguishes a VD from both ordinary and transient glow
discharges, in which, due to the passage of several ion-
ization waves until the cathode potential drop forms,
the number of ions in the cathode region is fairly high,
so as to ensure that electron emission due to bombard-
ment of the cathode with ions is dominant [17]. During
this stage, a VD becomes very sensitive to the presence
of local sites with enhanced electron emission on the
cathode. This viewpoint was confirmed in experiment
[34], in which 1.2 × 10–3-cm-thick nickel strips depos-
ited onto a copper cathode caused discharge stratifica-
tion as early as the stage of discharge development.
Hence, filling the charge-depleted region with electrons
should significantly increase VD stability. Indeed, this
was the case in the experiments with electron injection
into the cathode region [35] and experiments in which
a plasma cathode [36] or high-emissive cathode [37]
was used.

HIGH-VOLTAGE THRESHOLD 
FOR VD IGNITION

The existence of a high-voltage threshold for ignition
of a VD between two metal electrodes, which was first
revealed in experiments with preionized high-pressure
gases, was erroneously attributed to a static breakdown
[38]. Later, the existence of such a threshold was
explained by the fact that a VD discharge necessarily
develops in the form of a quasi-streamer [25]. In our opin-
ion, the existence of a threshold voltage for VD ignition
stems from the existence of cathode instability, which
leads to discharge stratification at the discharge develop-
ment stage. Let us consider this issue in more detail.

Naturally, the stage in which two clearly defined
regions exist in the discharge, (namely, the plasma col-
umn and a charge-depleted region near the cathode) is
of primary interest. In this stage, the current density is
such that the discharge exists in subnormal mode; con-
sequently, it cannot occupy the entire electrode surface
and is stratified. The possibility of discharge stratifica-
tion at the discharge development stage was pointed out
in [39]. This process can lead to a sharp change in the
current–voltage characteristic, provided that the condi-
tions necessary for autoelectronic emission to exist are
satisfied [40].

Figure 5 presents the calculated current–voltage
characteristics for two cases: (i) the ionization wave
(plasma column) propagating toward the cathode
remains homogeneous when passing through the
charge-depleted region, and the enhancement of the
field at microinhomogeneities is taken into account by
TECHNICAL PHYSICS      Vol. 45      No. 10      2000
the integral amplification coefficient [40] (curve 1);
(ii) the ionization wave undergoes filamentation in the
charge-depleted region due to discharge stratification
(curves 3–5). In the latter case, it was supposed that one
of the filaments of diameter λ (its definition will be
given below) contracts to an area of ~10–6 cm2, pro-
vided that there is a ~10–3-cm microinhomogeneity on
the cathode that disturbs the external electric field. For
example, this may be a micropoint of corresponding
height (the fact that the field at the tip of a micropoint
is enhanced by a factor of β is taken into account). The
parameters of the cone-shaped cathode sheath were cal-
culated in spherical coordinates; the angular distribu-
tion of the parameters was assumed to be uniform.

The density of the autoelectronic emission current
in plane geometry is determined by the formula [40]

(14)

ja πab2 β
ϑ
--- 

 
3/2 2ϑ

β
-------– 

 exp=

× 1 2 β
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------- β
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 
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Fig. 3. The profiles of the electric field in the discharge gap
for t = (1) 22, (2) 34, (3) 36, (4) 38, and (5) 43 ns.
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Fig. 4. Time evolution of the ratio between the photocurrent
density je, ph and the density of the secondary ion-electron
emission current je, ion for γph = (1) 2 × 10–4, (2) 2 × 10–5,
and (3) 2 × 10–6.
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where a and b are the numerical coefficients in the
Fowler–Nordheim formula for the density of the auto-
electronic emission current (they are equal to 1.55 ×
10−6ϕ–1 and 6.85 × 107ϕ3/2, respectively), ϕ is the work
function in eV, β is the field gain averaged over the

cathode surface, ϑ  = , and Ek is the average
field at the cathode surface in V/cm. Autoelectronic
emission from the tip of a micropoint was taken into
account using the Fowler–Nordheim formula.

It is seen that the filamentary structure of the plasma
column and autoelectronic emission lead to the genera-
tion of local sites near the micropoints where the ampli-
fication factor is higher than 10 (Fig. 5, curves 4, 5). In
these sites, the current–voltage characteristic is
descending; hence, a cathode spot and then a channel
are formed as a result of cathode instability.

The formation of a plasma column with a filamen-
tary structure in the cathode region can occur during
propagation of the ionization wave toward the cathode,

b/ βEk( )

because the subnormal mode can occur at this stage
(Fig. 5, curve 1). Generally, the dynamics of this pro-
cess can be traced only by solving the corresponding
two- or three-dimensional problem. However, using the
criterion

(15)

where νin is a fluctuation growth rate, it is possible to
determine whether the filamentary structure can be
formed during propagation of the ionization wave
toward the cathode.

The fluctuation growth rate is determined by the for-
mula [41]

(16)

where Uc is the cathode potential drop, dc is the cathode
sheath depth, σ is the column conductivity, and λ is the
distance between the maxima of the fluctuations.

To determine whether criterion (15) is satisfied, it is
necessary to calculate the parameters Uc, dc, σ, λ, and
∂Uc/∂j in formula (16). As was mentioned above, the
cathode region is characterized by an enhanced electric
field. Therefore, the depth of this region can be defined
as the distance dc from the cathode at which the field
becomes equal to U/d (average field in the gap). Uc is the
potential at this point. The parameter ∂Uc/∂j is equal to

(17)

The normal current density jn is defined as the cur-
rent density corresponding to the local minimum of the
current–voltage characteristic. The value of dc at j = jn

is designated as dcn (Fig. 5).
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Fig. 5. Cathode potential drop in (1) plane geometry and at
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cathode sheath depth (2) vs. the discharge current density.
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The parameter λ in formula (16) can be determined
from the shielding criterion proposed in [42]: if the
spacing between metal micropoints is less than their
half-height, the perturbations introduced by
micropoints into the external electric field are insignif-
icant. The same is true for any perturbation with ele-
vated conductivity and with a shape similar to that of a
micropoint. It is assumed that, if λ < λn = dcn/2 and dc ≥
dcn, then the perturbations do not disturb the field; con-
sequently, they do not cause the formation of a channel.
At dc < dcn, the perturbations damp due to the positive
slope of the current–voltage characteristic. When λ ≥
λn, perturbations with λ = λn grow with the highest rate.
For this reason, we used the value λ = λn to calculate Ω .

Figure 6a presents the calculated dependences of Ω
on the applied voltage U (expressed in E/p) and the
voltage rise time τf; the other parameters are kept con-
stant. It is seen that, as E/p increases, Ω decreases. At
E/p > 20 kV/(cm atm), the condition Ω < 1, necessary
to ignite a VD, is satisfied. In contrast, Ω increases with
increasing τf. For E/p = 20 kV/(cm atm) and d = 0.5 cm,
VD ignition becomes impossible at τf > 40 ns because
of the onset of cathode instability. Both of these tenden-
cies were observed in experiments. For example, in
[43], a VD was realized at τf = 10 ns, U = 200 kV, and
interelectrode spacing of 2.5 cm in the gas mixture
CO2 : N2 : He = 8 : 7 : 85 at pressures up to 6 atm.

Figure 6b presents the dependences of Ω on the
internal parameters of the discharge gap, namely, cath-
ode emissivity and interelectrode spacing d. Both
curves are seen to descend with γph and d, which is not
surprising, because an increase in both parameters
leads to an increased electron photoemission current
due to the increase in the cathode emissivity in the
former case and to the increase in the photon flux onto
the cathode caused by the increased discharge volume
in the latter case. The effects in question were con-
firmed experimentally. It is known that a large-volume
discharge can be excited by a voltage pulse with a fairly
long rise time [10] and that the increase in the electrode
emissivity results in a drastic increase in the energy
input into the gas [37].

The fact that Ω decreases with increasing electric
field (Fig. 6a, curve 1) explains the existence of a high-
voltage threshold for VD ignition. The dependence of
the threshold on the pressure was calculated under con-
ditions of experiment [31]. The value of γph was chosen
such that the threshold voltage obtained from the con-
dition Ω = 1 was equal to the measured one at P =
1 atm. Then, using this value of γph and the condition
Ω = 1, we calculated the threshold voltage for different
pressures. The results shown in Fig. 7 are in good
agreement with the experimental data of [31]. They
also show that the high-voltage threshold for VD igni-
tion (curve 1) is related to neither the transition from a
Townsend to streamer discharge (curve 2) nor the static
TECHNICAL PHYSICS      Vol. 45      No. 10      2000
breakdown voltage (curve 3), but is determined by the
onset of cathode instability.

CONCLUSIONS

The main results obtained within the proposed
model of a VD are as follows. It is shown that, in the
early phase of VD development, there is a stage in
which the discharge current is determined by the cath-
ode photoemission current, which distinguishes a VD
from both ordinary and transient glow discharges. Dur-
ing this stage, a VD is least stable and, under certain
conditions, becomes filamentary due to the onset of
cathode instability. The threshold conditions for this
instability determine the high-voltage threshold for VD
ignition. Cathode instability can be suppressed by
injecting electrons into the cathode region or by using
a plasma cathode or high-emissive cathode, as well as
by a decrease in the rise time or an increase in the
amplitude of the high-voltage pulse applied to the dis-
charge gap.

REFERENCES

1. G. A. Mesyats, Yu. I. Bychkov, and V. V. Kremnev, Usp.
Fiz. Nauk 107, 201 (1972) [Sov. Phys. Usp. 15, 282
(1972)].

2. Yu. I. Bychkov, Yu. D. Korolev, G. A. Mesyats, et al.,
Injection Electronics (Nauka, Novosibirsk, 1982).

3. E. P. Velikhov, V. Yu. Baranov, V. S. Letokhov, et al.,
Pulsed CO2 Lasers for Channel Separation (Nauka,
Moscow, 1983).

4. V. Yu. Baranov, V. M. Borisov, and Yu. Yu. Stepanov,
Inert-Gas Halogenide Electric-Discharge Excimer
Lasers (Énergoatomizdat, Moscow, 1988).

5. G. A. Mesyats, V. V. Osipov, and V. F. Tarasenko, Pulsed
Gas Lasers (Nauka, Moscow, 1991).

18

2.0

E/p, V/(cm × torr)

P, atm
1.51.0 2.5 3.0 3.5 4.0

20

22

24

26

28

30

1

2

3

Fig. 7. (1) High-voltage threshold for VD ignition (crosses
show the experimental data from [31]) and the threshold
electric field for (2) an avalanche–streamer transition and
(3) a static breakdown voltage vs. pressure.



1264 OSIPOV, LISENKOV
6. Yu. D. Korolev and G. A. Mesyats, Autoelectronic Emis-
sion and Explosion Processes in a Gas Discharge
(Nauka, Novosibirsk, 1982).

7. E. P. Velikhov, A. S. Kovalev, and A. T. Rakhimov, Phys-
ical Phenomena in a Gas Discharge Plasma (Nauka,
Moscow, 1987).

8. Yu. D. Korolev and G. A. Mesyats, The Physics of Pulsed
Gas Breakdown (Nauka, Moscow, 1991).

9. A. P. Napartovich and A. N. Starostin, Khim. Plazmy,
No. 6, 153 (1979).

10. V. V. Apollonov, G. G. Baœtsur, et al., Kvantovaya Élek-
tron. (Moscow) 14, 220 (1987).

11. A. I. Pavlovskiœ, V. F. Basmanov, et al., in Initiation and
Development of a High-Pressure Gas Discharge: Pro-
ceedings of the II All-Union Conference on the Physics
of Electric Breakdown in Gases, Tartu, 1984, Part 2,
p. 330.

12. W. Rogowski and R. Tamm, Arch. Electrotek. 20 (107),
625 (1928).

13. R. F. Saxe, Br. J. Appl. Phys. 7 (9), 336 (1956).
14. G. Schroder, in Proceedings of the 7th Conference on

Phenomena in Ionized Gases, Belgrade, 1965, p. 152.
15. A. A. Doran and J. Mayer, Br. J. Appl. Phys. 18, 793

(1967).
16. M. C. Gavenor and J. Mayer, Aust. J. Phys. 22 (2), 155

(1969).
17. A. A. Doran, Z. Phys. 208, 427 (1968).
18. I. D. Chalmers, J. Phys. D 4, 1147 (1971).
19. G. A. Mesyats, Doctoral Dissertation (Tomsk, 1966).
20. Yu. I. Bychkov, G. A. Mesyats, and A. M. Iskol’dskiœ, Zh.

Tekh. Fiz. 38, 1281 (1968) [Sov. Phys. Tech. Phys. 13,
1051 (1968)].

21. Yu. I. Bychkov et al., in Proceedings of All-Union Con-
ference on the Physics and Generators of Nanosecond
Plasma, Alma-Ata, 1970, p. 470.

22. K. A. Klimenko, A. V. Kozyrev, et al., Fiz. Plazmy 10,
336 (1984) [Sov. J. Plasma Phys. 10, 107 (1984)].

23. P. S. Palmer, Appl. Phys. Lett. 25 (3), 138 (1974).
24. J. I. Levatter and S. C. Lin, J. Appl. Phys. 51, 210 (1980).
25. V. N. Karnyushin and R. I. Soloukhin, Dokl. Akad. Nauk

SSSR 236, 347 (1977) [Sov. Phys. Dokl. 22, 521
(1977)].
26. M. S. Kushner, IEEE Trans. Plasma Sci. 19, 387 (1991).
27. V. V. Osipov and V. V. Lisenkov, Pis’ma Zh. Tekh. Fiz.

22 (19), 74 (1996) [Tech. Phys. Lett. 22, 810 (1996)].
28. V. V. Osipov and V. V. Lisenkov, Opt. Atmos. Okeana 10,

1260 (1997).
29. H. Shields, A. S. Alcock, and R. S. Taylor, Appl. Phys.

31, 27 (1983).
30. A. Belasri, J. P. Boeuf, and L. C. Pitchford, J. Appl. Phys.

74, 1553 (1993).
31. Yu. I. Bychkov, V. V. Osipov, et al., Izv. Vyssh. Uchebn.

Zaved., Ser. Fiz., No. 4, 89 (1986).
32. J. J. Lowke, A. V. Phelps, and B. W. Irwin, J. Appl. Phys.

44, 4664 (1973).
33. H. Hokazono and H. Fujimoto, J. Appl. Phys. 62, 1585

(1987).
34. R. Dreiskemper, G. Schroder, et al., IEEE Trans. Plasma

Sci. 23, 180 (1995).
35. V. V. Apollonov, G. G. Baœtsur, et al., Pis’ma Zh. Tekh.

Fiz. 11, 1260 (1985) [Sov. Tech. Phys. Lett. 11, 521
(1985)].

36. Yu. I. Bychkov, D. Yu. Zaroslov, et al., Zh. Tekh. Fiz. 53,
2138 (1983) [Sov. Phys. Tech. Phys. 28, 1309 (1983)].

37. G. A. Mesyats, V. V. Osipov, et al., Zh. Tekh. Fiz. 60 (4),
143 (1990) [Sov. Phys. Tech. Phys. 35, 486 (1990)].

38. P. R. Pearson and H. M. Lambertson, IEEE J. Quantum
Electron. 8, 145 (1972).

39. S. Ya. Bronin, V. M. Kolobov, et al., Teplofiz. Vys. Temp.
18, 46 (1980).

40. A. V. Kozyrev, Yu. D. Korolev, and G. A. Mesyats, Zh.
Tekh. Fiz. 57, 58 (1987) [Sov. Phys. Tech. Phys. 32, 34
(1987)].

41. A. V. Kozyrev and Yu. D. Korolev, Fiz. Plazmy 9, 864
(1983) [Sov. J. Plasma Phys. 9, 503 (1983)].

42. S. Ya. Belomyttsev, S. P. Bugaev, et al., Izv. Vyssh.
Uchebn. Zaved., Ser. Fiz., No. 11, 142 (1975).

43. D. I. Hidson, V. Makios, and R. Morrison, Phys. Lett. A
40, 413 (1972).

Translated by N. Ustinovskiœ
TECHNICAL PHYSICS      Vol. 45      No. 10      2000



  

Technical Physics, Vol. 45, No. 10, 2000, pp. 1265–1270. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 70, No. 10, 2000, pp. 34–39.
Original Russian Text Copyright © 2000 by Barashenkov, Grachev, Esakov, Kostenko, Khodataev, Yur’ev.

                                                               

GAS DISCHARGES, PLASMA
Breakdown in Air in a Rising Microwave Field
V. S. Barashenkov*, L. P. Grachev**, I. I. Esakov**, B. F. Kostenko*, 

K. V. Khodataev*, and M. Z. Yur’ev*
* Joint Institute of Nuclear Research, Dubna, Moscow oblast, 141980 Russia

** Moscow Radiotechnical Institute, Russian Academy of Sciences, Varshavskoe sh. 132, Moscow, 113519 Russia
E-mail: esakov@dataforce.net

Received October 25, 1999

Abstract—Results are presented from studies of a high-pressure electrodeless breakdown in air at the focus of
a standing wave in a high-Q quasi-optical two-mirror resonator pumped by single microwave pulses. In the
experiment, the breakdown occurred at the front of the pulse of the resonator field. The breakdown field sub-
stantially exceeded the critical level and, under fixed conditions, showed a scatter from pulse to pulse. It is
shown that the experimentally found excess in the threshold breakdown field over the critical level is due to the
fact that the resonator field increases as a discharge plasmoid forms during breakdown and that the appearance
of an electron initiating breakdown in a gas is a random event. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION
Electrodeless, freely localized microwave dis-

charges in quasi-optical beams of electromagnetic
(EM) waves in gases at high pressures appear in the
form of thin streamer channels. On reaching the reso-
nance length, they have an EM energy absorption cross
section several orders of magnitude higher than their
geometric cross section [1, 2]. The energy absorbed by
this resonant microwave plasma vibrator can be accu-
mulated in a very small volume around its center [3].
These features of high-pressure microwave discharges
suggest ways of applying them. At present, the possi-
bility is being considered of using such discharges to
create point pulsed sources of hard UV and X radiation,
to inject plasmas into various types of plasma confine-
ment systems, to employ them in studies of the nature
of ball lightning, etc.

However, studies of high-pressure electrodeless
microwave discharges in gases encounter certain diffi-
culties. Thus, for a microwave breakdown in atmo-
spheric air to occur, it is necessary to produce power
densities of Π > 1 MW/cm2. To achieve such levels of
Π even in short-focus EM beams, in which the focus
spot size is restricted by diffraction to the radiation
wavelength λ, an EM beam power, e.g., for λ ≅  10 cm,
as high as 100 MW is necessary. Such fields can be pro-
duced only by employing various types of microwave
resonators, in particular, a high-Q two-mirror quasi-
optical open resonator [3].

Because of technical problems related to the excita-
tion of high-pressure electrodeless microwave dis-
charges, these discharges are still rarely investigated.
This particularly concerns the field amplitude needed to
excite discharges under various conditions. To date, gas
breakdown in a uniform continuous microwave field in
the simplest configurations bounded by walls that
1063-7842/00/4510- $20.00 © 21265
absorb charges has been studied rather extensively [4].
Breakdown occurring in a field that is continuous and
uniform but localized far from the surfaces that neutral-
ize charges has also been investigated [5]. An examina-
tion of how the amplitude of a pulsed field needed for
breakdown is affected by a dc field applied to the gas
during the microwave pulse [6] has been made. A spe-
cific situation arises when a pulsed microwave dis-
charge is excited, e.g., at the focus of a high-Q two-mir-
ror resonator. In this case, the breakdown occurs in the
region located at a considerable distance from the reso-
nator mirrors and construction elements; the micro-
wave field in this region is highly nonuniform, and its
amplitude can vary substantially during the pulse.

In [7], the results were reported from studies of a
pulsed breakdown in air at pressures of 0.1 ≤ p ≤
400 torr in a linearly polarized TEM-wave with
λ = 0.81 cm formed at the focus of a quasi-optical two-
mirror resonator with Q = 3.4 × 104 pumped by single
microwave pulses of duration τpul = 0.8 µs. In experi-
ments carried out at various pressures p, the pulsed
power of the oscillator exciting the resonator was grad-
ually elevated to the minimum level at which break-
down occurred and this value was used to calculate the
threshold breakdown field Ebr. The dependence Ebr(p)
obtained in this way coincided with the dependence
predicted by the theory developed by that time.

This paper is also devoted to the study of a pulsed
breakdown in air at the focus of a two-mirror micro-
wave resonator with Q = 5 × 104. In contrast to [7], the
measurements were conducted at substantially higher
pressures (to p = 760 torr); a significantly longer wave-
length (λ = 8.9 cm); a pulse duration of τpul = 40 µs;
and, what is important, a constant level of pulsed power
of the oscillator exciting the resonator. In the experi-
ments, breakdown occurred at the front of the envelope
000 MAIK “Nauka/Interperiodica”
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of the pulsed resonator field and the experimental
dependence Ebr(p) differed substantially (by several
times) with respect to the field level from a similar
dependence obtained in [7]. Below, we explain this dif-
ference by the fact that breakdown occurs in a growing
resonator field.

EXPERIMENTAL LAYOUT

A schematic diagram of the experiment is shown in
Fig. 1. An open resonator 4 was formed by two coaxial
concave spherical mirrors with radii of curvature of
35 cm and diameters of 55 cm; the maximum distance
between them along the z-axis was equal to 50.4 cm.
A microwave-transparent hermetic cell 5 was placed
symmetrically in the center of the resonator and was
oriented perpendicularly to the z-axis. The cell was a
quartz pipe with an inner diameter of 2H = 8 cm and flat
glass ends for observations. The air pressure in the cell
ranged from 3 to 760 torr and was measured to an accu-
racy of ±1.5 torr. The remainder of the resonator vol-
ume was filled with air at atmospheric pressure.

The resonator was pumped by a magnetron micro-
wave oscillator 1 through a waveguide transmission
line with a circulator 2 and a coupler 3 with a power
coupling coefficient on the order of 10–3. The oscillator
produced flat-top pulses with a duration of τpul = 40 µs;
the intervals between pulses amounted to several sec-
onds. The output microwave power at a circular fre-
quency of ω ≅  2 × 1010 s–1 (λ = 8.9 cm) attained several
megawatts. In the experiments carried out at various
pressures, the pulsed power of the oscillator was kept
constant.

The field along the resonator axis had the form of a
standing, linearly polarized, focused TEM mode with a
maximum at the center of the resonator (and, conse-
quently, of the cell) and with the electric E perpendicu-
lar to both the z-axis and the axis of the cell. Near the
focus, the distribution of the electric field amplitude
along the z and r directions is described by [8]

, (1)

with Λ = 2.35 cm and f = 6 cm.

E E0
π
2
--- z

Λ
---- 

  e r/ f( )2–cos=

1 2 3
5

6

4

z

r

E

Fig. 1. Schematic diagram of the experiment.
A signal from the resonator was fed to the input of
an oscillograph through a linear amplitude detector 6.
This allowed us to monitor the waveform of the field
amplitude at the focus E0(t) and, after calibrating, to
determine its absolute value.

After a microwave pulse was applied, the field in the
resonator began to grow but its spatial structure
remained unchanged. The observed time behavior of
the resonator field is fairly well described by the depen-
dence

(2)

with a time constant τ = 5 µs. If the air pressure in the
cell was high and the field E0 was insufficient for break-
down, then, after reaching the maximum value, the field
in the resonator remained constant to the end of the
microwave pulse, after which it decayed exponentially
with the same time constant τ.

EXPERIMENTAL RESULTS

Measurements were carried out by the following
procedure. A certain level of pressure (starting from
low levels) was established in the cell; then, a micro-
wave pulse was fed to the resonator input. The field
strength at the resonator focus rose according to depen-
dence (2), and, when it reached a certain level E0 = Ebr,
breakdown of air occurred in the cell. No energy could
then be supplied to the resonator, and the field in it rap-
idly fell with the characteristic decay time shorter than
one microsecond. At low p, the breakdown occurred at
the leading edge of the resonator field envelope
observed on the oscillograph display. As p increased,
the breakdown occurred at later times and the field Ebr
increased accordingly. In the experiments carried out at
a fixed level of the pulsed power exciting the resonator,
the breakdown of air in the cell occurred only up to
pmax = 760 torr. At this pressure, rapid decay of the res-
onator field due to breakdown was observed at the pla-
teau of the resonator field envelope. Experimental con-
ditions at pmax were identical to those of [7]. At a pres-
sure of 750 torr, the treatment of the measurement
results (the treatment procedure is described in [7])
gave a maximum field amplitude Em = 32 kV/cm at the
focus. This point was used for absolute calibration of
the oscillograph signal.

Because of the scatter in the value of Ebr from pulse
to pulse, this value was measured several times for each p.
At p = pmax, the field value Ebr = Em apparently did not
change and a scatter in the breakdown time (within the
plateau of the pulse envelope) was observed. The
results of the Ebr(p) measurements are shown in Fig. 2.
Visual observations through the cell end showed that
the discharge was located near the cell axis. The azi-
muthally symmetric scatter in the positions of the
streamer center in different shots was 1–2 cm.

E0 Em 1 e t /τ––( )=
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DISCUSSION
The conventional method for measuring the break-

down microwave field is based on the assumption that
the field is constant during the pulse and changes only
due to the breakdown itself. The following inequality is
accepted as a criterion for a breakdown [7]:

(3)

where νi, νa, and νd are the rates of ionization, electron
attachment, and electron diffusion from the discharge
region and γ is the electron-avalanche time constant. In
criterion (3), the electron attachment rate in air νa can
be estimated by the formula [9]

(4)

(here and in other similar formulas, p is expressed in
torr).

If the microwave field in the discharge region
bounded by the charge-neutralizing surfaces is uni-
form, then the rate νd in (3) can be estimated from the
relation [4]

(5)

where the electron diffusivity in air is equal to [10]

(6)

For a plane layer with a gap d and a long cylinder or
a sphere with radius a, the characteristic length L and
the form factor F are L = d, a and F = π, 2.4, π, respec-
tively. In criterion (3), one widely used approximation
of the ionization rate for air has the form [9, 10]

, (7)

with β = 5.34. Here, Ek is the critical breakdown field
and the E0/Ek ratio lies in the range 1.3 ≤ E0 /Ek ≤ 3.

Under our experimental conditions (p ≤ 800 torr),
the electron energy does not follow cyclic variations of
the field; i.e., the following inequality holds:

(8)

where δ = 2.1 × 10–3 is the fraction of electron energy
lost by electrons in collisions with molecules [11].

In this case, the amplitude of the critical breakdown
field can be calculated by the formula [4]

(9)

where the frequency of electron–molecule collisions
is [4]

(10)

ν i νa νd γ,+ +≥

νa 2 104 p, s 1–×=

νd F2 D
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---------.=
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----- 
 
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, s 1–=
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ω
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Ek 30 p 2 1
ω
νc
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+ , 
V
cm
-------,=

νc 4 109 p, s 1– .×=
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The commonly used models of low-, intermediate-,
and high-pressure microwave discharges are based on
the approximation of formula (9) [6]. Thus, at high
pressures, when the inequality νc > ω holds, we have
Ek ≅  42p [V/cm]. At low pressures, when the inequality
νc < ω is satisfied, we obtain Ek ≅  10–8ω [V/cm]. In our
experiments, we had νc = ω at p = 5 torr; hence, for-
mally, we investigated high- and intermediate-pressure
microwave discharges.

Finally, the avalanche constant in criterion (3),
which is equal to [6]

(11)

should ensure the increase in the number (or density) of
electrons from the initial level N0 to the value Nm

observed in the experiment during the time τpul. For
estimates, the value ln(Nm/N0) is usually assumed to be
equal to 20–30 [12].

In view of (7), criterion (3) yields the following
value of the threshold breakdown field:

(12)

It follows from this expression that the value of
Ebr is minimum if the field is uniform and constant
(νd = γ = 0); this value is called the critical field. At
E0 = Ek, ionization should only balance out electron
losses due to attachment [see (7)].

Let us estimate the νd /νa and γ/νa ratios under our
experimental conditions. As was noted above, a diffu-
sion theory of microwave breakdown in a highly non-
uniform field is still lacking; however, at relatively high
p, we can use some approximations. In the experi-
ments, a drop in the field amplitude, e.g., by 15%,
occurs as the observation point shifts from the focus
along the z-axis over a distance of z0 = 0.75 cm and
along r over r0 = 2.2 cm. When estimating νd, we

γ
Nm/N0( )ln
τpul

--------------------------, s 1–=

Ebr Ek 1
νd

νa

----- γ
νa

-----+ + 
  1/β

.=

100 101 102 103
0
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Ebr, kV/cm

2
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1

Fig. 2. Pressure dependence of the breakdown field: (1)
experiment, (2) calculation, and (3) calculation by the
approximate formula.
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assume that breakdown occurs in this cylindrical region
of length 2z0 and radius r0 and that the field amplitude
(and consequently the ionization rate) in this region is
constant. Then, for this region, we can use formula (5)
if the electron diffusion attachment length

(13)

satisfies the inequality

(14)

In this case, outside of the ionization region, at the
boundaries of which the field is E(r, z) = Ebr, the elec-
tron density drops rapidly because of efficient electron
attachment; i.e., air plays the role of an absorbing
boundary surface. In the experiments, inequality (14)
holds for pressures of p ≥ 60 torr, for which formula (5)
yields νd /νa ≤ 0.1. Hence, under our experimental con-
ditions (at least at p ≥ 60 torr), we can ignore the influ-
ence of diffusion electron losses from the breakdown
region on the value of Ebr. At the same time, it follows
from Fig. 2 that, for p = 60 torr, the measured value of
the breakdown field is Ebr > 6 kV/cm; i.e., it is higher
than Ek = 42p = 2.5 kV/cm by a factor of more than 2.5.
From formula (12), taking into account expressions (4)
and (11), in which, for definiteness, we set ln(Nm/N0) =
20 and use the experimental value for τpul, we find that
the ratio γ/νa increases the value of Ebr by 10% over Ek

only at p ≤ 60 torr. Therefore, taking into account a
finite pulse duration cannot explain the experimental
results.

It should be noted that the presence of the constant
γ in criterion (4) makes the latter somewhat ambiguous.
The term “breakdown” in the literature has the meaning
of an effect which, in essence, is not a finite-duration
process [4], but rather the condition that the field
applied to the gas exceeds a certain threshold. At the
same time, the process that starts when the breakdown
voltage is applied to the gas is referred to as a gas dis-
charge. The ambiguity is only eliminated in the course

la
D
νa

-----
9
p
---, cm= =

la ! 2z0, r0.

2

1

Ebr Ek

Em

E0(t)

0 tk tbr t

Fig. 3. Time dependence of the field at the resonator focus:
(1) interval in which the multiplication of electrons is sup-
pressed by attachment and (2) interval in which the dis-
charge develops from a single electron to a formed plasma
vibrator.
of an experiment by measuring certain discharge
parameters. During the discharge, the gas begins to
glow, it becomes conductive, the produced plasma dis-
turbs the initial electric field, and so on. Ebr measure-
ments based on recording different discharge parame-
ters can apparently give different quantitative results.

Let us interpret the processes occurring in our
experiment using Fig. 3, which shows the time depen-
dence of the field at the resonator focus, starting from
the instant when the microwave pulse E0(t) is applied.

In the interval 0 ≤ t < tk, the field is below threshold
(E0(t) < Ek) and the multiplication of electrons appear-
ing in the focal region is suppressed by their attach-
ment. The conditions for electron multiplication are
only satisfied at t ≥ tk. At the same time, at t > tk (up to
a certain instant), the discharge plasma that is produced
does not influence the process of pumping EM energy
into the resonator and the field in it continues to grow.
As a result of discharge evolution, by the instant tbr, a
resonant microwave plasma vibrator forms and begins
to intensively absorb the EM energy accumulated in the
resonator [1]. This leads to unbalancing of the oscilla-
tor–resonator system; as a result, the field in the resona-
tor drops abruptly. In the experiment, we in fact mea-
sure a value that is proportional to Ebr(tbr) and is thus
referred to as the threshold breakdown field.

We describe this process quantitatively, neglecting dif-
fusion, whose influence, as was shown, is insignificant.

The continuity equation for electrons in a given EM
field can be written in the form

(15)

Differentiation of expression (2) with respect to
time gives

(16)

Dividing Eq. (15) by Eq. (16) and integrating over
E0, we obtain the integral equation which determines
the breakdown field:

(17)

The dependence Ebr(p) obtained by numerically
solving Eq. (17) for Em = 32 kV/cm, ln(Nm /N0) = 20,
and the function νi(E0) approximating the actual depen-
dence of the ionization rate on the field amplitude is
shown in Fig. 2 by curve 2. It is seen that the results of
the calculations confirm the assumption that growth of
the field is one of the reasons why the measurements
disagree markedly with criterion (3).

We expand the dependence νi(E0) (7) in series in the
critical field, correct to first order. Then, taking into
account criterion (2), we substitute the result obtained

d
dt
----- N( )ln ν i E0( ) νa.–=

dE0

dt
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Em E0–
τ
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in Eq. (15) and integrate it over t from tk to tbr. As a
result, we obtain a transcendental algebraic equation
for calculating the relative breakdown-avalanche time
(tbr – tk)/τ:

(18)

where

(19)

In turn, this quantity allows us to calculate Ebr from
criterion (2). Under our experimental conditions, we
have

(20)

and formula (18) is simplified to

(21)

Hence, Ebr is determined by the approximate equality

(22)

Curve 3 in Fig. 2 shows the corresponding depen-
dence Ebr(p). It is seen that this dependence coincides
with the measured values within the limits of statistical
scatter. All of the dependences Ebr(p) shown in Fig. 2
are calculated assuming that ln(Nm/N0) = 20. Note,
however, that the results of the calculations depend
only weakly on the logarithm value.

The suggested approach to determining the break-
down field also gives reasonable results in two limiting
cases. If the field applied to the gas increases slowly
(τ  ∞), we obtain Ebr  Ek. If the field is applied
rapidly (τ  0), we obtain Ebr = Em, which, in turn,
cannot be less than Ek.

In the above considerations, we assumed that, at the
instant t = tk, there are free electrons in the focal region.
In fact, the question of their origin is rather compli-
cated. In similar experiments [3], it was shown that a
discharge is generally initiated by one electron (N0 = 1).
Obviously, the fact that the measured values of Ebr lie
above the theoretical curve 2 in Fig. 2 is a consequence
of the fact that the appearance of electrons initiating the
discharge is a random event.

In air, at a background radiation level near the
earth’s surface, the number of electrons generated in a
cubic centimeter per second is equal to Jq = (1.3–4) ×

A 1 e
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10–2p. As an example, for p = 760 torr, this gives (10–
30) cm–3 s–1 [12]. At room temperature, the generated
electrons rapidly attach to oxygen molecules, due to
three-body attachment, at the rate

(23)

For example, at 760 torr, the attachment time is
equal to 1/νa1 = 1.7 × 10–8 s. Assuming that, in our

experiments, E0 ≥ Ek in the volume V = π 2z0 ≅
23 cm3, we find that the average time between succes-
sive events of generating an electron is equal to tq =
1/(JqV) ≅  4 × 10–3 s. Evidently, the probability of gen-
erating a free electron during a 40-µs microwave pulse
is negligibly small.

Most probably, the electron initiating the discharge
is generated through its detachment from a negative
oxygen ion. This occurs when the microwave field has
already achieved its critical level. The initial density of
the negative ions in air is

(24)

where

(25)

is the ion–ion recombination coefficient.
For example, at p = 760 torr, the ion density is 4 ×

103 cm–3. The observed scatter in the Ebr values at p =
const indicates that the process of generating the elec-
tron initiating the breakdown is random, with a micro-
second time scale and centimeter space scale. An anal-
ysis of this process is beyond the scope of this paper.

CONCLUSION

Studies of electrodeless breakdown in air at inter-
mediate and high pressures in the microwave field of a
quasi-optical two-mirror resonator have shown that,
under the given experimental conditions, the threshold
breakdown field can substantially exceed the critical
breakdown field.

The observed effect is explained by the fact that the
breakdown occurs in the growing field. The higher the
amplitude of the field applied to the gas and the higher
the rate at which the field grows, the higher the excess
value. When the applied field substantially exceeds the
critical level, the effect in question is independent of the
gas pressure and is dominant at high pressures when the
influence of diffusion on the breakdown field is negligi-
bly small.

The experiments have shown that, when the dis-
charge is initiated at the front of the envelope of the
microwave resonator field, the final stage of the dis-
charge, in which the energy stored in the resonator is
intensively absorbed by the discharge plasma, occurs in

νa1 10 p( )2 s 1– .=

r0
2

n
O2

–

Jq

α r

-----, cm 3– ,=

α r 2 10 6–  cm3  s –1 ×  =
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a field whose value substantially exceeds the critical
level. This fact is important for practical applications of
this type of discharge, because, in this case, the rate of
ionization processes forming the electrodynamic prop-
erties of the discharge is significantly higher than the
rate at which the gas in the discharge channel is heated.

The described experimental procedure for measur-
ing the value of the breakdown field and its statistical
characteristics can be employed for further studies of
some physical phenomena, e.g., the generation of free
electrons in gases in microwave fields above the critical
level and the formation of the resonant properties of a
streamer microwave discharge.
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Abstract—The results of a study of degradation of the surface of gallium arsenide resulting from irradiation
with a power excimer laser at power densities ranging from the threshold power to the power level causing local
melting of the surface are presented. Two degradation mechanisms have been identified, one of which causes
the formation of a thin near-surface layer of modified nonstoichimetric gallium arsenide at a power level higher
than 1 × 107 W/cm2 and the other of which causes the formation of a separate gallium phase. The formation of
the separate gallium phase can be produced either by a single pulse of laser radiation with a power density
exceeding 2.7 × 1011 W/cm2 or by a few less powerful pulses. An empirical relationship has been established
between the power density and the number of pulses causing the formation of the separate gallium phase. It has
also been established that as a result of laser irradiation at the boundary of “cold” and “hot” gallium arsenide,
periodically ordered defects in the form of blocks aligned along the [100] directions emerge. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

By now a considerable amount of work has been
carried out on the degradation of a gallium arsenide
surface under irradiation with a pulsed laser at different
wavelengths [1–3]. These studies mainly deal with
power densities that cause melting of the semiconduc-
tor surface. In [4, 5] we presented the results of a study
of the degradation of a GaAs surface resulting from
irradiation with a pulsed UV laser in a power density
range near the threshold value. The threshold power is
construed here as the lowest power density at which the
degradation of a semiconductor surface can be
detected. The aim of this work is to study the mecha-
nisms that cause degradation of the surface of gallium
arsenide under irradiation from a power excimer laser
at power densities ranging from the threshold power to
the power level causing local melting of the surface of
gallium arsenide.

EXPERIMENTAL TECHNIQUE

A pulsed periodic XeCl laser with a wavelength of
308 nm, an aperture of 1 × 2.5 cm2, pulse durations
from 10 to 50 ns, pulse repetition rates from 1 to 10 Hz,
and beam power from 0.01 to 1 MW [6, 7] was used as
the source of pulsed radiation. The radiation power was
measured with an IMO-2H calorimeter. Usually, vari-
ous aperture diaphragms were used to improve the uni-
formity of the energy distribution over the beam cross-
section. The shape of the radiation pulses was regis-
tered with a FEK-22CPUM photodetector and I2-7 or
C8-14 oscilloscopes. The laser radiation pulse was
characterized by the power density per pulse calculated
1063-7842/00/4510- $20.00 © 21271
from data on the pulse power and shape. The pulse
power density was varied by changing the operating
regimes of the laser or by focusing the beam with a
quartz lens. The exposure of the surface of gallium ars-
enide to the laser radiation was characterized by the
pulse power density and the number of incident pulses.
The number of pulses was determined as the ratio of the
measured time of exposure and the pulse repetition
rate.

We studied light-emitting diodes whose active ele-
ments were AlGaAs layers produced by liquid-phase
epitaxy on gallium arsenide substrates. The diodes
were fabricated using standard procedures of photoli-
thography, dicing into separate crystals, and thermo-
compression assembly into metal-plastic packages.
The laser radiation was focused onto the gallium ars-
enide substrate of the diodes in such a way that the area
of the focused spot was considerably larger than the
substrate area. In this way, edge effects at the boundary
between the “hot” gallium arsenide in the laser-illumi-
nated area and the “cold” gallium arsenide outside this
area could be excluded from consideration. The diodes
were characterized by the integrated power of the opti-
cal emission coming out through the substrate and by
its spectrum. These characteristics were measured for
every diode at different phases of the investigations. It
should be emphasized that in order to simplify the pro-
cessing of the experimental data the diode emission
power was normalized to its value prior to the tests.

In order to evaluate and control the temperature of
the active region of the light-emitting diode during
laser irradiation, the forward bias voltage at a specified
operating current was monitored. This was done in
000 MAIK “Nauka/Interperiodica”
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order to avoid additional degradation of the diode opti-
cal power output that could result from a temperature
rise in the active region of the diode during laser irradi-
ation and thus isolate the degradation of the diode opti-
cal power output caused by the emergence of a nonsto-
ichiometric layer near the gallium arsenide surface. In
addition, the current–voltage characteristics of the
diodes were measured before and after irradiation in
order to eliminate cases of degradation of the active
region of the diode due to laser radiation.

The experimental values given here represent an
average of the data for batches of no less than five
diodes. All experiments were conducted at normal
atmospheric pressure and room temperature.

Epitaxial layers of gallium arsenide were also stud-
ied. The layers were grown by chloride gas epitaxy on
heavily doped substrates and had an electron concen-
tration ranging from 2 × 1017 to 2 × 1018 cm–3. In these
experiments, the area of the laser spot was considerably
less than the area of the epitaxial structure, which gave
rise to the edge effects mentioned above. These effects
will be considered in detail in an analysis of the exper-
imental results below.

In order to study the disturbed gallium arsenide
layer produced near the exposed surface by UV laser
radiation, the following methods were used. The optical
spectra of the diode emission coming out through the
substrate were recorded in order to study the nature of
the defects in the disturbed nonstoichiometric layer of
gallium arsenide. Two independent methods were
employed to determine the thickness of the damaged
layers. In the first method, the optical power output of
a diode after exposure to laser radiation was measured,
then a part of the damaged layer was removed using a
polishing etchant based on H2SO4 + H2O2 [8], and the
optical power output was measured again. This proce-

10 101 102 103

1

Optical power output, arb. units

Number of pulses (N + 1)

III

Fig. 1. Degradation of the diode optical power output as a
result of pulsed laser irradiation. Laser radiation power den-
sity, W/cm2: solid squares, 1.25 × 107; solid circles, 2.5 ×
107; open squares, 6.7 × 107; open circles, 2.5 × 108. The
straight line separates the regions where the two different
degradation mechanisms operate.
dure was repeated until complete recovery of the optical
power output, which was evidence that the disturbed
nonstoichiometric layer of gallium arsenide modified by
the laser radiation was completely removed. This
method gives the thickness of the damaged layer to
within 3–5 µm.

The second method of determining the thickness of
the damaged layers uses measurements of the micro-
cathodoluminescence profile across the cleaved surface
of a gallium arsenide structure subjected to laser irradi-
ation. These measurements were carried out with a
REMMA-202 scanning electron microscope equipped
with a special attachment for microcathodolumines-
cence measurements. The resolution over the cleavage
plane in this instance was from 0.8 to 1 µm.

EXPERIMENTAL RESULTS 
AND DISCUSSION

UV laser radiation is outside the transparency win-
dow of gallium arsenide and is therefore absorbed in a
thin near-surface layer. Constancy of the forward volt-
age across the light-emitting diode during irradiation is
an indication that no additional generation of current
carriers takes place in the active region and that the
temperature gradient arising near the surface does not
reach this region.

In Fig. 1, experimental results on degradation of the
diode optical power output as a function of the number
of laser radiation pulses of different power densities are
presented. Analysis of these results suggests that two
degradation mechanisms operate in the near-surface
layer of gallium arsenide as a result of laser irradiation
(regions I and II in Fig. 1).

In region I, laser irradiation of the surface of gallium
arsenide causes its decomposition accompanied by the
escape of arsenic to the environment [1–5]. As a result,
a near-surface nonstoichiometric layer of modified gal-
lium arsenide is formed, which contains a large number
of arsenic vacancies VAs and gallium atoms in the
arsenic sublattice sites GaAs. These defects represent
radiationless recombination centers in the active region
of the light-emitting diode, which has been confirmed
by examination of the emission spectra before and after
laser irradiation. Introduction of these radiationless
recombination centers into the near-surface layer of
gallium arsenide (through which the radiation from the
active region of the diode is brought out) results in deg-
radation of the diode optical power output. Thus, the
dependence of the diode optical power output on the
laser radiation power can be used in investigations of
the dynamics of degradation processes in the near-sur-
face layer of gallium arsenide. The relationships estab-
lished for region I make it possible to determine the
threshold power density above which degradation pro-
cesses in the near-surface layer of gallium arsenide
develop. Figure 2 shows the dependence of the slope of
the diode emission power degradation curves on the
TECHNICAL PHYSICS      Vol. 45      No. 10      2000
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laser radiation power density for region I (Fig. 1). From
these data, the threshold laser radiation power density
is found to be 9.6 × 106 W/cm2, in agreement with the
results published earlier [1–5].

Now consider the results of determining the thick-
ness of the damaged layer produced near the surface of
gallium arsenide by laser irradiation at a power density
corresponding to region I. Typical results of the diode
power output measurements before and after complete
or partial chemical removal of the damaged layer are
given in Table 1. It is seen that complete removal of the
damaged layer leads to full recovery of the diode power
output. Thus, the technique we employed to monitor
the diode power output in the process of controlled
removal of the damaged layer by chemical etching
makes it possible to determine both the damaged layer
thickness and the parameters of this layer as functions
of the power characteristics of the laser radiation.

The results of measurements of the damaged layer
thickness produced by laser irradiation near the surface
of gallium arsenide, obtained both by chemical etching
and by measuring microcathodoluminescence intensity
profiles over a cleaved facet are given in Table 2. The
results obtained in this work coincide with those known
in the literature [9]. Analysis of the estimated damaged
layer thickness values shows that there is only a weak
dependence of the damaged layer thickness on the laser
power density. This fact was noted earlier in a study
using laser radiation in the visible range [10].

Measurements of the microcathodoluminescence
intensity profiles in the near-surface layers following
laser irradiation give thickness values 5–10 µm greater
than those determined by layer-by-layer chemical etch-
ing. This discrepancy in the thickness values of the
damaged layer indicates that the method which uses
microcathodoluminescence from a cleaved facet is
more sensitive to the presence of a damaged layer than
the one based on controlled removal of the damaged
layer by chemical etching until recovery of the diode
power output. It should also be noted that removal of
the damaged layer results in full recovery of the diode
power output; this fact confirms that the degradation
mechanism operates exclusively in the near-surface
layer of gallium arsenide modified by the laser radia-
tion.
TECHNICAL PHYSICS      Vol. 45      No. 10      2000
Thus, the above investigations permit the following
conclusions to be made about the degradation mecha-
nism of the surface of gallium arsenide in region I. As
a result of pulsed UV laser irradiation with a power
density close to the threshold value, thermal decompo-
sition of gallium arsenide takes place, with arsenic
escaping to the atmosphere and the near-surface layer
becoming rich in gallium. According to data available
in the literature [11], the gallium arsenide surface tem-
perature at the threshold power density of laser radia-
tion is about 900 K, which is substantially lower than
its melting point. This mechanism depends, not on the
wavelength, but exclusively on the power density of the
laser radiation, where the threshold power density is of
the order of 1 × 107 W/cm2. Comparing our results
(Table 2) with data given in the literature [9, 10] we
may conclude that the thickness of the damaged layer
near the gallium arsenide surface is only weakly depen-
dent on the laser radiation power density. It has also
been established that the thickness of the damaged
layer, as determined by layer-by-layer etching, is some-
what less than the value obtained from microcathodolu-
minescence measurements, which is explained by the
higher sensitivity of the latter method.

If the laser radiation power density and/or the num-
ber of incident pulses are further increased, a different
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Fig. 2. Dependence of the slope of diode power output deg-
radation curves on the laser radiation power density for
region I.
Table 1.  Recovery of the diode power output as a result of removal of the damaged layer by chemical etching

Laser radiation power 
density, W/cm2 Diode power output, arb. units

1.25 × 107 0.90 0.93 0.97 0.98 1.00 –

6.7 × 107 0.46 0.48 0.52 0.63 0.87 0.98

2.5 × 107 0.29 0.30 0.47 0.51 0.73 0.78

Thickness of the 
removed layer, µm
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degradation mechanism of the surface of gallium ars-
enide takes over (region II in Fig. 1). Let us consider the
experimental results for this region in more detail. First,
we need to be certain that a single degradation mecha-
nism is in operation in this region. Shown in Fig. 3 is
the dependence of the normalized diode power output
on the normalized number of incident pulses in region
II for various values of the laser radiation power den-
sity. The normalization was made to the diode power
output and the number of incident laser radiation pulses
corresponding to the onset of the second degradation
mechanism. The region where the second mechanism is
in operation begins at the intersection of the straight
line in Fig. 1 with the corresponding degradation
curves of region I. From these results, it can be seen that
the degradation of the diode optical power output in
region II can be described in terms of one relationship,
giving evidence that a single degradation mechanism
operates throughout region II whatever the laser radia-
tion power density or the number of incident pulses.

Now, the energy conditions under which the second
degradation mechanism of the modified layer are initi-
ated should be defined. In Fig. 4, the dependence of the
number of incident pulses needed to trigger the second

100 101

1

Normalized number of pulses N, arb. units

Normalized optical power output, arb. units

Fig. 3. Dependence of the normalized diode optical power
output on the normalized number of incident pulses for
region II. Laser radiation power density, W/cm2: solid
squares, 1.25 × 107; open squares, 2.5 × 107; open circles,
6.7 × 107; solid circles, 2.5 × 108.

Table 2.  Thickness of the damaged layer for various values
of the laser radiation power density determined by different
methods

Laser radiation power 
density, W/cm2

Thickness of the damaged layer, µm

chemical 
etching

microcathodo-
luminescence

1.25 × 107 20 24

2.5 × 107 23 30

6.7 × 107 27 34

2.5 × 108 30 40
degradation mechanism on the laser radiation power
density is shown. From this dependence, the limiting
value of the laser radiation power density has been
found to equal 2.7 × 1011 W/cm2. Starting with this
value, gallium emerges at the surface as a separate
metallic phase after a single pulse. 

Thus, the impact of pulsed laser radiation on the sur-
face of gallium arsenide can be described using two
characteristic power density values: the threshold
power density of the order of 1 × 107 W/cm2, which
causes decomposition at the surface at a temperature of
about 900 K, and the limiting power density of the
order of 2.7 × 1011 W/cm2, which produces the metallic
gallium phase at the semiconductor surface after a sin-
gle pulse.

Next consider the physical nature of the identified
degradation mechanism of the gallium arsenide surface
in region II. Electron microscope investigations have
shown that at the onset of this degradation mechanism
gallium first appears as a separate phase in the form of
drops. As the power density is increased, the separate
drops coalesce into a continuous phase. The separate
metallic phase of gallium causes reflection of the diode
emission by the metallic inclusions, which is the major
degradation mechanism of the diode power output
(region II in Fig. 1).

Simultaneously, periodic defect structures in the
form of rectangular blocks with their sides aligned
along [110] directions emerge at the surface of gallium
arsenide at the periphery of the laser spot; i.e., these
structures arise at the boundary of the “cold” and “hot”
gallium arsenide. Observations of such block structures
have been reported in [12, 13]. Supposedly, these block
structures form due to large temperature gradients
occurring near the above boundary.

Formation of the separate metallic gallium phase as
a result of laser-induced decomposition of the surface,

107 108

102

Number of pulses N

Density of laser radiation power, W/cm2

Fig. 4. Dependence of the number of incident laser pulses
causing degradation by the second mechanism on the laser
radiation power density.
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as well as the appearance of the block structures, can be
caused by a single pulse of laser radiation having the
limiting power density or by multiple radiation pulses
of lower power density. The results presented in Figs. 1
and 4 allow one to establish the following relationship
between the laser radiation power density and the
threshold number of the incident pulses:

where Nthr is the threshold number of the incident
pulses for a given power density Wp capable of causing
the formation of the separate gallium phase and the
block structures, and Wplim = 2.7 × 1011 W/cm2 is the
limiting value of the power density at which a separate
gallium phase forms after a single laser pulse.

RESULTS AND CONCLUSIONS
(1) As the threshold power density of pulsed laser

radiation, 1 × 107 W/cm2, is reached, decomposition of
the surface layer of gallium arsenide caused by the
evolved heat begins and leads to the escape of arsenic
to the environment and enrichment with gallium. The
surface temperature of the gallium arsenide at this time
is estimated at 900 K. These processes form a thin near-
surface layer of modified gallium arsenide.

(2) The thickness of the modified layer is about 20–
40 µm and is only weakly dependent on the laser radi-
ation power density. Microcathodoluminescence mea-
surements are more sensitive to disturbances in the
modified layer than chemical etching and therefore
give values of the damaged layer thickness that are 5–
10 µm greater.

(3) A further increase in the laser radiation power
density and/or the number of incident pulses causes
formation of a separate phase of metallic gallium. A
single laser pulse of power density 2.7 × 1011 W/cm2

causes the formation of a separate phase of metallic
gallium at the surface of gallium arsenide.

(4) An empirical relationship has been established
between the laser radiation power density and the num-
ber of incident pulses required for the onset of the deg-
radation mechanism causing formation of the separate
gallium phase.

N thr W plim/W p( )0.56,=
TECHNICAL PHYSICS      Vol. 45      No. 10      2000
(5) As a result of laser irradiation at the boundary of
the “cold” and “hot” gallium arsenide, periodic defect
structures in the form of rectangular blocks aligned
along [100] directions emerge at the semiconductor
surface at the periphery of the laser spot. This phenom-
enon is observed if the laser spot size is less than the
area of the structure being irradiated. The block struc-
tures can be the consequence of large temperature gra-
dients occurring near the laser spot periphery under
laser irradiation.
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Abstract—Two types of silicon p-channel strain-sensitive FETs were investigated: an MIS strain-sensitive
transistor and a junction-controlled strain-sensitive FET. The transistors are strain-sensitive lateral unipolar
semiconductor devices with internal differential output. The optimum geometry of the devices was found, and
their basic characteristics were calculated. © 2000 MAIK “Nauka/Interperiodica”.
One most promising approach to fabricating new
semiconductor devices (electromechanical sensors and
microactuators) is the integrated technology of micro-
electromechanical silicon systems (MEMS technol-
ogy) [1]. Its extensive development makes researchers
look for new types of strain-sensitive components.

Today’s silicon integrated strain-sensitive resistive-
output components can be subdivided into two groups:
“unipolar” and “bipolar.” An output signal in them is
formed by the directional motion of majority and
minority carriers, respectively. The first group covers
strain-sensitive components based on the piezoresistive
effect and the effect of piezoelectromotive force; the
other, strain-sensitive components built on strain-sensi-
tive transistors (tensotransistors) [2, 3]. Strain gauges
with bipolar transistors offer high output signal and rel-
ative sensitivity but are much more power-hungry than
their unipolar counterparts. Low power consumption
and reasonably high output signal can be combined in
strain gauges with an FET as a sensitive element.

In this work, we will discuss the operation of field-
effect dual-drain tensotransistors and optimize their
design. Two types of the transistors will be considered:
an MIS transistor and a junction-controlled tensotrans-
istor. Like conventional FETs [4], strain-sensitive FETs
must offer a number of significant advantages over the
bipolar tensotransistors. These are, in particular, weak
temperature dependence of the device parameters and
low noise level. In addition, the junction-controlled
transistors must have higher radiation hardness.

By analogy with magnetic FETs, the sensitive ele-
ment of an FET-based integrated strain gauge can be
characterized by absolute sensitivity SA and conversion
efficiency, or relative sensitivity SR [5]:
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where σ is the mechanical strain in the vicinity of a ten-
sotransistor and ID1(D2) are the drain (D1 or D2) currents.
The load resistances in the drain circuits of the ten-
sotransistor are assumed to be equal: RD1 = RD2 = RD.

Figure 1 shows (a) the design and (b) connection
diagram for a p-channel depletion-mode MIS ten-
sotransistor (transistor 1). Figure 2 depicts the same for
a p-channel junction-controlled field-effect tensotrans-
istor (transistor 2).

We will assume that the field-effect tensotransistor
is centrally located on a specially shaped silicon mem-
brane that converts a load uniformly distributed over its
surface to uniaxial elastic (compressive or tensile)
strain in the [110] crystallographic direction [2].

The transistor operates as follows. When appropri-
ate bias voltages (UDS, UG) are applied, holes, subjected
to a sweeping field, drift in the channel. Note that the
transistor design is mirror-symmetric about the plane
passing through the channel center y = Ly /2 normally to
the xy plane. Therefore, in the absence of strain, the

drain currents are equal to each other, ID1 = ID2 = ,
and the output V0 (Figs. 1, 2) is zero if the load resis-
tances are the same, RD1 = RD2 = RD.

If the membrane is loaded uniformly, the mobility of
majority carriers (holes) becomes anisotropic in the xy
plane; as a result, extra, transverse and longitudinal,
electric fields (aligned with the y and x directions,
respectively, and proportional to the strain) arise in the
channel.

Under steady-state conditions, the transverse poten-
tial difference due to mobility anisotropy prevents cur-
rent density redistribution across the channel. There-
fore, the practically significant transverse redistribution
of the current will be observed only near the drains,
where the transverse potential difference is short-cir-
cuited by the p+ regions of the drains. Under the short-
circuit conditions, the strain-induced anisotropy of hole
mobility will cause current density redistribution
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across the channel, drain current inequality, and the
output signal to appear.

The operation of the tensotransistors is formally akin
to that of many-drain magnetic FETs, where the Hall
field redistributes the current between the drains [5, 6].

Let the FET channel be confined by 0 ≤ x ≤ Lx;
0 ≤ y ≤ Ly , and 0 ≤ z ≤ Lz. Then, the drain current of
transistor 1 (Fig. 1a) is given by

(3)

where C is the gate–semiconductor capacitance per unit
area, UC is the cutoff voltage (the gate voltage at which
the channel conductivity becomes zero), UG is the gate
voltage, and U(x, y) is the channel potential at a point
with coordinates x and y.

For transistor 2 with a uniformly doped channel
(Fig. 2a), the drain current is expressed as

(4)

Here, σ0 is the metallurgical conductivity of the chan-
nel, Ui is the built-in potential of the junction, and UC is
the cutoff voltage. In (4) and (5), it is assumed that the
drains D1 and D2 are of equal width LD and are sepa-
rated by W = Ly – 2LD. In the presence of strain, the
potential U(x, y) is represented as

(5)

where U0(x) is the channel potential at a point x without
strain, Φ(x, y) is a potential change due to elastic strain,
and a is the anisotropy parameter [2, 3].

In our case, a is linearly related to uniaxial elastic
mechanical strain σ near the tensotransistor through the
relationship [2]

(6)

where Π44 is the shear piezoresistive module for p-Si.

For practical elastic strains, |a| ! 1 and the inequal-
ity

(7)

holds.
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Substituting expressions (3)–(6) into (2), we arrive
at the expressions for absolute sensitivity SA and con-
version efficiency SR for transistor 1:

(8)

(9)

(10)

Here,  =  =  are the drain currents without
strain. It should be noted that formulas (8)–(10) are also
valid for an MIS tensotransistor with an inversion p-
channel if the signs of UC and UG are reversed. For tran-
sistor 2, the associated expressions have the form
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Fig. 1. Design, connection diagram, and crystallographic
orientation of a dual-drain MIS tensotransistor. (1) source,
(2) gate, and (3, 4) drains.
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(12)

(13)

Thus, the problem of finding the values of SA and SR

is reduced to finding the change in the potential distri-
bution aΦ(x, y) in the channel under load (strain).

Let us consider the limiting cases of uniform and
nonuniform field distributions in the channel without
strain.

1. Uniform field distribution (∂U0/∂x = const). In
this case, (|UC – UG| @ |UDS|, |Ui|) and Φ(x, y) takes the
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Fig. 2. The same as in Fig. 1 for a junction-controlled field-
effect tensotransistor.
form [3]

(14)

With (14), one readily calculates a strain-induced
change in the longitudinal electric field near the drains:

(15)

In Fig. 3, δEx(Lx, y) is plotted against the transverse
coordinate. The field change is seen to have opposite
signs at 0 ≤ y ≤ Ly /2 and Ly/2 ≤ y ≤ Ly. The signs of δEx

and sweeping field coincide in the first region and differ
in the second. Consequently, if the vicinity of the ten-
sotransistor is elastically strained, the current of one
drain will increase, while that of the other decreases.

Substituting Φ(x, y) into (9) and (12) yields the
expressions for SA and SR of the tensotransistors.

For transistor 1,

(16)

where

(17)

For transistor 2,

(18)

The expression for SR,

(19)

is the same for both transistors.
Figures 4 and 5 plot the absolute and relative sensi-

tivities of the tensotransistors vs. channel geometry.
From these curves, one can obtain the optimum ratio
Ly/Lx and the drain width at which SA and SR are maxi-
mum. The conversion efficiency (relative sensitivity)
and the absolute sensitivity are seen to variously
depend on Ly/Lx. If the former first grows with Ly/Lx,
then peaks, and eventually monotonically drops, the
latter first monotonically rises and then saturates at
Ly/Lx ≥ 2. As follows from Figs. 4 and 5, the value of
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Ly/Lx ≈ 1 is optimum; in this case, the drain spacing W ≤
0.2Ly.

Substituting the numerical values of the parameters
into (19), we can estimate the conversion efficiency of
the tensotransistors:

(20)

2. Nonuniform field distribution (∂U0/∂x ≠ const).
Without strain, the sweeping field distribution in the
channel of transistor 1 is found from the constancy of
the total current in any cross section of the channel (see,
e.g., [4]):

(21)

For arbitrary UG’s and UDS’s, an analytic expression
for Φ(x, y) is impossible to derive; therefore, numerical
methods should be invoked [6–8]. According to [7], the
elastic-strain-induced longitudinal component of the
electric field can be represented in the form

(22)

where xM(Lx, Ly) is the distance from the source to a
channel point where Φ is maximum and F1(Lx, Ly, LD)
is a function depending on the channel geometry and
drain width.

Substituting (3), (21), and (22) into (2) in view of
the calculated data for xM(Lx, Ly) and F1(Lx, Ly, LD) [7],
we obtain the estimation for the maximum absolute
sensitivity:

(23)

The numerical analysis [7] shows that the drain and
channel geometries that are optimum for the uniform
case are likewise optimum for a nonuniform field dis-
tribution.

Below is given an estimate of the absolute sensitiv-
ity of transistor 1 under matched-load conditions (the
output resistance of the device equals the load resis-
tance RD). Let Lx = Ly, LD = Ly/2, F1(Lx, Ly, LD)Lx/(Lx –
xM = 2.4), UDS = 10 V, and Π44 = 1.4 × 10–9 Pa–1. Sub-
stituting (21) and (22) into (8) yields

(24)

It is easy to check that SA and SR for transistor 1
almost coincide with those for transistor 2 calculated
by (11)–(13), all other things being equal.
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Fig. 3. Distribution of the strain-induced change in the lon-
gitudinal electric field across the channel. Ly = (1) 10, (2) 30,
and (3) 150 µm. UDS = 1 V, a = 0.01, and Lx = 100 µm.

Fig. 4. Relative sensitivity of the tensotransistor vs. channel
geometry. LD/Ly = (1) 0.5, (2) 0.4, (3) 0.2, and (4) 0.1.

Fig. 5. Normalized-to-maximum absolute sensitivity of the
tensotransistor vs. channel geometry. (1–4) The same as in
Fig. 4.
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It is of interest to compare the SA and SR values for
the tensotransistors with those for a piezoresistive
bridge. For the latter [9],

(25)

As follows from (23)–(25), the values of SR for the
transistors and the bridge are nearly coincident; the
absolute sensitivity of the transistors is, however, more
than twice that of the bridge. Note, in conclusion, that
the absolute sensitivity of field-effect tensotransistors
can be further improved at cascade connection, as for
magnetic FETs [10].

REFERENCES
1. J. Bryzek, Sens. Actuators A 56, 1 (1996).
2. G. G. Babichev, V. N. Guz’, I. P. Zhad’ko, et al., Fiz.

Tekh. Poluprovodn. (St. Petersburg) 26, 1244 (1992)
[Sov. Phys. Semicond. 26, 694 (1992)].

SA 3.5 10 9–  V/Pa, SR× 6.6 10 10–  Pa 1– .×= =
3. I. I. Boœko, I. P. Zhad’ko, S. I. Kozlovskiœ, and
V. A. Romanov, Optoélektron. Poluprovodn. Tekh. 27,
94 (1994).

4. I. M. Vikulin and V. I. Stafeev, The Physics of Semicon-
ductors (Radio i Svyaz’, Moscow, 1990).

5. H. P. Baltes and R. S. Popovic, Proc. IEEE 74, 1107
(1986).

6. P. W. Fry and S. F. Hoey, IEEE Trans. Electron Devices
ED-16, 35 (1969).

7. J. Lau, P. K. Ko, and P. C. H. Chan, Sens. Actuators A 49,
155 (1995).

8. N. Mathieu, P. Giordano, and A. Chovet, Sens. Actuators
A 32, 656 (1992).

9. V. N. Guz’, I. P. Zhad’ko, et al., Fiz. Tekh. Poluprovodn.
(Leningrad) 24, 409 (1990) [Sov. Phys. Semicond. 24,
256 (1990)].

10. F. Ning and E. Bruun, Sens. Actuators A 58, 109 (1997).

Translated by V. Isaakyan
TECHNICAL PHYSICS      Vol. 45      No. 10      2000



  

Technical Physics, Vol. 45, No. 10, 2000, pp. 1281–1287. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 70, No. 10, 2000, pp. 50–56.
Original Russian Text Copyright © 2000 by Vysotski

 

œ

 

, Dzhumaliev, Kazakov, Filimonov, Tsyplin.

                                                                      

SOLID-STATE ELECTRONICS
The Effect of GaAs(001) Substrate Roughness on the Magnetic 
Properties of Epitaxial Fe Films
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Abstract—The effect of GaAs(001) surface roughness on the magnetic properties of MBE-grown Fe films hav-
ing a thickness t in the interval from 12 to 140 Å is investigated by the ferromagnetic resonance method. The
films were deposited at room temperature with rates of 9 and 3 Å/min. For films grown on substrates with the
rms deviation of the roughness σ ≈ 10 and 30 Å, the spectrum is essentially dependent on the relationship
between t and σ. At t ≤ σ and t ≥ 3σ, a single absorption line is observed, whereas at σ ≤ t ≤ 3σ, two absorption
lines are present. These features of the spectra are related to the island growth of the films and the influence of
roughness on island coalescence. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The magnetic properties of thin epitaxial metal films
and multilayer structures are of interest both for appli-
cations and for basic research on magnetism. The effect
of interface roughness on the magnetic properties of the
films is among the topical problems [1–13]. Roughness
has been shown to influence magnetization reversal
processes in the thin films [1–3, 9, 10] and multilayer
structures [4, 6–8], interlayer exchange parameter [6]
and magnetoresistance [11] of exchange-coupled films,
as well as the anisotropy and demagnetizing fields in
the thin films [5, 9, 10]. Also, roughness characteristics
of “magnetic boundaries” in thin-film structures may
noticeably differ from those of the interface [12, 13]. It
was noted [1–13] that the effect of roughness on the
film properties depends not only on the degree of
roughness but also on film growth parameters, such as
lattice mismatch between a film and a substrate, depo-
sition rate, substrate temperature, etc. Therefore, the
influence of roughness on the magnetic properties
needs detailed study in each particular case. The aim of
this study is to investigate the properties of magnetic Fe
films MBE-grown on GaAs(001) substrates of different
roughness.

Of great interest are the magnetic properties of epi-
taxial Fe films on GaAs substrates [14–27]. This sys-
tem attracts attention, since the lattice parameters of Fe
and GaAs are multiples of each other with an accuracy
of no worse than 5%. In addition, GaAs is widely used
in planar integrated circuits, and Fe/GaAs structures are
candidates for spin-dependent nanoelectronics. The Fe
films are applied on GaAs(110) [14–17], (001) [18–
26], and (111) [27] wafers. It was noticed in [18] that
the quality of Fe films with t = 90–330 Å that are grown
by MBE on (001) substrates is, in general, worse than
1063-7842/00/4510- $20.00 © 21281
that of films of the same thickness grown on (110) sub-
strates. This is explained by a greater roughness of
GaAs(001) substrates. In [26], roughness of the
(001)GaAs substrate was assumed to be responsible for
two absorption lines in the ferromagnetic resonance
(FMR) spectrum of 70- to 100-Å-thick in-plane magne-
tized Fe films. It was also shown [24, 25] that films of
thickness ≥700 Å grown on GaAs(001) substrates are
as good as those on the (110) substrates. However, the
influence of GaAs(001) roughness on the Fe film prop-
erties was not investigated.

In this work, the properties of Fe films on
GaAs(001) substrates of different roughness were stud-
ied by the FMR method. The films with t ≈ 12–140 Å
were grown by room-temperature MBE. The absolute,
Rz, and rms, σ, values of roughness were used as
parameters characterizing the condition of the sub-
strates. They were determined with an atomic force
microscope. The GaAs surface finish corresponded to
class 14; i.e., σ < 120 Å[28]. The emphasis was on the
difference in the magnetic properties of the films with
close thicknesses grown on the substrates with σ1 ≈
30 Å and σ2 ≈ 10 Å. In addition, we investigated the
effect of deposition rate on the properties of magnetic
films grown on the substrates with σ2 ≈ 10 Å.

EXPERIMENTAL RESULTS

The Fe films were MBE-grown with a setup based
on an ES 2301 electron spectrometer. The growth
chamber and the analytical chamber, where the elemen-
tal composition of the surface was investigated by
Auger electron spectroscopy, were evacuated. An arm
carried samples from one chamber to the other. Before
deposition, the residual pressure in the chamber did not
000 MAIK “Nauka/Interperiodica”
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exceed 10–9 torr, and during the process, ~10–8 torr. The
Fe films were grown at two rates: v1 ≈ 9 Å/min and v2 ≈
3 Å/min. The deposition rate was determined by means
of a quartz thickness meter. The substrate temperature
was kept close to room temperature.

The GaAs(001) substrates had σ1 ≈ 30 Å (type-I
substrates) and σ2 ≈ 10 Å (type-II substrates). The
roughness was measured in two arbitrarily chosen sub-
strate regions with a SOLVER P4-SPM-MDT atomic
force microscope. The rms value of the roughness was
calculated as in [29]. The surface relief of type-I and
type-II substrates is shown in Fig. 1. One can see that
the roughness amplitude Rz for the type-I and type-II
substrates is ≤160 and ≤50 Å, respectively.

z

y

x

z

y

x

I

II

Scale x : 1000 A y : 1000 A z : 100 A

Scale x : 1000 A y : 1000 A z : 10 A

Fig. 1. Surface images of GaAs(001) substrates of type I
and II. 
Prior to deposition, the substrates were chemically
cleaned in a 40% KOH solution for 5 min, rinsed in dis-
tilled water, treated in a H2SO4 (conc.) : H2O2 (conc.) :
H2O = 16 : 1 : 1 solution, again rinsed in distilled water,
and dried. Just before loading into the growth chamber,
the GaAs surface was treated by UV radiation and then
annealed for 30 min at ~800 K. As a result, the amount
of carbon and oxygen impurities significantly
decreased, as followed from the Auger spectra. The sur-
face composition after the depositions indicated the
formation of the Fe films (Fig. 2).

The films were investigated by the FMR method at
the frequency f0 ≈ 9.8 GHz under room temperature.
The samples in the resonator were placed in a such way
that the magnetic field H0 = 0.1–5 kOe lay in the surface

500

dN/dE, arb. units
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C

O
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300 500 1000 1300

Fig. 2. Auger spectra from the GaAs(001) surface: (a)
before cleaning, (b) after cleaning, and (c) after deposition
of iron.
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plane and formed an angle Θ with the [110]-axis
(Fig. 3). We recorded the dependence of the resonance
field Hr on angle Θ. The accuracy of Θ measurement
was 2°–3°.

In our case, the FMR signal was observed only for
the films whose thickness t exceeds a certain critical
thickness t*. For the films deposited at the rate v1, the
values of t* were ≈30 Å and for those grown at the rate
v2, t* ≈ 10 Å. Notice that, for σ ≈ 10–30 Å, we did not
find an explicit relation between t* and σ.

The experimental orientation dependence of the res-
onance field on rotation angle, Hr(Θ), was compared
with the calculated dependence Hr(Θ). The calculations
were performed for cubic (Hc = K1/M0), perpendicular
uniaxial (H⊥  = 2K⊥ /M0), and planar uniaxial (H|| =
2K||/M0) anisotropy fields, where K1, K⊥ , and K|| are the
cubic, perpendicular uniaxial, and planar uniaxial
anisotropy constants, respectively. It was assumed that
the direction of equilibrium magnetization M0 forms an
angle Ψ with the field H0, and the axis l of planar uniax-
ial anisotropy forms an angle β with the [110] axis
(Fig. 3). The angle Ψ was calculated from the relation-
ship

(1)

where α = Θ – Ψ and η = α – β.
Then, the expression for Hr(Θ) takes the form

(2)

where H = Hr(Θ)cosΨ + Hc(2 – sin2α) + H||cos2η.
Figures 4 and 5 show typical experimental orienta-

tion dependences of the resonance field for the Fe films
deposited at the rates v1 and v2, respectively. The films
grown with v1 were obtained on substrates of both
types, while those grown with the smaller rate, only on
the type-II substrates. The solid lines depict Hr(Θ)
curves calculated from (1) and (2) for the film parame-
ters listed in the table. In the inserts to Fig. 4, typical
dependences of the derivative of the power reflected
from the resonator with respect to constant magnetic

field, (H0), is shown. The distance ∆H between the

extrema corresponds to the FMR linewidth, and the
arrows point to the position of the resonance field Hr.

First, consider the resonance curves (H0) and

curves Hr(Θ) for the Fe films grown on the type-I sub-
strates (Fig. 4) and for films 1–4 (see table). From
Fig. 4a, one can see that, at f0 = 9.8 GHz and H0 = 0.1–
5 kOe, films 1 and 4 show the single resonance absorp-
tion line, which should be assigned to the FMR funda-
mental mode. In film 1, having the minimal thickness
t1 ≈ 30 Å, the dependence Hr(Θ) corresponds to an iso-

2H0 Ψsin– Hc 4α H || 2ηsin+sin+ 0,=

H 4πM0 H ⊥+ +( )

× H 3Hc 2α H || ηsin
2

–sin
2

–( ) f 0
2/γ2,=

dP
dH0
----------

dP
dH0
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tropic film (curve 1), whereas for film 4 with the thick-
ness t4 ≈ 140 Å, the orientation dependence suggests
the presence of anisotropy (curve 2). The dependence
Hr(Θ) for film 4 meets the case when a cubically aniso-
tropic film having the [100] direction of easy magneti-
zation (K1 > 0) possesses also uniaxial planar anisot-
ropy with the [110] axis of easy magnetization. The
effective magnetizations 4πMeff = 4πM0 + 2K⊥ /M0 and
anisotropy fields Hc and H|| obtained in view of (1) and
(2) are given in the table.

[110]
lx

y

z

H0

M0

βΘ
Ψ

Fig. 3. Coordinate system. 
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Fig. 4. Hr(Θ) curves for the films on type-I substrate. (a)
(1) Film 1 and (2) film 4, (b) film 2, and (c) film 3; (b) and
(c) Ψ(Θ) curves for the anisotropic phase of films 2 and 3,
respectively (dashed curves). 
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The FMR spectra from the Fe films having the inter-
mediate thicknesses t2 ≈ 70 Å (Fig. 4b) and t3 ≈ 100 Å
(Fig. 4c) contain two absorption lines separated by
|δH0| < 1 kOe (the lower insert in Fig. 4). The depen-
dences Hr(Θ) for these lines were different and corre-
sponded either to the isotropic case (triangles) or to the
case of a cubically anisotropic film with planar uniaxial
anisotropy (circles).

Notice that the effective magnetizations for the
anisotropic and isotropic responses [obtained with (1)
and (2)] in the FMR spectrum are equal for film 2 and
differ only slightly for film 3 (see table). Moreover,
both the ratio of the isotropic and anisotropic response
amplitudes and the interval of angles Θ in which the
anisotropic response is observed (Figs. 4b, 4c) change
as the film thickness increases.

For the films deposited on type-II substrates with
the rate v1, we failed to find an interval of thicknesses
where two absorption lines exist in the FMR spectrum.
In film 5 (the thickness t5 ≈ 30 Å), the dependence
Hr(Θ) corresponded to the isotropic case, and its shape
was similar to that of curve 1 in Fig. 4a. For films 6 and
7 (t6 ≈ 40 Å and t7 ≈ 50 Å), the dependence corresponds
to the anisotropic case, and its shape was similar to
curve 2 in Fig. 4a. The parameters of films 5–7, for
which the best coincidence of the calculated and exper-

0 40 80 120 160 200
Θ – 45, deg

0.5

1.0

1.5

2.0 (d)

(c)

(b)

(a)

0

0.5

1.0

1.5

0

1

2

0

1

2

Hr, kOe

Fig. 5. Hr(Θ) curves for films (a) 8, (b) 9, (c) 10, and (d) 11
grown on type-II substrate. 
imental dependences Hr(Θ) was obtained, are given in
the table. The Fe films grown on the type-II substrate
exhibit, in general, a narrower FMR line and stronger
cubic and uniaxial planar anisotropy fields.

Consider now the resonance curves for the Fe films
grown on the type-II substrates at the lower deposition
rate v2 (Fig. 5). The single absorption line is observed
in the films with the minimal (film 8) (Fig. 5a) and max-
imal (film 11) (Fig. 5d) thicknesses. In film 8 with t8 ≈
12 Å, the orientation dependence Hr(Θ) corresponds to
the case of uniaxial anisotropy, while film 11 (t11 ≈
50 Å) exhibits the dependence demonstrating the pres-
ence both of uniaxial and of cubic anisotropy.

For films 9 and 10 of the intermediate thicknesses,
there are two absorption lines in the FMR spectrum,
which are typical of the anisotropic dependences Hr(Θ)
(circles and triangles in Figs. 5b and 5c, respectively).
In the film having the thickness t9 ≈ 21 Å, the second
line (triangles) was observed only at Θ’s between 70°
and 110°. For this reason, the experimental dependence
Hr(Θ) for the second absorption line was approximated
with (1) and (2) for the effective magnetization corre-
sponding to the first absorption line in the FMR spec-
trum (see table). The anisotropy fields were ignored in
this case.

In the film with the thickness t10 ≈ 30 Å, the second
absorption line (triangles) was observed throughout the
range of Θ. However, in this case, too, when using rela-
tionships (1) and (2), we failed to obtain satisfactory
agreement between the calculated and experimental
(Fig. 5c) dependences Hr(Θ). It is necessary to stress
that the best coincidence between the experimental and
calculated resonant fields for the second absorption line
is obtained on assumption that the [110]-axis becomes
the “hard” magnetic axis. This approximation corre-
sponds to the reversal of sign of the uniaxial anisotropy
field in the table. However, even in this case, several
data points near the angles Θ ≈ 0, 90°, and 180° do not
fit the calculated dependence Hr(Θ).

For absorption lines associated with an anisotropic
dependence Hr(Θ), the maximum FMR linewidths as a
function of Θ coincide with the maximal |∂Hr /∂Θ| val-
ues. This is demonstrated in Fig. 6 with the orientation
dependences ∆H(Θ) for the anisotropic absorption line
in the FMR spectrum of films 3 and 11, having close-
to-record minimal values of ∆H.

DISCUSSION

Note that the parameters 4πMeff, Hc, and H|| and their
thickness dependences for our films are, in general,
similar to those for the Fe/GaAs(100) and
Fe/GaAs(110) films studied in [14–18]. We recall that
the thickness dependence of the film parameters is
related to the effect of Néel surface anisotropy. It arises
when the symmetry of crystalline fields on the film sur-
face and at the interface and that of magnetoelastic
TECHNICAL PHYSICS      Vol. 45      No. 10      2000
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fields (due to a lattice mismatch between a film and a
substrate) break [14–18]. Detailed discussion of the
thickness dependence of the film parameters is beyond
the scope of this article. Note, however, that the above
surface and interfacial effects in the film excite the non-
uniform mode for which the resonant field can be rep-
resented as [17]

(3)

where (Hr)unif is the resonant field of uniform FMR [see
(1) and (2)], Hs is the surface-induced field, and N is the
number of monolayers in the film.

Now turn to the table and Figs. 4 and 5 in order to
elucidate the effect of roughness on the FMR spectrum
shape and film parameters. The anisotropic properties
of the films having close thicknesses but grown on sub-
strates with different roughness are seen to consider-
ably diverge. Indeed, the films with t = 50–100 Å that
are grown on type-I substrates exhibit both isotropic
and anisotropic absorption lines in the FMR spectrum,
whereas those grown on type-II substrates have only
the anisotropic absorption line at t ≥ 40 Å.

Notice that the additional absorption line observed
in films 2, 3, 9, and 10 cannot be accounted for by the
excitation of nonuniform magnetization oscillations,
which are characterized by the whole number of half-
waves across the film (n ≥ 1) and in its plane (k, m ≥ 1).
Indeed, in Fe films with the magnetization 4πM0 =
12 kG, exchange hardness A = 2 × 10–6 erg/cm, and
thickness t ≤ 100 Å, the resonant fields of the principal

Hr  =  H r ( ) unif 
H

 
s 

N
 ------,+                    
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(n = 0) and first-order (n = 1) modes of spin-wave res-
onance differ by

(4)

This far exceeds not only the observed values of δH0
but also the H0 range available in the experiment. The
difference in the resonant fields of the principal mode
and the mode having inhomogeneous in-plane magne-
tization can be evaluated with the dispersion relation
for magnetostatic waves in an in-plane magnetized fer-
romagnetic film [30]

(5)

where L is the length of the film side that fits k half-
waves.
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Parameters of the films

Film no. t, Å σ, Å 4πMeff, kG Hc, Oe H||, Oe ∆Hmin, Oe

1 30 30 8.48 – – 210

2 70 30 14.2 – – 150

14.2 123 –80 100

3 100 30 15.5 – – 190

16.6 232 –156 50

4 140 30 14.5 252 –70 150

5 30 10 9.8 – – 110

6 40 10 12 194 –202 70

7 50 10 16 220 –157 80

8 12 10 8.5 44 –583 90

9 21 10 13.0 152 –267 50

13.0 – – 100

10 30 10 13.5 32 45 60

16.5 202 –172 30

11 45 10 17.5 240 –106 30
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The appearance of the two absorption lines in the
FMR spectrum of films 2, 3, 9, and 10 can be explained
by the formation of nonuniform texture in these films at
the chosen parameters of Fe deposition and substrate
roughness. It is assumed that film growth starts with the
formation of islands, which overlap after a certain
thickness tc has been achieved. In our case, the coales-
cence of islands must be accompanied by their recrys-
tallization, since the orientation dependences Hr(Θ) of
the absorption lines in the FMR spectrum for films 2, 3,
9, and 10 are different. It is evident that the roughness,
along with the other growth parameters, must influence
the value of tc and the island size d. If it is supposed that
a two-line FMR spectrum corresponds to the beginning
of island coalescence and an FMR spectrum character-
istic of films with pronounced cubic anisotropy (Kc > K||)
correlates with the formation of the continuous film,
then, for the chosen range of roughness and growth
conditions, we obtain that tc ~ σ and that the continuous
film is formed at t ≈ 3σ.

It is clear that the FMR signal from discontinuous
films is averaged over the islands. The resonance field
Hr for each of the islands will be determined not only
by the fields (Hr)unif(H0, Hc, H||, H⊥ ) and Hs, involved in
(3), but also by the demagnetizing fields Hd. If d = 100–
1000 Å [31], for films of critical thickness t* and
4πM ≈ 8 kG, we obtain Hd ~ 4πMt*/d ≈ 0.1–2 kOe.
Such values of Hd, being comparable to the fields H0,
Hc, and H||, can make, along with Hs, a noticeable con-
tribution to the resonance field Hr [see (3)] of a single
island. If the islands noticeably differ in sizes, one
should expect a significant attenuation of the FMR sig-
nal from the film. That is why, in our opinion, the FMR
signal is absent in the films of subcritical thickness t < t*.
It is known that the grain size d grows with decreasing
deposition rate v [31]; this may explain the change in
the critical thickness from  ≈ 30 Å at v1 ≈ 9 Å/min to

 ≈ 10 Å at v2 ≈ 3 Å/min.

Inverse proportion between the island size and dep-
osition rate may be responsible for the difference in the
orientation dependences Hr(Θ) for films 1 and 5, on the
one hand, and film 8, on the other. In the films grown at
the higher deposition rate v1, the size of the islands d
seems to be so small that the contribution of the fields
Hd and Hs to Hr becomes dominant and the averaged
response from the films becomes Θ-independent due to
a spread in d. For film 8, grown at the lower deposition
rate v2, the effect of the above factors decreases
because of increased d’s; hence, the contribution of the
fields Hc and H||, characterizing epitaxial growth of the
film, becomes noticeable.

Island growth can explain both a change in the
amplitude ratio of the isotropic and anisotropic
responses and the extension of the Θ interval where the
anisotropic response is observed as the film thickens
(Figs. 4b, 4c). The variation of the anisotropic FMR lin-

t1*

t2*
                                                                           

ewidth with Θ (Fig. 6) can also be attributed to island
growth. The last two effects can be explained by the
influence of exchange interaction at grain boundaries
when the equilibrium magnetizations M0 inside the
grains are misaligned. If, for example, the isotropic and
anisotropic responses in the FMR spectrum of films 2
and 3 are associated with the presence of the isotropic
and anisotropic phases, the misalignment of the magne-
tizations in the phases will be determined by an angle
Ψ. For the parameters corresponding to the anisotropic
response in films 2 and 3, we obtain |Ψ| ≤ 5° and |Ψ| ≤
25°, respectively (dashed curve in Figs. 4b, 4c). It is
seen that there is only the isotropic response from
films 2 and 3 for angles Θ at which |Ψ| is maximum. At
Ψ  0, to which corresponds the magnetization
along the 〈100〉  and 〈110〉  directions (Θ = πN/4, where
N is an integer), both isotropic and anisotropic
responses are observed. It is also clear that, in this case,
the contribution to ∆H due to the nonuniformity of
magnetization orientation is absent and the width of the
resonance curve is minimal (Fig. 6).

Exchange interaction at island boundaries can be
responsible for the difficulties in selecting the parame-
ters Hc and H|| [(1) and (2)] to fit the orientation depen-
dences Hr(Θ) of the additional absorption lines for
films 9 and 10. In fact, the occurrence of exchange
interaction between the islands with degenerate FMR
spectra must remove degeneration. Then, the FMR
spectra must move apart as it takes place in exchange-
coupled films [32]. In this case, the resonant depen-
dences Hr(Θ) do not intersect (Figs. 5b, 5c).

CONCLUSION

We investigated the influence of GaAs(001) sub-
strate roughness on the FMR spectra taken at the fre-
quency 9.8 GHz from Fe films having the thicknesses
t ≈ 12–140 Å. The films were grown by room-tempera-
ture MBE with the deposition rates v1 ≈ 9 Å/min and
v2 ≈ 3 Å/min. For the substrates with the rms deviations
of the roughness amplitude σ1 ≈ 30 Å and σ2 ≈ 10 Å and
for the chosen growth parameters, the results are the
following.

(1) The spectrum shape is essentially defined by the
relationship between t and σ. At t ≤ σ and t ≥ 3σ, the
single absorption line is observed, whereas at σ ≤ t ≤ 3σ,
the spectrum contains two lines.

(2) The FMR spectrum is observed in the films
whose thickness t is greater than the critical thickness
t*. The latter is determined largely by the deposition
rate and does not explicitly depend on the substrate
roughness.

These features of the FMR spectra arise from the
island mechanism of film growth and the effect of
roughness on island coalescence.
TECHNICAL PHYSICS      Vol. 45      No. 10      2000
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Abstract—Two-mode optical fibers in which the refractive index varies periodically along the axis are consid-
ered. The effect of the imaginary part of a complex refractive index on the transformation and dispersion of a
propagating optical pulse is studied theoretically. It is demonstrated that the pulse can be compressed with no
phase modulation at the fiber input. © 2000 MAIK “Nauka/Interperiodica”.
There has recently been considerable interest in
fibers in which the refractive index varies periodically
along the axis [1–4]. This feature is viewed as an effi-
cient means of controlling propagating laser radiation.
For a real-valued refractive index, analysis of the linear
and nonlinear regimes of optical-pulse transformation
and compression has shown that these fibers possess
unique dispersive properties [5, 6]. Consequently, they
may serve as compact pulse compressors for integrated
optics. In contrast, this study addresses the effect of the
imaginary part of the complex refractive index on the
dispersive properties of a periodic fiber and on the
transformation of propagating optical pulses. In short,
we investigate the effect of amplification or absorption
in the fiber.

1. We will consider a two-mode optical fiber in
which the permittivity is a complex quantity and is dis-
tributed as

(1)

Here, ε0 =  + i  is the permittivity on the fiber axis.
For real fibers, |ε''| ! |ε'|. The function f(r) describes the
optical nonuniformity in the transverse direction,
whereas γ ! 1 and Λ respectively evaluate the modula-
tion depth and the period of the permittivity in the lon-
gitudinal direction. Since it is small, the term γ  will
be neglected: we assume that the imaginary part of the
permittivity is uniform along the fiber axis. The propa-
gation constant of the complex permittivity is βj =  –

i , where | | ! | |. Let us represent the field in the
fiber as the superposition of the eigenmodes in a fiber
that is uniform in the longitudinal direction:

(2)

ε r z,( ) ε0 1 f r( ) 1 γ 2πz/Λ( )cos+[ ]–{ } .=

ε0' ε0''

ε0''

β j'

β j'' β j'' β j'

E t r z, ,( )

=  
1
2
--- e jC j t z,( )R j r( ) i ω0t β j' z–( ) c.c.+exp[ ] ,

j

∑
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where ej are the unit polarization vectors of the modes,
Rj(r) describe the distributions of corresponding modes
over the fiber cross section, and ω0 is the carrier fre-
quency of a wave packet launched into the fiber.

Since the modal propagation constants are complex
quantities, the time envelopes of the modal amplitudes
have the form

(3)

Intermodal coupling is pronounced if modal phase
matching occurs at the carrier frequency. Since the per-
mittivity distribution is periodic and the propagation
constants are complex quantities, the phase-matching
conditions are as follows:

(4)

For parameter values that approximately satisfy the
phase-matching conditions (ω ≅ ω0), the coupled-wave
equations for modal time envelopes of the pulse have
the form

(5)

Here, τ = t = z /u with 2u = u1 + u2, where uj ≅
(∂ /∂ω ) are the modal group velocities. Further-
more, 1/v and dj are complex parameters expressed as
follows:

C j t z,( ) A j t z,( ) β j''z( ).exp=

δ' ω0( ) 0, δ'' ω0( ) 0,≅=

δ ω( ) β1 ω( ) β2 ω( )– 2π/Λ .–=
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and dj = (∂2βj/∂ω2)0, where 2β = β1 + β2. The inter-
modal-coupling coefficients σij are expressed as

(6)

where i, j = 1, 2 with i ≠ j; k0 = ω/c; and ω and c are the
frequency and the speed of light in vacuo, respectively.

2. At the input of the fiber, the time envelopes of the
pulse modal amplitudes are determined by the type of
launching. Let us represent the amplitudes as Aj(τ, 0) =
Aj0φ(τ). In most cases, single- or two-mode launching is
used, whereby either A10 ≠ 0 and A20 = 0 (or vice versa)
or A20 = ψA10. If ψ = ±1, launching is symmetric or
antisymmetric, respectively. With a Gaussian pulse,

(7)

where τ0 is the pulse length at the input.

Let the intermodal coupling be strong so that, with
a high degree of accuracy, |A1|2 + |A2|2 = const over the
intermodal-beat length Lb = 1/|σ| and, therefore, |σ12| ≅
| | ≡ |σ|. System (5) then has the solution

(8)

where the parameters a1 and a2 are slowly varying func-
tions of z; they are determined by the launching condi-
tions. Furthermore,

(9)

Thus, since it is generated by the interacting modes,
the pulse is the superposition of two component pulses.
According to (5) and (8), the amplitudes of the compo-
nent pulses obey the equations

(10)

where

(11)

is the complex effective dispersion of the f th compo-
nent pulse and p = (d2 – d1)/2. In the input conditions
af(τ, 0) = af0φ(τ), we have

(12)

due to (9).
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With the above conditions at the input, the solution
to system (10) has the form

(13)

where τf = τ + (–1)fδz/2qv.
If phase matching is perfect (δ = 0 and χ = –1), then

(14)

We now recast solution (13) as follows:

(15)

where bf ≡ zDf/  and

Two-mode launching (ψ = ±1) is of practical value.
In this case, the entire pulse can be represented by only
one of the component pulses and the modal intensities
Ij = |Cj|2 are equal:

(16)

The above expressions imply that pulse compres-
sion is possible if  < 0. Furthermore, once a pulse
has traveled a distance z = Lsf, where

(17)

the pulse length τ1, generally expressed as τ1 = τ0ξf,
takes on the minimum value

(18)

where ηf = | / |.

If ηf @ 1, then τmin ≅  τ0 . To be specific, con-
sider absorbing quartz fibers. It has been established for
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×
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such fibers that the imaginary part of the refractive
index has an insignificant effect on pulse transforma-
tion and dispersion. For example, perfect fibers have an
absorption coefficient α = 2β'' of about 10–4 m–1, so that
there is only a slight decrease in intensity after a pulse
has traveled a relatively long distance [see (16)]. Typi-

cally, |D''| . ∂2β''/∂ω2)0 . β''/  . 10–35–10–33 s2/m,
whereas |D'| . 10–26 s2/m. Such a small |D''| indicates
that absorption is unimportant in terms of pulse dynam-
ics. Therefore, we will focus on the dispersive proper-
ties of an amplifying fiber. The fiber is assumed to be
fabricated from neodymium-doped glass [7, 8].

Let the pulse be made up of the LP01 and LP02 modes
of the fiber core. Then the condition  =  = β'' is
fulfilled with a high degree of accuracy. For such active
fibers, the quantity 2β''(ω) equals the gain per unit
length and can be expressed as

(19)

where ωr and ρ are, respectively, the frequency and the
cross section of the stimulated transition; N is the con-
centration of active particles in the absence of lasing;
∆ωl is the spectral linewidth; and In is the saturation
intensity [9].

In amplifying fibers, D'' is very close to the imagi-
nary part d'' of the material dispersion, because |D''| ≥
|D'| in the cases of interest, where |d''| @ 2/|v'v''σ|. Con-
sequently, D'' ≅  (∂2β''/∂ω2)0. We thus arrive at the
expression

(20)

where ∆ω = ω – ωr.

ω0
2

β1'' β2''

2β'' ω( ) ρN 1
I0

In

----
ω0 ωr–

∆ωl

------------------ 
 

2

+ +
1–

,=

D''
ρN

∆ωl
2

----------
1 I0/In 3 ∆ω/∆ωl( )2–+

1 I0/In ∆ω/∆ωl( )2+ +( )3
------------------------------------------------------------,=

1

2

3

4

0 0.5 1.0

0.5

1.5

1.0

z/Lz

τ1/τ0

Pulse length vs. distance traveled for ηf = (1) 1, (2) 2, (3) 10,
and (4) 100.
We will assume that In @ I0. According to (15), radi-
ation compression in the fiber is possible only if 3∆ω2 >

∆ . This means that the carrier frequency must devi-
ate somewhat from the stimulated-transition frequency.
Otherwise,  > 0, indicating that uniform pulse
stretching occurs. Let us consider the conditions of
pulse compression, for which D'' < 0. For example, if
∆ω0 ≅  ∆ωl, ω0 ≅  1.8 × 1015 s–1, ∆ωl = 1012 s–1, and
ρN ≅  2 m–1 [8], then one has d '' ≅  –0.8 × 10–24 s2/m.
By  choosing suitable fiber characteristics (the fiber
diameter and the refractive-index profiles of the core and
the cladding), one may obtain  ≤ 10–26 s2/m and
ηf ≅  100 [5, 6].

The figure shows the normalized pulse length as a
function of the normalized distance z/Lz for ηf = 1, 2,
10, or 100 (curves 1–4, respectively). It is seen that the
pulse length approaches infinity as z tends to Lz. Gener-
ally speaking, if z ≅  Lz, one has to allow for dispersion
terms of order higher than 2 so as to avoid unlimited
pulse spreading at a finite z. Note that amplifying opti-
cal fibers serving as compressors must be operated at
carrier frequencies differing from the resonance fre-
quency of the active medium. This makes amplification
less efficient, although the power of the pulse may be
raised by means of pulse compression.

To sum up, in the context of amplifying optical
fibers, the effects corresponding to complex values of
the refractive index seem to be important for a detailed
analysis of lasing dynamics when there is strong linear
intermodal coupling in the pulse. In this connection, we
highlight the possibilities for optical-pulse compres-
sion with no frequency modulation at the input. Conse-
quently, two-mode amplifying fibers show potential for
use as compact compressors of laser radiation in inte-
grated optics.
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Abstract—A single-pulse high-power photodissociation iodine laser (PIL) was developed. It is pumped by the
radiation of an open electric discharge (31.3 kJ, 20 kA). The total output energy at a wavelength of 1316 nm
was found to be (30 ± 5) J for ~100-µs-wide pulses. To improve the breakdown capacity, each pulse was mod-
ulated with a train of five to six narrower pulses by applying a variable magnetic field from the discharge pinch
to the laser medium. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

To date, single-pulse lasers with a pulse energy as
high as many kJ have been implemented [1–5]. For
applications such as laser-induced fusion reactions [6]
or laser processing of solids [7, 8], it is essential that the
output energy be absorbed to the greatest possible
extent. Provided that the heat capacity Cs of a solid tar-
get is constant, the maximum temperature increment in
the vicinity of a laser spot is given by

(1)

where α is the absorption coefficient of the target sur-
face and m is the mass of a heated part of the target. The
total energy of a laser pulse is

(2)

where P(t) is the beam power and τ is the pulse width.
From (1), the upper limit of molten mass within a

laser spot is found from the formula

(3)

where qm is the heat of melting and Tm is the melting
point of a target material.

In experiments on laser breakdown, the upper limit
of evaporated material is given by

(4)

where Cl is the heat capacity of the liquid (molten) target,
qev is the evaporation heat, and Tb is the boiling point.

From (3) and (4), the breakdown depth is a linear
function of α for any processing technique. Direct mea-

∆Tmax
α

Csm
----------WΣ,=

WΣ P t( ) t,d

0

τ

∫=

mmelt
α

Cs Tm 300 K–( ) qm+
--------------------------------------------------WΣ,=

mev
αWΣ

Cs Tm 300 K–( )   +  q m C l T b T m – ( ) q ev + +
---------------------------------------------------------------------------------------------------= ,
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surements [9], however, showed that a laser plasma due
to target sputtering has a very high reflectivity, so that
α does not exceed 0.01 in the visible spectrum range.

The value of α can be increased by decreasing τ,
since only the leading edge of a radiation pulse is
responsible for target damage. In addition, it was estab-
lished that solid targets are eroded most rapidly when a
train of short (to 5 ms) pulses (instead of one long) is
applied. In this work, we used both approaches to
enhance the erosive action of a single-pulse PIL on
solid targets.

PHOTODISSOCIATION IODINE LASERS 
PUMPED BY AN OPEN ELECTRIC DISCHARGE

PILs employ the lasing transition

(5)

In early PILs [10], the pumping of the 2P1/2 level was
accomplished by the photodissociation of perfluoro-
alkyloids due to pulse xenon lamps:

(6)

where p1 = 0.8 (for R = CF3), 0.95 (C2F5), 1.0 (C3F7), or
0.9 (iC3F7) [11].

In [12], a PIL was pumped with the radiation of an
open electric discharge from an exploding conductor.
The advantage of such pumping is the absence of
reflecting (absorbing) surfaces between the glowing
plasma of a pump source and the PIL lasing cavity.
However, this technique makes it impossible to control
the pumping duration and space–time characteristics of
the pumping plasma. In this case, extra optical devices
like an exciter–amplifier are needed to cut τ by one or
two orders of magnitude. This inevitably results in

I P2
1/2( ) hν 1316 nm( ) I P2

3/2( ) 2hν .+ +σ5

RI hν 250–300 nm( )+
R I P2

1/2( ),+

R I P2
3/2( ),+

σ6

p1

p2

            
000 MAIK “Nauka/Interperiodica”



1292 IVANENKO et al.
16

17

15

4 5

2

3

6

17

14
8 11

13

12

9 10

1000 mm 100 mm

Fig. 1. Photodissociation iodine laser pumped by an open electric discharge. 1, glass–textolite tube (length l = 1200 mm, inner diam-
eter d = 150 mm) with plane-parallel end windows made of K-8 glass; 2 and 3, tungsten discharge electrodes hermetically sealed
into tube 1; 3, grounded electrodes; 4, bank of high-voltage KVN capacitors (100 µF) connected to electrodes 2 through gap 5; 5,
gap; 6, high-voltage low-inductance capacitors controlling plasma cylinder shape; 7, totally reflecting mirror (focal distance f = 2 m,
reflectivity r = 99.8%); 8, output mirror (f = 2 m, r = 98%); 9, expanding plasma cylinder due to electric discharge; 10, expanding
cylinder of photodissociation and lasing zone; 11, focusing glass lens; 12, photodetector (also calorimeter or target); 13, storage
oscilloscope for photodetector; 14, vacuum tract; 15, vacuum system for preparation and storage of working gases; 16, IK-50 power
supply to apply 25-kV voltage to capacitors 4; and 17, unit to control gap, oscilloscope, etc.
                  
great losses of excited atoms I(2P1/2) for the time during
which the inversion persists. Moreover, the amplifica-
tion cannot be modulated by applying external mag-
netic fields [13] because of the high magnetic field of
the pump source.

We designed the electric-discharge single-pulse PIL
shown in Fig. 1. The use of indestructible tungsten elec-
trodes 2 and 3 and high-voltage low-inductance capac-
itors 6 makes it possible to form, with control system
17, a specific space–time structure of the plasma sur-
face. The plasma is initiated by a discharge of main
capacitor bank 4. In experiments, the voltage across
bank 4 was 25 kV, which provided the stored energy
E0 = 31.3 kJ.

Prior to each pulse, lasing cavity 1 was evacuated
and then filled by a fresh gas mixture prepared in vac-
uum system 15. An SF6 + perfluoroalkyloid mixture
used in [14] allows for only one shot. We applied a train
of short pulses, using an iC3F7I (25–37 wt %) + Xe (75–
63 wt %) mixture. The total pressure was varied from
0.05 to 0.2 atm. With such an operating mixture, lasing
zone 10 was away from expanding plasma cylinder 9,
which reduces refraction losses [15] of stimulated
emission (5).

The time variation of the current pulse I in the dis-
charge circuit (Fig. 2a) was recorded with a Rogovskiœ
loop. The total energy WΣ of a laser beam was measured
with an IKT calorimeter instead of target 12 (Fig. 1).
The pulse shape was displayed on storage oscilloscope
                                                            

13

 

, which receives the signal from the photocathode
mounted in the path of a deflected beam. The time vari-
ation of the output power 

 

P is shown in Fig. 2b. The
energy efficiency of the PIL in this case is

(7)

which is comparable to ηe = 0.4%, reported in [3]. Fig-
ure 2 implies that the beam power peaks when the mag-
netic field of the discharge vanishes. This is consistent
with the results in [13], where the pulse appeared when
the pump current dropped to near-zero values.

KINETIC MODEL OF PHOTODISSOCIATION 
IODINE LASER

If losses were absent and the iodide in the lasing
cavity were fully dissociated, we would obtain
WΣ, max = 1492 J. Thus, the photochemical efficiency in
the experiment (Fig. 2b) was

(8)

This means that, in principle, the efficiency can be
improved. For example, ηph and ηe can be doubled for
the same PIL design if iC3F7I iodides are replaced by
(CF3)2PI [16] or C6F13I [17, 18] compounds, which
have the greater product p1〈σ6〉 . More accurate relation-
ships between the PIL energy parameters and those of

ηe

WΣ

E0
------- 30 5±( )J

31.3kJ
---------------------- 0.1%,= = =

ηph
WΣ

WΣ max,
---------------- 2.0 0.4%±( ).= =
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a pumping source and active medium can be derived
from a PIL kinetic model.

The construction of the kinetic model must begin
with determining the magnitude of the pumping radia-
tion ϕp(t). It may be found fairly accurately by the
method of autoactinometry [19] from laser emission
characteristics.

In Fig. 2b, the lasing time is τ = 110 µs. For the inner
radius of tube 1 d/2 = 7.5 cm (Fig. 1), the expansion rate
of plasma cylinder 9 is

(9)

With such a velocity of the shock wave, the radius
of the plasma cylinder r(∆t) in a time ∆t = 25 µs
becomes equal to νex∆t = 1.7 cm. In the operating mix-
ture used, the iodide photodissociates to a depth of 1.5–
2.0 cm. As a result, at the time instant ∆t = 25 µs, lasing
occurs within a cylindrical layer of inner surface area

(10)

and volume

(11)

In Fig. 2b, the power of the second laser peak is
P(25 µs) = (6 ± 1) MW, which is equivalent to the stim-
ulated flux of quanta hνs = 0.9544 eV that is averaged
over (25 µs) = 5.3 × 1024 s–1. This flux comes from
volume (11); hence, the rate of lasing transition (6) is

(12)

At the instant of the second peak, the flux ϕp in the
absorption band of the iodide and parameters of the PIL
active medium are fairly accurately [19] related as

(13)

where 〈σRI〉  is the absorption-band-averaged cross sec-
tion of photodissociation (6).

For iC3F7I, 〈σRI〉  was measured to be 6.0 × 10–19 cm2

in the band  = 275 ± 22 nm. At

, (14)

substituting (12) into (13) yields the desired pumping
radiation flux

(15)

v ex
d
2τ
----- 680 m/s.= =

S 2πr ∆t( )l 1000 100±( ) cm2= =

V 2π 0.5 r ∆t( )+( )l 1.75 0.25±( )=

=  2000 300±( ) cm3.

ϕ st

ϕ st 25 µs( )
V

--------------------------
d I P2

1/2( )[ ]
dt

--------------------------
2
3
--- p1

d RI[ ]
dt

--------------– 
 = =

=  2.7 0.5±( ) 1021 cm–3 s 1– .×

ϕ p tmax( )
3ϕ st

2 p1V σRI〈 〉 RI[ ] tmax

--------------------------------------------,=

∆iC3F7I

RI[ ] tmax
0.5 RI[ ]0≅ 4.1 1017mol

cm3
---------×=

ϕ p 25 µs( ) 1.8 0.4±( ) 1022 hν
cm2 s
-------------.×=
TECHNICAL PHYSICS      Vol. 45      No. 10      2000
Let us check the reliability of the obtained
ϕp(25 µs). For the average surface area given by (10),
flux (15) provides the radiant energy release

(16)

for τ = 100 µs in the band . This comprises

(17)

of the stored energy E0 = 31.3 kJ and is consistent with
the Planck distribution of blackbody radiation with a
gas-discharge plasma temperature of 14000 K [20].
The value η∆ = 4 ± 1% is the limiting energy efficiency
for PILs of the given design.

The shock wave having velocity (9) passes through
the lasing layer of the active gas (~2 cm thick) for the
time ∆t = 27 µs. Within this time, flux (15) provides
photodissociation to the level

(18)

This agrees with estimate (14), so that a refinement
of [RI  in formula (13) will leave flux (15) within
the indicated error. According to [21], the velocity of a
bleaching (i.e., iodide photodissociation) wave is

(19)

where c is the speed of light and Φ0 is the flux of pho-
tolyzing radiation in the absorption band of RI at the
front of a moving pumping source.

E∆ hν 4.51 eV=( )ϕ pτS=

=  8 2±( ) 1021 eV× 1300J=

∆iC3F7I

η∆
E∆

E0
------ 4 1±( )%= =

i C3F7I–[ ]∆t

i C3F7I–[ ]0

------------------------------ e
σRI〈 〉 ϕ p∆t–

e 0.3– 0.74.= = =

]tmax

v ph
1
c
---

RI[ ]0

Φ0
-------------+ 

  1–

,=
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Fig. 2. (a) Current pulse I vs. time for an open discharge
between electrodes 2 and 3 (see Fig. 1) and (b) time varia-
tion of the PIL output power P incident on target 12 (Fig. 1).
The data are given for the iC3F7I + Xe working mixture. The
partial pressures are 25 torr for iC3F7I and 125 torr for Xe;
WΣ = 30 ± 5 J. The oscillogram shows the first three out of
six emission peaks and the first out of three decaying current
waves.
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Under the conditions of Fig. 2b, i.e., for [RI]0 =
25 torr and photolyzing flux (15), it follows from (19)
that

(20)

Since shock wave velocity (9) far exceeds (20), we
deal with a photodissociation wave of the second kind
[21]. In this case, the iodide concentration and the stim-
ulated emission output immediately at the front of a
coming shock wave are expressed as

(21)

(22)

From (18), only a fraction of the initial iC3F7I mol-
ecules given by

(23)

contributes to lasing. Then, the energy efficiency of our
PIL would have to be

(24)

The experimentally found values [see (7) and (8)]
turned out to be seven times less. In Fig. 2b, the four-
fold decrease in WΣ is due to the action of the magnetic
field. The almost twofold decline in P(t) may well be
associated with chemical and refraction [15] losses.
Thus, if the detrimental effect of the magnetic field
were completely eliminated, WΣ and, accordingly, ηe

would increase fourfold (ηe would attain 0.4%). It is
precisely this value that was reported for electric-dis-
charge PILs designed in [3] and [20]. Note for compar-
ison that ηe = 1.4% was attained in lamp-pumped PILs
at the excitation energy Eexc = 1000 J [2]. The primary
advantage of lamp pumping is that an electric discharge
in the closed volume of a lamp provides a luminance
temperature of pumping radiation as high as 22000 K.

INTERACTION OF LASER PULSES 
WITH SOLID TARGET

From the aforesaid, it becomes clear that a periodic
magnetic field applied to the PIL lasing medium
decreases the output WΣ by a factor of 3 or 4. However,
the erosive effect of a laser beam is enhanced in this case.
A similar effect was also observed earlier: the plasma
generation threshold in the laser focus decreases under
repeat pulse irradiation of the sample [22].

Products of a laser jet absorb laser emission insig-
nificantly [9], so that the breakdown energy is concen-
trated largely at the pulse front. If magnetic modulation

v ph Φ0/ RI[ ]0≅ 220 m/s.=

iC3F7I[ ] r v ext= RI[ ]0
Φ0

v ex
-------– 5.8 1017mol

cm3
---------,×= =

G r v pht=( )
p1/ σRI〈 〉

1.5
---------------------Φ0 RI[ ]0

Φ0

v ex
-------– 

 =

=  3.8 1021 hν
cm3 s
-------------.×

ηph 0.26
2
3
--- p1 0.156= =

ηe ηphη∆ 0.0064.= =
were absent in the experiments represented by Fig. 2b,
the total pulse energy would be WΣ = 100–120 J, of
which no more than 6–8 J would be absorbed by the
steel target. Due to magnetic modulation, WΣ was set at
30 ± 5 J; however, more than 75% of the energy pene-
trated into the target.

For steel, Cs = 0.11 cal/g/°C, Tm = 1536°C, qm =
65.5 cal/g, Cl ≅  Cs, Tb = 3000°C, and qev = 1511 cal/g.
To melt steel, Em should equal 984 J/g, and to evaporate
steel, Eev should be 8.02 J/g. In the experiments, laser
pulses were focused into a 0.02-cm2 spot, so that the
energy density absorbed by the target was

(25)

Eventually, from (3) and (4), we obtain (for α = 1)
the limiting molten steel thickness,

(26)

and the limiting thickness of evaporated steel

(27)

The depth of an erosion spot was found to be about
0.1 mm. This means that no less than 100 kJ are
required to remove 1 cm3 of the steel target. This value
is comparable to 250 ± 50 kJ/cm3, which was found for
pulse CO2 lasers [23]. It is known that the erosive effect
of laser emission on solid targets is enhanced with
decreasing wavelength [22].
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Abstract—The peculiarities of nonlinear transmission of ultrashort pulses of resonance laser radiation by a
semiconductor thin film in the excitonic spectral region have been studied, taking into account the exciton–
phonon interaction and concentration gain of the dipole moment of the excitonic transition. It has been shown
that under exact resonance conditions the film transmits only the leading edge of the incident rectangular pulse
and completely reflects the remaining part. For a nonzero off-resonance, a residual transmission occurs. A series
of possibilities for transforming Gaussian pulses is predicted. The state equations for steady-state bistable trans-
mission (reflection) have been derived, and the stability of the solutions has been studied. A theorem of areas,
which predicts area restriction of the transmitted pulses, has been stated; namely, the transmitted pulse area can-
not exceed π/2. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The nonlinear optical phenomena in a system of
coherent excitons in semiconductors have usually been
studied within the framework of an infinite medium
model (see, for example, [1, 2] and references therein).
However, in recent years the nonlinear properties of
dimensionally confined semiconductor structures, in
particular, thin films, have been attracting ever growing
scientific and practical interest. A peculiar relationship
between the field of an electromagnetic wave propagat-
ing through a semiconductor thin film (STF) and polar-
ization of the medium gives rise to a number of inter-
esting physical effects [3–9]. Theoretical studies have
been carried out on the peculiarities of the non-steady-
state interaction of ultrashort pulses (USP) of laser radi-
ation with an STF consisting of two-level atoms [3–8]
and in the excitonic spectral region, taking into account
exciton–phonon interactions, two-photon excitation of
biexcitons from the ground state of the crystal, optical
exciton–biexciton conversion, and the effects of satura-
tion of the dipole moment of the excitonic transition
[9]. In the light of this, the study of nonlinear optical
properties of STF would be of interest, since semicon-
ductors possess high nonlinear susceptibilities, a vari-
ety of nonlinearity mechanisms, and small relaxation
times of media excitations, which makes the prospects
of their practical application highly attractive.

This paper presents the results of a theoretical study
of nonlinear optical properties in the excitonic spectral
region of an STF interacting with USP of resonant laser
radiation that takes into consideration the effect of con-
centration gain of the dipole moment of the excitonic
1063-7842/00/4510- $20.00 © 21296
transition. This mechanism of nonlinearity was pro-
posed in a study of the features of non-resonator laser
effect in excitons [10]. Apparently, this mechanism is
similar to the nonlinearity mechanism known in the
theory of optical adsorption bistability, which is
responsible for an increase in the absorption coefficient
with the electron–hole pair density [11, 12]. If the fre-
quency of the exciting laser radiation is tuned slightly
below the excitonic resonance, only weak single-pho-
ton absorption occurs in the Urbach tail of the absorp-
tion band. Nevertheless, electron–hole pairs are gener-
ated in the crystal. With increasing pair density, many-
body effects cause renormalization of the electrical
spectrum, in particular, the red shift of the band edge.
For a certain pair density, the band edge will coincide
with the energy of excited photons and the absorption
will be considerably increased. The increase in absorp-
tion can be interpreted as a concentration enhancement
of the dipole moment of excitonic transition at high lev-
els of laser excitation.

FORMULATION OF THE PROBLEM: BASIC 
EQUATIONS

Suppose that a USP of the resonant laser radiation is
normally incident on an STF with a thickness L much
less than the light wavelength λ in vacuum and the
envelope of the electric field Ei(t) of the electromag-
netic wave varies slowly with a frequency ω and dura-
tion τp that is much less than the exciton relaxation time
τrel but much longer than the oscillation period of the
field of the wave (ω–1 ! τp ! τrel). Under these condi-
tions, the real (dissipative) light absorption is missing
000 MAIK “Nauka/Interperiodica”



        

INTERACTION OF LIGHT WITH A SEMICONDUCTOR THIN FILM 1297

                                                         
[13]. Photons of the pulse passing through the STF
excite excitons from the ground state of the crystal and
interact with them. Through radiative recombination of
the excitons, energy is returned to the passing pulse,
which causes distortion of its shape. At high excitation
levels, the exciton–exciton interaction can produce var-
ious many-body effects in the high-density excitonic
system [14], in particular, concentration gain of the
dipole moment of the excitonic transition. The Hamil-
tonian for the interaction of excitons with the field of an
electromagnetic wave in this case can be written in the
form [10]

(1)

where E+(E–) is a positive- (negative-) frequency com-
ponent of the wave field, a is the amplitude of the wave
of excitonic polarization of the medium, the constant g
describes interaction of the excitons with the wave
field, and the constant µ describes the effect of the con-
centration gain of the transition dipole moment.

Using (1), it is easy to obtain the Heisenberg equa-
tion of motion for the amplitude a of the excitonic
wave,

(2)

where ω0 is the frequency of excitonic transition.

This equation must be supplemented with electro-
dynamics equations, which relate the amplitudes of

slowly varying envelopes of incident (t), transmitted

(t), and reflected (t) pulses, which are obtained
from the conditions of conservation of tangential com-
ponents of the fields at the crystal–vacuum interface
[3–9],

(3)

(4)

where P+ is the medium polarization

(5)

The system of related Eqs. (2)–(5) is closed. The
problem consists in determining the dependence of the
temporal evolution of the envelopes of the transmitted
and reflected pulses, assuming that the envelope Ei(t) of
the incident pulse has been specified.

The solutions of the system of Eqs. (2)–(5) will be
sought in the form of a product of slowly varying enve-
lopes (containing real and imaginary components) and
a rapidly oscillating high-frequency exponential factor:

(6)

H "g a+E+ aE–+( )– "µ a+a+aE+ a+aaE–+( ),–=

iȧ ω0a gE+– 2µa+aE+– µaaE–,–=

Ei
+

Et
+ Er

+

E+ Ei
4πωL

c
--------------P+,+=

Er
+ Ei+ E+,=

P+
"µ g µa+a+( )a.=

E+ Et' iEt''+( )e iωt– ,=

Er
+ Er' iEr''+( )e iωt– , a u iv+( )e iωt– .= =
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Let us introduce the following normalized (dimen-
sionless) variables:

(7)

where ∆ is the off-resonance and τ0 is the main tempo-
ral parameter of the STF response to the external radi-
ation, which is determined by the equation

(8)

Then the system of Eqs. (2)–(4) can be reduced to
the form

(9)

(10)

(11)

(12)

Equations (8) and (9) contain only two dimension-
less parameters, namely, the normalized amplitude
Fi(τ) of the incident pulse field and the normalized off-
resonance δ.

From (9) and (10) it follows that, in general, the
excitonic wave amplitude, as well as the amplitudes of
the fields of transmitted and reflected pulses, are com-
plex quantities, that is, phase-modulated functions. If a
normalized exciton density z = x2 + y2 is introduced and
all quantities are expressed through their amplitudes

and phases as  = Fi ,  = Fr , and a = eiϕ,
then Eqs. (9)–(12) can take the form

(13)

(14)

(15)

(16)

(17)

We consider the features of the steady-state regime
of transmission (reflection) in an STF when a pulse of
laser radiation of constant amplitude Fi = const illumi-

Fi µgτ0Ei, Fi
+ Ft' iFt''+ µgτ0E+,= = =

Fr
+ Fr' iFr''+ µgτ0Er

+,= =

x κu, y κv , κ µ/g, τ t/τ0,= = = =

δ ∆τ0, ∆ ω ω0,–= =

τ0
1– 2π"ωLg2/c.=

dx
dτ
------ δy– 2Fixy– x 1 x2 y2+ +( )2

,–=

dy
dτ
------ δx Fi 1 3x2 y2+ +( ) y 1 x2 y2+ +( )2

,–+=

Ft' Fi y 1 x2 y2+ +( ), Ft'' x 1 x2 y2+ +( ),=–=

Fr' y 1 x2 y2+ +( ), Fr''– x 1 x2 y2+ +( ).= =

Ft
+ e

iϕ t Fr
+ e

iϕr κz

dz
dτ
----- 2 z 1 z+( ) Fi ϕ z 1 z+( )–sin[ ] ,=

dϕ
dτ
------ δ 1 3z+

z
--------------Fi ϕ ,cos+=

Ft Fi
2 2Fi z 1 z+( ) ϕ z 1 z+( )2+sin–[ ]1/2

,=

Fr z 1 z+( ),=

ϕ ttan z 1 z+( ) ϕ Fi z 1 z+( ) ϕsin–[ ] 1–
,cos=

ϕ r
π
2
--- ϕ .+=
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Fig. 1. Dependence of the exciton density zs in a steady-state regime on (a) the field amplitude Fi of the incident pulse at δ = 4 (1),
10.8 (2), 20 (3), 30 (4), 40 (amplitude hysteresis) (5) and on (b) the off-resonance δ at Fi = 1 (1), 2 (2), 3.23 (3), 6 (4), 8 (5), 10
(frequency hysteresis) (6).

zs
nates the film for a time 1 ! τ ! γ/τ0. The steady-state
regime, as will be shown below, sets in within a time t
of the order of several τ0. According to our estimates
[9], τo ≈ 10–13 s. Since γ ≈ 10–10–10–11 s, γ/τ0 ≈ 103–104,
so that the steady state has ample time to set in during
the pulse time, which is less than the relaxation time.
The steady-state values of the exciton density zs and the
phase of the excitonic wave ϕs are determined from the
equations

(18)

(19)

from which a nonlinear equation for zs can be obtained
in the form

(20)

The steady-state exciton density zs in an STF is a
nonlinear function of the pumping amplitude Fi and δ.

It follows from (20) that zs ~ /(1 + δ2) at low excita-

tion levels and zs ~  at high excitation levels. Thus,
with an increase in the excitation level, the kinetics of
exciton generation change significantly. Considering

 as a function of zs (at fixed δ) it is easy to show that

at |δ| < δc =  ≈ 10.797 it is a single-
valued, monotonically increasing function with a point

of inflection at Fic =  ≈ 3.233,

Fi ϕ ssin zs 1 zs+( ),=

δ zs Fi 1 3zs+( ) ϕ scos+ 0,=

zs 1 zs+( )2 δ2/ 1 3zs+( )2+[ ] Fi
2.=

Fi
2

Fi
2/3

Fi
2

349 85 17+( )/6

71 17 17+( )/27
where zs = (71 + 17 )/6 ≈ 0.521. At |δ| > δc, the

function (zs) has two extrema at positive values of zs.
As regards the inverse function zs(Fi), at |δ| < δc, it is tri-
ple-valued in a certain range of Fi values.

STEADY-STATE OPTICAL 
BISTABILITY

In Fig. 1, plots of zs(Fi) for fixed δ values and of zs(δ)
for fixed Fi values are presented, and in Fig. 2, a 3D plot
of zs(Fi, δ) is shown. From Fig. 1a it is seen that at
|δ| < δc a monotonic increase in the exciton density
occurs with an increase in the field amplitude Ei; that is,
the dependence zs(Fi) is nonlinear but single-valued
(curves 1, 2). The situation changes at |δ| > δc. At low
excitation levels, a unique linear relationship is found
between the exciton density in the film and the intensity

of incident radiation; that is, zs ~ /(1 + δ2). However,
at high levels of excitation, this relationship becomes
ambiguous. From Fig. 1a it follows that with an
increase in the field amplitude Fi the exciton density
initially increases monotonically along the lower
branch of the hysteresis curve. When a critical value of
the field amplitude Fi is reached, a further increase in
the amplitude results in an abrupt change in the exciton
density. An additional increase in the field results in a
monotonic increase in the excitonic density along the
upper branch of the hysteresis curve. If the field ampli-
tude now is decreased as it moves along the upper
branch, then an abrupt change in the excitonic density
occurs again, but at a smaller value of the field ampli-
tude. Thus, during a cyclic change (increase and

17

Fi
2

Fi
2
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decrease) in the amplitude of the incident field, abrupt
changes in the exciton density occur, which produces a
hysteresis in the zs(Fi) curve. These abrupt changes are
indicated on curve 4 in Fig. 1a. The width of the hyster-
esis curve increases with δ. The physical reason for the
hysteresis is the dependence on density of the dipole
moment of the excitonic transition.

The hysteresis presented in Fig. 1a is an amplitude-
related hysteresis, since it is caused by variation of the
field amplitude Fi at a fixed off-resonance δ (frequency
of the incident wave ω). However, a frequency-related
hysteresis is also possible if the off-resonance δ (or fre-
quency ω) is varied at a fixed amplitude Fi. Curves of
the frequency hysteresis zs(δ) are presented in Fig. 1b.
It is seen that at low excitation levels no frequency hys-
teresis occurs and the curve zs(δ) is a Lorentzian. The
hysteresis arises at field amplitude values Fi > Fic. The
hysteresis curve width increases with Fi. The zs(δ)
curve in this case is a distorted Lorentzian. During a
cyclic change (increase and decrease) in the off-reso-
nance δ, two abrupt changes in the forward direction
and two abrupt changes in the backward direction arise
(curve 4 in Fig. 1b), which form two ranges of zs hys-
teresis variation in the clockwise and counterclockwise
directions. In Fig. 2, a three-dimensional profile of the
function zs(Fi, δ) is presented; its projections on the
(zs, Fi) and (zs, δ) planes are the curves in Figs. 1a
and 1b.

In Fig. 3, variations of the steady-state phase ϕs of
the excitonic wave are shown as a function of the
pumping amplitude Fi at fixed δ. It follows from (18)
and (19) that ϕs = π/2 at δ = 0. At low excitation levels
(Fi  0), we obtain sinϕs = (1 + δ2)–1/2; that is, with
increasing off-resonance, the phase ϕs rapidly
decreases and goes to zero at |δ| @ 1. At |δ| < δc, the
phase ϕs increases rapidly with the pumping amplitude
Fi, while at |δ| > δc it undergoes hysteresis variation for
a cyclic change of Fi. At high values of the pumping
amplitude (Fi @ 1), the steady-state phase of the exci-
tonic wave asymptotically approaches π/2. Note also
that according to (17)–(19), in the steady-state regime,
the phase ϕt of the wave transmitted through STF coin-
cides with the phase ϕs of the excitonic wave.

The expressions obtained for zs(Fi, δ) and ϕs(Fi, δ)
directly determine the behavior of the steady-state
functions of transmission Ft(Fi, δ) and reflection
Fr(Fi, δ). In Fig. 4a, a plot of the amplitude of the trans-
mitted wave Ft versus the amplitude Fi of the pumping
field is shown for different values of δ derived from
Eqs. (15) and (20). It can be seen that, at |δ| < δc, this
dependence is nonlinear but single-valued, while at
|δ| > δc, the function Ft(Fi) shows hysteresis. The hys-
teresis curve width increases with δ. As the incident
wave amplitude Fi increases, the amplitude of the trans-
mitted wave Ft essentially increases in proportion to Fi;
that is, the function Ft(Fi) is linear. However, at certain
TECHNICAL PHYSICS      Vol. 45      No. 10      2000
critical values of Fi determined by δ, a jump from the
upper to the lower branch of the hysteresis curve occurs
and the film abruptly darkens; with a further increase in
Fi, the transmission decreases monotonically. For a
cyclic variation of Fi, the jump of the Ft function in the
forward direction is greater than the jump in the back-
ward direction. Similar plots for the intensity of the
reflected wave are presented in Fig. 4b. In Fig. 5, the
frequency hysteresis of the transmission function Ft(δ)
is shown for fixed values of the incident wave ampli-
tude Fi. It is seen that there is a critical value of the field
Fi at which the transmission becomes bistable.

Fi

15

10

5

–50
0

50 0 2 4 6
zs

δ

Fig. 2. Dependence of the exciton density zs on Fi and δ.

0 4 8 12 16 20

0.4

0.8

1.2

1.6

Fi

ϕs

1 2 3 4 5

Fig. 3. Dependence of the phase ϕs of the wave of the exci-
tonic medium polarization on Fi at δ = 1 (1), 2 (2), 3.23 (3),
6 (4), and 8 (5).



1300 KHADZHI, FEDOROV
0 4 8 12

4

8

12
Ft

Fi

(a) (b)

0 4 8 12

2

6

10

4

8

1 2 3 4 5

Fig. 4. Dependence of the field amplitude of the transmitted Ft (a) and the reflected Fr (b) pulses on Fi at δ = 4 (1), 10.8 (2), 20 (3),
30 (4), and 40 (5).

Fr
STABILITY OF THE STEADY-STATE 
SOLUTIONS

Let us consider the stability of the steady-state solu-
tions obtained for zs and ϕs. To this end, we will use
Eqs. (13), (14), (18), and (19). We assume that z = zs +
x and ϕ = ϕs + ψ, where |x| ! zs and |ψ| ! |ϕs|, and lin-
earize the system of Eqs. (13) and (14) with respect to
small deviations of x and ψ from equilibrium:

(21)ẋ 2 zs 1 zs+( ) Fi ϕ sψ
3zs 1+

2 zs

----------------x–cos ,=

0 20 40

2

4

6

8

10

δ

Ft

1

2

3

4

5

Fig. 5. Frequency hysteresis of the transmission function
Fi = 3.23 (1), 4 (2), 6 (3), 8 (4), and 10 (5).
(22)

A search for solutions of the system in the form x =
Aeλτ, ψ = Beλτ yields a characteristic equation for the
parameter λ, whose solutions have the form

(23)

Hence, the stability condition for the steady-state
solutions is the inequality

(24)

which coincides with inequality ∂zs/∂Fi > 0. Thus, all
steady-state solutions which have a positive slope of the
tangent to the curve zs(Fi) are stable. Unstable solutions
correspond to the middle part of the hysteresis curve. In
addition, it follows from (23) that the curve zs = 1/3,
which in the space of the parameters (Fi, δ) is described
by the equation

(25)

separates stationary points in the phase plane (zs, ϕs),
which on one side are stable focuses and on the other
side are stable nodes. A bifurcational diagram in the
(Fi, δ) plane is presented in Fig. 6. Region III of the val-
ues of the parameters Fi and δ between the two curves
corresponds to unstable solutions located in the middle
part of the bistable curve zs(Fi) with a negative slope of
the tangent. Regions I and II of the values of the param-

ψ̇
Fi

zs

--------
3zs 1–

2zs

---------------- ϕ sx 3zs 1+( ) ϕ sψsin–cos .=

λ zs 1+( ) 3zs 1+( )–=

± δ
3zs 1+
---------------- 3zs 1–( ) zs 1+( ).

3zs 1+( )4 zs 1+( ) δ2 3zs 1–( ),>

δ2 4 3Fi
2 16

9
------– 

  ,=
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eters Fi and δ correspond to stable solutions, which in
phase plane (x, y) represent singular points of the stable
node (region I) and stable focus (region II) types. In
Fig. 7, an example of the behavior of the phase paths of
the system of Eqs. (9)–(12) at |δ| > δc is presented, from
which it is seen how the phase paths in the non-steady-
state regime converge on a stable node or focus and
diverge from a saddle point.

PECULIARITIES OF NON-STEADY-STATE STF 
TRANSMISSION UNDER EXACT RESONANCE 

CONDITIONS

We now consider the peculiarities of the non-
steady-state transmission of USP. Exact analytical solu-
tions of the systems of Eqs. (9) and (10) or (13) and
(14) in general cannot be found except in the particular
case of the transmission of a rectangular pulse under
exact resonance conditions δ = 0. If it is assumed that
at τ = 0 the crystal is in the ground state, that is, there
are no excitons, then from (9)–(13) it follows that
x(τ) = 0, (τ) = 0, and (τ) = 0; namely, under exact
resonance conditions, the in-phase component of the
medium polarization is exactly zero, as are the imagi-
nary components of the transmitted and reflected
pulses, which means that there is no phase modulation
of these pulses. If the amplitude of the incident pulse
Fi = F0 = const, then according to (10), the rate of vari-
ation of the imaginary component of the medium polar-
ization y(τ) asymptotically tends from below to the lim-
iting value y1, which depends only on F0 and can be

determined by solving the cubic equation y1(1 + ) = F0.
This equation has one real root

(26)

and two complex conjugate roots. Then the solution of
Eq. (10) takes the form

(27)

where y1 is determined by expression (26).
From an examination of (27) and Fig. 8, it is seen

that the amplitude of the excitonic wave y(τ) (normal-

Ft'' Fr''
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2

y1 2 1/3– F0
2 4

27
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  1/2
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2 4
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ized density of excitons z = y2(τ)) first increases rapidly
with time then its increase slows down and y asymptot-
ically approaches y1. The amplitude of the transmitted
pulse Ft first rapidly decreases and for long times τ @ τ0

goes to zero, while the amplitude of the reflected pulse
increases and approaches F0 at τ @ τ0. The steady-state
regime (τ @ τ0) corresponds to total reflection of the
incident pulse. The larger the F0 value, the faster the
steady state sets in. Therefore, under exact resonance
conditions, the STF transmits only the leading edge of
the incident pulse and almost totally reflects the trailing
edge, forming an even shorter pulse in transmission.
Qualitatively, this result agrees with the result obtained
previously for an STF consisting of two-level atoms [3–7].
The reason is that the field of the pulse propagating

Fig. 6. Bifurcation curves of system (9)–(10) in the (Fi, δ)
parameter space separating regions of stable and unstable
solutions.
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Fig. 7. Example of phase paths of system (9)–(10) in the
(x, y) space at δ = 24 and Fi = 6.5.
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through the STF is the sum of the field of the incident
pulse and the secondary field induced by the medium
polarization, whereas the field of the reflected pulse is
formed only by the secondary field. Since the polariza-
tion-induced field, whose phase is shifted by π relative
to the incident pulse, increases with time and the ampli-
tude of the incident pulse is constant, the field of the
transmitted pulse can only decrease.

We now consider transmission of a Gaussian pulse
of amplitude F0 and halfwidth T:

(28)

The results of numerical integration of Eqs. (9)–(12)
at δ = 0 are presented in Fig. 9. The transmitted pulse
has a complex structure; in fact, it consists of two sub-
pulses. If the length of the incident pulse τpulse ! τ0
(T ! 1), the leading edge of the transmitted pulse ini-

Fi τ( ) F0 τ2/T2–( ).exp=

0 0.5 1.0
τ

4

8

Fr

Ft

Ft

Fr

y

1

2

3 3

3

1

2

1

2

y

Fig. 8. Temporal evolution of the amplitude of the transmit-
ted Ft and reflected Fr pulses and of the amplitude of the
excitonic wave y at Fi = 8 (1), 6 (2), and 2 (3).
tially follows the shape of the incident pulse; rapidly
reaches a maximum; and then decays, goes to zero,
changes sign, and forms a second pulse (Fig. 9a). The
amplitude and halfwidth of the first subpulse at T ! 1
are essentially equal to the amplitude and halfwidth of
the incident pulse, while the second subpulse has a
small amplitude and large halfwidth. The reason is that
at T ! 1 the transmission time of the pulse is too short
for the medium to react, since its polarization lags far
behind, affecting only the trailing edge of the incident
pulse. Thus, at T ! 1, the first subpulse is formed by the
field of the incident pulse, while the second one is
formed due to the secondary field being induced by
medium polarization. As the halfwidth of the incident
pulse increases (at fixed amplitude), the two subpulses
will be formed as before; however, the amplitude of the
first subpulse will decay much more rapidly than the
amplitude of the second subpulse. At T ≥ 1, with the
increase in F0, the amplitudes of both subpulses slowly
increase; and at high F0, this increase tends to saturate
(Fig. 9b). Hence, we can conclude that an effect of
power restriction of pulses transmitted through an STF
exists.

PECULIARITIES OF NON-STEADY-STATE STF 
TRANSMISSION FOR NONZERO 

OFF-RESONANCE

We now consider nonlinear STF transmission for
nonzero off-resonance. In this case, the transmitted
(reflected) pulse is phase-modulated. In Fig. 10a, the
results of a numerical simulation of the temporal evolu-
tion of the amplitude Ft(τ) of the transmitted wave fol-
lowing incidence on an STF of a rectangular pulse with
amplitude Fi = 8 and different off-resonance amounts δ
are presented. It is seen that at δ < δc = 29.86 (for the
specified Fi value), that is, when δ is in range I in Fig. 6,
the evolution of the transmitted field proceeds as a rapid
decrease in its amplitude Ft with time and establish-
ment of the steady state, which is described by Eqs. (15)
and (20). The higher the δ value, the higher the steady-
Ft

8.0

4.0

0
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–0.2 0.2 0.6
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8
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τ

(a) (b)
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0.5

0

T = 0.1 T = 1

–4 –2 0 2 4

0

4

8
F0

τ

Fig. 9. Non-steady-state transmission of Gaussian pulses of duration T = 0.1 (a) and 1 (b).
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Fig. 10. Temporal evolution of the field amplitude Ft at Fi = 8 (a) and δ = 24 (b).
state value of the amplitude Ft, since large off-reso-
nance amounts correspond to the film transparency
region. The establishment of the steady-state regime at
δ < δc proceeds in a time τ of the order of τ . 0.2–0.3
(τ . (0.2–0.3)τ0). For δ approaching δc, the time for the
establishment of the steady state increases (compare
the curves with δ = 29.2 in Fig. 10a). Finally, for δ > δc,
the steady state is approached in the oscillation regime,
since these δ values correspond to region II in Fig. 6,
where the stationary points are stable focuses. The sys-
tem evolution for rectangular pulses of different ampli-
tudes and with fixed off-resonance (that is, for the ver-
tical section in Fig. 6) is shown in Fig. 10b. At low
amplitudes Fi corresponding to region II in Fig. 6, the
steady state is approached in the oscillation regime,
whereas at large Fi corresponding to region I, a rapid
decrease in the transmission takes place with the estab-
lishment of the steady-state regime in time t < τ0. Thus,
it is seen that at δ ≠ 0 residual STF transmission occurs.

In Fig. 11, temporal evolution plots are presented
for the amplitudes of transmitted and reflected pulses,
as well as the exciton density in the STF for Gaussian
incident pulses (28) with amplitude F0 = 10, for off-res-
onance amount δ = 24 and different halfwidths T. As
follows from Fig. 4, this off-resonance amount corre-
sponds to a developed bistability of the steady-state
transmission (reflection). It is seen from Fig. 11 that at
the first stage the shape of the transmitted pulse essen-
tially coincides with the shape of the incident pulse and
the exciton density is vanishingly small. At the time
when the amplitude of the incident pulse Fi corre-
sponds to a critical value (at which Ft jumps from the
upper to the lower branch of the hysteresis curve in
Fig. 4a), the amplitude of the transmitted pulse falls
sharply, while the exciton density rises sharply (in
ICAL PHYSICS      Vol. 45      No. 10      2000
accordance with Fig. 1a). Then, with the increase in the
incident pulse amplitude, the amplitude of the transmit-
ted pulse decreases slowly and reaches its minimum
approximately at the time corresponding to the maxi-
mum amplitude of the incident pulse. At this time, the
exciton density is also a maximum. With decreasing
incident pulse amplitude, the amplitude of the transmit-
ted pulse increases slowly and the exciton density
decreases. When the pulse amplitude equals the critical
value corresponding to the jump from the lower to the
upper branch of the hysteresis curve in Fig. 4a, the
transmitted pulse amplitude is rapidly rising and the
density of excitons is decreasing. Then, the amplitude
of the transmitted pulse decreases in the oscillation
regime, which is the more pronounced the smaller the
halfwidth T of the incident pulse. From the Ft(Fi) and
Fr(Fi) curves in Fig. 11, it is seen that considerable
deviations from the steady-state hysteresis (Figs. 4a,
4b) arise at small halfwidths of the incident pulse,
whereas at large halfwidths (for example, T = 20), these
curves nearly coincide with the corresponding steady-
state curves (Figs. 4a, 4b).

Note that if the amplitude of the incident pulse F0 is
less than the critical one for a given δ, the shape of the
transmitted pulse coincides with the shape of the inci-
dent pulse, the reflection is very weak, and the trans-
mission function is linear.

THEOREM OF AREAS

It is generally believed that the theorem of areas is
an important result in the theory of coherent nonlinear
propagation of a USP of resonant laser radiation [15–
17]. Following [17], let us derive such a theorem for the
excitonic spectral region using the above nonlinearity.
Let us write the areas of the transmitted Θ and incident
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Fig. 11. Temporal evolution of the amplitudes of the transmitted Ft (thin solid curves) and reflected Fr (dashed curves) pulses and
the exciton density z (dotted lines) in an STF for Gaussian incident pulses (thick solid curves) of amplitude F0 = 10 and different
halfwidths T (a, d, g, j) and the corresponding non-steady-state hystereses in transmission (b, e, h, k) and reflection (c, f, i, l). The
dashed curves in figures (b, e, h, k) and (c, f, i, e) correspond to steady-state conditions.
Θi pulses in the form

(29)Θ µg Et t( ) t, Θid

∞–

∞

∫ µg Ei t( ) t.d

∞–

∞

∫= =
The duration of the propagating pulses τp is
assumed to be much less than the exciton relaxation
time τrel and the exciton system to be nonuniformly
broadened with the distribution function f(∆) with
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respect to the off-resonance ∆. Integrating system of
equations (9)–(11) with respect to time, the following
relationship between the areas of the incident Θi and
the transmitted Θ pulses (theorem of areas) can be
obtained:

(30)

where k = πf(0)/τ0 and f(0) is the distribution function
at ∆ = 0.

If it is assumed that f(∆) is a Gaussian with the half-

width ∆0, then k = (∆0τ0)–1. It can be seen from (30)
that the area of the transmitted pulse is limited from
above Θ  π/2 at Θi  ∞. Thus, the largest possible
area of the transmitted pulse tends to π/2 from below.
The dependence Θ(Θi) for a series of values of the
parameter k is presented in Fig. 12. It is seen that the
area of the transmitted pulse initially increases mono-
tonically with the area of the incident pulse Θi; how-
ever, this increase saturates rapidly. The saturation is
slower at larger k. Thus, if the concentration gain of the
dipole moment of the exciton transition is taken into
account, the STF proves to be an efficient limiter of the
area of incident pulses.

CONCLUSIONS

The transmission (reflection) of resonance laser
radiation by an STF was investigated in a steady-state
regime and in the regimes of ultrashort rectangular and
Gaussian pulses, taking into account the exciton–
phonon interaction and the exciton transition dipole
moment gain at high levels of excitation. It has been
shown that under exact resonance conditions an STF

Θi Θ k Θ 1
5
6
--- Θtan

2
+ 

  ,tan+=

π

0 10 20 30 40 50
Θi
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Fig. 12. Dependence of the area Θ of the transmitted pulse
on the area Θi of the incident pulse at different values of the
parameter k.
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transmits only the leading edge of the incident rectan-
gular pulse and almost completely reflects the trailing
edge; in this case, the higher the amplitude of the inci-
dent pulse, the faster the film becomes “closed” to
transmission. For a nonzero off-resonance, the film
transmission is oscillatory and rapidly decays, giving
way to a residual transmission which coincides in mag-
nitude with the steady-state transmission. In the trans-
mission of Gaussian pulses, there is a wide range of
possible transformations depending on the off-reso-
nance, amplitude, and halfwidth. It has been shown that
as the halfwidth of the incident Gaussian pulse is
increased, the difference between the non-steady-state
and the bistable steady-state transmission functions
diminishes. The derived theorem of areas predicts lim-
itation of the transmitted pulse area, which can also be
concluded from the properties of the non-steady-state
transmission; namely, an arbitrarily large increase in
the amplitude of ultrashort incident pulses does not
result in an appreciable increase in the amplitude of the
transmitted pulses.

Along with the studied effects of the transmission of
pulses of simple shapes, investigations of the transmis-
sion (reflection) of short phase-modulated pulses, tak-
ing into account the chirping effect, and of weak pulses
with harmonically varying amplitude under continuous
pumping by powerful pulses near the switching thresh-
old are of great interest. In this case, a broad spectrum
of bifurcations of period doubling and the emergence of
chaotic transmission regimes is possible. All these
problems will be studied at a later time.
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Abstract—An analytical representation of the longitudinal Lorentz force describing the electromagnetic inter-
action of two identical undulator emitters moving along the axis of a helical undulator is obtained under the
dipole approximation. A functional dependence of the coherence area volume of the emitters on the external
parameters of the system is determined. The applicability of the results and the main aspects of their physical
meaning are discussed. © 2000 MAIK “Nauka/Interperiodica”.
† INTRODUCTION

It is known [1, 2] that the formation of the coher-
ently emitting electron bunches is just what provides a
positive feedback necessary for the development of col-
lective instabilities in the electronic amplifiers and self-
excited oscillators producing coherent microwave radi-
ation. A longitudinal Lorentz force generated by the
field of the natural undulator radiation (NUR) of the
electron bunch provides such a grouping in the mag-
netic bremsstrahlung (undulator) free electron laser
(FEL) [3, 4]. If the relative volume density of the bunch
is sufficiently high and the frequencies are relatively
low, one can use a fluid model of the bunch with neglect
of the spatial structure of the Lorentz force, in which
case the final theoretical results depend only on the
mean volume density in the bunch. On the other hand,
the above-mentioned structure eventually determines
the number of the coherently emitting electrons in the
case of the ultrashort wavelength range where the rela-
tive volume density of the ultrarelativistic electron
beam (UREB) is relatively low. The number of the
coherently emitting electrons determines the rate of the
bunch deceleration by its microwave radiation field in
the undulator and the parameters of the nonequilibrium
UREB–undulator system at which it stops emitting
incoherent magnetodeceleration (synchrotron) radia-
tion and starts emitting coherent radiation of the FEL
type [5, 6].

This work concentrates on the search for and analyt-
ical study of the Green function of the force character-
izing a pair electromagnetic interaction of two charges
via the field of the microwave NUR of one of them in a
helical undulator. Below we demonstrate a possibility
of performing such a study in the dipole approximation,
provided that the undulator field strengths are relatively
low.

† Deceased.
1063-7842/00/4510- $20.00 © 21307
FORMULATION OF THE PHYSICAL PROBLEM 
AND THE METHODS TO SOLVE IT

The purpose of this work was to establish an analyt-
ical relationship between the characteristic volume of
the coherence area for the grouping force of an individ-
ual emitter (Vcoh) and the external parameters of the
system, specifically, the undulator field amplitude (H0)
and period (D) and the relativistic factor of the emitting
charge (γ). For this purpose, we calculate the Lorentz
force for a microradiowave interaction of two identical
charges moving along the axis of a helical undulator
with equal velocities at a fixed distance from each other
and interacting via NUR of one of them. Initial expres-
sions for the NUR fields use their classical representa-
tion via the Lienard–Wiechert retarded potentials [6, 7].
For the physical interpretation, we use a receptor
charge (affected by the microwave field of the emitting
neighbor) as a test particle detecting field structure of
the emitter radiation.

PROBLEM SOLUTION

1. NUR field of an individual charge in a helical
undulator. Consider an ultrarelativistic charge (γ @ 1)
moving along the axis of a helical undulator. The undu-
lator field is given by the formula

(1)

Here, eα are the unit vectors directed along the Carte-
sian axes OX (α = x) and OY (α = y), and kω is the undu-
lator wavenumber. An emitter characterized by the total
energy Wtot ≡ m0c2γtot and the charge q moves along the
helical trajectory circumventing the undulator axis:

(2)

Hw H0 ex kωz ey kωzsin+cos( ), kω
2π
D
------.≡=

Re Ze t( )[ ] ex Xe 0( ) aω kωZe t( )sin+[ ]≡
+ ey Ye 0( ) aω kωZe t( )cos–[ ] ezZe t( ),+
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where ez is the unit vector directed along the OZ axis,

Ze(t) ≡ Ze(0) + t is the trajectory of the emitter lon-
gitudinal motion, Re(0) is the emitter position at the ini-

tial moment of the Euler time (t = 0), and  ≡

c  is the longitudinal velocity of charge. The
corresponding longitudinal relativistic factor γ|| is
uniquely determined by the total energy γtot and the
dimensionless undulator parameter K:

The charge rotation radius in the field (1) also depends
on these parameters:

Accelerated emitter motion in the field (1) gives rise
to a radiation field. Under the ultrashort wavelength
approximation (γ @ 1) this field can be represented in
terms of the Lienard–Wiechert retarded potentials in
vacuum (with neglect of the influence of boundaries of
the interaction region [7]):

(3)

Here, primed values refer to the moment of the field
emission t'. This moment is uniquely related to the
moment of the field observation t:

A dot at the emitter transverse velocity denotes the
derivative with respect to time t.

2. The force of the microwave interaction of two
identical charges. In the general case (with arbitrary
values of the undulator and emitter external parame-
ters) the field (3) has an extremely complicated struc-
ture and cannot be studied by analytical methods. In
order to explicitly represent this structure, we consider
a limiting case of the dipole approximation when K2 ! 1.
For the same purpose (explicit representation of the
field structure) the detector is represented by another
charge (receptor) possessing the same properties and
moving along the trajectory differing from the emitter
trajectory (2) only by the initial conditions:

(4)

V ||
0( )

V ||
0( )

1 γ||
2––

γ||
2 γtot

2

1 K2+
---------------, K

qH0D

2πm0c2
------------------.≡≡

aω
KD

2πγtot
--------------.=

Erad
e( ) r t,( ) q

c2
----

ne' ne' be' V̇e',–[ ],[ ]
Re' 1 be' ne'–( )

-------------------------------------------,=

Re' r Re Ze t'( )[ ] ,–≡

Hrad
e( ) r t,( ) ne' Erad

e( ),[ ] , ne'
Re'

Re'
------, βe'

Ve'
c

------.≡≡≡

t t'
Re'
c

-----,+=

Rr 0( ) Re 0( ) exρ⊥ x eyρ⊥ y ezρ||; ρ|| 0.>+ +≡–
This method of detection substantially simplifies the
structural study of the bunching force generated by the
emitter NUR field:

(5)

Indeed, in this case, the right-hand side in Eq. (5)
depends only on the longitudinal (ρ||) and transverse

(ρ⊥  ≡ (  + )1/2) distances between the charges at the
undulator entrance (but does not depend on time).
Expanding the right-hand side in (5) in the powers of a
small parameter K2 ! 1 and introducing new dimen-
sionless variables x ≡ kωρ||γ2 and y ≡ kωρ⊥| γ2 we arrive at
the following representation of the force (5):

(6)

Note that the magnetic and electric components of
the total force (5) yield the first (decelerating) and the
second (accelerating) terms in the right-hand side in
Eq. (6), respectively.

The spherical symmetry of the problem under con-
sideration in the x, y variables is manifested by the cor-
responding symmetry of the Green function Φ(x, y),
which we assume to be normalized to unity at the y = 0
axis at x  +0. This symmetry makes it possible to
introduce new spherical variables by substituting
x ≡ ρcos(2ψ) and y ≡ ρsin(2ψ). The Green function can
be represented in the new variables as:

(7)

ANALYSIS OF THE SPATIAL STRUCTURE 
OF THE G(ρ, Ψ) FUNCTION

As defined above, the parameter ρ ≡  char-
acterizes a dimensionless distance between the receptor
and the emitter, whereas vector ρ makes an angle

Frad
r e,( ) q Erad

e( ) Rr t,( ) 1
c
--- Vr Hrad

e( ) Rr t,( ),[ ]+
 
 
 

z

.≡

ρx
2 ρy

2

Frad
r e,( ) 2 qkωKγ( )2Φ x y,( ),–=

Φ x y,( ) 1

2 x2 y2+( )
------------------------ A x y,( ) x x2 y2++( )sin{≡

– B x y,( ) 1 x x2 y2++( )cos–[ ] } ,

A x y,( ) x2 y2+ x x x2 y2++( ) 1
2
---y2+ ,≡

B x y,( ) x 2x x x2 y2++( ) y2–[ ]

2 x x2 y2++( )
------------------------------------------------------------.≡

G ρ ψ,( ) ρ ψcos
2( )sin

ρ
------------------------------- 2 ψcos

4( ) ρ ψcos
2( )---cos





≡

– 2ψcos( ) 2ψcos ψsin
2

–[ ] ρ ψcos
2( )sin

ρ
-------------------------------





.

x2 y2+
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Θ ≡ 2Ψ with the positive semiaxis of the undulator
(x > 0, y = 0). At small values of the above distance
(ρ2 ! 1), the corresponding asymptotics G0(Ψ) ≡ G(0, Ψ)
is given by the formula:

(8)

It follows from this formula that, as the angle Θ
modulus increases from Θmin = 0 to Θmax = π/2, the
G0(Ψ) amplitude initially increases (up to Gmax ≈ 1.024
at x ≈ 0.29) and then monotonically decreases from
about unity (at x ≈ 0.3) to 1/4 (at Θ = π/2) (Fig. 1). The
modulus of the right-hand side in (7) is inversely pro-
portional to ρ and decreases at ρ > 1. This decrease is
accompanied by the oscillations in G. The rate of these
oscillations reaches a maximum at the emitter axis
(Θ  0), where the period equals 2π, and exhibits a
twofold decrease in the transverse direction (i.e., at
Θ  π/2, see Fig. 2). It is this decrease in the field of
the magnetic retardation dipole radiation of the emitter
in its far-field zone that appears to be the reason of a
decrease in the coherency in the UREB electrons decel-
eration by the NUR field of these electrons at relatively
small values of the bunch volume density (Q ! 1;
[5, 6]). In the latter limiting case (Q ! 1) the nonequi-
librium UREB–undulator system represents a source of
incoherent NUR of UREB electrons. Equating the
right-hand side in Eq. (7) to zero, we obtain a curve that
separates the positive and the negative values of the
G(ρ, Ψ) function in the band (0 ≤ ρ ≤ π; 0 < Ψ < π/4).
In this curve, the expression in braces in the right-hand
side of Eq. (7) becomes equal to zero. Physically, this
curve implies equality of the accelerating and deceler-
ating forces produced by the emitter electric and mag-
netic fields, respectively (see the right-hand side in
Eq. (5)). Figure 3 shows equilevel lines of the G(ρ, Ψ)
surface over the aforementioned band. Once the shape
of the G(ρ, Ψ) surface is known, one can calculate the
volume of the coherency domain of the bunching force
produced by the emitter.

This volume is uniquely determined by the integral:

(9)

Note that the integration over the dimensionless
length ρ and the angle Θ must be performed only over
the area adjacent to the point ρ = 0 where G(ρ, Θ/2) is
not only positive but is larger than a positive constant
value Gmin.

It is seen from the right-hand side in Eq. (9) that the
product of the square of the NUR wavelength (λ ≡

G0 Ψ( )

=  2 Ψ 2Ψ 2Ψ Ψsin
2

–cos( )cos–cos
2[ ] Ψ.cos

4

V coh 2π ρ⊥ ρ⊥d ρ||G ρ⊥ ρ||,( )d∫≡

=  
Dλ2

π2
---------- G ρ Θ/2,( )ρ2 ρ Θsind Θd∫ Dλ2 f coh,=

f coh Gmin( ) π 2– G ρ Θ/2,( )ρ2 ρ Θsind Θ.d

G Gmin≤
∫≡
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D/2γ2) and the undulator period (D) determines the
functional dependence of the coherency volume, that is
of the domain where the emitter bunching force
depends on the external parameters of the system. The
form factor fcoh is a functional of the admissible value
of the decrease in coherency of emitters:

(10)

Figure 4 shows a plot of the form factor fcoh versus
the quantity Gmin.

DISCUSSION

The main results are as follows:

(1) We proposed and realized an analytical method
allowing one to describe the spatial structure of the
bunching force produced by the NUR field of an
ultrarelativistic electron in a helical undulator. The
essence of the method lies in the explicit analytical pre-

δG 1 Gmin 0.>–≡

0 0.2 0.4 0.6

0.25

0.50

0.75

1.00

x

G0

Fig. 1. The plot of G0 versus Ψ ; Θ/2.

π

0 1 2 3 4 5 6

–0.5

0

0.5

1.0
G

ρ

Fig. 2. Plots of the G(ρ, Ψ) function versus ρ for Ψ = 0
(solid line) and π/4 (dashed line).
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sentation of the emitter field (in the dipole approxima-
tion) using the Lienard–Wiechert retarded potentials
[7] and the detection of this field by a receptor that is
identical to the emitter.

(2) The proposed method allowed us not only to
analytically determine an explicit functional depen-
dence of the bunching force on the length and orienta-
tion of the r vector interconnecting receptor and
emitter but also to calculate the dependence of the char-
acteristic coherence volume of this force on the exter-
nal parameters of the emitter–receptor NUR (see
formula (9)).

Proceeding to the discussion of these results, note,
first of all, the square decrease in the coherence volume
with decreasing NUR wavelength. This decreasing hin-
ders the advent of the X-ray FELs into the superhard X-
ray range (λ ! 10–10 m). Specially note the indepen-
dence of the rate of this decrease of the undulator
parameter K. To additionally prove this, one can esti-

0 0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25
Ψ/π

ρ/π

0.30

0.90

0.75

0.45

0.15

2.6E–4 –0.15

–0.30

–0.15
–0.45

0.60

Fig. 3. Equilevel lines of the G(ρ, Ψ) function over the band
(0 ≤ ρ < π; 0 ≤ Ψ ≤ π/4).

0.25 0.50 0.75 1.00

0.25

0.50

0.75
Y

X

Fig. 4. The plot of form factor fcoh versus Gmin (X = Gmin
and y = 2nfcoh).
mate the emitter coherence volume by a theoretical
model for a traveling wave tube (TWT) using the same
bunch (γ||) and radiation (λ) parameters. Indeed, equa-
tions for the spectra of the TWT and FEL natural wave-
lengths are similar to each other (see, e.g., [3, 6, 8]).
This similarity allows one to qualitatively consider the
NUR field coherence volume of an individual emitter in
FEL as a cylinder of the height Hcoh = λ/2 and the radius
Rcoh = γ||λ/2π [9]:

(11)

It follows from this formula that the coherence vol-
ume is really independent of the undulator parameter K.
In this respect, formula (11) is analogous to the exact
formula (9) obtained in the dipole approximation. The
only difference between them lies in the value of the
numerical factor (form factor fcoh). One can estimate
this value in the following way. Strictly speaking, the
coherence volume (9) must correspond to a sufficiently
uniform amplitude of the microwave interaction force,
which implies a small value of the right-hand side in
Eq. (10). Assuming δG = 0.30 (Gmin = 0.70), which cor-
responds to the increase in the Thomson scatterers
bunch size up to a quarter wavelength (in the bunch-
centered coordinates [6, 10]), we arrive at the form fac-
tor value that is close to the above estimate based on the
analogy between FEL and TWT: fcoh = 0.04.

Further comments refer to the bunching force

amplitude . It follows from the right-hand side in
Eq. (6) that this force exhibits the same dependence on
the external parameters of the emitting charge and
undulator as the deceleration force produced by the
emitter radiation (see, e.g., [7, 11]). The only difference
lies in the value of the resulting numerical factor that is
three times higher in the case of the Eqs. (6) and (7)
than in the case of the emitter deceleration due to its
intrinsic magnetic retardation [7, 11]. The main reason
of this difference lies in the fact that, in deriving the
analytical asymptotics (6) and (7), we have assumed the
smallness of the dimensionless amplitude of the emitter
and receptor rotational motion in comparison with the
modulus of the distance between the emitters: ρ @ K.
At the same time, it is well known [7] that the radiation-
induced decelerating force is determined by the radia-
tion field structure just at a small distance from the
emitter (i.e., at ρ ≤ K). Since the purpose of this work
was to study the spatial structure of the force (6) at
ρ2 @ K2, the aforementioned difference is not essential.

To conclude this section, let us consider in brief the
applicability of the results and the novelty of the pro-
posed approach.

V coh
TWT( ) πRcoh

2 Hcoh≡ λ2D
16π
---------- Dλ2 f coh

TWT( ),= =

f coh
TWT( ) 1

16π
--------- 2 10 2– .×≈≡

Frad
r e,( )
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Note, first of all, that the inequality ρ2 @ K2 provides
for a small value of the Coulomb force

as compared to the force of the microwave interaction
of the same charges (6). Thus, the Coulomb field can be
neglected in the right-hand side in (6) as a small correc-
tion in the radiation field (5).

Note also that a classical description of the NUR
field by the Lienard–Wiechert potentials is valid only in
the limiting case when the number of the magnetic
bremsstrahlung quanta emitted by the charge at the
undulator half-period (where the emitter trajectory cur-
vature is still finite)

(12)

is much greater than unity (see, e.g., [11] for the
details). If the latter condition is not met one has to take
into account a random character of the quanta emission
and absorption by the moving charges.

Note that condition (12) can be valid even in the
dipole approximation if the emitter represents a bunch
containing a rather large number of electrons

where e is the electron charge.

Finally, Kurilko and Ognivenko [12] simulated the
electron bunch NUR field using the Lienard–Wiechert
retarded potentials. The authors described a self-con-
sistent bunch dynamics in the NUR field of its particles
(electrons) restricting the consideration to the dipole
approximation. Abandoning the dipole approximation
allows wider application of the results but the conse-
quent necessity in the numerical simulation implies the
loss of their physical transparency (cf., e.g., [12–14]).

Fzcoul
r e,( ) qγkω( )2

x2 y2+( )3/2
--------------------------x=

N"ω
qkωKγ( )2D

3"ω
----------------------------≡ π

3
--- q2

"c
------K2 1 K2+( )=

Q @ minQ N"ω( ) q
e
---≡

3N"ω

πK2 1 K2+( )
-------------------------------"c

e2
------  @ 1,=
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Abstract—A flexible and easy to implement method is proposed for computing the multipole-lens potential
and field. It integrates conformal-mapping technology and numerical approaches. A procedure for the sequen-
tial optimization of the geometric pole shape that is aimed at improving the lens characteristics is described and
demonstrated with examples. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The discovery of the strong-focusing principle [1]
has initiated a wide application of quadrupole (pole
pairs P = 2) lenses in the acceleration technology for
forming and transporting charged-particle fluxes.
Along with quadrupoles, sextupoles (P = 3) and octu-
poles (P = 4) are currently used. Let a lens with the
number of pole pairs P be called a P lens. The cross sec-
tions of quadrupoles and sextupoles and the coordinate
system used are presented in Fig. 1.

The quality of the field produced by a lens depends
on the pole geometry and the location of pole-face
winding. Each P lens is known to have the theoretical
profile, providing the “ideal” field: linear, quadratic,
and cubic for a quadrupole, sextupole, and octupole,
respectively (see Section 2 and Appendix 3). However,
these profiles cannot be achieved in practice, since they
leave no room for placing the winding and closing the
magnetic flux. For this reason, fields produced by
actual lenses always contain higher (as a rule, undesir-
able) harmonics together with the fundamental compo-
nent.

Numerous works describe the search for “good”
profiles (see References in [2, 3]). In most cases, the
efforts are aimed at constructing an adequate approxi-
mation (e.g., a segment of a circle) of the “broken”
ideal profile. The first successful attempt to radically
change the approach seems to be made in [4]. The pole
was bounded by a flat, instead of a hyperbolic, surface,
and its size was selected such that the sixth harmonic
was absent in the lens-potential spectrum.

In recent years, tolerances for the field deviation
from ideal have become much more stringent, and the
determination of optimum profiles providing a desired
field while minimizing the lens size has become topi-
cal. The problem is conventionally solved with the
algorithms of numerical field-pattern construction on
sufficiently fine meshes, which requires high-perfo-
mance computers and much computer time. These
1063-7842/00/4510- $20.00 © 21312
costs are fully justified at the final design stage; how-
ever, for initial rough estimations and comparative
analysis of many designs, it is desirable to use simple
and fast analytic methods.

We propose a flexible and simple method integrat-
ing conformal-mapping techniques and numerical
approaches. By using it, it is possible to design lenses
with any number of pole pairs and high field quality
within the working aperture. The algorithms described
below are applicable to both magnetic and electrostatic
lenses. We will consider magnetic lenses because of
their use in high-energy physics. The conditions con-
ventional for analytical methods (long lens, full sym-
metry, and negligible iron saturation) are assumed to be
satisfied.

1. MAPPING OF THE UPPER SEMIPLANE 
ONTO A LENS SECTOR

A sector of a P lens (the partial cross section that
belongs to one pole; Fig. 1) is approximated by a poly-
gon ! with the total number of vertices 2M + 1
(Fig. 2), onto which the upper semiplane of an auxiliary
complex variable w = u + iv is conformally mapped.

z = x + iyz = x + iy

x

y

x

y(b)(a)

Fig. 1. Cross sections of (a) a quadrupole and (b) a sextu-
pole. Heavy lines show the sector boundaries.
000 MAIK “Nauka/Interperiodica”
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The mapping is effected with the Christoffel–Schwartz
integral [5]

(1)

where βm = αm – 1, αm are the interior (relative to the
domain under study) angles in terms of π, and am are
points on the real number axis u on the w plane that are
the images of the Am-polygon vertices.

The images of three vertices may be assigned arbi-
trarily, and it is convenient to set up the following cor-
respondence:

The constant C1 is responsible for displacing the
polygon as a unit in the z plane. For C1 = exp(iπ/4), the
point u = a0 = 0, v = 0 becomes the image of the pole

center x = y = 1/  (this image can be considered as
the zero vertex of an A0 polygon with the power β0 = 0).

Taking into account the symmetry of the domain
about the bisectrix of the first quadrant and in view of
the normalizations performed, Eq. (1) can be recast in
a much simpler form

(2)

The length of the side Ik between the vertices Ak and
Ak + 1 is defined as

(3)

hence, up to similarity, the desired polygon can be
described by specifying M – 1 relative lengths of its
sides:

(4)

Note that integrals (3) may have singularities at one
or both extremes of the interval. They, if any, can be
eliminated by making appropriate changes of variables
(see Appendix 1).

To find the values of the still unknown parameters
a2, a3, …, aM, in the domain ! is the central and, in the
general case, rather intricate problem governing the
success in constructing mapping function (2). For this
purpose, we use the procedure of successive approxi-
mations that was described in detail in [6].

We select arbitrarily the initial values of the free

parameters , , …,  obeying the inequality a1 <

 <  … <  < ∞, which follows from the path-

z w( ) C0 w am–( )
βm

m 1=

2M 1+

∏ w C1,+d

w0

w

∫=

z A1 w a1, z A 1– w a1,–= = = =

z AM 1+ 0 w ∞.= = =

2

z w( ) C0 w2 am
2–( )

βm

m 1=

M

∏ w C1.+d

w0

w

∫=

Ik C0 u2 am
2–

βm

m 1=

M

∏ u;d

ak

ak 1+

∫=

λ k Ik/I0, k 1 2 … M 1.–, , ,= =

a2
0 a3

0 aM
0

a2
0 a3

0 aM
0
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tracing rule, and integrate (2) along the real semiaxis
0 ≤ u < ∞. Then (due to the symmetry), we come (on the
plane z) to a (2M + 1)-gon !0 with vertices at the points

, , , , …, , , . If the constant

C0 in (2) is selected such that the segments A0  and
A0 A1 coincide, like sides of the polygons !0 and A will

be parallel to each other, but their relative lengths 
and λk may diverge as much as desired.

Let us call the scalar quantity

(5)

the “distance” between the figures !0 and !.
The construction of image (2) is considered to be

completed when G . 0.
If the distance between !0 and ! is large, the

approximation procedure should be partitioned into
several stages. As shown in [6], for any value of the
parameter Kλ from the interval [0; 1], there exists a
polygon !1 between !0 and ! with vertices at the

points , , , , … , ,  and the

relative side lengths  =  – Kλ(  – λk) (at Kλ = 0,
it coincides with the original polygon !0, and at Kλ = 1,

A1
0 A 1–

0 A2
0 A 2–

0 AM
0 A M–

0 AM 1+
0

A1
0

λ k
0

G max λ k
0 λ k–( )/λ k ; k 1 2… M 1–( ),= =

A1
1 A 1–

1 A2
1 A 2–

1 AM
1 A M–

1 AM 1+
1

λ k
1 λ k

0 λ k
0

AM AM – 1

A–(M – 1)

A –M

A–(M – 3)

AM + 1

AM – 3

A1

A0

A–1

z = x + iy

x

1

1

ϕP

w = u + iv

v

–aM –a1 a1 aMa0 u

(a)

(b)

y

Fig. 2. Correspondence between the sector vertices and their
images at conformal mapping.
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with the desired polygon !). At each of the stages, a
transfer is made from !0 to this intermediate polygon
!1. With this purpose in mind, a linear system of equa-
tions

(6)

is set up, and its solutions are sought for a series of Kλ
values starting from unity (e.g., each next value of Kλ is
taken to be half as large as the previous one). This pro-
cess is terminated as soon as the condition G(!1) <
G(!0) is satisfied [see Eq. (5)]. The intermediate state
thus found becomes the initial for the next stage. Note
that the derivatives appearing in system (6) may be
found either numerically or using the analytical rela-
tions in Appendix 2.

If the number of free polygon vertices is not small
(M > 5), the convergence of this multiparametric opti-

∂λk
0

∂a j
0

--------
j 2=

M

∑ a j a j
0–( ) Kλ λ k λ k

0–( );=

k 1 2… M 1–,,=

–a1 a1–aM a0 uaM

–ab ab

v

A–1
A0

A11

1

ρ

w = u + iv

A–M x

A–(M – 1)

z = x + iy
AM – 1

AM (a)

(b)

y

AM + 1

Fig. 3. Distribution of the potential along the domain bound-
aries.
mization strongly depends on the proper selection of
the starting values for the images of these vertices. The
following technique proved to be useful. For any ideal
P lens, its exact conformal map on the upper semiplane
w can easily be constructed (the relevant formulas are
given in Appendix 3). As starting values, we took the
images of the ideal-profile points obtained with formu-
la (3.6) in Appendix 3 (however, the final lens profile
may radically differ from the ideal one; see Section 3).

2. DISTRIBUTIONS OF THE MAGNETIC 
POTENTIAL AND INDUCTION

The complex magnetic potential of a P lens can be
expressed as

(7)

where $(z) and ̂ (z) are the vector and scalar magnetic
potentials, respectively [2].

We prefer to deal with the scalar potential ^(z). Its
distribution over the quadrupole sector is shown in
Fig. 3a. On the pole surface, ^(z) = 1 (heavy line). It
tends to zero near the winding (line of varying thick-
ness) and equals zero along the remainder of the bound-
ary (fine lines).

The conformal map constructed in Section 1 allows
us to transfer this distribution to the real axis u on the
plane w (Fig. 3b) so that the relation between the value
of the potential and the line thickness (Fig. 3a) holds.
Even rough calculations demonstrated that the winding
region is very small (<1% of the length of the region
with ^(u) = 1). This fact allows us to replace the true
distribution ^(u) by its rectangular equivalent. Eventu-
ally, we have

(8)

The potential at any point of the upper semiplane is
found from the known Schwartz formula. In our case, it
yields

(9)

We remind that mapping (2) converts the length
A0AM + 1 on the line of sector symmetry (Fig. 3) to the
imaginary semiaxis 0 ≤ v < ∞. Then, potential distribu-
tion (9) along this semiaxis takes the simple form

(10)

3 z( ) $ z( ) i^ z( )+ p0zP 1 p̃nz2nP
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∞

∑+
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 
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,= =
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^ u( ) 0 for any other u.=
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π
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u u–( )2 v 2+
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∞–
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∫ v
π
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u u–( )2 v 2+
-------------------------------
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∫= =

=  
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π
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-------------- 
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-------------- 
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TECHNICAL PHYSICS      Vol. 45      No. 10      2000



CONSTRUCTION OF OPTIMUM PROFILES FOR MULTIPOLE LENSES 1315
Equation (9) becomes basic in what follows. We
will begin with the induction distribution within the
segment A0AM + 1 (Fig. 3). The distance to the lens cen-
ter along this segment is

(11)

Differentiating with respect to ρ, we find the relation
for the dependence v (ρ):

(12)

The distribution of the induction within the segment
A0 AM + 1 is given by the formula

(13)

It immediately follows from (13) that the exact
value of the induction at the pole center (v = 0) is

(14)

Since v  ∞ at ρ  0, it is possible to determine
the induction near the lens center with Eq. (13):

(15)

This formula was obtained using the geometric
equality

and the relation

(16)

which follows from (11) when v  ∞.
Equations (15) and (7) help in computing the accu-

rate coefficient of the fundamental harmonic for the
potential

(17)

where 

(18)

As shown in Appendix 4, the knowledge of p0 and
α0 is the necessary and sufficient condition for the con-
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struction of a recurrent analytical procedure to find the
rest of the coefficients , n = 1, 2, …, N in Eq. (7) (the
construction of the potential spectrum) up to any
desired order N.

This remark could have concluded this section,
because the known potential spectrum allows us to
answer any question about the field formed by this lens.
However, the computation of the spectrum is a rather
laborious procedure (Appendix 4). Moreover, in our
case, it is written in the REDUCE language, while the
other package programs are in PASCAL, and their inte-
gration in the continuous computational process has
failed.

For this reason, we searched for the field distribu-
tions @(ρ) and @(s) within the segments of unit length
that passed from the lens center along the line of sym-
metry and the left boundary of the sector, respectively.
The distribution providing the maximum deviation
from the basic field was taken into account.

The computation of @(ρ) is performed by jointly
using Eqs. (12) and (13). Similar dependences can be
obtained for the construction of @(s) (coordinate s is
reckoned from the lens center along the boundary of the
sector; s ≡ y for a quadrupole). To obtain them, the left
boundary of the sector is mapped onto the positive
semiaxis aM < u < ∞, v = 0, where only the v compo-
nent of the induction is other than zero. This component
is computed through potential (9):

This equality makes it possible to construct the dis-
tribution of the induction at the sector boundary:

(19)

where the dependence u(s) is found by integrating the
equation

(20)

For both distributions (13) and (19), the relative
deviation from the basic field is computed by the for-
mula

(21)
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3. LENS-PROFILE CONSTRUCTION: 
TECHNIQUE AND EXAMPLES

Let the width of the pole of a P lens be measured by
the relative angle  defined as the ratio of the angle ϕP

between the segments AM + 1AM – 3 and AM + 1A–M + 3
(Fig. 2) to the full angle of the lens sector:

(22)

This characteristic of the lens is assumed to be spec-
ified. Hereafter, we will consider only the left half-sec-
tor of the lens, because similar results will also be
obtained in the other half-sector by virtue of symmetry.

First, we assume that the pole profile (the region
between the points A0 and AM – 3 in Fig. 2) is ideal and
contains N = M – 4 evenly spaced intermediate points
A1, A2, …, AN = AM – 4. Each of these points is defined by

angular and radial coordinates ,  (n = 1, 2, …, N)
found from. (3.6) in Appendix 3. Our experience sug-
gests that the optimization process calls for a departure
from the ideal profile, so the coordinates of the pole
points must be changed. We emphasize that both coor-
dinates of the zero (by convention) vertex (ϕ0 = π/4,
r0 = 1) and the angular coordinate ϕM – 3 = ϕN + 1 of the
vertex AN + 1 (the coordinate determining the angular
size of the pole) are always fixed.

To change the coordinates, we make use of the rela-
tionships containing two angle- and radius-adjusting
parameters Tϕ and Tr (n = 0, 2, …, N + 1):

(23)

One can easily see that the fixed coordinates remain
fixed for any values of these parameters. One more con-
straint is due to the fact that the vertex A0 is taken by
convention and is not put in parentheses in integral (2);
i.e., the angle at it should be equal to π. For this reason,
the radial coordinates of the adjacent vertices were
always corrected so that the segment A1A–1 was perpen-
dicular to the line of symmetry of the sector.

It is known (see, e.g., [7]) that sometimes the field
quality is improved by using so-called shims, which are
small flat sections located, as a rule, at the pole edge. In
the case shown in Fig. 2, the presence of a shim would
have to “split” the AM – 3 vertex into two vertices AN + 1
and AM – 3 (which coincide in the absence of the shim).
A shim (if any) will be characterized by the length lsh
and the slope ϕsh of the segment AN + 1AM – 3.

With the parameters Tϕ and Tr and the shim charac-
teristics lsh and ϕsh, one can design lenses with high
field quality. After each change in the lens geometry,
conformal mapping onto the upper semiplane w is per-
formed (Section 1). This makes it possible to calculate
the induction distribution over the line of symmetry,
@(ρ), and along the sector boundary, @(s), and find the
maximum relative deviation δ@max of the magnetic

ϕ̃P

ϕ̃P PϕP/π.=

ϕn
0 rn

0

ϕn ϕ0 ϕn
0 ϕ0–( )Tϕ

N 1 n–+ , rn+ rn
0( )

Tr
.= =
 

induction from the basic value (Section 2) within the
working aperture |ra ≤ 0.9|.

Below are two examples of using this technique. For
a quadrupole with the relative angular pole dimension

 = 0.7 and the number of free (unfixed) vertices M = 10,
the maximum relative field deviation δ@max = 0.0021
within the working aperture |ra ≤ 0.9| was obtained for
Tϕ = 0.960, Tr = 0.967, lsh = 0.02, and ϕsh = 0.39π. Note
that δ@max = 0.0042 was obtained for the nonoptimized
broken ideal profile of the same angular size.

For a sextupole with  = 0.6 and M = 10, δ@max =
0.011 within the working aperture |ra ≤ 0.9| for Tϕ = 0.99
and Tr = 0.86 (the shim was absent). The broken ideal
profile with the same angular size had δ@max = 0.071.

CONCLUSION

In our opinion, this optimization procedure, aimed
at improving the quality of the lens field, may be further
developed in two directions. First, it seems promising
to construct algorithms that significantly increase the
number of free vertices of a polygon approximating the
lens sector. As mentioned above, difficulties in the con-
vergence of the conformal mapping process may arise
in our approach when the number of these vertices is
large (Section 1). This problem is known well from the
theory and applications of multiparametric minimiza-
tion when the deterministic algorithms like that of gra-
dient descent are used: the system reaches a local min-
imum and cannot leave this state on its own [8]. This
fact is a serious limitation and sends us in search of
other methods for finding the global minimum. The
first attempt was made in [6], where the current state of
the system is “shaken up” in order to take it out of the
local minimum. We are planning to combine regular-
and random-search approaches [9].

Currently, the lens profile is sequentially improved
(Section 3) “manually,” i.e., through operator–machine
dialog. The other way of evolving this technique is to
develop software that would allow for a totally comput-
erized optimization process.

APPENDIX 1

Computation of the Polygon Side Lengths

Let us write Eq. (3) for the polygon side length in
the expanded form

(1.1)

Integration is along the positive semiaxis u only;
therefore, singularities at negative βk and βk + 1 may
arise only in the first product. To eliminate them, two

ϕ̃P

ϕ̃P

Ik C0 u am–
βm u am+

βm

m 1=

M

∏
m 1=

M

∏ u.d

ak

ak 1+

∫=
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changes of variables are proposed. The first one [10],

brings the integral to the standard form

(1.2)

In this expression,

Let us present integral (1.2) as the sum of two terms:
Ik = Ikl + Ikr, where

(1.3a)

(1.3b)

The second change differs for different parts of the
interval. For the left part, the change

transforms the augend Ikl to the form

(1.4a)

For the right part, the change

allows Ikr to be expressed as

(1.4b)

η u ak–( )/ ak 1+ ak–( ),=

u η ak 1+ ak–( ) ak, du+ ak 1+ ak–( )dη ,= =

Ik Ck Qk η( )η
βk 1 η–( )

βk 1+ η .d

0

1

∫=

Ck C0 ak 1+ ak–( )
αM 1+–

,=

Qk η( ) η γkm+
βm η γkm–

βm,
m 1 m k , k 1+≠,=

M

∏
m 1=

M

∏=

γkm am ak+( )/ ak 1+ ak–( ),=

γkm am ak–( )/ ak 1+ ak–( ).=

Ikl Ck Qk η( )η
βk 1 η–( )

βk 1+ η ,d

0

1/2

∫=

Ikr Ck Qk η( )η
βk 1 η–( )

βk 1+ η .d

1/2

1

∫=

η ξ( ) βk 1+( )ξ[ ]
1/ βk 1+( )

,=

ξ η
βk 1+

/ βk 1+( ), dξ η
βkdη= =

Ikl Ck Qk η( ) 1 η–( )
βk 1+ ξ ,d

0

Ul

∫=

Ul 1/2( )
βk 1+

/ βk 1+( ).=

η ξ( ) 1 βk 1+ 1+( )ξ[ ]
1/ βk 1+ 1+( )

,–=

ξ 1 η–( )
βk 1+ 1+

/ βk 1+ 1+( ), dξ 1 η–( )
βk 1+ dη= =

Ikr Ck Qk η( )η
βk ξ ,d

0

Ur

∫=

Ur 1/2( )
βk 1+ 1+

/ βk 1+ 1+( ).=
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Both relations (1.4) are free of singularities through-
out the closed interval of integration [ak, ak + 1] for any
values of the exponents βk and βk + 1.

APPENDIX 2

Computation of the ∂λk /∂aj Factors 
for System (6)

The factors appearing in Eq. (6) are related to the
derivatives of the polygon side lengths as follows [6]:

(2.1)

For j ≠ k, k + 1, the derivatives may be obtained by
direct differentiation under the integration sign:

(2.2a)

(2.2b)

When j = k and j = k + 1, using Eqs. (10) and (11) in
[6], we find

(2.3a)

(2.3b)

APPENDIX 3

Conformal Mapping of an Ideal P Lens Sector 
onto the Upper Semiplane

For appropriate units of measure, the complex
potential of an ideal P lens can be presented as

(3.1)

where αP = π(P – 2)/4P. The exponential was intro-
duced for the bisectrix of the first quadrant, ϕ = π/4, to

∂λ k
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1
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become the line of symmetry of the lens sector at any
number of pole pairs P.

The pole profile is determined from the condition
Im3(z) = 1 [2]:

(3.2)

The function δ(z) = (zexp(–iαP))P maps the sector of
this lens onto the strip (lune) in the plane of the interme-
diate variable σ. The function w(σ) = –(2/π)tanh–1(σ)
maps the upper semiplane of the w plane onto the same
strip. Thus, one can easily find the required map of
the  lens sector on the upper semiplane v ≥ 0 in the
form [11]

(3.3)

This sequence of maps is shown in Fig. 4, where
thin lines (boundaries of zero-potential sectors) pass
into thin lines; heavy lines (profiles of unity-potential

rP P ϕ αP–( )[ ]sin 1.=

w z( ) π
2
--- z iαP–( )exp( )P.coth–=

3.0

2.5

2.0

1.5

1.0

0.5

0 0.5 1.0 1.5 2.0 2.5 3.0

P = 3

P = 2

z = x + iy

0

0 1–1

v

ξ σ = η + iξ

u

η

w = u + iv

Fig. 4. Mapping of profiles of ideal P lenses onto the upper
semiplane.
poles) pass into heavy lines; and the dashed segment
along the bisectrix of the first quadrant, within which
the potential distribution is sought, passes into dashed
lines.

Map (3.3) is convenient to analyze in the form

(3.4)

The imaginary semiaxis v ≥ 0 of the w plane turns
out to be the image of the dashed segment (0 ≤ ρ ≤ 1,

 = π/2) in the z plane: 

Note that the potential on the positive imaginary
semiaxis is computed by the Schwartz formula 3(v) =
2/πtan–1(ab/v) (Section 2). As seen from Fig. 4, the
boundary of the image of any ideal P profile ab = 1.
Then, using Eq. (3.4), we can reconstruct the radial dis-
tribution of the potential along the bisectrix:

(3.5)

Expressions (3.5) and (3.1) confirm the validity of
all the constructions. For points lying on the ideal poles
(heavy lines), we have

(3.6)

This real number is just the image a of the appropri-
ate point of the ideal profile that is mapped into the
segment –1 ≤ u ≤ 1 of the real axis of the w plane.

APPENDIX 4

Potential Spectrum

The potential distribution along the segment
A0AM + 1 on the line of symmetry of the lens sector

w z( ) π
2
---rP

 
  ϕ̃ i ϕ̃sin+cos( ) ,coth–=

ϕ̃ P ϕ αP–( ).=

ϕ̃

w ρ( ) i
π
2
---ρPcoth– i

π
2
---ρP

 
 coth .= =

3 0 ρ 1≤ ≤( ) 2
π
---tan–1 1

π
2
---ρP

 
 cot

-----------------------

 
 
 
 
 

=

=  
2
π
---tan–1 π

2
---ρP

 
 tan ρP.=

Im3 z( ) rP ϕ̃sin 1,= =

Re3 z( ) rP ϕ̃cos b const,≠= =

w z( ) π
2
--- b i+( )coth–=

=  

1 i
π
2
---b 

  π
2
--- 

 cotcoth–

π
2
---b 

  i
π
2
---cot–coth

---------------------------------------------------- π
2
---rP ϕ̃cos 

 tanh–=
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(Fig. 3) is given by formula (10), which at v > ab can be
expressed as

(4.1)

Since the relative contribution of upper harmonics is
of major interest, it is convenient to replace v by the
variable

(4.2)

and represent the relative potential in the form

(4.3)

The quantities p0 and α0, appearing in Eqs. (4.3) and
(4.2), are defined by formulas (17) and (18), respec-
tively. Now we pass to the new independent variable

(4.4)

and will seek the dependence of ξ on ρ in the form of
the series:

(4.5)

Since the quality of the lens field is assumed to be
high, the second expression in (4.5) can be considered
as a small correction; i.e., |η(ρ)| ! 1.

The factors , n = 1, 2, …, appearing in Eq. (4.5),
are computed as follows. From definition (4.2), we find

where dv/dr is given by Eq. (13), written in the equiv-
alent form

On simple rearrangements in view of the identity

 = P|C0|, we obtain

(4.6)

Expanding the right of (4.6) by the binomial for-
mula and collecting terms, we come to the power series
in ρ with coefficients including unknowns . On the

^ v( ) 2
π
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v
----- 

 =

=  
2
π
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v
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1
3
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–
1
5
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5
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α0v
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α0PrP 1–
--------------------- 1

v 2
------dv

dr
-------,–=

dv
dr
------- 1

C0
---------–= v 1 P+( )/P 1 am/v( )2+[ ]

βm–
.

m 1=

M

∏

α0
1/P–

dξ
dρ
------ 1 η ρ( )+[ ] P 1–( )/P 1 α0amξ( )2+[ ]

βm–
.

m 1=

M

∏=

α̃n
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other hand, the derivative dξ/dρ can be obtained
directly from fundamental definition (4.5) as the series

. (4.7)

Comparing the coefficients at the same powers of ρ
in Eqs. (4.6) and (4.7) and using the exact values of p0
and α0 [formulas (17) and (18), respectively], we can
recurrently determine the parameters , n = 1, 2, …,
appearing in (4.5). This makes it possible to construct
the explicit dependence ξ(ρ) and, with (4.3), find the
amplitudes , n = 1, 2, …, of the potential harmonics
[see (7) in Section 2].

This algorithm is rather intricate and cannot be exe-
cuted “manually.” For this reason, a program was writ-
ten in the REDUCE language [12], which allowed us to
find the values of , n = 1, 2, …, N at any N. 
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Abstract—A small-angle approximation method is formulated for a curvilinear ion beam propagating in an
electromagnetic field. The effects of particle velocity scatter and multiple elastic scattering on the beam path in
a magnetic field, the electric field of a cylindrical capacitor, and mutually orthogonal electric and magnetic
fields are considered. An analytical model for beam power compression is developed. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The need for models that simulate ion beam propa-
gation in external electromagnetic fields is dictated by
applications in the field of electron optics, mass spec-
troscopy, etc. [1–3]. One theoretical approach to ana-
lyzing charged beam dynamics is the paraxial theory. It
is helpful in designing appropriate beam-shaping elec-
trodes [2] and in solving the direct problem when the
characteristics of an external electromagnetic field in
which the beam propagates are given [4].

Another method of theoretical analysis of the beam
dynamics is to solve the kinetic equation. In the frame-
work of this approach, one can consider the effects of
particle velocity spread and ion scattering by gas mole-
cules. In this case, however, the problem becomes
mathematically more complex, because it involves the
solution of partial differential equations. As applied to
the problem of charged beam propagation in an exter-
nal field, such solutions are known for a uniform mag-
netic field [5–7]. This paper addresses a more general
problem for a curvilinear beam propagating in an exter-
nal electromagnetic field. This problem can be solved
analytically for a narrow beam, when the ratio of its
cross size to the radius of curvature is small.

STATEMENT OF THE PROBLEM

We assume that the beam propagates perpendicu-
larly to the z-axis, i.e., that the beam axis is a plane
curve. The beam with such a configuration can be
obtained, in particular, in mutually orthogonal nonuni-
form electric, E = Exex + Eyey, and uniform magnetic,
B = B0ez, fields. The analysis of a more general prob-
lem, when the beam axis is a spatial curve, involves
more tedious computations. For the sake of brevity, we
will study mostly the propagation of a curvilinear rib-
bon beam. Only in the last section, the beam limited in
the z direction is considered.
1063-7842/00/4510- $20.00 © 21320
Beam motion is convenient to study in a system of
curvilinear coordinates s, q, ζ:

The curve Y(s) is the axis of the beam’s cross sec-
tion in the plane z = 0; the coordinate s is the length of
the axial particle trajectory to the place of beam injec-
tion; and t, n, and b = ±ez are the vectors of the Frenet
trihedral related to the curve Y(s). The direction of the
vector b depends on the direction of the external elec-
tric field. The axis of the beam cross section, which
coincides with the axial particle trajectory, is given by
a solution to the motion equation for a single particle in
a given external field. We assume that this solution is
known.

Substituting the expression for the particle velocity
v = ut into the equation of motion of an axial particle
yields the expression for the curvature of its trajectory
k = κ – ebB/mcu, where κ = eE02/mu2. A change in the
velocity of the axial particle in the course of propaga-
tion is determined by quantity E01: muu' = eE01. Here,
E0i are the components of the electric field E(Y(s)) =
E01t + E02n on the beam axis and prime means differen-
tiation with respect to s.

Before solving the problem, let us analyze the elec-
tric field structure near the beam axis. For brevity, we
will consider the case when the electric field is indepen-
dent of z. Then, in the curvilinear coordinates, the con-
ditions divE = 0 and curlE = 0 take the form

(1)

where ρ = 1 – kq, E1 = tE, and E2 = nE.

We expand the electric field components Ei near the
curve Y(s) into the Taylor series Ei = E0i + giq + hiq2

and substitute them into conditions (1). As a result, we
obtain functions gi(s) that are necessary for solving the

x Y s( ) qn ζb.+ +=

kE1 E2'+ ρ
∂E1

∂q
---------, kE2 E1'– ρ

∂E2

∂q
---------,= =
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problem in the general case:

EQUATION OF TRAJECTORY

The equation for charged particle motion in an
external electromagnetic field can be derived from the
Maupertuis principle

Here, Λ(x) = , Φ and A are the external
field potentials, and l is the distance along the trajec-
tory. Calculations similar to those for a particle in a
potential field [8] yield the trajectory equation in the
presence of a magnetic field:

(2)

One can easily see that Λ(x(l)) is the magnitude of
the particle velocity. In particular, for the axial parti-
cles, Λ(Y(s)) = u. In order to obtain an approximate
equation of trajectory near the curve Y(s), the particle
velocity vector should be represented in the form

(3)

On a trajectory that passes near the beam axis, kq
and α are small. Substituting expression (3) into Eq. (2)
and neglecting the second-order terms, we come to the
system of ordinary differential equations

(4)

(5)

Since Eq. (5) can formally be integrated in the gen-
eral form, a single integro-differential equation can be
written for the trajectory of a particle that moves near
the beam axis. However, in practice, it is easier to pro-
ceed from system of Eqs. (4) and (5). It is sometimes
more convenient to use the time of motion of an axial
particle

rather than s, as the longitudinal coordinate, i.e., to pass
to the parametric representation of the trajectory. In this
case, Eqs. (4) and (5) take the following form (dots
mean differentiation with respect to τ):

(6)

g1 E02' kE01, g2+ kE02 E01' .–= =

δ mΛdl
e
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----- Λdx
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------ 

  eE
e
c
--Λ dx

dl
------B .+=

Λdx
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------ u 1 α+( )t q'n+[ ] .=

q''
u'
u
----q' k2q k κ+( )α+ + +

eg2

mu2
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u
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s

∫=

q̇̇ k2u2q α k κ+( )u2+ +
e
m
----g2q,=
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(7)

Consider particular examples. The axis of the cross
section of a ribbon ion beam in a uniform magnetic
field is a segment of a circle whose curvature is inde-
pendent of s: k = eB0/mcu0. In this case, the magnitude
of the axial particle velocity and the energy inhomoge-
neity of the beam do not change, because Eq. (4) gives
α = α0. Therefore, Eq. (5) acquires the much simpler
form

Hence, the particle trajectory is

where ψ = ks.

Note that  characterizes the initial beam diver-
gence. It is easy to see that, at α0 = –kq0, the beam’s
cross sizes change only because of initial divergence
q = q0 + ( /k)sinψ.

Under certain conditions, the axis of the beam prop-
agating in the electric field of a cylindrical capacitor
has the form of a segment of a circle; this kind of device
is used in electrostatic analyzers employed in mass

spectroscopy [3]. In this case, k = eE02/m , E01 = 0,
and g2 = kE02; hence, Eqs. (4) and (5) yield the trajec-
tory

Finally, consider the beam in the mutually orthogo-
nal uniform fields E = E0ey and B = B0ez. For simplicity,
we choose the following initial conditions for particles
on the beam axis: x0 = 0, y0 = (u0/Ω)sinφ,  = u0sinφ,

and  = u0cosφ, where Ω = eB0/mc is the cyclotron fre-
quency, φ is the angle between the electric field vector
and direction of particle injection, and u0 is the initial
particle velocity. In this case, the curve Y(s) is a part of
the cycloid

Here, v0 = cE0 /B0, ψ = ωτ + φ, ω = Ω/2, and the longi-
tudinal coordinate is represented in the parametric form
s = 2v0(cosφ – cosψ)/ω (with φ ≤ ψ ≤ π/2). This choice
of the initial conditions leads to simple expressions for

α̇ kq 2α+( ) u̇
u
---+ κ q̇

eg1

mu
--------q.+=

q'' k2q kα0+ + 0.=

q q0
α0

k
-----+ 

  ψ
q0'

k
----- ψ

α0

k
-----,–sin+cos=

q0'

q0'

u0
2

q q0

α0

k
----- cosψ 1–( )

q0'

2k
---------- ψ, ψsin+ + 2ks.= =

ẋ0

ẏ0

Yx

v 0

Ω
------ Ωτ 2φ 2ψsin–sin+( ),=

Yy

v 0

Ω
------ 1 2ψcos–( ).=
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the beam axis curvature, k = ω/2v0sinψ, and Frenet tri-
hedral vectors,

Equation (6) also becomes simple,  + ω2q = 0, and
easy to solve.

EFFECT OF VELOCITY SPREAD

First, consider the effect of particle velocity spread
in the steady-state statement. To this end, we will use
the kinetic equation in the collision-free approximation

(8)

where S0 is the source density.

Writing Eq. (8) in the curvilinear coordinates, we
find the following expression for the operator L0:

where v1 = vt, v2 = vn, and B3= bB.

Assuming that v1 = u(1 + α) and v2 = uβ and leaving
only the first-order terms, we eventually obtain the
equation for the distribution function of a narrow beam

(9)

where X stands for the set of variables x, q, α, and β for
simplicity.

A solution to this equation can be written in terms of
the Green function:

(10)

The Green function has the form

Here, ϑ(x) is the Heaviside step function; q(s, X0),
α(s, X0), and β(s, X0) are the solutions to the system of

t ψsin ψcos,( ), n = ψcos ψsin–,( ), b ez.–= =

q̇̇

L0 f S0,=

L0 v
∂

∂x
------ e

m
---- E

1
c
--- vB[ ]+ 

  ∂
∂v
------,+=

L0

v 1

ρ
------ ∂

∂s
----- v 1v 2

k
ρ
--- e

m
---- E1

v 2

c
------B3+ 

 +
∂

∂v 1
---------+=

+ v 2
∂

∂q
------ e

m
---- E2

v 1

c
------B3– 

  v 1
2 k
ρ
---–

∂
∂v 2
---------,+

Lf X( ) Q X( ), Q
S0

u
-----,= =

L
∂
∂s
----- κβ 2α kq+( )u'

u
----–

eq1

mu2
---------q+

∂
∂α
-------+=

+ β ∂
∂q
------

eg2

mu2
---------q k2q– k κ+( )α– βu'

u
----–

∂
∂β
------,+

f X( ) G X X0,( )Q X0( ) X0,d∫=

LG X X0,( ) δ X X0–( ).=

G X X0,( ) ϑ s s0–( )δ q q s X0,( )–( )=

× δ α α s X0,( )–( )δ β β s X0,( )–( ).
ordinary differential equations

(11)

(12)

that satisfy the following conditions: q(s0, X0) = q0,
α(s0, X0) = α0, and β(s0, X0) = β0.

Consider the effect of particle velocity spread on ion
beam propagation in the magnetic field, assuming that

In this case, the solutions to Eqs. (11) and (12) have
the form

(13)

(14)

where ϕ = k(s – s0).
Substituting these expressions into (10), we obtain

the beam distribution function

and then the expression for the particle number density
along the beam

(15)

where ε = (2/k)σsin(ψ/2) and ψ = ks.
A similar result is obtained for the other two exam-

ples in the previous section. For the beam in the inho-
mogeneous electric field of a cylindrical capacitor, we
should set in (15)

while, for the beam in the orthogonal fields, ε =
(σu0 /ω)sinωτ. The latter problem is convenient to solve
using the parametric representation of curve Y(s). To do
this, the variable s in Eq. (9) must be replaced by τ.

NONSTATIONARY INJECTION

In the nonstationary problem, the original equation
for the distribution function has the form

(16)

where ξ stands for the aggregate of X and t.

q' β, α' κβ k 2α+( )u'
u
----–

eg1

mu2
---------– q,+= =

β' k2q k κ+( )α βu'
u
----––

eg2

mu2
---------q+=

S0

n0u

2πσ2
------------δ s( )δ q( ) α2 β2+

2σ2
-----------------– 

  .exp=

q q0
α0

k
-----+ 

  ϕ
β0

k
----- ϕ

α0

k
-----,–sin+cos=

α α0, β β0 ϕ α0 kq0+( ) ϕ ,sin–cos= =

f
n0ϑ s( )
2πσ2

----------------δ q
α
k
---+ 

  ψ β
k
--- ψ α

k
---–sin–cos=

× 1

2σ2
--------- α2 β ψ α kq+( ) ψsin+cos[ ]2+( )–exp

n f X( ) αd βd∫
n0ϑ s( )
ε 2π
---------------- q2

2ε2
--------– 

  ,exp= =

ε2 σ2

2k2
-------- 1 2kscos–( ) 3 2kscos–( ),=

∂
∂t
----- L0+ 

  f ξ( ) S ξ( ),=
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Then, (9) and (10) can be written as

The nonstationary Green function has the form

where t(s, ξ0) is a solution to the differential equation

with t(s0, ξ0) = t0.

In particular, setting S = S0δ(t) and using the above
results, we obtain the particle number density in the
magnetic field:

This method can be used to construct an analytical
model of beam power compression. We consider the
beam in which the initial particle velocity varies as
u(t) = u1/µ, where µ = 1 – u1t/R. In this case, a particle
injected at the time instant t = 0 will be at a distance R
from the place of injection at t = t1 = R/u1. A particle
emitted later, at t = t2, has the initial velocity u2 =
u1/(1 – t2/t1) and, at the time instant t = t1, will be at the
same distance u2(t1 – t2) = R from the place of injection.
Thus, the adopted variation of the initial particle veloc-
ity leads to space–time focusing of the beam in the lon-
gitudinal direction [1].

Let us solve Eq. (16) in the absence of an external
field with a source that obeys the above injection law
within a time interval 0 ≤ t ≤ T; namely,

where Π(t) = ϑ(t) – ϑ(t – T).
Here, we assume that the relative spread of the par-

ticle velocities remains constant during injection. In
this case, the Green function is

which implies the distribution function

where v = mvx + x/t1.

Nf Q, N
1
u
--- ρ α–( ) ∂

∂t
----- L, Q+

S
u
---,= = =

f ξ( ) Γ ξ ξ0,( )Q ξ0( ) ξ0, NΓ ξ ξ0,( )d∫  = δ ξ ξ0–( ).=

Γ ξ ξ0,( ) G X X0,( )δ t t s ξ0,( )–( ),=

t'
1
u
--- 1 kq– α–( )=

n
n0ϑ s( )
2πε2

---------------- 1

2ε2
-------- q2 u2 t

s
u
---– 

  2

+– 
  .exp=

S = 
n0u1

σ 2π( )3
---------------------δ x( )Π t( ) 1

2σ2
--------- µ2v 2 2µv x– u1

2+( )– ,exp

Γ t x t0 x0, , ,( ) ϑ t t0–( )δ x x0– v t t0–( )–[ ] ,=

f  = 
n0u1v

2

v x σ 2π( )3
----------------------------Π t

x
v x

------– 
  δ yv x xv y–( )δ zv x xv z–( )

× 1

2σ2
--------- ν2v

2

v x
2

------ 2vu1 u1
2+ +

 
 
 

– ,exp
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Hence, the particle number density at the time
instant t = t1 is given by

where N is the number of injected particles:

MULTIPLE SCATTERING

To account for the effect of multiple elastic scatter-
ing on the parameters of the beam propagating in a gas-
eous medium, we will use the kinetic equation with the
collision integral in the small-angle approximation [9].
If the effect of the external field on the collision process
is neglected, this equation for a narrow beam can be
represented as

where χ2 is the average square of the scattering angle
per unit length and γ = vb/u.

It is easy to check that the Green function for the
operator M has the form

where the functions Gn are the solutions to the equa-
tions

(17)

and satisfy the conditions Gn(s0, xn, Xn0) = δ(xn – xn0).
Here, Xn = {s, xn}, x1 = {q, α, β}, and x2 = {ζ, γ}.

Let us solve the first equation of (17) for the beam
in a uniform magnetic field. In this case, one should
pass from q and β to the new variables

where ϕ = k(s – s0), as in expressions (13) and (14).
Assuming that G1(X1, X10) = δ(α – α0)F1(s, η, Θ), we

n x t1,( ) N
u1

σR 2π
------------------ 

  3 u1
2

σ2
----- r2

R2
----- 2

x
R
---– 1+ 

 – ,exp=

N n0 u t( ) td

0

T

∫ n0R 1 T
t1
---– 

  .ln–= =

Mf Q, M M1 M2,+= =

M1 L
χ2

4
----- ∂2

∂β2
--------, M2– γ ∂

∂ζ
------ χ2

4
----- ∂2

∂γ2
--------,–= =

G X1 x2 X10 x20, , ,( )
=  ϑ s s0–( )G1 X1 X10,( )G2 X2 X20,( ),

M1G1 0, ∂
∂s
----- M2+ 

  G2 0= =

η α kq+( ) ϕ β ϕ α– kq0,–sin–cos=

Θ β ϕ α kq+( ) ϕ β0,–sin+cos=
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obtain for F1

(18)

To solve this equation, we will take advantage of the
two-dimensional Fourier transformation with respect to
η and Θ

(19)

Substituting (18) into (17) yields the ordinary differ-
ential equation for the Fourier transform

with the initial condition F(s0, λ, ω) = k.

This equation is easy to integrate; eventually, the
function F1 can be written as

(20)

The solution to the equation for G2 is similar to (20) [10]:

For a delta-like source S0 = n0uδ(X1)δ(x2), the parti-
cle number density is given by

where a3 and b3 are, respectively, the values of the coef-
ficients A3 and B3 at s0 = 0.

These quantities characterize the beam divergence due
to multiple elastic ion scattering by the gas molecules.

For the beam propagating in the field of a cylindrical
capacitor, the following change of variables should be

∂
∂s
-----

χ2

4
----- ϕ ∂2

∂η2
--------- 2ϕ ∂2

∂η∂Θ
---------------sin–sin

2


–
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∂Θ2
---------

 F1cos
2

0.=

F1 s η Θ, ,( )

=  
1

2π( )2
------------- dλ ωF s λ ω, ,( ) iλη iωΘ+( ).expd∫

F '
χ2

4
----- λ2 ϕsin

2 λω 2ϕ ω2 ϕcos
2

+sin–( )F+ 0=

F1
k

πD1
---------- 1

D1
2

------ η2A1 2ηΘA2– Θ2A3+( )– ,exp=

A1
χ2

2k
------ ϕ 1

2
--- 2ϕsin+ 

  , A2
χ2

2k
------ ϕ ,sin

2
–= =

A3
χ2

2k
------ ϕ 1

2
--- 2ϕsin– 

  , D1
2 A3A1 A2

2.–= =

G2

= 
1

πD2
---------- 1

D2
2

------ p2B1 2 p γ γ0–( )B2– γ γ0–( )2B3+[ ]– 
  ,exp

p ζ ζ0– γ s s0–( ), Bn–
χ2

n
----- s s0–( )n,= =

D2
2 B3B1 B2

2.–=

n
kn0ϑ s( )
π a3b3

------------------- k2q2

a3
----------– z2

b3
-----– 

  ,exp=
used:

where ϕ = k(s – s0).

Then, assuming that G1 = δ(ξ)F1(s, η, Θ) and using
the same way to find F1, we arrive at the expression
similar to (20) where the coefficients An look like

The Green function for the beam in the mutually
orthogonal fields can be derived in a similar manner
using the parametric description of the beam axis and
an appropriate change of variables. The practical value of
our approach is that it gives an estimate of the parameters
of a curvilinear beam propagating in an external electro-
magnetic field. These estimates are applicable until the
beam becomes wide due to a particle velocity spread or
multiple elastic scattering by the gas molecules.
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Abstract—Natural diamonds of IIa type were studied by the methods of dc photoconductivity and microwave
photoconductivity. Their optical absorption spectra under normal conditions and the low-pressure (≈10–5 Pa)
photoemission were measured. The microwave conductivity of diamond (having the negative surface electron
affinity) was treated in terms of a model including both internal and external photoelectric effects. © 2000
MAIK “Nauka/Interperiodica”.
INTRODUCTION

The contactless technique for measuring the micro-
wave photoconductivity (MWPC) of diamond has a
number of advantages over the contact method of
recording dc photoresponse [1]. Specifically, in the
former, the photoresponse arises from the absorption of
microwave energy by “free” carriers no matter whether
they are inside or beyond the sample. It was found [2–
4] that the hydrogen-saturated (111) diamond surface
has the negative electron affinity. Thus, diamond
appears to be a candidate material for microwave-
biased photoreceivers that simultaneously exploit inter-
nal and external photoelectric effects. Photoemission
studies suggest [5] that such devices will be able to
detect quanta with energies above 2 eV.

In this work, we measured the MWPC value of nat-
ural diamond at wavelengths λ between 200 and
400 nm and constructed a model including both inter-
nal and external photoelectric effects. The main body of
experimental data is reported for the first time; earlier,
some of them were briefly discussed in [1, 6]. The
MWPC model is applicable to type-IIa diamond under
atmospheric pressure and at room temperature.

EXPERIMENTAL TECHNIQUES 
AND RESULTS

Samples used were 10- to 1000-µm-thick (111) pol-
ished platelets of natural (IIa) and close-to-natural dia-
monds. The concentration of nitrogen impurity in the A
form was no more than 5 × 1019 cm–3. Prior to measure-
ments, the samples were chemically treated in a
K2Cr2O7 + H2SO4 + H2O mixture and then polished
with corundum powder (grain size ≈14 µm) [1]. Isoch-
ronous annealing (30 min) of the samples was carried
out at temperatures from 70 to 600°C in a graphite con-
tainer under a pressure of ≈10–4 Pa.
1063-7842/00/4510- $20.00 © 21325
The samples were studied by the methods of micro-
wave photoconductivity, optical absorption (OA), and
photoemission (PE). The first two were applied at T ≈
300 K and atmospheric pressure (≈10 5 Pa). For micro-
wave measurements, the samples were placed in an
H101 rectangular microwave resonator so that they were
within the antinode of the electric components of the
field [7] (frequency fe = 9.6 GHz, strength E0 ≈
113 V/cm [6, 8]). Nonequilibrium carriers were excited
by radiation from a 1-kW high-pressure xenon lamp.
The radiation passed through an MDR-12 monochro-
mator (∆λ = 1.0–2.4 nm). The microwave photocon-
ductivity was detected under the synchronous mode at
a photoexcitation modulation frequency of 300 Hz.
Optical absorption spectra were recorded with a
SPECORD-M40 spectrophotometer (∆λ ≈ 0.3 nm).

The photoemission current was generated by the
optical system of the MWPC measuring setup without
light modulation. The strength of the field “pulling”
electrons out of the diamond was 400 V/cm. Diamond
platelets of area 0.25–0.3 cm2 and thickness ≈0.5 mm
were placed in a vacuum chamber (≈10–5 Pa) at an
angle of 45° with incident light.

Our experimental findings are summarized as fol-
lows.

(1) The microwave photoconductivity at λ = 200–
700 nm strongly depends on surface finish when the
light penetration far exceeds (by 1 to 3 orders of mag-
nitude) the diffusion length Ld of carriers in the dia-
mond. Conversely, the absorption spectra are virtually
independent of surface finish.

(2) After vacuum heat treatment at 950°C for
30 min, when the (111) surface is reconstructed, the
MWPC value drops by more than one order in the fun-
damental absorption range (λ ≈ 220 nm) and signifi-
cantly decreases in the impurity absorption range (236–
700 nm). However, the absorption spectra and those of
000 MAIK “Nauka/Interperiodica”
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dc photoconductivity do not change in this case. The
initial MWPC values are regained only after the sam-
ples have been mechanically polished by diamond
paste.

(3) Once the diamond surface had been treated by
the corundum powder (grain size ≈14 µm) or diamond
paste (grain size 0.5–5.0 µm), the MWPC signal always
increased roughly by one order under illumination by
light near the fundamental range. The photoemission
current from the same samples was also detected only
if the surface was treated in a like manner.

The available models of photoconductivity [9–13]
fail to explain these facts. Below is represented a new
MWPC model for diamond (which has the negative
electron affinity of the surface [2]).

MWPC MODEL FOR DIAMOND 
WITH FLYING ELECTRONS

We will start with the following assumptions.

(1) The sum of flying electrons  (i.e., those leav-
ing the diamond due to interband illumination) and
electrons in the conduction band  equals the number

of holes in the valence band; that is,  +  = .

(2) Because of the negative electron affinity of the
diamond surface, the emitted electrons are cold (i.e.,
they are emitted at T = 300 K).

(3) The diffusion length Ld of conduction electrons
in the diamond is much greater than the thickness of the
space-charge region (the length of electrostatic field
screening in the near-surface region) [14].

(4) The electric component of a microwave field
inside the sample and around it is distributed uniformly
(the skin depth is ≈1.6 × 103 m for diamond with the
photoconductivity ∆σ ≈ 10–10 Ω–1 cm–1).

(5) The condition ∆σ @ σ0 is satisfied (σ0 is the dark
microwave conductivity of diamond at T ≈ 300 K).

(6) In polycrystalline (mosaic) type-IIa diamond
[15], nonequilibrium holes are trapped by grain bound-
aries and do not contribute to the MWPC value; the
lifetime of electrons inside a grain τn @ 1/(2πfe) ≈ 1.6 ×
10–11 s [1].

Under assumptions 1–6, the contribution of photoe-
mission to the absorption of microwave energy is
defined by the sum of flying electrons  and nonequi-

librium conduction electrons . It also depends on the
ratio between the relaxation time of the flying electron
momentum, τf , and that of the quasi-momentum of
conduction electrons, τc , inside the sample (see below).

The volumetric density of the microwave power W
absorbed by the sample is given by [7, 16]

(1)

ñ f

ñc

ñ f ñc p̃

ñ f

ñc

W
σ1E0

2

2
------------,=
where σ1 = Reσac is the real part of the electric conduc-
tivity σac = σ1 + iσ2 in a microwave field with the elec-
tric component E = E0exp(i2πfe t).

In diamond, the field strength E0 is attenuated εr

times, where εr ≈ 5.7 is the relative permittivity.
When the MWPC value is measured with a resona-

tor, the microwave power absorbed by the resonator
without illumination is taken for the null signal. Then,
during MWPC measurements, the power absorbed by
the resonator can be written as

(2)

where Wf is the volumetric density of the power Qf that
is absorbed in the volume Vf occupied by flying elec-
trons, and Wc is that of the power Qc that is absorbed in
the volume Vc occupied by nonequilibrium photogener-
ated conduction-band electrons.

Since the microwave field is uniform, for heavily
absorbable light (the light penetration is much less than
the sample thickness), we have

(3)

where A is the illuminated area of the sample, Lf is the
thickness of a layer to which flying electrons are con-
fined, 1/α(λ) is the depth from which nonequilibrium
electrons are excited by light that has a wavelength λ
and intensity Iλ, x = Iλexp[–xα(λ)] at a distance x from
the surface.

The real part of the flying electron conductivity
(hereafter flying conductivity for brevity) can be deter-
mined in terms of the Drude model [1, 16], according
to which

(4)

Here, σf = e2nfτf /m0 is the dc conductivity of flying
electrons, e is the absolute value of the electron charge,
m0 is the mass of an electron, τf is the relaxation time of
the flying momentum, and ω = 2πfe is the angular
microwave frequency.

The real part of the conductivity of conduction-band
electrons can be found within the Lorentz model [16],
since almost all natural diamonds of type IIa have the
mosaic (fragmentary) structure [15] with a grain size d
ranging from 1 to 100 µm. According to this model, the
real part ReσL of the conductivity of nonequilibrium
electrons has the form [1, 16]

(5)

where σc = e2ncτc/mc is the dc conductivity of nonequi-
librium electrons in the conduction band of diamond,
τc = µnmc/e ≈ 5 × 10–13 s is the relaxation time of the

Q f Qc+ Wf vd

V f

∫ Wc v ,d

Vc

∫+=

Q f Qc Wf AL f Wc A/α λ( ),+≈+

ReσD

σ f

1 ωτ f( )2+
-------------------------.=

ReσL σc

ω/τc( )2

ω0
2 ω2–( )2 ω/τc( )2+

-------------------------------------------------,=
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quasi-momentum of the nonequilibrium electrons, µn ≈
2000 cm2/(V s) is the mobility of the conduction-band
electrons at T ≈ 300 K [17], mc = 0.48m0 [12], ω0 =

(2/d)  is the “oscillation” frequency of a non-
equilibrium electron in a grain of size d [1, 16] until it
recombines with a hole localized on a grain boundary,
and kB is the Boltzmann constant.

It was shown [1] that ReσL ≈ σc if fe = 9.6 GHz and
d > 7 µm. All subsequent calculations within the elab-
orated MWPC model are therefore made for the case
d > 7 µm.

As follows from (3)–(5), finding the explicit form of
the power densities Wf and Wc requires that the relax-
ation times τf and τc, as well as the depths Lf and 1/α(λ),
be known.

Let us calculate the ratio of the microwave power Qf

absorbed by flying electrons to the total power Qf + Qc

absorbed by the sample in the resonator under illumina-
tion. From this ratio, one can estimate the contribution
from flying electrons with a concentration nf to the
MWPC value (relative to that from the conduction-
band electrons with a concentration nc) as a function of
incident light intensity I(λ). The relative contribution of
the flying electrons can be characterized by the partici-
pation factor

(6)

Under atmospheric pressure and T ≈ 300 K, the time
τf between collisions (the momentum relaxation time)
of flying electrons with air molecules is given by [18]

(7)

where NL ≈ 2.7 × 1019 cm–3 is the Loschmidt constant,
S(τf) is the effective cross section of scattering of flying
electrons by air molecules, v(τf) = v0 – aρτf  is the
velocity of a flying electron to scattering, v0 =
(8kBT/πm0)1/2 is the mean thermal velocity with which
the electrons leave the surface, kBT is thermal energy,
and aρ is the electron deceleration due to positive
charge (Coulomb attraction).

The normal-to-surface acceleration of an electron in
the electrostatic field of the double electrical layer is
expressed as [19]

(8)

where Np = /A is the grain-boundary hole density on
the (111) surface of diamond (see below) and A is the
illuminated area.

When calculating τf by (7), we ignored the heating
of flying electrons by the microwave field, since, at T =
300 K, we have m0v(τf)2 = 3/2kBT + (eEτf)2 ≈ 3/2kBT.

3kBT /mc

K f

Q f

Q f Qc+
-------------------≈ .

τ f
1

NLν τ f( )S τ f( )
----------------------------------,=

aρ
e2N p

ε0m0
-----------,=

p̃
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The cross section SN of electron scattering by a
nitrogen molecule as a function of electron velocity v
is linearly approximated as SN = k1v + k2, where k1 ≈
2.77 × 10–23 cm s and k2 ≈ 5.76 × 10–7 cm2 [20]. For an
electron with an energy between 10 and 60 meV, the
cross section of scattering by an oxygen molecule is
almost constant [20]: SO = 3 × 10–16 cm–2. Thus, the
cross section of scattering by an air molecule is S(τf) =
0.21SO + 0.79[k1v(τf) + k2].

From formulas (7) and (8), the relaxation time τf ≈
8 × 10–12 s depends on the concentration of positive
charge Np only slightly until Np ≈ 6 × 107 cm–2 (Fig. 1).
For the given value of τf and fe = 9.6 GHz, formula (4)
for the real part of the total conductivity of flying elec-
trons yields ReσD ≈ σf.

Now we will estimate the time tf during which an
electron is beyond the sample vs. concentration of
uncompensated holes Np = /A, where  is the number
of holes in the sample of surface area A.

It is known [21] that a flying electron completely
loses the normal-to-surface component of its velocity,
vx, in one elastic collision on average. Then, the time tf

during which an electron is in the double electrical
layer (beyond the surface) of thickness Lf = vxτf, where
vx = v0 – aρτf /2, is found by equating the electron paths
in the forward (from the surface to the point of scatter-
ing) and reverse directions:

(9)

Here, tf = τf + (tf – τf), where τf is the time to scattering
and (tf – τf) is the return time, and v0 is the initial veloc-
ity of the electron.

Figure 1 shows tf and τf curves calculated from for-
mulas (9) and (7), respectively. To Np = 6 × 107 cm–2,
the product of the momentum relaxation time τf and
time of flight tf exceeds the associated product τcτn

inside the material even if τn ≈ 10–8 s and τc ≈ 5 ×
10−13 s.

In our experiments, ReσD ≈ σf and ReσL ≈ σc, as fol-
lows from (1)–(3) and (7)–(9); hence, the products τftf

and τcτn define the contributions of the internal and
external photoelectric effects to the MWPC value. It
might be expected that flying electrons make a contri-
bution to the MWPC at Np < 6 × 107 cm–2 [formula
(16)].

The model of double electrical layer produced by
electrons and holes is applicable if the maximum dis-
tance Lf of flying electrons to the surface is much below

the linear size of the sample  ≈ 0.5 cm. The relax-
ation time of the flying momentum τf ≈ 10–11 s depends
on the illumination intensity only weakly (Fig. 1, curve 2).
Within the time τf , the normal-to-surface component of

p̃ p̃

v 0τ f

aρτ f
2

2
----------–

aρ t f τ f–( )2

2
---------------------------.=

A
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the mean electron velocity is vx = v0 – aρτf /2. Then, the
thickness of the double electrical layer is expressed as

(10)

that is, Lf is much less than the sample dimension .
Having found τf and Lf , and taking into account that

ReσD ≈ σf and ReσL ≈ σc, the total power absorbed in
the resonator is [formula (3)]

(11)

L f v xτ f v 0 aρτ f /2–( )τ f= =

=  aρ t f τ f–( )2/2 0.5 µm,≈
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Fig. 1. Lifetime tf (1) and momentum relaxation time τf (2)
for flying electrons vs. density of uncompensated holes in
type-IIa natural diamond.
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Fig. 2. Participation factor Kf (16) vs. light intensity for dia-
mond with the characteristic lifetime of conduction-band
electrons τn = 10–10 s for λ = (1) 220, (2) 225, and (3) 230 nm.

The intensity range I(λ) = (1–6) × 1013 quanta/(cm2 s) at λ =
220–230 nm (with the 4-mm-wide slits of the MDR-12
monochromator fully opened) is marked by vertical arrows.
The upper range of I(λ) does not exceed that of  in Fig. 1.

The correspondence between I(λ) and /A is established

by formula (14).

ñ f

ñ f
In view of (11), expression (6) takes the form

(12)

where  = nf ALf and  = nc A/α(λ) are the numbers of
flying electrons and nonequilibrium electrons in the

conduction band, respectively; mc/m0 ≈ 15.6; A is the
illuminated area; Lf is the mean distance of the elec-
trons to the surface; and α(λ) is the light absorption
coefficient at a wavelength λ.

To determine the contribution of flying electrons to
the MWPC, we will first find the dependences of Np,

, and  on light intensity I(λ). It is assumed that the
intensity of light with a wavelength λ at a distance x
inward to diamond is expressed as I(λ, x) = I(λ)
exp[−α(λ)x]. Also, the current density Je of emitted
electrons is assumed to be equal to the diffusion com-
ponent Jd of the current density (flat-band approxima-
tion); Je ≈ Jd = eDndnc/dx. Under the steady-state illu-
mination of the diamond surface, the current density of
emitted electrons Je equals that of returning electrons
Jr = enfvf, where vf = aρ(tf – τf) is the velocity gained by
a flying electron due to Coulomb attraction for the time
tf – τf (recall that a flying electron is assumed to lose its
normal-to-surface velocity in one elastic collision with
an air molecule [21]).

Since the motion of electrons in diamond is random,
1/6 of them tend to the surface and may leave the crys-
tal. The electrons are emitted from a layer of thickness

Ld = , where Dn = kBTµn/e is the diffusion coef-
ficient and τn is the mean lifetime of conduction-band
electrons to recombination with holes localized at grain
boundaries. The probability of a nonequilibrium elec-
tron reaching the surface depends on the distance x to
the surface and diffusion length Ld as exp(–x/Ld). The
depth of generation of electrons and holes in the sample
is ≈1/α(λ). A layer of thickness dx absorbs dI(λ, x) =
α(λ)I(λ, x)dx photons [21]. Then, at steady-state condi-
tions and H @ Ld and 1/α(λ) (H is the sample thick-
ness), the total number Nf of leaving and returning elec-
trons per unit time takes the form

(13)

Here, r is the diamond reflectivity (in the fundamental
absorption range, (1 – r) ≈ 0.7 [15]), η is the internal
photoelectric yield for illumination of intensity I(λ),
α(λ) is the absorption coefficient at a wavelength λ, pe

K f 1
ñcτc

15.6ñ f τ f

---------------------+ 
  1–

,≈
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is the mean probability of a conduction electron leaving
the sample without reflecting back to the sample and
recombining with holes at grain boundaries, and A is
the illuminated area.

The number of electrons beyond the sample  is
equal to the number of electrons leaving diamond per
unit time Nf multiplied by the mean time of flight tf :

(14)

Expressions (14), (13), and (7)–(9) specify the
dependence of the surface density of leaving electrons
Np = /A on illumination intensity I(λ).

By analogy with (14), the number of nonequilib-
rium electrons in the conduction band  depends on
the intensity of heavily absorbable light I(λ) as [11, 12]

(15)

From (6), (7), and (12)–(15), the participation factor
of flying electrons can be written in the form

(16)

where  = Ld is the diffusion length of electrons
in the conduction band.

Figure 2 plots Kf against intensity I(λ) for λ = 220,
225, and 230 nm. The lifetime of nonequilibrium elec-
trons is set equal to τn = 10–10 s for p = 0.1 (the approx-
imate quantum yield of photoemission [14] when the
penetration depth 1/α(λ) is shorter than or equal to the
diffusion length Ld). The values of α(λ) for λ = 220,
225, and 230 nm were found from experimental data in
[22]. A decrease in Kf with growing intensity is due to
a decrease in the time of flight tf of electrons.

Formula (16) for Kf implies that any surface modifi-
cation that changes its electron affinity (contamination,
reconstruction, oxidation, etc.) but does not “notice-
ably” affect the optical absorption spectra may lead to
the following.

(1) In the interband excitation range (λ = 200–
236 nm), the MWPC long- and short-wavelength parts
will be changed to the least and greatest extent, respec-
tively, since Kf drops with increasing λ. A decrease in
Kf means a decreased contribution from the external
photoelectric effect to the MWPC value (this contribu-
tion depends on the surface electron affinity).

(2) At λ = 220 nm, the MWPC signal must drop by
one order of magnitude or more, since Kf lies in the
0.88–0.97 interval for λ between 220 and 230 nm. In
the calculation, we used the intensity value λ = 220 nm
I(220) ≈ 5 × 1013 quanta/(cm2 s) and the mean lifetime
of electrons in the conduction band of natural diamond
crystals τn = 150 ps [14].

ñ f

ñ f N f t f .=

ñ f

ñc

ñc 1 r–( )η I λ( )τnA.=

K f 1
τnτc 1 α λ( ) Dnτn+( )
2.6 pet f τ f α λ( ) Dnτn
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1–
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Dnτn
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If an MWPC model includes internal photoelectric
effect alone [9–13], the MWPC spectrum must not
change (at least for the majority of natural diamonds of
type IIa) at λ > 220 nm (the change is related to that in
the wavelength-dependent surface recombination rate).
In fact, the depth of surface influence roughly equals
the diffusion length Ld. For the most perfect samples
(τn ≈ 10–8 s, µn ≈ 2400 cm2/(V s), Ld ≤ 7 µm, while in
“conventional” type-IIa crystals (τn ≈ 1.5 × 10–10 s, µn ≈
2000 cm2/(V s), Ld ≤ 1 µm [14]. At the same time, the
penetration depths are 1/α(220) ≈ 8, 1/α(225) ≈ 20, and
1/α(230) ≈ 100 µm [22].
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Fig. 3. (a) MWPC spectra for the isochronous (30 min)
annealing temperatures (1) 100, (2) 900, and (3) 1200°C.
The spectral width of the slit is (1) 0.48, (2) 0.36, and
(3) 2.4. The slit width was selected such that noise did not
exceed 5% of the valid signal peak. (b) MWPC spectra after
(1, 3) chemical cleaning in the K2Cr2O7 + H2SO4 + H2O
mixture and (2) powder treatment. Curve 3 is the more
detailed representation of curve 1.
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1330 ZAKHAROV et al.
DISCUSSION

The results obtained in [1, 6, 8] will be treated in
terms of our model, which takes into account the con-
tribution of the external photoelectric effect to MWPC.

From Fig. 3a, one can see that vacuum heat treat-
ment at temperatures above 1000°C (the reconstruction
of the (111) diamond surface is observed at 950°C [17])
changes the long-wavelength part of the MWPC spec-
trum to the least extent. On the contrary, in the funda-
mental absorption range (λ < 225 nm), the MWPC
drops by one order. Chemical cleaning [1] used to pre-
pare the samples for MWPC contact measurements
leads to similar results (Fig. 3b). Both heat treatment at
900–1000°C and chemical treatment in the chromium
mixture cause the MWPC value to decrease in the
“impurity illumination” range. However, in both cases,
the optical absorption spectra remain unchanged within
the error of α(λ) measurement. The initial MWPC sig-
nals are regained once a ~10-µm-thick layer has been
removed by grinding and polishing the samples with
the corundum powder and diamond paste. Similar
changes in the MWPC spectrum were also observed
when the diamond surface was bombarded by Ar+ ions.

The validity of our MWPC model is also confirmed
by the photoemission studies. In the range 280 > λ >
200 nm, we failed to detect the photoemission at a level
of 1 pA (the detectability limit of photoemission cur-
rent) after chemical cleaning of the surface (as in
[2, 23]). The photoemission becomes detectable in this
spectral range if the samples are treated either by the
powder or by the paste prior to measurements (Fig. 4).
As was noted, the MWPC signal from the powder-
treated diamond-IIa surface (Fig. 3) increases roughly
tenfold [1].

CONCLUSION

The MWPC of natural type-IIa diamond was first
studied by a contactless method. The MWPC results
are compared with those obtained by the methods of dc
photoconductivity, optical absorption under normal
conditions, and vacuum photoemission. The MWPC
model for natural diamond was elaborated. It takes into
account both the optical generation of nonequilibrium
electrons and grain-boundary-localized holes and the
emission of electrons from the illuminated diamond
surface, having the negative electron affinity.
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Abstract—Phase transformations in a Ti–Si system irradiated by a nitrogen–hydrogen plasma were investi-
gated with electron diffraction and Auger spectroscopy. Optimum conditions for the formation of TiN thin films
on a silicon wafer were found. Contacts irradiated by a nitrogen–hydrogen plasma exhibit the lower Schottky
barrier, and their breakdown voltage is almost one order of magnitude higher than in as-prepared samples. Rela-
tionships between the electrophysical properties of the contacts and the parameters of plasma processing were
set. © 2000 MAIK “Nauka/Interperiodica”.
The extensive application of a low-pressure low-
temperature gas-discharge plasma (including chemi-
cally active) is a distinct feature of submicron IC tech-
nology. Of particular interest is the processing of thin-
film systems in a nitrogen-containing plasma to form a
nitride-containing (in particular, TiN) barrier layer. It
was reported [1–3] that titanium nitride meets the
requirements for barrier contacts to active IC elements
and is compatible with both conventional aluminum
metallization and young copper-based metallization.

In this paper, phase transformations in the Ti–Si sys-
tem due to nitrogen–hydrogen plasma processing were
investigated with an EMR-102 electron diffractometer
and a PHI-660 scanning Auger spectrometer. The elec-
trophysical parameters of Ti–Si contacts vs. plasma
processing conditions were determined from the cur-
rent–voltage characteristics (CVCs) or by calculations
outlined in [4, 5]. 100-nm-thick polycrystalline tita-
nium films were grown on p-Si(111) wafers by elec-
tron-beam deposition. Resulting Ti–Si contacts were
processed by an arc plasma containing nitrogen and
hydrogen ions. The sample temperature was 500, 600,
or 700°C, depending on the cathode current. The pres-
sure of the nitrogen–hydrogen mixture was kept at a
level of 5–6 Pa. The hydrogen content was 5% [6]. The
ion current was measured by a Langmuir probe; the ion
current density was JI = 4.0 ± 0.2 mA/cm2. The accu-
mulated dose NS was calculated as [7]

(where t is the processing time and q is the ion charge)
and ranged from 5 × 1018 to 5 × 1019 cm–2 for the pro-
cessing times within 3–30 min.

The electron diffraction investigations showed that
the titanium films were fine-grain polycrystals with an

NS JIt/q,=
1063-7842/00/4510- $20.00 © 21331
average grain size of 5–10 nm. To obtain the tempera-
ture dependence of the phase transformations, the dose
was kept constant: NS = 1.5 × 1019 cm–2. It follows from
the electron diffraction patterns that, when the Ti–Si
system is plasma-processed at 500°C, TiN and Ti2N
form on its surface. In increasing the processing tem-
perature to 600°C, the low-nitrogen nitride phase dis-
appears and a gold-colored TiN film covers the silicon
surface. As the processing temperature increases to
700°C, the phase composition of the Ti–Si system sur-
face remains the same. The results obtained from the
electron diffraction patterns are presented in Table 1.

To study the dose dependence of the Ti–Si phase
composition, the films were processed at a constant
temperature (600°C) for 3, 10, and 30 min. After irradi-
ating the Ti films at NS = 3 × 1018 cm–2, the diffraction
rings of titanium totally disappear and the diffraction
patterns consist of the rings typical of titanium nitride
TiN. As the irradiation dose rises to 1.5 × 1019 and 5 ×
1019 cm–2, the phase composition of the Ti–Si system
does not change. Thus, irrespective of the irradiation
dose, the plasma processing of the titanium–silicon
contact at 600°C results in the formation of titanium
nitride TiN on its surface.

Depth profiling of chemical elements was per-
formed with Auger spectroscopy combined with argon
ion etching. It was found that the as-prepared Ti films
contain a large amount of oxygen (~55%) and carbon
(~15%) impurities on their surface. This is due to
adsorption of residual gases during film deposition
owing to gettering properties of titanium. At a depth of
~30 nm, the films become free of carbon and the oxy-
gen concentration is greatly reduced to 5% throughout
the film (Fig. 1a). At the Ti/Si interface, the oxygen
concentration slightly grows (suggesting that an oxide
000 MAIK “Nauka/Interperiodica”
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layer is present on the silicon) and the carbon concen-
tration reaches ~8%.

After irradiation at T = 500°C, the oxygen and car-
bon contents at the film surface significantly decrease
as compared to the as-prepared samples. This may
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result from the spattering effect of plasma ions and neu-
tralization of oxygen by hydrogen ions. The oxygen
rapidly diffuses from the surface inward to the film, and
its concentration peaks at a depth of ~60 nm (Fig. 1b).
In addition, silicon diffuses from the wafer into the Ti
film, which is associated with the thermal effect of the
plasma. The silicon concentration in the film is 5–10%;
according to the constitutional diagram, this is insuffi-
cient for the formation of a Ti–Si compound. The con-
centration of nitrogen, diffusing into the titanium film
from the plasma, linearly declines from 55% at the Ti
surface to its minimum at the Ti/Si interface. The con-
centrations of nitrogen and titanium become equal at
depths of 10–15 nm, which means that titanium nitride
TiN is present in the system. As the interface is
approached, the nitrogen concentration drops to its sto-
ichiometric concentration in titanium nitride Ti2N.
Titanium diffuses into the silicon wafer to a depth of
nearly 120 nm under the thermal action of the plasma.
Its concentration corresponds to stoichiometric TiSi2.
At larger depths, the titanium concentration decreases,
reaching zero at depths of 250–300 nm.

For the Ti–Si system processed at 600°C, the depth
profiles somewhat change. The nitrogen concentration
(~50%) remains constant to a depth of ~50 nm
(Fig. 1c). The Ti/N concentration ratio corresponds to
titanium nitride TiN with excessive nitrogen within the
homogeneity region. This indicates that, under the
given treatment conditions, the resulting films consist
totally of titanium nitride. As compared with the sam-
ples processed at T = 500°C, the titanium concentration
in the silicon wafer slightly rises because of an increase
in the diffusion rate at the elevated temperature. The sil-
icon profile remains intact; its diffusion into the metal
film is insignificant as before. The oxygen and carbon
concentrations peak (15%) on the surface and at the
interface. In the interior of the film, they are 5%. The
total oxygen concentration in the Ti–Si system
decreases as compared to the samples processed at
500°C. It seems that, at T > 600°C, the oxygen
adsorbed on the film surface extensively interacts with
hydrogen ions of the plasma and then is removed from
the surface of growing titanium nitride. The steps in the
oxygen and carbon profiles at the Ti/Si interface are due
to the gettering effect and also to the fact that the inter-
facial concentrations of these elements in the as-pre-
pared compositions were maximum. At the processing
temperature 700°C, the depth profiles of the elements
(with the exception of nitrogen) are almost the same;
the nitrogen concentration rises only slightly at the sur-
face and becomes less uniform in depth.

The Auger data are consistent with those of electron
diffraction. During the plasma processing of the Ti–Si
system, it undergoes temperature-dependent phase
transformations according to the following scheme:

Ti/Si TiN Ti2N/TiSi2/Si+

TiN/TiSi2/Si.

500°C

600–700°C
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Titanium disilicide at the Ti/Si interface results from
a high-temperature metal–silicon reaction, which is
enhanced by the plasma thermal effect. To trace the
phase composition with depth, the electron diffraction
studies were performed after etching off a 100- to
150-nm-thick surface layer. The associated patterns
from the samples processed by the nitrogen–hydrogen
plasma with NS = 1.5 × 1019 cm–2 at 600 and 700°C
show that titanium disilicide of S-54 modification
arises at the Ti/Si interface.

The Auger data suggest that the surface film of tita-
nium nitride is a reliable barrier to silicon diffusion. As
follows from Figs. 1b and 1c, the region of titanium dis-
ilicide formation extends from the interface inward to
the silicon wafer to a depth of 120–140 nm. The forma-
tion of silicides on the contact surface, which usually
takes place on heating to 500–700°C [8, 9], was not
observed. Thus, during nitrogen–hydrogen plasma pro-

Table 1.  Phase compositions of the Ti–Si system surface
during nitrogen–hydrogen plasma processing

dexp, 
nm

dtheor, 
nm hkl Before 

processing

Processing temperature, 
°C

500 600 700

0.260 0.259 101 – Ti2N – –

0.258 0.256 010 Ti – – –

0.245 0.247 200 – Ti2N – –

0.243 0.244 111 – – TiN TiN

0.226 0.229 111 – Ti2N – –

0.222 0.224 011 Ti – – –

0.210 0.212 200 – TiN TiN TiN

0.178 0.179 211 – Ti2N – –

0.152 0.151 002 – Ti2N – –

0.148 0.1496 220 – TiN TiN TiN

0.131 0.133 103 Ti – – –

0.127 0.1277 311 – TiN TiN TiN

0.126 0.125 213 – Ti2N – –

0.122 0.1233 201 Ti – – –

0.120 0.122 222 – TiN TiN TiN

0.094 0.0946 211 Ti – – –

0.092 0.094 420 – TiN TiN TiN
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cessing of the titanium–silicon system, titanium is a
dominant diffusant. It penetrates deeply into the silicon
wafer and forms S-54 titanium disilicide as a result of
the high-temperature reaction, enhanced by the plasma
thermal effect.

The phase transformations in the Ti–Si system
change the electrophysical parameters of the contact.
The as-prepared samples had an asymmetric CVC, and
their breakdown voltage was 8 V. After plasma process-
ing at NS = 1.5 × 1019 cm–2, the breakdown voltage
becomes as high as 50, 70, and 90 V for the processing
temperatures 500, 600, and 700°C, respectively
(Table 2). A rise in the breakdown voltage was also
observed after the processing of the contacts at a fixed
(600°C) temperature with irradiation doses of 5 × 1018–
5 × 1019 cm–2. It seems likely that the postprocessing
increase in the breakdown voltage of the contacts is a
result of the phase transformations at the Ti/Si inter-
face, since they substantially change its electronic
structure.

In parallel with the change in the breakdown volt-
age, there also are changes in the ascending branches of
the CVCs, as demonstrated by the Schottky barrier
heights ϕb. Calculations showed that ϕb decreases from
0.62 eV for the as-prepared contacts to 0.58–0.60 eV
after plasma processing. Presumably, this is related to
the formation of TiSi2 at the metal–semiconductor
interface, which alters the surface state density.

To conclude, our investigations showed that nitro-
gen–hydrogen plasma processing of the Ti–Si system
causes titanium nitride to form on the silicon surface
and S-54 titanium disilicide to grow at the interface. It
was found that these phase transformations govern the
electrophysical characteristics of the contacts. When
compared to the as-prepared Ti–Si contacts, the pro-
cessed ones offer increased breakdown voltages and
decreased Schottky-barrier heights. Thus, nitrogen–
hydrogen plasma processing makes it possible to form
barrier contacts based on titanium nitride and produce
Schottky barriers with electrophysical characteristics
depending on treatment conditions. The advantages of
this technique are highly local energy input, selectivity,
as well as no need for additional annealing, which is
necessary when titanium nitride is deposited by con-
ventional means. The use of a low-temperature arc
plasma makes it possible to form thin films of refrac-
Table 2.  Changes in the electrophysical parameters of the Ti–Si contacts during nitrogen–hydrogen plasma processing

Parameter As-prepared 
sample

NS = 1.5 × 1019 cm–2 600°C

500°C 600°C 700°C 5.0 × 1018 cm–2 1.5 × 1019 cm–2 5.0 × 1019 cm–2

ϕb , eV 0.62 0.60 0.60 0.59 0.60 0.60 0.58

U, V 8 50 70 90 55 70 70

Note: ϕb, Schottky barrier height; U, breakdown voltage.
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tory compounds at lower energy and reagent consump-
tions.
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Abstract—A mathematical model of the diffusion efflux of an absorbable gas into vacuum through a fine mem-
brane with a distance between pores comparable with their diameter is proposed. The model is analyzed for a
steady-state regime. The results of the theoretical analysis are compared to experiment. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

A wide use of fine filters (membranes) with a dis-
tance between pores comparable with their diameter
(for example, porous glasses with a porosity of ε = 0.2–
0.4) in physical investigations and technological pro-
cesses accounts for the importance of the mathematical
modeling of the diffusion of absorbable gas molecules
through such filters. A distinctive feature of this process
is that molecules of the absorbable gas penetrate into
pores as a result of diffusion over the filter surface, as
well as directly from the gas phase. Therefore, the
boundary conditions must take into account the adsorp-
tion of gas molecules and their evaporation back into
the gas phase after some delay time τs (adsorption time
[1]) from the irregular surface comprising pore
entrance holes and areas between them (conventionally
considered as flat).

Available models do not provide for an adequate
theoretical analysis of such structures. Karlov et al. [2]
modeled the process of the absorbable gas efflux into
vacuum via a membrane with a narrow single through
channel (pore) under the condition that

(1)

where l is the free path of molecules in the gas phase, λ
is the surface diffusion length, and r is the pore radius.
In this case, no boundary condition for the pore
entrance hole is formulated, since direct penetration of
molecules into a single pore can be neglected if condi-
tion (1) is fulfilled. Obviously, this model is insufficient
for the analysis of a multiporous structure in which the
area occupied by pores is comparable with that free of
the pores. Similar considerations can be applied to
model [3], where the mechanism of transfer of absorb-
able molecules through a capillary is analyzed without
taking into account the diffusion of molecules from the
surface adjacent to the channel entrance.

l @ λ  @ r,
1063-7842/00/4510- $20.00 © 21335
The aim of this work was to generalize the previous
models to the case of a multiporous membrane, retain-
ing the condition l @ λ that provides for the flow of gas
molecules through pores in the Knudsen regime,
whereby the number of collisions between molecules is
smaller than that with the pore walls.

PROBLEM FORMULATION

Let us consider the diffusion efflux of a gas into vac-
uum through a plate (membrane) with fine pores. We
introduce the Cartesian coordinates (x, y, z) and place
the membrane at the boundary of the half-space z > 0.
The membrane has the thickness L and a regular system
of through cylindrical pores with the radius r and the
distance 2R between their centers (Fig. 1).

In the halfspace z < 0, a constant pressure is kept so
as to satisfy the condition (1), and at z > L pressure is
close to zero (vacuum). Molecules penetrate into the
pores both directly from the gas phase and as a result of
the surface migration with the diffusion coefficient [4]

(2)

where λ0 is the mean jump length of a molecule on the

Ds

λ0
2

2τ i*
--------- αU–( ),exp=

Z = 0

Z 

Z 

R

r

Fig. 1. Schematic diagram of a porous membrane and the
motion of molecules: L is the membrane thickness, r is the
pore radius, R is the radius of “collection” of molecules.
000 MAIK “Nauka/Interperiodica”
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surface, U is the adsorption potential,  is a constant
associated with the molecule oscillation frequency in
the adsorption potential, and α is a constant factor
equal to 1/3–1/4.

Let us introduce a polar coordinate system (ρ, ϕ)
with the origin at the pore center and assume that mol-
ecules moving on the surface reach the entrance of a
given pore only from a ring area adjacent to the pore

(3)

This is the main simplification that allows one to carry
out the further analysis. Let us denote the surface den-
sity of molecules at z = 0 by a(ρ, t) and at z = L by c(ρ, t),
respectively. The transfer of molecules inside the pore
proceeds both in the volume and on the surface.
Assuming the total concentration of molecules b(z) at a
point with the coordinate of z (0 ≤ z ≤ L) to be indepen-
dent of ρ, we obtain

(4)

Here, the surface bs and volume bv concentrations are
related as

(5)

where τs = exp(U/kT),  ≈  is the adsorption
time, τv = 2r/V is the mean time for a molecule with the
mean thermal velocity V to flight between the pore
walls.

Thus, diffusion of a mixed type takes place inside
the pore with a diffusion coefficient given by the for-
mula [3]

Let us denote by I the mean number of molecules
incident onto a unit area of the membrane per unit time
from the gas phase:

where P is the gas pressure. Then, the process of diffu-
sion with the uniformly distributed intensity of positive
sources

(7)

and negative sources

(8)

proceeds in the areas between pores.

τ i*

r ρ R.≤ ≤

b z t,( ) 2
r
---bs z t,( ) bv z t,( ).+=

bs
r
2
---

τ s

τv
-----bv z t,( ),=

τ s* τ s* τ i*

D
4r2 3Dsτ s+
3 τ s τv+( )

----------------------------.=

I
1
4
---nV

P

2 2mkT
----------------------,= =

I
a ρ t,( )

τ s

---------------- 0 at z>– 0=

c ρ t,( )
τ s

---------------– 0 at z> L=
To derive an equation of diffusion in the pore, let us
assume that the pore entrance hole is characterized by
the “surface” concentration of molecules

(9)

which determines the intensity of positive sources at
the pore entrance:

(10)

The intensity of negative sources at the pore exit is

(11)

where a similar assumption is taken for

(12)

As a result, we obtain the following set of equations: 

(13)

supplemented by the initial conditions at t = 0

(14)

and by the boundary conditions at z = 0

(15)

and at z = L

(16)

Now, the mixed boundary-value problem (13)–(16)
for the system of differential equations of the parabolic
type is correctly formulated [5] that describes the diffu-
sion of gas molecules into vacuum through a fine filter.

bs 0 t,( ) a r t,( ), 0 ρ r,≤ ≤=

I
2
r
--- 1

τv
τ s

-----+ 
  Ds

∂a r t,( )
∂ρ

------------------
bs ρ t,( )

τ s

-----------------, 0 ρ r≤ ≤––

bs L t,( )
τ s

------------------
2
r
--- 1

τ s

τv
-----+ 

  Ds
∂c r t,( )

∂ρ
------------------, 0 ρ r,≤ ≤–

bs L t,( ) c r t,( ), 0 ρ r.≤ ≤=

∂
∂t
-----a ρ t,( ) I

a ρ t,( )
τ s

--------------– Ds
∂2a ρ t,( )

∂ρ2
--------------------

1
ρ
---∂a ρ t,( )

∂ρ
------------------+ 

  ,+=

∂
∂t
-----b z t,( ) D

∂2

∂z2
-------b z t,( ),–=

∂
∂z
-----c ρ t,( ) c ρ t,( )

τ s

--------------– Ds
∂2

∂ρ2
--------c ρ t,( )

1
ρ
--- ∂

∂ρ
------c ρ t,( )+ 

  ,+=

a 0 ρ,( ) Iτ s a1, r ρ R,≤ ≤≡=

b 0 z,( ) 0, 0 z L,≤ ≤=

c 0 ρ,( ) 0, r ρ ∞,≤ ≤=

a R t,( ) a1,=

a r t,( ) bs 0 t,( ), 0 ρ r,≤ ≤=

I
2
r
--- 1

τv
τ s

-----+ 
  Ds

∂
∂ρ
------a r t,( )–

1
τ s
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∂
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Below, we shall analyze a steady-state solution to
this problem and compare this with experimental data.

CALCULATION 
OF A STEADY-STATE REGIME

Let us analyze a steady-state regime for the gas flow
through a membrane when the concentrations of gas
contained in the pores and adsorbed on the surface does
not depend on time. Then, time derivatives disappear
and

where q is molecule flow through a pore.
In this case, the solution of system (13) supple-

mented by the boundary conditions (15) and (16) leads
to the following expression for a molecular flow:

(17)

where

I0 and K0 are the modified zero-order Bessel functions
of the 1st and 2nd kind, respectively; I1 and K1 are the

D
db z( )

dz
-------------–

q

πr2
--------, 0 z L,≤ ≤=

q
πr2I

1 K10+( ) 1– F10
3L
8r
------ 1

3R1
2

4r2
---------+

 
 
 

1–

+ +

-----------------------------------------------------------------------------------,=

K10 2
Ds τ s τv+( )

rR1
---------------------------

K1 r/R1( )
K0 r/R1( )
----------------------, R1

2 Dsτ s,= =

F10 1 2 f 10

Ds τ s τv+( )
rR1

---------------------------+ 
 

1–

,=

f 10

I1
r

R1
----- 

  K0
R
R1
----- 

  I0
R
R1
----- 

  K1
r

R1
----- 

 +

I0
r

R1
----- 

  K0
R
R1
----- 

  I0
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Fig. 2. Time variation of the pressure P at the membrane exit
for d = 120 Å, KL = 1, ε = 0.4, P0 = (1, 2) 456, (3, 4) 152 torr:
(1, 4) experiment; (2, 3) theory.
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corresponding first-order functions, respectively [6];
and R1 is a parameter having the sense of the surface
diffusion length.

Expression (17) can be used to obtain a more
“rough” formula quite adequate for estimations. To
make the approximation more realistic, let us replace
the parameter L (pore length) in Eq. (17) with KLL,
where KL is a phenomenological coefficient taking into
account the so-called “sinuosity” of pores. Then we
obtain from (17) the following approximate expression
for the total flow Q of gas molecules through a porous
membrane with the area S and the porosity ε:

(18)

Thus, the membrane acts as a filter passing a gas
flow Q = IS coming to the membrane with a transmis-
sion factor equal to Kt = (1 + 3/4(R1/r)2)8rε/3LKL.

EXPERIMENTAL RESULTS

To verify experimentally the above expression
obtained for the transmitted gas flow Q, we studied the
steady-state diffusion of argon atoms into vacuum
through a porous glass membrane. The membrane was
mounted (glued) in the channel connecting two cells, a
pressure in one of them (low-pressure cell) was much
lower than that in the other (high-pressure cell). Mem-
branes with a diameter of 6 mm and a thickness of
2 mm, made of the porous glass plates of two types
with a mean square pore diameters of ~67 (ε ~ 0.3) and
~120 Å (ε ~ 0.4), were used in the experiments.

We studied the steady-state diffusion of argon
through the porous membrane at room temperature
(T = 290 K) by measuring the gas pressure in the low-
pressure cell as a function of time t at a constant pres-
sure in the high-pressure cell equal to 152 or 456 torr.

Q IεS
8r

3LkL

------------ 1
3
4
---

R1

r
----- 

 
2

+ 
  , L @ r.≈

0 2 4 6 8 10 12 14 16

0.5

1.0

1.5

2.0

2.5
1
2
3
4

t, min

P, torr

Fig. 3. The same as in Fig. 2 for d = 67 Å, KL = 2, ε = 0.3
and at the same values of P0: (2, 4) experiment; (1, 3) theory. 
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The theoretical value of the pressure of diffusing argon
as a function of time was determined as

(19)

where V is the volume of the low-pressure cell.
In the calculations, the potential of argon adsorption

on the porous glass surface was taken to be equal to
[1, p. 131]

The other parameters were as follows: λ0 = 5 Å, α =
0.25, V ≅  1000 cm3,  ≈ 10–13 s, and KL = 1 (for a
porous specimen of the second type). The results of cal-
culations and experiments are shown in Figs. 2 and 3.

The dependencies presented show a quite satisfac-
tory agreement between experimental results and esti-
mations according to formula (18). The model pro-
posed can also be used for the numerical modeling of

P
qt
V
-----kT ,=

U 1773 K T 290 K=( ).≅

τ s*
unsteady-state regimes of gas flow through a mem-
brane.
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Abstract—A two-aperture synthesis as applied to Multiskan photodetectors is suggested. It is intended for
improving device sensitivity and reducing location error due to high-intensity background illumination. Differ-
ent approaches to constructing the synthetic aperture, which performs light conversion near the saturation
region of the Multiskan current–voltage characteristic, are analyzed. © 2000 MAIK “Nauka/Interperiodica”.
Current techniques for precisely determining light
signal coordinates usually use the position of the
median of input light distribution. The value of the
median is found by comparing the weighted values of
photocurrents to the left and to the right of a sought
coordinate.

The potentially high accuracy of such methods (to
10–5 of the field of vision) can be realized only if the
photodetector area is uniformly sensitive in a wide
dynamic range of light intensity. In this case, the weak
varying signal to be located can be separated from a
high-intensity focused background.

Such an integral approach to tracing a single modu-
lated light signal is successfully implemented with a
Multiskan linear photodetector [1]. Without back-
ground illumination, this device is capable of locating
the light distribution median with an accuracy to 10–5–
10–4 of the photosensitive area linear size, i.e., to 0.2–
2.0 µm. However, for particular mutual arrangements
of the modulated signal and a background spot, the pre-
cise location of the median becomes very difficult.

In this work, we describe the synthesis of a complex
Multiskan aperture that reduces the effect of a focused
background on the median location accuracy.

As is known [1], a Multiskan comprises a set of
back-to-back-connected silicon photodiodes. Some of
their electrodes are connected to a distributed voltage
divider, and the others, to a low-resistance signal line.
When a constant voltage is applied to the divider
(Fig. 1), the potential is uniformly distributed over
pairs of back-to-back-connected p–n junctions. The
directions and values of their photocurrents make up
the current–voltage characteristic (CVC) of the device.
The characteristic has positive and negative saturation
regions, as well as a transition region whose width
(aperture) depends on the voltage applied to the resis-
tive line. The position of the zero is defined by the zero
potential point on the resistive line. Due to the feedback
1063-7842/00/4510- $20.00 © 21339
loop, the voltage across the resistive line is adjusted so
that the total current of the Multiskan output signal is

set to zero:  = 0.

The feedback voltage Ucontrol, which shifts the CVC
zero, corresponds to the coordinate of the median in a
voltage scale with great accuracy. It serves as the output
signal of the measuring system.

Figure 1a shows the block diagram of a Multiskan
and a device that filters, amplifies, and integrates the
signal, as well as generates the control voltage Ucontrol,
corresponding to the median position Us of a signal.
The Multiskan is under an applied voltage 2E. In Fig. 1b,
the position of a modulated light signal with the median
at a point Us is shown. Also given is the CVC whose
zero U0 (ξ0 in the x-axis) corresponds to Us (ξs in the
x-axis) in the 2E scale. The correspondence between
the CVC zero and the light distribution median follows
from the solution of the current balance equation in
both the coordinate and voltage spaces:

and

(1)

where L is the Multiskan length, µm; E is the voltage
applied to the resistive line, V; Ax is the space width of
the aperture, µm; Au is the width of the aperture in the
voltage scale, V; and α and β are proportionality factors
(hereafter, we assume that α = β = 1).

Is∑

Is α f x( )
x ξ0–

Ax

-------------tanh xd

0

L

∫ 0= =

Is β f u( )
u U0–

Au

---------------tanh ud
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E

∫ 0,= =
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Fig. 1. Principle of Multiskan operation. (a) Regime of
modulated signal location, (b) mutual arrangement of light
signal and Multiskan current–voltage characteristic, and (c)
positive and negative components of photocurrent generated
by the modulated signal.
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Fig. 2. Experimental dependence of error in the signal coor-
dinate on the mutual arrangement of signal and background.
Let the signal f(x) be near-rectangular; that is,

(2)

where ξ1, ξ2 and ,  are the boundaries of the
rectangular optical signal in the coordinate and voltage
scales, respectively.

Subsequently, the width of the optical signal will be
designated as δξ and ∆U, respectively. Then, the cur-
rent balance equation is

Hence, U0 =  + /2 = Us. In other words, if
Ucontrol = U0, the CVC zero coincides with the median
Us of the distribution f(u).1 

When a valid modulated signal and high-intensity
focused background are simultaneously applied to the
detector, the median of the background distribution in
the voltage space will be designated as Ub (ξb in the x-
axis). The mutual arrangement of the signal f(u) and
background B(u) may be arbitrary. If both pass through
the same diaphragm, the widths of the signal ∆ξs and
background ∆ξb can be considered to be equal.

Experiments have shown that a modulated signal
against a high-intensity focused background can, in
general, be located with a high accuracy (about 2 µm).
However, in the region where the signal and back-
ground distributions partially superpose, the error dras-
tically increases. Figure 2 depicts an experimental
curve that plots the measurement error (χ = ξs – ξ0, µm)
for a stationary signal vs. the mutual arrangement of the
signal and background. The Multiskan photosensitive
area was scanned by a background spot whose intensity
exceeded that of the signal by two orders of magnitude.
The slight broadening of the curve where the back-
ground and the signal came closer together is most
probably due to a spread of generated carriers within
their diffusion length.

The shape of the curve and its passage through the
zero ξb = ξs indicate that the error arises when the sym-
metry of the photocurrent distribution breaks. This
takes place when the signal f(x) and background B(x)

1 Hereafter, solutions with negative (  + )/2 are rejected,

since the conditions for negative feedback and system stability are
violated in this case.

f x( )
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superpose. In other words, in regions where the intensi-
ties of the weak modulated signal and background add
up, the sensitivity of the photodetector changes.

Thus, the location error arises when the luminous
characteristic becomes nonlinear; this, in turn, distorts
the CVC of the photodetector under high-intensity illu-
mination.

The linearity of the luminous characteristic of sili-
con photodiodes in a wide dynamic range is vital for
photometry. The luminous characteristic of photo-
diodes with shallow p+–n junctions is known to be very
close to linear in the visible and near-UV ranges [2, 3].
However, it deviates from linearity in the red and near-
IR ranges, which are used in applications similar to
those considered in this paper. In [4], the linearity of the
luminous characteristics of photodiodes for the light
intensity varying within two orders of magnitude was
studied. The nonlinearity was shown to be as large as
20%. Similar studies performed on Multiskan devices
gave like results: when the illumination intensity was
increased 100-fold, the current due to modulated light
changed within 15%.

Let a modulated signal be approximated by a rectan-
gular pulse. Then, as follows from calculations, a loca-
tion error due to a signal current change in one-half of
the illuminated area can be roughly estimated as

(3)

where ∆ξ is the modulated-signal width, k is the coeffi-
cient that takes into account an increase in the signal
current under background illumination, and χ = ξs – ξ0
is the location error. (Note that this formula ignores the
finite width of the CVC transition region and light-to-
photocurrent conversion near the zero bias voltage.)

If, for example, the light spot size is 0.3 mm and k =
1.1, χ = 10 µm, which agrees with Fig. 2. At k = 1.05,
χ = 4 µm. The use of focusing optics and sharper distri-
butions, such as Gaussian, will further decrease the
error. Yet, according to present-day requirements for
location accuracy under high-intensity illumination,
the error should be decreased down to 1 or 2 µm. Two
approaches to linearization are possible: (1) by techno-
logical means, when the characteristic is linearized to
three-place accuracy for a dynamic range of back-
ground intensity covering three orders of magnitudes
and (2) using circuit-design methods that compensate
for nonlinearity by means of multiaperture synthesis.
Either of the approaches has disadvantages and restric-
tions of its own.

The undesired nonlinearity of the luminous charac-
teristic is usually related to recombination centers in
n-Si, which act as traps [3, 5]. Traps are known to be
localized states in the energy gap which capture free
carriers. These states may be associated with impurities
and defects or may arise at the Si/SiO2 interface. Cur-
rent semiconductor technology allows the fabrication

χ ∆ξ
4

------ 1 1
k
---– 

  ,=
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of diodes with high electrophysical parameters; how-
ever, their active area is limited. Large-area photodetec-
tors with a low parameter spread are almost impossible
to produce, since the concentration of the traps and
their distribution in the silicon wafer are defined by the
wafer history and previous process steps. This is espe-
cially true for multielement Multiskan devices, which
have a large linear size. It was suggested [4] to apply a
higher reverse bias voltage to the diodes so that each
photogenerated carrier contributes to the photocurrent,
thus decreasing the nonlinearity of the luminous curve
to fractions of a percent. In the case of Multiskan, how-
ever, such an approach fails, since the position of the
optical signal median is coincident with the position of
the CVC zero (U0 = Us), so that valid and background
signals interfere at low negative biases. This does not
allow us to use recombinations described in [4]. It is
nevertheless hoped that gettering and special anneals
will make it possible to obtain devices with the less-
than-1% nonlinearity of the luminous characteristic.

The essence of two-aperture synthesis, which is a
circuit-design solution to the problem, is as follows. In
the above method of signal location, where Multiskan
photocurrents to the left and to the right of the CVC
inflection point U0 are compared, two photocurrent
areas form. These areas may be illuminated by back-
ground light to various degrees (asymmetrically)
(Figs. 1b, 1c). Due to the nonlinear luminous character-
istic, this may break the current balance.

Let us try to create the situation where a background
spot incident on the Multiskan photosensitive layer
near the modulated signal is symmetric (that is, it
evenly affects the positive and negative photocurrent
branches). In this situation, a location error can be
avoided. We will show that such a situation can be real-
ized by means of a synthetic aperture made up of two
Multiskans whose illuminances due to the modulated
signal and background light are spatially identical.

Consider two Multiskans with voltages 2E applied
to the resistive layers. Their signal lines are connected
to each other. Let us apply a small bias ε so that all the
potentials on one device are biased by +ε and on the
other, by –ε (Fig. 3). Consider the operation of this
combined device as a single photodetector. Here, the
values and directions of the photocurrents appearing in
the Multiskans depend on the complex aperture. It is
composed of two signal coordinates shifted relative to
each other along the voltage axis and two appropriately
shifted CVCs.

A voltage axis forms on either Multiskan. We desig-
nate them as z-axis for one Multiskan and ν-axis for the
other. Accordingly, the devices will be referred to as
z- and ν-Multiskans. The positions of the signal poten-
tials on these axes are related as z = ν – 2ε. The expres-
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sions for currents in the z- and ν-Multiskans are

(4)

Now we introduce the axis u such that z = u + ε and
ν = u – ε and write the current balance equation relative
to this axis. First, we transfer the z and ν coordinates for
the signals and CVCs to the u-axis. To do this, we intro-

duce the feedback voltages  and  into
Eq. (4). These voltages are internally applied voltages
that set the current balance. Then, we have

(5)

For rectangular signals [see Eq. (2)], Eq. (5) takes
the form

(6)
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Fig. 3. Electrical connection of two Multiskans to create a
synthetic aperture.
Integration yields

that is,

(7)

Solutions of Eq. (7) can be found for two cases:

(1)  =  and (2)  ≠ . In the
former case, we use the equalities

or

It is easy to check that, due to the evenness of the
hyperbolic cosine, both equalities yield the same solu-
tion:

(8)

Substituting (8) into (6) gives

(9)

In the latter case, we take advantage of the equalities

or

to obtain the solutions

(10)
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After substitution, we have

(11)

Thus, in both cases, the solutions are symmetric
and, hence (in terms of the posed problem), identical
(Figs. 4, 5). The solution of case 2 suggests that the syn-
thetic aperture can be modified further by inserting
additional voltages in parallel with Ucontrol.

Let us assume that the sources +ε and –ε are con-

nected in series with Us, so that  = Us – ε and

u ε– Us–
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Fig. 4. Synthetic aperture for Ucontrol = Us. (a) Electrical
connection of Multiskans, (b) spatial arrangement of the
CVC for two electrically connected devices and currents
generated by a modulated signal, (c) derivative of total cur-
rent with respect to bias voltage.
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 = Us + ε. Then, substitution into (6) yields

(12)

which means a new aperture configuration (Fig. 6).
It follows from Figs. 4b–6b that each of the syn-

thetic aperture versions obeys the principle underlying
the idea of symmetrizing the effect of background on
the photocurrents of both Multiskans. Namely, the
inflection points of the CVCs of both Multiskans are
shifted relative to the medians of light signals incident
on the photodetector, so that the photocurrent of one
device is formed only with the positive CVC branch,
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while that of the other is formed only with the negative
one. As a result, for any position of background illumina-
tion, changes in the symmetry of photocurrent distribution
take place in both the positive and negative photocurrent
components, which are involved in the current balance
equation and to a great extent compensate each other.

Us0

dI/dUs
(c)

(b)

(a)

Is

u

Us
v

U0
z = U0

v

2ε

Is

Us + ε

Us – ε
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E – ε E + ε

+

++

+–

– –

–

M ”z”
M ”v”

2ε

Us
v

Fig. 6. Synthetic aperture for  = Us – ε and

 = Us + ε. (a)–(c) the same as in Fig. 4.

Ucontrol
z

Ucontrol
ν

Figures 4c–6c show the derivatives of the total out-
put current with respect to voltage that shifts the signal
position relative to that of the synthetic aperture. It is
seen that the peaks of the derivatives coincide with the
signal medians Us. Hence, the synthetic aperture retains
the property of keeping the dI/dUs peaks at the points of
the signal medians.

It should be noted that such a synthetic aperture seems
to be the only practical way to increase the negative bias
of the p–n junctions for valid signals, which are responsi-
ble for light-to-photocurrent conversion, in either Multi-
skan. This, according to [4], must improve the linearity of
the luminous characteristic. Moreover, under such condi-
tions, the conversion efficiency must greatly increase,
which is tantamount to improving the system sensitivity.

The conversion efficiency for the given system is
given by

0.2

0 0.1

ℵ , arb. units

ε, V
0.2 0.3 0.4 0.5

0.4

0.6

0.8

1.0
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3

Fig. 7. Conversion efficiency vs. ε for Au = (1) 0.1, (2) 0.2,
and (3) 0.3 V.
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∫
-----------------------------------------------------------------------------------------------------------------------------------------------.=
Figure 7 depicts ℵ  vs. ε curves for different aperture
values.

CONCLUSIONS
Thus, Multiskan devices allow the use of a synthetic

aperture. With this aperture, the photocurrents from
either device are formed in the positive or negative
CVC branches. Moreover, the background affects both
photocurrent components and their changes compen-
sate each other. The degree of compensation depends
on the differences in the sensitivities of the devices and
TECHNICAL PHYSICS      Vol. 45      No. 10      2000
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changes in the CVC slopes: the less the differences, the
greater the compensation.

It should be noted, however, that the solutions pre-
sented here differ either by the axis of symmetry (ver-
sions 1 and 2) or by the value of ε (in version 3, ε can
readily be changed to ε/2). One can therefore argue that
any of the constructed models are suitable for the anal-
ysis of the error χ introduced by background. The aim
of this analysis is to derive a dependence of χ on bias ε,
aperture width Au, signal width ∆U, and a background-
induced change in the CVC shape.

This issue will be addressed in the second part of the
work.
TECHNICAL PHYSICS      Vol. 45      No. 10      2000
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Abstract—Results are presented from a study of UV and VUV emission from the plasma of a transverse vol-
ume discharge in chlorine and a He/Cl2 mixture. In the wavelength range ∆λ = 140–300 nm, the Cl2(D'–A') band

with an edge at 258 nm and the  band with edge at λ = 195 nm are found to be dominant. It is shown that,
in the pressure range [Cl2] = 0.1–2.0 kPa, the intensity of emission with λ ≤ 195 nm is higher than the intensity
of the Cl2(D'–A') band. At [Cl2] ≥ 2 kPa, emission in the 258-nm band is dominant. © 2000 MAIK
“Nauka/Interperiodica”.

Cl2*
Low-pressure electric discharges in chlorine and its
mixtures with inert gases are widely used in plasmo-
chemistry to etch thin films [1]. Recently, various types
of longitudinal discharges in Kr(Xe)/Cl2 mixtures have
been applied in high-power low-pressure excimer
lamps [2, 3]. Chlorine molecules are an important com-
ponent of the working medium of lasers operating at
the ClF* 285-nm band [4] with pumping by a trans-
verse volume discharge (TVD). In some cases, Cl2 mol-
ecules are more preferable for pulsed TVD-based exci-
mer lamps. Thus, in [5], it was shown that the efficiency
of TVD-based spontaneous emitters operating at the
ArCl(B–X) 175-nm band increases significantly if,
instead of HCl molecules, Cl2 molecules are used as
chlorine carriers. Chlorine molecules also enter into the
composition of the working medium of infrared HCl(ν)
chemical lasers with pumping by a TVD [6]. In most
cases, studies of the plasma of a longitudinal glow dis-
charge in Cl2 were conducted at reduced pressures,
because such discharges contract in strongly electrone-
gative working media. The characteristics of pulsed
lamps based on Cl2 and He/Cl2 mixtures (in particular,
their emission at λ ≤ 200 nm) are poorly investigated.
Such studies are important for developing high-power
spontaneous UV–VUV sources and pulsed chlorine-
based plasmochemical reactors operating at elevated
pressures of the working medium.

In this paper, we present the results of studying the
optical characteristics of a plasma produced in a pulsed
TVD in Cl2 and He/Cl2 mixtures in the 140- to 300-nm
wavelength range.

Gas molecules were excited by a TVD with auto-
matic spark preionization in a volume of 18 × 2.2 ×
1.0 cm, where 2.2 cm is the distance between the dis-
charge electrodes. The TVD emitter circuit is described
in [7]. A 30-nF main storage capacitor and a 9.4-nF
sharpening capacitor were used in the two-contour LC
1063-7842/00/4510- $20.00 © 21346
circuit to ignite a TVD. A TGI-1-1000/25 thyratron was
used as a switch. The sharpening ceramic capacitors
KVI-3 (470 pF, 20 kV) were filled with an insulating
compound and were mounted as two blocks inside the
discharge chamber near the TVD electrodes. The mini-
mum inductance of the main discharge-ignition circuit
was L ≤ 10 nH). The presence of insulators between the
TVD plasma and grounded screens makes this excita-
tion system similar to circuits used to generate fast ion-
ization waves in longitudinal pulsed discharges [8−10].
The FWHM duration of the TVD current was ≤30 ns.
Note that the same value of the parameter E/N at the
front of a fast ionization wave can be achieved at lower
voltages of the power source; in this case, the plasma
volume can also be increased substantially.

Emission from the TVD plasma was analyzed with a
half-meter vacuum monochromator based on the Seia–
Namioki scheme and equipped with a 1200-line/mm
grating. The TVD chamber was hermetically connected
to the vacuum monochromator through a CaF2 window.
An FEU-142 photomultiplier with a LiF window was
used as a photodetector. The compartment where the
FEU-142 was situated and the grating chamber were
evacuated to a residual pressure of ≤10–3 Pa. The “vac-
uum monochromator + FEU-142” system was cali-
brated relative to the H2 continuum in the 165- to
350-nm region.

Figures 1 and 2 show the emission spectra of the
plasma of a TVD in pure chlorine and He/Cl2 mixtures.
The spectra are drawn without taking into account the
relative spectral sensitivity of the vacuum spectrometer
(kλ). The identified spectral bands and the relative
intensities of the main band maximums (taking into
account kλ) are listed in the table. The chlorine bands
were recognized according to the data presented in
[11–14]. The dominant bands in the spectral region
being studied were the Cl2(D'–A') band with the long-
000 MAIK “Nauka/Interperiodica”
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wavelength edge at λ = 258 nm and the bands with
edges at 236 and 195 nm. Note that the upper emitting
state for the latter two bands are unknown, whereas the

lower states are rather high-lying A3Π( ) [13] and

B( ) [14] states. The upper states for the band with
an edge at λ = 195 nm may be low vibrational levels of

the Cl2( ) states that are formed from the Cl+(1D)

and Cl–(1S) states, and the lower state is A'3Π(2u) [15].
In TVDs ignited in He/Cl2 mixtures (especially in those
with a substantial helium content), the singlet–triplet
relaxation of  into the D3Π2q state occurs, as a
result of which only the Cl2(D'–A') 258-nm band
remains in the plasma emission (Fig. 2).

Figure 3 shows the total intensities of bands with
edges at λ = 195 and 258 nm as functions of Cl2 pres-
sure for the high-current phase of a TVD in pure chlo-
rine. It is seen from the figure that, at [Cl2] = 0.4–
0.2 kPa, the 195-nm band is dominant. As the chlorine
pressure increases further, the Cl2(D'–A') 258-nm emis-
sion becomes dominant. A comparison between the
decay rates of the intensity of the 195-nm band for dif-
ferent Cl2 and He pressures in the He/Cl2 mixture

showed that the rate of the –Cl2(D') singlet–triplet
transition (i.e., the quenching rate for this band) under
the action of Cl2 molecules is more than one order of

O0
+

Π3 +
0

Σ1 +*
u

Cl2**

Cl2**

180 220 260 λ, nm

Cl2*

Cl2*

258 nm Cl2(D'–A')

Fig. 1. Plasma emission spectrum of a TVD in chlorine at a
pressure of 1.2 kPa and Uch = 10 kV.
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magnitude higher than that under the action of He
atoms.

Hence, we have shown that, for chlorine at pressures
of (0.4–3.0) kPa and for He/Cl2 mixtures at pressures of
≤30 kPa, a steady-state phase can occur in high-current
TVDs, which is of interest for plasmochemical applica-
tions. For a low Cl2 content (Popt = 0.8–1.6 kPa), this

140 180 220 260 λ, nm

180 220 260 λ, nm

2

1

258 nm Cl2* 258 nm Cl2(D'–A')

Fig. 2. Plasma emission spectra of TVDs in He/Cl2 = (1)
2/0.4 and (2) 50/0.04-kPa mixtures.

0 0.8 1.6 2.4 PCl2, kPa
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20
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J, arb. units

1 2

Fig. 3. Intensities of the bands with edges at λ = (1) 195 and
(2) 258 nm in a high-current TVD in chlorine as a function
of pressure at Uch = 10 kV.
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discharge is an intense source of radiation in the band
with an edge at λ = 195 nm. When helium ([He] ≥ 10–
30 kPa) is mixed with chlorine, UV–VUV emission
from the TVD plasma is concentrated in the Cl2(D'–A')
258-nm band.

Intensity distribution in the emission spectrum of a TVD in
chlorine for [Cl2] = 2.8 kPa and U = 10 kV

λ, nm I/kλ, au Identification

168 0.73 Cl2[H–X1 ]

177 0.70 Cl2[1Σ–1Π4] [14]

184 0.79 180- to 195-nm  band

189 0.87 The same

193 1.06 "

195 1.87 "

200 0.95 Maximum in the chlorine continuum at 
λ = 200 nm [11, 12]

212 0.63

223 0.88 223- to 236-nm Cl2(I–B3 ) band [14]

228 0.70 The same

231 0.78 "

235 0.77 "

239 0.97 239- to 260-nm Cl2(D'–A') band [15]

247 1.53 The same

252 1.44 "

258 2.65 "

276 0.82 Maximum in the chlorine continuum at 
λ = 276.1 nm [11, 12]

291 0.70

295 1.03 Maximum in the chlorine continuum at 
λ = 295.7 nm [11, 12]

Σg
+

Cl2
*

Π0
+
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Abstract—An effect of an electric field on the evaporation of polar and nonpolar liquids (water and a hydro-
carbon, respectively) is established. The effect is stronger in the former case. © 2000 MAIK “Nauka/Interpe-
riodica”.
Generally, an electric field is applied to a liquid by
means of electrodes connected to a voltage source and
submerged in the liquid, giving rise to an ion current
and near-electrode phenomena. Processes of this kind
are analyzed in electrochemistry. They have been uti-
lized in a number of technologies.

The effect of an electric field on molecular ordering
in liquids, including surface layers, was systematically
studied at the Ioffe Physicotechnical Institute in the
prewar years [1].

We have proposed to apply an electric field to a liq-
uid by setting the electrodes in a contactless (remote)
position. The setup used to implement the proposed
method is schematized in Fig. 1. Here, a high-voltage
source with output U = 15–20 kV is used and the cur-
rent is blocked, which makes the scheme safe in opera-
tion. The liquid is poured into a dielectric cell placed
between the electrodes. In this system, electric contact
of the upper and lower electrodes with the liquid is pre-
vented by a vapor–gas layer and the dielectric (polytet-
rafluoroethylene) bottom of the vessel, respectively. As
a consequence, only a negligible leakage current is
present in the circuit and Joule losses are absent. This
setup can be used to generate fields of intensity E
directed both downwards (with the “+” electrode at the
top) and upwards (with the “–” electrode at the top).

In previous studies [2, 3], it was demonstrated that
the growth of plantlike organisms at the early stages of
their development is enhanced in water exposed to an
electric field for 2–10 min. The exposed water produces
a positive effect when used in treating respiratory dis-
eases and allergies. The biological activity of the water
depends on the direction of E: it is always higher when
the positive electrode is placed above the liquid, so that
the generated field is directionally similar to the atmo-
spheric electric field [4].

Since the effects of electric and other physical fields
on water inferred from the reactions of living organ-
isms are of a subjective nature, additional evidence is
required. To explore the field effect on a phase transi-
tion (evaporation), we took two liquids that have simi-
1063-7842/00/4510- $20.00 © 21349
lar thermodynamic characteristics but widely different
polarities: distilled water as a polar liquid with ε = 80,
conductivity γ = 2 × 10–4 Ω m–1, and pH = 6.4 and
chemically pure dodecane C12H26 (a hydrocarbon of the
paraffin series) as a nonpolar liquid with ε = 1.95 and
conductivity lower by eight orders of magnitude. Our
experiments were conducted under standard conditions
(t° = 20 ± 0.5°C, p = 752–761 torr). A quasi-uniform
electric field was generated by plane electrodes con-
nected with a source of U = 15 kV. The thicknesses of
the air layer, water layer, and dielectric bottom were
8 mm, 1.5 mm, and 1.7 mm, respectively. Reference
samples were kept under identical conditions, but with
the voltage source switched off. The dielectric cell
material was not wetted by water, and preferential
evaporation from the meniscus was therefore ruled out.
The electric field was applied continually and was
switched off only at the moment when the cell was
weighed on a VLR-200 analytical balance to within an
error of ±0.2 mg. To preclude the formation of trapped-

1

2

3
4 5

2 6 7

3

+–

–+

Fig. 1. Schematic of a setup for contactless treatment of liq-
uids: (1) high-voltage source; (2) dielectric vessel; (3)
treated liquid; (4–7) electrodes.
000 MAIK “Nauka/Interperiodica”
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gas zones over the liquids, the gas was blown by using
the same blowing scheme for all samples.

The experimental results shown in Fig. 2 demon-
strate the substantially higher rate of evaporation of
water compared to the hydrocarbon. Note the stronger
effect characteristic of water placed in the electric field
directed downwards (like the atmospheric field). The
mass of a nonpolar liquid exposed to an electric field
decreases; but the decrease is not only substantially
weaker, but is also independent of the E direction.
Moreover, note that the rate of water charging by means
of a needlelike upper electrode is higher when the nee-
dle is at positive potential. This observation confirms
the ideas of Frumkin and Rusanov about the preferen-
tial orientation of H2O molecules, with oxygen in the
outward position in the surface layer [5].

0 60 120 180 240

14.475

14.500

14.525

15.500

16.000

16.500

4

5, 6

1
2
3

t, min

M, g

Fig. 2. Dependence of change in the liquid mass M [g] on
the duration of electrical treatment t [min] for distilled water
(1–3) and chemically pure C12H26 (4–6): (1, 4) reference
samples; (2, 5) with E directed upwards; (3, 6) with E
directed downwards. The ordinate scales are different for
different liquids. 
An explanation of the phenomenon demonstrated
here should be sought in the specific properties of liq-
uid surface layers, which differ from the bulk properties
of liquids [6]. The double electric layer at the surface
changes when placed in an electric field of the type con-
sidered here: conversion of molecules into ions in it is
intensified. Ions are forced out of the liquid by the elec-
tric field, and this effect is more pronounced for the
OH– groups associated with neutral water molecules
when the field is directed downwards [5].

Molecules of a nonpolar liquid have zero dipole
moments and are hardly ionized. They are not involved
in electrostatic (ion or dipole) interactions that could
hold them in the liquid. The orientational ordering of
elongated molecules in electric fields, which was dis-
cussed in a classical monograph [1], can be specifically
manifested in surface layers by an increase or decrease
in the loss of molecules by liquids. In the case under
study, an increase was observed and found to be inde-
pendent of the E direction.

The effect of an electric field on a phase transition
(evaporation of liquids) appears to be weak, but it must
be involved in natural phenomena, including biology,
and can be utilized in technologies with low heat losses.
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Abstract—The effect of extraction of the ion current on the conditions for sustaining a low-pressure glow dis-
charge with a hollow cathode, which is a topical problem for developing ion sources, is studied. It is shown
that there exists a certain optimal level of the ion emission at which the energy efficiency reaches its maximum.
© 2000 MAIK “Nauka/Interperiodica”.
Interest in studying the characteristics of low-pres-
sure glow discharges is mainly explained by the possi-
bility of applying them in the development of sources
of charged particle beams. Ion sources based on gas-
discharge systems with cold cathodes, in particular,
those based on a glow discharge with a hollow cathode
(GDHC) have a considerably longer service life and
greater reliability than hot cathode systems under the
technical vacuum conditions typical of industrial sys-
tems. In addition, in a pulsed or pulsed-periodic operat-
ing regime, cold cathode systems are more energy-effi-
cient, as there is no need to sustain the heater current
[1]. At the same time, in a continuous operating regime,
the energy efficiency of the glow discharge ion sources
is appreciably lower compared with arc discharge
sources with a hot cathode. This is explained by the fact
that the coefficient of the potential ion–electron emis-
sion is small, and, accordingly, the burning voltage of
the discharge is high. However, in contrast to arc dis-
charges where the ion component of the discharge cur-
rent is rather small, in a glow discharge, the current to
the cathode is almost entirely carried by ions. There-
fore, the source energy efficiency can be enhanced if
the extracted fraction of the ion current is increased by
increasing the total area of the emission orifices in the
cathode; however, such an increase in the ion emission
may interfere with sustaining the discharge, inasmuch
as the particles collected into the beam miss the cathode
and do not participate in γ-processes at its surface. In
this connection, it is important to study the effect of ion
extraction on the GDHC characteristics and determine
an optimum level of ion emission at which one can
obtain a sufficiently high emission current without sig-
nificant difficulties in sustaining the discharge.

It is generally accepted [2–4] that in GDHCs the
main contribution to the ionization process is made by
the so-called fast electrons originating at the cathode
and acquiring high energy as they pass through the
1063-7842/00/4510- $20.00 © 21351
cathode potential drop region across which almost the
entire discharge voltage U drops. As a result of an
abrupt decrease in the Coulomb interaction cross sec-
tion at high energies, the fast electrons mainly interact
with neutral atoms [4, 5], and the energy distribution
function f(ε) for fast electrons can be written as

(1)

where Ii is the total ion current in the discharge; α is the
ion current fraction collected into the beam; (I – α)Ii is
the ion current at the cathode; γ is the ion–electron
emission coefficient; e is the electron charge; ε0 = eU is
the energy acquired by an electron in the cathode
potential drop region; δ is the Dirac δ-function; N is the
concentration of neutral atoms in the cathode cavity; m
is the electron mass; σ(ε) is the total cross section of
electron–atom collisions; σ(ε, ω) is the cross section
corresponding to the loss of energy ω in a collision by
a colliding electron with energy ε; Sa is the anode area;
and V is the cathode cavity volume.

The first term in (1) describes the generation of new
fast particles as a result of ion–electron emission from
the cathode. The second and the third terms character-
ize the disappearance and emergence of the electrons,
respectively, in a narrow energy range around ε as a
result of collisions (integration in the third term is car-
ried out over all possible ω). The last term allows for
withdrawal of fast electrons to the anode from the dis-
charge, according to an expression for the number of
particle–wall collisions known from molecular-kinetic
theory. In deriving it, we assumed that the fast particles

γ 1 α–( )
Ii

e
---δ ε ε0–( ) Nσ ε( ) 2ε

m
----- f ε( )–

+ Nσ ε ω ω,+( ) 2 ε ω+( )
m

--------------------- f ε ω+( ) ωd∫
–

f ε( )Sa

4V
---------------- 2ε

m
----- 0,=
000 MAIK “Nauka/Interperiodica”



 

1352

        

NIKULIN

     
are uniformly distributed throughout the cathode cavity
volume.

Taking into account that the energy lost in a single
collision is considerably less than the energy acquired
in passing the cathode potential drop region, it is possi-
ble to simplify (1) by using the Fokker–Planck approx-
imation. Expanding the integrand into a series and per-
muting the differentiation and integration, after some
transformations, we obtain

(2)

where Q(ε) is the so-called stopping power defined by
the following expression:

(3)

Equation (2) can be solved analytically to obtain the
following expression for the energy distribution func-
tion of the fast electrons:

(4)

At the same time, the ion current is related to the dis-
tribution function of the fast electrons by the following
expression:

(5)

γ 1 α–( )
Ii

e
---δ ε ε0–( ) ∂

∂ε
----- NQ ε( ) 2ε

m
----- f ε( ) 

 +

–
f ε( )Sa

4V
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m
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eNQ ε( )
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 
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∫=
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Fig. 1. The burning voltage of a discharge as a function of
pressure for  = (1) 0.06; (2) 0.08; (3) 0.1.γ̃
where εi and σi are the threshold energy and the ioniza-
tion cross section, respectively.

Combining (4) and (5), a condition for self-main-
tained discharge in the ion emission regime can be
obtained:

(6)

Expression (6) gives an implicit dependence of the
burning voltage of a discharge on the neutral gas con-
centration or on the pressure P = NkT, where k is Bolt-
zmann’s constant and T is the gas temperature.

Figure 1 presents calculated plots of the burning
voltage as a function of the dimensionless pressure

(7)

where σ0 = π  is the area of the Bohr orbit, and a0 is
the Bohr radius. The calculations were carried out for
various values of the parameter  = γ(1 – α).

In the calculation, argon was adopted as a working
gas and the data on the ionization cross sections were
taken from [6]. As for the stopping power, which, at
energies exceeding the ionization threshold, is mainly
governed by inelastic collisions, it was described by the
expression derived for the classical Thomson model

(8)

where Z is the number of electrons in the outermost
shell and ε1 is the energy of the first excitation level.
Expression (8) agrees with the results of quantum-
mechanical calculations for fast electrons [7].

As seen from Fig. 1, sustaining the discharge is
impossible at any voltage if the pressure is lower than a
certain critical value, and at pressures above critical the
functions obtained are ambiguous. Similar results were
obtained earlier for the dependence of burning voltage
on the magnetic induction in a discharge with electrons
oscillating in a magnetic field [5]. The states corre-
sponding to the lower branches of the curves in Fig. 1
are stable and observable in an experiment.

As the emission increases and, correspondingly, the
parameter  decreases, the lower boundary of the oper-
ating pressure range gradually rises. This imposes cer-
tain constraints on the possible increase in the ion
extraction efficiency in ion sources, because, at a higher
pressure, the electrical strength of the accelerating gap
may be exceeded. However, even if this has not
occurred, the rise in the voltage with decreasing  may
make the increase in the extracted current fraction
worthless because of a decrease in the source energy
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efficiency:

(9)

where Ib is the ion beam current and W ≈ IiU is the
power consumed in sustaining the discharge.

Figure 2 shows αe(α) plots for a number of pressure
values. It is seen that all the curves have the same qual-
itative character: initial growth gradually slows down,
the curves reach their maxima at some point, and then
the energy efficiency decreases. Thus, there exists a
certain optimal level of the extracted ion current frac-
tion depending on the pressure at which the energy effi-
ciency reaches its maximum.

At higher pressures, as is also seen in Fig. 2, it is
possible to achieve a higher energy efficiency. There-
fore, in order to increase αe, one should increase the gas
flow through the source, either as much as the electrical
strength of the gap will allow or until the gas flow (usu-
ally expressed in cm3at/h) exceeds a certain limit set by
the characteristics of the technological process in
which an ion source is used. However, increasing the
gas flow degrades another important characteristic of
the source, namely, the gas efficiency

(10)

This may make the source operation in a regime
with an increased gas flow rate economically inefficient
in spite of the high energy efficiency.

A search for the most profitable operating regime
for the source can be performed on the basis of the fol-
lowing model. Assuming that the basic expenses for
maintaining the source operation are connected with
both the electric power consumption in its gas-dis-
charge system and gas consumption, let us introduce a
quantity C, which characterizes the cost of one ampere-
hour of source operation:

(11)

where Ce is the cost of one kilowatt-hour of electrical
energy (the energy efficiency in expression (11) is
assumed to be expressed in A/kW, as is usually done)
and Cg is the cost of one cubic centimeter of the work-
ing gas at atmospheric pressure.

For given costs of the electrical energy and the
working gas and assuming that the relation between the

α e

Ib
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α
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αg
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α e
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Cg

αg

------,+=
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pressure in the gas-discharge chamber and the gas flow
for various values of α (that is, for practical purposes,
for various magnitudes of the total area of the emission
orifices) is known, finding a minimum of expression
(11) is not a problem and can easily be carried out for
any technological installation.
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Abstract—For an electron placed in a quasi-one-dimensional ballistic ring and subjected to a constant electric
field, the mean dipole moment and the intensity of dipole radiation were calculated. As the field intensity
decreases, the initially paraelectric ring turns dielectric. © 2000 MAIK “Nauka/Interperiodica”.
The advances in single-electron device technology
have stimulated investigation into quasi-one-dimen-
sional rings. In the literature, the ring is most often con-
sidered in terms of quantum effects: size quantization,
interference phenomena like the Aharonov–Bohm
effect, Coulomb blockade, etc. In this work, we show
that intriguing classical effects may occur in quasi-one-
dimensional ballistic rings subjected to external elec-
tric fields. Specifically, we will deal with a planar
quasi-one-dimensional ring whose width is much less
than the radius R. The ring is essentially a quantum well
between two concentric circular potential barriers. The
well is only width-quantized, and angular motion is
classical and ballistic (the mean free path of an electron
greatly exceeds 2πR). We are interested in the response
of the ring to an external constant electric field F paral-
lel to its plane (the field is produced by a parallel-plate
capacitor).

The position of an electron in the ring is specified by
the angular variable ϕ, which is reckoned from the
“lowest” point, i.e., the point nearest to the positively
charged plate of the capacitor. The equation of motion
for an electron is similar to that of a pendulum:

(1)

where  = eF/mR (e and m are the electron charge and
mass, respectively).

The exact solution of this equation (see, e.g., [1])
depends on F. If F > F0 ≡ E/2eR, a pendulum (electron)
with an energy E vibrates about the equilibrium point.
At F < F0, it executes angular motion with monotoni-
cally increasing ϕ. In the transition field F = F0, the
motion is aperiodic.

(1) The dipole moment of a ring that has one elec-
tron and a distributed neutralizing charge (jelly model)
is p = {eRcosϕ, eRsinϕ}. Using the exact solution of (1)

d2ϕ
dt2
--------- ω0

2 ϕsin+ 0,=

ω0
2
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with the boundary conditions ϕ(0) = 0, (0) =

 ≡ Ω and averaging p(t) over time, we find
the steady-state component of the dipole moment  =
{p0, 0}:

(2)

(3)

Here, K(k) and E(k) are the complete elliptic integrals

of the first and second kind and α = . At F @ F0,
we have from (2) p0 = eR (the field presses the electron
against the lowest point of the ring). In weak fields
(F ! F0), p0 = –5eR/16α2 from (3); in other words, the
permittivity of the ring is negative. To better appreciate
this result, we note that the dipole moment in the inter-
mediate case F  F0 ± 0 is p0 = –eR. In this limit, the
period of motion becomes infinite; that is, the electron
stays at the “highest” point throughout the entire time.
Then, the previous result also becomes clear: having
passed through the top point, the electron spends more
time in the upper semicircle than in the lower one. This
corresponds to the negative (in opposition to the field)
dipole moment. Hence, the dipole moment vanishes
between α = 0 and α = 1 (more strictly, α = α0 ≈ 0.91);
that is, the paraelectric behavior changes to dielectric.
The field dependence of p0 is shown in Fig. 1. To avoid
misunderstanding, it should be stressed that the occur-
rence of the negative component of the dipole moment
is not contradictory to the well-known theorem on the
positiveness of static permittivity [2]. This theorem
applies to thermodynamically equilibrium systems and,
accordingly, is proved in terms of thermodynamics.

ϕ̇

2E/mR2

p

p0 eR 1– 2
E α( )
K α( )
-------------+ , F F0>( ),=

p0 eR 1 2α2 1 E
1
α
--- 

  /K
1
α
--- 

 – 
 – ,=

F F0<( ).

F0/F
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Our system is not in equilibrium, in particular, because
of ballistic effects taking place between electron colli-
sions with scatterers; i.e., before equilibrium is estab-
lished.

(2) Let us consider dipole radiation of electromag-
netic waves by the ring. Averaging the instantaneous

radiation intensity J(t) = 2 /3c2 [3] over time yields

(4)

(5)

where J0 = 8e2E2/(3m2c3R2).

As follows from (4) and (5), at F  F0 ± 0,   0
because of an infinite increase in the motion period; in
other words, we are dealing with a sort of soft mode
that corresponds to “resonance,” ω0 = Ω/2. With this
condition fulfilled, it makes sense to consider the
energy radiated over an infinite period of time, U =
3J0/2ω0. In this case, we have a continuous radiation

spectrum. Figure 2 plots  against applied field F.

Fourier analysis of the function J(t) implies that, at
F > F0, the fundamental frequency is ω = πω0/2K(α),
while at F < F0, it is given by

ṗ̇2

J
J0

4α2
--------- 3 7α2– 4α2 3 1 2α2–( ) E α( )

K α( )
-------------–+ ,=

F F0>( ),

J J0
1
2
---– 1

2α2
--------- 3 1

2
--- 1

4α2
---------– 

  E
1
α
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  /K
1
α
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 + + ,=

F F0<( ),

J

J

ω1 πΩ/2K
1
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 =

–1 1 2 3 4 5
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P0/eR

Fig. 1. Mean dipole moment of the ring vs. α–2 = 2eRF/E.
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(in the latter case, the formulas for intensities of even
and odd harmonics of frequency ω differ somewhat).
As the field grows from zero to F0, the spectrum crowds
(ω decreases from Ω to zero). At F = F0, the continuous
spectrum is described by a bell-shaped spectral density
function S(ω) with a peak of Smax ≈ S(2ω0) ≈
4πe3F0R/3mc3. With a further increase in F (F > F0), the
spectrum becomes sparse (the fundamental frequency
ω grows from zero to ω0) and the intensity of higher
harmonics drops. At F  ∞, the radiation becomes

monochromatic with a frequency ω0 varying as .
Such an evolution of the spectrum may be viewed as the
delocalization-to-localization transition. In fact, at F < F0,
the motion is infinite (the angular coordinate ϕ mono-
tonically increases with time), while at F > F0, ϕ varies
in certain limits.

(3) Above, the ring was assumed to have a single
electron. If there appear N electrons due to point injec-
tion, the factor N 2 should be introduced into formulas
(4) and (5) and N, into (2) and (3). For a degenerate
electron gas in the ring, E has the meaning of Fermi
energy. Coulomb interaction between the electrons can
be neglected if ω0 @ ωp, where ωp is the frequency of
plasma oscillations in the ring (the calculation of ωp is
the subject of a separate paper).

The following contactless procedure can be used
instead of point injection. First, with the same parallel-
plate capacitor, a strong (F @ F0) electric field is
applied in order that all free electrons pass to the lowest
point. The initial condition ϕ(0) = 0 is provided in this
way, which prevents a random scatter in the phases of
oscillations between the motions of different electrons.

F

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1/α2

J/J0

Fig. 2. Mean radiation intensity vs. α–2.
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Then, the field is brought to a desired value. We make
several estimates in conclusion. At R = 10–5 cm,
m = 0.1me, E = 0.1 eV, we obtain Ω = 6 × 1012 s–1.
The bifurcation point ω0 = Ω/2 corresponds to the field
F = 5 × 103 V/cm.
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Abstract—The spatial directional pattern of the radio emission induced by interaction of the excess electrons
of an extensive air shower with the Earth’s surface was found in the approximation of perfect soil conductance.
The results made it possible to determine the frequency range (≈0.2–1 MHz), within which the radio emission
of the shower is maximum, provided that this emission mechanism is valid. In addition, it became possible to
explain the previously observed lack of direct proportionality between the shower energy and the radio signal
amplitude. It was found that this disproportionality is caused mainly by the high directivity of low-frequency
(0.2–3 MHz) radiation patterns within a wide range of the values of the axial tilt. © 2000 MAIK “Nauka/Inter-
periodica”.
The most relevant problems of cosmic-ray physics
concern particles with energies higher than 1019 eV [1].
For example, despite theoretical predictions of the
energy spectrum cutoff by the microwave cosmic back-
ground at energies ≈5 × 1019 eV, more than ten events
with energies higher than 1020 eV have already been
detected. The results reported by the Akeno group are
also very interesting [2]. A total of 36 events with ener-
gies higher than 4 × 1019 eV were observed over a
period of 6 years using the Akeno array. The analysis of
these events revealed the possibility of the existence of
point sources of ultrahigh-energy cosmic rays (CR).
The current interest in ultrahigh-energy CR was
inspired by the construction of giant detectors, such as
ShAL-1000 (Extensive Air Shower, EAS-1000) or
Pierre Auger. However, even these giant detectors
would not be able to detect particles with energies of
1022–1023 eV. In my opinion, there is hope of detecting
such superparticles (if they actually exist) in the fore-
seeable future using relatively inexpensive detectors.
Many already existing detectors are able to solve this
problem. For this purpose, the method of radio detec-
tion of cosmic rays suggested in [3, 4] should be used.
It was shown earlier [5–7] that this method allows the
effective area of the detector to be increased by approx-
imately 6 orders of magnitude (i.e., to 107 km2). The
mechanism of electron–photon avalanche radio emis-
sion used in this method was studied in [8–10]. The
electromagnetic field intensity within the long-wave
range (shower propagation in the Earth’s atmosphere)
and the decameter range (shower propagation at the
surface of the Moon) was estimated [3, 4].

However, this is not the only radio emission mecha-
nism that does not require a magnetic field. In recent
1063-7842/00/4510- $20.00 © 21357
years, the mechanism of transient radiation induced by
the interaction of excess electrons of an extensive air
shower with the Earth’s surface have been investigated
by many groups of researchers worldwide (see, for
example, [11–18]). In my opinion [19], the method of
observation used in [11–18] should be radically modi-
fied. However, this method may prove very effective for
detecting ultrahigh-energy particles. The goal of this
work was to determine the directional pattern of this
type of transient radiation. This should be done,
because the potential of this mechanism of EAS emis-
sion is difficult to study without knowing its spatial
characteristics.

Let us first determine the intensity of radio emission
of a single excess electron of EAS. It should be noted
that avalanche positron annihilation is the main cause
of the disturbance of the shower neutrality that results
in radio emission. The moment of annihilation should
be considered as the outbreak of excess electron
motion. Obviously, the excess electron emits not only
while crossing the Earth’s surface, but also at the initial
stage of motion. Strictly speaking, it is the stopping
positron that is emitted at this stage. However, this pro-
cess is equivalent to excess-electron acceleration.
Therefore, it may be assumed that, at the early stages of
the motion (i.e., when the positron disappears), the
excess electron attains the velocity β = v/c ≈ 1 almost
immediately within a time interval τ. Then, it moves
uniformly for a time t0. When the electron reaches the
Earth’s surface, its velocity decays to zero within a time
interval τ (i.e., as quickly as it was accelerated). The
results of calculations based on this model of transient
radiation for ε  ∞ agree well with the experimental
data (see, for example, [20]). The time τ is selected so
000 MAIK “Nauka/Interperiodica”
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that ωτ ! 1 for all radio frequencies. The spectral
intensity of the field produced by the electron in the
wave zone can be determined from the following equa-
tion (see, e.g., [21]):

(1)

where dt = (1 – ϑ(t ')c–1cosΘ)dt' and t = t' + R0 /c – (n, r).

Integration (1) can be conveniently performed on
three successive intervals (0, τ), (τ, t0 + τ), and (t0 + τ,
t0 + 2τ). On the second interval, a(t') ≈ 0. For τ  0,
we obtain

(2)

The angle Θ in Eq. (1) is taken to be constant,
because the distance to the observer R0 greatly exceeds
the excess-electron range z.

Because soil is a good conductor (ε  0), the
resulting pattern of radio emission is determined by
both the excess electron motion and its electric image.
Therefore, vector addition of the fields should be per-
formed. We denote the angle between the vertical and
the shower axis as Θ0. Thus, cosΘ = –cosϕsinΘ0, where
ϕ is the azimuth angle of an observer positioned on the
Earth’s surface. The azimuth angle is measured from
the line of intersection of the plane containing the ver-
tical and the velocity vector v with the Earth’s surface.
The absolute value of the resulting intensity dE of the

dE
1

2π
------ e

4πε0R0c2
----------------------- a t'( ) Θeiωtdtsin

1 ϑ t'( )c 1– Θcos–( )3
------------------------------------------------,

∞–

∞
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dE1 ω z,( ) e
4πε0
-----------

Θ iωR0/c–( )expsin
2πR0 1 β Θcos–( )c
-----------------------------------------------=

× 1 iωz 1 β Θcos–( )/c–[ ]exp–{ } .
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ξ1 ξ, xξξ2 x2
ψ

Fig. 1. The ellipse obtained by projection of the shower disk
onto the Earth’s surface; CM is the wave surface.
electron field and its image is related to equation (2) by
the expression

If the travel direction of the shower disk Θ0 ≠ 0, the
region of interaction between the shower electrons and
the Earth’s surface is limited by an ellipse. This ellipse
is formed by the projection of the shower disk onto the
Earth’s surface at the angle Θ0. The ellipse semiaxes are
equal to r and r/cosΘ0, where r is the shower disk
radius (i.e., the radius outside of which the charged par-
ticle density is negligible).

The electromagnetic waves emitted by the excess
electrons reaching the line BC (Fig. 1) reach the
observer simultaneously if the line BC makes an angle
Ψ with the major semiaxis of the ellipse, from which
the azimuth angles ϕ are measured. It is easily seen that
this condition is met if BCcosΨ/ϑ0 = BCcos(ϕ + Ψ)/c,
where ϑ0 = c/sinΘ0 is the travel velocity of the line of
interaction between the disk and the Earth’s surface. On
substitution, we obtain  = (sinΘ0 – cosϕ)/sinϕ.
Let the straight line BCy = (x – ξ)  intersect the x-
axis at a given point ξ. Translate the line BC to the right
by dξ(dξ ! λ). Let us determine the charge dq of the
excess electrons falling within the strip BC. The
charged particle distribution ρ(rd) over the shower disk
is assumed to be known (see, for example, [22]). An
element of the strip BC falling within the interval dx has
the area dSe = dldx/sinΨ, where dl = dξcosΨ is the
width of the strip. Therefore, the charge dq is equal to
the sum of all elements ρe(x, y, Θ0)dSe, where x and y
are the coordinates of the strip element dSe. Let the
charge distribution over the shower disk be described
by the following function:

where xd and yd are the coordinates of an element dSd of
the disk area. This function can be used to calculate the
charge falling within the ellipse area element dSe. The
element dSe is the projection of the disk element dSd

onto the Earth’s surface. On projection, we obtain xd =
xe and yd  ye = yd/cosΘ0. Thus,

The projection procedure meets the condition dSe =
dSd/cosΘ0 (this actually means that ρe = ρdcosΘ0.
Therefore, the charge dq falling within the strip BC is

(3)

where ye = (x – ξ) ; x1 and x2 are the abscissas of
the points of intersection of the straight line BC with the

dE 2dE1 ω z,( ) Θ0 Θ0 Θ0sin
2

+cot
2( )

1/2–
.cot=

Ψtan
Ψcot

ρd rd( ) ρd xd
2 yd

2+( ),=

ρd rd( ) ρd xd
2 yd

2+( ) xe
2 ye

2 Θ0cos
2

+( ).= =
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ellipse boundary  + cos2Θ0 = r2,

(4)

To find the total amplitude at the observation point,
the phase in Eq. (2) should be expressed as a function
of the position of the charge dq of an arbitrary strip BC.
The phase value for each of these parallel strips, into
which the ellipse is divided, depends on the distance R0
from the strip to the observer. Obviously, the signal
from the point A will reach the observer first. Point A
corresponds to a strip coinciding with the tangent
(H, ξ1) to the ellipse. This tangent intersects the x-axis
at the point ξ1. The signal from point A1 positioned on
the opposite side of the ellipse (Fig. 1) will be the last
to reach the observer. The coordinates ξ1 and ξ2 corre-
spond to the zero value of the discriminant of Eq. (4):

(5)

On approaching the Earth, the disk touches it at the
point O1. Then, as the ellipse is formed, the boundary
of interaction with the Earth moves along the x-axis.
When it reaches the position AK, the signals from the
points K and A will be emitted simultaneously. Mean-
while, as the boundary reaches the level of point C, the
signal emitted from point A will have traveled a dis-
tance AL, whereas the signal emitted from point K will
reach the straight line CF (at this instant, the signals
from the other points on strip BC will reach the straight
line CF). Obviously, KF = AL, so that the time interval
t between the signals emitted from points K and A is
determined by the equation t = KN/c. Given that Kξξ1A
is a parallelogram and ∠ NAK = ϕ, we obtain t =
(ξ1ξ)c−1sinϕ.

The sum of all amplitudes dE(ω, z) can be found
from the values obtained above by taking the phases
into account. It should be noted, however, that all
excess electrons in the shower travel a distance z before
reaching the Earth’s surface. The fraction of excess
electrons in the shower maximum is estimated at about
k = 0.1 (see, for example, [3]). For the showers under
consideration (i.e., showers with energies higher than
1019 eV), the number of particles is decreased by a fac-
tor e over a distance of 15–18 radiation units (5–6 km
in the normal atmosphere). If such a shower falls verti-
cally on the Earth, the distance from the shower maxi-
mum to the Earth’s surface is about 1 km. In addition,
it is well known that the energy of most of the electrons
in the shower maximum is about 100 MeV. Thus, if the
ionization losses are about 2 MeV/(g cm), the electron
range is z0 ≈ 500 m. In addition, the probability of
positron annihilation within the active interval z0 is sig-
nificantly lower than the probability of complete loss of
energy through ionization. Thus, we suggest that the

x1
2 y1

2

x1 2, {ξ Ψ Θ0cos
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2
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 Ψ Θ0 r2 ξ2–( ) r2+cos
2

cot
2[ ]
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distribution of the excess-electron ranges z within the
range from 0 to z0 is nearly uniform.

Thus, the resulting field dE(ω) produced by the strip
BC can be determined by integrating dE(x, ω)dz/z0
between 0 and z0. Obviously, this is valid only for the
multiplier f(z) in Eq. (2) (the multiplier in square brack-
ets). The calculations give f1(z)  f2(y) = 1 – y−1siny ×
exp(–iy), where y = ωz0(1 + βcosϕsinΘ0)/2c. Therefore,
for z0 ≈ 500 m and the frequency ν ≥ 200 kHz, we
obtain y–1 < 1 and f2(y) ≈ 1. The final expression for the
resulting field at the observation point is obtained by
integration of dE(ω) with respect to ξ over the interval
(ξ1, ξ2):

(6)

where

(7)

(8)

To obtain the radiation diagram, it is necessary to
determine the value of the function F(Θ0, ϕ, ω) on the
interval 0 ≤ ϕ ≤ 2π:

(9)

The measurements performed by the Yakutsk group
of researchers [22, 23] have shown that the spatial dis-
tribution of charged particles within the range of dis-
tances of 50–500 m from the shower axis can be
approximated by the function ρ(r/r0)1 – s(1 +
r/r0)s − 4C(s), where s is a parameter of the shower age
and f0 ≈ 100 m. It is also well known that, at the distance
r ≈ 3r0, the density reduces almost to zero. Therefore,
the expression for the density normalized to the number
of particles N0 in the shower at its maximum can be
recast as

(10)
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Fig. 2. Typical patterns of radiation at different frequencies and angles Θ.
On replacing the variables x/r0 = z and ξ/r0 = u,
Eq. (6) gives

(11)

where

The directional diagram was calculated under the
assumption of a uniform distribution of the charged
particle density ρ = const in a disk of radius r0 = 100 m.
In this case, the calculations can be significantly facili-
tated by changing the variables in Eq. (11): v = usinϕ =
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(13)

where

v1, 2 = ±(1 – sinΘ0cosϕ)/cosΘ0; E1 and E2 are the real
and imaginary parts of the field intensity, respectively.

Typical radiation patterns for Θ = π/6 and ω0 =

π /12, 3π /12, 4π /12, 6π /12, and 9π /12
are shown in Figs. 2a–2e. The radiation pattern for Θ =

π/4 and ω0 = 9π(  + 1)/12 is shown in Fig. 2f.
Numerical analysis shows that, at sufficiently low fre-
quencies (ν ≈ 200 kHz), the radiation maximum is
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directed backward, i.e., opposite to the shower motion.
As the frequency increases, the ratio of energies radi-
ated forward and backward decreases (Fig. 2a, 2b). At
ν ≈ 0.8 MHz, the energy radiated forward becomes
greater than that radiated backward (Fig. 2c). At ω =
1.95 and 2.12 MHz, the energy radiated forward is sev-
eral orders of magnitude greater than the energy radi-
ated backward (Fig. 2e, 2f). This provides an explana-
tion for the experimentally observed lack of direct pro-
portionality between the radio signal amplitude and the
number of particles N0 in the shower [11–18].

Analysis of the radiation patterns and Eqs. (12) and
(13) shows that the signal intensity decreases with
increasing frequency. This can be explained by mutual
absorption of the wave zones (known in optics as
Fresnel zones). An unexpected maximum of the radiat-
ing capacity of the shower was observed within a range
of ≈0.2–1 MHz. This finding provides new insight into
the results reported in [11–18] and earlier publications
(1965–1980). In these papers, the experimentally
observed value of the low-frequency (2–3 MHz) radio
signal was found to be many times higher than the
value calculated theoretically on the basis of the geo-
magnetic mechanism of radiation.

It should be noted in conclusion that several dia-
grams of the density distribution were obtained on the
basis of Eq. (10). The time required for machine com-
putation of such diagrams is several orders of magni-
tude longer than the time required for computing the
radiation patterns. However, the difference between
these results and the results obtained using Eq. (12) was
found to be only moderate. It should be emphasized
that the results obtained in this study are new and rather
important, so that they should be taken into account in
designing experiments. It is hoped that these results
will stimulate in-depth studies of the possibilities of
radio detection of ultrahigh-energy extensive air show-
ers.
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Abstract—A previously unknown coherent low-frequency (0 < ν < 50 kHz) component of radio emission of
an extensive air shower in the geomagnetic field is reported. This type of emission induces a high-intensity field
(~200 µV/m MHz at a distance of 100 km from the shower axis). This emission mechanism is believed to be
responsible for the previously observed high-intensity radio emission of the shower at low frequencies. The
possibility of radio detection of ultrahigh-energy (W0 > 1021 eV) cosmic rays is considered. © 2000 MAIK
“Nauka/Interperiodica”.
The fundamental possibility of enlarging the effec-
tive area of a detector composed of a relatively small
number of sensitive elements is the main feature of the
method of radio detection of cosmic rays. The number
of scintillation counters used in conventional detectors
is rather large [e.g., for the ShAL-1000 [1] (Extensive
Air Shower, EAS-1000) Project, it is several tens of
thousands], whereas a radio detector containing only
several antennas may prove to be sufficient.

Experience shows that the advantages of the con-
ventional method of detecting cosmic rays with rela-
tively low energies (W0 < 1020 eV) are indisputable. On
the other hand, to detect cosmic rays with energies of
1022–1023 eV, the effective area of the detector should
be about 106–107 km2 (the incidence of events is taken
to be the minimum permissible, i.e., ~10 year–1). Obvi-
ously, it will be impossible to implement such a project
in the foreseeable future.

Previous experimental studies of extensive air
showers showed that the intensity of the high-fre-
quency (30–100 MHz) radio emission induced by the
Cherenkov [2] and geomagnetic [3] radiation mecha-
nisms is rather low (5–10 µV/m MHz at a distance of
100 m from the shower axis [4]). In addition, the theo-
retically predicted direct proportionality between the
radio signal amplitude and the shower energy was not
observed in the overwhelming majority of events. At
the frequencies of interest, the equivalent temperature
of the celestial sphere is about 104–105 K. Therefore,
the useful signal amplitude is comparable to galactic
radio noise. For the frequency range under consider-
ation, the significant discrepancy between the predicted
and experimental values is presumably caused by the
idealization of the radiation mechanisms. In particular,
quantitative estimates were obtained without regard to
the coherence violation caused by considerable scatter-
1063-7842/00/4510- $20.00 © 21362
ing of the avalanche electrons during the longitudinal
advancement of the shower. On the other hand, it was
found that, for the radiation mechanisms mentioned
above, the intensity of the low-frequency radio emis-
sion is several orders of magnitude greater than the the-
oretically predicted values. Presumably, this explains
the growing interest of researchers in the nature of this
type of radio emission (see [5] and references therein).
The wavelengths of the emission of interest fall within
the range 2L < λ < ∞, where L is the longitudinal size
of the shower. Shower δ-electron bremsstrahlung is a
possible mechanism for the low-frequency radio emis-
sion. This mechanism does not involve either geomag-
netic or geoelectric fields [6–9]. This mechanism was
most effectively used to substantiate the method of
radio detection of cosmic rays with energies of 1021–
1023 eV outside circumterrestial space [10]. Several
variants of testing this method were suggested [11, 12].

The goal of this work was to study a previously
unknown possibility of detecting high-energy
(>1021 eV) cosmic rays using the coherent low-fre-
quency magneto-bremsstrahlung of an extensive air
shower. It is shown below that the intensity of the field
induced by this type of radio emission at a distance of
100 km from the shower axis is approximately
200 µV/m MHz for a particle with an initial energy of
W0 = 1021 eV. This value is much higher than the field
estimates for all previously known radio emission
mechanisms of the shower. In addition, this type of
radio emission has an extensive radiation pattern,
which is also very important.

An avalanche electron with the mean energy W1 ~
25 MeV (γ ≈ 50) describes an arc of radius a =
mVγ/eB ≈ 1700 m and length S ≈ W1/(∂W/∂x) ≈ 100 m
(taking into account the ionization losses, we obtain
000 MAIK “Nauka/Interperiodica”
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∂W/∂x ≈ 2 MeV/g cm–2). For the sake of convenience,
we assume that the shower falls vertically on the
Earth’s surface. In this case, we are concerned only
with the electromagnetic energy emitted in the direc-
tion perpendicular to the shower axis. The problem of
the radiation field of a point charge moving in an arc of
arbitrary length has been already solved [13]. In the
case under consideration, however, the results can be
presented in a simpler and more convenient form. This
can be done because we are concerned only with the
low-frequency spectrum region. The values (n, a) are
almost unchanged by integration, because S ! a ! R0.

Let us express the electron (positron) velocity by a
symmetrical step function u(t): v = v1(t) + v2(t) = pv[1 –
V(t)] + qvU(t), where v is the absolute value of the par-
ticle velocity and p and q are the unit vectors for t < 0
and t > 0, respectively. Assume that the electron moves
uniformly and rectilinearly at –∞ < t < ∞ (except for the
instant t = 0), i.e., |v1| = |v2| = v, whereas at the instant
t = 0, the electron is in the middle of an infinitely small
arc S (see figure). In this case, the electron acceleration
is  = v(q – p)δ(t), where δ(t) is the delta function.
Such an idealization of the electron motion is permissi-
ble within the estimation accuracy, because the travel
time S/c is far less than the period of the oscillatory cir-
cuit of the radio receiver (S/c v v 2L/c ≤ T) if the con-
dition for coherence is met. In this case, the Fourier
component of the field intensity is

(1)

where all quantities are taken at the instant τ = t – R/c,

 = βδ(t)(q – p), b = v/c, n = R0/R0, and a is the radius
vector of the particle (the origin of the reference frame
is placed at the center of a circle containing the arc S).

In the calculations, the Fourier component is deter-
mined to the accuracy of an insignificant common
phase factor:

(2)

where, by the definition of U(t), b(0) = b = βv0 and v0

is the unit vector directed along the vertical (see figure);
the vector W⊥  = β(q – p) is perpendicular to v0 and lies
in the plane of the arc (|W⊥ | = βS/a).
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In the direction of observation n || W⊥  and n⊥ v0, we
obtain

(3)

It follows from Eq. (3) that the vector E|| changes its
sign if electrons are replaced with positrons. Therefore,
the total contribution of the shower particles in this
direction is close to zero. In the direction n⊥ W⊥  and
n⊥ v0, we obtain

(4)

It follows from Eq. (4) that this component does not
change its sign if e+ replaces e–, because the direction
of the vector W⊥  simultaneously reverses. In other
words, the radiation intensity is maximum in the direc-
tion perpendicular to the plane of the arc.

If N0 is the total number of particles in the shower
and L is the path length, the number of particles con-
tributing to the field amplitude given by Eq. (4) is
N0L/S. Thus, we obtain

(5)

Substituting typical values L = 6 × 103 m, N0 = 1012

(for W0 = 1021 eV), e = 1.6 × 10–19 C, µ0 = 4π × 10–7 H/m,
H = 40 A/m, 4πε0 ≈ 10–10 F/m, c = 3 × 108 m/s, R0 =
105 m, m = 0.9 × 10–30 kg, and γ = 50 into Eq. (5), we
obtain |E⊥ | = 200 µV/m MHz. This value of the field
intensity at a distance of 100 km from the shower axis
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is very high. However, it is difficult to obtain emission-
induced fields of such intensity in practice. It is well
known that the intensity of atmospheric disturbances
increases with decreasing frequency. Within the range
under consideration, the pulse amplitude is thought to
be comparable to the desired signal amplitude. The
experimental conditions can be radically changed if the
measurements are taken in the circumpolar zone, where
the intensity of atmospheric disturbances is 1.5 to 2
orders of magnitude lower than in middle latitudes.

The effective area of the Pierre Auger detector,
which is presently under construction in the USA, will
be 5 × 103 km2. There is good reason to consider the
possibility of radio detection of particles with energies
1022 eV and above. There is evidence that the energy
spectrum of cosmic rays has a second bend at W0 =
1019 eV, so that the spectrum coefficient γ is reduced to
γ = 2.7 [14, 15]. In this case, the particle flux intensity is

where W0 is expressed in GeV. For W0 > 1022 eV, the
incidence of showers over an area of 106 km2 is found
to be approximately 20 (years sr)–1. Four antennas can
be arranged over this area in such a way that any point
of the area would be no more than 350 km away from
one of the antennas. Taking into account that W0 ~ N0
and E(ω) ~ N0, we find, with regard to the estimations
made above, that the value of E(ω) for this segment of
the surface is E(ω) ≥ 0.57 mV/m MHz. This value of
the field intensity is very high. Thus, a radio detector of
this type can be expected to be quite effective.

Studies of radio-frequency pulses accompanying an
extensive air shower are performed using high-speed
electronic equipment. Synchronization of this type of
equipment is performed using a master signal. One of
the disadvantages of the experiment under consider-
ation is the absence of a synchronizing pulse (in con-
ventional detectors such pulses are generated by scintil-
lation counters). The use of synchronizing pulses
would significantly facilitate identification of the
desired signal. However, except for technogenic noise,
lightning discharges are the only source of high-power
noise signals. Lightning discharge is a discontinuous
current pulse with an overall duration of tens or even
hundreds of milliseconds. On the other hand, the signal
induced by an extensive air shower consists of a single
pulse with a simple shape. According to the estimations

J > W0( ) 0.2 104W 0
1.7–  m2s sr( ) 1–

,×= =
made above, its duration is 10–20 µs. These are not the
only specific features of the desired radio signal. It is
also well known that a system of crossed antennas
allows the location of the signal source or the direction
toward the source to be determined. All this, as well as
the fact that the radio emission mechanism considered
in this work determines the horizontal polarization of
waves (in the case of a vertical shower), is sufficient for
unique identification of a radio signal.
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Abstract—A system of two bistable circuits connected by a low-pass filter is studied theoretically and experi-
mentally. It is demonstrated that the system may produce self-excited chaotic oscillations. To examine the inter-
action between respective chaotic oscillations in bistable circuits, motion equations are derived and a numerical
analysis of the interaction is carried out. Results of an experiment on a breadboard model are presented. © 2000
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The extensive use of bistable circuits, also known
as flip-flops, and their expansion into the HF and
microwave bands call for research into their interac-
tion under different types of coupling. At higher fre-
quencies, flip-flop ensembles are liable to spurious
coupling, which in turn makes them operate in a com-
plicated fashion. Remarkably, as few as two coupled
flip-flops may produce chaotic oscillations under
capacitive coupling [1]. This study examines interact-
ing chaotic oscillations in a system of two flip-flops
coupled via a low-pass filter.

The system is schematically shown in Fig. 1. Each
flip-flop FFi (i = 1, 2) consists of an inductor Li, a resis-
tor Ri, a capacitor Ci, and a nonlinear element gi

(Fig. 1a). The low-pass filter consists of an inductor L0

and capacitors C01 and C02. It is attached at flip-flop ter-
minals ai and bi (Fig. 1b).

As is known [2], a flip-flop has two stable states and
goes from one of them to the other only on receiving an
external trigger pulse. In contrast, coupled flip-flops
such as those considered here may exhibit self-excited
and self-sustaining oscillations with two basins of
attraction. This is due to the fact that flip-flops FF1 and
FF2, together with capacitors C01 and C02, respectively,
make up two chaotic oscillators coupled via inductor
L0; the oscillators are known as Chua’s circuits [3]. If
the flip-flops are identical, the inductor influences the
interaction of self-excited oscillations in much the
same way as a resistor connecting two identical Chua’s
circuits [4]. However, systems with differently adjusted
oscillators are more relevant for practical purposes,
because it appears almost impossible to make identical
chaotic oscillators. Recall that chaotic systems are
1063-7842/00/4510- $20.00 © 21365
extremely sensitive to the initial conditions and param-
eter values.

With arbitrarily adjusted flip-flops, the system in
Fig. 1b obeys the following normalized equations:

(1)

ẋ1 y1 x1– h1 x1( ),–=

ẏ x1 y1– z1 u–+( )α1
1– ,=

ż1 β1/α1( )y1,–=

ẋ2 γR α2/α1( ) y2 x2– h2 x2( )–[ ] ,=

ẏ2 α0/α1( ) γR x2 y2– z2+( ) u+[ ] ,=

ż2 β2/α1γR( )y2,–=

u̇ β0/α1( ) y1 y2–( ).=

ai

bi

a2

b2b1

a1

C01 C02

L0
T1 T2

(b)

Ri
LiCi

Ti

gi

(a)

Fig. 1. System of two flip-flops connected by a low-pass fil-
ter: (a) the configuration of an individual flip-flop and (b)
the circuit diagram of the connection.
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The variables xi and yi stand for the voltages across
capacitors Ci and C0i, respectively; and zi and u refer to
the respective currents through inductors Li and L0. The
dot denotes differentiation with respect to dimension-
less time t. The constant coefficients are expressed in
terms of circuit parameters as follows:

There are different ways of approximating the
respective nonlinearities hi(xi) of active elements gi.
Here we adopt the approximation

(2)

where δi are constants.

The system of nonlinear differential equations (1)
and (2) can only be solved numerically. We carried out
a numerical analysis of (1) and (2) for the cases where
the flip-flops were adjusted identically and differently,
respectively. In the former case, we set α1 = α2 = 10,
α0 = γR = 1, β1 = β2 = 15, and δ1 = δ2 = 1.5. The amount

α i C01/Ci, α0 C01/C02, βi C01/LiGi
2,= = =

β0 C01/L0G1
2, γR G2/G1, Gi 1/Ri.= = =

hi xi( ) δi xi( ),tanh–=

0 x1–2.4

(a)

0

x2

(b)

Fig. 2. Trajectory in the phase space of the system: results
of (a) the numerical analysis and (b) the experiment.
of coupling between the flip-flops is evaluated by β0.
This parameter was varied in a wide range. For the dif-
ferently adjusted flip-flops, we set β2 = 14; the other
parameter values were the same as in the above.

In each of the two cases, we found that chaotic oscil-
lations are excited and that the oscillations x1(t) and
x2(t) have chaotic attractors of the double-scroll type, as
with Chua’s circuit. Indeed, chaotic oscillations inter-
act with each other in a more complicated fashion if the
flip-flops are adjusted differently.

Note that, with misadjusted flip-flops, the oscilla-
tions x1(t) and x2(t) differ under any initial conditions if
the coupling is weak or absent. Accordingly, there are
four dense regions in the x1–x2-plane. For small β0, the
motion is directed randomly in the dense regions. As β0

increases, one can see a growing mutual synchronism
in intrabasin oscillations: in the same regions, the rep-
resentative point now moves predominantly parallel to
the set x1 = x2. On the other hand, the presence of four
dense regions indicates that the flip-flop transitions are
not fully synchronous with each other. If total synchro-
nism is reached, x1(t) and x2(t) share one of two basins
of attraction (a positive or a negative one). In contrast
to identical flip-flops, the representative point in the x1–
x2-plane moves outside the set x1 = x2 (but not far
from it).

We also performed a physical experiment on a
breadboard model with R1 = R2 = 0.4 kΩ , C1 = C2 =
6 µF, L1 = 17 mH, L2 = 18 mH, and C01 = C02 = 4.7 µF.
Nonlinear elements gi were built around operational
amplifiers using LM324N integrated circuits.

Figure 2 presents the most important results of the
numerical analysis and the physical experiment. Figure
2a shows a computed trajectory projected onto the x1–
x2-plane for t ∈  [1500, 3000] at β0 = 15, with initial
conditions x1(0) = 0.1, x2(0) = –0.1, and yi(0) = zi(0) =
u(0) = 0. Figure 2b shows a measured trajectory for a
unit time interval at L0 = 38 mH. It is seen that the
experimental results agree with the numerical ones.

It is important to note that both the computation and
the experiment revealed the existence of a synchroniza-
tion threshold for chaotic oscillations. Recall that no
such threshold exists in regular systems [5, 6].

To sum up, the computation and the experiment
have demonstrated that interacting chaotic oscillations
may arise in a system of flip-flops coupled via a low-
pass filter. The results appear to give a better under-
standing of how spurious coupling arises in flip-flop
ensembles and how differing Chua’s circuits interact
with each other via inductive coupling.
TECHNICAL PHYSICS      Vol. 45      No. 10      2000
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Abstract—The evolution of local strain during stretching of high-manganese carbon austenite was studied. The
ordered patterns of strain localization proved to be closely related to the stages in the stress–strain curve. The
results of this study are compared with analogous data for chromium–nickel nitrogen austenite single crystals.
The velocity of self-consistent motion of the sites where plastic strain during stretching of γ-Fe single crystals
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Speckle interferometry data for single-crystal and
polycrystalline metals and alloys [1–3] indicate that
strain localization may be of three types, each corre-
sponding to a particular stage of plastic flow. The soli-
tary strain front, as well as mobile and stationary dissi-
pative strain structures, were interpreted [1, 2] as vari-
ous self-sustained processes in a nonlinear medium [4].

Samples used in the experiments were single crys-
tals of Gadfield (Fe–13% Mn–0.93% C) steel grown by
the Bridgman method in a helium atmosphere. An elec-
trical discharge machine was used to cut out samples in
the form of a double spade with a cross section of 1.5 ×
5.0 mm and an operating length of 28 mm. The single
crystals were homogenized for 24 h at 1373 K in an
inert gas, kept at 1373 K for 1 h, and quenched in water.
The samples were stretched on an Instron-1185 testing
machine at room temperature at a rate of 1.2 × 10–4 s–1.
The field of displacement vectors on the sample front
surface was determined by speckle interferometry [3]
in the range between the yield point and tensile strength
at 15-s intervals (in 0.2% increments of the total strain).
By numerical differentiation with respect to coordi-
nates, the distributions of the longitudinal, transverse,
shear, and rotational components of the plastic distor-
tion tensor were calculated at each point of the surface
under study. Then, for different time instants or various
values of the total strain, the local strain distribution
over the whole sample or along its axial line was plot-
ted.

In carbon γ-Fe single crystals oriented in the [012]
direction, gliding is the main mechanism of stretching-
induced plastic flow [5]. Beyond the yield point, the
1063-7842/00/4510- $20.00 © 21368
stress–strain curve has two regions where the strain
hardening coefficient is constant (Fig. 1a).

The distributions of the distortion tensor compo-
nents were recorded for the total strain εtot in the range
of 1–12%. As follows from the distribution of the local
elongations εxx (the other components behave simi-
larly), at the initial stage of easy glide beyond the yield
point, the solitary strain front shifts from one grip of the
testing machine to the other. As the strain front passes
through the sample (section EF in the stress–strain
curve), its direction reverses and its velocity changes
(section FK) (Fig. 1a). The strain front velocity V was
evaluated from the slope of the linear distribution of the
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Fig. 1. Distributions of the local elongation peaks vs. time
of stretching in accordance with the stress–strain curves for
Gadfield steel. (a) Easy glide in single crystals [012] and (b)
easy glide and linear hardening in single crystals [377].
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Strain front velocity V vs. strain hardening coefficient Θ and deformation mechanism at various stages of the σ(ε) curve for
Gadfield steel single crystals

Orientation Deformation mechanism Stages of σ(ε) curve Θ, MPa V, m/s

[012] Dislocation gliding Easy glide (I) EF 130 5 × 10–5

Easy glide (II) FK 170 7 × 10–5

[377] Twinning Easy glide (I) AB 80 9 × 10–6

Linear hardening (II) BC 550 1.25 × 10–4
coordinates x of the εxx peaks with time of stretching t
(the distribution of the local elongations is shown in
Fig. 2a). We obtained VI = VII = 5 × 10–5 m/s and VIII =
7 × 10–5 m/s.

It is worth noting that, in the strained Gadfield steel
crystals with the [012] orientation, plastic zones moved
with a velocity of ~(5–7) × 10–5 m/s. In glide-strained
nitrogen chromium–nickel austenite crystals, the defor-
mation zones at the stage of easy glide moved with a
velocity of ~3.5 × 10–5 m/s [2].

According to [5], in carbon γ-Fe single crystals ori-
ented in the [377] direction, the greatest contribution to
the plastic strain at room temperature is from twinning,
which arises at the very beginning of plastic deforma-
tion. The easy glide stage, the sharp yield point
included, extends to ε ≈ 30% (Fig. 1b). At this stage, the
Lüders band propagates throughout the crystal. Further
deformation of the [377] oriented crystals leads to lin-
ear hardening up to 45% with subsequent fracture. The
stage of parabolic hardening was observed neither in
the [377] nor in the [012] oriented crystals.

We also studied the distribution of local-strain
zones. Throughout the stage of easy glide (section AB
in the stress–strain curve), the solitary front of plastic
strain moves with a velocity of VI = 9 × 10–6 m/s
(Fig. 1b). At the stage of linear hardening (BC), four or
five local-strain peaks move along the sample axis with
a constant velocity of VII = 1.25 × 10–4 m/s. The spatial
period of the process at its linear stage (Fig. 1b) was
found to be λ = 5 ± 1 mm.

In strained Gadfield steel samples oriented along
[377], the solitary plastic front moves with the velocity
~9 × 10–6 m/s at the stage of easy glide. This value is
less than that in the [012] case and those reported in
early works [1, 2] for Cu–10% Ni–6% Sn single crys-
tals (V ~ 6.5 × 10–5 m/s), titanium nickelide (V ~ 1.5 ×
10–5 m/s), high-nitrogen steels (V ~ 3.5 × 10–5 m/s), etc.
This lower velocity may be related to twinning, unlike
the previous cases.

At the stage of linear hardening, the set of plastic
strain fronts moves along the sample with a velocity of
~1.25 × 10–4 m/s, which is higher than in nitrogen aus-
tenite (V ~ 2 × 8 × 10–5 m/s). In our previous study on
TECHNICAL PHYSICS      Vol. 45      No. 10      2000
high-nitrogen chromium–nickel γ-Fe [6], the depen-
dence of the strain front velocity on the coefficient of
linear strain hardening was obtained. Specifically, dur-
ing linear hardening of carbon high-manganese γ-Fe
single crystals with the [377] orientation, the sites of
nonuniform plastic strain (a site of nonuniformity is
shown in Fig. 2a) propagate with a velocity which is
inversely proportional to the hardening coefficient: V ~
Θ–1 (Fig. 2b).

The results of this study confirm the conclusions
that, as the total strain increases, the local strain distri-
butions and their evolution depend on the strain harden-
ing coefficient [1, 2]. However, for plastic flow in
doped carbon γ-Fe single crystals, the kinetics of the
periodic process has several particular features. From
the experimental data (see table), it follows that the
velocity of the zones of plastic flow localization is
defined by the strain hardening coefficient and defor-
mation mechanisms, which are gliding and twinning.
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Fig. 2. (a) Distribution of the local elongations that illus-
trates the motion of the localized strain zone and (b) velocity
of the localized strain zones vs. strain hardening coefficient
for γ-FeI (nitrogen chromium–nickel austenite) and γ-FeII
(carbon high-manganese austenite) single crystals.
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The elucidation of the V(Θ) dependence can provide a
better insight into the physics of the periodic processes
observed in strained crystals.
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Abstract—CuInSe2(112) films with the chalcopyrite structure were obtained by the selenation of Cu–In layers
(Cu/In = 0.5–2.9) in a closed-type reactor. The surface morphology, phase composition, electrical performance,
and low-temperature photoluminescence (PL) of the films depend on the Cu/In ratio. © 2000 MAIK
“Nauka/Interperiodica”.
In the last decade, three-component copper-based

compounds of class CuBIII , the energy gap of
which is best suited for converting solar radiation, have
received much attention. Among these materials,
CuInSe2 (CIS) semiconductors and CuInxGa1 – xSe2
(CIGS) solid solutions are considered to be the most
promising for thin-film solar cells (SCs) [1–4]. In this
work, we studied the physical properties of CuInSe2
films obtained by two-stage synthesis in a closed-type
system.

0.4- to 0.8-µm-thick Cu–In layers (Cu/In = 0.5–2.9)
used for film synthesis were applied on pure glass sub-
strates and on glass substrates coated with molybde-
num in two ways: (1) by thermal evaporation at a pres-
sure of 5 × 10–6 torr and substrate temperature T =
100°C (metal charges were simultaneously evaporated
from a molybdenum boat at the mean rate 0.5 µm/min)
or (2) by ion–plasma sputtering of a composite (two-
component) target in a triode-type system (argon atmo-
sphere, pressure 2 × 10–4 torr, deposition rate 30 Å/min).

Selenation was accomplished by two-stage synthe-
sis. At the first stage, the Cu–In alloy reacts with sele-
nium at 280–300°C for 20–50 min. At the second stage,
the formed layer is recrystallized at 500°C for 20–
90 min. The structure and phase composition of the
Cu–In layers before and after selenation were studied
by X-ray diffraction analysis (CuKα radiation, 2θ = 15–
100°). Phases were identified by contrasting experi-
mentally found interplanar spacings d with those listed
in the JCPDS tables. It turned out that the thermally
evaporated Cu–In films represent a mixture of binary
components CuxIn and elementary In and Cu, while the
layers produced by ion–plasma sputtering have the
Cu11In9 phase alone. Quantitative analysis data for the
CuInSe2 (±5%) layers are listed in the table.

C2
VI
1063-7842/00/4510- $20.00 © 21371
Selenation produces polycrystalline CuInSe2 films.
Their phase composition and structure depend on the
Cu/In ratio in the starting layer [5–8]. When copper-
enriched (Cu/In > 1.2) layers are selenated, the chal-
copyrite-like CuInSe2 compound is formed. It contains
CuxSe traces (Fig. 1), which agrees well with the
Cu2Se–In2Se3 pseudobinary phase diagram [6]. In dif-
fractograms taken from these films, the (101) and (103)
superlattice reflections are absent. This is indicative of cat-
ion sublattice disorder. Indium-enriched (Cu/In < 0.69)
films also contain the disordered chalcopyrite-like
CuInSe2 phase and, in addition, a small amount of
In2Se. In the latter films, the (116)/(312) doublet
remains unresolved (Fig. 1, curve a in the insert).
CuInSe2 layers with Cu/In = 0.83–1.04 are single-phase
and have the chalcopyrite structure. Along with the
usual reflections, (112), (220)/(204), (312)/(116), etc.,
diffractograms taken from these films also show the
superlattice reflections (101), (103), and (211); more-
over, tetragonal splitting of the (116)/(312) doublets
(Fig. 1, curve b in the insert) is observed. All these
observations are typical of the ordered chalcopyrite
structure.

Table

Ratio of film elements at. %

Cu/In Se/(Cu + In) Cu In Se

0.52 1.18 16.09 29.80 54.11

0.69 1.07 19.76 28.59 51.65

0.83 1.06 22.66 25.81 51.53

1.29 0.99 28.15 21.96 49.89
000 MAIK “Nauka/Interperiodica”
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Micrographs of the film surface show that the
growth mechanism of the films is related to the Cu/In
ratio, which controls phase transformations in Cu2Se–
In2Se3 solid solutions [6]. The indium-enriched (Cu/In ≤
0.69) films consist of compact fine-grained unfaceted
agglomerates (Fig. 2a). The surface of the films with
Cu/In = 1.29 is made up of tetrahedral grains 2–4 µm in
size (Fig. 2b). Their composition corresponds to a
CuxSe binary compound [6, 7].

The films were of p-type conduction, and their resis-
tivity varied from 10–2 to 103 Ω cm with increasing
indium content. From the exponential temperature
dependence of the resistivity of the CuInSe2 thin films,
δ = δ0exp(∆E/kT), the activation energies for levels in
the energy gap were estimated. In the 80–400 K tem-
perature range, these are ∆E1 = 42–44 meV and ∆E2 =
71–73 (or 92–94) meV. Note that the level with ∆E1
was observed for films with different Cu/In ratios. The
presence of the levels with ∆E2 is essentially dependent
on the film composition and is in good agreement with
results of other works [9, 10]. The activation energy
∆E1 can be assigned to copper vacancies VCu, which
produce acceptor levels, and ∆E2, to selenium vacan-
cies VSe or substitutional defects InCu. The last two pro-
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Fig. 1. Diffractograms taken from CuInSe2 films with dif-
ferent Cu/In ratios. The insert shows the resolution of the
(116)/(312) doublet: Cu/In = (a) 0.52 and (b) 0.83.
duce donor levels in CuInSe2 [1, 9]. The optical proper-
ties of the films vs. composition were determined from
PL studies at 77 K. The PL spectra were found to have
a single line, whose half-width and peak position
depend on the Cu/In ratio. As the In content grows, the
PL line broadens and its peak shifts from 0.975 eV
(Cu/In = 1.29) to 0.860 eV (Cu/In = 0.69). If the indium
content is very high (Cu/In = 0.52), the peak is situated
at 0.943 eV. CuInSe2 films used to fabricate SC mod-
ules with an efficiency η > 12% [4, 9] exhibited a sim-
ilar PL spectrum. The PL spectral lines in CuInSe2

films can be associated with donor-to-acceptor transi-

(‡)

(b)

Fig. 2. Surface micrographs for CuInSe2 films with Cu/In =
(a) 0.69 and (b) 1.29.
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tions involving an acceptor level VCu and two donor lev-
els VSe and InCu [9, 11].

Thus, the physical properties of CuInSe2 films
obtained by two-stage selenation in a closed volume
were shown to depend on the composition of the start-
ing Cu–In layers. The resulting CuInSe2 films are suit-
able for thin-film SCs.
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