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Abstract—Electrophysical characteristics of two 2D double-periodic three component systems (models) are
studied analytically and numerically. For a number of model parameters, the effective conductivity, the partial
electric field strength moments of second order, and the effective Hall coefficient for both models are cal culated
and graphically tabulated. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

To date, considerable progress has been made
toward studying electrophysical properties of double-
component media (specifically, composites), especialy
of those representing 2D regular structures. For exam-
ple, the analytical solution to the conductivity problem
as applied to a number of double-periodic models
(involving insulating or perfectly conducting inclu-
sions) is given in [1-3]. For the most interesting case,
when both components have a finite nonzero conduc-
tivity, the closed solution to the problem has been
obtained for a staggered structure [1]. A more realistic
model, a 2D system with regularly arranged circular
inclusions was considered even by Rayleigh [4]. He
found the first several terms of the virial expansion for
effective conductivity. The solution to the problem of
conductivity (and other effective parameters) for the
Rayleigh model that is applicable for any concentration
was reported in [5, 6]. Finadly, the general method for
computing electrophysica characteristics of regularly
structured double-component systemsis presented in [7].

As for investigation into multicomponent media,
which have much more varied properties than double-
component ones, the situation is different. Although
multicomponent systems are of great scientific and
applied interest, the theory of finding their propertiesis
still initsinfancy. Therefore, it is natural to begin with
regular three-component systems, which are relatively
simple to analyze. A step forward in this direction has
been made in [8], where the conductivity of a 2D dou-
ble-sublattice system (Fig. 1), which isageneralization
of the Rayleigh model (an isotropic matrix with stag-
gered circular inclusions of two types having different
radii and conductivities), was considered. However, the
approximate method employed in [8] isapplicable only
if the concentration of theinclusionsis small. The solu-
tion to the problem of conductivity (and other effective
parameters) of a double-sublattice model that is valid

for any concentration was obtained in [9] with the
method elaborated in [5].

Inthiswork, we numerically analyze general formu-
las [9] throughout the range of concentrations studied
for afixed ratio of theinclusion radii and severa ratios
o,/o, (i = 2, 3), where g; isthe conductivity of theinclu-
sionsand g, isthat of the matrix. The effective conduc-
tivity of the model, partial rms electric field strengths,
as well as functions entering into an expression for the
effective Hall coefficient in aweak magnetic field, are
calculated and graphically tabulated.

We also analyze another three-component model, an
isotropic 2D matrix with double-layer circular inclu-
sions forming a square lattice (Fig. 2). The core and
shesath of the inclusionsare aconcentric circleand aring
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Fig. 2.

of different conductivity. This system is a generaliza-
tion of the Rayleigh model [4] for the case when an
inclusion is covered, e.g., by an oxide film. For this
model, an analytical solution to the problem of conduc-
tivity and other effective parametersisfound. Formulas
derived are analyzed numerically, and the same el ectro-
physical parameters as for the double-sublattice model
aretabulated for anumber of fixed problem parameters.

DOUBLE-SUBLATTICE MODEL

(2) Electric field in the medium. The model under
consideration represents a 2D isotropic matrix of con-
ductivity o, with staggered circular inclusions of two
types (Fig. 1). The inclusions of the first type (of con-
ductivity o, and radius R) form a square lattice with a
period 2a. The other inclusions (of conductivity o5 and
radius p) form a similar lattice shifted by the half-
period along the x and y axes.

Let the mean electric field strength [ECbe aligned
with the x axis. Then, for the complex potential of the
matrix, we have [9]

®,(2)

_ od - (2n) - (2n) O (D
= Bz+ S By, + S Dl (z-2)0.
BEZ nZO nC(2) nZO anC (2 Zo)%

Here, z=x+1y, zy=(1+i)a, {(2) isthe Welerstrass zeta
function [10], and ?"(2) is the 2nth derivative of {(2).
The constants 3, B,, and D, arereal for the direction of
[(EOselected. The coefficients B,, and D,, satisfy an
infinite set of algebraic equations. If B,, and D,, are
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replaced by “variables’ €, and n,, as

_ R2n+2621
Ban = J@ny (2n+ 1)!5”’ @

2n+26

- 31
Oan = (2n)! (2n + 1)!”“’ 3

where

1—h; _ O
e Mg Q)

6”' -

the above-mentioned set of equationstakestheform[9]

En + z (Mnmzm+ anr]m)

= O ©)
m=0
nn+ z (Qnm£m+ Nnmnm) = 6I'10' (6)
m=0
Here, 8, is the Kronecker symbol. In (5) and (6),
Mnm = GnmRZ(n+m+l)Cn+m+16211 (7)
Pun = GamR"P*™ 2dy 4 s 1821, ®)
Qnm = Gnmpan2m+2dn+m+1621! (9)
Nnm = Gnmpz(n+m+l)cn+m+16311 (10)
2n+2m)!
- ( ) (11)

) Jeni@n+DI2m)(2m+ 1)1

In (7) and (10), ¢, are the coefficients in the expan-
sion of the zeta function in the vicinity of z=0[10]:

_1 z Ck _2k-1
@3-y 57w
k=2
where
_ 9% _ 1 4
G =5y %= SIKW2L (13)
C= i c=—2-C =2
4_3 21 6_3x13 21 8_3X13X17 Dy waes

In (13), K(1/ 4/2) = 1.85407... isthe complete ellip-
tic integral of the first kind K(k) with a module k =

1/.J/2. Accordingly, dy is the coefficient in the expan-
sion of the zeta function near the point z = z,[10]:

i d 2k-1
{2 = &20)~ Y 52" (19
k=2
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where

d, = %, d, = 3
15
d. = gd?’ d, = id“ ( )
67 7572 T8 T gpgra

In(14), zy= (1 +i)aand &(z)) = (1 —i)/(4a). The

values of ¢, can be sequentially found from the recur-
rent relationship [10]

k-1

_ 3
Cac = Gk+ 1) (2k-3) Zlczmczk‘z’“’

k=2. (16)

Inturn, d, is expressed through c,, as[9]

Ao = [(—4)" =1y (17)

The coefficients ¢, and d, with odd subscripts vanish
in the square lattice under consideration (the so-called
lemniscatic case [10]). Therefore, the matrices M,
P Qnme @nd Ny, in (7)—(10) are other than zero only if

the subscripts n and mare of different parity.

(2) Effective characteristics. The dimensionless
effective conductivity f = 0 /0, isexpressed through the
quantities §; and ny as[9]

_ 1-&,P20 —NoP303
1+ &,P20, + NoP3ds’
where p, = TiR?/(2a)? and p; = Ttp?/(2a)? are the concen-

trations of the second and third components, respec-
tively.

(18)

The effective conductivity o, is directly related to
the partial rms characteristics of the electric field
strength E(r) (see, e.g., [9]):

w= @l = 52 e(r) = EQIEC. (19

Here, [..[W is the integral over the volume (surface in
the 2D case) occupied by theith component (i = 1, 2, 3)
divided by the volume (surface area) V of the sample.
For our two-sublattice model, we have [9]

4 pidi.

e =2 3; 20
Y Ty A 0
=Y k=30 (21)
n=0 n=0
where
A = 1+&,P,0, +NoP3ds;. (22)
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For an N-component medium, the quantities {; and
f from (18) arerelated as[9]

N
Zhilwi = f. (23)
i=1
Hence, for athree-component system, we find
Py = f=hyP,—hy s, (24)

which means that there is no need for directly calculat-
ing Y, with (19) in our model.

For aweak magnetic field H, the effective Hall coef-
ficient R, is expressed through the off-diagona (Hall)

component o, of the tensor G, asfollows:

= 10
Re_ H0_2'

e

(25)

According to [9], in the approximation linear in H,
we have for an N-component system

N
an = Z 0-ai(I)ai ' (26)
i=1
EEE(X) E§IY) _ Eg/X) EE(Y)Ij')
EVOEYD
where [I..[1) isthe same asin (19), E™ = EM(r) isthe

eectric field strength at H = 0, and the superscript v
means that [E()(is aligned with the v axis.

For an N-component system, the functions ¢, obey
the rule of sum [9]

Zq)ai =1

Eliminating ¢, with (28), we find from (26) for a
three-component medium

Oae = Oa1 + (0a2 - 0a1)¢a2 + (Gaa - Ga)q)as- (29)

In the 2D case, there is one more relationship
between ¢, and effective conductivity o, [9]:

¢ai =

(27)

(28)

N
Y 0ia = o (30)
i=1
After eliminating ¢, with (28), we find from (30)
for athree-component system

1-(1-h3)ba—(1-h5)0.s = 2 (31)

Relationship (31) allows one to calculate only one
of the functions ¢;, for example, ¢,,, for the 2D case.
On the other hand, thefulfillment of (31) meansthat the
numerical solution to the system of Egs. (5) and (6) is
correct.
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The determination of the functions ¢, and ¢ 3 with
(27) gives for our model [9]

4 ili .
Ou = —(1+hi1)2pA_2; i=23, (32)
o=y (D& =Y DNy (39)
n=0 n=0

with A from (22). In[9], it was shown that expressions
(18), (32), and (33) convert relationship (31) into the
identity.

In thiswork, the effective characteristics of the dou-
ble-sublattice model were calculated for 0, = 0 and the
parameter hy, = 04/a,, 107, 102, and 103 (curves 1-3,
respectively, in Figs. 3-7). The radius R was varied

between 0 and a; p, by thelaw p = (/2 — 1)R. Tofind
the coefficients &,, and n,, from the infinite systems of
Egs. (5) and (6), a finite system of 80 equations was
separated out. The effective values of f, Y, W, ¢,,, and
¢ 5 as functions of the concentration p of the first com-
ponent are demonstrated in Figs. 3—7.

DOUBLE-LAYER MODEL

(1) Electric field in a medium. The model under
consideration represents a 2D isotropic matrix of con-
ductivity o; with double-layer circular inclusions, form-
ing a square lattice with a period 2a (Fig. 2). The core
of the inclusion has a radius p and a conductivity 0.
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The sheath isaring of an outer radius R, an inner radius
p (R>p), and a conductivity a,.

Let the mean electric field strength [E[be aligned
with the x axis. Then, for the complex potentials of the
matrix, sheath, and core, we have, respectively,

.(2) = B+ ¥ BL (20, (39
o 4 0

~ O ne1 Donyd
P<IZ<R ®,(2) =B CCors2" " + =251, (35)
n=0D 4 U

17 < p: D4(2) = BZ Ay 2" (36)

Here, {?(2) are, asin (1), the 2nth derivatives of the
Weierstrass zeta function {(2). The coefficients 3, B,
Con+1 Dopryand Ay, ., @reredl.

The electric potentias ¢,(r) = Re®,(2) and ¢4(r) =

Re®,(2) must satisfy the standard conditions at the
core-sheath interface:

r=p:0, = ¢3
0, %y o @
ar  ¥or’ 7 g,

From (37), we express the coefficients C,,, ; and
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D2n +1 throth A2n +1-

1
Coner = §(1+h32)A2n+1’
1 (38)
= é(l—hsz)p4n+2A2n+1-

D2n+1

In turn, the potentias ¢,(r) = Re®,(2) and ¢,(r) =
Re®,(2) must satisfy the conditions

t=R ¢, = ¢,
00, 00 o, 9
ar ~ Zor’ T o)

Expansion (12) is usualy applied to the function {(2).
As aresult, for the coefficients B,,,, we obtain the infi-
nite set of algebraic equations

[

1—h21 (2n + 2m)| 4N+ 2
BZn+Wn1+ hzlmzo Zm(zn)!(2n+ 1)!Cn+m+1R (40)
- 1_h21 2
= I3 thR Wo0n0,
where
B 632EpD4n+2 |:p|:|4n+2
w, = [1+ {ih }/[“632521@ } (41)

The quantities &; are defined by (4). The coefficients
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Note that Egs. (40) can be derived from general for-
mulasin [7]. For a circular double-layer inclusion, the
multipole polarizability matrix [7] has the form

/\nm = /\nanm! (43)
where

2n a1+ 85o(P/R)”"
1+ 8, 85(P/R)™"
In (43), d,, is the Kronecker symbol. Substituting

(43) and (44) into formulas (19), (28), and (33) from[7]
yields the set of Egs. (40) for the coefficients B,,..

If variables &, are substituted for B,,,

A, = R

(44)

R2n+2621
B,, = n- 45
J(2n)H(2n + 1)!E 45

Eq. (40) will take the form

Wokat Y Simkn = Sro, (46)
m=0

where

Sim = GomCasms 1R 08, (47)
with G,,,, from (11). The matrix S is symmetric; S, =
S The even-subscript (n + m + 1 = 2K) coefficients
Ch+m+1 are defined by (13) and (16); the odd-subscript
coefficients ¢, , ,+ 1 Vanish. Therefore, the matrix S, is
other than zero only if the subscript mand n are of dif-
ferent parity.

Now, let us direct [E[Jalong the y axis (associated
values have bars). For the complex potentials of the
matrix, sheath, and core, we have, respectively,

.2 = -Be- Y Bl P20, (49)
U n=0 0
p<ld<R:
& e Ox nei Daedd  (49)
D,(2) = _|Bn20%p2n+122 1—#15,
|Z| <p: CT)3(2) = _IB z A2n+122n+1- (50)
=0

The quantities B, Ban, Con+1, Dans1, and Agnss
arered.

From the boundary conditionsforr = pandr = R,
we find a relationship between Cyn+1, Dans+1, and
Azn+1 like (38) and between Asn. 1 and Bon like (42),
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as well as a set of equations for the coefficients B,,.

Introducing the variables &, asin (45),
. R2n+26 _
2n = 2 &n, (51
J(2n)(2n+ 1)!

we arrive at the set of equations for 3

Wy'E = S Simém = B0 (52)
m=0

with the matrix S,,, from (47) and w,, from (41).
For the quantities §,,, a number of useful relation-
ships (rules of sum) can be derived. Multiplying (46) by

&, and (52) by &, adding the results, and summing over
all n, we come, in view of (62), to

Y (1)'WE, = &o.

n=0
Now, consider the same structure but with other
conductivities of the components: K, K,, and Ks,

respectively. Associates quantities will be marked by a
tilde. Then, instead of (46), we have

(53)

W;lén‘l‘ Z éqmgm = 6no- (54)

Now, we multiply (46) by &, and (54) by £, sub-
tract the results, and sum over all nto come, with regard
for the symmetry of the matrix S,,,, to

Y ('
n=0
+3 Y (Simn=SmEkm = Lo—Eo.
n=0m=0
Let usputin (55) K; = 0; and K3 = 05 and passto the
limit K, — 0,. Then, from (55), it follows the equality

08,

— WY E W
(55)

ZE W +nZOmZOE Emao. Snm - ao. . (56)
Since

0 _ 1 00y

a_o.zsnm 621 0025" (57)

we substitute (57) into (56) and eliminate sthmam
with Eq. (46) to obtain

=2 0
Zzﬁ "3,

TECHNICAL PHYSICS Vol. 47
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Similarly, putting in (55) kK, = 0, and K, = 0, and
passing to the limit k; — 05, wefind

-
ZEnao_g n1 = =

603
(2) Effective characteristics. Calculating, asin [5],
the voltage drop across an elementary cell and the total
current, we obtain for the dimensionless effective con-
ductivity f = o /o,

= 81__6215%

a =&y,

therefore, finding the quantity &, (i.e., the coefficient
B,) will suffice to determinef.

(59)

(60)

If the concentration of the inclusions is small
(R < a), the set of Egs. (46) can be solved by iterations,
that is, by expanding in powers of w, S,

Comparing with a similar expansion for &, follow-
ing from (52) shows that

= (-1)",.

From (61), we cometo aviria expansion (in powers
of R/a) for the quantities§,,, including &,. It is, however,
more convenient to find the associated expansion for
o = 1/&,. From (46) at n =0, we have

(62)

£ = woml S Somznu (63)
m#0
If nz0,
En = _WnSnOEO_Wn z Sﬂmzm- (64)
m#0
Solving Eq. (64) by iterations yields
nz0: En = EOW [Sho anm mSmO
mz0 (65)
+ Z Z SnIWISmeSmO_

I|Z20m#0
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Substituting (65) into (63), we arrive at

_ 40
a = Eol = WolDl—WoZ SokWkSo
0 K70

(66)
—Wo z z z SokWie S Wi S Wi Sino —

k#z0l20mz0

Using the explicit form of the matrix S [see (47)],
one can find from (66) the expansion of a in powers of
R/a. Up to terms ~(R/a)®*, we have

U 2
= Wolgﬂ-_ W0W1(9R4) 651

Wik

1
- Zwows(gR) 'S - Suwiw,B  (67)

4 4,62
+———WyW, R") 05 —

5 x 11 x 13 ) 5%9 ) 0%

where g = g,/20; g, is defined by (13).

In our model, the reciprocity condition (see, e.g.,
[9]), which relates the effective conductivities of the
initial and reciprocal systems (the latter is obtained
from the former by making the change h; — h;) must
be fulfilled:

f(hay, hay) f(hyp, hyg) = 1.

Note that the change hy — h;; (the transition to the
reciprocal system) is equivalent to the change &; —~
g Inthiscase, w, ., , S — S, and &y remains

unchanged. Hence, as follows from (60), f — 1/f and
reciprocity condition (68) is fulfilled automatically.

For the functions ), and 5 defined by (19), wefind

(68)

(=)

nm (1+ hsz)

= 2n+1)R"™ (A,
W, = (460%1 B Z(n ) (A, 1)
(69)
5 [pD4n+2 |:p[|4n+2
"[“532@ -8 ]
Tt 1

W3 = 2 2

(2a) + BOlD
d 4a™ (70)

<y (2n+1)p" " (Agnn)”,

n=0
The value of Y, can be found from (24).
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From (60), we find for the derivative 0o /00,

nRa

00,
= 2 3o, =—(&0021)-

00,

20,

R?
LTy
7 402 "0

(71)
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(69) yields
P, = 20, T[_RZ
2 MR’ [ 4a°
%L Sywicts
(72)
20
zzﬁ " 5o, Whdn)-

Comparing (72) [in view of identity (58)] with (71)
leads us to the equality

o0,

LIJZ = 60.2' (73)
which is consistent with (19).
Similarly, from (60) and (70), we find
2
3 %L EOT[R 52D 4a 3
20 _
Ps = v uzz Wy (75)

E,*lao

Comparing (75) [in view of (59)] with (74) leads us
to the equality

On the other hand, substituting (42) and (45) into  which aso agrees with (19).

W p,
57

0 1 1 1 1 1
0.70 0.75 080 085 090 095 1.00

p

Fig. 9.
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Fig. 10.
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The Hall coefficient is given by expressions (25)—
(29). Finding the strengths E® and E® from (35), (36)
and (49), (50) and calculating the integral s appearing in
the formulas for ¢, and ¢ 5 [see (27)], we arrive at

(1+ hsz) -
Oop = — (-1)"(2n+ 1R
i (4a)® %[+ B — Z
(77)
5 EPD4n+2 _EED4n+2
(Ao 1-8000 |2-HH |
0.y = Tt 1
a3 — 2 2
(2a) +BlD
%l "4a™ (78)

x Y (=1)"(2n+ 1)p" " (Agnn)”
n=0

With expressions (77) and (78) and equalities (42)
and (45), it is easy to check that

(1-h3) 00+ (1—h3) 0.

2 00
MR O 3 (e

0 EO"R 5.0 7"

Substituting (53) into (79), one can ensure that the
right-hand-side of (79) equals 1 —f?2, so that relationship
(31) isidentically met with expressions (77) and (78).

(79)

TECHNICAL PHYSICS Vol. 47 No. 10 2002

1213

¢a3
0.10 P

0.08
0.06]
0.04]

0.02}

070 075 0.80 085 090 095 1.00

Fig. 12.

The numerical analysis of set (46) was performed
for a subset of 40 equations for o; = 0,, p/R=0.8, and

h,, = 0,/0; = 1072, 1072, and 102 (curves 1-3, respec-
tively, in Figs. 8-12). Figures 8-12 plot f, U5, W3, ¢.,,
and ¢4; vs. the concentration p of the first component.
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Abstract—An electrostatic interaction between two separate, grounded, uncharged, perfectly conducting
spheres of different radii in a uniform electrostatic field is investigated. It is shown that at a small center-to-
center distance of the spheres, theforce of the polarization interaction between the spheres depends appreciably
more weakly on that distance in comparison to the force of the electrostatic interaction of two elementary
dipoles as it should be in view of the interaction between two like polarization charges. © 2002 MAIK

“Nauka/Interperiodica” .

INTRODUCTION

An investigation of an electrostatic interaction
between two closely spaced conducting particles
(drops) in an external electrostatic field is of interest
both in connection with calculations of coagulation
rates in natural or artificial air-dispersed systems and
the decay law for drops that are unstable against the
polarization surface charge [1-5]. It is obvious that
widely separated uncharged drops of a conducting lig-
uid (for example, water) polarized in an external elec-
trostatic field interact like dipoleswith aforceinversely
proportional to the fourth power of the distance
between their centers [6]. When the drops approach
each other at small distances (typical for coagulation
and decay), the charges induced by the dipoles of the
approaching drop start to exert an appreciable influence
on the coagulation and decay processes, and, simulta-
neously, a nonuniformity in the spatial distribution of
the polarization charges starts to manifest itself. For
example, accordingto calculations([7, 8], in aparticular
case of approaching conducting charged spheresin the
absence of externa electrostatic field, the interaction
force between the spheres as afunction of the center-to-
center distance differs noticeably from the Coulomb
law because of the considerable contribution of the
polarization interaction.

It is worth noting that analytical solutions of the
problem of the electrostatic interaction of two charged
conducting spheresin both the absence and presence of
a uniform external electrostatic field were obtained
long ago (see, e.g., [1, 6, 9, 10]). Nevertheless, because
of rather awkward mathematical forms of the solutions
found (in the form of infinite series in linear combina-
tions of exponents), a possibility for practical usage of
these sol utions has appeared only recently dueto acon-
venient mathematical substitution [7] allowing one to
sum determining series effectively, as well as owing to

the devel opment of contemporary software for analyti-
cal calculations (like Mathematica).

(1) We shall describe an electrostatic field in the
vicinity of two separate grounded, perfectly conducting
spheres with radii R, and R, placed in amedium with a
permitivity € at a distance h from each other and
exposed to an external uniform electrostatic field E,
parallel to the symmetry axis (see Fig. 1). The OZ axis
coincides with the symmetry axis.

It is obviousthat the potential ® of the total electro-
static field in the space outside the spheres satisfies the
L aplace equation

AD =0 Q)
with natural boundary conditions
r=R:®=0(j=12). (2
r —o: E —E,. 3
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Fig. 1. A system of two spheres with radii R; and Ry in a
uniform electrostatic field Eq directed along the z axis.
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ON THE POLARIZATION INTERACTION

R isthe radius of the jth sphere in abispherical coordi-
nate system, j =1, 2.

The vector E of the electric field strength is normal
to the surfaces of the spheres. In the vicinity of the jth
sphere, it is defined by the expression

d

r=R:EY = E{ = ——%nj (j=12).
J

d

The force of interaction between the spheresis eas-
ily calculated in the form [1]

= 5‘%?]’% n,n,ds, 4

5

where n, isthe unit vector of the OZ axisand n; isaunit
vector normal to the surface element dS.

Let us present potential ® in the space outside the
spheres as the sum of the potential @, of the external
uniform electrostatic field and the potential W produced
by chargesinduced at the sphere surfaces (® =W + @,).
Both potentials satisfy the Laplace equations

AW = 0, (1a)
AW, = 0. (1b)
The solution of Eq. (1b) satisfying condition (3) ina

spherical coordinate system with the origin at the axis
(see Fig. 1) has the ssimple form

®y = —E,r. (5)

(2) It isreasonable to seek an analytical solution of
Eqg. (1a) in bispherical coordinates i, n, and ¢ that are
related to the Cartesian coordinates by the well-known
relationships[9, 10]

asin(n)cos(n)
~ cosh(p) - cos(n)’

- _asn(m)sn(¢) ~,_ __asnh(p) g
cosh(p) - cos(n)’ cosh(p) - cos(n)’

Fn, =

—o<pU<+o, 0O<n<m O0<¢<2m

In bispherical coordinates, the surfaces S, and S, of
the spheres are described by the equations [9]

W=y, W=l
_ Pt a EPz )
M1 = InD R, U M2 = 0 R, D'
where ais defined by
a = (Di-R)" = (D,-R)". ®

Here, D, and D, are the distances between the origin of
coordinates and the centers of the spheres, respectively,

= Z("+R-R), Do=Z (W +R-RD), (9
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where h is the distance between the centers of the
spheres, calculated as

h=R+R,+s=D,;+D,, (10)
and s is the separation between the surfaces of the
spheres (see Fig. 1).

Taking into account (6), one can obtain an expres-
sion for the surface area elements of both spheres and

for the cosine of the polar angle ©. For the second
sphere, these expressions have the form

_ __a’sin(n)dnd¢
(cosh(p,) — cos(n))?

_ 1—cosh(y,)cos(n)
0S(9) = ~oshiriy) = cos(n)

Potential W of the electric field produced by the
induced charges distributed over the surfaces of the
spheres satisfies EQ. (1a), which in bispherical coordi-
nates has the form [9]

(11)

AW = 0 asin(n) oY
" dplbosh(p) - cos(n) ap-

+ 90 asn(n) 9%
" an Coosh (1) — cos(n) anUJ

(12)

1 °W _
" Sin(n)(cosh (i) - cos(n)) 9¢°

The solution of EQ. (12) subject to boundary condi-
tions (2) and (3) can easily be written as

W = Jeosh(w) - cos(n) EAnexp[B‘l ¥ 12%“}
=0 (13)

x Py(cos(m)) + Bexp| -t + 3 | FPy(cos(n)),

where A, and B, are constants.

In view of (5) and (12), the expression for the total
potential ® takes the form

@ = Joosh(p) - cos(n) § Hwe| fh+ |
n=0

+ Byep| —fh + S [FPu(cos(m) - Eoz

Let usexpand zin thisformulain the Legendre poly-
nomials. According to [6],
1

AJcosh(u) — cos(n)

= /2y exp[-Hh+ il [Py(cosn).
n=0

(14)

(15
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Differentiating (15) with respect to u and taking into
account (7), we find the expression for z [6]:

|2 = @Jcosh(u)—COS(n)Z(ZnH)
n=0 (16)

x exp| ~fh + i | Po(cos(n)).

Using boundary condition (3) and substituting
expression (16) into (14), we find the expansion coeffi-
cientsin the expression for the potential of the induced
field:

J2a(2n + 1)Eg(exp[(2n + 1)p,] +1)
exp[(2n+ 1)(Ky + Hp)] -1
(17)
J2a(2n + 1)Eg(exp[(2n + 1)p,] +1)
exp[(2n+ 1) (u, + Wp)] -1 '

(3) To find the force of interaction between the
spheres, let us take into account that the electric field
strength in apoint A located at the surface of the second
sphere (see Fig. 1) is equal to the sum of the electric
field strengths of both spheres,

- @)
EA - EA + EA y

and the field strength of each sphere is determined by
the normal derivative of potential ®.

The operator of the normal derivative to the surface
of the second sphere in bispherical coordinates[9] is

d

3= _‘«/COSh(Uz) COS(n)—

Then, the expression for the electric field strength of
the second sphere in point A takes the form

E@_"’D

A, =

B, =

(18)

3/2

u= -y, EQ = —(cosh(uz) cos(n))

% _ «/éa(Zn + 1)Ey(exp[(2n+ 1)p,] +1)
Zo exp[(2n+1)(Hy + Hp)] -1

(19)

xPy(cos(m)) exp| Fh + o .
and for the first sphere,

W=y EY = Dach = ——(cosh(ul) cos(n))**

% - «/éa(Zn +1)Eg(exp[(2n+ 1)p,] +1)
nZo exp[(2n+1)(Hy + M) -1

(20)

Py(cos(n) ep| Fh+ s |
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In order to simplify (19) and (20), we introduce the
following notation:

Y, = J2(2n+1) exp[Bw * %Hz}

(2n+1)(exp[(2n+ 1)p,] + 1) ()
exp[(2n+1)(My + Hp)] —1
Z, = J2(2n+1) exp[% + %‘%ul}
(22)

L (2n+)(exp[(2n + 1)p,] + 1)
exp[(2n+1)(Hy + Hp)] -1
Substituting (21) and (22) into (19) and (20), wefind

b=y B = -0 = Ey(cosh(py)

. (23)
~cos(n))™* ' YaPy(cos(n)),
n=0
p =y B = <280 = E(cosh(uy)
(24)

~c08(n))** Y ZyP(cos(n)).

n=0
Taking into account that cos(m) = -1 and P,(-1) =
(=", we finally obtain an expression for the strength

of the electric field produced by the second sphere in
point A:

n=mER = -2 = Ey(cosh(iy)

(25

M= M

—cos(n))** Y (-1)"Y,.
2
Similarly for the first sphere

22 = £ (cosh(u,)
(26)

W=-p; n=mE =

~cos(n)** Y (-1)'Z,
n=0

In order to describe the interaction between the
spheres, it is sufficient to calculate the force acting on
either sphere. Then, the force acting on the other sphere
is determined by Newton’s third law. In the case when
an external electric field is directed along the z axis,
expression (4) istransformed into the form

KAL)
F = 811 o0l cos(e)dS (27)
l
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Then, the relationship for the force acting on the  the force F@ acting on the second sphere in the form
second sphere takes the form

@ _ E_2 200 2 _;[p2+a
F = Za E022n+1Yn[Yn

20 R
w= PO = £ 0% go)as, (29 Y
S + __B_Z__ _rli-_:!'_ + __D__Di|
D,+alll’"*2n+3  ""2n_10)
From (11), (25), and (28), wefind
o+ a:l(n+112)
. Y, = J2(2n+1)g
00 RZ D
F® = Za°E} > Ya[Pa(cos(n))(sin(n))dn
4 n:O 0 O [P qj(2n+1) O
. (29) D(2n + 1)[ L + 1}% (35)
~ cosh(i,) 3 (YnPn(cos(e)))zcos(n)sin(n)dn}. < AP o
= G 5 &0 L

Using the orthogonality of the Legendre polynomi-
as, we gbtdn g Y = POy (4) To simplify the numerical calculation, we repre-

sent the expression for the force component in dimen-
sionless form by introducing the dimensionless vari-
IZ Y p? 2(cos(n))sin(n)dn = Z 2n - Y2, (30) ablesy=R/R, andr = gR,. Findly, wefind

on=0

F@ - Eg? (y+1+r)’-y’ +1} 15

T o 4 2(y+1+r)
[Y (YaPo(cos(m))“cos(n)sin(n)dn - i
on=0 ngszn[Yn_é%*-@% (36)
n=0
n 2
= YoorYng—=5—= (31) Dn +1 0
ZO 2n—12n+1 xS, 4 5 1Y E}
£ Ty n+1 2 Y. = J2(2n+ 1)G(n+u2)[(2n +1)(H® Y + 1)} (37
Z n+1 n2n+ 32n+ 1 H(2n+1)G(2n+1)

Eventually, expression (36) for the dimensionless
Inview of (30) and (31), (29) yieldstheforceacting force of interaction between the spheres in terms of

on the second sphere: RSEj € takesthe form
> 2_2.12 0O
F? = Eg2g2 f =1§(v+1+r) v+1} 1
4 nZ{)Zn +1 (32) 4 2(y+1+r) 0
n+1 n [ o
xYn[Yn_COSh(HZ)%{n+l_+Yn—l_ i| 2 1 1
2n+3 2n—10 < _= =0
g ZOZn+1Y”[Y” Eahlce (38)
Taking into account (7), we find
] E2n+1Yn+1 n Yn—%}-
exp(ap,) = exp[alnip—“‘"‘]} = P23 nes T oend
URrR 0 UR U (5) Figure 2 shows a surface describing the depen-

Dy + Dy +af (33) " dence of the dimensionless force of interaction [calcu-

exp(ay,) = exp[aln L D} = Dl—D . lated using (38) in view of (37)] on both the ratio y of
Ry Ry their radii and dimensionless distance r between the

centers of the spheresin the space of parametersr andy.

Substituting the expression for cosh( |,) in terms of For a more detailed analysis, Fig. 3 shows the
exponents (33) into (32), we arrive at an equation for  dependence of the dimensionless force f as afunction
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Fig. 2. Dependence of the dimensionless force acting on
one of the spheres on the ratio of the sphere radii and the
dimensionless distance between the spheres.

f 05 1.0r
0 : :

-5t

10k
0 (@)

(b)

-10
(©)

—15+

Fig. 3. Dimensionless force f as a function of the dimen-
sionless distance r at different ratios of the sphere radii. y:
(8 0.1, (b) 0.5, and (c) 1.0.

of the dimensionless distance r at different magnitudes
of the ratios of the spheres’ radii y = R)/R,. It is seen
that the force of attraction between the spheres
increases rather dowly with decreasing distance
between their centers approximately as f ~ r, where
a = 1, whereas this dependence would be much stronger
(a =4) for an electrostatic interaction between elemen-
tary dipoles[6].

KOROMYSLOV, GRIGOR’EV

It isworth noting that the reasons presented are also
applicable, in general, to nongrounded separate spheres
of the same radii.

The pressure of an electric field on the surfaces of
the spheres reaches its peak at points of the surface
located at the OZ axis opposite to each other. In areal
situation of spherical dropsin clouds at small distances
between them, the electrostatic pressure may become
high and two situations are possible: (@) if the pressure
of electric field in regions with the highest surface den-
sity of theinduced chargeisless than the Laplace pres-
sure, then the drops coalesce into asingle one, or (b) if
the pressure of electric field exceeds the Laplace pres-
sure, then an instability may take place; i.e., the drops
gject toward each other jets of finely dispersed, highly
charged daughter droplets[2].

CONCLUSION

Two separate grounded, perfectly conducting
spheres of different radii placed in an external uniform
electrostatic field directed along the axis passing
through the centers of the spheres always attract each
other. However, the dependence of the attraction force
on the distance between the centers of the spheres,
which hasthe form f ~ r= (the power nis afunction of
r), turns out to be very weak at small distances (at a
dimensionless distancer < 1). In this case, the power n
is smal: n= 1, whereas n = 4 for the interaction
between two elementary dipoles.
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Abstract—An anaytical method for solving the half-space boundary problem of a nonuniform (in both tem-
perature and mass flow rate) rarefied gas flow along a solid cylindrical surface is developed in the framework
of the inhomogeneous kinetic Boltzmann equation with the collision operator in the ellipsoidal—statistical
model. In the linear approximation in the Knudsen number, the corrections to the coefficients of thermal and
isothermal didings are found in view of the interface curvature. A comparison with the literature data is pre-

sented. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The set of boundary conditionsin ararefied gas flow
along an arbitrary smooth surface was found in [1] by
the Bhatnagar—Gross-Krook (BGK) model of the
kinetic Boltzmann equation. Later, this problem was
solved in the case of a solid spherical surface by
moment methods for the linearized Boltzmann equa
tion with the collision operator in both the Boltzmann
form[2] and ellipsoidal—statistical (ES) model [3, 4]. In
[5], an exact analytical expression for the coefficient Bg
was found in a closed form using the method of ele-
mentary solutions (Keis method) [6] on the basis of the
ES model. This expression makes it possible to take
into account the dependence of the therma diding
coefficient on the radius of curvature for a solid surface
flowed around by ararefied gas. The value of the coef-
ficient Bg found in [5] by numerically integrating final
expressions is in good agreement with the results
obtainedin|[2, 7, §].

The aim of this paper is to calculate the velocity of
ararefied gas diding around a solid cylindrical surface
by the method developed in [5] in view of the interface
curvature influence on the coefficients of thermal and
isothermal dlidings.

PROBLEM STATEMENT: DERIVATION
OF BASIC EQUATIONS

Consider atemperature nonuniform stream of arar-
efied gas flowing around a solid cylindrical surface at
low deviations from an equilibrium state. The gas flow
dynamics will be described by the Boltzmann kinetic
equation with a linearized collision operator in the ES
model [9, 10] expressed in acylindrical coordinate sys-
tem with the Oz axis coinciding with the cylinder axis.

We assume that the temperature gradient is perpendic-
ular to the surface at large distances from it.

Let us linearize the distribution function describing
the gas state with respect to alocally equilibrium distri-
bution function in the Chapman—Enskog approxima-
tion [11]. Expanding function Y(p, ¢, C;), implying the
deviation of the gas molecule velocity and coordinate
distribution function in the Knudsen layer from that in
the gas volume, in the small parameter U/R,

Y, ¢,C) = YP(p, ¢, C) + R*YP(p, 9, C) + ..., (1)

we arrive at the set of one-dimensiona integrodifferen-
tial equations

ay™® (1) . V) 2
Cyla-+Y(p,0,C) = T [exp(-C?)

xK(C,C)YP(p, ¢, C)d’C,

)

ay? (2) ) 2
G +Y7(p,9,C) = T [exp(-C?)

(1)
<K(C,C)V(p,0,C)dC-Cio— (3
P

CAARSIPNY:) o
+C,CyS — Cy o
P ¢0C¢ ¢ FI)

with the boundary conditions
(1) _ (€ 2 9
YU(R ¢,C) = -2C,UY° |5+ Cy £ -5,
C,>0,

Y?(R ¢,C) = -2C,UP|, C,>0,
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Y9, 0,C) = 0, YP(w,¢,C) =0,

yielding first two terms of the expansion (1). Here,
P(3Uy/2p)B is a dimensional radius vector; BU;, the
components of the gas mass velocity; BC;, the compo-
nents of the gas molecule velocity; Ly, the gas dynamic
viscosity; B = (2ksTdm)¥2; p, the static pressure; R and
S the radius and surface of the cylinder, respectively;

- L1oT
and
K(C,C") = 1+2CC'+§B:2—%BZ'2—%
[Py 1 1
~2C,C, icj—éasijcz‘a.

Equation (2) describes the processes taking place at
the boundary of a solid plane surface. Equation (3)
allows oneto take into account the interface curvature.

Let us seek asolution of (2) in the form of an expan-
sion in two orthogonal polynomials:

YP(p, ¢,C) = C, Y (p, 6, C,) @
+Cy(Ci+C2-2)Y{(p, 9, C,).

Note that the orthogonality is understood here in
terms of the scalar product

+00

(f.9) = [ f(p.9.Ca(p. 6, C)exp(-C*)d°C,.

We will look for a solution of (3) in the form

Y?(p, 9,C) = C,Yi (0, 6, Cp). (5)
Denote p = C,. Then, substituting expansions (4)
and (5) into (3), multiplying the resulting equation by
Coexp(—Cjy — C2) and integrating with respect to C,
and C, between —oo and +co, we find the equation for the
function Yﬁf) P, o, W:
uavﬁf)
0

+YP(p, 0,
o (P, o, 1)

_im 2 . 2
—ﬁ_waa (P, &, 1) exp(—p7)du

—%T [y (P, 0, 1w) o) d (6)

POPOV

3aY(1)
2 ol

36Y(1)
+3uYL (. 6. 1) ~5 5

+uYP(p, b, 1) -

with the boundary conditions

YE:IZ)(Rv ¢1U) = _2U5b2)|5! H>O,

@ B (7)
Ya (@, ¢,u) = 0.

In view of the fact that in the case of ararefied gas
sliding along a solid plane surface, the results found on
the basis of the ES and BGK models of the Boltzmann
Kinetic equation coincide, we have [6]

00

Y& (p, §, 1) = Ja(n. &)F(n. wyexp(-x/n)dn,
0

X =p-—-R,

o

Y (p, b, 1) = kfep(=x/n)3(n-wdn, ()

fu + exp(N)A(n)3(N—p),

1
F(n,u) = —nPn

Jm

AM2) = 1+— Iexp( H)

n(n = QU exp(=n’)X(=N),
2 ()l°

an.¢) =

A"(n) = A(n) £ Jminexp(—n?),

_1_ Oe@-n O 9)
X(2) = expgﬁ!—r_z drg,
O(t)—-m = —sz—arctan:/-_];;gx%l(—_-_[—z—).

Here, A(2) is the Cercignani dispersion function;
Px1, the distribution of the principal integral value in
theintegration of x1; 8(x), the Dirac deltafunction; and
O(1), a single-valued regular branch of the function
argument A*(t) determined by the condition ©(0) = 0.

Thus, the problem reduces to solving Eg. (6) with
boundary conditions (7).
TECHNICAL PHYSICS  Vol. 47
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ANALYTICAL CALCULATION OF THE VELOCITY

INFLUENCE OF THE SURFACE CURVATURE
ON THE COEFFICIENT OF THERMAL SLIDING

The substitution

Y@ (p, &, 1) = w(n, o, 1) exp(=x/n)

turns (6) into the nonuniform characteristic equation

1B o = jw(n 0.1) exp(—1”) o

) (10)
—%{u_{uw(n,¢,u')e><p(—u'2)du'+Z(n,¢,u),

Z(n,¢,u) = pa(n, ¢)F(n. 1) - —a(n ¢)

My

+3pkd(n - u)— d(N—H).

Zau

Multiplying (10) by exp(—4?) and integrating with
respect to u between the limits from —oo to co, we find

[

Iuw(n,¢,u)exp(—u2)du

00

= -n jzm,¢,u>exp(—u2)du.

Let usrewrite (10) in view of the fact that the value
of the second integral is equal to zero [5]:

Lam(n. ) +nz(n. 6.1),(12)

(n _u)q"(n! ¢1U) = ,\/1_'[

m(n, ¢) = J’w(n,¢,u)exp(—u2)du- (13)

The general solution of Eg. (12) in the space of gen-
eralized functions has the form [12]

1

W(n, o.u) = nPn—u[[m(n ) +2(n, 6, u)}

+g(n, $)d(n—K).

We find the explicit form of the function g(n, ¢)
substituting @(n, ¢, W) into (13)

g(n,¢) = [m(n, ¢)A(M)

—nIP——Z(n O, 1) exp(—u )du}exp(n ).
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In[5], it is shown that

0

1
IPﬁuF(n,u)exp(—uz)du = -1,

—00

IP———(F(n ), exp(—p7)du = 1,

IP—ué(n 1) exp(—p®)dp
= 2exp(-n)Hh° -3
IP—(é(n 1)) exp(—%)du

= 2exp(-n)Fh*- 33

Taking (11) into account, we find

IP—Z(n L, 1) exp(—p®)dp

= 2a(n,0) + 3kexp(-n)) "~ 33

In view of results found, the solution of Eqg. (6) has
the form

00

Y@(p, ¢,p) = Jw(n. ¢, wyexp(-x/n)dn,

ey ¢.u) = NP—

= u[[m(n 0)+Z(n.0.1)]

(14)

+[m(n.9)ep(n)A(m) ~3natn. d)ew(n’)

-3k fh’-F[an-w.

Allowing for (7), we turn from (14) to a singular
integral equation with a Cauchy kernel

_2U(2)|S [TJnm(n ¢)dn

+{n2(n, <I>,u)nd_r'u +m(, 0)exp(u’)A(n)  (15)
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1 2 2
- Zna(, 9)exp(u’) ~3kuHC -3, >0,

In[5], it is shown that

00

jnPﬁ—f—ﬁa(ww(n,u)dn = (WYL (R 6, 1)),
0

[

1 . 1 1 n
{n P——(@(n, )F(N, W), AN = 5(HYa (R &1 k)
jnP—é(n Wdn = 1,

Jo'n Pﬁ(a(n —W),du = 0.

Taking into consideration that

YP(R 0,1) = (n*+Qyk,
we find

= B’ + Q- —uDk

Here, Q, denotesthe Loyalkaintegrals[13]

J’n (n¢u)

2 1" Lexp(—t))dt

NG e

Using the results found, let us rewrite (15) in the
form

Qn =

f(, ) = m(i, ¢)exp(p*)A (1)
(16)

ﬁJnm(ﬂ Mg, o,

1
f(H§) = —2U[s— Qo +3a(n. d)exp(n). (17)
Introduce the auxiliary function
_ nm(n ¢)
Mz 9) = 5= f dn
and reduce (16) to the Riemann boundary value prob-
lem in a half-space [14]:

M (1, ©)A"(K) =M (1, §)N ()

= pf(p, ¢)exp(—4%), p>0.

The coefficient of boundary value problem (18)
coincides with that for a gas diding along a solid plane

(18)

POPOV

surface [5]. Therefore, (18) can be reduced to the prob-
lem with ajump [14]

M (1, )X (1) = M1, §) X ()

2 X (W)

= pf (W, ¢)exp(- u) , HU>0,
A (H)

which has a solution vanishing at infinity if the condi-
tion

f(t d) iy —
[I X(= t)texp( t)dt = 0 (29
is satisfied [15].
Substituting (17) into (19), in view of (9), we have
U(Z) — l_( 1Q, t(t Ql) _2 d )
o |s Z{QQ 2ﬁJ R exp(—t°)dt
Since
(t-Qy) 2
—t)dt = -3Q;—-Q;Q,, (20
[,J O exp(—t%) Q-QQ, (20
wefind
UPls = 29Q:+ Q4.

Substituting the values of the Loyalkaintegrals[13]
Q; =-1.01619, Q, = —-1.26663, and Q; = —1.8207 into

the expression found, we have Ug”|; = -0.40017k.

Allowing for (1), this yields the velocity of thermal
dliding of ararefied gas around a solid cylindrical sur-
face

Uyl = U+ RTUY
ols = Ug'ls o ls 1)
= (0.38332—0.40017R k.
Since, according to a standard method to make
physical quantities dimensionless, R = (3/./11) Kn,
returning to dimensional quantitiesin (21), we obtain

10T

Ug|s = 1.14995v (1~ 1.7684Kn) = =
S

Thus, Bry = 1.7684 in the case of ararefied gas flow
around asolid cylindrical surface.

INFLUENCE OF THE SURFACE CURVATURE
ON THE COEFFICIENT OF ISOTHERMAL
SLIDING

Assume that the mass velocity component tangent
to asurfaceisnot constant but varies along the direction
TECHNICAL PHYSICS  Vol. 47
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of the normal to asurface; i.e.,
k, = %Y
0p |s

iS nonzero.

In this case, we seek a solution of (2) and (3) in the
form [6]

YO0, 6,C) = CYP (0 6,.C)s j =12 (22
Substituting expansions (22) into (3), multiplying

the resulting equation by C,exp(-C; — C5), and inte-
grating with respect to C, and C, from — to +c, we

find the equation for the function YS’ (P, ¢, W:

oY?
“79? +YP(p, 0, 1)

= %{ [ Y20, 0.0) exp(-)
—%T Y2 (0. 0. 1) exp(-u7)du

30YY
Y (P 6 W) —5 5

with boundary conditions (7). Here, YS) (p, ¢, W) is
determined by relationship (8):

a(n’q)) = ZeXp(—rlz)X(—r])k
A ()’

19

YO(R 6.n) = 50+ Qks

In the case under consideration,

Z(n,0,1) = ua(n,¢)F(n,u)-ga(n,¢)g_E,

. 2 L
_{sz(n,d),u)exp(—u )du = 3a(n, ¢),

. dn 2,2
Z(N, o, 1) —= = £(4p®+2Q,u —3)k,,
In (r1<1>u)r]_u 3(4M°+2Qup = 3)k,

2
f(1, 9) = —20¢7 [~ 5(4K°+ 2Qip-3)k;
1
+3a(l, 0)exp(i),
No. 10
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k
ug’ls = §[4Q2+2Q1—3Qo

_in}f—zz exp(—tz)dt}.
NTE N (1))

Taking into account that

1 ) t? 2 3
—=[——exp(t)dt = 3,
«/T_T'!P\ (ol 2 (23)
3
2Q,+Qi = =,
wefind
@ -1
Ug’ls = k.

In view of (1), the velocity of ararefied gasisother-
mally dliding around a solid cylindrical surfaceis
Ugls = Uy s+ RTUs

(24)
= (0.67746 — 0.50000R )k .

Turning to dimensional quantitiesin (24), we obtain
U,

Ug|s = 1.14665A (1 — 1.24922Kn) 3
p

S

Thus, C?, = 1.24922.

LONGITUDINAL FLOW AROUND
A CYLINDRICAL SURFACE (THERMAL
SLIDING)

Assume that the temperature gradient is directed
along the cylinder axis at large distances from its sur-
face. Let us denote

K, = 29T| .

Tsoz|s

We will ook for asolution of (2) and (3) intheform
Y®P(p, C)) = C,Y2(p, C,)

2 2 (1) (25)
+ CZ(C¢ + Cz _Z)Yb (p, Cp)!

Y?(p,C) = C,YO(p, C,). (26)
Substituting expansions (25) and (26) into (3), mul-

tiplying the resulting equation by C,exp(-Cj — C2),
and integrating with respect to C, and C, between —o
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POPOV
and +oo, wefind the equation for the function Y, (p, W): In view of (20) and (1), we find
o 1
aY? 1 UP|s = Z(Qs+ QuQy)ke,
Hga * Y& (P = = [ Y (e W) ep(- ) o= 4@
P “/ﬁ (1) 11 1(2)
o Us = U"|s+ RTUY| (29)
° _ -1
_ ?u__ Iu'Yﬁf)(P’ ) exp(—p?) it = (0.38332-0.13339R )k,
=, or, in terms of dimensional quantities,
10Y9 10Y% U,Js = 1.14995v (1 - 0.589495K n) =T
“oou W P W5y Tsozs
with the boundary conditions Thus, g, = 0.589495.
(2) — (2)
Ya (Rp) = =2U7% p>0, @ LONGITUDINAL FLOW AROUND
Y®(eo, 1) = 0 A CYLINDRICAL SURFACE (ISOTHERMAL
a (M) =0 SLIDING)
Here, We assume that
1 h ks = oV,
Y2 (p W) = [a(n)F(n, wyexp(-x/n)dn, 0 |s
0 is nonzero.

X =p-R,

00

Y (p, ) = ko[ @xp(—x/n)3(n - w)dn,

am) = 0= Ql)exp(—nz )X(—n)
22" (n)|

YOR B = (2 +Qy)k,.
In the case under consideration,

K,

1 OF
Z(r], U) - _2a(r])a 2 au

00

1 2
LPHZ(W ) exp(—u°)du

= 2a(n) + keep(-n) -3

0 dn 1
-!.nz(nlu)n_ - _3I"lk21

1
f(W) = —2Us+ Sa(m exp(u’) + 1k,

e, = k,

—Qy)

+ pnk,d(n — u)———6(n M),

2
2{ ’ ZﬁJ IA o TP

We represent the solution of (2) and (3) in the form
YW, C) = CYP(p,C); j=12 (30
Substituting expansions (30) into (3), multiplying

the resulting equation by C,exp(-Cj — C7), and inte-

29) grating with respect to C, and C, between —o and +oo,

we find the equation for the function Y\ (p, 1):
2

Y, o) 1 p ) \ 2\ 4
+Y, = Y. (p, W) exp(—u)d
“ap (P, M) = ﬁJ (p, 1) exp(—17) du
(1)
2 10
[qu (P, W) exp(—%)du' - 5 ap

with boundary conditions (27). Here, Y" (p, W) is
determined by relationship (28):

a(n) = 22PN )XZ( ),
3" (n)|

31

YO(R 1) = 51+ Qks

In this case,

Z(n.K) = —%a(n);’TFl,

[

1 S|
_J;Pﬁz(n,u)eXp(—u )du = 3a(n),
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. dn 2
Z(n.p)—-= = 2k,
'!’n (W= = 3k

2 1
f(W) = —207[+ Ske + Sa() exp (i),

U = kﬁ[l-iw—tz exp(—tz)dt}
el fn{lx*(t)lz

Using (24), wefind

1
6

Thus, in the case of the longitudina flow of a rar-
efied gas that is nonuniform in mass velocity around a
cylindrical surface,

Uz|s — U§1)|S+ R—1U§2)|S

U?|g = —2k,.

(31)
= (0.67746 —0.166667R )k,

or, in dimensional form,

Uyl = 1.14665)\(1—0.415407Kn)aauz .
Pls

Thus, C{;) = 0.415407.

CONCLUSIONS

The dliding velocities of a rarefied gas that is non-
uniform in temperature and mass velocity flowing
around a solid cylindrical surface are found from the
solution of the ES model of the Boltzmann kinetic
equation in the Knudsen layer. The dependences of the
coefficients of thermal and isothermal didings on the
radius of curvature found in the linear approximation
with respect to the Knudsen number have the same
formasin[1]. In the case of longitudinal flow around a
cylindrical surface, the thermal dliding velocities (29)
coincide with the corresponding result in [1].

In view of the fact that the BGK model yields iso-
thermal sliding velocities one and a half times greater

TECHNICAL PHYSICS Vol. 47 No. 10 2002
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than those of the ES model, (31) iswritten as

U = U§1)|s+ R_1U§2)|S
= (1.01619 - 0.25000 R_l) K.

Thus, in the case of the longitudina flow of a rar-
efied gas around asolid cylindrical surface, the isother-
mal sliding vel ocity also coincideswith the correspond-
ing result in [1].
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Abstract—A differential equation that describes the axisymmetric motion of two immiscible magnetic fluids
of the same density and viscosity is derived. It includes in explicit form the contribution of capillary forces
localized at the interface between the fluids, which has the form of aweakly distorted cylindrical surface. With
this equation, a dispersion relation for the problem of capillary instability of an extended axisymmetric drop
placed in a uniform longitudinal magnetic field is obtained. The effect of magnetic forces on the capillary dis-
integration of the drop for the extreme cases (large and small Ohnesorge numbers) is analyzed. © 2002 MAIK

“Nauka/Interperiodica” .

INTRODUCTION

From numerous experiments (see, e.g., [1-3] and
Refs. therein), it isknown that the free surfaces of mag-
netic fluids, as well as the interfaces between immisci-
ble magnetic and nonmagnetic fluids, respond, as a
rule, to external magnetic fields. The associated effects
to agreat extent depend on the field orientation relative
to the surface. When subjected to sufficiently high
orthogonal fields, theinitially flat free surfaces of mag-
netic fluids become unstable with the formation of var-
ious periodic surface structures [1-6]. Conversely, tan-
gential fields stabilize the free surfaces, suppressing
wave disturbances caused by any external reasons. The
stabilizing effect of tangential magnetic fields has been
observed in many experiments studying fingering insta-
bility in porous media[1], capillary disintegration of a
cylindrical layer [1, 2] and a thin cylindrical jet of a
magnetic fluid [ 7], and Rayleigh-Taylor instability [8].
Systems consisting of thin magnetic-fluid and nonmag-
netic-fluid layers in contact that are placed between
solid walls respond to switching and growth of the
magnetic field in amost unusual way [1-3].

The pioneer experiment on the capillary disintegra-
tion of a heavily extended thin cylindrical drop of a
high-viscosity fluid was performed by Taylor [9]. In his
experiment, a specially configured fluid jet flowed
around an initially spherical drop to form an extended
drop, thejet and the drop having the same density. Sub-
sequently, such an approach to form filamentary drops
was widely used in similar experiments [10-12].
Experimental equipment employed in later experiments
isdescribedin [13].

Theoreticaly, the capillary instability of a cylindri-
cal thread of a viscous nonmagnetic fluid at rest in air
was first considered by Rayleigh [14]. An example of
such a system was a natural object, an as-woven spi-

der’sweb. The dispersion relation obtained by Rayleigh
and itsanalysis as applied to the evolution of instability
under conditions when viscous forces dominate over
inertial forces gave an insight into the disintegration of
a thin cylindrical thread into regularly arranged drop-
lets (see Fig. 37 in [15]). Thisfigure shows that coarser
drops are separated by finer droplets (satellites), which
form by nonlinear hydrodynamic processes.

In the general case of afluid thread surrounded by a
viscousfluid, adispersion relation is usually derived by
equating the fourth-order determinant to zero, the ele-
ments of the determinant being expressed through
Bessel functions [16]. A dispersion relation thus
obtained is awkward; therefore, analytical expressions
for its roots were long known only for the case studied
by Rayleigh [16-18], as well as for the capillary insta-
bility of athin cylinder of anonviscous fluid under con-
ditions when viscous forces dominate over inertia
forces in the surrounding viscous fluid [16, 18].
Recently, anew formula applicable to contacting fluids
of the same viscosity has been obtained by Stone and
Brenner [19]. They used the quasi-stationary Stokes
equation involving surface tension forces localized at
the interface and applied the Hankel integral transfor-
mation to find the dependence o = o(K) that allows one
to trace the effect of the wave number k on thetime evo-
lution of harmonics in the form exp(cot)sinkz and
exp(ot)coskz.

In thiswork, we generalize the differential equation
for fluid motion [19] to the case of immiscible magnetic
fluids placed in a magnetic field. The effect of volume
magnetic forces on the capillary disintegration of a fil-
amentary drop subjected to a longitudinal magnetic
field is studied in terms of equations of ferrohydrody-
namics and the equation derived in this work.

1063-7842/02/4710-1226%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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STATEMENT OF THE PROBLEM

Let a thin axisymmetric magnetic-fluid drop of
length (measured along the axis) exceeding its charac-
teristic cross size by several tens of times be placed into
an infinite volume of another magnetic fluid. In many
experiments with nonmagnetic fluids, drops of an
extended shape were produced with special devices
similar to Taylor's device by principle of operation
[9, 13]. When studying the effect of alongitudinal mag-
netic field on the disintegration of such a drop, we
neglect effects due to the axial components of magnetic
forces at the drop edges and approximate the drop by a
straight cylindrical thread of radius a.

Let us introduce the cylindrical coordinate system
(r, 9, 2) in such away that the interface in hydrostatic
equilibrium is described by the equation r = a. It is
assumed that both fluids are Newtonian and have the
same density p and dynamic viscosity coefficient n. In
addition, their absolute permeabilities ., (in thedomain
r <a) and Y, (in the domain r > a) depend only on the
magnitude of the magnetic field vector H with p,(H) #
Mo(H). Unlike the problem of capillary instability of a
jet of amagnetic fluid in air, in our configuration both
the cases 4, > U, and W, > |, are possible. In the pres-
ence of alongitudinal uniform magnetic field H = (0, O,

Ho), the magnetic induction B, = WH, and magnetiza-
tion M, = x;H, of either of the media are uniform and

the density of the mass force Ffr‘]fj = HoMjogradH, = 0.

Hereafter, | = 1, 2; X; = W/Ho — 1 isthe magnetic suscepti-
bility; and po = 411x 10~ H/m is the magnetic congtant.
Let us state the problem of axisymmetric motion of
the fluids in the linear approximation, where the shape
of the interface is represented by the equation r =
r{z,t). Weput rz, t) =a+ {(z t), where {(z, t) isa
small perturbation of the initial radius of the thread
(J¢(z )] < a) and t istime. A distortion of the interface
causes a perturbation of the magnetic field H; — Hy =
grad¢;(r, z t), magnetic induction B; — By = by(r, z 1),
and magnetization M; — M, = m(r, z, t), and generates

volume magnetic forces of density fﬁ,i) (r, z, t), which

affect the dynamics of thefluids. Up to first-order infin-
itesimals, we have

00,

Hj_HOzT‘,—Z_, Mj_Mjozij7
_1
Ho
20, 20 )
b; = U(Ho) ]e +utJ(HO) Je

0¢

0z

where e, and e, are the basis vectors corresponding to
the coordinate linesr and z and p; = dBj/dH; is the dif-
ferential permeability.

f(J) = UoM;ograd—=
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In view of (1), the equation of magnetostatics
divB; = 0 impliesthat the perturbations of the magnetic
field potential in either of the contacting magnetic flu-
ids are described by the equations

09, 109, zaz¢j by (Ho)
or> ror aF Ki(Ho)”

In the linear approximation, the continuity equa-
tions for the tangential components of the magnetic
field and for the normal component of the induction at
the interface (for r = a) have the form

=0, B = )

0 0
b1 = ¢y, Url_aq)rl—llrz_aq)rz = (My—My) i -
T Uj(Ho)
b Ho

In stating the hydrodynamic problem, we do away
with the common approach used in the statement of the
magnetostatic problem given by (2) and (3). This
approach requires that solutions to hydrodynamics
equations be constructed separately for each domain
where motion parameters and fluid states vary continu-
ously with the subsequent joining of them via kine-
matic and dynamic conditions at the interface. Specifi-
cally, it is necessary that the norma and tangential
components of the velocity vector u(r, z,t) = (u,, 0, u,)
be continuous at the interface and also that the tangen-
tial component of the surface force density p,,; be con-
tinuous. Recall that, in the common approach, the
dynamic condition relating the normal components p,,
of surface forces on both sides of the interface between
immiscible fluids includes a discontinuity due to the
surface tension effect. It should be noted that if the
dynamic viscosity coefficients of the fluids are the
same, it follows from the continuity equation and the
continuity conditions for u and p,, that du,/or, du,/0z,
du,/or, and du,/dz are also continuous at the interface.

Now, we formulate hydrodynamic equations,
assuming that the fluids constitute a single medium
wherethe pressurep(r, 9, z, t) experiencesajump at the
interface r = a + {(z t). The amount of the jump
depends on the surface tension coefficient a and the
mean curvature K of theinterface. Consider an arbitrary
individual (i.e.,, covering similar particles of the
medium) volume V(t) and imagine that it is arbitrarily
divided into two parts by a segment of the interface.

Following the conventional concepts of the continu-
ity of the vector field u and its derivatives with respect
to coordinates and bearing in mind the derivation [20]
of the continuity equation that relies on the law of con-
servation of mass for any individual volume, we natu-
rally come to the solenoidal condition for the velocity
field:

divu = 0. (4)
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When deriving adifferential equation of motion, we
will proceed from the integral form (A9) of the law of
conservation of momentum for the individual volume.
In the linear approximation, the convective time deriv-
ative of the velocity, the term (u - O)u on the left of
(A9), and a magnetic pressure jump on the right-hand
side of (A9) are certainly rejected because of their
smallness.

Note that in our approximation, an element of the
weakly distorted [(0¢/02)?> < 1] interface is written as
do = adddz and the mean curvature is calculated by the
formula

We will neglect the deviation of the normal vector n
to the interface from the radial direction, which is
directed toward the symmetry axis of the surface, and
put n =—e. Then, theintegral over the part of the inter-
face lying inside the individual volume [see (A9)] can
easily be transformed into the integral over theindivid-
ual volume:

[Kndo = [e(r-a) Djz L 1de )

where d(r — a) is the Dirac delta function of the argu-
ment (r —a) and dv = rdrd9dz

In view of (5) and formulas (1) for the magnetic
force perturbation f,,,,

1
_Dfr('n) for r<r,0<9<2M, —0<z<o

m D(Z)
Oy for r>r, 0<39 <21, —0<z<oo,

we recast (A9) in theform

J,[pau

\%
+ea6(r—a)@—£—(ﬁm}dv =0,
a

where A is Laplacian.

Recall that thisintegral equality applies (in terms of
the linear statement) to an arbitrary individual volume.
Certainly, it isfulfilled if the integrand vanishes. Leav-
ing aside the question of how rigorous the transition
from the integral equality to the differential equation
obtained by equating the integrand to zero is, we will
use the equation of motion

gradp—nAu-pg-f,,

p% = —gradp+nAu +pg
¢1

My[1-06(r -a)] grad==
¢z

*Ho
(6)

+ UoMO(r — a)grad

KOROVIN

where

for r<a
for r>a

is the Heaviside function.

At the interface (r = ain the linear approximation),
a solution to system (4), (6) must satisfy the kinematic
condition

2|X

= Uy, (7)

which meansthat theinterface consists of the same par-
ticles.

Certainly, thefunctionsu and plimited at r = 0 have
aphysica meaningandu — Qatr —» oo,

To simplify the subsequent mathematics, we rear-
range equation of motion (6). In hydrodynamics, an
important kinematic parameter of the velocity field is
the velocity vortex vector w, = (1/2)curlu. In the case
being considered, only the azimuth component of the
vortex vector is other than zero; therefore, vortex lines
in each of the planesz= const represent afamily of con-
centric circles. Applying the curl operator to Eqg. (6), we
obtain

0We _ 8(r—a)( ,gLag azD
5t VAW = &0 {“Ddzaz 370
, , ©)
0 0
+ MMy q)zl—Mzo%1 v=1
0z 0 P

Such a vector equation is common in theoretical
physics. As follows from the right-hand side of (8), if
the motion of the fluids is nonstationary, capillary
forceslocalized at the interface and the discontinuity in
the axial component of the magnetic force density f,,, at
the interface generate vortices in liquid particles form-
ing the interface. According to (8), the vortices in the
fluids propagate on both sides of the interface by diffu-
sion, with the diffusion coefficient being equal to the
kinematic viscosity coefficient v of the fluids. From
Eqg. (8), one can easily estimate the characteristic time
T4 Of vortex diffusion across a liquid cylindrical thread
of characteristic radius a. Indeed, equating terms of the
same order of magnitude on the left-hand side of (8),
we find 14 = a?/v; hence, 14 grows as the viscosity coef-
ficient decreases. In the limiting case of nonviscous flu-
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ids (v = 0), it follows from Eq. (8) that

_ 5(r a) oL 9¢ OZD
I EéZaz o7

O
+U0DV|10 ﬁ}dt

This means that the vortices do not |eave the site of
origin.

Using continuity equation (4), we introduce the
stream function Y(r, z, t) such that

_ 10y 10y

roz’ ¢ ror

r

then,
1 1
W, = e,szl_lp, AQ)C = eszLLllJ,

2 2
_ 0 16+6_2.
ror gz

With these expressions, Eq. (8) takes the form
a__}ﬁm,_w _ r3(r-a)

vot n
9
9, 107, 3°n
M -M —’D L
Mg @7 a2 CRaz g
Kinematic condition (7) is recast to the form
07 _ 19y _
3 " 292 for r = a. (10)

Thus, the functions {(z, t), q)j(r, z t), and Y(r, z t)
arefound from the solution to the problem stated by (2),
(3), (9), and (10).

DISPERSION RELATION
AND ITS ANALY SIS

To investigate the time evolution of the interface, let
us trace the time behavior of partial solutions (harmon-
ics) to the linear problem, which have the form

eexpli(kz—wt)], @ (r)expli(kz—owt)],
W (ryexpli(kz—wt)], i = J-1.

Here, Z,, @V (r), and W,(r) are the Fourier transforms
of the desired functions {(z, t), ¢;(r, z t), and Y(r, z, t)
(taken at theinitial timeinstant) with respect to the vari-
ablez

In expressions (11), the appearance of the exponen-
tial exp(— wt) and the associated separation of variables
stem from the fact that the coefficients of linear homo-

(11)

TECHNICAL PHYSICS Vol. 47 No. 10 2002

1229

geneous partia differential equations (2) and (9) are
time independent. Because of this, our problem admits
partial solutionslike (11) at any value of the wave num-
ber k provided that the relation between w and k (dis-
persion relation) imposed by the equations and bound-
ary conditions is met. With the dispersion relation, one
can find wave number ranges where the harmonics
grow or decay with time, the wave number of the fastest
growing harmonic, and some other valuable informa-
tion.

Substituting (11) into (2), (3), (9), and (10) yields

d2¢(J) 1dCD(j) .
g =0, @)
cD(kl) _ CD(kZ),
ar=a, and
do® dol®
Hr1 drk —Hr2 drk = 1k{ (Mg —My), (13)
ro(r—a
L, LWy = (n )[ okz(Mloq)(kl)—MzocD(kZ))
(14)
7]
—iag, dez kD]
wal, + k¥, = 0, (15)
ar=a.
Here,
_d® 1d 2 d® 1d
L]___z_—d_— ] L2 _2____ y
dr? rdr dr? rdr
m = /kz—i%o, Rem> 0

Solutions to the problem of magnetostatics stated as
(12) and (13) that have derivatives limited at r = 0 and
r — oo are written as

O = KM 1o~ MoK o(Boka) o(B:kr),

O = H(Myo— Mol o(Bika)Ko(Bokr).  (16)

C = Bk 11(B1ka)Ko(Boka) + Bokrol o B:ka) Ko (B2ka),

where |, (x) and K, (x) (I =0, 1) are the modified Bessel
functions of the first and second kind.

Substituting expressions (16) into Eq. (14) yields
L,L,W, = &(r—a)T(r), a7



1230
where
iag,kr Ouoka®
T(r) = nakz %&‘(Mw—Mzo)[MloKo(sza)lo(Blkr)

~ Mool o(Brka) Ko(Bokr)] + (ka)’— 13
0

Itiseasy towrite afundamental set of homogeneous
equations corresponding to fourth-order linear inhomo-
geneous equation (17):

W,y = rly(kr),
W = rly(mr),

Wi = rKy(kr),
W, = rKy(mr).

Using (18), we apply the method of variation of con-
stantsto find apartial solution to Eq. (17) that has con-
tinuous first- and second-order derivatives at the point

r = a satisfying the condition of velocity boundedness
ar—Oandr — co:

_ ia Kk
nam? —k?

(18)

. (K*+KNA = 1)R(r), (19)

where
R(r) = r[Ky(k)I,(kr) =K (ma)l,(mr)] forr<a,
R(r) =r[1(K)K (kr) =1,(ma)K,(mr)] forr = a,

(K1 = Hr2) To(BaK) Ko(BoK)

n= Bitr1l1(B1K)Ko(B2K) + Bokrol o( B2K) K1 (BoK)'

N = ch,, K = ka.

a
(Note that this procedure is similar to that used to con-
struct a solution to inhomogeneous second-order equa-
tion (7.2.48) in [21], which involves a shifted delta
function on the right-hand side.)

Substituting expressions (11) and (19) into kine-
matic condition (15) at the interface, we arrive at the
dispersion relation

3
%wz = kK*(L—kKNA —Kk?)

X[ (a)K(a) =11 (K)Ky(K)],

q= A/Kz—ioon, Req > 0.

Since al the quantities on the right of (20) are
dimensionless, the problem has, along with 1, the char-

acteristic time scale 1; = A/pa‘q’/a , as follows from the
left of (20). The physical meaning of T; can be eluci-
dated by considering the dispersion relation for the
problem of stability of cylindrical interface between
nonviscous fluids at rest. In experiments, we certainly

(20)

where

KOROVIN

deal with low-viscosity fluids, where the effect of vis-
cosity forces on the capillary-force-induced macro-
scopic flow of thefluidsissmall in comparison with the
effect of inertial and magnetic forces. In this case,
T4 — o and expression (20) takes the form

(WT)? = K (KK (K)(KP+KNA=1).  (21)

Since 1,(K)K (k) > 0 for k > 0, it follows from (21)
that the frequency w is a real-valued function of the
dimensionless wave number K in the absence of the
magnetic field (at N = 0) for kK > 1. For the range 0 <
kK <1, Rew = 0, while Imw > 0 and Imw < 0 in the dif-
ferent branches of the double-valued function w(k).
Since perturbation spectrain areal physical experiment
contain any wave numbers, the conditions Rew = 0 and
Imew > 0 imply that the configuration of fluids that are
initially at rest is unstable, the instability having a
monotonic character. Thus, the time evolution of afila
mentary drop of aperfectly incompressible fluid that is
initially at rest fundamentally differs from the behavior
of aspherical drop [22] self-oscillating under the action
of capillary forces.

Analysisshowsthat at N # 0 the magnetic field only
narrows the wave number range where the drop is
unstable without changing radically the character of the
instability of harmonics. Since dispersion relations (20)
and (21) describe the linear stage of the evolution of
harmonics, thetime scale T, also characterizesthe linear
stage of filamentary drop instability initiated by capil-
lary forces when inertial forces dominate over viscous
forces (the inertial condition of capillary disintegra-
tion).

Turning back to the behavior of athread of viscous
ferrofluids, we note that humerous experiments with
nonmagnetic fluids have demonstrated that there exists
a viscous regime of capillary disintegration of the
thread, where the contribution of inertial forces to the
force balance is small and the evolution of the thread
shape is governed mainly by capillary and viscous
forcesacting on thefluid. Let T, bethetime scale of the
linear stage of capillary disintegration in the viscous
regime. Based on the hydrodynamic part of the problem
considered, it is easy to check that T, = na/a (similar
estimates were made in [23]). In terms of the dimen-
sionless criteria, the condition for the viscous regime of

disintegration appearsas Z > 1, whereZ=n/J/paa is
the Ohnesorge number. Since 1;/1, = Zt and 14/1, = Z3,
wehaey <1, <1, forZ>1LI1fZ<1,1, <1, <714
thisis precisdy the case to which dispersion relation (21)
corresponds.

Passing to the dimensionless function Q = wt, in
(20), we cometo

£Q® = K(1—KNA=k?)[1(q)K4(q) = 11 (K)K(K)],

(22)

q=Jk’—ieQ, &=27
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In the case considered, € < 1; therefore, leaving the
linear term in the expansion of the right-hand side of
(22) in powersof €, wefind aroot of the dispersionrela-
tion that describes the evolution of the capillary insta-
bility of the drop when viscous forces are much greater
than inertial forces:

wT, = i(1-KNA—k?)
o (23)

O
x (KK (k) + S1(K)Ko(K) = 1o(K) K1 (k)T
O O

Asfollowsfrom (23), if k isreal, the principal term
of the expansion of w in powers of € is purely imagi-
nary. The numerical analysisindicatesthat the function
in the bracesis positive at any K > 0, so that the sign of
Imw coincides with the sign of the expression in the
parentheses [the same is valid for one of the branches
of the double-valued function w(k) in the case of anon-
viscousfluid; see (21)]. It should be noted that, with the
next term of expansion (23) included, Rew remains to
be equal to zero: Rew = 0. In the absence of the mag-
netic field (at N = 0), aswell asif p;; = Y5, the form of
root (23) coincideswith the expression found in [19] up
to notation.

When constructing plotsillustrating the effect of the
magnetic field on the capillary instability of afilamen-
tary drop, we assumed that ferrofluids are magnetized
according to a linear law (B, = 1, B, = 1). Figure 1
shows dispersion relation (23) for fixed p,, and p,, and
various N. For agiven N and any K lying to the right of
the point K. = K(l1, Ky2, N) where the corresponding
curve crosses the abscissa axis, Imw < O; for K lying to
the left of K, Imw > 0. Thus, harmonics with dimen-
sionless wave numbersk > K, are stable; those with k <
K. are unstable. The pointsk = K, are the threshold val-
ues of the wave number. Asfollows from Fig. 1, in the
presence of a discontinuity in the relative permeabili-
ties (U1 — W2 Z 0), the magnetic field stabilizes a num-
ber of harmonics (with wavelengths A > 21a) that are
unstable without the field. As both N and |, — W

increase, so does the characteristic time (Imw);" of
emergence of the fastest growing harmonic (that is, the
harmonic with the dimensionless wave number KN,

M1, o) responsiblefor the peak of the associated curve

at given N, 1, and [,,). Note that (Imw)x- at g > Ko
is always greater than at [, < [, for the same pair of
fluids and afixed N.

From expressions (21) and (23), it is easy to see that
the threshold wave numbers k. for Z< land Z > 1
equal each other for given N, W4, and ,,. Figure 2 plots
dispersion relations (21). From Figs. 1 and 2, it follows
that viscosity considerably affects the characteristic
times of emergence of the fastest growing harmonics:
in high-viscosity fluids, they are one order of magni-
tude larger than in low-viscosity ones.
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Fig. 1. Dispersion relation (23) for different N in the
absence of the magnetic field (N = 0) (data points), in the
presence of the field for the fluids with p,; =5and p,, =1
(continuous curves), and in the presence of the field for the
fluids with pq = 1 and p,» = 5 (dashed curves). N = 0.1 (1),
0.3(2),0.5(3), 0.7 (4), and 0.9 (5).
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Fig. 2. Dispersion relation (21) for the same values of the
parameters N, Y1, and W, asin Fig. 1.

Dispersion relations (20) and (21) yield the same
family of neutral stability curves, which depend on |,
and Hro:

1-kK
KA

Inthe plane (K, N), the condition Imw = 0isfulfilled
along these curves. In essence, neutral stability curves

N = (24)
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Fig. 3. Neutra stability curves. Continuous curves corre-
spond to Yo = 1 and pyq = 2 (1), 4 (2), and 5 (3). Dashed
curves correspond to 1 =1 and p,, =2 (1), 4 (2), and 5 (3).

are demarcation lines between domains of stability
(everywhere Imw < 0) and instability (Imw > 0) in the
band (0< k <1, N = 0). It is more reasonable to con-
struct the domains of stability and instability (Fig. 3) in
the plane (N, k), since N is a controllable parameter
under experimental conditions, while a perturbation
spectrum may have any wave numbers. The transition
from the plane (k, N) to the plane (N, K) is accom-
plished by inverting function N = N(k) (24).

Afa
50

40

30

20 -

1 1 1 1 ]
10O 0.2 0.4 0.6 0.8 1.0

N

Fig. 4. Wavelength of the fastest growing harmonic vs.
dimensionless magnetic field strength squared for Z > 1.
Continuous curves correspond to P, = 1 and p,1 = 4 (1) and
5 (2). Dashed curves correspond to ;1 = 1 and p,, = 4 (1)
and 5 (2.

KOROVIN

InFig. 3, the domains of stability and instability are
located above and below, respectively, the neutral sta-
bility curves for given |1, and ;. It is aso seen from
Fig. 3 that the threshold wave number decreases with
increasing both N and the discontinuity between the
magnetic susceptibilities of thefluids. For the samepair
of fluids, the threshold wave number K at |1 >[5 1S
less than the threshold wave number K, at [, < W, for
given amagnetic field strength and thread diameter. As
a result, the range K < K < 1 of harmonics stabilized
by the magnetic field at p,; > ., iswider than therange
K <K < 1 of harmonics stabilized by the magnetic field
a W1 < M. Thus, a magnetic field of afixed strength
stabilizes adrop of aferrofluid suspended in anonmag-
netic fluid (configuration 1) more effectively than adrop
of anonmagnetic fluid suspended in the sameferrofluid
(configuration I1).

From (20), itiseasy to seethat afamily of lines (24)
represents neutral stability curves at any Ohnesorge
number. Therefore, the stability and instability domains
depicted in Fig. 3 describe (for given N, K, W1, and p;,)
the evolution of a harmonic for an arbitrary relation
between inertial and viscous forces during the capillary
disintegration of aferrofluid thread exposed to alongi-
tudinal magnetic field.

If the viscosity coefficients of nonmagnetic fluids
are unegual, the wavelength Aof the fastest growing

harmonic observed under the capillary disintegration of
a filamentary drop when viscous forces dominate over
inertial forcesisin good agreement with experimental
datafound by measuring the diameters of droplets after
thedisintegration [11, 12, 16] (recall that Ajwas calcu-

lated in the linear approximation). Certainly, the forma-

Afa

40

30

20

10

Fig. 5. ThesameasinFig. 4forZ < 1.
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tion of satellites between regularly arranged coarser
drops was not taken into account in this case.

Figure 4 shows the dependences of Ajvs. N con-

structed with the root (23) of dispersion relation (20)
for Z> 1, and Fig. 5 demonstrates similar dependences
constructed with dispersion relation (21) corresponding
to Z < 1. From these plots, we see that at both Z > 1
and Z < 1, the characteristic diameter of droplets
appearing after the capillary disintegration grows with
both magnetic field strength and discontinuity in the
magnetic susceptibilities of the fluids in both configu-
rations | and Il (if the diameter of the initial thread is
fixed). It is also seen that, at both Z > 1 and Z < 1,
drops appearing after the disintegration are coarser in
configuration | than in configuration 11 (for afixed mag-
netic field strength).

From Figs. 4 and 5, it follows that the size of the
droplets differ markedly at Z > 1 and Z < 1 for the
same configuration and the same H, and a. In the vis-
cous regime of capillary disintegration, the droplets are
coarser than in theinertial regime. For example, A{a =

11.1896 at Z> 1and 9.2843 at Z < 1 without the mag-
netic field.

CONCLUSION

Based on the integral form of the law of conserva-
tion of momentum for afinite material volume consist-
ing of two contacting immiscible magnetic fluids
placed in a magnetic field, we derived a differential
equation for the motion of the fluids. Along with mass
forces, the equation includes also capillary forceslocal-
ized at the interface. With this equation, it was easy to
derive in explicit form a dispersion relation for the
problem of capillary instability as applied to a sus-
pended filamentary drop of a viscous ferrofluid sub-
jected to a longitudinal magnetic field. The case when
the density and viscosity of afluid surrounded the drop
are equal to those of the drop but the magnetic suscep-
tibilities differ was considered.

The effect of thefield on the disintegration of thefil-
amentary drop was analyzed for the cases when (i) vis-
cous forces are much greater than inertial forces (vis-
cous regime of disintegration, the Ohnesorge number
Z>1) and (ii) inertial forces dominate over viscous
forces (inertial regime, Z < 1). For both regimes of dis-
integration, if a drop of aferrofluid is suspended in a
nonmagnetic fluid (configuration 1), the magnetic field
of agiven strength stabilizes a wider range of harmon-
ics that are unstable in the absence of the field than
when a drop of anonmagnetic fluid is suspended in the
same ferrofluid (configuration 1), provided that the
diameters of the filamentary drops are the same. Also,
in both regimes (Z > 1 and Z < 1), the capillary disin-
tegration of configuration | generates coarser droplets
than the disintegration of configuration 1. In the capil-
lary disintegration of both configurations, as the mag-
netic field strength increases, so do (i) arange of field-
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stabilized harmonics, (ii) the characteristic time of
developing the fastest growing harmonic, and (iii) the
characteristic size of droplets after the disintegration of
theinitia filamentary drop.

Comparing the viscous and inertial regimes of cap-
illary disintegration of ferrofluid filaments indicates
that, under the same conditions, viscous forces affect
mostly the characteristic times of devel oping the fastest
growing harmonics (at Z > 1, these times are one order
of magnitude greater than at Z < 1), while the differ-
enceinthesizes of dropletsformed after the disintegra-
tion is much smaller.

APPENDIX

The basic dynamic equation postulated in contin-
uum mechanics [20] is the momentum equation for a
finite volume of a continuous medium. According to
this equation written in the inertial coordinate system,
the rate of change of the momentum Q in time for any
individual (i.e., consisting of the same particles of a
medium under consideration) volume V(t) bounded by
the surface Z(t) equals the resultant vector of external
forces acting on the medium enclosed by this volume:

dQ _ _
— = (pFdv + (p,do, Q = [pudv. (A2

Here, p and u are, respectively, the density of the
medium and the velocity field; F isthe massforce den-
sity; p, isthe stressvector (density of surface forces) on
a surface area do with anormal n; and dv is avolume
element. In continuum mechanics, the normal n is
always outer with respect to that part of the medium on
which the surface force p,do acts. If the volume V con-
sidered is subjected to forces (other than those distrib-
uted over the area ) concentrated on some surfaces
inside V, the sum of these forces should be added to the
right of (Al).

To simplify the mathematics, we will usethe rectan-
gular Cartesian coordinates (X;, X5, X3) with the basis
vectorse, e, and e;. Inthiscoordinate system, u = u;g,
n=ng, and aso p, = p'n; (p' = py&. Where p,; are the
components of the stresstensor P = peg; i, k=1, 2, 3).
Hereafter, in al expressions including a pair of the
same indices, independent summation over repeating
indicesis performed.

It should be emphasized that Eq. (A1) applies to
both continuous and discontinuous motions of acontin-
uum. If the states of a continuum, aswell as the motion
characteristics and their time and space derivatives, are
continuous, it can be rigorously proved (specifically
with the Gauss—-Ostrogradsky formula applied to trans-



1234

Fig. 6. On the derivation of integral equality (A4).

form theintegral over thesurfacearea> in (Al) intothe
integral over the >-bounded volume V) that the integral
form of momentum Eq. (A1) isequivalent to the differ-
ential equation of continuum motion

V=e-—a—

e A2

au _ ap'
|5t + (| = pF + 5%,
If thevolume V has aninner isolated time-invariable
surface 2 at which the parameters of the medium expe-
rience a discontinuity, Eq. (A1) makes it possible to
establish one of the finite relationships between the
parameters on the different sides of the surface 2.

Let us transform Eqg. (Al) for the case when the
smooth surface of discontinuity Z divides the individ-
ual volume V into two parts in either of which the
motion of the continuum is continuous. As in the deri-
vation of conditions on surfaces of discontinuity [20],
we will introduce an auxiliary volume V, related to a
part s of the surface % lying inside the volume V
(Fig. 6). From each point of the domain s on both its
sides, we pass normal segments of small length h/2
sideways from the surface 2. Sets of the ends of these
segments lying inside V produce surfaces S, and S,
equidistant from Z.. These surfaces, along with the lat-
eral surface Z, (apart of Z) adjacent to them bound the
volume V.

Let V, and V, be the volumes cut by the surfaces S
and S, from theinitial volumeV =V, +V, +V, and 0V,
d0V,, and dV, be surfaces bounding V,, V;, and V,.
Bearing in mind that the outer normals to 0V, and oV,
a points of the surface S, are oppositely directed (the

KOROVIN

sameistrue for the outer normalsto 0V, and dV, on S,)
and taking into account the equality p, = —p_, fulfilled
for theinner stresseson S, and S,, we have

pndo = [ p,do+ [ p,do+ [ p,do,
fprdo = [rudo+ [pigos |

av, v, aV,

(A3)

since the integrals over the surfaces S; and S, between
the volumes V,, V, and V,, V, cancel, each other on the
right-hand side of (A3).

Having transformed the first two integrals on the
right-hand side of (A3) into the integrals over the vol-
umes V; and V, with the Gauss—-Ostrogradsky formula,
we passto thelimit h—= 0. Inthiscase, thelateral sur-
face %, which bounds the volume V,, tends to zero.
Because of the finiteness of p,, the last integral on the
right of (A3) transforms (in the limit) into the integral
over the different sides of s with oppositely directed
normals, hence, in view of the obvious equality

limV, =0, wearrive at
h-0

Ai[anpndc =J’g—f(’;dv +I[pn]0b. [Pl = Pt P
z \% s

Eventually, Eq. (A1) takesthe form

IEO["_“ +(u W)U —F} _9ptyy - [lpd . (A%
0 ot aXiD
\% S

Now, let 3 be theinterface between two immiscible
Newtonian magnetic fluids whose parameters (density
p, dynamic viscosity coefficient ), and absolute perme-
ability p) differ on the different sides of %, For an
incompressible Newtonian fluid,

= ps 4. T = pY, 9Un
pkl - p6k|+T[k|1 Tum - nEBXi +an ’
o; =1 for k=1, ;=0 for k#zi,

where p is the pressure and T is the viscous stress
tensor.
In addition,
api
—_— = — +
ox, Vp+nAu,
It isassumed that the fluids are placed in amagnetic
field H produced by external sources. According to the
laws of magnetostatics, the magnetic field component
normal to Z, the tangential component of theinduction

vector B = uH, and the magnetization M = p;' B —H
experience a discontinuity on the surface % here, i, =
41t x 107 H/m is the magnetic constant.

A magnetic fluid placed in a gradient magnetic field
undergoes amass gravity forcewith adensity g (gisthe
gravitational acceleration) and a mass magnetic force.

A = 0% (A5)
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Neglecting the dipole interaction between colloidal
particles, we can write [1] the expression for the vol-
ume density of the magnetic force F,, = uoMOH. Then,
the total density of the external mass force pF appear-
ing in (A4) isgiven by
pF = pg+py,MOH. (A6)
Each point O of the smooth interface 2 radiates the
normal vectors n and —n in opposite directions. These
vectors specify the orientation of elementary areasdo,
and do_centered at the point O that represent on alocal
scale the opposite sides of the surface Z.. Hereafter,
subscripts 1 and 2 designate the pressure, magnetiza-
tion, and components of the viscous stresstensor on the
areas do, and do_. When immiscible ferrofluids move
simultaneously, the dynamic condition [2]

(i

—P2)Ng—

- EQO(K + E29[(Mi(2)ni)2—(Mi(l)ni)z]@nk, (A7)

K = gl , 10

2[R, RFY

is fulfilled at any point of the interface. Here, a is the
surface tension coefficient and R, and R, are the princi-
pal radii of curvature of the surface > at the point under
consideration. This expression reflects the balance of
surface forces acting on the opposite sides of the inter-
face and is a generalization of the dynamic conditions
used in hydrodynamics [22].

From physical considerations, it followsthat the val-
ues of R; and R, have the same sign at any point of Z.
The sign is selected so that the hydrostatic pressure on
the elementary areas do, and do_ with the normals n
and —n, respectively, to the curved interface > is higher
on the concave side of Z.

Unlike the case of nonmagnetic liquids (M® = Q,
M@ = 0), the right-hand side of (A7) includes not only
the surface pressure 2aK due to capillary forces [22]
but also a magnetic discontinuity of the pressure. This
discontinuity, arising in the presence of a discontinuity
in the normal component of the magnetization vector,
does not depend on the interface curvature. If ferroflu-
ids are at rest and have aflat interface, that of the areas
do, and do_ adjacent to the ferrofluid with a lesser
value of M - n undergoes a higher pressure. For exam-
ple, the pressure under theflat ferrofluid—air interfaceis
less than atmospheric by avalue of p(M - n)/2.
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In a more compact vector form, dynamic condition
(A7) iswritten as

Pn+ Py

(A8)

- EgaK + %)[(M @ )y (M@ )7 n%
0 0

Substituting (A5), (A6), and (A8) into (A4) yields

J’Ep[ +(uV)u-— g}+Vp NAU - uOMVHEdv
0
Y (A9)
_ 4 Hop /ap (2) ay2 D 4E
= [RaK + (M@ M)~ (M ) Iondo.
0 0

In the basic text, this integral equality is written in
the cylindrical coordinate system.
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Abstract—The thickness of aliquid film (=3.6 um) forming on an ice electrode is determined by solving the
Stefan problem. The electrode melts as aresult of Joule heat evolution when the current passes through it. The
temperature distributions in the film and ice substrate are found. The radius of curvature of emitting asperities
formed as aresult of film instability against the surface charge is found to be =40 nm. This value provides the
intense field evaporation of individual ions and ionic clusters from the top of the asperities at apotential differ-

ence of =100 V. © 2002 MAIK “ Nauka/|Interperiodica” .

In mass spectrometry of nonvolatile and thermally
unstable organic (biological) materials, their solutions
inweak electrolytesare usually electrodynamically dis-
persed at the early stage of ion beam formation [1-4].
According to today’s concepts, a liquid surface that is
unstable against the surface charge emits heavily
charged drops and solution clusters that have several
molecules of interest from the emitting asperities that
form at the final stage of instability development. Sub-
sequently, the emitted drops and clusters|ose the excess
charge either because they become unstable against the
self-charge or by field evaporation of tiny ionic clusters
[2, 4-6]. The charged clusters may also be emitted
directly from the emitting asperities on the free surface
of the solution if their curvature is sufficiently large
[7, 8]. The curvature of the asperity top also specifies
the size of the drops emitted because of instability and,
hence, their evolution. Depending on itsradius and vis-
cosity, the initial drop may disintegrate either through
the emission of many fine heavily charged droplets (of
radius R < 0.1 pm) or by dividing into two parts com-
parable in size [4, 9]. Because of this, of interest are
conditions under which emitting asperitiesformin low-
temperature mass spectrometers, where water solutions
freeze on the top of a capillary feeding the solution to
the discharge chamber. Here, the drops and clusters
leave the surface of a thin solution film arising on the
ice substrate because of the Joule heat evolution due to
current passage. Naturally, the thickness of thisfilm has
an effect on the height and top curvature of emitting
asperities that form when electrohydrodynamic insta-
bility develops[10, 11].

In this work, in terms of an idealized model, we
study the formation of a liquid film on the ice surface

when the current passing through the melt generates
Joule heat.

(1) Let a plate of ice (a frozen water solution of
NaCl) of length a, width b, and thicknessh bein contact
with athermostat kept at atemperature T,. At theinitial
time instant t = 0, a current source (with an internal
resistance r) is connected to the upper surface of the
plate covered by athin electrolyte film of initial thick-
ness ¢;,, << h. The emf € of the current source actsin the
direction of the x axis (Fig. 1). When the current passes
through the electrolyte, the latter heats up according to
the Joule law and the Joule heat Q evolvesin aunit vol-
ume of the film per unit time. The effect of the current
on the ice substrate is considered to be negligible. The
heat evolved in theliquid film is spent on radiative heat
exchange between the free surface of the film and the
environment (the Stefan—Boltzmann law), is removed

Fig. 1. Idealized model of an ice plate melting under the
action of Joule heat.

1063-7842/02/4710-1237$22.00 © 2002 MAIK “Nauka/Interperiodica’
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into the ice substrate due to heat conduction, and melts
the ice (the melting point of iceis Tp).

Let us find the time dependence of the electrolyte
film thickness & = &(t) and the steady-state value of the

film thickness € = &() = lim¢ (t), assuming that the
t 5 oo

electrophysical and thermal properties of the electro-
lyte and ice remain constant and the heat of phase tran-
sition k isknown. Wewill aso find the steady-state spa-
tial dependence of the temperature in the electrolyte
andice.

The analysis will be performed in the Cartesian
coordinates with the x0y plane coincident with the free
surface of the film and the z axis directed downward
(Fig. 1).

We will also assume that the thickness of the elec-
trolytefilmismuch lessthan all other characteristiclin-
ear sizes of the system (§ < a, b, h); hence, the heat
transfer process in the space is one-dimensional.

(2) Mathematically, our process can be represented
as the Stefan boundary-value problem:

oT, _ _o°T .
3t T G20 150, 0<z<E();
‘E_a‘ﬂ t>0, &(t)<z<h;
ot oA’ ’ ’

L ATL0t) 4
z=0: )\e 0z = 0-Te(ov t)'
z=8Ti(&t) = Tg(& 1) = Ty;

e 0T L 0Te dE
2= §(0): Al -Aem = PGS
z=h:Ti(ht) =T, &) =E&,;
_y€ 1
Calcp. b,

Pey; + e

Here, Q istherate of heat evolutionin aunit electrolyte
volume (an associated expression is easy to derive from
general physical considerations[12]); yistheresistivity
of the electralyte in the liquid state; Ti(z, t) and T(z t)
are the desired temperature fields in the ice substrate
and in the liquid electrolyte film, respectively; a; =
AJcp; and a, = AJcp, are the thermal diffusivities of
the ice and electrolyte, respectively; p; and p, are the
respective volume densities; A; and A, are the respective
thermal conductivities; ¢; and ¢, are the respective spe-
cific heats; d¢/dt is the rate of change of the electrolyte
film thickness; and o isthe Stefan—-Boltzmann constant.

GRIGOR’EV et al.

In dimensionless form, this boundary-value prob-
lem can be written as follows:

00, 9’0, A .
Be? =— +(1+E)2’ 1>0, 0<Z<((1);(D)
00, _ 0°0, .
BiF = 52 1>0, ((1)<Z<H; )
z=0: B% = ©%(0, 1); (3
Z = 6i((1) = O,¢ 1) = 1; 4)
00, 00,
Z = {(1): D57 —Do5> = %; ®)
Z=H:0,H,1) = I——:; (6)
Z(O) = Zin; (7)
T =th, O,=TJT, ©,=TIT,
Z = Z/Em Z = E/Ec’ Zin = Ein/Ec’ H = h/EC

Here, T, = T &, = yb/ar, and t, are the characteristic

temperature, length, and transition time of the heat
exchange process;

_ gy L _ A _, Tart

A=——— B=5— Di=A—75"
Tea A r T,oyb pPiKYy“b
LI T N PR N4

D, =Ae 2,2 O a2,2: O.n2r2:
pPiKYyb iart, e@rt,

(3) Boundary-value problem (1)—7) will be solved
by expanding in the small dimensionless parameters [3;
and 3., which are the ratio of the rate of temperature
equalizing (when the system tends to the steady state)
to the thermal diffusivity of the film (ice) times the
squared resistance of the electrolyte film. For the elec-
trolyte-ice system, [3; and 3, are of the same order of
smallness (~107?). The desired temperature fields will
be sought in the form of expansions

Ou(Z, T,Be) = Oo(Z) +BeOei(Z,T) + O(Bc);  (8)

O(Z,1,B) = ©6(2) +BOL(Z T) +O(B), (9)

where 64(2) and 6,y(2) are the temperature fieldsin the
electrolyte and ice in the steady state (i.e., when the
temperature at each point of the system and the phase
transition position are time independent).

Bearing in mind that the electrolyte temperature dif-
fers little from the ice melting point, we linearize
boundary condition (3):

O, = 0, +AO, AO = O,—0,;

TECHNICAL PHYSICS Vol. 47 No. 10 2002
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(0, +A0)* =0 +40.A0 = 40.0,-30;.

Since Q= T[T, = 1, ©4(0, 1) = 4640, T) — 3.
Hence,
00,(0, T)
0Z

An expression for the electrolyte film thickness is
represented as

21,81 = Zo(0) +BLu(D)
= 2o(T) + 5B, (1) + O(BY).

Now, substituting solutions (8) and (9) into (1), (2),
(3a), and (4)—(6) and expression (10) into (5) and (7)
and equating the coefficients by the same powers of 3,
and [3;, we come to the boundary-value problem (stated
in the zeroth order of smallnessin 3, and 3; for finding
the desired temperature fields in the time dependences
of the electrolyte film thickness:

Z=0:8B = 40,0, 1) -3. (33

(10)

G;C;ef’ = (1+AZ0)2’ 0<Z <, (11)
a;;“’ =0, {,<Z<H; (12)
Z=0: B‘P—%%)LE = ©(0,T)-3; (13)
Z = o 6e(Co T) = 6ig(Co, T) = 1 (14)
Z=1 Dlga%ﬁ’-oza?; = %ZT—O; (15)
Z = H: ©y(H, 1) = ; (16)
0o(0) = i (17)

To find first-order corrections to the temperature
fields, we must solve the boundary-value problem

2
99 - 000, 280 o 707, (g
9z 0T ®i(1+,)
9°0,; _ 9095 .
7 or (<Z<H; (19)
00,,(0,
Z=0: B% = 404,(0, 1); (20)
Z = (. 0g(lp 1) = 6;1(Lp T) = 0; (21)
_ ..~ 00, 0,00, _ d{;.
2 =6 Digr - 20, 0Z ~ dt’ (22)
TECHNICAL PHYSICS Vol. 47 No. 10 2002
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Z=H:06,(H,1) =0 (23)
¢,(0) = 0, (24)

where the electrolyte film thickness ¢ is defined
by (10).

(4) Let ussolvethe zeroth-order problem. In view of
boundary conditions (13) and (14), we find from (11)
the function describing the temperature distribution in
theliquid film:

___AZ? 3(%-2)
T 21+7,)" 4%+B

) (25)
L 4z+BU Al O

4 +BO 21+ zo)%'

Similarly, in view of boundary conditions (14) and
(16), we find from (12) the temperature distribution in
theice plate:

TO_T* Z_ZO
T* H_ZOI

To uniquely determine the temperature fields in the
liquid film and intheice plate, it is necessary to find the
electrolyte film thickness in the zero approximation as
afunction of time: {y(T). To find a determining differ-
ential equation, we substitute expressions (25) and (26)
into boundary condition (15):

Op =1+ (26)

To—T, 1 AL, 3

D ——+ D +

" Te H-{ 2{(1+z0)2 40+ B
PR e
400+ B 2(1+¢,) dt’

With actual values of the physical quantities defin-
ing the parameter B, the condition B > 1isvalid (B =
8.6 x 10°%, A=0.15, and {, ~ 1); therefore, in the approx-
imation used, this equation can be simplified by reject-
ing terms proportional to ~B~:

d{, To—Te 1 Co
—=D + AD,————.
dt T, H-G A1+7,)?

Integrating this expression with regard for condition
(17) yields

(27)

1780 -3
U= 7 R W= o)
+N1|n Zin_nl +N2|n Ein_n2i|;
Co—N1 Co—N2
_ W3+ Won,, _ W3+ Won,,
! Ni—Nz ' 2 Ni—Nz
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Fig. 2. Dimensionless thickness ¢ of the liquid film vs.

dimensionlesstime .

O;
096 1
2
3
092t/ ,
1 1
0.88 5 L 5

Fig. 3. Dimensionless temperature ©; of the ice plate vs.
dimensionless time T in the (1, 3) zeroth and (2, 4) first
approximations calculated at various distances Z from the
free surface: Z = 2{qg (1, 2) and 3(q (3, 4).

RO)

1.04 I~ 2

1.02 -

1.00 : :
0 5 10 T

Fig. 4. Dimensionless temperature O of the liquid film vs.
dimensionlesstime T calculated at various distances Z from
the free surface: Z =0 (1) and 0.5 (g (2).

W, = 2—-H-V;; W, = 1-2H-V,—V,W,;

2K — AD,H
W, = —H-V,W,; V, = %;
To-T

V, = %; L =K-AD,;, K =D, °T x

*
where n; and n, are the roots of the equation
Qo+ Vigo+V, = 0.

The plot of the electrolyte film thickness vs. time
constructed with (27) isgiven in Fig. 2.

The dependence ( = (1) defined by (27) cannot be
written in explicit form; therefore, the functions
describing the temperature fields in the film and ice are
extremely awkward. It is convenient to write them in
parametric form (through the parameters ¢ and U):

_ 1. To=TuZ-0.
__1re’
t= =7 S W0+ Nolnfg -

+ N,In|$ —nﬂ + congt;

AZ> 3(yp-2)
e
¥ 2(1+Lp)2+4w+8

4Z+BETJ’L .
4P +B 2(1+w)2|:|

1re?
T= _E[% + W + Ny Injy —nyf

+ NIn|yp — r]2|} + const;

17
L|:2 +W1Z|n+ N In|Z|n r]1|

+ N2In|Zin—r]2|} = const.

The temperature distribution in the electrolyte film
can aso be simplified. Since B > || (because |¢]| and
||~ 1), we have

O = 1+'A‘—————————(llJ Z)
° 2(1+ )

TECHNICAL PHYSICS Vol. 47 No. 10 2002
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The time dependences of the temperature of the ice
plate calculated in the zeroth approximation are pre-
sented in Fig. 3 by curves 1 and 3. In Fig. 4, similar
dependences are shown for the electrolyte film
(curves, 2).

(5) Now, let us calculate the first-order corrections.
Substituting (25) into Eg. (18) and integrating the
resultant equation with boundary conditions (20) and
(21), we arrive at thetemperaturefield in the el ectrolyte
film:

O = L[z 620+ 2°) ~ Z5(620+ L3)]
12(1+,)°
(28)

L AAL(Z-85).
0i 12(1+,)°"

. N N -1
=2 = ||+ W+ —— + —2 29
o dt [ZO Y-y Zo—nj 9

(here, it istaken into account that B > ().

Similarly, substituting (26) into Eq. (19) and inte-
grating the resultant equation with boundary conditions
(21) and (23), we arrive at the temperature field in the
ice plate:

To—Ts: 023 —3HZ% + 2H?

LT, °E 6(Zo—H)’
(30)
3HZO+2HD
+(H-Z
-2 6(-H) 0

Now, substituting functions (28) and (30) into
phase-matching condition (22), we come to a differen-
tial equation for finding the time dependence of the
electrolyte film thickness in the first approximation:

1 TO_T*'

AD,
301 T,

6 (1+,)°

_dg,
dt

zozo(s +20)+ 20
|

or

L unt, = v,

AD,{o(T) |

" S L oF
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aiADzz§<r>[3+zo(r)lg
O [1+Z()]° O

v(r) = %@

where {y(T) and Zo are defined by (27) and (20), respec-
tively.

The general solution of this first-order linear inho-
mogeneous differential equation is as follows (in view
of initial condition (24)):

0" 0
(4(7) = exp&fu(u)dm
0J 0

(31)

T

XD v(v)ex d,u( )d deD
AR

Since the function (1) is irreducible to explicit
form, the function ¢;(t) cannot be found analyticaly;
however, it can be found by numerically integra-
ting (31).

One can aso roughly estimate the function ,(1).
Assuming that o = {g, where {g = (), we obtain

ADyCg

v(t) = 0,

where

¢4(T) = exp(-ugT). (32)

The first-order spatial temperature distribution in
theiceplateisdemonstrated by curves2and 4inFig. 3.
The dlight decrease in the temperature at the early stage
of Joule heat evolution is due to the fact that the inter-
face, at which the solid eectrolyte melts, serves as a
heat sink. When it comes into effect, the temperature of
the ice plate decreases for a time because the heat flux
to the interface grows according to boundary condition
(22). First-order correctionsto the temperature distribu-
tionin theliquid film and to the time dependence of the
film are insignificant and are not seen in Fig. 3.

To make numerical estimates, weputa=b=h=
10 m, Tg=273K, T,=60K,y=0.06 Q m,k = 3.35 x
10° JKkg, p; = 920 kg/m3, r = 10° Q, a; = 1.14 x
10%m?/s, a,=1.37 x 107" m?/s, \; = 2.2 W/(MmK), A =
0.6 W/(mK), e =200V, and §;, = 10" m. With such val-
ues of the parameters, we find two values of the dimen-
sionless thickness of the film: n, = 0.16 and n, = 6.06.
Theformer ismeaninglesssince{; —> N, a1 — —©
(N, = ¢y). Eventually, the thickness of the film tends to

the steady-state value =3.6 um for a characteristic time
t. =100 ps.
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(6) When the drop becomes unstabl e against the sur-
face charge (in an external electrostatic field), emitting
asperities form through the superposition of unstable
short-wavelength modes [10, 13]. In experiments with
an electric discharge initiated from the surface of a
melting icicle in a nonuniform electrostatic field [10,
14], an emitting asperity in the form of a soliton was
observed. The soliton formed in the domain of the weak
field and propagated in the direction of field growth.
Having reached the point of maximum field, the soliton
stopped, and a discharge in the form of diffuse glow
was initiated at its top. The height of the soliton was at
least one order of magnitude greater than the thickness
of thefilm.

In the case of a vacuum mass spectrometer, we also
deal with a discharge from the surface of asmall piece
of ice (when a potential difference A is applied nor-
mally to the surface of the liquid film, i.e., along the z
axisin Fig. 1). Therefore, it might be expected that an
emitting asperity on the ice surface will also have the
form of asoliton. For our qualitative analysis, it is nec-
essary to estimate the curvature of its top, which speci-
fiesthefield strength near the site of dischargeignition.
According to [15], the analytical expression for the
shape of the soliton of height H in aliquid film of thick-
ness h has the form

whered = {(x, t) =x— vt and v isaconstant having the
dimension of velocity.

The radius of curvature r of the soliton top is given

by
_ oy /dy
[ 1+ 00 /dézL

Assuming that h/H ~ 0.1, one can easily check that
r ~107?h. As applied to the mass-spectrometric condi-
tions, we find that r ~ 40 nm for h = 4 um. This means
that the field strength at the top of an emitting asperity
may be as high as =2.5 V/nm even at Ay = 100 V.
Hence, the field evaporation of individual ions and
ionic clusters may take place[2, 5, 6]. Wewill consider
the field evaporation of ionsfrom electrolytic solutions.

|:¢2M:|—l h3
=6, 3

(7) According to [16], the physical mechanism
behind the field evaporation of ions and charged clus-
tersfrom electrolytic solutions is assumed to be identi-
cal to the mechanism of the field evaporation of ions
from the metal surface that wastheoretically elaborated
for field-ion microscopy [17] and liquid-metal ion
sources [18] and involves the thermal activation of the
process. For example, when the thermal activation

GRIGOR’EV et al.

exceeds the Schottky barrier (this barrier appears when
the metal surface is subjected to an electric field of
strength E), the rate constant K of metal evaporation by
the electrolytic field is given by the Arrheniuslaw [17]:

Q—(Z?(lﬂE } Q=A+J-¢; (39

where k is the Boltzmann constant, T is absolute tem-
perature, w is the atom oscillation frequency, g is the
ionic charge, and z, is the charge number.

In the exponent, Q is the energy of activation of ion
evaporation. In avirtual cycle of thermal ionization as
applied to field-ion microscopy [17], this parameter is
calculated as follows. An atom evaporates from the
metal surface, absorbing the energy of sublimation A;
the atom ionizes, consuming an energy J; and the elec-
tron being released returns to the metal, evolving an
energy ¢ equal to the work function of an electron in
the metal. The second term in the numerator of the
exponent stands for a decrease in the energy of activa-
tion due to the Schottky effect.

To describe the field evaporation of ions and ionic
clustersfrom electrolytic solutions, one can also use an
expression like (33) [7, 16]. In this expression, w is
replaced by KT/h (in terms of the theory of absolute
reaction rates), where h is the Planck constant, and the
energy of activation of ion evaporation from the metal
surface Q isreplaced by AH,, where AH, isthe change
in the enthalpy when an ion or an ionic cluster passes
from the solution to a vacuum. The value of AH, is
taken to be equal in magnitude but opposite in sign to
AH[y where AH[jis the change in the enthal py upon the

solvation of anion or the compl ete solvation of anionic
cluster in the solution. It was shown [16, 19] that the
AHas afunction of n (n is the number of atomsin a

cluster) for ionic clusters is nonmonaotonic and reaches
the minimum AH= 2.32-2.73 eV at acertainn = ng

Such a value of the energy of activation for the field
evaporation of ionic clusters provides consistency with
experimental data even at E = 1 V/nm. For individual
ions, however, the energy of activation of their evapora
tion AH[calculated from the energy of solvation is

twice or three times as great as the values found
[19, 20]. At first glance, this means that agreement
between the theory and experiment requires electric
field strengths at the surface of the solution to be one
order of magnitude higher, i.e., the ssme asfor thefield
evaporation of metal ions(E= 10V/nm) [19, 21]). Such
aconclusion, however, is somewhat premature because,
in practice, afield strengthE= 10V/nm used in thefield
evaporation of ions from the surface of asolid or liquid
metal is provided by preparing a specia ion-emitting
tip that has a radius of curvature of =1 ym. In mass
spectrometers where the material to be analyzed is
introduced into the discharge chamber electrohydrody-
namically through acapillary of diameter =100 um (the
theory of which was developed in [7, 16, 19]), field

)1/2

K = ooexp[
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strengths on the order of 10 V/nm are unlikely to be
reached. In addition, a number of possible channelsfor
the field evaporation of ions from solutions were not
considered in[7, 16, 19, 21].

In actua (nonideal) solutions, dissolved molecules
do not al dissociate; the fraction of dissociated mole-
cules depends on the concentrations of solution compo-
nents, temperature, and intermolecular interaction [20].
Let us consider the field evaporation of a Na“ positive
ion from water solutions of Nal and NaCl sdts. The
energy of activation of Na" field evaporation from the
solution surface will be calculated following a virtua
cycle of thermal ionization for Nal and NaCl mole-
cules, as is done for the field evaporation of ions from
the metal surface [16]. However, unlike [16], we will
consider the decomposition of a Nal or NaCl neutral
molecule on the surface of the electrolytic solution
(subjected to astrong electric field) into Na“ and 1= (Cl-)
ions with the Na* ion passing to the gas phase, rather
than the field extraction of an ion from the metal con-
tinuous surface. If A isthe energy of sublimation of the
molecule, D isthe energy of molecule dissociation into
two atoms (Naand | or Cl), J isthe energy of Na atom
ionization, L is the electron affinity to the | (Cl) atom,
and ¢ is the electron work function in water, then the
energy of activation for the field evaporation of the Na*
ion from the electralytic solution has the form

Q=A+D+J-¢-L. (34

In other words, a salt molecule sublimates from the
solution and dissociates into two atoms; the Na atom
ionizes; and the electron and the | (Cl) atom return to
the solution, where the electron adheres to the | (Cl)
atom with the formation of the negative ion. Recall that
the entire thermochemical cycleisvirtual and that here
we are actually dealing with the field decomposition of
asalt moleculeinto Na* and I~ (CI-) ionsdirectly on the
solution surface. According to [22], for aNal molecule,
N =2.08¢eV and D =3.76 eV; for aNaCl molecule, A =
2.39eV and D = 4.22 eV. In addition, according to
[22, 23], the ionization potential for a Na atom is J =
5.14 eV, and the electron affinity to | and Cl atoms is
L = 3.06 and 3.61 €V. The electron work function in
water is$ = 6.13 eV [24]. Substituting these valuesinto
(34), we find the activation energy for the field evapo-
ration of aNa" ion from Nal and NaCl aqueous el ectro-
lytes: Qua = 1.78 €V and Qo = 2.01 eV. It iseasy to
check that in both cases the energy Q calculated from
(34) isless than the energy of evaporation for an indi-
vidual Na' ion, 4.18 eV [7], found from its hydration
(solvation) energy in accordance with [2, 16]. One can
also see that the calculated values of Q are close to the
activation energies for the field evaporation of ionic
clusters from the solution: 2.32-2.73 eV [16, 19].
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To summarize, we note that the rate constant for the
field evaporation of an ion from an electrolytic solution
should be calculated by the formula

Q—(Z§IQI9E)M}
kT '
Q=A+D+J-¢-L.

In order to find therate V of field evaporation of ions
from the solution surface using the reaction rate con-
stant defined by (35), it is necessary to multiply the
reaction rate constant K by N, where N isthe number of
undissociated salt molecules on the solution surface
subjected to astrong electric field: V = KN. The dimen-
sion of V is st (the number of ions evaporated per
second).

(8) Let us evaluate the rate of Na* field evaporation
from a NaCl aqueous solution of concentration 10° M
(asin experiments [19]) with adegree of molecule dis-
sociation of 0.9. We assume (according to Section 6)
that ions evaporate from the hemispherical top of an
isolated soliton with aradius of thetop r =40 nm under
an electric field E = 2.5 V/nm. It is easy to check that
only a limited number N of undissociated NaCl mole-
cules will remain on the hemispherical surface of the
asperity in the region of the strong field. Assume aso
(according to Section 5) that the electrolyte surface
temperature T =290 K and (according to Section 7) that
the activation energy of Na* field evaporation Qy,g =
2.01 eV. Then, according to (35), K = 4 x 10 s and
the rate of Na* field evaporation V = 4 x 10" s, which
corresponds to a current through the asperity of
~0.01 pA. Clearly, this estimate is rather crude and
determines only the upper limit of possible currents,
since at N ~ 1 the rate of ion field evaporation will be
limited by the rate of NaCl molecule diffusion from the
bulk of the solution to the emitting asperity surface in
theregion of ahigh electric field (E= 1V/nm).

Obviously, according to Section 7, thefield evapora-
tion of individual ions will be accompanied by the
evaporation of ionic clusters with activation energies
between 2.32 and 2.73 eV [16, 19].

(9) The future of field-evaporated ions depends on
their interaction with a cloud of neutral molecules of
the solvent that evaporate from the electrolyte film. To
perform a qualitative analysis, we will consider only
the steady-state distribution of the water vapor mole-
cule concentration near a spherical drop of radius R,
(R, ison the order of the characteristic linear horizontal
size of the electrolyte film; see. Sec. 1). This distribu-
tion isfound by solving theinitial problem

div[D(c)gradc] = 0;

r = ro: =D(c)gradc = J=0.25xV(cy—C.); (37)

K = (kT/h) exp[ -

(36)

C = C,.
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Here, X isthe evaporation coefficient, D(c) isthe diffu-
sion coefficient of vapor molecules, V is the thermal
velocity of the molecules, ¢, isthe vapor molecule con-
centration near the drop, and c,, is the vapor molecule
concentration away from the drop. An expression for
the vapor flux from the surface of the drop in (37) is
defined by the Hertz—Knudsen law [2]. The concentra-
tion dependence of the diffusion coefficient is taken in
the form D(c) = V/3cS, where Sis the molecule colli-
sion cross section.

A solution to the problem stated by (36) and (37) is

c(r) = cuexp[—0.75¢c,SXRy(1— Ry/1)], (38)
wherer isaradial constant.

A field-evaporated Na* ion will move in the high
electric field near the emitting asperity through a cloud
of water vapor molecules. To estimate the number n of
collisions between the ion and neutral molecules, one
must integrate the product of its cross section Sof col-

lisions with molecules by the molecule concentration
defined by (38) aong the ion path (e.g., dong the x
axis):

00

n= J'S*c(r)dx. (39
Ro

Let us assume that x = 0.4, ¢, equals the concentra-
tion of water vapor saturated at the electrolyte surface
temperature (c, = 4 x 10" cm~3), and the cross sections
of molecule-molecule and molecule-ion collisions
depend only on the molecule and ion geometrical sizes.
Then, it is easy to verify that the concentration c(r)
drops rapidly with distance from the liquid electrolyte
surface: c(r) ~ exp[—22(1 —Ry/r)]. Theasymptotic value
of integral (39) depends on its value in the neighbor-
hood of the lower limit (i.e., a the point where the
exponent of the exponential reachesamaximum) andis
easy to take by one of the techniques commonly usedin
this situation (see, e.g., [25, Chap. 3]). Asfollows from
the calculation, n = 3.

Itisclear that the passage of high-energy ions (both
individual and clustered) through a cloud of neutral
vapor will cause the intense excitation and ionization of
the molecules, as well as the intense decomposition of
the clusters. Eventualy, a cloud of weakly ionized
plasmawill form near an emitting asperity. This cloud
will affect the motion and time evolution of ions evap-
orated, as occurs, e.g., in liquid-metal ion sources,
which operate by a similar mechanism [18]. This phe-
nomenon deserves special consideration.

It should be noted that, along with the field evapora-
tion of individual ionsand ionic clusters, the separation
of drops from the top of an emitting asperity may take
place. These drops have a characteristic size on the
order of theradius of curvature of the asperity and bare
acharge dlightly exceeding thecritical valuein terms of
Rayleigh stability [9, 26]. The future of these drops

GRIGOR’EV et al.

depends on their viscosity, which plays a crucia role
for the tiny drops under consideration and provides a
path for excess charge removal upon ion field evapora-
tion [27].

CONCLUSION

Qualitative analysis of an ion emitter in a low-tem-
perature mass spectrometer with electrohydrodynamic
feed of the material to be studied allowed usto establish
the essentials of individual and clustered ion emission
from electrolytic solutions. The basic mechanism
behind the formation of an ion—cluster beam in the
mass spectrometer isthe field evaporation of individual
ions and ionic clusters and their subsequent interaction
with neutral solvent vapor molecules, which form a
cloud near the emitter top because of their thermal
evaporation from the liquid electrolyte film.
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Abstract—The oxidation of solutes in water under the action of a flash corona discharge between solid elec-
trodes and the water surface is investigated. The dependences of the oxidation rate on the gas-phase volume,
the electrode-iquid distance, the discharge current, and the number of electrodes are examined. These depen-
dences should be taken into consideration when designing reactors. © 2002 MAIK “ Nauka/lInterperiodica” .

Chemical reactions of impurity decomposition in
water under the action of an electric discharge have
attracted great interest because they do not need expen-
sive equipment and the energy expenditureis nearly the
same as that required for other oxidation processes
[1, 2]. At the same time, electric discharges are practi-
cally not used in treatment plants because these pro-
cesses are still poorly understood. In [3], conditionsfor
theinitiation of oxidation reactionsin liquids under the
action of a certain type of pulsed electric discharge
(namely, a flash corona discharge) were considered.
Under certain conditions, the efficiency of these reac-
tions turns out to be higher than the ozonization effi-
ciency [4]. It is of interest to consider the features of
oxidation kinetics in a reactor based on a flash corona
electric discharge. In this paper, we study the decompo-
sition rate of solutesin water under the action of aflash
corona el ectric discharge as afunction of the gas-phase
volume and the dependence of the oxidation yield on
the discharge current, the electrode-liquid distance,
and the number of electrodes over the surface.

EXPERIMENTAL TECHNIQUE

The dependence of the reaction rate on the gas-
phase volume was studied in a cylindrical glass vessel
with a base area of 50 cm? and height of 20 cm.
A 0.2-mm-diameter platinum electrode contacting the
liquid was inserted through a hole in the cylinder bot-
tom. A Teflon plug in theform of a piston with holesfor
introducing an aluminum discharge electrode and two
glass pipes through which oxygen was blown was
inserted into the cylinder. The height of the plug over
the liquid surface determined the gas-phase volume.
The distance between the contact el ectrode and the lig-
uid surface was kept at 6 mm irrespective of the plug
position. The vessel was filled up with 40 ml of an
orange aniline dye solution (Orange-1, C;gH1,0.N,S)
with a concentration of 4.5 x 10 mol/l. We used a

commercial dye and distilled water. The dye solution
wasfiltrated. The dye concentration was measured with
a visible-light spectrophotometer. This allowed us to
measure a decrease in the dye concentration to 0.5% of
the initial one. We investigated how the dye decolora-
tion time depended on the gas-phase volume. By decol-
oration we meant adecrease in the concentration to 1%,
at which the dye color became invisible.

The dependence of the oxidation rate I~ on the el ec-
trode current (in the current range in which the dis-
charge remained aflash corona) was studied in acylin-
drical glass vessel with abase area of 100 cm? and vol-
ume of 500 ml. The vessal was filled up with 100 ml of
a 0.01-M (1.66-g/l) KI solution. The electrode-liquid
distance was 7.5 mm. The discharge current was varied
from 7 to 125 YA by varying the high voltage acrossthe
discharge gap from 7 to 13.8 kV. The reaction time was
30 min.

The dependence of the oxidation rate I~ on the dis-
tance between the electrode and the liquid surface was
studied in the same vessel and for the same solution.
The discharge current was maintained at a constant
level of 70 pA by controlling the high voltage. The dis-
tancewasvaried intherange 5.1-13.9 mm; in this case,
the high voltage was varied from 9.2 to 15 kV. The
treatment duration was 30 min for each distance.

The dependence of the reaction yield on the number
of electrodes was investigated in a glass vessel with a
base area of 150 cm? and volume of 2.5 |. The vessel
was filled up with 100 ml of a solution. Twenty dis-
charge electrodes were introduced through the holesin
a Teflon plug. The contact electrode was located at the
vessel bottom. A negative voltage of 10 kV was applied
to each electrode through an individual 12-MQ ballast
resistor. The current through each electrode amounted
to 70 HA. The distance from the electrodesto the liquid
surface was chosen to be 6 mm. In the course of the
experiment, the voltage was applied either to one elec-
trode or to a group (from two to twenty) of the elec-
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trodes. We treated 0.1-M K1 and oxalic acid solutions.
The oxalic acid concentration was determined by titrat-
ing with 0.05-M Kl in an acid medium. In all cases, the
amount of free iodine was determined by titrating with
sodium thiosulfate.

RESULTS AND DISCUSSION

Figure 1 shows the dependence of the decoloration
time of Orange-1 dye on the gas-phase volume. The
dependence consists of two segmentsin which thetime
first decreases (segment AB) and then increases (seg-
ment BC). The minimum decoloration time was
~10.5 min (point B) and was obtained for a gas volume
of 600 cmq. The dependence observed can be explained
as follows. The amount of active particles generated in
the electric discharge depends on the design of elec-
trodes, the discharge current, and the electric-field
strength. These parameters were fixed under our exper-
imental conditions. A changein the gasvolumeleadsto
a change in the concentration of active particles. The
active particles generated under these conditions are
OH radicals and ozone [5].

The OH radicals can interact with each other and
with ozone via the reactions

OH+OH—H,0, (k, = 1.3x10"), (1)
OH + 03 - H02 + OZ (kZ = 4.0x 107)’ (2)

HO,+O; — OH +20, (ks = 1.2x10%. (3)

In reaction (1), these radicals are lost. In reaction
(2), they transform into HO, radicals, which interact
with ozone and transform again into OH radicals via
reaction (3). Calculations based on the full scheme of
interactions between active particles, as well as the
experiments of [5], give the steady-state concentration
of ozone at alevel of (0.4-3.4) x 10~ mol/I, depending
on the discharge current and the number of electrodes
in the reaction chamber. At the same time, the steady-
state concentration of OH radicals amounts to
~107° mol/I. [6]. Under these conditions, reaction (2) is
prevailing and OH radicals, instead of being lost imme-
diately in the region of their formation, spread over the
entire volume.

At low ozone concentrations, when active particles
arelost in second-order reaction (1), the decreasein the
concentration of OH radicals is described by the
expression [7]

[OHI,

[OH] = Tk oHT

In this case, for a small concentration of radicals
[OH] ~ 10-° mol/I, we have k;[ OH], ~ 10; consequently,
the radicals moving with thermal velocities have time
to propagate through the entire volume. Hence, the
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Fig. 2. Oxidation yield Y of iodine in a0.01-M KI solution
asafunction of (1) the distance d between the el ectrode and
the liquid surface, and (2) the discharge current I.

entire concentration of active particles decreases with
increasing volume.

Active particles produced in a discharge are
expended on oxidizing the impurity in water at the rate
W, = Kj[OH][A] (where [A] is the impurity concentra-
tion) and, interacting with each other, arelost at therate
Woy = Kop[OH]2. The ratio between these ratesis

wa _ KAl _ kJJAlY,
Won  ko[OH] ~ kou(OH)’
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Fig. 3. Theoxidation yield for asolutein water asafunction
of the number of electrodes in areactor with a base area of
150 cm? and volume of 2.5 I: (1) 0.1-M KI solution and
(2) 0.1-M oxalic acid solution (Y x 10).The discharge cur-
rent through each electrode is 70 pA.

where (OH) isthe number of OH radicals generated per
unit time (thisratio is determined by the discharge con-
ditions and does not depend on the volume) and V, is
the gas-phase volume. It follows from here that the oxi-
dation rate of the impurity in water increases and the
decol oration time decreases with increasing gas-phase
volume. The maximum decoloration rate and, accord-
ingly, the minimum decoloration time are achieved
when amost all of the active particles are expended on
oxidizing the impurity. As the volume increases further
and the radical concentration decreases, the oxidation
rate falls and the decol oration time for a given amount
of dye beginsto increase.

Crossesin Fig. 2 show theyield of iodine oxidation
in a2 0.01-M KI solution as a function of the distance d
between the electrode and the liquid surface at a dis-
charge current of 70 pA. It is seen that the yield
increases with decreasing d. This is explained by the
increase in the electric field strength in the spark gap.
Closed circlesin Fig. 2 show the yield of iodine oxida-
tion in a 0.01-M KI solution as a function of the elec-
trode current at adistance between the electrode and the
liquid surface of 7.5 mm. It is seen that the reaction
yield per 100 eV of the expended energy increases with
decreasing discharge current. This is explained by the
fact that the fraction of active particleslost due to their
interactions viareaction (1) decreases because the con-
centration of active particles decreases with decreasing
discharge current.

Figure 3 shows the dependences of the oxidation
yield on the number of electrodes for (1) a 0.1-M KI
and (2) 0.1-M oxalic acid solutions. For aKI solution,

ARISTOVA, PISKAREV

all active particles are almost instantly absorbed and,
thus, have no time to interact with each other, because
the rate constants I" for reactions with ozone and OH
radicalsarefairly high (higher than 10°1 (mol s)™). For
this reason, the reaction yield per 100 eV of the
expended energy does not depend on the number of
electrodes (or the number of active particles generated
per unit time).

Oxalic acid is oxidized primarily by OH radicals,
and the rate constant for its oxidation by ozoneissmall,
~0.01 | (mol )™ [8, 9]. The absolute reaction yield is
determined by the OH radical yield, which amounts to
0.32/(100 eV) under our experimental conditions [5].
According to the stoichiometric ratio, two OH radicals
are required to oxidize one oxalic acid molecule. In
addition, oxygen dissolved in water can contribute to
the oxidation in the intermediate stage [9]. The experi-
mental value of the yield of oxalic acid oxidation, Y =
0.22/(100 eV), at the number of electrodes n < 7
(Fig. 3) means that all radicals produced are expended
on oxidation. It follows from Fig. 3 that the yied of
oxalic acid oxidation beginsto fall when the number of
electrodesislarger than 7. Asin the previous cases, this
can be attributed to the change in the concentration of
active particles. The concentration of OH radicals
increases as the number of electrodes increases. Start-
ing from a certain concentration, the loss of radicals
due to their interaction becomes appreciable; as the
number of electrodes increases further, the fraction of
lost radicals increases. For this reason, the yield of the
oxalic acid oxidation decreases.

CONCLUSIONS

() Thereisan optimum gas-phase volume for which
the reaction yield is maximum.

(ii) The reaction yield increases as the distance
between the electrode and the liquid surface decreases.
However, at short distances, the discharge becomes
unstable and easily transforms from the corona to a
spark discharge. In the spark regime, the reaction yield
decreases [4, 10].

(iii) The reaction yield increases as the discharge
current per one electrode decreases.

(iv) When ozone plays a significant role in the oxi-
dation reaction and the reaction rates are high (~10°-
10 | (mol s)™), amost all of the active particles are
instantly absorbed in the region where they are pro-
duced. If ozoneis of littleimportance and the rate con-
stant for the reaction with radicalsis~107 | (mol s)~ or
lower, there exists a critical number of electrodes per
unit area of the liquid surface above which the reaction
yield decreases.

Hence, the design of a reactor based on a flash
corona discharge substantially affects the yield of
impurity oxidation in water. We note that none of the
effects described in this paper was observed previously
in thewidely known process usually referred to as el ec-
trolysisin aglow discharge [11].
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Abstract—A model is devel oped that describes the transition region between a quasineutral plasmaand apla
nar negative electrode and in which the electron velocity distribution is represented as the sum of two Max-
wellian distributionswith different temperatures or asthe sum of aMaxwellian distribution and distribution cor-
responding to an electron beam directed toward the electrode. Criteriafor the formation of a sheath of positive
space charge and asecondary plasmain the transition region are derived. An analysisis made of the dependence
of the structure of the transition region on the parameters of the electron distribution, the space charge density
distribution in the sheath, and the density of the ion current to the electrode. The criteria obtained are compared
with the Bohm criterion. © 2002 MAIK “ Nauka/lInterperiodica” .

INTRODUCTION

The electric field of a negative electrode placed in a
quasineutral plasma medium penetrates into the sur-
rounding plasma and perturbsit, giving riseto atransi-
tion region between an unperturbed plasmaand an el ec-
trode. The transition region is thought to consist of a
sheath of positive space charge directly adjacent to the
electrode and a presheath, i.e., a perturbed quasineutral
plasma with a potential drop of a certain magnitude
[1-5]. For anonisothermal plasmawith an equilibrium
electron velocity distribution and a collisionless sheath,
the potential drop acrossthe presheath is determined by
the Bohm criterion [6] and is equal to 0.5 kT/e. In this
case, the potential distribution across the sheath of pos-
itive space charge relaxesto amonaotonic one regardless
of the magnitude of the electrode potential.

In some cases, the electron velocity distribution in a
plasma can deviate substantially from equilibrium. The
experimentally observed electron distributions often
provide evidence for the existence of two electron pop-
ulationswith essentially different energies. For thisrea-
son, nonequilibrium electron distributions are approxi-
mated by the sum of two Maxwellian distributions with
different temperatures or by the sum of a Maxwellian
distribution and distribution corresponding to a
directed electron beam [7-11]. Under these conditions,
the sheath and presheath parameters [12, 13] differ
from those in the above case of anonisothermal plasma
with an equilibrium electron velocity distribution.
Moreover, the results obtained in [12, 13] indicate that,
for certain parameters of the electron distribution, the
structure of the transition region may also change. This
problem, which is very important for some practical
applications and thus requires more detailed examina-
tion, isthe subject of the present paper.

MODEL OF THE TRANSITION REGION

In order to solve the problem, we consider the tran-
sition region between a semi-infinite quasineutral
plasma with the potential ¢, in the unperturbed region
and an infinite planar el ectrode whose potential islower
than the unperturbed plasma potential by the amount
A, (Fig. 1). Theorigin of the coordinate system is cho-
sen to be located at the electrode surface. The plasma
consists of ions with the temperature T;, thermal elec-
trons with the temperature T (such that Ty > T,), and
hot el ectrons described by a Maxwellian vel ocity distri-
bution function with the temperature Ty, or a distribu-
tion function corresponding to an electrode-directed
electron beam with the energy eU in the unperturbed
plasma. It is assumed that U > Ad,, in which case the

¢

v/'"7
v
/
/
/

Ao,
Ao,

A3

A3

Ad,

_
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Fig. 1. Schematic potentia distribution in the transition
region between a nonequilibrium plasma and a negative
electrode.
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beam electrons (aswell asions) reach the electrode sur-
face, and that the ion and electron beams in the transi-
tion region are scattered insignificantly. The potential
distribution across the transition region is monotonic,
(dd/dx) = 0. Under the conditions just described, the
electron densities in the transition region can be repre-
sented as the sum of two Boltzmann distributions or by
the sum of a Boltzmann distribution and distribution
corresponding to a directed electron beam.

We start by considering the case of two Boltzmann
distributions. In acertain part of atransition region that
isadjacent to the unperturbed plasmaand isbounded by
the plane x = x; (Fig. 1), the plasma is quasineutral,
athough there is a nonzero electric field. This part of
the transition region, with the potential drop A¢4, is
called a presheath. As the potential further decreases
(i.e, Ap > Ad, intheregion x < x;, where A = ¢, —
and ¢ isthe plasma potentia at the point x), theion and
electron densities deviate increasingly from one
another, indicating the formation of a space-charge
sheath in this part of the transition region. As will be
clear later, the sign of the space charge in the sheath
depends on the parameters of the model. The sheath—
presheath system is stable if the layer adjacent to the
sheath is dominated by a positive ion charge screening
the electric field of the negative electrode so substan-
tialy that the electric fields in the quasineutral
presheath are weak.

In order to derive acriterion for the formation of the
sheath of positive space charge, it is necessary to take
into account the ion density distribution in the transi-
tion region. Since the preshesth plasmais quasineutral,
the ion density distribution in the presheath coincides
entirely with the electron density distribution and thus
is determined by the laws described above. The ion
density distribution in the sheath is determined from the
assumption that all ions enter the sheath through the
boundary x = x,, at which the ion energy is eA¢,, and
are then accelerated by the electric field of the sheath.
In this case, the ion density distributions n; along the x
axis, as well as the electron density distributions n,,
have no breaks at the boundary x = xy; i.e., the deriva-
tives dn;/dx and dn./dx of the densities with respect to
X are continuous at the sheath—presheath boundary.
Because of the continuity of the function d¢/dx, the
functions dn;/d¢ and dn./d¢ are also continuous in the
transition region.

Here, by A, is meant the potential drop such that,
at the boundary x = x; of the presheath, the plasmais
gtill quasineutral (i.e., the electron and ion densities, as
well astheir gradients, are the same) and, in the region
X < X; (where A > A¢,), the ion density gradient is
smaller than the electron density gradient. This indi-
cates the formation of a sheath of positive space charge
in the layer adjacent to the presheath of the transition
region.
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The case of a Boltzmann distribution and distribu-
tion corresponding to an electron beam differsfrom the
case of two Boltzmann distributionsin that, as the elec-
trode surface is approached, the electron density
decreases only to a value corresponding to a certain
potential drop, which will be denoted by A¢,. In the
part of the transition region in which A < Ad,, the
decrease in the density of thermal electrons dominates
over the increase in the density of beam electrons, and
vice versain the part where Ad > Ad,. Asin the previ-
ous case, the density of the ions accelerated in the
sheath decreases toward the electrode surface. Conse-
quently, the sheath of positive space charge canin prin-
ciple form only when A, > Ad,. The potential drop
A, can be found from the condition (dn./dx) = O or
(dng/dd) = 0.

CRITERIA FOR THE FORMATION
OF A SHEATH OF POSITIVE SPACE CHARGE
AND THEIR ANALYSIS

According to the above considerations, the criterion
for the formation of a sheath of positive space chargein
the case of two Boltzmann distributions can be formu-
lated as follows:

ni|Ac|>:A¢1 = (net+neh)|A¢=A¢1, (1)
% = d(net + neh) , (2)
do a¢ =24, do 86 =00,

% < d(net + rleh) , (3)

d¢ A9 >Ad, d¢ AO>0d,

where ny and ng, are the densities of thermal and hot
electrons, respectively. This criterion is stated in terms
of the derivatives dn/d¢ rather than in terms of the den-
sity gradients dn/dx.

The distributions of the charged-particle densitiesin
the sheath are determined by the expressions

Ni|ag>n0, = (80,/06)"n, a6 = np,

A, —eAd
Net| pg >0, = enga—kTet %n6t|A¢:A¢l’ (4)
_ eAd, —eAdn
Nenlag>ne, = EXP[ KT, [Nen| 56 = a0,

Taking into account the continuity of the derivatives
at the sheath—presheath boundary and the quasineutral -
ity of the unperturbed plasma, we differentiate expres-
sions (4) with respect to ¢, substitute relationship (1)
into relationships (2) and (3), switch to the charged-par-
ticle densities in the unperturbed plasma (A¢ = 0), and
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introduce the notation

_ eAd) _ eA(I)l
S S
)
_ Tet _ |j]eH:|

B=1 S oD

Asaresult, we arrive at the following dimensionless
criterion for the formation of a sheath of positive space
charge in the case of two Boltzmann distributions:

(1—ap)exp(-Wy)(1-2W,)
+apexp(—BW,)(1-2pW,) = 0,
2
(1-ayp) eXIO(—Wl){l - va%exp(wl —W)}

1

(6)

W3/2 (7)
+a,exp(—-BW;) {1 - ZBW_”Z exp(BW, — BW)} <0.

1

An anaogous criterion in the case of a Boltzmann
distribution and distribution corresponding to an elec-
tron beam has the form

3/2

E
(1—ap) exp(-Wy) (1—2W;) + abEE-_——WE = o,(g)

2

(1-ayp) eXp(—Wl){l - ZV—V—l exp(W, —W)}
Wi

9)

+q,-E 0 1_V__V_1+EE_WJD3/2W3/2 <0
°CE — W, E UE-wWO w2g| ™

where E = eU/KTy, a, = (Ngy/N;) |4y = o0, @Nd N, isthe elec-
tron beam density.

Moreover, recall that, in this case, the following nec-
essary (but not sufficient) condition for the formation of
the sheath of positive space charge should be satisfied:

W, <W,, (10)

where the quantity W, = eA,/(kT,) can be determined
from the relationship

EJJZ
B
(E-W,)*

which is a consequence of the condition [d(ny +
Ne,)/dd] = 0.

In the absence of high-energy electrons (ay, = 0 or
B=1anda, = 0), criteria (6) and (8) pass over to the
Bohm criterion W, = 0.5 and inequalities (7) and (9)
hold for 0.5 < W < 3.356, indicating that, in this range
of W values, the ion density gradient in the sheath is
smaller than the electron density gradient, and vice

2(1-ap)exp(-W,) —a =0, (11

MARTENS

versafor W > 3.356. It is known that, in the case of the
Bohm criterion, the space charge in the entire sheath is
positive.

In the presence of high-energy electrons, the poten-
tial drop W, across the presheath can be determined
from criterion (6) or (8), provided that inequality (7) or
(9) is satisfied in the interval of W values that is
bounded from below by W,. In what follows, when
speaking of whether or not inequalities (7) and (9) are
satisfied, we will mean precisely thisinterval of Wval-
ues. Note that an analysis of inequalities (7) and (9)
shows that, depending on the particular circumstances,
they can also hold in other intervals, in particular, in the
intervals bounded from above by W, or bounded from
below by avalue larger than W, .

Figure 2 illustrates how the potential drop W,
depends on the parameters of the electron distribution.
In the case of two Boltzmann distributions, an increase
ina;, from0to 1 correspondsto the transition of plasma
el ectronsfrom an equilibrium distribution with the tem-
perature T to an equilibrium distribution with the tem-
perature Ty, through nonequilibrium distributions cor-
responding to different relative contents of thermal and
hot electrons. As 3 changes withintherange0< 3 < 1,
W, increasesfrom 0.5 at a;,=0t0 0.5/ at a,, = 1. Inthis
case, intherange0.101 < 3 < 1, Eq. (6) has one solution
(Fig. 2; curves 1, 2), so that all W, values obtained from
Eqg. (6) can be treated as potential drops across the
sheath because inequality (7) is satisfied under these
conditions. For 0 < 3 < 0.101 and for a certain range of
o}, values (which depends on the 3 value), Eg. (6) has
three solutions (Fig. 2, curves 3-6). Let us discuss this
situation in more detail, using, as an example, curve 4,
which was calculated for 3 =5 x 1072 For W, values
over the portion BC of curve 4, inequality (7) fails to
hold. Thisindicates that, under such conditions, theion
density gradient in the part of the sheath that is near the
sheath—presheath boundary exceeds the electron den-
sity gradient; as a result, a sheath of negative space
charge should form near the presheath boundary. How-
ever, as was noted above, such a system cannot be sta-
ble. For the two remaining solutions to Eqg. (6), one of
which is described by the portion AB of curve 4 and the
other is described by the portion CD, inequality (7) is
satisfied. Out of the two physicaly possible stable
states corresponding to these two solutions, the state
with alower W, value actually occurs, because, when W
is larger than W, the sheath of positive space charge
that begins to form near the boundary of the presheath
prevents the formation of aquasineutral presheath with
a large W, value. An analysis of inegquality (7) under
conditions corresponding to the portion AB of curve 4
shows that, as oy, increases from zero to the critical
value a,,. corresponding to point B, the interval over
which inequality (7) is satisfied shrinks from the Bohm
interval 0.5 < W < 3.356 to zero, in which case the
derivative dW,/da,, increases from a finite value to
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infinity (Fig. 2). This indicates that, a o, = a,,, the
sheath of positive space charge does not form near the
boundary of the presheath; as a result, the potential
drop in the presheath increasesin ajumplike manner to
the value W;, which corresponds to point D. In the
states corresponding to portion DE, the sheath of posi-
tive space charge again forms near the boundary of the
presheath, because inequality (7) is satisfied for the W,
value at point D, as well asfor al W, values over por-
tion DE. Calculations show (see also Fig. 2) that, as 3
decreases, the critical value o, decreases from 0.461 at
3 =0.101 to 0.309 at B = 0, whereas the potential dif-
ference W, increasesin ajumplike manner from zero to
infinity as 3 changesin the same range.

In the case of a Boltzmann distribution and distribu-
tion corresponding to an electron beam (Fig. 2,
curves 6-8), Eq. (8) hastwo finite solutionsin the inter-
val 0 < ay < ap, Where ay, isthe critical value of o, at
which (dW,/da,) — oo. For a,. < a, < 1, Eq. (8) has
one solution, namely, W; —» . Out of the two finite
solutions (see the solid and dashed-and-dotted portions
of curves 6-8 in Fig. 2), inequality (9) holds only for
the solution with smaller W, values. Moreover, this
case is similar to that of two Boltzmann distributions:
asa, increasesfrom zero to a,,, theinterval over which
inequality (9) is satisfied shrinks from the Bohm inter-
val to zero and the derivative dW,/da, increases from a
finite value to infinity. Accordingly, condition (10)
holdsfor 0 < a, < a,. and failsto hold for a,. < a, < 1.

These results can be interpreted as follows. For 0 <
0, < dy,, there exists a sheath of positive space charge
in the transition region. The sheath is separated from
the unperturbed plasmaby apresheath. Asa,, increases,
the potential drop W, across the sheath becomes larger
(see the solid portions of curves 6-8 in Fig. 2) and the
sheath of positive space charge near the boundary of the
presheath becomes thinner. As a,, reaches the critical
value ay,, the sheath of positive space charge disap-
pears and the potential drop W, increases to infinity in
a jumplike manner, so that condition (10) is violated.
Thisindicatesthat, for oy, < a, < 1, theentiretransition
region is a quasineutral presheath for any electrode
potential consistent with the above model assumptions;
i.e, 0 <W, <E, where W, = eAd/(kTy). In this situa-
tion, however, theterm “ presheath” is physically mean-
ingless because there is no sheath in the transition
region. The critical value a,,. and the potential drop W,
corresponding to it are maximum at E = co and are equal
to 0.309 and 1.5, respectively. It can be readily shown
that the case of two Boltzmann distributions coincides
with the case of a Boltzmann distribution and distribu-
tion corresponding to an electron beam when 3 = 0 and
E — oo (Fig. 2, curve 6).
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Fig. 2. Dependence of the potential drop across the
presheath on the parameters of the el ectron distribution. The
curves in the case of two Boltzmann distributions were
obtained for B = (1) 1.0, (2) 05, (3) 0.1, (4) 5x 1072, (5) 1072,
and (6) 0. The curvesin the case of aBoltzmann distribution
and distribution corresponding to an electron beam were
obtained for E = (6) o, (7) 3, and (8) 1.

CHARGE DENSITY DISTRIBUTION
IN THE SHEATH

Above, it has been shown that, when o, and o, are
nonzero and are smaller than their critical values, the
interval of W values in which inequalities (7) and (9)
are satisfied is shorter than the Bohm interval. Thissug-
gests that, under the conditions in question, a double
layer of space charge can, in principle, exist in which
the region near the boundary of the presheath is domi-
nated by a positive ion charge and the region far from
this boundary is dominated by a negative electron
charge.

In the case of two Boltzmann distributions, the rel a-
tive charge density py, in the layer can be represented as

(ni _net - neh)|A¢ >N,

Pn = (12)

Ni|ap=0

We substitute expressions (4) and relationship (1)
into relationship (12), switch to the charged particle
densities in an unperturbed quasineutral plasma, and
take into account notation (5). Asaresult, we obtain

12
v = (1-apexp-Wy) BB - epw, -w) |
d/v 1/2 (13)
+onexp(-BWY)| Fd — ep(BW;—BwW) |
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Fig. 3. Charge density distribution in the layer: (1) the
Bohm case (0, =0, 0r =1, or o, = 0); (2) thecasef=0
and o, = 0.099 or E— o and a, = 0.099; (3) the case 3 =
Oandah—02120ranoanda = 0.212; (4) the case
B=5x 102 and 0p = 0.301; and (5) the case E = 10 and
ap, = 0.220.

The expression for the relative charge density p, in
the layer in the case of a Boltzmann distribution and
distribution corresponding to an electron beam can be
derived in an anal ogous way:

1/2
py = (1-ayexp(-Wy)| BB~ eo(w, -w) |

" (14)
rqE [EWJD
"CE-W| wlm CwO

where the relative charge density is defined as

(ni _net_neb)|A¢ >Ad,

° n; |A¢ =0

Expressions (13) and (14) made it possible to ana-
lyze the charge density distribution in the layer (see
Fig. 3) and to prove that the double layer of space
charge can actually form under the conditions adopted
here (Fig. 3, curves 3-5).

Equating the right-hand sides of expressions (13)
and (14) to zero, we can determine the boundary values
W, = eAd./(KTy), where Ad,, is the potential difference
between the unperturbed plasma and the boundary x =
X5, Which separates the regions of positive and negative
space charges in the double layer (Fig. 1). The depen-
dence of W, on the parameters of the electron distribu-
tionisillustrated in Fig. 4.

CRITERIA FOR THE FORMATION
OF THE SECONDARY QUASINEUTRAL
PLASMA AND THE STRUCTURE
OF THE TRANSITION REGION

Here, we analyze the potentia distribution in the
space-charge sheath. To do this, we use Poisson’s equa-
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tion. Since the electric field in the sheath, and, accord-
ingly, at the boundary x = x,, isweak, the integration of
Poisson’s equation with the boundary condition
(d¢/dx)|, -, = 0in the case of two Boltzmann distri-

butions yields

rdo” _ _2el _ Ao
[UXD - T Dﬁ¢ |: mq)lm :|2nllx=x
KTa Ad, — el
5 [1— pg ¢IiTet ¢%}net|x_xl (15)

Ten [ gaAqu eAd
1_ Xp i| en|x = Xy D
KT n g

In the Bohm case, the right-hand side of Eq. (15) is
positive over the entire range Adp,; < Ad < o, indicating
that the potential distribution in the space-charge sheath
is monotonic for any magnitude of the electrode poten-
tial that satisfiesthe condition Ay > Ad,. In[13], it was
shown that, in the presence of high-energy electrons,
the potential gradient may vanishin acertain region x <
X, Of the sheath in which A$¢ > A, and the negative
electron space charge dominates over the positive ion
space charge. Let us assume that the potential gradient
vanishes at the boundary x = X3, the corresponding
potentia differencebeing Ad = Ad5 (Fig. 1). Thevalues
of A5 can be determined by equating the right-hand
side of EQ. (15) to zero. We perform the same manipu-
lations with the expressions for the charged particle
densities as those made in deriving expression (13). As
a result, we arrive at the following condition for the
dimensionless potential gradient to vanish in the case of
two Boltzmann distributions:

(1-ap)exp(-W;)[1—exp(W,—Ws) + F] + Gh(16)
x exp(—BW,){[1—exp(BW,—BW,)]/p + F} =0,
where F = 2[W, — (W, W;)Y?3] and W; = eAd4/(KTy).

In the case of aBoltzmann distribution and distribu-
tion corresponding to an electron beam, an analogous
condition has the form

(1—-ap)exp(-Wy)[1 - exp(W; — Ws) + F]

+ab[E {2(E W) (17)

—W. 1/2 0
><[1—dE :D}+FD=O.

The dependence of W; on the parameters of the el ec-
tron distribution isillustrated in Fig. 4. The characteris-
tic feature of the case of two Boltzmann distributionsis
that Eqg. (16) has, if ever, two (possibly coincident)
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solutions, W5 and W3 (W3 < W5). In the intervals

W, <W< Wj; and W3 < W < o, the right-hand side of

Eq. (15) is positive. Thisindicates that the correspond-
ing parts of the transition region are space-charge
sheaths with a monotonic potential distribution. In the

interval W5 < W< W3, theright-hand side of Eq. (15)
is negative, so that dd/dx isan imaginary quantity. Asa
result, in the corresponding part of the transition region,
the potential distribution is oscillatory [5, 12]. How-
ever, in[5] it was shown that, when the electric fieldsin
this part are weak (at the boundaries of the interval, we
have (d¢/dx) = 0)), even an insignificant ionization of
the gas by plasmaelectrons and ions and rare collisions
of plasmaions with other plasma particlesin which the
ions are decelerated and undergo charge exchange can
restore the monotonic potential distribution. Also, the
processes just mentioned promote the equalization of
the ion and electron densities in this part of the transi-
tion region, thereby leading to the formation of the sec-
ondary plasma.

In the case of a Boltzmann distribution and distribu-
tion corresponding to an electron beam, Eq. (17) has
only one solution W; (Figs. 4c, 4d). Similar consider-
ations show that the secondary plasma is produced in
the part of the transition region in which the potential
drop W satisfies the condition W; < W < E (the upper
bound E is the boundary of applicability of the model
used here).

In accordance with the above analysis, expressions
(16) and (17) serve as criteria for the formation of the
secondary plasma in the transition region. Earlier, the
condition (d$/dx) = 0, from which expressions (16) and
(17) have been derived, was also used as a criterion for
secondary plasmaformation [14, 15].

Hence, the model developed here shows that, under
certain conditions, the secondary quasineutral plasma
canforminthetransition region. The secondary plasma
is separated from the main plasmaby an el ectric double
layer. At the boundary x = x5 between the sheath and the
secondary plasma, the electric field vanishes. In the
secondary plasma, the potential decreases monotoni-
cally toward the electrode. In the case of two Boltz-
mann distributions, the secondary plasma can be
bounded by space-charge sheaths on both sides; more-
over, at both boundaries of the secondary plasma, the
potential gradient vanishes.

Interestingly, using the formal assumption of aninfi-
nitely strong electric field at the plasma-sheath bound-
aries, Demirkhanov et al. [12] also arrived at the con-
clusion that, under the conditionsin question, there can
exist two plasma regions separated by an electric dou-
ble layer. However, under such boundary conditions, a
double layer with positive space charge cannot exist
near the plasma region with a higher potential. The
same is true of a double layer with negative space
charge near the plasmaregion with alower potential. In
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Fig. 4. Structure of the transition region between a nonequi-
librium plasmaand anegative electrode for different param-
eters of the electron distribution. The structures in the case
of two Boltzmann distributions were obtained for =
(@) 0.5, (b) 5x 1072, and (c) 0. The structuresin the case of
a Boltzmann distribution and distribution corresponding to
an electron beam were obtained for E = (c) e and (d) 10.

[12], the space-charge sheath was not considered, pre-
sumably because the model adopted in that paper was
inappropriate for describing it.

The results obtained above are illustrated in Fig. 4,
which shows structural diagrams of the transition
region between a plasma and a negative electrode.
Using these diagrams, we can determine the structure
of the transition region and the boundary values Wj,
W,, and W; for the required values of the parameters of
the electron distribution (ay, and 3 or a,, and E) and the
electrode potential W,. The diagrams show the follow-
ing possible structures of the transition region: (i) a
quasineutral presheath; (ii) a quasineutral presheath
and a space-charge sheath adjacent to the electrode [in
this case, the sign of the space charge predominating in
the sheath remains the same (positive) over the entire
sheath, or changes from positive to negative asthe elec-
trode is approached (a double layer), or changes from
positive to negative and then becomes positive again
(atriple layer)]; (iii) aquasineutral presheath, a double
layer, and asecondary plasma adjacent to the el ectrode;
and (iv) the previous structure plus the second space-
charge sheath between the secondary plasma and the
electrode.

ION CURRENT TO THE ELECTRODE

The ion current to the electrode is carried, first, by
thethermal ionsthat enter the transition region from the
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Fig. 5. Dependence of theion current density at the sheath—
presheath boundary. The curves in the case of two Boltz-
mann distributions were obtained for 3 = (1) 0.1, (2) 5% 10~ 2
and (3) 1072. The curvesin the case of a Boltzmann distri-
bution and distribution corresponding to an electron beam
were obtained for E = (4) «, (5) 3, and (6) 1.

side of the unperturbed plasma and are accelerated
there by the electric field and, second, by the ions that
are produced as aresult of gasionization over theentire
transition region.

If the parameters of the electron distribution and the
electrode potential are such that no space-charge sheath
formsin the transition region (so that the entire transi-
tion region is a perturbed quasineutral presheath), then
the presheath becomesthicker and the density of theion
current to the electrode becomes higher as the potential
difference between the unperturbed plasma and the
negative electrode increases. In this case, the electrode-
directed current density in an actua device can be
bounded from above by the value corresponding to the
electrode potential at which the plasma perturbation by
the electric field of the negative electrode extends into
the entire plasma volume and the presheath stops
expanding.

If asheath of positive space chargeformsinthetran-
sition region, then it weakens the perturbing effect of
the electric field of the negative electrode on the
plasma. In this case, the thickness of the forming
presheath and the potential drop acrossit are both inde-
pendent of the electrode potential. Theion current den-
sity at the sheath—presheath boundary is equal to

i = e(nivi)|A¢ =0,

where V| - pp, = (2eAd,/m)Y2 and m is the mass of
anion.

Using condition (1), switching to the charged parti-
cle densities in an unperturbed plasma, and taking into
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account notation (5), we arrive at the following repre-
sentation of the ion current density j;,, at the sheath—
presheath boundary in the case of two Boltzmann dis-
tributions:

Jin = [(1—ap)exp(-Wy) + o,exp(—-BW,)]
x (2eAd,/m) en |, -
In the Bohm case (o, =0or 3 = 1), for W, =0.5, we
have

. 1
it = exp(-05)(KT/m) " en,, -,

For convenience of further analysis, it is expedient
to consider theratio J;, of theion current densitiesin the
case of two Boltzmann distributions and in the Bohm
case at the same ion densities N[5y - o:

Jin = Jin/if = exp(0.5)[(1-a;)exp(-W,)
+ o exp(—BW,) 1 (2W,) 2,

For the case of a Boltzmann distribution and distri-
bution corresponding to an electron beam, the analo-
gous ratio has the form

(18)

Iy = exp(o.5)[<1—ab)exp<—wl)
(19)

E 1/2
¥ O‘bEE—WE }(2W1)”2.

For a collisionless sheath, expressions (18) and (19)
determine the ion current density not only at the
sheath—presheath boundary but also at the electrode
surface. An increase in the fraction ay, or ay of high-
energy electronsresultsin anincrease in theion current
density (Fig. 5). In the case of two Boltzmann distribu-
tions, the ratio J;,, increases from 1 at a, = 0 to B2 at
o, = 1. A jumplike changein J;, at the critical value ..
(Fig. 5, curves 1-3) is associated with a jump in the
potential drop W; in the sheath (Fig. 2, curves 3-5).
Curves 4-6 in Fig. 5 were obtained for the case of a
Boltzmann distribution and distribution corresponding
to an electron beam and are limited to the interval
where the sheath of positive space charge exists (0 <
0, < dy,0). A certain contribution to the ion current den-
sities in expressions (18) and (19) may come from the
secondary plasma (when it forms in the transition
region).

CONCLUSION

Some of the conclusions of this paper were experi-
mentally confirmed by the author and the correspond-
ing measurement results were described in [16]. Here,
however, it is expedient to turn to the results of other
experiments, namely, those reported in papers[17, 18],
which were devoted to a comparison between different
methods for processing the current—voltage character-

TECHNICAL PHYSICS  Vol. 47

No. 10 2002



TRANSITION REGION BETWEEN A NONEQUILIBRIUM PLASMA

istics of the probes immersed in nonequilibrium plas-
mas. It was shown that the traditional processing of the
ion portion of the probe characteristics by means of the
Bohm criterion, in which high-energy electrons are
neglected, overestimates the plasma density by more
than an order of magnitude.

The approach proposed here for calculating the
parameters of the transition region can aso be applied
to other nonequilibrium electron energy distributions,
because any complicated distribution can be repre-
sented as a sum of distributions of several electron
groups with their own temperatures or energies.

The physical situations analyzed in this paper may
be encountered in tokamak physics (in wall plasmas),
in plasma chemistry, and in plasma technologies. The
effect of high-energy electrons on the current through a
negative electrode in a plasma should be taken into
account in probe measurements of the plasma parame-
ters. Finally, the results obtained make it possible to
suggest some ways of increasing the efficiency of ion
sources, for instance, by choosing an appropriate type
of gas discharge that generates plasmas with high-
energy electrons (e.g., a reflex discharge [7] and a
beam—plasma discharge [8, 9]).
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Abstract—A model of nonlinear longitudinal wave propagation in a solid with quadratic nonlinearity of an
elastic continuum exposed to laser impulsesis developed in view of the interaction between the strain field and
the field of point defects. The influence of the generation and recombination of laser-induced defects on the
propagation of an elastic strain wave is analyzed. The existence of a nonlinear elastic shock wave of low
intensity is revealed in the system and its structure is studied. The estimations of the depth and velocity of the
wave front are performed. The contributions due to the interaction of the strain field and the field of defects to
both alinear elastic modulus and the dispersion parameters of alattice are found. © 2002 MAIK “ Nauka/Inter-

periodica” .

INTRODUCTION

Prominent features of the behavior of a solid under
intense impul se exposures (in particular, under impul se
laser-beam exposures) are the appearance and propaga:
tion of nonlinear strain waves (in particul ar, solitons) of
various natures. This phenomenon is of considerable
interest, and numerous theoretical and experimental
papers[1-7] are devoted to it. In considering the evolu-
tion of nonlinear elastic waves in a crystal, the devia-
tion of elastic lattice properties from Hooke's law is
commonly considered as nonlinearity [1]. In exposed
solids, various structural imperfections of a lattice,
namely, point defects generated under externa influ-
ences and resulting in a considerable strain of a
medium, may be of essential importance. The strain of
amedium is due to the difference in the covalent radii
of lattice and defect atoms. The defect-strain interac-
tion may occur via both the changing energy parame-
ters of the subsystem of defects (the energy of the
defect formation, the energy of their migration) and the
appearance of the diffusion current (strain-induced
drift). Under certain conditions, nonlinearities related
to these interactions may become essential for the prop-
agation of nonlinear elastic perturbations in solids and
result in a renormalization of lattice parameters (both
linear and nonlinear elastic moduli). The presence of
point defects with a finite recombination velocity in a
medium may induce the appearance of dissipative
terms, which are absent in ordinary equations for non-
linear elastic waves. The wave dynamics may depend
on dispersion due to the finiteness of either the lattice
spacing [8] or specimen width [9] aswell as dispersion
related to nonequilibrium defects. The propagation of

an elastic strain wave in such systems may occur in the
form of shock waves. In this case, the influence of gen-
eration and recombination processes turns out to be
similar to the dissipation of the elastic oscillation
energy in a viscoelastic medium with aftereffect and
relaxation. The formation of the shock front of an
acoustic wave in insulators exposed to 0.15 ps laser
pulses with energy up to 5 J was experimentally
observed in [10]. The study of the wave dynamics in
view of their interaction with structure defectsis of cer-
tain theoretical and practical interest, in particular, in
analyzing the mechanisms of an anomalous masstrans-
fer detected in the laser and ion implantations of metal
materials [11] and in studying the mechanica activa-
tion of components in solid-phase chemical reactions.
Elastic wave propagation in a condensed medium car-
ries information about the distortion of their shape and
velocity, energy loss, defect structure, etc. This infor-
mation is necessary to determine various parameters
and the structure of solids.

In this paper, the possibility of the existence of
shock waves in the propagation of a nonlinear longitu-
dinal-strain wave in a medium with a quadratic nonlin-
earity of an elastic continuum exposed to laser pulsesis
studied in view of the generation of point defects
(vacancies and intertitial sites). It is shown that gener-
ation and recombination processes in the defect sub-
system result in dissipative effects and, hence, the
appearance of elastic shock waves of low intensity. The
renormalization is found of linear elastic moduli and
parameters of dispersion due to defect-strain interac-
tion.

1063-7842/02/4710-1258%22.00 © 2002 MAIK “Nauka/ Interperiodica’
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BASIC EQUATIONS

Consider an isotropic solid with point defects
induced by laser radiation. Let n(x, t) be the volume
density of defects (j = v for vacancies, and j =i for
interstitial sites). In the propagation of longitudinal
strain waves, the activation energy for the defect forma-
tion varies in the regions of compression and tension.
Therenormalized energy of point defect formation may
be represented in the form E = E, — ¢divu, where € —
divu isthe strain of a medium; u, the vector of the dis-
placement of amedium; ¢, the strain potential; and E,,
the energy of defect formation in a strainless crystal.
The variation of formation energy results in a corre-
sponding variation of the defect source function and,
consequently, in the spatial redistribution of defects
[12]. In addition, defects may migrate over acrystal and
recombine at various centers, e.g., dislocations, intersti-
tial impurities, etc. In the framework of the aforemen-
tioned assumptions, the nonlinear dynamic equation
describing the propagation of the longitudinal strain
wave in a crystal in view of defect generation (in the
one-dimensional case) may be written as

o2 Tax> P gx?0X M
d‘u a'u _ KQon,
—0 S a0 S T o
ot°0x 0x p Ox

Here, u(x, t) is the displacement of the medium; c, =
(3K + 4u)/3p)Y?, the longitudinal wave velocity in a
crystal; K and , the bulk and rigidity moduli, respec-
tively (linear elastic moduli); p, the density of the
medium; o, and a,, the dispersion parameters[13]; and
Q;, the dilatation parameter describing the variation of
the crystal volume in the result of point defect forma-
tion (Q; <Oforj=v, and Q; > 0forj =i). The nonlin-

earity coefficient [13] By = 3pc: + 2(A + 3B + C),
where A, B, and C are the third-order elastic moduli.
For most solids (metals and alot of polymers), By <O.
There are a'so metals in which the deviation of elastic
|attice properties from Hooke's law is insignificant. In
thiscase, By > 0. In (1), we restricted our consideration
to asmooth strain disturbance and took into account the
contributions of the elastic moduli to the spatial disper-
sion in the first nonvani shing approximation.

Equation (1) in the absence of elastic concentration
stresses, which is called an egquation with two disper-
sions (a4, 05), was studied in detail in [2-5]. The gen-
eralization of thisequation to the casein which theelas-
tic concentration stresses are present in asystem is per-
formed in [12] in the framework of the Hamiltonian
approach.

The distribution of point defects determining the
right side of Eq. (1) depends on the strains and stresses.
Therefore, EQ. (1) should be supplemented by an equa-
tion for the defect density to completely describe the
2002
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elastic wave propagation. If the basic processes deter-
mining the time behavior of defects are defect genera
tion from thelattice sites and their recombination at the
centers of various nature, the kinetic equation

on,; du
a_tlj = qs&_Bjnlj 2

takes place for weak nonuniform density perturbations
Ny = N, —Njp and ny; < ny, where njp = qgT; isauniform
stationary defect distribution. Here, q, is the rate of
point defect generation in the absence of strain; thefirst
term in the right-hand side of (2) corresponds to strain-
induced generation (¢ = Ou/ox is the strain of a
medium); the second term, the defect decrease due to
the recombination (B; = 1/t; = p;D; is the recombination
rate at sinks; p;, the sink density; D;, the diffusion coef-
ficient for adefect of j type; and 1;, the relaxation time);
the bulk mutual recombination of dissimilar defectsis
neglected; and g, = do(KQ/KT) for the thermal mecha-
nism of the point defect generation.

Equations (1) and (2) make up aclosed system. This
system completely describes the distribution of one-
dimensional strain perturbations in a solid due to non-
stationary and nonlinear distributions of a point defect
subsystem as well as the inverse effect, namely, the
variation of the defect concentration in a solid as a
result of elastic strain perturbations.

NONLINEAR STATIONARY WAVES

Consider self-similar solutions of the form u = u(§)
and ny; = ny(&), where = x — vt, describing longitudi-
nal waves of strain and defect density propagating
along the x axis with a velocity of v = const. In this
case, the system of partial differential equations (1) and
(2) passes into the following system of ordinary differ-
ential equations:

».d’u Bnd?udu

2
(v _CS)d—E_Z_—p—;j—E_Za—E o
_(lez—az)ﬂ;: = —@%,
dg p d
—vddLElJ+:—ljj = qg(%. (4)
We use the conditions
Ug(—0) = &g, Ug(+0) =0, nyj(xe0) =0 (5)

as boundary conditions for Egs. (3) and (4).

Boundary conditions (5) imply that waves propagat-
ing in a medium turn the system under consideration
from a deformationless state into that with a constant
deformation (g;). We will further restrict our consider-
ation to asystem with only one type of defects and take
ny(€) =m(E), Ty =1,and Q =Qin (3)5).
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The solution of the nonuniform differential equation
(4), in view of boundary conditions (5), has the form

+00

@ = Jera(E yexpE=t] ©)

whereq(€) = g, v —1du/dE.

Having eliminated the defect density, using (6), we
arrive at equation

d_U_&u@_ 2_ gy
( S) ) dEsz (le GZ)dE4
KQd .  f- ¥
+Td_5.[ pDT Q(E)dE =0

describing the propagatl on of anonlinear elastic strain
wave.

Equations similar to (7) aretypical for systems with
strain memory (or relaxation) [1]. At a, = a, = 0 (with-
out dispersion) and g, = 3 = 0 (without defect genera-
tion), this equation has the same form as in the case of
alongitudinal wave in the free space. On the basis of
Eq. (7), athorough analysis of the strain wave propaga-
tionispossiblein view of both the dispersion properties
of a medium and the elastic properties of a lattice and
defect subsystem. An exact analysis of this equation
with arbitrary values of the parameters involved seems
impossible. Further, we will consider it at small (com-
pared to the period of the wave t,) defect relaxation
times (T <€ ty). In this case, the integral termin (7) can
be replaced by a differential one. Let us expand the
function q(§ — 2) by its Taylor series expansion at &.
Retaining thefirst threetermsin thisexpansion, wefind

k— ED
dEIdEQ(E) P

d u T2‘/d_u+r3 »d* lE
dg? dg’ dg
Having substituted this expression into (7), we
arrive at the following equation:

d’u_PByd'udu  KOGTvdy

dg?  p ge?dg P de’

=0

(v -2
©®

where ¢, = cf1 — KQqET/pci)”2 is the velocity of
sound renormalized due to the defect-strain interaction.

In Eq. (8), the term with the third derivation of the
displacement (the Burgers term) describes the wave
energy dissipation. The appearance of this term is
clearly related to the generation and recombination pro-

MIRZOEV

cesses in the defect subsystem. In addition, the finite-
ness of the defect recombination rate (1) resultsin an
additional contribution to nonlinear equation (8). This
may influence the nonlinear wave properties.

Having performed single integration with respect to
¢ and introduced the notation € = du/d¢, we find an
equation coinciding with the first integral of the well-
known stationary Korteweg—de Vries-Burgers equa
tion [14]:

d’e 5de
— + /p)e” =0,
a = v2—6§, g-= O(1V2—C‘2—KQ(:leT?)Vzp_11 9

5 = KQq,t°vp ™.

Here, theintegration constant isequal to zero in view of
the boundary conditions du/dg; _ .., = 0.

Equation (9) has repeatedly been considered in the
literature. In particular, the characteristic features of
solitary-wave (solitons) attenuation at low dissipation
were studied. Shock-wave attenuation in elastic media
without dissipation was considered in the framework of
the Burgers equation [1, 14, 15]. Equation (9) aso
describesthe propagation of nonlinear ion-sound waves
in plasma in view of the Landau damping [16]. Equa-
tion (9), with the boundary conditions

g(-) = &, ¢&(+») =0 (10)
admits a solution in the form of shock waves of low
intensity (step-function solution) [14].

If the dispersion isnegligible, Eq. (9) yieldsthe sta-
tionary Burgers equati on

dE _(BN/p)a +ae = 0
having a solution in the form of shock waves with a
monotonic profile,

i X=VE - 208
_2%1th D’b_BNSo

In the general case, we will qualitatively determine
the pattern of the solution to Eg. (9) in view of theinflu-
ence of dispersion using the analysisperformedin [14].
Note that an explicit analytical solution of Eqg. (9) with
additional restrictions on its coefficients can be found
by the method described in [5].

The dependence of wave velocity v onitsamplitude
€, is determined by the formula

Ve = E+eBup (12)
From analysis of the asymptotic wave behavior, it
follows that a solution satisfying boundary conditions

(10) existsif the wave velocity v > C,. Then, according
TECHNICAL PHYSICS Vol. 47
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to (11), the wave excited is atension wave (g, > 0) for
By > 0, and a compression wave (€, < 0) for B < 0.

WAVE STRUCTURE

The structure of anonlinear wave can be determined
by studying the asymptotic behavior of the solutions of
Eq. (9) subject to boundary conditions (10). Hereafter,
we follow the qualitative analysis conducted in [14].

The structure of the shock wave depends on theratio
between the dispersion and dissipation parameters
(9,9) in Eq. (9). At sufficiently small values of 9, the
shock wave has an oscillating structure. If the dissipa-
tion parameter exceeds a certain critical value & > o

the shock wave has a monotonous profile [14]. Critical
values of the dissipation parameter djcorresponding to

monotonous and oscillating wave profiles are deter-
mined by the formula

o, = J4lag.

Using (11), this equation can be represented in the
form |gy| = £ where the critical amplitude valueis

_ (KQq.v1?)°
|BN||p(G1V2_a2) - KQqu3V |

Thus, the shock wave has an oscillating structure at
|€o| > €and amonotonic structure at |g| < £ The crit-

ical amplitude value g dividing shock waves with an

oscillating structure from monotonic shock waves is
determined by the elastic modulus, temperature of the
medium, intensity of defect generation, their relaxation
time, and dilatation volume of defects. At characteristic
values of parameters (for vacancies) K = 5 x
10" dyn/cm, got = 10* cm3, By = 10'? dyn/cm, p =
8 g/cm?, and |Q|= 102 cm?, wefind =4 x 1072,
The spatial scale of the variation of the solution to
Eq. (9) evidently determines the width of a shock wave

(L), i.e., the distance at which the oscillations die out
[14]. An estimation yields

_ (4191/3) Jeu + g
JEx + € —NEL
The oscillation period (d) is found from a solution

linearized in the neighborhood of the homogeneous
solution € = ap/By of Eq. (9),

Q
= P 410).

(12)

gd—28 de +ag = 0.
de? O
Finally, we find
d = (4nig|/d) |—*— (13)
|50|
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According to (13), the oscillation period decreases
with increasing amplitude of a nonlinear wave €, and
takes on the value

d =41,/ pg/|BnEy|

in the limit |g| > e

DISCUSSION

From the conditions of the existence of an oscillat-
ing shock wave (1< |&)) and smallness of its ampli-

tude |g| << 1, wefind the restriction on its velocity,
Ca(1+ &, (|By/PES)) < v° <E(1+ By /PEY).

Since monotonic shock waves can appear in media
with rather large values of (e3> |&|), wefind the fol -

lowing constraints on the velocities of these waves:
2 _~2 ~2
vo<cg(1+|By|/4pCs).

In solids with negative dispersion (g > 0), an oscil-
lating structure takes place before the wave front. On
the contrary, in mediums with a positive dispersion
(g < 0), the oscillating tail is behind the front.

According to (12) and (13), the parameters L and d
of oscillating shock waves are determined by the dis-
persion parameter g. Therefore, the dispersionin asys
tem is necessary for these waves to exist. Monotonic
shock waves, in contrast to oscillating ones, may exist
in dispersionless systems.

L et us discuss now the contribution of defects to the
dispersion properties of a medium. The correction due
to nonequilibrium defects to the dispersion parameters
is of importance if KQq,t3v?pt>a,v2—a,.

This implies the following restriction on the defect
density:

p(alv —a,)kT
(VTKQ) '

This condition can be satisfied for rather high defect
densities (gt = 10*° cm3), which are typical for pow-
erful impulse laser exposures on most solids. However,
if the linear elastic moduli for a lattice, the dilatation
volume of defects, and their relaxation time are large,
the corrections due to defects become substantial even
at lower densities.

Thus, in a solid exposed to externa energy fluxes
resulting in the generation of nonequilibrium point
defects, the strain wave may propagate as a shock wave
of low intensity. Shock waves may have an oscillating
profile as well as a monotonic one. The existence of
such waves is determined by dissipation processes of
the generation (recombination) of defects (rate of
defect generation, recombination time), the dispersion
of amedium, and the el astic properties of thelattice and
defect subsystem.

OoT



1262

The model equation describing the propagation of
the nonlinear wave of elastic deformation in an elastic
medium is derived in view of generation and recombi-
nation processes. Its structure is a combination of the
stationary Korteweg—de Vries and Burgers equations.
The quantitative estimations of contributionsinto linear
elastic moduli and bulk dispersion dueto afinite defect
recombination rate are presented. The critical defect
densities are found in the case when their influence on
the strain wave propagation is substantial .

Note, in conclusion, that strain wave propagation is
of significant interest in amedium with clusters of point
defects (vacancies, interstitial clusters, etc.). A strain
wave interacting with such defects may result in alocal
temperature increase and, hence, the strengthening of
recombination processes. Thelatter, in turn, are accom-
panied by local heat generation and the deformation of
the medium. Further study of the nonlinear interaction
of deformation fields and temperature with structure
defects (both point defects and clusters) is of interest
from scientific and practical standpoints. A propagating
strain wave carriesinformation about various defects of
a condensed medium that is necessary for diagnosing
the defect structure of solids.
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Abstract—The transient |-V characteristic of an amorphous GaTe;—crystalline n-Si barrier negistor structure
under negative differential resistance (NDR) conditionsis studied. The basic parameters (cross-section radius,
current density, and resistivity) of the current filament region in the amorphous layer of the structure are deter-
mined. Results obtained are compared with the associated parameters of the current filament in a C-amorphous
GaTe;—C reference barrier-free structure. Under NDR conditions, the conductivity of the filament regionin this
heterostructure is shown to be governed largely by processes occurring in the crystalline component. © 2002

MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Theideaof using an amorphous chal cogenide semi-
conductor as the emitter of a bipolar transistor [1, 2]
seemsto bevery promising. Depending on the collector
voltage to base voltage ratio, such atransistor may take
either of two (weakly and strongly amplifying) states,
which would greatly extend the range of its application
[2]. Amorphous semiconductor—crystalline semicon-
ductor barrier heterostructures, exhibiting an S-shaped
-V characteristic (negistor structures), are of great
interest in this respect.

Negative differential resistance, which is responsi-
ble for the S shape of the |-V characteristic, is due to
processes taking place in the amorphous semiconduc-
tor. In this layer, a specific high-conductivity channel
normal to the current electrodes forms under conditions
of electrical instability. This channel is a part of the
increased current density region (current filament) in
the heterostructure. The rest of this region (channel) is
in the crystalline component. The important parameters
of the structure, primarily its stability and service life,
depend on physical processes taking place in the chan-
nel. That iswhy the physical situation in the channel is
of great interest for both elucidating the mechanism of
electrical instability and finding optimal operating con-
ditions.

A great deal of information can certainly be derived
from the electrical properties of the channel. However,
they are difficult to study because of the small size of
the current filament region. Moreover, the resistances
of both parts of the filament (in the amorphous and
crystalline layers) may be comparable. Therefore, the
application of conventional techniquesfor investigating

barrier-free negistor structures [3-5] to determine the
channel parameters may introduce great errors.

The aim of this work was to take the |-V character-
istics of the heterojunction in the current filament
region and to clarify the contributions of electronic pro-
cesses taking place in the amorphous and crystalline
layersto the conductivity of thisregion. In addition, we
tried to estimate channel nonthermal parameters (cross-
section radiusr,, current density ., and resistivity po) in
the amorphous semiconductor.

OBJECT OF INVESTIGATION

The object studied was an amorphous GaTe;—Crys-
tallinen-Si barrier negistor structure. In such structures,
the forward branch of the |-V characteristic lacks the
ohmic portion up to the onset of the NDR effect (i.e., up
to the conditions of electrical instability and current fil-
amentation)l. Moreover, the conductivity of these
structures in high electric fields is associated with the
monopolar injection of charge carriersfrom the crystal-
line semiconductor to the amorphous layer (space-
charge-limited current mode) [6]. The conductivity of
GaTe; amorphous films in high electric fields is due to
the field-enhanced thermal generation of charge carri-
ers [7]. These heterostructures retain a sensitivity to
voltage polarity, which specifies electrical instability,
and conductivity asymmetry in awide range of electri-
cal pulse durations (including nanosecond durations)
because of different conditions for charge carrier injec-
tion into the GaTe; layer in the forward and backward
directions[6].

11n what follows, the states of the structure before and after fila-
mentation will be called high-ohmic and low-ohmic, respectively.
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INVESTIGATION TECHNIQUES

The structures were fabricated by the discrete evap-
oration of a GaTe; preparation at low pressures (about
1073 Pa) with the subsequent condensation of its vapors
on substrates kept at temperatures between 330 and
340 K. The substrate was a film of n-Si with aresistiv-
ity pg = 1.0 Q cm epitaxially grown on alower resistiv-
ity (pg =0.01 Q cm) single-crystal Si wafer of the same
conductivity type. Current filament parameters found
on these structures were contrasted with those for C—
amorphous GaTe;—C barrier-free reference structures,
which have symmetric S-shaped |-V characteristics.
The references were fabricated on glassy carbon plates.
In both structures, a pressed glassy carbon probe was
used as an electrode to the amorphous layer; in the
structures investigated, we also used an evaporated
molybdenum film of area 10 cm? as a contact. The
amorphous layer thickness was varied between 0.6 and
1.0 um.

The transient |-V characteristics of the heterostruc-
tureswere taken in the low-ohmic state (Fig. 1) with the
so-called double pulse method [8]. Two rectangular
voltage pulses (along basic pulse and a short pulse of
variable amplitude and polarity superimposed on the

Fig. 1. (a b) S-shaped and (c) transient |-V characteristics
of the negistor structure and (1-4) electrical pulses in the
measuring circuit. (1) Pulse of the voltage (U) dropped
across the structure and (2) pulse of the current (1) through
the structure upon switching to the low-ohmic state; (3, 4)
measuring voltage (U,,) and current (I,,,) pulses, respec-
tively; Ugg and | o5 are the voltage and current sustaining the
low-ohmic state; and t istime.

CHESNYS e al.

latter) were applied to the sample and to a series-con-
nected resistor limiting the current upon switching to
the low-ohmic state. The pulses of the voltage dropped
across the sample and the current in the measuring cir-
cuit are schematically shown in Fig. 1. The amplitude
of theformer pulse (pulse 1in Fig. 1) waslarge enough
for electrical instability in the sampleto arise, while its
duration was|ong enough for a current filament to form
and the resulting low-ohmic state to be sustained during
the measurements (U, and | o are the sustaining voltage
and current, respectively). The latter (measuring) pulse
(pulse 3in Fig. 1) was used to take transient 1-V char-
acteristics. Its duration was no more than 10~ s, so that
its application could not change noticeably the current
filament parameters. Thus, the transient |-V character-
istic of the negistor structure taken under the above con-
ditions reflects adequately the behavior of the current
passing through the heterojunction in the filament
region.

Theradiusr, of the filament (channel) cross section
in the amorphous semiconductor was calculated by the
formula

_dg Ps
o= S Bramd -1 (2)
where dg is the thickness of the epitaxial Si layer.

Thisformulafollows from the calculation of the fil-
ament resistance Ry in the epitaxia layer under the
assumption that the current passing from the high-con-
ductivity channel in the amorphous layer spreadsin the
crystalline semiconductor at an angle of 45° (such an
assumption is well justified according to [9]). In our
case, thefilament in the epitaxial Si layer has the shape
of a blunted cone with radii of the lower and upper
basesdg + r. and r, respectively.

The current density j.. in the channel was evaluated
from the relationship

jo = ﬁi[u—pﬂ—‘)—lg}_l, @

Uy Cc pOLI'[ Cc

where p,, IS the resistivity of the region outside the
channel in the amorphous semiconductor and r is the
radius of the effective contact between the amorphous
and crystalline components of the heterostructure.

In real negistor structures, the condition p,,/p. >
ro/rc isusualy valid; hence, (pdPou)(ro/fc—1)> < 1, as
evidenced by the great difference in the currentsin the
low-ohmic and initial high-ohmic states (the currents
usually differ by severa orders of magnitude [3]).

The parameters r. and j. in the C—amorphous
GaTe;—C barrier-free reference structures were found
by measuring microwave noise [4, 5].
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RESULTS AND DISCUSSION

The transient |-V characteristics of our heterostruc-
tures are asymmetric with respect to the measuring
pulse polarity (Fig. 2). However, their asymmetry is
somewhat weaker than the |-V characteristic in the
high-ohmic state (Fig. 3). Unlike the high-ohmic -V
characteristic, the forward branch of the transient curve
(the n-Si is negatively biased) contains an exponentia
portion (at low voltages) and a rectilinear portion,
which istypical of the usual 1-V characteristics for bar-
rier structures. The dope G = dI,/dU,, (I,, and U, are
the measuring current and voltage) of the rectilinear
part of the transient curve depends on the sustaining
current, increasing with it. Therectilinearity of thetran-
sient curve indicates that the total resistance of the
high-conductivity channel in the amorphous layer and
the eectrically active part of the epitaxial silicon film
(its filament region) adjacent to the channel is ohmic.
Thevariation of the dope of thetransient curve with the
sustaining current reflects the variation of the trans-
verse size of the current filament in the amorphous
semiconductor. As the temperature rises, the transient
curve shifts toward higher currents; however, the slope
of its exponential portion is virtually temperature inde-
pendent in the semilogarithmic coordinates. Hence, this
portion is described by the expresson I, =
loexp(U/Ug), wherel, isatemperature-dependent pre-
exponential and Uy = (0.15 + 0.02) V is close to the
related parameter in the exponentia voltage dependence
of the barrier resistance (R,) in the forward direction
when the heterostructure is in the high-ohmic state [6].

To estimate the parameters of the high-conductivity
channel, it is necessary to know the resistance Ry enter-
ing into formula (1). This parameter was determined
from the slope G of the rectilinear portion of the tran-
sient curve (Rg = G —R.) on assumption that the chan-

nel resistance is given by the expression R, = U/l g,
where Uy, is the sustaining voltage in the low-ohmic

state of the C—amorphous GaTe,—C barrier-free refer-
ence. This assumption relies on the fact that in the low-
ohmic state, our barrier-free structure exhibits nonacti-
vated conduction in the filament region, which appears
because of electron processes like electron-phase tran-
sition [10]. Since this transition is due mainly to Joule
heating, as follows from microwave noise studies[10],
one may suppose that the sustaining of the low-ohmic
state in the amorphous layer does not depend on a
mechanism of charge carrier transfer in the high-ohmic
state of the negistor structure. In other words, the mech-
anism of sustaining must be the samein the barrier-free
reference and in the barrier structure under study. With
this assumption, the parametersr. and j. in our hetero-
structures were estimated at several micrometers and
10* A/cm?, respectively. For example, for the hetero-
structure whose |-V characteristic is shown in Fig. 2
(here, dy; = 0.8 um) with the current sustaining the
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Fig. 2. Transent |-V characteristic of the amorphous
GaTes—crystalline n-Si negistor heterostructure in the low-
ohmic state, arising when the forward voltage is applied.
The current sustaining the low-ohmic state and the duration
of the low-ohmic state are, respectively, 6 pA and 140 ns.
The measuring pulse duration is 20 ns. (a) Forward current
vs. voltage for Uy, < Uy,

a
1000

100

10

Fig. 3. Asymmetry of the conductivity of the amorphous
GaTes—crystalline n-Si negistor structure vs. bias voltagein
(2) theinitial high-ohmic state and (2) the low-ohmic state.
a is the forward-to-reverse current ratio at the same bias
voltage. Curve 2 is calcul ated based on the transient charac-
teristicin Fig. 2.

low-ohmic state being equal to 6 A, r, wasfound to be
(27+£0.1) pmand j,, (2.6 £ 0.2) x 10* A/cn?. In this
case, the ratio ry/r. is no more than 10, while the ratio
Pou/P: May be as high as severa orders of magnitude,
as judged from the difference between the currents
passing through the structure in the low- and high-
ohmic states at the same bias voltages. The value of p,
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Fig. 4. Tentative energy band diagram for the heterojunction
of the amorphous GaTez—crystalline n-Si negistor structure
in the initial high-ohmic state. 85y and X1,) are the spac-
ings between the Fermi level and the band edge and the
electron affinities of the materials, respectively; AE; and
AE,, are the band discontinuities at the heterojunction;
AEyy (o) are the energy gaps; Up is the diffusion potential;
andq e is the unit charge. All parameters are given in elec-
tronvolts.

estimated with the values of r., j., and R, obtained
above was equal to (0.38 + 0.04) Q cm.

Thevaluesof r.and | obtained in thiswork coincide
with those for the C—amorphous GaTe;—C barrier-free
reference structure within the experimental error; in
addition, r coincides with the value (0.09-0.22 Q cm)
found by studying microwave noise in similar struc-
tures [10] by order of magnitude.

The same shape of our exponential dependencel,, =
f(U,) and of the dependence R, = f(U) mentioned
above at low forward voltages, as well as the roughly
equal values of Uy in these dependences, alows us to
argue (in view of data in [6]) that this portion of the
transient characteristic describes only processes in the
potential barrier still persisting in the filament region of
the crystalline component. The nature of this barrier
can be judged from the tentative energy band diagram
of the heterostructure in the initial high-ohmic state
(Fig. 4). When constructing this diagram, we assumed
that the screening length and the density of statesin the
energy gap of amorphous GaTe; are close to those in
glassy chalcogenide semiconductors by order of mag-
nitude [11]. In our case, the uncompensated space

CHESNYS e al.

charge must spread in the crystalline component of the
heterostructure to a much greater distance than in the
amorphous layer. Moreover, the diffusion potential Up
was set equal to the cutoff voltagein the C-V character-
istic found in [6]. As follows from Fig. 4, the disconti-
nuity in the conduction band edge of the heterostructure
causes a Schottky-type spike, which governs charge
carrier transfer in the structure. According to [6],
charge carrier tunneling is the prevailing mechanism of
current passage through the barrier at low forward volt-
ages, the tunnel current being of athermal nature [12].

For the spike to be retained in the energy band of the
filament region after the heterostructure has been
passed to the low-ohmic state (i.e., for the charge trans-
fer mechanism to remain the same at low forward volt-
ages in this region, as follows from the above results),
the position of the Fermi level at the heterojunction in
the filament region must not change drastically. Irre-
spective of the Fermi level position in the high-conduc-
tivity channel, such a situation may take place owing to
the screening action of states on the crystalline compo-
nent surface and, according to [13], istypical of thereal
(unprocessed) silicon surface. Impurity centers on the
silicon surface may also arise during the deposition of
amorphous GaTe;. Furthermore, the conductivity of the
channel is likely to be nonuniform (especialy if cur-
rents sustai ning the low-ohmic state are low) because of
a temperature gradient arising when heat is removed
through the contacts, including the contact to the sili-
con. Along with the central part of the channel with
nonactivated quasi-metallic conduction, there may
exist athin (even tunnel-transparent) layer with resid-
ual conduction of semiconductor type near the silicon.
This layer may fix the Fermi layer in the energy gap of
GaTe;. Datareported in [14] indicate that such a near-
contact layer is a possibility.

The different asymmetries of the transient charac-
teristic in thelow-ohmic state and the steady-state char-
acteristic in the high-ohmic state may be associated
with different reverse current densities in these states.
In barrier p— structures, the reverse current isknown to
be related to minority carrier drift (holes in the silicon
and electrons in amorphous GaTe; in our case). Since
the concentration of minority carriersintheinitial high-
ohmic state is relatively small, the reverse current den-
sity isinsignificant. After the heterostructure has been
switched to the low-ohmic state, the reverse current
density must increase noticeably, because the free-elec-
tron concentration in the conducting channel of the
amorphous semiconductor sharply grows. Because of
this effect, the heterojunction in the filament region can
be considered as an analog of a metal—semiconductor
Schottky barrier, whilein the high-ohmic state, the het-
erojunction is akin to a p—n junction with a lightly
doped p-region. If silicon is used as a semiconductor in
these junctions, the reverse current density in the
former exceeds that in the latter by several orders of
2002
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magnitude, according to [13]. This s the basic reason
why the asymmetry of the filament conductivity in our
heterostructure is weaker.

CONCLUSIONS

(1) Upon switching from the high- to low-ohmic
state, the potential barrier in the current filament region
of the amorphous GaTes—crystalline n-Si  negistor
structure persists. The conductivity of this region,
which is described by the transient |-V characteristicin
the low-ohmic state, is governed by electronic pro-
cesses taking place in the silicon. The weaker asymme-
try of the filament conductivity observed upon switch-
ing is explained by enhanced electron drift through the
potentia barrier under reverse biases.

(2) The parametersr,, j., and p. of the current fila-
ment (channel) in the amorphous GaTe; of our hetero-
structure are on the order of several micrometers,
10*A/cm?, and 10 Q cm, respectively. These values
virtually coincide with those for the C—amorphous
GaTe;~C barrier-free  reference, supporting the
assumption that the origin of the high-conductivity
channel in the GaTe; is independent of the processes
initiating electrical instability in such structures.
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Abstract—The effect of hydrogen on the photoluminescence and planar conductivity of GaAs1nGaAs quan-
tum-well heterostructures with an island Pd layer at the anodically oxidized surface was studied. Unlike con-
tinuous deposited Pd layers, island layers do not cause the formation of defectsin the GaAs surface region and
yet the Pd layer maintains high catalytic activity with respect to hydrogen. It isfound that the thermal treatment
of such a structure in a hydrogen atmosphere causes atomic-hydrogen passivation of the defects in quantum
wells. Studies of the characteristics of planar photoresistors with an island Pd layer acting as hydrogen sensors
show that their hydrogen detectivity is approximately two orders of magnitude higher than that of diode struc-
tures with continuous Pd layers. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

M etal—oxide—semiconductor (MOS) GaAs diode
structures with Pd rectifying contacts, which possess
high catalytic activity, can be used as the basisfor high-
sensitive fast-response hydrogen sensors [1-3]. Their
sensitivity to hydrogen susceptibility increases as
InGaAs quantum wells (QWSs) hindering hydrogen dif-
fusioninto the bulk areinserted into the GaAs layer [4].
However, the deposition of a continuous Pd layer in the
case of optimal oxide layer thickness (=4 nm) resultsin
defect generation in the surface GaAsregion [4], which
is probably caused by the chemical reaction of Pd with
GaAs as well as by the pronounced lattice mismatch
between Pd and GaAs (the lattice constants are 3.9 and
5.7 nm, respectively). This impairs the parameters of
the gas sensors and can cause their failure.

In this paper, we report the results of studying
hydrogen interaction with QW semiconductor struc-
tures, in which a continuous conducting Pd layer is
replaced by a nonconducting island layer. Apart from
being of interest from the standpoint of fundamental
science, the study of this problem opens up prospects
for the development of a new type of sensors based on
the planar photoconductivity phenomenain GaAs lay-
ers. Asin [4-6], to control the defect formation in the
surface region of GaAs, we used the photolumines-
cence from QWSs, which isavery sensitive indicator of
the presence of defects.

EXPERIMENTAL
GaAgd/InGaAs quantum well heterostructures
(QWHSs) were grown by metal-organic vapor phase epi-
taxy (MOVPE) at atmospheric pressure on semi-insu-

lating GaAs(001) substrates. Three InGa, _,As (X =
0.2-0.28) QWs were incorporated into the surface
region of the GaAs epitaxial layer. The widths of these
QWs decreased with the distance from the GaAs sur-
face and amounted in different structures to 7-12, 4-5,
and 3nm for QWSs1, 2, and 3, respectively. Both doped
GaAslayerswith the electron density n, = 10° cm= and
undoped GaAslayerswith ny= 5 x 10** cm=3 were used
in this study.

The GaAs overlayer thickness was 20 nm, the bar-
rier layers between QWs were 30 nm thick, and the
total thickness of the entire layer was =0.6-0.8 um. To
eliminate the interaction between Pd and Ga and the
formation of acompound that isinsensitiveto hydrogen
[7], an anodic oxide (AO) film =4 nm thick was grown
on the GaAs overlayer through liquid-phase anodiza-
tion prior to Pd deposition.

The Pd layers were deposited on the AO film using
vacuum thermal evaporation. The continuous semi-
transparent Pd layer had a thickness doy = 5 nm and a

surface conductivity of =102 Q-%J. Theisland layers
were obtained with a nominal thickness of =2.5 and
15n$m and possessed a conductivity lower than
1075 QY. Thethickness of the continuous Pd and AO
layers were measured to an accuracy of =0.3 nm by a
Topometrix atomic-force microscope (AFM) using an
etched or a scratched step (for AO or Pd layers, respec-
tively). The nominal thickness of the island Pd layer
was determined from the weight ratios of the evapo-
rated charges. According to AFM studies, the conduct-
ing Pd layers with a nominal thickness of 5 nm had an
average grain size of =200 nm, and, inthe island layers

1063-7842/02/4710-1268%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Fig. 1. Effect of the Pd electrode thickness dpy on the PL
spectra. dpq = (1) O, (2) 1.5 and 2.5, and (3) 5.0 nm.

with anominal thickness of =2.5 nm, the average grain
size was =50 nm.

The planar structures were fabricated by the fusion
of two Sn ohmic contacts to the GaAs epitaxial layer.
The area of the contacts was 1 x 5 mm?, and the dis-
tance between them was =4-5 mm. The diode struc-
tures PA/AO/GaAs/Sn with a continuous Pd electrode
were also formed on the conducting GaAs substrate
(ny = 10% cm3).

The influence of hydrogen exposure on the charac-
teristics of the planar and diode structures was studied
in the gas-sensor mode. At the optimal temperature of
370 K, the samples were subjected to pulses of hydro-
gen treatment in an air—argon flow mixture with a

hydrogen concentration Py, = 0.002-0.2 vol % [2] and

in the heat-treatment mode (the samples were briefly
heated (for 600 s) in hydrogen at 743 K). The planar
conductivity and photoconductivity (PC) under illumi-
nation with white modulated light, photoluminescence
(PL), and photovoltage (in the diode structures) were
investigated.

RESULTS AND DISCUSSION
1. Photoluminescense Spectra

Figure 1 presents the PL spectra of the studied sam-
ples at various thicknesses of the Pd electrode. It isevi-
dent from Fig. 1 that the PL intensity in the QW
decreases after the Pd layer depaosition. The decreasein
the PL intensity depends on the distance of the QW
from the surface and the thickness of the Pd layer and
is caused by defect generation in the course of the
chemical interaction of Pd with GaAs, as well as by
defect penetration into the QW materia [4]. The most
pronounced effect is observed in the region of the first
QW. It isevident that, at the nominal thicknesses of 1.5
and 2.5 nm corresponding to the discontinuous Pd
layer, the defect-formation rate is substantially lower.
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Fig. 2. Effect of thermal treatment in hydrogen ambient on
the PL spectra. dpq = (1) O, (2) 2.5, and (3) 5.0 nm.

Figure 2illustratestheinfluence of thethermal treat-
ment in hydrogen under atmospheric pressure at 473 K
for 600 s on the PL spectra of the structures with differ-
ent thicknesses of the Pd electrode. After such a treat-
ment, pronounced PL quenching (by more than two
orders of magnitude) occursin thefirst QW inthe struc-
tures with a continuous Pd electrode, and far less
guenching (approximately by a factor of 3) occurs in
the structures with an island Pd layer. Simultaneously,
PL amplification in the second and third QW by afactor
of 2-3 is observed in both structures, which indicates
that atomic hydrogen passivates the defects in these
wells. The intensity of the edge PL in GaAs (1.5eV)
was almost the same in all structures.

The considerable decrease of the PL intensity in the
QW closest to the surface is characteristic of hydrog-
enization in a hydrogen plasma and is related to the
accumulation of defectsformed in the course of theion

Ao x 104, Q70 AV, V
-0.4
1L.5F 2
—10.3
1.0}
—40.2
, 1
051 e
v 10.1
0'/. T N T e 1
10 1073 102 107! 00
Py,, vol %

Fig. 3. Dependence of the steady-state PC response Aog
(2) for the planar structure (dpq = 2.5 nm) and of the barrier
photovoltage AV, for the diode structure (1) on hydrogen
concentration at 370 K.
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Effect of hydrogen on the planar dark conductivity and photoconductivity of the resistor structures in the gas-sensor mode

G aASn do@r?]g 3|ev n o Py, =0 Py, =0.22vol %
0 o, Q0 o, Q/0 o, QO o, Q/0

5x 1013 0 50x 107 9.7x10° 50x 107 9.7x10°

15 25x 108 29x10° 26x10° 24x10°

25 55x 107 1.4x 1073 58x107° 7.3x10°

5.0 1.6x 1073 1.2x10° 1.7 x 1073 5.6 x 1077

106 0 1.1x10°3 1.6 x 10° 1.1x10°3 1.6 x 10°

15 1.6x10°3 1.7 x 10° 1.7 x 1073 1.2 x 107

25 1.4x 1073 8.8x10° 15x 1073 22x10%

5.0 15x 1073 35x10° 15x 1073 24x10°

bombardment of the surface [6]. It might be expected
that this effect can be avoided if hydrogen isintroduced
through the Pd electrode. However, these expectations
are partly realized only in the case of the island Pd
layer. This result can be explained by the fact that the
island Pd layer induces weaker stresses in the oxide
and surface GaAs layer, which ensures the higher
structural quality of these regions. The hydrogen-
induced passivating effect becomes apparent only in
the second and third QW, as in the case of the treat-
ment with hydrogen plasma [6]. This fact is probably
related to the higher penetrability of atomic hydrogen
in comparison with the defects, which are mainly
arrested by the first QW.

H,on H, off
LAF 14

In [AO-SL_AO-L/AEL] . In [AG[/AGSL]

Fig. 4. (a) Kinetic curves Ao for a planar structure at dif-
ferent hydrogen concentrations: PH2 =(1) 0.22, (2) 0.022,
and (3) 0.011 vol %; T = 370 K; dpq = 2.5 nm. (b) Response
to hydrogen of the planar structure plotted as In[(Aog —
Ao )/doq ] versust for therise (1, 2) and as In(Ao /Acg )
versust for the decay (3, 4): PHZ =(1) 0.088; (2, 4) 0.011,
and (3) 0.22 vol %; T=370K; dpg=2.5nm.

2. Planar Conductivity and Photoconductivity

The data for the hydrogen effect in the gas-sensor
mode on the dark conductivity o, reduced to the surface
conductivity and on the photoconductivity o, of the
planar structures at 370 K arelisted in the table.

It is obvious from the table that the hydrogen
reduces the planar photoconductivity of the GaAs lay-
ers coated with the Pd layer and scarcely affects
(increases only dlightly) the dark conductivity. The
largest relative change in photoconductivity is observed
for thelayerswith alow density of carrierswhen the Pd
layer thickness dpy = 2.5 nm.

The decrease in the planar PC under exposure to
hydrogen is reasonably explained by the barrier mech-
anism of PC in GaAs layers [8]. The atomic hydrogen
appearing at the Pd islands due to catalytic reaction [1]
penetrates through the oxide layer to the GaAs surface
and reduces the negative charge at surface states via
chemisorption, which results in the reduction of the
surface barrier height and barrier PC. The logarithmic
dependence of the photoconductivity of the layers on
theillumination intensity L (o, ~ logL) is evidencein
favor of the barrier mechanism [§].

3. Gas-Sensor Characteristics

Figure 3 presents the dependences of the steady-
state PC response Acog for the planar structure and
those of the photovoltage AV, for the diode structure on
the hydrogen concentration at 370 K. At alow concen-
tration, these dependences are logarithmic, which cor-
responds to the heterogeneous hydrogen adsorption [1]
and istypical of gas sensors based on Schottky diodes
and MOS structures. The response leveling-off as the
hydrogen concentration increases is explained by the
filling of the adsorption centers. The detectible thresh-
old concentration of hydrogen obtained through the

extrapolation of Ao, and AV, dependences on logPy,
for a planar structure is approximately two orders of
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Fig. 5. Dependences of time of adsorption 1, and desorption
Tq 0N PHz for planar structure: (1) corresponds to 1, and
(2) correspondsto 1g4. T = 370 K, dpq = 2.5 nm.

magnitude lower than that for a diode structure (com-
pare curves 2 and 1, respectively). It should be noted
that this threshold value (=10~ vol %) is of the same
order of magnitude as for silicon diode structures [9].

The operation speed of planar structuresat 370K is
characterized by the kinetic curves Ao, measured under
the pulsed exposure to hydrogen and shown in Fig. 4a.
It follows from Fig. 4a that when the hydrogen flow is
on, the steady-state Aog valueisattained and, when the
hydrogen flow is off, the response essentially decreases
to zero. Both the response rise and decay times depend
on the hydrogen pressure and vary from 0.1 to 100 s,
which corresponds to the characteristics of fast-
response sensors [1, 2]. Analysis of the kinetic curves
has shown that the response rises exponentially
(Fig. 4b, curves 1, 2) and decays nonexponentially
(Fig. 4b, curves 3, 4). The adsorption time 1, (Fig. 5,
curve 1), which is determined from the response rising
curve, variesin inverse proportion to hydrogen pressure
and falsin therange 0.1-10 sat T = 370 K. The des-
orption time 14 determined from the response decay
curve at alevel of 0.5 from the steady-state value has a

weaker dependence on pressure (T4~ 1/, / Py,)
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CONCLUSION

We have shown that photoresistor GaAs/InGaAs
QW heterostructures with a discontinuous Pd layer on
the anodically oxidized surface are promising as hydro-
gen sensors. Beneath theisland Pd layer, the defect-for-
mation rate is considerably lower in such structures
than that beneath a continuous Pd layer. We have dem-
onstrated the possibility of passivating defectsin a QW
by incorporating atomic hydrogen through the island
Pd layer into these structures.
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Abstract—The problems of developing methods for multidimensional (multichannel) data acquisition as
applied to the optical study of the surface are considered. Unlike conventional methods of transition to multi-
dimensional measurement, which employ mechanical scanning, the use of new-type instruments that allow for
coordinate-sensitive and time measurements are discussed. Both the sensitive elements (detectors) and the
instruments (hyperspectrometers) created for multidimensional coordinate—spectrum-time measurements are
described. The application of hyperspectrometers makes it possible to increase manyfold the information con-
tent of measurements. The fluorescence of dye molecules deposited on the surfaces of germanium and silicon
preirradiated by alaser beam is studied. The scattering spectrafrom these samples are examined. © 2002 MAIK

“ Nauka/Interperiodica” .

INTRODUCTION

When studying many physical phenomena, the tran-
sition from measurements of some property at a point
of the space to multidimensional (multichannel) mea-
surementsis a challenge. An example of such atransi-
tion is the measurement of double-differential scatter-
ing cross sections (angular and energy cross sections)
for molecular beams[1]. Usually, a detector with avery
small aperture is used to measure the intensity of a
molecular beam scattered at a certain angle and the
energy of its particles [2]. The transition from one-
dimensional to multidimensional measurementsin this
case is performed by mechanically scanning the detec-
tor over various scattering angles of the beam. The dis-
advantage of this approach is obvious: the use of a
detector with a pointlike aperture drastically deterio-
rates the statistics of measurements and substantially
increases the measurement time. Any mechanical scan-
ning (especially one-dimensional scanning) makes the
study of anisotropic processes difficult and imposes
extremely stringent (often unachievable) requirements
on the stability of the system components. Actualy, an
improvement of the measurement accuracy in this
approach (by a decrease in the detector aperture) leads
to aquadratic decrease in the counting rate and to acor-
responding lengthening of the experiment time. More-
over, when using mechanical scanning, the time varia-
tion of the parameters of an experimental setup imposes
strict restrictions on improving the measurement accu-
racy by decreasing the detector aperture. For the same
reason, correlation measurements with several point-
like apertures are made difficult. Similar problems also
appear in optical studies of surface, which are finding

ever-widening application in micro- and nanotechnol o-
gies.

Multidimensional (multichannel) measurements of
differential scattering cross sections have been touched
upon in [3], where the double-differential scattering
cross sections of molecular beams scattered at small
angles were measured. In this work, we study the sur-
face inhomogeneity of semiconductors by the dye
probe method to elucidate the possibility of the transi-
tion from point (0D) to two-dimensional (2D) and then
to multidimensional (ND) measurements. To date,
studies of surface states by the molecular probe method
have already become classical. Instruments for such
studies are usually based on apair of monochromators
that allow one to measure the fluorescence intensity at
a wavelength A, for an illumination wavelength A, at
one point in the parameter space.

The transition from OD to ND measurements in the
space of datais usualy performed by the mechanical
scanning of both the sample and the settings of the
monochromator. The disadvantage of this approach is
the necessity of making a wealth of measurements for
all parameters of interest. Moreover, mechanical scan-
ning always implies a backlash in the motor (e.g., in
changing the coordinate) or another cause of inaccu-
racy in positioning the point of observation. Within the
time taken to go from one point to another in the coor-
dinate or wavelength space, undetected changes in
other parameters influencing experimental results may
occur. Therefore, at different points, the measurements
arevirtually made under different conditions. Note that
the noise of photosensitive devices (PSDs) used in 0D
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measurements concentrates at a point of measurement
and limits the sensitivity of atechnique.

We elaborate upon this classica fundamental
approach by replacing mechanical scanning by the use
of new-type detectors that enable coordinate-sensitive
and time measurements. Such an elaboration ispossible
owing to modern computer facilities allowing for real-
time processing of huge data arrays.

The basic aim of this work is the development of
next-generation PSDsthat differ from conventional sin-
gle-channel PSDsin that they have 2D and time resolu-
tions. The use of such photodevices made it possible to
create so-called hyperspectrometers for multidimen-
siona studies. According to the currently accepted ter-
minology, hyperspectral measurements are those per-
formed simultaneoudly in a range from severa hun-
dreds to a thousand spectra channels and a
hyperspectrometer is a device intended for the simulta:
neous measurement of spectral and spatial coordinates.
These devicesare also called videospectrometers. Their
application enables the information content of experi-
mental datato be increased by several orders of magni-
tude (depending on the PSD resolution) or significantly
improves the sensitivity of the measurements.

The instruments were tested by investigating the
surface inhomogeneity of semiconducting germanium
preirradiated by alaser beam. Samples studied were Ge
wafers repeatedly (N = 10%-10°) subjected to pulsed
laser radiation of duration T = 0.1-1.0 us, absorbed
energy density Q ~ 0.1 Jcm?, and beam radius =25 pum.
The laser irradiation was carried out so that different
areas of the sample were exposed to different radiation
doses. Then, the sample thus treated was coated by a
monomolecular film of rhodamine-B dye by placing it
in a solution of rhodamine in ethyl alcohol for a given
time.

EXPERIMENTAL INSTRUMENTS
AND MEASURING TECHNIQUES

We created two instruments with different sensitive
elements (detectors). The former is a hyperspectrome-
ter based on an image-intensifier tube (11T) where the
signal is picked up by a charge-coupled device (CCD).
In essence, itisavery sensitive videospectrometer. This
instrument displays 2D videoinformation: the X axisis
the coordinate of a narrow stripe on the sample along
which the radiation dose varies, the Y axis is the radia-
tion wavelength A, and the Z axisis the intensity speci-
fying the spectral density. In other words, we record a
set of coordinate-swept spectra.

Thus, the instrument makes it possible to perform
measurements at several hundreds of thousands of
points in the coordinate-wavel ength space per second.
Simultaneous measurement over the whole length of
the sample, along which its characteristics vary, gives
the exact radiation distribution undistorted by mechan-
ical scanning. For the case when the properties of the
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sample vary aong another axis as well, provision is
made for mechanical scanning over a narrow stripe
along the other coordinate of the sample. Thisalowsus
to image the whole sampl e in the hyperspectrum.

However, the property of signal accumulation,
which is an advantage of the IIT + CCD configuration
as adetector of relatively strong signal's, turns out to be
a disadvantage for investigating ultraweak signals and
the time characteristics of the fluorescence signal.

With statistical methods, we can go beyond the
dynamic range of CCDs, which does not exceed 100 for
series-produced CCDs and achieves 1000 for commer-
cialy available application-specific CCDs. It can be
raised by two orders of magnitude for 7 min owing to
accumulation.

The second modification is a hyperspectrometer
based on an original time- and position-sensitive detec-
tor (TPSD) from the Reagent Research & Development
Center [4]. This device can detect individual photons,
find their 2D coordinates in the detection plane, and
determine the photon arrival time with an accuracy as
high as 40 ps (in the most precision experiment). The
design of the TPSD will be considered below.

The use of the TPSD as a sensitive element gives a
new property to the hyperspectrometer on its basis,
namely, the possibility of detecting weak signals
against the background of stronger oneswith intensities
severa orders of magnitude higher than those of the
former, since the dynamic range of the TPSD is
extremely large (1-10° I/s).

The TPSD-based device can serve as the videospec-
trometer described above and also makes it possible to
gain three-parameter information. The third parameter
is the time delay between the instance of the sample-
illuminating pulse application and the instance of pho-
ton detection (the other two are the photon coordinates
in the detection plane). Thus, the advantages of the
approach using the TPSD over all other approaches to
studying fluorescence are the following:

(2) It ispossibleto perform time measurements with
astep of 10!s,

(2) The photon counting rate of the TPSD achieves
1081/s.

(3) The device is almost noiseless. The noise is as
low as 1072 I/s at an image point (pixel), which is negli-
gibly small in comparison with the valid information
flow.

(4) The new approach allows us to measure not only
the spatial dependence of the spectra for inhomoge-
neous samples but also to find other coordinate depen-
dences for homogeneous samples subjected to nonuni-
form effects of temperature, electric and magnetic
fields, deformation, as well as laser and other radia-
tions.

The new photosensitive devices, alowing the spatial
and time resolution of incident radiation, differ from
conventional onesin that they have microchannel plates
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Fig. 1. Schematic diagram of the coordinate-sensitive pho-
todetector: (1) metal-ceramic vacuum chamber; (2) photo-
cathode; (3) microchannel plates (chevron); and (4) multi-
anode collector. Numerical subsystems of the detector:
(5) digital—analog processor; (6) time channel (electronics
assigning exact arrival time to each photon); (7) time-to-
amplitude converters; (8) anaog-to-digital converters;
(9) signal processor; (10) interface unit; and (11) personal
computer.

1 2 3 4 5

Fig. 2. Schematic diagram of the instrument: (1) radiation
source; (2) fluorescence cell; (3) mechano-optical unit;
(4) detector; (5) computer.

Fig. 3. Schematic diagram of the mechano-optical unit:
(2) mirror or diffraction grating; (2) turntable; (3) adjust-
able dlit; (4) entrance objective lens, (5) lens hood;
(6) replaceable filters; (7) second objective lens; (8) exit
objective lens; (9) image plane; and (10) sample plane.

that multiply photoelectrons and a specia e ectron col-
lector that determines the coordinates of individual
photons at the photocathode input. The diagram of such
a coordinate-sensitive photodetector, along with the
analog-to-digital converter subsystems, is shown in
Fig. 1. The TPSD modification described in [4] makes
it possible to carry out synchronous measurements and
provides a 6D data flow.

In this work, we used this approach to observe the
fluorescence spectrum variation when the surface of the
semiconductor isirradiated by alaser beam (the TPSD-
based instrument detecting weak signals) and also to
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take the dispersion curve for the surface under the same
laser treatment (the 11T-based setup detecting strong
signas).

The schematic diagram of both the TPSD- and |1 T-
based hyperspectrometers is the same (they differ only
in the detector they use) (Fig. 2). A 1-kW halogen lamp
was used as a basic radiation source. In addition, we
used a pulsed green laser with awavelength of 532 nm,
a pulse width of =20 ns, and a pulse-repetition rate of
=5 kHz. We a so used UV sources (aDDS-30 lamp and
a sunlamp), as well as a monochromator with a cali-
brated broadband lamp.

A fluorescence cell represents a closed volume pro-
tected against stray light and containing a sample
placed on an x—y table. The cell can work in two modes.

(1) The cell has two windows; one is an entrance
window with a filter that transmits only the exciting
component of the radiation from the source. A broad
uniform beam illuminates the sample at an angle © =
45° £ 10° to the sample plane.

(2) The 1-kW halogen lamp is placed near the cell.
A light guide 1 cm in diameter is brought to the lamp.
It sustains a peak power of up to 1 MW in a pulse and
can be placed close to the emitting surface of the lamp.
The diameter of individua fibers of the light guide is
5um. The end of the light guide is equipped with a
530-nm interference filter. The light guide is placed
immediately adjacent to the sample.

With the UV radiation used for the excitation of flu-
orescence, the illumination may be incident perpendic-
ularly to the sample. Thisis achieved with aglass plate
inserted in the cell that reflectsthe UV radiation toward
the sample by oneits side and transmits visible fluores-
cence radiation.

The mechano-optical unit consists of the following
elements (Fig. 3):

(1) An entrance objective. The sample studied is
located at its front focus, and a vertical adjustable cali-
brated dlitislocated at its back focus. The dlit width can
be continuously adjusted from 10 pum to 0.4 mm, is
placed paralléel to the sample, and cuts a narrow strip
(up to 10 mm wide) from the sample image along the
Xaxis.

(2) Another objective lens. The calibrated adjustable
dit is at its front focus, and its back focus extends to
infinity. As areflecting surface, amirror or adiffraction
grating with lines directed parallel to the entrance dlit
can be used. The diffraction grating decomposes the
image into spectra aong the axis perpendicular to the
dlit axis. Thereflecting surface is mounted onto a rotat-
able platform.

(3) An exit objective lens. Its front focus extends at
infinity, and the surface of the photon detector is at its
back focus. The mechano-optical unit projects the
image spectrum vs. the X coordinate along the stripe
onto the surface of the detector. In this way, a continu-
ous three-dimensional picture in the coordinates
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“wavelength—coordinate of the stripe along the sample
axis—radiation intensity” is recorded. We use a diffrac-
tion grating with 300 lines per 1 mm, which projects a
spectral range of 0.4-0.7 um onto the surface of the
PSD. To eliminate background light, protective black-
ened shields were mounted. The opacity of the shields
was checked by completely closing the dlit and measur-
ing the background intensity with the radiation source
on and off.

The measuring technique based on the hyperspec-
trometer equipped with detectors built around the 11T
and TPSD isdescribed in detail elsewhere[5]. Notethat
calibration can be carried out by various methods using
both objects with a given calibrated shape and a mono-
chromator; the absence of background light is checked.

Below, we present several results obtained with our
instrument.

EXPERIMENTAL RESULTS

The setup with the TPSD-based detector was used to
measure the fluorescence hyperspectrum of rhodamine
deposited on a germanium sample preirradiated by a
laser beam, as was described in the Introduction. The
sample was illuminated by 530-nm-wavelength radia-
tion.

As an example, Fig. 4 shows the three-dimensional
fluorescence spectrum of the Ge sample coated by
rhodamine-B.

The hyperspectrum recorded was separated into
spectra corresponding to sample regions variously
treated by the laser radiation. To determine the irradia-
tion dose, we introduced a measure W of sample dam-
age that is related to the absorbed energy Q. Figure 5
shows the fluorescence spectra of regions exposed to
different doses (Q in arbitrary units). From these spec-
tra, one can gain information on the dose dependence of
the fluorescence intensity maximum, FWHM, etc.

It is seen from Fig. 5 that the increase in the lasing
intensity quenchesthe fluorescence possibly because of
energy transfer to the solid [6]. We can also draw the
conclusion that the FWHM of the spectra increases
with irradiation intensity, which is likely to be due to
the inhomogeneity of the surface and the various states
of adsorbed molecules[7].

The instrument equipped with the 11 T-based detec-
tor was used to take scattering spectrafrom Ge samples
subjected to laser irradiation. For illumination, we used
an incandescent lamp with the calibrated spectrum.
Figure 6 shows the scattering spectra for regions of the
sample variously damaged by the laser radiation.

These spectra show that the scattering intensity
increases with the intensity of surface irradiation and,
hence, with the concentration of surface defects. Based
on the spectra recorded and knowing the lamp spec-
trum, we constructed dispersion curves (Fig. 7).
Figure 7 demonstrates the dependence of the diffuse
reflection factor on the wavelength of the incident light
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Fig. 4. Fluorescence hyperspectrum from the Ge sample
coated by rhodamine-B. The height corresponds to the
intensity.

Intensity, arb. units
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Fig. 5. Fluorescence spectra from variously irradiated

regions of the germanium sample: (1) Wy = 240; (2) W, =

190; (3) W3 = 115; (4) W, = 87; and (5) W5 = 70.
Intensity, arb. units
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Fig. 6. Scattering spectrafor varioudly irradiated regions of
the germanium sample: (1) W; = 240; (2) W, = 190;
(3) W3 = 115; (4) W, = 87; (5) W5 = 70; and (6) W = 0.
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Fig. 7. Dispersion curves for varioudly irradiated regions of
the Ge sample. For (1-6), see Fig. 6.

for regions exposed to various irradiation doses. It was
found that the shape of the spectral dispersion curve
strongly depends on the surface damage. Geometri-
cally, thisfact can be attributed to the formation of sur-
face lines similar to those forming adiffraction grating.
Accordingly, these lines cause interference effects that
redistribute the reflection spectra.

CONCLUSION

The experimental study of the fluorescence proper-
ties of the material exhibited the possibility of multidi-
mensional (multichannel) data acquisition.

Unique instruments for 2D hyperspectral measure-
ments to study spatially nonuniform spectral character-
istics of the surfaces were created. Their modifications
employ various photonic devices.

A measuring technique that allows one to rapidly
take the spectra of reflected and fluorescence radiations

RODIONOV et al.

from a stripe separated on the sample surface and pro-
cess them in selected regions was devel oped.

A software package for controlling the instrument
and processing experimental results was devised.

The method of hyperspectral analysis was used to
visualize the three-dimensional dependences of the flu-
orescence spectra and scattering spectra on the surface
damage.

Owing to multidimensional data acquisition, the
instrument and the software make it possible to greatly
accelerate the measurement of the spectral characteris-
tics of samplesand gaininformation that isunattainable
using conventional unidimensional systems.
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Abstract—The efficiency of hydrogen evolution from transformer oil into a vacuum and into air under normal
pressure is studied for the case when the oil is exposed to focused ultrasonic radiation. The study is performed
by the method of spectroscopy of biharmonic-pumping coherent anti-Stokes Raman scattering (CARS) based
on stimulated Raman scattering (SRS). Ultrasonic radiation at afrequency of 1.76 MHz isexcited by aspherical
piezoceramic transducer mounted on the bottom of the vessel and is focused on the surface of the oil. This
causes the intense stirring of the oil with the formation of a fountain. The room-temperature diffusion coeffi-
cient of hydrogen inthetransformer oil, 10~ m?/s, isfound by approximating experimental databy atheoretical
relationshizp for hydrogen evolution into air. It is shown that ultrasonic radiation with a power density of

2.2 kW/m

INTRODUCTION

It is known that gases dissolved in an insulating lig-
uid (IL) can be extracted by evacuation into a vacuum
under reduced ambient pressure [1]. Air dissolved in
water is usually removed by means of thermal deaera-
tion, where the water is heated to atemperature exceed-
ing the boiling point corresponding to the pressure in
the working zone of adeaerator [2]. Some gases can be
removed from water by chemical methods. For exam-
ple, the removal of carbon dioxide is accomplished by
combining the gas with reagents (ammonia, an alkali,
or sodium silicate) introduced into the solution [3]. It
has been suggested [4] that gases may be extracted by
convection arising when theliquid isirradiated by low-
intensity microwaves. Finally, dissolved gases can be
extracted from liquids ultrasonically [5].

Outgassing efficiency is usualy estimated with
chromatographic analysis. When the amount of dis-
solved gases in an IL is determined by direct vapor
analysis with the use of a chromatograph, the gases are
extracted by shaking the sample at regular intervals
until thermodynamic equilibrium setsin [6]. However,
the chromatographic method, based on the separation
of the gas sample into components with achromatogra-
phy column [7], makes the real-time observation of lig-
uid outgassing impossible. Therefore, an alternative
method of express diagnostics of liquid ultrasonic out-
gassing would be of great interest.

In thiswork, we demonstrate that the laser spectros-
copy of SRS-based CARS with biharmonic laser
pumping (BLP) can be used for studying hydrogen evo-
lution from an IL exposed to afocused ultrasonic radi-
ation.

accelerates diffusion processes ten- to fifteen-fold. © 2002 MAIK “ Nauka/lInterperiodica” .

SRS-BASED CARS DIAGNOSTICS
OF HYDROGEN EVOLUTION

CARS is afour-photon parametric process where a
coherent beamed radiation with an anti-Stokes fre-
quency w, = 20, — W is generated by mixing two laser
beams at frequencies w, and wy in a medium with a
cubic nonlinear susceptibility X [8]. As applied to the
diagnostics of hydrogen in a gaseous mixture, the
essence of the method is asfollows. A gaseous mixture
is probed by biharmonic laser pumping with frequen-
cies wy, and o roughly meeting the resonance condition

W, —Ws=Q,, 1

where Q, is the frequency of the Raman transition
Qu(1) of hydrogen that is present in the gaseous mix-
ture of density p.

Theradiationintensity |, at the frequency w,isgiven
by

IaD|X(3)R+X(3)NR|2|§IS, (2)

where |, and | are the intensities at the frequencies w,
and w, respectively; X®R = ¢,, v, is the resonant cubic

susceptibility of gas molecules; xR = cgqy,, is the
nonresonant cubic electron-related susceptibility asso-
ciated largely with buffer gas molecul es participating in
an scattering event; y, and v, are the cubic hyperpolar-
izabilities of hydrogen molecules and buffer gas mole-
cules, respectively; and ¢y, and cgg are the molecular
concentrations of the hydrogen and buffer gas, respec-
tively.

1063-7842/02/4710-1277$22.00 © 2002 MAIK “Nauka/Interperiodica’
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The resonant cubic susceptibility xR is given by [9]

12TC C' dg r
“nrad doQp—(w,—we) —ir’

(3)R

1
X _3A

©)

where I" is the half-width of the Raman-active transi-

tion line, A is the difference in the level populations,

and da/do isthe molecular cross section of spontaneous
Raman scattering (SpRS) for this transition.

From (3), it followsthat the value of |x®R| decreases
noticeably if |Q, — (w, — ;)| > I'. This means that the
intensity |, depends mostly on scattering by animpurity
being detected when condition (1) is met.

It was shown [10] that if the CARS method is
applied for detecting a small amount of hydrogen

(small cy,) in agaseous mixture of constant density p,

when condition (1) is satisfied and the nonresonant
scattering by buffer gas molecules can be neglected,
one can use the relationship

10lag¥? 112
o, = iz (M+ow) (4)
apls

where b, is a dimensional coefficient, ', is the
half-width of the hydrogen molecule transition line at a
gaseous mixture density p, and Aw, = (W, —w) —Q, =
Q,—-Q,

In gaseous mixtures, the half-width I, of hydrogen
molecules depends on the Dicke collisional narrowing
[11] and Aw, may vary with p. If, however, the density
p isconstant, the values of ", and Aw, are fixed; hence,
the concentration c,,, can be determined by measuring

the radiation intensities at the frequencies w,, w,, and
W, BLP simultaneously satisfying conditions (1) and
Awy, = const can be found by applying the SRS method
to compressed hydrogen, for example, with the vibra-
tiona transition Qy,(1) [12—15]. In this case, the laser
part of the equipment is greatly ssimplified [15].

LIQUID OUTGASSING IN THE FIELD
OF FOCUSED ULTRASOUND

It is known that ultrasonic energy (momentum)
losses generate so-called radiative force [16]. Due to
this force, a liquid jet (fountain) may appear over the
focal plane of a spherical ultrasonic vibrator, intensely
stirring and thus outgassing the liquid. Moreover, with
a focused ultrasonic radiation, the acoustic pressure
amplitude is spatially nonuniform (gradient). In the
field of such an acoustic wave, gas bubbles experience
the action of the Bjerknesforce[17, 18]:

Fg = —-LVVP4 )

MIKHEEV et al.

where V and P are the instantaneous values of the bub-
ble volume and acoustic pressure, respectively, aver-
aged over the vibration period.

Under the action of this force, the bubbles migrate
toward the higher pressure zone, which isin the focal
region if the ultrasonic radiation is focused [19]. Con-
sequently, gas inclusions coming to this region under
the action of the Bjerknesforce will be rejected into the
environment together with the fountain, and the liquid
outgassing will become more vigorous. However, suffi-
ciently intense acoustic waves may activate chemical
reactions [5], such as the decomposition of the IL with
the formation of hydrogen, methane, acetylene, etc.
[20]. Therefore, IL outgassing per se should proceed at
moderate ultrasonic intensities.

EXPERIMENTAL

The simplified experimental scheme is depicted in
Fig. 1. Spherical piezoceramic transducer 1 is mounted
on conductive support 2 with glass vessel 3. The trans-
ducer, which is connected to rf generator 4 (~27 V,
1.76 MHz), excites acoustic vibrationsin liquid 5. The
ultrasonic radiation propagating in the liquid is focused
on its surface and produces fountain 6, which disinte-
gratesinto droplets. The scheme alowsfor the creation
of a rarefied area above the liquid with fore pump 7
before the ultrasonic radiation is generated. Valve 8
shuts off the fore pump from the rarefied areaduring the
measurements. Hydrogen evolving from the liquid
passes through tube 9 to measuring cuvette 10 with
optical windows and is detected at regular intervals by
the SRS-CARS method. To this end, the second har-
monic of single-active-element single-frequency YAG :
Nd3* laser 11 [21] was used. The peak energy of alaser
pulse at a wavelength of 532 nm was 40 mJ; the pulse
half-width, T, = 7ns and the divergence, about
0.6 mrad. The pulse energy was varied between 15 and
20 mJ. Lens 12 (F; = 0.66 m) focuses the laser output
on SRS cuvette 13 (L, = 0.86 m) containing com-
pressed molecular hydrogen of density 2.8 Amagat.
BLP arising in cuvette 13 from SRS by the vibrational
transition Qg (1) is collimated by lens 14, is separated
from other SRS componentswith a set of filters 15 (18),
and is focussed on measuring cuvette 10 (L, = 0.21 m)
with objective lens 16 (F, = 0.13 m). The anti-Stokes
component, which arises in cuvette 10 because of
CARS, is applied to monochromator 19 through
lens 17. Then, the signal is recorded with a photoelec-
tric multiplier and multichannel laser-pulse-recording
system 20, which is interfaced with a PC. During
recording, the signal is multiply averaged. The product

I ,f | entering into formula (4) is measured with an addi-

tional optical branch (omitted in Fig. 1) consisting of a
reference measuring cuvette with hydrogen com-
pressed to a density of 2.8 Amagat and an additional
system for recording the anti-Stokes component [10].
TECHNICAL PHYSICS  Vol. 47
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Unlike the chromatographic method, the approach
described above isin many respects selective and pro-
vides real-time observation of the kinetics of hydrogen
evolution from the liquid phase.

The ultrasonic power N introduced into the liquid
was estimated using the law of conservation of energy.
The work spent on overcoming surface tension forces
was neglected. It was assumed that the ultrasonic
energy is completely converted to the energy of thelig-
uid jet. Then [22],

N = (1/8)p;d*(2gh)*?, (6)

where py is the density of the liquid, g is the free-fall
acceleration, h is the fountain height in a vacuum
(Fig. 1), and d is the mean diameter of the fountain jet.

For d = 1.5 mm, h = 0.15m, p;, = 880 kg/m?, we
have N = 4 mW. At the focus of transducer 1, the ultra-
sonic power density is 2.2 kW/m?. Such a value does
not cause the chemical decomposition of ILs[22].

We studied hydrogen desorption from hydrogen-
saturated oil. Saturation was accomplished as follows.
First, some amount of hydrogen wasintroduced into the
evacuated chamber containing the oil. Then, the cham-
ber was exposed to ultrasonic vibration for 30 min.
Under the action of ultrasound, the oil was vigorously
mixed with gas-phase hydrogen. Then, the ultrasound
was switched off, and, after the complete vibration
relaxation, the hydrogen was removed from the cham-
ber with the fore pump switched on for a short time.

KINETICS OF HYDROGEN EVOLUTION

The kinetics of hydrogen evolution from the trans-
former oil isillustrated in Figs. 2 (desorption in a vac-
uum) and 3 (under normal pressure). In a vacuum
(Fig. 2, curve 1), the gas may be desorbed spontane-
ously for some time. Under these conditions, the ultra-
sonic vibration greatly accelerates the gas evolution

(Fig. 2, curve 2). Data points Vy,, (t) for gas evolution
in Fig. 2 are well fitted by the function

Vi, = VI[1-exp(-t/1)], ()

where V) is the initial hydrogen volume in the oil

sample normalized to normal conditions and T is the
characteristic time of gas evolution.

As follows from the experiments, the ultrasonic
vibration cuts the characteristic time T 3.9 times.

Under normal pressure in air, the desorption of the
hydrogen from the oil is appreciably retarded (Fig. 3,
the early portion of experimental plot 1). However, as
ultrasound is switched on at t = t;, the hydrogen con-
centration ¢, in the measuring cuvette sharply rises. If
the switching delay increasesto t,, the curve c,(t) shifts
to the right along the time axis (Fig. 3, experimental
plot 2). Therate of growth of c,(t) in air changes notice-
2002
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Fig. 1. Scheme of the experiment.
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Fig. 2. Time dependence of the volume VHZ of hydrogen

that evolves from hydrogen-saturated GK transformer oil
into the measuring cuvette (residual pressure 100 Pa):
(2) spontaneous desorption and (2) ultrasonically stimu-
lated desorption.

ably some time after ultrasound has been switched on.
Thisis attributed to the finite time t, of hydrogen diffu-
sion through tube 9 to optical measuring cuvette 10
(Fig. 1). As the air pressure decreases, t, tends to the
molecule transit time through the tube.

DIFFUSION COEFFICIENT OF HY DROGEN
IN TRANSFORMER OIL

It is of interest to theoretically consider the evolu-
tion of hydrogen from the oil in order to explain the
experimental dependencesshowninFig. 3. Let thetotal
volume occupied by the vessel with the IL and by the
measuring cuvette be a cylinder of cross section S
(Fig. 4), with a part of the volume of height L being
occupied by the liquid. Since the mean hydrogen con-
centration ¢, in the measuring cuvette is known from



t, 10%s

Fig. 3. Time dependence of the hydrogen concentration c,
in the measuring cuvette when hydrogen is desorbed from
the hydrogen-saturated GK transformer oil into the measur-
ing cuvette in air under normal pressure. t; and t, are the
time instants, at which the ultrasonic radiation is applied,
which correspond to curves 1 and 2, respectively, in Fig. 1.
Solid lines are functions approximating data points for gas
evolution.

V2, (&)

Vl, C1

0L

Fig. 4. Experimental geometry for the model problem.

the experiment, the diffusion coefficient of the hydro-
gen intheliquid will be found as follows.

Let the number of hydrogen moleculesin theliquid
be N, = ¢;(0)V; at the initial time instant t = 0, where
c¢,(0) istheinitial hydrogen concentration in the liquid
and V, isthe volume of theliquid. According to the law
of conservation, the number of gas molecules desorbed
fromavolumeV,, N; = ¢,V,, equalsthe number of mol-
ecules appearing in a volume V, over the liquid, N, =
C,V,. Then, the amount of the gasin the volume V; at a
timeinstant t is found from the relationship

C (V1 = ¢ (0)V—cy(1)V, (8)

and the mean hydrogen concentration over the liquid

MIKHEEV et al.

measured in the experiment, from the formula
Co(t) = [c1(0) —cy (D] (VI Vy). 9)

The variation of the amount of gas moleculesin the
volume V; for atime dt is given by the kinetic equation

d[V,c,(t)] = —I(t)Sdt. (10)

Here, I (t) istheflow of agaswith adiffusion coefficient
D, in the liquid through a surface area S The flow I(t)
can be determined from the Fick law and is written in
the form

[(t) = Dy(0c/OX), =
= Dy[cy(0,t) —cy(L, 1)]/L = Dy[cy(B)]/L.

The simplification in (11) reflects the fact that the
hydrogen concentration at the bottom of the vessel dif-
fers essentialy from that near the surface; that is,
c,(0,t) > ¢4(L, t). The explanation is as follows. The
stirring of the liquid with dissolved hydrogen provides
its uniform distribution in the volume V; with an aver-
age concentration ¢,(t). The remaining (undissolved)
hydrogen over the liquid is rapidly pumped off. As a
result of the latter procedure, the near-surface layer of
theliquidissubstantially degassed. Thisseemslikely to
be the basic reason for the relatively long time taken to
set the steady-state process, as clearly seen from Fig. 3
for the two experimental dependences. Next, substitut-
ing (11) into (10) yields

d[c,(1)]/dt = [-SD/V,L]c,(t). (12)

A solution to this differential equation subject to the
boundary condition ¢(t); - ; = ¢;(0) hasthe form

cy(t) = ¢y (O)exp(-t/1),

(11)

(13
where
T =V,L/SD,

isthe relaxation time.
If an additional transfer mechanism emerges at
sometimeinstant t;, Eq. (11) should be recast as
I(t) = { Dy + D,0(t—t1)} [cy (V)] /L. (15)

Here, D, isthe diffusion coefficient with the additional
transfer mechanism and O(t — t;) is the Heaviside
(switching) function:

(14)

for t<t
ot—t) = [ ' (16)
M for t=t,.
Then, Eq. (12) has the solution
Ci(t) = c(O)exp[—(t/Ty + (t—t)/Tr)], (17)
where
Tl = VlL/SDl, ‘[2 = VlL/[SDze(t_tl)] (18)

TECHNICAL PHYSICS Vol. 47 No. 10 2002
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Eventually, we have

Cy(t) = ¢,(0)

(19)
X [1—exp[(t/t, + (t=t)/T)]] (Vi/ V).

Expression (19) was used for the nonlinear approx-
imation of two sets of data points (Fig. 3) for the case
when diffusion is ultrasonically accelerated at a time
instant t;.

The problem of nonlinear approximation was solved
by using an algorithm for searching for the following
four parameters: the diffusion coefficients D, and D,
before and after switching on the ultrasonic radiation,
respectively; theinitia (t = 0) mean concentration c;(0)
of the gasin theliquid; and the delay timet, of switch-
ing on the radiation (in order to refine the delay due to
gas diffusion to the cuvette). The objective function to
be minimized was the sum of the squared deviations of
data points (Fig. 3) from the theoretical curve. As a
result of the approximation, we also found the ratio of
the diffusion coefficients before and after the radiation
has been switched on. Moreover, we succeeded in find-
ing the diffusion coefficient of hydrogen in the IL,
using the known experimental geometrica values
involved in the problem: S =5.726 x 10* m?, L =
0.08m, V, =45.8 x 10° m3, and V, = 85.7 x 105 m3.
From thefirst set of data (experimental dependencelin
Fig. 3), it followsthat D, = 0.96 x 10" m?/s, D, = 1.4 x
10° m?/s, and c,(0) = 3.3 x 10?> molecules/m*. From
the second set of data (experimental dependence 2 in
Fig. 3), it followsthat D, = 1.1 x 107 m?/s, D, = 1.1 x
10° m?/s, and ¢,(0) = 3.4 x 10%* molecules'm3. Note
that these parameters do not depend on the gas volume
over theliquid. Theresults obtained show that the ultra-
sonic vibration accelerates diffusionin theliquid ten- to
fifteenfold.

Comparing the hydrogen diffusion coefficients
found with known valuesin metals[23] and water solu-
tions [24] indicates that the diffusion coefficients in
transformer ail are two or three times higher. Since our
SRS-CARS method is express, multiply averaged val-
ues of the hydrogen concentration in the measuring
cuvette were determined every minute. Thus, it is
hoped that our value of the diffusion coefficient of
hydrogen in GK transformer oil was evaluated with a
sufficiently high accuracy.

From the diffusion coefficient of hydrogeninanIL,
one can estimate the lifetime of the nonequilibrium
hydrogen concentration in the oil. It is known that, in
high-voltage oil-filled equipment, a nonequilibrium
hydrogen concentration may arise as a result of IL
decomposition. Knowing the diffusion coefficient of
hydrogen in oil, one can calculate the characteristic
time of its spontaneous desorption from the liquid.
Obviously, this time must correlate with the relaxation
time for a given geometry of the liquid volume in a
transformer. Let the geometrical parameters of atrans-
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formerbeS=1m?,L=12m, and V, = 1.2 m3. Then,
with our value of the diffusion coefficient without the
ultrasonic effect, we get 1, = V,L/SD, = 1.44/107 =
107 s or 115 days. Thus, the spontaneous relaxation of
a nonequilibrium hydrogen concentration by diffusion
proceeds rather slowly if convection and other desorp-
tion-promoting mechanisms are absent.

Based on our technigque for measuring the diffusion
coefficient of hydrogen in transformer oil, we proposed
an efficient way of sampling transformer oil from high-
voltage (500-700 kV) bushings for detecting oil-dis-
solved gases without switching-off the transformer
[25].

CONCLUSION

The feasibility of alaser (SRS-CARS) method for
monitoring the hydrogen content above an IL was dem-
onstrated. It was shown that the rate of transformer oil
outgassing can be substantially increased in both a vac-
uum and air under normal pressure by stirring the oil
with focused ultrasonic radiation causing a fountain
above its surface. The diffusion coefficient of hydrogen
in transformer oil was determined.
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Abstract—The generation of non-steady-state photo-emf in an adaptive photodetector made of semi-insulating
GaAsisstudied. Single- and double-frequency excitation modes are considered. It is found that a contact com-
ponent of the photocurrent arises in the detector when the spatial frequencies of the interference pattern and
phase modulation frequencies arelow. The contact signal, being sensitive to aslow drift of the interference pat-
tern, adversely affects the adaptive properties of the device. It is shown theoretically and confirmed experimen-
tally that the contact emf signal at the frequency of basic phase modulation can effectively be suppressed by
specially selecting the amplitude of additional phase modulation and the spatial frequency of the interference
pattern. The spectral components of the non-steady-state emf signal are calculated for the double-frequency
excitation mode. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

To date, several devices for detecting optical phase-
modulated signals have been developed [1, 2]. The
basic difference between them is the design of the pho-
todetector converting the variations of the interference
pattern intensity to an electrical signal. The use of con-
ventional photodiodes requires the operating point of
the interferometer to be stable and the wave fronts of
interfering beams to be tuned with an accuracy up to
A/10. This necessitates the introduction of extra optical
and electrical components, which inevitably increases
the cost of the system and makesit more difficult to use.
A promising type of detector that allows one to avoid
these problems is an adaptive photodetector based on
the non-steady-state photo-emf effect [3].

The non-steady-state photo-emf effect [4] consists
in the appearance of aternating current in a semicon-
ductor crystal illuminated by an interference pattern of
varying intensity (Fig. 1). The photocurrent is gener-
ated when the distribution of the photoconductivity and
the electric field are periodically shifted relative to each
other. The gratings of the conductivity and the space-
charge field that emerge in the crystal because of the
diffusion record mechanism [5] are dynamic. This
shows up in the specific amplitude—frequency response
of the non-steady-state emf: at low phase-modulation
frequencies, the signal is proportional to the frequency,
whereas for frequencies above the so-called cutoff fre-
guency w,, the photocurrent reaches a maximum and
then remains frequency-independent. Thus, an adaptive
photodetector based on the non-steady-state emf effect
makes it possible to effectively detect high-frequency
phase-modulated optical signals and simultaneously

suppress low-frequency signals due to a drift in the
operating point of the interferometer, variations of the
ambient temperature, and mechanical vibrations.

The adaptive properties of a photodetector employ-
ing the non-steady-state photo-emf effect are the most
conspicuous in experiments on detecting the high-fre-
guency signal in the presence of low-frequency large-
amplitude jamming signals [6]. It has been found that
the amplitude of the valid signal begins to decline
appreciably only when the amplitude of a phase inter-

IX, 1)

—L2: 0 L2 Y

Au \1 I// Au
CaAs
A R, YJ
| —
L1

Fig. 1. Non-steady-state photo-emf excitation in a GaAs
adaptive photodetector.
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ference with a frequency Q reaches the value of wy/Q.
This means that requirements imposed on the vibration
isolation of the interferometer may be relatively loose
if semiconductors with a high cutoff frequency are
used. For example, for GaAs photodetectorswith atyp-
ical cutoff frequency wy/2m= 1 kHz and an interference
frequency Q/2m = 10 Hz, the allowable interference
amplitude is A = 100 rad, which corresponds to the
vibration amplitude of the interferometer mirrors A =
AM\/A1t= 5 pm (at awavelength A = 0.633 pm).

The implementation of a photodetector with such
properties needs the selection of asemiconductor that is
optimal in terms of photoconductivity, carrier lifetime,
mean diffusion length of carriers, etc. In addition, the
fabrication of contactswith desired propertiesisachal-
lenge in this case. Namely, the contacts must have a
lower resistance compared with the bulk resistance of
the crystal and the presence of a contact photo-emf is
extremely unwanted. The low resistance of the contacts
is necessary for efficient current removal into an exter-
nal measuring circuit. This requirement is quite feasi-
ble, since the bulk resistance is very high when semi-
insulating crystals with a large electrode spacing are
used and may exceed the resistance of arectifying con-
tact.

The presence of the contact photo-emf adds the
“phaotodiode” component to the total signal picked up
from the photodetector. The photodiode component is
sensitive to slow displacements of the interference pat-
tern; in other words, the photodetector partially losesits
adaptive properties. One way of tackling the problem
[7] istorotate the crystal through some angle so that the
contacts are not parallel to interference fringes. In this
case, the mean optical intensity in the near-contact
regions remains nearly constant and the contact compo-
nent of the current diminishes. However, such an
approach is ineffective when the spatial frequencies of
an interference pattern are low.

The aim of this work is the theoretical and experi-
mental study of anon-steady-state photo-emf generated
by single- and double-frequency techniquesin an adap-
tive photodetector on semi-insulating GaAs. Emphasis
is on the separation of the volume and the contact com-
ponents of the signal.

THEORETICAL ANALYSIS

Our model of an adaptive photodetector built around
the non-steady-state photo-emf effect is as follows.
A sensor representing a photoconductor with two elec-
trodes (Fig. 1) is illuminated by a variable (vibrating)
interference pattern

[(x 1) !
= lof 1+ mcos[Kx + dcos(wt) + Acos(Qt) + Y]} ( )

Here, |, is the mean light intensity, m is the contrast,
K is the spatial frequency, Y is the initial phase of the
interference pattern, 6 and w are the amplitude and fre-
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guency of basic phase modulation, and A and Q are the
amplitude and frequency of additional phase modula-
tion. We will assume that

w>0Q, d<1, A=1. )

Thissituation correspondsto the detection of aweak
high-frequency signal in the presence of low-frequency
high-amplitude jamming signals. Under such anillumi-
nation, a volume non-steady-state photo-emf J,, arises
in the volume of the crystal and a contact (barrier-layer
[8]) photo-emf, J-; and Jc,, in the near-contact regions.
Let the contacts be similar for simplicity. The bulk of
the semiconductor has a resistance R, a capacitance C,
and contacts R- and C.. The external circuit of the pho-
todetector is terminated by a load resistance R_. The
equivalent circuit of the system is depicted in Fig. 2.
The expression for the complex amplitude of the cur-
rent with a frequency w passing in the external circuit
isgiven by

WR_ (JE-IS)R:
I+iwRC  1+iwR.Ce

R Rc
+ +
Rt TR 217 iwR-Cc

3=

©)

Here, Jy, J¢,, and J¢, are the complex amplitudes of

the related currents. Other harmonics of the current are
expressed similarly. Let the condition

R Rc

T+ioRC > N 1+iwR-Ce “)

be fulfilled in afrequency range under consideration.
Then, expression (3) may be greatly simplified:

Re(1 +iwRC)

w - (JL)+ w _ w .
‘] ‘]V (JCI ‘]CZ) R(l + IwRCCC)

)

(1) Contact photo-emf. An expression for the con-
tact signal (J¢; — J¢&,) can easily be derived under the
assumption that the photocurrent is proportional to the
light intensity in the near-contact region; that is, Jo(t) =
El(-L/2, t) and Joo(t) = EI(L/2, t), where L is the elec-
trode spacing. The coefficient & depends on the effec-
tive surface area of the planar electrodes, light absorp-

tion coefficient, and quantum efficiency of photocon-
ductivity [8]. In our case, we have

Jor— I8, = 481,mJ,(8)Jo(A) cospsin(KL/2). (6)

Here, J(X) isthe nth-order Bessel function of first kind.
For a harmonic at the nth side frequency, we come to a
similar expression:

w+nQ

3o " =32, "% = 4E1,mI(3) (D)

x cos(Y + n1/2)sin(KL/2).

(7)
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(2) Volume photo-emf. Let us derive an expression
for the complex amplitude of the bulk signal at the car-

rier, 3, and side, J©*"?, frequencies. To do this, we

will consider the general case of generating a non-
steady-state photo-emf in an n-type semiconductor by
an optical pattern,

m(t) m* (t)

I(x,t) = Io[ exp(iKx) + exp(— |Kx)} (8

An expression for the photocurrent density can be
written as[4]

() = Sellno%r[a(t)Eéc(t)+a*(t)Esc(t)]- 9)

Here, eisthe electron charge, p and ny are the mobility
and mean concentration of photoelectrons, nya(t) isthe
complex amplitude of their space-periodic distribution,
Egc isthe space-chargefield, and Sisthe electrode area.
Let us consider our problem assuming that the genera-
tion and recombination of charge carriersarelinear, the
contrast missmall, and the dark conductivity islow [5].
Also, we assume that the external and photovoltaic
fields are zero. Then, the quantities a(t) and Eg(t) are
solutions to the set of linear differential equations

dEsc 1 _iEDa
dt 1y ° Ty
d 1+K?L2 m(t) 1o
a _ . D t
—_ = — +
a0t IKMEg: - a _

Here, Ej isthediffusion field, Ty, isthe Maxwell relax-
ation time, T is the electron lifetime in the conduction
band, and L, isthe electron diffusion length. Substitut-
ing the solutions to this set into (9) yields for the pho-
tocurrent

S0oEp

J (t) -
v 2127, (A, = \,)

ImB’m(t t')exp(A t)dt’
(11)

00

0
XIm* (t—t)exp(A,t)dt'D
0

Here, A\, and A, are the roots of the characteristic equa
tion for set (10):

_1gl , 1+KLy
L2 7 ol 1 U

101 14Ky 1
4%, 1

A
(12)

0 1,7
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Fig. 2. Equivalent circuit of the photodetector model.

For the photoconductor of “relaxation” type (T < 1),
(13)

Here, we introduced the designations for the cutoff fre-
guencies of non-steady-state photo-emf [9]. If, in addi-
tion, the quantity m(t) can be represented as m(t) =
mexp[i¢(t)] and the characteristic time of variation of
this quantity far exceeds the electron lifetime T, the
expression for the photocurrent is greatly simplified:

Sm’c,Ep 0,

J =
vt 2(1+K2L2)

o (14)
X Im%’exp{ —wet' +i[d(t—t) = (D]} dtH
) 0

Inour problem, ¢(t) = dcos(wt) + Acos(Qt) + Y. To
integrate (14), one can take advantage of the expansion
of the function exp(iAcos®) in harmonic functions in
view of approximation (2). Eventually, the following
expression for the harmonic of the photocurrent at the
nth side frequency was obtained:

Jorna _ SM'36(8)31(3)00Ep _ nm
\
1+K%L3 2

(15)
Jp(8)Jp_n(B) (-1 w/uy)
Z (1+|pQ/<oO)[1+|(w+ pPQ)/w]

It is seen that the spectrum of the volume photo-emf
lacks odd side frequencies. In practice, it is not neces-
sary to integrate from —oo to . Calculations show the
summation from —A to A provides a required accuracy.
Let w> QA. Then,

35(8)3,_o(B)

2 1+ipQlw, - (16)

p=-A

Q ntt
\]\L\/)+n = Jvoco ~ z
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Here,

o SMI(8)I1(8)0,Ep —iw/wy,

JVO = 2.2 1+' /
1+K%L3 JATAS

is the complex amplitude of the photocurrent in the
absence of additional modulation.

For the complex amplitude of the photocurrent with
afrequency w, we have, according to (16),

o 0N
JO= 30 Bn)+2§ —B—L |, 18
{ o) p;u(pcz/wo)z} 1o

(17)

The numerical simulation shows that for Q < wy,
expression (18) can be approximated by [6]
o
J1+(QA/0,)°

For comparison, we also write the expression for the
amplitudes of the photocurrent with frequencies w + 2Q:

Ji(A)
1+iQ/w,

W= (19)

3027 = 3
20

2(1£1Q/wg)Jp(8) Iy, (D)
'p;(l FipQlwy)[1+i(p+2)Q/wy }

If A < wyA, one can expand afunction like (1 + x)°
into the Taylor series and take advantage of relation-
shipsfor the Bessel functions (see Appendix). Then, we
arrive at the estimate

JwiZQ ~ Joo @DZ
\Y VOEQOO(J] .

As follows from the above expression, the ampli-
tude of the harmonics with the frequencies w £ 2Q is
the amplitude of the signal at the carrier frequency
times the factor (QA/2uy)? Numerical calculations
show that the amplitude of even harmonics with fre-
guencies w + 2nQ varies with harmonic number as
(QA26)*".

(3) Comparison between volume and contact sig-
nals. Let us consider the difference between contact
and volumes non-steady-state emfs. First, the ampli-
tude of the former depends on the phase of the interfer-
ence pattern Y, while the latter does not depend on this
parameter. Another specific feature of contact emf is
that for those values of ) when the amplitudes of even
harmonics are zero, the amplitudes of odd harmonics
reach their maxima.

One more specific feature of contact emf is its
dependence on the spatial frequency of theinterference
pattern. When the electrode spacing covers the integer
number of interference fringes (KL = 2k, k O N), the
contact emf is absent; if the number of fringes is half-
integer [KL = (2k + 1)11, the contact emf is maximum.

(21)
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In order to add afringe into the interference pattern, it
is necessary to change the angle between the beams by
©'=A/L. Here, A istheradiation wavel ength; the spatial
frequency is assumed to be small, K = (21/A)sin®© <
217A; and @ isthe angle between the beams. The depen-
dence of the non-steady-state emf is much smoother:

this curve shows a single peak at K = LBl [9] (in the

case of bipolar photoconductivity, two peaks with a
zero current in between may exist [10]).

As follows from (17), the amplitude of the non-
steady-state emf tends to zero with decreasing phase
modulation frequency w. The contact emf has anonzero
limit at low frequencies[see (6)]. A possible run of the
frequency characteristic of the total signal is demon-
strated in Fig. 3. This curve was calculated for S =
0.01mm3 L=1mm m=056=01rad, A=0,K =
30 mmY, KLy < 1, KL = (2k + )11, w)y/211 = 3 kHz,
Elo=04 pA, R=10MQ, C=11x 108 pF, R =
100 kQ, and C; = 10 pF. It should be noted that the
parameters g, (or wy) and R were preset independently,
although they must obey the relationship So, = L/R.
This is because GaAs has two cutoff frequencies [11],
one of which is near 10 MHz and satisfies roughly the
above relationship, while the other lies in the range 1—
100 kHz and appearsin the frequency response because
of conductivity slow relaxationin GaAs[11, 12]. Inthis
work, we consider only the low-frequency range; there-
fore, the parameters indicated were chosen indepen-
dently and the quantity L/R was used instead of So,
in (17).

From (6) and (17), it aso follows that the ampli-
tudes of the contact and non-steady-state emfs vari-
ously depend on the interference pattern contrast: asthe
contrast drops, afraction of the contact photocurrent in
the total signal rises.

Note also the great differencein the spectral compo-
sitions of the contact and volume photocurrents that is
observed in the case of double-frequency excitation. In
the contact signal, the amplitudes of side-frequency
harmonics differ from those of input (optical) signal
harmonics by K- and y-dependent factors. Specifically,
for A = 2.405 rad, harmonics with the frequency w are
absent in the light intensity oscillation spectrum and in
the spectrum of the contact photocurrent. A similar
result can be achieved by taking A large enough (such
that Jo(A) = 0); in this case, the contact emf spectrum
will obviously contain a large humber of harmonics.
For non-steady-state volume emf, such a simple rela-
tion to theinput (optical) signal is absent. With the con-
dition A < wy/Q fulfilled, the harmonic at the carrier fre-
guency [see (19)] prevails in the signal spectrum, odd
side frequencies are absent, and the even harmonic
amplitudes decay rapidly astheir number increases[see
(21)]. Of practical interest is the case of detecting the
photo-emf signal against the background of a low-fre-
guency interference (Q < wy). With such frequencies,
the volume photocurrent spectrum remains narrow

TECHNICAL PHYSICS  Vol. 47
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Ve, nA
1.5F
p=m
1.0 .2
P =0
0.5
1 1 |
0 10 20 30
w/21L kHz

Fig. 3. Theoretica dependence of the non-steady-state
photo-emf on phase modul ation frequency according to (5),
(6), and (17) for the phase Y = 0 and 1t Dotted lines stand
for the volume (v) and contact (c) photocurrents.

evenif A > 1. Moreover, from (18) and (19), it follows
that the volume signal harmonic with the frequency w
isobserved at A = 2.405 rad.

EXPERIMENTAL SETUP

The experimental setupisshowninFig. 4. A He-Ne
laser (A = 633 nm, P,; < 30 mW) is used as a source of
coherent radiation. The laser radiation is split into two
beams, one of which is phase-modulated with an
MD-102A electrooptic modulator and the other, with a
TA-56m headphone with amirror attached to its mem-
brane. Then, the radiation is directed to the crystal sur-
face, where a vibrating interference pattern is formed.
To provide the possibility of varying (over narrow lim-
its) the spatial frequency of the pattern, a rotating mir-
ror is placed near the crystal (at a distance of =10 cm).
The current in the external circuit is measured with an
SK4-56 spectrum analyzer and with a Unipan-232B
lock-in nanovoltmeter. To obtain a flat frequency
response of the measuring circuit, aload resistance R,
is connected parallel to the photodetector.

The sample used was a semi-insulating GaAs single
crystal measuring 3 x 3 x 0.5 mm with gold electrodes
applied to its front surface. The front and back surfaces
(3 x 3 mm) were subjected to optical finishing. The
electrodes were made of two strips spaced 1.2 mm
apart. The contact was provided by means of a silver
paste.

EXPERIMENTAL RESULTS

In the range of phase modulation frequencies 0.01-
50 kHz, the sign of the non-steady-state emf generated
in the GaAs crystal corresponded to the hole compo-
nent of the current.

Figure 5 demonstrates the experimental frequency
dependences of the signal picked up from the adaptive
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He—Ne laser

BS HP

E Generator
Generator o) Q
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M
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RM
Lock-in voltmeter N R;.
(spectrum analyzer) ﬁ g‘:’j

Au-GaAs—Au

Fig. 4. Experimental setup for measuring the non-steady-
state photo-emf under double-frequency excitation. BS,
beam splitters; EOM, electrooptic modulator; HP, head-
phonewith mirror; RM, rotating mirror; R, load resistance.

photodetector in the case of single-frequency phase
modulation. These curves were obtained under the
same experimental conditionsin 10 min intervals. It is
seen that the signal amplitude roughly doubles within
several minutes. One reason for his may be the slow
drift of the interferometer, which eventually shows up
as a shift of the interference pattern, that is, as a slow
variation of its phase in expression (1) with time: Y =
Y(t). Asfollows from (6), the amplitude of the contact
emf also becomes aslowly varying function of time. In
addition, the signal amplitude in these fregquency
dependences does not tend to zero at low phase modu-
lation freguencies, as it should for the volume non-
steady-state emf [see (17)]. As was noted above, such
behavior can be explained if one takes into account the
presence of the contact current. A similar frequency
dependence of the photo-emf was observed in [11],
where its specific behavior was not attributed to the
presence of the contact emf.

Let us consider the transfer characteristic and the
spectral composition of the signal for double-frequency
excitation. The frequency dependence of the non-
steady-state emf (Fig. 6) was taken with the parameters
of additional phase modulation Q/2mt=10Hz and A =
2.4 rad. The passband f* of the spectrum analyzer was
set equal to 3 Hz; hence, the condition f' < Q/21T was
fulfilled. With the passband thus selected, the signal
was measured only at the frequency of basic phase
modulation. Note first of al that the amplitude of the
signa measured is fairly stable (within 5%). This is
because the contact emf signal is suppressed: the har-
monic at the carrier frequency w is suppressed by
appropriately selecting the amplitude A, and side fre-
guencies are beyond the passband of the instrument. At
the sametime, the volume emf signal is hot suppressed:
for a cutoff frequency wy/2m= 1 kHz and the selected
values of Q and A, the amplitude of the non-steady-
state photo-emf [see (18)] should only decrease by
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]
0 20 40 60
w/21, kHz

Fig. 5. Frequency responses of the non-steady-state photo-
emf taken by the single-frequency technique in 10 min
intervals. Py = 1.1 mW, K =31 mm, m=0.6,5=0.10 rad,
andA=0.

P, nA
1.0}
0.5F
OF
| |
29.94 30.00 30.06
/211, kHz

Fig. 7. Photocurrent spectrum in GaAs under double-fre-
quency excitation. Py= 1.1 mW, K =31 mm™=, m=0.6,5=
0.13rad, w/2rt=30kHz, A = 2.4 rad, and Q/21t= 10 Hz.

0.03%. As follows from Fig. 6, at low frequencies of
phase modulation, the signal amplitude tends to zero.
The aforesaid suggeststhat the frequency response thus
measured is close to the actual frequency characteristic
of the volume non-steady-state emf in GaAs crystals.
Yet, the approximation of experimental data by the
standard frequency dependence like (17) with wy/2m =
1.1 kHz disagrees markedly with the experiment at low
. The dependences observed can be described ade-
quately by taking into account the specific character of
the surface excitation of non-steady-state emf in semi-
insulating GaAs (Fig. 6). To approximate the transfer
characterigtic, we used the semi-empiric expression [13]

wgo)ln[l—i‘%}

JV(w) O-i (22)
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V., nA
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01* Ll L
10% 103

el
10°
w/21t, Hz
Fig. 6. Frequency responses of the non-steady-state photo-
emf taken by the double-frequency technique. Pg=1.1 mW,
K=31mm™, m=0.6,8=0.10rad, A= 2.4 rad, and Q/2r =
10 Hz. Data points are approximated by standard relation-

ship (17) (dotted line) and also by relationship (22), which
includes strong optical absorption in GaAs (solid curve).

traal
10*

J® nA
4

1.0
©,rad x 1073

Fig. 8. Contact photocurrent vs. angle increment ©'
between the beams forming the interference pattern. Py =

85mW, m=0.5,06=0.14rad, w/2mt=3Hz,and A=0. The

spatial frequency for ©' = 0 was K = 19 mm™2. Solid curve
istheoretical dependence (6).

where wy(0) is an adjustable parameter (the cutoff fre-
guency on the crystal surface): wy(0)/21t= 2.5 kHz.

The spectrum of the signal picked up from the pho-
todetector for double-frequency phase modulation is
shown in Fig. 7. The harmonic at the carrier frequency
wremains stable. It is easy to see three or four side-fre-
guency harmonics in the spectrum. In addition, the
spectrum contains both odd and even harmonics. Their
amplitudes are comparable in height with the signal at
the frequency w and dowly vary with time. It is note-
worthy that the odd harmonics are maximal when the
even ones vanish and vice versa. Let us estimate the
amplitudes of the volume signal at the carrier and at
side frequencies for the GaAs crystal under study
(wy/2t= 25 kHz, A = 2.4 rad, and Q/211= 10 Hz). As
was noted in the theoretical analysis of the effect, the
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2 4 6 8
o, rad
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Fig. 9. Contact photo-emf vs. amplitude of phase modula-
tion at the carrier frequency. Py = 0.58 mW, K = 19 mm™,

m = 0.5, w/2im = 3 Hz, A = 0. Solid curve is theoretical
dependence (6).

amplitudes of even harmonics of the volume photo-emf
with frequencies w = 2nQ vary with their number
roughly as (QA/2u,)?". Using this dependence, we find
the relative amplitude of the second harmonic (2.3 x
1079), fourth harmonic (5.3 x 1019), etc. The signal-to-
noise ratio was ~10%. This means that all the side-fre-
guency harmonics of the volume photocurrent must be
below the noise level. The above features and estimates
indicate the different nature of the spectral components:
the harmonic at the frequency w isthe volume emf sig-
nal, while the side-frequency harmonics are the compo-
nents of the contact signal.

To make sure that the signal identified as contact is
in fact contact, we performed measurements at low
phase-modulation frequencies (w, Q < wy), where the
signal of the non-steady-state emf is extremely small
and can be neglected. The need for such acorroboration
is associated with the fact that similar phenomena can
be treated alternatively based on slowly relaxing con-
ductivity and field gratings in a semiconductor. Figure 8
shows the dependence of the photodetector signal on
the spatia frequency of theinterference pattern (i.e., on
the angle between the beams). In the measurements, we
used the lock-in voltmeter, which can not only measure
the signal but also detect the change of sign. For each
K, the signal is represented by two circles that are the
maximal (by magnitude) positive and negative values
of the photocurrent over 1020 min. The difference
between the angles of the photocurrent maxima (min-
ima), © = 4.9 x 10% rad, is in fairly good agreement
with an angular increment necessary for afringe offset
by the electrode spacing to be added: ©' = A/L = 5.3 x
10 rad.

We also took the dependences of the photocurrent
on the amplitudes of basic and additiona phase modu-
lations (Figs. 9, 10). Associated experimental datawere
approximated by expression (6). From Figs. 9 and 10,
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1.0

0.5

A, rad

Fig. 10. Non-steady-state photocurrent vs. additional phase
modulation amplitude. Py = 0.58 MW, K = 19 mm™, m =

0.5, 8 = 0.13 rad, w/2mt = 125 Hz, and Q/2mt= 3 Hz. Solid
curveistheoretical dependence (6).

one can see that the contact emf is suppressed if the
amplitudes of additional phase modulation are theroots
of the zeroth-order Bessel function.

CONCLUSION

The presence of the contact emf is shown to have an
adverse effect on the adaptive properties of the photo-
detector. The problem can be resolved by decreasing
the contact emf and by separating the volume and con-
tact components. The former way can be accomplished
if the spatial frequency of the interference pattern is
taken such that the electrode spacing covers the integer
number of fringes (KL = 2km). The separation of the
volume and contact signals can be made by introducing
additional low-frequency phase modulation of ampli-
tude A = 2.4 rad. With such a parameter of the addi-
tional modulation, the contact photocurrent spectrum
lacks the harmonic at the frequency w of the basic
phase modulation. In addition, with the condition A <
wy/Q satisfied, the volume signal spectrum broadens
insignificantly: the amplitudes of harmonicsat frequen-
cies w £ 2nQ are roughly (20y/QA)?" times lower than
the amplitude of the harmonic at the frequency w, and
harmonics at odd side frequencies are absent.

The results presented were obtained for an adaptive
photodetector based on a semi-insulating GaAs single
crystal and having ssmple electrode geometry and
arrangement. The optimization of the photoelectrical
properties of the contacts is a challenge and may be the
subject of further investigation.

APPENDIX

Below are given severa relationships for the Bessel
functions of the first kind used in the theoretical analy-
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sis[14]:

exp(iAcosd) = i Jp(A)exp[ipBD+g%], (A.D)
p= o

Ja(8) = (-1)"3,(8), (A2)

31(8) = 2y 3,(8)3;.2(8), (A3)
p=0

(=)

94_ = J3(D) +2 zl p(p+2)3,(8)Jp.2(B). (A4
£
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Abstract—The formation of the radiation flux density (doserate) distribution over amoving surfaceirradiated
by an intensity-modulated flux through a spatially periodic structure is considered. Relationships for a number
of particular cases are derived and analyzed. The irradiation process is regarded as the wave quasi-diffraction
on two-dimensional slot objects. A method for converting the quasi-diffraction pattern into a one-dimensional
hologram is described and the results of applying the quasi-wave approach to adescription of moving filmsirra-
diated by pulsed accelerated beams are presented. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The action of various types of radiation on moving
filmsis arather widely used processing step. Depend-
ing on the purpose, it is required either to irradiate the
object uniformly over the whole surface or to provide
the required distribution of the radiation flux density
(dose rate) in the direction of motion. We can particu-
larly distinguish here technologies involving a time-
periodic irradiation. A typical example of such atech-
nology is the production of track membranes from
polymer films [1-3]. If the pulsed irradiation is pro-
duced via a complex, for example, spatially periodic,
aperture, typical space-time beats are observed, which
lead to anumber of specific featuresin the distribution
of the radiation flux density over the film surface. We
have observed these features when irradiating amoving
film through periodic spatial arrays with a small effec-
tive screening cross section on a cyclotron at the loffe
Physicotechnical Institute (Russian Academy of Sci-
ences, St. Petersburg). Further experiments and a thor-
ough mathematical analysis have shown that such
arrays are equivalent to specific space-time filters that
can make the irradiation of the object either more or
less uniform. It has been shown that the mathematical
formalism that describes these processes is completely
the same as the formalism used to characterize the dif-
fraction of two-dimensional waves on planar screensin
the Fraunhofer approximation [4].

Based on the above similarity, this paper attemptsto
draw aparallel between the irradiation of amoving sur-
face and diffraction processes. Therefore, Part | of this
work mostly focuses on the derivation and discussion
of the general relationships, while Part Il applies the
theory to a particular problem; namely, it studies the
behavior of the radiation flux density distribution cre-

ated by beams of pulsed particle accelerators. Part 11
also presents experimental results and describes how to
obtain specific holograms of the diffracting structures,
which may bereferred to asthe information holograms.

IRRADIATION OF A MOVING SURFACE
THROUGH A PERIODIC SPATIAL ARRAY
BY A SINUSOIDALLY MODULATED FLOW

Let the moving surface be irradiated through a reg-
ular set of identical dots that form a periodic spatial
array, the sots being perpendicular to the direction of
motion as shown in Fig. 1. Also, let the intensity of the
irradiating flux in the plane of the screen depend only
on the time, while being independent of the x coordi-
nate. After passing through the screen, theintensity will
certainly depend on x. For a sinusoid-modulated flow,
thisintensity can be written as

Oo+lysn(wt) x = xid<x<l,+id,

Ix,)=0 =1,2,3,...,N—-1 )
X#X,
d
l

y %

i L0l
*o—> A

X

Fig. 1. Motion of the point A fixed on the irradiated surface
under a periodic screen.
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where |, is the dot width, d is the array spacing, and
N isthe total number of dots.

Let point A fixed on the surface move under the
array at the velocity v in the positive x direction. If the
point isat x = 0 at the time moment t = T, then, after it
passes under the ith slot, the dose rate in the vicinity of
this point will increase by

T+ (T +1)(i-1)+14
pi = loty+ 1, sin(wt)dt = 1,1,
T+t +1)(i-1) 2
(T [ (i-1)dw le}
+— +
st 5 Dsm wT v 5

wheret; = l;/vand 1, = (d = [))/v.

After passing all the N dots, the total dose rate at
point Awill be

. T
Zp, NIoT, + smg%]%
- (i—1)dw  WT |
: i —1)dw
lesm[ooT+T+7l} = NIOV1 (3)
sin%N—d(‘%
2 _
2l ol v .n[wT+(N 1)dw+wn]
o~ RV o 2v 2
SN0

The first term on the right-hand side of expression
(3) is a constant component of the dose rate p,, which
isindependent of T. The second term is avariable com-
ponent p, of the dose rate, its last factor alone being
dependent on time T. The remaining T-independent fac-
tors determine the amplitude of the variable compo-
nent.

Let us write the ratio of variable and constant dose
rate components and use the change of variables T =t —
(t, + T)(N - 1) — 14, which introduces a common time
variablein formulasfor the flux intensity and dose rate.
Physically, this change of variables simply means that
any changein the dose rate observed at thetrailing edge
of thelast dlot must start immediately after the intensity
of theirradiating flux starts changing:

Pa (N—1)dw T,
A(t) = . = A sm[wt T—T} (4)
where
_ Imsin§ sin(Naf) _wly d
AN g sn@e) !t T2 AT

Interms of the coordinate X' connected to the surface
being irradiated, for constant w and v, the dose rate

ZOR’KO et al.

variation in the direction of motion can be written as
N o . X —X
A(X) = Agsing—> o, (5)

where A, is given by (4a) and x is the origin of the of X
axis.

The expressions obtained above show that, when a
moving surface is irradiated by a sinusoid-modulated
beam through a uniform array of slots in a screen
(Fig. 1), the dose rate aso varies sinusoidaly in the
direction of motion with a period of A = v/f, wheref =
w/2mtisthe modulation frequency of the radiation inten-
sity. In accordance with its physical meaning, coeffi-
cient A, can be called the spatial modulation index of
the dose rate in the X' coordinate, and A; = 1./l can be
called the temporal intensity modulation index of the
irradiating flux.

It can easily be seen that, accurate to within the
interpretation of quantitiesinvolved, the function Ay(€)
coincides with the expression that describes diffraction
of a plane electromagnetic wave on a periodic array of
slotsin ascreen in the Fraunhofer approximation [4]. In
particular, for N = 1, expressions (4) and (4a) reduce to
expressions (6) and (6a) which describe the Fraunhofer
diffraction by asingle slot of width |;:

A1) = AplsinBot—%‘g, (6)
-
A = R, (63

wheret =1,/v and & = wl,/2v.

In the above expressions, changing the sign of
amplitude A, at certain discrete & meansthat ajumplike
phase change by 1t occurs at these points in the modu-
lating function. The function |A,(€)| is the sequence of
aternating main and side lobes that iswell known from
diffraction spectroscopy. At the points where the phase
changes abruptly, A,(§) = 0. This means that, by appro-
priately choosing the frequency-to-velocity ratio, the
moving surface can be irradiated quite uniformly at the
variable intensity of the irradiating flow. Conversely, a
periodic array with avery small screening cross section
(highly transparent) introduced in the irradiating aper-
ture can significantly increase the nonuniformity of the
illumination under certain conditions. As an example,
consider the case of alarge number Nand (o —1) < 1.
Such an array can be created by introducing a uniform
mesh of thin filaments across the working aperture that
are perpendicular to the x' axis. Clearly, the transpar-
ency of this array will be proportional to 1/a, i.e., will
be close to unity. In this case, increasing ¢ gradually
shifts the man maximums of the factor
sin(Nag)/sin(ag) in expression (4) relative to the min-
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ima (zeros) of the factor sin&/€. The phase of the shift

ms

NS, = nm%. @)

increases linearly with the order m of the spectrum. By
expanding the function sing in apower seriesabout §; =
1i and truncating it beyond the linear term, it can be
shown that, with an allowance for (7) and with small m
meeting the condition

Tt
AEm < Ev (8)

the function A,(&) has the same val ue independent of m
at the locations &, = Tmva of the main maxima.

In order to compare the values of |Aj| and |A,], itis
convenient to consider these quantities as functions of
the frequency w rather than of the generalized variable
&. Figure 2aisaplot of the function |Ay;(w)| for asingle
wideslot; Fig. 2b plotsthe function |A,(w)| for the same
slot with a mesh of 19 thin filaments. The total area of
the filaments accounts for 5% of the aperture area. The
transmission coefficient of thismeshisK, = 1/a=0.95.
As can be seen from the figures, when condition (8) is
met, the function |A(w)| has almost equal values at
locations of its main maxima, which are significantly
higher than |A,;(w)| at these points. Thus, an additional
thin uniform mesh with a high transmission introduced
into the aperture increases the modulation index of the
irradiation intensity at particular discrete frequencies w
in the resonance manner.

IRRADIATION THROUGH A SINGLE SLOT
BY A PULSED FLUX

The irradiation of moving targets on charged parti-
cle accelerators is very often performed with pulsed
sources. Therefore, an analysis of the spatial dose den-
sity distribution for such an irradiation has area prac-
tical significance. It is reasonable to consider the prob-
lem for asingle slot separately from the general case.

Let amoving surface beirradiated by asinusoidally
time-modulated flux through a single slot of width |.
The dose rate Ay(t) at the point x = I, will be described
by expressions (6) and (6a), in which a change in the
sign of the intensity means a phase change by Tt In
accordance with formula (2), the constant component
[T, of the resultant dose rate is independent of the fre-
guency w and theintegral operator isalinear functional
transformation. Therefore, to within a constant dimen-
sional factor, the function A,; = A, (w) can be regarded
as an amplitude-versus-frequency response of acertain
linear circuit to the harmonic component of the source
radiation applied to its input, the corresponding har-
monic dose rate component being observed at its out-
put. In accordance with formula (6), the phase-versus-
frequency response of this circuit is ¢(w) = —wT/2.
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Fig. 2. Function |A,(w)| for (a) a single slot and (b) the
same slot with a periodic mesh at N = 20 and K, = Lo =
0.95.
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Hence, the following expression can be written for the
complex transfer function K (w) of this circuit [5, 6]:

. WT
. Sn7 0 .01
K(w) = C ot XPETIS0 ©
2

where C isthe dimensional constant.
The pulsed response h'(t) of the linear circuit is

defined as the inverse Fourier transform of K (w). In
this case,

. WT
S . _c "7
h'(t) = E{IK(w)exp(Jwt)dt = EJ e
—o —co ?

(10)

DO t<O0
i _ID :EC
xexp[JooB 2]}do\) E? O<t<rt
0 t>1.

Since h'(t) = 0 for t < O, the system can be realized
[5, 6], which could be expected because our calcula
tions did not involve any simplifying assumptions that
could lead to an unfeasible system.
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h'(t)
11(1)17 ~
py(®)

om0
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Fig. 3. Time patterns illustrating the formation of the dose
rate p(t) distribution under a periodic pulsed action.

ol

L et a periodic sequence of rectangular pulses of the
length AT and pulse repetition interval T, be applied to

the system K (w) (Fig. 3). The response of the system
to this sequence, which determines the dose rate cre-
ated by the pulsed source, can be written as[5]

p(t) = > pu(t-[i-1T), (11)

where
pi(t) = [h'(t—t)1(t)at,
J

(0 t<O0,t>AT

() =
(=0 octear,

and h'(t) is given by expression (10).

Figure 3 plotsthe function p(t) at a =1/Ty=2.5and
© = TY/AT = 3. Figure 3 also shows the input pulse
sequence I (t), pulsed response h'(t), and response p,(t)
to asingle pulse. As can be seen from the figure, the
transient has afinite duration and the dose rate distribu-
tion comes at t > 1 to its periodic steady state p(t),
which has a typical trapezoidal shape. Note that the
slope in the corresponding intervals depends for v =
const on the radiation intensity |, only and is indepen-
dent of Ty, AT, and T.

Consider theindex of pulsed dose rate modulation

Aim - Prmax _pmin.

pmax
Figure 4 is aplot of A, versus parameter a = /T,
which clearly shows that, in the course of the pulsed
irradiation of a moving surface through a single dot,
the irradiation dose becomes distributed more uni-
formly as the number of pulses that arrive over time T
increases. Also, if the irradiation time is a multiple of

(12)
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Aim(a) 1
1.0
0.8
0.6 20T/T
0.4

1/4 15
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-0.2 a
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Fig. 4. Modulation index of pulsed dose rate versus param-
eter o = /Ty for © = TYAT = 3.

the pulse repetition interval, then A (o) = 0 and the
irradiation is completely uniform. However, when the
pulses are short (© > 1), this condition is satisfied to a
sufficient accuracy only in very small intervals of a.
Conversely, if it is necessary to obtain the deepest mod-
ulation of the doserate, the condition T < T,—AT should
be met.

IRRADIATION BY A PULSED FLUX THROUGH
A PERIODIC SPATIAL ARRAY

In the previous section, we used the dose rate distri-
bution on the moving surface to perform the time-
domain analysis [4-6]. However, when the slot screen
represents a sufficiently long periodic structure (Fig. 1),
then, according to (4a), the index of modulation
depends on the frequency as the Fraunhofer diffraction
function, i.e., has the form of a sequence of resonance
peaks. If we analyze this case as above in terms of the
linear circuit theory, the results are the clearest in the
time domain [6].

Following the procedure used in the previous sec-
tion and taking into account Egs. (4) and (44), we can

write the complex transfer function Ky (w) for the lin-
ear system that models the process of irradiation under
the action of the time-harmonic component of the flux
intensity as

. 0T . Nw(T+T
sin® gp N0t + To)

: _ 2 2
Kn(w) = Cy Wy . (G +T,)
2 YT (13)
. (N=1)(t 1) +T
% exp[—Joo( )( ; 2) 1},

wheret; = l;/vand 1, = (d = I))/v.

Let an infinite periodic sequence of rectangular
pulsesf(t) of the length AT and amplitude a,,, arrive at
the input of system (13) with the pul se repetition inter-
2002
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05 10 15 20 25 30 35 40
-02¢ 4

Fig. 5. Function p(t) at C\ = Oy =T1 =T =1,N =10, and
W=21Ty= (1) 1 (2) T+ 1060, and (3) T+ 1730.

val T,. This sequence can be represented as the Fourier
series[4, 5]

i _ AT
f(t) = Z beexp(jkwt) = ——
k= - Kk = —o0
SinknAT (14)
T,
kAT ————exp(jkwt).
T,

Since system (13) is linear, its response to action (14)
is a superposition of responses to each harmonic com-
ponent of the series. If our interest isin the intensity of
thisresponse irrespective of an arbitrary phase shift, the
exponential factor in (13) can be dropped. Then, the
time variation of the dose rate at the output of the aper-
ture can be expressed as

p(t) = }E K n(kw) b, exp(jkot)

k= -0
) _nkuz)rlsi kwN(121+T2)Ska_:_AT (15)
- 9 jkat),
N Z ) ' kw(T1+T2) eXp(J )
k=—o k wsnT
where
cl = 2CN0(maX.
ae

Figure 5 shows the waveform of the source
sequence of theirradiating pulsesf(t) and the respective
irradiation intensity p(t) obtained from (15) for several
frequencies w = 21Ty at Cy = Qe = T; = T, = 1,
AT/Ty= 0.5, and N = 10. These frequencies are indi-
cated by dots on the amplitude-versus-frequency
response (Fig. 6). As can be seen from the plots, when
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Fig. 6. Magnitude of the transfer function Ky versus fre-
quency wat Cy = Oppax = T1 = To =1, AT/Tg=0.5,and N =
5and 10.

the fundamental frequency of the sequence is tuned to
the maximum corresponding to m = 1, al higher har-
monics reside at the odd main maxima of the function

Kn (w), which provides their maximum transmission
through the linear system and, as a consequence, the
deepest modulation of the output dose rate distribution.
At w = (2t + 21UN) T, = 11+ 1730, the aternating com-
ponent of the dose rate has the smoothest, nearly sinu-
soidal, waveform, the contribution of higher order har-
monics decreasing with increasing total slot number N.
In this case, a sort of space-time filtering is observed,
which creates the sinusoid-modul ated dose rate p(t) for
any periodic source function I(t) that contains only odd
harmonics.

The resonance properties of the transfer function (13)
enable the device to operate at the harmonics of the
source radiation 1(t). This means that the relationship
between the fundamental frequency w = 21T, velocity
of the irradiated surface v, and number of slots N can
always be chosen such that the frequency of the alter-
nating component of the function p(t) will be equal to
ki, where k; is the frequency multiplication factor. A
particular multiplication factor can be implemented in
different ways. Figure 6 plots the magnitude of the

function K (w) for N =5 and 10. If the frequency w of
the fundamental harmonic of the source function is
such as shownin the plots, all harmonicswill bein both
cases suppressed in the output spectrum except for
those with indexes5(2i — 1), wherei =1, 2, 3, .... These
harmonics can be regarded as odd harmonics of the new
fundamental frequency ws = 5w. It can easily be seen
that their amplitudes and phases are rel ated as those for
the harmonics of p(t) when its fundamenta frequency
is tuned to the main quasi-diffraction maximum (m = 1).
Thus, in both cases, the frequency of the alternating
component of p(t) ismultiplied by afactor of k; =5, the
shape of the component remaining the same. The max-
imum of the intensity modulation index is attained if
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and only if the frequency of the first harmonic being
selected coincides with the main maximumat m=1. In
our example, thisoccursat N = 10 (Fig. 6).

IRRADIATION OF A MOVING SURFACE
BY A TIME-MODULATED FLUX
AS A QUASI-DIFFRACTION PROCESS

We have already noted above that an analogy exists
between the process of irradiation of a moving surface
and wave diffraction. At first sight, this analogy may
seem to go no further than the formal resemblance of
expression (4a) and the function that describes the
Fraunhofer diffraction by aone-dimensional planar slot
screen [4], because the nature of both processesis com-
pletely different. However, a technique exists that can
be used to refer the spatial modulation index of the dose
rate A,(x) of a moving surface to the results of diffrac-
tion on more complex two-dimensional objects. We
will consider here the simplest example of such a two-
dimensional object, while limiting our analysis of more
complex casesto the formulation of general statements.

Consider a planar dlot screen B'B" inclined by an
angle a, to the observation plane A'A" (Fig. 7). Let a
plane electromagnetic wave be normally incident on

Bn

An

2

Fig. 7. Illustration of the Fraunhofer diffraction on an
inclined slot screen.
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the screen and the conditions

— 2T1C

A <l,<Z
(0V]

(16)

be met, where A is the wavelength, c is the velocity of
light, |, isthe slot width, and Z is the distance between
the lower edge of the slot and the observation plane.

According to the Huygens—Fresnel principle[4], the
points of the wave front that lie in the plane of the slot
arethe sources of the secondary spherical waves. Let us
find phases of the secondary waves that propagate in
directions AO and CO (Fig. 7). If theangle o ischosen
so that |;sina, = iA, where i is an integer, then the
phases of the corresponding waves at the points B and
C will be equal. The interval BC, which is parallel to
A'A", will accommodate exactly i spatial periods A, =

A tana, of the phase wave that travels rightward with

the phase velocity v, = ¢/tana, . Itisclear that, in this

case, the secondary waves will completely compensate
each other at the observation point O at any time
moment.

Let us change the observation angle by small value
Ao << o by moving the observation point from Oto O'.
It can easily be shown that, asaresult, apath length dif-
ference will appear between the secondary waves prop-
agating in the directions AO' and CO', which can
approximately be written as

. . . 2
Al = 1, cosaysinAa —I;sinaysin“Aa 17
~ : 2
=|,cosa,Ad — I, sinay,Aa”.

This approximation is only valid for small Aa, i.e.,
when the Fraunhofer condition is met. At large inclina-
tion angles o, a negative term proportional to squared
Ao appears on the right-hand side of (17), which
stretches the diffraction pattern as the observation point
moves rightward on the A'A" plane. This distortion of
the diffraction pattern with respect to the diffraction
pattern produced by the plane-parallel screen occurs
because the planar slot, being turned by an angle a, #
0, is seen from the observation region as a two-dimen-
siona object rather than as a one-dimensional object.
Each point of its surface is how characterized by two
coordinates x and z and the nonlinear dependence
Al (Aa) mentioned above is an indirect consequence of
this fact.

Let usfind the electric field (or magnetic field) dis-
tribution in the plane A'/A" with respect to the observa-
tion angle Aa. Let the angle o, be chosen so that

[, sina

L = =21, (18)
At Aa =0, condition (18) means that n, spatial peri-
ods of thewavetraveling horizontally are present on the
interval BC, which corresponds to the initial phase
parameter of the Fraunhofer diffraction pattern equal to
TECHNICAL PHYSICS  Vol. 47
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0y = 21, = 21d;Sinay/A. As the observation angle Aa
increases, the path length difference Al also grows,
which increases the phase parameter by Al/A. Thefield
intensity E(a,, Aa) will then be distributed along the
A'A" direction by the Fraunhofer law

. Aln

cr2mly, . .
sm[Tl(smao +Aa cosaO—Acxzsnao)}
= CO

21, (19)

A

. 2 .
(sina, + Aacosa,—Aa“sina,)

_ . Sin(bo + byDa —b,Aa®)
0 b0+ blAG _bzAaZ

where by, = b, = 21;sinay/A, b; = 2rd,cosay/A, and
C, isthe proportionality coefficient.

Expression (19) isvalid when Aa < 1 and, a 0y =0,
goes over to the expression that describes diffraction on
astraight slot in a planar screen.

Let usturn again to the analysis of irradiation of the
moving surface by a sinusoid-modulated flow assuming
that parameter & in (6a) varies adiabatically with
timeas

£(t) = by—bit—byt’. (20)

The adiabatic variation complies with the condition
[[&(t) —&(t + T)]/E()] < 1. If the velocity of the surface
is constant, v = const, this variation can be related to a
change in the frequency w. Formally, the adiabaticity of
the process will be manifested in that the expression
(6a) for A, (t) remainsvalid and the time dependenceis
conveyed only through the time dependence of param-
eter &. Hence, we can write

sin(by + bit — byt?)
by, + byt — byt

Ai(&(1) = Ani(t) = C

. . b; b;
smB)o+ Jx‘——gx'% _ (21)
v v =
= C 1 1 = Apl(xl)'
b 2
by + le'——zx'

In the last equality, we have changed to the spatial
coordinate X' under the assumptionthat X =0 att =0.

Expressions (19) and (20) have an identical form.
Thismeansthat, if the coefficients are chosen appropri-
ately, the distribution of the alternating component of
the irradiation intensity in the X' coordinate on the sur-
face will exactly reproduce the diffraction pattern for a
single dot rotated by the angle a, with respect to the
observation plane. The maximum X' that complies with
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the Fraunhofer conditions can easily be found from
the corresponding expressions for the coefficients by

and b;.

In the general case, it can easily be shown that, at
fixed v and |, dowly varying functions | (t) and w(t)
can aways be chosen for an arbitrary two-dimensional
object such that, if the intensity of the irradiating flow
varies as

1(t) = 1o+ 1 (t)sinfe(t)t], (22)

the modulation index of the dose rate will be distributed
inthex coordinate asthe wave diffracted on thisobject.
Also, it is not necessary to stay within the Fraunhofer
approximation, because the above technique can be
used to synthesi ze the diffraction patternin an arbitrary
range of the observation angle.

Let usreturn to the Fraunhofer diffraction on a peri-
odic spatial array parallel to the observation plane. As
we noted above, the diffraction pattern is described in
this case by afunction similar to (4a). Thisisdueto the
fact that, in the one-dimensional case, the two-dimen-
sional Fourier transform, which follows from the elec-
tromagnetic theory and is used in the Fraunhofer dif-
fraction theory, coincides with integral transformation (2)
to within a constant factor. Therefore, if the moving
surface is irradiated by a sinusoid-modulated flux
through a one-dimensional dlot screen of any configu-
ration, the distribution A,(&) observed will always cor-
respond to the Fraunhofer diffraction pattern for an
object of the same configuration. Based on thisanalogy,
we may consider variation of the modulation index of
the dose rate as a function of the frequency w and the
irradiated surface velocity v as being due to the action
of a certain quasi-wave process evolving according to
the wave equation in an artificially introduced two-
dimensional metric space. Unfortunately, it seems
impossible to uniquely define this space. Moreover, it
can be shown that any admissible definition of this
space prevents defining a metric such that nontrivial
invariant transformations would have physical mean-
ing. Nevertheless, applying the term “ quasi-diffraction
process’ to refer to the irradiation of the moving sur-
face is quite justified in our opinion for the following
reasons.

First, using this term implies that the commonly
accepted and convenient terminology of diffraction
spectroscopy is automatically extended to the field of
our interest.

Second, using a coherent reference radiation, area
hologram of the slot configuration can be obtained on a
moving surface, which can (at least in principle) be
used to reconstruct the image of this configuration with
the help of the inverse wave process. Of course, this
reconstruction is only possible by methods of computer
optics [7], but the existence of such a possibility alone
suggests that the processes studied in this paper are
closely connected to the wave processes.
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A technique for creating the above hologram will be

described in the second part of the paper.

1

2.
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with water with regard for the temperature variation of the volume thermal expansion coefficient of the latter.
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INTRODUCTION

Pioneering investigations into laser radiation-iquid
interaction date back to the 1960s-1970s. To date, a
variety of both theoretical and experimental studies on
this subject have been published, including mono-
graphs [1, 2] and reviews [3-8] with extensive refer-
ences therein.

The interaction of laser radiation with liquids
depends considerably both on the radiation parameters
(energy E,, laser pulse width T, focusing conditions)
and on the properties of the liquid (especialy on its
absorption coefficient a at a radiation wavelength).

Depending on the energy density absorbed in the
surface layer of the liquid, the following mechanisms
behind the generation of acoustic and shock waves in
the liquid are possible:

(1) For heavily absorbing liquids and low absorbed
energy densities, when the temperature of the surface
layer isbelow the boiling point, acoustic waves are gen-
erated basically by the acoustooptic (or thermal) mech-
anism, i.e., are due to thermoelastic stresses arising
because of the nonuniform heating of the liquid.

(2) If the absorbed energy exceeds the energy of
evaporation, the evaporative mechanism comes into
play. In this case, acoustic waves are generated by a
recoil momentum arising upon liquid evaporation.

(3) With still higher laser radiation power densities,
flash evaporation takes place and the liquid surface or
the air—stream mixture over the surface breaks down,
causing shock waves in both the liquid and air.

(4) In liquids transparent to laser radiation, volume
dielectric breakdown may occur intheliquid if the laser
radiation intensity exceeds some threshold value
(breakdown threshol d).

All the above mechanisms have been considered
more or less rigorously in [1-8]. Experimental studies
performed with hydrophones and piezoel ectric sensors
[6, 9, 10], as well as by optical methods [11-13], in a
wide range of laser radiation energy densities (covering
different interaction mechanisms) show that the mea-
sured amplitudes and shapes of the acoustic pulses are
in fairly good qualitative and quantitative agreement
with theoretical predictions. In the experiments, the
highest shock pressures generated upon flash evapora-
tion and dielectric breakdown on the surface reached
hundreds and even thousands of atmospheres [10, 13].
This means that associated techniques may find wide
application in medical, environmental, and technol ogi-
cal problems, aswell asin the laboratory simulation of
hydrodynamic processes accompanying actual under-
water explosions.

However, in applications using acoustic and shock
waves generated upon laser radiation-iquid interac-
tion, one should take into account not only the parame-
tersof the waves generated but al so the lasing-to-acous-
tic energy conversion efficiency.

Earlier, the conversion efficiency upon the interac-
tion of laser radiation with liquids was discussed in
[2, 5, 8]. In this work, we derive relationships for esti-
mating the energy conversion efficiency n for the
acoustooptic mechanism of interaction between pulsed
laser radiation and liquids. The efficiency is theoreti-
caly caculated for the specific case of interaction
between the radiation of a CO, laser and water with
regard for the temperature dependence of the volume
thermal expansion coefficient of the latter.

1063-7842/02/4710-1299%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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BASIC RELATIONSHIPS FOR CALCULATING
THE CONVERSION EFFICIENCY
UPON ACOUSTOOPTIC INTERACTION

The conversion efficiency is defined as the ratio of
the energy E,. transferred by a pulsed acoustic (or
shock) wave to the energy of laser radiation incident on
the liquid surface:

n = Ea/EL (D

where

E. = J’eacdS,

€4 1S the acoudtic energy density passing through the
wave front, and Sis the surface area of the wave front.

In turn, €, can be calculated by the formula

+o00

-1 2
€ = pOCOL|;[F’(t)] dt, )

where py is the initial density of the medium, ¢, is the
velocity of sound in the medium, and P is the excess
pressurein an acoudtic pulse over theinitid pressure Py,

Inview of (2), (1) can be recast as

n = IDJ' [P(t)] dﬂ]dS ©)

poco

Thisrelationship can be used in calculating the effi-
ciency for various mechanisms of optical-to-acoustic
energy conversion provided that the time profile of the
acoustic pulse is known over the entire wave front sur-
face.

When calculating the efficiency in terms of the ther-
mal mechanism, we will take advantage of theoretical
relationships for the pressure pulse profile givenin [2].
The case under study will be strong absorption, which
takes place when the radiation of a CO, laser interacts
with water. The criterion for strong absorption isaa >
1, where a is the absorption coefficient (for water, o =
800 cm™ at awavelength of 10.6 um) and aistheradius
of the radiation spot on the liquid surface. In this case,
the zone of energy evolution representsathin disk adja-
cent to the liquid surface.

Theinteraction character and the energy conversion
efficiency depend considerably on the laser pulse width
T, and properties of theinterface between the absorbing
liquid and transparent medium. The interfaceis consid-
ered to be rigid if the acoustic impedance ratio N =
PuCo/PyCy for the liquid and transparent medium is
much less than unity. Thisis the case for aliquid-solid
interface. For a free interface, such as the air—water
interface, the situation isreverse: N> 1.

OSTROVSKAYA

SHORT PULSE

If the laser pulse duration is much less than the time
it takes for an acoustic wave to travel the distance a
(short pulse), the pressure pulse profile is given by [2]

P.(1) = (acoPe /2¢,) exp(—acolT]) 4
for arigid interface and

Py(1) = (acoBec/2c)exp(-acylt)sgnt  (5)

for the free surface of theliquid. Here, g, isthe density
of the laser radiation energy on the surface, B is the
thermal expansion coefficient of the liquid, ¢, is the
velocity of sound in the liquid, c, is the specific heat at
a constant pressure of the liquid, T = z — tc,, zis the
coordinate normal to the surface and directed inward to
theliquid, t isthe time counted from the instant of opti-
cal pulse incidence on the surface.

At relatively small distances from the surfaces,
when diffraction can be neglected (for z < Ly =
a?/2cyt, , where L isthe diffraction length), the acous-
tic pulse front is flat and the pressure distribution over
the front is the same as the energy density distribution
over the focal spot. Let us put for simplicity that the
energy density within the spot of radius a is constant,
€ = E /ma?, and the surface area of the wave front
equalsthat of the focal spot (S=T?). Then, Eq. (3) can
be rearranged to the form

+o00

I[P(t)] dt. (6)

n= pOCOSL

Substituting (4) or (5) into (6) and taking the integral
yields
2n2
CoB ae
n = OB_ZL = Ko, 7)
4poCy,

where the coefficient k, = (c5B%)/(4poCa) depends
only on the liquid parameters. Specifically, for water at
room temperature, ky = 103 cm?/J (in calculations, the
values of the parameters were the following: ¢, = 1.5 x
10° cm/s, B = 2 x 10* deg™, and ¢, = 4.17 J(g deg)).
Note that (7) coincides with the formula for the effi-
ciency of the thermal mechanism in the linear mode
[2, 5, 8]. Sincetheintegrand in (6) isthe acoustic pres-
sure sguared, the conversion efficiency for therigid and
free interfaces turns out to be the same.

As follows from (7), the conversion efficiency for
the thermal mechanism is proportional to €, . However,
the possibility of increasing n within the thermal mech-
anism by raising the energy density is limited by the
transition to the evaporative mechanism at g, > g, =
1.5 Jcm?.

Thus, the maximal efficiency of light-to-sound con-
version by the thermal mechanism is no more than sev-
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eral fractions of a percent. To attain such a value, the
laser pulse duration T, must be much less than the time

(aco)™t, which correspondsto 1, <8 x1079s.

LONG PULSE AND RIGID INTERFACE

The pulse duration for atypical TEA CO, laser far
exceeds the time (acy) ™. The waveform of pulses from
the CO, laser used in our experiments is depicted in
Fig. 1. The pulse consists of a relatively sharp front
peak with ahalf-width At; = 100 nsand an extended tail
(At, = 3 us). Thus, the relationship acgt, > 1 for along
pulseisfulfilled for the whole duration of the pulse and
even for its front edge.

For along pulse and arigid interface, the time pro-
file of the pressure pul se coincides with that of the laser
pulse[2]:

P = Plogy) @®
P

Here, |, isthe peak intensity (power density) and f(t) is
the time evolution of the laser pulse. The quantity I, is
obvioudy related to the energy density €, as

00

g = IOJ'f(t)dt = oty 9

where t4; has the dimension of time and represents the
area under the curve f(t).

Substituting (8) into (6) yields the conversion effi-
ciency for along pulse and arigid interface:

CoB 0 4Ko€ 1y
= fo(t)dt = ,
N j “(t) e

Pon effy eff

(10)
where

t, = }fz(t)dt.

To calculatety; and t;, we represent the actual func-
tion f(t) as the sum of two functions fi(t) and fy(t)
describing, respectively, the front peak and the tail of
the pulse (Fig. 1b). The former can be conveniently
taken in theform

fo(t) = Asin’(Tit/2At,) + Beos'(Tit/2At,),  (11)
where A=1at 0<t< 2At; and A= 0 beyond thisinter-
val, while B = By at At; <t < 2At; and B = 0 beyond this
interval.

The coefficient B, characterizes the relative inten-
sity of thetail and front peak and depends essentially on
the composition of the lasing medium of the CO, laser.
For the pulse shown in Fig. 1a, B, 00.3.

Thetail intheinterval 2At; <t <At,, where At, isthe
full width of the pulse, is approximated by a straight

TECHNICAL PHYSICS Vol. 47

No. 10 2002

1301
Iy
[ (a)
0 1 2 3
f(t) = Pr(’)/Pr max
’ (b)
- A
F\ A
i X fZ(t)
/ 1 | 1 1 1 1 1 |— - _| - )
0 20, 0.5 1.0
Pf(t)/Pf, max
Ir (©)
1]= | | | | | | | )
0.5 1.0
t, Us
-0.5}

Fig. 1. (a) Waveform of a typical TEA CO, laser pulse.
(b) Laser pulse profile f(t); dashed curve, actual CO, laser
pulse; solid curve, its approximation by the sum of func-
tionsfy(t) and fo(t). (c) Time evolution of the thermoacous-
tic pulse Ps(t) found by differentiating f(t) with respect to
time (dashed curve, actua laser pulse; solid curve, its
approximation).

line given by
f2(1) = Bup 2o a2)
Then, for ty, we have
24t At,
ter = J'f L(t)dt + J’ fo(t)dt
24t (13)

= AL H + 2‘D+ 20(At, — 2At).

Let us put At; = 100 nsand At, > 3 ps, which corre-
sponds to the pulsein Fig. 1a; then, ty (15.3 x 107 s,

The value of t; can be found as

2At, At,
J’ f2(t)dt + [ £2(t)dt.
2At,
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Integrating yields
3 1 1
t = ZALAL +ZBo—3 %+ —(At2 2A\t,).

For the values of By, At;, and At, adopted earlier,
t, 01.6x107s,

Substituting t; and t; found previously into (10), we
arrive at a computing formulafor n;:

n,=19x 107, (Jcm?). (14)

Thus, in the case of along pulse and arigid inter-
face, the optical-to-acoustic energy conversion effi-
ciency isroughly 50 times lower than for a short pulse.
At g = 1.5 Jcm?, the conversion efficiency n, = 2.8 x
105,

LONG PULSE AND FREE SURFACE

In this case, the conversion efficiency is till lower.
According to [2], when long laser pulses interact with
the free surface, the pressure pulse profile varies as the
derivative of the laser pulse:

(1 dP(t) _
ac, Tdt

_ Blodf (1

Pi(t) = g dt - (25
P

The waveform of the pressure pulse is depicted in
Fig. 1c, where the dashed curve was obtained by differ-
entiating the actual pulse of the CO, laser (Fig. 1a) and
the continuous curve was found by approximating the
function f(t) as before. The pulse generated at the free
surface is seen to consist of two, positive and negative,
parts, i.e., is bipolar.

Substituting (15) into (6) yields

2 o 2
£ = P iLz 2 I[df(t)} dt = 4k30q3)t::|_1 (16)
PoCo C teff dt Colest
where
df (t
| (40T a, &

To calculate ®,, we use above approximations (11)
and (12). Then, intheinterval 0 <t < At;, we have

di() . m o om
dt 24t At

For At; <t < 2At,,

df(t) m T
= (A-Bo)gg SNy

OSTROVSKAYA

for the tail (2At, <t < At,),

oftn _ __ Bo
Udt U (At, — 2At,)

It is easy to check that (df/dt). is roughly two
orders of magnitude less than df/dt in the extrema of
the acoustic pulse. Therefore, we can ignore the pulse
tail when calculating the efficiency by formula (16),
which involves df/dt squared. Integrating (17) with the
values of df/dt for the front edge of the pulse, we find
that

™ 18
P, = TR, - (1-B,+05b?) = R

Substituting ®, into Eq. (16), we obtain the comput-
ing formulafor the conversion efficiency in the interac-
tion of along pulse with the free liquid surface:

_ TP(1-By+ 0.5By)ko®yg,

N =
a’catAt,

=15x107'g,, (18)

where g, isgivenin Jcm?,
For ¢, = g, the conversion efficiency isn; = 2.5 x
10

TAKING INTO ACCOUNT THE TEMPERATURE
DEPENDENCE OF THE VOLUME EXPANSION
COEFFICIENT

All the above calculations of the conversion effi-
ciency were performed in thelinear approximation, i.e.,
under the assumption that the liquid parameters remain
constant during the action of a laser pulse. Actualy,
many of the parameters entering into the formulas
derived depend on temperature to some extent or other,
which varies when the surface layer is heated by laser
radiation. The volume thermal expansion coefficient 3
depends on temperature to the greatest extent (Fig. 2).
The thermal nonlinearity related to the temperature
dependence of 3 was taken into account in [15, 16]. In
these works, the effect of the nonlinearity on the shape
of the pressure pulse near the liquid surface and in the
far zone, respectively, was considered (seeaso[1, 2]).

We ignore the effect of heat conduction and assume
that the dependence 3(T) islinear:

B(T) = B(To)+ ] T (19)
where T, is the initial temperature of theliquidand T'
is its variation due to radiation absorption. We aso
assumethat T' varies across the layer as

ag, e—dz.
PoCp

Then, it is easy to find the time profile of the pres-
sure pulse with regard for thermal nonlinearity [2]

T = (20)

TECHNICAL PHYSICS Vol. 47 No. 10 2002
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when the short pulse acts on the rigid and free surface:

P,(1) = (acsBe /2¢p)

(21)
x [exp(-acolt]) + Ne_exp(=2ac,|t/)],
Py(T) = (acoBeL/2cp) 22
x [exp(—acolt|) + Ne_exp(—2ac,|t|)] sgnt .
Here,
N B 23
q)OCpB(TO)DmTDT (23)
isanonlinear parameter.
Putting T, = 20°C, B =2 x 10* deg™, and (dp/dt) =

7.2 x 10°° deg?, we find N 07 cm?/J.

Substituting (21) or (22) into (6) and integrating
yields the conversion efficiency for the short pulse in
view of thermal nonlinearity:

N = ko L+ gNeL + %stf% (24)

For the long pulse acting on the liquid surface, the
surface temperature grows in time proportionally to the
absorbed energy:

T(t) = To+ —2(f(1)dt
’ (25)
= To+ boc, teffJ'f(r)dr
Accordingly, B increases as
B(t) = B(TO){1+N—£LJ'f(r)dr}. (26)
teff 0

Thevariation of the surface temperature and thermal
expansion coefficient calculated by formulas (25) and
(26) with a CO, laser pulse approximated as above is
shown in Figs. 3aand 3b for various values of €, .

Substituting B(t) for B in (8), we come to the shape
of a pressure pulse generated by the action of the long
pulse on the rigid interface in view of thermal nonlin-
earity:

P.(t) = Wf(t)[u%‘[f(r)dx} 27)
0

pteff

Thetime profile of apressure pulse generated on the
free surface can be found by differentiating (27) with
No. 10
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B x 10% deg™!
8 —

0 1 1 1 1 ]
¢ 20 40 60 80 100
T,°C

Fig. 2. Temperature dependence of the volume expansion
coefficient (3 for water [14].

T,°C
’ a
100~ ®

80
60

40

x 10* (b)

W ~r NN O

0 0.5 1.0 1.5 2.0 2.5 3.0
t, Us
Fig. 3. Variation of the (a) surface temperature and (b) vol-

ume thermal expansion coefficient of water during the
action of a CO, laser pulse. g, = 0.1 (1), 0.2 (2), 0.3 (3),

0.4 (4), 0.5 (5), and 1.0 (6) Jcm?.

respect to time:

1 dP(t
Pe(t) = a_co dt() =

BoEL
O Cpte

(28)
[df(t)DHN J’f(r)dTD+N Euy (t)}
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Pr(t)/Pr, 0

3
1.0 -
1
2
05r
0 1 1 1 1
50 150 250
t, ns
051
-1.0

Fig. 4. Time profiles of the pressure pulses generated by the
CO;, laser pulse on (a) rigid and (b) free water surfaces (1)
with and (2) without considering thermal nonlinearity. g =
0.2 (2), 0.4 (3), 0.6 (4), and 1.0 (5) Jcm?.

Formula (28) can be rearranged to the form

PU(t) _ df (1) gy

P, - df tad,, "I (29)

where (df/dt) . = TV2At; isthe maximum val ue of df/dt
in the linear mode,

_ Neyrdfrr?
ter LOtL

isthe dimensional parameter characterizing the degree

OSTROVSKAYA

0.5

€L, J/cm?

Fig. 5. Effect of thermal nonlinearity in the conversion effi-
ciency for different interaction conditions: (1) short pulse,
(2) long pulse and rigid interface, (3) long pulse and free
surface, and (4) with no regard for nonlinearity.

n
1072~

1073

1078
0.1 0.2

| | | |
03 04 05 1.0
€L, J/cm?
Fig. 6. Absolute values of the efficiency for different inter-
action conditions: (1) short pulse, (2) long pulse and rigid

interface, (3) long pulse and free surface; (1-3) with regard
for nonlinearity and (1'-3") with no regard for nonlinearity.

of nonlinearity, and

F(t) = %jf(r)oﬁ + 11
0

isadimensiona function of time.

Results of calculations of the functions P,(t) and
Ps(t) by formulas (27)—«29) including thermal nonlin-
earity are presented in Figs. 4a and 4b. Here, f(t) was
approximated by (11) and (12).
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The pressure time profiles thus found were used to
estimate the efficiency of laser energy conversion in
view of thermal nonlinearity by formula (6). Figure 5
showsthe numerical calculations of n, and n; (curves 2,
3) normalized to the associated val ues of the efficiency
calculated by formulas (14) and (18) with no regard for
thermal nonlinearity. Curve 1in Fig. 5 shows the quan-
tity n/k,e, calculated by formula (24). Dashed line 4
corresponds to the linear approximation (N = 0).

The calculations of n by formula (24) was per-
formed for g varying within the interval 0-0.4 Jcm?,
since at larger €, the surface temperature cal culated by
formula (20) at z = 0 exceeds 100°C. Such a situation
means that the evaporative mechanism of acoustic wave
generation comes into play. The values of n, and n;
were calculated in awider range of €, since, for along
pul se, evaporation |ags behind the pul se application and
the acoustooptic and evaporative pressure pulses are
time-separated. In addition, experiments show that the
evaporative pulse appears at an energy density g, =
1.5 Jcm?, i.e, much greater than 0.4 Jcm?. This is
likely to be associated with the effect of heat conduc-
tion at long laser pulses.

The results obtained in this work are generalized in
Fig. 6, where the absolute values of the conversion are
plotted against € for different interaction conditions
with and without regard for thermal nonlinearity. As
follows from Fig. 6, the efficiency of laser-to-acoustic
energy conversion for thelong pulse and rigid interface
(curves 2, 2 is roughly two orders of magnitude less
than for the short pulse (curves 1, 1), whilefor the long
pulse and free surface (curves 3, 3), the efficiency is
less by an additional two orders of magnitude.

The effect of thermal nonlinearity decreases in the
same sequence. For the short pulse at € = 0.4 Jcm?, the
nonlinearity raises the efficiency by one order of mag-
nitude; for the long pulse at the same energy density,
the efficiency grows by afactor of 2.5 in the case of a
rigid interface and only by afactor of 1.5if theinterface
is free. As g rises, the dope of the curves n(g.)
increases from unity (linear mode) to two (quadratic
dependence).

Thus, our calculations shows that for a CO, laser

radiation energy density of about 1 Jcm? or higher, the
nonlinearity caused by the temperature dependence of
the volume thermal expansion coefficient considerably
influences the parameters of the acoustic pulse gener-
ated and the efficiency of laser-to-acoustic energy con-
version.
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In the next work, we will report experimental mea-
surements of acoustic-to-optic conversion efficiency by
the method of holographic interferometry.
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Abstract—The use of spatialy aligned laser beams of two or more different wavelengths from various spectral
rangesis proposed to determine the microscopic displacementsfor different temperature profilesin the medium
where the beams propagate. For certain temperature gradients, numerical simulations are performed. © 2002

MAIK “ Nauka/Interperiodica” .

For the most part, present-day experiments require
information about the mutual disposition of all sub-
systems in a complex measuring system. The accuracy
and reliability of experimental data can be considerably
improved through the simultaneous use of a number of
independent measurement methods including optical
ones. The advantages offered by the latter are a wide
variety of thoroughly studied sources and detectors of
light, aswell as adeep insight into the physical mecha
nisms behind the propagation of light in various media.
The main limitation of the methods used for a given
experiment is imposed by the accuracy required when
taking into account the smallness of distances to be
measured (from several to hundreds of microns), the
guasi-continuous mode of measurements (the entire
measuring cycle and the processing of data take t,, =
1 s), and the computerization of measurements.

An example of such aproblem is the measurements
of vertical shifts of probe-carrying large-diameter
radial blocks in the ALICE experiment [1], where not
only the measured quantity is random, but the environ-
mental parameters are random aswell. The most impor-
tant of these isthe state of the air (temperature inhomo-
geneities, contaminations, humidity, pressure, etc.).
This study considers the possibility offered by optical
means to perform measurements in these conditions.

Let a number of identical semitransparent photode-
tectors be located in a vertical plane in the path of a
laser beam, each being rigidly linked to one module of
the measuring system. When the beam passes through
astationary uniform medium, variationsin the position
of each module are measured in rea time (within the
interval of ~3 x 10°° s) with a certain accuracy. A com-
puter procedure based on statistical averaging over the
coordinate of the centroid of the beam yields results
with amicron accuracy [2]. Let us denote this quantity
for theith module by ag;.

If a dispersion of the irregular type appears in the
medium, the beam shifts additionally and the measured
guantities a, include not only the mechanical displace-
ments of detectors a, but can be expressed as a sum

a = 3 +0q;, (1)

where dg; are unknown random quantities that charac-
terize the displacement of the beam from its initial
direction for the ith detector.

Assuming that the time of measurement of T, is
shorter than the time of change 14 in the dispersion term
0g; and using the formal procedure mentioned above, it
is possible to eliminate the additional term &g, from the
system of expressions of type (1). One of the simplest
ways to redize thisis to employ laser beams of differ-
ent frequencies, since the refractive index of the kth
beam is defined by its wavelength A,. Then, Eq. (1) is
replaced by the system of eguations

ajx = Ao + 0ayy. (2

Here, the subscript k indicates the number of the beam
or the number of the wavel ength and i denotes the num-
ber of the photodetector (in what follows, the subscript
i will be omitted unlessit is necessary to avoid misun-
derstanding). The number of different wavelengths to
be used in an experiment depends on the particular
character of the origination of dispersion in the
medium. We assume that the dispersion originates from
the temperature nonuniformities. In this case, the
refractive index n(A, T) may be described by the empir-
ical formula[3, 4]

N\, T) = 1+ 104[@
5.84x 10" p )
+—-0.06 },
— Pw.v.
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where A isthe wavelength expressed in meters, pisthe
atmospheric pressure (p, = 1.013 x 10° Pa), and p,,,,, iS
the partial pressure of the water vapor (p,,, = 1500-
2000 Pa).

For the wavelengths in the optical range, the contri-
bution of the last term is negligibly small and can be
ignored. In this case, the refractive index

N,(T) = (n(A, T)-1) x 10 (4)

can be calculated by the multiplicative formula

x 11

N, (T) = $E{7.6-%§s FTOA). (5)

Relationships (2) and (5) makeit possible, by carry-
ing out measurements at two different frequencies, to
exclude the da,(A, t) term from system (2) and to deter-
mine a,. If the refractive index n(A, T) is known, the
determination of da, (A, T) within the approximation of
geometrical optics is generally reduced to solving the
eikonal equation. However, this problem may be appre-
ciably simplified when certain special models are con-
sidered.

A MODEL OF A VERTICAL MOMOGENEOUS
LAYER

Let avertical band of heated air be limited by paral-
lel planes and have a width d. The volume inside this
band is characterized by a uniform distribution of tem-
perature T, which exceeds the environmental tempera-
ture T, (Fig. 1). Because of a change in the refractive
index, theinitial beam, which isincident at an angle a,
to the paint (Yo, Z) at the interface, leavesthisregion at
the same angle a,, at the point (y, z, + d) with a certain
deviation Ay with respect to the incident beam:

0] i O]
Ay = dg—030% g (6)

O/n*(\) =n’sina,

The dispersion-induced deviation of two beams
with wavelengths A; and A, from each other is
expressed as

. 0 Noy
A(AA,) = dsina,33 -
0/n?(A,, T) —né,sinfa
(7)
No, EI,

Jn2(Ay, T) — Ny sinfor,
where ng; = n(Ay, Tg) and Ny, = N(A,, Tp).

Within the technique proposed in [2], the detectors
may be used to determine the displacement of a beam
by alayer with athicknessd [15m at atemperature dif-
ferenceAT=15K ord=3mat AT =25K (see Table 1).

TECHNICAL PHYSICS  Vol. 47

No. 10 2002

1307

The use of the two-beam method in this case alows
the estimation of the air-layer thickness d viathe direct
measurement of a; and a, taking into account (7) and
the condition A(A4, A,) = a; —a, = da; — day.

The use of three beams within this approximation
makes it also possible to determine the preheated
region temperature T if the environmental temperature
Ty is known.

A MODEL OF THE VERTICAL GRADIENT
OF TEMPERATURE

Let aninfinite layer of heated air occupy theinterval
[0, d] and have a constant temperature gradient g, in the
Ozdirection. Dividing thelength [0, d] into uniform lay-
ers of thickness dz and assuming a constant refractive
index n; intherange [z, z + dZ], we have

Nesina, = ni(z, ¥;)sinBi(z, y;), dz = cotBdy. (8)

The system of Egs. (8) enables one to determine
both the direction of the beam coming out of the layer
and the deviation from the direction of incidence.
Choosing the origin of coordinates at the point where
the beam enters the layer and restricting ourselvesto a
linear approximation, we obtain n(T, A) in the form

T(ypA) = n+on| 4T
"Ly = n T(0.0)9Y (9)
_ o 00,9y (00099,
T T '

where n =1 + f[T(0, 0)]¢(A) isthe refractive index in
the first layer with awidth dz.

In line with the model of the vertical gradient of
temperature, one must substitute g, = 0 in (9). Then,
the “trgjectory” of the beam in the yOz plane can be

y

ny n ny

Fig. 1. The trajectories of two beams with different wave-
lengths (dashed line) in the presence and (solid line) in the
absence of atemperature gradient.



1308 ASATRYAN et al.
Table 1. Thedispersion-induced deviation of beamswith different wavelengthsin the model of vertical uniform layer of pre-
heated air
d. (m) AT=5K AT=15K AT=25K
,(m
AL A (M) | AL Ag) (M) | AR A (BM) | AL, Ag) (MM) | Ay, Ap) (MM) | ARy, Ag) (Mm)

1 0.37 0.48 1.05 14 171 2.26

2 0.54 0.72 1.59 21 2.56 3.39

3 0.73 0.96 212 2.8 342 4.52

4 0.91 1.2 2.65 35 4.27 5.65

5 11 1.45 3.17 4.2 5.13 6.77

Note: Hereafter, the results of numerical simulations are presented for beams with wavelengths A, = 0.25 x 10°° m, A, = 0.45 x 1078 m, and

A3=0.85x10°m.

Table 2. The dispersion-induced deviations of beams with different wavelengthsin the model of vertical gradient of temper-

ature
d. (m) g,=50K/m 0, =100 K/m g, =500 K/m
, (M
Ay A) (M) | Ay, Ag) (M) | AAg, Ag) (M) | AAg, Ag) (M) | AQAg, A) (HM) | A(Ag, Ag) (M)
1 3.95 5.22 754 9.96 36.29 47.95
2 8.62 11.39 16.7 22.06 81.44 107.6
3 15.08 19.93 29.44 389 144.65 191.11
4 23.34 30.84 45.78 60.49 225.95 298.52
5 33.39 44,12 65.72 86.83 325.39 429.89
determined as Table 2 presents the numerically calculated devia-
2. 4 tions of three beams with different wavelengths from
y= CoT710 each other at different temperature gradients.
Po$19;

_4
n_10 Po$,9,,

n
x arccoshC— — arccosh
0

where ¢, = nysina,,

ZZ2

T

Co

Z/Z

77 ZZ A ZZZ

(T ]
77222 L

o i e

(10)

Fig. 2. Beam shift as a function of the heated-air-layer
thickness and the vertical gradient of temperature.

Measurements performed using three different
wavelengths allow the determination of two unknown
characteristics of the heated air (for example, the gradi-
ent g, and f[T(O, 0)] withd and p, given). Figure 2 illus-
trates the beam shift as afunction of the air-layer thick-
ness and the vertical gradient of temperature.

A MODEL OF THE HORIZONTAL GRADIENT
OF TEMPERATURE

This model deals with the case where the tempera-
ture field varies uniformly aong the OY direction.
Within this model, the horizontal layer of air within the
range [y;, ¥; + dy] can be characterized by a constant
refractive index n,. Then, the system of equations (8)
appearsin the following form:
NoCos, = Ni(z, y;)sinBi(z,y;), dz = cotPdy. (8)

The refractive index can be found by taking into
account that the gradient along the 0Z direction in
expression (9) is zero and

f(0,0)d,9,y
=

n(y,A) = n- (9)
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Table 3. Thedispersion-induced deviations of beams with different wavelengths for different horizontal gradients of temper-

ature
d. (m) gy =50K/m gy =100 K/m gy =500 K/m
,(m
A A (M) | Ay, Ag) (M) | AAg, Ag) (M) | AAg, Ag) (M) | AQAg, Ap) (HM) | AQAg, Ag) (M)
1 215.71 284.17 30.87 40.9 8.13 10.74
2 498.78 658.57 80.52 106.38 29.24 38.63
3 903.14 1192.19 153.11 202.27 61.75 81.59
4 1430.89 1888.4 248.73 328.57 105.68 139.62
5 2084.78 2750.68 367.49 485.43 161.05 212.76

The solution of the system (8'), (9") issimilar to (10)
but with the coordinates x and y being interchanged. For
numerical simulations, one may use a simpler expres-
sion obtained from this solution by retaining the first
and second terms in the expansion in the arcsine func-
tion:

Po 10_4¢Agy 2
2

_ y |
zZ= + , 10
o7 y (10)

2
M _ 0
gz~
where ¢ = nycosa .

Table 3 presents the numerically calculated devia-
tions of the beamsfrom each other, and Fig. 3 showsthe
beam shift as a function of the air-layer thickness and
the horizontal gradient of temperature.

The method proposed above for detectors with a
given accuracy [2, 5, 6] may turn out to be effective for
either large temperature gradients along the heated air

Fig. 3. Beam shift as a function of the heated-air-layer
thickness and the horizontal gradient of temperature.

TECHNICAL PHYSICS Vol. 47 No. 10 2002

layers of small thicknesses or for large dispersion
regions with small temperature gradients.

To apply our method when a minimal value of the
measured displacement is specified requires new meth-
ods for data acquisition that have a certain predeter-
mined accuracy.

In conclusion, it should be noted that the multibeam
method of measuring relative displacements may find a
wide range of applications, for example, in the fields of
meteorological, seismological, and technological stud-
ies.
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Abstract—New variants of tubular single crystal tungsten electrodes with an electron work function of 5.3—
5.7 eV are considered. An appreciable increase in the work function is achieved due to special technologies
ensuring the “monofaceting” of acylindrical electrode surface and doping of the vapor-phase-grown epitaxial
tungsten with oxygen. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Methods for producing crystallographicaly ori-
ented tungsten electrodes have been developed during
the second half of the last century in connection with
the problem of obtaining effective high-temperature
emission electrodes, in particular, for thermionic con-
verters (TCs). The most close-packed tungsten face
(110) is of most interest for use in modern TCswith an
easily ionized additive of cesium in the interelectrode
gap, because this face provides the maximum coverage
of tungsten surface during high-temperature adsorption
of cesum. To achieve this purpose, different
approacheswere used inthe USSR and in the West. The
use of tungsten electrodes in the form of single crystal
tubes[1] becameabasic R& D concept for the main sci-
entific centers engaged in thermoemission investiga-
tions in the USSR. The main advantages of this
approach are the greatly improved stability of the elec-
trode and TC characteristicsaswell asthe possibility of
solving the problem of fuel component diffusion
through the emitter cladding of TCs. An aternative
concept has been adopted and, apparently, still existsin
Western countries [2, 3]. This approach is based on
using tubular electrodes with an external coating of
polycrystalline “chloride” tungsten with an axial (1100
texture. These electrodes are commonly referred to as
duplex electrodes since they contain an inner layer of
the “fluoride” tungsten with an axial (1000 texture
formed on a textureless polycrystalline molybdenum
substrate. The growth techniques used in both cases
employ vapor phase epitaxy. According to one method,
tungsten is deposited from a chloride medium (the
Western technology, unlike the “transport” process
developed in the USSR, employed a chloride medium
flow through areactor in which tungsten is deposited);
alternatively, the deposition proceeds from a fluoride
medium. Apparently, the choice of “duplex” technol-
ogy was caused by economic reasons only because the
cost of single crystal refractory metalswas much higher

in Western countries than in the USSR. Asto the emis-
sion properties, both concepts of tungsten electrodes
(cf. Fig. 1lafor USSR and Fig. 1b for USA and other
countries) inthe original variantswere almost the same.
In both cases, the electron work function of the cylin-
drical electrodeswas about 4.9-5.0 eV [2-4].

The much greater high-temperature strength of sin-
gle crystal tungsten cladding in comparison with poly-
crystalline (including textured) electrodes was unex-
pectedly found [5], but thisfact is not discussed herein
detail. The paper focuses on the prospects for improv-
ing the emission properties of tungsten electrodes for
TCs. In this respect, the characteristics of polycrystal-
line textured tungsten electrodes have hardly changed
over the last 50 years, while the emission and adsorp-
tion properties of single crystal tungsten electrodes
have gresatly increased.

EXPERIMENTAL

In the most general case, a polyface tube with a
[111] axial orientation and, hence, with six [110] poles
emerging at alateral cylindrical surface (Fig. 1a) can be
considered as the base variant of a single crystal tung-
sten electrode for TCs. The term “polyface lateral sur-
face of asingle crystal tube” means that, depending on
the axial crystallographic orientation of the tube, one or
another set of poles (repeating a certain number of
times) emerges at this surface to form a crystalo-
graphic belt. For bcc lattices, the aforementioned axial
orientation is known to be preferred since it features a
maximum possible number of poles with the most
favorable orientation [110] emerging at the lateral sur-
face. Aswas mentioned above, the effective work func-
tion of such atubeis4.9-5.0 V. Numerous and various
attempts to increase the area occupied by (110) facets
on the lateral surface of a polyface tube (for example,
by etching) were of limited success, the more so as the
thermal stability of such faceted surfaces was insuffi-
cient. In this connection, our investigations were
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mainly focused on finding technological solutions
ensuring the obtaining of single crystal tungsten elec-
trodes possessing a much higher electron work func-
tion. This was achieved either by forming single-face
tubes with (110) orientation at any point of the lateral
surface (Figs. 1c—1€) or by doping tungsten with active
microadditives that will be discussed below.

Two technological methods were developed in order
to manufacture single-face tubular electrodes. One of
these employs the chemical (chloride) vapor-phase epi-
taxial deposition of tungsten onto a cylindrical molyb-
denum substrate with [111] axial orientation, whereby
the growing layer is self-faceted by (110) planes
(Figs. 1c and 2). Thistechnology is based on a chemi-
cal transport reaction whose main stages are separated
in space inside a crystallizer reactor [6]. The thermal
dissociation of chloride and tungsten deposition
proceed on a heated substrate at temperatures 1700—
1800 K according to the reaction

WClg =W +3Cl,t

The reaction of chloride synthesis with its subse-
quent sublimation takes place in atungsten supply unit
operating at temperatures 1100-1300 K :

W +3Cl, = WClg1.

When an epitaxial tungsten layer was grown, the
molybdenum substrate was etched-off. The tungsten
el ectrodes obtai ned using thistechnology had ahexahe-
dral outer surface with smoothed edges and a round
cylindrical inner surface.

Alternatively, a single-face electrode with inner and
outer cylindrical surfaces was produced by bending
(through winding on amandrel) asingle crystal ribbon
with (110) orientation, followed by electron-beam
welding of workpiecesalong ahelical line (Figs. 1c, 3).
This technique not only ensured the total exposure of
the most effective face (110) on the lateral surface, but
produced substructural hardening of this surface as
well. This method was devel oped in collaboration with
V.A. Kononenko and A.l. Dekhtyar (Institute of Metal
Physics, National Academy of Sciences of Ukraing).

This paper gives a brief description of all the afore-
mentioned promising technologies and presents the
main results of investigations of the impurity composi-
tion (ion microprobe, Auger spectroscopy) and of the
effective thermoemission work function of the samples.
The thermoemi ssion measurementswere carried out by
the method of total current using a setup described in
[7]. The measurement error is indicated in one of the
temperature dependences presented and considered in
the next section.

RESULTS AND DISCUSSION

All variants based on chemical vapor deposition
technology were realized using an apparatus designed
at the Sukhumi Physicotechnical Institute in collabora-
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Fig. 1. Main variants of tubular tungsten electrodesfor TCs
representing (a, ¢, d, €) single crystal concept (USSR, Rus-
sia) and (b) “duplex” texture concept (USA, Western
Europe): (a) polyface electrode with [1110axial orientation
of “chloride” epitaxia tungsten; (b) polycrystalline elec-
trode comprising the first layer of “fluoride” vapor phase
grown tungsten with (100) texture and the outer layer of
“chloride” vapor phase grown tungsten with (110) texture;
(c) single-face oxygenated “chloride” epitaxial tungsten
self-faceted by six (110) planes; (d) single-face (110) cylin-
drical electrode with substructural hardening, fabricated
from undoped tungsten by crucibleless electron beam zone
melting under “deformation” technology; (€) case (d) mod-
ified by “chloride” epitaxial layer of oxygenated tungsten.
Top view: blackened regions—*chloride” layer; open circu-
lar regions—molybdenum substrate; dashed regions—
polygonized substructural hardened layer.

tion with the Department of Physical Metallurgy of the
Moscow Engineering Physics Institute (MEPI). The
contribution of the author wasin designing an all-metal
crystallizer reactor for tungsten deposition from a chlo-
ride vapor phase [8, 9]. The technique of epitaxial
“chloride” tungsten deposition onto tubular single crys-
tal molybdenum substrates was developed in paralel
with similar works at the MEPI and the Scientific
Research Institute of the Luch Corporation. However,
MEPI and Luch [10-12] obtained tungsten single crys-
tals faceted by planes (211). Previousy [13], we
showed that there are methods allowing one to change
the indices of habit planes and to grow crystals faceted
by planes (110) with acceptablerates (up to 0.1 mg/cm? s).
One method consistsin doping deposited tungsten with
oxygen microadditives. In this case, we obtained hexa-
hedral single crystal tubes (Figs. 1c, 2) with (110) face
orientation. A minimum thickness of the tungsten layer
in the cross-section was 1-2 mm. When layers of such
a thickness were deposited, the substrate orientation
was found to be retained in the regimes of vapor phase
deposition ensuring spatially matched orienting effects
of the substrate (epitaxial growth) and of the crystalli-
zation process (texture formation) [14]. The study of
microstructure by optical and € ectron microscopy [15]
showed that, when the spatial matching conditions are
observed, the quality of orientation of adeposited layer
isnot deteriorated but even tendsto increase with thick-
ness. A dislocation ensemble in epitaxial tungsten
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Fig. 2. single-face el ectrodes of oxygenated “chloride” epi-
taxial tungsten self-faceted by six planes (110).

Fig. 3. single-face (110) cylindrical electrodes with sub-
structural hardening of undoped tungsten obtained by cruci-
bleless electron beam zone melting in different stages of
“deformation” technology: (1) after winding the ribbon on
a mandrel; (2) after electron beam welding with a helical
weld; (3) after mechanical polishing and electropolishing.

appeared spontaneously as a result of the formation of
misfit dislocations, which compensated the misfitin lat-
tice parameters of the substrate and the deposit. The
density of dislocations estimated from etch pits aver-
aged about 108 cm.

The investigations of such electrodes using an ion
microprobe (Cameca IMS-3F) showed [16] that, in the
absence of specially introduced oxygen, the total con-
tent of impuritiesin the material did not exceed 102wt %.
The content of interstitial impurities (C, N, O) is about
10-5-10* wt %, the concentration of regular contami-
nants (Na, Mg, Al, Si, K, Ca) is10“-10-3 wt %, and the
content of elements representing the material of appa-
ratus (Ti, Cr, Fe, Cu) is 10°-10"° wt %. The molybde-
num concentration is about 102 wt %. This technolog-
ica impurity is unavoidable in “chloride” tungsten
deposited onto a molybdenum substrate. However, it is
known [17] that the presence of even afew percents of
molybdenum on tungsten surface does not change the
work function. From this standpoint, the investigated

KOBYAKOV

tungsten was rather pure material with respect to all
groups of theimpurities. Thisfact was confirmed by the
thermoemission measurements of the effective work
function of (110) facesfor the hexahedral single crystal
electrodes, which amounted on average to 5.2-5.3 eV.

When a dozed oxygen additive was introduced into
the gas phase during the epitaxia crystallization of
tungsten, the oxygen concentration increased in a solid
deposit as well. The oxygen content could be varied
within a rather wide range (10°-10-2 wt %). The oxy-
gen concentrations in epitaxial tungsten determined by
the ion microprobe and by the method of fast neutron
activation coincided satisfactorily. Indeed, the oxygen
concentration measured by the ion microprobe in the
sample investigated in [16] was about 1.0 x 107 wt %,
while the neutron activation analysis showed 1.7 x 102 wt
%. The tungsten with increased oxygen content is
referred to as oxygenated tungsten. As will be shown
below, oxygenated epitaxial tungsten exhibits a sharp
change in the emission properties.

It was shown [5] that, under conditions of the high-
temperature creep (T = 1870 K, 6 = 10 MPa, T =
1000 h) the dimensional stability of oxygenated epitax-
ial tungsten tubes is characterized by a creep rate
which, in our case, fals within 10°-10® s. Such a
level of the creep straining rate is more typical of the
“chloride” epitaxial tungsten deposited on single crys-
tal molybdenum. In [5], these rather low creep rates
(much lower than those observed in polycrystalline
tungsten) were explained by substructural hardening of
the materia as a result of polygonization of the tung-
sten substructure. The polygonized substructure was
formed spontaneously during the epitaxial growth of
tungsten on molybdenum due to the generation of mis-
fit dislocations at the deposit—substrate interface.

In the “deformation” technique, single-face (110)
electrodes were obtained by helical winding a single
crystal tungsten ribbon with orientation (110) under
conditions of pure bending at a temperature of about
1000 K (Figs. 1d, 3). The initial unstrained tungsten
ribbon was obtained by cutting (along the correspond-
ing axis) single crystal ingots oriented in acertain man-
ner. The ingots were produced by crucibleless electron
beam zone melting. The regimes of electron beam
welding of the workpieces along a helical line and sub-
sequent heat treatment ensured a single crystal struc-
ture of the weld material. X-ray diffraction studies
showed that electrodes fabricated by this technology
are characterized by an orientation closeto (110) at any
point of the external cylindrical surface, with a disori-
entation of the neighboring regions within 20-30 angle
minutes. The cross section of subgrainsin tungsten did
not exceed 100 um and the disl ocation density was 10°—
10 cm=2.

After appropriate heat treatments, a polygonized
substructure of dislocations of the same sense was
formed in the bending strained tungsten that provided
substructural hardening of the material. As to the con-
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centration of impurities, the material was almost iden-
tical to that of the “chloride” tungsten electrodes (with-
out additionally introduced oxygen) considered above,
except for a molybdenum impurity, which was almost
absent here. However, the effective work function of
such welded electrodeswas not higher than 5.0 eV. This
can be probably explained by the appreciable density of
structural defects formed in the material as a result of
deformation and polygonization processes in various
stages of the manufacture of cylindrical single-face
electrodes. It might seem that such awork function may
restrict the potential of “deformation” technology to
manufacture cylindrical single-face electrodes. How-
ever, theincreased dislocation density, which is respon-
sible for the lower work function [18], simultaneously
accounts for the increasing adsorption ability of the
materia surface. Thisisalso valid for the adsorption of
cesium vapor present in the interelectrode gap of mod-
ern TCs. On the other hand, such single-face electrodes
offer a decisive advantage because of their long-term
stability under creep conditions. The test results
obtained in the Scientific Research Institute of the Luch
Corporation (PV. Zubarev and N.G. Tachkova) are
worth mentioning here. The long-term (700 h) creep
tests of such electrodes were carried out at a tempera-
ture of 2070 K under conditions of internal inert gas
pressure equivalent to a tangential bulging load of
10 MPa. The tests showed quite small initial deforma-
tion (less than 0.1%) and a low rate of the steady-state
creep (1.2 x 10° s?). The tests carried out at the Insti-
tute of Metal Physics of the National Academy of Sci-
ences of Ukraine [5] at the same values of temperature
and bulging pressure (the latter was produced by multi-
point mechanical loading) during 2000 h showed an
initial deformation of 0.2—0.3% and the lowest rate of
the steady-state creep (1071-1010 s%),

L et us consider the problem of doping single crystal
tungsten with an active oxygen microadditive. Of
course, the impossibility of oxygen dissolution in the
ideal tungsten single crystal due to the specific config-
uration of its valence electron shells [16] is a well-
known fact. In real tungsten, the presence of structural
defects accounts for a small equilibrium solubility of
oxygen (0.005wt % at 1973 K [19]). However, as men-
tioned above, we revealed the essentially higher solu-
bility of oxygen in “chloride” epitaxia tungsten when
studying the effect of impurities on the work function
of single crystal tungsten [16, 20, 21].

The results of investigations of the (110) surface of
oxygenated “chloride” epitaxial tungsten using the
high-temperature Auger electron spectroscopy are
shown in Fig. 4. The complete removal of carbon from
the tungsten surface heated to 1300 K (i.e., akind of the
sample self-cleaning from carbon) is a rather unex-
pected effect because it seems absolutely improbable
for ordinary tungsten. A broad minimum on the oxygen
profile (curve 2) inthistemperatureinterval is probably
related to the fact that oxygen emerging at the surface
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Fig. 4. Temperature dependence of the normalized Auger
signal amplitude for carbon I, (1) and oxygen I, (2) on the
(110) face surface of oxygenated “chloride” epitaxial tung-
sten (normalized to the tungsten peak at 169 eV).

is consumed to form carbon oxide. From thisit follows
that the surface of oxygenated tungsten studied in our
experiments did not contain carbon but oxygen was
present. This conclusion is valid for the temperature
range where the work function measurements, both
presented above and considered below, were carried
out. The oxygen peak amplitude gradually decreases
when the temperature rises above 1300 K (see Fig. 4),
but up to 2273 K a considerable part of the crystal sur-
face remains coated by a monolayer of oxygen.

A correlation between the oxygen impurity content
and thermoemission work function was established in
[16, 20, 21]. We proposed a physical model explaining
the possible incorporation of oxygen atoms into the
tungsten lattice during the “chloride” chemical vapor
deposition process in the case when the vapor phase
contains a certain amount of oxygen. This model is
based on the assumption about the reconstructive for-
mation of surface tungsten suboxide at the crystalliza-
tion front of a growing face, with layer-by-layer
“immuring” of oxygen in the volume of the growing
crystal. Tungsten crystals grown under such conditions
possess a significantly increased work function. The
effective work function of the (110) face for such tung-
sten varies from the tabulated value of 5.3 up to 5.7 eV,
depending on the oxygen content. This considerable
oxygen-induced effect is best characterized by the tem-
perature dependences (polytherms) of the work func-
tion (see, for example, Fig. 5). For single crystal tung-
sten with an oxygen content above >5 x 10wt %, the
work function sharply increases with temperature. The
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Fig. 5. Work function polytherms of oxygenated “ chloride’
tungsten self-faceted by six planes (110): (1) after growth;
(2) after turning up to a cylindrical surface and electropol-
ishing; (3, 4) similar samples not finaly faceted by (110)
planes (with a polyface lateral surface); (5) cylindrical
substructural  hardened sample of undoped tungsten
obtained by crucibleless electron beam zone melting
(“deformation” technology). Oxygen content in the samples

(Wt %): (1) 23x 1072 (3) 1.7 x 1072 (4) 46 x 10,
(5) 6.7 x 10°7°.

presence of two, usually sloped, plateaus on this depen-
denceisatypical feature. Thefirst plateau is observed
in the temperature interval 1700-1900 K and the sec-
ond, at temperatures above 2000 K. The temperature
dependences of the work function for oxygen-free
tungsten differ sharply from the ones described. Usual
linear temperature dependences with a very dlight
increase in the work function in the temperature range
from 1500 to 2500 K (Fig. 5) areregistered if the mea-
surements are carried out in sufficiently high vacuum.
This behavior was repeatedly confirmed, including the
experiments with vapor-phase-grown tungsten [16]. It
isinteresting to note that, when the work function mea-
surements for oxygen-free tungsten were carried out at
various small oxygen partial pressures sufficient to
form afraction of a monolayer on the tungsten surface,
we observed a pattern (Fig. 6) opposite to that typical
of oxygenated tungsten (Fig. 5). It is clear from Fig. 6
that, at the beginning of the temperature interval stud-
ied, there is a maximum and very significant oxygen
effect and, as the temperature increases, the work func-
tion sharply decreases due to intensification of oxygen
desorption from the tungsten surface.

Thus, we can conclude that aconsiderable growthin
the work function of the tungsten electrode with
increasing temperature is typical only of the oxygen-
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Fig. 6. Work function polytherms of (110) face for a tung-
sten sample cut from a single crystal ingot grown by cruci-
bleless electron beam zone melting at different partial oxy-

gen pressures from “external” source: (1) 107 (2) 107>,
(3) 1078 Pa (datafrom [22]).

ated tungsten obtained by the chloride vapor-phase
technique. According to the above, oxygen desorption
from the tungsten volume is a thermally activated pro-
cess and this very circumstance determines the temper-
ature dependence of the work function of oxygenated
tungsten. Leaving the crystal volume, oxygen forms
different states on the tungsten surface, depending on
the temperature. According to [20, 23], alow-tempera-
ture branch of the work function polytherm (up to a
temperature of about 1800 K) is determined by the
presence of tungsten suboxide W30 (which isthermally
stable at these temperatures) on the tungsten surface.
A high-temperature branch (>2100 K) is determined by
the dynamic processes which ensure the presence of
physically adsorbed oxygen on tungsten with the sur-
face coverages of up to several tenths of a monolayer,
depending on the real surface structure.

CONCLUSION

In summary, two promising variants of tubular sin-
gle crystal tungsten electrodes for high-performance
TCs are proposed. One of these is based on chloride
vapor phase technology and, hence, represents single-
face electrodes of oxygenated epitaxial tungsten with
outer hexahedral and inner cylindrical surfaces. At the
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usual working temperatures of TCs, the electrode mate-
rial has awork function of 5.6-5.7 €V and a high-tem-
perature creep rate not exceeding 10 s*. Such elec-
trodes can be used for designing thermoemission units
of hexahedral geometry, which ensure their closest
packing in a converter. Upon appropriate modification,
these electrodes can be used in cylindrical modulestoo.

Another variant is based on the “ deformation” tech-
nology using single crystal ingots of undoped tungsten
obtained by crucibleless electron beam zone melting.
Both inner and outer surfaces of the tubular electrodes
manufactured according to this technique are cylindri-
ca. The electrode material has a work function of
5.0 eV; under typical working conditions of TCs, the
dimensional stability of the material is characterized by
a high-temperature creep rate of 10° s according to
one test method and 10! s according to another
method.

Finally, a combination of the two variants consid-
ered above can be offered asthe third version (Fig. 1€).
In this case, a single-face tube of the variant in Fig. 1c
serves as a high-strength substrate for depositing a
layer of chloride vapor grown oxygenated epitaxial
tungsten with a high work function. In so doing, aswas
shown earlier [24], a hardened substrate substructureis
inherited by the epitaxial layer.
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Abstract—A new principle of designing a SAW gas sensor is described. This sensor, being essentially of sorp-
tion type, also offers properties of thermometric SAW sensors. The basic idea hereisthat heat fluxes propagate
between the SAW substrate and the working surface of the temperature-regulating system with some delay.
A sensor based on this principle can detect not only the vapors of volatile substances but also gases by their
thermal properties, retaining high temperature stability and speed of response unlike conventional SAW ther-
mometric sensors. The design of this sensor built around a LiNbO; SAW delay line is described, and experi-
ments on detecting a household propane-butane mixture with this sensor are reported. In particular, the
responses of the sensor are measured at different gas-flow rates, two different SAW substrate temperatures, and
two propane—butane concentrations. Ways of improving the sensor’s performance are discussed. © 2002 MAIK

“ Nauka/Interperiodica” .

INTRODUCTION

It is well known that most SAW devices are very
sensitive to the surface condition of the SAW substrate
along which the waves propagate. The adsorption of
molecules from the gaseous phase on the working sur-
face of adelay line or aresonator changes SAW propa-
gation parameters. This, in turn, changes the phase of
the device's output signal (in passive delay lines) or its
frequency (in oscillators built around resonators and
delay lines). Thisfactor underliesthe operation of SAW
gas sensors, which were first so named in [1]. To pro-
vide a chemical selectivity, a thin layer of a special
material offering an increased absorptivity with respect
to particular compounds is applied to the working sur-
face of the substrate. Due to their unique properties,
such SAW gas sensors are finding increasing use,
including in the sensor arrays of modern gas analyzers
of the electronic nosetype[2]. However, the best repro-
ducibility, time stability, and sometimes sensitivity are
demonstrated by SAW sensors without a sensitive coat-
ing [3]. Of course, sensors without a sensitive coating
are not selective and can only detect the vapors of vol-
atiles that are readily adsorbed on the working surface
kept at a temperature lower than that of the vapor of a
substance being detected. Nevertheless, “uncoated’
sensors are successfully used in many modern high-
speed portable devices for detecting and identifying
volatiles, including toxic agents, explosives, and nar-
catics, which may be present in the environment in very
small amounts [3, 4]. These devices separate chemical
mixtures into their constituents with the help of chro-
matographic columns. For rapid identification, well-
known algorithms similar to those used in analyzers of
the el ectronic nose type with the arrays of selective sen-
sors can be employed [2].

SAW sensors without sensitive coatings are used
together with chromatographic columns, which may be
universal, capable of separating not only the vapors of
volatiles but also mixtures containing permanent and
combustible gases. Therefore, it would be desirable to
have a universal SAW gas sensor that would detect as
many vapors and gases as possible. There exist
uncoated SAW sensorsthat can detect gases and vapors
of avariety of substances. These are SAW thermomet-
ric gas sensors[5, 6].

SAW thermometric sensors operate as follows. An
SAW delay line or an SAW resonator on a heated sub-
strate (steady heat source) is placed into a chamber
where acarrier gas flows about the substrate with acon-
stant rate. The heat source with the SAW device is
mounted in the chamber so that the chamber walls and
the source exchange heat largely through the gasfilling
the chamber. The temperature of the chamber walls and
that of the gas injected must be different from the
source temperature (usually, much lower) and kept con-
stant. The source temperature thus depends on the prop-
erties (thermal conductivity and specific heat) and flow
rate of the gasinjected into the chamber. The greater the
properties of the gasto be detected differ from those of
the carrier gas and the greater the wall and gas temper-
ature differs from the initial heat source temperature,
the greater is the change in the source temperature
when the gasto be detected i sinjected into the chamber,
i.e., the higher is the device's sensitivity. The heat
source is usually a resistance-type heater connected to
aregulated power supply. An SAW device here serves
as a temperature-sensitive element; therefore, its sub-
strate material must be very sensitive to temperature
variations (at least quartz must be excluded). SAW ther-
mometric sensors currently available [6] cannot how-
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ever detect the vapors of volatiles and are exceeded by
sorption SAW sensors in speed of response and in
reproducibility of results.

To achieve the maximum possible thermal stability
of sorption SAW sensors, their substrates are often
made of thermally stable quartz cuts and precision tem-
perature regulators built around Peltier thermoelectric
elementsare used [4, 7]. Therefore, such sensors cannot
detect gases by their thermal properties.

This paper describes an SAW gas sensor that, being
in essence a sorption sensor, al so offers some properties
of an SAW thermometric sensor [6]. In other words, we
propose a sensor that is capable of detecting not only
the vapors of volatiles but also gases by their thermal
properties. Unlike conventional SAW thermometric
sensors, our sensor provides high thermal stability and
speed of response. We describe a sensor built around a
LiNbO; delay line and report test results by an example
of detecting a household propane-butane mixture. In
particular, the sensor’s responses as a function of the
SAW substrate temperature, temperature and flow rate
of the gas mixture, and propane—butane concentration
in the carrier gas were measured.

THERMOSTABILIZATION
OF AN SAW SENSOR

To gain greater insight into the design and operating
principle of the universal SAW sensor proposed, con-
sider the thermostabilization of an SAW devicein mod-
ern sorption SAW sensors. Figure 1 illustrates the typi-
cal position of an SAW device in the measuring cham-
ber of modern sorption SAW sensors. The sensitive
SAW device (an SAW waveguide delay line on a
128°Y—X LiNbO; substrate with a center frequency of
486 MHz [7]) is mounted directly on the working sur-
face of a Peltier thermoelectric element (TEE). In our
experiment, the SAW device was fixed to the TEE by
the heat-conducting paste that iscommonly used in fab-
ricating electronic equipment. The TEE working sur-
face also supports athermally sensitive resistor to mea-
sure its temperature. The TEE with the SAW deviceis
placed into the measuring chamber, which has connec-
torsfor coupling the delay line with the high-frequency
measuring circuits and for connecting the TEE with the
thermally sensitive resistor to feed circuits and circuits
for computer temperature control. The chamber is also
provided with inlet and outlet pipe connections for gas
delivery and removal. Commercial one-stage TEEs
with a standard contral circuit that were used in our
experiments kept the SAW device temperature in the
range 4—60°C within £0.003°C for no less than 10 min
and within £0.01°C for 10 h with the ambient tempera-
ture varying from 20 to 30°C. To study the dynamics of
SAW device thermostabilization, a continuous Sinusoi-
dal signal was applied to the input interdigital trans-
ducer of the delay line at its center frequency, and vari-
ationsin the phase of the signal at the output interdigital
2002
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Fig. 1. SAW device in the measurement chamber: (1) SAW
delay line; (2) thermoelectric element; (3) working surface
of the thermoelectric element; (4) heat-conducting paste;
(5) thermally sensitive resistor; (6) chamber lid with inlet
and outlet pipe connections, microwave contacts, and elec-
trical contacts; (7) base of the chamber; (8) sealing heat-
insulating gasket; (9) microwaveinput; (10) microwave out-
put; and (11) to the temperature-control unit.
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Fig. 2. Phase variation in the signal derived from the output
interdigital transducer at agiven changein the TEE working
surface temperature. tg isthe instant of temperature change.

transducer due to a stepwise change in the temperature
of the TEE working surface were measured. Figure 2
plots the time variation of the output phase when the
TEE working surface temperature changes by 1°C from
57.3 to 58.3°C (curve 1) and by 0.5°C from 9.9 to
10.4°C (curve 2) with the maximum rate attainable for
the control system used. The measurements were made
for severa flow rates of the carrier gas (chromato-
graphic nitrogen) passing through the measuring cham-
ber. The chamber and the inlet metallic capillary tube
were placed into a thermostat kept at a temperature of
30 + 0.1°C. The results of measurement depended on
the flow rate only dlightly. As follows from Fig. 2, our
temperature-regulating system sets the steady-state
value of the temperature of the given 128°Y—X LiNbO4
SAW substrate measuring 9 x 4 x 0.5 mm approxi-
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Fig. 3. Phase variation in the output signal when the TEE
working surface temperature changes by 1°C from 57.3 to
58.3°C: (1) no spacers, (2) one glass spacer, and (3) two
glass spacers between the SAW substrate and the TEE. tg is
the instant of temperature change.

Fig. 4. Experimental setup for measuring the response of
the SAW sensor (the phase of the delay line output versus
time) to gaseous substances. (1) measuring chamber with
the SAW sensor and the TEE; (2) thermostat; (3) calibrated
gas-extracting tube; (4) six-way valve; (5) cylinder with the
gas under study; (6) cylinder with the carrier gas; (7) elec-
tronic temperature-control unit; and (8) phase meter mea-
suring the phase shift of the microwave signal passed
through the SAW delay line.

mately in 5 swhen atemperature jump is 1°C, the tem-
perature change being the most rapid within the first
second after the jump. The equilibrium phase change as
a result of the 1°C temperature change was 30.3°C,
which is in good agreement with the value calculated

KRYSHTAL et al.

for the SAW substrate material and delay line employed
[7]. 1t can be expected that thetime it takes for the SAW
substrate temperature to return to the initial value (ther-
mostabilization) after applying an external thermal
effect to the substrate will be roughly the same. Such an
external thermal effect may be exerted by the gas
injected into the measuring chamber if its parameters
are different from those of the carrier gas.

At reasonabl e gas flow ratesin the measuring cham-
ber and temperature difference between the SAW sub-
strate and the gas injected, this external action will not
noticeably change the SAW substrate temperature even
for a very short time of observation, because the tem-
perature-regulating system has time to compensate for
this difference. Thus, such a sorption SAW sensor can
hardly detect gases by their thermal properties even if
its SAW substrate is made from amaterial of poor ther-
mal stability. Our experiments corroborated this suppo-
sition. In al our attempts to detect the propane-butane
mixture, the response of the sensor was no higher than
0.5° for al possible combinations of the experimental
parameters.

In our opinion, it would be possible to detect gases
by their thermal properties if the temperature-regulat-
ing system actuates with some delay. Apparently, a
delay can be introduced electronically by appropriately
modifying the temperature-control unit. Alternatively,
one may provide a delay for the heat flux between the
TEE working surface and the SAW substrate. We chose
the second approach. One or several thin (0.25-mm-
thick) glass plates were placed between the SAW sub-
strate and the TEE working surface and adhered to the
TEE surface, the SAW substrate, and together by the
heat-conducting paste. The free part of the TEE surface
(not occupied by the SAW substrate) and the thermally
sensitive resistor were covered by a heat-insulating
material. Under the same conditions as in the previous
experiment, we measured the phase variations of the
output signal of the output interdigital transducer when
the temperature of the TEE working surface changes
stepwise by 1°C from 57.3 to 58.3°C. The results are
shown in Fig. 3. It is seen that with the spacers, the
SAW substrate steady-state temperature does set in
more slowly and that the process is the slower, the
greater the number of spacers placed between the sub-
strate and the TEE working surface.

EXPERIMENTAL DETECTION
OF THE PROPANE-BUTANE MIXTURE

The experimental setup used to measure the
response of the SAW sensor (the phase shift of the
delay line output versus time) is shown in Fig. 4. The
measuring chamber (of volume =2 cmd) with the SAW
sensor and the metallic inlet capillary were placed into
the thermostat at atemperature of 30 + 1°C kept within
+0.1°C for severa hours. The gas under test was dosed
out with acalibrated 4-cm? U-shaped tube, which could
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be connected to a cylinder with this gas and to the car-
rier gas pipeline with a standard six-way dosage valve
asis usually done in gas chromatographs. In one posi-
tion of the valve, the U-shaped tube is connected to the
cylinder and the gas under test flows through the tube,
while the carrier gas is injected into the measuring
chamber, bypassing the tube. In another position of the
valve (shown in Fig. 4), the U-shaped tube bridges the
gap in the carrier gas pipeline, so that the carrier gas
displacesthe gas under test from the tube to the measur-
ing chamber.

As we noted above, with the SAW substrate placed
directly on the TEE working surface, the response of
our SAW sensor to the propane—butane mixture proved
to be too weak. Figure 5 shows the responses of the
same sensor with glass spacers inserted between the
SAW substrate and the TEE and the household pro-
pane-butane mixture injected into the measuring cham-
ber. It can be seen that the glass spacers do increase
appreciably the sensor’s response.

The phase change sign in the output signal is posi-
tivewhen the SAW substrate temperature is higher than
the temperature of theinjected gas (chamber walls) and
negative otherwise. This means (cf. the phase change
sign upon heating the SAW substrate in Figs. 2 and 3)
that the gas under test cools the SAW substrate in the
former case and heats it in the latter. Since the thermal
conductivity of the carrier gas (nitrogen), 2.4 x
104 W/(m K), is higher than that of the propane-
butane mixture, 1.43 x 104 W/(m K), the SAW sub-
strate temperature could be expected to increase in the
former case and decrease in the latter. Since we did not
observe such an effect experimentally, the major contri-
bution to the response is apparently made by the differ-
ence in the specific heats of nitrogen, 1.04 kJ(kg K),
and the propane—butane mixture, 1.46 kJ/(kg K).

As was expected, the response depended signifi-
cantly on the difference between the injected gas tem-
perature and the specified temperature of the TEE
working surface and also on the gas flow rate. As the
temperature difference decreases, the response declines
proportionally and changes sign when the sign of the
temperature difference changes.

The responses of the sensor to the propane-butane
mixture at different flow rates are plotted in Fig. 6. The
response to the 5 vol % propane—butane + 95 vol %
nitrogen mixture at agas flow rate of 70 cm*/min, SAW
substrate temperature of 58°C, and gas temperature of
30°C was 2.5°, which is quite a measurable value (in
our experiments, the minimal phase change measured
reliably was 0.2°).

Upon detecting the vapors of severa alcohols and
water by the sensor with the glass spacers inserted
between the TEE working surface and the SAW sub-
strate and with the substrate temperature below the
injected gas temperature, the responses were close to
those obtained in [7], where asimilar SAW sensor with
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Fig. 5. Responses of the SAW sensor with (1) one and
(2) two 250-pm-thick glass spacers placed between the
SAW substrate and the TEE to the 100% propane—butane
mixture injected into the measuring chamber at SAW sub-
strate temperatures of (3) 58.3 and (4) 4°C. Theinjected gas
(chamber wall) temperature is 30°C; the gas flow rate is
70 cm®/min.
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Fig. 6. Responses of the sensor with one glass spacer
between the SAW substrate and the TEE to the propane—
butane mixture. The gas temperature is 30°C; that of the
SAW substrate, 4°C. Numbers by the curves indicate the
gas flow rate in cm®/min.

an ordinary temperature-regulating system and without
the glass spacers was used.

CONCLUSION

Thus, we described the physical principle account-
ing for the operation of a SAW sensor capabl e of detect-
ing the vapors of volatiles, as well as gases, without
changing its design or operating mode. The efficiency
of the sensor was demonstrated experimentally. The
sensor offers a high speed of response and temperature
stability, which are typical of sorption SAW sensors.

The results of our experiments should not be
regarded as ultimately achievable. To create a usable



1320

device, it is necessary to optimize its design and oper-
ating modes. In fact, the response of the sensor is pro-
portional to the difference between the temperatures of
the SAW substrate and measuring chamber walls. In
our experiments, this difference was about 30°C at
most. The materials used in our sensor and TEE can
withstand temperatures of up to 120°C. Therefore, the
temperature difference can easily beincreased by afac-
tor of 3to 3.5. Also, we did not optimize the thickness
and material of the spacers between the SAW substrate
and the TEE. It isalso possible to reduce the volume of
the measuring chamber, in which the SAW device is
mounted, by a factor of 2 to 3. This will also increase
the speed and magnitude of the response. The optimum
choice of the carrier gas could provide a greater differ-
ence between the specific heats of the carrier gas and
the gas to be detected and thus improve the parameters
of the sensor. Note that all the above ways for improv-
ing the sensor’s characteristics in detecting gases by
their thermal properties will also improve its character-
istics in detecting the vapors of volatiles.

KRYSHTAL et al.
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Abstract—A static mass analyzer of charged particles operating under a nonuniform magnetic field is sug-
gested. An expression for the magnetic potential distribution isobtained in explicit form. From this expression,
formulasfor the basic parametersin the dispersion plane are derived for first-order angular focusing. Conditions
for space focusing are found when a source and a detector are beyond the magnetic field region. Operating con-
ditionswhere the trajectory exhibits three turns (in other words, charged particlestravel alonger distancein the
field) are established. The extended tragjectory causes a considerable increase in the mass linear dispersion. ©

2002 MAIK “ Nauka/Interperiodica” .

Static uniform magnetic fields are of frequent usein
mass analyzers of ion beams. The linear dispersion
depends on the radius of curvature of the beam; there-
fore, the provision of a high resolution implies an
increase in the overall dimensions of the instrument.
Moreover, in uniform fields, angular focusing in the
direction normal to the dispersion plane is absent.
These disadvantages have given impetus to the devel-
opment of instruments operating with nonuniform
magnetic fields [1].

We suggest a mass analyzer the design of which is
showninFig. 1. It represents a cylinder made of amag-
netic material and cut along the generatrix into four
identical closely spaced parts. Two of them are magnet
poles with screens in between. The beam is introduced
and extracted through channels cut in one of the
screens.

In the 2D approximation, the scalar magnetic poten-
tial distribution along the longitudinal axis z of the sys-
tem is given by

oX(X, y) = W/TH arctan[ /2(1 - x + y)/(2x — X* —yz)](l)
—arctan[/2(1 - x—-y)/(2x=x* =y))]} .

Hereafter, the coordinates, aswell asall geometrical
parameters, are expressed through the radius r of the
cylindrical poles. The lines of force for such afield are
depicted in Fig. 1.

Consider the motion of a charged particle beam in
the midplane x0z of the magnet, which is the plane of
dispersion (Fig. 2). Singly integrating the projection of
the equation of motion onto this plane and equating the
resulting variation of the longitudinal velocity to the
velocity found from the energy law, we arrive a an
expression for the beam trajectory inclination in the

field:
(x)? = [1=P*(x)]/P*(x), 2
where
P(x) = cosd +ao In{[X*(/2+ 1)
+J2(1-X)1[X(2- 1) + J2(1-X)]} /(24/2).

Here, ¥ is the trgjectory inclination at the entrance to
thefield,

o = (KW)/(rc)/J—e/l2md 3
is the magnetic force, K = 2./2/mis the coefficient at

~
N

4

Fig. 1. Cross section of a mass analyzer with cylindrical
poles and the pattern of magnetic lines of force: (1) pole
pieces of magnet, (2) screens, (3) exciting coils, and
(4) magnet yoke.

1063-7842/02/4710-1321$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Fig. 2. Central trgjectories of the beam under mirror operat-
ing conditions at entrance angles © > 90° (1), = 90° (2), and
<90° (3).

the higher harmonic (in the expansion of scalar mag-
netic potential (1)), m and e are the particle mass and
charge, cisthe speed of light, and @ isthe accelerating
potential.

From (2), at X' = 0 one can determine the maximal
coordinate through which the axis of mirror symmetry
passesinsidethefield; at x' = o, the coordinate of atra-
jectory turn when the entrance angle of the beam & >
90°. These coordinates are written as

Xmn = (1= /242c0thp = 3)/[/2(//2 - cothp)] . (4)

To the maximal coordinate X, there corresponds
Hn= +/2(1 — cosd)/o; to the turning point, X, — M, =
—.J2 cosd/o.

Let us determine the base of the mass anayzer (the
spacing between the source and detector) L = | +
A cot® , where © isthe entranceinclination of the beam
central trgjectory, | isthe distance between the entrance
and exit points of this trgjectory, and A = h + g is the
total distance by which the source and detector are off-
set from thefield. For particlesleaving apoint source at
angles+a to the central trgjectory, the distance between
the points of entrance to and exit from the field is

Z = l(a)+Acot(@+a) = L+C,a+Coa’ + ...,

where the coefficients of first- and second-order aberra-
tions in the dispersion plane are, respectively, C, =
0Z/00a|, - o and C, = 1/20°Z/00?|, - o

The value of I(a) is found by integrating (2) from
the entrance point x = 0 to the maximal coordinate X,
with subsequent doubling of the result in view of the

OVSYANNIKOVA, FISHKOVA

mirror symmetry of the trajectory:

Xm

I(a) = 2J'P(x)/[1—P2(x)] Y dx. (5)
0

From expressions (2), (4), and (5), it follows that the
integrand in the upper limit tends to infinity, which can
be eliminated by integrating by parts. In this case, how-
ever, infinity arisesin thelower limit; therefore, integral
(5) hasto be split into two. Under three-turn conditions
(taking place at entrance angles >90°), for which the
charge particle trgjectory in the field lengthens signifi-
cantly (trgjectory 1 in Fig. 2) and, consequently, the
mass dispersion increases, it would be appropriate to
take the following two sections of the trajectory:
(1) from the entrance to the field to the first turn of the
trajectory and (2) from the first turn to the second one.
Then, the entrance—exit distance is I(a) = 2[l,(a) +
[,(a)]. Now, the length of the first section of the trajec-
tory |,(a) aong the zaxis is expressed through integral
(5) as before, but the upper limit of integration is
replaced by x,. The value of |,(a) is aways negative,
because the particles move in opposition to the positive
direction of the longitudinal axis.

After integration by parts, the length of the tragjec-
tory in the second section is written as

O] X
1L(a) = Cu(x) +2 I(X—l){Z/[XZ(Z—X)Z] -1
O
[ *n
(6)
O
x[1-P(x)] “dx o,

O]
]

where u(x) = [x* + 2(1 —x)(1 —x + 23)]/[x(2 — x)] and
u(x,) isthevalue of thisfunction at the point of thefirst
turn.

First-order focusing with respect to the beam angle
takes place if the total source—field and detector—field
distance is given by A = sin©dl(a)/da. For three-turn
conditions, this means that

0 x,
A= 2sjn3@E,-I[1-P2(x)]‘3’2dx
D 0
O
+1/0’[u(x,) (du/dx)] X, 7
X U
2 2 2 2 w O
+J’[(du/dx) +ud“u/dx)[1-P°(x)] "dxg
O
Xn |:|
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Hereafter, the coordinates x,, and x,, refer to the cen-
tral trgjectory of the beam. With condition (7) met, the
expansion of the pattern is defined primarily by second-
order aberrations. For three-turn operating conditions,
we have

C, = 3\cosO/(2sin°O)

Xn

+ sn*0G/0 +3 [P~ P2(x)] " Zdx
D 0

+ 0~ u(x,)[(du/dx)* + ud’u/dx?] (x,) )

Xm

+ J'[(du/dx)3 + 4udu/dxd’u/dx®

Xn

+ AUl [1- P2(] “dx} B
0

where

1— ./2cothp, + (2./2cothp, — 3) ¥
sinhzun(ﬁ — coth un)z(zﬁcoth U, — 3)1/2'

The coefficient of mass dispersion at the exit from
the field (which depends on the trajectory of particles
with different masses and equal energies) is given by

D, = (dl/dm)m = —0.50(31/d0). (10)

In view of formulas (5)—7), expression (10) can be
rearranged for three-turn conditions with first-order
angular focusing as follows:

D,, = 1-Acos®/(2sin°0®) —u(x,)/c

G =

(9)

X

- J'P(x)[3—2P2(x)] [1-P%(x)] dx (11)
0

Xm

+07° J’ P(X)[1 - P*(x)][(du/dx)? + ud®u/dx’] dx.

For single-turn conditions, which take place when
the magnetic force is low (o < 1) and entrance angles
© < 90°, theinterval of integration in finding I, A, C,,
and D,, is also split into two but arbitrary parts to
remove infinity. In this way, we derived formulas for
finding all basic parameters in the dispersion plane of
the mass analyzer at small entrance angles (omitted to
save room).

By way of example, Fig. 2 shows the beam central
trajectory that experiences a 180° deflection (© = 90°)
for amagnetic force o = 1 (curve 2), aswell asthe cen-
tral trgjectory with entrance and exit angles © = 60° for
o0 =0.6 (curve 3). In Fig. 3, anumber of operating con-
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Fig. 3. Mass analyzer parametersin the dispersion planefor
the single-turn trgjectory. Solid curves refer to the total
source-field and detector—field distance; crossed curves, to
the analyzer base; dashed curves, to the mass dispersion;
and dash-and-dot curves, to the second-order aberration
coefficient. The magnetic force o = 0.6 (1), 0.8 (2), and
1.0(3).

ditions for the mass analyzer with single-turn trajecto-
ries are presented. These conditions are selected so that
first-order focusing takes place with the source and
detector placed outside the field. Generally speaking,
second-order focusing is also possible but only inside
thefield (A <0), whichisintolerablefor applications. It
should be noted that the mass dispersion is small under
appropriate single-turn operating conditions. It grows
(Fig. 3) when the entrance angle approaches its maxi-
mum value for a specific magnetic force. However, the
aberrations increase significantly in this case.

The dispersion can be increased under three-turn
operating conditions. The parameters for such condi-
tions in the presence of first-order focusing that were
calculated by formulas (5)—(11) are shownin Fig. 4. At
a constant magnetic force, the range of entrance angles
where focusing takes place beyond the magnetic field
does not exceed 10°. As the force grows, the entrance
angle increases and reaches its maximal value at o =
1.6. Inthis case, both the mass dispersion and the coef-
ficient of second-order aberration increase. The latter
exceeds, as arule, the dispersion coefficient; therefore,
the specific dispersion, which isresponsiblefor theres-
olution, is low. Yet, there exists a narrow magnetic-
force range (1.5 < 0 < 1.6) where the coefficients
roughly equal each other andeven D,,> C, at 0 = 1.6.
These conditions are the most favorable for attaining a
high resolution; therefore, the corresponding basic
parameters are given in the table, where al linear
dimensions are expressed through the radius of aperture
r of the magnet. It should be noted that the negative
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Fig. 4. Mass analyzer parametersin the dispersion plane for
the three-turn trajectory. Designations are the same as in
Fig. 3. The magnetic forcea = 1.2 (1), 1.4 (2), and 1.6 (3).
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Fig. 5. Mass analyzer parameters under the space focusing
conditions: (1) entrance angle for the beam central trajec-
tory, (2) analyzer base, (3) total source—field and detector—
field distance, (4) mass dispersion, and (5) ratio of disper-
sion to second-order aberration coefficient.

value of the base L of the mass analyzer means that the
detector is placed on the | ft of the source, sincetheref-
erence point is at the entrance to the instrument (trajec-
tory 1inFig. 2).

Since the magnetic field is nonuniform, magnetic
forces act on the beam in all directions. To find spatial
focusing, one must solve the differential equation of

OVSYANNIKOVA, FISHKOVA

motion in vector form projected onto the Cartesian
coordinates. Since such equations are not integrated,
we will solveit numerically under theinitial conditions
Xo = 0, Y, = htany/sin®, v,, = v,SnOcosy,

(12)

Vyo = VoSINY, V, = V,COSOCOSY.

Here, v, = /—-2e®/m isthetotal velocity of the parti-
cle, © isthe angle between the particle velocity projec-
tion onto the dispersion plane and the vertical plane
(i.e., theentranceinclination of the beam central trajec-
tory), and y is the angle between the direction of the
total velocity vector and the plane of dispersion. Note
that X — o either at the entrance and the exit or at the
points of thefirst and second turnif © = 90°. Therefore,
when finding the spatial focusing conditions, one
should solve equations of motion where differentiation
is performed with respect to time. In this case, at the
source position, which is found from the condition for
first-order focusing in the dispersion plane [seeformula
(7], the expansion of the pattern in the normal direc-

tionisy, = gtany,; /sin®, —y,, wherey,, y;, and ©, arethe
coordinate and the angles of inclination at the exit from
thefield.

First-order spatial focusing occurs at an entrance
angle of the central trgjectory ©,, such that the expan-
sion of the pattern in two mutually orthogonal planesis
zero in the first approximation. Figure 5 plots these
angles and other parametersvs. magnetic force for such
conditions. As the force grows, the spatial focusing
anglerises linearly, while the other parameters decline.
It is noteworthy that the ratio of the linear dispersion to
the second-order aberration coefficient (curve 5 in
Fig. 5), which is responsible for the resolution of the
mass spectrometer, increases with force. At o0 = 1.23,
spatial focusing is observed at the edge of thefield (A =
0). As the force grows further, focusing occurs inside
thefield, which isinappropriate as regards the arrange-
ment of the charged particle source and the detector.
The provision of space focusing outside the field is an
advantage of the mass analyzer.

Let us demonstrate the potentialities of the mass
analyzer suggested with the separation of CO (m =
27.995) and N, (m=28.006) ions. Thisrequirestheres-
olution at the half-height of a mass spectrum line to be
equal to R =5000.

The conditions for space focusing with the source
and the detector outsidethefield (Fig. 4) provideamass
resolution R = 10%-10° for a luminosity of (0.01-
0.03)% of 4t A higher resolution can be attained by
using three-turn operating conditions with large
entrance angles (see the table). As follows from the
table, the mass dispersion grows with the entrance
angle for a given force. The aberrations, however, also
grow. Conditions with D,/C, > 1 are optimum. They

provide aresolution R [110%

TECHNICAL PHYSICS Vol. 47 No. 10 2002
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Table
First turn Second turn
o O, deg A L C, Dn D,/C,
Xn —Z Xm zn=1/2

150 138 0.871 0.555 1.640 0.411 0.244 0.551 6.166 4.227 0.685
140 0.887 0.595 1.673 0.425 0.464 0.297 8.793 5.380 0.655

145 0.923 0.706 1.765 0.535 1.569 -1.169 | 34.97 12.46 0.356

1.52 140 0.880 0.591 1.640 0.363 0.115 0.588 5.215 4.157 0.797
145 0.915 0.701 1.719 0.405 0.639 -0.103 | 13.20 7.875 0.597

147 0.928 0.749 1.755 0.451 1.020 | -0.670 | 23.35 11.15 0.478

154 145 0.908 0.696 1.681 0.318 0.189 0.366 6.523 5.627 0.863
150 0.939 0.821 1.762 0.385 0.742 -0516 | 19.76 11.78 0.596

152 0.950 0.876 1.800 0.456 1.209 -1.362 | 41.52 18.10 0.436

1.56 152 0.943 0.870 1.747 0.283 0.342 -0.076 | 1111 10.07 0.906
154 0.953 0.928 1.780 0.321 0548 | -0.454 | 18.89 14.18 0.751

156 0.962 0.991 1.816 0.389 0.888 -1.216 | 40.01 21.93 0.548

1.58 157 0.959 1.017 1.774 0.201 0.203 -0.077 | 10.15 13.16 1.296
160 0.972 1.125 1.821 0.260 0.417 -0.625 | 24.00 23.02 0.959

162 0.979 1.205 1.857 0.351 0.698 -1.446 | 61.53 38.88 0.632

1.60 165 0.980 1.335 1.826 0.057 0.037 -0.023 7115 | 24.25 3.408
167 0.986 1.442 1.852 0.074 0.072 -0.165 | 10.91 35.63 3.266

170 0.992 1.639 1.896 0.147 0.151 -0.563 | 38.09 78.18 2.053

Thus, in our example, R = 5000 can be provided in
anumber of operating modes. Their selection depends
on the design (geometry) of the instrument. If, for
example, the radius of the cylindrical polesisr =
25 mm and the width of the entrance and exit dlitsis
s =50 um, the linear mass dispersion must equal D =
20r = 500 mm. In this case, the trajectory is a loop
whose longitudinal extension is no more than 3r =
75 mm. At the same time, a resolution R = 5000 in a
90° sector mass spectrometer with auniform field and
with the same glit sizesis provided if the radius of cur-
vature of the trajectory is 500 mm; in other words, the
overall dimensions of the magnet and the instrument
are much greater.

TECHNICAL PHYSICS Vol. 47 No. 10 2002

To conclude, we note that with a certain potential
difference applied to the screens (in essence, only one
shield should be biased, since the other, through which
the beam isinjected, is grounded), spatially coincident
mutually perpendicular magnetic and electric fields
arise, which are known to provide achromatism condi-
tions. In this way, velocity focusing can be accom-
plished without complicating the design.
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Abstract—Theinitia stage of forming the electron sheath and el ectron beam generation in magnetron gunsfor
the case when the secondary emission processistriggered by nanosecond pulsesis considered. Inthe gunswith
small transverse sizes, tubular electron beams with an outer diameter of 46 mm and a current of 1-2 A are
produced at acathode voltage of 5-10 kV. It is shown that the formation of the electron cloud and beam current
pulse front for atime of =2 nsis apossibility. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

In recent years, cold-cathode electron sources oper-
ating under secondary emission conditions in crossed
€l ectric and magnetic fields have become the subject of
great interest [1-5]. Such sources offer a number of
advantages (long service time, high current density,
simple design, etc.), making it possible to use magne-
tron guns with cold secondary-emission cathodes in
accelerators and high-power long-lived microwave
sources [5], as well as in high-speed high-voltage
equipment [6]. The electron beam in these sources is
produced as follows. At the trailing edge of a cathode
voltage pulse, primary electrons (due to field emission
or external injection), returning by the action of the
magnetic field, bombard the cathode surface. When
moving along cycloidal trajectoriestoward the cathode,
the electrons gain an energy proportional to the change
in the electric field during their transit. Under certain
conditions, i.e., when the energy of the incident elec-
trons becomes large enough for the secondary emission
coefficient to exceed unity, the process of secondary
emission starts and the subsequent aval anche-type mul-
tiplication of the electron concentration results in the
formation of an electron sheath from which electrons
are extracted to generate abeam. In thiswork, we deter-
mine the time it takes for the space charge of the elec-
tron sheath to form and study the temporal stability of
beam generation in magnetron guns for pulsefall times
of 2-10 ns.

EXPERIMENTAL SETUP AND INVESTIGATION
TECHNIQUES

The design of the setup used in our experiments is
depicted in Fig. 1. A magnetron gun made of stainless
steel with copper cathode 5 and 120-mm-long stainless
steel anode 6 is placed in vacuum chamber 3, which is
evacuated to a pressure of =107 torr. An axial magnetic
field in the gun is produced by solenoid 4. A negative
voltage pulse U, (of amplitude 4-100 kV, width 2—
10 ps, and repetition rate 10-50 Hz) is applied from
modulator 1 to the cathode 5 of the magnetron gun. The
anode 6 of the gun is grounded through resistor R; or is
connected to generator 2. A decaying electric field is
generated in two ways. In the first case, modulator 1
generates a rectangular pulse and the process of sec-

3 4 5 6 7

oo/ooooo /

— B /

—L

O O O|0_ O OYO O

Ry

Fig. 1. Design of the experimental setup.
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ondary emission multiplication takes place during the
trailing edge of the voltage pulse (of duration 2—40 ns,
amplitude 3.5 kV on aload of 50 Q, and rise and fall
times 1 ns) applied from generator 2 to anode 6. In the
second case, the process of secondary emission multi-
plication is accomplished by producing an overshoot
(of duration =0.6 ps) in the voltage pulse from modula-
tor 1 [5] (with generator 2 switched off). This makes it
possible to perform experiments with a rise time from
2 to 600 ns and a steepness of the voltage pulse edge
from 20 to 1200 kV/us. The beam current and sizes are
measured at distances of up to 180 mm from the anode
plane. The current was measured with Faraday cup 7,
which has the form of a=40-cm-long coaxial line, and
the resistor R, (with the resistance equal to the wave
impedance of theline, 18 Q); the cathode voltage, with
the R;R, divider; and the beam sizes, from a spot on
X-ray film and on molybdenum foil.

When triggering secondary emission by nanosecond
pulsesfrom generator 2, one must take into account that
transmitting circuits distort their waveforms. In our
setup, the pulse-transmitting circuitry involves the
coax, high-voltage insulator, vacuum transmission line,
and anode mount. To determine the actual shape of the
pulse, we measured its parameters in the space between
the anode and the cathode. Figure 2 shows pul se wave-
forms obtained in two cases. In the former case, the
duration of the generator pulse was =2 ns; in the |latter,
=6 ns. The signals were recorded by an 12-7 oscillo-
scope (of passbhand =3000 MHZ). It is seen that the
shape of the short pulse remains nearly unchanged and
its fall time is =2 ns, while the long pulse is distorted
with itsfall time increased to =11 ns.

In our experiments, explosive el ectron emission was
absent. Thiswas checked by applying avoltage pul se of
amplitude 70 kV to the cathode of the gun. Under these
conditions (in the absence of the magnetic field), the
cathode current was absent and a fall on the top of the
cathode voltage pul se (characteristic of explosive emis-
sion) was not observed. (Under explosive emission, the
anode—cathode gap is short-circuited by a meta
plasma, the resistance of the gap approaches zero, the
current is defined by the voltage supply power, and the
cathode—anode voltage is also close to zero.)
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0 6 12 18 t, ns

Fig. 2. Triggering pulse waveforms in the cathode-anode
gap. Pulse durationis (1) 2 and (2) 11 ns.

RESULTS AND DISCUSSION

The beam generation was studied at different
parameters of the pulse triggering secondary emission
multiplication.

In experiments with a pulse fall time of =0.6 s and
a pulse edge steepness of 20-50 kV/us (second
approach), the processes of secondary emission multi-
plication and beam generation started within 100-
500 ns (depending on experimental conditions) after
the beginning of voltage pulse fall. With such a small
stegpness, the number of primary electrons must be sig-
nificant, because few of them gain the energy sufficient
for secondary emission multiplication. As aresult, the
accumulation of secondary electrons takes consider-
abletimeand isof astatistical nature with atime spread
of several tens of nanosecond. Therefore, the resulting
current pulseistemporally unstable and beam particles
have an energy spread. Note also that the rise time of
the current pulse also depends on the fall time of the
triggering pulse; accordingly, it was on the order of tens
of nanoseconds in our experiments.

To improve temporal stability, cut the current pulse
rise time, and diminish the energy spread in the beam,
one must increase the steepness of the triggering pulse
and decrease its duration.

With this in mind, the process of secondary emis-
sion multiplication was triggered by pulses of nanosec-
ond fall time according to the first approach (Fig. 2). In
these experiments, an electron beam appeared within
1.5-2.0 nsin the first case and within =10 ns after the
beginning of pulse fall in the second case. The occur-
rence of the beam was detected by a decrease in the

Table
Gun no. de, mm D, mm U, kV I,A H, Oe U, kv T,Nns
1 2 7 6 14 3000 24 2
2 2 10 55 1 2200 4 12
3 2 10 7.3 16 2400 3 11
4 3 14 7.6 2 1400 3 14
TECHNICAL PHYSICS Vol. 47 No. 10 2002
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Fig. 3. (4) Waveforms of beam current pul ses at the Faraday
cup and those of voltage pulses in the (1) absence and (2)
presence of the beam. Arrow 3 indicates the instant of trig-
gering pulse application.

cathode voltage pul se amplitude because of loading by
the beam. Figure 3 showstypical waveforms of cathode
voltage pulses and beam current from the Faraday cup
in a magnetron gun with a cathode diameter of 2 mm
and an anode diameter of 10 mm. In this case, the time
instability of current pulse beginning iswithin thetrig-
gering pulsefall time and reaches tens of nanoseconds.

The results of the investigation are summarized in
the table, where d. and D, are the diameters of the cath-
ode and anode of the gun, U, isthe cathodevoltage, | is
the beam current, U and T are the amplitude and fall
time of thetriggering pulse, and H isthe magnetic field.
The cathode voltage amplitude was varied so as to pre-
vent the breakdown of the anode-cathode gap (the
maximal amplitude was varied between 15 and 25 kV
according to the gun design). The table also lists mini-
mal voltage amplitudes at which secondary emission
multiplication and, hence, beam generation still take
place. These values are of interest for applications such
aslow-voltage electron sources for microwave devices.
For copper cathodes, the energy of primary cathode-
bombarding electrons should lie between 0.4 and
0.6 keV. With such energies, the coefficient of second-
ary emission reaches the maximum and secondary
emission multiplication proceeds very intensely. Inthis
case, the primary electron energy is =10% of the elec-
tron energy at the output of the gun. Thisis of interest
for studying the formation and stability of the electron
sheath, aswell as of an electron beam with asubstantial
energy spread.

VOLKOLUPOV et al.

The study of beam generation vs. steepness of the
pulse trailing edge showed that this dependence has a
threshold. As follows from the table, the triggering of
magnetron gun 1 and beam generation take place at
trailing edge steepnesses of more than 1000 kV/us,
while magnetron gun 2 is triggered at steepnesses of
more than 300 kV/us. Similar results were obtained for
magnetron guns 3 and 4. For the beam generation to be
stable at nanosecond triggering times, the steepness of
the trailing edge must be significantly larger than for
fall timeswithin 0.4-0.6 ps.

When the gun is triggered by a voltage pulse with a
nanosecond fall, the energy spectrum of the beam is
improved because of a decrease in the number of high-
energy electrons generated at the trailing edge of the
pulse and also because of a decrease in their energy
spread owing to the small amplitude of the pulse.

Our experimental results are in fairly good agree-
ment with the numerical simulation of electron sheath
formation in crossed fields. It was shown in our previ-
ouswork [5], aswell asin[7, 8], that during thetrigger-
ing pulsefall time, electrons can gain enough energy to
initiate secondary emission multiplication within 1—
2 ns. With such arapid voltage fal, the number of pri-
mary electrons is small; however, owing to the large
steepness of the voltage pulse trailing edge, they can
gain an energy at which the secondary emission coeffi-
cient exceeds unity and secondary emission multiplica-
tion proceeds at a considerable rate.

The measurement of the transverse size of the
beams showed that their cross sections are rings with a
uniform azimuth intensity distribution. Their inner
diameters were roughly equal to the cathode diameter,
and the “thickness’ of the beams was found to be 1 or
2 mm. For example, the beam in magnetron gun 2 had
outer and inner diameters of 4 and 2 mm at a distance
of 130 mm from the anode plane. In gun 4, the respec-
tive sizes of the beam were =6 and =2.5 mm at adis-
tance of 55 mm from the anode plane.

CONCLUSION

Our experiments show that the formation of a space
charge cloud and the generation of an electron beam in
a magnetron gun with a secondary emission cathode
may take place within =2 ns. This allows for the gener-
ation of beam current pulses with nanosecond rise
times and the synchronization of beam current pulses
with ananosecond accuracy. At cathode voltages of 5to
10 kV and magnetic fields between 1900 and 3000 Oe,
tubular electron beams with a current of 1-2 A and an
outer diameter of 4-6 mm were produced.
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Abstract—An analytical temperature dependence of the internal friction Q~(T) for composite materials is
derived. It is shown that the hysteresis behavior of the QX(T) curve observed in temperature cycling experi-
ments with some composites may be a result of plastic strain clustering in the matrix. © 2002 MAIK

“ Nauka/Interperiodica” .

Plastic strain localized in microvolumes is a basic
factor responsible for the internal scattering of the
vibrational energy in structurally inhomogeneous
materials. Thisfactor isof specia importancein hetero-
structures and composites with constituents greatly dif-
fering in mechanical properties. Earlier, it was shown
[1-3] that temperature cycling (heating/cooling)
applied to several composites grown by the oriented
crystallization method causes hysteresis in the temper-
ature dependence of theinternal friction Q7(T), which
is absent in homogeneous materials. At a certain cool-
ing temperature, tensile thermal stresses dueto adiffer-
ence between the thermal expansion coefficients of the
constituents reach val ues close to the macroscopic yield
strength o, of the matrix. Naturally, plastic deforma-
tion in the matrix is accompanied by heat evolution, of
which internal friction isameasure. However, no cases
of the analytical description of Q(T) have cometo our
notice so far. The purpose of this work is to quantita-
tively describe hysteresisin Q(T) curves observed in
experiments with composites using general ideas of
continuum mechanics.

Consider composites consisting of elastic fibers and
a plastic matrix. In this case, the matrix is the first to
yield upon stressing the composite. Therefore, the dis-
sipative power of such composites is defined by the
matrix properties. To simplify the mathematics, we
assume that the value of Q' is measured for longitudi-
nal, rather than flexural, rectangular vibrations of fre-
quency f. When thermal stresses are imposed on cyclic
stressing, the matrix experiences the combined effect of
asymmietrically varying stresses having the temperature
and temporal components:

0 = Ot 0of(1), (D

where g, is the thermal stress in the matrix, g, is the
amplitude of variable stresses in a cycle, and ¢(t) isa

periodical (not necessarily harmonic) function of time:
-1<¢(t) <1

We will proceed from the known Davidenkov con-
cept on the statistical (nonuniform) distribution of
mechanical stresses o over grains [4], assuming that
deformation is perfectly plasto-elastic (that is, without
hardening). This assumption relieves us of having to
formulate the matrix yield law. The yield strength of
grainsis assumed to be the same and equal to gy,. Let
local stresses plastically strain amatrix grain by de. The
associated work of deformation is

dU = bVo,,de,

where b is a proportionality coefficient (no more than
unity) that depends on the grain size, orientation, and
location and V is the grain volume.

Accordingly, the work of plastic deformation per
unit matrix volume within the period of vibration is
given by

AU = bVNngy,AE.

Here, Ae = §de isthe plastic strain of agrain within the

vibration period, n = Ny/N is the fraction of plastically
strained grains in a unit matrix volume under an aver-
age Macrostress o, in the matrix (not inagrain!), N, is
the concentration of plastically strained grains in the
matrix, and N isthe total concentration of grainsin the
matrix. Sincethe product VN isthe volume occupied by
grainsin aunit matrix volume (VN = 1),

AU = bng,,At. 2

The expression for n(o,,) for the horizontal cycle of
vibration was derived in [4]:
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n(0,) = [ P()do = B&f—jﬁm, 3

where p(0) is the Gaussian distribution of stresses o
over grains and B and m are constants depending on the
variance of the distribution curve p(0o).

Expression (3) is valid when g, is large compared
with the center-of-gravity value ¢ of the distribution
p(0).

The plastic strain of a matrix grain within a vibra-
tion cycleis given by

1/2f
Ag = fds = J'ds.
0

Here, integration is over the positive haf-period of
vibration t/2 = 1/(2f) (not over the complete period 1),
because the strain within the negative half-period is
elastic and does not contribute to heat evolution. When
analyzing plastic strains induced by thermal stressesin
composites, one should first of al take into account the
matrix creep [5]. The time dependence of the plastic

strain € including the secondary creep is [6] € = &t +
€%, where & is the rate of secondary creep. Here, €°
involves the elastic part of the strain and a jump of the
plastic strain at theinstant the stressis applied (“instan-
taneous’ creep). In copper, thisexpression isapplicable
to the temperature range (0.4-0.7)T,, (where Ty, isthe
melting point of copper on the absolute temperature
scale), which is important from the engineering view-
point [7]. The rate of plastic strain is defined by the
Arrhenius law &, = gyexp(—Hy/KT). Here, H, is the
energy of activation of deformation, k isthe Boltzmann
constant, and the preexponential €, depends on tem-

perature only slightly. Then,
Ag = soexp(—Ho/kT). )

2f

Theinternal friction is most frequently described by
the relationship Q* = AU/2rU, where U is the total
energy of elastic strain per unit volume of the material.

As applied to cycle (1), U = o, /2E,,, where E,, isthe

elastic modulus of the matrix. Thus, in view of (2)—(4),
the expression for internal friction takes the form

_ bBE,&,0n °

Q' = S ep(-HYkT). ()

m-1
0.2

Now, let us calculate tensile thermal stresses arising
in the matrix upon cooling the Cu—1.3 wt % Cr eutectic
composite from 978 K. The copper matrix can be con-
sidered perfectly plastic, since copper has a very low
yield strength. In the elastic approximation, internal
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stresses appearing in the matrix when the temperature
changes by AT are given by [8, 9]

o = ViEEAaAT
me VmEm+VfEf’

where V,,, and V; are the volume fractions of the matrix
and fibers, E,, and E; are their elastic modulus, and
Aa = (0, —0;) > 0 isthe difference between their ther-
mal expansion coefficients.

For fiber composites, it is assumed that thermal
stress vectors are aligned with fibers and are constant
over the matrix cross sections. Datafor the temperature
dependences of E,,, E;, d,,, a; and the yield strength of
copper g, , were taken from references books [10, 11].
Figure 1 showsthe temperature dependences of thermal
stresses in the matrix and of itsyield strength.

Theinterna friction in the Cu—1.3 wt% Cr eutectics
was calculated by formula (5) with m = 4. Diffusion
creep in copper is initiated at temperatures above
0.8Ty, = 1069 K. At lower temperatures, dislocation
cross dlip seems to be the most probable mechanism of
creep in pure copper. This mechanism of dislocation
straining does not require diffusion. However, it needs
thermal activation, because some energy must be spent
to unpin dislocations from impurities and alow them to
moveto another dlip plane[7, 12]. Therefore, inthecal-
culations, the disl ocation—impurity binding energy was
set equal to Hy = 0.15 eV, which istypical of copper at
T> 273 K [13]. Let in the first approximation average,
0., and thermal, o,,,, stresses in the matrix be the same
by order of magnitude: o, = o0, Experimental data
[2, 3] and calculated results are demonstrated in Fig. 2.
It is seen that the mechanism of microplastic losses
considered in the paper does provide a peak of QY(T)
on cooling the composites. The discrepancy between
thetemperature peaks QX(T) found experimentally and
analytically may be associated with the fact that the

1

S = D WA UL I X®

]
300 400 500 600 700 800 900 1000
T,.K

Fig. 1. (1) Therma stresses in the matrix of cooled Cu—
1.3wt % Cr eutectics and (2) the yield strength of the
matrix.
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Fig. 2. Internal friction Q~(T) of the Cu-1.3 wt % Cr eutec-
tics: (1) experimental data and (2) calculated results for the
cooled eutectics.

Cu-1.3 wt% Cr eutectics were prepared from high-
purity electrolytically refined metals in alundum cruci-
bles in the argon atmosphere, while the reference data
used refer to other sorts of the metals.

Thus, apeak inthe Q(T) curvefor cooled compos-
itesmay appear evenif thermal stresses g, do not reach
the yield strength oy, (Fig. 1). The reason for such
“extreme” behavior of QX(T) isthe clustering (statisti-
cal distribution) of the plastic strain over the matrix and
in the relationship between the dtatistical average
stresses 0, ~ 0,,, and 0y ,. Theinternal friction (at m =
4) of the cooled composite grows quadratically with oy,
and simultaneously decreases cubically with increasing
Og.-

Upon constructing a more consistent theory of plas-
tic losses in composites, one should aso take into
account the localization of thermal stresses at inter-
faces. From general thermodynamic considerations, it
follows that internal stresses decrease as 1/r, wherer is
the distance to the interface [14]. The variation of the
shape of the Q7Y(T) curve with the dispersity of cooled
Cu-1.3 wt% Cr eutectics [1] favors the aforesaid. If
heating changes to cooling and vice versa in tempera-

ARZHAVITIN

ture cycling at a sufficient rate, the plastic deformation
of the matrix near the interface comes beforefiber frag-
mentation; hence, the method of low-frequency internal
friction is undoubtedly a promising tool for studying
the strength of composite materials.
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Abstr act—Experimental concentratlon profiles of Asionsinasilicon substrate at temperatures of 20, 600, and
1050°C and ion current of 40 uA/cm aswell asat 1050°C and 10 pA/cm?, are presented. On the basis of our
and previously published experi mental data, the process of radiation- stimulated ionic diffusion and self-diffu-
sioninsiliconissimulated. A number of interesting dependences, which are discussed in the conclusion of this
study, are obtained. © 2002 MAIK “ Nauka/lnterperiodica” .

INTRODUCTION

The investigation of the behavior of different impu-
rity ions implanted into semiconductor materials as
functions of current density, ambient temperature,
exposure time, ion energy, and the chemical properties
of interacting substances is of great theoretica and
practical importance. In this study, we investigate the
implantation of 40-keV Asionsinto a silicon substrate
in awide temperature range.

EXPERIMENTAL

In our experiments, silicon substrates were irradi-
ated using an ILU-3 accelerator [1]. For heating the
substrates in the course of irradiation, a specia high-
temperatureion collector was developed. Asasubstrate
material, we used single-crystaline silicon. The
implantation was performed with 40-keV Asions a a
dose of 2 x 10% ion/cm?. The distribution of implanted
atoms with depth was analyzed using X-ray diffraction
with layer-by-layer etching. The main irradiation
parameters are listed in Table 1. The measured concen-
tration profilesare shownin Figs. 1 and 2. It can be seen
that, even for room-temperature irradiation, the profile
contains a deep-lying maximum.

THEORY

In order to explain the impurity drift into the bulk,
which strongly exceeds the ion range, we applied the
modified Beloshitskii model [2] described previously
in [3]. In addition to diffusion transport, it is assumed
that impurity capture by vacancies also takes place.
Note that a purely diffusion equation in the presence of
a source does not have a solution with a maximum
located at a greater distance from the surface than the
ion range. The key feature of the model consistsin its

nonequilibrium—diffusion occurs against a back-
ground of intense production and annihilation of
defects. These processes are described by the following

(Na + Nc) x 102, cm™
80

60
40

20

1 1 ]
0 0.05 0.10 0.15 0.20 0.25 0.30
X, pm

Fig. 1. Experimental concentration profiles of Asin silicon

at temperatures of (1) 20, (2) 600, and (3) 1050°C
(40 pA/cmd).

(Na + Nc¢) x 102, cm™

0 0.2 04 0.6
X, pm

Fig. 2. Experimental concentration proflles of Asinsilicon
for the currents (1) 40 and (2) 10 pA/cm (1050°C).
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Ta%le 1 Bazsic experimental parameters of the implantation of As ions with an energy of 40 keV and a dose as high as 2 x
10" ion/cm

0 , D exrs
Number T,°C jo, MA/Cm? io n/cme)z(px 10° Vp exp» CMVs x 10710 trmaxs S
1 1050 10 3.101 1.940 3200
2 1050 40 2472 6.184 800
3 600 40 11.210 28.048 800
4 20 40 5.661 14.164 800
Table 2. Calculated diffusion coefficients and enthalpies
Number D,, cm?/sx 10711 Dy, cm?/s x 1071 Hg, . cal/mol Tur, °K
1 0.169 0.204 64610 1326
2 0.540 0.0633 68151 1335
3 0.007 0.0463 47157 913
4 0.499 0.0127 31937 589
system of coupled equations: ang/dt = Dy, aznd 19% — NNk .
ONn/at = D,0°n/0%X" — NN, Kegp + NeNeKey @ — Ny NgKan + JoNTGO(R, — X + Xo),
. 2 2
+ jo&XP(—(Ry— X + Xo) 12AR,)//2TIAR,, 0N, 10t = Dy, 10X =y Ko
on./ot = nyn, Ky —NcNgKer, 2 =N, NgKann + JoNOGO(R, — X + Xo), @
- - 22 -3
H,,. cal/mol Xo = =Vpt, N =504x10"cm
80000 - 0, = 352x107° cm’.
» Here, ©(x) isthe unit step; Nisthe density of thesilicon
70000 - L nuclei; g, isthe approximate cross section of the defect
i formation; R, and AR, are theion range and its standard
e deviation, respectively; and D,, Dg,, kcap, Koetr @Nd Ky
60000 - e are the free parameters of the model, which have the
y evident physical meaning of the impurity diffusion
L7 coefficient, the diffusion coefficient of the defect—
50000 L vacancy pairs, the rate of the quasi-chemical reactions
Xx responsible for the impurity capture by the vacancies,
! the activation rate of the impurities by the interstitial
40000 |- "’ atoms, and the rate of the mutual annihilation of the
"’ vacancies and interstitial atoms, respectively.
. Based on the experimental data, the boundary con-
300001 _ 7 dition for the impurity was taken to be equal to zero,
,i which can beinterpreted as its escape to the sampl e sur-
[ face. For the interstitial atoms and vacancies, a condi-
20000 ' ! ' . ' tion was used such that the flux of the interstitial atoms
400 600 800 1000 1200 1T4 Olg would lead to the motion of the material boundary with
’ avelocity of v, (the problem of Stefan type). Theinitia
. conditions and the boundary conditions at the other
Fig. 3. Temperature dependence of the enthalpy of defect
migration in silicon on the basis of the data from Tables 2 boundary were taken also to be equal to zero. Under the

and 4. above conditions, the system of Egs. (1-4) was solved

TECHNICAL PHYSICS Vol. 47 No. 10 2002
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Table 3. Calculated rates of the quasi-chemical reactions
Number Keap» CM3/s X 10723 Ko, CM3/S X 10723 Kgn» CM3/s x 10723
1 2.355 7.421 2.609
2 0.889 8.321 5.795
3 0.943 15.60 5.763
4 0.929 8.260 5.855
Table 4. Calculated enthalpies for the other experiments
lon T °C o, HA/Cm? E, keV Ty, K Hgy, ca/mol Reference
Yb 20 10 70 488 27811* [5, 6]
26877
24697
Na 365 0.3 7 638 35845 [7]
As 20 150 25 722 38703 (8]
Tm 500 30 150 906 50900 [9]
C 20 300 40 961 46 377* [2, 10]
46931
47058
As 850 40 40 1143 57164 [12]
T 1200 40 20 1478 70591 [3]
As 1200 40 40 1482 74154 [11]
T 1200 100 20 1484 70064 [4]

* For pure silicon (further growth in the impurity concentration).

numerically using a computer and the finite-difference
scheme. The values of the free parametersin our model
were fitted by the least-squares method in such a way
that they corresponded as close as possible to the exper-
imental profiles.

CONCLUSION

The results of the calculations are listed in Tables 2
and 3. In Table 2, in addition, the enthalpies of defect
migrations (evaluated by the Arrhenius equation) and
the effective temperatures of the surface layer (with
allowance made for the beam-induced heating) are also
presented. In Table 4, the data from our additional cal-
culations of the enthalpy of silicon self-diffusion are
listed. Figure 3 shows the temperature dependence of
the enthalpy of the defect migration, which was
obtained using the data from Tables 2 and 4.

Ascan be seen from Fig. 2, in contrast to our results
obtained for the implantation of Tl ions into silicon

TECHNICAL PHYSICS Vol. 47 No. 10 2002

[3, 4], the profile strongly depends on the Asion cur-
rent.

From Table 4, one can see the dose dependences of
the enthalpy of defect migrations for the impurity ions
of carbon and ytterbium in silicon, which are of oppo-
site character. Note that the ytterbium ions migrate to
the surface, whereas the carbon ions migrate into the
bulk of asample.
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Abstract—Electron microscopy is used in a study of nanoclusters of the carbon soot deposited on a probein
different areas of arc discharge during graphite vaporization under conditions favorable for fullerene synthesis.
It isfound that the spatial network of soot nanoclusters consists of alternating regions of higher density or asso-
ciates of carbon particles. Two types of nanoclusters have been identified with the correlation radii of the asso-
ciates equal to 0.6-0.8 and 1.6-2.2 nm, respectively. Type | nanoclusters are dominant in the soot microparti-
cles, and their structure shows practically no variations with increasing separation r of the soot collector from
the discharge axis over the range of distances studied, r = 1-9 cm. The effective radius R, of the “ elementary”
particles making up the associates in the soot nanoclusters of Type | calculated with the use of scaling relation-
shipsis 0.15-0.17 nm and is close to the gas-kinetic radius of carbon atoms. Type Il nanoclusters have been
identified in soot collected at r > 3 cm. Values of R, calculated in this case are 0.6-0.9 nm and decrease with
increasing r, which indicates the presence of fullerene molecul esin these nanocluster associates. © 2002 MAIK

“Nauka/Interperiodica” .

INTRODUCTION

In [1], the structure of carbon soot produced by arc
discharge vaporization under conditions favorable for
synthesis of fullerenes was studied. It has been shown
that the soot is characterized with amultilevel structure
depending on the scale under study. Elementary parti-
clesin the soot are either fullerenes or carbon particles
of asize on the order of fullerene dimensions (“failed”
fullerenes). These elementary particles aggregate into
associates, forming a spatial network of fractal nano-
clusters 30-80 nm in size. The nanoclusters combine
into aggregates which, in turn, are constituent parts of
the soot microparticles. The soot studied in [1] was col-
lected from the walls of areactor (90 mm in diameter),
so these results could not provide an answer as to at
what distance from the discharge particular species of
carbon particles were formed.

In[2], the deposition of carbon onto metallic probes
placed in the path of the gas-plasmajet exiting theinter-
electrode gap of an arc discharge was studied. The
resultsobtained in [2] wereanalyzed in [3] using asim-
ple gas-dynamic model of the jet and a fairly general
model of the cluster size distribution. It was shown that
carbon chains and rings transform into fullerenes at a
distance of r > 3 cm from the axis and the number of
particles Sin an associate exceeds unity at r > 4 cm.

The purpose of thiswork isto verify the conclusions
made in [3] by directly studying the soot structure at
different distances from the arc axis.

EXPERIMENTAL

The arc discharge burned between graphite elec-
trodes 6 mm in diameter in avacuum chamber 180 mm
in diameter. The arc parameters were as follows: cur-
rent, 80 A; helium pressure, 70 torr; interel ectrode gap,
34 mm. Around the arc discharge at various distances
from its axis, water-cooled copper wires 1.5 mm in
diameter were arranged. Soot deposited on the wires
was collected and analyzed.

The morphology of the soot particles was studied
under a Philips electron microscope at an accelerating
voltage of 100 kV. The sampleswere prepared by ultra-
sonic dispersing and placed on aspecially prepared film
substrate of amorphous carbon supported by copper
netting.

Computer processing of the micrographs was car-
ried out at amagnification of 5 x 10° using acluster grid
model [4] and following aprocedure describedin[1]. A
plane square grid with a distance between sites of r =
0.2 nm was superimposed on the images. The image
areascanned was about 5 x 10° nm?. For each soot sam-
ple, no less than ten images were analyzed.

1063-7842/02/4710-1337$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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For quantitative characterization of the spatial distri-
bution of nanocluster density, a lattice density radial
distribution function g(R) and dependence of an aver-
age lattice density pn(R) on a scale value R [1] was
used. The fractal dimension of nanoclusters D was
determined by the slope of the pn(R) curvein logarith-
mic coordinates.

In calculating the effective radius R, of the elemen-
tary particles making up the associates in nanoclusters
and the average number S of particles in an associate,
we used relationships obtained in [1]:

1/(2-D)

R = BpnLe™ g M)

Fig. 1. Electron micrographs of nanoclusters from
fullerene-containing soot collected at different distances r
from the discharge axis. r = 3 (a); 4 (b); and 5 cm (c).

GORELIK et al.

S = w(&/R,)°, 2

where L isthe period of spatial aternation of the asso-
ciates in a nanocluster; & is the average correlation
radius of an associate; p; isthe degree of a nanocluster
being filled with associates at R = §; D is the fractd
dimension of ananocluster; and w is the associate den-
sity (for random packing of hard spheresw=0.637[9]).

RESULTS AND DISCUSSION

Figure 1 shows electron micrographs of soot nano-
clusters collected at different distances r from the dis-
charge axis. It is seen that the carbon nanoclusters of
the soot have areticular internal structure arising from
spatial ateration of regions of different density. These
regions can be related to associates of carbon particles.

Over distances r between 1 and 3 cm, the structure
of nanoclusters remains nearly the same (Fig. 1a) and
can be represented by aradial density distribution func-
tion g(R), showninFig. 2. The position of thefirst min-
imum of the g(R) function corresponds to the value of
the associate correlation function & (¢ = 0.6 nm), and
the position of the next maximum corresponds to the
period of spatial alternation of associatesin ananoclus-
ter L (L = 0.93 nm).

With increasing scale R, the average density of nan-
oclusters pn(R) decreases as pr(R) ~ RP ~2, and because
in logarithmic coordinates the function pn(R) is a
straight line (Fig. 3), the nanoclustersin the soot can be
characterized as a fractal structure of dimension D =
1.7. Transition to the uniform continuous network of a
percolation cluster (D = 2) corresponds to the kink
point in the dependence of Inp on InR and occurs over
ascale closeto the value of correation radius €.

At r < 3 cm, the effective radius R, of elementary
particles making up associatesin asoot nanocluster cal-
culated with the use of scaling relationships (1) and (2)
is equal to 0.15 nm, which is close to the gas-kinetic
radius of a carbon atom.

Atr =4 cm, the soot, in addition to the above, con-
tained fractal nanoclusters of different type (Fig. 1b,
1c), with larger associates of carbon particles corre-
sponding to & = 1.6-2.2 nm. The content of such nano-
clustersin soot increases with increasing r.

Figure 4 shows curves of the density distribution
function g(R) in type Il soot nanoclusters for various
distances r, and Fig. 5 shows corresponding depen-
dences of the lattice density p on the chosen scale.
Structural parameters of the nanoclusters are given in
the table. The same table cites values of the fullerene
content in soot a and capture parameter € of carbon par-
ticlesby acylindrical probe [2] measured under identi-
cal experimental conditions.

The effective radius R, of the elementary particles

calculated for such nanoclusters is 0.5-0.9 nm (see
table), which is substantially greater than the gas-
TECHNICAL PHYSICS  Vol. 47
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g(R)

/

1.0 \/

0.8F

R, nm

Fig. 2. Density distribution function g(R) in typical nano-
clusters of carbon soot.

kinetic radius of carbon atoms and corresponds to the
characteristic size of fullerenes and more intricately
structured carbon clusters. This fact suggests that the
fullerene associates are formed in the soot at r > 3 cm.
Qualitatively, thisisin good agreement with the results
of calculationsin [3], assuming that at r > 4 cm the gas-
plasmajet contains carbon chains, rings, and fullerenes,
but no associates (S< 1).

Analysis of the obtained experimental data showed
the following:

1. In nanoclusters from soot collected at r < 4 cm,
the elementary particles are carbon atoms and no
fullerene associates are present inside the nanocluster.
It is quite possible that under these conditions nano-
clusters and their aggregates form, instead of within the
gas-plasma jet, at the surface of the soot collector or in
the near-surface thermal layer.

2. Formation of an increasingly higher density of
fullerene associates p, takes place over a rather small
distance (r = 3-5 cm). At r > 5 cm, the lattice density
pr of the nanoclustersisonly dightly dependent onrr.

3. Away from the arc axis, the radius of elementary
particles R, in the fullerene associates decreases and
their number in an associate increases.

4. The fractal dimension of fullerene nanoclusters
increases somewhat with r and, at the reactor wall, is
close to D = 1.8, the value corresponding to the aggre-
gation mechanism of the associates of elementary par-
ticles. Thisis higher than the value of D = 1.6 givenin
[1]. The cause of the discrepancy is the fact that in [1]
the entire soot was analyzed, collected from the walls
of a pilot installation with an arc chamber of smaller
diameter (90 mm).

5. Conclusions drawn from the analysis of electron
microscopy data are in good agreement with measured
values of a and €. The fullerene content in the soot a
increases up to r =4 cm and then variesinsignificantly,
in agreement with the resultsin [6], where a was deter-
mined by spectrometric methods. The capture parame-
ter € ismore than unity at r > 4 cm. Thisvalue of r can
be related to carbon chains, rings, and fullerenes[2, 3].
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Fig. 3. Dependence on the scaling radius of the lattice den-
Sity py intypical nanoclusters of carbon soot.
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Fig. 4. Density distribution function g(R) for associates of
fullerene-like particles in nanoclusters of soot collected at
distances of 4 (1), 5 (2), and 9 cm (3) from the discharge
axis.
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Fig. 5. Dependence of the lattice density ppy of soot nano-
clusters containing fullerene associates on the scaling
radiusfor r =4 (1), 5(2), and 9 cm (3).

Atr >4.cm, € < 1, which correspondsto fullerene asso-
ciates.

Theresults of this study suggest that microparticles,
aggregates, and nanoclusters of fullerene soot are
formed at the soot collector surface, while associates
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Structural parameters of soot nanoclusters containing associates of fullerene-like particles

r,cm Pn = 10% &, nm L, nm D +0.03 Ry, nm S a, % €
2 - - - - - - 0.05 4.35
3 - - - - - - 6.7 1.40
4 0.52 18 4.2 1.62 0.9 24 10.2 0.63
5 0.62 22 4.2 1.76 0.7 4.8 11.0 0.83
6 0.62 2.6 45 1.73 0.6 8.0 - -
9 0.63 2.8 5.0 177 0.6 9.7 11.0 -

consisting of fullerenes and fullerene-like carbon parti- 2.
cles are formed in the arc chamber volume. If thisis
indeed the case, then it appears possible to control the
structure and, consequently, the properties of fullerene 3
soot.
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Abstract—Ignition conditions and the characteristics of a repetitive volume discharge with a spherical anode
and plane cathode are investigated. The discharge wasignited in Ar/Cl, mixtures (P < 2.0 kPa) used in excimer

halogen lamps operating on the ArCl (B—X) 175-nm, Cl,(D'-A") 257-nm, andCI%* 195- to 200-nm molecular
bands. At an interelectrode distance of 3 cm and a dc anode voltage of Uy, < 1 kV, a stable repetitive pulsed
discharge with a repetition rate of 1-50 kHz was ignited in chlorine or (0.1-2.0)/(0.04-0.12)-kPa Ar/Cl,
mixtures. The devel opment of attachment instability in the discharge plasma, in which the processes of the for-
mation, decay, and diffusion of the Cl, and CI~ negative ions play an important role, leads to the formation of
a solitary pearlike plasma domain with an average diameter of 0.2-3.5 cm. © 2002 MAIK “ Nauka/lnterperi-

odica” .

It is shown that the plasma of a volume discharge
ignited in an Ar/Cl, mixtute can serve as an active
medium for low-pressure excimer halogen lamps emit-
ting in the spectral range 180-270 nm. These repetitive
pulsed lamps do not require a pulsed power supply
based on capacitive or inductive energy storage banks
with conventional switches (spark gaps, thyratrons,
etc.), which significantly expands the range of their
possible applications. The pressure and composition of
an Ar/Cl, mixture and the average discharge current
were optimized to attain the maximum radiation inten-

sity in the ArCl and CI3* molecular bands. The effect

of the working mixture composition on the ignition
conditions and emission spectra of the volume dis-
charge plasmaisinvestigated.

1. Glow discharges ignited in low-pressure (P <
2 kPa) Ar(Kr, Xe)/Cl, mixtures in long glass tubes of
various size and design are widely used in UV-VUV
excimer lamps[1-5]. Their designis much simpler than
that of lamps with microwave [6] or plasmadynamic
[7, 8] pumping, and they are capable of generating cw
UV-VUV emission. Theinterelectrode voltage in such
alamp attains 5-10 kV, which requires forced cooling
of the electrodes and the discharge tube already at dis-
charge currents of 14, = 20-30 mA. Besides lamps with
acylindrical glow region (the positive column plasma
of a dc glow discharge), the development of planar
lamps with electrode systems not confined by dielectric
wallsis of great interest. In [9], a dc-excited low-pres-
sure planar lamp operating on XeCl* molecular emis-
sion (A = 236/308 nm) was first created and studied. A
solid cathode—grid anode system with an interelectrode

distance of 3 cm filled with Xe/Cl,(HCI) gas mixtures
at pressures of P < 2.0 kPawas used. It was shown that
the radiant efficiency of this lamp into the 4m solid
angle exceeded 4% and the dc voltage at the anode was
<1.0kV. Mot attention was paid to studying the spatial
structure of the discharge plasma, whereas the time
behavior of the discharge parameters and plasmaemis-
sion was not investigated.

In such gas media, the formation of a volume dis-
charge is affected by electron attachment and detach-
ment, the diffusion of negative ions, and the onset of
attachment instability [10-12]; all thisimpedes the oper-
ation of a steady-state glow discharge and the devel op-
ment of cw |ow-pressure excimer halogen lamps.

This paper isaimed at studying the characteristics of
a dc-excited volume discharge in Ar/Cl, mixtures at
short interel ectrode distances.

2. In the experiments, we studied the spatial struc-
ture and the averaged current—voltage characteristics of
the discharge, the plasma emission spectrum in the
range 130-350 nm, and the waveforms of the discharge
current and the integral emission intensity in the spec-
tral range 200—700 nm, aswell asthe emission intensity
in the maximums of the ArCl and Cl, molecular bands
as functions of the average discharge current.

The €electrode system consisting of a spherical
anode and plane cathode was placed in a 10-1-volume
metal discharge chamber, which was hermetically con-
nected via an LiF window to a Seya—Namioka vacuum
monochromator with a spectral resolution of 0.7 nm.
An FEU-142 photomultiplier with an LiF window was
used as a radiation detector in this vacuum spectrome-

1063-7842/02/4710-1341$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Fig. 1. Schematic of the discharge facility and the shape of
the discharge plasma in the (1) 2.00/0.12-kPa and
(2) 1.33/1.2-kPa Ar/Cl, mixtures: (A) anode, (C) cathode,
(V) high-voltage dc power supply, and (3) negative cathode
glow.

Uuv
1600

1400

1200

1000

800 - ;

600 1 1 1 1 ]
0 10 20 30 40 50

I, mA

Fig. 2. Static current—voltage characteristics of a volume
dischargein the (1) 1.33/0.12- and (2) 1.33/1.20-kPaAr/Cl,
mixtures.

ter. In the range 165-350 nm, the spectrometer was cal-
ibrated with the help of the continuum of molecular
hydrogen, and, in the range 130-165 nm, the spectral
sensitivity curve was extrapolated by using the data
obtained for A = 165 nm. Behind a quartz window
located opposite the LiF window, a Foton photomulti-
plier (with an operating range of 200—700 nm) con-
nected to an C1-99 oscilloscope wasingtalled. Thetime
resolution of the pulse recording system was 10 ns. The
electrode system consisted of amassive 7-cm-diameter
anode and 9-cm-diameter cathode made of duralumin
and set at a distance of 3 cm from the anode (Fig. 1).
The radius of curvature of the anode working surface
was 3 cm, and the cathode was plane. A dc voltage
(Ug, < 1 kV) was applied to the anode through a 10-kQ
ballast resistor R. The average discharge current and the

SHUAIBOV

gas mixture pressure varied in the ranges 2-50 mA and
40-2000 Pa, respectively.

3. A schematic of the electrode system and the char-
acteristic shape of the Ar/Cl, discharge plasma are
shown in Fig. 1. In low-pressure mixtures with amini-
mal chlorine content, a conical plasma formation was
observed. It was adjacent to the central region of the
anode working surface and had a clear spherical border
near the cathode surface. Near the anode, the plasma
diameter attained 1.0-1.5 cm, whereas near the cath-
ode, it was 1.5-2.0 times larger. In the middle of the
plasmaformation, there was a brighter core, which also
had a spherical border at the cathode side. Theincrease
in the gas pressure and chlorine content led to a shift of
the plasma toward the anode periphery and a decrease
in the plasma diameter near the anode and cathode to
0.2 and 0.5 cm, respectively. In al the experiments, we
observed adark space, whose sizeincreased from 0.5 to
5.0 mm with increasing pressure of the Ar/Cl, mixture
and, especially, chlorine content init. The diameter of the
negative glow was 1.3-1.5 times the diameter of the
cathode part of the plasma formation. This kind of soli-
tary plasmaformation in an electronegative gas mediais
called the plasma domain, or autosoliton [13, 14].

4. The static current—voltage characteristics of dis-
chargesin Ar/Cl, mixtures at afixed argon pressure and
at minimum and maximum chlorine partial pressures
(0.12 and 1.2 kPq) are shown in Fig. 2. Asin adc lon-
gitudinal discharge in an Ar/Cl, mixture [4], the sub-
normal (at I 4, <20 mA) and normal (at higher discharge
currents) stages of the discharge operation can be dis-
tinguished in the averaged current—voltage characteris-
tics of a repetitive pulsed volume discharge. The
increasein the chlorine partial pressure by one order of
magnitude leads to a significant increase in the dis-
charge voltage (Fig. 2) and an increase in the electric
power of avolume discharge by afactor of 1.5-2.0.

5. The emission spectrafrom avolume discharge are
shown in Fig. 3. The plasma emission intensity in the
range A = 400 nm was no higher than 5-10% of the
emissionintensity inthe UV-VUV spectral region; this
was verified in a particular experiment on recording
integral discharge emission with a photomultiplier and
a light filter. It is seen in Fig. 3 that the autosoliton
plasma is a selective source of radiation in the range
170-270 nm. The spectra are similar to those obtained
from the plasma of alongitudinal glow dischargein an
Ar/Cl, mixture [4, 15]. The ArCl (B-X) 175-nm, CI*
200-nm, and Cl, (D'-A") 257-nm molecular bands are
the main constituents of the emission spectra. The spec-
train Fig. 3 were corrected for the relative spectral sen-
sitivity of the vacuum spectrometer. At low argon and
chlorine partial pressures (Fig. 3a), the molecular emis-
sion spectrum consists of well-resolved vibronic bands
of molecular chlorine [16]. The results of the present
measurements are in excellent agreement with our pre-
vious results on the interpretation of the emission spec-
tra from the low-temperature plasma of a transverse

TECHNICAL PHYSICS  Vol. 47
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MM

160 200 240 280 160 200 240 280 320

175 nm ArCIl(B-X)
200 nm Cl5’

() (d)
257 nin Cly(D'-A") M

120 160 200 240 280 320 160 200 240 280
A, nm

Fig. 3. Emission spectra from a volume discharge in the
(a) 0.20/0.12-kPa, (b) 1.33/0.12-kPa, (c) 1.33/0.27-kPa, and
(d) 1.33/1.20-kPaAr/Cl, mixtures.

volume discharge in chlorine [17]. Here, ArCl mole-
cules do not form and the 175-nm band is absent in the
emission spectrum. The increase in the argon partial
pressure to 1.33 kPa (Fig. 3b) leads to a significant
increase in the intensity of the chlorine emission bands
and the appearance of the ArCl (B—X) 175-nm band.
The emission bands of molecular chlorine are distinctly
structured. The efficiency of the production of ArCl
molecules depends strongly on P(Ar), because these
molecules are formed only in arelatively narrow range
of argon partial pressures (0.8-1.33 kPa). The increase
in the chlorine partial pressure to 0.28 kPa (Fig. 3c)
leads to an even higher increase in the emission inten-
sities of all the chlorine and argon chloride molecular
bands. This mixture was nearly optimum to attain the
maximum intensity of the integral UV-VUV plasma
emission. A further increasein P(Cl,) to 1.2 kParesults
in a dight decrease in the chlorine emission intensity
and strong quenching of the ArCl(B) molecules.

6. One of the main indicators of the onset of attach-
ment instability in a low-temperature plasma of elec-
tronegative gasesisthe time modulation of both thedis-
charge current and plasma emission [11]. It isseen in
Fig. 4 that the volume discharge in a low-pressure
Ar/Cl, mixture runs in a repetitive pulsed mode. The
pulse repetition rate depends on the pressure and com-
position of the working mixture and the average dis-
charge current and varies in the range 1-50 kHz. The
pulse repetition rate usually increases with the average
discharge current. The characteristic waveforms
(mostly, those with the maximum amplitude of the
parameter in question) of the discharge current and the
integral plasma emission intensity are shown in Fig. 4.
We usualy observed the formation of autosolitons within
the broad range of the amplitude values of the discharge

current and photocurrent: 1, J- = (0.3-0.9)1 max J&™
The durations of the discharge current and plasma
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Fig. 4. Waveforms of (1, 1') the discharge current and (2, 2)
integral emission from the discharge in the (a) 0.20/0.12-kPa,
(b) 1.33/0.12-kPa, and (c) 1.33/1.20-kPa Ar/Cl, mixtures
for average discharge currents of (1, 2) 10 and (1, 2)
30 mA.

emission pulses were in the range 100-200 ns. For a
discharge in alow-pressure Ar/Cl, mixture with a low
chlorine content (Fig. 4a), plasma autosolitons were
formed and, consequently, plasma emission was gener-
ated near the instant when the discharge current was
maximum. For al the mixture compositions, the
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Fig. 5. Maximum emission intensity of the (1) ArCl (B—X)
175-nm, (2) CI3* 200-nm, and (3) Cly(D'-A") 257-nm
molecular bands vs. average discharge current in the
1.33/0.12-kPaAr/Cl, mixture.

increase in the average current from 10 to 30 MmA
resulted in an increase in the current amplitude and a
decrease in the integral intensity of plasma emission.
The increase in the argon partial pressure (Fig. 4b) led
to the lengthening of the current pulse and halving of its
amplitude, whereas the duration of the emission pulse
increased by 20-30%. The main maximum of the emis-
sion pulse with a short rise time occurred at the current
pulse leading edge. At P(Ar) =1.33 kPa, theincreasein
the chlorine partial pressure (Fig. 4) led to the shorten-
ing of the current pulse to 100 ns and an increasein its
amplitude, especialy at |4, < 10 mA. In this case, the
plasma emission intensity decreased by afactor of 2.5
and three peaks arose in the waveform of the plasma
emission pulse with a total duration of 450 ns. At |4, =
30 mA, plasmaemission was generated near the leading
edge of the discharge current pulse; at low average dis-
charge currents, the emission pulse shifted toward the
peak of the current pulse.

7. The maximum emission intensities of the ArCl
and Cl, molecular bandsincreased with the average dis-
charge current, which was related to the increase in the
current pulse amplitude by afactor of 1.3-3.0 and, to a
large extent, to the increase in the pulse repetition rate
(Fig. 5). The increase in the chlorine partial pressure
from 0.12to 1.2 kPaincreased the emission intensity of
the chlorine bands by 1.5-2.0 times; however, this also
led to the strong quenching of ArCl (B) excimer mole-
cules; consequently, the 175-nm emission band did not
contribute to the integral UV plasmaemission.

8. Thus, the study of a dc-excited low-pressure vol-
ume discharge in Ar/Cl, mixtures in an electrode sys-
tem with a short interelectrode gap (d < 3 cm) and with
no confining dielectric walls has shown that such avol-
ume discharge runs only in the repetitive pulsed mode
(f=1-50kHz). Thismakesit possible to create arepet-

SHUAIBOV

itive low-pressure excimer halogen lamp operating in
the spectral range 170-270 nm. The creation of such
lamps operating in acw mode is not feasi ble because of
the onset of attachment instability. A particular experi-
ment performed with a volume discharge in a Xe/Cl,
mixture at a total pressure of P < 1.0 kPa has shown
that, inthiscase, it isalso impossibleto achieve entirely
cw emission; however, there exists a cw component of
both the discharge current and plasma emission, whose
magnitude depends strongly on the total pressure and
composition of the working mixture, as well as on the
average discharge current. The (1.0-1.5)/(0.2-0.3)-kPa
Ar/Cl, mixtures are shown to be optimum for attaining
the maximum intensity of UV-VUV emission with a
pulse duration of T = 100-300 ns.
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