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Abstract—Electrophysical characteristics of two 2D double-periodic three component systems (models) are
studied analytically and numerically. For a number of model parameters, the effective conductivity, the partial
electric field strength moments of second order, and the effective Hall coefficient for both models are calculated
and graphically tabulated. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

To date, considerable progress has been made
toward studying electrophysical properties of double-
component media (specifically, composites), especially
of those representing 2D regular structures. For exam-
ple, the analytical solution to the conductivity problem
as applied to a number of double-periodic models
(involving insulating or perfectly conducting inclu-
sions) is given in [1–3]. For the most interesting case,
when both components have a finite nonzero conduc-
tivity, the closed solution to the problem has been
obtained for a staggered structure [1]. A more realistic
model, a 2D system with regularly arranged circular
inclusions was considered even by Rayleigh [4]. He
found the first several terms of the virial expansion for
effective conductivity. The solution to the problem of
conductivity (and other effective parameters) for the
Rayleigh model that is applicable for any concentration
was reported in [5, 6]. Finally, the general method for
computing electrophysical characteristics of regularly
structured double-component systems is presented in [7].

As for investigation into multicomponent media,
which have much more varied properties than double-
component ones, the situation is different. Although
multicomponent systems are of great scientific and
applied interest, the theory of finding their properties is
still in its infancy. Therefore, it is natural to begin with
regular three-component systems, which are relatively
simple to analyze. A step forward in this direction has
been made in [8], where the conductivity of a 2D dou-
ble-sublattice system (Fig. 1), which is a generalization
of the Rayleigh model (an isotropic matrix with stag-
gered circular inclusions of two types having different
radii and conductivities), was considered. However, the
approximate method employed in [8] is applicable only
if the concentration of the inclusions is small. The solu-
tion to the problem of conductivity (and other effective
parameters) of a double-sublattice model that is valid
1063-7842/02/4710- $22.00 © 21205
for any concentration was obtained in [9] with the
method elaborated in [5].

In this work, we numerically analyze general formu-
las [9] throughout the range of concentrations studied
for a fixed ratio of the inclusion radii and several ratios
σi/σ1 (i = 2, 3), where σi is the conductivity of the inclu-
sions and σ1 is that of the matrix. The effective conduc-
tivity of the model, partial rms electric field strengths,
as well as functions entering into an expression for the
effective Hall coefficient in a weak magnetic field, are
calculated and graphically tabulated.

We also analyze another three-component model, an
isotropic 2D matrix with double-layer circular inclu-
sions forming a square lattice (Fig. 2). The core and
sheath of the inclusions are a concentric circle and a ring
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of different conductivity. This system is a generaliza-
tion of the Rayleigh model [4] for the case when an
inclusion is covered, e.g., by an oxide film. For this
model, an analytical solution to the problem of conduc-
tivity and other effective parameters is found. Formulas
derived are analyzed numerically, and the same electro-
physical parameters as for the double-sublattice model
are tabulated for a number of fixed problem parameters.

DOUBLE-SUBLATTICE MODEL

(1) Electric field in the medium. The model under
consideration represents a 2D isotropic matrix of con-
ductivity σ1 with staggered circular inclusions of two
types (Fig. 1). The inclusions of the first type (of con-
ductivity σ2 and radius R) form a square lattice with a
period 2a. The other inclusions (of conductivity σ3 and
radius ρ) form a similar lattice shifted by the half-
period along the x and y axes.

Let the mean electric field strength 〈E〉  be aligned
with the x axis. Then, for the complex potential of the
matrix, we have [9]

(1)

Here, z = x + iy, z0 = (1 + i)a, ζ(z) is the Weierstrass zeta
function [10], and ζ(2n)(z) is the 2nth derivative of ζ(z).
The constants β, B2, and D2n are real for the direction of
〈E〉  selected. The coefficients B2n and D2n satisfy an
infinite set of algebraic equations. If B2n and D2n are

Φ1 z( )

=  β z B2nζ
2n( ) z( )

n 0=

∞

∑ D2nζ
2n( ) z z0–( )

n 0=

∞

∑+ +
 
 
 

.

x

y

Fig. 2.
replaced by “variables” ξn and ηn as

(2)

(3)

where

(4)

the above-mentioned set of equations takes the form [9]

(5)

(6)

Here, δn0 is the Kronecker symbol. In (5) and (6),

(7)

(8)

(9)

(10)

(11)

In (7) and (10), ck are the coefficients in the expan-
sion of the zeta function in the vicinity of z = 0 [10]:

(12)

where

(13)

In (13), K(1/ ) = 1.85407… is the complete ellip-
tic integral of the first kind K(k) with a module k =

1/ . Accordingly, dk is the coefficient in the expan-
sion of the zeta function near the point z = z0 [10]:

(14)

B2n

R2n 2+ δ21

2n( )! 2n 1+( )!
----------------------------------------ξn,=

D2n

ρ2n 2+ δ31

2n( )! 2n 1+( )!
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∞
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∞
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Mnm GnmR2 n m 1+ +( )cn m 1+ + δ21,=

Pnm GnmR2nρ2m 2+ dn m 1+ + δ31,=

Qnm Gnmρ2nR2m 2+ dn m 1+ + δ21,=

Nnm Gnmρ2 n m 1+ +( )cn m 1+ + δ31,=

Gnm
2n 2m+( )!

2n( )! 2n 1+( )! 2m( )! 2m 1+( )!
-------------------------------------------------------------------------------.=

ζ z( ) 1
z
---

ck

2k 1–
---------------z2k 1– ,

k 2=

∞

∑–=

c2

g2

20
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1
3
---c2

2, c6 = 
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3 13×
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3, c8 = 
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4, ….
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where

(15)

In (14), z0 = (1 + i)a and ξ(z0) = π(1 – i)/(4a). The
values of c2k can be sequentially found from the recur-
rent relationship [10]

(16)

In turn, d2k is expressed through c2k as [9]

(17)

The coefficients cn and dn with odd subscripts vanish
in the square lattice under consideration (the so-called
lemniscatic case [10]). Therefore, the matrices Mnm,
Pnm, Qnm, and Nnm in (7)–(10) are other than zero only if
the subscripts n and m are of different parity.

(2) Effective characteristics. The dimensionless
effective conductivity f = σe/σ1 is expressed through the
quantities ξ0 and η0 as [9]

(18)

where p2 = πR2/(2a)2 and p3 = πρ2/(2a)2 are the concen-
trations of the second and third components, respec-
tively.

The effective conductivity σe is directly related to
the partial rms characteristics of the electric field
strength E(r) (see, e.g., [9]):

(19)

Here, 〈…〉 (i) is the integral over the volume (surface in
the 2D case) occupied by the ith component (i = 1, 2, 3)
divided by the volume (surface area) V of the sample.
For our two-sublattice model, we have [9]

(20)

(21)

where

(22)

d2

g2

4
-----, d4–

1
5
---d2

2,= =

d6
2
75
------d2

3, d8
1

325
---------d2

4, ….= =

c2k
3

4k 1+( ) 2k 3–( )
---------------------------------------- c2mc2k 2m– , k 2.≥

m 1=

k 1–

∑=

d2k 4–( )k 1–[ ] c2k.=

f
1 ξ0 p2δ21– η0 p3δ31–
1 ξ0 p2δ21 η0 p3δ31+ +
-----------------------------------------------------= ,

ψi e2〈 〉 i( )≡
∂σe

∂σi

--------; e r( ) E r( )/ E r( )〈 〉 .= =

ψi
4

1 hi1+( )2
----------------------

piJi

∆2
---------; i 2 3;,= =

J2 ξn
2, J3

n 0=

∞

∑ ηn
2,

n 0=

∞

∑= =

∆ 1 ξ0 p2δ21 η0 p3δ31.+ +=
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For an N-component medium, the quantities ψi and
f from (18) are related as [9]

(23)

Hence, for a three-component system, we find

(24)

which means that there is no need for directly calculat-
ing ψ1 with (19) in our model.

For a weak magnetic field H, the effective Hall coef-
ficient Re is expressed through the off-diagonal (Hall)
component σae of the tensor  as follows:

(25)

According to [9], in the approximation linear in H,
we have for an N-component system

(26)

(27)

where 〈…〉 (i) is the same as in (19), E(v ) = E(v )(r) is the
electric field strength at H = 0, and the superscript v
means that 〈E(v )〉  is aligned with the v  axis.

For an N-component system, the functions ϕai obey
the rule of sum [9]

(28)

Eliminating ϕa1 with (28), we find from (26) for a
three-component medium

(29)

In the 2D case, there is one more relationship
between ϕai and effective conductivity σe [9]:

(30)

After eliminating ϕa1 with (28), we find from (30)
for a three-component system

(31)

Relationship (31) allows one to calculate only one
of the functions ϕai, for example, ϕa2, for the 2D case.
On the other hand, the fulfillment of (31) means that the
numerical solution to the system of Eqs. (5) and (6) is
correct.

hi1ψi
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N

∑ f .=

ψ1 f h21ψ2– h31ψ3,–=

σ̂e
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1
H
----
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σe
2

-------.=
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N

∑=
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x( )Ey

y( ) Ey
x( )Ex

y( )–〈 〉 i( )

Ex
x( )〈 〉 Ey

y( )〈 〉
----------------------------------------------------,=

ϕai

i 1=

N

∑ 1.=

σae σa1 σa2 σa1–( )ϕa2 σa3 σa–( )ϕa3.+ +=

σi
2ϕai

i 1=

N

∑ σe
2.=

1 1 h21
2–( )ϕa2– 1 h31

2–( )ϕa3– f 2.=
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The determination of the functions ϕa2 and ϕa3 with
(27) gives for our model [9]

(32)

(33)

with ∆ from (22). In [9], it was shown that expressions
(18), (32), and (33) convert relationship (31) into the
identity.

In this work, the effective characteristics of the dou-
ble-sublattice model were calculated for σ2 = 0 and the
parameter h31 = σ3/σ1, 10–1, 10–2, and 10–3 (curves 1–3,
respectively, in Figs. 3–7). The radius R was varied

between 0 and a; ρ, by the law ρ = (  – 1)R. To find
the coefficients ξn and ηn from the infinite systems of
Eqs. (5) and (6), a finite system of 80 equations was
separated out. The effective values of f, ψ2, ψ3, ϕa2, and
ϕa3 as functions of the concentration p of the first com-
ponent are demonstrated in Figs. 3–7.

DOUBLE-LAYER MODEL

(1) Electric field in a medium. The model under
consideration represents a 2D isotropic matrix of con-
ductivity σi with double-layer circular inclusions, form-
ing a square lattice with a period 2a (Fig. 2). The core
of the inclusion has a radius ρ and a conductivity σ3.

ϕai
4

1 hi1+( )2
----------------------

piIi

∆2
--------; i 2 3,,= =

I2 1–( )nξn
2, I3

n 0=

∞

∑ 1–( )nηn
2

n 0=

∞

∑= =

2

1.0

1
2, 3

pc

p

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

f

Fig. 3.
The sheath is a ring of an outer radius R, an inner radius
ρ (R > ρ), and a conductivity σ2.

Let the mean electric field strength 〈E〉 be aligned
with the x axis. Then, for the complex potentials of the
matrix, sheath, and core, we have, respectively,

(34)

(35)

(36)

Here, ζ(2n)(z) are, as in (1), the 2nth derivatives of the
Weierstrass zeta function ζ(z). The coefficients β, B2n,
C2n + 1, D2n + 1, and A2n + 1 are real.

The electric potentials ϕ2(r) = ReΦ2(z) and ϕ3(r) =
ReΦ3(z) must satisfy the standard conditions at the
core–sheath interface:

(37)

From (37), we express the coefficients C2n + 1 and

Φ1 z( ) β z B2nζ
2n( ) z( )

n 0=

∞

∑+
 
 
 

,=

ρ z R: Φ2 z( )< <  = β C2n 1+ z2n 1+ D2n 1+

z2n 1+
--------------+

 
 
 

,
n 0=

∞

∑

z ρ: Φ3 z( )< β A2n 1+ z2n 1+ .
n 0=

∞

∑=

r ρ: ϕ2 ϕ3,= =

∂ϕ2

∂r
--------- h32

∂ϕ3

∂r
---------; h32

σ3

σ2
-----.= =

3.0

2.5

2.0

1.5

1.0

0.5

0 0.2 0.4 0.6 0.8 1.0

pc

1

p

2

3

ψ2

Fig. 4.
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D2n + 1 through A2n + 1:

(38)

In turn, the potentials ϕ1(r) = ReΦ1(z) and ϕ2(r) =
ReΦ2(z) must satisfy the conditions

(39)

Expansion (12) is usually applied to the function ζ(z).
As a result, for the coefficients B2n, we obtain the infi-
nite set of algebraic equations

(40)

where

(41)

The quantities δij are defined by (4). The coefficients

C2n 1+
1
2
--- 1 h32+( )A2n 1+ ,=

D2n 1+
1
2
--- 1 h32–( )ρ4n 2+ A2n 1+ .=

t R: ϕ1 ϕ2,= =

∂ϕ1

∂r
--------- h21

∂ϕ2

∂r
---------, h21

σ2

σ1
-----.= =

B2n wn

1 h21–
1 h21+
---------------- B2m

2n 2m+( )!
2n( )! 2n 1+( )!

------------------------------------cn m 1+ + R4n 2+

m 0=

∞

∑+

=  
1 h21–
1 h21+
----------------R2w0δn0,

wn 1
δ32
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------- ρ

R
--- 
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ρ
R
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Fig. 5.
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A2n + 1 are expressed through B2n as

(42)

A2n 1+ B2n
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Note that Eqs. (40) can be derived from general for-
mulas in [7]. For a circular double-layer inclusion, the
multipole polarizability matrix [7] has the form

(43)

where

(44)

In (43), δnm is the Kronecker symbol. Substituting
(43) and (44) into formulas (19), (28), and (33) from [7]
yields the set of Eqs. (40) for the coefficients B2n.

If variables ξn are substituted for B2n,

(45)

Eq. (40) will take the form

(46)

where

(47)

with Gnm from (11). The matrix  is symmetric: Snm =
Smn. The even-subscript (n + m + 1 = 2k) coefficients
cn + m + 1 are defined by (13) and (16); the odd-subscript
coefficients cn + m + 1 vanish. Therefore, the matrix Snm is
other than zero only if the subscript m and n are of dif-
ferent parity.

Now, let us direct 〈E〉 along the y axis (associated
values have bars). For the complex potentials of the
matrix, sheath, and core, we have, respectively,

(48)

(49)

(50)

The quantities , , , , and 
are real.

From the boundary conditions for r = ρ and r = R,
we find a relationship between , , and

 like (38) and between  and  like (42),

Λnm Λnδnm,=

Λm R2n δ21 δ32 ρ/R( )2n+

1 δ21δ32 ρ/R( )2n+
------------------------------------------.=

B2n

R2n 2+ δ21

2n( )! 2n 1+( )!
----------------------------------------ξn.=

wn
1– ξn Snmξm

m 0=

∞

∑+ δn0,=

Snm Gnmcn m 1+ + R2 n m 1+ +( )δ21=

Ŝ

Φ1 z( ) iβ z B2nζ
2n( ) z( )

n 0=

∞

∑–
 
 
 

,–=

ρ z R:< <

Φ2 z( ) iβ C2n 1+ z2n 1+ D2n 1+

z2n 1+
--------------–

 
 
 

,
n 0=

∞

∑–=

z ρ: Φ3 z( )< iβ A2n 1+ z2n 1+ .
n 0=

∞

∑–=

β B2n C2n 1+ D2n 1+ A2n 1+

C2n 1+ D2n 1+

A2n 1+ A2n 1+ B2n
as well as a set of equations for the coefficients .

Introducing the variables  as in (45),

(51)

we arrive at the set of equations for 

(52)

with the matrix Snm from (47) and wn from (41).
For the quantities ξn, a number of useful relation-

ships (rules of sum) can be derived. Multiplying (46) by

 and (52) by ξn, adding the results, and summing over
all n, we come, in view of (62), to

(53)

Now, consider the same structure but with other
conductivities of the components: κ1, κ2, and κ3,
respectively. Associates quantities will be marked by a
tilde. Then, instead of (46), we have

(54)

Now, we multiply (46) by  and (54) by ξn, sub-
tract the results, and sum over all n to come, with regard
for the symmetry of the matrix Smn, to

(55)

Let us put in (55) κ1 = σ1 and κ3 = σ3 and pass to the
limit κ2  σ2. Then, from (55), it follows the equality

(56)

Since

(57)

we substitute (57) into (56) and eliminate ξm

with Eq. (46) to obtain

(58)

B2n

ξn

B2n
R2n 2+ δ21

2n( )! 2n 1+( )!
----------------------------------------ξn,=

ξn

wn
1– ξ Snmξm

m 0=

∞

∑– δn0=

ξn

1–( )nwn
1– ξn

2

n 0=

∞

∑ ξ0.=

w̃n
1– ξ̃n S̃nmξ̃m

m 0=

∞

∑+ δn0.=

ξ̃n

wn
1– w̃n

1––( )ξnξ̃n

n 0=

∞

∑

+ Snm S̃nm–( )ξnξ̃m

m 0=

∞

∑
n 0=

∞

∑ ξ̃0 ξ0.–=

ξn
2 ∂
∂σ2
---------wn

1–

n 0=

∞

∑ ξnξm
∂

∂σ2
---------Snm

m 0=

∞

∑
n 0=

∞

∑+
∂ξ0

∂σ2
---------.–=

∂
∂σ2
---------Snm

1
δ21
-------

∂δ21

∂σ2
----------Snm,=

Snmm∑

ξn
2wn

2– ∂
∂σ2
--------- wnδ21( )

n 0=

∞

∑ ∂
∂σ2
--------- ξ0δ21( ).=
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Similarly, putting in (55) κ1 = σ1 and κ2 = σ2 and
passing to the limit κ3  σ3, we find

(59)

(2) Effective characteristics. Calculating, as in [5],
the voltage drop across an elementary cell and the total
current, we obtain for the dimensionless effective con-
ductivity f = σe/σ1

(60)

therefore, finding the quantity ξ0 (i.e., the coefficient
B0) will suffice to determine f.

If the concentration of the inclusions is small
(R ! a), the set of Eqs. (46) can be solved by iterations,
that is, by expanding in powers of wnSnm:

(61)

Comparing with a similar expansion for  follow-
ing from (52) shows that

(62)

From (61), we come to a virial expansion (in powers
of R/a) for the quantities ξn, including ξ0. It is, however,
more convenient to find the associated expansion for
α = 1/ξ0. From (46) at n = 0, we have

(63)

If n ≠ 0,

(64)

Solving Eq. (64) by iterations yields

(65)

ξn
2 ∂
∂σ3
---------wn

1–

n 0=

∞

∑ ∂ξ0

∂σ3
---------.–=

f α πR2

4a2
---------δ21– 

  α πR2

4a2
---------δ21+ 

 
1–

;=

α ξ 0
1– ,=

ξn w0 δn0 wn Sn0 SnmwmSm0

m 0=

∞

∑––




=

+ SnlwlSlmwmSm0

m 0=

∞

∑
l 0=

∞

∑ …–




.

ξn

ξn 1–( )nξn.=

ξ0 w0 1 S0mξm

m 0≠
∑–

 
 
 

.=

ξn –wnSn0ξ0 wn Snmξm.
m 0≠
∑–=

n 0: ξn≠ ξ0wn Sn0 SnmwmSm0

m 0≠
∑–





–=

+ SnlwlSlmwmSm0

m 0≠
∑ …–

l 0≠
∑





.
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Substituting (65) into (63), we arrive at

(66)

Using the explicit form of the matrix  [see (47)],
one can find from (66) the expansion of α in powers of
R/a. Up to terms ~(R/a)24, we have

(67)

where g = g2/20; g2 is defined by (13).

In our model, the reciprocity condition (see, e.g.,
[9]), which relates the effective conductivities of the
initial and reciprocal systems (the latter is obtained
from the former by making the change hij  hji) must
be fulfilled:

(68)

Note that the change hij  hji (the transition to the
reciprocal system) is equivalent to the change δij 
δji. In this case, , Snm  Smn, and ξ0 remains
unchanged. Hence, as follows from (60), f  1/f and
reciprocity condition (68) is fulfilled automatically.

For the functions ψ1 and ψ3 defined by (19), we find

(69)

(70)

The value of ψ1 can be found from (24).
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Ŝ
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=
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–
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--------+ 
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------------------------------- 2n 1+( )R4n 2+ A2n 1+( )2

n 0=

∞

∑=

× 1 δ32
2 ρ

R
--- 

 
4n 2+

+ 1
ρ
R
--- 

 
4n 2+

– .

ψ3
π

2a( )2
------------- 1

1 B0
π

4a2
--------+ 

  2
-------------------------------=

× 2n 1+( )ρ4n 2+ A2n 1+( )2.
n 0=

∞

∑
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From (60), we find for the derivative ∂σe/∂σ2

(71)

On the other hand, substituting (42) and (45) into

∂σe

∂σ2
---------

2σ1

1 ξ0
πR2

4a2
---------δ21+ 

 
2

---------------------------------------πR2

4a2
--------- ∂

∂σ2
--------- ξ0σ21( ).–=

pc

pc

p

p

1

1

1.0
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0.6
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0.2

0
0.70 0.75 0.80 0.85 0.90 0.95 1.00

f

2

3

0.70 0.75 0.80 0.85 0.90 0.95 1.00

ψ2
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6

4

2

0

2

3

Fig. 8.

Fig. 9.
(69) yields

(72)

Comparing (72) [in view of identity (58)] with (71)
leads us to the equality

(73)

which is consistent with (19).
Similarly, from (60) and (70), we find

(74)

(75)

Comparing (75) [in view of (59)] with (74) leads us
to the equality

(76)

which also agrees with (19).

ψ2

2σ1

1 ξ0
πR2

4a2
---------δ21+ 

 
2

---------------------------------------πR2

4a2
---------–=

× ξn
2wn

2– ∂
∂σ2
--------- wnδ21( ).

n 0=

∞

∑

ψ2

∂σe

∂σ2
---------.=

∂σe

∂σ3
---------

2σ1

1 ξ0
πR2

4a2
---------δ21+ 

 
2

---------------------------------------πR2

4a2
---------δ21

∂ξ0

∂σ3
---------,–=

ψ3

2σ1

1 ξ0
πR2

4a2
---------δ21+ 

 
2

---------------------------------------πR2

4a2
---------δ21 ξn

2 ∂
∂σ3
---------wn

1– .
n 0=

∞

∑=

ψ3

∂σe

∂σ3
---------,=
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p

1
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3

Fig. 10.
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The Hall coefficient is given by expressions (25)–
(29). Finding the strengths E(x) and E(y) from (35), (36)
and (49), (50) and calculating the integrals appearing in
the formulas for ϕa2 and ϕa3 [see (27)], we arrive at

(77)

(78)

With expressions (77) and (78) and equalities (42)
and (45), it is easy to check that

(79)

Substituting (53) into (79), one can ensure that the
right-hand-side of (79) equals 1 – f 2, so that relationship
(31) is identically met with expressions (77) and (78).

ϕa2
π

4a( )2
-------------

1 h32+( )2

1 B0
π

4a2
--------+ 

  2
------------------------------- 1–( )n 2n 1+( )R4n 2+

n 0=

∞

∑=

× A2n 1+( )2 1 δ32
2 ρ

R
--- 

 
4n 2+

– 1
ρ
R
--- 

 
4n 2+

– ,

ϕa3
π

2a( )2
------------- 1

1 B0
π

4a2
--------+ 

  2
-------------------------------=

× 1–( )n 2n 1+( )ρ4n 2+ A2n 1+( )2.
n 0=

∞

∑

1 h21
2–( )ϕa2 1 h31

2–( )ϕa3+

=  
πR2

a2
---------

δ21

1 ξ0
πR2

4a2
---------δ21+ 

 
2

--------------------------------------- 1–( )nwn
1– ξn

2.
n 0=

∞

∑
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0
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2
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Fig. 11.
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The numerical analysis of set (46) was performed
for a subset of 40 equations for σ3 = σ1, ρ/R = 0.8, and
h21 = σ2/σ1 = 10–1, 10–2, and 10–3 (curves 1–3, respec-
tively, in Figs. 8–12). Figures 8–12 plot f, ψ2, ψ3, ϕa2,
and ϕa3 vs. the concentration p of the first component.
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Abstract—An electrostatic interaction between two separate, grounded, uncharged, perfectly conducting
spheres of different radii in a uniform electrostatic field is investigated. It is shown that at a small center-to-
center distance of the spheres, the force of the polarization interaction between the spheres depends appreciably
more weakly on that distance in comparison to the force of the electrostatic interaction of two elementary
dipoles as it should be in view of the interaction between two like polarization charges. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

An investigation of an electrostatic interaction
between two closely spaced conducting particles
(drops) in an external electrostatic field is of interest
both in connection with calculations of coagulation
rates in natural or artificial air-dispersed systems and
the decay law for drops that are unstable against the
polarization surface charge [1–5]. It is obvious that
widely separated uncharged drops of a conducting liq-
uid (for example, water) polarized in an external elec-
trostatic field interact like dipoles with a force inversely
proportional to the fourth power of the distance
between their centers [6]. When the drops approach
each other at small distances (typical for coagulation
and decay), the charges induced by the dipoles of the
approaching drop start to exert an appreciable influence
on the coagulation and decay processes, and, simulta-
neously, a nonuniformity in the spatial distribution of
the polarization charges starts to manifest itself. For
example, according to calculations [7, 8], in a particular
case of approaching conducting charged spheres in the
absence of external electrostatic field, the interaction
force between the spheres as a function of the center-to-
center distance differs noticeably from the Coulomb
law because of the considerable contribution of the
polarization interaction.

It is worth noting that analytical solutions of the
problem of the electrostatic interaction of two charged
conducting spheres in both the absence and presence of
a uniform external electrostatic field were obtained
long ago (see, e.g., [1, 6, 9, 10]). Nevertheless, because
of rather awkward mathematical forms of the solutions
found (in the form of infinite series in linear combina-
tions of exponents), a possibility for practical usage of
these solutions has appeared only recently due to a con-
venient mathematical substitution [7] allowing one to
sum determining series effectively, as well as owing to
1063-7842/02/4710- $22.00 © 21214
the development of contemporary software for analyti-
cal calculations (like Mathematica).

(1) We shall describe an electrostatic field in the
vicinity of two separate grounded, perfectly conducting
spheres with radii R1 and R2 placed in a medium with a
permitivity ε at a distance h from each other and
exposed to an external uniform electrostatic field E0
parallel to the symmetry axis (see Fig. 1). The OZ axis
coincides with the symmetry axis.

It is obvious that the potential Φ of the total electro-
static field in the space outside the spheres satisfies the
Laplace equation

(1)

with natural boundary conditions

(2)

(3)

∆Φ 0=

r R j: Φ 0 j 1 2,=( ).= =

r ∞: E E0.

E0

R2

A
a

µ = –µ2

D2

R1a

µ = –µ1s

D1

z

x

h

Fig. 1. A system of two spheres with radii R1 and R2 in a
uniform electrostatic field E0 directed along the z axis.
002 MAIK “Nauka/Interperiodica”
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Rj is the radius of the jth sphere in a bispherical coordi-
nate system, j = 1, 2.

The vector E of the electric field strength is normal
to the surfaces of the spheres. In the vicinity of the jth
sphere, it is defined by the expression

The force of interaction between the spheres is eas-
ily calculated in the form [1]

(4)

where nz is the unit vector of the OZ axis and nj is a unit
vector normal to the surface element dSj.

Let us present potential Φ in the space outside the
spheres as the sum of the potential Φ0 of the external
uniform electrostatic field and the potential Ψ produced
by charges induced at the sphere surfaces (Φ = Ψ + Φ0).
Both potentials satisfy the Laplace equations

(1a)

(1b)

The solution of Eq. (1b) satisfying condition (3) in a
spherical coordinate system with the origin at the axis
(see Fig. 1) has the simple form

(5)

(2) It is reasonable to seek an analytical solution of
Eq. (1a) in bispherical coordinates µ, η, and ϕ that are
related to the Cartesian coordinates by the well-known
relationships [9, 10]

(6)

In bispherical coordinates, the surfaces S1 and S2 of
the spheres are described by the equations [9]

(7)

where a is defined by

(8)

Here, D1 and D2 are the distances between the origin of
coordinates and the centers of the spheres, respectively,

(9)

r R j: E
j( ) En

j( ) ∂Φ
∂n j

--------n j j 1 2,=( ).–= = =

Fnz
ε

8π
------ ∂Φ

∂n
------- 

 
2

nzn jdS j,

S j

∫°=

∆Ψ 0,=

∆Ψ0 0.=

Φ0 E0r.–=

x
a η( ) η( )cossin

µ( )cosh η( )cos–
-------------------------------------------,=

y
a η( ) ϕ( )sinsin

µ( )cosh η( )cos–
-------------------------------------------, z

a µ( )sinh
µ( )cosh η( )cos–

-------------------------------------------,= =

∞– µ +∞, 0 η π, 0 ϕ 2π.< << << <

µ µ1, µ µ2,–= =

µ1

D1 a+
R1

--------------- 
  , µ2ln

D2 a+
R2

--------------- 
 ln ,= =

a D1
2 R1

2–( )1/2
D2 R2

2–( )1/2
.= =

D1 = 
1

2h
------ h2 R1

2 R2
2–+( ), D2 = 

1
2h
------ h2 R2

2 R1
2–+( ),
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where h is the distance between the centers of the
spheres, calculated as

(10)

and s is the separation between the surfaces of the
spheres (see Fig. 1).

Taking into account (6), one can obtain an expres-
sion for the surface area elements of both spheres and
for the cosine of the polar angle Θ. For the second
sphere, these expressions have the form

(11)

Potential Ψ of the electric field produced by the
induced charges distributed over the surfaces of the
spheres satisfies Eq. (1a), which in bispherical coordi-
nates has the form [9]

(12)

The solution of Eq. (12) subject to boundary condi-
tions (2) and (3) can easily be written as

(13)

where An and Bn are constants.
In view of (5) and (12), the expression for the total

potential Φ takes the form

(14)

Let us expand z in this formula in the Legendre poly-
nomials. According to [6],

(15)

h R1 R2 s+ + D1 D2,+= =

dS2
a2 η( )dηdϕsin

µ2( )cosh η( )cos–( )2
----------------------------------------------------,=

Θ( )cos
1 µ2( ) η( )coscosh–
cosh µ2( ) η( )cos–

-------------------------------------------------.=

∆Ψ ∂
∂µ
------ a η( )sin

µ( )cosh η( )cos–
-------------------------------------------∂Ψ

∂µ
-------- 

 =

+
∂

∂η
------ a η( )sin

µ( )cosh η( )cos–
-------------------------------------------∂Ψ

∂η
-------- 

 

+
1

η( ) µ( )cosh η( )cos–( )sin
-----------------------------------------------------------------∂2Ψ

∂ϕ2
---------- 0.=

Ψ µ( )cosh η( )cos– An n
1
2
---+ 

  µexp


n 0=

∞

∑=

× Pn η( )cos( ) Bn n
1
2
---+ 

  µ– 
 Pn η( )cos( ),exp+

Φ µ( )cosh η( )cos– An n
1
2
---+ 

  µexp


n 0=

∞

∑=

+ Bn n
1
2
---+ 

  µ– 
 Pn η( )cos( ) E0z.–exp

1

µ( )cosh η( )cos–
-----------------------------------------------

=  2 n
1
2
---+ 

  µ– Pn η( )cos( ).exp
n 0=

∞

∑
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Differentiating (15) with respect to µ and taking into
account (7), we find the expression for z [6]:

(16)

Using boundary condition (3) and substituting
expression (16) into (14), we find the expansion coeffi-
cients in the expression for the potential of the induced
field:

(17)

(3) To find the force of interaction between the
spheres, let us take into account that the electric field
strength in a point A located at the surface of the second
sphere (see Fig. 1) is equal to the sum of the electric
field strengths of both spheres,

and the field strength of each sphere is determined by
the normal derivative of potential Φ.

The operator of the normal derivative to the surface
of the second sphere in bispherical coordinates [9] is

(18)

Then, the expression for the electric field strength of
the second sphere in point A takes the form

(19)

and for the first sphere,

(20)

z 2a µ( )cosh η( )cos– 2n 1+( )
n 0=

∞

∑=

× n
1
2
---+ 

  µ– Pn η( )cos( ).exp

An

2a 2n 1+( )E0 2n 1+( )µ2[ ]exp 1+( )
2n 1+( ) µ1 µ2+( )[ ]exp 1–

--------------------------------------------------------------------------------------------,=

Bn

2a 2n 1+( )E0 2n 1+( )µ2[ ]exp 1+( )
2n 1+( ) µ1 µ2+( )[ ]exp 1–

--------------------------------------------------------------------------------------------– .=

EA EA
1( ) EA

2( ),+=

∂
∂n
------ 1

a
--- µ2( )cosh η( )cos–

∂
∂µ
------.–≡

µ µ2: EA
2( )–

∂Φ
∂n
------- 

 –
1
a
--- µ2( )cosh η( )cos–( )3/2= = =

×
2a 2n 1+( )E0 2n 1+( )µ1[ ]exp 1+( )

2n 1+( ) µ1 µ2+( )[ ]exp 1–
--------------------------------------------------------------------------------------------

n 0=

∞

∑

× Pn η( )cos( ) n
1
2
---+ 

  µ2 ,exp

µ µ1: EA
1( ) ∂Φ

∂n
------- 

 – –
1
a
--- µ1( )cosh η( )cos–( )3/2= = =

×
2a 2n 1+( )E0 2n 1+( )µ2[ ]exp 1+( )

2n 1+( ) µ1 µ2+( )[ ]exp 1–
--------------------------------------------------------------------------------------------

n 0=

∞

∑

× Pn η( )cos( ) n
1
2
---+ 

  µ1 .exp
In order to simplify (19) and (20), we introduce the
following notation:

(21)

(22)

Substituting (21) and (22) into (19) and (20), we find

(23)

(24)

Taking into account that cos(π) = –1 and Pn(–1) =
(−1)n, we finally obtain an expression for the strength
of the electric field produced by the second sphere in
point A:

(25)

Similarly for the first sphere

(26)

In order to describe the interaction between the
spheres, it is sufficient to calculate the force acting on
either sphere. Then, the force acting on the other sphere
is determined by Newton’s third law. In the case when
an external electric field is directed along the z axis,
expression (4) is transformed into the form

(27)

Yn 2 2n 1+( ) n
1
2
---+ 

  µ2exp=

×
2n 1+( ) 2n 1+( )µ1[ ]exp 1+( )

2n 1+( ) µ1 µ2+( )[ ]exp 1–
---------------------------------------------------------------------------,

Zn 2 2n 1+( ) n
1
2
---+ 

  µ1exp=

×
2n 1+( ) 2n 1+( )µ2[ ]exp 1+( )

2n 1+( ) µ1 µ2+( )[ ]exp 1–
---------------------------------------------------------------------------.

µ µ2: EA
2( )–

∂Φ
∂n
------- 

 – E0 µ2( )cosh(= = =

– η( ) )3/2 YnPn η( )cos( ),
n 0=

∞

∑cos

µ µ1: EA
1( ) ∂Φ

∂n
------- 

 – E0 µ1( )cosh(= = =

– η( ) )3/2 ZnPn η( )cos( ).
n 0=

∞

∑cos

µ µ2; η– π: EA
2( ) ∂Φ

∂n
------- 

 – E0 µ2( )cosh(= = = =

– η( ) )3/2 1–( )nYn.
n 0=

∞

∑cos

µ µ1; η– π: EA
1( ) ∂Φ

∂n
------- 

 – E0 µ1( )cosh(= = = =

– η( ) )3/2 1–( )nZn.
n 0=

∞

∑cos

F
ε

8π
------ ∂Φ

∂n
------- 

 
2

Θ( )dS j.cos

S j

∫°=
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Then, the relationship for the force acting on the
second sphere takes the form

(28)

From (11), (25), and (28), we find

(29)

Using the orthogonality of the Legendre polynomi-
als, we obtain

(30)

(31)

In view of (30) and (31), (29) yields the force acting
on the second sphere:

(32)

Taking into account (7), we find

(33)

Substituting the expression for µ2) in terms of
exponents (33) into (32), we arrive at an equation for

µ µ2: F 2( )–
ε

8π
------ ∂Φ

∂n
------- 

 
2

Θ( )cos S2.d

S2

∫= =

F 2( ) ε
4
---a2E0

2 Yn
2 Pn

2 η( )cos( ) η( )sin( ) ηd

0

π

∫
n 0=

∞

∑=

– µ2( ) YnPn Θ( )cos( )( )2 η( ) η( )dηsincos
n 0=

∞

∑cosh .

Yn
2Pn

2 η( )cos( ) η( )sin
n 0=

∞

∑ ηd

0

π

∫ 2
2n 1+
---------------Yn

2,
n 0=

∞

∑=

YnPn η( )cos( )( )2 η( ) η( )sincos
n 0=

∞

∑ ηd

0

π

∫

=  Yn 1– Yn
n

2n 1–
--------------- 2

2n 1+
---------------

n 0=

∞

∑

+ Yn 1+ Yn
n 1+

2n 3+
--------------- 2

2n 1+
---------------.

n 0=

∞

∑

F 2( ) ε
4
---a2E0

2 2
2n 1+
---------------

n 0=

∞

∑=

× Yn Yn µ2( ) Yn 1+
n 1+

2n 3+
--------------- Yn 1–

n
2n 1–
---------------+ 

 cosh– .

αµ2( )exp α
D2 a+

R2
--------------- 

 lnexp
D2 a+

R2
--------------- 

 
α
,= =

αµ1( )exp α
D1 a+

R1
--------------- 

 lnexp
D1 a+

R1
--------------- 

 
α
.= =

(cosh
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the force F(2) acting on the second sphere in the form

(34)

(35)

(4) To simplify the numerical calculation, we repre-
sent the expression for the force component in dimen-
sionless form by introducing the dimensionless vari-
ables γ = R1/R2 and r = s/R2. Finally, we find

(36)

(37)

Eventually, expression (36) for the dimensionless
force of interaction between the spheres in terms of

ε takes the form

(38)

(5) Figure 2 shows a surface describing the depen-
dence of the dimensionless force of interaction [calcu-
lated using (38) in view of (37)] on both the ratio γ of
their radii and dimensionless distance r between the
centers of the spheres in the space of parameters r and γ.

For a more detailed analysis, Fig. 3 shows the
dependence of the dimensionless force f  as a function

F 2( ) ε
4
---a2E0

2 2
2n 1+
---------------Yn Yn

1
2
---

D2 a+
R2

---------------
–

n 0=

∞

∑=

+
R2

D2 a+
---------------

 Yn 1+
n 1+

2n 3+
--------------- Yn 1–

n
2n 1–
---------------+ 

  ,

Yn 2 2n 1+( )
D2 a+

R2
--------------- 

 
n 1/2+( )

=

×
2n 1+( )

D1 a+
R1

--------------- 
 

2n 1+( )
1+

D1 a+
R1

--------------- 
  D2 a+

R2
--------------- 

 
2n 1+( )

1–

-----------------------------------------------------------------------

 
 
 
 
 
 
 

.

F 2( ) ε
4
---R2

2 γ 1 r+ +( )2 γ2– 1+
2 γ 1 r+ +( )

------------------------------------------------
2

1–
 
 
 

=

× E0
2 2

2n 1+
---------------Yn Yn

1
2
--- G

1
G
----+ 

 –
n 0=

∞

∑

× n 1+
2n 3+
---------------Yn 1+

n
2n – 1
----------------Yn 1–+ 

  ,

Yn = 2 2n 1+( )G n 1/2+( ) 2n 1+( ) H 2n 1+( ) 1+( )
H 2n 1+( )G 2n 1+( ) 1–

---------------------------------------------------- .

R2
2E0

2

f
1
4
--- γ 1 r+ +( )2 γ2– 1+

2 γ 1 r+ +( )
------------------------------------------------

2

1–
 
 
 

=

× 2
2n 1+
---------------Yn Yn

1
2
--- G

1
G
----+ 

 –
n 0=

∞

∑

× n 1+
2n 3+
---------------Yn 1+

n
2n 1–
---------------Yn 1–+ 

  .
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of the dimensionless distance r at different magnitudes
of the ratios of the spheres’ radii γ = R1/R2. It is seen
that the force of attraction between the spheres
increases rather slowly with decreasing distance
between their centers approximately as f ~ r–α, where
α ≈ 1, whereas this dependence would be much stronger
(α = 4) for an electrostatic interaction between elemen-
tary dipoles [6].

0

–3

–6
0

0.5

1.0

0

0.5

1.0

γ

r

f

Fig. 2. Dependence of the dimensionless force acting on
one of the spheres on the ratio of the sphere radii and the
dimensionless distance between the spheres.
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0.5

0

1.0 r

(c)
–10

–15

–4

0

(b)

–12

–8

–5

0

(a)

f

–10

Fig. 3. Dimensionless force f as a function of the dimen-
sionless distance r at different ratios of the sphere radii. γ:
(a) 0.1, (b) 0.5, and (c) 1.0.
It is worth noting that the reasons presented are also
applicable, in general, to nongrounded separate spheres
of the same radii.

The pressure of an electric field on the surfaces of
the spheres reaches its peak at points of the surface
located at the OZ axis opposite to each other. In a real
situation of spherical drops in clouds at small distances
between them, the electrostatic pressure may become
high and two situations are possible: (a) if the pressure
of electric field in regions with the highest surface den-
sity of the induced charge is less than the Laplace pres-
sure, then the drops coalesce into a single one, or (b) if
the pressure of electric field exceeds the Laplace pres-
sure, then an instability may take place; i.e., the drops
eject toward each other jets of finely dispersed, highly
charged daughter droplets [2].

CONCLUSION

Two separate grounded, perfectly conducting
spheres of different radii placed in an external uniform
electrostatic field directed along the axis passing
through the centers of the spheres always attract each
other. However, the dependence of the attraction force
on the distance between the centers of the spheres,
which has the form f ~ r–n (the power n is a function of
r), turns out to be very weak at small distances (at a
dimensionless distance r ≤ 1). In this case, the power n
is small: n ≈ 1, whereas n = 4 for the interaction
between two elementary dipoles.
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Abstract—An analytical method for solving the half-space boundary problem of a nonuniform (in both tem-
perature and mass flow rate) rarefied gas flow along a solid cylindrical surface is developed in the framework
of the inhomogeneous kinetic Boltzmann equation with the collision operator in the ellipsoidal–statistical
model. In the linear approximation in the Knudsen number, the corrections to the coefficients of thermal and
isothermal slidings are found in view of the interface curvature. A comparison with the literature data is pre-
sented. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The set of boundary conditions in a rarefied gas flow
along an arbitrary smooth surface was found in [1] by
the Bhatnagar–Gross–Krook (BGK) model of the
kinetic Boltzmann equation. Later, this problem was
solved in the case of a solid spherical surface by
moment methods for the linearized Boltzmann equa-
tion with the collision operator in both the Boltzmann
form [2] and ellipsoidal–statistical (ES) model [3, 4]. In
[5], an exact analytical expression for the coefficient βR

was found in a closed form using the method of ele-
mentary solutions (Keis method) [6] on the basis of the
ES model. This expression makes it possible to take
into account the dependence of the thermal sliding
coefficient on the radius of curvature for a solid surface
flowed around by a rarefied gas. The value of the coef-
ficient βR found in [5] by numerically integrating final
expressions is in good agreement with the results
obtained in [2, 7, 8].

The aim of this paper is to calculate the velocity of
a rarefied gas sliding around a solid cylindrical surface
by the method developed in [5] in view of the interface
curvature influence on the coefficients of thermal and
isothermal slidings.

PROBLEM STATEMENT: DERIVATION 
OF BASIC EQUATIONS

Consider a temperature nonuniform stream of a rar-
efied gas flowing around a solid cylindrical surface at
low deviations from an equilibrium state. The gas flow
dynamics will be described by the Boltzmann kinetic
equation with a linearized collision operator in the ES
model [9, 10] expressed in a cylindrical coordinate sys-
tem with the Oz axis coinciding with the cylinder axis.
1063-7842/02/4710- $22.00 © 21219
We assume that the temperature gradient is perpendic-
ular to the surface at large distances from it.

Let us linearize the distribution function describing
the gas state with respect to a locally equilibrium distri-
bution function in the Chapman–Enskog approxima-
tion [11]. Expanding function Y(ρ, ϕ, Ci), implying the
deviation of the gas molecule velocity and coordinate
distribution function in the Knudsen layer from that in
the gas volume, in the small parameter 1/R,

(1)

we arrive at the set of one-dimensional integrodifferen-
tial equations

(2)

(3)

with the boundary conditions

Y ρ ϕ Ci, ,( ) = Y 1( ) ρ ϕ Ci, ,( ) R 1– Y 2( ) ρ ϕ Ci, ,( ) …,+ +

Cρ
∂Y 1( )

∂ρ
------------ Y 1( ) ρ ϕ Ci, ,( )+ π 3/2– C'2–( )exp∫=

× K C C ',( )Y 1( ) ρ ϕ Ci', ,( )d3Ci',

Cρ
∂Y 2( )

∂ρ
------------ Y 2( ) ρ ϕ Ci, ,( )+ π 3/2– C '2–( )exp∫=

× K C C ',( )Y 2( ) ρ ϕ Ci', ,( )d3Ci' Cϕ
2 ∂Y 1( )

∂Cρ
------------–

+ CρCϕ
∂Y 1( )

∂Cϕ
------------ Cϕ

∂Y 1( )

∂ϕ
------------–

Y 1( ) R ϕ Ci, ,( ) –2CϕUϕ
1( )

S Cϕ C2 5
2
---– 

  k,+=

Cρ 0,>

Y 2( ) R ϕ Ci, ,( ) 2CϕUϕ
2( )

S, Cρ 0,>–=
002 MAIK “Nauka/Interperiodica”
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yielding first two terms of the expansion (1). Here,
ρ(3µg/2p)β is a dimensional radius vector; βUi, the
components of the gas mass velocity; βCi, the compo-
nents of the gas molecule velocity; µg, the gas dynamic
viscosity; β = (2kBTS/m)1/2; p, the static pressure; R and
S, the radius and surface of the cylinder, respectively;

and

Equation (2) describes the processes taking place at
the boundary of a solid plane surface. Equation (3)
allows one to take into account the interface curvature.

Let us seek a solution of (2) in the form of an expan-
sion in two orthogonal polynomials:

(4)

Note that the orthogonality is understood here in
terms of the scalar product

We will look for a solution of (3) in the form

(5)

Denote µ = Cµ. Then, substituting expansions (4)
and (5) into (3), multiplying the resulting equation by

Cϕ exp(–  – ) and integrating with respect to Cϕ
and Cz between –∞ and +∞, we find the equation for the

function (ρ, ϕ, µ):

(6)

Y 1( ) ∞ ϕ Ci, ,( ) 0, Y 2( ) ∞ ϕ Ci, ,( ) 0,= =

k
1
TS

----- ∂T
R∂ϕ
-----------

S

,=

K C C',( ) 1 2CC'
2
3
--- C2 3

2
---– 

  C'2 3
2
---– 

 + +=

– 2CiC j Ci'C j'
1
3
---δijC'2– 

  .

Y 1( ) ρ ϕ Ci, ,( ) CϕYa
1( ) ρ ϕ Cρ, ,( )=

+ Cϕ Cϕ
2 Cz

2 2–+( )Yb
1( ) ρ ϕ Cρ, ,( ).

f g,( ) f ρ ϕ Ci, ,( )g ρ ϕ Ci, ,( ) C2–( )exp d3Ci.

∞–

+∞

∫=

Y 2( ) ρ ϕ Ci, ,( ) CϕYa
2( ) ρ ϕ Cρ, ,( ).=

Cϕ
2 Cz

2

Ya
2( )

µ
∂Yn

2( )

∂ρ
------------ Ya

2( ) ρ ϕ µ, ,( )+

=  
1

π
------- Ya

2( ) ρ ϕ µ', ,( ) µ'2–( )exp µd

∞–

∞

∫

–
µ
π

------- µ'Ya
2( ) ρ ϕ µ', ,( ) µ'2–( )exp µ'd

∞–

∞

∫

with the boundary conditions

(7)

In view of the fact that in the case of a rarefied gas
sliding along a solid plane surface, the results found on
the basis of the ES and BGK models of the Boltzmann
kinetic equation coincide, we have [6]

(8)

(9)

Here, λ(z) is the Cercignani dispersion function;
Px−1, the distribution of the principal integral value in
the integration of x–1; δ(x), the Dirac delta function; and
Θ(τ), a single-valued regular branch of the function
argument λ+(τ) determined by the condition Θ(0) = 0.

Thus, the problem reduces to solving Eq. (6) with
boundary conditions (7).

+ µYa
1( ) ρ ϕ µ, ,( ) 3

2
---

∂Ya
1( )

∂µ
------------–

+ 3µYb
1( ) ρ ϕ µ, ,( ) 3

2
---

∂Yb
1( )

∂µ
------------–

Ya
2( ) R ϕ µ, ,( ) 2Uϕ

2( )
S, µ 0,>–=

Ya
2( ) ∞ ϕ µ, ,( ) 0.=

Ya
1( ) ρ ϕ µ, ,( ) a η ϕ,( )F η µ,( ) x/η–( )exp η ,d

0

∞

∫=

x ρ R,–=

Yb
1( ) ρ ϕ µ, ,( ) k x/η–( )exp δ η µ–( ) η ,d

0

∞

∫=

F η µ,( ) 1

π
-------ηP

1
η µ–
------------- η2( )λ η( )δ η µ–( ),exp+=

λ z( ) 1
1

π
-------z

µ2–( )exp
µ z–

----------------------- µ,d

∞–

∞

∫+=

a η ϕ,( )
η η Q1–( ) η2–( )X η–( )exp

2 λ+ η( ) 2
-----------------------------------------------------------------k,=

λ± η( ) λ η( ) πiη η 2–( ),exp±=

X z( ) 1
z
--- 1

π
--- Θ τ( ) π–

τ z–
--------------------- τd

0

∞

∫ 
 
 

,exp=

Θ τ( ) π– –π/2
λ τ( )

πτ τ2–( )exp
---------------------------------.arctan–=
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INFLUENCE OF THE SURFACE CURVATURE 
ON THE COEFFICIENT OF THERMAL SLIDING

The substitution

turns (6) into the nonuniform characteristic equation

(10)

(11)

Multiplying (10) by exp(–µ2) and integrating with
respect to µ between the limits from –∞ to ∞, we find

Let us rewrite (10) in view of the fact that the value
of the second integral is equal to zero [5]:

(12)

(13)

The general solution of Eq. (12) in the space of gen-
eralized functions has the form [12]

We find the explicit form of the function g(η, ϕ)
substituting ψ(η, ϕ, µ) into (13)

Yaη
2( ) ρ ϕ µ, ,( ) ψ η ϕ µ, ,( ) x/η–( )exp=

1 µ
η
---– 

  ψ η ϕ µ, ,( ) 1

π
------- ψ η ϕ µ ', ,( ) µ'2–( )exp µ'd

∞–

∞

∫=

–
1

π
-------µ µ'ψ η ϕ µ ', ,( ) µ'2–( )exp µ'd

∞–

∞

∫ Z η ϕ µ, ,( ),+

Z η ϕ µ, ,( ) µa η ϕ,( )F η µ,( ) 3
2
---a η ϕ,( )∂F

∂µ
------–=

+ 3µkδ η µ–( ) 3k
2

------ ∂
∂µ
------δ η µ–( ).–

µψ η ϕ µ, ,( ) µ2–( )exp µd

∞–

∞

∫

=  –η Z η ϕ µ, ,( ) µ2–( )exp µ.d

∞–

∞

∫

η µ–( )ψ η ϕ µ, ,( ) = 
1

π
-------ηm η ϕ,( ) ηZ η ϕ µ, ,( ),+

m η ϕ,( ) ψ η ϕ µ, ,( ) µ2–( )exp µ.d

∞–

∞

∫=

ψ η ϕ µ, ,( ) ηP
1

η µ–
------------- 1

π
-------m η ϕ,( ) Z η ϕ µ, ,( )+=

+ g η ϕ,( )δ η µ–( ).

g η ϕ,( ) m η ϕ,( )λ η( )[=

– η P
1

η µ–
-------------Z η ϕ µ, ,( ) µ2–( )exp µd

∞–

∞

∫ η2( ).exp
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
In [5], it is shown that

Taking (11) into account, we find

In view of results found, the solution of Eq. (6) has
the form

(14)

Allowing for (7), we turn from (14) to a singular
integral equation with a Cauchy kernel

(15)

P
1

η µ–
-------------µF η µ,( ) µ2–( )exp µd

∞–

∞

∫ 1,–=

P
1

η µ–
------------- F η µ,( )( )µ' µ2–( )exp µd

∞–

∞

∫ 1,–=

P
1

η µ–
-------------µδ η µ–( ) µ2–( )exp µd

∞–

∞

∫

=  2 η2–( ) η2 1
2
---– 

  ,exp

P
1

η µ–
------------- δ η µ–( )( )µ' µ2–( )exp µd

∞–

∞

∫

=  2 η2–( ) η2 1
2
---– 

  .exp

P
1

η µ–
-------------Z η ϕ µ, ,( ) µ2–( )exp µd

∞–

∞

∫

=  
1
2
---a η ϕ,( ) 3k η2–( ) η2 1

2
---– 

  .exp+

Ya
2( ) ρ ϕ µ, ,( ) ψ η ϕ µ, ,( ) x/η–( )exp η ,d

0

∞

∫=

ψ η ϕ µ, ,( ) ηP
1

η µ–
------------- 1

π
-------m η ϕ,( ) Z η ϕ µ, ,( )+=

+ m η ϕ,( ) η2( )λ η( )exp
1
2
---ηa η ϕ,( ) η2( )exp–

– 3kη η 2 1
2
---– 

  δ η µ–( ).

2Uϕ
2( )

S–
1

π
------- ηm η ϕ,( )

η µ–
----------------------- ηd

0

∞

∫=

+ nZ η ϕ µ, ,( ) ηd
η µ–
-------------

0

∞

∫ m µ ϕ,( ) µ2( )λ µ( )exp+
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In [5], it is shown that

Taking into consideration that

we find

Here, Qn denotes the Loyalka integrals [13]

Using the results found, let us rewrite (15) in the
form

(16)

(17)

Introduce the auxiliary function

and reduce (16) to the Riemann boundary value prob-
lem in a half-space [14]:

(18)

The coefficient of boundary value problem (18)
coincides with that for a gas sliding along a solid plane

–
1
2
---µa µ ϕ,( ) µ2( )exp 3kµ µ2 1

2
---– 

  , µ 0.>–

ηP
1

η µ–
-------------a η ϕ,( )F η µ,( ) ηd

0

∞

∫ µYa
1( ) R ϕ µ, ,( )( )µ

' ,=

ηP
1

η µ–
------------- a η ϕ,( )F η µ,( )( )µ' ηd

0

∞

∫  = 
1
2
--- µYa

1( ) R ϕ µ, ,( )( )µµ
'' ,

ηP
1

η µ–
-------------δ η µ–( ) ηd

0

∞

∫ 1,=

ηP
1

η µ–
------------- δ η µ–( )( )µ' µd

0

∞

∫ 0.=

Ya
1( ) R ϕ η, ,( ) η2 Q2+( )k,=

ηZ η ϕ µ, ,( ) ηd
η µ–
-------------

0

∞

∫ 3µ3 Q2µ
3
2
---µ–+ 

  k.=

Qn
2

π
------- tn 1+ t2–( ) tdexp

X t–( )
------------------------------------.

0

∞

∫=

f µ ϕ,( ) m µ ϕ,( ) µ2( )λ µ( )exp=

+
1

π
------- ηm η ϕ,( )

η µ–
----------------------- η , µ 0,>d

0

∞

∫

f µ ϕ,( ) –2Uϕ
2

S Q2µ–
1
2
---a η ϕ,( ) η2( ).exp+=

M z ϕ,( ) 1
2πi
-------- ηm η ϕ,( )

η z–
----------------------- ηd

0

∞

∫=

M+ µ ϕ,( )λ+ µ( ) M– µ ϕ,( )λ– µ( )–

=  µf µ ϕ,( ) µ2–( ), µ 0.>exp
surface [5]. Therefore, (18) can be reduced to the prob-
lem with a jump [14]

which has a solution vanishing at infinity if the condi-
tion

(19)

is satisfied [15].
Substituting (17) into (19), in view of (9), we have

Since

(20)

we find

Substituting the values of the Loyalka integrals [13]
Q1 = –1.01619, Q2 = –1.26663, and Q3 = –1.8207 into

the expression found, we have  = –0.40017k.

Allowing for (1), this yields the velocity of thermal
sliding of a rarefied gas around a solid cylindrical sur-
face

(21)

Since, according to a standard method to make

physical quantities dimensionless, R–1 = (3/ ) Kn,
returning to dimensional quantities in (21), we obtain

Thus, βR⊥  = 1.7684 in the case of a rarefied gas flow
around a solid cylindrical surface.

INFLUENCE OF THE SURFACE CURVATURE 
ON THE COEFFICIENT OF ISOTHERMAL 

SLIDING

Assume that the mass velocity component tangent
to a surface is not constant but varies along the direction

M+ µ ϕ,( )X+ µ( ) M– µ ϕ,( )X– µ( )–

=  µf µ ϕ,( ) µ2–( )X
– µ( )

λ– µ( )
--------------, µ 0,>exp

2

π
------- f t ϕ,( )

X t–( )
----------------t t2–( )exp td

0

∞

∫ 0=

Uϕ
2( )

S

k
2
--- Q1Q2

1

2 π
----------

t2 t Q1–( )

λ+ t( ) 2
-----------------------

0

∞

∫ t2–( )dtexp– .=

1

π
-------

t2 t Q1–( )

λ+ t( ) 2
----------------------- t2–( )exp td

0

∞

∫ –3Q3 Q1Q2,–=

Uϕ
2( )

S

3k
4

------ Q3 Q1Q2+[ ] .=

Uϕ
2( )

S

Uϕ S Uϕ
1( )

S R 1– Uϕ
2( )

S+=

=  0.38332 0.40017R 1––( )k.

π

Uϕ S 1.14995ν 1 1.7684Kn–( ) 1
TS

----- ∂T
R∂ϕ
-----------

S

.=
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of the normal to a surface; i.e.,

is nonzero.

In this case, we seek a solution of (2) and (3) in the
form [6]

(22)

Substituting expansions (22) into (3), multiplying

the resulting equation by Cϕ exp(–  – ), and inte-
grating with respect to Cϕ and Cz from –∞ to +∞, we

find the equation for the function (ρ, ϕ, µ):

with boundary conditions (7). Here, (ρ, ϕ, µ) is
determined by relationship (8):

In the case under consideration,

k1
∂Uϕ

∂ρ
----------

S

=

Y j( ) ρ ϕ Ci, ,( ) CϕYa
j( ) ρ ϕ Cρ, ,( ); j 1 2.,= =

Cϕ
2 Cz

2

Ya
2( )

µ
∂Ya

2( )

∂ρ
------------ Ya

2( ) ρ ϕ µ, ,( )+

=  
1

π
------- Ya

2( ) ρ ϕ µ', ,( ) µ'2–( )exp µ'd

∞–

∞

∫

–
µ
π

------- µ'Ya
2( ) ρ ϕ µ', ,( ) µ'2–( )exp µ'd

∞–

∞

∫

+ µYa
1( ) ρ ϕ µ, ,( ) 3

2
---

∂Ya
1( )

∂µ
------------–

Ya
1( )

a η ϕ,( ) 2 η2–( )X η–( )exp

3 λ+ η( ) 2
-------------------------------------------k1,=

Ya
1( ) R ϕ η, ,( ) 4

3
--- η Q1+( )k1.=

Z η ϕ µ, ,( ) µa η ϕ,( )F η µ,( ) 3
2
---a η ϕ,( )∂F

∂µ
------,–=

P
1

η µ–
-------------Z η ϕ µ, ,( ) µ2–( )exp µd

∞–

∞

∫ 1
2
---a η ϕ,( ),=

ηZ η ϕ µ, ,( ) ηd
η µ–
-------------

∞–

∞

∫ 2
3
--- 4µ2 2Q1µ 3–+( )k1,=

f µ ϕ,( ) –2Uϕ
2( )

S

2
3
--- 4µ2 2Q1µ 3–+( )k1–=

+
1
2
---a µ ϕ,( ) µ2( )exp ,
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Taking into account that

(23)

we find

In view of (1), the velocity of a rarefied gas isother-
mally sliding around a solid cylindrical surface is

(24)

Turning to dimensional quantities in (24), we obtain

Thus,  = 1.24922.

LONGITUDINAL FLOW AROUND
A CYLINDRICAL SURFACE (THERMAL 

SLIDING)

Assume that the temperature gradient is directed
along the cylinder axis at large distances from its sur-
face. Let us denote

We will look for a solution of (2) and (3) in the form

(25)

(26)

Substituting expansions (25) and (26) into (3), mul-

tiplying the resulting equation by Czexp(–  – ),
and integrating with respect to Cϕ and Cz between –∞

Uϕ
2( )

S

k1

3
---- 4Q2 2Q1 3Q0∫–+=

–
1

π
------- t2

λ+ t( ) 2
----------------- t2–( )exp td

0

∞

∫ .

1

π
------- t2

λ+ t( ) 2
----------------- t2–( )exp td

0

∞

∫ 3
2
---,=

2Q2 Q1
2+

3
2
---,–=

Uϕ
2( )

S

1
2
---k1.–=

Uϕ S Uϕ
1( )

S R 1– Uϕ
2( )

S+=

=  0.67746 0.50000R 1––( )k1.

Uϕ S 1.14665λ 1 1.24922Kn–( )∂Uϕ

∂ρ
----------

S

.=

Cm⊥
1( )

k2
1
TS

-----∂T
∂z
------

S

.=

Y 1( ) ρ Ci,( ) CzYa
1( ) ρ Cρ,( )=

+ Cz Cϕ
2 Cz

2 2–+( )Yb
1( ) ρ Cρ,( ),

Y 2( ) ρ Ci,( ) CzYa
2( ) ρ Cρ,( ).=

Cϕ
2 Cz

2
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and +∞, we find the equation for the function (ρ, µ):

with the boundary conditions

(27)

Here,

(28)

In the case under consideration,

Ya
2( )

µ
∂Ya

2( )

∂ρ
------------ Ya

2( ) ρ µ,( )+
1

π
------- Ya

2( ) ρ µ',( ) µ'2–( )exp µ'd

∞–

∞

∫=

–
µ
π

------- µ'Ya
2( ) ρ µ',( ) µ'2–( )exp µ'd

∞–

∞

∫

–
1
2
---

∂Ya
1( )

∂µ
------------ µYb

1( ) ρ µ,( ) 1
2
---

∂Yb
1( )

∂µ
------------–+

Ya
2( ) R µ,( ) 2Uz

2( )
S, µ 0,>–=

Ya
2( ) ∞ µ,( ) 0.=

Ya
1( ) ρ µ,( ) a η( )F η µ,( ) x/η–( )exp η ,d

0

∞

∫=

x ρ R,–=

Yb
1( ) ρ µ,( ) k2 x/η–( )δ η µ–( )exp η ,d

0

∞

∫=

a η( )
η η Q1–( ) η2–( )X η–( )exp

2 λ+ η( ) 2
-----------------------------------------------------------------k2,=

Ya
1( ) R µ,( ) µ2 Q2+( )k2.=

Z η µ,( ) = –
1
2
---a η( )

∂F
∂µ
------ µk2δ η µ–( )

k2

2
---- ∂

∂µ
------δ η µ–( ),–+

P
1

η µ–
-------------Z η µ,( ) µ2–( )exp µd

∞–

∞

∫

=  
1
2
---a η( ) k2 η2–( ) η2 1

2
---– 

  ,exp+

nZ η µ,( ) ηd
η µ–
-------------

0

∞

∫ 1
3
---µk2,–=

f µ( ) 2Uz
2( )

S–
1
2
---a µ( ) µ2( ) µ3k2,+exp+=
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In view of (20) and (1), we find

(29)

or, in terms of dimensional quantities,

Thus, βR|| = 0.589495.

LONGITUDINAL FLOW AROUND 
A CYLINDRICAL SURFACE (ISOTHERMAL 

SLIDING)

We assume that

is nonzero.
We represent the solution of (2) and (3) in the form

(30)

Substituting expansions (30) into (3), multiplying

the resulting equation by Czexp(–  – ), and inte-
grating with respect to Cϕ and Cz between –∞ and +∞,

we find the equation for the function (ρ, µ):

with boundary conditions (27). Here, (ρ, µ) is
determined by relationship (28):

In this case,
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Using (24), we find

Thus, in the case of the longitudinal flow of a rar-
efied gas that is nonuniform in mass velocity around a
cylindrical surface,

(31)

or, in dimensional form,

Thus,  = 0.415407.

CONCLUSIONS

The sliding velocities of a rarefied gas that is non-
uniform in temperature and mass velocity flowing
around a solid cylindrical surface are found from the
solution of the ES model of the Boltzmann kinetic
equation in the Knudsen layer. The dependences of the
coefficients of thermal and isothermal slidings on the
radius of curvature found in the linear approximation
with respect to the Knudsen number have the same
form as in [1]. In the case of longitudinal flow around a
cylindrical surface, the thermal sliding velocities (29)
coincide with the corresponding result in [1].

In view of the fact that the BGK model yields iso-
thermal sliding velocities one and a half times greater

ηZ η µ,( ) ηd
η µ–
-------------

0

∞

∫ 2
3
---k3,=

f µ( ) –2Uz
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3
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1
2
---a µ( ) µ2( ),exp+ +=
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3
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π
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λ+ t( ) 2
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∞
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S
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6
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Uz S Uz
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S R 1– Uz
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S+=

=  0.67746 0.166667R 1––( )k3

Uz S 1.14665λ 1 0.415407Kn–( )∂Uz

∂ρ
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S

.=

Cm||
1( )
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than those of the ES model, (31) is written as

Thus, in the case of the longitudinal flow of a rar-
efied gas around a solid cylindrical surface, the isother-
mal sliding velocity also coincides with the correspond-
ing result in [1].
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Abstract—A differential equation that describes the axisymmetric motion of two immiscible magnetic fluids
of the same density and viscosity is derived. It includes in explicit form the contribution of capillary forces
localized at the interface between the fluids, which has the form of a weakly distorted cylindrical surface. With
this equation, a dispersion relation for the problem of capillary instability of an extended axisymmetric drop
placed in a uniform longitudinal magnetic field is obtained. The effect of magnetic forces on the capillary dis-
integration of the drop for the extreme cases (large and small Ohnesorge numbers) is analyzed. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

From numerous experiments (see, e.g., [1–3] and
Refs. therein), it is known that the free surfaces of mag-
netic fluids, as well as the interfaces between immisci-
ble magnetic and nonmagnetic fluids, respond, as a
rule, to external magnetic fields. The associated effects
to a great extent depend on the field orientation relative
to the surface. When subjected to sufficiently high
orthogonal fields, the initially flat free surfaces of mag-
netic fluids become unstable with the formation of var-
ious periodic surface structures [1–6]. Conversely, tan-
gential fields stabilize the free surfaces, suppressing
wave disturbances caused by any external reasons. The
stabilizing effect of tangential magnetic fields has been
observed in many experiments studying fingering insta-
bility in porous media [1], capillary disintegration of a
cylindrical layer [1, 2] and a thin cylindrical jet of a
magnetic fluid [7], and Rayleigh–Taylor instability [8].
Systems consisting of thin magnetic-fluid and nonmag-
netic-fluid layers in contact that are placed between
solid walls respond to switching and growth of the
magnetic field in a most unusual way [1–3].

The pioneer experiment on the capillary disintegra-
tion of a heavily extended thin cylindrical drop of a
high-viscosity fluid was performed by Taylor [9]. In his
experiment, a specially configured fluid jet flowed
around an initially spherical drop to form an extended
drop, the jet and the drop having the same density. Sub-
sequently, such an approach to form filamentary drops
was widely used in similar experiments [10–12].
Experimental equipment employed in later experiments
is described in [13].

Theoretically, the capillary instability of a cylindri-
cal thread of a viscous nonmagnetic fluid at rest in air
was first considered by Rayleigh [14]. An example of
such a system was a natural object, an as-woven spi-
1063-7842/02/4710- $22.00 © 21226
der’s web. The dispersion relation obtained by Rayleigh
and its analysis as applied to the evolution of instability
under conditions when viscous forces dominate over
inertial forces gave an insight into the disintegration of
a thin cylindrical thread into regularly arranged drop-
lets (see Fig. 37 in [15]). This figure shows that coarser
drops are separated by finer droplets (satellites), which
form by nonlinear hydrodynamic processes.

In the general case of a fluid thread surrounded by a
viscous fluid, a dispersion relation is usually derived by
equating the fourth-order determinant to zero, the ele-
ments of the determinant being expressed through
Bessel functions [16]. A dispersion relation thus
obtained is awkward; therefore, analytical expressions
for its roots were long known only for the case studied
by Rayleigh [16–18], as well as for the capillary insta-
bility of a thin cylinder of a nonviscous fluid under con-
ditions when viscous forces dominate over inertial
forces in the surrounding viscous fluid [16, 18].
Recently, a new formula applicable to contacting fluids
of the same viscosity has been obtained by Stone and
Brenner [19]. They used the quasi-stationary Stokes
equation involving surface tension forces localized at
the interface and applied the Hankel integral transfor-
mation to find the dependence σ = σ(k) that allows one
to trace the effect of the wave number k on the time evo-
lution of harmonics in the form exp(σt)sinkz and
exp(σt)coskz.

In this work, we generalize the differential equation
for fluid motion [19] to the case of immiscible magnetic
fluids placed in a magnetic field. The effect of volume
magnetic forces on the capillary disintegration of a fil-
amentary drop subjected to a longitudinal magnetic
field is studied in terms of equations of ferrohydrody-
namics and the equation derived in this work.
002 MAIK “Nauka/Interperiodica”
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STATEMENT OF THE PROBLEM
Let a thin axisymmetric magnetic-fluid drop of

length (measured along the axis) exceeding its charac-
teristic cross size by several tens of times be placed into
an infinite volume of another magnetic fluid. In many
experiments with nonmagnetic fluids, drops of an
extended shape were produced with special devices
similar to Taylor’s device by principle of operation
[9, 13]. When studying the effect of a longitudinal mag-
netic field on the disintegration of such a drop, we
neglect effects due to the axial components of magnetic
forces at the drop edges and approximate the drop by a
straight cylindrical thread of radius a.

Let us introduce the cylindrical coordinate system
(r, ϑ , z) in such a way that the interface in hydrostatic
equilibrium is described by the equation r = a. It is
assumed that both fluids are Newtonian and have the
same density ρ and dynamic viscosity coefficient η. In
addition, their absolute permeabilities µ1 (in the domain
r < a) and µ2 (in the domain r > a) depend only on the
magnitude of the magnetic field vector H with µ1(H) ≠
µ2(H). Unlike the problem of capillary instability of a
jet of a magnetic fluid in air, in our configuration both
the cases µ1 > µ2 and µ2 > µ1 are possible. In the pres-
ence of a longitudinal uniform magnetic field H = (0, 0,
H0), the magnetic induction Bj0 = µjH0 and magnetiza-
tion Mj0 = χjH0 of either of the media are uniform and

the density of the mass force  = µ0Mj0gradH0 ≡ 0.
Hereafter, j = 1, 2; χj = µj/µ0 – 1 is the magnetic suscepti-
bility; and µ0 = 4π × 10–7 H/m is the magnetic constant.

Let us state the problem of axisymmetric motion of
the fluids in the linear approximation, where the shape
of the interface is represented by the equation r =
rs(z, t). We put rs(z, t) = a + ζ(z, t), where ζ(z, t) is a
small perturbation of the initial radius of the thread
(|ζ(z, t)| ! a) and t is time. A distortion of the interface
causes a perturbation of the magnetic field Hj – H0 =
gradϕj(r, z, t), magnetic induction Bj – Bj0 = bj(r, z, t),
and magnetization Mj – Mj0 = mj(r, z, t), and generates

volume magnetic forces of density (r, z, t), which
affect the dynamics of the fluids. Up to first-order infin-
itesimals, we have

(1)

where er and ez are the basis vectors corresponding to
the coordinate lines r and z and µtj = dBj/dHj is the dif-
ferential permeability.

Fm0
j( )

fm
j( )

H j H0–
∂ϕ j

∂z
--------, M j M j0– m jz,= =

m j
1
µ0
-----b j gradϕ j,–=

b j µ j H0( )
∂ϕ j

∂r
--------er µtj H0( )

∂ϕ j

∂z
--------ez,+=

fm
j( ) µ0M j0grad

∂ϕ j

∂z
--------,=
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In view of (1), the equation of magnetostatics
divBj = 0 implies that the perturbations of the magnetic
field potential in either of the contacting magnetic flu-
ids are described by the equations

(2)

In the linear approximation, the continuity equa-
tions for the tangential components of the magnetic
field and for the normal component of the induction at
the interface (for r = a) have the form

(3)

In stating the hydrodynamic problem, we do away
with the common approach used in the statement of the
magnetostatic problem given by (2) and (3). This
approach requires that solutions to hydrodynamics
equations be constructed separately for each domain
where motion parameters and fluid states vary continu-
ously with the subsequent joining of them via kine-
matic and dynamic conditions at the interface. Specifi-
cally, it is necessary that the normal and tangential
components of the velocity vector u(r, z, t) = (ur, 0, uz)
be continuous at the interface and also that the tangen-
tial component of the surface force density pnτ be con-
tinuous. Recall that, in the common approach, the
dynamic condition relating the normal components pnn

of surface forces on both sides of the interface between
immiscible fluids includes a discontinuity due to the
surface tension effect. It should be noted that if the
dynamic viscosity coefficients of the fluids are the
same, it follows from the continuity equation and the
continuity conditions for u and pnτ that ∂ur/∂r, ∂ur/∂z,
∂uz/∂r, and ∂uz/∂z are also continuous at the interface.

Now, we formulate hydrodynamic equations,
assuming that the fluids constitute a single medium
where the pressure p(r, ϑ , z, t) experiences a jump at the
interface r = a + ζ(z, t). The amount of the jump
depends on the surface tension coefficient α and the
mean curvature K of the interface. Consider an arbitrary
individual (i.e., covering similar particles of the
medium) volume V(t) and imagine that it is arbitrarily
divided into two parts by a segment of the interface.

Following the conventional concepts of the continu-
ity of the vector field u and its derivatives with respect
to coordinates and bearing in mind the derivation [20]
of the continuity equation that relies on the law of con-
servation of mass for any individual volume, we natu-
rally come to the solenoidal condition for the velocity
field:

(4)

∂2ϕ j

∂r2
----------

1
r
---

∂ϕ j

∂r
-------- β j

2∂2ϕ j

∂z2
----------+ + 0, β j

µtj H0( )
µ j H0( )
------------------.= =

ϕ1 ϕ2, µr1

∂ϕ1

∂r
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∂ϕ2

∂r
---------– M10 M20–( )∂ζ

∂z
------,= =

µrj

µ j H0( )
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divu 0.=
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When deriving a differential equation of motion, we
will proceed from the integral form (A9) of the law of
conservation of momentum for the individual volume.
In the linear approximation, the convective time deriv-
ative of the velocity, the term (u · ∇ )u on the left of
(A9), and a magnetic pressure jump on the right-hand
side of (A9) are certainly rejected because of their
smallness.

Note that in our approximation, an element of the
weakly distorted [(∂ζ/∂z)2 ! 1] interface is written as
dσ = adϑdz and the mean curvature is calculated by the
formula

We will neglect the deviation of the normal vector n
to the interface from the radial direction, which is
directed toward the symmetry axis of the surface, and
put n = –er . Then, the integral over the part of the inter-
face lying inside the individual volume [see (A9)] can
easily be transformed into the integral over the individ-
ual volume:

(5)

where δ(r – a) is the Dirac delta function of the argu-
ment (r – a) and dv  = rdrdϑdz.

In view of (5) and formulas (1) for the magnetic
force perturbation fm,

we recast (A9) in the form

where ∆ is Laplacian.
Recall that this integral equality applies (in terms of

the linear statement) to an arbitrary individual volume.
Certainly, it is fulfilled if the integrand vanishes. Leav-
ing aside the question of how rigorous the transition
from the integral equality to the differential equation
obtained by equating the integrand to zero is, we will
use the equation of motion

(6)
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---------
where

is the Heaviside function.

At the interface (r = a in the linear approximation),
a solution to system (4), (6) must satisfy the kinematic
condition

(7)

which means that the interface consists of the same par-
ticles.

Certainly, the functions u and p limited at r = 0 have
a physical meaning and u  0 at r  ∞.

To simplify the subsequent mathematics, we rear-
range equation of motion (6). In hydrodynamics, an
important kinematic parameter of the velocity field is
the velocity vortex vector ωc = (1/2)curlu. In the case
being considered, only the azimuth component of the
vortex vector is other than zero; therefore, vortex lines
in each of the planes z = const represent a family of con-
centric circles. Applying the curl operator to Eq. (6), we
obtain

(8)

Such a vector equation is common in theoretical
physics. As follows from the right-hand side of (8), if
the motion of the fluids is nonstationary, capillary
forces localized at the interface and the discontinuity in
the axial component of the magnetic force density fm at
the interface generate vortices in liquid particles form-
ing the interface. According to (8), the vortices in the
fluids propagate on both sides of the interface by diffu-
sion, with the diffusion coefficient being equal to the
kinematic viscosity coefficient ν of the fluids. From
Eq. (8), one can easily estimate the characteristic time
τd of vortex diffusion across a liquid cylindrical thread
of characteristic radius a. Indeed, equating terms of the
same order of magnitude on the left-hand side of (8),
we find τd = a2/ν; hence, τd grows as the viscosity coef-
ficient decreases. In the limiting case of nonviscous flu-
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ids (ν = 0), it follows from Eq. (8) that

This means that the vortices do not leave the site of
origin.

Using continuity equation (4), we introduce the
stream function ψ(r, z, t) such that

then,

With these expressions, Eq. (8) takes the form

(9)

Kinematic condition (7) is recast to the form

(10)

Thus, the functions ζ(z, t), ϕj(r, z, t), and ψ(r, z, t)
are found from the solution to the problem stated by (2),
(3), (9), and (10).

DISPERSION RELATION 
AND ITS ANALYSIS

To investigate the time evolution of the interface, let
us trace the time behavior of partial solutions (harmon-
ics) to the linear problem, which have the form

(11)

Here, ζk, (r), and Ψk(r) are the Fourier transforms
of the desired functions ζ(z, t), ϕj(r, z, t), and ψ(r, z, t)
(taken at the initial time instant) with respect to the vari-
able z.

In expressions (11), the appearance of the exponen-
tial exp(–iωt) and the associated separation of variables
stem from the fact that the coefficients of linear homo-
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geneous partial differential equations (2) and (9) are
time independent. Because of this, our problem admits
partial solutions like (11) at any value of the wave num-
ber k provided that the relation between ω and k (dis-
persion relation) imposed by the equations and bound-
ary conditions is met. With the dispersion relation, one
can find wave number ranges where the harmonics
grow or decay with time, the wave number of the fastest
growing harmonic, and some other valuable informa-
tion.

Substituting (11) into (2), (3), (9), and (10) yields

(12)

at r = a, and

(13)

(14)

(15)

at r = a.

Here, 

Solutions to the problem of magnetostatics stated as
(12) and (13) that have derivatives limited at r = 0 and
r  ∞ are written as

(16)

where Il(x) and Kl(x) (l = 0, 1) are the modified Bessel
functions of the first and second kind.

Substituting expressions (16) into Eq. (14) yields

(17)
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where

It is easy to write a fundamental set of homogeneous
equations corresponding to fourth-order linear inhomo-
geneous equation (17):

(18)

Using (18), we apply the method of variation of con-
stants to find a partial solution to Eq. (17) that has con-
tinuous first- and second-order derivatives at the point
r = a satisfying the condition of velocity boundedness
at r  0 and r  ∞:

(19)

where

(Note that this procedure is similar to that used to con-
struct a solution to inhomogeneous second-order equa-
tion (7.2.48) in [21], which involves a shifted delta
function on the right-hand side.)

Substituting expressions (11) and (19) into kine-
matic condition (15) at the interface, we arrive at the
dispersion relation

(20)

where

Since all the quantities on the right of (20) are
dimensionless, the problem has, along with τd, the char-

acteristic time scale τi = , as follows from the
left of (20). The physical meaning of τi can be eluci-
dated by considering the dispersion relation for the
problem of stability of cylindrical interface between
nonviscous fluids at rest. In experiments, we certainly

T r( ) = 
iαζ kkr
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N
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q κ2 iωτd– , Req 0.>=

ρa3/α
deal with low-viscosity fluids, where the effect of vis-
cosity forces on the capillary-force-induced macro-
scopic flow of the fluids is small in comparison with the
effect of inertial and magnetic forces. In this case,
τd  ∞ and expression (20) takes the form

(21)

Since I1(κ)K1(κ) > 0 for κ > 0, it follows from (21)
that the frequency ω is a real-valued function of the
dimensionless wave number κ in the absence of the
magnetic field (at N = 0) for κ > 1. For the range 0 <
κ < 1, Reω = 0, while Imω > 0 and Imω < 0 in the dif-
ferent branches of the double-valued function ω(κ).
Since perturbation spectra in a real physical experiment
contain any wave numbers, the conditions Reω = 0 and
Imω > 0 imply that the configuration of fluids that are
initially at rest is unstable, the instability having a
monotonic character. Thus, the time evolution of a fila-
mentary drop of a perfectly incompressible fluid that is
initially at rest fundamentally differs from the behavior
of a spherical drop [22] self-oscillating under the action
of capillary forces.

Analysis shows that at N ≠ 0 the magnetic field only
narrows the wave number range where the drop is
unstable without changing radically the character of the
instability of harmonics. Since dispersion relations (20)
and (21) describe the linear stage of the evolution of
harmonics, the time scale τi also characterizes the linear
stage of filamentary drop instability initiated by capil-
lary forces when inertial forces dominate over viscous
forces (the inertial condition of capillary disintegra-
tion).

Turning back to the behavior of a thread of viscous
ferrofluids, we note that numerous experiments with
nonmagnetic fluids have demonstrated that there exists
a viscous regime of capillary disintegration of the
thread, where the contribution of inertial forces to the
force balance is small and the evolution of the thread
shape is governed mainly by capillary and viscous
forces acting on the fluid. Let τv be the time scale of the
linear stage of capillary disintegration in the viscous
regime. Based on the hydrodynamic part of the problem
considered, it is easy to check that τv = ηa/α (similar
estimates were made in [23]). In terms of the dimen-
sionless criteria, the condition for the viscous regime of

disintegration appears as Z @ 1, where Z = η/  is
the Ohnesorge number. Since τi/τv = Z–1 and τd/τv = Z–2,
we have τd ! τi ! τv for Z @ 1. If Z ! 1, τv ! τi ! τd;
this is precisely the case to which dispersion relation (21)
corresponds.

Passing to the dimensionless function Ω = ωτv in
(20), we come to

(22)

ωτi( )2 κ2I1 κ( )K1 κ( ) κ2 κNΛ 1–+( ).=

ραa

εΩ2 κ 1 κNΛ– κ2–( ) I1 q( )K1 q( ) I1 κ( )K1 κ( )–[ ] ,=

q κ2 iεΩ– , ε Z 2– .= =
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In the case considered, ε ! 1; therefore, leaving the
linear term in the expansion of the right-hand side of
(22) in powers of ε, we find a root of the dispersion rela-
tion that describes the evolution of the capillary insta-
bility of the drop when viscous forces are much greater
than inertial forces:

(23)

As follows from (23), if κ is real, the principal term
of the expansion of ω in powers of ε is purely imagi-
nary. The numerical analysis indicates that the function
in the braces is positive at any κ > 0, so that the sign of
Imω coincides with the sign of the expression in the
parentheses [the same is valid for one of the branches
of the double-valued function ω(κ) in the case of a non-
viscous fluid; see (21)]. It should be noted that, with the
next term of expansion (23) included, Reω remains to
be equal to zero: Reω = 0. In the absence of the mag-
netic field (at N = 0), as well as if µr1 = µr2, the form of
root (23) coincides with the expression found in [19] up
to notation.

When constructing plots illustrating the effect of the
magnetic field on the capillary instability of a filamen-
tary drop, we assumed that ferrofluids are magnetized
according to a linear law (β1 = 1, β2 = 1). Figure 1
shows dispersion relation (23) for fixed µr1 and µr2 and
various N. For a given N and any κ lying to the right of
the point κc = κc(µr1, µr2, N) where the corresponding
curve crosses the abscissa axis, Imω < 0; for κ lying to
the left of κc, Imω > 0. Thus, harmonics with dimen-
sionless wave numbers κ > κc are stable; those with κ <
κc are unstable. The points κ = κc are the threshold val-
ues of the wave number. As follows from Fig. 1, in the
presence of a discontinuity in the relative permeabili-
ties (µr1 – µr2 ≠ 0), the magnetic field stabilizes a num-
ber of harmonics (with wavelengths λ > 2πa) that are
unstable without the field. As both N and |µr1 – µr2|
increase, so does the characteristic time (Imω  of
emergence of the fastest growing harmonic (that is, the
harmonic with the dimensionless wave number κ∗ (N,
µr1, µr2) responsible for the peak of the associated curve

at given N, µr1, and µr2). Note that (Imω  at µr1 > µr2
is always greater than at µr1 < µr2 for the same pair of
fluids and a fixed N.

From expressions (21) and (23), it is easy to see that
the threshold wave numbers κc for Z ! 1 and Z @ 1
equal each other for given N, µr1, and µr2. Figure 2 plots
dispersion relations (21). From Figs. 1 and 2, it follows
that viscosity considerably affects the characteristic
times of emergence of the fastest growing harmonics:
in high-viscosity fluids, they are one order of magni-
tude larger than in low-viscosity ones.

ωτv i 1 κNΛ– κ2–( )=

× I1 κ( )K1 κ( ) κ
2
--- I1 κ( )K0 κ( ) I0 κ( )K1 κ( )–[ ]+

 
 
 

.

)*
1–

)*
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Dispersion relations (20) and (21) yield the same
family of neutral stability curves, which depend on µr1
and µr2:

(24)

In the plane (κ, N), the condition Imω = 0 is fulfilled
along these curves. In essence, neutral stability curves

N
1 κ2–
κΛ

--------------.=
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Fig. 1. Dispersion relation (23) for different N in the
absence of the magnetic field (N = 0) (data points), in the
presence of the field for the fluids with µr1 = 5 and µr2 = 1
(continuous curves), and in the presence of the field for the
fluids with µr1 = 1 and µr2 = 5 (dashed curves). N = 0.1 (1),
0.3 (2), 0.5 (3), 0.7 (4), and 0.9 (5).
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Fig. 2. Dispersion relation (21) for the same values of the
parameters N, µr1, and µr2 as in Fig. 1.
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are demarcation lines between domains of stability
(everywhere Imω < 0) and instability (Imω > 0) in the
band (0 ≤ κ ≤ 1, N ≥ 0). It is more reasonable to con-
struct the domains of stability and instability (Fig. 3) in
the plane (N, κ), since N is a controllable parameter
under experimental conditions, while a perturbation
spectrum may have any wave numbers. The transition
from the plane (κ, N) to the plane (N, κ) is accom-
plished by inverting function N = N(κ) (24).

0.2

50 10 15 20 25 30
N

0.4

0.6

0.8

1.0
k

1

2

3
1

2

3

Fig. 3. Neutral stability curves. Continuous curves corre-
spond to µr2 = 1 and µr1 = 2 (1), 4 (2), and 5 (3). Dashed
curves correspond to µr1 = 1 and µr2 = 2 (1), 4 (2), and 5 (3).
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Fig. 4. Wavelength of the fastest growing harmonic vs.
dimensionless magnetic field strength squared for Z @ 1.
Continuous curves correspond to µr2 = 1 and µr1 = 4 (1) and
5 (2). Dashed curves correspond to µr1 = 1 and µr2 = 4 (1')
and 5 (2').
In Fig. 3, the domains of stability and instability are
located above and below, respectively, the neutral sta-
bility curves for given µr1 and µr2. It is also seen from
Fig. 3 that the threshold wave number decreases with
increasing both N and the discontinuity between the
magnetic susceptibilities of the fluids. For the same pair
of fluids, the threshold wave number κc1 at µr1 > µr2 is
less than the threshold wave number κc2 at µr1 < µr2 for
given a magnetic field strength and thread diameter. As
a result, the range κc1 < κ < 1 of harmonics stabilized
by the magnetic field at µr1 > µr2 is wider than the range
κc2 < κ < 1 of harmonics stabilized by the magnetic field
at µr1 < µr2. Thus, a magnetic field of a fixed strength
stabilizes a drop of a ferrofluid suspended in a nonmag-
netic fluid (configuration I) more effectively than a drop
of a nonmagnetic fluid suspended in the same ferrofluid
(configuration II).

From (20), it is easy to see that a family of lines (24)
represents neutral stability curves at any Ohnesorge
number. Therefore, the stability and instability domains
depicted in Fig. 3 describe (for given N, κ, µr1, and µr2)
the evolution of a harmonic for an arbitrary relation
between inertial and viscous forces during the capillary
disintegration of a ferrofluid thread exposed to a longi-
tudinal magnetic field.

If the viscosity coefficients of nonmagnetic fluids
are unequal, the wavelength λ∗  of the fastest growing
harmonic observed under the capillary disintegration of
a filamentary drop when viscous forces dominate over
inertial forces is in good agreement with experimental
data found by measuring the diameters of droplets after
the disintegration [11, 12, 16] (recall that λ∗  was calcu-
lated in the linear approximation). Certainly, the forma-
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Fig. 5. The same as in Fig. 4 for Z ! 1.
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tion of satellites between regularly arranged coarser
drops was not taken into account in this case.

Figure 4 shows the dependences of λ∗  vs. N con-
structed with the root (23) of dispersion relation (20)
for Z @ 1, and Fig. 5 demonstrates similar dependences
constructed with dispersion relation (21) corresponding
to Z ! 1. From these plots, we see that at both Z @ 1
and Z ! 1, the characteristic diameter of droplets
appearing after the capillary disintegration grows with
both magnetic field strength and discontinuity in the
magnetic susceptibilities of the fluids in both configu-
rations I and II (if the diameter of the initial thread is
fixed). It is also seen that, at both Z @ 1 and Z ! 1,
drops appearing after the disintegration are coarser in
configuration I than in configuration II (for a fixed mag-
netic field strength).

From Figs. 4 and 5, it follows that the size of the
droplets differ markedly at Z @ 1 and Z ! 1 for the
same configuration and the same H0 and a. In the vis-
cous regime of capillary disintegration, the droplets are
coarser than in the inertial regime. For example, λ∗ /a =
11.1896 at Z @ 1 and 9.2843 at Z ! 1 without the mag-
netic field.

CONCLUSION

Based on the integral form of the law of conserva-
tion of momentum for a finite material volume consist-
ing of two contacting immiscible magnetic fluids
placed in a magnetic field, we derived a differential
equation for the motion of the fluids. Along with mass
forces, the equation includes also capillary forces local-
ized at the interface. With this equation, it was easy to
derive in explicit form a dispersion relation for the
problem of capillary instability as applied to a sus-
pended filamentary drop of a viscous ferrofluid sub-
jected to a longitudinal magnetic field. The case when
the density and viscosity of a fluid surrounded the drop
are equal to those of the drop but the magnetic suscep-
tibilities differ was considered.

The effect of the field on the disintegration of the fil-
amentary drop was analyzed for the cases when (i) vis-
cous forces are much greater than inertial forces (vis-
cous regime of disintegration, the Ohnesorge number
Z @ 1) and (ii) inertial forces dominate over viscous
forces (inertial regime, Z ! 1). For both regimes of dis-
integration, if a drop of a ferrofluid is suspended in a
nonmagnetic fluid (configuration I), the magnetic field
of a given strength stabilizes a wider range of harmon-
ics that are unstable in the absence of the field than
when a drop of a nonmagnetic fluid is suspended in the
same ferrofluid (configuration II), provided that the
diameters of the filamentary drops are the same. Also,
in both regimes (Z @ 1 and Z ! 1), the capillary disin-
tegration of configuration I generates coarser droplets
than the disintegration of configuration II. In the capil-
lary disintegration of both configurations, as the mag-
netic field strength increases, so do (i) a range of field-
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
stabilized harmonics, (ii) the characteristic time of
developing the fastest growing harmonic, and (iii) the
characteristic size of droplets after the disintegration of
the initial filamentary drop.

Comparing the viscous and inertial regimes of cap-
illary disintegration of ferrofluid filaments indicates
that, under the same conditions, viscous forces affect
mostly the characteristic times of developing the fastest
growing harmonics (at Z @ 1, these times are one order
of magnitude greater than at Z ! 1), while the differ-
ence in the sizes of droplets formed after the disintegra-
tion is much smaller.

APPENDIX

The basic dynamic equation postulated in contin-
uum mechanics [20] is the momentum equation for a
finite volume of a continuous medium. According to
this equation written in the inertial coordinate system,
the rate of change of the momentum Q in time for any
individual (i.e., consisting of the same particles of a
medium under consideration) volume V(t) bounded by
the surface Σ(t) equals the resultant vector of external
forces acting on the medium enclosed by this volume:

(A1)

Here, ρ and u are, respectively, the density of the
medium and the velocity field; F is the mass force den-
sity; pn is the stress vector (density of surface forces) on
a surface area dσ with a normal n; and dv  is a volume
element. In continuum mechanics, the normal n is
always outer with respect to that part of the medium on
which the surface force pndσ acts. If the volume V con-
sidered is subjected to forces (other than those distrib-
uted over the area Σ) concentrated on some surfaces
inside V, the sum of these forces should be added to the
right of (A1).

To simplify the mathematics, we will use the rectan-
gular Cartesian coordinates (x1, x2, x3) with the basis
vectors e1, e2, and e3. In this coordinate system, u = uiei,
n = niei, and also pn = pini (pi = pkiek, where pki are the
components of the stress tensor P = pkiekei; i, k = 1, 2, 3).
Hereafter, in all expressions including a pair of the
same indices, independent summation over repeating
indices is performed.

It should be emphasized that Eq. (A1) applies to
both continuous and discontinuous motions of a contin-
uum. If the states of a continuum, as well as the motion
characteristics and their time and space derivatives, are
continuous, it can be rigorously proved (specifically
with the Gauss–Ostrogradsky formula applied to trans-

dQ
dt
-------- ρF vd

V

∫ pn σ, Qd

Σ
∫+ ρu v .d

V

∫= =
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form the integral over the surface area Σ in (A1) into the
integral over the Σ-bounded volume V) that the integral
form of momentum Eq. (A1) is equivalent to the differ-
ential equation of continuum motion

(A2)

If the volume V has an inner isolated time-invariable
surface Σs at which the parameters of the medium expe-
rience a discontinuity, Eq. (A1) makes it possible to
establish one of the finite relationships between the
parameters on the different sides of the surface Σs.

Let us transform Eq. (A1) for the case when the
smooth surface of discontinuity Σs divides the individ-
ual volume V into two parts in either of which the
motion of the continuum is continuous. As in the deri-
vation of conditions on surfaces of discontinuity [20],
we will introduce an auxiliary volume V0 related to a
part s of the surface Σs lying inside the volume V
(Fig. 6). From each point of the domain s on both its
sides, we pass normal segments of small length h/2
sideways from the surface Σs. Sets of the ends of these
segments lying inside V produce surfaces S1 and S2
equidistant from Σs. These surfaces, along with the lat-
eral surface Σl (a part of Σ) adjacent to them bound the
volume V0.

Let V1 and V2 be the volumes cut by the surfaces S1
and S2 from the initial volume V = V0 + V1 + V2 and ∂V0,
∂V1, and ∂V2 be surfaces bounding V0, V1, and V2.
Bearing in mind that the outer normals to ∂V0 and ∂V1
at points of the surface S1 are oppositely directed (the

ρ ∂u
∂t
------ u —⋅( )u+ ρF

∂pi

∂xi

-------, —+ ei
∂

∂xi

-------.= =
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Fig. 6. On the derivation of integral equality (A4).
same is true for the outer normals to ∂V0 and ∂V2 on S2)
and taking into account the equality pn = –p–n fulfilled
for the inner stresses on S1 and S2, we have

(A3)

since the integrals over the surfaces S1 and S2 between
the volumes V0, V1 and V0, V2 cancel, each other on the
right-hand side of (A3).

Having transformed the first two integrals on the
right-hand side of (A3) into the integrals over the vol-
umes V1 and V2 with the Gauss–Ostrogradsky formula,
we pass to the limit h  0. In this case, the lateral sur-
face Σl, which bounds the volume V0, tends to zero.
Because of the finiteness of pn, the last integral on the
right of (A3) transforms (in the limit) into the integral
over the different sides of s with oppositely directed
normals; hence, in view of the obvious equality

 = 0, we arrive at

Eventually, Eq. (A1) takes the form

(A4)

Now, let Σs be the interface between two immiscible
Newtonian magnetic fluids whose parameters (density
ρ, dynamic viscosity coefficient η, and absolute perme-
ability µ) differ on the different sides of Σs. For an
incompressible Newtonian fluid,

where p is the pressure and πki is the viscous stress
tensor.

In addition,

(A5)

It is assumed that the fluids are placed in a magnetic
field H produced by external sources. According to the
laws of magnetostatics, the magnetic field component
normal to Σs, the tangential component of the induction

vector B = µH, and the magnetization M = B – H
experience a discontinuity on the surface Σs; here, µ0 =
4π × 10–7 H/m is the magnetic constant.

A magnetic fluid placed in a gradient magnetic field
undergoes a mass gravity force with a density g (g is the
gravitational acceleration) and a mass magnetic force.
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Neglecting the dipole interaction between colloidal
particles, we can write [1] the expression for the vol-
ume density of the magnetic force Fm = µ0M∇ H. Then,
the total density of the external mass force ρF appear-
ing in (A4) is given by

(A6)

Each point O of the smooth interface Σs radiates the
normal vectors n and –n in opposite directions. These
vectors specify the orientation of elementary areas dσ+

and dσ– centered at the point O that represent on a local
scale the opposite sides of the surface Σs. Hereafter,
subscripts 1 and 2 designate the pressure, magnetiza-
tion, and components of the viscous stress tensor on the
areas dσ+ and dσ–. When immiscible ferrofluids move
simultaneously, the dynamic condition [2] 

(A7)

is fulfilled at any point of the interface. Here, α is the
surface tension coefficient and R1 and R2 are the princi-
pal radii of curvature of the surface Σs at the point under
consideration. This expression reflects the balance of
surface forces acting on the opposite sides of the inter-
face and is a generalization of the dynamic conditions
used in hydrodynamics [22].

From physical considerations, it follows that the val-
ues of R1 and R2 have the same sign at any point of Σs.
The sign is selected so that the hydrostatic pressure on
the elementary areas dσ+ and dσ– with the normals n
and –n, respectively, to the curved interface Σs is higher
on the concave side of Σs.

Unlike the case of nonmagnetic liquids (M(1) = 0,
M(2) = 0), the right-hand side of (A7) includes not only
the surface pressure 2αK due to capillary forces [22]
but also a magnetic discontinuity of the pressure. This
discontinuity, arising in the presence of a discontinuity
in the normal component of the magnetization vector,
does not depend on the interface curvature. If ferroflu-
ids are at rest and have a flat interface, that of the areas
dσ+ and dσ– adjacent to the ferrofluid with a lesser
value of M · n undergoes a higher pressure. For exam-
ple, the pressure under the flat ferrofluid–air interface is
less than atmospheric by a value of µ0(M · n)/2.

ρF ρg µ0M∇ H .+=
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In a more compact vector form, dynamic condition
(A7) is written as

(A8)

Substituting (A5), (A6), and (A8) into (A4) yields

(A9)

In the basic text, this integral equality is written in
the cylindrical coordinate system.
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Abstract—The thickness of a liquid film (≈3.6 µm) forming on an ice electrode is determined by solving the
Stefan problem. The electrode melts as a result of Joule heat evolution when the current passes through it. The
temperature distributions in the film and ice substrate are found. The radius of curvature of emitting asperities
formed as a result of film instability against the surface charge is found to be ≈40 nm. This value provides the
intense field evaporation of individual ions and ionic clusters from the top of the asperities at a potential differ-
ence of ≈100 V. © 2002 MAIK “Nauka/Interperiodica”.
In mass spectrometry of nonvolatile and thermally
unstable organic (biological) materials, their solutions
in weak electrolytes are usually electrodynamically dis-
persed at the early stage of ion beam formation [1–4].
According to today’s concepts, a liquid surface that is
unstable against the surface charge emits heavily
charged drops and solution clusters that have several
molecules of interest from the emitting asperities that
form at the final stage of instability development. Sub-
sequently, the emitted drops and clusters lose the excess
charge either because they become unstable against the
self-charge or by field evaporation of tiny ionic clusters
[2, 4–6]. The charged clusters may also be emitted
directly from the emitting asperities on the free surface
of the solution if their curvature is sufficiently large
[7, 8]. The curvature of the asperity top also specifies
the size of the drops emitted because of instability and,
hence, their evolution. Depending on its radius and vis-
cosity, the initial drop may disintegrate either through
the emission of many fine heavily charged droplets (of
radius R ≤ 0.1 µm) or by dividing into two parts com-
parable in size [4, 9]. Because of this, of interest are
conditions under which emitting asperities form in low-
temperature mass spectrometers, where water solutions
freeze on the top of a capillary feeding the solution to
the discharge chamber. Here, the drops and clusters
leave the surface of a thin solution film arising on the
ice substrate because of the Joule heat evolution due to
current passage. Naturally, the thickness of this film has
an effect on the height and top curvature of emitting
asperities that form when electrohydrodynamic insta-
bility develops [10, 11].

In this work, in terms of an idealized model, we
study the formation of a liquid film on the ice surface
1063-7842/02/4710- $22.00 © 21237
when the current passing through the melt generates
Joule heat.

(1) Let a plate of ice (a frozen water solution of
NaCl) of length a, width b, and thickness h be in contact
with a thermostat kept at a temperature T0. At the initial
time instant t = 0, a current source (with an internal
resistance r) is connected to the upper surface of the
plate covered by a thin electrolyte film of initial thick-
ness ξin ! h. The emf ε of the current source acts in the
direction of the x axis (Fig. 1). When the current passes
through the electrolyte, the latter heats up according to
the Joule law and the Joule heat Q evolves in a unit vol-
ume of the film per unit time. The effect of the current
on the ice substrate is considered to be negligible. The
heat evolved in the liquid film is spent on radiative heat
exchange between the free surface of the film and the
environment (the Stefan–Boltzmann law), is removed

ε

ξ

z

a
b

h

x

y

Fig. 1. Idealized model of an ice plate melting under the
action of Joule heat.
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into the ice substrate due to heat conduction, and melts
the ice (the melting point of ice is T∗ ).

Let us find the time dependence of the electrolyte
film thickness ξ = ξ(t) and the steady-state value of the
film thickness ξss = ξ(∞) = (t), assuming that the

electrophysical and thermal properties of the electro-
lyte and ice remain constant and the heat of phase tran-
sition κ is known. We will also find the steady-state spa-
tial dependence of the temperature in the electrolyte
and ice.

The analysis will be performed in the Cartesian
coordinates with the x0y plane coincident with the free
surface of the film and the z axis directed downward
(Fig. 1).

We will also assume that the thickness of the elec-
trolyte film is much less than all other characteristic lin-
ear sizes of the system (ξ ! a, b, h); hence, the heat
transfer process in the space is one-dimensional.

(2) Mathematically, our process can be represented
as the Stefan boundary-value problem:

Here, Q is the rate of heat evolution in a unit electrolyte
volume (an associated expression is easy to derive from
general physical considerations [12]); γ is the resistivity
of the electrolyte in the liquid state; Ti(z, t) and Te(z, t)
are the desired temperature fields in the ice substrate
and in the liquid electrolyte film, respectively; αi =
λi/ciρi and αe = λe/ceρe are the thermal diffusivities of
the ice and electrolyte, respectively; ρi and ρe are the
respective volume densities; λi and λe are the respective
thermal conductivities; ci and ce are the respective spe-
cific heats; dξ/dt is the rate of change of the electrolyte
film thickness; and σ is the Stefan–Boltzmann constant.

ξ
t ∞→
lim

∂Te

∂t
-------- α e

∂2Te

∂z2
---------- Q, t 0, 0 z ξ t( );< <>+=

∂T i

∂t
-------- α i

∂2T i

∂z2
----------, t 0, ξ t( ) z h;< <>=

z 0: λ e

∂Te 0 t,( )
∂z
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4 0 t,( );= =

z ξ : T i ξ t,( ) Te ξ t,( ) T*;= = =

z ξ t( ): λ i

∂T i

∂z
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∂Te

∂z
--------– ρiκ

dξ
dt
------;= =

z h: T i h t,( ) T0; ξ 0( ) ξ in;= = =

Q
γε2

a2ceρe

--------------- 1

γb
a
--- rξ+ 

 
2

--------------------------.=
In dimensionless form, this boundary-value prob-
lem can be written as follows:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Here, Tc = T∗ , ξc = γb/ar, and tc are the characteristic
temperature, length, and transition time of the heat
exchange process;

(3) Boundary-value problem (1)–(7) will be solved
by expanding in the small dimensionless parameters βi
and βe, which are the ratio of the rate of temperature
equalizing (when the system tends to the steady state)
to the thermal diffusivity of the film (ice) times the
squared resistance of the electrolyte film. For the elec-
trolyte–ice system, βi and βe are of the same order of
smallness (~10–2). The desired temperature fields will
be sought in the form of expansions

(8)

(9)

where θe0(Z) and θi0(Z) are the temperature fields in the
electrolyte and ice in the steady state (i.e., when the
temperature at each point of the system and the phase
transition position are time independent).

Bearing in mind that the electrolyte temperature dif-
fers little from the ice melting point, we linearize
boundary condition (3):

βe

∂Θe

∂τ
---------

∂2Θe

∂Z2
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A

1 ξ+( )2
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4 0 τ,( );= =

Z ζ : Θi ζ τ,( ) Θe ζ τ,( ) 1;= = =

Z ζ τ( ): D1
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∂Z
--------- D2

∂Θe
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---------–

dζ
dτ
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Z H: Θi H τ,( )
T0

T*
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Z z/ξc, ζ ξ /ξc, ζ in ξ in/ξc, H h/ξc.= = = =

A
ε2γ

T*a2λ er
2
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λar

T*
i σγb

----------------; D1 λ i

T*a2r2tc

ρiκγ2b2
---------------------;= = =
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1
α i
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a2r2tc

-------------; βe = 
1
α e
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Θe Z τ βe, ,( ) Θe0 Z( ) βeΘe1 Z τ,( ) O βe
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Since Q∗  = T∗ /Tc ≡ 1, (0, τ) ≈ 4Θe(0, τ) – 3.
Hence,

(3a)

An expression for the electrolyte film thickness is
represented as

(10)

Now, substituting solutions (8) and (9) into (1), (2),
(3a), and (4)–(6) and expression (10) into (5) and (7)
and equating the coefficients by the same powers of βe

and βi, we come to the boundary-value problem (stated
in the zeroth order of smallness in βe and βi for finding
the desired temperature fields in the time dependences
of the electrolyte film thickness:

(11)

(12)

(13)

(14)

(15)

(16)

(17)

To find first-order corrections to the temperature
fields, we must solve the boundary-value problem
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(23)

(24)

where the electrolyte film thickness ζ is defined
by (10).

(4) Let us solve the zeroth-order problem. In view of
boundary conditions (13) and (14), we find from (11)
the function describing the temperature distribution in
the liquid film:

(25)

Similarly, in view of boundary conditions (14) and
(16), we find from (12) the temperature distribution in
the ice plate:

(26)

To uniquely determine the temperature fields in the
liquid film and in the ice plate, it is necessary to find the
electrolyte film thickness in the zero approximation as
a function of time: ζ0(τ). To find a determining differ-
ential equation, we substitute expressions (25) and (26)
into boundary condition (15):

With actual values of the physical quantities defin-
ing the parameter B, the condition B @ 1 is valid (B ≈
8.6 × 105, A ≈ 0.15, and ζ0 ~ 1); therefore, in the approx-
imation used, this equation can be simplified by reject-
ing terms proportional to ~B–1:

(27)

Integrating this expression with regard for condition
(17) yields
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Fig. 2. Dimensionless thickness ζ of the liquid film vs.
dimensionless time τ.
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Fig. 3. Dimensionless temperature Θi of the ice plate vs.
dimensionless time τ in the (1, 3) zeroth and (2, 4) first
approximations calculated at various distances Z from the
free surface: Z = 2ζ9 (1, 2) and 3ζ9 (3, 4).
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10
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Fig. 4. Dimensionless temperature Θe of the liquid film vs.
dimensionless time τ calculated at various distances Z from
the free surface: Z = 0 (1) and 0.5 ζ6 (2).
where η1 and η2 are the roots of the equation

The plot of the electrolyte film thickness vs. time
constructed with (27) is given in Fig. 2.

The dependence ζ0 = ζ0(τ) defined by (27) cannot be
written in explicit form; therefore, the functions
describing the temperature fields in the film and ice are
extremely awkward. It is convenient to write them in
parametric form (through the parameters ϕ and ψ):

The temperature distribution in the electrolyte film
can also be simplified. Since B @ |ψ| (because |ϕ| and
|ψ| ~ 1), we have
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TECHNICAL PHYSICS      Vol. 47      No. 10      2002



FORMATION AND DISPERSION OF AN ELECTROLYTE FILM 1241
The time dependences of the temperature of the ice
plate calculated in the zeroth approximation are pre-
sented in Fig. 3 by curves 1 and 3. In Fig. 4, similar
dependences are shown for the electrolyte film
(curves 1, 2).

(5) Now, let us calculate the first-order corrections.
Substituting (25) into Eq. (18) and integrating the
resultant equation with boundary conditions (20) and
(21), we arrive at the temperature field in the electrolyte
film:

(28)

(29)

(here, it is taken into account that B @ ζ0).

Similarly, substituting (26) into Eq. (19) and inte-
grating the resultant equation with boundary conditions
(21) and (23), we arrive at the temperature field in the
ice plate:

(30)

Now, substituting functions (28) and (30) into
phase-matching condition (22), we come to a differen-
tial equation for finding the time dependence of the
electrolyte film thickness in the first approximation:

or
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where ζ0(τ) and  are defined by (27) and (20), respec-
tively.

The general solution of this first-order linear inho-
mogeneous differential equation is as follows (in view
of initial condition (24)):

(31)

Since the function ζ0(τ) is irreducible to explicit
form, the function ζ1(τ) cannot be found analytically;
however, it can be found by numerically integra-
ting (31).

One can also roughly estimate the function ζ1(τ).
Assuming that ζ0 = ζ9, where ζ9 = ζ0(∞), we obtain

where

(32)

The first-order spatial temperature distribution in
the ice plate is demonstrated by curves 2 and 4 in Fig. 3.
The slight decrease in the temperature at the early stage
of Joule heat evolution is due to the fact that the inter-
face, at which the solid electrolyte melts, serves as a
heat sink. When it comes into effect, the temperature of
the ice plate decreases for a time because the heat flux
to the interface grows according to boundary condition
(22). First-order corrections to the temperature distribu-
tion in the liquid film and to the time dependence of the
film are insignificant and are not seen in Fig. 3.

To make numerical estimates, we put a = b = h =
10−4 m, T∗  = 273 K, T0 = 60 K, γ = 0.06 Ω m, κ = 3.35 ×
105 J/kg, ρi = 920 kg/m3, r = 105 Ω, αi = 1.14 ×
10−6 m2/s, αe = 1.37 × 10–7 m2/s, λi = 2.2 W/(m K), λe =
0.6 W/(m K), ε = 200 V, and ξin = 10–7 m. With such val-
ues of the parameters, we find two values of the dimen-
sionless thickness of the film: η1 ≈ 0.16 and η2 ≈ 6.06.
The former is meaningless since ζ0  η1 at τ  –∞
(η2 = ζ2). Eventually, the thickness of the film tends to
the steady-state value ≈3.6 µm for a characteristic time
tc ≈ 100 µs.
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(6) When the drop becomes unstable against the sur-
face charge (in an external electrostatic field), emitting
asperities form through the superposition of unstable
short-wavelength modes [10, 13]. In experiments with
an electric discharge initiated from the surface of a
melting icicle in a nonuniform electrostatic field [10,
14], an emitting asperity in the form of a soliton was
observed. The soliton formed in the domain of the weak
field and propagated in the direction of field growth.
Having reached the point of maximum field, the soliton
stopped, and a discharge in the form of diffuse glow
was initiated at its top. The height of the soliton was at
least one order of magnitude greater than the thickness
of the film.

In the case of a vacuum mass spectrometer, we also
deal with a discharge from the surface of a small piece
of ice (when a potential difference ∆ψ is applied nor-
mally to the surface of the liquid film, i.e., along the z
axis in Fig. 1). Therefore, it might be expected that an
emitting asperity on the ice surface will also have the
form of a soliton. For our qualitative analysis, it is nec-
essary to estimate the curvature of its top, which speci-
fies the field strength near the site of discharge ignition.
According to [15], the analytical expression for the
shape of the soliton of height H in a liquid film of thick-
ness h has the form

where δ = ζ(x, t) = x – v t and v  is a constant having the
dimension of velocity.

The radius of curvature r of the soliton top is given
by

Assuming that h/H  ~ 0.1, one can easily check that
r ~ 10–2h. As applied to the mass-spectrometric condi-
tions, we find that r ~ 40 nm for h ≈ 4 µm. This means
that the field strength at the top of an emitting asperity
may be as high as ≈2.5 V/nm even at ∆ψ = 100 V.
Hence, the field evaporation of individual ions and
ionic clusters may take place [2, 5, 6]. We will consider
the field evaporation of ions from electrolytic solutions.

(7) According to [16], the physical mechanism
behind the field evaporation of ions and charged clus-
ters from electrolytic solutions is assumed to be identi-
cal to the mechanism of the field evaporation of ions
from the metal surface that was theoretically elaborated
for field-ion microscopy [17] and liquid-metal ion
sources [18] and involves the thermal activation of the
process. For example, when the thermal activation

y H
3H
2h
-------

δ
h
---

 
 
 

,sech
2

=

t 1
dy
dδ
------ 

 
2

+   
d2y

dδ2
--------

δ 0=

d2y

dδ2
-------- 

 
δ 0=

1– h3

3H2
----------.≡ ≡=
exceeds the Schottky barrier (this barrier appears when
the metal surface is subjected to an electric field of
strength E), the rate constant K of metal evaporation by
the electrolytic field is given by the Arrhenius law [17]:

(33)

where k is the Boltzmann constant, T is absolute tem-
perature, ω is the atom oscillation frequency, q is the
ionic charge, and zq is the charge number.

In the exponent, Q is the energy of activation of ion
evaporation. In a virtual cycle of thermal ionization as
applied to field-ion microscopy [17], this parameter is
calculated as follows. An atom evaporates from the
metal surface, absorbing the energy of sublimation Λ;
the atom ionizes, consuming an energy J; and the elec-
tron being released returns to the metal, evolving an
energy ϕ equal to the work function of an electron in
the metal. The second term in the numerator of the
exponent stands for a decrease in the energy of activa-
tion due to the Schottky effect.

To describe the field evaporation of ions and ionic
clusters from electrolytic solutions, one can also use an
expression like (33) [7, 16]. In this expression, ω is
replaced by kT/h (in terms of the theory of absolute
reaction rates), where h is the Planck constant, and the
energy of activation of ion evaporation from the metal
surface Q is replaced by ∆H+, where ∆H+ is the change
in the enthalpy when an ion or an ionic cluster passes
from the solution to a vacuum. The value of ∆H+ is
taken to be equal in magnitude but opposite in sign to
∆H∗ , where ∆H∗  is the change in the enthalpy upon the
solvation of an ion or the complete solvation of an ionic
cluster in the solution. It was shown [16, 19] that the
∆H∗  as a function of n (n is the number of atoms in a
cluster) for ionic clusters is nonmonotonic and reaches
the minimum ∆H∗  = 2.32–2.73 eV at a certain n = n∗ .
Such a value of the energy of activation for the field
evaporation of ionic clusters provides consistency with
experimental data even at E = 1 V/nm. For individual
ions, however, the energy of activation of their evapora-
tion ∆H∗  calculated from the energy of solvation is
twice or three times as great as the values found
[19, 20]. At first glance, this means that agreement
between the theory and experiment requires electric
field strengths at the surface of the solution to be one
order of magnitude higher, i.e., the same as for the field
evaporation of metal ions (E ≥ 10 V/nm) [19, 21]). Such
a conclusion, however, is somewhat premature because,
in practice, a field strength E ≥ 10 V/nm used in the field
evaporation of ions from the surface of a solid or liquid
metal is provided by preparing a special ion-emitting
tip that has a radius of curvature of ≈1 µm. In mass
spectrometers where the material to be analyzed is
introduced into the discharge chamber electrohydrody-
namically through a capillary of diameter ≈100 µm (the
theory of which was developed in [7, 16, 19]), field

K ω
Q zq

9 q 9E( )1/2
–

kT
-------------------------------------– , Q Λ J ϕ ;–+≡exp=
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strengths on the order of 10 V/nm are unlikely to be
reached. In addition, a number of possible channels for
the field evaporation of ions from solutions were not
considered in [7, 16, 19, 21].

In actual (nonideal) solutions, dissolved molecules
do not all dissociate; the fraction of dissociated mole-
cules depends on the concentrations of solution compo-
nents, temperature, and intermolecular interaction [20].
Let us consider the field evaporation of a Na+ positive
ion from water solutions of NaI and NaCl salts. The
energy of activation of Na+ field evaporation from the
solution surface will be calculated following a virtual
cycle of thermal ionization for NaI and NaCl mole-
cules, as is done for the field evaporation of ions from
the metal surface [16]. However, unlike [16], we will
consider the decomposition of a NaI or NaCl neutral
molecule on the surface of the electrolytic solution
(subjected to a strong electric field) into Na+ and I– (Cl–)
ions with the Na+ ion passing to the gas phase, rather
than the field extraction of an ion from the metal con-
tinuous surface. If Λ is the energy of sublimation of the
molecule, D is the energy of molecule dissociation into
two atoms (Na and I or Cl), J is the energy of Na atom
ionization, L is the electron affinity to the I (Cl) atom,
and ϕ is the electron work function in water, then the
energy of activation for the field evaporation of the Na+

ion from the electrolytic solution has the form

(34)

In other words, a salt molecule sublimates from the
solution and dissociates into two atoms; the Na atom
ionizes; and the electron and the I (Cl) atom return to
the solution, where the electron adheres to the I (Cl)
atom with the formation of the negative ion. Recall that
the entire thermochemical cycle is virtual and that here
we are actually dealing with the field decomposition of
a salt molecule into Na+ and I– (Cl–) ions directly on the
solution surface. According to [22], for a NaI molecule,
Λ = 2.08 eV and D = 3.76 eV; for a NaCl molecule, Λ =
2.39 eV and D = 4.22 eV. In addition, according to
[22, 23], the ionization potential for a Na atom is J =
5.14 eV, and the electron affinity to I and Cl atoms is
L = 3.06 and 3.61 eV. The electron work function in
water is ϕ = 6.13 eV [24]. Substituting these values into
(34), we find the activation energy for the field evapo-
ration of a Na+ ion from NaI and NaCl aqueous electro-
lytes: QNaI = 1.78 eV and QNaCl = 2.01 eV. It is easy to
check that in both cases the energy Q calculated from
(34) is less than the energy of evaporation for an indi-
vidual Na+ ion, 4.18 eV [7], found from its hydration
(solvation) energy in accordance with [2, 16]. One can
also see that the calculated values of Q are close to the
activation energies for the field evaporation of ionic
clusters from the solution: 2.32–2.73 eV [16, 19].

Q Λ D J ϕ– L.–+ +=
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To summarize, we note that the rate constant for the
field evaporation of an ion from an electrolytic solution
should be calculated by the formula

(35)

In order to find the rate V of field evaporation of ions
from the solution surface using the reaction rate con-
stant defined by (35), it is necessary to multiply the
reaction rate constant K by N, where N is the number of
undissociated salt molecules on the solution surface
subjected to a strong electric field: V = KN. The dimen-
sion of V is s–1 (the number of ions evaporated per
second).

(8) Let us evaluate the rate of Na+ field evaporation
from a NaCl aqueous solution of concentration 10–3 M
(as in experiments [19]) with a degree of molecule dis-
sociation of 0.9. We assume (according to Section 6)
that ions evaporate from the hemispherical top of an
isolated soliton with a radius of the top r = 40 nm under
an electric field E = 2.5 V/nm. It is easy to check that
only a limited number N of undissociated NaCl mole-
cules will remain on the hemispherical surface of the
asperity in the region of the strong field. Assume also
(according to Section 5) that the electrolyte surface
temperature T = 290 K and (according to Section 7) that
the activation energy of Na+ field evaporation QNaCl =
2.01 eV. Then, according to (35), K ≈ 4 × 1010 s–1 and
the rate of Na+ field evaporation V ≈ 4 × 1011 s–1, which
corresponds to a current through the asperity of
~0.01 µA. Clearly, this estimate is rather crude and
determines only the upper limit of possible currents,
since at N ~ 1 the rate of ion field evaporation will be
limited by the rate of NaCl molecule diffusion from the
bulk of the solution to the emitting asperity surface in
the region of a high electric field (E ≥ 1 V/nm).

Obviously, according to Section 7, the field evapora-
tion of individual ions will be accompanied by the
evaporation of ionic clusters with activation energies
between 2.32 and 2.73 eV [16, 19].

(9) The future of field-evaporated ions depends on
their interaction with a cloud of neutral molecules of
the solvent that evaporate from the electrolyte film. To
perform a qualitative analysis, we will consider only
the steady-state distribution of the water vapor mole-
cule concentration near a spherical drop of radius R0
(R0 is on the order of the characteristic linear horizontal
size of the electrolyte film; see. Sec. 1). This distribu-
tion is found by solving the initial problem

(36)

(37)

K kT /h( )
Q zq

9 q 9E( )1/2
–

kT
-------------------------------------– ,exp=

Q Λ D J ϕ– L.–+ +=

div D c( )gradc[ ] 0;=

r r0: D c( )gradc– J 0.25χV c0 c∞–( );≡= =

c c0.=
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Here, χ is the evaporation coefficient, D(c) is the diffu-
sion coefficient of vapor molecules, V is the thermal
velocity of the molecules, c0 is the vapor molecule con-
centration near the drop, and c∞ is the vapor molecule
concentration away from the drop. An expression for
the vapor flux from the surface of the drop in (37) is
defined by the Hertz–Knudsen law [2]. The concentra-
tion dependence of the diffusion coefficient is taken in
the form D(c) = V/3cS, where S is the molecule colli-
sion cross section.

A solution to the problem stated by (36) and (37) is

(38)

where r is a radial constant.
A field-evaporated Na+ ion will move in the high

electric field near the emitting asperity through a cloud
of water vapor molecules. To estimate the number n of
collisions between the ion and neutral molecules, one
must integrate the product of its cross section S∗  of col-
lisions with molecules by the molecule concentration
defined by (38) along the ion path (e.g., along the x
axis):

(39)

Let us assume that χ = 0.4, c0 equals the concentra-
tion of water vapor saturated at the electrolyte surface
temperature (c0 ≈ 4 × 1017 cm–3), and the cross sections
of molecule–molecule and molecule–ion collisions
depend only on the molecule and ion geometrical sizes.
Then, it is easy to verify that the concentration c(r)
drops rapidly with distance from the liquid electrolyte
surface: c(r) ~ exp[–22(1 – R0/r)]. The asymptotic value
of integral (39) depends on its value in the neighbor-
hood of the lower limit (i.e., at the point where the
exponent of the exponential reaches a maximum) and is
easy to take by one of the techniques commonly used in
this situation (see, e.g., [25, Chap. 3]). As follows from
the calculation, n ≈ 3.

It is clear that the passage of high-energy ions (both
individual and clustered) through a cloud of neutral
vapor will cause the intense excitation and ionization of
the molecules, as well as the intense decomposition of
the clusters. Eventually, a cloud of weakly ionized
plasma will form near an emitting asperity. This cloud
will affect the motion and time evolution of ions evap-
orated, as occurs, e.g., in liquid-metal ion sources,
which operate by a similar mechanism [18]. This phe-
nomenon deserves special consideration.

It should be noted that, along with the field evapora-
tion of individual ions and ionic clusters, the separation
of drops from the top of an emitting asperity may take
place. These drops have a characteristic size on the
order of the radius of curvature of the asperity and bare
a charge slightly exceeding the critical value in terms of
Rayleigh stability [9, 26]. The future of these drops

c r( ) c0 0.75c0SχR0 1 R0/r–( )–[ ] ,exp=

n S*c r( ) x.d

R0

∞

∫=
depends on their viscosity, which plays a crucial role
for the tiny drops under consideration and provides a
path for excess charge removal upon ion field evapora-
tion [27].

CONCLUSION

Qualitative analysis of an ion emitter in a low-tem-
perature mass spectrometer with electrohydrodynamic
feed of the material to be studied allowed us to establish
the essentials of individual and clustered ion emission
from electrolytic solutions. The basic mechanism
behind the formation of an ion–cluster beam in the
mass spectrometer is the field evaporation of individual
ions and ionic clusters and their subsequent interaction
with neutral solvent vapor molecules, which form a
cloud near the emitter top because of their thermal
evaporation from the liquid electrolyte film.
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Abstract—The oxidation of solutes in water under the action of a flash corona discharge between solid elec-
trodes and the water surface is investigated. The dependences of the oxidation rate on the gas-phase volume,
the electrode–liquid distance, the discharge current, and the number of electrodes are examined. These depen-
dences should be taken into consideration when designing reactors. © 2002 MAIK “Nauka/Interperiodica”.
Chemical reactions of impurity decomposition in
water under the action of an electric discharge have
attracted great interest because they do not need expen-
sive equipment and the energy expenditure is nearly the
same as that required for other oxidation processes
[1, 2]. At the same time, electric discharges are practi-
cally not used in treatment plants because these pro-
cesses are still poorly understood. In [3], conditions for
the initiation of oxidation reactions in liquids under the
action of a certain type of pulsed electric discharge
(namely, a flash corona discharge) were considered.
Under certain conditions, the efficiency of these reac-
tions turns out to be higher than the ozonization effi-
ciency [4]. It is of interest to consider the features of
oxidation kinetics in a reactor based on a flash corona
electric discharge. In this paper, we study the decompo-
sition rate of solutes in water under the action of a flash
corona electric discharge as a function of the gas-phase
volume and the dependence of the oxidation yield on
the discharge current, the electrode–liquid distance,
and the number of electrodes over the surface.

EXPERIMENTAL TECHNIQUE

The dependence of the reaction rate on the gas-
phase volume was studied in a cylindrical glass vessel
with a base area of 50 cm2 and height of 20 cm.
A 0.2-mm-diameter platinum electrode contacting the
liquid was inserted through a hole in the cylinder bot-
tom. A Teflon plug in the form of a piston with holes for
introducing an aluminum discharge electrode and two
glass pipes through which oxygen was blown was
inserted into the cylinder. The height of the plug over
the liquid surface determined the gas-phase volume.
The distance between the contact electrode and the liq-
uid surface was kept at 6 mm irrespective of the plug
position. The vessel was filled up with 40 ml of an
orange aniline dye solution (Orange-1, C16H12O4N2S)
with a concentration of 4.5 × 10–4 mol/l. We used a
1063-7842/02/4710- $22.00 © 21246
commercial dye and distilled water. The dye solution
was filtrated. The dye concentration was measured with
a visible-light spectrophotometer. This allowed us to
measure a decrease in the dye concentration to 0.5% of
the initial one. We investigated how the dye decolora-
tion time depended on the gas-phase volume. By decol-
oration we meant a decrease in the concentration to 1%,
at which the dye color became invisible.

The dependence of the oxidation rate I– on the elec-
trode current (in the current range in which the dis-
charge remained a flash corona) was studied in a cylin-
drical glass vessel with a base area of 100 cm2 and vol-
ume of 500 ml. The vessel was filled up with 100 ml of
a 0.01-M (1.66-g/l) KI solution. The electrode–liquid
distance was 7.5 mm. The discharge current was varied
from 7 to 125 µA by varying the high voltage across the
discharge gap from 7 to 13.8 kV. The reaction time was
30 min.

The dependence of the oxidation rate I– on the dis-
tance between the electrode and the liquid surface was
studied in the same vessel and for the same solution.
The discharge current was maintained at a constant
level of 70 µA by controlling the high voltage. The dis-
tance was varied in the range 5.1–13.9 mm; in this case,
the high voltage was varied from 9.2 to 15 kV. The
treatment duration was 30 min for each distance.

The dependence of the reaction yield on the number
of electrodes was investigated in a glass vessel with a
base area of 150 cm2 and volume of 2.5 l. The vessel
was filled up with 100 ml of a solution. Twenty dis-
charge electrodes were introduced through the holes in
a Teflon plug. The contact electrode was located at the
vessel bottom. A negative voltage of 10 kV was applied
to each electrode through an individual 12-MΩ ballast
resistor. The current through each electrode amounted
to 70 µA. The distance from the electrodes to the liquid
surface was chosen to be 6 mm. In the course of the
experiment, the voltage was applied either to one elec-
trode or to a group (from two to twenty) of the elec-
002 MAIK “Nauka/Interperiodica”
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trodes. We treated 0.1-M KI and oxalic acid solutions.
The oxalic acid concentration was determined by titrat-
ing with 0.05-M KI in an acid medium. In all cases, the
amount of free iodine was determined by titrating with
sodium thiosulfate.

RESULTS AND DISCUSSION

Figure 1 shows the dependence of the decoloration
time of Orange-1 dye on the gas-phase volume. The
dependence consists of two segments in which the time
first decreases (segment AB) and then increases (seg-
ment BC). The minimum decoloration time was
~10.5 min (point B) and was obtained for a gas volume
of 600 cm3. The dependence observed can be explained
as follows. The amount of active particles generated in
the electric discharge depends on the design of elec-
trodes, the discharge current, and the electric-field
strength. These parameters were fixed under our exper-
imental conditions. A change in the gas volume leads to
a change in the concentration of active particles. The
active particles generated under these conditions are
OH radicals and ozone [5].

The OH radicals can interact with each other and
with ozone via the reactions

(1)

(2)

(3)

In reaction (1), these radicals are lost. In reaction
(2), they transform into HO2 radicals, which interact
with ozone and transform again into OH radicals via
reaction (3). Calculations based on the full scheme of
interactions between active particles, as well as the
experiments of [5], give the steady-state concentration
of ozone at a level of (0.4–3.4) × 10–4 mol/l, depending
on the discharge current and the number of electrodes
in the reaction chamber. At the same time, the steady-
state concentration of OH radicals amounts to
~10−9 mol/l. [6]. Under these conditions, reaction (2) is
prevailing and OH radicals, instead of being lost imme-
diately in the region of their formation, spread over the
entire volume.

At low ozone concentrations, when active particles
are lost in second-order reaction (1), the decrease in the
concentration of OH radicals is described by the
expression [7]

In this case, for a small concentration of radicals
[OH] ~ 10–9 mol/l, we have k1[OH]0 ~ 10; consequently,
the radicals moving with thermal velocities have time
to propagate through the entire volume. Hence, the

 OH OH H2O2 (k1+ 1.3 1010),×=

 OH O3 HO2 O2 (k2+ + 4.0 107),×=

HO2 O3 OH 2O2 (k3+ + 1.2 106).×=

OH[ ]
OH[ ] 0

1 k1 OH[ ] 0t+
--------------------------------.=
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entire concentration of active particles decreases with
increasing volume.

Active particles produced in a discharge are
expended on oxidizing the impurity in water at the rate
wA = kA[OH][A] (where [A] is the impurity concentra-
tion) and, interacting with each other, are lost at the rate
wOH = kOH[OH]2. The ratio between these rates is

wA

wOH
---------

kA A[ ]
kOH OH[ ]
----------------------

kA A[ ] Vg

kOH OH( )
----------------------,= =

12
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Fig. 1. Decoloration time t of an Orange-1 dye solution as a
function of the gas-phase volume V.
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Fig. 2. Oxidation yield Y of iodine in a 0.01-M KI solution
as a function of (1) the distance d between the electrode and
the liquid surface, and (2) the discharge current I.
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where (OH) is the number of OH radicals generated per
unit time (this ratio is determined by the discharge con-
ditions and does not depend on the volume) and Vg is
the gas-phase volume. It follows from here that the oxi-
dation rate of the impurity in water increases and the
decoloration time decreases with increasing gas-phase
volume. The maximum decoloration rate and, accord-
ingly, the minimum decoloration time are achieved
when almost all of the active particles are expended on
oxidizing the impurity. As the volume increases further
and the radical concentration decreases, the oxidation
rate falls and the decoloration time for a given amount
of dye begins to increase.

Crosses in Fig. 2 show the yield of iodine oxidation
in a 0.01-M KI solution as a function of the distance d
between the electrode and the liquid surface at a dis-
charge current of 70 µA. It is seen that the yield
increases with decreasing d. This is explained by the
increase in the electric field strength in the spark gap.
Closed circles in Fig. 2 show the yield of iodine oxida-
tion in a 0.01-M KI solution as a function of the elec-
trode current at a distance between the electrode and the
liquid surface of 7.5 mm. It is seen that the reaction
yield per 100 eV of the expended energy increases with
decreasing discharge current. This is explained by the
fact that the fraction of active particles lost due to their
interactions via reaction (1) decreases because the con-
centration of active particles decreases with decreasing
discharge current.

Figure 3 shows the dependences of the oxidation
yield on the number of electrodes for (1) a 0.1-M KI
and (2) 0.1-M oxalic acid solutions. For a KI solution,
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1
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Fig. 3. The oxidation yield for a solute in water as a function
of the number of electrodes in a reactor with a base area of
150 cm2 and volume of 2.5 l: (1) 0.1-M KI solution and
(2) 0.1-M oxalic acid solution (Y × 10).The discharge cur-
rent through each electrode is 70 µA.
all active particles are almost instantly absorbed and,
thus, have no time to interact with each other, because
the rate constants Γ for reactions with ozone and OH
radicals are fairly high (higher than 109 l (mol s)–1). For
this reason, the reaction yield per 100 eV of the
expended energy does not depend on the number of
electrodes (or the number of active particles generated
per unit time).

Oxalic acid is oxidized primarily by OH radicals,
and the rate constant for its oxidation by ozone is small,
~0.01 l (mol s)–1 [8, 9]. The absolute reaction yield is
determined by the OH radical yield, which amounts to
0.32/(100 eV) under our experimental conditions [5].
According to the stoichiometric ratio, two OH radicals
are required to oxidize one oxalic acid molecule. In
addition, oxygen dissolved in water can contribute to
the oxidation in the intermediate stage [9]. The experi-
mental value of the yield of oxalic acid oxidation, Y =
0.22/(100 eV), at the number of electrodes n ≤ 7
(Fig. 3) means that all radicals produced are expended
on oxidation. It follows from Fig. 3 that the yield of
oxalic acid oxidation begins to fall when the number of
electrodes is larger than 7. As in the previous cases, this
can be attributed to the change in the concentration of
active particles. The concentration of OH radicals
increases as the number of electrodes increases. Start-
ing from a certain concentration, the loss of radicals
due to their interaction becomes appreciable; as the
number of electrodes increases further, the fraction of
lost radicals increases. For this reason, the yield of the
oxalic acid oxidation decreases.

CONCLUSIONS
(i) There is an optimum gas-phase volume for which

the reaction yield is maximum.
(ii) The reaction yield increases as the distance

between the electrode and the liquid surface decreases.
However, at short distances, the discharge becomes
unstable and easily transforms from the corona to a
spark discharge. In the spark regime, the reaction yield
decreases [4, 10].

(iii) The reaction yield increases as the discharge
current per one electrode decreases.

(iv) When ozone plays a significant role in the oxi-
dation reaction and the reaction rates are high (~109–
1010 l (mol s)–1), almost all of the active particles are
instantly absorbed in the region where they are pro-
duced. If ozone is of little importance and the rate con-
stant for the reaction with radicals is ~107 l (mol s)–1 or
lower, there exists a critical number of electrodes per
unit area of the liquid surface above which the reaction
yield decreases.

Hence, the design of a reactor based on a flash
corona discharge substantially affects the yield of
impurity oxidation in water. We note that none of the
effects described in this paper was observed previously
in the widely known process usually referred to as elec-
trolysis in a glow discharge [11].
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
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Abstract—A model is developed that describes the transition region between a quasineutral plasma and a pla-
nar negative electrode and in which the electron velocity distribution is represented as the sum of two Max-
wellian distributions with different temperatures or as the sum of a Maxwellian distribution and distribution cor-
responding to an electron beam directed toward the electrode. Criteria for the formation of a sheath of positive
space charge and a secondary plasma in the transition region are derived. An analysis is made of the dependence
of the structure of the transition region on the parameters of the electron distribution, the space charge density
distribution in the sheath, and the density of the ion current to the electrode. The criteria obtained are compared
with the Bohm criterion. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The electric field of a negative electrode placed in a
quasineutral plasma medium penetrates into the sur-
rounding plasma and perturbs it, giving rise to a transi-
tion region between an unperturbed plasma and an elec-
trode. The transition region is thought to consist of a
sheath of positive space charge directly adjacent to the
electrode and a presheath, i.e., a perturbed quasineutral
plasma with a potential drop of a certain magnitude
[1−5]. For a nonisothermal plasma with an equilibrium
electron velocity distribution and a collisionless sheath,
the potential drop across the presheath is determined by
the Bohm criterion [6] and is equal to 0.5 kTe/e. In this
case, the potential distribution across the sheath of pos-
itive space charge relaxes to a monotonic one regardless
of the magnitude of the electrode potential.

In some cases, the electron velocity distribution in a
plasma can deviate substantially from equilibrium. The
experimentally observed electron distributions often
provide evidence for the existence of two electron pop-
ulations with essentially different energies. For this rea-
son, nonequilibrium electron distributions are approxi-
mated by the sum of two Maxwellian distributions with
different temperatures or by the sum of a Maxwellian
distribution and distribution corresponding to a
directed electron beam [7–11]. Under these conditions,
the sheath and presheath parameters [12, 13] differ
from those in the above case of a nonisothermal plasma
with an equilibrium electron velocity distribution.
Moreover, the results obtained in [12, 13] indicate that,
for certain parameters of the electron distribution, the
structure of the transition region may also change. This
problem, which is very important for some practical
applications and thus requires more detailed examina-
tion, is the subject of the present paper.
1063-7842/02/4710- $22.00 © 21250
MODEL OF THE TRANSITION REGION

In order to solve the problem, we consider the tran-
sition region between a semi-infinite quasineutral
plasma with the potential ϕp in the unperturbed region
and an infinite planar electrode whose potential is lower
than the unperturbed plasma potential by the amount
∆ϕ0 (Fig. 1). The origin of the coordinate system is cho-
sen to be located at the electrode surface. The plasma
consists of ions with the temperature Ti, thermal elec-
trons with the temperature Tet (such that Tet @ Ti), and
hot electrons described by a Maxwellian velocity distri-
bution function with the temperature Teh or a distribu-
tion function corresponding to an electrode-directed
electron beam with the energy eU in the unperturbed
plasma. It is assumed that U > ∆ϕ0, in which case the

∆ϕ
0 ∆ϕ

3'' ∆ϕ
3' ∆ϕ

2

∆ϕ
1

ϕ

ϕp

0 x3'' x3' x2 x1 x

+–+

Fig. 1. Schematic potential distribution in the transition
region between a nonequilibrium plasma and a negative
electrode.
002 MAIK “Nauka/Interperiodica”
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beam electrons (as well as ions) reach the electrode sur-
face, and that the ion and electron beams in the transi-
tion region are scattered insignificantly. The potential
distribution across the transition region is monotonic,
(dϕ/dx) ≥ 0. Under the conditions just described, the
electron densities in the transition region can be repre-
sented as the sum of two Boltzmann distributions or by
the sum of a Boltzmann distribution and distribution
corresponding to a directed electron beam.

We start by considering the case of two Boltzmann
distributions. In a certain part of a transition region that
is adjacent to the unperturbed plasma and is bounded by
the plane x = x1 (Fig. 1), the plasma is quasineutral,
although there is a nonzero electric field. This part of
the transition region, with the potential drop ∆ϕ1, is
called a presheath. As the potential further decreases
(i.e., ∆ϕ > ∆ϕ1 in the region x < x1, where ∆ϕ = ϕp – ϕ
and ϕ is the plasma potential at the point x), the ion and
electron densities deviate increasingly from one
another, indicating the formation of a space-charge
sheath in this part of the transition region. As will be
clear later, the sign of the space charge in the sheath
depends on the parameters of the model. The sheath–
presheath system is stable if the layer adjacent to the
sheath is dominated by a positive ion charge screening
the electric field of the negative electrode so substan-
tially that the electric fields in the quasineutral
presheath are weak.

In order to derive a criterion for the formation of the
sheath of positive space charge, it is necessary to take
into account the ion density distribution in the transi-
tion region. Since the presheath plasma is quasineutral,
the ion density distribution in the presheath coincides
entirely with the electron density distribution and thus
is determined by the laws described above. The ion
density distribution in the sheath is determined from the
assumption that all ions enter the sheath through the
boundary x = x1, at which the ion energy is e∆ϕ1, and
are then accelerated by the electric field of the sheath.
In this case, the ion density distributions ni along the x
axis, as well as the electron density distributions ne,
have no breaks at the boundary x = x1; i.e., the deriva-
tives dni/dx and dne/dx of the densities with respect to
x are continuous at the sheath–presheath boundary.
Because of the continuity of the function dϕ/dx, the
functions dni/dϕ and dne/dϕ are also continuous in the
transition region.

Here, by ∆ϕ1 is meant the potential drop such that,
at the boundary x = x1 of the presheath, the plasma is
still quasineutral (i.e., the electron and ion densities, as
well as their gradients, are the same) and, in the region
x < x1 (where ∆ϕ > ∆ϕ1), the ion density gradient is
smaller than the electron density gradient. This indi-
cates the formation of a sheath of positive space charge
in the layer adjacent to the presheath of the transition
region.
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
The case of a Boltzmann distribution and distribu-
tion corresponding to an electron beam differs from the
case of two Boltzmann distributions in that, as the elec-
trode surface is approached, the electron density
decreases only to a value corresponding to a certain
potential drop, which will be denoted by ∆ϕ4. In the
part of the transition region in which ∆ϕ < ∆ϕ4, the
decrease in the density of thermal electrons dominates
over the increase in the density of beam electrons, and
vice versa in the part where ∆ϕ > ∆ϕ4. As in the previ-
ous case, the density of the ions accelerated in the
sheath decreases toward the electrode surface. Conse-
quently, the sheath of positive space charge can in prin-
ciple form only when ∆ϕ4 > ∆ϕ1. The potential drop
∆ϕ4 can be found from the condition (dne/dx) = 0 or
(dne/dϕ) = 0.

CRITERIA FOR THE FORMATION 
OF A SHEATH OF POSITIVE SPACE CHARGE 

AND THEIR ANALYSIS

According to the above considerations, the criterion
for the formation of a sheath of positive space charge in
the case of two Boltzmann distributions can be formu-
lated as follows:

(1)

(2)

(3)

where net and neh are the densities of thermal and hot
electrons, respectively. This criterion is stated in terms
of the derivatives dn/dϕ rather than in terms of the den-
sity gradients dn/dx.

The distributions of the charged-particle densities in
the sheath are determined by the expressions

(4)

Taking into account the continuity of the derivatives
at the sheath–presheath boundary and the quasineutral-
ity of the unperturbed plasma, we differentiate expres-
sions (4) with respect to ϕ, substitute relationship (1)
into relationships (2) and (3), switch to the charged-par-
ticle densities in the unperturbed plasma (∆ϕ = 0), and

ni ∆ϕ ∆ϕ 1= net neh+( ) ∆ϕ ∆ϕ 1= ,=

dni

dϕ
-------

∆ϕ ∆ϕ 1=

d net neh+( )
dϕ

----------------------------
∆ϕ ∆ϕ 1=

,=

dni

dϕ
-------

∆ϕ ∆ϕ 1>

d net neh+( )
dϕ

----------------------------
∆ϕ ∆ϕ 1>

,<

ni ∆ϕ ∆ϕ 1> ∆ϕ1/∆ϕ( )1/2ni ∆ϕ ∆ϕ 1= ,=

net ∆ϕ ∆ϕ 1>
e∆ϕ1 e∆ϕ–

kTet

----------------------------- 
  net ∆ϕ ∆ϕ 1= ,exp=

neh ∆ϕ ∆ϕ 1>
e∆ϕ1 e∆ϕ–

kTeh

----------------------------- 
  neh ∆ϕ ∆ϕ 1= .exp=
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introduce the notation

(5)

As a result, we arrive at the following dimensionless
criterion for the formation of a sheath of positive space
charge in the case of two Boltzmann distributions:

(6)

(7)

An analogous criterion in the case of a Boltzmann
distribution and distribution corresponding to an elec-
tron beam has the form

(8)

(9)

where E = eU/kTet, ab = (neb/ni)|∆ϕ = 0, and neb is the elec-
tron beam density.

Moreover, recall that, in this case, the following nec-
essary (but not sufficient) condition for the formation of
the sheath of positive space charge should be satisfied:

(10)

where the quantity W4 = e∆ϕ4/(kTet) can be determined
from the relationship

(11)

which is a consequence of the condition [d(net +
neb)/dϕ] = 0.

In the absence of high-energy electrons (αh = 0 or
β = 1 and αb = 0), criteria (6) and (8) pass over to the
Bohm criterion W1 = 0.5 and inequalities (7) and (9)
hold for 0.5 < W < 3.356, indicating that, in this range
of W values, the ion density gradient in the sheath is
smaller than the electron density gradient, and vice

W
e∆ϕ
kTet

----------, W1

e∆ϕ1

kTet

------------,= =

β
Tet

Teh

-------, αh

neh

ni

------- 
 

∆ϕ 0=

.= =

1 αh–( ) W1–( ) 1 2W1–( )exp

+ αh βW1–( ) 1 2βW1–( )exp 0,=

1 αh–( ) W1–( ) 1 2
W3/2

W1
1/2

---------- W1 W–( )exp–exp

+ αh βW1–( ) 1 2βW3/2
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1/2
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1 αb–( ) W1–( ) 1 2W1–( )exp αb
E

E W1–
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  3/2

+ 0,=

1 αb–( ) W1–( ) 1 2
W3/2

W1
1/2

---------- W1 W–( )exp–exp

+ αb
E

E W1–
----------------- 

  3/2

1
W1

E
-------

E W1–
E W–
----------------- 

 
3/2 W3/2

W1
1/2E

--------------+– 0,<

W1 W4,<

2 1 αb–( ) W4–( )exp αb
E1/2

E W4–( )3/2
---------------------------– 0,=
versa for W > 3.356. It is known that, in the case of the
Bohm criterion, the space charge in the entire sheath is
positive.

In the presence of high-energy electrons, the poten-
tial drop W1 across the presheath can be determined
from criterion (6) or (8), provided that inequality (7) or
(9) is satisfied in the interval of W values that is
bounded from below by W1. In what follows, when
speaking of whether or not inequalities (7) and (9) are
satisfied, we will mean precisely this interval of W val-
ues. Note that an analysis of inequalities (7) and (9)
shows that, depending on the particular circumstances,
they can also hold in other intervals, in particular, in the
intervals bounded from above by W1 or bounded from
below by a value larger than W1.

Figure 2 illustrates how the potential drop W1
depends on the parameters of the electron distribution.
In the case of two Boltzmann distributions, an increase
in αh from 0 to 1 corresponds to the transition of plasma
electrons from an equilibrium distribution with the tem-
perature Tet to an equilibrium distribution with the tem-
perature Teh through nonequilibrium distributions cor-
responding to different relative contents of thermal and
hot electrons. As β changes within the range 0 ≤ β ≤ 1,
W1 increases from 0.5 at αh = 0 to 0.5/β at αh = 1. In this
case, in the range 0.101 ≤ β ≤ 1, Eq. (6) has one solution
(Fig. 2; curves 1, 2), so that all W1 values obtained from
Eq. (6) can be treated as potential drops across the
sheath because inequality (7) is satisfied under these
conditions. For 0 ≤ β < 0.101 and for a certain range of
αh values (which depends on the β value), Eq. (6) has
three solutions (Fig. 2, curves 3–6). Let us discuss this
situation in more detail, using, as an example, curve 4,
which was calculated for β = 5 × 10–2. For W1 values
over the portion BC of curve 4, inequality (7) fails to
hold. This indicates that, under such conditions, the ion
density gradient in the part of the sheath that is near the
sheath–presheath boundary exceeds the electron den-
sity gradient; as a result, a sheath of negative space
charge should form near the presheath boundary. How-
ever, as was noted above, such a system cannot be sta-
ble. For the two remaining solutions to Eq. (6), one of
which is described by the portion AB of curve 4 and the
other is described by the portion CD, inequality (7) is
satisfied. Out of the two physically possible stable
states corresponding to these two solutions, the state
with a lower W1 value actually occurs, because, when W
is larger than W1, the sheath of positive space charge
that begins to form near the boundary of the presheath
prevents the formation of a quasineutral presheath with
a large W1 value. An analysis of inequality (7) under
conditions corresponding to the portion AB of curve 4
shows that, as αh increases from zero to the critical
value αhc corresponding to point B, the interval over
which inequality (7) is satisfied shrinks from the Bohm
interval 0.5 < W < 3.356 to zero, in which case the
derivative dW1/dαh increases from a finite value to
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
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infinity (Fig. 2). This indicates that, at αh = αhc, the
sheath of positive space charge does not form near the
boundary of the presheath; as a result, the potential
drop in the presheath increases in a jumplike manner to
the value W1, which corresponds to point D. In the
states corresponding to portion DE, the sheath of posi-
tive space charge again forms near the boundary of the
presheath, because inequality (7) is satisfied for the W1

value at point D, as well as for all W1 values over por-
tion DE. Calculations show (see also Fig. 2) that, as β
decreases, the critical value αhc decreases from 0.461 at
β = 0.101 to 0.309 at β = 0, whereas the potential dif-
ference W1 increases in a jumplike manner from zero to
infinity as β changes in the same range.

In the case of a Boltzmann distribution and distribu-
tion corresponding to an electron beam (Fig. 2,
curves 6–8), Eq. (8) has two finite solutions in the inter-
val 0 < αb < αbc, where αbc is the critical value of αb at
which (dW1/dαb)  ∞. For αbc < αb ≤ 1, Eq. (8) has
one solution, namely, W1  ∞. Out of the two finite
solutions (see the solid and dashed-and-dotted portions
of curves 6–8 in Fig. 2), inequality (9) holds only for
the solution with smaller W1 values. Moreover, this
case is similar to that of two Boltzmann distributions:
as αb increases from zero to αbc, the interval over which
inequality (9) is satisfied shrinks from the Bohm inter-
val to zero and the derivative dW1/dαb increases from a
finite value to infinity. Accordingly, condition (10)
holds for 0 ≤ αb < αbc and fails to hold for αbc < αb ≤ 1.

These results can be interpreted as follows. For 0 ≤
αb < αbc, there exists a sheath of positive space charge
in the transition region. The sheath is separated from
the unperturbed plasma by a presheath. As αb increases,
the potential drop W1 across the sheath becomes larger
(see the solid portions of curves 6–8 in Fig. 2) and the
sheath of positive space charge near the boundary of the
presheath becomes thinner. As αb reaches the critical
value αbc, the sheath of positive space charge disap-
pears and the potential drop W1 increases to infinity in
a jumplike manner, so that condition (10) is violated.
This indicates that, for αbc ≤ αb ≤ 1, the entire transition
region is a quasineutral presheath for any electrode
potential consistent with the above model assumptions;
i.e., 0 < W0 < E, where W0 = e∆ϕ0/(kTet). In this situa-
tion, however, the term “presheath” is physically mean-
ingless because there is no sheath in the transition
region. The critical value αbc and the potential drop W1

corresponding to it are maximum at E = ∞ and are equal
to 0.309 and 1.5, respectively. It can be readily shown
that the case of two Boltzmann distributions coincides
with the case of a Boltzmann distribution and distribu-
tion corresponding to an electron beam when β = 0 and
E  ∞ (Fig. 2, curve 6).
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
CHARGE DENSITY DISTRIBUTION 
IN THE SHEATH

Above, it has been shown that, when αh and αb are
nonzero and are smaller than their critical values, the
interval of W values in which inequalities (7) and (9)
are satisfied is shorter than the Bohm interval. This sug-
gests that, under the conditions in question, a double
layer of space charge can, in principle, exist in which
the region near the boundary of the presheath is domi-
nated by a positive ion charge and the region far from
this boundary is dominated by a negative electron
charge.

In the case of two Boltzmann distributions, the rela-
tive charge density ρh in the layer can be represented as

(12)

We substitute expressions (4) and relationship (1)
into relationship (12), switch to the charged particle
densities in an unperturbed quasineutral plasma, and
take into account notation (5). As a result, we obtain

(13)

ρh

ni net neh––( ) ∆ϕ ∆ϕ 1>

ni ∆ϕ 0=

---------------------------------------------------.=

ρh 1 αh–( ) W1–( )
W1

W
------- 

 
1/2

W1 W–( )exp–exp=

+ αh βW1–( )
W1

W
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βW1 βW–( )exp– .exp
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Fig. 2. Dependence of the potential drop across the
presheath on the parameters of the electron distribution. The
curves in the case of two Boltzmann distributions were
obtained for β = (1) 1.0, (2) 0.5, (3) 0.1, (4) 5 × 10–2, (5) 10–2,
and (6) 0. The curves in the case of a Boltzmann distribution
and distribution corresponding to an electron beam were
obtained for E = (6) ∞, (7) 3, and (8) 1.
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The expression for the relative charge density ρb in
the layer in the case of a Boltzmann distribution and
distribution corresponding to an electron beam can be
derived in an analogous way:

(14)

where the relative charge density is defined as

Expressions (13) and (14) made it possible to ana-
lyze the charge density distribution in the layer (see
Fig. 3) and to prove that the double layer of space
charge can actually form under the conditions adopted
here (Fig. 3, curves 3–5).

Equating the right-hand sides of expressions (13)
and (14) to zero, we can determine the boundary values
W2 = e∆ϕ2/(kTet), where ∆ϕ2 is the potential difference
between the unperturbed plasma and the boundary x =
x2, which separates the regions of positive and negative
space charges in the double layer (Fig. 1). The depen-
dence of W2 on the parameters of the electron distribu-
tion is illustrated in Fig. 4.

CRITERIA FOR THE FORMATION 
OF THE SECONDARY QUASINEUTRAL 

PLASMA AND THE STRUCTURE 
OF THE TRANSITION REGION

Here, we analyze the potential distribution in the
space-charge sheath. To do this, we use Poisson’s equa-

ρb 1 αb–( ) W1–( )
W1

W
------- 

 
1/2

W1 W–( )exp–exp=

+ αb
E

E W1–
----------------- 

  1/2 W1

W
------- 

 
1/2 E W1–

E W–
----------------- 

 
1/2

– ,

ρb

ni net neb––( ) ∆ϕ ∆ϕ 1>

ni ∆ϕ 0=

---------------------------------------------------= .

0.1

2
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4 6 8 10
W

–0.1

0.2
ρh, ρb
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5

Fig. 3. Charge density distribution in the layer: (1) the
Bohm case (αh = 0, or β = 1, or αb = 0); (2) the case β = 0
and αh = 0.099 or E  ∞ and αb = 0.099; (3) the case β =
0 and αh = 0.212 or E  ∞ and αb = 0.212; (4) the case
β = 5 × 10–2 and αh = 0.301; and (5) the case E = 10 and
αb = 0.220.
tion. Since the electric field in the sheath, and, accord-
ingly, at the boundary x = x1, is weak, the integration of
Poisson’s equation with the boundary condition
(dϕ/dx  = 0 in the case of two Boltzmann distri-

butions yields

(15)

In the Bohm case, the right-hand side of Eq. (15) is
positive over the entire range ∆ϕ1 < ∆ϕ < ∞, indicating
that the potential distribution in the space-charge sheath
is monotonic for any magnitude of the electrode poten-
tial that satisfies the condition ∆ϕ0 > ∆ϕ1. In [13], it was
shown that, in the presence of high-energy electrons,
the potential gradient may vanish in a certain region x <
x2 of the sheath in which ∆ϕ > ∆ϕ2 and the negative
electron space charge dominates over the positive ion
space charge. Let us assume that the potential gradient
vanishes at the boundary x = x3, the corresponding
potential difference being ∆ϕ = ∆ϕ3 (Fig. 1). The values
of ∆ϕ3 can be determined by equating the right-hand
side of Eq. (15) to zero. We perform the same manipu-
lations with the expressions for the charged particle
densities as those made in deriving expression (13). As
a result, we arrive at the following condition for the
dimensionless potential gradient to vanish in the case of
two Boltzmann distributions:

(16)

where F = 2[W1 – (W1W3)1/2] and W3 = e∆ϕ3/(kTet).

In the case of a Boltzmann distribution and distribu-
tion corresponding to an electron beam, an analogous
condition has the form

(17)

The dependence of W3 on the parameters of the elec-
tron distribution is illustrated in Fig. 4. The characteris-
tic feature of the case of two Boltzmann distributions is
that Eq. (16) has, if ever, two (possibly coincident)
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solutions,  and  (  < ). In the intervals

W1 < W <  and  < W < ∞, the right-hand side of
Eq. (15) is positive. This indicates that the correspond-
ing parts of the transition region are space-charge
sheaths with a monotonic potential distribution. In the

interval  < W < , the right-hand side of Eq. (15)
is negative, so that dϕ/dx is an imaginary quantity. As a
result, in the corresponding part of the transition region,
the potential distribution is oscillatory [5, 12]. How-
ever, in [5] it was shown that, when the electric fields in
this part are weak (at the boundaries of the interval, we
have (dϕ/dx) = 0)), even an insignificant ionization of
the gas by plasma electrons and ions and rare collisions
of plasma ions with other plasma particles in which the
ions are decelerated and undergo charge exchange can
restore the monotonic potential distribution. Also, the
processes just mentioned promote the equalization of
the ion and electron densities in this part of the transi-
tion region, thereby leading to the formation of the sec-
ondary plasma.

In the case of a Boltzmann distribution and distribu-
tion corresponding to an electron beam, Eq. (17) has
only one solution W3 (Figs. 4c, 4d). Similar consider-
ations show that the secondary plasma is produced in
the part of the transition region in which the potential
drop W satisfies the condition W3 < W < E (the upper
bound E is the boundary of applicability of the model
used here).

In accordance with the above analysis, expressions
(16) and (17) serve as criteria for the formation of the
secondary plasma in the transition region. Earlier, the
condition (dϕ/dx) = 0, from which expressions (16) and
(17) have been derived, was also used as a criterion for
secondary plasma formation [14, 15].

Hence, the model developed here shows that, under
certain conditions, the secondary quasineutral plasma
can form in the transition region. The secondary plasma
is separated from the main plasma by an electric double
layer. At the boundary x = x3 between the sheath and the
secondary plasma, the electric field vanishes. In the
secondary plasma, the potential decreases monotoni-
cally toward the electrode. In the case of two Boltz-
mann distributions, the secondary plasma can be
bounded by space-charge sheaths on both sides; more-
over, at both boundaries of the secondary plasma, the
potential gradient vanishes.

Interestingly, using the formal assumption of an infi-
nitely strong electric field at the plasma–sheath bound-
aries, Demirkhanov et al. [12] also arrived at the con-
clusion that, under the conditions in question, there can
exist two plasma regions separated by an electric dou-
ble layer. However, under such boundary conditions, a
double layer with positive space charge cannot exist
near the plasma region with a higher potential. The
same is true of a double layer with negative space
charge near the plasma region with a lower potential. In

W3' W3'' W3' W3''

W3' W3''

W3' W3''
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[12], the space-charge sheath was not considered, pre-
sumably because the model adopted in that paper was
inappropriate for describing it.

The results obtained above are illustrated in Fig. 4,
which shows structural diagrams of the transition
region between a plasma and a negative electrode.
Using these diagrams, we can determine the structure
of the transition region and the boundary values W1,
W2, and W3 for the required values of the parameters of
the electron distribution (αh and β or αb and E) and the
electrode potential W0. The diagrams show the follow-
ing possible structures of the transition region: (i) a
quasineutral presheath; (ii) a quasineutral presheath
and a space-charge sheath adjacent to the electrode [in
this case, the sign of the space charge predominating in
the sheath remains the same (positive) over the entire
sheath, or changes from positive to negative as the elec-
trode is approached (a double layer), or changes from
positive to negative and then becomes positive again
(a triple layer)]; (iii) a quasineutral presheath, a double
layer, and a secondary plasma adjacent to the electrode;
and (iv) the previous structure plus the second space-
charge sheath between the secondary plasma and the
electrode.

ION CURRENT TO THE ELECTRODE

The ion current to the electrode is carried, first, by
the thermal ions that enter the transition region from the
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Fig. 4. Structure of the transition region between a nonequi-
librium plasma and a negative electrode for different param-
eters of the electron distribution. The structures in the case
of two Boltzmann distributions were obtained for β =
(a) 0.5, (b) 5 × 10–2, and (c) 0. The structures in the case of
a Boltzmann distribution and distribution corresponding to
an electron beam were obtained for E = (c) ∞ and (d) 10.
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side of the unperturbed plasma and are accelerated
there by the electric field and, second, by the ions that
are produced as a result of gas ionization over the entire
transition region.

If the parameters of the electron distribution and the
electrode potential are such that no space-charge sheath
forms in the transition region (so that the entire transi-
tion region is a perturbed quasineutral presheath), then
the presheath becomes thicker and the density of the ion
current to the electrode becomes higher as the potential
difference between the unperturbed plasma and the
negative electrode increases. In this case, the electrode-
directed current density in an actual device can be
bounded from above by the value corresponding to the
electrode potential at which the plasma perturbation by
the electric field of the negative electrode extends into
the entire plasma volume and the presheath stops
expanding.

If a sheath of positive space charge forms in the tran-
sition region, then it weakens the perturbing effect of
the electric field of the negative electrode on the
plasma. In this case, the thickness of the forming
presheath and the potential drop across it are both inde-
pendent of the electrode potential. The ion current den-
sity at the sheath–presheath boundary is equal to

where  = (2e∆ϕ1/mi)1/2 and mi is the mass of

an ion.
Using condition (1), switching to the charged parti-

cle densities in an unperturbed plasma, and taking into

ji e niVi( ) ∆ϕ ∆ϕ 1= ,=

Vi ∆ϕ ∆ϕ 1=

2
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Fig. 5. Dependence of the ion current density at the sheath–
presheath boundary. The curves in the case of two Boltz-
mann distributions were obtained for β = (1) 0.1, (2) 5 × 10–2,
and (3) 10–2. The curves in the case of a Boltzmann distri-
bution and distribution corresponding to an electron beam
were obtained for E = (4) ∞, (5) 3, and (6) 1.
account notation (5), we arrive at the following repre-
sentation of the ion current density jih at the sheath–
presheath boundary in the case of two Boltzmann dis-
tributions:

In the Bohm case (αh = 0 or β = 1), for W1 = 0.5, we
have

For convenience of further analysis, it is expedient
to consider the ratio Jih of the ion current densities in the
case of two Boltzmann distributions and in the Bohm
case at the same ion densities ni|∆ϕ = 0:

(18)

For the case of a Boltzmann distribution and distri-
bution corresponding to an electron beam, the analo-
gous ratio has the form

(19)

For a collisionless sheath, expressions (18) and (19)
determine the ion current density not only at the
sheath–presheath boundary but also at the electrode
surface. An increase in the fraction αh or αb of high-
energy electrons results in an increase in the ion current
density (Fig. 5). In the case of two Boltzmann distribu-
tions, the ratio Jih increases from 1 at αh = 0 to β–1/2 at
αh = 1. A jumplike change in Jih at the critical value αhc

(Fig. 5, curves 1–3) is associated with a jump in the
potential drop W1 in the sheath (Fig. 2, curves 3–5).
Curves 4–6 in Fig. 5 were obtained for the case of a
Boltzmann distribution and distribution corresponding
to an electron beam and are limited to the interval
where the sheath of positive space charge exists (0 ≤
αb ≤ αbc). A certain contribution to the ion current den-
sities in expressions (18) and (19) may come from the
secondary plasma (when it forms in the transition
region).

CONCLUSION

Some of the conclusions of this paper were experi-
mentally confirmed by the author and the correspond-
ing measurement results were described in [16]. Here,
however, it is expedient to turn to the results of other
experiments, namely, those reported in papers [17, 18],
which were devoted to a comparison between different
methods for processing the current–voltage character-

jih 1 αh–( ) W1–( )exp αh βW1–( )exp+[ ]=

× 2e∆ϕ1/mi( )1/2eni ∆ϕ 0.=

ji* 0.5–( ) kTet/mi( )1/2eni ∆ϕ 0= .exp=

Jih jih/ ji* 0.5( )exp 1 αh–( ) W1–( )exp[= =

+ αh βW1–( ) ] 2W1( )1/2.exp

Jib 0.5( ) 1 αb–( ) W1–( )expexp=

+ αb
E

E W1–
----------------- 

  1/2

2W1( )1/2.
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istics of the probes immersed in nonequilibrium plas-
mas. It was shown that the traditional processing of the
ion portion of the probe characteristics by means of the
Bohm criterion, in which high-energy electrons are
neglected, overestimates the plasma density by more
than an order of magnitude.

The approach proposed here for calculating the
parameters of the transition region can also be applied
to other nonequilibrium electron energy distributions,
because any complicated distribution can be repre-
sented as a sum of distributions of several electron
groups with their own temperatures or energies.

The physical situations analyzed in this paper may
be encountered in tokamak physics (in wall plasmas),
in plasma chemistry, and in plasma technologies. The
effect of high-energy electrons on the current through a
negative electrode in a plasma should be taken into
account in probe measurements of the plasma parame-
ters. Finally, the results obtained make it possible to
suggest some ways of increasing the efficiency of ion
sources, for instance, by choosing an appropriate type
of gas discharge that generates plasmas with high-
energy electrons (e.g., a reflex discharge [7] and a
beam–plasma discharge [8, 9]).
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Abstract—A model of nonlinear longitudinal wave propagation in a solid with quadratic nonlinearity of an
elastic continuum exposed to laser impulses is developed in view of the interaction between the strain field and
the field of point defects. The influence of the generation and recombination of laser-induced defects on the
propagation of an elastic strain wave is analyzed. The existence of a nonlinear elastic shock wave of low
intensity is revealed in the system and its structure is studied. The estimations of the depth and velocity of the
wave front are performed. The contributions due to the interaction of the strain field and the field of defects to
both a linear elastic modulus and the dispersion parameters of a lattice are found. © 2002 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

Prominent features of the behavior of a solid under
intense impulse exposures (in particular, under impulse
laser-beam exposures) are the appearance and propaga-
tion of nonlinear strain waves (in particular, solitons) of
various natures. This phenomenon is of considerable
interest, and numerous theoretical and experimental
papers [1–7] are devoted to it. In considering the evolu-
tion of nonlinear elastic waves in a crystal, the devia-
tion of elastic lattice properties from Hooke’s law is
commonly considered as nonlinearity [1]. In exposed
solids, various structural imperfections of a lattice,
namely, point defects generated under external influ-
ences and resulting in a considerable strain of a
medium, may be of essential importance. The strain of
a medium is due to the difference in the covalent radii
of lattice and defect atoms. The defect-strain interac-
tion may occur via both the changing energy parame-
ters of the subsystem of defects (the energy of the
defect formation, the energy of their migration) and the
appearance of the diffusion current (strain-induced
drift). Under certain conditions, nonlinearities related
to these interactions may become essential for the prop-
agation of nonlinear elastic perturbations in solids and
result in a renormalization of lattice parameters (both
linear and nonlinear elastic moduli). The presence of
point defects with a finite recombination velocity in a
medium may induce the appearance of dissipative
terms, which are absent in ordinary equations for non-
linear elastic waves. The wave dynamics may depend
on dispersion due to the finiteness of either the lattice
spacing [8] or specimen width [9] as well as dispersion
related to nonequilibrium defects. The propagation of
1063-7842/02/4710- $22.00 © 21258
an elastic strain wave in such systems may occur in the
form of shock waves. In this case, the influence of gen-
eration and recombination processes turns out to be
similar to the dissipation of the elastic oscillation
energy in a viscoelastic medium with aftereffect and
relaxation. The formation of the shock front of an
acoustic wave in insulators exposed to 0.15 µs laser
pulses with energy up to 5 J was experimentally
observed in [10]. The study of the wave dynamics in
view of their interaction with structure defects is of cer-
tain theoretical and practical interest, in particular, in
analyzing the mechanisms of an anomalous mass trans-
fer detected in the laser and ion implantations of metal
materials [11] and in studying the mechanical activa-
tion of components in solid-phase chemical reactions.
Elastic wave propagation in a condensed medium car-
ries information about the distortion of their shape and
velocity, energy loss, defect structure, etc. This infor-
mation is necessary to determine various parameters
and the structure of solids.

In this paper, the possibility of the existence of
shock waves in the propagation of a nonlinear longitu-
dinal-strain wave in a medium with a quadratic nonlin-
earity of an elastic continuum exposed to laser pulses is
studied in view of the generation of point defects
(vacancies and interstitial sites). It is shown that gener-
ation and recombination processes in the defect sub-
system result in dissipative effects and, hence, the
appearance of elastic shock waves of low intensity. The
renormalization is found of linear elastic moduli and
parameters of dispersion due to defect-strain interac-
tion.
002 MAIK “Nauka/Interperiodica”
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BASIC EQUATIONS

Consider an isotropic solid with point defects
induced by laser radiation. Let nj(x, t) be the volume
density of defects (j = v  for vacancies, and j = i for
interstitial sites). In the propagation of longitudinal
strain waves, the activation energy for the defect forma-
tion varies in the regions of compression and tension.
The renormalized energy of point defect formation may
be represented in the form E = E0 – ϕdivu, where ε –
divu is the strain of a medium; u, the vector of the dis-
placement of a medium; ϕ, the strain potential; and E0,
the energy of defect formation in a strainless crystal.
The variation of formation energy results in a corre-
sponding variation of the defect source function and,
consequently, in the spatial redistribution of defects
[12]. In addition, defects may migrate over a crystal and
recombine at various centers, e.g., dislocations, intersti-
tial impurities, etc. In the framework of the aforemen-
tioned assumptions, the nonlinear dynamic equation
describing the propagation of the longitudinal strain
wave in a crystal in view of defect generation (in the
one-dimensional case) may be written as

(1)

Here, u(x, t) is the displacement of the medium; cs =
((3K + 4µ)/3ρ)1/2, the longitudinal wave velocity in a
crystal; K and µ, the bulk and rigidity moduli, respec-
tively (linear elastic moduli); ρ, the density of the
medium; α1 and α2, the dispersion parameters [13]; and
Ωj, the dilatation parameter describing the variation of
the crystal volume in the result of point defect forma-
tion (Ωj < 0 for j = v, and Ωj > 0 for j = i). The nonlin-

earity coefficient [13] βN = 3ρ  + 2(A + 3B + C),
where A, B, and C are the third-order elastic moduli.
For most solids (metals and a lot of polymers), βN < 0.
There are also metals in which the deviation of elastic
lattice properties from Hooke’s law is insignificant. In
this case, βN > 0. In (1), we restricted our consideration
to a smooth strain disturbance and took into account the
contributions of the elastic moduli to the spatial disper-
sion in the first nonvanishing approximation.

Equation (1) in the absence of elastic concentration
stresses, which is called an equation with two disper-
sions (α1, α2), was studied in detail in [2–5]. The gen-
eralization of this equation to the case in which the elas-
tic concentration stresses are present in a system is per-
formed in [12] in the framework of the Hamiltonian
approach.

The distribution of point defects determining the
right side of Eq. (1) depends on the strains and stresses.
Therefore, Eq. (1) should be supplemented by an equa-
tion for the defect density to completely describe the

∂2u

∂t2
-------- cs

2∂2u
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ρ
------∂2u

∂x2
--------∂u
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------––
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∂4u

∂t2∂x4
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∂4u

∂x4
--------+

KΩ j

ρ
-----------

∂n j

∂x
--------.–=

cs
2
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elastic wave propagation. If the basic processes deter-
mining the time behavior of defects are defect genera-
tion from the lattice sites and their recombination at the
centers of various nature, the kinetic equation

(2)

takes place for weak nonuniform density perturbations
n1j = nj – nj0 and n1j ! nj0, where nj0 = q0τj is a uniform
stationary defect distribution. Here, q0 is the rate of
point defect generation in the absence of strain; the first
term in the right-hand side of (2) corresponds to strain-
induced generation (ε = ∂u/∂x is the strain of a
medium); the second term, the defect decrease due to
the recombination (βj = 1/τj = ρjDj is the recombination
rate at sinks; ρj, the sink density; Dj, the diffusion coef-
ficient for a defect of j type; and τj, the relaxation time);
the bulk mutual recombination of dissimilar defects is
neglected; and qε = q0(KΩj/kT) for the thermal mecha-
nism of the point defect generation.

Equations (1) and (2) make up a closed system. This
system completely describes the distribution of one-
dimensional strain perturbations in a solid due to non-
stationary and nonlinear distributions of a point defect
subsystem as well as the inverse effect, namely, the
variation of the defect concentration in a solid as a
result of elastic strain perturbations.

NONLINEAR STATIONARY WAVES

Consider self-similar solutions of the form u = u(ξ)
and n1j = n1j(ξ), where ξ = x – v t, describing longitudi-
nal waves of strain and defect density propagating
along the x axis with a velocity of v  = const. In this
case, the system of partial differential equations (1) and
(2) passes into the following system of ordinary differ-
ential equations:

(3)

(4)

We use the conditions

(5)

as boundary conditions for Eqs. (3) and (4).
Boundary conditions (5) imply that waves propagat-

ing in a medium turn the system under consideration
from a deformationless state into that with a constant
deformation (ε0). We will further restrict our consider-
ation to a system with only one type of defects and take
n1j(ξ) ≡ n1(ξ), τj ≡ τ, and Ωj ≡ Ω in (3)–(5).

∂n1 j
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---------- qε
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------ β jn1 j–=
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2–( )d2u
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– α1v
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The solution of the nonuniform differential equation
(4), in view of boundary conditions (5), has the form

(6)

where q(ξ) = v –1du/dξ.

Having eliminated the defect density, using (6), we
arrive at equation

(7)

describing the propagation of a nonlinear elastic strain
wave.

Equations similar to (7) are typical for systems with
strain memory (or relaxation) [1]. At α1 = α2 = 0 (with-
out dispersion) and qε = β = 0 (without defect genera-
tion), this equation has the same form as in the case of
a longitudinal wave in the free space. On the basis of
Eq. (7), a thorough analysis of the strain wave propaga-
tion is possible in view of both the dispersion properties
of a medium and the elastic properties of a lattice and
defect subsystem. An exact analysis of this equation
with arbitrary values of the parameters involved seems
impossible. Further, we will consider it at small (com-
pared to the period of the wave t0) defect relaxation
times (τ ! t0). In this case, the integral term in (7) can
be replaced by a differential one. Let us expand the
function q(ξ – z) by its Taylor series expansion at ξ.
Retaining the first three terms in this expansion, we find

Having substituted this expression into (7), we
arrive at the following equation:

(8)

where  = cs(1 – KΩqετ/ρ )1/2 is the velocity of
sound renormalized due to the defect-strain interaction.

In Eq. (8), the term with the third derivation of the
displacement (the Burgers term) describes the wave
energy dissipation. The appearance of this term is
clearly related to the generation and recombination pro-
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cesses in the defect subsystem. In addition, the finite-
ness of the defect recombination rate (τ–1) results in an
additional contribution to nonlinear equation (8). This
may influence the nonlinear wave properties.

Having performed single integration with respect to
ξ and introduced the notation ε = du/dξ, we find an
equation coinciding with the first integral of the well-
known stationary Korteweg–de Vries–Burgers equa-
tion [14]:

(9)

Here, the integration constant is equal to zero in view of
the boundary conditions du/dξ|ξ → ±∞ = 0.

Equation (9) has repeatedly been considered in the
literature. In particular, the characteristic features of
solitary-wave (solitons) attenuation at low dissipation
were studied. Shock-wave attenuation in elastic media
without dissipation was considered in the framework of
the Burgers equation [1, 14, 15]. Equation (9) also
describes the propagation of nonlinear ion-sound waves
in plasma in view of the Landau damping [16]. Equa-
tion (9), with the boundary conditions

(10)

admits a solution in the form of shock waves of low
intensity (step-function solution) [14].

If the dispersion is negligible, Eq. (9) yields the sta-
tionary Burgers equation

having a solution in the form of shock waves with a
monotonic profile,

In the general case, we will qualitatively determine
the pattern of the solution to Eq. (9) in view of the influ-
ence of dispersion using the analysis performed in [14].
Note that an explicit analytical solution of Eq. (9) with
additional restrictions on its coefficients can be found
by the method described in [5].

The dependence of wave velocity v  on its amplitude
ε0 is determined by the formula

(11)

From analysis of the asymptotic wave behavior, it
follows that a solution satisfying boundary conditions
(10) exists if the wave velocity v  > . Then, according

g
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to (11), the wave excited is a tension wave (ε0 > 0) for
βN > 0, and a compression wave (ε0 < 0) for βN < 0.

WAVE STRUCTURE

The structure of a nonlinear wave can be determined
by studying the asymptotic behavior of the solutions of
Eq. (9) subject to boundary conditions (10). Hereafter,
we follow the qualitative analysis conducted in [14].

The structure of the shock wave depends on the ratio
between the dispersion and dissipation parameters
(g, δ) in Eq. (9). At sufficiently small values of δ, the
shock wave has an oscillating structure. If the dissipa-
tion parameter exceeds a certain critical value δ > δ∗ ,
the shock wave has a monotonous profile [14]. Critical
values of the dissipation parameter δ∗  corresponding to
monotonous and oscillating wave profiles are deter-
mined by the formula

Using (11), this equation can be represented in the
form |ε0| = ε∗ , where the critical amplitude value is

Thus, the shock wave has an oscillating structure at
|ε0| > ε∗  and a monotonic structure at |ε0| < ε∗ . The crit-
ical amplitude value ε∗  dividing shock waves with an
oscillating structure from monotonic shock waves is
determined by the elastic modulus, temperature of the
medium, intensity of defect generation, their relaxation
time, and dilatation volume of defects. At characteristic
values of parameters (for vacancies) K = 5 ×
1011 dyn/cm, q0τ = 1019 cm–3, βN = 1012 dyn/cm, ρ =
8 g/cm3, and |Ω| = 10–23 cm3, we find ε∗  = 4 × 10–2.

The spatial scale of the variation of the solution to
Eq. (9) evidently determines the width of a shock wave
(L), i.e., the distance at which the oscillations die out
[14]. An estimation yields

(12)

The oscillation period (d) is found from a solution
linearized in the neighborhood of the homogeneous
solution ε = αρ/βN of Eq. (9),

Finally, we find

(13)

δ* 4 αg .=

ε* = 
KΩqεv τ2( )2

βN ρ α1v
2 α2–( ) KΩqετ

3v 2–
----------------------------------------------------------------------------- KΩ

kT
--------- 

  q0τΩ( ).≈

L
4 g /δ( ) ε* ε0+

ε* ε0+ ε*–
-------------------------------------------.=

g
d2ε
dξ2
-------- δdε

dξ
------ αε+– 0.=

d 4π g /δ( ) ε*
ε0 ε*–
-------------------.=
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According to (13), the oscillation period decreases
with increasing amplitude of a nonlinear wave ε0 and
takes on the value

in the limit |ε0| @ ε∗ .

DISCUSSION

From the conditions of the existence of an oscillat-
ing shock wave (ε∗  < |ε0|) and smallness of its ampli-
tude |ε0| ! 1, we find the restriction on its velocity,

Since monotonic shock waves can appear in media
with rather large values of ε∗  (ε∗  > |ε0|), we find the fol-
lowing constraints on the velocities of these waves:

In solids with negative dispersion (g > 0), an oscil-
lating structure takes place before the wave front. On
the contrary, in mediums with a positive dispersion
(g < 0), the oscillating tail is behind the front.

According to (12) and (13), the parameters L and d
of oscillating shock waves are determined by the dis-
persion parameter g. Therefore, the dispersion in a sys-
tem is necessary for these waves to exist. Monotonic
shock waves, in contrast to oscillating ones, may exist
in dispersionless systems.

Let us discuss now the contribution of defects to the
dispersion properties of a medium. The correction due
to nonequilibrium defects to the dispersion parameters
is of importance if KΩqετ3v 2ρ–1 > α1v 2 – α2.

This implies the following restriction on the defect
density:

This condition can be satisfied for rather high defect
densities (q0τ ≥ 1019 cm–3), which are typical for pow-
erful impulse laser exposures on most solids. However,
if the linear elastic moduli for a lattice, the dilatation
volume of defects, and their relaxation time are large,
the corrections due to defects become substantial even
at lower densities.

Thus, in a solid exposed to external energy fluxes
resulting in the generation of nonequilibrium point
defects, the strain wave may propagate as a shock wave
of low intensity. Shock waves may have an oscillating
profile as well as a monotonic one. The existence of
such waves is determined by dissipation processes of
the generation (recombination) of defects (rate of
defect generation, recombination time), the dispersion
of a medium, and the elastic properties of the lattice and
defect subsystem.

d 4π ρg/ βNε0≈

c̃s
2 1 ε* βN /ρc̃s

2( )+( ) v 2 c̃s
2 1 βN /ρc̃s

2+( ).< <

v 2 c̃s
2 1 βN /4ρc̃s

2+( ).<

q0τ
ρ α1v

2 α2–( )kT

v τKΩ( )2
---------------------------------------.>
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The model equation describing the propagation of
the nonlinear wave of elastic deformation in an elastic
medium is derived in view of generation and recombi-
nation processes. Its structure is a combination of the
stationary Korteweg–de Vries and Burgers equations.
The quantitative estimations of contributions into linear
elastic moduli and bulk dispersion due to a finite defect
recombination rate are presented. The critical defect
densities are found in the case when their influence on
the strain wave propagation is substantial.

Note, in conclusion, that strain wave propagation is
of significant interest in a medium with clusters of point
defects (vacancies, interstitial clusters, etc.). A strain
wave interacting with such defects may result in a local
temperature increase and, hence, the strengthening of
recombination processes. The latter, in turn, are accom-
panied by local heat generation and the deformation of
the medium. Further study of the nonlinear interaction
of deformation fields and temperature with structure
defects (both point defects and clusters) is of interest
from scientific and practical standpoints. A propagating
strain wave carries information about various defects of
a condensed medium that is necessary for diagnosing
the defect structure of solids.
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Abstract—The transient I–V characteristic of an amorphous GaTe3–crystalline n-Si barrier negistor structure
under negative differential resistance (NDR) conditions is studied. The basic parameters (cross-section radius,
current density, and resistivity) of the current filament region in the amorphous layer of the structure are deter-
mined. Results obtained are compared with the associated parameters of the current filament in a C–amorphous
GaTe3–C reference barrier-free structure. Under NDR conditions, the conductivity of the filament region in this
heterostructure is shown to be governed largely by processes occurring in the crystalline component. © 2002
MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The idea of using an amorphous chalcogenide semi-
conductor as the emitter of a bipolar transistor [1, 2]
seems to be very promising. Depending on the collector
voltage to base voltage ratio, such a transistor may take
either of two (weakly and strongly amplifying) states,
which would greatly extend the range of its application
[2]. Amorphous semiconductor–crystalline semicon-
ductor barrier heterostructures, exhibiting an S-shaped
I–V characteristic (negistor structures), are of great
interest in this respect.

Negative differential resistance, which is responsi-
ble for the S shape of the I–V characteristic, is due to
processes taking place in the amorphous semiconduc-
tor. In this layer, a specific high-conductivity channel
normal to the current electrodes forms under conditions
of electrical instability. This channel is a part of the
increased current density region (current filament) in
the heterostructure. The rest of this region (channel) is
in the crystalline component. The important parameters
of the structure, primarily its stability and service life,
depend on physical processes taking place in the chan-
nel. That is why the physical situation in the channel is
of great interest for both elucidating the mechanism of
electrical instability and finding optimal operating con-
ditions.

A great deal of information can certainly be derived
from the electrical properties of the channel. However,
they are difficult to study because of the small size of
the current filament region. Moreover, the resistances
of both parts of the filament (in the amorphous and
crystalline layers) may be comparable. Therefore, the
application of conventional techniques for investigating
1063-7842/02/4710- $22.00 © 21263
barrier-free negistor structures [3–5] to determine the
channel parameters may introduce great errors.

The aim of this work was to take the I–V character-
istics of the heterojunction in the current filament
region and to clarify the contributions of electronic pro-
cesses taking place in the amorphous and crystalline
layers to the conductivity of this region. In addition, we
tried to estimate channel nonthermal parameters (cross-
section radius rc, current density jc, and resistivity ρc) in
the amorphous semiconductor.

OBJECT OF INVESTIGATION

The object studied was an amorphous GaTe3–crys-
talline n-Si barrier negistor structure. In such structures,
the forward branch of the I–V characteristic lacks the
ohmic portion up to the onset of the NDR effect (i.e., up
to the conditions of electrical instability and current fil-
amentation)1. Moreover, the conductivity of these
structures in high electric fields is associated with the
monopolar injection of charge carriers from the crystal-
line semiconductor to the amorphous layer (space-
charge-limited current mode) [6]. The conductivity of
GaTe3 amorphous films in high electric fields is due to
the field-enhanced thermal generation of charge carri-
ers [7]. These heterostructures retain a sensitivity to
voltage polarity, which specifies electrical instability,
and conductivity asymmetry in a wide range of electri-
cal pulse durations (including nanosecond durations)
because of different conditions for charge carrier injec-
tion into the GaTe3 layer in the forward and backward
directions [6].

1 In what follows, the states of the structure before and after fila-
mentation will be called high-ohmic and low-ohmic, respectively.
002 MAIK “Nauka/Interperiodica”
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INVESTIGATION TECHNIQUES

The structures were fabricated by the discrete evap-
oration of a GaTe3 preparation at low pressures (about
10–3 Pa) with the subsequent condensation of its vapors
on substrates kept at temperatures between 330 and
340 K. The substrate was a film of n-Si with a resistiv-
ity ρSi = 1.0 Ω cm epitaxially grown on a lower resistiv-
ity (ρSi ≈ 0.01 Ω cm) single-crystal Si wafer of the same
conductivity type. Current filament parameters found
on these structures were contrasted with those for C–
amorphous GaTe3–C barrier-free reference structures,
which have symmetric S-shaped I–V characteristics.
The references were fabricated on glassy carbon plates.
In both structures, a pressed glassy carbon probe was
used as an electrode to the amorphous layer; in the
structures investigated, we also used an evaporated
molybdenum film of area 10–5 cm2 as a contact. The
amorphous layer thickness was varied between 0.6 and
1.0 µm.

The transient I–V characteristics of the heterostruc-
tures were taken in the low-ohmic state (Fig. 1) with the
so-called double pulse method [8]. Two rectangular
voltage pulses (a long basic pulse and a short pulse of
variable amplitude and polarity superimposed on the

I

I0s

b

c

t

a

Um

I

4

Im

3

2

1

t

U0s U

U

Fig. 1. (a, b) S-shaped and (c) transient I–V characteristics
of the negistor structure and (1–4) electrical pulses in the
measuring circuit. (1) Pulse of the voltage (U) dropped
across the structure and (2) pulse of the current (I) through
the structure upon switching to the low-ohmic state; (3, 4)
measuring voltage (Um) and current (Im) pulses, respec-
tively; U0s and I0s are the voltage and current sustaining the
low-ohmic state; and t is time.
latter) were applied to the sample and to a series-con-
nected resistor limiting the current upon switching to
the low-ohmic state. The pulses of the voltage dropped
across the sample and the current in the measuring cir-
cuit are schematically shown in Fig. 1. The amplitude
of the former pulse (pulse 1 in Fig. 1) was large enough
for electrical instability in the sample to arise, while its
duration was long enough for a current filament to form
and the resulting low-ohmic state to be sustained during
the measurements (U0s and I0s are the sustaining voltage
and current, respectively). The latter (measuring) pulse
(pulse 3 in Fig. 1) was used to take transient I–V char-
acteristics. Its duration was no more than 10–7 s, so that
its application could not change noticeably the current
filament parameters. Thus, the transient I–V character-
istic of the negistor structure taken under the above con-
ditions reflects adequately the behavior of the current
passing through the heterojunction in the filament
region.

The radius rc of the filament (channel) cross section
in the amorphous semiconductor was calculated by the
formula

(1)

where dSi is the thickness of the epitaxial Si layer.

This formula follows from the calculation of the fil-
ament resistance RSi in the epitaxial layer under the
assumption that the current passing from the high-con-
ductivity channel in the amorphous layer spreads in the
crystalline semiconductor at an angle of 45° (such an
assumption is well justified according to [9]). In our
case, the filament in the epitaxial Si layer has the shape
of a blunted cone with radii of the lower and upper
bases dSi + rc and rc, respectively.

The current density jc in the channel was evaluated
from the relationship

(2)

where ρout is the resistivity of the region outside the
channel in the amorphous semiconductor and r0 is the
radius of the effective contact between the amorphous
and crystalline components of the heterostructure.

In real negistor structures, the condition ρout/ρc @
r0/rc is usually valid; hence, (ρc/ρout)(r0/rc – 1)2 ! 1, as
evidenced by the great difference in the currents in the
low-ohmic and initial high-ohmic states (the currents
usually differ by several orders of magnitude [3]).

The parameters rc and jc in the C–amorphous
GaTe3–C barrier-free reference structures were found
by measuring microwave noise [4, 5].
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RESULTS AND DISCUSSION

The transient I–V characteristics of our heterostruc-
tures are asymmetric with respect to the measuring
pulse polarity (Fig. 2). However, their asymmetry is
somewhat weaker than the I–V characteristic in the
high-ohmic state (Fig. 3). Unlike the high-ohmic I–V
characteristic, the forward branch of the transient curve
(the n-Si is negatively biased) contains an exponential
portion (at low voltages) and a rectilinear portion,
which is typical of the usual I–V characteristics for bar-
rier structures. The slope G = dIm/dUm (Im and Um are
the measuring current and voltage) of the rectilinear
part of the transient curve depends on the sustaining
current, increasing with it. The rectilinearity of the tran-
sient curve indicates that the total resistance of the
high-conductivity channel in the amorphous layer and
the electrically active part of the epitaxial silicon film
(its filament region) adjacent to the channel is ohmic.
The variation of the slope of the transient curve with the
sustaining current reflects the variation of the trans-
verse size of the current filament in the amorphous
semiconductor. As the temperature rises, the transient
curve shifts toward higher currents; however, the slope
of its exponential portion is virtually temperature inde-
pendent in the semilogarithmic coordinates. Hence, this
portion is described by the expression Im =
I0exp(Um/U0), where I0 is a temperature-dependent pre-
exponential and U0 = (0.15 ± 0.02) V is close to the
related parameter in the exponential voltage dependence
of the barrier resistance (Rb) in the forward direction
when the heterostructure is in the high-ohmic state [6].

To estimate the parameters of the high-conductivity
channel, it is necessary to know the resistance RSi enter-
ing into formula (1). This parameter was determined
from the slope G of the rectilinear portion of the tran-
sient curve (RSi = G–1 – Rc) on assumption that the chan-
nel resistance is given by the expression Rc = /I0s,

where  is the sustaining voltage in the low-ohmic
state of the C–amorphous GaTe3–C barrier-free refer-
ence. This assumption relies on the fact that in the low-
ohmic state, our barrier-free structure exhibits nonacti-
vated conduction in the filament region, which appears
because of electron processes like electron-phase tran-
sition [10]. Since this transition is due mainly to Joule
heating, as follows from microwave noise studies [10],
one may suppose that the sustaining of the low-ohmic
state in the amorphous layer does not depend on a
mechanism of charge carrier transfer in the high-ohmic
state of the negistor structure. In other words, the mech-
anism of sustaining must be the same in the barrier-free
reference and in the barrier structure under study. With
this assumption, the parameters rc and jc in our hetero-
structures were estimated at several micrometers and
104 A/cm2, respectively. For example, for the hetero-
structure whose I–V characteristic is shown in Fig. 2
(here, dout ≈ 0.8 µm) with the current sustaining the

U0s'

U0s'
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
low-ohmic state being equal to 6 µA, rc was found to be
(2.7 ± 0.1) µm and jc, (2.6 ± 0.2) × 104 A/cm2. In this
case, the ratio r0/rc is no more than 10, while the ratio
ρout/ρc may be as high as several orders of magnitude,
as judged from the difference between the currents
passing through the structure in the low- and high-
ohmic states at the same bias voltages. The value of ρc
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Fig. 2. Transient I–V characteristic of the amorphous
GaTe3–crystalline n-Si negistor heterostructure in the low-
ohmic state, arising when the forward voltage is applied.
The current sustaining the low-ohmic state and the duration
of the low-ohmic state are, respectively, 6 µA and 140 ns.
The measuring pulse duration is 20 ns. (a) Forward current
vs. voltage for Um ≤ Um0.
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Fig. 3. Asymmetry of the conductivity of the amorphous
GaTe3–crystalline n-Si negistor structure vs. bias voltage in
(1) the initial high-ohmic state and (2) the low-ohmic state.
α is the forward-to-reverse current ratio at the same bias
voltage. Curve 2 is calculated based on the transient charac-
teristic in Fig. 2.
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estimated with the values of rc, jc, and Rc obtained
above was equal to (0.38 ± 0.04) Ω cm.

The values of rc and jc obtained in this work coincide
with those for the C–amorphous GaTe3–C barrier-free
reference structure within the experimental error; in
addition, rc coincides with the value (0.09–0.22 Ω cm)
found by studying microwave noise in similar struc-
tures [10] by order of magnitude.

The same shape of our exponential dependence Im =
f(Um) and of the dependence Rb = f(U) mentioned
above at low forward voltages, as well as the roughly
equal values of U0 in these dependences, allows us to
argue (in view of data in [6]) that this portion of the
transient characteristic describes only processes in the
potential barrier still persisting in the filament region of
the crystalline component. The nature of this barrier
can be judged from the tentative energy band diagram
of the heterostructure in the initial high-ohmic state
(Fig. 4). When constructing this diagram, we assumed
that the screening length and the density of states in the
energy gap of amorphous GaTe3 are close to those in
glassy chalcogenide semiconductors by order of mag-
nitude [11]. In our case, the uncompensated space

eUD = 0.87

χ 1
 =

 4
.5

6

χ 2
 =

 4
.0

1

GaTe3

Eg1 = 0.87

δ1 = 0.34
∆Ev = 0.31

∆Ec = 0.55

δ2 = 0.21

n-Si

Fig. 4. Tentative energy band diagram for the heterojunction
of the amorphous GaTe3–crystalline n-Si negistor structure
in the initial high-ohmic state. δ1(2) and χ1(2) are the spac-
ings between the Fermi level and the band edge and the
electron affinities of the materials, respectively; ∆Ec and
∆Ev  are the band discontinuities at the heterojunction;
∆Eg1(2) are the energy gaps; UD is the diffusion potential;
and e is the unit charge. All parameters are given in elec-
tronvolts.

Eg2 = 1.11
charge must spread in the crystalline component of the
heterostructure to a much greater distance than in the
amorphous layer. Moreover, the diffusion potential UD

was set equal to the cutoff voltage in the C–V character-
istic found in [6]. As follows from Fig. 4, the disconti-
nuity in the conduction band edge of the heterostructure
causes a Schottky-type spike, which governs charge
carrier transfer in the structure. According to [6],
charge carrier tunneling is the prevailing mechanism of
current passage through the barrier at low forward volt-
ages, the tunnel current being of a thermal nature [12].

For the spike to be retained in the energy band of the
filament region after the heterostructure has been
passed to the low-ohmic state (i.e., for the charge trans-
fer mechanism to remain the same at low forward volt-
ages in this region, as follows from the above results),
the position of the Fermi level at the heterojunction in
the filament region must not change drastically. Irre-
spective of the Fermi level position in the high-conduc-
tivity channel, such a situation may take place owing to
the screening action of states on the crystalline compo-
nent surface and, according to [13], is typical of the real
(unprocessed) silicon surface. Impurity centers on the
silicon surface may also arise during the deposition of
amorphous GaTe3. Furthermore, the conductivity of the
channel is likely to be nonuniform (especially if cur-
rents sustaining the low-ohmic state are low) because of
a temperature gradient arising when heat is removed
through the contacts, including the contact to the sili-
con. Along with the central part of the channel with
nonactivated quasi-metallic conduction, there may
exist a thin (even tunnel-transparent) layer with resid-
ual conduction of semiconductor type near the silicon.
This layer may fix the Fermi layer in the energy gap of
GaTe3. Data reported in [14] indicate that such a near-
contact layer is a possibility.

The different asymmetries of the transient charac-
teristic in the low-ohmic state and the steady-state char-
acteristic in the high-ohmic state may be associated
with different reverse current densities in these states.
In barrier p–n structures, the reverse current is known to
be related to minority carrier drift (holes in the silicon
and electrons in amorphous GaTe3 in our case). Since
the concentration of minority carriers in the initial high-
ohmic state is relatively small, the reverse current den-
sity is insignificant. After the heterostructure has been
switched to the low-ohmic state, the reverse current
density must increase noticeably, because the free-elec-
tron concentration in the conducting channel of the
amorphous semiconductor sharply grows. Because of
this effect, the heterojunction in the filament region can
be considered as an analog of a metal–semiconductor
Schottky barrier, while in the high-ohmic state, the het-
erojunction is akin to a p–n junction with a lightly
doped p-region. If silicon is used as a semiconductor in
these junctions, the reverse current density in the
former exceeds that in the latter by several orders of
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
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magnitude, according to [13]. This is the basic reason
why the asymmetry of the filament conductivity in our
heterostructure is weaker.

CONCLUSIONS

(1) Upon switching from the high- to low-ohmic
state, the potential barrier in the current filament region
of the amorphous GaTe3–crystalline n-Si negistor
structure persists. The conductivity of this region,
which is described by the transient I–V characteristic in
the low-ohmic state, is governed by electronic pro-
cesses taking place in the silicon. The weaker asymme-
try of the filament conductivity observed upon switch-
ing is explained by enhanced electron drift through the
potential barrier under reverse biases.

(2) The parameters rc, jc, and ρc of the current fila-
ment (channel) in the amorphous GaTe3 of our hetero-
structure are on the order of several micrometers,
104 A/cm2, and 10–1 Ω cm, respectively. These values
virtually coincide with those for the C–amorphous
GaTe3–C barrier-free reference, supporting the
assumption that the origin of the high-conductivity
channel in the GaTe3 is independent of the processes
initiating electrical instability in such structures.

ACKNOWLEDGMENTS

The authors are indebted to A.-K. Oginskis for assis-
tance in the experiments.
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
REFERENCES
1. K. E. Petersen and D. Adler, IEEE Trans. Electron.

Devices ED-23, 471 (1976).
2. D. Adler, Sci. Am. 26, 36 (1977).
3. S. A. Kostylev and V. A. Shkut, Electronic Switching in

Amorphous Semiconductors (Naukova Dumka, Kiev,
1978).

4. A. esnys, A. Oginskas, K. Ga ka, and V. Lisauskas,
J. Non-Cryst. Solids 90, 609 (1987).

5. USSR Inventor’s Certificate No. 1278624, G01 K7/30
(1985).

6. A. esnys, A. Oginskas, E. Butinaviciute, et al., Litov.
Fiz. Sb. 24 (3), 83 (1984).

7. A. esnys, A. Oginskas, and V. Lisauskas, Litov. Fiz. Sb.
32, 664 (1992).

8. R. W. Pryor and H. K. Henisch, J. Non-Cryst. Solids 7,
181 (1972).

9. K. E. Petersen and D. Adler, J. Appl. Phys. 47, 256
(1976).

10. A. esnys and A.-K. Oginskis, Litov. Fiz. Zh. 38, 385
(1998).

11. N. F. Mott and E. A. Davis, Electronic Processes in Non-
Crystalline Materials (Clarendon, Oxford, 1979; Mir,
Moscow, 1982).

12. B. L. Sharma and R. K. Purohit, Semiconductor Hetero-
junctions (Pergamon, Oxford, 1974; Sov. Radio, Mos-
cow, 1979).

13. E. H. Rhoderick, Metal–Semiconductor Contacts (Cla-
rendon, Oxford, 1978; Radio i Svyaz’, Moscow, 1982).

14. A. esnys and A.-K. Oginskis, Litov. Fiz. Zh. 34, 272
(1994).

Translated by V. Isaakyan

C

^

s

^

C

^

C

^

C

^

C

^



  

Technical Physics, Vol. 47, No. 10, 2002, pp. 1268–1271. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 72, No. 10, 2002, pp. 63–66.
Original Russian Text Copyright © 2002 by Karpovich, Tikhov, Shobolov, Zvonkov.

                                                                          

SOLID-STATE
ELECTRONICS
Effect of Hydrogen on the Photoelectronic Properties 
of GaAs/InGaAs Quantum-Well Heterostructures with an Island 
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Abstract—The effect of hydrogen on the photoluminescence and planar conductivity of GaAs/InGaAs quan-
tum-well heterostructures with an island Pd layer at the anodically oxidized surface was studied. Unlike con-
tinuous deposited Pd layers, island layers do not cause the formation of defects in the GaAs surface region and
yet the Pd layer maintains high catalytic activity with respect to hydrogen. It is found that the thermal treatment
of such a structure in a hydrogen atmosphere causes atomic-hydrogen passivation of the defects in quantum
wells. Studies of the characteristics of planar photoresistors with an island Pd layer acting as hydrogen sensors
show that their hydrogen detectivity is approximately two orders of magnitude higher than that of diode struc-
tures with continuous Pd layers. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION
Metal–oxide–semiconductor (MOS) GaAs diode

structures with Pd rectifying contacts, which possess
high catalytic activity, can be used as the basis for high-
sensitive fast-response hydrogen sensors [1–3]. Their
sensitivity to hydrogen susceptibility increases as
InGaAs quantum wells (QWs) hindering hydrogen dif-
fusion into the bulk are inserted into the GaAs layer [4].
However, the deposition of a continuous Pd layer in the
case of optimal oxide layer thickness (≈4 nm) results in
defect generation in the surface GaAs region [4], which
is probably caused by the chemical reaction of Pd with
GaAs as well as by the pronounced lattice mismatch
between Pd and GaAs (the lattice constants are 3.9 and
5.7 nm, respectively). This impairs the parameters of
the gas sensors and can cause their failure.

In this paper, we report the results of studying
hydrogen interaction with QW semiconductor struc-
tures, in which a continuous conducting Pd layer is
replaced by a nonconducting island layer. Apart from
being of interest from the standpoint of fundamental
science, the study of this problem opens up prospects
for the development of a new type of sensors based on
the planar photoconductivity phenomena in GaAs lay-
ers. As in [4–6], to control the defect formation in the
surface region of GaAs, we used the photolumines-
cence from QWs, which is a very sensitive indicator of
the presence of defects.

EXPERIMENTAL
GaAs/InGaAs quantum well heterostructures

(QWHs) were grown by metal-organic vapor phase epi-
taxy (MOVPE) at atmospheric pressure on semi-insu-
1063-7842/02/4710- $22.00 © 21268
lating GaAs(001) substrates. Three InxGa1 – xAs (x ≈
0.2–0.28) QWs were incorporated into the surface
region of the GaAs epitaxial layer. The widths of these
QWs decreased with the distance from the GaAs sur-
face and amounted in different structures to 7–12, 4–5,
and 3 nm for QWs 1, 2, and 3, respectively. Both doped
GaAs layers with the electron density n0 ≈ 106 cm–3 and
undoped GaAs layers with n0 ≈ 5 × 1013 cm–3 were used
in this study.

The GaAs overlayer thickness was 20 nm, the bar-
rier layers between QWs were 30 nm thick, and the
total thickness of the entire layer was ≈0.6–0.8 µm. To
eliminate the interaction between Pd and Ga and the
formation of a compound that is insensitive to hydrogen
[7], an anodic oxide (AO) film ≈4 nm thick was grown
on the GaAs overlayer through liquid-phase anodiza-
tion prior to Pd deposition.

The Pd layers were deposited on the AO film using
vacuum thermal evaporation. The continuous semi-
transparent Pd layer had a thickness dPd ≈ 5 nm and a
surface conductivity of ≈10–3 Ω–1/h. The island layers
were obtained with a nominal thickness of ≈2.5 and
1.5 nm and possessed a conductivity lower than
10−5 Ω−1/h. The thickness of the continuous Pd and AO
layers were measured to an accuracy of ≈0.3 nm by a
Topometrix atomic-force microscope (AFM) using an
etched or a scratched step (for AO or Pd layers, respec-
tively). The nominal thickness of the island Pd layer
was determined from the weight ratios of the evapo-
rated charges. According to AFM studies, the conduct-
ing Pd layers with a nominal thickness of 5 nm had an
average grain size of ≈200 nm, and, in the island layers
002 MAIK “Nauka/Interperiodica”
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with a nominal thickness of ≈2.5 nm, the average grain
size was ≈50 nm.

The planar structures were fabricated by the fusion
of two Sn ohmic contacts to the GaAs epitaxial layer.
The area of the contacts was 1 × 5 mm2, and the dis-
tance between them was ≈4–5 mm. The diode struc-
tures Pd/AO/GaAs/Sn with a continuous Pd electrode
were also formed on the conducting GaAs substrate
(n0 ≈ 1016 cm–3).

The influence of hydrogen exposure on the charac-
teristics of the planar and diode structures was studied
in the gas-sensor mode. At the optimal temperature of
370 K, the samples were subjected to pulses of hydro-
gen treatment in an air–argon flow mixture with a
hydrogen concentration  ≈ 0.002–0.2 vol % [2] and
in the heat-treatment mode (the samples were briefly
heated (for 600 s) in hydrogen at 743 K). The planar
conductivity and photoconductivity (PC) under illumi-
nation with white modulated light, photoluminescence
(PL), and photovoltage (in the diode structures) were
investigated.

RESULTS AND DISCUSSION

1. Photoluminescense Spectra

Figure 1 presents the PL spectra of the studied sam-
ples at various thicknesses of the Pd electrode. It is evi-
dent from Fig. 1 that the PL intensity in the QW
decreases after the Pd layer deposition. The decrease in
the PL intensity depends on the distance of the QW
from the surface and the thickness of the Pd layer and
is caused by defect generation in the course of the
chemical interaction of Pd with GaAs, as well as by
defect penetration into the QW material [4]. The most
pronounced effect is observed in the region of the first
QW. It is evident that, at the nominal thicknesses of 1.5
and 2.5 nm corresponding to the discontinuous Pd
layer, the defect-formation rate is substantially lower.

PH2
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3
3

Fig. 1. Effect of the Pd electrode thickness dPd on the PL
spectra. dPd = (1) 0, (2) 1.5 and 2.5, and (3) 5.0 nm.
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Figure 2 illustrates the influence of the thermal treat-
ment in hydrogen under atmospheric pressure at 473 K
for 600 s on the PL spectra of the structures with differ-
ent thicknesses of the Pd electrode. After such a treat-
ment, pronounced PL quenching (by more than two
orders of magnitude) occurs in the first QW in the struc-
tures with a continuous Pd electrode, and far less
quenching (approximately by a factor of 3) occurs in
the structures with an island Pd layer. Simultaneously,
PL amplification in the second and third QW by a factor
of 2–3 is observed in both structures, which indicates
that atomic hydrogen passivates the defects in these
wells. The intensity of the edge PL in GaAs (1.5 eV)
was almost the same in all structures.

The considerable decrease of the PL intensity in the
QW closest to the surface is characteristic of hydrog-
enization in a hydrogen plasma and is related to the
accumulation of defects formed in the course of the ion
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Fig. 2. Effect of thermal treatment in hydrogen ambient on
the PL spectra. dPd = (1) 0, (2) 2.5, and (3) 5.0 nm.
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Fig. 3. Dependence of the steady-state PC response ∆σSL
(2) for the planar structure (dPd ≈ 2.5 nm) and of the barrier
photovoltage ∆VL for the diode structure (1) on hydrogen
concentration at 370 K.
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Effect of hydrogen on the planar dark conductivity and photoconductivity of the resistor structures in the gas-sensor mode

GaAs doping level, 
n0, cm–3 dPd, nm

 = 0  = 0.22 vol %

σn, Ω/h σL, Ω/h σn, Ω/h σL, Ω/h

5 × 1013 0 5.0 × 10–6 9.7 × 10–6 5.0 × 10–6 9.7 × 10–6

1.5 2.5 × 10–6 2.9 × 10–6 2.6 × 10–6 2.4 × 10–6

2.5 5.5 × 10–5 1.4 × 10–3 5.8 × 10–5 7.3 × 10–5

5.0 1.6 × 10–3 1.2 × 10–6 1.7 × 10–3 5.6 × 10–7

1016 0 1.1 × 10–3 1.6 × 10–5 1.1 × 10–3 1.6 × 10–5

1.5 1.6 × 10–3 1.7 × 10–5 1.7 × 10–3 1.2 × 10–5

2.5 1.4 × 10–3 8.8 × 10–6 1.5 × 10–3 2.2 × 10–6

5.0 1.5 × 10–3 3.5 × 10–6 1.5 × 10–3 2.4 × 10–6

PH2
PH2
bombardment of the surface [6]. It might be expected
that this effect can be avoided if hydrogen is introduced
through the Pd electrode. However, these expectations
are partly realized only in the case of the island Pd
layer. This result can be explained by the fact that the
island Pd layer induces weaker stresses in the oxide
and surface GaAs layer, which ensures the higher
structural quality of these regions. The hydrogen-
induced passivating effect becomes apparent only in
the second and third QW, as in the case of the treat-
ment with hydrogen plasma [6]. This fact is probably
related to the higher penetrability of atomic hydrogen
in comparison with the defects, which are mainly
arrested by the first QW.
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Fig. 4. (a) Kinetic curves ∆σL for a planar structure at dif-

ferent hydrogen concentrations:  = (1) 0.22, (2) 0.022,

and (3) 0.011 vol %; T = 370 K; dPd ≈ 2.5 nm. (b) Response
to hydrogen of the planar structure plotted as ln[(∆σSL –
∆σL)/δσSL] versus t for the rise (1, 2) and as ln(∆σL/∆σSL)
versus t for the decay (3, 4):  = (1) 0.088; (2, 4) 0.011,
and (3) 0.22 vol %; T = 370 K; dPd ≈ 2.5 nm.

PH2

PH2
2. Planar Conductivity and Photoconductivity

The data for the hydrogen effect in the gas-sensor
mode on the dark conductivity σn reduced to the surface
conductivity and on the photoconductivity σL of the
planar structures at 370 K are listed in the table.

It is obvious from the table that the hydrogen
reduces the planar photoconductivity of the GaAs lay-
ers coated with the Pd layer and scarcely affects
(increases only slightly) the dark conductivity. The
largest relative change in photoconductivity is observed
for the layers with a low density of carriers when the Pd
layer thickness dPd ≈ 2.5 nm.

The decrease in the planar PC under exposure to
hydrogen is reasonably explained by the barrier mech-
anism of PC in GaAs layers [8]. The atomic hydrogen
appearing at the Pd islands due to catalytic reaction [1]
penetrates through the oxide layer to the GaAs surface
and reduces the negative charge at surface states via
chemisorption, which results in the reduction of the
surface barrier height and barrier PC. The logarithmic
dependence of the photoconductivity of the layers on
the illumination intensity L (σL ~ ) is evidence in
favor of the barrier mechanism [8].

3. Gas-Sensor Characteristics

Figure 3 presents the dependences of the steady-
state PC response ∆σSL for the planar structure and
those of the photovoltage ∆VL for the diode structure on
the hydrogen concentration at 370 K. At a low concen-
tration, these dependences are logarithmic, which cor-
responds to the heterogeneous hydrogen adsorption [1]
and is typical of gas sensors based on Schottky diodes
and MOS structures. The response leveling-off as the
hydrogen concentration increases is explained by the
filling of the adsorption centers. The detectible thresh-
old concentration of hydrogen obtained through the
extrapolation of ∆σL and ∆VL dependences on 
for a planar structure is approximately two orders of

Llog

PH2
log
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magnitude lower than that for a diode structure (com-
pare curves 2 and 1, respectively). It should be noted
that this threshold value (~10–4 vol %) is of the same
order of magnitude as for silicon diode structures [9].

The operation speed of planar structures at 370 K is
characterized by the kinetic curves ∆σL measured under
the pulsed exposure to hydrogen and shown in Fig. 4a.
It follows from Fig. 4a that when the hydrogen flow is
on, the steady-state ∆σSL value is attained and, when the
hydrogen flow is off, the response essentially decreases
to zero. Both the response rise and decay times depend
on the hydrogen pressure and vary from 0.1 to 100 s,
which corresponds to the characteristics of fast-
response sensors [1, 2]. Analysis of the kinetic curves
has shown that the response rises exponentially
(Fig. 4b, curves 1, 2) and decays nonexponentially
(Fig. 4b, curves 3, 4). The adsorption time τa (Fig. 5,
curve 1), which is determined from the response rising
curve, varies in inverse proportion to hydrogen pressure
and falls in the range 0.1–10 s at T = 370 K. The des-
orption time τd determined from the response decay
curve at a level of 0.5 from the steady-state value has a

weaker dependence on pressure (τd ~ 1/ ).PH2

100

10–110–2

101

100

1

2
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Fig. 5. Dependences of time of adsorption τa and desorption

τd on  for planar structure: (1) corresponds to τa and

(2) corresponds to τd. T = 370 K, dPd ≈ 2.5 nm.

PH2
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CONCLUSION

We have shown that photoresistor GaAs/InGaAs
QW heterostructures with a discontinuous Pd layer on
the anodically oxidized surface are promising as hydro-
gen sensors. Beneath the island Pd layer, the defect-for-
mation rate is considerably lower in such structures
than that beneath a continuous Pd layer. We have dem-
onstrated the possibility of passivating defects in a QW
by incorporating atomic hydrogen through the island
Pd layer into these structures.
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Abstract—The problems of developing methods for multidimensional (multichannel) data acquisition as
applied to the optical study of the surface are considered. Unlike conventional methods of transition to multi-
dimensional measurement, which employ mechanical scanning, the use of new-type instruments that allow for
coordinate-sensitive and time measurements are discussed. Both the sensitive elements (detectors) and the
instruments (hyperspectrometers) created for multidimensional coordinate–spectrum–time measurements are
described. The application of hyperspectrometers makes it possible to increase manyfold the information con-
tent of measurements. The fluorescence of dye molecules deposited on the surfaces of germanium and silicon
preirradiated by a laser beam is studied. The scattering spectra from these samples are examined. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

When studying many physical phenomena, the tran-
sition from measurements of some property at a point
of the space to multidimensional (multichannel) mea-
surements is a challenge. An example of such a transi-
tion is the measurement of double-differential scatter-
ing cross sections (angular and energy cross sections)
for molecular beams [1]. Usually, a detector with a very
small aperture is used to measure the intensity of a
molecular beam scattered at a certain angle and the
energy of its particles [2]. The transition from one-
dimensional to multidimensional measurements in this
case is performed by mechanically scanning the detec-
tor over various scattering angles of the beam. The dis-
advantage of this approach is obvious: the use of a
detector with a pointlike aperture drastically deterio-
rates the statistics of measurements and substantially
increases the measurement time. Any mechanical scan-
ning (especially one-dimensional scanning) makes the
study of anisotropic processes difficult and imposes
extremely stringent (often unachievable) requirements
on the stability of the system components. Actually, an
improvement of the measurement accuracy in this
approach (by a decrease in the detector aperture) leads
to a quadratic decrease in the counting rate and to a cor-
responding lengthening of the experiment time. More-
over, when using mechanical scanning, the time varia-
tion of the parameters of an experimental setup imposes
strict restrictions on improving the measurement accu-
racy by decreasing the detector aperture. For the same
reason, correlation measurements with several point-
like apertures are made difficult. Similar problems also
appear in optical studies of surface, which are finding
1063-7842/02/4710- $22.00 © 21272
ever-widening application in micro- and nanotechnolo-
gies.

Multidimensional (multichannel) measurements of
differential scattering cross sections have been touched
upon in [3], where the double-differential scattering
cross sections of molecular beams scattered at small
angles were measured. In this work, we study the sur-
face inhomogeneity of semiconductors by the dye
probe method to elucidate the possibility of the transi-
tion from point (0D) to two-dimensional (2D) and then
to multidimensional (ND) measurements. To date,
studies of surface states by the molecular probe method
have already become classical. Instruments for such
studies are usually based on a pair of monochromators
that allow one to measure the fluorescence intensity at
a wavelength λ1 for an illumination wavelength λ2 at
one point in the parameter space.

The transition from 0D to ND measurements in the
space of data is usually performed by the mechanical
scanning of both the sample and the settings of the
monochromator. The disadvantage of this approach is
the necessity of making a wealth of measurements for
all parameters of interest. Moreover, mechanical scan-
ning always implies a backlash in the motor (e.g., in
changing the coordinate) or another cause of inaccu-
racy in positioning the point of observation. Within the
time taken to go from one point to another in the coor-
dinate or wavelength space, undetected changes in
other parameters influencing experimental results may
occur. Therefore, at different points, the measurements
are virtually made under different conditions. Note that
the noise of photosensitive devices (PSDs) used in 0D
002 MAIK “Nauka/Interperiodica”



        

DEVELOPMENT OF METHODS FOR MULTIDIMENSIONAL MEASUREMENTS 1273

                                     
measurements concentrates at a point of measurement
and limits the sensitivity of a technique.

We elaborate upon this classical fundamental
approach by replacing mechanical scanning by the use
of new-type detectors that enable coordinate-sensitive
and time measurements. Such an elaboration is possible
owing to modern computer facilities allowing for real-
time processing of huge data arrays.

The basic aim of this work is the development of
next-generation PSDs that differ from conventional sin-
gle-channel PSDs in that they have 2D and time resolu-
tions. The use of such photodevices made it possible to
create so-called hyperspectrometers for multidimen-
sional studies. According to the currently accepted ter-
minology, hyperspectral measurements are those per-
formed simultaneously in a range from several hun-
dreds to a thousand spectral channels and a
hyperspectrometer is a device intended for the simulta-
neous measurement of spectral and spatial coordinates.
These devices are also called videospectrometers. Their
application enables the information content of experi-
mental data to be increased by several orders of magni-
tude (depending on the PSD resolution) or significantly
improves the sensitivity of the measurements.

The instruments were tested by investigating the
surface inhomogeneity of semiconducting germanium
preirradiated by a laser beam. Samples studied were Ge
wafers repeatedly (N = 103–105) subjected to pulsed
laser radiation of duration τ = 0.1–1.0 µs, absorbed
energy density Q ~ 0.1 J/cm2, and beam radius ≈25 µm.
The laser irradiation was carried out so that different
areas of the sample were exposed to different radiation
doses. Then, the sample thus treated was coated by a
monomolecular film of rhodamine-B dye by placing it
in a solution of rhodamine in ethyl alcohol for a given
time.

EXPERIMENTAL INSTRUMENTS 
AND MEASURING TECHNIQUES

We created two instruments with different sensitive
elements (detectors). The former is a hyperspectrome-
ter based on an image-intensifier tube (IIT) where the
signal is picked up by a charge-coupled device (CCD).
In essence, it is a very sensitive videospectrometer. This
instrument displays 2D videoinformation: the X axis is
the coordinate of a narrow stripe on the sample along
which the radiation dose varies, the Y axis is the radia-
tion wavelength λ, and the Z axis is the intensity speci-
fying the spectral density. In other words, we record a
set of coordinate-swept spectra.

Thus, the instrument makes it possible to perform
measurements at several hundreds of thousands of
points in the coordinate–wavelength space per second.
Simultaneous measurement over the whole length of
the sample, along which its characteristics vary, gives
the exact radiation distribution undistorted by mechan-
ical scanning. For the case when the properties of the
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
sample vary along another axis as well, provision is
made for mechanical scanning over a narrow stripe
along the other coordinate of the sample. This allows us
to image the whole sample in the hyperspectrum.

However, the property of signal accumulation,
which is an advantage of the IIT + CCD configuration
as a detector of relatively strong signals, turns out to be
a disadvantage for investigating ultraweak signals and
the time characteristics of the fluorescence signal.

With statistical methods, we can go beyond the
dynamic range of CCDs, which does not exceed 100 for
series-produced CCDs and achieves 1000 for commer-
cially available application-specific CCDs. It can be
raised by two orders of magnitude for 7 min owing to
accumulation.

The second modification is a hyperspectrometer
based on an original time- and position-sensitive detec-
tor (TPSD) from the Reagent Research & Development
Center [4]. This device can detect individual photons,
find their 2D coordinates in the detection plane, and
determine the photon arrival time with an accuracy as
high as 40 ps (in the most precision experiment). The
design of the TPSD will be considered below.

The use of the TPSD as a sensitive element gives a
new property to the hyperspectrometer on its basis,
namely, the possibility of detecting weak signals
against the background of stronger ones with intensities
several orders of magnitude higher than those of the
former, since the dynamic range of the TPSD is
extremely large (1–106 l/s).

The TPSD-based device can serve as the videospec-
trometer described above and also makes it possible to
gain three-parameter information. The third parameter
is the time delay between the instance of the sample-
illuminating pulse application and the instance of pho-
ton detection (the other two are the photon coordinates
in the detection plane). Thus, the advantages of the
approach using the TPSD over all other approaches to
studying fluorescence are the following:

(1) It is possible to perform time measurements with
a step of 10–11 s.

(2) The photon counting rate of the TPSD achieves
106 l/s.

(3) The device is almost noiseless. The noise is as
low as 10–3 l/s at an image point (pixel), which is negli-
gibly small in comparison with the valid information
flow.

(4) The new approach allows us to measure not only
the spatial dependence of the spectra for inhomoge-
neous samples but also to find other coordinate depen-
dences for homogeneous samples subjected to nonuni-
form effects of temperature, electric and magnetic
fields, deformation, as well as laser and other radia-
tions.

The new photosensitive devices, allowing the spatial
and time resolution of incident radiation, differ from
conventional ones in that they have microchannel plates
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that multiply photoelectrons and a special electron col-
lector that determines the coordinates of individual
photons at the photocathode input. The diagram of such
a coordinate-sensitive photodetector, along with the
analog-to-digital converter subsystems, is shown in
Fig. 1. The TPSD modification described in [4] makes
it possible to carry out synchronous measurements and
provides a 6D data flow.

In this work, we used this approach to observe the
fluorescence spectrum variation when the surface of the
semiconductor is irradiated by a laser beam (the TPSD-
based instrument detecting weak signals) and also to
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Fig. 1. Schematic diagram of the coordinate-sensitive pho-
todetector: (1) metal-ceramic vacuum chamber; (2) photo-
cathode; (3) microchannel plates (chevron); and (4) multi-
anode collector. Numerical subsystems of the detector:
(5) digital–analog processor; (6) time channel (electronics
assigning exact arrival time to each photon); (7) time-to-
amplitude converters; (8) analog-to-digital converters;
(9) signal processor; (10) interface unit; and (11) personal
computer.
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Fig. 2. Schematic diagram of the instrument: (1) radiation
source; (2) fluorescence cell; (3) mechano-optical unit;
(4) detector; (5) computer.
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Fig. 3. Schematic diagram of the mechano-optical unit:
(1) mirror or diffraction grating; (2) turntable; (3) adjust-
able slit; (4) entrance objective lens; (5) lens hood;
(6) replaceable filters; (7) second objective lens; (8) exit
objective lens; (9) image plane; and (10) sample plane.
take the dispersion curve for the surface under the same
laser treatment (the IIT-based setup detecting strong
signals).

The schematic diagram of both the TPSD- and IIT-
based hyperspectrometers is the same (they differ only
in the detector they use) (Fig. 2). A 1-kW halogen lamp
was used as a basic radiation source. In addition, we
used a pulsed green laser with a wavelength of 532 nm,
a pulse width of ≈20 ns, and a pulse-repetition rate of
≈5 kHz. We also used UV sources (a DDS-30 lamp and
a sunlamp), as well as a monochromator with a cali-
brated broadband lamp.

A fluorescence cell represents a closed volume pro-
tected against stray light and containing a sample
placed on an x–y table. The cell can work in two modes.

(1) The cell has two windows; one is an entrance
window with a filter that transmits only the exciting
component of the radiation from the source. A broad
uniform beam illuminates the sample at an angle Θ =
45° ± 10° to the sample plane.

(2) The 1-kW halogen lamp is placed near the cell.
A light guide 1 cm in diameter is brought to the lamp.
It sustains a peak power of up to 1 MW in a pulse and
can be placed close to the emitting surface of the lamp.
The diameter of individual fibers of the light guide is
5 µm. The end of the light guide is equipped with a
530-nm interference filter. The light guide is placed
immediately adjacent to the sample.

With the UV radiation used for the excitation of flu-
orescence, the illumination may be incident perpendic-
ularly to the sample. This is achieved with a glass plate
inserted in the cell that reflects the UV radiation toward
the sample by one its side and transmits visible fluores-
cence radiation.

The mechano-optical unit consists of the following
elements (Fig. 3):

(1) An entrance objective. The sample studied is
located at its front focus, and a vertical adjustable cali-
brated slit is located at its back focus. The slit width can
be continuously adjusted from 10 µm to 0.4 mm, is
placed parallel to the sample, and cuts a narrow strip
(up to 10 mm wide) from the sample image along the
X axis.

(2) Another objective lens. The calibrated adjustable
slit is at its front focus, and its back focus extends to
infinity. As a reflecting surface, a mirror or a diffraction
grating with lines directed parallel to the entrance slit
can be used. The diffraction grating decomposes the
image into spectra along the axis perpendicular to the
slit axis. The reflecting surface is mounted onto a rotat-
able platform.

(3) An exit objective lens. Its front focus extends at
infinity, and the surface of the photon detector is at its
back focus. The mechano-optical unit projects the
image spectrum vs. the X coordinate along the stripe
onto the surface of the detector. In this way, a continu-
ous three-dimensional picture in the coordinates
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
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“wavelength–coordinate of the stripe along the sample
axis–radiation intensity” is recorded. We use a diffrac-
tion grating with 300 lines per 1 mm, which projects a
spectral range of 0.4–0.7 µm onto the surface of the
PSD. To eliminate background light, protective black-
ened shields were mounted. The opacity of the shields
was checked by completely closing the slit and measur-
ing the background intensity with the radiation source
on and off.

The measuring technique based on the hyperspec-
trometer equipped with detectors built around the IIT
and TPSD is described in detail elsewhere [5]. Note that
calibration can be carried out by various methods using
both objects with a given calibrated shape and a mono-
chromator; the absence of background light is checked.

Below, we present several results obtained with our
instrument.

EXPERIMENTAL RESULTS

The setup with the TPSD-based detector was used to
measure the fluorescence hyperspectrum of rhodamine
deposited on a germanium sample preirradiated by a
laser beam, as was described in the Introduction. The
sample was illuminated by 530-nm-wavelength radia-
tion.

As an example, Fig. 4 shows the three-dimensional
fluorescence spectrum of the Ge sample coated by
rhodamine-B.

The hyperspectrum recorded was separated into
spectra corresponding to sample regions variously
treated by the laser radiation. To determine the irradia-
tion dose, we introduced a measure W of sample dam-
age that is related to the absorbed energy Q. Figure 5
shows the fluorescence spectra of regions exposed to
different doses (Q in arbitrary units). From these spec-
tra, one can gain information on the dose dependence of
the fluorescence intensity maximum, FWHM, etc.

It is seen from Fig. 5 that the increase in the lasing
intensity quenches the fluorescence possibly because of
energy transfer to the solid [6]. We can also draw the
conclusion that the FWHM of the spectra increases
with irradiation intensity, which is likely to be due to
the inhomogeneity of the surface and the various states
of adsorbed molecules [7].

The instrument equipped with the IIT-based detec-
tor was used to take scattering spectra from Ge samples
subjected to laser irradiation. For illumination, we used
an incandescent lamp with the calibrated spectrum.
Figure 6 shows the scattering spectra for regions of the
sample variously damaged by the laser radiation.

These spectra show that the scattering intensity
increases with the intensity of surface irradiation and,
hence, with the concentration of surface defects. Based
on the spectra recorded and knowing the lamp spec-
trum, we constructed dispersion curves (Fig. 7).
Figure 7 demonstrates the dependence of the diffuse
reflection factor on the wavelength of the incident light
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
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for regions exposed to various irradiation doses. It was
found that the shape of the spectral dispersion curve
strongly depends on the surface damage. Geometri-
cally, this fact can be attributed to the formation of sur-
face lines similar to those forming a diffraction grating.
Accordingly, these lines cause interference effects that
redistribute the reflection spectra.

CONCLUSION

The experimental study of the fluorescence proper-
ties of the material exhibited the possibility of multidi-
mensional (multichannel) data acquisition.

Unique instruments for 2D hyperspectral measure-
ments to study spatially nonuniform spectral character-
istics of the surfaces were created. Their modifications
employ various photonic devices.

A measuring technique that allows one to rapidly
take the spectra of reflected and fluorescence radiations
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Fig. 7. Dispersion curves for variously irradiated regions of
the Ge sample. For (1–6), see Fig. 6.
from a stripe separated on the sample surface and pro-
cess them in selected regions was developed.

A software package for controlling the instrument
and processing experimental results was devised.

The method of hyperspectral analysis was used to
visualize the three-dimensional dependences of the flu-
orescence spectra and scattering spectra on the surface
damage.

Owing to multidimensional data acquisition, the
instrument and the software make it possible to greatly
accelerate the measurement of the spectral characteris-
tics of samples and gain information that is unattainable
using conventional unidimensional systems.
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Abstract—The efficiency of hydrogen evolution from transformer oil into a vacuum and into air under normal
pressure is studied for the case when the oil is exposed to focused ultrasonic radiation. The study is performed
by the method of spectroscopy of biharmonic-pumping coherent anti-Stokes Raman scattering (CARS) based
on stimulated Raman scattering (SRS). Ultrasonic radiation at a frequency of 1.76 MHz is excited by a spherical
piezoceramic transducer mounted on the bottom of the vessel and is focused on the surface of the oil. This
causes the intense stirring of the oil with the formation of a fountain. The room-temperature diffusion coeffi-
cient of hydrogen in the transformer oil, 10–7 m2/s, is found by approximating experimental data by a theoretical
relationship for hydrogen evolution into air. It is shown that ultrasonic radiation with a power density of
2.2 kW/m2 accelerates diffusion processes ten- to fifteen-fold. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is known that gases dissolved in an insulating liq-
uid (IL) can be extracted by evacuation into a vacuum
under reduced ambient pressure [1]. Air dissolved in
water is usually removed by means of thermal deaera-
tion, where the water is heated to a temperature exceed-
ing the boiling point corresponding to the pressure in
the working zone of a deaerator [2]. Some gases can be
removed from water by chemical methods. For exam-
ple, the removal of carbon dioxide is accomplished by
combining the gas with reagents (ammonia, an alkali,
or sodium silicate) introduced into the solution [3]. It
has been suggested [4] that gases may be extracted by
convection arising when the liquid is irradiated by low-
intensity microwaves. Finally, dissolved gases can be
extracted from liquids ultrasonically [5].

Outgassing efficiency is usually estimated with
chromatographic analysis. When the amount of dis-
solved gases in an IL is determined by direct vapor
analysis with the use of a chromatograph, the gases are
extracted by shaking the sample at regular intervals
until thermodynamic equilibrium sets in [6]. However,
the chromatographic method, based on the separation
of the gas sample into components with a chromatogra-
phy column [7], makes the real-time observation of liq-
uid outgassing impossible. Therefore, an alternative
method of express diagnostics of liquid ultrasonic out-
gassing would be of great interest.

In this work, we demonstrate that the laser spectros-
copy of SRS-based CARS with biharmonic laser
pumping (BLP) can be used for studying hydrogen evo-
lution from an IL exposed to a focused ultrasonic radi-
ation.
1063-7842/02/4710- $22.00 © 21277
SRS-BASED CARS DIAGNOSTICS 
OF HYDROGEN EVOLUTION

CARS is a four-photon parametric process where a
coherent beamed radiation with an anti-Stokes fre-
quency ωa = 2ωp – ωs is generated by mixing two laser
beams at frequencies ωp and ωs in a medium with a
cubic nonlinear susceptibility χ(3) [8]. As applied to the
diagnostics of hydrogen in a gaseous mixture, the
essence of the method is as follows. A gaseous mixture
is probed by biharmonic laser pumping with frequen-
cies ωp and ωs roughly meeting the resonance condition

(1)

where Ωρ is the frequency of the Raman transition
Q01(1) of hydrogen that is present in the gaseous mix-
ture of density ρ.

The radiation intensity Ia at the frequency ωa is given
by

(2)

where Ip and Is are the intensities at the frequencies ωp

and ωs, respectively; χ(3)R = γr is the resonant cubic

susceptibility of gas molecules; χ(3)NR = cBGγnr is the
nonresonant cubic electron-related susceptibility asso-
ciated largely with buffer gas molecules participating in
an scattering event; γr and γnr are the cubic hyperpolar-
izabilities of hydrogen molecules and buffer gas mole-
cules, respectively; and  and cBG are the molecular
concentrations of the hydrogen and buffer gas, respec-
tively.

ωp ωs– Ωρ,≈

Ia χ 3( )R χ 3( )NR+
2
Ip

2Is,∼

cH2

cH2
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The resonant cubic susceptibility χ(3)R is given by [9]

(3)

where Γ is the half-width of the Raman-active transi-

tion line,  is the difference in the level populations,
and dσ/do is the molecular cross section of spontaneous
Raman scattering (SpRS) for this transition.

From (3), it follows that the value of |χ(3)R| decreases
noticeably if |Ωρ – ( )| @ Γ. This means that the
intensity Ia depends mostly on scattering by an impurity
being detected when condition (1) is met.

It was shown [10] that if the CARS method is
applied for detecting a small amount of hydrogen
(small ) in a gaseous mixture of constant density ρ,
when condition (1) is satisfied and the nonresonant
scattering by buffer gas molecules can be neglected,
one can use the relationship

(4)

where ba is a dimensional coefficient, Γρ is the
half-width of the hydrogen molecule transition line at a
gaseous mixture density ρ, and ∆ωρ = (ωp – ωs) – Ωρ =
Ωg – Ωρ.

In gaseous mixtures, the half-width Γρ of hydrogen
molecules depends on the Dicke collisional narrowing
[11] and ∆ωρ may vary with ρ. If, however, the density
ρ is constant, the values of Γρ and ∆ωρ are fixed; hence,
the concentration  can be determined by measuring
the radiation intensities at the frequencies ωa, ωp, and
ωs. BLP simultaneously satisfying conditions (1) and
∆ωρ = const can be found by applying the SRS method
to compressed hydrogen, for example, with the vibra-
tional transition Q01(1) [12–15]. In this case, the laser
part of the equipment is greatly simplified [15].

LIQUID OUTGASSING IN THE FIELD 
OF FOCUSED ULTRASOUND

It is known that ultrasonic energy (momentum)
losses generate so-called radiative force [16]. Due to
this force, a liquid jet (fountain) may appear over the
focal plane of a spherical ultrasonic vibrator, intensely
stirring and thus outgassing the liquid. Moreover, with
a focused ultrasonic radiation, the acoustic pressure
amplitude is spatially nonuniform (gradient). In the
field of such an acoustic wave, gas bubbles experience
the action of the Bjerknes force [17, 18]:

(5)

χ 3( )R 1
3
---∆k

n2πcH2
c4

πΓωs
4

-------------------dσ
do
------ Γ

Ωρ ωp ωs–( )– iΓ–
-----------------------------------------------,=

∆k
n

ωp ωs–

cH2

cH2

1
ba
----

Ia

Ip
2Is

-------- 
  1/2

Γρ
2 ∆ωρ

2+( )1/2
,=

cH2

FB V—P〈 〉 ,–=
where V and P are the instantaneous values of the bub-
ble volume and acoustic pressure, respectively, aver-
aged over the vibration period.

Under the action of this force, the bubbles migrate
toward the higher pressure zone, which is in the focal
region if the ultrasonic radiation is focused [19]. Con-
sequently, gas inclusions coming to this region under
the action of the Bjerknes force will be rejected into the
environment together with the fountain, and the liquid
outgassing will become more vigorous. However, suffi-
ciently intense acoustic waves may activate chemical
reactions [5], such as the decomposition of the IL with
the formation of hydrogen, methane, acetylene, etc.
[20]. Therefore, IL outgassing per se should proceed at
moderate ultrasonic intensities.

EXPERIMENTAL

The simplified experimental scheme is depicted in
Fig. 1. Spherical piezoceramic transducer 1 is mounted
on conductive support 2 with glass vessel 3. The trans-
ducer, which is connected to rf generator 4 (~27 V,
1.76 MHz), excites acoustic vibrations in liquid 5. The
ultrasonic radiation propagating in the liquid is focused
on its surface and produces fountain 6, which disinte-
grates into droplets. The scheme allows for the creation
of a rarefied area above the liquid with fore pump 7
before the ultrasonic radiation is generated. Valve 8
shuts off the fore pump from the rarefied area during the
measurements. Hydrogen evolving from the liquid
passes through tube 9 to measuring cuvette 10 with
optical windows and is detected at regular intervals by
the SRS–CARS method. To this end, the second har-
monic of single-active-element single-frequency YAG :
Nd3+ laser 11 [21] was used. The peak energy of a laser
pulse at a wavelength of 532 nm was 40 mJ; the pulse
half-width, τp = 7 ns; and the divergence, about
0.6 mrad. The pulse energy was varied between 15 and
20 mJ. Lens 12 (F1 = 0.66 m) focuses the laser output
on SRS cuvette 13 (L1 = 0.86 m) containing com-
pressed molecular hydrogen of density 2.8 Amagat.
BLP arising in cuvette 13 from SRS by the vibrational
transition Q01(1) is collimated by lens 14, is separated
from other SRS components with a set of filters 15 (18),
and is focussed on measuring cuvette 10 (L2 = 0.21 m)
with objective lens 16 (F2 = 0.13 m). The anti-Stokes
component, which arises in cuvette 10 because of
CARS, is applied to monochromator 19 through
lens 17. Then, the signal is recorded with a photoelec-
tric multiplier and multichannel laser-pulse-recording
system 20, which is interfaced with a PC. During
recording, the signal is multiply averaged. The product

Is entering into formula (4) is measured with an addi-
tional optical branch (omitted in Fig. 1) consisting of a
reference measuring cuvette with hydrogen com-
pressed to a density of 2.8 Amagat and an additional
system for recording the anti-Stokes component [10].

Ip
2
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Unlike the chromatographic method, the approach
described above is in many respects selective and pro-
vides real-time observation of the kinetics of hydrogen
evolution from the liquid phase.

The ultrasonic power N introduced into the liquid
was estimated using the law of conservation of energy.
The work spent on overcoming surface tension forces
was neglected. It was assumed that the ultrasonic
energy is completely converted to the energy of the liq-
uid jet. Then [22],

(6)

where ρliq is the density of the liquid, g is the free-fall
acceleration, h is the fountain height in a vacuum
(Fig. 1), and d is the mean diameter of the fountain jet.

For d = 1.5 mm, h = 0.15m, ρliq = 880 kg/m3, we
have N = 4 mW. At the focus of transducer 1, the ultra-
sonic power density is 2.2 kW/m2. Such a value does
not cause the chemical decomposition of ILs [22].

We studied hydrogen desorption from hydrogen-
saturated oil. Saturation was accomplished as follows.
First, some amount of hydrogen was introduced into the
evacuated chamber containing the oil. Then, the cham-
ber was exposed to ultrasonic vibration for 30 min.
Under the action of ultrasound, the oil was vigorously
mixed with gas-phase hydrogen. Then, the ultrasound
was switched off, and, after the complete vibration
relaxation, the hydrogen was removed from the cham-
ber with the fore pump switched on for a short time.

KINETICS OF HYDROGEN EVOLUTION

The kinetics of hydrogen evolution from the trans-
former oil is illustrated in Figs. 2 (desorption in a vac-
uum) and 3 (under normal pressure). In a vacuum
(Fig. 2, curve 1), the gas may be desorbed spontane-
ously for some time. Under these conditions, the ultra-
sonic vibration greatly accelerates the gas evolution
(Fig. 2, curve 2). Data points (t) for gas evolution
in Fig. 2 are well fitted by the function

(7)

where  is the initial hydrogen volume in the oil
sample normalized to normal conditions and τ is the
characteristic time of gas evolution.

As follows from the experiments, the ultrasonic
vibration cuts the characteristic time τ 3.9 times.

Under normal pressure in air, the desorption of the
hydrogen from the oil is appreciably retarded (Fig. 3,
the early portion of experimental plot 1). However, as
ultrasound is switched on at t = t1, the hydrogen con-
centration c2 in the measuring cuvette sharply rises. If
the switching delay increases to t2, the curve c2(t) shifts
to the right along the time axis (Fig. 3, experimental
plot 2). The rate of growth of c2(t) in air changes notice-

N π/8( )ρliqd2 2gh( )3/2,=

VH2

VH2
VH2

0( ) 1 t/τ–( )exp–[ ] ,=

VH2

0( )
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ably some time after ultrasound has been switched on.
This is attributed to the finite time tD of hydrogen diffu-
sion through tube 9 to optical measuring cuvette 10
(Fig. 1). As the air pressure decreases, tD tends to the
molecule transit time through the tube.

DIFFUSION COEFFICIENT OF HYDROGEN
IN TRANSFORMER OIL

It is of interest to theoretically consider the evolu-
tion of hydrogen from the oil in order to explain the
experimental dependences shown in Fig. 3. Let the total
volume occupied by the vessel with the IL and by the
measuring cuvette be a cylinder of cross section S
(Fig. 4), with a part of the volume of height L being
occupied by the liquid. Since the mean hydrogen con-
centration c2 in the measuring cuvette is known from

Fig. 1. Scheme of the experiment.
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Fig. 2. Time dependence of the volume  of hydrogen

that evolves from hydrogen-saturated GK transformer oil
into the measuring cuvette (residual pressure 100 Pa):
(1) spontaneous desorption and (2) ultrasonically stimu-
lated desorption.
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the experiment, the diffusion coefficient of the hydro-
gen in the liquid will be found as follows.

Let the number of hydrogen molecules in the liquid
be N0 = c1(0)V1 at the initial time instant t = 0, where
c1(0) is the initial hydrogen concentration in the liquid
and V1 is the volume of the liquid. According to the law
of conservation, the number of gas molecules desorbed
from a volume V1, N1 = c1V1, equals the number of mol-
ecules appearing in a volume V2 over the liquid, N2 =
c2V2. Then, the amount of the gas in the volume V1 at a
time instant t is found from the relationship

(8)

and the mean hydrogen concentration over the liquid

c1 t( )V1 c1 0( )V1 c2 t( )V2–=

Fig. 3. Time dependence of the hydrogen concentration c2
in the measuring cuvette when hydrogen is desorbed from
the hydrogen-saturated GK transformer oil into the measur-
ing cuvette in air under normal pressure. t1 and t2 are the
time instants, at which the ultrasonic radiation is applied,
which correspond to curves 1 and 2, respectively, in Fig. 1.
Solid lines are functions approximating data points for gas
evolution.
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Fig. 4. Experimental geometry for the model problem.
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(9)

The variation of the amount of gas molecules in the
volume V1 for a time dt is given by the kinetic equation

(10)

Here, I(t) is the flow of a gas with a diffusion coefficient
D1 in the liquid through a surface area S. The flow I(t)
can be determined from the Fick law and is written in
the form

(11)

The simplification in (11) reflects the fact that the
hydrogen concentration at the bottom of the vessel dif-
fers essentially from that near the surface; that is,
c1(0, t) @ c1(L, t). The explanation is as follows. The
stirring of the liquid with dissolved hydrogen provides
its uniform distribution in the volume V1 with an aver-
age concentration c1(t). The remaining (undissolved)
hydrogen over the liquid is rapidly pumped off. As a
result of the latter procedure, the near-surface layer of
the liquid is substantially degassed. This seems likely to
be the basic reason for the relatively long time taken to
set the steady-state process, as clearly seen from Fig. 3
for the two experimental dependences. Next, substitut-
ing (11) into (10) yields

(12)

A solution to this differential equation subject to the
boundary condition c1(t)t = 0 = c1(0) has the form

(13)

where

(14)

is the relaxation time.
If an additional transfer mechanism emerges at

some time instant t1, Eq. (11) should be recast as

(15)

Here, D2 is the diffusion coefficient with the additional
transfer mechanism and Θ(t – t1) is the Heaviside
(switching) function:

(16)

Then, Eq. (12) has the solution

(17)

where

(18)

c2 t( ) c1 0( ) c1 t( )–[ ] V1/V2( ).=

d V1c1 t( )[ ] I t( )Sdt.–=

I t( ) D1 ∂c/∂x( )x L==

=  D1 c1 0 t,( ) c1 L t,( )–[ ] /L D1 c1 t( )[ ] /L.=

d c1 t( )[ ] /dt SD/V1L–[ ] c1 t( ).=

c1 t( ) c1 0( ) t/τ–( ),exp=

τ V1L/SD1=

I t( ) D1 D2Θ t t1–( )+{ }= c1 t( )[ ] /L.

Θ t t1–( )
0 for t t1<
1 for t t1.≥




=

c1 t( ) c1 0( ) t/τ1 t t1–( )/τ2+( )–[ ] ,exp=

τ1 V1L/SD1, τ2 V1L/ SD2Θ t t1–( )[ ] .= =
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Eventually, we have

(19)

Expression (19) was used for the nonlinear approx-
imation of two sets of data points (Fig. 3) for the case
when diffusion is ultrasonically accelerated at a time
instant t1.

The problem of nonlinear approximation was solved
by using an algorithm for searching for the following
four parameters: the diffusion coefficients D1 and D2
before and after switching on the ultrasonic radiation,
respectively; the initial (t = 0) mean concentration c1(0)
of the gas in the liquid; and the delay time t1 of switch-
ing on the radiation (in order to refine the delay due to
gas diffusion to the cuvette). The objective function to
be minimized was the sum of the squared deviations of
data points (Fig. 3) from the theoretical curve. As a
result of the approximation, we also found the ratio of
the diffusion coefficients before and after the radiation
has been switched on. Moreover, we succeeded in find-
ing the diffusion coefficient of hydrogen in the IL,
using the known experimental geometrical values
involved in the problem: S = 5.726 × 10–4 m2, L =
0.08 m, V1 = 45.8 × 10–6 m3, and V2 = 85.7 × 10–6 m3.
From the first set of data (experimental dependence 1 in
Fig. 3), it follows that D1 = 0.96 × 10–7 m2/s, D2 = 1.4 ×
10–6 m2/s, and c1(0) = 3.3 × 1022 molecules/m3. From
the second set of data (experimental dependence 2 in
Fig. 3), it follows that D1 = 1.1 × 10–7 m2/s, D2 = 1.1 ×
10–6 m2/s, and c1(0) = 3.4 × 1022 molecules/m3. Note
that these parameters do not depend on the gas volume
over the liquid. The results obtained show that the ultra-
sonic vibration accelerates diffusion in the liquid ten- to
fifteenfold.

Comparing the hydrogen diffusion coefficients
found with known values in metals [23] and water solu-
tions [24] indicates that the diffusion coefficients in
transformer oil are two or three times higher. Since our
SRS–CARS method is express, multiply averaged val-
ues of the hydrogen concentration in the measuring
cuvette were determined every minute. Thus, it is
hoped that our value of the diffusion coefficient of
hydrogen in GK transformer oil was evaluated with a
sufficiently high accuracy.

From the diffusion coefficient of hydrogen in an IL,
one can estimate the lifetime of the nonequilibrium
hydrogen concentration in the oil. It is known that, in
high-voltage oil-filled equipment, a nonequilibrium
hydrogen concentration may arise as a result of IL
decomposition. Knowing the diffusion coefficient of
hydrogen in oil, one can calculate the characteristic
time of its spontaneous desorption from the liquid.
Obviously, this time must correlate with the relaxation
time for a given geometry of the liquid volume in a
transformer. Let the geometrical parameters of a trans-

c2 t( ) c1 0( )=

× 1 t/τ1 t t1–( )/τ2+( )–[ ]exp–[ ] V1/V2( ).
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former be S = 1 m2, L = 1.2 m, and V1 = 1.2 m3. Then,
with our value of the diffusion coefficient without the
ultrasonic effect, we get τ1 = V1L/SD1 = 1.44/10–7 ≈
107 s or 115 days. Thus, the spontaneous relaxation of
a nonequilibrium hydrogen concentration by diffusion
proceeds rather slowly if convection and other desorp-
tion-promoting mechanisms are absent.

Based on our technique for measuring the diffusion
coefficient of hydrogen in transformer oil, we proposed
an efficient way of sampling transformer oil from high-
voltage (500–700 kV) bushings for detecting oil-dis-
solved gases without switching-off the transformer
[25].

CONCLUSION
The feasibility of a laser (SRS–CARS) method for

monitoring the hydrogen content above an IL was dem-
onstrated. It was shown that the rate of transformer oil
outgassing can be substantially increased in both a vac-
uum and air under normal pressure by stirring the oil
with focused ultrasonic radiation causing a fountain
above its surface. The diffusion coefficient of hydrogen
in transformer oil was determined.
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Abstract—The generation of non-steady-state photo-emf in an adaptive photodetector made of semi-insulating
GaAs is studied. Single- and double-frequency excitation modes are considered. It is found that a contact com-
ponent of the photocurrent arises in the detector when the spatial frequencies of the interference pattern and
phase modulation frequencies are low. The contact signal, being sensitive to a slow drift of the interference pat-
tern, adversely affects the adaptive properties of the device. It is shown theoretically and confirmed experimen-
tally that the contact emf signal at the frequency of basic phase modulation can effectively be suppressed by
specially selecting the amplitude of additional phase modulation and the spatial frequency of the interference
pattern. The spectral components of the non-steady-state emf signal are calculated for the double-frequency
excitation mode. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

To date, several devices for detecting optical phase-
modulated signals have been developed [1, 2]. The
basic difference between them is the design of the pho-
todetector converting the variations of the interference
pattern intensity to an electrical signal. The use of con-
ventional photodiodes requires the operating point of
the interferometer to be stable and the wave fronts of
interfering beams to be tuned with an accuracy up to
λ/10. This necessitates the introduction of extra optical
and electrical components, which inevitably increases
the cost of the system and makes it more difficult to use.
A promising type of detector that allows one to avoid
these problems is an adaptive photodetector based on
the non-steady-state photo-emf effect [3].

The non-steady-state photo-emf effect [4] consists
in the appearance of alternating current in a semicon-
ductor crystal illuminated by an interference pattern of
varying intensity (Fig. 1). The photocurrent is gener-
ated when the distribution of the photoconductivity and
the electric field are periodically shifted relative to each
other. The gratings of the conductivity and the space-
charge field that emerge in the crystal because of the
diffusion record mechanism [5] are dynamic. This
shows up in the specific amplitude–frequency response
of the non-steady-state emf: at low phase-modulation
frequencies, the signal is proportional to the frequency,
whereas for frequencies above the so-called cutoff fre-
quency ω0, the photocurrent reaches a maximum and
then remains frequency-independent. Thus, an adaptive
photodetector based on the non-steady-state emf effect
makes it possible to effectively detect high-frequency
phase-modulated optical signals and simultaneously
1063-7842/02/4710- $22.00 © 21283
suppress low-frequency signals due to a drift in the
operating point of the interferometer, variations of the
ambient temperature, and mechanical vibrations.

The adaptive properties of a photodetector employ-
ing the non-steady-state photo-emf effect are the most
conspicuous in experiments on detecting the high-fre-
quency signal in the presence of low-frequency large-
amplitude jamming signals [6]. It has been found that
the amplitude of the valid signal begins to decline
appreciably only when the amplitude of a phase inter-

Fig. 1. Non-steady-state photo-emf excitation in a GaAs
adaptive photodetector.
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ference with a frequency Ω reaches the value of ω0/Ω .
This means that requirements imposed on the vibration
isolation of the interferometer may be relatively loose
if semiconductors with a high cutoff frequency are
used. For example, for GaAs photodetectors with a typ-
ical cutoff frequency ω0/2π ≈ 1 kHz and an interference
frequency Ω/2π ≈ 10 Hz, the allowable interference
amplitude is ∆ ≈ 100 rad, which corresponds to the
vibration amplitude of the interferometer mirrors A =
λ∆/4π ≈ 5 µm (at a wavelength λ = 0.633 µm).

The implementation of a photodetector with such
properties needs the selection of a semiconductor that is
optimal in terms of photoconductivity, carrier lifetime,
mean diffusion length of carriers, etc. In addition, the
fabrication of contacts with desired properties is a chal-
lenge in this case. Namely, the contacts must have a
lower resistance compared with the bulk resistance of
the crystal and the presence of a contact photo-emf is
extremely unwanted. The low resistance of the contacts
is necessary for efficient current removal into an exter-
nal measuring circuit. This requirement is quite feasi-
ble, since the bulk resistance is very high when semi-
insulating crystals with a large electrode spacing are
used and may exceed the resistance of a rectifying con-
tact.

The presence of the contact photo-emf adds the
“photodiode” component to the total signal picked up
from the photodetector. The photodiode component is
sensitive to slow displacements of the interference pat-
tern; in other words, the photodetector partially loses its
adaptive properties. One way of tackling the problem
[7] is to rotate the crystal through some angle so that the
contacts are not parallel to interference fringes. In this
case, the mean optical intensity in the near-contact
regions remains nearly constant and the contact compo-
nent of the current diminishes. However, such an
approach is ineffective when the spatial frequencies of
an interference pattern are low.

The aim of this work is the theoretical and experi-
mental study of a non-steady-state photo-emf generated
by single- and double-frequency techniques in an adap-
tive photodetector on semi-insulating GaAs. Emphasis
is on the separation of the volume and the contact com-
ponents of the signal.

THEORETICAL ANALYSIS

Our model of an adaptive photodetector built around
the non-steady-state photo-emf effect is as follows.
A sensor representing a photoconductor with two elec-
trodes (Fig. 1) is illuminated by a variable (vibrating)
interference pattern

(1)

Here, I0 is the mean light intensity, m is the contrast,
K is the spatial frequency, ψ is the initial phase of the
interference pattern, δ and ω are the amplitude and fre-

I x t,( )
=  I0 1 m Kx δ ωt( )cos ∆ Ωt( )cos ψ+ + +[ ]cos+{ } .
quency of basic phase modulation, and ∆ and Ω are the
amplitude and frequency of additional phase modula-
tion. We will assume that

(2)

This situation corresponds to the detection of a weak
high-frequency signal in the presence of low-frequency
high-amplitude jamming signals. Under such an illumi-
nation, a volume non-steady-state photo-emf JV arises
in the volume of the crystal and a contact (barrier-layer
[8]) photo-emf, JC1 and JC2, in the near-contact regions.
Let the contacts be similar for simplicity. The bulk of
the semiconductor has a resistance R, a capacitance C,
and contacts RC and CC. The external circuit of the pho-
todetector is terminated by a load resistance RL. The
equivalent circuit of the system is depicted in Fig. 2.
The expression for the complex amplitude of the cur-
rent with a frequency ω passing in the external circuit
is given by

(3)

Here, , , and  are the complex amplitudes of
the related currents. Other harmonics of the current are
expressed similarly. Let the condition

(4)

be fulfilled in a frequency range under consideration.

Then, expression (3) may be greatly simplified:

(5)

(1) Contact photo-emf. An expression for the con-

tact signal (  – ) can easily be derived under the
assumption that the photocurrent is proportional to the
light intensity in the near-contact region; that is, JC1(t)  =
ξI(–L/2, t) and JC2(t) = ξI(L/2, t), where L is the elec-
trode spacing. The coefficient ξ depends on the effec-
tive surface area of the planar electrodes, light absorp-
tion coefficient, and quantum efficiency of photocon-
ductivity [8]. In our case, we have

(6)

Here, Jn(x) is the nth-order Bessel function of first kind.
For a harmonic at the nth side frequency, we come to a
similar expression:

(7)

ω @ Ω, δ ! 1, ∆ 1.≈

Jω

JV
ωR

1 iωRC+
-----------------------

JC1
ω JC2

ω–( )RC

1 iωRCCC+
---------------------------------+

RL
R

1 iωRC+
----------------------- 2

RC

1 iωRCCC+
-----------------------------+ +

----------------------------------------------------------------------------.=

JV
ω JC1

ω JC2
ω

R
1 iωRC+
----------------------- @ RL,

RC

1 iωRCCC+
-----------------------------

Jω JV
ω JC1

ω JC2
ω–( )

RC 1 iωRC+( )
R 1 iωRCCC+( )
--------------------------------------.+=

JC1
ω JC2

ω

JC1
ω JC2

ω– 4ξ I0mJ1 δ( )J0 ∆( ) ψ KL/2( ).sincos=

JC1
ω nΩ+ JC2

ω nΩ+– 4ξ I0mJ1 δ( )Jn ∆( )=

× ψ nπ/2+( ) KL/2( ).sincos
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(2) Volume photo-emf. Let us derive an expression
for the complex amplitude of the bulk signal at the car-

rier, , and side, , frequencies. To do this, we
will consider the general case of generating a non-
steady-state photo-emf in an n-type semiconductor by
an optical pattern,

(8)

An expression for the photocurrent density can be
written as [4]

(9)

Here, e is the electron charge, µ and n0 are the mobility
and mean concentration of photoelectrons, n0a(t) is the
complex amplitude of their space-periodic distribution,
ESC is the space-charge field, and S is the electrode area.
Let us consider our problem assuming that the genera-
tion and recombination of charge carriers are linear, the
contrast m is small, and the dark conductivity is low [5].
Also, we assume that the external and photovoltaic
fields are zero. Then, the quantities a(t) and ESC(t) are
solutions to the set of linear differential equations

(10)

Here, ED is the diffusion field, τM is the Maxwell relax-
ation time, τ is the electron lifetime in the conduction
band, and LD is the electron diffusion length. Substitut-
ing the solutions to this set into (9) yields for the pho-
tocurrent

(11)

Here, λ1 and λ2 are the roots of the characteristic equa-
tion for set (10):

(12)

JV
ω JV

ω nΩ+

I x t,( ) = I0 1
m t( )

2
---------- iKx( )exp

m* t( )
2

------------- iKx–( )exp+ + .

JV t( ) Seµn0
1
4
--- a t( )ESC* t( ) a* t( )ESC t( )+[ ] .=

dESC

dt
------------

1
τM
------ESC–

iED

τM
--------a,–=

da
dt
------ iKµESC

1 K2LD
2+

τ
----------------------a–

m t( )
τ

-----------.+=

JV t( )
Sσ0ED

2τ2τM λ1 λ2–( )
------------------------------------Im m t t'–( ) λ1t'( )exp t'd

0

∞

∫


=

× m* t t'–( ) λ2t'( )exp t'd

0

∞

∫ 



.

λ1 2,
1
2
--- 1

τM
------

1 K2LD
2+

τ
----------------------+ 

 –=

± 1
4
--- 1

τM
------

1 K2LD
2+

τ
----------------------+ 

 
2

1
τMτ
---------– .
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For the photoconductor of “relaxation” type (τ ! τM),

(13)

Here, we introduced the designations for the cutoff fre-
quencies of non-steady-state photo-emf [9]. If, in addi-
tion, the quantity m(t) can be represented as m(t) =
mexp[iϕ(t)] and the characteristic time of variation of
this quantity far exceeds the electron lifetime τ, the
expression for the photocurrent is greatly simplified:

(14)

In our problem, ϕ(t) = δcos(ωt) + ∆cos(Ωt) + ψ. To
integrate (14), one can take advantage of the expansion
of the function exp(i∆cosΦ) in harmonic functions in
view of approximation (2). Eventually, the following
expression for the harmonic of the photocurrent at the
nth side frequency was obtained:

(15)

It is seen that the spectrum of the volume photo-emf
lacks odd side frequencies. In practice, it is not neces-
sary to integrate from –∞ to ∞. Calculations show the
summation from –∆ to ∆ provides a required accuracy.
Let ω @ Ω∆. Then,

(16)
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Fig. 2. Equivalent circuit of the photodetector model.
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Here,

(17)

is the complex amplitude of the photocurrent in the
absence of additional modulation.

For the complex amplitude of the photocurrent with
a frequency ω, we have, according to (16),

(18)

The numerical simulation shows that for Ω < ω0,
expression (18) can be approximated by [6]

(19)

For comparison, we also write the expression for the
amplitudes of the photocurrent with frequencies ω ± 2Ω:

(20)

If ∆ < ω0/∆, one can expand a function like (1 + x)α

into the Taylor series and take advantage of relation-
ships for the Bessel functions (see Appendix). Then, we
arrive at the estimate

(21)

As follows from the above expression, the ampli-
tude of the harmonics with the frequencies ω ± 2Ω is
the amplitude of the signal at the carrier frequency
times the factor (Ω∆/2ω0)2. Numerical calculations
show that the amplitude of even harmonics with fre-
quencies ω ± 2nΩ varies with harmonic number as
(Ω∆/2ω0)2n.

(3) Comparison between volume and contact sig-
nals. Let us consider the difference between contact
and volumes non-steady-state emfs. First, the ampli-
tude of the former depends on the phase of the interfer-
ence pattern ψ, while the latter does not depend on this
parameter. Another specific feature of contact emf is
that for those values of ψ when the amplitudes of even
harmonics are zero, the amplitudes of odd harmonics
reach their maxima.

One more specific feature of contact emf is its
dependence on the spatial frequency of the interference
pattern. When the electrode spacing covers the integer
number of interference fringes (KL = 2kπ, k ∈  N), the
contact emf is absent; if the number of fringes is half-
integer [KL = (2k + 1)π], the contact emf is maximum.

JV0
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1 Ω∆/ω0( )2+
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ω 2Ω±
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1 ipΩ/ω0+−( ) 1 i p 2+( )Ω/ω0±[ ]
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p 0=

∆

∑

JV
ω 2Ω± JV0

ω Ω∆
2ω0
--------- 

  2

.≈
In order to add a fringe into the interference pattern, it
is necessary to change the angle between the beams by
Θ' = λ/L. Here, λ is the radiation wavelength; the spatial
frequency is assumed to be small, K = (2π/λ)sinΘ !
2π/λ; and Θ is the angle between the beams. The depen-
dence of the non-steady-state emf is much smoother:

this curve shows a single peak at K =  [9] (in the
case of bipolar photoconductivity, two peaks with a
zero current in between may exist [10]).

As follows from (17), the amplitude of the non-
steady-state emf tends to zero with decreasing phase
modulation frequency ω. The contact emf has a nonzero
limit at low frequencies [see (6)]. A possible run of the
frequency characteristic of the total signal is demon-
strated in Fig. 3. This curve was calculated for S =
0.01 mm2, L = 1 mm, m = 0.5, δ = 0.1 rad, ∆ = 0, K .
30 mm–1, KLD ! 1, KL = (2k + 1)π, ω0/2π = 3 kHz,
ξI0 = 0.4 µA, R = 10 MΩ, C = 1.1 × 10–3 pF, RC =
100 kΩ , and CC = 10 pF. It should be noted that the
parameters σ0 (or ω0) and R were preset independently,
although they must obey the relationship Sσ0 = L/R.
This is because GaAs has two cutoff frequencies [11],
one of which is near 10 MHz and satisfies roughly the
above relationship, while the other lies in the range 1–
100 kHz and appears in the frequency response because
of conductivity slow relaxation in GaAs [11, 12]. In this
work, we consider only the low-frequency range; there-
fore, the parameters indicated were chosen indepen-
dently and the quantity L/R was used instead of Sσ0
in (17).

From (6) and (17), it also follows that the ampli-
tudes of the contact and non-steady-state emfs vari-
ously depend on the interference pattern contrast: as the
contrast drops, a fraction of the contact photocurrent in
the total signal rises.

Note also the great difference in the spectral compo-
sitions of the contact and volume photocurrents that is
observed in the case of double-frequency excitation. In
the contact signal, the amplitudes of side-frequency
harmonics differ from those of input (optical) signal
harmonics by K- and ψ-dependent factors. Specifically,
for ∆ = 2.405 rad, harmonics with the frequency ω are
absent in the light intensity oscillation spectrum and in
the spectrum of the contact photocurrent. A similar
result can be achieved by taking ∆ large enough (such
that J0(∆) ≈ 0); in this case, the contact emf spectrum
will obviously contain a large number of harmonics.
For non-steady-state volume emf, such a simple rela-
tion to the input (optical) signal is absent. With the con-
dition ∆ < ω0/Ω fulfilled, the harmonic at the carrier fre-
quency [see (19)] prevails in the signal spectrum, odd
side frequencies are absent, and the even harmonic
amplitudes decay rapidly as their number increases [see
(21)]. Of practical interest is the case of detecting the
photo-emf signal against the background of a low-fre-
quency interference (Ω ! ω0). With such frequencies,
the volume photocurrent spectrum remains narrow

LD
1–
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even if ∆ > 1. Moreover, from (18) and (19), it follows
that the volume signal harmonic with the frequency ω
is observed at ∆ = 2.405 rad.

EXPERIMENTAL SETUP
The experimental setup is shown in Fig. 4. A He–Ne

laser (λ = 633 nm, Pout ≤ 30 mW) is used as a source of
coherent radiation. The laser radiation is split into two
beams, one of which is phase-modulated with an
MD-102A electrooptic modulator and the other, with a
TA-56m headphone with a mirror attached to its mem-
brane. Then, the radiation is directed to the crystal sur-
face, where a vibrating interference pattern is formed.
To provide the possibility of varying (over narrow lim-
its) the spatial frequency of the pattern, a rotating mir-
ror is placed near the crystal (at a distance of ≈10 cm).
The current in the external circuit is measured with an
SK4-56 spectrum analyzer and with a Unipan-232B
lock-in nanovoltmeter. To obtain a flat frequency
response of the measuring circuit, a load resistance RL
is connected parallel to the photodetector.

The sample used was a semi-insulating GaAs single
crystal measuring 3 × 3 × 0.5 mm with gold electrodes
applied to its front surface. The front and back surfaces
(3 × 3 mm) were subjected to optical finishing. The
electrodes were made of two strips spaced 1.2 mm
apart. The contact was provided by means of a silver
paste.

EXPERIMENTAL RESULTS
In the range of phase modulation frequencies 0.01–

50 kHz, the sign of the non-steady-state emf generated
in the GaAs crystal corresponded to the hole compo-
nent of the current.

Figure 5 demonstrates the experimental frequency
dependences of the signal picked up from the adaptive

0.5

100

1.0

1.5

20 30

|Jω|, nA

ω/2π, kHz

ψ = π

ψ = 0

v

c

Fig. 3. Theoretical dependence of the non-steady-state
photo-emf on phase modulation frequency according to (5),
(6), and (17) for the phase ψ = 0 and π. Dotted lines stand
for the volume (v) and contact (c) photocurrents.
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photodetector in the case of single-frequency phase
modulation. These curves were obtained under the
same experimental conditions in 10 min intervals. It is
seen that the signal amplitude roughly doubles within
several minutes. One reason for his may be the slow
drift of the interferometer, which eventually shows up
as a shift of the interference pattern, that is, as a slow
variation of its phase in expression (1) with time: ψ =
ψ(t). As follows from (6), the amplitude of the contact
emf also becomes a slowly varying function of time. In
addition, the signal amplitude in these frequency
dependences does not tend to zero at low phase modu-
lation frequencies, as it should for the volume non-
steady-state emf [see (17)]. As was noted above, such
behavior can be explained if one takes into account the
presence of the contact current. A similar frequency
dependence of the photo-emf was observed in [11],
where its specific behavior was not attributed to the
presence of the contact emf.

Let us consider the transfer characteristic and the
spectral composition of the signal for double-frequency
excitation. The frequency dependence of the non-
steady-state emf (Fig. 6) was taken with the parameters
of additional phase modulation Ω/2π = 10 Hz and ∆ =
2.4 rad. The passband f ' of the spectrum analyzer was
set equal to 3 Hz; hence, the condition f ' < Ω/2π was
fulfilled. With the passband thus selected, the signal
was measured only at the frequency of basic phase
modulation. Note first of all that the amplitude of the
signal measured is fairly stable (within 5%). This is
because the contact emf signal is suppressed: the har-
monic at the carrier frequency ω is suppressed by
appropriately selecting the amplitude ∆, and side fre-
quencies are beyond the passband of the instrument. At
the same time, the volume emf signal is not suppressed:
for a cutoff frequency ω0/2π ≈ 1 kHz and the selected
values of Ω and ∆, the amplitude of the non-steady-
state photo-emf [see (18)] should only decrease by

He–Ne laser

Generator
ω

Lock-in voltmeter
(spectrum analyzer)

BS HP

Generator
Ω

Au–GaAs–Au

BS
RM

RL

E
O
M

Fig. 4. Experimental setup for measuring the non-steady-
state photo-emf under double-frequency excitation. BS,
beam splitters; EOM, electrooptic modulator; HP, head-
phone with mirror; RM, rotating mirror; RL, load resistance.
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0.03%. As follows from Fig. 6, at low frequencies of
phase modulation, the signal amplitude tends to zero.
The aforesaid suggests that the frequency response thus
measured is close to the actual frequency characteristic
of the volume non-steady-state emf in GaAs crystals.
Yet, the approximation of experimental data by the
standard frequency dependence like (17) with ω0/2π =
1.1 kHz disagrees markedly with the experiment at low
ω. The dependences observed can be described ade-
quately by taking into account the specific character of
the surface excitation of non-steady-state emf in semi-
insulating GaAs (Fig. 6). To approximate the transfer
characteristic, we used the semi-empiric expression [13]

(22)JV
ω ω( ) i

ω
ω0 0( )
-------------- 1 i

ω0 0( )
ω

--------------– ,ln–∝

1

200

2

40 60
ω/2π, kHz

|Jω|, nA

Fig. 5. Frequency responses of the non-steady-state photo-
emf taken by the single-frequency technique in 10 min
intervals. P0 = 1.1 mW, K = 31 mm–1, m = 0.6, δ = 0.10 rad,
and ∆ = 0.

0

30.0029.94 30.06

0.5

1.0

|Jω|, nA

ω/2π, kHz

Fig. 7. Photocurrent spectrum in GaAs under double-fre-
quency excitation. P0 = 1.1 mW, K = 31 mm–1, m = 0.6, δ =
0.13 rad, ω/2π = 30 kHz, ∆ = 2.4 rad, and Ω/2π = 10 Hz.
where ω0(0) is an adjustable parameter (the cutoff fre-
quency on the crystal surface): ω0(0)/2π = 2.5 kHz.

The spectrum of the signal picked up from the pho-
todetector for double-frequency phase modulation is
shown in Fig. 7. The harmonic at the carrier frequency
ω remains stable. It is easy to see three or four side-fre-
quency harmonics in the spectrum. In addition, the
spectrum contains both odd and even harmonics. Their
amplitudes are comparable in height with the signal at
the frequency ω and slowly vary with time. It is note-
worthy that the odd harmonics are maximal when the
even ones vanish and vice versa. Let us estimate the
amplitudes of the volume signal at the carrier and at
side frequencies for the GaAs crystal under study
(ω0/2π = 2.5 kHz, ∆ = 2.4 rad, and Ω/2π = 10 Hz). As
was noted in the theoretical analysis of the effect, the

|Jω|, nA

ω/2π, Hz

1

0.1
103102 104 105

Fig. 6. Frequency responses of the non-steady-state photo-
emf taken by the double-frequency technique. P0 = 1.1 mW,

K = 31 mm–1, m = 0.6, δ = 0.10 rad, ∆ = 2.4 rad, and Ω/2π =
10 Hz. Data points are approximated by standard relation-
ship (17) (dotted line) and also by relationship (22), which
includes strong optical absorption in GaAs (solid curve).

Θ', rad × 10–3

Jω, nA
4

2

0

–2

–4
0 0.5 1.0

Fig. 8. Contact photocurrent vs. angle increment Θ'
between the beams forming the interference pattern. P0 =
8.5 mW, m = 0.5, δ = 0.14 rad, ω/2π = 3 Hz, and ∆ = 0. The
spatial frequency for Θ' = 0 was K ≈ 19 mm–1. Solid curve
is theoretical dependence (6).
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amplitudes of even harmonics of the volume photo-emf
with frequencies ω ± 2nΩ vary with their number
roughly as (Ω∆/2ω0)2n. Using this dependence, we find
the relative amplitude of the second harmonic (2.3 ×
10–5), fourth harmonic (5.3 × 10–10), etc. The signal-to-
noise ratio was ~103. This means that all the side-fre-
quency harmonics of the volume photocurrent must be
below the noise level. The above features and estimates
indicate the different nature of the spectral components:
the harmonic at the frequency ω is the volume emf sig-
nal, while the side-frequency harmonics are the compo-
nents of the contact signal.

To make sure that the signal identified as contact is
in fact contact, we performed measurements at low
phase-modulation frequencies (ω, Ω ! ω0), where the
signal of the non-steady-state emf is extremely small
and can be neglected. The need for such a corroboration
is associated with the fact that similar phenomena can
be treated alternatively based on slowly relaxing con-
ductivity and field gratings in a semiconductor. Figure 8
shows the dependence of the photodetector signal on
the spatial frequency of the interference pattern (i.e., on
the angle between the beams). In the measurements, we
used the lock-in voltmeter, which can not only measure
the signal but also detect the change of sign. For each
K, the signal is represented by two circles that are the
maximal (by magnitude) positive and negative values
of the photocurrent over 10–20 min. The difference
between the angles of the photocurrent maxima (min-
ima), Θ' = 4.9 × 10–4 rad, is in fairly good agreement
with an angular increment necessary for a fringe offset
by the electrode spacing to be added: Θ' = λ/L = 5.3 ×
10–4 rad.

We also took the dependences of the photocurrent
on the amplitudes of basic and additional phase modu-
lations (Figs. 9, 10). Associated experimental data were
approximated by expression (6). From Figs. 9 and 10,

Jω, nA
10

5

0

–5

–10
0 2 4 6 8

δ, rad

Fig. 9. Contact photo-emf vs. amplitude of phase modula-
tion at the carrier frequency. P0 = 0.58 mW, K ≈ 19 mm–1,
m = 0.5, ω/2π = 3 Hz, ∆ = 0. Solid curve is theoretical
dependence (6).
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one can see that the contact emf is suppressed if the
amplitudes of additional phase modulation are the roots
of the zeroth-order Bessel function.

CONCLUSION

The presence of the contact emf is shown to have an
adverse effect on the adaptive properties of the photo-
detector. The problem can be resolved by decreasing
the contact emf and by separating the volume and con-
tact components. The former way can be accomplished
if the spatial frequency of the interference pattern is
taken such that the electrode spacing covers the integer
number of fringes (KL = 2kπ). The separation of the
volume and contact signals can be made by introducing
additional low-frequency phase modulation of ampli-
tude ∆ = 2.4 rad. With such a parameter of the addi-
tional modulation, the contact photocurrent spectrum
lacks the harmonic at the frequency ω of the basic
phase modulation. In addition, with the condition ∆ <
ω0/Ω satisfied, the volume signal spectrum broadens
insignificantly: the amplitudes of harmonics at frequen-
cies ω ± 2nΩ are roughly (2ω0/Ω∆)2n times lower than
the amplitude of the harmonic at the frequency ω, and
harmonics at odd side frequencies are absent.

The results presented were obtained for an adaptive
photodetector based on a semi-insulating GaAs single
crystal and having simple electrode geometry and
arrangement. The optimization of the photoelectrical
properties of the contacts is a challenge and may be the
subject of further investigation.

APPENDIX

Below are given several relationships for the Bessel
functions of the first kind used in the theoretical analy-

Jω, nA
1.0

0.5

0

–0.5

–1.0
0 2 4 6 8

∆, rad

Fig. 10. Non-steady-state photocurrent vs. additional phase
modulation amplitude. P0 = 0.58 mW, K ≈ 19 mm–1, m =
0.5, δ = 0.13 rad, ω/2π = 125 Hz, and Ω/2π = 3 Hz. Solid
curve is theoretical dependence (6).
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Abstract—The formation of the radiation flux density (dose rate) distribution over a moving surface irradiated
by an intensity-modulated flux through a spatially periodic structure is considered. Relationships for a number
of particular cases are derived and analyzed. The irradiation process is regarded as the wave quasi-diffraction
on two-dimensional slot objects. A method for converting the quasi-diffraction pattern into a one-dimensional
hologram is described and the results of applying the quasi-wave approach to a description of moving films irra-
diated by pulsed accelerated beams are presented. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The action of various types of radiation on moving
films is a rather widely used processing step. Depend-
ing on the purpose, it is required either to irradiate the
object uniformly over the whole surface or to provide
the required distribution of the radiation flux density
(dose rate) in the direction of motion. We can particu-
larly distinguish here technologies involving a time-
periodic irradiation. A typical example of such a tech-
nology is the production of track membranes from
polymer films [1–3]. If the pulsed irradiation is pro-
duced via a complex, for example, spatially periodic,
aperture, typical space–time beats are observed, which
lead to a number of specific features in the distribution
of the radiation flux density over the film surface. We
have observed these features when irradiating a moving
film through periodic spatial arrays with a small effec-
tive screening cross section on a cyclotron at the Ioffe
Physicotechnical Institute (Russian Academy of Sci-
ences, St. Petersburg). Further experiments and a thor-
ough mathematical analysis have shown that such
arrays are equivalent to specific space–time filters that
can make the irradiation of the object either more or
less uniform. It has been shown that the mathematical
formalism that describes these processes is completely
the same as the formalism used to characterize the dif-
fraction of two-dimensional waves on planar screens in
the Fraunhofer approximation [4].

Based on the above similarity, this paper attempts to
draw a parallel between the irradiation of a moving sur-
face and diffraction processes. Therefore, Part I of this
work mostly focuses on the derivation and discussion
of the general relationships, while Part II applies the
theory to a particular problem; namely, it studies the
behavior of the radiation flux density distribution cre-
1063-7842/02/4710- $22.00 © 21291
ated by beams of pulsed particle accelerators. Part II
also presents experimental results and describes how to
obtain specific holograms of the diffracting structures,
which may be referred to as the information holograms.

IRRADIATION OF A MOVING SURFACE 
THROUGH A PERIODIC SPATIAL ARRAY 

BY A SINUSOIDALLY MODULATED FLOW

Let the moving surface be irradiated through a reg-
ular set of identical slots that form a periodic spatial
array, the slots being perpendicular to the direction of
motion as shown in Fig. 1. Also, let the intensity of the
irradiating flux in the plane of the screen depend only
on the time, while being independent of the x coordi-
nate. After passing through the screen, the intensity will
certainly depend on x. For a sinusoid-modulated flow,
this intensity can be written as

(1)I x t,( ) = 

I0 Im ωt( ) xsin+ x id x l1 id ,+< <=

i 1 2 3 … N 1–, , , ,=

0 x x,≠





d

l

A v

x

Fig. 1. Motion of the point A fixed on the irradiated surface
under a periodic screen.
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where l1 is the slot width, d is the array spacing, and
N is the total number of slots.

Let point A fixed on the surface move under the
array at the velocity v  in the positive x direction. If the
point is at x = 0 at the time moment t = T, then, after it
passes under the ith slot, the dose rate in the vicinity of
this point will increase by

(2)

where τ1 = l1/v  and τ2 = (d – l1)/v.

After passing all the N slots, the total dose rate at
point A will be

(3)

The first term on the right-hand side of expression
(3) is a constant component of the dose rate ρ0, which
is independent of T. The second term is a variable com-
ponent ρa of the dose rate, its last factor alone being
dependent on time T. The remaining T-independent fac-
tors determine the amplitude of the variable compo-
nent.

Let us write the ratio of variable and constant dose
rate components and use the change of variables T = t –
(τ1 + τ2)(N – 1) – τ1, which introduces a common time
variable in formulas for the flux intensity and dose rate.
Physically, this change of variables simply means that
any change in the dose rate observed at the trailing edge
of the last slot must start immediately after the intensity
of the irradiating flux starts changing:

(4)

where

(4a)

In terms of the coordinate x' connected to the surface
being irradiated, for constant ω and v, the dose rate
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variation in the direction of motion can be written as

(5)

where Aρ is given by (4a) and x is the origin of the of x'
axis.

The expressions obtained above show that, when a
moving surface is irradiated by a sinusoid-modulated
beam through a uniform array of slots in a screen
(Fig. 1), the dose rate also varies sinusoidally in the
direction of motion with a period of λ = v /f, where f =
ω/2π is the modulation frequency of the radiation inten-
sity. In accordance with its physical meaning, coeffi-
cient Aρ can be called the spatial modulation index of
the dose rate in the x' coordinate, and AT = Im/I0 can be
called the temporal intensity modulation index of the
irradiating flux.

It can easily be seen that, accurate to within the
interpretation of quantities involved, the function Aρ(ξ)
coincides with the expression that describes diffraction
of a plane electromagnetic wave on a periodic array of
slots in a screen in the Fraunhofer approximation [4]. In
particular, for N = 1, expressions (4) and (4a) reduce to
expressions (6) and (6a) which describe the Fraunhofer
diffraction by a single slot of width l1:

(6)

(6a)

where τ = l1/v  and ξ = ωl1/2v.

In the above expressions, changing the sign of
amplitude Aρ at certain discrete ξ means that a jumplike
phase change by π occurs at these points in the modu-
lating function. The function |Aρ(ξ)| is the sequence of
alternating main and side lobes that is well known from
diffraction spectroscopy. At the points where the phase
changes abruptly, Aρ(ξ) = 0. This means that, by appro-
priately choosing the frequency-to-velocity ratio, the
moving surface can be irradiated quite uniformly at the
variable intensity of the irradiating flow. Conversely, a
periodic array with a very small screening cross section
(highly transparent) introduced in the irradiating aper-
ture can significantly increase the nonuniformity of the
illumination under certain conditions. As an example,
consider the case of a large number N and (α – 1) ! 1.
Such an array can be created by introducing a uniform
mesh of thin filaments across the working aperture that
are perpendicular to the x' axis. Clearly, the transpar-
ency of this array will be proportional to 1/a, i.e., will
be close to unity. In this case, increasing ξ gradually
shifts the main maximums of the factor
sin(Naξ)/sin(aξ) in expression (4) relative to the min-
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TECHNICAL PHYSICS      Vol. 47      No. 10      2002



QUASI-DIFFRACTION EFFECTS DURING IRRADIATION 1293
ima (zeros) of the factor sinξ/ξ. The phase of the shift
∆ξm,

(7)

increases linearly with the order m of the spectrum. By
expanding the function sinξ in a power series about ξi =
πi and truncating it beyond the linear term, it can be
shown that, with an allowance for (7) and with small m
meeting the condition

(8)

the function Aρ(ξ) has the same value independent of m
at the locations ξm = πm/a of the main maxima.

In order to compare the values of |Aρ| and |Aρ1|, it is
convenient to consider these quantities as functions of
the frequency ω rather than of the generalized variable
ξ. Figure 2a is a plot of the function |Aρ1(ω)| for a single
wide slot; Fig. 2b plots the function |Aρ(ω)| for the same
slot with a mesh of 19 thin filaments. The total area of
the filaments accounts for 5% of the aperture area. The
transmission coefficient of this mesh is Kp = 1/a = 0.95.
As can be seen from the figures, when condition (8) is
met, the function |Aρ(ω)| has almost equal values at
locations of its main maxima, which are significantly
higher than |Aρ1(ω)| at these points. Thus, an additional
thin uniform mesh with a high transmission introduced
into the aperture increases the modulation index of the
irradiation intensity at particular discrete frequencies ω
in the resonance manner.

IRRADIATION THROUGH A SINGLE SLOT 
BY A PULSED FLUX

The irradiation of moving targets on charged parti-
cle accelerators is very often performed with pulsed
sources. Therefore, an analysis of the spatial dose den-
sity distribution for such an irradiation has a real prac-
tical significance. It is reasonable to consider the prob-
lem for a single slot separately from the general case.

Let a moving surface be irradiated by a sinusoidally
time-modulated flux through a single slot of width l1.
The dose rate A1(t) at the point x = l1 will be described
by expressions (6) and (6a), in which a change in the
sign of the intensity means a phase change by π. In
accordance with formula (2), the constant component
I0τ1 of the resultant dose rate is independent of the fre-
quency ω and the integral operator is a linear functional
transformation. Therefore, to within a constant dimen-
sional factor, the function Aρ1 = Aρ1(ω) can be regarded
as an amplitude-versus-frequency response of a certain
linear circuit to the harmonic component of the source
radiation applied to its input, the corresponding har-
monic dose rate component being observed at its out-
put. In accordance with formula (6), the phase-versus-
frequency response of this circuit is ϕ(ω) = –ωτ/2.

∆ξm πm
a 1–

a
-----------.=

∆ξm ! 
π
2
---,
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Hence, the following expression can be written for the

complex transfer function (ω) of this circuit [5, 6]:

(9)

where C is the dimensional constant.
The pulsed response h'(t) of the linear circuit is

defined as the inverse Fourier transform of (ω). In
this case,

(10)

Since h'(t) = 0 for t < 0, the system can be realized
[5, 6], which could be expected because our calcula-
tions did not involve any simplifying assumptions that
could lead to an unfeasible system.
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Let a periodic sequence of rectangular pulses of the
length ∆T and pulse repetition interval T0 be applied to

the system (ω) (Fig. 3). The response of the system
to this sequence, which determines the dose rate cre-
ated by the pulsed source, can be written as [5]

(11)

where

and h'(t) is given by expression (10).
Figure 3 plots the function ρ(t) at α = τ/T0 = 2.5 and

Θ = T0/∆T = 3. Figure 3 also shows the input pulse
sequence I(t), pulsed response h'(t), and response ρ1(t)
to a single pulse. As can be seen from the figure, the
transient has a finite duration and the dose rate distribu-
tion comes at t > τ to its periodic steady state ρ(t),
which has a typical trapezoidal shape. Note that the
slope in the corresponding intervals depends for v  =
const on the radiation intensity Im only and is indepen-
dent of T0, ∆T, and τ.

Consider the index of pulsed dose rate modulation

(12)

Figure 4 is a plot of Aim versus parameter α = τ/T0,
which clearly shows that, in the course of the pulsed
irradiation of a moving surface through a single slot,
the irradiation dose becomes distributed more uni-
formly as the number of pulses that arrive over time τ
increases. Also, if the irradiation time is a multiple of

K̇

ρ t( ) ρ1 t i 1–[ ] T–( ),
i 1=

∞

∑=

ρ1 t( ) = h' t t'–( )I1 t'( ) t',d

0

t

∫

I1 t( )
0 t 0, t ∆T><
Im 0 t ∆T ,≤ ≤




=

Aim
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-------------------------.=

Fig. 3. Time patterns illustrating the formation of the dose
rate ρ(t) distribution under a periodic pulsed action.

h'(t)

I1(t)

ρ1(t)

I(t)

ρ(t)
ρmax ρmin
the pulse repetition interval, then Aim(α) = 0 and the
irradiation is completely uniform. However, when the
pulses are short (Θ @ 1), this condition is satisfied to a
sufficient accuracy only in very small intervals of α.
Conversely, if it is necessary to obtain the deepest mod-
ulation of the dose rate, the condition τ < T0 – ∆T should
be met.

IRRADIATION BY A PULSED FLUX THROUGH 
A PERIODIC SPATIAL ARRAY

In the previous section, we used the dose rate distri-
bution on the moving surface to perform the time-
domain analysis [4–6]. However, when the slot screen
represents a sufficiently long periodic structure (Fig. 1),
then, according to (4a), the index of modulation
depends on the frequency as the Fraunhofer diffraction
function, i.e., has the form of a sequence of resonance
peaks. If we analyze this case as above in terms of the
linear circuit theory, the results are the clearest in the
time domain [6].

Following the procedure used in the previous sec-
tion and taking into account Eqs. (4) and (4a), we can

write the complex transfer function (ω) for the lin-
ear system that models the process of irradiation under
the action of the time-harmonic component of the flux
intensity as

(13)

where τ1 = l1/v  and τ2 = (d – l1)/v.
Let an infinite periodic sequence of rectangular

pulses f(t) of the length ∆T and amplitude αmax arrive at
the input of system (13) with the pulse repetition inter-
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val T0. This sequence can be represented as the Fourier
series [4, 5]

(14)

Since system (13) is linear, its response to action (14)
is a superposition of responses to each harmonic com-
ponent of the series. If our interest is in the intensity of
this response irrespective of an arbitrary phase shift, the
exponential factor in (13) can be dropped. Then, the
time variation of the dose rate at the output of the aper-
ture can be expressed as

(15)

where

Figure 5 shows the waveform of the source
sequence of the irradiating pulses f(t) and the respective
irradiation intensity ρ(t) obtained from (15) for several
frequencies ω = 2π/T0 at CN = αmax = τ1 = τ2 = 1,
∆T/T0 = 0.5, and N = 10. These frequencies are indi-
cated by dots on the amplitude-versus-frequency
response (Fig. 6). As can be seen from the plots, when
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Fig. 5. Function ρ(t) at CN = αmax = τ1 = τ2 = 1, N = 10, and
ω = 2π/T0 = (1) π, (2) π + π/60, and (3) π + π/30.
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the fundamental frequency of the sequence is tuned to
the maximum corresponding to m = 1, all higher har-
monics reside at the odd main maxima of the function

(ω), which provides their maximum transmission
through the linear system and, as a consequence, the
deepest modulation of the output dose rate distribution.
At ω = (2π + 2π/N)T0 = π + π/30, the alternating com-
ponent of the dose rate has the smoothest, nearly sinu-
soidal, waveform, the contribution of higher order har-
monics decreasing with increasing total slot number N.
In this case, a sort of space–time filtering is observed,
which creates the sinusoid-modulated dose rate ρ(t) for
any periodic source function I(t) that contains only odd
harmonics.

The resonance properties of the transfer function (13)
enable the device to operate at the harmonics of the
source radiation I(t). This means that the relationship
between the fundamental frequency ω = 2π/T0, velocity
of the irradiated surface v, and number of slots N can
always be chosen such that the frequency of the alter-
nating component of the function ρ(t) will be equal to
k1ω, where k1 is the frequency multiplication factor. A
particular multiplication factor can be implemented in
different ways. Figure 6 plots the magnitude of the

function (ω) for N = 5 and 10. If the frequency ω of
the fundamental harmonic of the source function is
such as shown in the plots, all harmonics will be in both
cases suppressed in the output spectrum except for
those with indexes 5(2i – 1), where i = 1, 2, 3, …. These
harmonics can be regarded as odd harmonics of the new
fundamental frequency ω5 = 5ω. It can easily be seen
that their amplitudes and phases are related as those for
the harmonics of ρ(t) when its fundamental frequency
is tuned to the main quasi-diffraction maximum (m = 1).
Thus, in both cases, the frequency of the alternating
component of ρ(t) is multiplied by a factor of k1 = 5, the
shape of the component remaining the same. The max-
imum of the intensity modulation index is attained if

K̇N
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4π ωω1 = 3π/5 π 2π ω5 = 3π

4π ω
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Fig. 6. Magnitude of the transfer function  versus fre-
quency ω at CN = αmax = τ1 = τ2 = 1, ∆T/T0 = 0.5, and N =
5 and 10.
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and only if the frequency of the first harmonic being
selected coincides with the main maximum at m = 1. In
our example, this occurs at N = 10 (Fig. 6).

IRRADIATION OF A MOVING SURFACE
BY A TIME-MODULATED FLUX 

AS A QUASI-DIFFRACTION PROCESS

We have already noted above that an analogy exists
between the process of irradiation of a moving surface
and wave diffraction. At first sight, this analogy may
seem to go no further than the formal resemblance of
expression (4a) and the function that describes the
Fraunhofer diffraction by a one-dimensional planar slot
screen [4], because the nature of both processes is com-
pletely different. However, a technique exists that can
be used to refer the spatial modulation index of the dose
rate Aρ(x) of a moving surface to the results of diffrac-
tion on more complex two-dimensional objects. We
will consider here the simplest example of such a two-
dimensional object, while limiting our analysis of more
complex cases to the formulation of general statements.

Consider a planar slot screen B'B" inclined by an
angle α0 to the observation plane A'A" (Fig. 7). Let a
plane electromagnetic wave be normally incident on

B'

∆α

B''

I(t)

l1

α0

∆α

Z

A' A''O O'

Fig. 7. Illustration of the Fraunhofer diffraction on an
inclined slot screen.

B
A

C

the screen and the conditions

(16)

be met, where λ is the wavelength, c is the velocity of
light, l1 is the slot width, and Z is the distance between
the lower edge of the slot and the observation plane.

According to the Huygens–Fresnel principle [4], the
points of the wave front that lie in the plane of the slot
are the sources of the secondary spherical waves. Let us
find phases of the secondary waves that propagate in
directions AO and CO (Fig. 7). If the angle α0 is chosen
so that l1sinα0 = iλ, where i is an integer, then the
phases of the corresponding waves at the points B and
C will be equal. The interval BC, which is parallel to
A'A", will accommodate exactly i spatial periods λϕ =
λ/  of the phase wave that travels rightward with

the phase velocity vϕ = c/ . It is clear that, in this
case, the secondary waves will completely compensate
each other at the observation point O at any time
moment.

Let us change the observation angle by small value
∆α ! α0 by moving the observation point from O to O'.
It can easily be shown that, as a result, a path length dif-
ference will appear between the secondary waves prop-
agating in the directions AO' and CO', which can
approximately be written as

(17)

This approximation is only valid for small ∆α, i.e.,
when the Fraunhofer condition is met. At large inclina-
tion angles α0, a negative term proportional to squared
∆α appears on the right-hand side of (17), which
stretches the diffraction pattern as the observation point
moves rightward on the A'A" plane. This distortion of
the diffraction pattern with respect to the diffraction
pattern produced by the plane-parallel screen occurs
because the planar slot, being turned by an angle α0 ≠
0, is seen from the observation region as a two-dimen-
sional object rather than as a one-dimensional object.
Each point of its surface is now characterized by two
coordinates x and z and the nonlinear dependence
∆l(∆α) mentioned above is an indirect consequence of
this fact.

Let us find the electric field (or magnetic field) dis-
tribution in the plane A'A" with respect to the observa-
tion angle ∆α. Let the angle α0 be chosen so that

(18)

At ∆α = 0, condition (18) means that n1 spatial peri-
ods of the wave traveling horizontally are present on the
interval BC, which corresponds to the initial phase
parameter of the Fraunhofer diffraction pattern equal to

λ 2πc
ω

--------- ! l1 ! Z=

α0tan

α0tan

∆l l1 α0 ∆αsincos l1 α0 ∆αsin
2

sin–=

≈ l1 α0∆αcos l1 α0∆α2.sin–

n1

l1 α0sin
λ

------------------ @ 1.=
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α0 = 2πn1 = 2πl1sinα0/λ. As the observation angle ∆α
increases, the path length difference ∆l  also grows,
which increases the phase parameter by ∆l/λ. The field
intensity E(α0, ∆α) will then be distributed along the
A'A" direction by the Fraunhofer law

(19)

where b0 = b2 = 2πl1sinα0/λ, b1 = 2πl1cosα0/λ, and
C0 is the proportionality coefficient.

Expression (19) is valid when ∆α ! 1 and, at α0 = 0,
goes over to the expression that describes diffraction on
a straight slot in a planar screen.

Let us turn again to the analysis of irradiation of the
moving surface by a sinusoid-modulated flow assuming
that parameter ξ in (6a) varies adiabatically with
time as

(20)

The adiabatic variation complies with the condition
|[ξ(t) – ξ(t + τ)]/ξ(t)| ! 1. If the velocity of the surface
is constant, v  = const, this variation can be related to a
change in the frequency ω. Formally, the adiabaticity of
the process will be manifested in that the expression
(6a) for Aρ1(t) remains valid and the time dependence is
conveyed only through the time dependence of param-
eter ξ. Hence, we can write

(21)

In the last equality, we have changed to the spatial
coordinate x' under the assumption that x' = 0 at t = 0.

Expressions (19) and (20) have an identical form.
This means that, if the coefficients are chosen appropri-
ately, the distribution of the alternating component of
the irradiation intensity in the x' coordinate on the sur-
face will exactly reproduce the diffraction pattern for a
single slot rotated by the angle α0 with respect to the
observation plane. The maximum x' that complies with
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the Fraunhofer conditions can easily be found from
the  corresponding expressions for the coefficients bi

and .

In the general case, it can easily be shown that, at
fixed v  and l1, slowly varying functions Im(t) and ω(t)
can always be chosen for an arbitrary two-dimensional
object such that, if the intensity of the irradiating flow
varies as

(22)

the modulation index of the dose rate will be distributed
in the x' coordinate as the wave diffracted on this object.
Also, it is not necessary to stay within the Fraunhofer
approximation, because the above technique can be
used to synthesize the diffraction pattern in an arbitrary
range of the observation angle.

Let us return to the Fraunhofer diffraction on a peri-
odic spatial array parallel to the observation plane. As
we noted above, the diffraction pattern is described in
this case by a function similar to (4a). This is due to the
fact that, in the one-dimensional case, the two-dimen-
sional Fourier transform, which follows from the elec-
tromagnetic theory and is used in the Fraunhofer dif-
fraction theory, coincides with integral transformation (2)
to within a constant factor. Therefore, if the moving
surface is irradiated by a sinusoid-modulated flux
through a one-dimensional slot screen of any configu-
ration, the distribution Aρ(ξ) observed will always cor-
respond to the Fraunhofer diffraction pattern for an
object of the same configuration. Based on this analogy,
we may consider variation of the modulation index of
the dose rate as a function of the frequency ω and the
irradiated surface velocity v  as being due to the action
of a certain quasi-wave process evolving according to
the wave equation in an artificially introduced two-
dimensional metric space. Unfortunately, it seems
impossible to uniquely define this space. Moreover, it
can be shown that any admissible definition of this
space prevents defining a metric such that nontrivial
invariant transformations would have physical mean-
ing. Nevertheless, applying the term “quasi-diffraction
process” to refer to the irradiation of the moving sur-
face is quite justified in our opinion for the following
reasons.

First, using this term implies that the commonly
accepted and convenient terminology of diffraction
spectroscopy is automatically extended to the field of
our interest.

Second, using a coherent reference radiation, a real
hologram of the slot configuration can be obtained on a
moving surface, which can (at least in principle) be
used to reconstruct the image of this configuration with
the help of the inverse wave process. Of course, this
reconstruction is only possible by methods of computer
optics [7], but the existence of such a possibility alone
suggests that the processes studied in this paper are
closely connected to the wave processes.

bi'

I t( ) I0 Im t( ) ω t( )t[ ]sin ,+=
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A technique for creating the above hologram will be
described in the second part of the paper.
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Abstract—Relationships for the efficiency of conversion of laser radiation energy to acoustic energy for the
acoustooptic (thermal) mechanism of interaction are derived. The cases of short and long laser pulses interact-
ing with the rigid and free boundaries of a heavily absorbing liquid are considered. The efficiency is numerically
calculated for the situation when the radiation of a transverse-excitation atmospheric (TEA) CO2 laser interacts
with water with regard for the temperature variation of the volume thermal expansion coefficient of the latter.
© 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Pioneering investigations into laser radiation–liquid
interaction date back to the 1960s–1970s. To date, a
variety of both theoretical and experimental studies on
this subject have been published, including mono-
graphs [1, 2] and reviews [3–8] with extensive refer-
ences therein.

The interaction of laser radiation with liquids
depends considerably both on the radiation parameters
(energy EL, laser pulse width τL, focusing conditions)
and on the properties of the liquid (especially on its
absorption coefficient α at a radiation wavelength).

Depending on the energy density absorbed in the
surface layer of the liquid, the following mechanisms
behind the generation of acoustic and shock waves in
the liquid are possible:

(1) For heavily absorbing liquids and low absorbed
energy densities, when the temperature of the surface
layer is below the boiling point, acoustic waves are gen-
erated basically by the acoustooptic (or thermal) mech-
anism, i.e., are due to thermoelastic stresses arising
because of the nonuniform heating of the liquid.

(2) If the absorbed energy exceeds the energy of
evaporation, the evaporative mechanism comes into
play. In this case, acoustic waves are generated by a
recoil momentum arising upon liquid evaporation.

(3) With still higher laser radiation power densities,
flash evaporation takes place and the liquid surface or
the air–stream mixture over the surface breaks down,
causing shock waves in both the liquid and air.

(4) In liquids transparent to laser radiation, volume
dielectric breakdown may occur in the liquid if the laser
radiation intensity exceeds some threshold value
(breakdown threshold).
1063-7842/02/4710- $22.00 © 21299
All the above mechanisms have been considered
more or less rigorously in [1–8]. Experimental studies
performed with hydrophones and piezoelectric sensors
[6, 9, 10], as well as by optical methods [11–13], in a
wide range of laser radiation energy densities (covering
different interaction mechanisms) show that the mea-
sured amplitudes and shapes of the acoustic pulses are
in fairly good qualitative and quantitative agreement
with theoretical predictions. In the experiments, the
highest shock pressures generated upon flash evapora-
tion and dielectric breakdown on the surface reached
hundreds and even thousands of atmospheres [10, 13].
This means that associated techniques may find wide
application in medical, environmental, and technologi-
cal problems, as well as in the laboratory simulation of
hydrodynamic processes accompanying actual under-
water explosions.

However, in applications using acoustic and shock
waves generated upon laser radiation–liquid interac-
tion, one should take into account not only the parame-
ters of the waves generated but also the lasing-to-acous-
tic energy conversion efficiency.

Earlier, the conversion efficiency upon the interac-
tion of laser radiation with liquids was discussed in
[2, 5, 8]. In this work, we derive relationships for esti-
mating the energy conversion efficiency η for the
acoustooptic mechanism of interaction between pulsed
laser radiation and liquids. The efficiency is theoreti-
cally calculated for the specific case of interaction
between the radiation of a CO2 laser and water with
regard for the temperature dependence of the volume
thermal expansion coefficient of the latter.
002 MAIK “Nauka/Interperiodica”
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BASIC RELATIONSHIPS FOR CALCULATING 
THE CONVERSION EFFICIENCY 

UPON ACOUSTOOPTIC INTERACTION

The conversion efficiency is defined as the ratio of
the energy Eac transferred by a pulsed acoustic (or
shock) wave to the energy of laser radiation incident on
the liquid surface:

(1)

where

εac is the acoustic energy density passing through the
wave front, and S is the surface area of the wave front.

In turn, εac can be calculated by the formula

(2)

where ρ0 is the initial density of the medium, c0 is the
velocity of sound in the medium, and P is the excess
pressure in an acoustic pulse over the initial pressure P0.

In view of (2), (1) can be recast as

(3)

This relationship can be used in calculating the effi-
ciency for various mechanisms of optical-to-acoustic
energy conversion provided that the time profile of the
acoustic pulse is known over the entire wave front sur-
face.

When calculating the efficiency in terms of the ther-
mal mechanism, we will take advantage of theoretical
relationships for the pressure pulse profile given in [2].
The case under study will be strong absorption, which
takes place when the radiation of a CO2 laser interacts
with water. The criterion for strong absorption is aα @
1, where α is the absorption coefficient (for water, α =
800 cm–1 at a wavelength of 10.6 µm) and a is the radius
of the radiation spot on the liquid surface. In this case,
the zone of energy evolution represents a thin disk adja-
cent to the liquid surface.

The interaction character and the energy conversion
efficiency depend considerably on the laser pulse width
τL and properties of the interface between the absorbing
liquid and transparent medium. The interface is consid-
ered to be rigid if the acoustic impedance ratio N =
ρ0c0/ρtrctr for the liquid and transparent medium is
much less than unity. This is the case for a liquid–solid
interface. For a free interface, such as the air–water
interface, the situation is reverse: N @ 1.
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+∞

∫ 
 
 

S.d

S

∫=
SHORT PULSE

If the laser pulse duration is much less than the time
it takes for an acoustic wave to travel the distance α–1

(short pulse), the pressure pulse profile is given by [2]

(4)

for a rigid interface and

(5)

for the free surface of the liquid. Here, εL is the density
of the laser radiation energy on the surface, β is the
thermal expansion coefficient of the liquid, c0 is the
velocity of sound in the liquid, cp is the specific heat at
a constant pressure of the liquid, τ = z – tc0, z is the
coordinate normal to the surface and directed inward to
the liquid, t is the time counted from the instant of opti-
cal pulse incidence on the surface.

At relatively small distances from the surfaces,
when diffraction can be neglected (for z ! LDF =
a2/2c0τL, where LDF is the diffraction length), the acous-
tic pulse front is flat and the pressure distribution over
the front is the same as the energy density distribution
over the focal spot. Let us put for simplicity that the
energy density within the spot of radius a is constant,
εL = EL/πa2, and the surface area of the wave front
equals that of the focal spot (S = πa2). Then, Eq. (3) can
be rearranged to the form

(6)

Substituting (4) or (5) into (6) and taking the integral
yields

(7)

where the coefficient k0 = ( β2α)/(4ρ0 ) depends
only on the liquid parameters. Specifically, for water at
room temperature, k0 ≈ 10–3 cm2/J (in calculations, the
values of the parameters were the following: c0 = 1.5 ×
105 cm/s, β = 2 × 10–4 deg–1, and cp = 4.17 J/(g deg)).
Note that (7) coincides with the formula for the effi-
ciency of the thermal mechanism in the linear mode
[2, 5, 8]. Since the integrand in (6) is the acoustic pres-
sure squared, the conversion efficiency for the rigid and
free interfaces turns out to be the same.

As follows from (7), the conversion efficiency for
the thermal mechanism is proportional to εL. However,
the possibility of increasing η within the thermal mech-
anism by raising the energy density is limited by the
transition to the evaporative mechanism at εL > εev ≈
1.5 J/cm2.

Thus, the maximal efficiency of light-to-sound con-
version by the thermal mechanism is no more than sev-

Pr τ( ) αc0
2βεL/2cp( ) αc0 τ–( )exp=

Pf τ( ) αc0
2βεL/2cp( ) αc0 τ–( ) τsgnexp=

η 1
ρ0c0εL
---------------- P t( )[ ] 2 t.d

∞–

+∞

∫=

η
c0

2β2αεL

4ρ0cp
2

-------------------- k0εL,= =

c0
2 cp

2
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eral fractions of a percent. To attain such a value, the
laser pulse duration τL must be much less than the time
(αc0)–1, which corresponds to τL ! 8 × 10–9 s.

LONG PULSE AND RIGID INTERFACE

The pulse duration for a typical TEA CO2 laser far
exceeds the time (αc0)–1. The waveform of pulses from
the CO2 laser used in our experiments is depicted in
Fig. 1. The pulse consists of a relatively sharp front
peak with a half-width ∆t1 ≈ 100 ns and an extended tail
(∆t2 ≈ 3 µs). Thus, the relationship αc0τL @ 1 for a long
pulse is fulfilled for the whole duration of the pulse and
even for its front edge.

For a long pulse and a rigid interface, the time pro-
file of the pressure pulse coincides with that of the laser
pulse [2]:

(8)

Here, I0 is the peak intensity (power density) and f(t) is
the time evolution of the laser pulse. The quantity I0 is
obviously related to the energy density εL as

(9)

where teff has the dimension of time and represents the
area under the curve f(t).

Substituting (8) into (6) yields the conversion effi-
ciency for a long pulse and a rigid interface:

(10)

where

To calculate teff and t1, we represent the actual func-
tion f(t) as the sum of two functions f1(t) and f2(t)
describing, respectively, the front peak and the tail of
the pulse (Fig. 1b). The former can be conveniently
taken in the form

(11)

where A = 1 at 0 < t < 2∆t1 and A = 0 beyond this inter-
val, while B = B0 at ∆t1 < t < 2∆t1 and B = 0 beyond this
interval.

The coefficient B0 characterizes the relative inten-
sity of the tail and front peak and depends essentially on
the composition of the lasing medium of the CO2 laser.
For the pulse shown in Fig. 1a, B0 ≅  0.3.

The tail in the interval 2∆t1 < t < ∆t2, where ∆t2 is the
full width of the pulse, is approximated by a straight

Pr t( )
c0βI0

cp
------------- f t( ).=

εL I0 f t( ) td

0

∞

∫ I0teff,= =

η r

c0β
2I0

ρ0cp
2teff

----------------- f 2 t( ) td

0

∞

∫
4k0εLt1

c0α teff
2

-----------------,= =

t1 f 2 t( ) t.d

0

∞

∫=

f 1 t( ) A πt/2∆t1( )sin
2

B πt/2∆t1( ),cos
2

+=
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line given by

(12)

Then, for teff, we have

(13)

Let us put ∆t1 = 100 ns and ∆t2 @ 3 µs, which corre-
sponds to the pulse in Fig. 1a; then, teff ≅  5.3 × 10–7 s.

The value of t1 can be found as

f 2 t( ) B0

∆t2 t–( )
∆t2 2∆t1–( )

-----------------------------.=

teff f 1 t( ) t f 2 t( ) td

2∆t1

∆t2

∫+d

0

2∆t1

∫=

=  ∆t1 1
B0

2
-----+ 

  B0

2
----- ∆t2 2∆t1–( ).+

t1 f 1
2 t( ) t f 2

2 t( ) t.d

2∆t1

∆t2

∫+d

0

2∆t1

∫=

I0

f(t) = Pr(t)/Pr, max

Pf(t)/Pf, max

(a)

(b)

(c)

1 2 30

1

0 2∆t1 0.5 1.0

f1(t)
f2(t)

t, µs

1

0

–0.5

1.00.5

Fig. 1. (a) Waveform of a typical TEA CO2 laser pulse.
(b) Laser pulse profile f(t); dashed curve, actual CO2 laser
pulse; solid curve, its approximation by the sum of func-
tions f1(t) and f2(t). (c) Time evolution of the thermoacous-
tic pulse Pf(t) found by differentiating f(t) with respect to
time (dashed curve, actual laser pulse; solid curve, its
approximation).

1
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Integrating yields

For the values of B0, ∆t1, and ∆t2 adopted earlier,
t1 ≅  1.6 × 10–7 s.

Substituting t1 and teff found previously into (10), we
arrive at a computing formula for ηr:

(14)

Thus, in the case of a long pulse and a rigid inter-
face, the optical-to-acoustic energy conversion effi-
ciency is roughly 50 times lower than for a short pulse.
At εL ≈ 1.5 J/cm2, the conversion efficiency ηr ≈ 2.8 ×
10–5.

LONG PULSE AND FREE SURFACE

In this case, the conversion efficiency is still lower.
According to [2], when long laser pulses interact with
the free surface, the pressure pulse profile varies as the
derivative of the laser pulse:

(15)

The waveform of the pressure pulse is depicted in
Fig. 1c, where the dashed curve was obtained by differ-
entiating the actual pulse of the CO2 laser (Fig. 1a) and
the continuous curve was found by approximating the
function f(t) as before. The pulse generated at the free
surface is seen to consist of two, positive and negative,
parts, i.e., is bipolar.

Substituting (15) into (6) yields

(16)

where

(17)

To calculate Φt, we use above approximations (11)
and (12). Then, in the interval 0 < t < ∆t1, we have

For ∆t1 < t < 2∆t1,

t1
3
4
---∆t1 1

1
3
---B0

1
2
---B0

2–+ 
  B0

2

3
----- ∆t2 2∆t1–( ).+=

η r 1.9 10 5– εL J/cm2( ).×≈

Pf t( ) 1
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--------

dPr t( )
dt

---------------
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--------df t( )

dt
------------.= =

η f

β2εL

ρ0c0α
2cp

2teff
2

---------------------------- f t( )d
td

-------------
2

td

0

∞

∫
4k0ΦtεL

α3c0
3teff

2
--------------------,= =

Φt
f t( )d

td
-------------

2

t.d

0

∞

∫=

df t( )
dt

------------
π

2∆t1
----------- πt

∆t1
-------.sin=

df t( )
dt

------------ 1 B0–( ) π
2∆t1
----------- πt

∆t1
-------,sin=
for the tail (2∆t1 < t < ∆t2),

It is easy to check that (df/dt)tail is roughly two
orders of magnitude less than df/dt  in the extrema of
the acoustic pulse. Therefore, we can ignore the pulse
tail when calculating the efficiency by formula (16),
which involves df/dt squared. Integrating (17) with the
values of df/dt for the front edge of the pulse, we find
that

Substituting Φt into Eq. (16), we obtain the comput-
ing formula for the conversion efficiency in the interac-
tion of a long pulse with the free liquid surface:

(18)

where εL is given in J/cm2.
For εL ≈ εev, the conversion efficiency is ηf ≈ 2.5 ×

10–7.

TAKING INTO ACCOUNT THE TEMPERATURE 
DEPENDENCE OF THE VOLUME EXPANSION 

COEFFICIENT

All the above calculations of the conversion effi-
ciency were performed in the linear approximation, i.e.,
under the assumption that the liquid parameters remain
constant during the action of a laser pulse. Actually,
many of the parameters entering into the formulas
derived depend on temperature to some extent or other,
which varies when the surface layer is heated by laser
radiation. The volume thermal expansion coefficient β
depends on temperature to the greatest extent (Fig. 2).
The thermal nonlinearity related to the temperature
dependence of β was taken into account in [15, 16]. In
these works, the effect of the nonlinearity on the shape
of the pressure pulse near the liquid surface and in the
far zone, respectively, was considered (see also [1, 2]).

We ignore the effect of heat conduction and assume
that the dependence β(T) is linear:

(19)

where T0 is the initial temperature of the liquid and T '
is its variation due to radiation absorption. We also
assume that T ' varies across the layer as

(20)

Then, it is easy to find the time profile of the pres-
sure pulse with regard for thermal nonlinearity [2]

df t( )
dt

------------ 
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∆t2 2∆t1–( )
-----------------------------– .=

Φt
π2

4∆t1
----------- 1 B0– 0.5b0

2+( ) 1.8
∆t1
-------.≈=

η f

π2 1 B0– 0.5B0+( )k0ΦtεL

α3c0
3teff

2 ∆t1

-------------------------------------------------------------- 1.5 10 7– εL,×≈=

β T( ) β T0( ) dβ
dT
------ 

 
T0

T ',+=

T '
αεL

ρ0cP
----------e α z– .=
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when the short pulse acts on the rigid and free surface:

(21)

(22)

Here,

(23)

is a nonlinear parameter.

Putting T0 = 20°C, β = 2 × 10–4 deg–1, and (dβ/dt) =
7.2 × 10–6 deg–2, we find N ≅  7 cm2/J.

Substituting (21) or (22) into (6) and integrating
yields the conversion efficiency for the short pulse in
view of thermal nonlinearity:

(24)

For the long pulse acting on the liquid surface, the
surface temperature grows in time proportionally to the
absorbed energy:

(25)

Accordingly, β increases as

(26)

The variation of the surface temperature and thermal
expansion coefficient calculated by formulas (25) and
(26) with a CO2 laser pulse approximated as above is
shown in Figs. 3a and 3b for various values of εL.

Substituting β(t) for β in (8), we come to the shape
of a pressure pulse generated by the action of the long
pulse on the rigid interface in view of thermal nonlin-
earity:

(27)

The time profile of a pressure pulse generated on the
free surface can be found by differentiating (27) with

Pr τ( ) αc0
2βεL/2cP( )=

× αc0 τ–( )exp NεL 2αc0 τ–( )exp+[ ] ,
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respect to time:

(28)

Pf t( ) 1
αc0
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dPr t( )
dt
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β0εL

αcpteff
---------------= =

× df t( )
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Fig. 2. Temperature dependence of the volume expansion
coefficient β for water [14].
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Fig. 3. Variation of the (a) surface temperature and (b) vol-
ume thermal expansion coefficient of water during the
action of a CO2 laser pulse. εL = 0.1 (1), 0.2 (2), 0.3 (3),

0.4 (4), 0.5 (5), and 1.0 (6) J/cm2.
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Formula (28) can be rearranged to the form

(29)

where (df/dt)max = π/2∆t1 is the maximum value of df/dt
in the linear mode,

is the dimensional parameter characterizing the degree

Pf t( )
Pf 0,

------------
df t( )

df
------------ df

dt
----- 

 
max

1–

qF t( ),+=

q
NεL
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5

Fig. 4. Time profiles of the pressure pulses generated by the
CO2 laser pulse on (a) rigid and (b) free water surfaces (1)
with and (2) without considering thermal nonlinearity. εL =
0.2 (2), 0.4 (3), 0.6 (4), and 1.0 (5) J/cm2.
of nonlinearity, and

is a dimensional function of time.

Results of calculations of the functions Pr(t) and
Pf(t) by formulas (27)–(29) including thermal nonlin-
earity are presented in Figs. 4a and 4b. Here, f(t) was
approximated by (11) and (12).

F t( ) df t( )
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------------ f τ( ) τ f 2 t( )+d
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Fig. 5. Effect of thermal nonlinearity in the conversion effi-
ciency for different interaction conditions: (1) short pulse,
(2) long pulse and rigid interface, (3) long pulse and free
surface, and (4) with no regard for nonlinearity.

Fig. 6. Absolute values of the efficiency for different inter-
action conditions: (1) short pulse, (2) long pulse and rigid
interface, (3) long pulse and free surface; (1–3) with regard
for nonlinearity and (1'–3') with no regard for nonlinearity.
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The pressure time profiles thus found were used to
estimate the efficiency of laser energy conversion in
view of thermal nonlinearity by formula (6). Figure 5
shows the numerical calculations of ηr and ηf (curves 2,
3) normalized to the associated values of the efficiency
calculated by formulas (14) and (18) with no regard for
thermal nonlinearity. Curve 1 in Fig. 5 shows the quan-
tity η/k0εL calculated by formula (24). Dashed line 4
corresponds to the linear approximation (N = 0).

The calculations of η by formula (24) was per-
formed for εL varying within the interval 0–0.4 J/cm2,
since at larger εL, the surface temperature calculated by
formula (20) at z = 0 exceeds 100°C. Such a situation
means that the evaporative mechanism of acoustic wave
generation comes into play. The values of ηr and ηf

were calculated in a wider range of εL, since, for a long
pulse, evaporation lags behind the pulse application and
the acoustooptic and evaporative pressure pulses are
time-separated. In addition, experiments show that the
evaporative pulse appears at an energy density εL ≈
1.5 J/cm2, i.e., much greater than 0.4 J/cm2. This is
likely to be associated with the effect of heat conduc-
tion at long laser pulses.

The results obtained in this work are generalized in
Fig. 6, where the absolute values of the conversion are
plotted against εL for different interaction conditions
with and without regard for thermal nonlinearity. As
follows from Fig. 6, the efficiency of laser-to-acoustic
energy conversion for the long pulse and rigid interface
(curves 2, 2') is roughly two orders of magnitude less
than for the short pulse (curves 1, 1'), while for the long
pulse and free surface (curves 3, 3'), the efficiency is
less by an additional two orders of magnitude.

The effect of thermal nonlinearity decreases in the
same sequence. For the short pulse at ε = 0.4 J/cm2, the
nonlinearity raises the efficiency by one order of mag-
nitude; for the long pulse at the same energy density,
the efficiency grows by a factor of 2.5 in the case of a
rigid interface and only by a factor of 1.5 if the interface
is free. As εL rises, the slope of the curves η(εL)
increases from unity (linear mode) to two (quadratic
dependence).

Thus, our calculations shows that for a CO2 laser
radiation energy density of about 1 J/cm2 or higher, the
nonlinearity caused by the temperature dependence of
the volume thermal expansion coefficient considerably
influences the parameters of the acoustic pulse gener-
ated and the efficiency of laser-to-acoustic energy con-
version.
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
In the next work, we will report experimental mea-
surements of acoustic-to-optic conversion efficiency by
the method of holographic interferometry.
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Abstract—The use of spatially aligned laser beams of two or more different wavelengths from various spectral
ranges is proposed to determine the microscopic displacements for different temperature profiles in the medium
where the beams propagate. For certain temperature gradients, numerical simulations are performed. © 2002
MAIK “Nauka/Interperiodica”.
For the most part, present-day experiments require
information about the mutual disposition of all sub-
systems in a complex measuring system. The accuracy
and reliability of experimental data can be considerably
improved through the simultaneous use of a number of
independent measurement methods including optical
ones. The advantages offered by the latter are a wide
variety of thoroughly studied sources and detectors of
light, as well as a deep insight into the physical mecha-
nisms behind the propagation of light in various media.
The main limitation of the methods used for a given
experiment is imposed by the accuracy required when
taking into account the smallness of distances to be
measured (from several to hundreds of microns), the
quasi-continuous mode of measurements (the entire
measuring cycle and the processing of data take τm ≈
1 s), and the computerization of measurements.

An example of such a problem is the measurements
of vertical shifts of probe-carrying large-diameter
radial blocks in the ALICE experiment [1], where not
only the measured quantity is random, but the environ-
mental parameters are random as well. The most impor-
tant of these is the state of the air (temperature inhomo-
geneities, contaminations, humidity, pressure, etc.).
This study considers the possibility offered by optical
means to perform measurements in these conditions.

Let a number of identical semitransparent photode-
tectors be located in a vertical plane in the path of a
laser beam, each being rigidly linked to one module of
the measuring system. When the beam passes through
a stationary uniform medium, variations in the position
of each module are measured in real time (within the
interval of ~3 × 10–s s) with a certain accuracy. A com-
puter procedure based on statistical averaging over the
coordinate of the centroid of the beam yields results
with a micron accuracy [2]. Let us denote this quantity
for the ith module by a0i.
1063-7842/02/4710- $22.00 © 21306
If a dispersion of the irregular type appears in the
medium, the beam shifts additionally and the measured
quantities ai include not only the mechanical displace-
ments of detectors a0i but can be expressed as a sum

(1)

where δai are unknown random quantities that charac-
terize the displacement of the beam from its initial
direction for the ith detector.

Assuming that the time of measurement of τm is
shorter than the time of change τg in the dispersion term
δai and using the formal procedure mentioned above, it
is possible to eliminate the additional term δai from the
system of expressions of type (1). One of the simplest
ways to realize this is to employ laser beams of differ-
ent frequencies, since the refractive index of the kth
beam is defined by its wavelength λk. Then, Eq. (1) is
replaced by the system of equations

(2)

Here, the subscript k indicates the number of the beam
or the number of the wavelength and i denotes the num-
ber of the photodetector (in what follows, the subscript
i will be omitted unless it is necessary to avoid misun-
derstanding). The number of different wavelengths to
be used in an experiment depends on the particular
character of the origination of dispersion in the
medium. We assume that the dispersion originates from
the temperature nonuniformities. In this case, the
refractive index n(λ, T) may be described by the empir-
ical formula [3, 4]

(3)

ai a0i δai,+=

aik a0i δaik.+=

n λ T,( ) 1 10 4– 77.6 p
T

--------------+=

+
5.84 1011 p×

Tλ2
------------------------------ 0.06 pW.V.– ,
002 MAIK “Nauka/Interperiodica”
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where λ is the wavelength expressed in meters, p is the
atmospheric pressure (p0 = 1.013 × 105 Pa), and pw.v. is
the partial pressure of the water vapor (pw.v. ≈ 1500–
2000 Pa).

For the wavelengths in the optical range, the contri-
bution of the last term is negligibly small and can be
ignored. In this case, the refractive index

(4)

can be calculated by the multiplicative formula

(5)

Relationships (2) and (5) make it possible, by carry-
ing out measurements at two different frequencies, to
exclude the δak(λ, t) term from system (2) and to deter-
mine a0. If the refractive index n(λ, T) is known, the
determination of δak(λ, T) within the approximation of
geometrical optics is generally reduced to solving the
eikonal equation. However, this problem may be appre-
ciably simplified when certain special models are con-
sidered.

A MODEL OF A VERTICAL MOMOGENEOUS 
LAYER

Let a vertical band of heated air be limited by paral-
lel planes and have a width d. The volume inside this
band is characterized by a uniform distribution of tem-
perature T, which exceeds the environmental tempera-
ture T0 (Fig. 1). Because of a change in the refractive
index, the initial beam, which is incident at an angle α0
to the point (y0, z0) at the interface, leaves this region at
the same angle α0 at the point (y, z0 + d) with a certain
deviation ∆y with respect to the incident beam:

(6)

The dispersion-induced deviation of two beams
with wavelengths λ1 and λ2 from each other is
expressed as

(7)

where n01 ≡ n(λ1, T0) and n02 ≡ n(λ2, T0).

Within the technique proposed in [2], the detectors
may be used to determine the displacement of a beam
by a layer with a thickness d ≅  5m at a temperature dif-
ference ∆T = 15 K or d ≈ 3m at ∆T = 25 K (see Table 1).
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The use of the two-beam method in this case allows
the estimation of the air-layer thickness d via the direct
measurement of a1 and a2 taking into account (7) and
the condition ∆(λ1, λ2) = a1 – a2 = δa1 – δa2.

The use of three beams within this approximation
makes it also possible to determine the preheated
region temperature T if the environmental temperature
T0 is known.

A MODEL OF THE VERTICAL GRADIENT 
OF TEMPERATURE

Let an infinite layer of heated air occupy the interval
[0, d] and have a constant temperature gradient gz in the
0z direction. Dividing the length [0, d] into uniform lay-
ers of thickness dz and assuming a constant refractive
index ni in the range [zi, zi + dz], we have

(8)

The system of Eqs. (8) enables one to determine
both the direction of the beam coming out of the layer
and the deviation from the direction of incidence.
Choosing the origin of coordinates at the point where
the beam enters the layer and restricting ourselves to a
linear approximation, we obtain n(T, λ) in the form

(9)

where  = 1 + f [T(0, 0)]ϕ(λ) is the refractive index in
the first layer with a width dz.

In line with the model of the vertical gradient of
temperature, one must substitute gy = 0 in (9). Then,
the “trajectory” of the beam in the yOz plane can be

n0 α0sin ni zi yi,( ) βi zi yi,( ), dzsin βdy.cot= =

n T y( ) λ,( ) n ∂n
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------
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+
dT
dy
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Fig. 1. The trajectories of two beams with different wave-
lengths (dashed line) in the presence and (solid line) in the
absence of a temperature gradient.
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Table 1.  The dispersion-induced deviation of beams with different wavelengths in the model of vertical uniform layer of pre-
heated air

d, (m)
∆T = 5 K ∆T = 15 K ∆T = 25 K

∆(λ1, λ2) (µm) ∆(λ1, λ3) (µm) ∆(λ1, λ2) (µm) ∆(λ1, λ3) (µm) ∆(λ1, λ2) (µm) ∆(λ1, λ3) (µm)

1 0.37 0.48 1.05 1.4 1.71 2.26

2 0.54 0.72 1.59 2.1 2.56 3.39

3 0.73 0.96 2.12 2.8 3.42 4.52

4 0.91 1.2 2.65 3.5 4.27 5.65

5 1.1 1.45 3.17 4.2 5.13 6.77

Note: Hereafter, the results of numerical simulations are presented for beams with wavelengths λ1 = 0.25 × 10–6 m, λ2 = 0.45 × 10–6 m, and
λ3 = 0.85 × 10–6 m.

Table 2.  The dispersion-induced deviations of beams with different wavelengths in the model of vertical gradient of temper-
ature

d, (m)
gz = 50 K/m gz = 100 K/m gz = 500 K/m

∆(λ1, λ2) (µm) ∆(λ1, λ3) (µm) ∆(λ1, λ2) (µm) ∆(λ1, λ3) (µm) ∆(λ1, λ2) (µm) ∆(λ1, λ3) (µm)

1 3.95 5.22 7.54 9.96 36.29 47.95

2 8.62 11.39 16.7 22.06 81.44 107.6

3 15.08 19.93 29.44 38.9 144.65 191.11

4 23.34 30.84 45.78 60.49 225.95 298.52

5 33.39 44.12 65.72 86.83 325.39 429.89
determined as

(10)

where c0 ≡ n0sinα0.
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Fig. 2. Beam shift as a function of the heated-air-layer
thickness and the vertical gradient of temperature.
Table 2 presents the numerically calculated devia-
tions of three beams with different wavelengths from
each other at different temperature gradients.

Measurements performed using three different
wavelengths allow the determination of two unknown
characteristics of the heated air (for example, the gradi-
ent gz and f [T(0, 0)] with d and p0 given). Figure 2 illus-
trates the beam shift as a function of the air-layer thick-
ness and the vertical gradient of temperature.

A MODEL OF THE HORIZONTAL GRADIENT 
OF TEMPERATURE

This model deals with the case where the tempera-
ture field varies uniformly along the 0Y direction.
Within this model, the horizontal layer of air within the
range [yi , yi + dy] can be characterized by a constant
refractive index ni. Then, the system of equations (8)
appears in the following form:

(8')

The refractive index can be found by taking into
account that the gradient along the 0Z direction in
expression (9) is zero and

(9')

n0 α0cos ni zi yi,( ) βi zi yi,( ), dzsin βdy.cot= =

n y λ,( ) n
f 0 0,( )ϕλgyy

T
--------------------------------.–=
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Table 3.  The dispersion-induced deviations of beams with different wavelengths for different horizontal gradients of temper-
ature

d, (m)
gy = 50 K/m gy = 100 K/m gy = 500 K/m

∆(λ1, λ2) (µm) ∆(λ1, λ3) (µm) ∆(λ1, λ2) (µm) ∆(λ1, λ3) (µm) ∆(λ1, λ2) (µm) ∆(λ1, λ3) (µm)

1 215.71 284.17 30.87 40.9 8.13 10.74

2 498.78 658.57 80.52 106.38 29.24 38.63

3 903.14 1192.19 153.11 202.27 61.75 81.59

4 1430.89 1888.4 248.73 328.57 105.68 139.62

5 2084.78 2750.68 367.49 485.43 161.05 212.76
The solution of the system (8'), (9') is similar to (10)
but with the coordinates x and y being interchanged. For
numerical simulations, one may use a simpler expres-
sion obtained from this solution by retaining the first
and second terms in the expansion in the arcsine func-
tion:

(10')

where c0 ≡ n0cosα0.
Table 3 presents the numerically calculated devia-

tions of the beams from each other, and Fig. 3 shows the
beam shift as a function of the air-layer thickness and
the horizontal gradient of temperature.

The method proposed above for detectors with a
given accuracy [2, 5, 6] may turn out to be effective for
either large temperature gradients along the heated air
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Fig. 3. Beam shift as a function of the heated-air-layer
thickness and the horizontal gradient of temperature.
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layers of small thicknesses or for large dispersion
regions with small temperature gradients.

To apply our method when a minimal value of the
measured displacement is specified requires new meth-
ods for data acquisition that have a certain predeter-
mined accuracy.

In conclusion, it should be noted that the multibeam
method of measuring relative displacements may find a
wide range of applications, for example, in the fields of
meteorological, seismological, and technological stud-
ies.
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Abstract—New variants of tubular single crystal tungsten electrodes with an electron work function of 5.3–
5.7 eV are considered. An appreciable increase in the work function is achieved due to special technologies
ensuring the “monofaceting” of a cylindrical electrode surface and doping of the vapor-phase-grown epitaxial
tungsten with oxygen. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Methods for producing crystallographically ori-
ented tungsten electrodes have been developed during
the second half of the last century in connection with
the problem of obtaining effective high-temperature
emission electrodes, in particular, for thermionic con-
verters (TCs). The most close-packed tungsten face
(110) is of most interest for use in modern TCs with an
easily ionized additive of cesium in the interelectrode
gap, because this face provides the maximum coverage
of tungsten surface during high-temperature adsorption
of cesium. To achieve this purpose, different
approaches were used in the USSR and in the West. The
use of tungsten electrodes in the form of single crystal
tubes [1] became a basic R&D concept for the main sci-
entific centers engaged in thermoemission investiga-
tions in the USSR. The main advantages of this
approach are the greatly improved stability of the elec-
trode and TC characteristics as well as the possibility of
solving the problem of fuel component diffusion
through the emitter cladding of TCs. An alternative
concept has been adopted and, apparently, still exists in
Western countries [2, 3]. This approach is based on
using tubular electrodes with an external coating of
polycrystalline “chloride” tungsten with an axial 〈110〉
texture. These electrodes are commonly referred to as
duplex electrodes since they contain an inner layer of
the “fluoride” tungsten with an axial 〈100〉 texture
formed on a textureless polycrystalline molybdenum
substrate. The growth techniques used in both cases
employ vapor phase epitaxy. According to one method,
tungsten is deposited from a chloride medium (the
Western technology, unlike the “transport” process
developed in the USSR, employed a chloride medium
flow through a reactor in which tungsten is deposited);
alternatively, the deposition proceeds from a fluoride
medium. Apparently, the choice of “duplex” technol-
ogy was caused by economic reasons only because the
cost of single crystal refractory metals was much higher
1063-7842/02/4710- $22.00 © 21310
in Western countries than in the USSR. As to the emis-
sion properties, both concepts of tungsten electrodes
(cf. Fig. 1a for USSR and Fig. 1b for USA and other
countries) in the original variants were almost the same.
In both cases, the electron work function of the cylin-
drical electrodes was about 4.9–5.0 eV [2–4].

The much greater high-temperature strength of sin-
gle crystal tungsten cladding in comparison with poly-
crystalline (including textured) electrodes was unex-
pectedly found [5], but this fact is not discussed here in
detail. The paper focuses on the prospects for improv-
ing the emission properties of tungsten electrodes for
TCs. In this respect, the characteristics of polycrystal-
line textured tungsten electrodes have hardly changed
over the last 50 years, while the emission and adsorp-
tion properties of single crystal tungsten electrodes
have greatly increased.

EXPERIMENTAL
In the most general case, a polyface tube with a

[111] axial orientation and, hence, with six [110] poles
emerging at a lateral cylindrical surface (Fig. 1a) can be
considered as the base variant of a single crystal tung-
sten electrode for TCs. The term “polyface lateral sur-
face of a single crystal tube” means that, depending on
the axial crystallographic orientation of the tube, one or
another set of poles (repeating a certain number of
times) emerges at this surface to form a crystallo-
graphic belt. For bcc lattices, the aforementioned axial
orientation is known to be preferred since it features a
maximum possible number of poles with the most
favorable orientation [110] emerging at the lateral sur-
face. As was mentioned above, the effective work func-
tion of such a tube is 4.9–5.0 eV. Numerous and various
attempts to increase the area occupied by (110) facets
on the lateral surface of a polyface tube (for example,
by etching) were of limited success, the more so as the
thermal stability of such faceted surfaces was insuffi-
cient. In this connection, our investigations were
002 MAIK “Nauka/Interperiodica”
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mainly focused on finding technological solutions
ensuring the obtaining of single crystal tungsten elec-
trodes possessing a much higher electron work func-
tion. This was achieved either by forming single-face
tubes with (110) orientation at any point of the lateral
surface (Figs. 1c–1e) or by doping tungsten with active
microadditives that will be discussed below.

Two technological methods were developed in order
to manufacture single-face tubular electrodes. One of
these employs the chemical (chloride) vapor-phase epi-
taxial deposition of tungsten onto a cylindrical molyb-
denum substrate with [111] axial orientation, whereby
the growing layer is self-faceted by (110) planes
(Figs. 1c and 2). This technology is based on a chemi-
cal transport reaction whose main stages are separated
in space inside a crystallizer reactor [6]. The thermal
dissociation of chloride and tungsten deposition
proceed on a heated substrate at temperatures 1700–
1800 K according to the reaction

The reaction of chloride synthesis with its subse-
quent sublimation takes place in a tungsten supply unit
operating at temperatures 1100–1300 K:

When an epitaxial tungsten layer was grown, the
molybdenum substrate was etched-off. The tungsten
electrodes obtained using this technology had a hexahe-
dral outer surface with smoothed edges and a round
cylindrical inner surface.

Alternatively, a single-face electrode with inner and
outer cylindrical surfaces was produced by bending
(through winding on a mandrel) a single crystal ribbon
with (110) orientation, followed by electron-beam
welding of workpieces along a helical line (Figs. 1c, 3).
This technique not only ensured the total exposure of
the most effective face (110) on the lateral surface, but
produced substructural hardening of this surface as
well. This method was developed in collaboration with
V.A. Kononenko and A.I. Dekhtyar (Institute of Metal
Physics, National Academy of Sciences of Ukraine).

This paper gives a brief description of all the afore-
mentioned promising technologies and presents the
main results of investigations of the impurity composi-
tion (ion microprobe, Auger spectroscopy) and of the
effective thermoemission work function of the samples.
The thermoemission measurements were carried out by
the method of total current using a setup described in
[7]. The measurement error is indicated in one of the
temperature dependences presented and considered in
the next section.

RESULTS AND DISCUSSION

All variants based on chemical vapor deposition
technology were realized using an apparatus designed
at the Sukhumi Physicotechnical Institute in collabora-

WCl6 = W↓ 3Cl2↑ .+

W 3Cl2+ WCl6↑ .=
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
tion with the Department of Physical Metallurgy of the
Moscow Engineering Physics Institute (MEPI). The
contribution of the author was in designing an all-metal
crystallizer reactor for tungsten deposition from a chlo-
ride vapor phase [8, 9]. The technique of epitaxial
“chloride” tungsten deposition onto tubular single crys-
tal molybdenum substrates was developed in parallel
with similar works at the MEPI and the Scientific
Research Institute of the Luch Corporation. However,
MEPI and Luch [10–12] obtained tungsten single crys-
tals faceted by planes (211). Previously [13], we
showed that there are methods allowing one to change
the indices of habit planes and to grow crystals faceted
by planes (110) with acceptable rates (up to 0.1 mg/cm2 s).
One method consists in doping deposited tungsten with
oxygen microadditives. In this case, we obtained hexa-
hedral single crystal tubes (Figs. 1c, 2) with (110) face
orientation. A minimum thickness of the tungsten layer
in the cross-section was 1–2 mm. When layers of such
a thickness were deposited, the substrate orientation
was found to be retained in the regimes of vapor phase
deposition ensuring spatially matched orienting effects
of the substrate (epitaxial growth) and of the crystalli-
zation process (texture formation) [14]. The study of
microstructure by optical and electron microscopy [15]
showed that, when the spatial matching conditions are
observed, the quality of orientation of a deposited layer
is not deteriorated but even tends to increase with thick-
ness. A dislocation ensemble in epitaxial tungsten
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Fig. 1. Main variants of tubular tungsten electrodes for TCs
representing (a, c, d, e) single crystal concept (USSR, Rus-
sia) and (b) “duplex” texture concept (USA, Western
Europe): (a) polyface electrode with 〈111〉  axial orientation
of “chloride” epitaxial tungsten; (b) polycrystalline elec-
trode comprising the first layer of “fluoride” vapor phase
grown tungsten with (100) texture and the outer layer of
“chloride” vapor phase grown tungsten with (110) texture;
(c) single-face oxygenated “chloride” epitaxial tungsten
self-faceted by six (110) planes; (d) single-face (110) cylin-
drical electrode with substructural hardening, fabricated
from undoped tungsten by crucibleless electron beam zone
melting under “deformation” technology; (e) case (d) mod-
ified by “chloride” epitaxial layer of oxygenated tungsten.
Top view: blackened regions—“chloride” layer; open circu-
lar regions—molybdenum substrate; dashed regions—
polygonized substructural hardened layer.



 

1312

        

KOBYAKOV

                                                               
appeared spontaneously as a result of the formation of
misfit dislocations, which compensated the misfit in lat-
tice parameters of the substrate and the deposit. The
density of dislocations estimated from etch pits aver-
aged about 108 cm–2.

The investigations of such electrodes using an ion
microprobe (Cameca IMS-3F) showed [16] that, in the
absence of specially introduced oxygen, the total con-
tent of impurities in the material did not exceed 10–2 wt %.
The content of interstitial impurities (C, N, O) is about
10–5–10–4 wt %, the concentration of regular contami-
nants (Na, Mg, Al, Si, K, Ca) is 10–4–10–3 wt %, and the
content of elements representing the material of appa-
ratus (Ti, Cr, Fe, Cu) is 10–6–10–5 wt %. The molybde-
num concentration is about 10–2 wt %. This technolog-
ical impurity is unavoidable in “chloride” tungsten
deposited onto a molybdenum substrate. However, it is
known [17] that the presence of even a few percents of
molybdenum on tungsten surface does not change the
work function. From this standpoint, the investigated

Fig. 2. single-face electrodes of oxygenated “chloride” epi-
taxial tungsten self-faceted by six planes (110).

Fig. 3. single-face (110) cylindrical electrodes with sub-
structural hardening of undoped tungsten obtained by cruci-
bleless electron beam zone melting in different stages of
“deformation” technology: (1) after winding the ribbon on
a mandrel; (2) after electron beam welding with a helical
weld; (3) after mechanical polishing and electropolishing.
tungsten was rather pure material with respect to all
groups of the impurities. This fact was confirmed by the
thermoemission measurements of the effective work
function of (110) faces for the hexahedral single crystal
electrodes, which amounted on average to 5.2–5.3 eV.

When a dozed oxygen additive was introduced into
the gas phase during the epitaxial crystallization of
tungsten, the oxygen concentration increased in a solid
deposit as well. The oxygen content could be varied
within a rather wide range (10–5–10–2 wt %). The oxy-
gen concentrations in epitaxial tungsten determined by
the ion microprobe and by the method of fast neutron
activation coincided satisfactorily. Indeed, the oxygen
concentration measured by the ion microprobe in the
sample investigated in [16] was about 1.0 × 10–3 wt %,
while the neutron activation analysis showed 1.7 × 10–3 wt
%. The tungsten with increased oxygen content is
referred to as oxygenated tungsten. As will be shown
below, oxygenated epitaxial tungsten exhibits a sharp
change in the emission properties.

It was shown [5] that, under conditions of the high-
temperature creep (T = 1870 K, σ = 10 MPa, τ =
1000 h) the dimensional stability of oxygenated epitax-
ial tungsten tubes is characterized by a creep rate
which, in our case, falls within 10–9–10–8 s–1. Such a
level of the creep straining rate is more typical of the
“chloride” epitaxial tungsten deposited on single crys-
tal molybdenum. In [5], these rather low creep rates
(much lower than those observed in polycrystalline
tungsten) were explained by substructural hardening of
the material as a result of polygonization of the tung-
sten substructure. The polygonized substructure was
formed spontaneously during the epitaxial growth of
tungsten on molybdenum due to the generation of mis-
fit dislocations at the deposit–substrate interface.

In the “deformation” technique, single-face (110)
electrodes were obtained by helical winding a single
crystal tungsten ribbon with orientation (110) under
conditions of pure bending at a temperature of about
1000 K (Figs. 1d, 3). The initial unstrained tungsten
ribbon was obtained by cutting (along the correspond-
ing axis) single crystal ingots oriented in a certain man-
ner. The ingots were produced by crucibleless electron
beam zone melting. The regimes of electron beam
welding of the workpieces along a helical line and sub-
sequent heat treatment ensured a single crystal struc-
ture of the weld material. X-ray diffraction studies
showed that electrodes fabricated by this technology
are characterized by an orientation close to (110) at any
point of the external cylindrical surface, with a disori-
entation of the neighboring regions within 20–30 angle
minutes. The cross section of subgrains in tungsten did
not exceed 100 µm and the dislocation density was 109–
1010 cm–2.

After appropriate heat treatments, a polygonized
substructure of dislocations of the same sense was
formed in the bending strained tungsten that provided
substructural hardening of the material. As to the con-
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
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centration of impurities, the material was almost iden-
tical to that of the “chloride” tungsten electrodes (with-
out additionally introduced oxygen) considered above,
except for a molybdenum impurity, which was almost
absent here. However, the effective work function of
such welded electrodes was not higher than 5.0 eV. This
can be probably explained by the appreciable density of
structural defects formed in the material as a result of
deformation and polygonization processes in various
stages of the manufacture of cylindrical single-face
electrodes. It might seem that such a work function may
restrict the potential of “deformation” technology to
manufacture cylindrical single-face electrodes. How-
ever, the increased dislocation density, which is respon-
sible for the lower work function [18], simultaneously
accounts for the increasing adsorption ability of the
material surface. This is also valid for the adsorption of
cesium vapor present in the interelectrode gap of mod-
ern TCs. On the other hand, such single-face electrodes
offer a decisive advantage because of their long-term
stability under creep conditions. The test results
obtained in the Scientific Research Institute of the Luch
Corporation (P.V. Zubarev and N.G. Tachkova) are
worth mentioning here. The long-term (700 h) creep
tests of such electrodes were carried out at a tempera-
ture of 2070 K under conditions of internal inert gas
pressure equivalent to a tangential bulging load of
10 MPa. The tests showed quite small initial deforma-
tion (less than 0.1%) and a low rate of the steady-state
creep (1.2 × 10–9 s–1). The tests carried out at the Insti-
tute of Metal Physics of the National Academy of Sci-
ences of Ukraine [5] at the same values of temperature
and bulging pressure (the latter was produced by multi-
point mechanical loading) during 2000 h showed an
initial deformation of 0.2–0.3% and the lowest rate of
the steady-state creep (10−11–10–10 s–1).

Let us consider the problem of doping single crystal
tungsten with an active oxygen microadditive. Of
course, the impossibility of oxygen dissolution in the
ideal tungsten single crystal due to the specific config-
uration of its valence electron shells [16] is a well-
known fact. In real tungsten, the presence of structural
defects accounts for a small equilibrium solubility of
oxygen (0.005 wt % at 1973 K [19]). However, as men-
tioned above, we revealed the essentially higher solu-
bility of oxygen in “chloride” epitaxial tungsten when
studying the effect of impurities on the work function
of single crystal tungsten [16, 20, 21].

The results of investigations of the (110) surface of
oxygenated “chloride” epitaxial tungsten using the
high-temperature Auger electron spectroscopy are
shown in Fig. 4. The complete removal of carbon from
the tungsten surface heated to 1300 K (i.e., a kind of the
sample self-cleaning from carbon) is a rather unex-
pected effect because it seems absolutely improbable
for ordinary tungsten. A broad minimum on the oxygen
profile (curve 2) in this temperature interval is probably
related to the fact that oxygen emerging at the surface
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
is consumed to form carbon oxide. From this it follows
that the surface of oxygenated tungsten studied in our
experiments did not contain carbon but oxygen was
present. This conclusion is valid for the temperature
range where the work function measurements, both
presented above and considered below, were carried
out. The oxygen peak amplitude gradually decreases
when the temperature rises above 1300 K (see Fig. 4),
but up to 2273 K a considerable part of the crystal sur-
face remains coated by a monolayer of oxygen.

A correlation between the oxygen impurity content
and thermoemission work function was established in
[16, 20, 21]. We proposed a physical model explaining
the possible incorporation of oxygen atoms into the
tungsten lattice during the “chloride” chemical vapor
deposition process in the case when the vapor phase
contains a certain amount of oxygen. This model is
based on the assumption about the reconstructive for-
mation of surface tungsten suboxide at the crystalliza-
tion front of a growing face, with layer-by-layer
“immuring” of oxygen in the volume of the growing
crystal. Tungsten crystals grown under such conditions
possess a significantly increased work function. The
effective work function of the (110) face for such tung-
sten varies from the tabulated value of 5.3 up to 5.7 eV,
depending on the oxygen content. This considerable
oxygen-induced effect is best characterized by the tem-
perature dependences (polytherms) of the work func-
tion (see, for example, Fig. 5). For single crystal tung-
sten with an oxygen content above >5 × 10–4 wt %, the
work function sharply increases with temperature. The
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Fig. 4. Temperature dependence of the normalized Auger
signal amplitude for carbon I1 (1) and oxygen I2 (2) on the
(110) face surface of oxygenated “chloride” epitaxial tung-
sten (normalized to the tungsten peak at 169 eV).
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presence of two, usually sloped, plateaus on this depen-
dence is a typical feature. The first plateau is observed
in the temperature interval 1700–1900 K and the sec-
ond, at temperatures above 2000 K. The temperature
dependences of the work function for oxygen-free
tungsten differ sharply from the ones described. Usual
linear temperature dependences with a very slight
increase in the work function in the temperature range
from 1500 to 2500 K (Fig. 5) are registered if the mea-
surements are carried out in sufficiently high vacuum.
This behavior was repeatedly confirmed, including the
experiments with vapor-phase-grown tungsten [16]. It
is interesting to note that, when the work function mea-
surements for oxygen-free tungsten were carried out at
various small oxygen partial pressures sufficient to
form a fraction of a monolayer on the tungsten surface,
we observed a pattern (Fig. 6) opposite to that typical
of oxygenated tungsten (Fig. 5). It is clear from Fig. 6
that, at the beginning of the temperature interval stud-
ied, there is a maximum and very significant oxygen
effect and, as the temperature increases, the work func-
tion sharply decreases due to intensification of oxygen
desorption from the tungsten surface.

Thus, we can conclude that a considerable growth in
the work function of the tungsten electrode with
increasing temperature is typical only of the oxygen-
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Fig. 5. Work function polytherms of oxygenated “chloride”
tungsten self-faceted by six planes (110): (1) after growth;
(2) after turning up to a cylindrical surface and electropol-
ishing; (3, 4) similar samples not finally faceted by (110)
planes (with a polyface lateral surface); (5) cylindrical
substructural hardened sample of undoped tungsten
obtained by crucibleless electron beam zone melting
(“deformation” technology). Oxygen content in the samples
(wt %): (1) 2.3 × 10–2; (3) 1.7 × 10–2; (4) 4.6 × 10–3;
(5) 6.7 × 10–5.
ated tungsten obtained by the chloride vapor-phase
technique. According to the above, oxygen desorption
from the tungsten volume is a thermally activated pro-
cess and this very circumstance determines the temper-
ature dependence of the work function of oxygenated
tungsten. Leaving the crystal volume, oxygen forms
different states on the tungsten surface, depending on
the temperature. According to [20, 23], a low-tempera-
ture branch of the work function polytherm (up to a
temperature of about 1800 K) is determined by the
presence of tungsten suboxide W3O (which is thermally
stable at these temperatures) on the tungsten surface.
A high-temperature branch (>2100 K) is determined by
the dynamic processes which ensure the presence of
physically adsorbed oxygen on tungsten with the sur-
face coverages of up to several tenths of a monolayer,
depending on the real surface structure.

CONCLUSION

In summary, two promising variants of tubular sin-
gle crystal tungsten electrodes for high-performance
TCs are proposed. One of these is based on chloride
vapor phase technology and, hence, represents single-
face electrodes of oxygenated epitaxial tungsten with
outer hexahedral and inner cylindrical surfaces. At the
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Fig. 6. Work function polytherms of (110) face for a tung-
sten sample cut from a single crystal ingot grown by cruci-
bleless electron beam zone melting at different partial oxy-
gen pressures from “external” source: (1) 10–4; (2) 10–5;
(3) 10–6 Pa (data from [22]).
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usual working temperatures of TCs, the electrode mate-
rial has a work function of 5.6–5.7 eV and a high-tem-
perature creep rate not exceeding 10–8 s–1. Such elec-
trodes can be used for designing thermoemission units
of hexahedral geometry, which ensure their closest
packing in a converter. Upon appropriate modification,
these electrodes can be used in cylindrical modules too.

Another variant is based on the “deformation” tech-
nology using single crystal ingots of undoped tungsten
obtained by crucibleless electron beam zone melting.
Both inner and outer surfaces of the tubular electrodes
manufactured according to this technique are cylindri-
cal. The electrode material has a work function of
5.0 eV; under typical working conditions of TCs, the
dimensional stability of the material is characterized by
a high-temperature creep rate of 10–9 s–1 according to
one test method and 10–11 s–1 according to another
method.

Finally, a combination of the two variants consid-
ered above can be offered as the third version (Fig. 1e).
In this case, a single-face tube of the variant in Fig. 1c
serves as a high-strength substrate for depositing a
layer of chloride vapor grown oxygenated epitaxial
tungsten with a high work function. In so doing, as was
shown earlier [24], a hardened substrate substructure is
inherited by the epitaxial layer.
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Abstract—A new principle of designing a SAW gas sensor is described. This sensor, being essentially of sorp-
tion type, also offers properties of thermometric SAW sensors. The basic idea here is that heat fluxes propagate
between the SAW substrate and the working surface of the temperature-regulating system with some delay.
A sensor based on this principle can detect not only the vapors of volatile substances but also gases by their
thermal properties, retaining high temperature stability and speed of response unlike conventional SAW ther-
mometric sensors. The design of this sensor built around a LiNbO3 SAW delay line is described, and experi-
ments on detecting a household propane–butane mixture with this sensor are reported. In particular, the
responses of the sensor are measured at different gas-flow rates, two different SAW substrate temperatures, and
two propane–butane concentrations. Ways of improving the sensor’s performance are discussed. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

It is well known that most SAW devices are very
sensitive to the surface condition of the SAW substrate
along which the waves propagate. The adsorption of
molecules from the gaseous phase on the working sur-
face of a delay line or a resonator changes SAW propa-
gation parameters. This, in turn, changes the phase of
the device’s output signal (in passive delay lines) or its
frequency (in oscillators built around resonators and
delay lines). This factor underlies the operation of SAW
gas sensors, which were first so named in [1]. To pro-
vide a chemical selectivity, a thin layer of a special
material offering an increased absorptivity with respect
to particular compounds is applied to the working sur-
face of the substrate. Due to their unique properties,
such SAW gas sensors are finding increasing use,
including in the sensor arrays of modern gas analyzers
of the electronic nose type [2]. However, the best repro-
ducibility, time stability, and sometimes sensitivity are
demonstrated by SAW sensors without a sensitive coat-
ing [3]. Of course, sensors without a sensitive coating
are not selective and can only detect the vapors of vol-
atiles that are readily adsorbed on the working surface
kept at a temperature lower than that of the vapor of a
substance being detected. Nevertheless, “uncoated”
sensors are successfully used in many modern high-
speed portable devices for detecting and identifying
volatiles, including toxic agents, explosives, and nar-
cotics, which may be present in the environment in very
small amounts [3, 4]. These devices separate chemical
mixtures into their constituents with the help of chro-
matographic columns. For rapid identification, well-
known algorithms similar to those used in analyzers of
the electronic nose type with the arrays of selective sen-
sors can be employed [2].
1063-7842/02/4710- $22.00 © 21316
SAW sensors without sensitive coatings are used
together with chromatographic columns, which may be
universal, capable of separating not only the vapors of
volatiles but also mixtures containing permanent and
combustible gases. Therefore, it would be desirable to
have a universal SAW gas sensor that would detect as
many vapors and gases as possible. There exist
uncoated SAW sensors that can detect gases and vapors
of a variety of substances. These are SAW thermomet-
ric gas sensors [5, 6].

SAW thermometric sensors operate as follows. An
SAW delay line or an SAW resonator on a heated sub-
strate (steady heat source) is placed into a chamber
where a carrier gas flows about the substrate with a con-
stant rate. The heat source with the SAW device is
mounted in the chamber so that the chamber walls and
the source exchange heat largely through the gas filling
the chamber. The temperature of the chamber walls and
that of the gas injected must be different from the
source temperature (usually, much lower) and kept con-
stant. The source temperature thus depends on the prop-
erties (thermal conductivity and specific heat) and flow
rate of the gas injected into the chamber. The greater the
properties of the gas to be detected differ from those of
the carrier gas and the greater the wall and gas temper-
ature differs from the initial heat source temperature,
the greater is the change in the source temperature
when the gas to be detected is injected into the chamber,
i.e., the higher is the device’s sensitivity. The heat
source is usually a resistance-type heater connected to
a regulated power supply. An SAW device here serves
as a temperature-sensitive element; therefore, its sub-
strate material must be very sensitive to temperature
variations (at least quartz must be excluded). SAW ther-
mometric sensors currently available [6] cannot how-
002 MAIK “Nauka/Interperiodica”
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ever detect the vapors of volatiles and are exceeded by
sorption SAW sensors in speed of response and in
reproducibility of results.

To achieve the maximum possible thermal stability
of sorption SAW sensors, their substrates are often
made of thermally stable quartz cuts and precision tem-
perature regulators built around Peltier thermoelectric
elements are used [4, 7]. Therefore, such sensors cannot
detect gases by their thermal properties.

This paper describes an SAW gas sensor that, being
in essence a sorption sensor, also offers some properties
of an SAW thermometric sensor [6]. In other words, we
propose a sensor that is capable of detecting not only
the vapors of volatiles but also gases by their thermal
properties. Unlike conventional SAW thermometric
sensors, our sensor provides high thermal stability and
speed of response. We describe a sensor built around a
LiNbO3 delay line and report test results by an example
of detecting a household propane–butane mixture. In
particular, the sensor’s responses as a function of the
SAW substrate temperature, temperature and flow rate
of the gas mixture, and propane–butane concentration
in the carrier gas were measured.

THERMOSTABILIZATION 
OF AN SAW SENSOR

To gain greater insight into the design and operating
principle of the universal SAW sensor proposed, con-
sider the thermostabilization of an SAW device in mod-
ern sorption SAW sensors. Figure 1 illustrates the typi-
cal position of an SAW device in the measuring cham-
ber of modern sorption SAW sensors. The sensitive
SAW device (an SAW waveguide delay line on a
128°Y–X LiNbO3 substrate with a center frequency of
486 MHz [7]) is mounted directly on the working sur-
face of a Peltier thermoelectric element (TEE). In our
experiment, the SAW device was fixed to the TEE by
the heat-conducting paste that is commonly used in fab-
ricating electronic equipment. The TEE working sur-
face also supports a thermally sensitive resistor to mea-
sure its temperature. The TEE with the SAW device is
placed into the measuring chamber, which has connec-
tors for coupling the delay line with the high-frequency
measuring circuits and for connecting the TEE with the
thermally sensitive resistor to feed circuits and circuits
for computer temperature control. The chamber is also
provided with inlet and outlet pipe connections for gas
delivery and removal. Commercial one-stage TEEs
with a standard control circuit that were used in our
experiments kept the SAW device temperature in the
range 4–60°C within ±0.003°C for no less than 10 min
and within ±0.01°C for 10 h with the ambient tempera-
ture varying from 20 to 30°C. To study the dynamics of
SAW device thermostabilization, a continuous sinusoi-
dal signal was applied to the input interdigital trans-
ducer of the delay line at its center frequency, and vari-
ations in the phase of the signal at the output interdigital
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
transducer due to a stepwise change in the temperature
of the TEE working surface were measured. Figure 2
plots the time variation of the output phase when the
TEE working surface temperature changes by 1°C from
57.3 to 58.3°C (curve 1) and by 0.5°C from 9.9 to
10.4°C (curve 2) with the maximum rate attainable for
the control system used. The measurements were made
for several flow rates of the carrier gas (chromato-
graphic nitrogen) passing through the measuring cham-
ber. The chamber and the inlet metallic capillary tube
were placed into a thermostat kept at a temperature of
30 ± 0.1°C. The results of measurement depended on
the flow rate only slightly. As follows from Fig. 2, our
temperature-regulating system sets the steady-state
value of the temperature of the given 128°Y–X LiNbO3

SAW substrate measuring 9 × 4 × 0.5 mm approxi-
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Fig. 1. SAW device in the measurement chamber: (1) SAW
delay line; (2) thermoelectric element; (3) working surface
of the thermoelectric element; (4) heat-conducting paste;
(5) thermally sensitive resistor; (6) chamber lid with inlet
and outlet pipe connections, microwave contacts, and elec-
trical contacts; (7) base of the chamber; (8) sealing heat-
insulating gasket; (9) microwave input; (10) microwave out-
put; and (11) to the temperature-control unit.
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Fig. 2. Phase variation in the signal derived from the output
interdigital transducer at a given change in the TEE working
surface temperature. t0 is the instant of temperature change.
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mately in 5 s when a temperature jump is 1°C, the tem-
perature change being the most rapid within the first
second after the jump. The equilibrium phase change as
a result of the 1°C temperature change was 30.3°C,
which is in good agreement with the value calculated
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Fig. 3. Phase variation in the output signal when the TEE
working surface temperature changes by 1°C from 57.3 to
58.3°C: (1) no spacers, (2) one glass spacer, and (3) two
glass spacers between the SAW substrate and the TEE. t0 is
the instant of temperature change.
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Fig. 4. Experimental setup for measuring the response of
the SAW sensor (the phase of the delay line output versus
time) to gaseous substances: (1) measuring chamber with
the SAW sensor and the TEE; (2) thermostat; (3) calibrated
gas-extracting tube; (4) six-way valve; (5) cylinder with the
gas under study; (6) cylinder with the carrier gas; (7) elec-
tronic temperature-control unit; and (8) phase meter mea-
suring the phase shift of the microwave signal passed
through the SAW delay line.
for the SAW substrate material and delay line employed
[7]. It can be expected that the time it takes for the SAW
substrate temperature to return to the initial value (ther-
mostabilization) after applying an external thermal
effect to the substrate will be roughly the same. Such an
external thermal effect may be exerted by the gas
injected into the measuring chamber if its parameters
are different from those of the carrier gas.

At reasonable gas flow rates in the measuring cham-
ber and temperature difference between the SAW sub-
strate and the gas injected, this external action will not
noticeably change the SAW substrate temperature even
for a very short time of observation, because the tem-
perature-regulating system has time to compensate for
this difference. Thus, such a sorption SAW sensor can
hardly detect gases by their thermal properties even if
its SAW substrate is made from a material of poor ther-
mal stability. Our experiments corroborated this suppo-
sition. In all our attempts to detect the propane–butane
mixture, the response of the sensor was no higher than
0.5° for all possible combinations of the experimental
parameters.

In our opinion, it would be possible to detect gases
by their thermal properties if the temperature-regulat-
ing system actuates with some delay. Apparently, a
delay can be introduced electronically by appropriately
modifying the temperature-control unit. Alternatively,
one may provide a delay for the heat flux between the
TEE working surface and the SAW substrate. We chose
the second approach. One or several thin (0.25-mm-
thick) glass plates were placed between the SAW sub-
strate and the TEE working surface and adhered to the
TEE surface, the SAW substrate, and together by the
heat-conducting paste. The free part of the TEE surface
(not occupied by the SAW substrate) and the thermally
sensitive resistor were covered by a heat-insulating
material. Under the same conditions as in the previous
experiment, we measured the phase variations of the
output signal of the output interdigital transducer when
the temperature of the TEE working surface changes
stepwise by 1°C from 57.3 to 58.3°C. The results are
shown in Fig. 3. It is seen that with the spacers, the
SAW substrate steady-state temperature does set in
more slowly and that the process is the slower, the
greater the number of spacers placed between the sub-
strate and the TEE working surface.

EXPERIMENTAL DETECTION 
OF THE PROPANE–BUTANE MIXTURE

The experimental setup used to measure the
response of the SAW sensor (the phase shift of the
delay line output versus time) is shown in Fig. 4. The
measuring chamber (of volume ≈2 cm3) with the SAW
sensor and the metallic inlet capillary were placed into
the thermostat at a temperature of 30 ± 1°C kept within
±0.1°C for several hours. The gas under test was dosed
out with a calibrated 4-cm3 U-shaped tube, which could
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
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be connected to a cylinder with this gas and to the car-
rier gas pipeline with a standard six-way dosage valve
as is usually done in gas chromatographs. In one posi-
tion of the valve, the U-shaped tube is connected to the
cylinder and the gas under test flows through the tube,
while the carrier gas is injected into the measuring
chamber, bypassing the tube. In another position of the
valve (shown in Fig. 4), the U-shaped tube bridges the
gap in the carrier gas pipeline, so that the carrier gas
displaces the gas under test from the tube to the measur-
ing chamber.

As we noted above, with the SAW substrate placed
directly on the TEE working surface, the response of
our SAW sensor to the propane–butane mixture proved
to be too weak. Figure 5 shows the responses of the
same sensor with glass spacers inserted between the
SAW substrate and the TEE and the household pro-
pane–butane mixture injected into the measuring cham-
ber. It can be seen that the glass spacers do increase
appreciably the sensor’s response.

The phase change sign in the output signal is posi-
tive when the SAW substrate temperature is higher than
the temperature of the injected gas (chamber walls) and
negative otherwise. This means (cf. the phase change
sign upon heating the SAW substrate in Figs. 2 and 3)
that the gas under test cools the SAW substrate in the
former case and heats it in the latter. Since the thermal
conductivity of the carrier gas (nitrogen), 2.4 ×
10−4 W/(m K), is higher than that of the propane–
butane mixture, 1.43 × 10–4 W/(m K), the SAW sub-
strate temperature could be expected to increase in the
former case and decrease in the latter. Since we did not
observe such an effect experimentally, the major contri-
bution to the response is apparently made by the differ-
ence in the specific heats of nitrogen, 1.04 kJ/(kg K),
and the propane–butane mixture, 1.46 kJ/(kg K).

As was expected, the response depended signifi-
cantly on the difference between the injected gas tem-
perature and the specified temperature of the TEE
working surface and also on the gas flow rate. As the
temperature difference decreases, the response declines
proportionally and changes sign when the sign of the
temperature difference changes.

The responses of the sensor to the propane–butane
mixture at different flow rates are plotted in Fig. 6. The
response to the 5 vol % propane–butane + 95 vol %
nitrogen mixture at a gas flow rate of 70 cm3/min, SAW
substrate temperature of 58°C, and gas temperature of
30°C was 2.5°, which is quite a measurable value (in
our experiments, the minimal phase change measured
reliably was 0.2°).

Upon detecting the vapors of several alcohols and
water by the sensor with the glass spacers inserted
between the TEE working surface and the SAW sub-
strate and with the substrate temperature below the
injected gas temperature, the responses were close to
those obtained in [7], where a similar SAW sensor with
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
an ordinary temperature-regulating system and without
the glass spacers was used.

CONCLUSION

Thus, we described the physical principle account-
ing for the operation of a SAW sensor capable of detect-
ing the vapors of volatiles, as well as gases, without
changing its design or operating mode. The efficiency
of the sensor was demonstrated experimentally. The
sensor offers a high speed of response and temperature
stability, which are typical of sorption SAW sensors.

The results of our experiments should not be
regarded as ultimately achievable. To create a usable
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Fig. 5. Responses of the SAW sensor with (1) one and
(2) two 250-µm-thick glass spacers placed between the
SAW substrate and the TEE to the 100% propane–butane
mixture injected into the measuring chamber at SAW sub-
strate temperatures of (3) 58.3 and (4) 4°C. The injected gas
(chamber wall) temperature is 30°C; the gas flow rate is
70 cm3/min.

–15

200 40 60 80 100 120
Time, s

–20

–10

–5

0

Phase variation, deg

6

12
18

25

32

70

Fig. 6. Responses of the sensor with one glass spacer
between the SAW substrate and the TEE to the propane–
butane mixture. The gas temperature is 30°C; that of the
SAW substrate, 4°C. Numbers by the curves indicate the
gas flow rate in cm3/min.
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device, it is necessary to optimize its design and oper-
ating modes. In fact, the response of the sensor is pro-
portional to the difference between the temperatures of
the SAW substrate and measuring chamber walls. In
our experiments, this difference was about 30°C at
most. The materials used in our sensor and TEE can
withstand temperatures of up to 120°C. Therefore, the
temperature difference can easily be increased by a fac-
tor of 3 to 3.5. Also, we did not optimize the thickness
and material of the spacers between the SAW substrate
and the TEE. It is also possible to reduce the volume of
the measuring chamber, in which the SAW device is
mounted, by a factor of 2 to 3. This will also increase
the speed and magnitude of the response. The optimum
choice of the carrier gas could provide a greater differ-
ence between the specific heats of the carrier gas and
the gas to be detected and thus improve the parameters
of the sensor. Note that all the above ways for improv-
ing the sensor’s characteristics in detecting gases by
their thermal properties will also improve its character-
istics in detecting the vapors of volatiles.
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Abstract—A static mass analyzer of charged particles operating under a nonuniform magnetic field is sug-
gested. An expression for the magnetic potential distribution is obtained in explicit form. From this expression,
formulas for the basic parameters in the dispersion plane are derived for first-order angular focusing. Conditions
for space focusing are found when a source and a detector are beyond the magnetic field region. Operating con-
ditions where the trajectory exhibits three turns (in other words, charged particles travel a longer distance in the
field) are established. The extended trajectory causes a considerable increase in the mass linear dispersion. ©
2002 MAIK “Nauka/Interperiodica”.
Static uniform magnetic fields are of frequent use in
mass analyzers of ion beams. The linear dispersion
depends on the radius of curvature of the beam; there-
fore, the provision of a high resolution implies an
increase in the overall dimensions of the instrument.
Moreover, in uniform fields, angular focusing in the
direction normal to the dispersion plane is absent.
These disadvantages have given impetus to the devel-
opment of instruments operating with nonuniform
magnetic fields [1].

We suggest a mass analyzer the design of which is
shown in Fig. 1. It represents a cylinder made of a mag-
netic material and cut along the generatrix into four
identical closely spaced parts. Two of them are magnet
poles with screens in between. The beam is introduced
and extracted through channels cut in one of the
screens.

In the 2D approximation, the scalar magnetic poten-
tial distribution along the longitudinal axis z of the sys-
tem is given by

(1)

Hereafter, the coordinates, as well as all geometrical
parameters, are expressed through the radius r of the
cylindrical poles. The lines of force for such a field are
depicted in Fig. 1.

Consider the motion of a charged particle beam in
the midplane x0z of the magnet, which is the plane of
dispersion (Fig. 2). Singly integrating the projection of
the equation of motion onto this plane and equating the
resulting variation of the longitudinal velocity to the
velocity found from the energy law, we arrive at an
expression for the beam trajectory inclination in the

ω x y,( ) = W /π 2 1 x– y+( )/ 2x x2– y2–( )[ ]arctan{

– 2 1 x– y–( )/ 2x x2– y2–( )[ ] } .arctan
1063-7842/02/4710- $22.00 © 21321
field:

(2)

where

Here, ϑ  is the trajectory inclination at the entrance to
the field,

(3)

is the magnetic force, K = 2 /π is the coefficient at

x'( )2 1 P2 x( )–[ ] /P2 x( ),=

P x( ) ϑ σ x2 2 1+( )[{ln+cos=

+ 2 1 x–( ) ] / x2 2 1–( ) 2 1 x–( )+[ ] } / 2 2( ).

σ KW( )/ rc( ) e/2mΦ–=

2

1

2

3

4

1

2

S N
r

Fig. 1. Cross section of a mass analyzer with cylindrical
poles and the pattern of magnetic lines of force: (1) pole
pieces of magnet, (2) screens, (3) exciting coils, and
(4) magnet yoke.
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the higher harmonic (in the expansion of scalar mag-
netic potential (1)), m and e are the particle mass and
charge, c is the speed of light, and Φ is the accelerating
potential.

From (2), at x' = 0 one can determine the maximal
coordinate through which the axis of mirror symmetry
passes inside the field; at x ' = ∞, the coordinate of a tra-
jectory turn when the entrance angle of the beam ϑ  >
90°. These coordinates are written as

(4)

To the maximal coordinate xm, there corresponds

µm = (1 – cosϑ)/σ; to the turning point, xn – µn =

− cosϑ /σ.

Let us determine the base of the mass analyzer (the
spacing between the source and detector) L = l +
λ , where Θ is the entrance inclination of the beam
central trajectory, l is the distance between the entrance
and exit points of this trajectory, and λ = h + g is the
total distance by which the source and detector are off-
set from the field. For particles leaving a point source at
angles ±α to the central trajectory, the distance between
the points of entrance to and exit from the field is

where the coefficients of first- and second-order aberra-
tions in the dispersion plane are, respectively, C1 =
∂Z/∂α|α = 0 and C2 = 1/2∂2Z/∂α2|α = 0.

The value of l(α) is found by integrating (2) from
the entrance point x = 0 to the maximal coordinate xm

with subsequent doubling of the result in view of the

xm n, 1 2 2 µcoth 3––( )/ 2 2 µcoth–( )[ ] .=

2

2

Θcot

Z l α( ) λ Θ α±( )cot+ L C1α C2α
2 …,+ + += =

N

θ

h z

l

1

2

3
xn

xm

g
l
L

l2
l1

Fig. 2. Central trajectories of the beam under mirror operat-
ing conditions at entrance angles Θ > 90° (1), = 90° (2), and
< 90° (3).
mirror symmetry of the trajectory:

(5)

From expressions (2), (4), and (5), it follows that the
integrand in the upper limit tends to infinity, which can
be eliminated by integrating by parts. In this case, how-
ever, infinity arises in the lower limit; therefore, integral
(5) has to be split into two. Under three-turn conditions
(taking place at entrance angles >90°), for which the
charge particle trajectory in the field lengthens signifi-
cantly (trajectory 1 in Fig. 2) and, consequently, the
mass dispersion increases, it would be appropriate to
take the following two sections of the trajectory:
(1) from the entrance to the field to the first turn of the
trajectory and (2) from the first turn to the second one.
Then, the entrance–exit distance is l(α) = 2[l1(α) +
l2(α)]. Now, the length of the first section of the trajec-
tory l1(α) along the z axis is expressed through integral
(5) as before, but the upper limit of integration is
replaced by xn. The value of l1(α) is always negative,
because the particles move in opposition to the positive
direction of the longitudinal axis.

After integration by parts, the length of the trajec-
tory in the second section is written as

(6)

where u(x) = [x4 + 2(1 – x)(1 – x + 2x2)]/[x(2 – x)] and
u(xn) is the value of this function at the point of the first
turn.

First-order focusing with respect to the beam angle
takes place if the total source–field and detector–field
distance is given by λ = sin2Θ∂l(a)/∂α. For three-turn
conditions, this means that

(7)

l α( ) 2 P x( )/ 1 P2 x( )–[ ] 1/2
x.d

0

xm

∫=

l2 α( ) u xn( ) 2 x 1–( ) 2/ x2 2 x–( )2[ ] 1–{ }
xn

xm

∫+







=

∫ × 1 P2 x( )–[ ] 1/2
dx







/σ,

λ 2 Θ 1 P2 x( )–[ ] 3/2–
x∫d

0

xn

∫–







sin
3

=

+ 1/σ2 u xn( ) du/dx( )[ ] xn

+ u/ xdd( )2 ud2u/ x2d+[ ] 1 P2 x( )–[ ] 1/2
xd

xn

xm

∫






.
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Hereafter, the coordinates xm and xn refer to the cen-
tral trajectory of the beam. With condition (7) met, the
expansion of the pattern is defined primarily by second-
order aberrations. For three-turn operating conditions,
we have

(8)

where

(9)

The coefficient of mass dispersion at the exit from
the field (which depends on the trajectory of particles
with different masses and equal energies) is given by

(10)

In view of formulas (5)–(7), expression (10) can be
rearranged for three-turn conditions with first-order
angular focusing as follows:

(11)

For single-turn conditions, which take place when
the magnetic force is low (σ ≤ 1) and entrance angles
Θ ≤ 90°, the interval of integration in finding l, λ, C2,
and Dm is also split into two but arbitrary parts to
remove infinity. In this way, we derived formulas for
finding all basic parameters in the dispersion plane of
the mass analyzer at small entrance angles (omitted to
save room).

By way of example, Fig. 2 shows the beam central
trajectory that experiences a 180° deflection (Θ = 90°)
for a magnetic force σ = 1 (curve 2), as well as the cen-
tral trajectory with entrance and exit angles Θ = 60° for
σ = 0.6 (curve 3). In Fig. 3, a number of operating con-

C2 3λ Θ/ 2 Θsin
3( )cos=

+ Θ G/σ 3 P x( ) 1 P2 x( )–[ ] 5/2–
xd

0

xn

∫+




sin
2

+ σ 3– u xn( ) du/dx( )2 ud2u/dx2+[ ] xn( ){

+ u/ xdd( )3 4u u/ xd2u/ x2ddd+[
xn

xm

∫

∫ + u2d3u/dx3] 1 P2 x( )–[ ] 1/2
dx}





,

G
1 2 µncoth 2 2 µncoth 3–( )1/2

+–

µn 2 µncoth–( )2
2 2 µncoth 3–( )1/2

sinh
2

------------------------------------------------------------------------------------------------------.=

Dm dl/dm( )m 0.5σ ∂l/∂σ( ).–= =

Dm 1 λ Θ/ 2 Θsin
3( )cos– u xn( )/σ–=

– P x( ) 3 2P2 x( )–[ ] 1 P2 x( )–[ ] 3/2–
xd

0

xn

∫

+ σ 2– P x( ) 1 P2 x( )–[ ] u/ xdd( )2 ud2u/ x2d+[ ] x.d

xn

xm

∫
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ditions for the mass analyzer with single-turn trajecto-
ries are presented. These conditions are selected so that
first-order focusing takes place with the source and
detector placed outside the field. Generally speaking,
second-order focusing is also possible but only inside
the field (λ < 0), which is intolerable for applications. It
should be noted that the mass dispersion is small under
appropriate single-turn operating conditions. It grows
(Fig. 3) when the entrance angle approaches its maxi-
mum value for a specific magnetic force. However, the
aberrations increase significantly in this case.

The dispersion can be increased under three-turn
operating conditions. The parameters for such condi-
tions in the presence of first-order focusing that were
calculated by formulas (5)–(11) are shown in Fig. 4. At
a constant magnetic force, the range of entrance angles
where focusing takes place beyond the magnetic field
does not exceed 10°. As the force grows, the entrance
angle increases and reaches its maximal value at σ =
1.6. In this case, both the mass dispersion and the coef-
ficient of second-order aberration increase. The latter
exceeds, as a rule, the dispersion coefficient; therefore,
the specific dispersion, which is responsible for the res-
olution, is low. Yet, there exists a narrow magnetic-
force range (1.5 ≤ σ < 1.6) where the coefficients
roughly equal each other and even Dm > C2 at σ = 1.6.
These conditions are the most favorable for attaining a
high resolution; therefore, the corresponding basic
parameters are given in the table, where all linear
dimensions are expressed through the radius of aperture
r of the magnet. It should be noted that the negative
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Fig. 3. Mass analyzer parameters in the dispersion plane for
the single-turn trajectory. Solid curves refer to the total
source–field and detector–field distance; crossed curves, to
the analyzer base; dashed curves, to the mass dispersion;
and dash-and-dot curves, to the second-order aberration
coefficient. The magnetic force σ = 0.6 (1), 0.8 (2), and
1.0 (3).
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value of the base L of the mass analyzer means that the
detector is placed on the left of the source, since the ref-
erence point is at the entrance to the instrument (trajec-
tory 1 in Fig. 2).

Since the magnetic field is nonuniform, magnetic
forces act on the beam in all directions. To find spatial
focusing, one must solve the differential equation of

~ ~
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λ/r; L/r Dm/r; C2/r
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3

Fig. 4. Mass analyzer parameters in the dispersion plane for
the three-turn trajectory. Designations are the same as in
Fig. 3. The magnetic force σ = 1.2 (1), 1.4 (2), and 1.6 (3).
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Fig. 5. Mass analyzer parameters under the space focusing
conditions: (1) entrance angle for the beam central trajec-
tory, (2) analyzer base, (3) total source–field and detector–
field distance, (4) mass dispersion, and (5) ratio of disper-
sion to second-order aberration coefficient.
motion in vector form projected onto the Cartesian
coordinates. Since such equations are not integrated,
we will solve it numerically under the initial conditions

(12)

Here, v 0 =  is the total velocity of the parti-
cle, Θ is the angle between the particle velocity projec-
tion onto the dispersion plane and the vertical plane
(i.e., the entrance inclination of the beam central trajec-
tory), and γ is the angle between the direction of the
total velocity vector and the plane of dispersion. Note
that x'  ∞ either at the entrance and the exit or at the
points of the first and second turn if Θ ≥ 90°. Therefore,
when finding the spatial focusing conditions, one
should solve equations of motion where differentiation
is performed with respect to time. In this case, at the
source position, which is found from the condition for
first-order focusing in the dispersion plane [see formula
(7)], the expansion of the pattern in the normal direc-
tion is yi = g /sinΘi – yl, where yl, γi, and Θi are the
coordinate and the angles of inclination at the exit from
the field.

First-order spatial focusing occurs at an entrance
angle of the central trajectory Θxy such that the expan-
sion of the pattern in two mutually orthogonal planes is
zero in the first approximation. Figure 5 plots these
angles and other parameters vs. magnetic force for such
conditions. As the force grows, the spatial focusing
angle rises linearly, while the other parameters decline.
It is noteworthy that the ratio of the linear dispersion to
the second-order aberration coefficient (curve 5 in
Fig. 5), which is responsible for the resolution of the
mass spectrometer, increases with force. At σ = 1.23,
spatial focusing is observed at the edge of the field (λ =
0). As the force grows further, focusing occurs inside
the field, which is inappropriate as regards the arrange-
ment of the charged particle source and the detector.
The provision of space focusing outside the field is an
advantage of the mass analyzer.

Let us demonstrate the potentialities of the mass
analyzer suggested with the separation of CO (m =
27.995) and N2 (m = 28.006) ions. This requires the res-
olution at the half-height of a mass spectrum line to be
equal to R = 5000.

The conditions for space focusing with the source
and the detector outside the field (Fig. 4) provide a mass
resolution R = 102–103 for a luminosity of (0.01–
0.03)% of 4π. A higher resolution can be attained by
using three-turn operating conditions with large
entrance angles (see the table). As follows from the
table, the mass dispersion grows with the entrance
angle for a given force. The aberrations, however, also
grow. Conditions with Dm/C2 > 1 are optimum. They
provide a resolution R ≅  104.

x0 0, y0 h γ/ Θ, v x0sintan v 0 Θ γ,cossin= = =

v y0 v 0 γ, v z0sin v 0 Θ γ.coscos= =

2eΦ/m–

γitan
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Table

σ Θ, deg
First turn Second turn

λ L C2 Dm Dm/C2
xn –zn xm zm = l/2

1.50 138 0.871 0.555 1.640 0.411 0.244 0.551 6.166 4.227 0.685

140 0.887 0.595 1.673 0.425 0.464 0.297 8.793 5.380 0.655

145 0.923 0.706 1.765 0.535 1.569 –1.169 34.97 12.46 0.356

1.52 140 0.880 0.591 1.640 0.363 0.115 0.588 5.215 4.157 0.797

145 0.915 0.701 1.719 0.405 0.639 –0.103 13.20 7.875 0.597

147 0.928 0.749 1.755 0.451 1.020 –0.670 23.35 11.15 0.478

1.54 145 0.908 0.696 1.681 0.318 0.189 0.366 6.523 5.627 0.863

150 0.939 0.821 1.762 0.385 0.742 –0.516 19.76 11.78 0.596

152 0.950 0.876 1.800 0.456 1.209 –1.362 41.52 18.10 0.436

1.56 152 0.943 0.870 1.747 0.283 0.342 –0.076 11.11 10.07 0.906

154 0.953 0.928 1.780 0.321 0.548 –0.454 18.89 14.18 0.751

156 0.962 0.991 1.816 0.389 0.888 –1.216 40.01 21.93 0.548

1.58 157 0.959 1.017 1.774 0.201 0.203 –0.077 10.15 13.16 1.296

160 0.972 1.125 1.821 0.260 0.417 –0.625 24.00 23.02 0.959

162 0.979 1.205 1.857 0.351 0.698 –1.446 61.53 38.88 0.632

1.60 165 0.980 1.335 1.826 0.057 0.037 –0.023 7.115 24.25 3.408

167 0.986 1.442 1.852 0.074 0.072 –0.165 10.91 35.63 3.266

170 0.992 1.639 1.896 0.147 0.151 –0.563 38.09 78.18 2.053
Thus, in our example, R = 5000 can be provided in
a number of operating modes. Their selection depends
on the design (geometry) of the instrument. If, for
example, the radius of the cylindrical poles is r =
25 mm and the width of the entrance and exit slits is
s = 50 µm, the linear mass dispersion must equal D =
20r = 500 mm. In this case, the trajectory is a loop
whose longitudinal extension is no more than 3r =
75 mm. At the same time, a resolution R = 5000 in a
90° sector mass spectrometer with a uniform field and
with the same slit sizes is provided if the radius of cur-
vature of the trajectory is 500 mm; in other words, the
overall dimensions of the magnet and the instrument
are much greater.
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
To conclude, we note that with a certain potential
difference applied to the screens (in essence, only one
shield should be biased, since the other, through which
the beam is injected, is grounded), spatially coincident
mutually perpendicular magnetic and electric fields
arise, which are known to provide achromatism condi-
tions. In this way, velocity focusing can be accom-
plished without complicating the design.
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Abstract—The initial stage of forming the electron sheath and electron beam generation in magnetron guns for
the case when the secondary emission process is triggered by nanosecond pulses is considered. In the guns with
small transverse sizes, tubular electron beams with an outer diameter of 4–6 mm and a current of 1–2 A are
produced at a cathode voltage of 5–10 kV. It is shown that the formation of the electron cloud and beam current
pulse front for a time of ≥2 ns is a possibility. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years, cold-cathode electron sources oper-
ating under secondary emission conditions in crossed
electric and magnetic fields have become the subject of
great interest [1–5]. Such sources offer a number of
advantages (long service time, high current density,
simple design, etc.), making it possible to use magne-
tron guns with cold secondary-emission cathodes in
accelerators and high-power long-lived microwave
sources [5], as well as in high-speed high-voltage
equipment [6]. The electron beam in these sources is
produced as follows. At the trailing edge of a cathode
voltage pulse, primary electrons (due to field emission
or external injection), returning by the action of the
magnetic field, bombard the cathode surface. When
moving along cycloidal trajectories toward the cathode,
the electrons gain an energy proportional to the change
in the electric field during their transit. Under certain
conditions, i.e., when the energy of the incident elec-
trons becomes large enough for the secondary emission
coefficient to exceed unity, the process of secondary
emission starts and the subsequent avalanche-type mul-
tiplication of the electron concentration results in the
formation of an electron sheath from which electrons
are extracted to generate a beam. In this work, we deter-
mine the time it takes for the space charge of the elec-
tron sheath to form and study the temporal stability of
beam generation in magnetron guns for pulse fall times
of 2–10 ns.
1063-7842/02/4710- $22.00 © 21326
EXPERIMENTAL SETUP AND INVESTIGATION 
TECHNIQUES

The design of the setup used in our experiments is
depicted in Fig. 1. A magnetron gun made of stainless
steel with copper cathode 5 and 120-mm-long stainless
steel anode 6 is placed in vacuum chamber 3, which is
evacuated to a pressure of ≈10–6 torr. An axial magnetic
field in the gun is produced by solenoid 4. A negative
voltage pulse Uc (of amplitude 4–100 kV, width 2–
10 µs, and repetition rate 10–50 Hz) is applied from
modulator 1 to the cathode 5 of the magnetron gun. The
anode 6 of the gun is grounded through resistor R3 or is
connected to generator 2. A decaying electric field is
generated in two ways. In the first case, modulator 1
generates a rectangular pulse and the process of sec-

3

21

4 5 6 7

R1 R2

R3

R4

Fig. 1. Design of the experimental setup.
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ondary emission multiplication takes place during the
trailing edge of the voltage pulse (of duration 2–40 ns,
amplitude 3.5 kV on a load of 50 Ω , and rise and fall
times 1 ns) applied from generator 2 to anode 6. In the
second case, the process of secondary emission multi-
plication is accomplished by producing an overshoot
(of duration ≈0.6 µs) in the voltage pulse from modula-
tor 1 [5] (with generator 2 switched off). This makes it
possible to perform experiments with a rise time from
2 to 600 ns and a steepness of the voltage pulse edge
from 20 to 1200 kV/µs. The beam current and sizes are
measured at distances of up to 180 mm from the anode
plane. The current was measured with Faraday cup 7,
which has the form of a ≈40-cm-long coaxial line, and
the resistor R4 (with the resistance equal to the wave
impedance of the line, 18 Ω); the cathode voltage, with
the R1R2 divider; and the beam sizes, from a spot on
X-ray film and on molybdenum foil.

When triggering secondary emission by nanosecond
pulses from generator 2, one must take into account that
transmitting circuits distort their waveforms. In our
setup, the pulse-transmitting circuitry involves the
coax, high-voltage insulator, vacuum transmission line,
and anode mount. To determine the actual shape of the
pulse, we measured its parameters in the space between
the anode and the cathode. Figure 2 shows pulse wave-
forms obtained in two cases. In the former case, the
duration of the generator pulse was ≈2 ns; in the latter,
≈6 ns. The signals were recorded by an I2-7 oscillo-
scope (of passband ≈3000 MHz). It is seen that the
shape of the short pulse remains nearly unchanged and
its fall time is ≈2 ns, while the long pulse is distorted
with its fall time increased to ≈11 ns.

In our experiments, explosive electron emission was
absent. This was checked by applying a voltage pulse of
amplitude 70 kV to the cathode of the gun. Under these
conditions (in the absence of the magnetic field), the
cathode current was absent and a fall on the top of the
cathode voltage pulse (characteristic of explosive emis-
sion) was not observed. (Under explosive emission, the
anode–cathode gap is short-circuited by a metal
plasma, the resistance of the gap approaches zero, the
current is defined by the voltage supply power, and the
cathode–anode voltage is also close to zero.)
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
RESULTS AND DISCUSSION

The beam generation was studied at different
parameters of the pulse triggering secondary emission
multiplication.

In experiments with a pulse fall time of ≈0.6 µs and
a pulse edge steepness of 20–50 kV/µs (second
approach), the processes of secondary emission multi-
plication and beam generation started within 100–
500 ns (depending on experimental conditions) after
the beginning of voltage pulse fall. With such a small
steepness, the number of primary electrons must be sig-
nificant, because few of them gain the energy sufficient
for secondary emission multiplication. As a result, the
accumulation of secondary electrons takes consider-
able time and is of a statistical nature with a time spread
of several tens of nanosecond. Therefore, the resulting
current pulse is temporally unstable and beam particles
have an energy spread. Note also that the rise time of
the current pulse also depends on the fall time of the
triggering pulse; accordingly, it was on the order of tens
of nanoseconds in our experiments.

To improve temporal stability, cut the current pulse
rise time, and diminish the energy spread in the beam,
one must increase the steepness of the triggering pulse
and decrease its duration.

With this in mind, the process of secondary emis-
sion multiplication was triggered by pulses of nanosec-
ond fall time according to the first approach (Fig. 2). In
these experiments, an electron beam appeared within
1.5–2.0 ns in the first case and within ≈10 ns after the
beginning of pulse fall in the second case. The occur-
rence of the beam was detected by a decrease in the

6 12 18 t, ns0

2 1 2

U
, k

V

Fig. 2. Triggering pulse waveforms in the cathode–anode
gap. Pulse duration is (1) 2 and (2) 11 ns.
Table

Gun no. dc, mm Da, mm Uc, kV I, A H, Oe U, kV τ, ns

1 2 7 6 1.4 3000 2.4 2

2 2 10 5.5 1 2200 4 12

3 2 10 7.3 1.6 2400 3 11

4 3 14 7.6 2 1400 3 14
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cathode voltage pulse amplitude because of loading by
the beam. Figure 3 shows typical waveforms of cathode
voltage pulses and beam current from the Faraday cup
in a magnetron gun with a cathode diameter of 2 mm
and an anode diameter of 10 mm. In this case, the time
instability of current pulse beginning is within the trig-
gering pulse fall time and reaches tens of nanoseconds.

The results of the investigation are summarized in
the table, where dc and Da are the diameters of the cath-
ode and anode of the gun, Uc is the cathode voltage, I is
the beam current, U and τ are the amplitude and fall
time of the triggering pulse, and H is the magnetic field.
The cathode voltage amplitude was varied so as to pre-
vent the breakdown of the anode–cathode gap (the
maximal amplitude was varied between 15 and 25 kV
according to the gun design). The table also lists mini-
mal voltage amplitudes at which secondary emission
multiplication and, hence, beam generation still take
place. These values are of interest for applications such
as low-voltage electron sources for microwave devices.
For copper cathodes, the energy of primary cathode-
bombarding electrons should lie between 0.4 and
0.6 keV. With such energies, the coefficient of second-
ary emission reaches the maximum and secondary
emission multiplication proceeds very intensely. In this
case, the primary electron energy is ≈10% of the elec-
tron energy at the output of the gun. This is of interest
for studying the formation and stability of the electron
sheath, as well as of an electron beam with a substantial
energy spread.

0

–2

–4

–6

–8

U, kV

t, µs

3

2

1

0 5 10 15

1

2

3

4

Fig. 3. (4) Waveforms of beam current pulses at the Faraday
cup and those of voltage pulses in the (1) absence and (2)
presence of the beam. Arrow 3 indicates the instant of trig-
gering pulse application.
The study of beam generation vs. steepness of the
pulse trailing edge showed that this dependence has a
threshold. As follows from the table, the triggering of
magnetron gun 1 and beam generation take place at
trailing edge steepnesses of more than 1000 kV/µs,
while magnetron gun 2 is triggered at steepnesses of
more than 300 kV/µs. Similar results were obtained for
magnetron guns 3 and 4. For the beam generation to be
stable at nanosecond triggering times, the steepness of
the trailing edge must be significantly larger than for
fall times within 0.4–0.6 µs.

When the gun is triggered by a voltage pulse with a
nanosecond fall, the energy spectrum of the beam is
improved because of a decrease in the number of high-
energy electrons generated at the trailing edge of the
pulse and also because of a decrease in their energy
spread owing to the small amplitude of the pulse.

Our experimental results are in fairly good agree-
ment with the numerical simulation of electron sheath
formation in crossed fields. It was shown in our previ-
ous work [5], as well as in [7, 8], that during the trigger-
ing pulse fall time, electrons can gain enough energy to
initiate secondary emission multiplication within 1–
2 ns. With such a rapid voltage fall, the number of pri-
mary electrons is small; however, owing to the large
steepness of the voltage pulse trailing edge, they can
gain an energy at which the secondary emission coeffi-
cient exceeds unity and secondary emission multiplica-
tion proceeds at a considerable rate.

The measurement of the transverse size of the
beams showed that their cross sections are rings with a
uniform azimuth intensity distribution. Their inner
diameters were roughly equal to the cathode diameter,
and the “thickness” of the beams was found to be 1 or
2 mm. For example, the beam in magnetron gun 2 had
outer and inner diameters of 4 and 2 mm at a distance
of 130 mm from the anode plane. In gun 4, the respec-
tive sizes of the beam were ≈6 and ≈2.5 mm at a dis-
tance of 55 mm from the anode plane.

CONCLUSION

Our experiments show that the formation of a space
charge cloud and the generation of an electron beam in
a magnetron gun with a secondary emission cathode
may take place within ≈2 ns. This allows for the gener-
ation of beam current pulses with nanosecond rise
times and the synchronization of beam current pulses
with a nanosecond accuracy. At cathode voltages of 5 to
10 kV and magnetic fields between 1900 and 3000 Oe,
tubular electron beams with a current of 1–2 A and an
outer diameter of 4–6 mm were produced.
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Abstract—An analytical temperature dependence of the internal friction Q–1(T) for composite materials is
derived. It is shown that the hysteresis behavior of the Q–1(T) curve observed in temperature cycling experi-
ments with some composites may be a result of plastic strain clustering in the matrix. © 2002 MAIK
“Nauka/Interperiodica”.
Plastic strain localized in microvolumes is a basic
factor responsible for the internal scattering of the
vibrational energy in structurally inhomogeneous
materials. This factor is of special importance in hetero-
structures and composites with constituents greatly dif-
fering in mechanical properties. Earlier, it was shown
[1–3] that temperature cycling (heating/cooling)
applied to several composites grown by the oriented
crystallization method causes hysteresis in the temper-
ature dependence of the internal friction Q–1(T), which
is absent in homogeneous materials. At a certain cool-
ing temperature, tensile thermal stresses due to a differ-
ence between the thermal expansion coefficients of the
constituents reach values close to the macroscopic yield
strength σ0.2 of the matrix. Naturally, plastic deforma-
tion in the matrix is accompanied by heat evolution, of
which internal friction is a measure. However, no cases
of the analytical description of Q–1(T) have come to our
notice so far. The purpose of this work is to quantita-
tively describe hysteresis in Q–1(T) curves observed in
experiments with composites using general ideas of
continuum mechanics.

Consider composites consisting of elastic fibers and
a plastic matrix. In this case, the matrix is the first to
yield upon stressing the composite. Therefore, the dis-
sipative power of such composites is defined by the
matrix properties. To simplify the mathematics, we
assume that the value of Q–1 is measured for longitudi-
nal, rather than flexural, rectangular vibrations of fre-
quency f. When thermal stresses are imposed on cyclic
stressing, the matrix experiences the combined effect of
asymmetrically varying stresses having the temperature
and temporal components:

(1)

where σm is the thermal stress in the matrix, σ0 is the
amplitude of variable stresses in a cycle, and ϕ(t) is a

σ σm σ0ϕ t( ),±=
1063-7842/02/4710- $22.00 © 21330
periodical (not necessarily harmonic) function of time:
–1 ≤ ϕ(t) ≤ 1.

We will proceed from the known Davidenkov con-
cept on the statistical (nonuniform) distribution of
mechanical stresses σ over grains [4], assuming that
deformation is perfectly plasto-elastic (that is, without
hardening). This assumption relieves us of having to
formulate the matrix yield law. The yield strength of
grains is assumed to be the same and equal to σ0.2 . Let
local stresses plastically strain a matrix grain by dε. The
associated work of deformation is

where b is a proportionality coefficient (no more than
unity) that depends on the grain size, orientation, and
location and V is the grain volume.

Accordingly, the work of plastic deformation per
unit matrix volume within the period of vibration is
given by

Here, ∆ε =  is the plastic strain of a grain within the

vibration period, n = Np/N is the fraction of plastically
strained grains in a unit matrix volume under an aver-
age macrostress σav in the matrix (not in a grain!), Np is
the concentration of plastically strained grains in the
matrix, and N is the total concentration of grains in the
matrix. Since the product VN is the volume occupied by
grains in a unit matrix volume (VN ≈ 1),

(2)

The expression for n(σav) for the horizontal cycle of
vibration was derived in [4]:

dU bVσ0.2dε,=

∆U bVNnσ0.2∆ε.=

dε∫°

∆U bnσ0.2∆ε.=
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(3)

where p(σ) is the Gaussian distribution of stresses σ
over grains and B and m are constants depending on the
variance of the distribution curve p(σ).

Expression (3) is valid when σav is large compared
with the center-of-gravity value  of the distribution
p(σ).

The plastic strain of a matrix grain within a vibra-
tion cycle is given by

Here, integration is over the positive half-period of
vibration τ/2 = 1/(2f) (not over the complete period τ),
because the strain within the negative half-period is
elastic and does not contribute to heat evolution. When
analyzing plastic strains induced by thermal stresses in
composites, one should first of all take into account the
matrix creep [5]. The time dependence of the plastic
strain ε including the secondary creep is [6] ε = t +

ε0, where  is the rate of secondary creep. Here, ε0

involves the elastic part of the strain and a jump of the
plastic strain at the instant the stress is applied (“instan-
taneous” creep). In copper, this expression is applicable
to the temperature range (0.4–0.7)TM (where TM is the
melting point of copper on the absolute temperature
scale), which is important from the engineering view-
point [7]. The rate of plastic strain is defined by the
Arrhenius law  = exp(–H0/kT). Here, H0 is the
energy of activation of deformation, k is the Boltzmann
constant, and the preexponential  depends on tem-
perature only slightly. Then,

(4)

The internal friction is most frequently described by
the relationship Q–1 = ∆U/2πU, where U is the total
energy of elastic strain per unit volume of the material.

As applied to cycle (1), U = /2Em, where Em is the
elastic modulus of the matrix. Thus, in view of (2)–(4),
the expression for internal friction takes the form

(5)

Now, let us calculate tensile thermal stresses arising
in the matrix upon cooling the Cu–1.3 wt % Cr eutectic
composite from 978 K. The copper matrix can be con-
sidered perfectly plastic, since copper has a very low
yield strength. In the elastic approximation, internal

n σav( ) p σ( ) σd

σ0.2

∞

∫ B
σav

σ0.2
-------- 

 
m

,= =

σ

∆ε dε∫° ε.d

0

1/2 f

∫= =

ε̇s

ε̇s

ε̇s ε̇0

ε̇0

∆ε
ε̇0 H0/kT–( )exp

2 f
--------------------------------------.=

σav
2

Q 1– bBEmε̇0

2πf
-------------------

σav
m 2–

σ0.2
m 1–

------------ H0/kT–( ).exp=
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stresses appearing in the matrix when the temperature
changes by ∆T are given by [8, 9]

where Vm and Vf are the volume fractions of the matrix
and fibers, Em and Ef are their elastic modulus, and
∆α = (αm – αf ) > 0 is the difference between their ther-
mal expansion coefficients.

For fiber composites, it is assumed that thermal
stress vectors are aligned with fibers and are constant
over the matrix cross sections. Data for the temperature
dependences of Em, Ef, αm, αf and the yield strength of
copper σ0.2 were taken from references books [10, 11].
Figure 1 shows the temperature dependences of thermal
stresses in the matrix and of its yield strength.

The internal friction in the Cu–1.3 wt% Cr eutectics
was calculated by formula (5) with m = 4. Diffusion
creep in copper is initiated at temperatures above
0.8TM = 1069 K. At lower temperatures, dislocation
cross slip seems to be the most probable mechanism of
creep in pure copper. This mechanism of dislocation
straining does not require diffusion. However, it needs
thermal activation, because some energy must be spent
to unpin dislocations from impurities and allow them to
move to another slip plane [7, 12]. Therefore, in the cal-
culations, the dislocation–impurity binding energy was
set equal to H0 = 0.15 eV, which is typical of copper at
T > 273 K [13]. Let in the first approximation average,
σav, and thermal, σm, stresses in the matrix be the same
by order of magnitude: σav ≈ σm. Experimental data
[2, 3] and calculated results are demonstrated in Fig. 2.
It is seen that the mechanism of microplastic losses
considered in the paper does provide a peak of Q–1(T)
on cooling the composites. The discrepancy between
the temperature peaks Q–1(T) found experimentally and
analytically may be associated with the fact that the

σm

V f E f Em∆α∆T
VmEm V f E f+
------------------------------------,=

1
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Fig. 1. (1) Thermal stresses in the matrix of cooled Cu–
1.3 wt % Cr eutectics and (2) the yield strength of the
matrix.



1332 ARZHAVITIN
Cu–1.3 wt% Cr eutectics were prepared from high-
purity electrolytically refined metals in alundum cruci-
bles in the argon atmosphere, while the reference data
used refer to other sorts of the metals.

Thus, a peak in the Q–1(T) curve for cooled compos-
ites may appear even if thermal stresses σm do not reach
the yield strength σ0.2 (Fig. 1). The reason for such
“extreme” behavior of Q–1(T) is the clustering (statisti-
cal distribution) of the plastic strain over the matrix and
in the relationship between the statistical average
stresses σav ~ σm and σ0.2 . The internal friction (at m =
4) of the cooled composite grows quadratically with σav
and simultaneously decreases cubically with increasing
σ0.2.

Upon constructing a more consistent theory of plas-
tic losses in composites, one should also take into
account the localization of thermal stresses at inter-
faces. From general thermodynamic considerations, it
follows that internal stresses decrease as 1/r, where r is
the distance to the interface [14]. The variation of the
shape of the Q–1(T) curve with the dispersity of cooled
Cu–1.3 wt% Cr eutectics [1] favors the aforesaid. If
heating changes to cooling and vice versa in tempera-

20

300
0

T, K

5
10
15

25
30
35
40
45

400 500 600 700 800 900 1000

Q–1(T)Q–1(293 K)

1 2

Fig. 2. Internal friction Q–1(T) of the Cu–1.3 wt % Cr eutec-
tics: (1) experimental data and (2) calculated results for the
cooled eutectics.
ture cycling at a sufficient rate, the plastic deformation
of the matrix near the interface comes before fiber frag-
mentation; hence, the method of low-frequency internal
friction is undoubtedly a promising tool for studying
the strength of composite materials.
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Abstract—Experimental concentration profiles of As ions in a silicon substrate at temperatures of 20, 600, and
1050°C and ion current of 40 µA/cm2, as well as at 1050°C and 10 µA/cm2, are presented. On the basis of our
and previously published experimental data, the process of radiation-stimulated ionic diffusion and self-diffu-
sion in silicon is simulated. A number of interesting dependences, which are discussed in the conclusion of this
study, are obtained. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The investigation of the behavior of different impu-
rity ions implanted into semiconductor materials as
functions of current density, ambient temperature,
exposure time, ion energy, and the chemical properties
of interacting substances is of great theoretical and
practical importance. In this study, we investigate the
implantation of 40-keV As ions into a silicon substrate
in a wide temperature range.

EXPERIMENTAL

In our experiments, silicon substrates were irradi-
ated using an ILU-3 accelerator [1]. For heating the
substrates in the course of irradiation, a special high-
temperature ion collector was developed. As a substrate
material, we used single-crystalline silicon. The
implantation was performed with 40-keV As ions at a
dose of 2 × 1017 ion/cm2. The distribution of implanted
atoms with depth was analyzed using X-ray diffraction
with layer-by-layer etching. The main irradiation
parameters are listed in Table 1. The measured concen-
tration profiles are shown in Figs. 1 and 2. It can be seen
that, even for room-temperature irradiation, the profile
contains a deep-lying maximum.

THEORY

In order to explain the impurity drift into the bulk,
which strongly exceeds the ion range, we applied the
modified Beloshitskiœ model [2] described previously
in [3]. In addition to diffusion transport, it is assumed
that impurity capture by vacancies also takes place.
Note that a purely diffusion equation in the presence of
a source does not have a solution with a maximum
located at a greater distance from the surface than the
ion range. The key feature of the model consists in its
1063-7842/02/4710- $22.00 © 21333
nonequilibrium—diffusion occurs against a back-
ground of intense production and annihilation of
defects. These processes are described by the following
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Fig. 1. Experimental concentration profiles of As in silicon
at temperatures of (1) 20, (2) 600, and (3) 1050°C
(40 µA/cm2).
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Fig. 2. Experimental concentration profiles of As in silicon
for the currents (1) 40 and (2) 10 µA/cm2 (1050°C).
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Table 2.  Calculated diffusion coefficients and enthalpies

Number Da, cm2/s × 10–11 Ddv , cm2/s × 10–11 Hdv , cal/mol Teff , °K

1 0.169 0.204 64610 1326

2 0.540 0.0633 68151 1335

3 0.007 0.0463 47157 913

4 0.499 0.0127 31937 589

 
Table 1.  Basic experimental parameters of the implantation of As ions with an energy of 40 keV and a dose as high as 2 ×
1017 ion/cm2

Number T, °C j0, µA/cm2 $exp, 
ion/cm2 × 106 Vb exp, cm/s × 10–10 tmax, s

1 1050 10 3.101 1.940 3200

2 1050 40 2.472 6.184 800

3 600 40 11.210 28.048 800

4 20 40 5.661 14.164 800
system of coupled equations:

(1)

(2)

∂na/∂t Da∂
2na/∂x2 nanv kcap ncndkact+–=

+ j0 Rp x– x0+( )2
/2∆Rp

2–( )/ 2π∆Rp,exp

∂nc/∂t nanv kcap ncndkact,–=

30000

600400
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Fig. 3. Temperature dependence of the enthalpy of defect
migration in silicon on the basis of the data from Tables 2
and 4.
(3)

(4)

Here, Θ(x) is the unit step; N is the density of the silicon
nuclei; σd is the approximate cross section of the defect
formation; Rp and ∆Rp are the ion range and its standard
deviation, respectively; and Da, Ddv, kcap, kact, and kann
are the free parameters of the model, which have the
evident physical meaning of the impurity diffusion
coefficient, the diffusion coefficient of the defect–
vacancy pairs, the rate of the quasi-chemical reactions
responsible for the impurity capture by the vacancies,
the activation rate of the impurities by the interstitial
atoms, and the rate of the mutual annihilation of the
vacancies and interstitial atoms, respectively.

Based on the experimental data, the boundary con-
dition for the impurity was taken to be equal to zero,
which can be interpreted as its escape to the sample sur-
face. For the interstitial atoms and vacancies, a condi-
tion was used such that the flux of the interstitial atoms
would lead to the motion of the material boundary with
a velocity of v b (the problem of Stefan type). The initial
conditions and the boundary conditions at the other
boundary were taken also to be equal to zero. Under the
above conditions, the system of Eqs. (1–4) was solved

∂nd/∂t Ddv ∂2nd/∂x2 ncndkact–=

– nv ndkann j0NσdΘ Rp x– x0+( ),+

∂nv /∂t Ddv ∂2nv /∂x2 nanv kcap–=

– nv ndkann j0NσdΘ Rp x– x0+( ),+

X0 v bt, N– 5.04 1022 cm 3– ,×= =

σd 3.52 10 16–  cm2.×=
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Table 3.  Calculated rates of the quasi-chemical reactions

Number kcap, cm3/s × 10–23 kact, cm3/s × 10–23 kann, cm3/s × 10–23

1 2.355 7.421 2.609

2 0.889 8.321 5.795

3 0.943 15.60 5.763

4 0.929 8.260 5.855

Table 4.  Calculated enthalpies for the other experiments

Ion T, °C j0, µA/cm2 E, keV Teff, K Hdv , cal/mol Reference

Yb 20 10 70 488 27 811* [5, 6]

26 877

24 697

Na 365 0.3 7 638 35 845 [7]

As 20 150 25 722 38 703 [8]

Tm 500 30 150 906 50 900 [9]

C 20 300 40 961 46 377* [2, 10]

46 931

47 058

As 850 40 40 1143 57 164 [12]

Tl 1200 40 20 1478 70 591 [3]

As 1200 40 40 1482 74 154 [11]

Tl 1200 100 20 1484 70 064 [4]

* For pure silicon (further growth in the impurity concentration).
numerically using a computer and the finite-difference
scheme. The values of the free parameters in our model
were fitted by the least-squares method in such a way
that they corresponded as close as possible to the exper-
imental profiles.

CONCLUSION

The results of the calculations are listed in Tables 2
and 3. In Table 2, in addition, the enthalpies of defect
migrations (evaluated by the Arrhenius equation) and
the effective temperatures of the surface layer (with
allowance made for the beam-induced heating) are also
presented. In Table 4, the data from our additional cal-
culations of the enthalpy of silicon self-diffusion are
listed. Figure 3 shows the temperature dependence of
the enthalpy of the defect migration, which was
obtained using the data from Tables 2 and 4.

As can be seen from Fig. 2, in contrast to our results
obtained for the implantation of Tl ions into silicon
TECHNICAL PHYSICS      Vol. 47      No. 10      2002
[3, 4], the profile strongly depends on the As ion cur-
rent.

From Table 4, one can see the dose dependences of
the enthalpy of defect migrations for the impurity ions
of carbon and ytterbium in silicon, which are of oppo-
site character. Note that the ytterbium ions migrate to
the surface, whereas the carbon ions migrate into the
bulk of a sample.
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Abstract—Electron microscopy is used in a study of nanoclusters of the carbon soot deposited on a probe in
different areas of arc discharge during graphite vaporization under conditions favorable for fullerene synthesis.
It is found that the spatial network of soot nanoclusters consists of alternating regions of higher density or asso-
ciates of carbon particles. Two types of nanoclusters have been identified with the correlation radii of the asso-
ciates equal to 0.6–0.8 and 1.6–2.2 nm, respectively. Type I nanoclusters are dominant in the soot microparti-
cles, and their structure shows practically no variations with increasing separation r of the soot collector from
the discharge axis over the range of distances studied, r = 1–9 cm. The effective radius R0 of the “elementary”
particles making up the associates in the soot nanoclusters of Type I calculated with the use of scaling relation-
ships is 0.15–0.17 nm and is close to the gas-kinetic radius of carbon atoms. Type II nanoclusters have been
identified in soot collected at r > 3 cm. Values of R0 calculated in this case are 0.6–0.9 nm and decrease with
increasing r, which indicates the presence of fullerene molecules in these nanocluster associates. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

In [1], the structure of carbon soot produced by arc
discharge vaporization under conditions favorable for
synthesis of fullerenes was studied. It has been shown
that the soot is characterized with a multilevel structure
depending on the scale under study. Elementary parti-
cles in the soot are either fullerenes or carbon particles
of a size on the order of fullerene dimensions (“failed”
fullerenes). These elementary particles aggregate into
associates, forming a spatial network of fractal nano-
clusters 30–80 nm in size. The nanoclusters combine
into aggregates which, in turn, are constituent parts of
the soot microparticles. The soot studied in [1] was col-
lected from the walls of a reactor (90 mm in diameter),
so these results could not provide an answer as to at
what distance from the discharge particular species of
carbon particles were formed.

In [2], the deposition of carbon onto metallic probes
placed in the path of the gas-plasma jet exiting the inter-
electrode gap of an arc discharge was studied. The
results obtained in [2] were analyzed in [3] using a sim-
ple gas-dynamic model of the jet and a fairly general
model of the cluster size distribution. It was shown that
carbon chains and rings transform into fullerenes at a
distance of r > 3 cm from the axis and the number of
particles S in an associate exceeds unity at r > 4 cm.
1063-7842/02/4710- $22.00 © 21337
The purpose of this work is to verify the conclusions
made in [3] by directly studying the soot structure at
different distances from the arc axis.

EXPERIMENTAL

The arc discharge burned between graphite elec-
trodes 6 mm in diameter in a vacuum chamber 180 mm
in diameter. The arc parameters were as follows: cur-
rent, 80 A; helium pressure, 70 torr; interelectrode gap,
3–4 mm. Around the arc discharge at various distances
from its axis, water-cooled copper wires 1.5 mm in
diameter were arranged. Soot deposited on the wires
was collected and analyzed.

The morphology of the soot particles was studied
under a Philips electron microscope at an accelerating
voltage of 100 kV. The samples were prepared by ultra-
sonic dispersing and placed on a specially prepared film
substrate of amorphous carbon supported by copper
netting.

Computer processing of the micrographs was car-
ried out at a magnification of 5 × 106 using a cluster grid
model [4] and following a procedure described in [1]. A
plane square grid with a distance between sites of r =
0.2 nm was superimposed on the images. The image
area scanned was about 5 × 103 nm2. For each soot sam-
ple, no less than ten images were analyzed.
002 MAIK “Nauka/Interperiodica”
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For quantitative characterization of the spatial distri-
bution of nanocluster density, a lattice density radial
distribution function g(R) and dependence of an aver-
age lattice density ρΠ(R) on a scale value R [1] was
used. The fractal dimension of nanoclusters D was
determined by the slope of the ρΠ(R) curve in logarith-
mic coordinates.

In calculating the effective radius R0 of the elemen-
tary particles making up the associates in nanoclusters
and the average number S of particles in an associate,
we used relationships obtained in [1]:

(1)R0
2
π
---ρΠ Lξ1 D–

 
 

1/ 2 D–( )
,=

24 nm (‡)

(b)24 nm

24 nm (c)

Fig. 1. Electron micrographs of nanoclusters from
fullerene-containing soot collected at different distances r
from the discharge axis. r = 3 (a); 4 (b); and 5 cm (c).
(2)

where L is the period of spatial alternation of the asso-
ciates in a nanocluster; ξ is the average correlation
radius of an associate; ρΠ is the degree of a nanocluster
being filled with associates at R = ξ; D is the fractal
dimension of a nanocluster; and ω is the associate den-
sity (for random packing of hard spheres ω = 0.637 [5]).

RESULTS AND DISCUSSION

Figure 1 shows electron micrographs of soot nano-
clusters collected at different distances r from the dis-
charge axis. It is seen that the carbon nanoclusters of
the soot have a reticular internal structure arising from
spatial alteration of regions of different density. These
regions can be related to associates of carbon particles.

Over distances r between 1 and 3 cm, the structure
of nanoclusters remains nearly the same (Fig. 1a) and
can be represented by a radial density distribution func-
tion g(R), shown in Fig. 2. The position of the first min-
imum of the g(R) function corresponds to the value of
the associate correlation function ξ (ξ = 0.6 nm), and
the position of the next maximum corresponds to the
period of spatial alternation of associates in a nanoclus-
ter L (L = 0.93 nm).

With increasing scale R, the average density of nan-
oclusters ρΠ(R) decreases as ρΠ(R) ~ RD – 2, and because
in logarithmic coordinates the function ρΠ(R) is a
straight line (Fig. 3), the nanoclusters in the soot can be
characterized as a fractal structure of dimension D ≈
1.7. Transition to the uniform continuous network of a
percolation cluster (D ≈ 2) corresponds to the kink
point in the dependence of lnρΠ on lnR and occurs over
a scale close to the value of correlation radius ξ.

At r ≤ 3 cm, the effective radius R0 of elementary
particles making up associates in a soot nanocluster cal-
culated with the use of scaling relationships (1) and (2)
is equal to 0.15 nm, which is close to the gas-kinetic
radius of a carbon atom.

At r ≥ 4 cm, the soot, in addition to the above, con-
tained fractal nanoclusters of different type (Fig. 1b,
1c), with larger associates of carbon particles corre-
sponding to ξ = 1.6–2.2 nm. The content of such nano-
clusters in soot increases with increasing r.

Figure 4 shows curves of the density distribution
function g(R) in type II soot nanoclusters for various
distances r, and Fig. 5 shows corresponding depen-
dences of the lattice density ρΠ on the chosen scale.
Structural parameters of the nanoclusters are given in
the table. The same table cites values of the fullerene
content in soot α and capture parameter ε of carbon par-
ticles by a cylindrical probe [2] measured under identi-
cal experimental conditions.

The effective radius R0 of the elementary particles
calculated for such nanoclusters is 0.5–0.9 nm (see
table), which is substantially greater than the gas-

S ω ξ/R0( )D,=
TECHNICAL PHYSICS      Vol. 47      No. 10      2002



        

STRUCTURE OF FULLERENE-CONTAINING SOOT 1339
kinetic radius of carbon atoms and corresponds to the
characteristic size of fullerenes and more intricately
structured carbon clusters. This fact suggests that the
fullerene associates are formed in the soot at r > 3 cm.
Qualitatively, this is in good agreement with the results
of calculations in [3], assuming that at r > 4 cm the gas-
plasma jet contains carbon chains, rings, and fullerenes,
but no associates (S < 1).

Analysis of the obtained experimental data showed
the following:

1. In nanoclusters from soot collected at r < 4 cm,
the elementary particles are carbon atoms and no
fullerene associates are present inside the nanocluster.
It is quite possible that under these conditions nano-
clusters and their aggregates form, instead of within the
gas-plasma jet, at the surface of the soot collector or in
the near-surface thermal layer.

2. Formation of an increasingly higher density of
fullerene associates ρΠ takes place over a rather small
distance (r = 3–5 cm). At r > 5 cm, the lattice density
ρΠ of the nanoclusters is only slightly dependent on r.

3. Away from the arc axis, the radius of elementary
particles R0 in the fullerene associates decreases and
their number in an associate increases.

4. The fractal dimension of fullerene nanoclusters
increases somewhat with r and, at the reactor wall, is
close to D ≈ 1.8, the value corresponding to the aggre-
gation mechanism of the associates of elementary par-
ticles. This is higher than the value of D = 1.6 given in
[1]. The cause of the discrepancy is the fact that in [1]
the entire soot was analyzed, collected from the walls
of a pilot installation with an arc chamber of smaller
diameter (90 mm).

5. Conclusions drawn from the analysis of electron
microscopy data are in good agreement with measured
values of α and ε. The fullerene content in the soot α
increases up to r = 4 cm and then varies insignificantly,
in agreement with the results in [6], where α was deter-
mined by spectrometric methods. The capture parame-
ter ε is more than unity at r > 4 cm. This value of r can
be related to carbon chains, rings, and fullerenes [2, 3].

1.2

1.0

0.8

R, nm

1 2

Fig. 2. Density distribution function g(R) in typical nano-
clusters of carbon soot.

g(R)
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At r > 4 cm, ε < 1, which corresponds to fullerene asso-
ciates.

The results of this study suggest that microparticles,
aggregates, and nanoclusters of fullerene soot are
formed at the soot collector surface, while associates

–0.4

–1.5

–0.2

0

–1.0 –0.5 0

Inρè(R)

InR, nm

Fig. 3. Dependence on the scaling radius of the lattice den-
sity ρΠ in typical nanoclusters of carbon soot.
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Fig. 4. Density distribution function g(R) for associates of
fullerene-like particles in nanoclusters of soot collected at
distances of 4 (1), 5 (2), and 9 cm (3) from the discharge
axis.
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Fig. 5. Dependence of the lattice density ρΠ of soot nano-
clusters containing fullerene associates on the scaling
radius for r = 4 (1), 5 (2), and 9 cm (3).
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Structural parameters of soot nanoclusters containing associates of fullerene-like particles

r, cm ρΠ ± 10% ξ, nm L, nm D ± 0.03 R0, nm S α, % ε

2 – – – – – – 0.05 4.35

3 – – – – – – 6.7 1.40

4 0.52 1.8 4.2 1.62 0.9 2.4 10.2 0.63

5 0.62 2.2 4.2 1.76 0.7 4.8 11.0 0.83

6 0.62 2.6 4.5 1.73 0.6 8.0 – –

9 0.63 2.8 5.0 1.77 0.6 9.7 11.0 –
consisting of fullerenes and fullerene-like carbon parti-
cles are formed in the arc chamber volume. If this is
indeed the case, then it appears possible to control the
structure and, consequently, the properties of fullerene
soot.
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Abstract—Ignition conditions and the characteristics of a repetitive volume discharge with a spherical anode
and plane cathode are investigated. The discharge was ignited in Ar/Cl2 mixtures (P ≤ 2.0 kPa) used in excimer
halogen lamps operating on the ArCl (B–X) 175-nm, Cl2(D'–A') 257-nm, and  195- to 200-nm molecular
bands. At an interelectrode distance of 3 cm and a dc anode voltage of Uch ≤ 1 kV, a stable repetitive pulsed
discharge with a repetition rate of 1–50 kHz was ignited in chlorine or (0.1–2.0)/(0.04–0.12)-kPa Ar/Cl2
mixtures. The development of attachment instability in the discharge plasma, in which the processes of the for-

mation, decay, and diffusion of the  and Cl– negative ions play an important role, leads to the formation of
a solitary pearlike plasma domain with an average diameter of 0.2–3.5 cm. © 2002 MAIK “Nauka/Interperi-
odica”.

Cl2**

Cl2
–

It is shown that the plasma of a volume discharge
ignited in an Ar/Cl2 mixtute can serve as an active
medium for low-pressure excimer halogen lamps emit-
ting in the spectral range 180–270 nm. These repetitive
pulsed lamps do not require a pulsed power supply
based on capacitive or inductive energy storage banks
with conventional switches (spark gaps, thyratrons,
etc.), which significantly expands the range of their
possible applications. The pressure and composition of
an Ar/Cl2 mixture and the average discharge current
were optimized to attain the maximum radiation inten-
sity in the ArCl and  molecular bands. The effect
of the working mixture composition on the ignition
conditions and emission spectra of the volume dis-
charge plasma is investigated.

1. Glow discharges ignited in low-pressure (P ≤
2 kPa) Ar(Kr, Xe)/Cl2 mixtures in long glass tubes of
various size and design are widely used in UV–VUV
excimer lamps [1–5]. Their design is much simpler than
that of lamps with microwave [6] or plasmadynamic
[7, 8] pumping, and they are capable of generating cw
UV–VUV emission. The interelectrode voltage in such
a lamp attains 5–10 kV, which requires forced cooling
of the electrodes and the discharge tube already at dis-
charge currents of Ich ≥ 20–30 mA. Besides lamps with
a cylindrical glow region (the positive column plasma
of a dc glow discharge), the development of planar
lamps with electrode systems not confined by dielectric
walls is of great interest. In [9], a dc-excited low-pres-
sure planar lamp operating on XeCl* molecular emis-
sion (λ = 236/308 nm) was first created and studied. A
solid cathode–grid anode system with an interelectrode

Cl2**
1063-7842/02/4710- $22.00 © 21341
distance of 3 cm filled with Xe/Cl2(HCl) gas mixtures
at pressures of P ≤ 2.0 kPa was used. It was shown that
the radiant efficiency of this lamp into the 4π solid
angle exceeded 4% and the dc voltage at the anode was
≤1.0 kV. Most attention was paid to studying the spatial
structure of the discharge plasma, whereas the time
behavior of the discharge parameters and plasma emis-
sion was not investigated.

In such gas media, the formation of a volume dis-
charge is affected by electron attachment and detach-
ment, the diffusion of negative ions, and the onset of
attachment instability [10–12]; all this impedes the oper-
ation of a steady-state glow discharge and the develop-
ment of cw low-pressure excimer halogen lamps.

This paper is aimed at studying the characteristics of
a dc-excited volume discharge in Ar/Cl2 mixtures at
short interelectrode distances.

2. In the experiments, we studied the spatial struc-
ture and the averaged current–voltage characteristics of
the discharge, the plasma emission spectrum in the
range 130–350 nm, and the waveforms of the discharge
current and the integral emission intensity in the spec-
tral range 200–700 nm, as well as the emission intensity
in the maximums of the ArCl and Cl2 molecular bands
as functions of the average discharge current.

The electrode system consisting of a spherical
anode and plane cathode was placed in a 10-l-volume
metal discharge chamber, which was hermetically con-
nected via an LiF window to a Seya–Namioka vacuum
monochromator with a spectral resolution of 0.7 nm.
An FEU-142 photomultiplier with an LiF window was
used as a radiation detector in this vacuum spectrome-
002 MAIK “Nauka/Interperiodica”
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ter. In the range 165–350 nm, the spectrometer was cal-
ibrated with the help of the continuum of molecular
hydrogen, and, in the range 130–165 nm, the spectral
sensitivity curve was extrapolated by using the data
obtained for λ ≥ 165 nm. Behind a quartz window
located opposite the LiF window, a Foton photomulti-
plier (with an operating range of 200–700 nm) con-
nected to an C1-99 oscilloscope was installed. The time
resolution of the pulse recording system was 10 ns. The
electrode system consisted of a massive 7-cm-diameter
anode and 9-cm-diameter cathode made of duralumin
and set at a distance of 3 cm from the anode (Fig. 1).
The radius of curvature of the anode working surface
was 3 cm, and the cathode was plane. A dc voltage
(Uch ≤ 1 kV) was applied to the anode through a 10-kΩ
ballast resistor R. The average discharge current and the

R

V

1

2

3

C

A

Fig. 1. Schematic of the discharge facility and the shape of
the discharge plasma in the (1) 2.00/0.12-kPa and
(2) 1.33/1.2-kPa Ar/Cl2 mixtures: (A) anode, (C) cathode,
(V) high-voltage dc power supply, and (3) negative cathode
glow.
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Fig. 2. Static current–voltage characteristics of a volume
discharge in the (1) 1.33/0.12- and (2) 1.33/1.20-kPa Ar/Cl2
mixtures.
gas mixture pressure varied in the ranges 2–50 mA and
40–2000 Pa, respectively.

3. A schematic of the electrode system and the char-
acteristic shape of the Ar/Cl2 discharge plasma are
shown in Fig. 1. In low-pressure mixtures with a mini-
mal chlorine content, a conical plasma formation was
observed. It was adjacent to the central region of the
anode working surface and had a clear spherical border
near the cathode surface. Near the anode, the plasma
diameter attained 1.0–1.5 cm, whereas near the cath-
ode, it was 1.5–2.0 times larger. In the middle of the
plasma formation, there was a brighter core, which also
had a spherical border at the cathode side. The increase
in the gas pressure and chlorine content led to a shift of
the plasma toward the anode periphery and a decrease
in the plasma diameter near the anode and cathode to
0.2 and 0.5 cm, respectively. In all the experiments, we
observed a dark space, whose size increased from 0.5 to
5.0 mm with increasing pressure of the Ar/Cl2 mixture
and, especially, chlorine content in it. The diameter of the
negative glow was 1.3–1.5 times the diameter of the
cathode part of the plasma formation. This kind of soli-
tary plasma formation in an electronegative gas media is
called the plasma domain, or autosoliton [13, 14].

4. The static current–voltage characteristics of dis-
charges in Ar/Cl2 mixtures at a fixed argon pressure and
at minimum and maximum chlorine partial pressures
(0.12 and 1.2 kPa) are shown in Fig. 2. As in a dc lon-
gitudinal discharge in an Ar/Cl2 mixture [4], the sub-
normal (at Ich ≤ 20 mA) and normal (at higher discharge
currents) stages of the discharge operation can be dis-
tinguished in the averaged current–voltage characteris-
tics of a repetitive pulsed volume discharge. The
increase in the chlorine partial pressure by one order of
magnitude leads to a significant increase in the dis-
charge voltage (Fig. 2) and an increase in the electric
power of a volume discharge by a factor of 1.5–2.0.

5. The emission spectra from a volume discharge are
shown in Fig. 3. The plasma emission intensity in the
range λ ≥ 400 nm was no higher than 5–10% of the
emission intensity in the UV–VUV spectral region; this
was verified in a particular experiment on recording
integral discharge emission with a photomultiplier and
a light filter. It is seen in Fig. 3 that the autosoliton
plasma is a selective source of radiation in the range
170–270 nm. The spectra are similar to those obtained
from the plasma of a longitudinal glow discharge in an
Ar/Cl2 mixture [4, 15]. The ArCl (B–X) 175-nm, 
200-nm, and Cl2 (D'–A') 257-nm molecular bands are
the main constituents of the emission spectra. The spec-
tra in Fig. 3 were corrected for the relative spectral sen-
sitivity of the vacuum spectrometer. At low argon and
chlorine partial pressures (Fig. 3a), the molecular emis-
sion spectrum consists of well-resolved vibronic bands
of molecular chlorine [16]. The results of the present
measurements are in excellent agreement with our pre-
vious results on the interpretation of the emission spec-
tra from the low-temperature plasma of a transverse

Cl2**
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volume discharge in chlorine [17]. Here, ArCl mole-
cules do not form and the 175-nm band is absent in the
emission spectrum. The increase in the argon partial
pressure to 1.33 kPa (Fig. 3b) leads to a significant
increase in the intensity of the chlorine emission bands
and the appearance of the ArCl (B–X) 175-nm band.
The emission bands of molecular chlorine are distinctly
structured. The efficiency of the production of ArCl
molecules depends strongly on P(Ar), because these
molecules are formed only in a relatively narrow range
of argon partial pressures (0.8–1.33 kPa). The increase
in the chlorine partial pressure to 0.28 kPa (Fig. 3c)
leads to an even higher increase in the emission inten-
sities of all the chlorine and argon chloride molecular
bands. This mixture was nearly optimum to attain the
maximum intensity of the integral UV–VUV plasma
emission. A further increase in P(Cl2) to 1.2 kPa results
in a slight decrease in the chlorine emission intensity
and strong quenching of the ArCl(B) molecules.

6. One of the main indicators of the onset of attach-
ment instability in a low-temperature plasma of elec-
tronegative gases is the time modulation of both the dis-
charge current and plasma emission [11]. It is seen in
Fig. 4 that the volume discharge in a low-pressure
Ar/Cl2 mixture runs in a repetitive pulsed mode. The
pulse repetition rate depends on the pressure and com-
position of the working mixture and the average dis-
charge current and varies in the range 1–50 kHz. The
pulse repetition rate usually increases with the average
discharge current. The characteristic waveforms
(mostly, those with the maximum amplitude of the
parameter in question) of the discharge current and the
integral plasma emission intensity are shown in Fig. 4.
We usually observed the formation of autosolitons within
the broad range of the amplitude values of the discharge

current and photocurrent: I, JF = (0.3–0.9)I max, .
The durations of the discharge current and plasma

JF
max
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200 nm Cl2
**
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Fig. 3. Emission spectra from a volume discharge in the
(a) 0.20/0.12-kPa, (b) 1.33/0.12-kPa, (c) 1.33/0.27-kPa, and
(d) 1.33/1.20-kPa Ar/Cl2 mixtures.
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emission pulses were in the range 100–200 ns. For a
discharge in a low-pressure Ar/Cl2 mixture with a low
chlorine content (Fig. 4a), plasma autosolitons were
formed and, consequently, plasma emission was gener-
ated near the instant when the discharge current was
maximum. For all the mixture compositions, the
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for average discharge currents of (1, 2) 10 and (1', 2')
30 mA.
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increase in the average current from 10 to 30 mA
resulted in an increase in the current amplitude and a
decrease in the integral intensity of plasma emission.
The increase in the argon partial pressure (Fig. 4b) led
to the lengthening of the current pulse and halving of its
amplitude, whereas the duration of the emission pulse
increased by 20–30%. The main maximum of the emis-
sion pulse with a short rise time occurred at the current
pulse leading edge. At P(Ar) = 1.33 kPa, the increase in
the chlorine partial pressure (Fig. 4) led to the shorten-
ing of the current pulse to 100 ns and an increase in its
amplitude, especially at Ich ≤ 10 mA. In this case, the
plasma emission intensity decreased by a factor of 2.5
and three peaks arose in the waveform of the plasma
emission pulse with a total duration of 450 ns. At Ich ≥
30 mA, plasma emission was generated near the leading
edge of the discharge current pulse; at low average dis-
charge currents, the emission pulse shifted toward the
peak of the current pulse.

7. The maximum emission intensities of the ArCl
and Cl2 molecular bands increased with the average dis-
charge current, which was related to the increase in the
current pulse amplitude by a factor of 1.3–3.0 and, to a
large extent, to the increase in the pulse repetition rate
(Fig. 5). The increase in the chlorine partial pressure
from 0.12 to 1.2 kPa increased the emission intensity of
the chlorine bands by 1.5–2.0 times; however, this also
led to the strong quenching of ArCl (B) excimer mole-
cules; consequently, the 175-nm emission band did not
contribute to the integral UV plasma emission.

8. Thus, the study of a dc-excited low-pressure vol-
ume discharge in Ar/Cl2 mixtures in an electrode sys-
tem with a short interelectrode gap (d ≤ 3 cm) and with
no confining dielectric walls has shown that such a vol-
ume discharge runs only in the repetitive pulsed mode
(f = 1–50 kHz). This makes it possible to create a repet-
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3

J, arb. units

I, mA

0.5

100 20 30 40 50

Fig. 5. Maximum emission intensity of the (1) ArCl (B–X)
175-nm, (2)  200-nm, and (3) Cl2(D'–A') 257-nm

molecular bands vs. average discharge current in the
1.33/0.12-kPa Ar/Cl2 mixture.

Cl2**
itive low-pressure excimer halogen lamp operating in
the spectral range 170–270 nm. The creation of such
lamps operating in a cw mode is not feasible because of
the onset of attachment instability. A particular experi-
ment performed with a volume discharge in a Xe/Cl2
mixture at a total pressure of P ≤ 1.0 kPa has shown
that, in this case, it is also impossible to achieve entirely
cw emission; however, there exists a cw component of
both the discharge current and plasma emission, whose
magnitude depends strongly on the total pressure and
composition of the working mixture, as well as on the
average discharge current. The (1.0–1.5)/(0.2–0.3)-kPa
Ar/Cl2 mixtures are shown to be optimum for attaining
the maximum intensity of UV–VUV emission with a
pulse duration of τ = 100–300 ns.
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