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Abstract—The nonmonotonic structural evolution observed in Pd–Ta–H and Pd–Mo–H hydrogenated alloys
is shown to be discrete (jumplike) in character, which is due to the thermodynamic potential having a multival-
ley fractal structure in reciprocal space. This structure arises in the initial state and is fairly stable. Transforma-
tions occur as a result of hopping of the system between the long-lived states corresponding to local minima of
the thermodynamic potential at both stages of rapid degassing and of stochastic oscillations of the centroids of
diffraction maxima. The jumps are associated with the migration of hydrogen atoms and vacancies between the
matrix and defect complexes and are accompanied by an increase or a decrease in the diffraction angles. © 2005
Pleiades Publishing, Inc.
1. INTRODUCTION

As shown in [1–4] and earlier studies, the kinetics of
structural transformations in palladium alloys after
hydrogenation is nonmonotonic. Long-term oscillatory
variations in the diffraction characteristics of a defect
structure have been found to occur in Pd–W–H alloys,
and the multiphase decomposition and stochastic
changes in the number and volume fractions of coexist-
ing phases have been observed in Pd–Ta and Mo–Pd
alloys during long-term relaxation after hydrogenation
of deformed surface layers [2, 4]. These phenomena are
associated with the nonequilibrium state produced by
hydrogenation; therefore, the appearance of compli-
cated structures that change irregularly in time corre-
lates well with the well-known principle that, in sys-
tems far from equilibrium, there appear various struc-
tures, which Prigogine [5] named dissipative. In [6–8],
synergetic models were proposed for some of the phe-
nomena reported in [1–4]. These models assume that
the transition from the initial to the final structure gen-
erally occurs via intermediate structures; the most typ-
ical case is the appearance of one-dimensional long-
period structures, which has been observed to occur
during diffusionless transformations and the formation
of certain superstructures, Laves phases, etc. [9–13].
The thermodynamic conditions for such structures to
appear are the occurrence of volume and thermal
effects, the smallness of the energy of formation of
inhomogeneities [9], the significant effect of long-
range fields [10, 14], and a high degree of saturation
with dopant elements in the single-phase region [9].

It is significant that one-dimensional long-period
structures correspond to a nonequilibrium state; there-
fore, standard thermodynamic methods are inapplica-
ble to them. It is also important that the thermodynamic
1063-7834/05/4703- $26.00 ©0397
potential Φ(k) in the cases under study possesses a mul-
tivalley structure in reciprocal space and, hence, has a
variety of local minima ka (a = 1, 2, …), as shown in
Fig. 1 [12]. The deepest minima correspond to rational
numbers m/n with small m and n. Obviously, there are
many minima with higher values of m and n between
the deepest minima; the structure of the thermody-
namic potential is fractal in character. For example, in
the case where a sudden transformation from a closely
packed hexagonal structure to a face-centered cubic
structure takes place, correlated shifts of individual
closely packed layers in minimal clusters occur first,
which corresponds to filling of the shallowest minima
in the Φ(k) dependence. Then, due to correlation, the
minimal clusters coalesce, which corresponds to filling
of deeper minima, and so on. Thus, in the course of a
sequence of structural transformations associated with
the formation of one-dimensional long-period struc-
tures, step-by-step coalescence of clusters occurs.
Since the energy of formation of a one-dimensional
long-period structure is small, it is energetically favor-
able for clusters with this structure to grow step by step

0 k

Φ

Fig. 1. Thermodynamic potential as a function of k for a
multivalley system (schematic).
 2005 Pleiades Publishing, Inc.



 

398

        

AVDYUKHINA 

 

et al

 

.

                                                          
through their correlation rather than through the motion
of their boundaries, as in first-order phase transforma-
tions. The thermodynamic-potential multivalley struc-
ture can also arise as a result of the application of a load
to a system [12], at least if a load causes the formation
of defects in the system, as shown in Fig. 2 [12].

The synergetic models proposed in [6–8] assume
that the multiphase decomposition of Pd–Ta and Pd–
Mo alloys observed in [2–4] is essentially associated
with the multivalley fractal structure of the thermody-
namic potential in reciprocal space. The existence of a
multivalley structure also explains the new phenome-
non reported in [4, 15–17], namely, the observation of
a discrete distribution of the positions of the diffraction
peak components in 2θ space (which indicate the for-
mation of a multiphase system and its transformation)
after hydrogenation of an alloy and in the course of sub-
sequent relaxation. The point is that the probability of a
metastable state forming at a local energy minimum is
significantly higher than that at a local barrier; there-
fore, the components of a diffraction peak correspond
to local minima of a multivalley structure. As a result,
the observed diffraction peaks consist of several com-
ponents and their structure changes jumpwise. In [4,
15–17], it was not elucidated whether the multivalley
structure appears in the initial state or after hydrogena-
tion and some issues also remained unresolved, such as
the effect of cyclic treatment on this structure and the
fractal nature of the structure. These issues are dealt
with in this paper. The specific features of the discrete
structural evolution in Pd-based alloys are investigated
immediately after hydrogenation of deformed samples
and also after several cycles of saturation with hydro-
gen. The factors determining these features are estab-
lished, and the model of this phenomenon is developed
further with allowance for new experimental data.

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUE

Pd–Mo and Pd–Ta alloys [1, 4] were studied using
x-ray diffraction (monochromatized Cu–Kα1 radiation).
The alloys were melted from high-purity metals in an
electric-arc furnace and then homogenized at 900°C
over 24 h. After cutting, the samples were ground and
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Fig. 2. Formation of a multivalley structure under an
increasing load above a critical level (schematic).
PH
polished; the thickness of the deformed surface layer
was greater than the x-ray penetration depth. The alloys
were saturated with hydrogen electrolytically. The
shape of the diffraction peaks was analyzed with the
Origin program package.

The angular positions of the diffraction peaks for the
initial state corresponded to the Reuss formula for
deformed materials [18], according to which the depen-
dence of ahkl on the Miller indices has the form

(1)

Here, a0 is the lattice parameter of a cubic alloy, σ is the
elastic strain in the surface plane, and Khkl depends on
the Miller indices and the elastic compliances.

The compressive elastic stresses along the surface
caused by the mechanical treatment produce tensile
strains along the normal to the surface due to interstitial
defect complexes (D–M complexes), which are gener-
ated in the course of the mechanical treatment [1–3].
The saturation of Pd-based alloys with hydrogen was
observed in [1–3] to cause a change in the sign of the
elastic stresses (thereby producing compressive strains
along the normal to the surface).

The values of a0 and σ were determined with an
accuracy of 0.0004 Å and 3 kg/mm2, respectively, by
using the technique of least squares.

3. EXPERIMENTAL RESULTS

3.1. Multiphase States and the Hydrogen-Induced 
Discrete Evolution of the Structure 

in Pd–Mo–H Alloys

Experimental diffraction peaks measured immedi-
ately after hydrogenation and in the course of subse-
quent relaxation have a complex structure, which indi-
cates the existence of multiphase states in the alloys [4].
For example, after hydrogenation, the single (200) dif-
fraction peak of a Pd–Mo alloy transforms into several
peaks differing in height and shifts to a higher value of
a200 (Fig. 3). Then, all components of the peak shift to
a lower value of a200, and after 22 h this quantity
becomes smaller than its initial value.

The following fact is of special interest [4]: over cer-
tain time periods, it was clearly seen that the peak com-
ponents appeared and disappeared or transformed one
into another. This phenomenon was detected in [4] for
the (200) diffraction peak during the evolution of a Pd–
Mo–H alloy over the period from 23.6 to 121 h after
saturating the alloy with hydrogen. In [15–17], an anal-
ogous phenomenon was observed in a Pd–Ta–H alloy
and was referred to as discrete (jumplike) evolution. It
can be seen from Fig. 3 that, after 23.6 h of relaxation
in the Pd–Mo–H alloy, there appear indications of the
presence of diffraction lines of two phases that notice-
ably differ in intensity. After the next 3.5 h, their inten-
sities become similar, although their positions remain
almost unchanged. Then, after 3.5 h, a clearly visible

ahkl a0 a0σKhkl.+=
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Fig. 3. Evolution of the (200) diffraction peak from a Pd–Mo–H alloy with relaxation time.
weak peak of another phase arises between the peaks of
the two phases, and this peak becomes dominant after
the next day. One of the former two peaks (at a larger
value of 2θ) remains almost unchanged, while the other
peak (at a smaller value of 2θ) almost vanishes. Next,
after approximately two days, the three peaks that
appeared in one form or another for the preceding three
days become clearly visible. After the next day, these
 OF THE SOLID STATE      Vol. 47      No. 3      200
three peaks coalesce into a single broad peak, which
then again becomes a double peak and assumes a com-
plex shape. These changes suggest that the observed
structural transformations involve only a few (3–5)
phases of a certain composition. Within the first several
hours after hydrogenation, the Pd–Mo–H system
becomes multiphase, and the structure of this mul-
tiphase state varies with time. After the next several
5
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hours, the system again becomes nearly single phase
but then once more decomposes into a few phases. The
transformation from a single-phase into a multiphase
state and vice versa is repeated many times. Similar
transformations also occur a long time, (16–22) × 103 h,
after hydrogenation [19].

3.2. Jumplike Structural Transformations
in Pd–Ta–H Alloys

In order to reinforce the statement that the experi-
mental data reported in [4] indicate a new phenomenon,
special studies were also performed on Pd–Ta–H alloys
and the results were published in [15–17], which
described the evolution of the (311) diffraction peak
after the sixth saturation with hydrogen and of the (220)
peak after the fifth saturation of a Pd–Ta–H alloy. The
results showed that the structural evolution in this alloy
is also discrete (jumplike) in character. In this subsec-
tion, we discuss the structural evolution of the Pd–Ta–
H alloy using the example of the evolution of the (220)
diffraction peak after the first and sixth saturations with
hydrogen. The study of the evolution after the first sat-
uration is of importance because it may reveal whether
or not the multivalley structure arises even in the initial
state.

Tables 1–3 list the experimental positions (the val-
ues of the angle 2θ in degrees) of the maxima of the
peak components. The subscripts indicate the relative
intensity (in percentage) of the corresponding compo-
nents. We note that the data obtained after other satura-
tions and for other diffraction peaks are basically the
same as those given in this paper.

Based on more extensive data, these tables provide
support for the earlier conclusion that the positions of
the diffraction peak components are divided into
groups (columns). Therefore, the data published in [4,
P

15–17] do indeed reveal a new phenomenon, namely,
discrete (jumplike) structural evolution. Furthermore,
new features of this evolution are uncovered in this
work. First, let us discuss the specific features of the
data given in these tables. Note that, based on the data
obtained for all saturations, a new numbering of the
groups of peak components is used in this paper. Unfor-
tunately, this numbering is arbitrary as yet.

The first feature to note is that the peak components
for the initial state fall within two groups (8, 9) con-
structed on the basis of the data for hydrogenated
alloys. This result indicates that the thermodynamic
potential has a multivalley structure even in the initial
state. It is important that the same results were obtained
for the (311) diffraction peak. (Since the data on this
peak are not given in the tables, we point out that the
peak components for the initial state in this case corre-
spond to values of the diffraction angle (2θ) of 81.35°
and 81.75°; the diffraction-angle ranges for the respec-
tive groups are 81.32°–81.37° and 81.69°–81.76°,
respectively.) The doublet is transformed into a triplet
1.2 h after the first saturation with hydrogen; its compo-
nents fall within groups 8, 10, and 16, with the first and
last components being the strongest. The analysis per-
formed in [2] shows that, 1.2 h after saturation, the
increase in the lattice parameter due to the hydrogen
dissolving in the system is replaced by a decrease in the
interplanar spacing due to elastic stresses. Therefore,
even after 1.2 h, a strong peak component appears that
is associated with the elastic stresses produced in a
large portion of the system. This fact, in turn, indicates
the appearance of significant inhomogeneities in this
system. After the next 2.8 h, a quintuplet arises. How-
ever, its two extreme components are faint. The other
components correspond to groups 9, 11, and 14, with
the last two being the strongest. By 51.5 h after hydro-
genation, there appears a quasi-single state correspond-
Table 1.  Structural evolution of the (220) diffraction peak after the first saturation

Relaxation
time, h

Group no. 〈2θ〉, 
deg5 8 9 10 11 12 13 14 15 16 17

Initial state 67.6720 67.8880 67.85

1.2 67.7440 67.9417 68.4043 68.06

4 67.4002 67.8009 68.0543 68.2344 68.4002 68.11

6.8 67.9456 68.1944 68.05

9.7 67.8324 68.0424 68.2249 68.4903 68.09

24.5 67.6903 67.9529 68.1441 68.3127 68.12

31 68.0133 68.1767 68.12

51.5 67.9404 68.1293 68.3603 68.12

59 67.9540 68.1417 68.3043 68.13

73 67.8618 68.1882 68.12

103 67.8420 68.1880 68.11

173 67.9527 68.2073 68.13
HYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
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Table 2.  Structural evolution of the (220) diffraction peak after the sixth saturation (stage of rapid degassing)

Relaxation time
Group no. 〈2θ〉, 

deg1 3 4 5 7 8 9 10 11 14 16

3500 h after the
fifth saturation

68.2580 68.4120 68.29

0.8 68.8807 67.2079 67.4714 67.22

3.2 67.2442 67.4742 67.7316 67.42

5.7 67.4594 67.7806 67.50

7.7 67.4160 67.6233 68.0407 67.52

10.3 67.1907 67.5760 67.8033 67.62

24.1 67.3605 67.8595 67.83

26.8 67.6327 67.8106 67.9667 67.86

Table 3.  Structural evolution of the (220) diffraction peak after the sixth saturation (stage of stochastic oscillations of the
peak position)

Relaxation
time

Group no. 〈2θ〉,
deg8 9 10 11 12 13 14 15 16

33 67.8462 67.9921 68.1717 67.93

49 67.8538 68.1062 68.01

53 67.7734 68.0641 68.2206 68.3519 68.02

57 67.9630 68.1770 68.11

73 67.9708 68.0376 68.1108 68.2408 68.05

76 67.7413 67.9723 68.1337 68.3127 68.09

80 67.9542 68.1758 68.08

97 67.7706 68.0011 68.1883 68.14

101 67.9327 68.1773 68.11

127 67.9826 68.1574 69.11

167 68.0355 68.2045 68.10

174 68.1294 68.3006 68.13

195 67.8105 68.1395 68.11

218 68.0781 68.1411 68.3008 68.10

243 67.7406 67.9620 68.1974 68.12

266 68.11100 68.11

293 68.0979 68.2621 68.12

339 67.9634 68.1966 68.11
ing to group 12, which is then transformed into a three-
phase state with components corresponding to groups
10, 12, and 15. By 73 h, this state becomes two-phase;
it remains unchanged over 30 h and changes only
weakly over the next 70 h.

The initial state for the sixth saturation was the state
reached 3.5 × 103 h after the fifth saturation. In this
state, two peak components belonging to groups 14 and
16 are seen. After 0.8 h, the diffraction peak compo-
nents transfer to groups 3 and 5 (one of the weak com-
ponents at the periphery of the diffraction peak has an
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      200
intensity of as low as 7% and is not covered by the num-
bered groups, which indicates once more that our clas-
sification of the groups is arbitrary); this transfer is
associated with the hydrogen dissolving in the system.
Then, hydrogen begins to emerge from the system,
which causes the peak and its components to shift
toward larger diffraction angles. Simultaneously, the
transformation into a state with a greater number of
phases occurs, and these phases sometimes coalesce
into one phase. For example, after 3.2 h, the diffraction
peak has three components; after 5.7 h, there is virtually
5
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only one component; after 7.7 h, the peak again has
three components; after 24.1 h, there is again virtually
only one component; and after 26.8 h, the number of
components again begins to increase. Here, it is of
interest that one of the components appears at a notice-
ably smaller angle, even though the peak has not ceased
to shift toward larger angles. The increase and decrease
in the number of peak components continue to alternate
even after the centroid of the peak ceases to shift toward
larger angles and begins to oscillate stochastically.

Now, we will discuss specific features that have not
been mentioned earlier. First, the number of compo-
nents in a group depends nonmonotonically on the
number of the group. Second, the character of this non-
monotonic dependence varies irregularly from one sat-
uration with hydrogen to another. For example, the
number of components is maximum in groups 10 and
13 after the first saturation, in groups 9–12 and 14 after
the second saturation, in groups 9 and 10 after the fifth
saturation (we do not give detailed data on the second
and fifth saturations in this paper), and again in groups
9, 10, 12, and 13 after the sixth saturation. These dis-
tinctions may be due to the various defect structures
produced by different saturations with hydrogen.

A comparison of the data on diffraction peaks (311)
(from [15–17]) and (220) (given in this paper) shows
that the occurrence of nonmonotonic structural evolu-
tion is beyond question in both cases, although the spe-
cific features and details of this evolution are different.
The differences can be explained in terms of the model
in which the structure of an alloy is assumed to pass
through a series of intermediate metastable states rather
than to pass immediately to the final state. For the
alloys in question, the intermediate states are one-
dimensional long-period structures [9, 10]. In certain
cases, these structures are associated with specific fea-
tures of the electronic spectrum [11] that occur as the
nonspherical Fermi surface approaches the Brillouin
zone boundary. An important feature of the diffraction
patterns from these long-period structures is their sig-
nificantly different behavior depending on the recipro-
cal-lattice site and, hence, on the diffraction peak. This
feature was observed in the studies mentioned above.

Let us sum up the results obtained.
First, it has been found that the positions of the com-

ponents of the (220) diffraction peak (as well as of other
peaks not presented in this paper) for the initial state of
alloys belong to the same groups as those for the states
after hydrogenation. This finding indicates that the
thermodynamic potential has a multivalley structure in
reciprocal space even in the initial state. The fact that
the structural transformations occur differently for dif-
ferent diffraction peaks suggests that the multivalley
structure in the alloys at hand is associated with the spe-
cific features of the electronic structure, the long-range
(elastic and electrostatic) interactions [9–14], etc.

Second, the interval boundaries within which the
peak components lie vary only weakly in going from
P

the first to the sixth saturation. Therefore, the structure
of groups (columns) is very stable and depends only
weakly on the amount of absorbed hydrogen and
vacancies, as well as on the defect structure resulting
from hydrogenation. This feature lends support to the
above conclusion that the multivalley structure is
mainly determined by the basic properties of the Pd-
based alloys in question and, therefore, is highly stable.

Third, the number of peak components in a group
(column) has been found to depend nonmonotonically
on the number of the group. Since the probability that
the peak component corresponding to a given local
minimum will be observed depends on the depth of the
minimum, a larger number of observed peak compo-
nents must correspond to a higher probability of these
components, i.e., to a larger depth or width of the cor-
responding local minima. Therefore, the depth and
width of local minima are random functions of the
reciprocal-space vector, which can be due to the ther-
modynamic-potential distribution in reciprocal space
being fractal in nature. In our opinion, this remarkable
property is associated with the fact that the amount of
absorbed hydrogen and the defect structure of the sys-
tem depend on the number of saturations with hydrogen
performed. Apparently, the positions of groups of peak
components are determined by the type of reciprocal-
space vector, whereas the depth of local minima also
depends on the defect structure, the amount of dis-
solved hydrogen, etc. Note that the possible influence
of the defect structure on the thermodynamic-potential
distribution in reciprocal space was pointed out in [12,
Fig. 2].

Fourth, the jumplike structural changes have been
observed to be irregular; therefore, the nonmonotonic
structural evolution is associated with stochastic struc-
tural transformations.

Fifth, the structural evolution is accompanied by
both an increase and a decrease in the diffraction
angles. Therefore, the structural transformations in a
system saturated with hydrogen are caused by the
migration of both hydrogen atoms and vacancies.

4. DISCUSSION OF THE RESULTS

The decomposition observed in the system in ques-
tion after saturating the system with hydrogen and
thereby producing vacancies and various complexes
(containing hydrogen atoms and vacancies) may be due
to the system becoming unstable. The situation in this
case is similar to that in a highly dislocated crystal sys-
tem [12, 20]. The theory of multiphase decomposition
was developed in [7] on the basis of the Edwards ther-
modynamic representation under the assumption that
the internal energy (thermodynamic potential) of a sys-
tem saturated with hydrogen has a complicated relief in
the space of states with a great number of local minima
separated by barriers (multivalley structure; see Fig. 1).
Obviously, a structure corresponding to minima of this
HYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
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relief arises with significantly higher probability than
does a structure corresponding to maxima (i.e., the
former structure is a long-lived one). This fact is likely
the reason for the discrete values of the angle 2θ at
which diffraction peak components were observed in
[4, 15–17].

As indicated above, the difference in structure
between the diffraction peaks may be due to the initial
crystal structure passing into the final structure by
going through a series of intermediate metastable
states. Furthermore, the k dependence of the potential
energy of the systems in question can be fractal in
nature [21].

The behavior of a hydrogenated system can be com-
plicated by various types of complexes (clusters),
which can appear in the system, transform into a hier-
archical defect structure, and, in addition, can cause
various elastic stresses to arise. The evolution of the
system is generally associated with its redistribution
between minima that are relatively close together,
which was also observed in this study.

Further evolution of the system is associated with
the redistribution of hydrogen atoms and vacancies
between the matrix (crystallites) and defect complexes
(traps). The traps form at the initial stage of evolution
of the system and remain enriched in hydrogen and
especially vacancies over the entire period of observa-
tion. In the course of this evolution, the system under-
goes various fluctuations; therefore, it is not improba-
ble that noise-induced transitions take place in the sys-
tem in question [22]. Since the evolution of the system
is associated with transitions between phases that differ
significantly in structure, these transitions must occur
in a jumplike manner.

As already pointed out in [17], it is important that
the diffraction peaks (or their components), as a rule,
remain fairly narrow at all stages of the studies reported
in [1–3] and this paper. This finding can be explained
by the fact that the multilevel system under study is sep-
arated into intermediate-sized regions, a peculiar sort of
quasi-cells analogous to Benard cells [5, 23], each of
which corresponds to a long-lived thermodynamic
state. These thermodynamic states are comparatively
few in number. In the course of its evolution, the system
relaxes due to migration of hydrogen atoms and vacan-
cies and passes in a jumplike manner (“falls down”)
from one thermodynamic state (local minimum) to
another; each time, only a few of these states coexist in
the system. For this reason, the diffraction peaks consist
of several components rather than being simply broad-
ened. The width of each component is determined by
the size of the coherent-scattering domains (CSDs) of
the corresponding phases and by the state of the defect
structure in these domains. Therefore, the width of the
peak components varies only slightly with time. Due to
the migration of hydrogen atoms and vacancies
between the matrix and defect regions, the coexisting
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      200
phases are replaced over the course of time (in a jump-
like manner, as shown above).

In the course of the subsequent relaxation, hydrogen
atoms and then defects can escape from the system.
Clearly, the escape rates for different peak components
are different. Therefore, the thermodynamic stability of
the imperfect system can vary with time in a very com-
plicated manner. For example, in the case where hydro-
gen atoms escape from the matrix (palladium-rich
CSDs) but the amount of vacancies (V) remains
unchanged, the thermodynamic stability of the system
becomes lower rather than higher. In addition to the
escape of hydrogen atoms into the surface (or grain
boundaries), various hydrogen–defect complexes can
form. For example, the transformation of interstitial
defect complexes (D–M complexes; see Section 2) into
hydrogen–defect–metal–vacancy (H–D–M–V) com-
plexes causes anisotropic compression (increase in σ),
which also renders the matrix less stable and causes
opposing processes to occur. Thus, the transformations
of the system containing hydrogen and vacancies are
the result of the formation of an unstable complicated
defect structure, which causes cooperative transfer of
hydrogen and vacancies. The transfer of vacancies
between the matrix (presumably H–V complexes) and
H–D–M–V defect regions is likely of primary impor-
tance, as already indicated in [19, 24].

5. CONCLUSIONS

Thus, new experimental data have been obtained.
The data indicating that the multivalley structure of the
thermodynamic-potential distribution arises even in the
initial state are of particular interest. This structure is
highly stable and has a fractal character, which is influ-
enced by saturation with hydrogen and by the defect
structure transforming during hydrogenation and sub-
sequent relaxation.

During relaxation, hydrogen atoms and vacancies
can escape from the matrix (at different escape rates).
They can escape both into the surface and H–D–M–V
defect complexes. For this reason, the thermodynamic
stability of the system varies in a complicated manner.
The transfer of hydrogen and vacancies causes transfor-
mations to occur when the system undergoes a transi-
tion to a lower local minimum. As a result, nonmono-
tonic jumplike structural evolutionary changes will
occur in the system. In the case where only hydrogen
atoms (or, alternatively, vacancies) transfer from the
matrix to defect complexes, the lattice parameter
decreases (increases). These two processes cause jumps
(that are opposite in sign) and, on the whole, lead to
complicated nonmonotonic stochastic evolution.
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Abstract—The influence of uniaxial compression on the propagation of sound in Zr52.5Ti5Cu17.9Ni14.6Al10 and
Pd40Cu30Ni10P20 bulk metallic glasses is investigated, and the third-order elastic moduli of these glasses are
determined. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Owing to the unique combination of their physical
properties, metallic glasses have been a subject of
intensive experimental investigations for a long time.
These investigations have been aimed at solving both
applied and fundamental problems, especially those
regarding the nature of the amorphous state. However,
until very recently, conventional metallic glasses could
be produced only in the form of thin ribbons or wires
and, hence, a number of experimental techniques could
not be used as efficient tools for studying these materi-
als. The discovery of so-called bulk metallic glasses
(alloys with a very low critical rate of cooling occurring
without crystallization that make it possible to prepare
large-sized metallic glass samples for use in various
measurements) [1] and considerable recent progress
achieved in the technology for producing these materi-
als have opened up strong possibilities for their study
using different modern techniques. In particular, since
bulk metallic glasses possess good strength characteris-
tics, it has become possible to investigate the influence
of elastic deformation on the parameters of propagation
of acoustic waves in these glasses and to obtain reliable
data on their nonlinear elastic properties over a wide
range of applied loads. Similar measurements can pro-
vide complementary important information on the
force parameters of interatomic interactions occurring
in a metallic glass and, consequently, on the specific
features of its atomic configuration. To the best of our
knowledge, such comprehensive research in bulk
metallic glasses has never been performed in full mea-
sure. In [2–5], the influence of hydrostatic pressure on
ultrasonic velocity was experimentally investigated for
a large number of bulk amorphous alloys of different
compositions. However, those experimental studies
have permitted one to derive information only on spe-
cific linear combinations of third-order elastic moduli
rather than on all these characteristics. In this respect,
the purpose of the present work was to investigate the
1063-7834/05/4703- $26.00 ©0405
influence of uniaxial compression on the velocity of
propagation of ultrasonic waves in
Zr52.5Ti5Cu17.9Ni14.6Al10 and Pd40Cu30Ni10P20 bulk
amorphous alloys and to determine the complete set of
their third-order elastic moduli from the results
obtained.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

A master alloy of the composition Pd40Cu30Ni10P20
was prepared by two-zone direct melting of compo-
nents in a silica tube at a controlled phosphorus partial
pressure. Another master alloy of the composition
Zr52.5Ti5Cu17.9Ni14.6Al10 was produced by induction lev-
itation melting under vacuum. Samples of both alloys
in the amorphous state were prepared by quenching the
melt into a copper mold. The quenching rate in the
vicinity of the glass transition temperature was approx-
imately equal to 100 K/s. The procedure for quenching
melts was described in detail in [6]. The ingots thus pre-
pared were 3 × 6 × 60 mm in size. For measurements,
samples (cross section, ~3 × 6 mm; length, 12–16 mm)
were produced by electric-arc cutting from the ingots
with subsequent mechanical grinding and polishing.
The structural state (amorphicity) of the samples was
checked using x-ray diffraction analysis on a SIE-
MENS D-500 diffractometer (CuKα radiation). The
densities of the Zr52.5Ti5Cu17.9Ni14.6Al10 and
Pd40Cu30Ni10P20 glasses were estimated at ~6.68 and
~9.27 g/cm3, respectively.

Elastic deformation was accomplished by com-
pressing the samples along their long axes on an Instron
testing machine up to applied stresses of approximately
1 GPa. These stresses were considerably less than the
ultimate compressive stress of the glasses under inves-
tigation. The ultimate compressive stress was approxi-
mately equal to 1.4–1.5 GPa for the Pd40Cu30Ni10P20
 2005 Pleiades Publishing, Inc.
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glass and 1.5–1.7 GPa for the Zr52.5Ti5Cu17.9Ni14.6Al10
glass. For the samples used in the experiments, the
onset of plastic flow was observed at stresses amount-
ing to approximately 0.9 of the ultimate compressive
stress, whereas the plastic strain to failure did not
exceed 0.3%. The applied load was changed at testing
machine speeds ranging from 0.02 to 0.10 mm/min.
The acoustical measurements were carried out at a con-
stant stress.

In testing of the bulk metallic glasses, the velocity of
sound was measured by the high-frequency resonance
method [7] with the use of longitudinal and transverse
ultrasonic vibrations at frequencies ranging from 4 to
10 MHz along the short axis (perpendicular to the load-
ing axis) of the sample. The measurements were carried
out using lithium niobate or ceramic piezoelectric
transducers. The piezoelectric transducers were
cemented to the samples with a liquid epoxy resin for
measuring longitudinal ultrasonic vibrations and with
wax for transverse vibrations. In the case of transverse
ultrasonic waves, the polarization vector was directed
either parallel or perpendicular to the loading axis of
the sample. The relative accuracies in measuring the
resonant frequency ∆f/f (f ~ V/L, where V is the velocity
of sound and L is the sample size in the direction of
propagation of ultrasonic waves) with a change in the
applied load were equal to 1 × 10–4 and 2 × 10–4 for
transverse waves and 2 × 10–4 and 4 × 10–4 for longitu-
dinal waves in the Zr52.5Ti5Cu17.9Ni14.6Al10 and
Pd40Cu30Ni10P20 bulk metallic glasses, respectively. All
the measurements were performed at room tempera-
ture.

3. BASIC RELATIONSHIPS USED
IN MEASUREMENTS OF THIRD-ORDER 

ELASTIC MODULI

The third-order elastic moduli are defined as the
third derivatives of the internal energy U (adiabatic
derivatives) or the free energy (isothermal derivatives)
with respect to the strain of the material in a natural
state. (For an isotropic solid, the number of third-order
independent elastic moduli is equal to 3.) These elastic
moduli can be interpreted as additions (linear in the
strain) to the second-order elastic moduli. According to
this interpretation, the third-order elastic moduli can be
determined from the dependences of the second-order
elastic moduli (or the velocities of sound) on the
applied stress. The dependences of the velocities of
acoustic waves in a solid on the applied static load were
first calculated by Hughes and Kelly [8]. For anisotro-
pic materials, these dependences were thoroughly
examined by Thurston [9]. A brief derivation of the
basic relationships used for calculating the third-order
elastic moduli is given below.

Let us assume that si and ui are the displacements
caused by an acoustic wave and an applied load, respec-
tively. In this case, the total displacements can be writ-
PH
ten in the form v i = si + ui = (xi – Xi) + (Xi – ai), where
xi are the current coordinates, Xi are the initial coordi-
nates in a strained state, and ai are the natural (refer-
ence) coordinates of a material point. It is also assumed
that the strains induced by the applied load are constant
in time, uniform over the sample, and small (but finite)
in magnitude and that the strain amplitude in the acous-
tic wave is infinitesimal. Therefore, the derivative with
respect to xi can be replaced by the derivative with
respect to Xi [9] and only the terms of the first order in
si can be retained in the equation of motion:

(1)

where ρ is the density. By changing over from the elas-
tic stresses σji to the thermodynamic stresses tji [9], we
obtain (to the first order in ∂ui/∂aj)

(2)

where J = ρ0/ρ = det ||∂xi/∂aj || and ρ0 is the density of
the material in the initial state. Within the approxima-
tion used, in expression (2), we have

and tkm = , where cijkl are the isothermal or adi-
abatic elastic moduli of the second order,

are the third-order mixed elastic moduli, and εij is the
Green’s strain tensor. As a result, we obtain
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Here, ni are the direction cosines of the wave vector and
the relationship between the applied load and the strain
components can be obtained in a linear approximation.

In the case under consideration (which is character-
ized by an isotropic medium, a uniaxial stress, a wave
vector perpendicular to the loading axis of the sample,
and a polarization vector parallel or perpendicular to
the loading axis), relationship (3) can be significantly
simplified. In particular, for a longitudinal acoustic
wave, we have

(4)

where KS is the adiabatic bulk modulus; µ is the shear
modulus; A, B, and C are the third-order elastic moduli
in the Landau notation (hereafter, the indices on these
moduli will be omitted); and α and γ are the strains of
the sample in the transverse and longitudinal directions
about the loading axis, respectively. Similar relation-
ships can be written for transverse acoustic waves. By
expressing the strains α and γ through the external com-
pressive stress P, we obtain the following formulas
relating the change in the velocities of sound to the
external compressive stress P:

(5)

(6)

(7)

where KT is the isothermal bulk modulus; Cl = KS +
4/3µ is the adiabatic longitudinal elastic modulus; and
Vt1 and Vt2 are the velocities of the transverse acoustic
waves with polarization vectors parallel and perpendic-
ular to the loading axis of the sample, respectively.
Since the propagation time of an acoustic wave or, as in
our case, the resonant frequency is directly measured in
real experiments rather than the velocity of sound, it is
expedient to write the expression relating the relative
change in the velocity of sound to the relative change in
the resonant frequency:

(8)

It can be seen from relationships (5)–(8) that, knowing
the dependences of the velocities of sound on the exter-
nal stress, we can calculate all the three third-order
elastic moduli under consideration.
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4. RESULTS AND DISCUSSION

The magnitudes of the velocities of sound in the ini-
tial samples of both alloys were measured using the
pulse echo technique and high-frequency resonance.
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Fig. 1. Dependences of the relative change in the resonant
frequency of (1) longitudinal vibrations and (2, 3) trans-
verse vibrations with a polarization vector directed (2) par-
allel and (3) perpendicular to the loading axis on the uniax-
ial compressive stress in the Zr52.5Ti5Cu17.9Ni14.6Al10 bulk
amorphous alloy. Open and closed symbols represent the
results obtained in the loading and unloading cycles, respec-
tively.
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Fig. 2. Dependences of the relative change in the velocity of
(1) longitudinal ultrasonic waves and (2, 3) transverse ultra-
sonic waves with a polarization vector directed (2) parallel
and (3) perpendicular to the loading axis on the compressive
stress in the Zr52.5Ti5Cu17.9Ni14.6Al10 bulk amorphous
alloy.
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The ultrasonic velocities obtained for different samples
of each alloy coincide to within the experimental error
of the velocity measurement and are as follows: Vl =
(4.80 ± 0.05) × 103 m/s and Vt = (2.170 ± 0.005) ×
103 m/s for the Zr52.5Ti5Cu17.9Ni14.6Al10 alloy and Vl =
(4.70 ± 0.03) × 103 m/s and Vt = (1.920 ± 0.005) ×
103 m/s for the Pd40Cu30Ni10P20 alloy. Figure 1 shows
the dependences of the relative changes in the resonant
frequencies of longitudinal and transverse ultrasonic
vibrations on the uniaxial compressive stress for one of
the zirconium-based metallic glass samples measured
in the loading and unloading cycles. It can be seen from
this figure that the dependences of the resonant fre-
quency on the stress do not exhibit hysteresis. The
dependences of the relative changes in the ultrasonic
velocities averaged over several samples (or several
cycles of measurement) and calculated from relation-

0.10 0.2 0.3 0.4 0.5 0.6
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Fig. 3. Dependences of the relative change in the resonant
frequency of (1) longitudinal vibrations and (2, 3) trans-
verse vibrations with a polarization vector directed (2) par-
allel and (3) perpendicular to the loading axis on the com-
pressive stress in the Pd40Cu30Ni10P20 bulk amorphous
alloy. Open and closed symbols represent the results
obtained in the loading and unloading cycles, respectively.
P

ship (8) for the same alloy are plotted in Fig. 2. The
dependences thus obtained were used to calculate the
third-order elastic moduli A, B, and C according to rela-
tionships (5)–(8) (see table). Since we were unaware of
any experimental values of the isothermal bulk modu-
lus for this alloy, the calculations were performed under
the assumption that the isothermal bulk modulus is
equal to the adiabatic bulk modulus: KT = KS. The table
also presents the probable errors introduced by assum-
ing that the maximum difference between the quantities
KT and KS did not exceed 10%. These errors were cal-
culated for the third-order elastic moduli C and B.
(Note that the isothermal bulk modulus KT is not
required to calculate the third-order elastic modulus A.)
For the Pd40Cu30Ni10P20 bulk metallic glass, we
obtained similar dependences, which are shown in
Figs. 3 and 4. It can be seen that, in the range of weak
stresses, the resonant frequency of transverse ultrasonic
vibrations in this amorphous alloy exhibits an insignif-
icant hysteresis (Fig. 3, dependence 2), which slightly
exceeds the measurement error. The third-order elastic
moduli calculated from the experimental data for the
palladium-based metallic glass are also given in the
table. As is seen from the table, all the third-order elas-
tic moduli are negative in sign and their relative and
absolute values for the Pd40Cu30Ni10P20 glass are larger
than those for the Zr52.5Ti5Cu17.9Ni14.6Al10 glass. It
should be noted that the experimental dependences are
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Fig. 4. Dependences of the relative change in the velocity of
(1) longitudinal ultrasonic waves and (2, 3) transverse ultra-
sonic waves with a polarization vector directed (2) parallel
and (3) perpendicular to the loading axis on the compressive
stress in the Pd40Cu30Ni10P20 bulk amorphous alloy.
 
Third-order elastic moduli of the Zr52.5Ti5Cu17.9Ni14.6Al10 and Pd40Cu30Ni10P20 bulk metallic glasses (relative and absolute
values) and the possible corrections ∆ for the change (by 10%) in the isothermal bulk modulus

Alloy A/µ A, GPa B/µ B, GPa ∆ C/Cl C, GPa ∆

Zr52.5Ti5Cu17.9Ni14.6Al10 –4.74 ± 0.03 –149 ± 3 –4.79 ± 0.03 –150 ± 3 –0.3B –0.75 ± 0.07 –115 ± 15 –0.5C

Pd40Cu30Ni10P20 –9.0 ± 0.2 –307 ± 12 –6.5 ± 0.2 222 ± 11 –0.15B –3.6 ± 0.2 –737 ± 60 –0.3C
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characterized by a pronounced (higher order) nonlin-
earity (Figs. 1, 2). As an illustration, Fig. 5 shows the
dependences of the third-order elastic moduli A, B, and
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Fig. 5. Dependences of the third-order elastic moduli on the
compressive stress in the bulk amorphous alloys
Zr52.5Ti5Cu17.9Ni14.6Al10 (open symbols) and
Pd40Cu30Ni10P20 (closed symbols).
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Fig. 6. Dependences of the relative change in the velocity of
(1, 2) longitudinal and (3, 4) transverse ultrasonic waves on
the hydrostatic pressure for (1, 3) Pd40Cu30Ni10P20 and
(2, 4) Zr52.5Ti5Cu17.9Ni14.6Al10 bulk amorphous alloys
according to the data calculated from the third-order elastic
moduli determined in this work.
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C on the compressive stress for both alloys in the range
of strong stresses, which were constructed from the
experimental data. It can be seen from Fig. 5 that the
dependences of the elastic moduli B and C on the com-
pressive stress exhibit a linear behavior (the depen-
dence of the modulus C on the compressive stress is
substantially stronger than that of the modulus B),
whereas the elastic modulus A remains constant to
within the experimental error.

It was of interest to compare our results with the
data obtained by other authors [2–5], who investigated
the influence of hydrostatic pressure on the velocity of
sound in a number of bulk metallic glasses. For this
purpose, the dependences of the velocities of longitu-
dinal and transverse ultrasonic waves on the hydro-
static pressure (Fig. 6) were calculated from the third-
order elastic moduli determined in the present work. It
turned out that the dependences thus calculated for the
Pd40Cu30Ni10P20 bulk amorphous alloy are very simi-
lar (in both character and the velocity magnitude) to
those given in [3, 5] for the Pd39Cu30Ni10P21 alloy.
Moreover, the dependences calculated for the
Zr52.5Ti5Cu17.9Ni14.6Al10 alloy correlate closely with the
dependences obtained in [5] for several zirconium-
based bulk metallic glasses. Thus, our results are in
good qualitative agreement with the data on the influ-
ence of hydrostatic pressure on the velocity of ultra-
sonic waves. However, it remains unclear whether the
third-order elastic moduli obtained in this study are
“true” moduli, i.e., elastic moduli determined only by a
change in the mean interatomic distance under elastic
stresses, or the reversible microstructural transforma-
tions occurring in metallic glasses under load can also
contribute to their magnitudes. For example, the stress
field can bring about an ordering of elastic dipoles (the
appearance of a preferred dipole orientation) and,
hence, can induce additional strains in the material. In
our opinion, solving this problem calls for experimental
investigations into the influence of heat treatment on
the nonlinear elastic characteristics of metallic glasses.
These studies will be performed in the immediate
future.
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Abstract—The time dependences of the irreversible relaxation of the damping decrement and the shear mod-
ulus of a Zr52.5Ti5Cu17.9Ni14.6Al10 bulk metallic glass are investigated using an inverse torsion pendulum in the
range from room temperature to ~650 K. The spectrum of activation energies of irreversible structural relax-
ation is evaluated from the results obtained. Analysis of the amplitude dependences of the damping decrement
and the shear modulus allows the conclusion that the relaxation centers responsible for the amplitude depen-
dence differ from those associated with the irreversible structural relaxation at temperatures below and in the
vicinity of the glass transition point. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Bulk metallic glasses [1, 2] have been a subject of
intensive experimental investigations in recent years.
This is associated with the fact that these materials are
very promising for practical applications. Moreover,
since the discovery of bulk metallic glasses, the range
of instruments and experimental techniques used for
studying the physical characteristics of these interest-
ing objects has been extended significantly. However,
to date, the processes of irreversible structural relax-
ation occurring in metallic glasses at temperatures
below the glass transition point have not been ade-
quately investigated. Acoustical measurements are
among the most efficient tools for examining the relax-
ation processes proceeding in solids. In our recent
papers [3, 4], we reported on the results of investiga-
tions into the temperature dependences of the low-fre-
quency internal friction and the shear modulus in a
Zr52.5Ti5Cu17.9Ni14.6Al10 bulk metallic glass. In those
works, we separated the contributions made by the pro-
cesses of reversible and irreversible structural relax-
ation to the temperature dependences of the damping
decrement and the shear modulus, evaluated the spectra
of activation energies for these relaxation processes,
and proposed a phenomenological model based on
relaxation centers with a double-well energy potential.
This model has provided a satisfactory qualitative
explanation of all the dependences observed in the
experiments. The present work is a continuation of our
previous investigations. The purpose of this work was
to examine the time parameters of the irreversible struc-
tural relaxation at different temperatures and to eluci-
date how the acoustic strain amplitude affects the
1063-7834/05/4703- $26.00 ©0411
damping decrement and the shear modulus of a Zr–Cu–
Ni–Al–Ti bulk metallic glass.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

As in our previous studies [3, 4], the damping dec-
rement and the shear modulus were measured with an
inverse torsion pendulum at frequencies ranging from
10 to 25 Hz. A master alloy of the composition
Zr52.5Ti5Cu17.9Ni14.6Al10 (at. %) was prepared by induc-
tion levitation melting under vacuum. Samples of the
Zr52.5Ti5Cu17.9Ni14.6Al10 bulk metallic glass were pro-
duced by quenching the melt into an evacuated copper
mold at room temperature. The quenching rate in the
vicinity of the glass transition temperature was approx-
imately equal to 102 K/s [3, 5]. The structural state
(amorphicity) of the alloy was checked using x-ray dif-
fraction analysis. The procedure for preparing glass
samples and their parameters were identical to those
described in [3, 4]. In order to measure the time depen-
dences of the damping decrement and the shear modu-
lus, the sample was heated to a specified temperature at
a rate of approximately 2 K/min and the time character-
istics were measured after the five minutes required to
stabilize the temperature, which was maintained con-
stant to within 1 K in the course of each measurement.
The strain amplitude was varied in the range from ~1 ×
10–5 to 3 × 10–4. The amplitude dependences presented
in this paper were measured upon changing over from
small strain amplitudes to large strain amplitudes.
Upon the reverse changeover from maximum strain
amplitudes, the damping decrement and the shear mod-
ulus exhibited insignificant hystereses. At room tem-
 2005 Pleiades Publishing, Inc.
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Fig. 1. Time dependences of the irreversible contribution to
the damping decrement δ – δ0, the relative change in the
irreversible contribution to the shear modulus ∆G/∆G0, and
the time derivative of the relative change in the irreversible
contribution to the shear modulus d(∆G/∆G0)dt for the
Zr52.5Ti5Cu17.9Ni14.6Al10 bulk amorphous alloy at a tem-
perature of 580 K. The inset shows the time dependence of
ln(∆G/∆G0).
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tribution to the shear modulus as a function of the measure-
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P

perature, these hystereses disappeared within approxi-
mately 5 min of the return to the minimum strain ampli-
tudes (this time decreased with increasing
temperature). This finding indicated that the material
did not undergo multiple irreversible structural trans-
formations in the course of measurements at large
strain amplitudes. The experiments were performed in
the range from room temperature to a temperature of
640 to 650 K, which is close to the glass transition point
at the specified heating rate [3, 4].

3. RESULTS AND DISCUSSION

3.1. Time Dependences of the Damping Decrement
and Shear Modulus

Figure 1 shows the characteristic time dependences
of the irreversible contribution to the damping decre-
ment δ – δ0 (δ0 is the reversible contribution to the
damping decrement) and the relative change in the irre-
versible contribution to the shear modulus ∆G/∆G0 =
[G(t) – G0]/[G(0) – G0] (G0 is the modulus of the mate-
rial in a relaxed state at a specified temperature, i.e.,
after annealing at temperatures of 640–650 K). It was
shown in [3, 4] that, according to the model of relax-
ation centers with an asymmetric double-well potential,
the irreversible contribution to the shear modulus is
proportional to the density of nonequilibrium energy
states nir and the irreversible component of the damping
decrement is proportional to nir/ωτ ~ ∂nir/∂t, where ω is
the circular frequency and τ is the relaxation time.
Actually, as can be seen from Fig. 1, the time depen-
dences of the irreversible contribution to the damping
decrement and the time derivative of the relative change
in the irreversible contribution to the shear modulus
correlate with each other. However, the time depen-
dences obtained have defied description in terms of
only one relaxation time. The inset to Fig. 1 shows the
dependence of ln(∆G/∆G0) on the time t. It is clearly
seen that this dependence exhibits a nonlinear behavior
and that the characteristic relaxation times at the begin-
ning and the end of the measurement differ by approx-
imately one order of magnitude. This is quite consistent
with the data available in the literature, according to
which the relaxation processes in metallic glasses are
characterized by a broad spectrum of activation ener-
gies and, correspondingly, relaxation times.

The time dependences of the irreversible contribu-
tion to the shear modulus, which were measured
sequentially in regular temperature intervals for nearly
identical times of exposure to each temperature, are
depicted in Fig. 2. It can be seen from the inset to Fig. 2
that an increase in the temperature leads to an increase
in the magnitude of the relative relaxation of the irre-
versible contribution to the shear modulus ∆G/∆Gir =
[G(0) – G(t)]/[G(0) – G0] for the time of measurement.
This suggests a higher density (∂nir/∂E) of nonequilib-
rium states with higher activation energies E. It should
be noted that the time dependences of the relative
HYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
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change in the irreversible contribution to the shear
modulus normalized to the maximum change in the
shear modulus for the total time of measurement, i.e.,
(∆G/G)n = ∆G(t)/∆G(tmax), are nearly identical for dif-
ferent temperatures. Consequently, the processes of
irreversible relaxation due to such a stepwise change in
the temperature are described by the same set of char-
acteristic times for all the isotherms under investiga-
tion. This is associated with the fact that, in the case
where E/T @ 1 and the initial spectrum of activation
energies of irreversible relaxation is sufficiently broad,
even a short-term isothermal treatment results in a
sharp, virtually stepwise cutoff of the low-energy por-
tion of the spectrum (see, for example, [6]) and each
subsequent annealing leads only to a shift of this step
toward the high-energy range (by the same energy, pro-
vided the times of isothermal treatments and the tem-
perature intervals between them remain unchanged).
Therefore, in each cycle of annealing, the activation
energies of irreversible relaxation lie in a narrow range
with a characteristic energy proportional to the temper-
ature, because τ = τ0exp(E/T) [7, 8]. In this case, the
depth of modulus relaxation for the time of isothermal
treatment, i.e., ∆G/Gir = ∆G(tmax)/(∆G)ir [where (∆G)ir

is the total change in the shear modulus due to irrevers-
ible structural relaxation], should be proportional to the
mean density of nonequilibrium energy states in the
aforementioned narrow range of activation energies.
This makes it possible to estimate the characteristic
relaxation times from the time dependence of the rela-
tive change in the shear modulus at a specified temper-
ature and then to reconstruct the spectrum of activation
energies of irreversible structural relaxation from simi-
lar experiments. (According to our estimates, isother-
mal treatment for the first five uncontrollable minutes
required to stabilize the temperature can lead to a
decrease in the measured depths of relaxation by
approximately 10–15% at each temperature but cannot
affect their ratio at different temperatures.)

The calculated spectrum of activation energies of
irreversible structural relaxation in the alloy under
investigation is shown in Fig. 3. This spectrum was cal-
culated from the experimental data obtained upon
30-min isothermal treatment in 30-degree intervals.
The magnitudes of the activation energies were esti-
mated under the assumption that τ0 ≈ 10–13 s [7, 8]. It
should be noted that the calculated characteristics of the
spectrum of activation energies virtually coincide with
the results obtained in our previous works [3, 4], in
which the spectrum of activation energies was evalu-
ated from the temperature dependence of the irrevers-
ible contribution to the damping decrement.

3.2. Amplitude Dependences of the Damping 
Decrement and Shear Modulus

The investigation into the influence of the amplitude
of torsional vibrations on both the damping decrement
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
and the relative change in the shear modulus for as-
quenched samples of the Zr–Cu–Ni–Al–Ti amorphous
alloy revealed that the damping decrement and the
shear modulus substantially depend on the amplitude.
Figure 4 presents the amplitude-dependent contribu-
tions to the damping decrement ∆δad = δ(ε) – δ(0) and
to the relative change in the shear modulus (∆G/G)ad =
[G(ε) – G(0)]/G(0) as functions of the strain amplitude
ε at room temperature for one of the samples. (Note that
the quantities δ(0) and G(0) were determined by extrap-
olating the amplitude dependences of the damping dec-
rement and the shear modulus to zero amplitude,
respectively.) These amplitude-dependent contribu-
tions are not related to instrumental effects. From ana-
lyzing the amplitude dependences measured for a hard-
ened steel sample of the same shape and size (Fig. 4,
curves 2), it follows that the possible instrumental con-
tribution to the amplitude dependence is at least one
order of magnitude smaller than the experimentally
observed contribution. It can be seen from Fig. 4 that,
at small strain amplitudes, the amplitude-dependent
contributions to the damping decrement and to the rel-
ative change in the shear modulus are proportional to
the strain amplitude and are equal in magnitude; i.e.,
their ratio is equal to unity. At large strain amplitudes,
the ratio of the damping decrement to the relative
change in the shear modulus decreases with an increase
in the strain amplitude.

The dependences of the amplitude-dependent con-
tribution to the relative change in the shear modulus on
the strain amplitude at several temperatures are plotted
in Fig. 5. These dependences were measured during
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Fig. 3. Depth of irreversible relaxation of the shear modulus
as a function of the temperature upon sequential isothermal
treatments and the corresponding spectrum of activation
energies of irreversible relaxation in the alloy under investi-
gation.
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continuous heating of the sample at a rate of 2 K/min.
The inset to Fig. 5 shows the temperature dependences
of the amplitude-dependent contribution to the relative
change in the shear modulus for two strain amplitudes.
It can be seen from Fig. 5 that, as the temperature
increases to approximately 600 K, the amplitude
dependences of the studied quantity gradually become
more pronounced (the amplitude-dependent contribu-
tion to the relative change in the shear modulus is
approximately proportional to the temperature). At
higher temperatures, the amplitude-dependent contri-
bution to the relative change in the shear modulus
increases drastically. After cooling to room tempera-
ture, the amplitude dependences of the amplitude-
dependent contributions to both the damping decre-
ment and the relative change in the shear modulus, as a
rule, coincide with (or lie slightly below) the depen-
dences measured prior to annealing. Therefore, we can
assume that the amplitude-dependent contributions of
these quantities are reversible (at least, upon annealing
at temperatures below 600–640 K). In order to verify
this assumption, we investigated the influence of the
strain amplitude on the damping decrement and the rel-
ative change in the shear modulus in the course of iso-
thermal treatments. Figure 6 depicts the time depen-
dences of the relative change in the shear modulus
G/Gin (where Gin is the shear modulus of the alloy in the
initial state at room temperature) for two temperatures
of isothermal treatment. In the course of measurements,
the strain amplitude was increased by one order of mag-
nitude (from a minimum amplitude of 1 × 10–5 to a
maximum amplitude of 1 × 10–4). At both temperatures,
the alloy underwent irreversible structural relaxation
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(the shear modulus increased with time). As can be seen
from Fig. 6, the strain amplitude has no effect on the
relaxation process for all the temperatures used (after
the reverse changeover from the large amplitude to the
small amplitude, the time dependence of the relative
change in the shear modulus follows the time depen-
dence observed before the changeover to the large
amplitude). It is worth noting that the relaxation pro-
cess occurring at a lower temperature is not accompa-
nied by a change in the amplitude-dependent contribu-
tion (the time dependences at small and large ampli-
tudes are aligned parallel to each other). The same
situation is observed at other temperatures below
600 K. Only at temperatures higher than 600 K is the
relaxation process attended by a decrease in the ampli-
tude-dependent contribution to both the damping dec-
rement and the relative change in the shear modulus
(Fig. 6).

Thus, we can draw the conclusion that the irrevers-
ible relaxation of the amplitude-dependent contribution
begins only at temperatures above 600 K; i.e., it is char-
acterized by activation energies that are substantially
higher than those for relaxation of the amplitude-inde-
pendent contributions to the damping decrement and
the shear modulus. This implies that the structural units
responsible for the amplitude-dependent internal fric-
tion in a bulk metallic glass, most likely, differ from the
relaxation centers associated with the irreversible
relaxation of the amplitude-independent contributions
to the damping decrement and the shear modulus.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
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Abstract—Phonon thermal conductivities κ22 (∇ T || C1) and κ33 (∇ T || C3) of tellurium-doped bismuth with an
electron concentration in the range 1.8 × 1019 ≤ nL ≤ 1.4 × 1020 cm–3 were studied in the temperature interval
2 < T < 300 K. The temperature dependence of the phonon thermal conductivity obtained on doped bismuth
samples of both orientations exhibits two maxima, one at a low temperature and the other at a high tempera-
ture. The effect of various phonon relaxation mechanisms on the dependence of both phonon thermal conduc-
tivity maxima on temperature, impurity concentration, and electron density is studied. © 2005 Pleiades Pub-
lishing, Inc.
1. INTRODUCTION

In bismuth, which is a compensated semimetal, heat
is transported by phonons, as well as by electrons and
holes with concentration n = p = 3 × 1017 cm–3. The
electronic component of the thermal conductivity of
bismuth, κe, in the temperature interval 1–20 K is small
as compared to the phonon component, κph. Only one
bismuth isotope occurs in nature; therefore, with no
isotopic scattering present, phonons scatter only from
one another as a result of lattice vibration anharmonic-
ity. At low temperatures, boundary scattering of
phonons is also of importance. The temperature depen-
dence of the thermal conductivity of pure bismuth
exhibits a maximum at Tmax ≅  3.5 K. At temperatures
above this maximum, Umklapp (U) processes are
responsible for the bismuth thermal conductivity exhib-
iting exponential behavior [1]. By approximating the
phonon thermal conductivity with a simple relation κ =
(1/3)Csl, we can assume the exponential growth of
thermal conductivity with decreasing temperature to be
due to the exponential increase in the phonon mean free
path (l ~ eΘ/bT). Here, Θ ≅  120 K is the Debye tempera-
ture, C is the phonon specific heat, and s is the velocity
of sound for bismuth. Below T = 15 K, the phonon
mean free path grows exponentially only until it
becomes equal to the transverse dimension of the sam-
ple. Boundary scattering of phonons sets a limit on the
growth of the phonon mean free path length, with a
maximum appearing in the temperature dependence of
the thermal conductivity at T = 3.5 K. A further
decrease in temperature brings about a decrease in the
thermal conductivity, which scales with temperature as
does the phonon specific heat, C ~ T3. This fast
decrease in the phonon thermal conductivity of bismuth
with decreasing temperature brings it close in magni-
1063-7834/05/4703- $26.00 0416
tude to the electronic component of thermal conductiv-
ity for T < 1 K, and then, at T ≅  0.2 K, κe becomes larger
than κph [2].

As already mentioned, the phonon component of
bismuth thermal conductivity falls off exponentially
above the temperature of the maximum. As a result, at
temperatures above T = 20 K, the phonon component of
thermal conductivity is complemented by the electronic
component, which grows with increasing temperature,
and at T ≥ 100 K the two components of bismuth ther-
mal conductivity become equal [3].

Doping bismuth with the tellurium donor impurity
gives rise to a growth in the electron density from 3 ×
1017 to ~1 × 1020 cm–3. As a result, the phonon compo-
nent of thermal conductivity in doped bismuth
decreases due to phonons being scattered from the elec-
trons and the dopant [4, 5]. The temperature depen-
dence of the phonon component of thermal conductiv-
ity of doped bismuth with an electron density in the
range 1.8 × 1019 ≤ nL < 1 × 1020 cm–3 revealed two max-
ima, whose origin has remained undetermined [5]. This
communication reports on a study of the effects various
phonon relaxation mechanisms exert on the depen-
dences of both maxima in the phonon component of
thermal conductivity on temperature, impurity concen-
tration, and electron density.

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUES

The temperature dependences of thermal conductiv-
ity and electrical resistivity were studied on single-crys-
tal samples of bismuth doped with the tellurium donor
impurity. The impurity electron concentration in doped
bismuth ranged from 1.8 × 1019 to 1.4 × 1020 cm–3.
© 2005 Pleiades Publishing, Inc.
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The samples were spark eroded from the central part of
a single-crystal ingot grown by horizontal zone level-
ing. The samples were rectangular parallelepipeds mea-
suring 2.5 × 2.5 × 30 mm, and their faces were perpen-
dicular to the C1, C2, and C3 crystallographic axes,
respectively. The largest dimension of a sample coin-
cided with either the bisector axis C1 or the trigonal C3
axis. The samples were etched in a C2H5OH–HNO3
(1 : 1) solution. The main parameters of the samples are
listed in Table 1.

A sample with heaters attached to its end faces was
soldered to the bottom of a vacuum chamber (18 mm in
diameter) immersed in a thermostatting liquid (helium,
hydrogen, or nitrogen). The heater near the chamber
bottom served to maintain the average temperature,
while the heater at the other end of the sample produced
a temperature gradient along the sample. The tempera-
ture was measured at two cross sections of the sample
spaced lT ≅  15 mm apart under a constant heat flux with
carbon resistance thermometers in the temperature

 
Table 1.  Parameters of doped bismuth samples: electron
density nL, Fermi electron energy εF, Debye electron temper-
atures Θe⊥  and Θe||, and main maximum temperature Tmax for
phonon thermal conductivity κ22 and κ33

No.
nL, 1019

cm–3
εF,

meV
Θe⊥ ,

K
Θe||,
K

Tmax(κ22), 
K

Tmax(κ33), 
K

1 1.8 133.6 5 59 5.5 5.6

2 5.3 193.4 7 84 8 7

3 7 212.6 7.7 93 8.4 8

4 11 248.6 9 108 10.8 9.3

5 14 270 10 117 11.8 13
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Fig. 1. Temperature dependence of the phonon thermal con-
ductivity κ22 (∇ T || C1) for tellurium-doped bismuth sam-

ples with various electron concentrations: (1) 1.8 × 1019,
(2) 5.3 × 1019, (3) 7 × 1019, (4) 1.1 × 1020, and (5) 1.4 ×
1020 cm–3.
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interval 1.5 < T < 40 K and with copper–constantan
thermocouples in the range 30 < T < 80 K.

3. EXPERIMENTAL RESULTS

Thermal conductivity measurements were con-
ducted on single-crystal tellurium-doped bismuth sam-
ples, with the heat flux propagating along the bisector
or trigonal axis, which corresponds to the κ22 (∇ T || C1)
or κ33 (∇ T || C3) thermal conductivity components. The
phonon thermal conductivity component was isolated
by suppressing the electronic component in a classi-
cally strong magnetic field. According to our data and
the data from [4, 5], an increase in the bismuth electron
concentration from 3 × 1017 to 1.4 × 1020 cm–3 due to
tellurium doping causes the maximum thermal conduc-
tivity to decrease by ~100 times, but the electronic
component of bismuth thermal conductivity remains
small as compared to the phonon component, just as in
pure bismuth. The phonon thermal conductivity com-
ponent, as in pure bismuth, is dominant in the tempera-
ture interval 2–20 K. The electronic component of ther-
mal conductivity in doped bismuth is small due to the
mobility of electrons decreasing as a result of their scat-
tering from the ionized tellurium impurity. Indeed, the
increase in the electron concentration by nearly three
orders of magnitude under bismuth doping brought
about a decrease in the low-temperature electrical resis-
tivity by a factor of approximately 100 as compared to
the resistivity of pure bismuth.

The temperature dependences of the phonon ther-
mal conductivities κ22 and κ33 of bismuth samples
doped by tellurium to electron concentrations in the
range 1.8 × 1019 ≤ nL ≤ 1.4 × 1020 cm–3 are shown in
Figs. 1 and 2, respectively. The temperature depen-
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Fig. 2. Temperature dependences of the phonon thermal
conductivity κ33 (∇ T || C3) for tellurium-doped bismuth
samples with various electron concentrations: (1) 1.8 ×
1019, (2) 5.3 × 1019, (3) 7 × 1019, (4) 1.1 × 1020, and
(5) 1.4 × 1020 cm–3.
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dence of the phonon thermal conductivity of all doped
bismuth samples exhibits two maxima, one of which is
observed at a low temperature (and will be referred to
as the main or first maximum) and the other at a high
temperature (referred to as the second maximum). The
amplitude of the main maximum of the phonon thermal
conductivity decreases with increasing electron con-
centration in doped bismuth samples of both orienta-
tions as approximately the inverse of electron concen-

tration (κii(max) ~ ). This concentration dependence
of the phonon thermal conductivity suggests strong
phonon–electron scattering. This conclusion is sup-
ported by the fact that the phonon thermal conductivity
obeys a quadratic temperature dependence [κii(T) ~ T2]
below the temperature of the maximum. Note that the
phonon specific heat in bismuth scales for T < 15 K as
C ~ T3 [6], which, according to [7], is also one of the
conditions for the κii ~ T2 relation to hold. All these data
argue for the main maximum in the phonon thermal
conductivity being due primarily to scattering of ther-
mal phonons from electrons for T < Tmax and to phonon
scattering from phonons and impurities for T > Tmax.

The comparatively small electron Fermi momentum
in pure and doped bismuth suggests that, according to
the energy and momentum conservation laws, the L
electrons of bismuth, in contrast to the case of metals,
do not interact with all acoustic phonons. It turns out
that electrons in bismuth interact only with the phonons
for which the following condition is met (with due
account of the dispersion law for the L electrons) [8]:
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Fig. 3. Temperature dependences of the phonon thermal
conductivity κ22 (solid lines) and κ33 (dashed lines) with
isolated first and second maxima obtained on a tellurium-
doped bismuth sample with an electron concentration nL =

1.8 × 1019 cm–3.
PH
Here, ζ is the electron chemical potential of the samples
studied, %g is the energy band gap, mi are the effective
electron masses in the ellipsoids, and qi are the
momenta of the phonons interacting with electrons.

By approximating the electron Fermi surface of bis-
muth by ellipsoids of revolution with effective masses
m1 ≅  m3 and m2, we can restrict ourselves, when using
Eq. (1), to two different electronic Debye temperatures
Θ1e = s[8m1ζ(1 + ζ/%g)]1/2/k and Θ2e = s[8m2ζ(1 +
ζ/%g)]1/2/k [8]. With this simplified anisotropic elec-
tronic spectrum, we obtain for pure bismuth Θ1e ≅  1 K
and Θ2e ≅  15 K. The values of Θie for the doped bismuth
samples are listed in Table 1. Calculations showed that
the lowest electronic Debye temperature Θ1e approxi-
mately coincides with the temperature of the main max-
imum in the phonon thermal conductivity (see Table 1).
This implies that, below this temperature, all phonons
interact with electrons. At temperatures below that of
the second maximum in the phonon thermal conductiv-
ity, there is a small number of phonons capable of inter-
acting with electrons. One may therefore safely assume
that the second maximum in the phonon thermal con-
ductivity derives primarily from phonon scattering on
the sample boundaries at T < T2max and from phonon
scattering by phonons and impurities above the temper-
ature of the second maximum. It is these considerations
that are used to isolate both maxima from the tempera-
ture dependence of the phonon thermal conductivity for
samples with different electron concentrations (Figs. 3–
7). In this approach, we assume that certain acoustic
branches of bismuth (quasi-longitudinal or quasi-trans-
verse) are responsible for the first maximum in the
phonon thermal conductivity and the others, for the for-
mation of the second maximum.
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Fig. 4. Temperature dependences of the phonon thermal
conductivity κ22 (solid lines) and κ33 (dashed lines) with
isolated first and second maxima obtained on a tellurium-
doped bismuth sample with an electron concentration nL =

5.3 × 1019 cm–3.
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These maxima in the phonon thermal conductivity
exhibit the following concentration dependence. As the
electron concentration increases to 7 × 1019 cm–3, the
phonon thermal conductivity at the main maximum

falls off as κii(1max) ~ . A further increase in electron
concentration above nL > 7 × 1019 cm–3 brings about a
faster decrease in the phonon thermal conductivity at

the maximum (κ22(1max) ~ , κ33(1max) ~ ). The
amplitude of the second maximum of the phonon ther-
mal conductivity decreases with increasing electron
concentration in doped bismuth in the same way for

samples of both orientations, κii(2max) ~ . Note that
the temperature of the main maximum in the phonon
thermal conductivity shifts toward higher temperatures
with increasing electron concentration in doped bis-

muth samples as T1max(κ) ~ . The temperature of the
second maximum shifts only slightly with increasing
electron concentration.

The experimental dependence of the phonon ther-
mal conductivity on temperature deviates from the qua-
dratic course at temperatures below T1max for doped bis-
muth samples with electron concentrations in excess of
7 × 1019 cm–3. Heavy doping of bismuth with tellurium
for nL > 7 × 1019 cm–3 apparently results in the forma-
tion of defects and dislocations in a sample. This may
account for the decreased exponent m < 2 of the temper-
ature dependence of the phonon thermal conductivity.

Next, we analyze our experimental data on the
phonon thermal conductivity obtained on samples of
doped bismuth.
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Fig. 5. Temperature dependences of the phonon thermal
conductivity κ22 (solid lines) and κ33 (dashed lines) with
isolated first and second maxima obtained on a tellurium-
doped bismuth sample with an electron concentration nL =

7 × 1019 cm–3.
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4. THEORETICAL ANALYSIS
OF THE EXPERIMENTAL DATA

By solving the kinetic equation for the phonon dis-
tribution function, one can determine the phonon ther-
mal conductivity

(2)

where q is the phonon wave vector,  is the phonon

frequency of the sth branch, v(s) =  is the
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Fig. 6. Temperature dependences of the phonon thermal
conductivity κ22 (solid lines) and κ33 (dashed lines) with
isolated first and second maxima obtained on a tellurium-
doped bismuth sample with an electron concentration nL =

1.1 × 1020 cm–3.
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phonon velocity vector, N0 = [exp(" /kT) – 1]–1 is
Planck’s equilibrium distribution function, and τph(q) is
the total phonon relaxation time. At low temperatures,
we take into account only the contribution of the three
acoustic branches, for which the frequencies corre-
sponding to wave vectors far less than the limiting val-
ues are small and therefore depend linearly on the wave
vector. Integration over the phonon frequency for each
branch is limited by a finite quantity called the Debye
phonon frequency ωD. The Debye temperature of a
phonon branch is Θ = "ωD/k. In this way, the presence
of limiting wave vectors at the Brillouin zone edge of
the crystal is taken into account. For temperatures much
lower than the Debye temperature, this limitation can
be disregarded and extend integration to infinity.

The total phonon relaxation time includes all possi-
ble relaxation mechanisms, namely, phonon scattering
from impurities and electrons, phonon–phonon scatter-
ing, and scattering of phonons from the sample bound-
aries:

(3)

In the phonon–phonon scattering, only normal pro-
cesses are included. We disregard Umklapp processes,
which are essential only in pure bismuth. Since normal
processes conserve the total momentum of the phonon
system, this factor must be taken into account by intro-
ducing an additional term into Eq. (2) (see [9,
Eq. (6.1)]). Inclusion of the second term into Eq. (2),
while not involving any change in the temperature and
concentration dependences of the thermal conductivity,
improves the accuracy of determination of the numeri-
cal value of κik.

According to Eq. (2), the quantity τph(q) undergoes
averaging, so the numerical value of the integral is
determined by the thermal wave vectors qT ≅
3kT/" , where  is the average phonon velocity
for the sth branch. The wave-vector dependences of dif-
ferent phonon relaxation mechanisms result in different
temperature dependences. As a result of averaging, the
phonon relaxation times can be recast as

(4)

where L is the smallest sample dimension. Taking these
phonon relaxation mechanisms into account, one can
write the temperature dependence of the phonon ther-
mal conductivity in the form
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where factor T3 derives from integration over the mag-
nitude of wave vectors in Eq. (2) and reflects the tem-
perature dependence of the phonon specific heat.

In the low-temperature domain, the temperature
dependence of the phonon thermal conductivity of
doped bismuth exhibits a maximum (Figs. 1, 2). It
appears as a result of interplay between the counteract-
ing trends introduced by the different phonon relax-
ation mechanisms into the temperature dependence of
thermal conductivity in Eq. (5). In pure bismuth, these
mechanisms are boundary scattering at temperatures
below the temperature of the maximum in thermal con-
ductivity and Umklapp processes above this tempera-
ture. Phonon Umklapp processes in pure bismuth bring
about an exponential growth in thermal conductivity
with a decrease in temperature and account for the
sharpness of its peak.

In doped bismuth, the contributions from phonon
scattering are power-law functions of temperature and
the maximum is not as steep. Equations (4) and (5)
define the following simple rule for the temperature
dependence of the thermal conductivity on both sides
of the maximum. The increase (decrease) in thermal
conductivity in Eq. (5) with an increase in temperature
is associated with those phonon relaxation processes
for which the power of temperature in Eqs. (4) is less
than or greater than three, respectively. As a result, a
maximum in the thermal conductivity arises at the tem-
perature at which the variations due to different phonon
relaxation mechanisms cancel each other. The external
parameters (sample size, impurity and electron concen-
trations, etc.) governing the phonon relaxation mecha-
nisms influence the characteristics of the maximum in
the temperature dependence of the thermal conductiv-
ity. Investigating the dependence of the temperature of
the maximum in the phonon thermal conductivity and
of its amplitude on the sample dimensions, impurity
concentration, and electron density offers the possibil-
ity of understanding the contributions provided by each
of the phonon relaxation mechanisms to the phonon
thermal conductivity.

Determination of the concentration dependence of
the thermal conductivity for doped bismuth is compli-
cated by the fact that phonons are scattered from the
same tellurium donor impurities that donate electrons
to the L band. In the doped bismuth samples used in this
investigation, the concentration of electrons can be
assumed to coincide with that of impurities, because
the electron concentration in the samples exceeds the
intrinsic value (i.e., the original electron concentration
n0 = 3 × 1017 cm–3 in the L band of pure bismuth) by two
orders of magnitude.

As seen from Eq. (4), the phonon–impurity and
phonon–electron relaxation times depend on the impu-
rity concentration c. Since phonon scattering from
impurities is proportional to the impurity concentra-
tion, the constant a1 is proportional to c. Phonon–elec-
tron scattering depends on electron concentration only
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in the nonparabolic approximation, so the constant a3 is
proportional to (1 + 2ζ/EgL)2 [10], where ζ is the chem-
ical potential of electrons in the Ls band and EgL is the
energy gap between the La and Ls bismuth bands. The
relation between the electron concentration in the three
ellipsoids of the Ls band of doped bismuth and the
chemical potential can be expressed in the form [8]

(6)

where mi are the effective electron masses at the bottom
of the Ls conduction band. The L band of bismuth is
known to be strongly nonparabolic, so ζ/Eg @ 1.
Neglecting the small initial electron concentration n0 in
bismuth in comparison with the high electron concen-
tration in the doped bismuth samples studied, we obtain
the following concentration dependence for the phonon
relaxation time due to phonons scattering from elec-
trons: 1/τph–e ~ c2/3.

Simple concentration dependences of Tmax and κmax
can be obtained in the cases where the phonon scatter-
ing mechanisms for which the power of the temperature
is higher than three are dominated by phonon–impurity
or phonon–phonon scattering and the phonon scattering
mechanisms for which the power of the temperature is
less than three are dominated by phonon–electron and
phonon–boundary scattering. Theoretical estimates of
Tmax(c) and κmax(c) made for doped bismuth samples
with different combinations of phonon relaxation
mechanisms are listed in Table 2. Only the fourth row
of Table 2 is seen to fit our experimental data qualita-
tively, because in this case the amplitude of the thermal
conductivity maximum decreases and the temperature
of the maximum increases with increasing concentra-
tion. However, the power-law concentration depen-
dences of these quantities are substantially weaker than
those observed in the experiment.

Note the following very essential feature of phonon
relaxation due to the interaction with degenerate elec-
trons, because of which the relation for 1/τph–e in Eq. (4)
is valid only for temperatures lower than the electronic
Debye temperature Θe = (2 pF)/k, where pF is the
Fermi electron momentum and  is the average
phonon velocity. In an elementary event of phonon
emission or absorption by an electron, energy and
momentum are conserved [10]. The velocity of a
phonon is much less than that of an electron, and the
energy of a phonon is much less than that of an electron
and can be neglected. In these conditions, an elemen-
tary scattering event for degenerate electrons with an
isotropic energy spectrum reduces to an electron trans-
fer from one point to another on the Fermi sphere, with
the distance between these two points being equal to the
phonon momentum. If the phonon momentum exceeds
the diameter of the Fermi sphere, elementary events of
emission or absorption of a phonon by an electron are
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impossible [11]. This analysis can be generalized to the
case of a Fermi surface with an anisotropic (including
ellipsoidal) electron spectrum, as is the case with bis-
muth. Therefore, for q > 2pF, phonons can no longer
scatter off electrons of doped bismuth and we have

(7)

In the earlier consideration, we neglected this sharp
dependence of the electron–phonon relaxation. Never-
theless, our analysis remains valid as long as the tem-
peratures, including the temperature of the maximum,
are much lower than Θe (see Table 1). Therefore, Eq. (5)
also holds for temperatures substantially lower than Θe.

If the relative magnitude of the scattering parame-

ters is such that the estimated value  is greater than
Θe, the temperature dependence of the phonon thermal
conductivity determined above turns out to be incor-
rect. Indeed, there was assumed to be phonon–electron
scattering at temperatures above Θe following Eq. (4).
In actual fact, as seen from Eq. (7), there is no phonon–
electron scattering at these temperatures. The only pro-
cess remaining is phonon–phonon scattering, for which
the phonon thermal conductivity is given by

(8)

There is no maximum at T = , and the phonon ther-
mal conductivity varies according to Eq. (8) as the tem-
perature decreases to Θe. Below this temperature, the
phonon–electron scattering becomes significant. As a
result, the increase in the phonon thermal conductivity
is replaced by a fairly steep falloff. Thus, in actual fact,
Tmax is of the order of Θe, i.e., of the order of pF ~ c1/3,
and the phonon thermal conductivity at the maximum
turns out to scale as

(9)

This consideration seems to suggest that the phonon
thermal conductivity should decrease as soon as
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Table 2.  Theoretical estimates of the dependence of the
temperature (Tmax) and amplitude (κmax) of the phonon ther-
mal conductivity maximum on impurity concentration c in
bismuth calculated for different phonon relaxation mecha-
nisms characterized by relaxation time τph–i(j)

No. τph–i τph–j Tmax(c) κmax(c)

1 τph–b τph–ph c0 c0

2 τph–b τph–im c–1/4 c–3/4

3 τph–e τph–im c–1/9 c–8/9

4 τph–e τph–ph c1/6 c–1/3
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phonon–electron scattering becomes operative. How-
ever, taking into account the variation of the integrand
in Eq. (2) smears this sharp temperature dependence
and smoothes out the temperature maximum of the
phonon thermal conductivity. The concentration depen-
dence of Θ1e for doped bismuth is close to that of the
temperature of the first maximum in the phonon ther-
mal conductivity. The behavior of the maximum in the
phonon thermal conductivity following Eq. (9) is in
qualitative agreement with the experimental data.

The presence of two maxima with a dip in between
is an interesting feature of the temperature dependence
of the phonon thermal conductivity. This dip is usually
attributed to possible phonon resonant scattering from
a system of impurity levels or localized vibrations [9].
No such levels have thus far been observed in the tellu-
rium impurity, nor has anyone reported the appearance
of localized vibrations in tellurium-doped bismuth. The
temperature of the dip corresponds to energies that are
small as compared to the energies of atomic levels and
phonons with limiting momenta. One has, therefore, to
look for another reason to account for the presence of
two maxima in the temperature dependence of the
phonon thermal conductivity.

Although Eq. (2) includes the three acoustic phonon
branches, our subsequent consideration disregarded
this point and was conducted as if the interaction con-
stants in Eq. (5) were the same for the different
branches, which is not the case. Equation (5) should
actually have a sum of three terms of this kind, with dif-
ferent constants ai for each phonon branch. Thus, the
total phonon thermal conductivity represents, in actual
fact, a sum of three functions whose maxima lie at dif-
ferent temperatures. If the two transverse branches have
similar interaction constants, only two different terms
will remain in the sum. Accordingly, one can in no case
be sure that the total curve describing the phonon ther-
mal conductivity will have only one maximum. One
should rather expect the total phonon thermal conduc-
tivity curve to be double-humped, with a dip between
the two maxima.

The first maximum in the phonon thermal conduc-
tivity is determined by the temperatures at which
phonon–electron scattering is cut off (except for a small
number of electrons with large momenta oriented along
the ellipsoids, from which the contribution is small).
Therefore, one can safely assume that phonon–electron
scattering makes almost no contribution to the forma-
tion of the second maximum in the phonon thermal
conductivity. To isolate the second maximum in the
phonon thermal conductivity, we assume that the low-
temperature dependence of the phonon thermal con-
ductivity is determined by phonon scattering from
boundaries, i.e., κii ~ T3. The amplitude of the second
maximum substantially depends on the impurity con-
centration; therefore, phonon–impurity and phonon–
boundary scattering contribute to its formation. The
dependences of both the temperature and the amplitude
P

of the maximum in the phonon thermal conductivity on
the electron (impurity) concentration for these types of
phonon scattering are listed in Table 2 (second row).
The absence of experimental support for the relations
presented in Table 2 is possibly due to their being
power-law concentration dependences with a small
exponent. An argument for the above explanation of the
nature of the second maximum in the phonon thermal
conductivity could be given, however, by experimental
observation of its dependence on the transverse dimen-
sions of a sample.

Experiments conducted on doped bismuth samples
with electron concentrations above 7 × 1019 cm–3

revealed the existence of regions intermediate between
the quadratic and linear behavior in the temperature
dependence of the phonon thermal conductivity for T <
T1max (Figs. 1, 2, 6, 7). Heavy doping of bismuth with
tellurium to electron concentrations in excess of 7 ×
1019 cm–3 initiates the formation of defects and disloca-
tions in a sample. Therefore, in the case of heavily
doped bismuth, we should add phonon scattering from
dislocations to the above-mentioned mechanisms. Scat-
tering of phonons from dislocations [9] is usually
assumed to coincide in its dependence on phonon fre-
quency with the phonon–electron scattering.

For a more detailed review of phonon scattering
from dislocations in semiconductors, the reader is
referred to monograph [12]. Phonon scattering from
one dislocation is the sum of two terms, one of which is
governed by long-range forces and depends linearly on
frequency and the other is due to short-range forces of
the dislocation core and depends on the frequency
squared. On averaging over the thermal distribution of
phonons, these terms yield different temperature
dependences:

(10)

This relation assumes the dislocations to be small as
compared to the large distance separating them. The
contribution from scattering of phonons by all disloca-
tions in the crystal is equal to the contribution from
phonon scattering on one dislocation multiplied by the
number of dislocations. The second power of the tem-
perature corresponds to the thermal phonon wave vec-
tor multiplied by the small size of the dislocation core,
which is a small parameter. Therefore, the second term
is usually dropped, after which Eq. (10) will coincide
with the phonon–electron scattering relation in
Eqs. (4).

The case of phonon scattering from large disloca-
tions was treated in [12]. In this case, for short wave-
lengths smaller than a dislocation, the scattering deter-
mined by long-range forces is frequency-independent.
The magnitude and temperature dependence of the first
term in Eq. (10) depends on the product of the thermal
phonon wave vector multiplied by the dislocation size.
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As this product increases, the first term ceases to depend
on temperature and decreases in magnitude [12].

In the case of a system of coupled dislocations,
Eq. (10) has to be modified, because the long-range dis-
location fields overlap and phonon scattering from
them cannot be taken into account independently. It is
difficult to calculate the first term, but we can estimate
it by considering independent scattering of phonons
from dislocations of a macroscopic size equal to the
distance between the dislocation cores. Effectively, this
increases the dimensions of the dislocations involved in
the first term of Eq. (10), thus reducing this term.

As for the second term, it remains the same for a
system of dislocations. A decrease in the first term
changes the relative magnitude of the terms. For very
low temperatures, the first term remains naturally larger
than the second; in other words, phonon scattering from
dislocations varies linearly with temperature. Note that
monograph [12] reports on experiments that suggest a
quadratic dependence of the phonon thermal conduc-
tivity on temperature; we believe, however, that those
experiments were not given an adequate interpretation.
We can assume that, at higher temperatures (but still
below the temperature of the maximum in the phonon
thermal conductivity), scattering from a system of dis-
locations is dominated by dislocation cores, to which
the second term in Eq. (10) corresponds. This type of
phonon scattering gives rise to a linear temperature
dependence of the phonon thermal conductivity. It is a
behavior close to this relation that is observed in
phonon thermal conductivity experiments conducted
on heavily tellurium-doped bismuth.

In concluding this section, we note that summation
of the contributions due to the different phonon
branches to the phonon thermal conductivity may pro-
vide a logical explanation for the existence of two max-
ima in the temperature dependence of the phonon ther-
mal conductivity. Investigation of the variation in these
maxima with impurity concentration offers the possi-
bility of identifying the contributions from different
phonon scattering mechanisms to the formation of
these maxima. We should finally add that the theoreti-
cally predicted cutoff of phonon–electron scattering at
the phonon momentum equal to twice the Fermi
momentum has not been confirmed experimentally thus
far. The above analysis suggests that this cutoff could
determine the concentration dependence of the main
temperature maximum in the phonon thermal conduc-
tivity. This may be considered an indirect argument for
the existence of this feature of electron–phonon inter-
action.

The variation in the temperature dependence in
question for bismuth samples doped heavily with tellu-
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rium is associated with the existence of a system of
coupled dislocations and with the specific character of
phonon scattering from this system. The temperature
dependence of the phonon thermal conductivity sug-
gests that phonons scatter on dislocation cores, whereas
scattering caused by long-range forces turns out to be
suppressed.

Thus, investigation of the temperature dependence
of the phonon thermal conductivity at low temperatures
permits one to obtain valuable information on the
mechanisms of relaxation in a phonon system.
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Abstract—X-ray L3 absorption spectra of Pr and the crystallochemical characteristics of the PrFe10Mo2 and
PrNi5 intermetallic compounds have been studied. It has been shown for the first time that atoms of Pr, similar
to those of Ce, can reside in a mixed valence state. The valency of praseodymium is +3.08 ± 0.03 and +3.10 ±
0.03 in PrFe10Mo2 and PrNi5, respectively. The mixed valence state of Pr disappears when one Ni atom in PrNi5
is replaced by Al or Ga. The nature of the quadrivalent state of Pr in intermetallic compounds is discussed.
© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

A characteristic feature of Ce and Pr is the instabil-
ity of the 4f configuration, which may initiate electron
fluctuations between two configurations with different
numbers of f electrons, thus realizing a mixed valence
state. The valency of Ce in RxTy intermetallic com-
pounds (R stands here for a rare-earth element, and T,
for a 3d transition element) was shown long ago by
direct spectroscopic measurements to vary from +3.4 to
+3.1 depending on the actual composition (see, e.g.,
[1]). The anomalies in the behavior of the magnetic and
structural parameters with a variation in the atomic
number Z of the rare-earth element in RxTy compounds
observed for R = Ce [2, 3] are accounted for by cerium
having mixed valency. There has been no success thus
far, however, in revealing a mixed valence state in inter-
metallic compounds with praseodymium, although
some authors [4] have invoked such concepts to inter-
pret the magnetic properties of Pr compounds. We
report here on a study of the Pr valency using x-ray L3
absorption spectroscopy performed on the PrFe10Mo2,
PrNi5, and PrNi4M compounds, where M = Al, Cu, or Ga.

2. EXPERIMENTAL TECHNIQUES

PrFe10Mo2, PrNi5, and PrNi4M alloys, with M = Cu,
Ga, or Al, were prepared by rf melting in alundum cru-
cibles in a pure argon environment. The PrFe10Mo2
alloy was subjected to homogenization annealing at
1100°C for two days, and the PrNi5 and PrNi4M alloys,
at 1000°C for eight days in vacuum with subsequent
quenching in water. X-ray structural measurements
showed the PrFe10Mo2 alloy to contain a compound
with a ThMn12-type tetragonal structure and a small
amount of α-Fe (less than 2 wt %), while the PrNi5 and
1063-7834/05/4703- $26.00 0424
PrNi4M alloys were single-phase and contained com-
pounds with a CaCu5-type hexagonal crystal structure.

The x-ray L3 absorption spectra were measured with
an ARS-KD-2 vacuum x-ray spectrometer equipped
with a coordinate-sensitive detector. The analyzer was

a ( )-bent quartz single crystal with a radius of cur-
vature of 1.940 m. The spectra were obtained in the sec-
ond order of reflection with a linear dispersion of
15.8 eV/mm and E/∆E ~ 8500. The valence state was
derived by traditional unfolding of a complex spectrum
into a combination of Lorentzians and arctan functions
to model the transition of the electron after absorption
of an x-ray photon to bound and continuum states,
respectively [1]. Spectra were measured three times on
each sample. On account of the problem being ill
posed, each spectrum was independently unfolded no
less than three times. The areas bounded by the Lorent-
zians are proportional to the number of atoms in differ-
ent valence states. The valence state of praseodymium
was calculated from the relation

where  and  are the areas under the Lorentzians
modeling the signals from Pr+3 and Pr+4, respectively.

3. EXPERIMENTAL RESULTS 
AND DISCUSSION

Figures 1 and 2 plot x-ray L3 absorption spectra of
praseodymium in PrFe10Mo2, PrNi5, and PrNi4M and in
reference compounds of trivalent praseodymium, Pr2O3
(peak B), and quadrivalent praseodymium, Ce2Pr2O8
(peaks C, D, E), whose complex structure is similar in
origin to that of the Ce+4 in CeO2. The complex struc-
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ture of cerium L3 absorption spectra has been repeat-
edly discussed in various approaches taking into
account the variation in the character of the Ce 4f–O 2p
interaction in the final state of the absorption process
(see, e.g., [5–7]).

As follows from a comparison of the Pr L3 absorp-
tion spectra obtained on the compounds under study
and reference compounds, praseodymium is primarily
trivalent in the compounds studied. In addition to the C,
D, and E signals due to partial oxidation of praseody-
mium in the sample, however, one can clearly see a
bend D' at a distance ∆E ~ 8 eV from the B signal orig-
inating from Pr+3. To reveal its nature, Fig. 3 presents L3

absorption spectra of the rare-earth element in CeNi5,
where the cerium valency is VCe = 3.23 [8], and in PrNi5

plotted in the same energy scale (matching was per-
formed using the R+3L3 absorption maximum, whose
position was taken as E = 0). We see that peak D' in the
spectrum for PrNi5 coincides in energy position with
the peak D' in the CeNi5 spectrum that is associated
with Ce+4. By analogy with CeNi5, this peak may sig-
nify the presence of a small amount of Pr+4 in PrNi5.
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Fig. 1. X-ray L3 absorption spectra of praseodymium mea-
sured in (a) Ce2Pr2O8, (b) PrFe10Mo2, and (c) Pr2O3.

Dashed lines identify the energy positions of the Pr+3 and
Pr+4 peaks for the oxide compounds.
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Deconvolution of the Pr L3 absorption spectrum into
constituents yielded a value of +3.08 ± 0.03 for the
praseodymium valency in PrFe10Mo2 and VPr = +3.10 ±
0.03 in PrNi5. As seen from Fig. 2, the intensity of peak
D' in PrNi4Cu remains the same as in PrNi5, i.e., VPr =
+3.10 ± 0.03, whereas in PrNi4Al and PrNi4Ga the D'
peak is not seen at all, which means that the praseody-
mium valency here is close to three (VPr = 3.00 ± 0.03).
Note that the technique employed in the treatment of
the spectra permits one to determine the valence state
while neglecting the signals associated with sample
oxidation, because these signals differ in energy posi-
tion from the B and D' maxima by more than 2 eV.

Figures 4 and 5 plot the dependences of the lattice
parameters on the atomic number Z of the rare-earth
element for the compounds RFe10Mo2 [3, 9] and RNi5
[2]. We see that these parameters deviate from the
extrapolated values of a(Z) and c(Z) for the Ce com-
pounds, which is usually associated with the presence
of the Ce+4 ion. However, no noticeable deviations of
the lattice parameters from the monotonic a(Z) and c(Z)
relations are observed for Pr compounds.

In discussing the relation between the crystal-
lochemical characteristics and the valency of R ions, we
presume that, in addition to the main metallic bonding,
there is an ionic covalent component of interatomic
coupling in intermetallic compounds that is dependent
on the actual relationship between the electronegativi-
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Fig. 2. X-ray L3 absorption spectra of praseodymium mea-
sured in (a) Ce2Pr2O8, (b) PrNi5, (c) PrNi4Cu, (d) PrNi4Al,
(e) PrNi4Ga, and (f) Pr2O3. Dashed lines identify the energy

positions of the Pr+3 and Pr+4 peaks for the oxide com-
pounds.
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ties of the components and on the structural features of
the compounds, such as different numbers of unlike
neighbors and different lengths of the bonds they are
connected by. In compounds with the same type of
crystal structure, the lattice parameters decrease with
increasing atomic number of the R element due to a
decrease in the ionic radii (the so-called lanthanide
compression).

Against the background of this pattern, which is typ-
ical of trivalent R elements, the ionic–covalent bond
component in intermetallic compounds with valence-
unstable Ce and Pr may increase due to the interatomic
interaction involving not only the 5d16s2 valence elec-
trons, as is the case with the other R elements, but also
the 4f electrons. It is known that Ce becomes quadriva-
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Fig. 3. X-ray L3 absorption spectra of cerium and praseody-
mium measured in (a) CeNi5 and (b) PrNi5.
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P

lent in intermetallic compounds only in the presence of
nd elements in the middle and at the end of the transi-
tion period. This suggests that the reason for the
involvement of 4f electrons in chemical bonding should
be searched for in the acceptor property of the unfilled
d shell. Therefore, the number of nd ions in the imme-
diate environment of the R ion with an unstable 4f con-
figuration and their proximity to the R ion play a deci-
sive part in the formation of the mixed valence state in
an R ion and in the appearance of lattice parameter
deviations toward smaller values (negative deviations)
as a result of the ionic radius of R+4 being smaller than
that of R+3.

With these concepts in mind, we turn to an analysis
of the dependence of the lattice parameters on the
atomic number of the rare-earth element for the chosen
compounds. As seen from Fig. 4, the parameter c of the
RFe10Mo2 compounds with a ThMn12-type tetragonal
structure (Fig. 6) is only weakly dependent on the
atomic number of the R element, a behavior resembling
that of atomic radii, whereas the parameter a depends
strongly on Z, a feature characteristic of ionic radii.
This suggests that the ionic–covalent bond between R
and 3d elements, which makes it possible to reveal lan-
thanide compression, takes place in this structure along
the a direction while being practically nonexistent
along c.

Indeed, in RFe10Mo2, the R atoms occupy one crys-
tallographic position, 2a, whereas the iron atoms
occupy three nonequivalent positions: 8i, 8j, and 8f. As
follows from neutron diffraction studies of YFe10Mo2
[10], the shortest distances are Y–Fe8i and Y–Fe8j; more
specifically, d(Y–Fe8f) = 0.323 nm, d(Y–Fe8i) =
0.306 nm, and d(Y–Fe8j) = 0.303 nm. One may reason-
ably assume that, in other RFe10Mo2 compounds, the
relative bond lengths would be the same. The R–Fe8i

bond is directed along the a axis, which accounts for the
fact that the parameter a exhibits lanthanide compres-
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Fig. 5. Lattice parameters of RNi5 compounds. Dashed
lines are extrapolated dependences of the lattice parameters
on the atomic number of the R element, which reflect lan-
thanide compression.
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sion and a deviation from the extrapolated course in the
Ce compound due to the appearance of an additional
ionic–covalent component caused by the 4f electrons
becoming involved in the bonding. The c direction is
dominated by the R–R interaction, with only the projec-
tion of the R–Fe8j bond contributing; this accounts for
the weak c(Z) dependence and the fact that the devia-
tion of the parameter c from its extrapolated value for
the Ce compound is less than that of the parameter a.

For the Pr compound, the deviation of the parameter
a from the extrapolated a(Z) line toward smaller values
was found to be only slightly in excess of the measure-
ment error. This should be attributed primarily to the
increase in the valency of Pr being considerably smaller
than that for Ce. Furthermore, the positive contribution
from the so-called “tetrad” effect [11] to the ionic
radius increases as one crosses over from Ce to Pr, and
this contribution is capable of compensating for the
negative deviation of the parameter a caused by the
presence of quadrivalent Pr.

PrNi5 has a hexagonal crystal structure of the CaCu5
type (Fig. 7). In this compound, the R atoms occupy one
crystallographic position, 1a, and the Ni atoms occupy
two nonequivalent positions, 2c and 3g. The bond
lengths in this structure can be easily calculated and are
listed in the table.

As follows from Fig. 7 and the table, the behavior of
the parameter a reveals the effect of the Pr–Ni2c bonds,
for which the Pr–Ni bond length is the shortest. There-
fore, the a(Z) dependence exhibits lanthanide compres-
sion and a deviation from the extrapolated behavior for

a

c

2a

8f

8j

8i

Fig. 6. ThMn12-type crystal structure.
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Ce. For PrNi5, the deviation of the parameter a is small,
like that for PrFe10Mo2. In the c direction, the Pr–Pr
interaction takes place in combination with the pro-
jected Pr–Ni3g bond, which is weaker than the Pr–Ni2c

bond; this accounts for the absence of lanthanide com-
pression and of negative deviations from the extrapo-
lated course in this case (Fig. 5). Note that in CeNi5 the
parameter c deviates from the monotonic c(Z) behavior
toward larger values. Apparently, the Ce–Ni2c bond in
this compound is substantially stronger than the inter-
actions in the c direction, as a result of which the lattice
is compressed along the a direction only, with the
parameter c increasing.

Copper substituting for nickel in PrNi5 occupies
predominantly the 2c positions [12]. The Pr–(Ni,Cu)2c

bond length increases from 0.2862 nm in PrNi5 to
0.2875 nm in the Cu alloy, but the interaction remains
sufficiently strong, so the praseodymium valency does
not change for this copper concentration. In the substi-
tuted PrNi4Al and PrNi4Ga alloys, the praseodymium
valence state decreases to +3. Neutron diffusion studies
[13] have shown that Al and Ga replace Ni in the 3g
positions only; however, as is evident from the table,
this increases both the Pr–Ni3g and Pr–Ni2c bond
lengths; i.e., the Pr–Ni interaction weakens, which
becomes manifest in the praseodymium valence state
decreasing to +3.

According to current concepts, the mixed valence
state of Ce in metal alloys and compounds with nd met-
als is caused not by the 4f  5d electronic transition,
as is the case with other lanthanides with unstable

a

c

2c

3g

Fig. 7. CaCu5-type crystal structure
Lattice parameters (a, c), interatomic distance (d), and valence of Pr (VPr) in PrNi5 and PrNi4M (M = Cu, Al, Ga)

Compound a, nm c, nm d1 = a/
Pr–Ni2c

d2 = 
Pr–Ni3g

d3 = c
Pr–Pr

d4 = /3
Ni–Ni

VPr ± 0.03

PrNi5 0.4957 0.3980 0.2862 0.3179 0.3980 0.2451 3.10
PrNi4Cu 0.4980 0.4001 0.2875 0.3194 0.4001 0.2464 3.10
PrNi4Ga 0.5009 0.4048 0.2892 0.3220 0.4048 0.2488 3.00
PrNi4Al 0.5029 0.4066 0.2904 0.3234 0.4066 0.2498 3.00

3 0.5 a2 c2+( ) 0.5 a2 3c2+( )
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valence states, but rather by delocalization of the 4f
states as they become involved in atomic interaction.
We conjectured that the quadrivalent cerium in a metal
originates from the (∈ 4f 2)6s2 atomic configuration (the
symbol ∈  refers to a delocalized orbital) rather than
from 4f 05d26s2, as is the case, for instance, in CeO2,
and that delocalization of the 4f electron occurring as
one crosses over from the 4f 15d16s2 configuration to
(∈ 4 f 2)6s2 should be attributed to the well-known effect
of f-electron penetration through the centrifugal barrier
[14]. For this reason, a small perturbation of the atomic
parameters causes a sharp change in the radius and
energy of the 4f states [15].

This conjecture is substantiated by band structure
calculations for the intermetallic compounds CeFe2
[16] and CeCo5 [17] with inclusion of 4f–3d hybridiza-
tion, which yield a 4f band ~1-eV wide with a popula-
tion of 1.13 electrons per atom. Indeed, if Ce+4 had the
4f 05d26s2 configuration, the population of the f band
would be less than 1. For the case of Pr, a theoretical
analysis of the possible electron penetration was made
in [15]. The transition from the 4f 25d16s2 to (∈ 4f 3)6s2

configuration was considered, and it was concluded
that the f bandwidth in the case of praseodymium is too
small to permit f-electron delocalization. As can be
seen from Fig. 3, however, the energy difference
between the positions of the R+3 and R+4 L3 absorption
spectra for Ce and Pr is the same, ∆E ~ 7 eV. This sug-
gests that, in actual fact, two (rather than three, as in
[15]) f electrons became delocalized. We believe that
Pr+4 has the 4f 1(∈ 4f 2)6s2 rather than (∈ 4f 3)6s2 config-
uration, as maintained in [15].

The appearance of delocalized 4f electrons in a 3d
metal does certainly affect indirect exchange coupling,
but this mechanism has not been studied thus far. Earlier
[18], we reported the observation of a shoulder in the
temperature dependence of the initial susceptibility mea-
sured along the easy magnetization axis of a PrNi4Cu
alloy at T ~ 2.2 K, which can be tentatively assigned to a
change in the degree of f-electron localization.

4. CONCLUSIONS

We have studied x-ray L3 absorption spectra of Pr
and the crystallochemical characteristics of intermetal-
lic compounds PrFe10Mo2 and PrNi5. It has been estab-
lished that Pr atoms, like atoms of Ce, can exist in a
mixed valence state. The valency of praseodymium is
+3.08 ± 0.03 and +3.10 ± 0.03 in PrFe10Mo2 and PrNi5,
respectively. The values of the valency and of the devi-
ations of the lattice parameters from their monotonic
course governed by lanthanide compression are sub-
stantially smaller for Pr than those for Ce. Replacement
of one Ni atom in PrNi5 by Al or Ga suppresses the
mixed valence state effect in the Pr atoms. It has been
conjectured that the quadrivalent state of Pr originates
PH
from the delocalization of two f electrons and that Pr+4

ions have the 4f 1(∈ 4f 2)6s2 electronic configuration.
The difference in behavior between the lattice

parameters a and c in RFe10Mo2 and RNi5 with R = Ce
or Pr has been discussed. The parameter a is more sen-
sitive to the R–T interaction, which is dominant in the a
direction. The R–R interaction plays a decisive role in
the behavior of the parameter c. The anisotropy in the
R–T bond manifests itself in the fact that, in certain
compounds (e.g., CeFe10Mo2), an increase in the Ce
valence brings about lattice compression along both the
a and c directions, whereas in others (for example, in
CeNi5) the lattice undergoes unilateral compression
(with a decreasing and c increasing).
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Abstract—Crystal and transport properties of epitaxial CaCuO2 (CCO) films are studied for samples grown on
(110)NdGaO3, (001)SrTiO3, and (001)LaAlO3 substrates using the laser ablation technique. The resistivity is
found to be dependent on the crystal quality of the films. The conductivity type varies depending on the doping.
For lightly doped films with a resistance higher than 0.1 Ω cm, 3D hopping conductivity is observed. For low-
resistance CCO films doped with Sr, a power law temperature dependence is found, which is inconsistent with
the hopping conductivity. The influence of substrate tilting on the subsequent growth of CaCuO2 films is stud-
ied. YBCO/CCO heterostructures preserve high critical temperatures and small widths of superconducting tran-
sitions, which is of special importance for growing Josephson heterostructures for superconducting electronics.
© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Soon after the discovery of high-temperature super-
conductivity in metal oxide compounds, it was found
that it is the CuO2 planes that are responsible for the
unusually high superconducting transition temperature
[1]. CaCuO2 (CCO) is one of the simple cuprate com-
pounds with a perovskite crystal structure wherein the
CuO2 planes are separated by Ca atoms. The low-tem-
perature electronic states of cuprates vary from antifer-
romagnetic (insulator) to superconducting (metal) as
the doping level of charge carriers (electrons or holes)
increases [1–3]. The CCO cuprate falls into the low-
doping region on the phase diagram. Its antiferromag-
netic transition temperature (the Néel temperature)
reaches as high as 540 K. CCO is a Mott insulator [4].
Synthesis of this material in pure form requires high
pressures, so most of the studies were performed using
Sr-doped compounds Ca1 – xSrxCuO2 (CSCO), which
are more stable and can be obtained under normal con-
ditions [4].

Another reason for the interest in CCO-based com-
pounds is that the CuO2 layers in these materials are
equally spaced both inside the unit cells and between
them. This is quite different from other cuprates, for
example, YBa2Cu3Ox (YBCO), where the CuO2 layers
are separated by nonsuperconducting CuO planes.
What makes CCO especially interesting is the experi-
mentally found growth in the critical temperature of
cuprate superconductors with an increasing number of
CuO2 layers taking part in the conductivity. Due to its
crystal structure, CCO can be regarded as an infinite-
layer compound; hence, its critical temperature may
reach very high values [5]. Indeed, there have been
1063-7834/05/4703- $26.00 ©0429
reports of critical temperatures of higher than 80 K
observed for polycrystalline samples of CSCO
obtained using the high-pressure technique [6, 7]. How-
ever, those results, obtained for granular samples, were
not confirmed in later studies of CSCO thin films [8–
10]. Most of the publications on CSCO thin films with
various Sr doping levels report an increase in resistance
with a decrease in temperature and do not report obser-
vation of the superconducting transition [8–10]. So far,
it has been assumed that the superconductivity of CCO
found in several studies was due to structure defects,
which are difficult to reproduce [10].

Though the phase diagram of cuprates was estab-
lished long ago, it is still not clear how the conductivity
of the system changes as the doping increases. It is not
known whether there is an intermediate phase between
the antiferromagnetic and superconducting states. In
the present paper, we report on a method developed for
growing epitaxial films. The crystal structure of the
grown films is determined, and the evolution of the
temperature dependence of conductivity with varying
doping level is studied.

2. FILM GROWTH

Epitaxial CCO films were deposited on
(110)NdGaO3 (NGO), (001)SrTiO3 (STO), and
(001)LaAlO3 (LAO) substrates and also on CeO2/Al2O3
heterostructures created on the r-planes of sapphire.
CSCO films were deposited on (110)NGO substrates
only. We used the laser ablation technique at substrate
temperatures of 700 to 750°C and an oxygen pressure
of 0.3 to 0.6 mbar, with the pressure in the chamber
prior to ablation being 10–6 mbar. An excimer laser was
 2005 Pleiades Publishing, Inc.
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utilized (target energy density, 1.2–1.5 J/cm2; repetition
rate, 3–10 Hz). Targets were stoichiometric; they were
made by pressure molding of a powder of appropriate
composition. During the ablation process, the target
was rotated to ensure uniform dispersion of the mate-
rial. After deposition, the sample was slowly cooled in
the chamber, first at the operational pressure down to
550°C and then at 700 mbar at a rate of 10–15° per
minute. Overall, the technique of growing CCO films is
similar to growing superconducting YBa2Cu3Ox films
[11]. The typical film thickness was 100–200 nm. The
crystallographic constants of the films were measured
by x-ray analysis, the surface morphology was studied
by atomic-force microscopy, and the resistance was
measured by the ac four-probe technique at 1 kHz.

3. CRYSTAL STRUCTURE

X-ray spectra (2θ–θ scans) for several substrates
measured in the standard configuration of the source
and detector (ψ = 0) are shown in Fig. 1. It is seen that
the crystal quality of the films changes drastically with
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P

a switch from LAO substrates to NGO. The (00L)CCO
peaks in CCO/LAO films are barely visible, while in
YBCO/CCO/NGO heterostructures the amplitudes of
the (00L)CCO peaks are close to the amplitudes of the
substrate peaks. The crystal parameters determined by
2θ–θ scans at several substrate angles (ψ) are a = b =
0.3855 nm and c = 0.318 nm. The lattice constant
increases when Ca is substituted by Sr in CSCO films
and reaches c = 0.32 and 0.33 nm for 15 and 50 at. %
substitution, respectively. We did not succeed in grow-
ing epitaxial CaCuO2 films on top of CeO2/Al2O3 het-
erostructures, probably due to the chemical interaction
between CaCuO2 and CeO2.

The width of the rocking curve of a CaCuO2 film on
the NGO substrate (0.05°) is significantly smaller than
that of the best epitaxial YBa2Cu3Ox films (0.2°) and
only one order of magnitude higher than the rocking-
curve width for the peaks of the single-crystal
(110)NdGaO3 substrate (0.006°) (Fig. 2).

As we established previously [11], in the case where
the substrate surface deviates from the exact crystal

–0.5
∆θ, deg

0 0.5

YBCO

CCO

NGO

Fig.  2. Rocking curves of heterostructure
YBa2Cu3Ox/CaCuO2/(110)NdGaO3 for reflections
(005)YBa2Cu3Ox, (001)CaCuO2, and (220)NdGaO3. The
widths of the peaks are cited in the text.
Table 1.  Orientations of the YBCO and CCO films in heterostructures grown on straight and tilted planes of (110)NGO substrates

NGO
substrate

orientation
Grown heterostructure

Deviation of
[110]NGO 
from the

normal, deg

CCO film
lattice

constants, Å

Deviation of
[001]CCO
from the

normal, deg

YBCO film
lattice

constants, Å

Deviation of
[001]YBCO

from the
normal, deg

(110) YBa2Cu3Ox/Ca0.85Sr0.15CuO2 0 c = 3.230 0 c = 11.709 0

(7102) YBa2Cu3Ox/CaCuO2 7.9 c = 3.179 1.35 c = 11.679 1.35

(130) YBa2Cu3Ox/CaCuO2 26 a = 3.843 4.5 a = 3.818 3.8

b = 3.860 b = 3.878

c = 3.195 c = 11.707
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plane direction, the orientation of the film may be dif-
ferent from either the geometric substrate surface or the
exact crystallographic directions of the substrate. For
example, when the substrate surface was oriented as
(130)NGO, the angle between the planes (100)CeO2
and (130)NGO was about 3°. For smaller substrate tilt
angles, the epitaxial relation (100)CeO2 || (110)NGO
was preserved. It can be assumed that this is a peculiar-
ity of CeO2, but the present study of the CCO film also
shows deviations from the exact epitaxial relation
(001)CCO || (110)NGO if the substrate surface is tilted
relative to the (110)NGO plane even at a small angle
(Table 1). We determined the orientation relationships
of [001]CCO, [001]YBCO and [110]NGO from rock-
ing curves taken with wide-bandwidth x-ray radiation.
The results are presented in Table 1. The deviation of
the CCO axes from those of the substrate increases as
the (110)NGO plane deviates from the substrate surface
normal. In the case of the (130)NGO substrate orienta-
tion, the deviation reaches as high as 22° and a slight
distortion of the CCO structure into orthorhombic is
observed: a = 3.84, b = 3.86, and c = 3.20 Å. The epi-
taxial growth of YBCO on top of the CCO film is deter-
mined by the CCO, though a small deviation is
observed nevertheless. Thus, the CCO film that devi-
ated from the exact crystal directions of the substrate
defines a new basis, which governs the orientation of
subsequently deposited films. It is important that a
CCO film also affects the domain structure of the sub-
sequent YBCO film. In particular, we found that, even
if the substrate is oriented as (130)NGO, other orienta-
tions of YBCO (a orientation) do not appear [11].

4. TEMPERATURE DEPENDENCES 
OF RESISTIVITY

In our experiments, we observed a correlation
between the resistivity and the crystal quality of
CaCuO2 films [12]. As the width of the rocking curve
decreases, the room temperature resistivity ρ goes
down from 104 to 10 Ω cm. The decrease in ρ with an
increase in crystal quality does not contradict the Mott
insulator theory, according to which the metal–insula-
tor transition takes place as the disorder grows [13]. In
our experiments (Figs. 3, 4), the hopping conductivity
is observed for ρ values much higher than ρmax =
ha/(0.0262πe2) ≈ 6 × 10–3 Ω cm (where a = 3.8 Å is the
interatomic distance), which is characteristic of the
Mott metal–insulator transition [13]. The quantity ρmax
obtained by Mott coincides in order of magnitude with
the saturation resistance (the Ioffe–Regel limit) calcu-
lated for a 2D metal,

(1)

for kFl ≈ 1, where kF is the Fermi momentum and l is the
mean free path [14].

ρ2d ha/ kFle
2( )=
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The temperature dependences of resistivity of high-
resistance samples (Fig. 4) are described well by the
expression

(2)

(3)

which is characteristic of the hopping conductivity [13]
(here, c is a constant, kB is the Boltzmann constant,
N(EF) is the density of states on the Fermi level, and λ
is the localization length). The temperature exponent

ρ( )ln ρ0( )ln T0/T( )1/4
,+=

T0 c kBN EF( )λ 3( ),=
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Table 2.  Temperature dependences of the resistivity of films

Film composition Substrate Resistivity at
T = 300 K, Ω cm

Lattice
constant c, Å Temperature dependence of resistivity

CaCuO2 (001)LaAlO3 9040 3.18 3D hopping ρ = ρ0exp(T0/T)1/4

CaCuO2 (001)SrTiO3 510 3.18

CaCuO2 (110)NdGaO3 8 3.18 Neither hopping nor power law

Ca0.85Sr0.15CuO2 (110)NdGaO3 0.10 –

Ca0.5Sr0.5CuO2 (110)NdGaO3 0.05 3.30 Power law ρ ~ T–S (S = 1.6)
depends on the system dimensionality and, in our case,
corresponds to the variable-range hopping. We can esti-
mate the localization length λ for samples with hopping
conductivity from the experimental value of the charac-
teristic temperature T0 by assuming that N(EF) = 1021

and c = 18. Using Eq. (3), we obtain λ = c/(kN(EF)T0)1/3 =
(0.5–2) Å for T0 = (2–60) × 106 K. The hopping activa-
tion energy Ehop = kBT(T0/T)1/4 = (0.2–0.5) eV at T =
300 K is somewhat lower than the gap E = 1.5 eV deter-
mined by optical methods [15]. Unlike ordinary insula-
tors with activation conductivity, where the gap is cre-
ated by the crystal field, the gap of the Mott insulators
is due to strong electron correlations. The resistivity of
the Mott insulator increases with decreasing tempera-
ture even if its conductivity band is half-filled. In our
experiment, the activation type of conductivity is not
achieved even at ρ > 104 Ω cm.

The resistivity decreases further as the Sr content in
CCO films grows. This decrease is due to the growth of
carrier concentration in CCO because of the higher
doping, in accordance with the cuprate phase diagram.
The resistivity of all CSCO films studied grows with
decreasing temperature (Fig. 3). According to Table 2,
at high doping (ρ & 0.1 Ω cm), the type of temperature
dependence of conductivity changes from a hopping
dependence to ρ ~ T–S with S = 1.6. Previously, this type
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Fig. 5. Temperature dependence of the susceptibility of
YBCO/CCO heterostructures grown on (110)NGO sub-
strates.
PH
of temperature dependence was observed in less resis-
tive CSCO films with a Sr content of 30–40 at. % [10].
This temperature dependence is typical of disordered
electronic systems with high values of low-temperature
resistance [15, 16]. However, even at sufficiently high
doping (CSCO films with x = 0.5), we did not observe
the metallic resistivity temperature dependence typical
of superconducting films.

We did not find any change in the susceptibility of
the films associated with the antiferromagnetic transi-
tion during the measurements in the temperature range
20–100 K. The Néel temperature TN of CCO is rather
high [4] and is above the temperature range of our mea-
surements. However, for Sr-doped CSCO, TN can
decrease drastically and be below our range. Insuffi-
cient sensitivity of the measurements also cannot be
ruled out.

It is important that the superconducting transition
was observed in YBCO/CCO heterojunctions and that
suppression of the critical temperature for the super-
conducting transition of YBCO because of Ca doping
[17] did not occur (Fig. 5). Therefore, CCO thin films
can be used in heterostructures based on YBCO.
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Abstract—Temperature dependences of the electrical resistivity and Seebeck coefficient have been studied on
a series of samples of the Y1 – xCaxBa2Cu3 – xZnxOy system (x = 0–0.25). The effect exerted by a combination
of the impurities under study on the properties of the normal phase was established. The experimental data
obtained were analyzed quantitatively in terms of a phenomenological model of electron transport. The param-
eters of the band responsible for conduction in the normal phase and of the carrier system were calculated for
all the samples studied. A mechanism of zinc doping–induced band structure modification in the yttrium system
is proposed that accounts for the transformation of the temperature dependence of the Seebeck coefficient and
the dynamics of superconducting properties in this compound. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Publications dealing with the properties of yttrium-
based superconductors discuss, in considerable detail, a
number of substituents that, while not noticeably
affecting the state of the oxygen subsystem, neverthe-
less exert a substantial influence on superconductivity
and on the properties of the normal state. A remarkable
example of such substituents is the zinc impurity on
sheet copper sites. Being isovalent, the zinc impurity
does not affect the hole doping level [1]. Some
researchers believe, however, that zinc substitution in
the sheet copper sites may bring about a nonuniform
distribution of charge density in the copper–oxygen
sheets [2] or localization of mobile carriers [3], which
is essential for superconducting properties. Experi-
ments have shown convincingly that substitution of
zinc for sheet copper brings about a gradual suppres-
sion of the superconducting properties [1, 3–6]. Most
researchers believe that this impurity acts directly on
the mechanism of formation of superconducting pairs
by initiating their breaking. Of particular interest is the
finding [2] that zinc also exerts a noticeable effect on
the band structure of YBa2Cu3Oy in the normal phase
through interaction with the sheet oxygen.

Note that, in contrast to other impurities, doping
YBa2Cu3Oy with zinc, while bringing about a strong
suppression of superconductivity with increasing dop-
ing level, leaves the linear pattern of the temperature
dependence of electrical resistivity unchanged and does
not have a marked effect on the absolute values of the
Seebeck coefficient S [1].

There is also considerable interest in the effect that
a calcium impurity occupying yttrium sites has on
1063-7834/05/4703- $26.00 ©0434
superconductivity and on the properties of the normal
phase of YBa2Cu3Oy. In this case, in contrast to the case
of zinc substituting for sheet copper, the superconduct-
ing properties of the system are dominated by the state
of the oxygen subsystem, which is influenced by the
introduction of a nonisovalent calcium impurity [7–9].
Some aspects of the effect of calcium on the formation
of oxygen vacancies and, hence, on the mechanism of
superconductivity suppression have been given consid-
erable attention in the literature [10, 11]. Not less
intriguing is, however, the effect of both single doping
of calcium into yttrium positions and of calcium
codoped with other impurities on the properties of the
normal state of YBa2Cu3Oy, in particular, on the tem-
perature dependences of the Seebeck coefficient [7, 8,
12]. As shown by us earlier [7, 8, 13, 14], as the calcium
content increases, an extended linear section appears in
the S(T) graphs and their slopes gradually increase,
which should be assigned to a modification of the band
structure of the compound.

Because calcium in yttrium sites and zinc occupying
the sheet copper positions act on the superconducting
properties of YBa2Cu3Oy through different mecha-
nisms, it is of interest to study the effect of simulta-
neous Ca  Y and Zn  Cu double doping in the
yttrium system.

This communication reports on the specific effects
of this dopant combination on the superconductivity,
transport properties, and band spectrum in the normal
phase of YBa2Cu3Oy. The band structure modification is
analyzed in terms of a phenomenological model of
electronic transport, more specifically, the narrow-band
model, which allows one to determine the main band
 2005 Pleiades Publishing, Inc.
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spectrum parameters of the normal phase and follow
their changes with increasing doping level and, hence,
unravel the effect of specific impurities on the parame-
ters of the band spectrum and of the carrier system.

2. EXPERIMENTAL RESULTS

We studied ceramic samples of composition
Y1 − xCaxBa2Cu3 – xZnxOy (x = 0.0, 0.025, 0.05, 0.075,
0.10, 0.15, 0.175, 0.20, 0.25) prepared by standard
solid-phase techniques. The procedure culminated in
annealing in an oxygen flow at T = 500°C, with subse-
quent gradual cooling to room temperature. The single-
phase state of the samples was established by x-ray
analysis to within 1–2%. All samples were subjected to
measurements of the temperature dependences of the
electrical resistivity and Seebeck coefficient.

Figure 1 displays the critical temperatures Tc for all
samples derived from resistive measurements together
with data obtained for the cases of single calcium dop-
ing into the yttrium positions [8] and of zinc doped into
the sheet copper positions [4, 15]. The concentration
dependence of the critical temperature is seen to be
nonmonotonic for the Y1 – xCaxBa2Cu3 – xZnxOy system.
For small x, the superconductivity undergoes a gradual
suppression with increasing doping level, whereas for
x = 0.125 a certain recovery of the superconducting
properties is seen. As x continues to increase, the mag-
nitude of Tc remains practically constant. For x ≤ 0.10,
Tc drops with increasing x in Y1 – xCaxBa2Cu3 – xZnxOy

faster than is the case with Y1 – xCaxBa2Cu3Oy and
YBa2Cu3 – xZnxOy.

Figure 2 shows the temperature dependence of the See-
beck coefficient obtained for the Y1 – xCaxBa2Cu3 – xZnxOy

system. An increase in the doping level is seen to give
rise in this case to only a slight change in the absolute
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Fig. 1. Concentration dependence of the critical tempera-
ture for the Y1 – xCaxBa2Cu3 – xZnxOy system plotted
together with data obtained for the cases of Ca  Y [8]
and Zn  Cu [4, 15] single substitutions.
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value of S (at room temperature, the Seebeck coeffi-
cient changes from 1.5 to 3.5 µV/K) and to a certain
decrease in the magnitude of the maximum in the S(T)
graph. No linearization of the S(T) relations and no
gradual increase in their slope, which are characteristic
of the calcium impurity [7, 8, 11–13], are observed in
the case of the Y1 – xCaxBa2Cu3 – xZnxOy system.

3. ANALYSIS OF THE EXPERIMENTAL DATA 
AND INTERPRETATION OF THE RESULTS

The experimental data were analyzed in terms of the
phenomenological narrow-band model described in
detail in [7]. The model assumes the existence of a nar-
row density-of-states peak near the Fermi level in the
band spectrum of an HTSC and allows one to derive
analytical expressions for the temperature dependences
of the kinetic coefficients using four model parameters,
namely, band filling by electrons F (which is the ratio
of the total number of electrons to the total number of
states in the band), the effective width of the conduction
band WD, the effective width of the interval of delocal-
ized states Wσ, and the degree of band asymmetry b.
Through quantitative comparison of the results of cal-
culations with the experimental data on S(T), we can
determine the model parameters for each of the compo-
sitions studied and, hence, follow the modification of
the band spectrum and carrier system with increasing
doping level.

Figures 3 and 4 plot the calculated concentration
dependences of the band filling by electrons and of
the total effective conduction bandwidth, respec-
tively, for all samples of the Y1 – x Cax Ba2Cu3 – x ZnxOy

system investigated together with the data on the
Y1 − xCaxBa2Cu3 – xCoxOy system studied by us earlier [13].
The values of F and WD for the Y1 – xCaxBa2Cu3 – xZnxOy
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Fig. 2. Temperature dependence of the Seebeck coefficient
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system vary very little with increasing x, which becomes
particularly revealing when compared with the respec-
tive results obtained for Y1 – xCaxBa2Cu3 – xCoxOy. The
effective bandwidth exhibits a weak tendency to
decrease (Fig. 4). According to our previous results, the
decrease in the band filling by electrons with an
increase in x in Y1 – xCaxBa2Cu3 – xCoxOy may be
explained if it is assumed that calcium introduces addi-
tional states into the band responsible for conduction;
simultaneously, the effects produced by the two impu-
rities are mutually charge compensated (Co3+ 
Cu2+, Ca2+  Y3+) [13]. The broadening of the con-
duction band in the Y1 – xCaxBa2Cu3 – xCoxOy system is
associated only with the gradual disorder caused
directly by the impurity cations (because the state of the
oxygen subsystem remains unchanged with increasing
x due to the charge compensation) [7, 13, 14] in accor-
dance with the Anderson localization model. The con-
stancy of F in the case of simultaneous isovalent
(Zn2+  Cu2+) and nonisovalent (Ca2+  Y3+) sub-
stitutions observed in Y1 – xCaxBa2Cu3 – xZnxOy, as well
as the weak decrease in the conduction bandwidth par-
alleled by the disorder introduced by the impurity ions
and by the disorder forming on the oxygen subsystem,
requires additional analysis. Obviously enough, a
mechanism should arise in the Y1 – xCaxBa2Cu3 – xZnxOy

system that would, first, counteract the growth in the
number of band states caused by the increasing calcium
concentration (which should bring about a decrease in
the degree of band filling) and, second, give rise to a rel-
ative narrowing of the band responsible for conduction.
This mechanism can operate only if the zinc substitut-
ing into the sheet copper positions has an effect on the
band structure in the normal phase.

As follows from our analysis, the best fit between
the calculated and experimental S(T) dependences for
Y1 – xCaxBa2Cu3 – xZnxOy samples can be attained only
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Fig. 3. Concentration dependences of the band filling by
electrons, F, plotted together with data for Ca  Y and
Co  Cu double substitutions [13].
PH
in the case of zero conduction band asymmetry (b = 0)
for the compositions with x = 0–0.075 and 0.2 and in
the case of a slight asymmetry, not in excess of 0.5%,
positive or negative, for samples with x = 0.10–0.175
and x = 0.25, respectively. Thus, we can assume, on the
whole, that an increase in the doping level in the
Y1 − xCaxBa2Cu3 – xZnxOy system does not generate
conduction band asymmetry of either sign. As for the
degree of localization of the states, it exhibits slight
variations with increasing x without showing any dis-
tinct trend.

The calculations made in [2] may be instructive for
interpreting our findings. It is suggested in [2] that zinc
doping in the copper–oxygen sheets causes the states of
the oxygen atoms surrounding the impurity to transfer
out of the conduction band toward lower energies. This
means that a single zinc impurity may cause conduction
band asymmetry, which, in turn, should give rise to the
appearance of additional features in the temperature
dependences of the Seebeck coefficient. Experimental
data [1, 16, 17] indicate that substitution of zinc for
sheet copper does indeed bring about a transformation
of the S(T) dependence; namely, this causes a decrease
in the amplitude of the peak and a shift in the peak
toward lower temperatures. The calcium impurity also
produces specific features in the S(T) graphs, both in
the case of single substitution of calcium for yttrium
and in combination with other impurities [7, 8, 11–13].
For samples doped heavily with calcium, an extended
linear portion in the S(T) dependence is observed and,
most remarkably, an increase in the calcium content ini-
tiates a gradual increase in the slope of the S(T) graphs.
According to our previous results [13, 14], this trans-
formation in the pattern of the temperature depen-
dences of the Seebeck coefficient originates from the
conduction band becoming asymmetric due to calcium
introducing additional states into the band, i.e., from
the appearance of an additional peak in the density of
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Fig. 4. Concentration dependences of the total effective
conduction bandwidth, WD, plotted together with data for
Ca  Y and Co  Cu double substitutions [13].
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states in the conduction band. In this connection, it
appears instructive to note that codoping with calcium
and zinc in the Y1 – xCaxBa2Cu3 – xZnxOy system does
not result in any specific transformation of the S(T)
dependence. As already mentioned, the band responsi-
ble for conduction is practically symmetric throughout
the x range covered. This implies that zinc doping into
the sheet copper sites compensates the band asymmetry
generated by the calcium impurity. This can be possible
only if the rearrangement of the zinc-induced band
brings about a band asymmetry that is opposite in sign
to the asymmetry due to calcium. Thus, in the
Y1 − xCaxBa2Cu3 – xZnxOy system, we encounter not
only a modification of the conduction band in shape but
also its rearrangement involving the states from which
it derives. In our opinion, we witness here interplay
between the effects of different impurities on the asym-
metry, namely, on the one hand, a calcium-induced
donation of states into the upper half of the band and,
on the other hand, a transfer of states from the band to
lower energies under the action of zinc.

The assumption that the states are transferred out of
the band under the action of zinc also provides an
explanation for the fact that WD and F remain practi-
cally unchanged as the doping level is increased.
Indeed, an increase in the doping level in the
Y1 − xCaxBa2Cu3 – xZnxOy system causes the density-of-
states peak, on the one hand, to broaden as a result of
growing disorder (according to the Anderson localiza-
tion mechanism) and, on the other hand, to decrease in
amplitude and, hence, narrow because some of the
states are pushed out of the peak to lower energies. It is
the parallel operation of these two mechanisms that
accounts for the total effective bandwidth remaining,
on the whole, unchanged. Note that, as shown in [13] in
an analysis of the correlation between the total effective
conduction bandwidth and the critical temperature for a
number of substitutions in the yttrium system, the cal-
cium peak is only a small feature in the total band den-
sity of states. In other words, the appearance of addi-
tional states in the vicinity of the Fermi level does not
bring about an effective broadening of the conduction
band considered in terms of a rectangular approxima-
tion of the D(ε) function. Thus, in the case of simulta-
neous double doping of Y1 – xCaxBa2Cu3 – xZnxOy, the
effects the two impurities exert on the degree of con-
duction band asymmetry cancel each other, whereas the
variation in the effective bandwidth is governed by the
interplay of two counteracting mechanisms, more spe-
cifically, of the zinc-induced decrease in the number of
band states and of the band broadening by the Anderson
mechanism through the calcium-initiated disordering
of the oxygen subsystem.

The practically unchanging values of band filling by
electrons, which is equal to the ratio of the total number
of electrons in the band to the total number of band
states, can be accounted for as follows. Doping by the
calcium acceptor impurity (which is not completely
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      200
compensated by the increasing oxygen deficiency [8])
gives rise to a decrease in the number of electrons in the
band. The observed constancy of the parameter F in the
Y1 – xCaxBa2Cu3 – xZnxOy system demonstrates that
there is a decrease in the number of band states with an
increase in x and suggests the effect of the zinc impurity
on the number of band states to be stronger than that of
calcium. Note that calculations do not reveal the
appearance of a dominant zinc-induced asymmetry but
rather only compensation of the asymmetry due to cal-
cium, which may be attributed to the limitations of the
model, as it is not capable of taking into account minor
features in the band structure, as well as to the rather
simplified method employed for asymmetry modeling.

Now, we invoke the data obtained on the band
structure transformation to discuss the variation in
the superconducting properties of the system under
study. As already mentioned, an increase in x in the
Y1 – x Cax Ba2Cu3 – x ZnxOy system gives rise to an
unusual dynamics of the critical temperature (Fig. 1).
There are two impurity concentration ranges over
which the superconducting properties are modified dif-
ferently. In one range (x = 0–0.10), Tc exhibits a
decrease, which is stronger than that observed in the
case of single doping by calcium or zinc. We believe
that we are witnessing here interplay between two
mechanisms of suppression of superconductivity. First,
doping of zinc into the copper sheets, which are directly
responsible for the superconducting properties, brings
about a breaking of the superconducting pairs and,
accordingly, a decrease in the critical temperature. Sec-
ond, Tc is additionally lowered by the decrease in the
density of states at the Fermi level, D(εF), caused by the
strong modification of the band spectrum. The reasons
underlying this modification are, first, the onset of gen-
eral lattice disorder, which brings about, in accordance
with the Anderson localization mechanism, a decrease
in the density of states in the band as a whole, and, sec-
ond, a transfer of states from the conduction band to
lower energies; this latter process is initiated by zinc
and results in a general decrease in the density-of-states
peak.

In the other range (x = 0.15–0.25), Tc remains prac-
tically constant. Note that all the trends in the variation
of the band parameters with increasing x persist in this
concentration range. Hence, the observed change in the
Tc(x) pattern for x > 0.1 cannot be attributed to a pro-
nounced band structure rearrangement. The improve-
ment in the superconducting properties (as compared
with the general trend of Tc decreasing with increasing
x) may stem from an increase in the density of states at
the Fermi level. In our opinion, a possible reason for the
growth of D(εF) is that the appreciable band structure
rearrangement initiated by zinc, on the one hand, and
by calcium, on the other, drives the Fermi level to a
local peak of the D(ε) function generated by calcium
states and becomes pinned at it. In this case, the growth
of D(εF) may partially compensate the zinc-induced
5
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breaking of superconducting pairs and thus give rise to
a certain recovery of the superconducting properties.
Note that constancy of the critical temperature in the
Y1 – xCaxBa2Cu3 – xZnxOy system for x > 0.10 was also
observed in [18] but was not given adequate explana-
tion. This experimental finding certainly merits com-
prehensive study.

The results presented here suggest that, despite the
large number of publications dealing with the effect of
a zinc impurity occupying sheet copper positions on the
properties of yttrium-based HTSCs, this substitution
continues to be an intriguing object for further studies,
both in the case of single doping and, particularly, in
combination with other dopants.

4. CONCLUSIONS

We have experimentally studied the temperature
dependence of the Seebeck coefficient in the
Y1 − xCaxBa2Cu3 – xZnxOy system and analyzed the
results in terms of the narrow-band model. The main
conclusions are as follows.

(1) The concentration dependence of the critical
temperature in Y1 – xCaxBa2Cu3 – xZnxOy exhibits two
areas with different Tc dynamics; namely, for x < 0.125,
superconductivity suffers gradual suppression and then
remains practically unchanged with a further increase
in x. The Seebeck coefficient varies very weakly with
increasing doping level, and its temperature depen-
dence does not exhibit the extended linear portion char-
acteristic of a calcium impurity in YBa2Cu3Oy.

(2) Unlike other calcium-doped systems, the degree
of filling of the band responsible for the conductivity, as
well as the degree of its asymmetry, remains unchanged
in Y1 – xCaxBa2Cu3 – xZnxOy throughout the x range cov-
ered. In addition to direct suppression of superconduc-
tivity, doping of zinc into the sheet copper positions has
a substantial effect on the band structure in the normal
phase. Introducing zinc into the YBa2Cu3Oy lattice
brings about a transfer of states from the conduction
band toward lower energies, which practically cancels
the band asymmetry originating from the calcium
impurity.

(3) The weak variation in the critical temperature in
Y1 – xCaxBa2Cu3 – xZnxOy observed to occur for x > 0.10
may be traced to a relative increase in the density of
states at the Fermi level, which takes place in this dop-
ing interval due to the Fermi level being pinned at a
local peak of the calcium states.
P
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Abstract—The conditions necessary for electric current instabilities to arise in strong electric fields are con-
sidered for disordered media, such as chalcogenide vitreous semiconductors and organic polymers. The thermal
and electronic–thermal mechanisms of instabilities with S- and N-shaped current–voltage characteristics are
discussed. The influence of phase transitions from one conduction state to another conduction state on the
development of electrical instabilities is analyzed. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Phenomena associated with electrical instabilities in
disordered media have attracted particular research
attention for a long time. Originally, this interest
stemmed from the necessity of predicting the electric
strength of dielectrics. The instability in these materials
manifests itself as an irreversible breakdown resulting
in the disruption of an insulation in a strong electric
field.

The situation has changed significantly since the
discovery and subsequent investigation of the switch-
ing effect in chalcogenide vitreous semiconductors [1–
3]. This effect involves a rapid reversible transition
from a high-resistance state to a low-resistance state. In
chalcogenide vitreous semiconductors, the number of
switching cycles from a high-resistance state to a low-
resistance state and then from the low-resistance state
to the high-resistance state could be as large as 108,
which made these switches promising for advantageous
use in microelectronics.

For chalcogenide vitreous semiconductors, the tem-
perature dependence of the electrical resistance in a
high-resistance state exhibits a pronounced semicon-
ducting behavior, whereas the resistance in a low-resis-
tance state is virtually independent of temperature. This
circumstance suggests that the switching effect is
caused by the reversible conductivity transition from
the semiconductor state to the metal state and the
reverse transition from the metal state to the semicon-
ductor state after switching off the voltage. However, a
number of chalcogenide vitreous semiconductors, after
being in a low-resistance state for a certain amount of
time, undergo a glass–crystal structural phase transition
and the new state in which part of the film is crystal-
lized is retained after the voltage is switched off (the
memory effect).
1063-7834/05/4703- $26.00 ©0439
The problem regarding the mechanism of the switch-
ing effect has been heatedly debated. It is believed that
the switching effect is the first stage of the memory
effect. It should also be noted that, by the time the
switching effect was discovered, many general regulari-
ties of the electrical instabilities had been established in
the course of their study in crystalline materials.

In particular, it has been established that the
S-shaped current–voltage characteristic is associated
with the formation of electric current filaments,
whereas the N-shaped current–voltage characteristic is
due to the appearance of high-field domains [4]. More-
over, it is known that there are instabilities in the form
of trap recharging waves and recombination waves.

This information provides a deeper insight into the
nature of the switching effect in chalcogenide vitreous
semiconductors, but its mechanism is not completely
understood. The main problem concerns the role played
by the thermal mechanism in the first stage (initiation)
of the process. A number of authors have believed that
the switching effect is initiated by the electronic pro-
cesses responsible for the S-shaped current–voltage
characteristic (electronic theories) and that the consid-
erable heat release is a side effect occurring only in the
final stage, predominantly, in the region of the forma-
tion of electric current filaments [5]. According to other
authors, the heat release is of fundamental importance
and contributes substantially to the initiation of the
switching effect. In this respect, it should be noted that
proponents of this viewpoint do not deny the signifi-
cance of electronic processes, which affect the semi-
conducting temperature dependence of the conductiv-
ity. This approach served as the basis for the electronic–
thermal theory, which has offered satisfactory explana-
tions for many characteristics of the switching effect in
chalcogenide vitreous semiconductors [6].
 2005 Pleiades Publishing, Inc.
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At present, the particular interest expressed by
researchers in the problem regarding the electrical
instabilities in disordered materials has been associated
with two circumstances, namely, the real boom in the
use of chalcogenide vitreous semiconductors for opti-
cal and electrical recording of information and the
investigation of the switching effect in organic poly-
mers for which not only S-shaped current–voltage char-
acteristics but also N-shaped current–voltage character-
istics indicating the transition from a low-resistance
state to a high-resistance state are observed upon
switching [7].

In this paper, the mechanisms of switching effects
with the S- and N-shaped current–voltage characteristics
observed in disordered organic polymers and chalco-
genide vitreous semiconductors in strong electric fields
are interpreted within a unified approach based on the
electronic–thermal theory. As is known, materials of
both these classes have a similar low-coordinated
atomic structure. For this reason, chalcogenide vitreous
semiconductors are often referred to as inorganic poly-
mers. Moreover, preliminary results demonstrate that, in
a number of cases, disordered polymers and chalco-
genide vitreous semiconductors in strong electric fields
exhibit similar behavior. In this respect, the results of the
comparison and analysis of the data obtained for mate-
rials of these classes are of considerable interest both for
the physics of polymers and chalcogenide vitreous
semiconductors and for their practical application.

2. NECESSARY CONDITIONS FOR THERMAL 
AND ELECTRONIC–THERMAL ELECTRICAL 

INSTABILITIES WITH AN S-SHAPED CURRENT–
VOLTAGE CHARACTERISTIC

Thermal instability is the simplest type of electrical
instability in solids. The key condition for this instabil-
ity to arise in electric fields is the semiconducting-type
dependence of the electrical conductivity on the tem-
perature. The positive feedback required to initiate the

Q1 Q2

T0 T1 = Tth T2 T

1

2

Q2

Q1(F1 = Fth)

Q1(F2)

Fig. 1. Schematic representation of the left-hand (Q1) and
right-hand (Q2) sides of Eq. (1a). Points 1 and 2 correspond
to two solutions of the system of equations (1a) and (1b).
P

electrical instability with an S-shaped current–voltage
characteristic occurs between the processes of heating
and increase in the electric current passing through the
sample. The passage of the electric current leads to
heating of the sample; in turn, an increase in the tem-
perature is accompanied by an increase in the conduc-
tivity. This results in a further increase in the electric
current and the development of the instability.

Let us consider the conditions necessary for the
thermal electrical instability to arise in a thin film
within the approximation that the temperature does not
depend on the coordinates. The field and temperature at
which the instability arises are determined by the fol-
lowing system of equations:

(1a)

(1b)

where Q1 = SLσ0F2exp(–∆E/kT) and Q2 = λS(T – T0)
are the terms describing the heat release and heat
removal, respectively; S is the surface area of an active
region; L is the film thickness; F is the field strength;
T is the temperature of the sample; T0 is the environ-
ment temperature; λ is the coefficient of external heat
removal; and ∆E is the activation energy for conduc-
tion.

The system of equations (1a) and (1b) has a simple
physical meaning, which is illustrated in Fig. 1.

Point 1 indicates the solution to the system of equa-
tions (1a) and (1b) and corresponds to an insignificant
stationary heating to the temperature Tth(= T1) in the
field Fth(= F1). A small increase in the field strength
F > Fth is accompanied by a drastic increase in the tem-
perature (the thermal mechanism of electrical instabil-
ity). By solving the system of equations (1a) and (1b),
we obtain the following relationships for the threshold
temperature Tth and the threshold field Fth:

(2a)

(2b)

Here, it is assumed that kT0 ! ∆E.
When analyzing the necessary conditions for electri-

cal instability, it should be remembered that the system
of equations (1a) and (1b) has not only solutions (2a) and
(2b) but also solutions defined by the expressions

(3a)

(3b)

The two solutions to the system of equations under
consideration are represented by points 1 and 2 in Fig. 1
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and by the fields Fth and F2 in the S-shaped current–
voltage characteristic in Fig. 2. In the threshold field
Fth, the sample in the high-resistance state prior to the
onset of an avalanche-like development of thermal
instability is heated only to the threshold temperature
Tth. In the field F2, the sample in the low-resistance state
is heated to the temperature T2, which is determined by
the activation energy for conduction. The instability
can arise at point 1 only when the radicands in relation-
ships (2a) and (3a) are larger than zero, i.e., when the
condition 4kT0 < ∆E is satisfied. The opposite condition
4kT0 ≥ ∆E formulated in [8] means that the system of
equations (1) has a stable solution only and the
S-shaped current–voltage characteristic associated with
the thermal mechanism of electrical instability disap-
pears; i.e., the current–voltage characteristic becomes
monotonic.

Another factor responsible for the disappearance of
the S-shaped current–voltage characteristic is associ-
ated with the conditions for heat removal. In the case of
intense heat removal, the electrical instability due to the
Joule heating does not develop, because, under these
conditions, the sharp increase in the temperature neces-
sary for the instability to arise in the sample does not
occur.

The range of parameters at which the sample exhib-
its an S-shaped current–voltage characteristic due to the
Joule heating is shown in Fig. 3. According to the
results presented in Fig. 3, the S-shaped current–volt-
age characteristic can be observed in the case where the
temperature dependence of the conductivity is suffi-
ciently strong (the values of t0 = kT0/∆E are small) and
the heat removal is not very intense [i.e., the parameters
γ = λL/2κs(1 + λδ/2κc) are small]. Here, λ is the coeffi-
cient of external heat removal; L and δ are the thick-
nesses of the chalcogenide vitreous semiconductor film
and the electrode, respectively; and κs and κc are the
heat conductivity coefficients of the chalcogenide vitre-
ous semiconductor and the electrode material, respec-
tively. For small parameters γ, the values of t0(γ) at
which the S-shaped current–voltage characteristics
transform into monotonic current–voltage characteris-
tics are close to 1/4. This corresponds to the uniform-
temperature approximation [i.e., to the system of equa-
tions (1a) and (1b)] and the results obtained in [8]. As
the parameter γ increases, the coordinate dependence of
the temperature should be taken into account. This
dependence leads to a monotonic decrease in the values
of t0(γ). Therefore, the dependence t0(γ) shown in Fig. 3
permits one to predict the possible development of elec-
trical instability with an S-shaped current–voltage char-
acteristic due to the Joule heating for specific experi-
mental situations (i.e., for particular values of t0 and γ)
[9].

Let us analyze how the phase transition from one
conduction state to another conduction state, which can
occur at the temperature Tf > T0, affects the results
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      200
obtained. The analysis will be performed for small
parameters γ, i.e., in the uniform-temperature approxi-
mation. It should be emphasized that the case in point
is a semiconductor–metal phase transition that is not
necessarily associated with structural ordering. As can
be seen from Fig. 4, the conductivity transition mani-
fests itself in the temperature independence from the
heat release (curves Q1f) in the range above the phase
transition temperature Tf.

The condition 4kT0 = ∆E (see above) means that the
temperatures T1 = Tth and T2 become equal to each other
and, moreover, the slope of the curve Q1(T) at the point
T1 = T2 coincides with the slope of the curve Q2(T). This
takes place at the inflection point of the curve Q1(T)
(Fig. 1). In the case of the phase transition from one
conduction state to another conduction state at the tem-
perature Tf , the dependence Q1(T) can be approximated
by the curve Q1f (T) (Fig. 4). For simplicity, we assume
that the curve Q1f (T) at the temperature Tf varies
smoothly, even if sharply, but does not have a kink.

F2 Fth = F1 F

1

2

I

Fig. 2. Schematic representation of the S-shaped current–
voltage characteristic. Points 1 and 2 correspond to points 1
and 2 in Fig. 1. The fields and temperatures at these points
are determined from relationships (2a), (2b), (3a), and (3b).

100 20 30 40 50 60
logγ
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0.15

0.20
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t 0

Fig. 3. Boundary of the existence region of the S-shaped
current–voltage characteristic.
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Therefore, the derivative dQ1f /dT exists at all tempera-
tures. In this case, the system of equations (1a) and (1b)
describes the thermal mechanism of electrical instabil-
ity with allowance made for the conductivity transition
at the temperature Tf . Solutions (2a) and (2b) remain
valid for kT0 ! ∆E, whereas solutions (3a) and (3b)
take the form

(4a)

(4b)

Assuming that the dependences Q1f (T) and Q1(T)
differ from each other only in the immediate vicinity of
the temperature T1f, the inflection point of the curve
Q1f (T) also lies in the vicinity of this temperature.
Hence, the condition for the disappearance of the
S-shaped current–voltage characteristic can be written
in the following form:

(5a)

(5b)

(5c)

As a result, we have T1 ≈ T2 ≈ Tf or

(6)

Hence, the environment temperature has the form 

(7)

The last relationship for the environment tempera-
ture T0 replaces the condition 4kT0 = ∆E (or t0 = 1/4).
Therefore, the phase transition from one conduction

T2 T f ,≈

F2 F2 T f( ).≈

Q1 Q2 T f
,=

dQ1

dT
--------- dQ2

dT
---------

T f

,=

d
2
Q1

dT
2

------------
T f

0.=

kT f
2

∆E
--------- T f T0.–=

T0 T f 1
kT f

∆E
---------– 

  T0 T f( ).≡=

T0 T1 Tf T

Q1 Q2 Q2

Q1f(F1 = Fth)

Q1f (F2)

1

2

Fig. 4. Schematic representation of the left-hand (Q1) and
right-hand (Q2) sides of Eq. (1a) in the case of a phase tran-
sition from one conduction state to another conduction state
at a temperature Tf.
PH
state to another conduction state leads to a considerable
decrease in the environment temperature T0 [from the
value of ∆E/4k to the value determined by relationship
(7)] at which the S-shaped current–voltage characteris-
tic associated with the thermal mechanism of electrical
instability can be observed. For example, the ratio
∆E/4k at ∆E = 0.5 eV is equal to 1450 K and the envi-
ronment temperature T0(Tf) determined from relation-
ship (7) at Tf ≈ 500 K is 450 K. It is evident that an
increase in the parameter γ results in a monotonic
decrease in the environment temperature T0(γ), which
corresponds to the disappearance of the S-shaped cur-
rent–voltage characteristic in the case of the conductiv-
ity transition. For large parameters γ, the dependences
calculated with and without regard for the conductivity
transition should be very similar to each other. There-
fore, the inclusion of the phase transition from one con-
duction state to another conduction state not only leads
to a change in the range of parameters at which the
material can exhibit an S-shaped current–voltage char-
acteristic but also decreases the temperature of the tran-
sition to the low-resistance state.

Let us now consider our problem for the electronic–
thermal mechanism of initiation of electrical instability.
In the simplest approximation, the contribution of the
electronic processes occurring in a strong electric field
(with uniform strength F at temperature T) can be taken
into account by introducing the conductivity σ(T, F),
which is dependent on both the temperature and the
field strength. As a rule, the dependence of the conduc-
tivity σ on the field strength F for chalcogenide vitreous
semiconductors can be written in explicit form

(8)

where F0(T) is the characteristic field whose strength
and temperature dependence are governed by the spe-
cific electronic mechanism responsible for the change
in the conductivity in a strong electric field. For sim-
plicity, we assume that F0 = akT, where a is a constant.

Then, the solutions to the system of equations (1a)
and (1b) are the temperature and the field

(9a)

(9b)

The condition for the disappearance of the S-
shaped current–voltage characteristic can be found
from the equality of the radicand in relationship (9a)
to zero:

(10a)

(10b)

σ σ0
∆E
kT
-------– F

F0 T( )
--------------+ 

  ,exp=

T1 2,
1

2k
------ ∆E

F1 2,

a
---------– 

  1 1
4kT0

∆E F1 2, /a–
----------------------------–+− 

  ,=

SLσ0F1 2,
2 ∆E

kT1 2,
------------– F

akT1 2,
----------------+ 

 exp  = λS T1 2, T0–( ).

T1 2, 2T0,=

4kT0 ∆E 1 F1/a∆E–( ), V th FthL.= =
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It can be seen from these expressions that the envi-
ronment temperature corresponding to the disappear-
ance of the S-shaped current–voltage characteristic also
decreases significantly in the case of the electronic–
thermal mechanism. The S-shaped current–voltage
characteristic can disappear at any environment tem-
perature T0. In this case, we have T1, 2 = 2T0 and the crit-
ical parameters of the sample are determined from
relationships (9a), (9b), (10a), and (10b) and obey the
equation

(11)

where γ1 = λe2/Lσ0a2k∆E. This quantity and the parame-
ter γ are proportional to the coefficient of external heat
removal λ. However, since we use the uniform-tempera-
ture approximation, the quantity γ1 does not depend on
the heat conductivity coefficients. The different depen-
dences of the quantities γ and γ1 on the thickness L can
be explained by the fact that the parameter γ depends on
the thickness L due to a nonuniform heating, whereas the
quantity γ1 depends on the thickness because of the
decrease in the effective activation energy in expression
(8) with an increase in the field strength. Figure 5 depicts
the dependence t0(γ1) calculated from relationship (11).
This dependence bounds the range of parameters at
which the material can exhibit an S-shaped current–volt-
age characteristic due to the electronic–thermal mecha-
nism of initiation of the instability.

Now, we analyze the influence of the semiconduc-
tor–metal conductivity transition at the temperature Tf

on the development of the electrical instability. It is
clear that, if the inequality Tf > 2T0 is satisfied, the
results obtained hold true on a qualitative level. At Tf <
2T0, it is necessary to use the approach based on rela-
tionships (5a)–(5c).

Among the chalcogenide vitreous semiconductors,
the Si12Te48As30Ge10 compound has been investigated
most extensively. For this compound, the temperature
dependence of the characteristic field F0 is described by
the expression

(12)

where the temperature Ts lies in the range 450–500 K and
corresponds to an unknown phase transition. The temper-
ature Tf of the phase transition from one conduction state
to another conduction state is close to the temperature Ts.
By assuming that, at this temperature, the exponent
becomes equal to zero, the temperature Tf of the conduc-
tivity transition can be determined from the equation

(13)

For T0 > Ts/2, the dependence σ(T) with the charac-
teristic field F0 represented by relationship (12) has no
inflection point and the solution corresponding to the
instability formally exists in all cases. Then, the

γ1t0 1 4t0–( )2
,=

F0 akT 1 T /Ts–( ),=

∆E
kT f

---------
F

akT f 1 T f /Ts–( )
----------------------------------------.=
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approximate equality T0 ≈ Tf can be treated as the con-
dition for the disappearance of the S-shaped current–
voltage characteristic.

It should be noted that, for the thermal and elec-
tronic–thermal mechanisms with the characteristic field
F0 = akT, the exponent at the inflection point of the
dependence σ(T) is equal to –2; i.e., the conductivity is
determined by the expression σ = σ0exp(–2). As a
result, we have –∆E/2kT0 + F/F0 = –2 in the case of the
electronic–thermal mechanism. For ∆E = 0.5 eV and
T0 = 300 K, we obtain –5800/600 + F/F0 = –2 and,
hence, F/F0 ~ 8. Note also that the heating associated
with the electronic–thermal switching for the character-
istic field F0 given by expression (12) at T0 < Ts/2 is less

than the quantity  and decreases with an
increase in the field strength F. In our opinion, this indi-
cates the possible crossover to a purely electronic
mechanism of the switching effect.

3. NECESSARY CONDITIONS 
FOR THERMAL ELECTRICAL INSTABILITY 
WITH AN N-SHAPED CURRENT–VOLTAGE 

CHARACTERISTIC

In the general case, the N-shaped current–voltage
characteristic corresponds to the transition from a low-
resistance state to a high-resistance state. Therefore, the
negative feedback required to initiate the thermal elec-
trical instability should occur between the processes of
heating and change in the electric current passing
through the sample; i.e., the heating of the sample
should lead to a decrease in the electric current. It is
obvious that the thermal electrical instability with an N-
shaped current–voltage characteristic cannot be
observed for the semiconducting-type temperature
dependence of the conductivity σ(T) = σ0exp(–∆E/kT)
with a positive derivative dσ/dT > 0. For an N-shaped

kT0
2
/∆E

20 4 6 8 10 12 14 16 18 20
γ1

0.05

0.10

0.15

0.20

t 0

Fig. 5. Boundary of the existence region of the S-shaped
current–voltage characteristic in the case of the electronic–
thermal mechanism of electrical instability. The conductiv-
ity is described by relationship (8).
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current–voltage characteristic to be observed, the
dependence σ(T) must contain a portion with a negative
derivative dσ/dT < 0, i.e., in which the conductivity
decreases with an increase in the temperature. In a more
general form, this situation can be considered as a
metal–semiconductor conductivity transition at the
temperature Tf when the resistance R1 of the metal is
less than the resistance R2 of the semiconductor. When
this transition occurs as a result of the Joule heating
I2R, the appreciably higher voltage is necessary to
maintain the new state at the temperature Tf . If such a
voltage is not applied to the sample, the sample under-
goes relaxation oscillations with transitions from the
state with resistance R2 to and from the state with resis-
tance R1.

In the framework of the phenomenological elec-
tronic–thermal theory, the origin of an N-shaped cur-
rent–voltage characteristic has not been considered in
the literature. It is not evident whether the electronic–
thermal theory can explain the existence of an N-shaped
current–voltage characteristic, because the transition
from a low-resistance state to a high-resistance state
can be accompanied by a decrease in the released
power. This leads to a decrease in the temperature of the
sample, which seemingly should transform into the ini-
tial low-resistance state.

Below, we will demonstrate that the N-shaped cur-
rent–voltage characteristic can be obtained with due
regard for the dependence σ(T) involving a portion with
a negative derivative dσ/dT < 0. For this purpose, the
dependence σ(T) is approximated by the function

(14)

This dependence exhibits a maximum at a tempera-
ture Tmax = (Tp∆E/k)1/2, which approximates the temper-
ature of the phase transition from one conduction state
to another conduction state. The dependence has a pos-
itive derivative dσ/dT > 0 at T < Tp and a negative deriv-

σ T( ) σ0 –∆E/kT T /T p–( ).exp=

10 2 3 4 5 6 7 8 9 10
f × 10–6

1

2

3

4
i ×

 1
07

Fig. 6. N-shaped current–voltage characteristic in the case
of thermal electrical instability. The conductivity is
described by relationship (14).
P

ative dσ/dT < 0 at T > Tp. Therefore, the temperature
Tmax simulates the temperature Tf of the phase transition
from the state with a semiconducting-type temperature
dependence of the conductivity to the state with a
metallic-type temperature dependence of the conduc-
tivity. The current–voltage characteristic can be deter-
mined from the following relationships:

(15a)

(15b)

The temperature T(F), which is dependent on the
mean electric field F = V/L, is the solution of Eq. (15a).
Here, we used the simplest approximation of the uni-
form temperature T and field F, which are independent
of the coordinates. Substitution of the temperature T(F)
into expression (15b) gives the current–voltage charac-
teristic. Since Eq. (15a) is transcendental, it is more
convenient to use the temperature T as a parameter and
to calculate the quantities F(T) and J(T) and the cur-
rent–voltage characteristic at a specified temperature T.
Then, the final equations describing the current–voltage
characteristic can be written in the form

(16a)

(16b)

where σ(τ) = σ0exp(–1/t0τ – τ/tp), J0 = (λσ0T0/L)1/2,
F0 = J0/σ0, τ = T/T0, 1/t0 = ∆E/kT0, and tp = Tp/T0.

Relationships (16a) and (16b) describe the current–
voltage characteristic associated with the Joule heating
of the layer for which the temperature dependence of
the conductivity σ(T) is given by expression (14). The
current–voltage characteristics were calculated for sev-
eral parameters (t0, tp). One of these current–voltage
characteristics at 1/t0 = 15 and tp = 0.0765 (Tmax ≈ Tf ≈
300 K) is plotted in Fig. 6.

It can be seen from Fig. 6 that the phenomenological
electronic–thermal theory provides a correct descrip-
tion of the N-shaped current–voltage characteristic
when the dependence σ(T) exhibits a portion in which
the conductivity decreases with an increase in the tem-
perature (dσ/dT < 0). This inference does not hold for
all parameters. Actually, condition (15a) is satisfied
only in the case where the conductivity decreases rather
smoothly and the released Joule heat ensures the tem-
perature higher than the phase transition temperature Tf

in the range of the descending portion of the N-shaped
current–voltage characteristic.

The transition from a low-resistance state to a high-
resistance state with an N-shaped current–voltage char-
acteristic was observed in poly(ethylene) with additives
of graphite [10]. The switching effect has been used in
devices that prevent electric circuits from overloading.
The N-shaped current–voltage characteristic in these
devices is explained by the sharp decrease in the con-

Q1 Q2 or LσF
2 λ T T0–( ),= =

J F( ) σ T F( )( )F=

=  σ0 –∆E/kT F( ) T F( )/T p–( )F.exp

i J /J0 τ 1–( ) –1/t0τ τ /t p–( )exp( )1/2
,= =

f F/F0 τ 1–( ) 1/t0τ τ /t p+( )exp( )1/2
,= =
HYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005



INSTABILITIES WITH S- AND N-SHAPED CURRENT–VOLTAGE CHARACTERISTICS 445
ductivity of the material at a temperature of approxi-
mately 400 K. This temperature can be identified with
the aforementioned temperature Tf of the phase transi-
tion from one conduction state to another conduction
state. In our earlier work [7], we experimentally
observed an N-shaped current–voltage characteristic in
the poly(phenylvinylene) organic semiconductor and
made the assumption that this characteristic is related to
the portion with a negative derivative dσ/dT < 0 in the
temperature dependence of the conductivity σ(T).

4. CONCLUSIONS
Thus, it has been demonstrated that the origin of

S-shaped and N-shaped current–voltage characteristics
can be described in terms of the phenomenological
electronic–thermal theory.

The key condition for the existence of an S-shaped
current–voltage characteristic is a strong activation
dependence of the conductivity on the temperature (i.e.,
small ratios kT/∆E) and a heat removal that is not too
large (i.e., not overly large parameters γ and γ1).

It has been shown that the phenomenological elec-
tronic–thermal theory provides a correct description of
the N-shaped current–voltage characteristic when the
temperature dependence of the conductivity σ(T)
exhibits a portion with a negative derivative dσ/dT < 0.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
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Abstract—The capture of electrons by charged impurities in semiconductors due to spatial diffusion is inves-
tigated theoretically. In a semiconductor, an electron either can be captured by the field of a charged impurity
if this electron loses energy by emitting phonons or can be ionized from the trapping state if it acquires energy
by absorbing phonons. The electron trapping is governed by a change in the distribution function of electrons
in both coordinate and momentum space. The trapping coefficient is calculated under the condition where it is
determined by the diffusion redistribution of the electron density in the field of a charged impurity. © 2005 Ple-
iades Publishing, Inc.
1. STATEMENT OF THE PROBLEM

In a semiconductor, impurities lose electrons to the
conduction band and the density of conduction elec-
trons is determined by a balance between the trapping
of electrons by impurities into a bound state and the
release of electrons from this state. The balance equa-
tion describing the evolution of the electron density ne

can be written in the form

. (1)

Equation (1) for the electron balance includes the terms
describing the ionization and trapping of electrons in a
semiconductor containing impurities with a concentra-
tion nim (where ki and kr are the coefficients of ioniza-
tion and trapping of electrons, respectively) and the
term G characterizing the generation of nonequilibrium
electrons. The coefficients involved in this phenomeno-
logical equation can be determined within the micro-
scopic kinetic theory. The self-consistent variant of the
microscopic kinetic theory was elaborated in my recent
paper [1], in which the kinetic equation allowing for the
transitions between free and bound states of electrons
in impurities was obtained for the first time and the
electron balance equation (1) was derived from this
kinetic equation. In turn, this made it possible to calcu-
late the coefficients ki and kr in the framework of the
microscopic kinetic theory.

However, in [1], the theoretical treatment was car-
ried out under the important assumption that the distri-
bution functions f (1, 2) of free and trapped electrons
depend only on the total electron energy E. If the
motion of an electron is described in terms of classical
mechanics, the total electron energy is the sum of the

dne

dt
-------- kinim krnimne– G+=
1063-7834/05/4703- $26.00 0446
kinetic energy εp, which is a function of the electron
momentum p, and the potential energy U(r), which is a
function of the coordinate r; that is,

(2)

Here, m is the effective electron mass. For a charged
impurity, the potential energy is defined by the relation-

ship U(r) = – , where  = , z is the impurity

charge expressed in terms of an elementary charge, and
κ is the static permittivity of the lattice. The total energy
is positive for free electrons and negative for bound
electrons. Hence, in what follows, the total energy of
trapped electrons will be designated as –E.

The transitions between the states of free and
trapped electrons are governed by a change in the elec-
tron distribution function in both momentum and coor-
dinate space. In coordinate space, the change in the
electron distribution function is treated as a spatial dif-
fusion. In this paper, we will determine the conditions
under which the spatial diffusion can be ignored and
will then calculate the coefficients of ionization and
trapping of electrons under the condition where the spa-
tial diffusion and the energy relaxation play equally
important roles.

2. THEORETICAL TREATMENT

Energy relaxation in semiconductors occurs in the
course of electron–phonon collisions. Let us consider a
situation in which the temperatures are high enough to
satisfy the inequality T @ 3ms2, where T is the temper-
ature expressed in terms of energy and s is the velocity

E εp U r( ), εp+
p2

2m
-------.= =

e1
2
/r e1

2 ze
2

κ
-------
© 2005 Pleiades Publishing, Inc.
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of sound. For both free and trapped electrons, the coor-
dinate dependence should be taken into account when
the particles are characterized by thermal energies.
Therefore, the motion of these particles can be
described in terms of standard kinetic equations with-
out inclusion of the terms accounting for the transitions
between the states of free and trapped particles. It
should be noted, however, that these terms will be
needed in subsequent calculations of the ionization and
trapping coefficients.

For free electrons subjected to a force field induced
by an impurity located at the origin of the coordinates,
the principal component of the distribution function
f(r, E) depends on both the total energy of an electron
and the radius r, which is equal to the distance between
the electron and the impurity. Moreover, the distribu-
tion function of free electrons has an insignificant com-
ponent associated with the electric current:

(3)

where τ(εp) is the relaxation time of the electron
momentum p. For the distribution function f(r, E), we
obtain the following kinetic equation, which is aver-
aged over the angular variables:

(4)

where D(εp) = , εp = E + , and l is the

energy mean free path. In kinetic equation (4), the term
describing the energy relaxation is transformed into a
differential form, because the energy transfer due to
electron–phonon collisions is insignificant [2]. Let us

assume that D ~ . This relationship is satis-
fied under the condition where the electron momentum
relaxation is provided by phonons or point impurities.
The solutions we are interested in should decrease for
long distances. It is necessary to note that the Boltz-
mann function f(r, E) = Aexp(–E/T), which is indepen-
dent of the distance, is always a solution to kinetic
equation (4). Therefore, the spatial diffusion can come
into effect only when the electron distribution is a non-
equilibrium function of the energy for short distances.

f 1 r E,( ) = τ εp( )
p
m
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For energies E @ , the variables involved in
kinetic equation (4) can be separated and the general
solution can be written in the following form:

(5)

where  is the generalized Laguerre polynomial and

 = D(T) . The expansion coefficients can be
determined from the energy dependence of the electron
distribution function for distances shorter than the
mean free path ld. In the function f(r, E) [solution (5)],
the dominant contribution is made by the component
that does not decrease with an increase in the distance
and is an equilibrium function of the energy.

For energies E ! , we obtain quite a different
solution to the kinetic equation. The variables involved
in this equation can also be separated. As a result, the
function f(r, E) and its approximation ϕ(E) for short
distances r0 can be related by the integral expression

(6)

In expression (6), K0 is the Macdonald function, which
provides a decrease in the function f(r, E) [solution (6)]
as the distance r increases, and the square root is deter-
mined in such a way that it is positive for large values
of the variable. By virtue of the singularity of the Mac-
donald function K0 at the origin of the coordinates, the
distance r0 should be set very short but finite.

For ϕ(E) = Aexp(–E/Te), where Te is the electron
temperature (Te ≠ T), the solution to the kinetic equation
can be represented in a simpler form, that is,

(7)

Let us now assume that the electron temperature Te

tends to a temperature T. As a consequence, the func-
tion f(r, E) described by relationship (7) is transformed
into an equilibrium function. This transformation can
be illustrated as follows. It is assumed that r @ r0. The
difference between the distances r and r0 should
decrease as the electron temperature Te tends to the
temperature T; as a result, the numerator and denomina-
tor in relationship (7) cancel each other out. Therefore,
the solution to the kinetic equation does not decrease
with an increase in the distance and is an equilibrium
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function of the energy only in the case when the bound-
ary condition is specified in the form of an energy func-
tion that is very similar to the equilibrium function.

Since the distance r0 is very short, the Macdonald
function K0 in the denominator of expression (6) can be

replaced by the quantity L = ln(ldT/ ). Then,
expression (6) can be rewritten in the simplified form

(8)

It turned out that, under an arbitrary boundary condi-
tion, the function f(r, E) described by expression (8)
decreases for distances greater than the quantity

, as is the case with relationship (7).

Kinetic equation (4) becomes applicable to trapped
electrons after the energy E is replaced by the quantity
–E. Since the kinetic energy is positive, we have E <

. Therefore, for trapped electrons, there exist only
solutions of the type given by expression (6).

The ionization and trapping coefficients ki and kr can
be calculated from the expression obtained in [1] for the
collision integral describing electron–phonon colli-
sions that are responsible for transitions between the
states of free and trapped particles. After integrating
this expression over the entire phase space, we derive
electron balance equation (1). In turn, the electron bal-
ance equation makes it possible to obtain expressions
for the ionization and trapping coefficients ki and kr in
terms of the distribution functions of free and trapped
particles f (1, 2)(r, p):

(9)

Here, q and ωq = sq are the wave vector and the fre-
quency of a phonon, respectively; cq is the electron–

phonon coupling constant; and nq = (  – 1)–1 is the
Planck distribution function for phonons. Mathemati-
cally, the functions Θ(x) = 1 (x > 0) and Θ(x) = 0 (x < 0)
entering into relationships (9) correspond to the condi-
tions that an electron with momentum p be free and its
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energy be positive and that an electron with momentum
p – "q be trapped and its energy be negative. When
deriving relationships (9), it was assumed that the tran-
sitions between the states of free and trapped electrons
occur in the vicinity of each impurity independently of
one another. This becomes possible only when the
impurity concentration satisfies the following condi-
tions:

(10)

By simplifying relationships (9), we obtain

(11)

Substitution of the solutions to kinetic equation (4)
into integrals (11) demonstrates that the parameter

 is of fundamental importance in solving our
problem. In the case when this parameter is small, it is
necessary to use the solution given by expression (5).
However, the principal function involved in this solu-
tion is independent of the coordinates; hence, we are
led to the kinetic theory considered in [1].

When the parameter  is large, the spatial dif-
fusion plays a significant role in the process of electron
trapping. Therefore, it is necessary to use solutions of
the type given by expression (6). Among these solu-
tions, for simplicity, we will restrict our consideration
to the solution given by relationship (7). The basic ine-
quality can be written in the form

(12)

In order to calculate the trapping coefficient kr, we
use the nonequilibrium function ϕ(E) =

[ne"
3 /(mTe)3/2]exp(–E/Te). In this case, the elec-

tron temperature Te is not anomalously close to the tem-
perature T. Upon substituting the nonequilibrium func-

e1
2

3ms
2

------------ @ nim

1
3
---–

 @ 
e1

2

T
-----.

kr
1

2πl"
3
nems

4
----------------------------- E E '

E '2

1 e
E ' /T–

–
---------------------d

E

∞

∫d

0

∞

∫=

× r
2

r f
1( )

r E,( ),d

0

8e1
2
ms

2
/E '2

∫

ki
1

2πl"
3
ms

4
------------------------ E E '

E '2

e
E ' /T–

1–
---------------------d

E

∞

∫d

0

∞

∫=

× r
2

r f
2( )

r E ' E–,( ).d

0

8e1
2
ms

2
/E '2

∫

e1
2
/ldT

e1
2
/ldT

e1
2

Te T–( )/ldTe
2
 @ 1.

2π3
HYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005



ELECTRON CAPTURE BY CHARGED IMPURITIES IN SEMICONDUCTORS 449
tion into relationship (11) for the trapping coefficient
kr, we obtain

(13)

This relationship differs from the formula  =

4π  proposed by Langevin [2, 3]. The main
reason for this difference is that the Langevin coeffi-
cient is not a trapping coefficient. The trapping coeffi-
cient is the quantity kr involved in electron balance
equation (1). It is this quantity that can be measured in
the experiment. We calculated this quantity theoreti-
cally. Relationship (11) defines the trapping coefficient
and is universal in all the cases under consideration. In
[1], this relationship was used under the conditions
opposite to those specified by inequality (12). In the
present work, the same relationship is used in the situ-
ation where inequality (12) is satisfied. The Langevin
coefficient is the ratio of the electron flux through a
sphere surrounding a charged impurity to the electron
concentration. The identification of the Langevin coef-
ficient with the trapping coefficient is an arbitrary and
unreasonable assumption. The Langevin theory was
outlined by Abakumov et al. [2, ch. 7]. Moreover, these
authors made some attempts to generalize this theory.
However, in all the cases analyzed in [2], the trapping
coefficient was defined as the normalized flux of parti-
cles through a sphere surrounding a charged impurity.
Since this quantity is not a trapping coefficient, all the
inferences drawn in [2] cannot be considered satisfac-
tory.

We assume that the degree of nonequilibrium of the
electron distribution function is not anomalously small:
(Te – T)/Te ~ 1. Consequently, the ratio of the Lan-
gevin coefficient to the trapping coefficient given by

formula (13) is equal to . This ratio

involves the product of the large quantity  mul-

tiplied by the small quantity  and, hence, can
be of any order of magnitude.

The calculation of the ionization coefficient ki is per-
formed in the same manner as for the trapping coeffi-
cient kr. However, in this case, the electron density ne0

involved in the function ϕ(E) is assumed to be equilib-
rium and the electron temperature Te is taken to be
anomalously close to the temperature T: Te = T + 3ms2.
Moreover, the difference between the temperatures is
disregarded for energies higher than the energy E1 (E1 ~
T) and is taken into account for lower energies. The
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final expression for the ionization coefficient contains
two terms:

(14)

It should be noted that the expressions for the ion-
ization coefficient can be different depending on the
parameter that involves the diffusion length and
accounts for the degree of nonequilibrium of the distri-
bution function at low energies. Under the condition

 @ T/3ms2 @ 1, we have

(15)

This relationship is valid at high energies and does not
involve quantities characterizing the degree of nonequi-
librium of the distribution function. However, under the

condition T/3ms2 @  @ 1, we obtain

(16)

Expression (16) is similar to relationship (13) with
allowance made for the difference in the degrees of
nonequilibrium of the distribution functions for free
and trapped electrons.

3. CONCLUSIONS

The trapping coefficient controlled by the spatial
diffusion was calculated in the framework of the theo-
ries proposed earlier in [2]. However, this coefficient
does not coincide with the trapping coefficient entering
into the balance equation; i.e., it is not an experimen-
tally measured trapping coefficient. In this paper, the
influence of the spatial diffusion on the capture of elec-
trons by a charged impurity and their release from the
trapping state was analyzed within the kinetic theory
developed in [1]. It was demonstrated that the influence
of the spatial diffusion on the processes of ionization
and trapping of electrons by charged impurities mani-
fests itself only when specific conditions are satisfied.
These conditions include the degree of nonequilibrium
of the distribution functions for free and trapped elec-
trons. Expressions were derived for the ionization and
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trapping coefficients involved in the balance equations
for the electron density.
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Abstract—Specific features of the charge-transfer states and O2p  V3d transitions in the (VO6)9– octahe-
dral complex are studied using the cluster approach. The reduced matrix elements of the electric-dipole transi-
tion operator are calculated for many-electron wave functions corresponding to the initial and final states of a
charge-transfer transition. Using a parameterization of the results, the relative intensities of the allowed charge-
transfer transitions are calculated disregarding the mixing of different configurations of the same symmetry.
The Tanabe–Sugano theory is used with inclusion of this mixing to calculate the energies of many-electron
charge-transfer transitions and their actual intensities. Modeling of the optical spectrum of LaVO3 reveals a
complicated charge-transfer transition band consisting of 81 lines. The main maxima of the band are in the
range 6.3–7.3 eV. There are also additional maxima in the regions of ≈3 and ≈8–9 eV. The bandwidth is ≈10 eV.
The results of model calculations are in agreement with experiments and demonstrate the weakness of the
widely used assumption that the spectrum of charge-transfer transitions has a simple structure. © 2005 Pleiades
Publishing, Inc.
1. INTRODUCTION

One of the current problems in the physics of
strongly correlated systems is uncovering the nature of
the electronic structure and energy spectrum of oxides
of 3d elements, which are very promising for the cre-
ation of new important materials, from high-tempera-
ture superconductors to materials with colossal magne-
toresistance and highly nonlinear optical properties.
Optical and magnetooptical methods have proven very
effective in studying the electronic structure and energy
spectrum of these compounds. However, the nature of
the low-energy electron-hole excitations is still under
discussion. First proposed in [1] for yttrium iron garnet
and developed further in [2] for a wider class of iron-
based oxides, the idea that the optical and magnetoop-
tical properties in the near-ultraviolet range and the fun-
damental optical absorption edge are determined by the
charge-transfer (CT) transitions from the oxygen anion
to the 3d-metal cation is obtaining general recognition
at the present time [3, 4]. The ligand–metal and metal–
ligand CT processes are well-established concepts in
theoretical chemistry and spectrochemistry [5].

However, there is no consistent theory of CT states
and transitions in 3d-metal oxides, and this has held
back progress in understanding the nature of the optical
spectra, the interpretation of experiments, and the
development of the appropriate theory of the electronic
structure of strongly correlated systems. Most studies
have used the very primitive idea of CT without much
modification since its introduction. Attempts have been
made to link the specific features of the optical spectra
1063-7834/05/4703- $26.00 0451
of 3d-metal oxides to certain 2p–3d CT transitions [6]
(as though mentioning an electron shell is enough to
precisely define the wave function) or, at best, the t2g

and eg symmetry classification of 3d electrons in a crys-
tal field has been drawn from and then, going back to
the original source [2], 2p  3d t2g and 2p  3d eg

CT transitions have been used [7–9]. This kind of “one-
electron” approach to CT transitions and states is
entirely insufficient not only for quantitative but even
for qualitative description of the observed optical and
magnetooptical properties of 3d-metal oxides.

One-electron band models, including modern mod-
ifications like LDA + U [10], do not resolve the issue,
because they are unable to reproduce the important
effects of intra-atomic correlations, which shape the
structures of the ground and excited CT states.

The goal of the present work is to study CT transi-
tions and states and the optical spectra of vanadates
using the cluster model of charge-transfer transitions,
which has been successfully employed to describe the
optical and magnetooptical spectra of orthoferrites,
iron garnets, and a number of insulating cuprates and
manganites [11–14]. The model has a clear physical
meaning and makes it possible to correctly include
electron–electron correlations and the crystal-field and
variable-valence effects. In a later paper, we will extend
our analysis to strongly correlated oxides of other tran-
sition 3d metals.
© 2005 Pleiades Publishing, Inc.
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2. CHARGE-TRANSFER STATES 
AND TRANSITIONS IN VANADATES

Slightly distorted (VO6)9– octahedral complexes are
the main optical and magnetooptical centers in V2O3-
type oxides with the corundum structure and in RVO3
compounds with the perovskite structure (R stands for
a trivalent ion of yttrium or a rare-earth metal). The
configuration of the ground state of the (VO6)9– com-
plex consists of predominantly anion-type occupied
molecular orbitals (MOs) O1s, 2s, 2p, predominantly cat-
ion-type occupied molecular orbitals V1s, 2s, 2p, 3s, 3p, and
partly occupied MOs of the 3d type. The ground state

of the complex is the orbital triplet ,
where κ0 denotes the internal MOs (which are invari-
able in our case) and is omitted in what follows. The
excited states of the electron configuration are

. A transition between the ground and
any of the excited states is a so-called d–d transition,
which does not involve anion states.

A charge-transfer excited state of the complex is
formed if an electron is transferred from a predomi-
nantly anion MO to a 3d-type MO (either t2g or eg) of
the central V3+ ion of the complex. This configuration is

conventionally described as , where 
denotes a “hole” in the anion-MO core. A transition
between the ground and an excited configuration is a
CT transition γ2p  3d (t2g or eg).

A charge-transfer configuration has two unfilled
shells: the “ligand” γ2p and 3d shells. Many-electron
states of the CT configuration can be written as

;  disregarding the interactions
between the 2p hole and 3d electrons. The interaction
between the 2p hole and 3d shell splits these states into

;  :  terms. The splitting can
reach as high as several tenths of an electronvolt,
according to the estimates made in [15].

According to the parity, spin, and quasimomentum
selection rules, electric-dipole transitions are allowed
from the ground state 3T1g of the (VO6)9– complex to the
terms of 3Gu type (G = T1 × T1 = A1 + E + T1 + T2) of

the CT configurations  (CT into the t2g shell) and

 (CT into the eg shell). Among the highest
energy MOs of the 2p type, there are two with the t1u

symmetry (t1u(σ), t1u(π)) and one MO of the t2u(π) type.
Thus, six one-electron CT transitions, denoted as
3T1g  3Gu in the symmetry notation, have the lowest
energies. These transitions are t2u(π), t1u(π), and
t1u(σ)  t2g with predicted energies of 3.1, 3.9, and
5.1 eV, respectively (here and henceforth, the data are
presented for the (FeO6)9– complex in the “orthoferrite”
environment), and t2u(π), t1u(π), and t1u(σ)  eg
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P

with predicted energies of 4.4, 5.3, and 6.4 eV, res-
pectively [16].

These one-electron transitions generate the follow-
ing many-electron CT transitions of the 3T1g–3Gu type
allowed in the electric-dipole approximation:

  

(the one-electron γu  t2g transition) and

  

(the one-electron γu  eg transition). Here, 2σ + 1F =
4A2, 2E, 2T1, and 2T2; ^ = T1 × E = T1 + T2; and σ' = 1/2
or 3/2. The limitations are due to the Pauli exclusion
principle and the triangle rules for spins and quasimo-
menta.

The transition intensity is characterized by the so-
called line strength, which is the square of the modulus
of the reduced matrix element (RME) for the transition
between states. The RME of the electric-dipole opera-
tor between the many-electron wave functions of the
initial and final configurations corresponding to the
one-electron CT transition γu  t2g is given by

(1)

The RME of the electric-dipole operator between
the many-electron wave functions of the initial and final
configurations corresponding to the one-electron CT
transition γu  eg is given by

(2)

In Eqs. (1) and (2), j(Γ) is a phase factor equal to an
even number for the cubic-group representations Γ =
A1, E, and T2 and to an odd number for the representa-
tions Γ = A2 and T1; [Γ] is the dimensionality of the cor-

responding representation;  is a 6Γ symbol; and

〈…|…〉  is the genealogy factor. The calculation tech-
nique is discussed in more detail, for example, in [17].

The RMEs that are allowed according to Eq. (1) are
shown in Table 1.
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Table 1.  Many-electron CT transitions generated by the one-electron transitions t2u(π), t1u(π), and t1u(σ)  3d t2g

No. G γ F RME No. G γ F RME

1 A1 T1 T1 11 T1 T2 E

2 A1 T2 T2 12 T1 T2 T1

3 E T1 T1 13 T1 T2 T2

4 E T1 T2 14 T2 T1 A2

5 E T2 T1 15 T2 T1 E

6 E T2 T2 16 T2 T1 T1

7 T1 T1 E 17 T2 T1 T2

8 T1 T1 T1 18 T2 T2 E

9 T1 T1 T2 19 T2 T2 T1

10 T1 T2 A2 20 T2 T2 T2

1

3
------- t2g d̂ t1u〈 〉–

1

6
------- t2g d̂ t2u〈 〉

1

3
------- t2g d̂ t2u〈 〉 1

2
--- t2g d̂ t2u〈 〉

1

6
------- t2g d̂ t1u〈 〉 1

2
--- t2g d̂ t2u〈 〉–

1

2
------- t2g d̂ t1u〈 〉– 2

3
------- t2g d̂ t1u〈 〉

1

2
------- t2g d̂ t2u〈 〉–

1

6
------- t2g d̂ t1u〈 〉–

1

6
------- t2g d̂ t2u〈 〉 1

2
--- t2g d̂ t1u〈 〉–

1

2
------- t2g d̂ t1u〈 〉 1

2
--- t2g d̂ t1u〈 〉

1
2
--- t2g d̂ t1u〈 〉 3

2
--- t2g d̂ t2u〈 〉–

1
2
--- t2g d̂ t1u〈 〉 1

2
--- t2g d̂ t2u〈 〉

2

3
------- t2g d̂ t2u〈 〉 1

2
--- t2g d̂ t2u〈 〉–
The three one-electron CT transitions t2u(π), t1u(π),
and t1u(σ)  3d t2g generate thirty many-electron CT
transitions in the electric-dipole approximation: three
3T1g  3A1u transitions, six 3T1g  3Eu transitions,
ten 3T1g  3T1u transitions, and eleven 3T1g  3T2u

transitions.

The RMEs that are allowed according to Eq. (2) are
shown in Table 2.

The three one-electron CT transitions t2u(π), t1u(π),
and t1u(σ)  3d eg generate thirty-six many-electron
CT transitions in the electric-dipole approximation: six
3T1g  3A1u transitions, six 3T1g  3Eu transitions,
twelve 3T1g  3T1u transitions, and twelve 3T1g 
3T2u transitions.

3. PARAMETERIZATION OF THE RESULTS

Further parameterization of the results is possible in
the framework of a so-called local approximation [11],
where many-center integrals are completely neglected
in calculating the RMEs of the dipole moment. In this
case, all the dipole RMEs from Tables 1 and 2 can be
expressed in terms of the effective covalence parame-
ters λσ and λπ for σ and π bonds, respectively, and the
dipole moment of the cation–anion bond d = eR0, where
R0 is the distance between the ions.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
In this approximation, the RMEs 〈t2u(π)|| ||eg〉 ,
〈t1u(π)|| ||eg〉 , and 〈t1u(σ)|| ||t2g〉  are zero. Therefore,
this approximation manifests itself as an additional
selection rule that forbids the π  σ transitions
[t2u(π), t1u(π)  eg] and the σ  π transitions
[t1u(σ)  t2g] even if they are allowed by the electric-
dipole selection rules. Only the CT transitions σ–σ
[t1u(σ)  eg] and π–π [t1, 2u(π)  t2g] are allowed. In
what follows, we use the terms strong (for σ–σ and π–
π) and weak CT transitions (for π–σ and σ–π).

The local approximation (if it produces a nonzero
result) takes into account the main contribution to the
transition matrix elements. This approximation con-
tains first-order corrections in the cation–anion overlap
integrals [11].

Among the thirty many-electron transitions in
Table 1, there are twenty strong π–π transitions [t2u(π),
t1u(π)  3d t2g] and ten weak σ–π transitions
[t1u(σ)  3d t2g].

Among the thirty-six many-electron transitions in
Table 2, there are twelve strong σ–σ transitions
[t1u(σ)  3d eg] and twenty-four weak π–σ transi-
tions [t2u(π), t1u(π)  3d eg].

The integrated line strength of the γu  t2g (π–π)

transitions is Iππ = , and that of the γu  eg (σ–

d̂

d̂ d̂

27
2
------λπ

2
d

2
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Table 2.  Many-electron CT transitions generated by the one-electron transitions t2u(π), t1u(π), and t1u(σ)  3d eg

No. G γ ^ σ' RME No. G γ ^ σ' RME

1 A1 T1 T1 15 T1 T1 T2

2 A1 T1 T1 16 T1 T1 T2

3 A1 T2 T2 17 T1 T2 T1

4 A1 T2 T2 18 T1 T2 T1

5 E T1 T1 19 T1 T2 T2

6 E T1 T1 20 T1 T2 T2

7 E T1 T2 0 21 T2 T1 T1

8 E T1 T2 0 22 T2 T1 T1

9 E T2 T1 0 23 T2 T1 T2

10 E T2 T1 0 24 T2 T1 T2

11 E T2 T2 25 T2 T2 T1

12 E T2 T2 26 T2 T2 T1

13 T1 T1 T1 27 T2 T2 T2

14 T1 T1 T1 28 T2 T2 T2

3
2
--- 6

3
------- eg d̂ t1u〈 〉

3
2
--- 6

2
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σ) transitions is Iσσ = . Their ratio is  =

. Since  >  [11], the integrated intensities of

these two types of transitions are comparable in magni-
tude.

4. MODELING THE CHARGE-TRANSFER 
TRANSITION BAND IN VANADATES

Let us apply the theoretical approach discussed
above to the modeling of optical properties of perovs-
kite vanadates RVO3.

It should be noted that these compounds (like all
other oxides of transition 3d elements in the beginning
of the row) are usually considered to be Mott–Hubbard

12λσ
2
d

2 Iππ

Iσσ
-------

9
8
---

λπ
2

λσ
2

------ λσ
2 λπ

2

P

systems rather than CT systems; i.e., the Coulomb
energy U is considered to be lower than the CT energy
∆ [3]. However, this conclusion is usually based on
experimental spectra (typically, the reflection spectra
influenced by surface effects, which complicate calcu-
lations on the basis of the Kramers–Kronig relation),
which are not always unambiguous. Paper [18] con-
tains a typical example of this sort of erroneous argu-
mentation as concerns the optical-conductivity spec-
trum σ(ω) of LaTiO3, while the same line of reasoning
is used for the spectra of other 3d metal oxides, includ-
ing vanadates. The peak at "ω ≈ 0.1 eV in the σ(ω)
spectrum is assigned to the transition between the occu-
pied and vacant Hubbard subbands, and the peak at
"ω ≈ 4 eV is assigned to the O 2p–Ti 3d(t2g) CT transi-
tion. In this case, the O 2p–Ti 3d(eg) CT transition has
to be assigned to the peak at "ω ≈ 9 eV and the energy
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Fig. 1. Correlation diagram of the excited CT configuration 3d3 in the octahedral crystal field. The degeneracy of the free-ion d3

level is removed (a) by the Coulomb interaction between electrons and (b) by the crystal field. A Tanabe–Sugano diagram calculated
for the Racah parameters B = 0.09 eV and γ = C/B = 4.5 is shown in the center of the figure. The vertical line indicates the value of
the crystal-field parameter Dq = 0.21 eV used in the calculations. (c) The level splitting by the crystal field as the parameters B and
C decrease to zero.
difference between these transitions is unrealistically
large. It is much better to assume that the energy of the
O 2p–Ti 3d(t2g) transition is smaller than 4 eV. The
intensity of this transition is relatively low [compared
to O 2p–Ti 3d(eg)], so the corresponding peak is not
visible on the background of the plateau in the range 1–
4 eV. In this case, the peak at 4 eV is assigned to the
stronger O 2p–Ti 3d(eg) transition. It is this approach
that we used for the modeling of optical spectra of titan-
ates in [19].

We will make the following assumptions as the basis
for our analysis.

(1) The highest (in energy) oxygen orbital is the
nonbonding t1g(π) (O2p) orbital [20], which is a charac-
teristic feature of MeO6 octahedral complexes, where
Me is a 3d metal.

(2) The energies of nonbonding oxygen states in the
(VO6)9– complex are assumed to be equal to the ener-
gies of the respective states in the (FeO6)9– complex
[16]. In this case, the energy differences are (in elec-
tronvolts)

Et1g π( ) Et2u π( )– 0.8, Et1g π( ) Et1u π( )– 1.8,≈ ≈

Et1g π( ) Et1u σ( )– 3.0.≈
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      200
This assumption is reasonable, because the energies of
purely oxygen states are mainly determined by the
crystal environment.

(3) A charge-transfer transition results in the forma-
tion of the 3d3 configuration of the central atom, which
formally corresponds to the Cr3+ ion. Therefore, the
electron–electron interaction parameters B and C
(Racah parameters) used in the Tanabe–Sugano dia-
gram (see below) for the excited 3d3 CT configuration
are taken to be the same as those for the ground state of
the Cr3+ ion [21] in the octahedral oxygen environment.

(4) The optical-conductivity spectrum feature at
≈1.1 eV [22] is taken as the reference point for the ener-
gies of the CT levels and transitions in LaVO3. We sup-
pose that this feature is related to the lowest energy CT
transition t1g(π)  3d t2g, which is parity-forbidden in
the electric dipole approximation.

(5) We do not take into account the interaction
between the 2p hole and 3d shell.

Assumptions 2 and 4 allow us to determine the ener-
gies of the following one-electron CT transitions (in
electronvolts):  = 1.1 + 0.8 = 1.9,  =

1.1 + 1.8 = 2.9, and  = 1.1 + 3.0 = 4.1. Using

the value  ≡ 10Dq ≈ 2.1 eV [21], we find the
energies of the t2u(π)  eg, t1u(π)  eg, and

Et2u π( ) t2g→ Et1u π( ) t2g→

Et1u σ( ) t2g→

Eeg
–Et2g
5
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t1u(σ)  eg transitions to be 4.0, 5.0, and 6.2 eV,
respectively.

In order to find the energies of the many-electron CT
transitions generated by these one-electron transitions
and the transition intensities including the mixing of the

 and  eg states in Eqs. (1) and (2), we calculate the
Tanabe–Sugano diagram for the 3d3 configuration
using parameters B = 0.09 eV and γ = C/B = 4.5 [21]
(Fig. 1b). The vertical line in Fig. 1b indicates the value
of the crystal-field parameter Dq = 0.21 eV used in our
calculations.

The degeneracy of the d3 level of a free ion is
removed by the Coulomb interaction between electrons
(Fig. 1a) and by the crystal field (Fig. 1b). The level
splitting by the crystal field as the parameters B, C
decrease to zero (i.e., for decreasing electron correla-
tions) is shown in Fig. 1c.

Analysis of the spectra in terms of one-electron band
models (based on the 2p  3d t2g and 2p  3d eg

CT transitions) is equivalent to using the simplified

t2g
3

t2g
2

PH
level diagram shown in Fig. 1c instead of the actual dia-
gram shown in Fig. 1b.

Employing the Tanabe–Sugano diagram, we obtain
a series of strong bands of total span ≈10 eV (from
≈2 to ≈12 eV) for Dq = 0.21 eV. Each of the six one-
electron CT transitions t2u(π), t1u(π), t1u(σ)  t2g, eg

generates a multitude (from 13 to 15) many-electron
transition with close and often coinciding energies. The
entire spectrum consists of 81 lines.

Let us attempt to model the allowed electric-dipole
CT transition band in the optical spectrum of LaVO3-
like vanadates.

Since the contributions of the transitions t2u(π) 
eg, t1u(π)  eg, and t1u(σ)  t2g cannot be taken into
account in the local approximation, we manually intro-
duce the corresponding covalence parameter λπσ ≡ λσπ.
Based on the concept of strong and weak CT transi-

tions, we assume the following model relations:  =λπ
2
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 and  =  = 0.07 . The line half-width Γr

is assumed to be the same for all Lorentzian-shaped CT
transition lines.

The results of the calculation are shown in Fig. 2. In
order to better represent the spectrum structure, the par-
tial contributions to the imaginary part ε2 of the diago-
nal permittivity tensor component ε = ε1 + iε2 coming
from the π–π and σ–σ strong transitions and the π–σ
and σ–π weak transitions (the upper part of Fig. 2) are
calculated for Γr = 0.25 eV. The sum of all contributions
(thin solid line in the lower part of Fig. 2) is calculated
using a more realistic value, Γr = 0.5 eV. All spectra are
shown in the same relative units. The lower part of
Fig. 2 also gives the experimental optical spectrum of
LaVO3 taken from [22] (thick solid line) and the exper-
imental spectra of LaVO3 and YVO3 taken from [18]
(dotted and dash-dotted lines, respectively). We convert
all experimental data from the optical conductivity
σ(ω) into permittivity. The results of model calculations
are in good agreement with experiments [18, 22, 23]. In
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Fig. 3. Results of theoretical modeling of the O2p–V3d CT
transition band in a vanadate. Spectral dependence of the
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tions for different values of the crystal-field magnitude
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the range "ω < 2.5 eV, the calculated curve coincides
exactly with the experimental curve taken from [22].

The upper part of Fig. 2 also presents simple model
spectra for the limiting case of zero values of the Racah
parameters B and C (dash lines). The electron–electron
interaction causes splitting of lines and their displace-
ment, so the resulting spectrum bears no resemblance
to the picture with one peak (due to the 2p–3d transi-
tion) or, in the best case, two peaks (due to the 2p 
3d t2g and 2p  3d eg transitions), which is often
implied when spectra are analyzed in terms of CT tran-
sitions.

The dependences of the optical spectra on the crys-
tal-field parameter Dq are shown in Figs. 3–6. The cal-
culations of the partial contributions (Figs. 3–5) and the
integrated CT transition spectrum (Fig. 6) are per-
formed using the values of parameter Γr cited above.
The value of Dq can be negative for the excited CT
states, which is taken into account in our calculations.
Variations in Dq cause not only relative changes in the
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peaks heights but also qualitative transformations of the
entire spectrum.

5. CONCLUSIONS
The specific features of the charge-transfer states

and O 2p  V 3d transitions in the (VO6)9– octahedral
complex have been studied in the cluster approach,
which successfully combines the concepts in crystal-
field theory and the molecular-orbitals method. We
have not considered an alternative to these (intracenter)
CT transitions, so-called intercenter transitions (involv-
ing adjacent complexes), which are similar to the dis-
proportionation reactions

(VO6)9– + (VO6)9–  (VO6)10– + (VO6)8–

(note that the intercenter CT transitions in the cluster
approximation are nothing other than Mott–Hubbard
interband transitions).

Using the Racah algebra for the rotation and cubic
groups, we have calculated the reduced matrix ele-
ments of the electric-dipole transition operator for
many-electron wave functions corresponding to the ini-
tial and final states of a CT transition.

Based on a parameterization of the results, we have
calculated the relative intensities of the allowed π–π
and σ–σ CT transitions disregarding the mixing of dif-
ferent configurations of the same symmetry. The
Tanabe–Sugano theory was used with inclusion of the
configuration mixing to calculate the energies of many-
electron CT transitions and their actual intensities.

Modeling of the optical spectrum of vanadates has
revealed a complex CT transition band consisting of
81 lines. The band has main maxima in the range 6.3–
7.3 eV and supplementary maxima in the regions ≈2–3
and ≈8–9 eV with an overall bandwidth of ≈10 eV. The
dependence of the spectrum structure on the magnitude
of the crystal field and on the electron–electron interac-
tion has been discussed. The model calculation results
are in good agreement with experiments in spite of the
roughness of the model used.

The results make evident the weakness of the wide-
spread assumption that the CT transition spectrum has
a simple structure consisting of only one or two peaks.
Consequently, the traditional theoretical interpretation
of many features of the optical spectra of vanadates and
(taking into account the results of [11, 19]) other
3d-metal oxides has to be refined.
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Abstract—A model is considered in which atoms A and A' or B and B' of disordered solid solutions
Ax BO3 and ABx O3 are distributed over a regular system of points 1(a) and 1(b) of the symmetry

group  characterizing the ideal perovskite structure. The probabilities P(Gi |x) of unit cells having crystal-
field symmetry at their center lowered to Gi = Td, D3d, C3v, C4v, D2h, C2v, Cs, or C2 are calculated as a function
of the concentration x. The limits for x in which the Jahn–Teller and/or dipole ordering mechanism is probable
are determined. In the approximation taking into account only effective pair interactions, the scattering ampli-
tude Fhkl is found to depend on a single parameter r0. The theory predicts that the dependence of the intensities
of even and odd reflections on sinθ/λ is nonmonotonic and that the distributions of nonuniform strains and of
values of the lattice parameters in solid solutions are discrete. © 2005 Pleiades Publishing, Inc.

A1 x–' B1 x–'

Oh
1

1. INTRODUCTION

The problem of determining the probability distri-
bution of the symmetry of the nearest neighbor cation
arrangement of certain types at sublattices A and B in
the perovskite structure arose in discussing the possible
Jahn–Teller or pseudo-Jahn–Teller mechanisms of
structural transformations in solid solutions of rare-
earth manganates [1–4]. It is believed that the Mn ion
in LaMnO3 is trivalent (Mn3+) and that its four d elec-
trons (in the zeroth approximation) form the ground
state 5D(3d)4 of the free ion, which is split by the weak
crystal field of symmetry Oh into two terms, 5T2g and
5Eg, separated by an energy barrier of 2.2 × 104 cm–1

[5]. Studies of the nuclear spin resonance in MnF3 have
shown [6] that the degenerate ground orbital state Eg of
Mn3+ results in an appreciable distortion of the cuboc-
tahedron of anions due to the Jahn–Teller effect. In
turn, this fact suggests that at least a few of the low-
symmetry LaMnO3 phases are caused by the collective
Jahn–Teller effect [7–9].

However, rather than the pure compound,

La1 − x MnO3 solid solutions with heterovalent
substitution for cations in the A position are attracting
considerable attention. The interest in these solutions

stems from the fact that La1 − x MnO3 solid solu-
tions exhibit appreciable magnetoresistance [10].
Assuming that the model of purely ionic bonds is also
valid for conducting solid solutions, the magnetoresis-
tance can be associated with non-Jahn–Teller Mn4+ ions

in La1 − x MnO3. It is clear that Mn4+ ions should

Mex
2+

Mex
2+

Mex
2+
1063-7834/05/4703- $26.00 0459
lower the transition temperatures and the probabilities
of the transitions to phases whose symmetry results
from the collective Jahn–Teller effect.

In this paper, we discuss another mechanism that
should suppress the collective Jahn–Teller effect in
α1 − xβxMnO3 solid solutions during heterovalent and
isovalent substitutions for α and β ions on the A sublat-
tice of the perovskite structure (i.e., on the regular sys-

tem of points 1(b) in the  group).

This mechanism is based on the fact that the nearest
neighborhood of the Jahn–Teller Mn3+ ion (positioned
at one of the B-sublattice sites, i.e., in one of the posi-
tions belonging to the regular system of points 1(a) of

group ) violates the cubic crystal-field symmetry
characteristic of the ideal perovskite structure due to a
random distribution of α and β ions in the disordered
α1 – xβxMnO3 solid solution. The goal of this study is to
determine the probabilities of the crystal field having
various symmetries in the B sublattice as a function of
the concentration x of the element β in solid solutions
with an average composition α1 – xβx.

2. MODEL

The perovskite sublattice A is assumed to be ideal
cubic without subjection to deformations. This assump-
tion allows us to identify the mechanism under study,
which is associated only with the symmetry of the ion
distribution over the sites of the perovskite A sublattice.
The ions on the B and C sublattices of the perovskite
structure move and change their charges to accommo-
date themselves to the symmetry of the reduced perovs-

Oh
1

Oh
1

© 2005 Pleiades Publishing, Inc.
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kite cell [11], which is dictated by the distribution of α
and β ions over the A sublattice.1

According to the accepted model, the crystal-field
symmetry at each site of the B sublattice of ideal perovs-
kite is mainly controlled by the nearest neighbor α and β
ions arranged over the vertices of the ideal cube (i.e.,
over the sites of the reduced perovskite cell [11]), with
each vertex containing only one ion. Hence, the arrange-
ment of α and β ions obeys the Fermi statistics [12].

When calculating the probability of the α1 – xβx solid
solution being in a certain state, the geometrical corre-
lation of the cell structure should be taken into account.
For example, only 1/8 of the ions located at the vertices
of a reduced perovskite cell belong to this cell. Hence,
if one β ion is at a vertex of a fixed reduced cell and its
other vertices are occupied by α ions, then the crystal-
field symmetry at the center of the ideal cube (with the
ideal spatial arrangement of its vertices) lowers to C3v.
The field symmetry at the centers of seven more cells to
which this β ion belongs also lowers to C3v. If two β
ions are arranged at vertices belonging to the same edge
of a given reduced cell, then the field symmetry in the
three neighboring cells decreases to C2v, the field sym-
metry in the eight cells that share one of the two β ions
with the given cell is lowered to C3v, and so on.

In this paper, we disregard the possibility of influ-
ence from temperature-dependent dynamic correla-
tions of symmetries of neighboring cells. The inclusion
of dynamic correlations requires consideration of the
interactions between deformations of the unit cells [7–
9] and between displacements of the ions arranged on
the B sublattices. This inclusion can produce small cor-
rections to the results obtained below if the interactions
are weak. In the case where the dynamic interactions
cannot be considered weak, we have a fundamentally
different problem, which has been repeatedly discussed
in the literature [13–15] and is beyond the scope of this
study.

3. RESULTS OF STATISTICAL
CALCULATIONS

According to the problem posed, we calculate (in
terms of the Fermi statistics) the dependence of the
probability P(Gi |x) of the formation of perovskite cells
whose crystal-field symmetry at the center is lowered to
Gi ⊂  Oh on the β-component concentration in the
α1 − xβxMnO3 solid solution.2

1 In the above assumption, the C sublattice corresponds to a regular

system of points 3(d) of group  and is occupied by oxygen

ions.
2 Since each cell site can be occupied by an α or a β atom, the

probability of m a atoms and n – m b atoms being arranged over n
sites is defined by the binomial distribution. The other coeffi-
cients in the probabilities of the symmetry distributions of cells
are defined by the ratio of the point group orders |Oh |/ |Gi |, where
Gi is the local symmetry group of the cell at a given m.

Oh
1

P

Above all, let us distinguish the symmetries of those
crystal fields at B-sublattice sites in which the Eg level
splits into two nondegenerate levels. The possible dis-
tributions of α cations over sublattice A provide the
crystal-field symmetries D2h, C4v, C2v, Cs, and C2, to
which the initial symmetry Oh can be lowered and at
which the double degeneracy of the Eg level is removed.
In this case, the total probability of the formation of
cells in which the ground state of the Mn3+ ion is non-
degenerate is given by

(1)

In the case of a rather symmetric distribution of α
ions over the A-sublattice sites positioned at the eight
cube vertices surrounding a fixed Mn ion, the crystal-
field symmetry at the Mn3+-ion site can be Oh, Td, D3d,
or C3v. The Mn3+-ion ground state remains degenerate
in these fields. The total probability of the formation of
cells with these increased symmetries is equal to the
probability of their formation in the solid solution:

(2)

It is noteworthy that the probability of the formation of
reduced cells with increased symmetries at the β-ion
concentrations x of most interest is low. For example,
for x = 1/3 and 1/2, we have

(3)

We also note that the probability of the existence of
rhombohedral ferroelectric cells with symmetry C3v

possessing an intrinsic dipole moment is equal to

(4)

and is rather high at these values of x: P(C3v |1/3) ≈
0.227 and P(C3v |1/2) ≈ 0.156. The probabilities of the
formation of dipole-polarized cells with symmetries
C2v and Cs are P(C2v |1/3) ≈ 0.249, P(C2v |1/2) ≈ 0.1875,
P(Cs |1/3) ≈ 0.351, and P(Cs |1/2) ≈ 0.469.

The values of x at which P(C3v |x) and P(Cs |x) are
maximum exceed the percolation threshold over sites
of a simple cubic lattice [16] (perovskite sublattice B in
our case). The spatial distributions of dipole fields and

P D2h; C4v ; C2v ; Cs; C2 x( )

≡ P D2h x( ) … P C2 x( )+ +

=  12x
2

x 1–( )2
x

4
2x

3
– 5x

2
4x– 2+ +( ).

P Oh; Td; D3d; C3v x( ) 1 24x
2

– 96x
3

180x
4

–+=

+ 192x
5

120x
6

– 48x
7

12x
8
.–+

P Oh 1/3( ) 4%, P Oh 1/2( ) 0.8%,< <

P Td 1/3( ) 0.5%, P Td 1/2( ) 0.8%,< <

P D3d 1/3( ) 4.2%, P D3d 1/2( ) 3.2%,< <

P D2h 1/3( ) 1.5%, P D2h 1/2( ) 2.4%,< <

P C4v 1/3( ) 1.5%, P C4v 1/2( ) 2.4%.< <

P C3v x( ) 8x 1 x–( ) 3x
2

3x– 1+( )=

× x
4

2x
3

– 4x
2

3x– 1+ +( )
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of spontaneous cell polarizations caused by them can
produce dipole ordering of solid solutions in this case
[13, 14, 16].

Figure 1 shows the P(Gi |x) dependences for the fol-
lowing nine possible symmetries of crystal fields at the
center of the reduced perovskite cell that can arise in a
binary solid solution of α and β cations distributed over

0.20 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0
P(Gi |x)

1
2
3
4
5
6

Fig. 1. Probability P(Gi |x) of finding a unit cell in which
the crystal-field symmetry at the center is decreased to
Gi(Gi ⊂  Oh) as a function of the α-element concentration in
an α1 – xβx binary solid solution. The α and β elements are
considered to be randomly distributed over the sites of the
simple cubic lattice. (1) G1 = Oh, (2) G2 = Cs, (3) G3 = C3v ,
(4) G4 = C2v, (5) G5 = C2, and (6) P(Gi |x) ≤ 0.03 and G6 =
Td, D3d, C4v, and D2h.
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Fig. 2. Total probabilities of the formation of unit cells in
which the crystal-field symmetry at the center allows for the
piezoelectric effect plotted as a function of concentration x
in a disordered quasi-binary α1 – xβxMnO3 solid solution:
(1) P(Td; D3d; C3v |x) and (2) P(Td; D3d; C3v; C4v; C2v; Cs;
C2 |x). The notation is the same as in Eq. (1). For compari-
son, curve 3 shows P(Oh |x).
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the A sublattice: Gi = Oh, Td, D3d, C3v, D2h, C4v, C2v, Cs,
and C2.

We note that Jahn–Teller transitions in piezoelectric
crystals exhibit quite different properties [17]. Figure 2
shows the dependences P(Td; D3d; C3v |x) = 2x(1 –
x)(7x6 – 21x5 + 53x4 – 71x3 + 54x2 – 22x + 4) and the
total probability of the formation of cells with symme-
tries that allow the piezoelectric effect. Figure 3 shows
the β ion–concentration dependences of the total prob-
abilities of the formation of cells in which the Eg level
splits and cells in which spontaneous polarization
arises and Mn ions are displaced from centrosymmetric
sites. For comparison, Figs. 1–3 show the dependence
of the probability of the formation of cells with symme-
try Oh on the β-element concentration (dashed curve).

4. DISCUSSION

The mechanism of structural phase transitions based
on the interaction of symmetric unit cells deformed due
to the Jahn–Teller effect or pseudo-Jahn–Teller interac-
tions was primarily investigated for phase transitions in
binary oxides with the ABO3 perovskite structure [7–9].
In those studies, it was assumed that the crystal micro-
structure is homogeneous and that all unit cells have
symmetry Oh. However, these assumptions are not valid
for solid solutions, as follows from the above consider-
ations.

This circumstance results from the fact that the
probability of finding an undistorted unit cell of ideal
perovskite (e.g., at x = 1/3) in the crystal is so small
[P(Oh |1/3) < 4%] that collective interaction between
them is unlikely. At the same time, even at the β-ele-
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Fig. 3. Total probabilities of the formation of unit cells in
which the crystal-field symmetry does not allow degenerate
electronic states of Mn3+ ions plotted as a function of con-
centration x: (1) P(D2h; C4v; Cs; C2 |x) (the Mn3+ ion is dis-
placed from the unit cell center) and (2) P(C4v; C3v; C2v,
Cs; C2 |x). For comparison, curve 3 shows P(Oh |x).
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ment concentration x ≈ 13.2%, the probability of find-
ing a cell of symmetry C3v , P(C3v |0.1322) ≈ 0.403, sig-
nificantly exceeds the percolation threshold [16]. The
value of P(C3v |0.1322) shows that almost each cell
whose crystal field at its center has rhombohedral sym-
metry and a dipole component (Gi = C3v ) most proba-
bly has three spontaneously polarized cells with field
symmetry C3v among its nearest neighbors. The solid-
solution microstructure with dipoles that are oriented
along threefold axes and randomly distributed over the
Mn3+ sublattice promotes ferroelectric or antiferroelec-
tric ordering of dipoles. The possible ordering mecha-
nism is associated with direct interactions between
dipoles rather than with the pseudo-Jahn–Teller effect
[4, 8, 9].

According to [13, 14], the dipole interaction mecha-
nism can result in the phase transition to a ferroelectric
state when only nearest neighbors interact [13, 18, 19] or
to antiferroelectric ordering [19] when the interaction
extends to several coordination shells.3 Moreover, by cal-
culating the probability of two cells with a dipole moment
being nearest neighbors, P(C3v ; C4v ; C2v ; Cs; C2|x) =
2x(1 – x)(9x6 – 27x5 + 43x4 – 41x3 + 28x2 – 12x + 4), it
can be shown that the threshold concentration at which
the existence of infinite clusters of ferroelectric (dipole-
polarized) cells is highly probable is reached even at
x ≥ 4.8% (Fig. 3).

We note that the total probability of the existence of
cells in which the degeneracy of the Eg ground term
(characteristic of cells with symmetry Oh) is retained,
P(Oh; Td; D3d; C3v |x), is also high at small x.4 The prob-
ability of finding high-symmetry cells P(Oh; Td; D3d;
C3v |x) exceeds the percolation threshold for these cells
up to concentrations of the β element x ≤ 0.327 in the
quasi-binary α1 – xβxMnO3 solid solution (Fig. 2).
Therefore, in the range 0.048 < x < 0.327, there is com-
petition between two fundamentally different mecha-
nisms of structural transitions. One mechanism is asso-
ciated with dipole–dipole interactions [13], and the
other (Jahn–Teller) is caused by deformation interac-
tions [7–9]. These mechanisms result in ordered phases
with different symmetries, which makes it possible to
determine the actual phase transition mechanism exper-
imentally. We note that we have P(Oh; Td; D3d;
C3v |0.153) = P(C3v ; C4v ; C2v ; Cs; C2 |0.153) ≈ 0.698.

3 If only the effective pair interactions of cells with symmetry C3v
are considerable, then it can be shown, using the self-consistent-
field approximation (as in [14, 18, 20]), that only rhombohedral
phases will be stable.

4 If the symmetry of the field exerted on an atom with one, four,
six, or nine 3d electrons is described by the Td group (the orbital
state of the free ion is D and the weak crystal field approximation
is valid), then the ion ground state in the crystal is T1 [5]. How-
ever, in the case under study, there exists a rather strong field of
symmetry Oh, which is slightly distorted to Td by isovalent or
heterovalent substitution of ions on the regular system of points
1(a) of the Oh symmetry group.
PH
5. EXTENSION OF THE THEORETICAL 
RESULTS TO OTHER OBJECTS

Assuming, as was done above, that oxygen ions play
a passive role in lowering the crystal-field symmetry at
the center of unit cells, all the considerations and con-
clusions concerning the B-sublattice field symmetry in
a disordered quasi-binary AA'BO3 solid solution are
applied with no change to the A-sublattice field symme-
try caused by the random distribution of B-sublattice
cations in disordered ABB'O3 solid solutions. These
solid solutions have been extensively studied since the
discovery of relaxors, a new type of electrostriction
materials.

Studies of the strongest (Bragg) reflections in
PbMg1/3Nb2/3O3 [21–24], PbFe1/2Nb1/2O3 [25],
PbZn1/2Nb1/2O3 [26], PbSc1/2Nb1/2O3 [27], and other
solid solutions have established unambiguously that

their macroscopic averaged symmetry  and structure
correspond to the cubic structure of ideal perovskite.

Refinement of the average structure by considering
the reflection intensity has shown the following. First,
in order to obtain acceptable values of the R factor, an
anomalously large Debye–Waller factor for Pb ions
should be assumed [21–27], which cannot be under-
stood under the assumption of purely thermal random
displacements of cations [24–27]. Moreover, the non-
monotonic temperature dependence of the Debye–
Waller factor in lead magnesium niobate (PMN) indi-
cates that its value is controlled by at least two factors
[21]: mostly by (presumably) static displacements at
temperatures below the Burns temperature TB and ther-
mal vibrations at T > TB [21]. Second, the dependence
of the integrated intensities of Bragg reflections of var-
ious parities on the angle at which they are observed is
nonmonotonic [23] and exhibits many other features,
which can be understood only by assuming a random
(as in [23–27]) or regular (as follows from our model)
displacement of lead ions from the ideal position on the
cubic perovskite sublattice B [23].

Various models have been used to refine the atomic
positions in solid solutions with the perovskite struc-
ture. In [21], it was assumed that Pb and Mg1/3Nb2/3 cat-
ions are displaced with equal probability along the
body diagonals and twelve (110)-type directions of
cubes surrounding cations in the perovskite structure.
The symmetry axes of these cubes coincide in direction
with the crystal symmetry axes. The displacement val-
ues are controlled by cube edges; according to [21],
ac(Pb) > ac(Mg1/3Nb2/3). Moreover, it was assumed in
[21] that the oxygen in the crystal is randomly distrib-
uted over a circular cylinder whose axis is directed
along one of the fourfold axes of the crystal. In [23], it
was shown that the model considered in [21] ade-
quately describes only the positions and intensities of
diffraction peaks corresponding to small scattering
angles. Based on a complete set of diffraction reflection
data, the authors of [23] discarded the symmetric-dis-

Oh
1
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placement model proposed in [21] and instead assumed
that Pb ions are displaced randomly over the surface of
a sphere of radius r0 [23].

The results calculated in [23] show that oxygen and
cation displacements in the A sublattice affect the R fac-
tor only slightly. This conclusion also follows from the
results of studies of various models [24, 26]. These
facts justify the model accepted above, in which the
ions that induce randomly distributed lower symmetry
fields exerted on ions of another sublattice are them-
selves considered to occupy an ideal averaged high-
symmetry position.

In [23], it is also argued that an experiment with par-
tially ordered perovskite PbSc1/2Ta1/2O3 shows that the
degree of ordering has no effect on the interpretation of
x-ray diffraction patterns in terms of the model that
assumes a random distribution of Pb displacements.
This statement justifies the application of the model
developed above to relaxors, whose structure contains
partially ordered nanometer regions.

Since there is a variety of objects that could be used
to verify the model, including the calculation scheme,
let us consider the structure factor for an averaged crys-
tal and take into account the probabilities of possible
ion displacements in the A sublattice of the ABx O3

solid solution in the case where B and B' ions are dis-
tributed randomly over the B sublattice. The B and B'
ions distributed randomly over the B sublattice of the
ideal cubic perovskite have the coordinates

(5)

In this case, their contribution to the scattering ampli-
tude can easily be found to be

(6)

A similar expression can also be written for the contri-
bution of undisplaced Pb ions to Fhkl.

According to our model, at any B-ion concentration,
there are fourteen types of B- and B'-ion distributions
over the regular system of points 1(a) in the nearest
neighborhood of a fixed A ion. The crystal fields at the
A-ion position will remain centrosymmetric if the near-
est neighborhood has symmetry Oh, Td, D3d, or D2h. The
contribution from the A ions in this symmetric neigh-
borhood to the total scattering amplitude is propor-
tional to the probability of the formation of such cells:

(7)

B1 x–'
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In the ten other types of B- and B'-ion distributions over
the sites in the nearest neighborhood of the A ion, this
ion is displaced. The direction and magnitude of the
displacement depend on the neighborhood symmetry
and B-ion concentration. In the case of crystal-field
symmetries C3v, C4v, and C2v, the A ion in the equilib-
rium state is displaced along one of the eight (111)-type
directions, six (001)-type directions, and twelve (110)-
type directions, respectively. For symmetry Cs, the
A-ion is displaced in the [110] plane. However, there
are three different structures for which crystal-field
symmetry Cs arises. Two of the structures correspond to
the case where three of the eight sites of the nearest
neighborhood are occupied by ions of one species (e.g.,
B) and the other five sites are occupied by ions of the
other species (B'). The third structure corresponds to an
equal number of B and B' ions. It is convenient to char-
acterize the first two structures using the distance

between the B ions. In the  structure, these three

distances are a, a, and . In the  structure, they

are a, , and . There are also three types of
arrangement of cations in the nearest neighborhood of
the A ion in the case of the C3v symmetry.

In general, the A-ion displacements will be different
in magnitude if the symmetry of the nearest neighbor-

hood is G0 but the chemical composition is  in

one case and  in another (m = 1, 2, 3).

Thus, it follows that the structure amplitude within
the accepted model will depend on 21 independent
parameters (A-ion displacements) if the analysis is
restricted to only symmetry considerations. It is reason-
able to discuss this general result only in relation to a
specific experiment.

6. HYPOTHESIS OF THE DOMINANT ROLE 
PLAYED BY EFFECTIVE PAIR INTERACTIONS

In this study, we restrict our analysis to calculating
the component of the scattering amplitude structure
associated with Pb-ion displacement under the assump-
tion that only effective pair interactions between ions
are of importance. In this case, the total structure ampli-
tude Fhkl depends on only one parameter r0, the dis-
placement of the A (Pb) ion along (111), if the nearest
neighborhood of this ion contains one B' (or B) ion at
the site ( , , ) and seven B (B') ions at the
other 1(b) sites, defined by Eq. (5), in the nearest neigh-
borhood of the Pb ion. Designating the Pb-ion displace-

ment along a fourfold axis as u0 = r0/ , the contribu-

Cs
1( )

a 2 Cs
2( )

a 2 a 3

BmB8 m–'

B8 m– Bm'
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tion to the total scattering amplitude that corresponds to
displaced A ions can be found to be

(8)

The notation Fhkl(C3v; C4v; C2v; Cs; C2) means that only
the nontrivial component of the structure amplitude is
given, which is due to the lead ions displaced from
positions 1(a). The point groups entering into Eq. (8) as
the argument of Fhkl describe the crystal-field symmetry
at the center of the cells in which the lead ion is dis-
placed from position 1(a). We recall that this model
includes only symmetry lowering due to nonuniform
distributions of B and B' ions over positions 1(b) in the
perovskite structure on a scale comparable to the unit
cell size. For preliminary analysis of Eq. (8), we

roughly assume that x = 1/3 and u0 =  = 0.035a, as
follows from the data obtained by averaging Pb dis-
placements over the various directions determined
using the “best” of the models considered in [25]. In
this case, Eq. (8) makes it possible to compare the
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Fig. 4. Dependence of the intensity of Bragg reflections
caused by a superposition of Pb displacements at x = 1/3
(u0 = 0.035a) on m2 (see text for details).
P

intensities of even and odd Bragg reflections caused by
A-ion displacements at an arbitrary x-ray wavelength.
We have h = 2m, k = 2n, and l = 2p for even reflections
and h = 2m + 1, k = 2n + 1, and l = 2p + 1 for odd reflec-
tions (m, n, and p are integers). For qualitative compar-
ison with experiment [23], we set m = n = p and calcu-

late the reflection intensities in units of  as a func-
tion of the “continuous” parameter m2 ~ (sinθ/λ)2. The
result is shown in Fig. 4. We can see that the model pre-
dicts a nonmonotonic behavior of the intensity, which is
in qualitative agreement with the experimental data
from [22]. For quantitative comparison, modification of
the model is required to take into account the depen-
dence of the atomic scattering amplitudes on θ, on the
Debye–Waller factor, etc.

7. ANOTHER HYPOTHESIS

Based on the model at hand and taking into account
the giant electrostriction of many relaxors, we can
assume that the A-ion displacements according to the
crystal-field symmetry cause spontaneous polarization
and, hence, changes in the unit cell parameters. In the
accepted model, the unit cells should remain cubic.
Thus, remaining within the accepted model, we can
take into account only volume striction of the reduced
cells. In this case, at a given B-ion concentration in the
ABx O3 solid solution and under the assumption
that the crystal retains its integrity, according to exper-
iment, we can make the following two conclusions.

(1) The elastic energy arises only when cubic cells
differing in volume are in contact (according to the
accepted model, the crystal fields at the centers of these
cells differ in symmetry in this case). Hence, a disor-
dered single-crystal solid solution should contain
“large” (in comparison with the unit cell volume)
regions with different lattice parameters (different sym-
metries of the crystal field at the unit cell center).

(2) Since the most probable symmetries of the crys-
tal field at the center of unit cells are finite in number at
a fixed concentration x, the experimentally determined
lattice parameters in a single-crystal solid solution
should take on discrete values. Certainly, this discrete-
ness will be somewhat spread out by nonuniform defor-
mations at the contact surfaces of volumes each of
which consists of unit cells with the same crystal-field
symmetry.

The calculations carried out predict that the intensi-
ties of Bragg reflections at a given β-ion concentration
x will depend on the values of the lattice parameters.
Therefore, the model at hand makes it possible to deter-
mine which lead ion displacements initiate a decrease
or, alternatively, an increase in the initial volume of the
reduced cells [11] of the perovskite structure in solid
solutions.

f A
2

B1 x–'
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Abstract—Low-temperature (T = 7 K) time-resolved selectively photoexcited luminescence spectra (2–6 eV)
and luminescence excitation spectra (8–35 eV) of wide-bandgap chrysoberyl BeAl2O4, phenacite Be2SiO4, and
beryl Be3Al2Si6O18 crystals have been studied using time-resolved VUV spectroscopy. Both the intrinsic lumi-
nescence of the crystals and the luminescence associated with structural defects were assigned. Energy transfer
to impurity luminescence centers in alexandrite and emerald was investigated. Luminescence characteristics of
stable crystal lattice defects were probed by 3.6-MeV accelerated helium ion beams. © 2005 Pleiades Publish-
ing, Inc.
1. INTRODUCTION

Models of the relaxation of electronic excitations in
inorganic dielectrics have been developed on the basis
of studies of the energy dissipation processes in alkali
halide crystals (AHCs). Self-trapped excitons (STEs),
which have been found to exist in AHCs and govern
basic relaxation processes, such as below-threshold
defect formation, are of fundamental interest in solid-
state physics. The ideas developed for AHCs underlie
the intense interest in the specific features of nonequi-
librium processes involving intrinsic and impurity elec-
tronic excitations in other classes of wide-bandgap
dielectrics, including binary and complex oxides.

STE luminescence is excited in AHCs both under
optical selective generation of excitons and, in the
interband transition region, in recombination of elec-
trons with low-mobility self-trapped holes. In oxide
crystals, the various states (configurations) of STEs
appear in alternate mechanisms of electronic-excitation
relaxation, namely, free-exciton localization or the
recombination scenario giving rise to STE formation
through summation of the deformation potentials of
both carriers. The luminescence bands corresponding
to different STE configurations differ in terms of their
excitation spectra [1–4]. By properly analyzing the
luminescence and luminescence excitation spectra
obtained using time-resolved VUV spectroscopy and
the x-ray and cathodoluminescence spectra, one can
isolate intrinsic luminescence bands in the wide-band-
gap oxide crystals and determine their nature.

In oxides irradiated by beams of neutrons or accel-
erated ions, luminescence spectra exhibit additional
bands, which typically form when anion vacancies in
the crystal capture one (F+ center) or two electrons
(F center). In these cases, information on defect forma-
tion can be gained by studying the optical characteris-
1063-7834/05/4703- $26.00 0466
tics of neutron-irradiated crystals or by measuring the
ion luminescence spectra created by accelerated ions [5].

Model objects for wide-bandgap oxides (Eg > 9 eV)
with lowered crystal symmetry are binary oxides BeO,
α-Al2O3, and SiO2, which are of considerable impor-
tance for both fundamental and applied physics. Table 1
presents the positions of the maxima of STE intrinsic
luminescence bands (Em) for a number of crystals.
Bands of type I are produced by the excitonic mecha-
nism of STE luminescence excitation, and bands of
type II, by the recombination mechanism.

The crystal lattices of the complex oxides BeAl2O4

(chrysoberyl), Be2SiO4 (phenacite), and Be3Al2Si6O18

(beryl) exhibit motifs (weakly distorted BeO4 and SiO4

tetrahedra and AlO6 octahedra) that are typical of the
parent crystal-forming compounds, namely, beryllium,
aluminum, and silicon oxides. As a result, the scenarios
of formation and the structure of the relaxed electronic
excitations (associated with local lattice fragments)
may turn out to be similar for binary and complex
oxides.

Table 1.  Parameters of intrinsic luminescence bands in sev-
eral oxides

Crystal Band I
(Em, eV)

Band II
(Em, eV) Eg, eV Reference

BeO 6.7 4.9 10.63 [4]

α-Al2O3 7.5 3.8 9.4 [1]

α-SiO2 2.8 – 10.2 [6]

YAlO3 5.9 4.2 7.5 [1]

Y3Al5O12 4.9 4.2 6.7 [1]
© 2005 Pleiades Publishing, Inc.
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Table 2.  Band assignment in luminescence spectra of BeAl2O4, Be2SiO4, and Be3Al2Si6O18 recorded at T = 12 K

Crystal
Bandgap

width (Eg, eV)
T = 300 K

Defect luminescence
bands (Em, eV)

Intrinsic luminescence bands of the crystal (Em, eV)

exciton mechanism recombination mechanism

BeAl2O4 9.0 Several bands in the range 2.0–3.8 3.5, 4.3 5.2

Be2SiO4 8.5 2.6, 3.0, 4.0 3.5 2.7, 4.1

Be3Al2Si6O18 8.9 2.5, 2.9, 3.1 3.5 4.2 (C || E); 4.9 (C ⊥  E)
Our preliminary studies of BeAl2O4, Be2SiO4, and
Be3Al2Si6O18 crystals [7–9] revealed complex intrinsic
luminescence bands characteristic of oxide crystals
with lowered lattice symmetry. An analysis of the
reflectance and luminescence excitation spectra of
these crystals yielded an estimate of the bandgap width
at 300 K (Table 2).

We report here on a coordinated study of low-tem-
perature (T = 7 K) time-resolved luminescence (2–
6 eV) and luminescence excitation (4–35 eV) spectra,
obtained with the use of VUV synchrotron radiation,
and of x-ray and ion luminescence spectra of BeAl2O4,
Be2SiO4, and Be3Al2Si6O18 crystals. The study was
aimed at identifying the origin of intrinsic lumines-
cence of the regular lattice and of stable defects. The
energy transfer to impurity luminescence centers in the
crystals of interest was investigated using time-
resolved luminescence spectroscopy of Cr3+ impurity
ions, which serve as luminescence probes in alexan-
drite (BeAl2O4–Cr) and emerald (Be3Al2Si6O18–Cr).

2. CHARACTERIZATION OF SAMPLES

Chrysoberyl (BeAl2O4) has orthorhombic symme-
try (Pmnb) and contains 19.8 wt % BeO and 80.2 wt %
Al2O3 [10]. Due to the small ionic radius of Be2+, the
crystal structure of chrysoberyl has a lower symmetry
than minerals of the spinel group with similar formulas.
This structure consists of oxygen ions which form a
hexagonal close-packed arrangement with four-coordi-
nated beryllium ions and six-coordinated aluminum
ions. The arrangement of the oxygen ions in this hexag-
onal close-packed lattice accounts for the pseudohex-
agonal cell and the corresponding angles and twinning.

Crystals of phenacite (Be2SiO4) have trigonal sym-
metry (R3) and contain 45.5 wt % BeO and 54.5 wt %
SiO2 [10]. The lattice structure is formed by SiO4 and
BeO4 tetrahedra, with each oxygen ion being linked
with two beryllium ions and one silicon ion located at
the corners of an equilateral triangle. Phenacite crystals
have a threefold C3 crystallographic axis.

Crystals of beryl (Be3Al2Si6O18) have hexagonal
symmetry (P6/mmc) and contain 14.0 wt % BeO,
19.0 wt % Al2O3, and 67 wt % SiO2 [10]. The basic
units of the structure are closed ring configurations of
SiO4 tetrahedra. The layers of beryllium and aluminum
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      200
ions are sandwiched between “silicate” rings. The four-
coordinated beryllium ion and the six-coordinated alu-
minum ion provide vertical and horizontal links with
these rings, respectively. The C6 axis of the beryl crys-
tal is perpendicular to the silicate ring plane.

Thus, the beryl and phenacite crystals have a pre-
ferred symmetry axis, which makes it possible to carry
out experiments with the samples properly oriented
with respect to the electric vector of the synchrotron
radiation (SR) field or the direction of the accelerated
ion beam.

The crystals used in the study were optically perfect
single crystals grown by V.A. Maslov at different times
at the Institute of Geology and Geophysics, SD RAS
(Novosibirsk), and by L.I. Isaenko at the Institute of
Single Crystals, SD RAS.

3. EXPERIMENTAL TECHNIQUES

Measurements were performed using time-resolved
VUV spectroscopy at the SUPERLUMI station
(HASYLAB laboratory, DESY, Hamburg) [11]. Lumi-
nescence excitation in the 4- to 35-eV region was
effected with the use of a 2-m vacuum monochromator
with interchangeable gratings (spectral resolution 3.2 Å
or 25 × 10–3 eV for energies ~10 eV). The luminescence
excitation spectra are normalized against equal num-
bers of photons striking the crystal by means of sodium
salicylate. The luminescence spectra measured in the
range 2.0–6.0-eV were analyzed with a B&M mono-
chromator in a Czerny–Turner configuration and an
R2059 PM tube (Hamamatsu). The luminescence and
luminescence excitation spectra were obtained both in
the time-integrated mode and in time windows (of
width ∆t) gated relative to the SR exciting pulse (with a
time delay δt with respect to the SR signal onset). The
time window parameters (δt1 = 2.1 ns, ∆t1 = 14.1 ns,
δt2 = 46 ns, ∆t2 = 155.1 ns) were set in accordance with
the luminescence decay kinetics and allowed us to mea-
sure luminescence and luminescence excitation spectra
in the so-called fast and slow time windows. The
parameters of the fast luminescence decay kinetics
were calculated by deconvolution. The impurity lumi-
nescence spectra of chromium-doped crystals were
obtained with a resolution better than 1 Å using a
cooled CCD camera and an ARC Spectro Pro-380i
monochromator.
5
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Fig. 1. Luminescence excitation spectra (Eem = 3.5 eV) of
(1) Be3Al2Si6O18 (E || C), (2) BeAl2O4, and (3) Be2SiO4
(E || C) recorded at 9.6 K.
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Fig. 2. Luminescence spectra of Be3Al2Si6O18 (E || C)
recorded at T = 9.6 K at excitation energy Eexc equal to
(1) 8.0 and (2) 6.2 eV and their decomposition into Gauss-
ians.

0.5

2
0

3 4 5 6

1.0

21

Photon energy, eV

In
te

ns
ity

, a
rb

. u
ni

ts

Fig. 3. Luminescence spectra of Be3Al2Si6O18 (E ⊥  C)
recorded at T = 9.6 K at excitation energy Eexc equal to
(1) 8.0 and (2) 10.8 eV and their deconvolution into Gauss-
ians.
P

The ion luminescence and the defect formation at
80–300 K were studied on an R-7M cyclotron from the
Ural State Technical University in a beam of acceler-
ated He+ ions (E = 3.6 MeV) [12]. The ion lumines-
cence spectra were measured continuously with an
Oriel Instruments 77441 spectrograph in the course of
crystal irradiation. The ion fluence was monitored with
a Faraday cylinder.

4. EXPERIMENTAL RESULTS

A combined analysis of time-resolved luminescence
and luminescence excitation spectra and of the lumi-
nescence decay kinetics in all the compounds studied
allowed us to isolate two luminescence band types for
each compound. The spectral luminescence excitation
profiles of BeAl2O4, Be2SiO4, and Be3Al2Si6O18
(Fig. 1) agree well with the estimated bandgap widths
Eg derived earlier in [7]: Eg = 9.0, 8.5, and 8.9 eV at
300 K, respectively.

4.1. Beryl Be3Al2Si6O18

The luminescence spectra excited in the transmis-
sion region by photons with energy Eexc < Eg are domi-
nated by a complex band peaking at about 3.0 eV
(Fig. 2). Unfolding it into constituent Gaussians iso-
lates bands with maxima at 2.6 eV (FWHM = 0.55 eV)
and 3.1 eV (FWHM = 0.7 eV). Because these lumines-
cence bands are excited in the crystal transmission
region, their nature can be associated with radiative
decay of electronic excitations near native or impurity
defects. When excited near the fundamental absorption
edge, i.e., under selective creation of excitons, the max-
imum in the luminescence spectrum shifts toward
higher energies to yield Em = 3.5 eV and FWHM =
0.9 eV. The luminescence spectra also exhibit a weak
shoulder at 4.2 eV. The luminescence decay kinetics
in beryl has a microsecond-range component. The
properties of the 3.5-eV luminescence are characteris-
tic, in particular, of STE luminescence in oxide crys-
tals; hence, this luminescence can be assumed to be
intrinsic.

The luminescence spectra of crystals excited in the
region of the fundamental absorption edge in the E ⊥  C
geometry exhibit an additional band peaking at 4.9 eV
(curve 1 in Fig. 3). The 3.5-eV band contains both fast
(τ1 ~ 6 ns, τ2 ~ 52 ns) and slow (τ > 1 µs) components
in the decay kinetics. The 4.9-eV luminescence is
excited most efficiently in the electron–hole pair gener-
ation region, Eexc = 10.8 eV (Figs. 3, 4); in these condi-
tions, the luminescence spectra have another distinct
band located at 4.2 eV (curve 2 in Fig. 3), which is seen
as a weak shoulder in the E || C geometry. The decay
kinetics of the 4.2- and 4.9-eV bands contains fast com-
ponents (τ1 ~ 3 ns, τ2 ~ 64 ns) and a slow (τ > 1 µs) com-
ponent.
HYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
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The luminescence spectra obtained at 80–300 K
under irradiation of the crystal by helium ions are dom-
inated only by low-energy bands (their deconvolution
into Gaussians yields Em = 2.5, 2.9, and 3.1 eV in
Fig. 5), which were assigned earlier to the lumines-
cence of lattice defects. Increasing the beryl irradiation
dose enhances the 2.5-eV band intensity, which can be
traced to a buildup of radiation-induced defects. The
decay kinetics of the 2.5-eV luminescence was estab-
lished to have only a slow component in the millisecond
range.

Thus, an analysis of low-temperature luminescence
spectra of pure beryl reveals groups of defect-associ-
ated bands at Em = 2.5, 2.9, and 3.1 eV and bands deriv-
ing from intrinsic crystal luminescence at Em = 3.5, 4.2,
and 4.9 eV, whose relative intensity depends on both
excitation energy and crystal orientation.

4.2. Chrysoberyl BeAl2O4

The luminescence spectra obtained under excitation
in the crystal transmission region (Eexc = 4.6, 5.5,
8.2 eV) reveal only a 2.6-eV band (FWHM = 0.6 eV)
due to lattice defects. When excited in the region of the
fundamental absorption edge (Eexc = 9.3 eV), the lumi-
nescence spectra become complex and consist of at
least two bands of comparable intensity with maxima at
3.5 and 4.3 eV and a weaker band located at 2.6 eV
(Fig. 6). The short-wavelength luminescence bands at
3.5 and 4.3 eV (FWHM = 0.85, 0.9 eV, respectively), as
well as the similar luminescence bands of beryl, can be
assigned to the intrinsic crystal luminescence. The
decay kinetics of the 3.5- and 4.3-eV luminescence
contains a fast and a slow component (τ1 ~ 25 ns, τ2 >
1 µs), and that of the 2.6-eV luminescence contains a
slow component only (t > 1 µs).

The ion luminescence spectrum of chrysoberyl at
80–300 K exhibits a number of bands in the range 2–
6 eV (Fig. 7). The short-wavelength part of the spec-
trum has bands at 5.2 and 4.3 eV, whose intensities fall
off with irradiation (i.e., with increasing dose). Note
that the 5.2-eV band is present, albeit as a weak shoul-
der, in the luminescence spectra excited near the funda-
mental absorption edge (Fig. 6), whereas this lumines-
cence is dominant in the low-temperature spectrum
obtained under selective core-level excitation in the
soft-x-ray domain (curve 4 in Fig. 7).

By contrast, the intensity of the long-wavelength
part of the spectra (the series of bands in the range 2.0–
3.8 eV) grows with irradiation dose and is dominated
by the luminescence peaking at 3.5 eV. Although this
luminescence coincides in position with the lumines-
cence band excited near the fundamental absorption
edge, its halfwidth is substantially smaller. This
becomes particularly evident when comparing spectra
obtained in different irradiation stages. As the dose and
the 3.5-eV luminescence intensity grow, the half-width
of this spectral band decreases to FWHM = 0.5 eV. The
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
same phenomenon is observed in ion luminescence
spectra under cooling to T = 80 K in the initial irradia-
tion stages. As a whole, these observations suggest that
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Fig. 4. Luminescence excitation spectra for (1) Em = 3.5 and
(2) 4.9 eV of Be3Al2Si6O18 crystals (E ⊥  C) recorded at
T = 9.6 K.
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Fig. 5. Ion luminescence spectra of Be3Al2Si6O18 (He

beam He ⊥  C) recorded at fluences of (1) 8.8 × 1013 and
(2) 1.7 × 1015 cm–2. T = 300 K.
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Fig. 6. Luminescence spectra of BeAl2O4 recorded under
excitation with (1) Eexc = 5.5 and (2) 9.3 eV and their
deconvolution into Gaussians. T = 9.6 K.
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Fig. 7. X-ray-induced luminescence of BeAl2O4 recorded
under (1) integrated (3–60 keV) and (4) selective (Eexc =
140 eV) excitation and compared with ion luminescence
spectra of BeAl2O4 measured at fluences of (2) 4.0 × 1014

and (3) 1.8 × 1015 cm–2. Spectra 1–3 were measured at
300 K, and spectrum 4, at 12 K.
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Fig. 8. Luminescence spectra of Be2SiO4 recorded under
excitation with (1) Eexc = 8.1, (2) 6.2, and (3) 25.8 eV at
T = 9.6 K and (4) an x-ray-induced luminescence spectrum
measured at T = 300 K; (5, 6) constituent Gaussians of peak 1.
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Fig. 9. Ion luminescence spectra of Be2SiO4 recorded at a

fluence of (1) 1.1 × 1014 and (2) 2.2 × 1015 cm–2 and (3) an
x-ray-induced luminescence spectrum. T = 300 K.
two different centers radiate in the same luminescence
region of chrysoberyl. One center is excited in the
region of the fundamental absorption edge and is char-
acteristic of the regular lattice, while the other operates
for Eexc < Eg and should be associated rather with a lat-
tice defect. Note that a similar situation is realized in
one of the compounds that form chrysoberyl, namely,
α-Al2O3, where the luminescence near 3.8 eV is due to
STEs [1] and F+ centers [13].

The x-ray-induced luminescence spectra of
BeAl2O4 crystals recorded at 300 K contain two bands
at 3.5 and 4.3 eV (curve 1 in Fig. 7). At 80 K, the 3.5-eV
luminescence is quenched but the luminescence at
5.2 eV appears, so the spectrum then has two bands, at
4.3 and 5.2 eV.

Thus, the luminescence spectra of chrysoberyl
exhibit two groups of bands, more specifically, intrinsic
luminescence bands at 3.5, 4.3, and 5.2 eV and a num-
ber of bands in the range 2.0–3.8 eV associated with the
relaxation of electronic excitations near defects.

4.3. Phenacite Be2SiO4

Similar to beryl and chrysoberyl, the luminescence
spectra of phenacite are associated with two types of
luminescence centers (Fig. 8). A defect-associated
luminescence band (Em = 3.0 eV, FWHM = 0.65 eV) is
observed under excitation in the transmission region of
the crystal (Eexc < 7 eV). The intrinsic luminescence
(Em = 3.5, 4.1 eV and FWHM = 0.9, 0.8 eV, respec-
tively) is excited in the region where free excitons
(Eexc = 8.1 eV) and isolated electron–hole pairs for
Eexc > Eg are created (Figs. 1, 8). The decay kinetics of
the 3.5-eV luminescence contains fast components
(τ1 ~ 1 ns, τ2 ~ 15 ns) and a slow (τ3 > 1 µs) component.
Significantly, the band at Em = 4.1 eV is more pro-
nounced in the luminescence spectra excited by pho-
tons in the region where secondary electron–hole pairs
are created (Eexc ≥ 25.8 eV) than in the luminescence
spectra excited near the fundamental absorption edge.
The luminescence band at 4.1 eV is observed simulta-
neously with the 2.7-eV band in the x-ray-induced
luminescence of phenacite.

The spectrum of ion luminescence of phenacite
(Fig. 9) resembles the luminescence spectrum mea-
sured under high-energy photoexcitation (e.g., for
Eexc ≥ 25.8 eV) and, in the initial stages of ion irradia-
tion, consists of bands located at 2.6, 3.0, and 4.1 eV.
The fraction of the low-energy bands in the spectrum
grows with increasing irradiation dose.

An analysis of the luminescence properties of
phenacite showed that its luminescence spectrum has
bands due to intrinsic luminescence with Em = 2.7, 3.5,
and 4.1 eV and bands associated with native lattice
defects with λm = 2.6 and 3.0 eV. The 3.5-eV lumines-
cence is excited primarily in the free-exciton generation
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005



ELECTRONIC EXCITATIONS 471
region, whereas the bands at 2.7 and 4.1 eV are pro-
duced in the creation of electron–hole pairs.

4.4. Alexandrite (BeAl2O4–Cr) and Emerald 
(Be3Al2Si6O18–Cr)

The Cr3+ R-line luminescence excitation spectra of
alexandrite and emerald recorded at 300 K reveal a
broad band peaking at about 6.8 eV, as well as less pro-
nounced features in the region of the fundamental
absorption edge of the matrix (Fig. 10). The slight
broadening of the 6.8-eV band in Be3Al2Si6O18–Cr
crystals is due to the proximity of another band, which
is seen as a shoulder at 7.8 eV and lies closer to the fun-
damental absorption edge of the crystal. A similar
shoulder in the luminescence excitation spectra of
BeAl2O4–Cr is shifted, just as the fundamental absorp-
tion edge, toward higher energies and is observed at
about 9 eV.

The luminescence spectra of alexandrite (Fig. 11)
recorded in the temperature region 100–300 K reveal a
well-resolved chromium R-line doublet. Both doublet
lines grow in intensity with crystal cooling and shift
toward higher energies. For T < 100 K, one of the lines
(at a higher energy) is not seen. The R-line doublet in
the luminescence spectra of a number of crystals is
known [14] to derive from crystal-field splitting of the
radiating ground-state level of the Cr3+ ion substituting
for the aluminum ion in the mirror-symmetry (Cs)
plane. The fact that only one doublet line is observed at
low temperatures is accounted for by the existence of
an energy barrier that prevents population of the higher
lying state. The origin of the lines in the range 1.75–
1.8 eV is still a subject for debate. Their possible rela-
tion to chromium ions substituting for aluminum in the
inverse symmetry (Ci) plane or to phonon replicas of
the R lines has been discussed [14]. At high chromium
ion concentrations and with noticeable exchange cou-
pling, the so-called N lines appear in this energy region
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Fig. 10. Luminescence excitation spectra of (1) BeAl2O4–
Cr, (2) Be3Al2Si6O18–Cr, (3) BeAl2O4, and
(4) Be3Al2Si6O18 recorded at (1, 2) Eem = 1.82 and (3, 4)
3.44 eV.
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[14]. There are also the so-called S and B lines in this
region, which are associated with transitions to the 4A2g

ground state from states located higher in energy than
2Eg (R lines), namely, from the 2T1g (S lines) and 2T2g

states (B lines) [15].

5. DISCUSSION OF THE RESULTS

The crystals studied by us emit several characteristic
types of luminescence.

(1) All pure crystals produce luminescence excited
only in the region of or above the fundamental absorp-
tion edge, which forms the shorter-wavelength section
of the spectra. Luminescence of this type has been
described for wide-bandgap oxides in terms of the STE
model [1–4]. The low symmetry of the crystal not only
accounts for the self-trapping of electronic excitations
themselves but also explains why they have various
configurations. For instance, in BeO, α-Al2O3, YAlO3,
and Y3Al5O12, two types of luminescence originating
from the radiative decay of STEs have been observed to
exist [1, 3]. This luminescence is characterized by a
large half-width and a large Stokes shift, as well as by
the absence of excitation bands in the transmission
region of the crystal. There are two alternate mecha-
nisms of STE formation. One of them is photoexcita-
tion of the exciton (the excitonic mechanism) followed
by its relaxation to the self-trapped state. The other
mechanism involves creation of the STE through relax-
ation of the electronic excitations in the recombination
of electron–hole pairs. The reasons underlying the for-
mation of different STE configurations in complex
oxides are connected with the pronounced nonunifor-
mity of the electronic valence-band structure. It is
known that low-symmetry crystal fields initiate com-
plete splitting of the oxygen 2p states forming the upper
valence band state [16]. The nonbonding (π-type) orbit-
als form the top of the valence band. In the upper, nar-
row low-dispersion subband, the hole translational
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Fig. 11. Luminescence spectra of BeAl2O4–Cr recorded at
Eexc = 6.8 eV at different temperatures T: (1) 300, (2) 200,
(3) 100, (4) 17, and (5) 16 K.
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mass is comparatively large, which favors hole self-
trapping. Self-trapping of holes in complex oxides
accounts for the formation of STEs by the recombina-
tion mechanism, in which an electron recombines with
a self-trapped hole. The lower valence-band subband
has a large width and dispersion, and the translational
mass of holes in this subband is small. It is this lower
subband that is involved in the creation of free excitons.
However, self-trapping of the hole component of the
exciton is unlikely because of the small translational
mass. According to the STE level diagram proposed by
Sumi [17] and validated by experiments performed on
some oxides [1–4], in the case where an electron or a
hole cannot become self-trapped separately, the self-
trapped state can form when the lattice strains gener-
ated by the electron and the hole are added.

Because the exciton–phonon coupling in low-sym-
metry wide-bandgap oxides is stronger than that in
alkali halide crystals, free excitons usually do not man-
ifest themselves in optical spectra. They have a small
range and become localized directly at the point of their
formation. Thus, a local fragment of the crystal struc-
ture plays an important role in the self-trapping pro-
cess. As already mentioned, crystal lattices of complex
oxides BeAl2O4, Be2SiO4, and Be3Al2Si6O18 and of
binary oxides BeO, Al2O3, and SiO2 contain identical
local lattice fragments; therefore, the exciton self-trap-
ping processes in the complex and binary oxides should
be similar. This gives us grounds to assert that the
intrinsic luminescence bands of the complex oxides
observed in the short-wavelength region of the lumines-
cence spectra derive from radiative STE decay. The two
bands observed in this luminescence may be due to two
different mechanisms of formation of a localized state
(of the exciton and recombination types) or be associ-
ated with the existence of different local lattice frag-
ments in the complex crystals. To substantiate the
above conclusions concerning the mechanisms of STE
formation, additional studies of the luminescence
excited directly in the region of the fundamental
absorption edge and at shorter wavelengths where free
carriers are produced, as well as of thermally stimu-
lated luminescence, are needed.

(2) In crystals with defects, luminescence associated
with the relaxation of electronic excitations near
defects is excited in the crystal transmission region.
Ions and neutrons bombarding the binary oxides pro-
duce primarily anion vacancies, because the binding
energy of oxygen is less than that of a cation. Therefore,
the main bands observed in these crystals that have a
distorted stoichiometry and are excited in the transmis-
sion region of the crystals are F-like centers (in partic-
ular, F and F+ centers and their aggregates). Investiga-
tion of the dynamics of luminescence initiated by
helium ions suggests that similar lattice defects proba-
bly form in complex oxides as well. These defects
account for the appearance and growth in intensity of
additional bands in the long-wavelength region of the
P

spectrum. The appearance of these bands is accompa-
nied by the observation of luminescence kinetics com-
ponents with decay times in the millisecond range. This
situation is characteristic, in particular, of F-center gen-
eration in BeO [5]. Thus, the observed situation can be
assigned to the formation of stable F-like lattice defects
in our crystals.

The assignment of defect and intrinsic lumines-
cence bands of BeAl2O4, Be2SiO4, and Be3Al2Si6O18 is
presented in Table 2.

(3) Chromium-activated crystals (alexandrite, emer-
ald) exhibit a similar pattern of excitation of the impu-
rity luminescence. Figure 10 compares the lumines-
cence excitation spectra of pure and chromium-acti-
vated crystals. The fact that the dominant band in the
luminescence excitation spectra of both crystals has the
same position in the VUV region and a similar half-
width suggests that this band is associated with intrac-
enter chromium-ion excitation and that the nearest
neighbor environment of the impurity ion in both crys-
tals is the same. The specific features in the lumines-
cence excitation spectra at 7.8 eV (for emerald) and at
9.0 eV (for alexandrite), which are located a few tenths
of an electronvolt below the fundamental absorption
edge, are customarily interpreted as a manifestation of
impurity-bound large-radius excitons in wide-bandgap
oxides. Finally, chromium R lines can also appear by
the recombination mechanism when photons with
Eexc > Eg produce free electron–hole pairs. This conclu-
sion is supported by the observed spectral composition
of the high-temperature peaks (T = 360, 550 K for
BeAl2O4 and T = 480 K for Be3Al2Si6O18) of thermally
stimulated luminescence (TSL) in crystals irradiated by
x rays. The TSL spectrum exhibits a peak at 1.8 eV in
the region of impurity chromium ion luminescence.
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Abstract—The absorption spectrum of thin films of a new compound, K2CdI4, was studied. It was established
that this compound belongs to direct-bandgap dielectrics and that its low-frequency electronic and excitonic

excitations are localized in  structural blocks of the crystal lattice. It was found that, in M2CdI4 com-
pounds (M = K, Rb, Cs), the bandgap width Eg grows and the spin–orbit splitting of the valence band top
decreases with increasing ionic radius of the alkali metal. © 2005 Pleiades Publishing, Inc.
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1. INTRODUCTION

Thermographic studies [1] suggest the formation of
a K4CdI6 compound with a low melting point (210°C)
in the KI–CdI2 system, whereas in the isomorphic RbI–
and CsI–CdI2 systems M2CdI4 (M = Rb, Cs) com-
pounds form with similar melting points (216°C for
Rb2CdI4 and 210°C for Cs2CdI4 [1]). X-ray diffraction
studies of melted powders of stoichiometric composi-
tion K4CdI6 [2] do not corroborate the formation of this
compound in the KI–CdI2 system. It appeared reason-
able that K2CdI4 does form in the KI–CdI2 system, as is
the case with RbI– and CsI–CdI2. Based on this
assumption, we synthesized a new compound, K2CdI4.
Investigation of the absorption spectrum of this com-
pound promises to throw light both on the formation of
excitons in M2CdI4 and on possible ferroelastic proper-
ties of these compounds.

This communication reports on a study of the
absorption spectrum of K2CdI4 in the range 2–6 eV car-
ried out at 90 and 290 K.

2. EXPERIMENT

K2CdI4 thin films were prepared by vacuum deposi-
tion using the technique employed in [3, 4] to synthe-
size Rb2CdI4 and Cs2CdI4 films. A mixture of pure KI
and CdI2 powders of the assumed stoichiometric com-
position was preliminarily melted in vacuum under a
screen. The liquid fraction of the melt was evaporated
onto the screen, and the crystalline sediment was
deposited at a higher temperature onto quartz substrates
heated to 100°C. The sample was annealed for one hour
at 120°C.

The films thus prepared are hygroscopic and, when
exposed to air and cooled to room temperature, exhibit
strong light scattering. To prevent this effect, while still
warm, the samples were transferred to a vacuum cry-
1063-7834/05/4703- $26.00 0474
ostat, whose copper finger was preliminarily heated to
70°C. After evacuation of the cryostat and charging it
with nitrogen, the films remain transparent.

The film thickness was determined from transmis-
sion spectra (in the region of transparency) with due
account of light interference in the film as described in
[5]. The absorption spectra were measured on an SF-46
spectrophotometer in the energy region 2–6 eV. The
parameters of the long-wavelength excitonic bands
(position Em, half-width Γ, value of the imaginary part
of permittivity at the band maximum ε2m) were deter-
mined [6] by fitting the experimental relation with a
symmetric two-oscillator linear combination of a
Lorentzian and a Gaussian.

3. ABSORPTION SPECTRUM 
OF THIN K2CdI4 FILMS

The absorption spectrum of the thin films under
study exhibits a strong long-wavelength band A0 at
4.612 eV and a weaker band A1 at 4.97 eV; a shorter
wavelength region contains bands C1 (5.46 eV) and C2
(5.82 eV) (see figure). As the temperature is increased,
the A bands shift to longer wavelengths, broaden, and
grow weaker, which suggests their relation to excitonic
excitations. We assign the broader, less temperature-
sensitive C bands to interband absorption.

The spectral position of the A0 band (4.612 eV) as
plotted in the Em(x) coordinates, where x is the molar
concentration in the (2KI)1 – x(Cd0.5I)x system, lies on a
straight line connecting the energies Em of the excitonic
peak for KI and of the X1 peak for CdI2 at x = 2/3, which
shows the band to originate from the K2CdI4 compound
(see inset to figure). The alternate compound K4CdI6
(x = 0.5) would feature a long-wavelength peak at
4.88 eV. The assignment of the spectrum to K2CdI4 is
© 2005 Pleiades Publishing, Inc.
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supported by the proximity of the A0 band to the corre-
sponding bands of Rb2CdI4 and Cs2CdI4 (see table).

The sharp long-wavelength edge and the high inten-
sity of the A0 band suggest that K2CdI4 belongs to direct
bandgap dielectrics.

For proper assignment of the main absorption bands
observed in the spectrum of thin K2CdI4 films, it is rea-
sonable to compare it with the spectra of the starting
binary components CdI2 and KI (see figure) and of the
corresponding isostructural compounds Rb2CdI4 and
Cs2CdI4 [3, 4].

The absorption edge of CdI2 derives from indirect
transitions with a bandgap Eg = 3.437 eV. The long-
wavelength bands X1 and X2 originate from direct tran-
sitions between the valence band formed by the I 5p
states and the conduction band arising from the Cd 4s
states [7]. The separation between the X1 and X2 bands
(∆E = 0.59 eV) is determined by the spin–orbit splitting
of the upper valence band in CdI2.

Our measurements show the long-wavelength A
band in KI to lie at 5.84 eV at 90 K (see figure), which
agrees with the data from [8].

The A0 band in K2CdI4 occupies an intermediate
position between the X1 band in CdI2 and the A band in
KI. According to the concept put forward in [9] for mul-
ticomponent compounds, the linear variation in the
position of long-wavelength exciton bands in the KI,
K2CdI4, and CdI2 series (see inset to figure) indicates
exciton creation in the volume of the crystal involving
both sublattices of the compound. Nevertheless, we
believe that excitonic excitations are localized in the

 structural blocks of the compound. This assump-
tion is argued for by the positions of the main absorp-
tion bands in the spectra of K2CdI4, Rb2CdI4, and
Cs2CdI4 being close together (see table), as well as by
some features in the absorption spectra of these com-
pounds, which will be discussed later.

If excitonic excitations are localized in  struc-
tural blocks of the K2CdI4 crystal lattice, then the A0
and A1 bands originate from direct allowed transitions
from the top of the valence band arising from the I 5p
states to the conduction band deriving from the Cd 4s
states and the distance between these bands ∆EA = EA1 –

CdI4
2–

CdI4
2–
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EA0 is determined by the spin–orbit splitting of the
upper valence band, as in CdI2.

As already mentioned, while the absorption spectra
of thin M2CdI4 films (M = K, Rb, Cs) are similar in
structure and in the position of the main absorption
bands, the absorption edge in the series K2CdI4,
Rb2CdI4, and Cs2CdI4 shifts slightly shortward, with an
attendant increase in the bandgap Eg (see table). In
K2CdI4, the bandgap width Eg was estimated from the
bend in the absorption edge after isolation of the A0 and

A1 bands; from the value  = 5.18 eV thus obtained,Eg
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Absorption spectrum of thin films of (1) CdI2 (T = 90 K, t =
60 nm), (2) K2CdI4 (T = 290 K, t = 145 nm), (3) K2CdI4
(T = 90 K, t = 145 nm), and (4) KI (T = 90 K, t = 150 nm).
Inset: Em vs. molar concentration x for the
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Positions and splittings of the main absorption bands and the bandgap width

Compound EA0, eV EA1, eV ∆EA, eV EC1, eV EC2, eV ∆EC, eV Eg, eV ri, Å

K2CdI4 4.612 4.97 0.358 5.46 5.82 0.36 4.82 1.33 (K+)

Rb2CdI4 4.63 4.92 0.29 5.34 5.62 0.28 4.89 1.48 (Rb+)

Cs2CdI4 4.65 4.89 0.24 5.35 5.6 0.25 4.96 1.69 (Cs+)

CdI2 4.04 (X1) 4.58 (X2) 0.54 (∆EX)

KI 5.84 6.33
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the distance between the subbands ∆EA should be sub-
tracted, which yields Eg = 4.82 eV.

The short-wavelength shift of the absorption edge
and the growth of Eg is customarily assigned to the
higher ionicity of the compound [10]. However, in the
K2CdI4, Rb2CdI4, and Cs2CdI4 series, the ionicity
decreases, so the cause of the short-wavelength shift
should apparently be looked for in the specific features
of the crystal structure of these compounds.

The M2CdI4 lattice is built of  tetrahedra sur-
rounded by alkali metal ions M– forming a hendecagon
[11, 12]. Note that the alkali-metal–iodine bond lengths
greatly exceed dCd–I (for instance, in Cs2CdI4, we have
dCs–I = 3.825–4.499 Å, dCd–I = 2.76–2.91 Å [12]). The
lattice parameters and the unit cell volumes are similar
(a = 10.6, 10.7 Å; b = 8.4, 8.46 Å; c = 14.9, 14.85 Å;
and Ω = 1327, 1349 Å3 for Rb2CdI4 and Cs2CdI4,
respectively [4, 11, 12]). The ionic radius of alkali met-
als ri increases in the series K–, Rb–, and Cs– [13] (see
table), which, in view of the above data, apparently

gives rise to an increasing compression of the 
tetrahedra in M2CdI4 by the alkali-metal environment
and, accordingly, to the short-wavelength absorption
edge shift. According to [14], hydrostatic compression
of thin CdI2 films causes the absorption edge to shift to
shorter wavelengths. Because the shift coefficients are
different for the X1 and X2 bands, the separation
between the X1 and X2 bands decreases with increasing
pressure. The separation between the A0 and A1 bands in
the M2CdI4 series (M = K, Rb, Cs) decreases (see table),
which is in qualitative agreement with the results from
[14] in the case of excitonic excitations localized in

 tetrahedra and substantiates the assumption that
the splitting of the A band in M2CdI4, as in CdI2, is
indeed caused by spin–orbit splitting of the upper
valence band. This assumption is further supported by
the splittings of the C bands, ∆EC = EC2 – EC1, being
similar (see table).

4. CONCLUSIONS

The above suggests that excitonic and electronic

excitations in K2CdI4 are localized in  structural
blocks of the crystal lattice. The absorption edge in
K2CdI4 derives from direct allowed transitions from the
top of the valence band arising from I 5p states to the
conduction band deriving from Cd 4s states. The split-

CdI4
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CdI4
2–

CdI4
2–

CdI4
2–
P

ting of the A and C bands is caused by the spin–orbit
splitting of the valence band top.

The smaller spin–orbit splitting in M2CdI4 as com-
pared to pure CdI2 should be attributed to the effect of

alkali metal ions on structural blocks of the crys-
tal lattice; indeed, as the ionic radius ri increases, the

compression of the  tetrahedra by the alkali ion
environment increases, which gives rise to an increase
in the bandgap width Eg and to a decrease in the spin–
orbit splitting of the upper valence band in the com-
pounds under study.
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Abstract—The evolution of a microstructure of metals (or alloys) under irradiation resulting in swelling of the
material is considered for the case with the formation of Frenkel pairs. A closed system of equations describing
the evolution of the microstructure of the material exposed to irradiation is obtained, and relationships for the
swelling rate are derived. It is shown that the swelling rate varies linearly with time for a stationary source of
point defects (the number of Frenkel pairs per lattice site). An expression for the swelling rate is deduced for a
radiation source operating in a more realistic pulsed mode. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

It is well known that prolonged exposure of crystal-
line solids to irradiation by neutrons and ions with ener-
gies high enough for pairs of point defects (“interstitial
atom–vacant lattice site” pairs) to be generated in the
crystal lattice leads to the evolution of the microstruc-
ture and, consequently, the physical and mechanical
properties of the material. The evolution of the micro-
structure is governed by the porosity and the disloca-
tion subsystem arising in the material. Of course, the
rate of formation of the microstructure depends on the
type of irradiation and its characteristics (such as the
energy and charge spectra, cross sections for nuclear
reactions, etc.). In turn, these characteristics determine
the rates of generation of vacancies and interstitial
atoms, i.e., Frenkel pairs, and impurities of different
types, including gaseous impurities.

When the material is heated to temperatures above
the temperature at which point defects become mobile
(T ≥ 0.3Tmelt), their recombination is less pronounced
and the decomposition of the supersaturated solid solu-
tion predominantly occurs through the nucleation and
growth of two- and three-dimensional complexes (such
as vacancy pores, precipitates of new phases, and dislo-
cation loops of the interstitial and vacancy types) and
the development of the already existing dislocation
structure. Eventually, these processes lead to the evolu-
tion of the microstructure of the material.

In this paper, we consider the types of irradiation of
a material that are responsible only for the formation of
Frenkel pairs per lattice site in a unit time (k = kV = ki,
where the subscripts V and i refer to the vacancies and
interstitial atoms, respectively). The evolution of the
1063-7834/05/4703- $26.00 ©0477
microstructure of the material under irradiation results
in its swelling.

The physical reason for this phenomenon under the
given conditions is the difference between the sink
strengths of interstitial atoms and vacancies at the dis-
locations. In turn, this difference is determined by the
difference between the energies of interactions of point
defects (namely, vacancies V and interstitial atoms i)
with an elastic field of dislocations.

In this study, the evolution of a microstructure of
materials exposed to irradiation is analyzed by using
the example of a pure metal under conditions of pro-
longed formation and decomposition of a two-compo-
nent solid solution of vacancies and interstitial atoms
with the formation of vacancy pores and dislocation
loops, as well as with the climb of elements of the
already existing dislocation system. We disregard the
difference between dislocation loops and elements of
the dislocation structure with different orientations.

The evolution of a microstructure of a pure metal is
examined at the stage preceding the coalescence (or
Ostwald ripening) stage under conditions of both con-
tinuous and pulsed irradiation.

2. THE BASIC SYSTEM OF EQUATIONS

Let us write a system of equations describing the
evolution of a microstructure of a material under irradi-
ation. For this purpose, it is necessary to know the
fluxes of point defects incident on pores and disloca-
tions. It is these fluxes that determine the rates of their
development. In order to calculate the fluxes under the
conditions of the formation of point defects, we use ini-
tial equations, namely, non-steady-state diffusion equa-
tions that account for both the sources of point defects
 2005 Pleiades Publishing, Inc.
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(in the bulk of the material) and sinks. In the system
under consideration, the surfaces of macrodefects act as
sinks. The annihilation (recombination) of point
defects in the bulk of the material is insignificant and,
as a rule, can be ignored [1, 2]. In this exact formula-
tion, the problem is very complicated and has defied
analytical solution.

However, as a rule, the time required to attain a
quasi-steady state (or, in other words, the time taken to
adjust the spatial distribution of point defects to new
environmental conditions) is substantially shorter than
the characteristic time of change in the environmental
conditions. Taking into account this circumstance, the
above problem can be analytically solved with a high
degree of accuracy (of the order of the ratio between
these times as compared to unity) [1, 2]. In what fol-
lows, we will assume that this condition is satisfied.
The appropriate criterion will be formulated below,
because it is determined by the coefficients involved in
the equations under consideration. One important
remark needs to be made. Since we analyze the diffu-
sion processes occurring in an ensemble of macrode-
fects with sources of point defects, the flux of point
defects incident on a particular macrodefect should be
determined with due regard for the entire ensemble [1,
2]. It was shown earlier in [1, 2] that, at a sufficiently
small volume fraction of macrodefects (at a virtually
arbitrary fraction), the many-particle problem can be
reduced to a single-particle problem. Therefore, each
macrodefect can be considered in an effective medium
that is determined by averaging over the positions of all
macrodefects, except for a specified “range of influ-
ence” outside the given macrodefect [1, 2].

3. FLUXES OF POINT DEFECTS INCIDENT 
ON MACRODEFECTS

As was shown in [1, 2], the fluxes of vacancies and
interstitial atoms can be determined (with a high degree
of accuracy for calculating mean quantities) from the
following expressions:

(1)

per unit area of a pore;

(2)

jV
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per unit length of a dislocation line of a rectilinear dis-
location; and

(3)

per unit length of a circular dislocation loop.
In expressions (1)–(3), ∆V and ∆i are the supersatu-

rations of the material with vacancies and interstitial

atoms, respectively (∆V = cV – , ∆i = ci – ); cV and
ci are the concentrations of vacancies and interstitial

atoms, respectively;  and  are the equilibrium
concentrations of vacancies and interstitial atoms at a
planar interface, respectively; DV and Di are the diffu-
sion coefficients of vacancies and interstitial atoms in
the material, respectively; R is the pore radius; RD is the
radius of the dislocation loop;

where σ is the surface tension, ω is the volume per atom
in the material, and T is the temperature expressed in
terms of energy; and

where a is the lattice parameter of the material, G is the
shear modulus of the lattice, and ν is the Poisson ratio.

In the above expressions, the upper and lower signs
in parentheses refer to the vacancy and interstitial dis-
location loops, respectively; L is the length of the dislo-
cation cell in the material; rV is the radius of capture of
a vacancy by a dislocation; and ri is the radius of cap-
ture of an interstitial atom by a dislocation (ri @ rV).

In relationships (2) and (3), the radius of interaction
of point defects with dislocations is replaced by the
effective radius of capture. This replacement is fairly
justified because of the weak logarithmic dependences
of all the quantities on the interaction radius. Relation-
ships (2) and (3) describe the well-known fluxes of
point defects incident on macrodefects (rectilinear dis-
locations, dislocation loops) in the absence of sources
of points defects in the bulk of the material.

According to the results obtained in [1, 2], this
approximation is valid because the sources play an
important role in the balance of point defects and lead
only to small corrections to fluxes. In a zeroth-order
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ÃiDi ∆i

αD
i

RD

-------± 
  , Ãi–
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approximation, these corrections can be ignored. The
recombination of point defects can be disregarded in
virtually all cases [1, 2], because the additional terms
that appear in the fluxes due to the recombination are
small as compared to unity. These terms are of the order
of the following quantities:

 ! 1 (where R0V is the radius of influence 

of the pore: R0V @ R) 

for pores,

 ! 1 

for rectilinear dislocations, and

for ring dislocations.
Here, k0 is the zeroth-order Bessel function of the imag-
inary argument. For this function, we can write

where  ≈ lV is the radius of influence of dislocations
and lV is the length of screening of the diffusion field
(induced by point defects of a particular macrodefect)
by other macrodefects (elements of the microstructure)
[1, 2].

The balance equations for point defects in materials
under irradiation have the form

(4)

Here, F = ρ +  is the perimeter of disloca-

tion lines per unit volume, ρ ≈ 1/L2 is the density of dis-
locations capable of absorbing and emitting points
defects, f D is the radius distribution function of disloca-
tion loops per unit volume (in cm–4), fp is the size distri-
bution function of pores per unit volume (in cm–4),

 = –jV is the change in the radius of a pore due to

the flux of vacancies, K is the number of Frenkel pairs
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the change in the radius of the pore due to the flux of
interstitial atoms, and

(5)

A flux of point defects that is incident normal to the
pore surface is conventionally treated as positive.

In order to obtain a closed system of equations
describing the evolution of a microstructure of the
material under irradiation, the system of equations (1)–
(5) should be complemented by relationships for the
time evolution of the size distribution functions of an
ensemble of pores and dislocation loops and the rele-
vant initial data.

Our primary interest here is in the evolution of the
microstructure of the material at the stage of clearly
pronounced swelling when the dislocation subsystem is
stabilized and the number of pores varies rather slowly.
In this situation, the dislocation perimeter and the
slowly varying number of pores per unit volume can be
treated as quasi-steady-state to a good approximation.

Moreover, in the case where the inequality K–1 @
(ρDV)–1 or ρDV @ K is satisfied, we assume that Eqs. (1)
and (2) on the time scale K–1 are quasi-steady-state
equations.

To put it differently, the quantities ∆V and ∆i have
managed to “follow” the slow variation in the sinks and
the sources of point defects. This implies that equations
of system (4) on the time scale ∆t @ K–1 can be consid-
ered quasi-steady-state equations:

(6)

By subtracting the second expression from the first
expression in this system and making allowance for the
equalities

we obtain

(7)
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where N is the number of pores per unit volume. In this
relationship, we took into account that Ai = AV(1 + η),

η =  ! 1, and D* =  + .

Actually, we have Ai =  ≅  AV(1 + η) and  ≈

, where  is the mean pore size. By introduc-

ing the designations D*∆* = DV∆V – Di∆i or ∆* =

, relationship (7) can be rewritten in the

form

(8)

From expression (6) for Di ∆i, we obtain

(9)

The first two terms in relationship (8) determine the
excess of interstitial atoms that are captured by the dis-
location subsystem of the material in a unit time and
form additional atomic planes; in other words, these
terms describe the swelling of the material.

The second two terms in relationship (8) describe
the porosity that arises in a unit time per unit volume.
These terms are exactly equal to the first two terms.
This is evident because the porosity of the material is
governed by the additional lattice sites and, accord-
ingly, by the absence of sites from which atoms “pass”
into additional atomic planes.

The degree of swelling of the material is conve-
niently judged from its porosity. This is associated with
the fact that, in the dislocation subsystem, the growing
atomic planes merge together and form complete
atomic planes with virtually no change in the perimeter
of dislocations per unit volume in an already suffi-
ciently stabilized dislocation subsystem [3].

As a result, the swelling rate  can be written in the
form

(10)

where the prime sign indicates the derivative with

respect to time. After substituting the expression  =

 into formula (9), the quantities D*∆* and Di ∆i
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can be calculated from relationships (8) and (9) in the
following form:

(11)

. (12)

4. SWELLING OF A MATERIAL EXPOSED
TO IRRADIATION

Upon substituting expressions (11) and (12) into
relationship (10), we obtain the following formula for

the swelling rate  =  = :

(13)

where P = AV F + 4πN  is the total perimeter of dislo-
cations and pores per unit volume ([P] = [cm–2]).

Relationship (13) can be simplified as follows. Tak-
ing into account that, in this case, the inequalities

 < 1,  < D*, and η ! 1 are satisfied, we

obtain a simpler expression without regard for the small
term in parentheses, that is,
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4πN  = b > 0, and P = a + b, we find that the factor

 ≤  ahead of the brackets in expression (15)

has a maximum value under the conditions 0 < a < ∞

and 0 < b < ∞. As a result, we obtain  = ,

which is the maximum value taken by this function. It
is worth noting that this function slowly varies in the
vicinity of its maximum over a sufficiently prolonged
period of time.
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Let us consider in more detail the behavior of the
factor ahead of the brackets in expression (15), namely,

with due regard for the following.
The scenario of the evolution of the microstructure

can be divided, with a high accuracy, into three stages.
(1) Irradiation of the material initiates the onset of

the incubation stage. This stage involves slow nucle-
ation of an ensemble of vacancy pores. An increase in
the supersaturation of solid solutions formed by point
defects leads to a drastic increase in the nucleation rate.
This is accompanied by a rapid increase in the number
of vacancy pores per unit volume NV(t) and a rather

slow increase in the mean pore size . For cold-
deformed materials, we can write the following ine-
quality:

It can be seen from expression (15) that, at the first
stage of the evolution of the microstructure, the power

Q of the “effective source” ( ) increases.

(2) The onset of the second stage is specified by the
condition

The same condition determines the duration of the first
stage.

The evolution of the microstructure at the second
stage is characterized by a maximum power of the
effective source. This can be judged from the condition
specifying the onset of the second stage. The power of
the effective source at this stage is determined by the
relationship

(3) The onset of the third stage, during which the
power Q of the effective source decreases with time, is
governed by the condition

This condition also determines the duration of the sec-
ond stage. Indeed, it follows from expression (15) that,
within the time intervals for which the inequality
4πN (t) @ AV F holds, we have

(16)
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Therefore, beginning from this stage, the swelling is
governed by the effective vacancy source decaying with

time [4], because the factor 4πN  increases with time.
It was shown earlier in [4] that, at sufficiently long

times, the relationship  ∝  t1/3 is satisfied not only in
the case where the total number of excess vacancies
(volume) or impurity atoms remains unchanged but
also under the condition where sources of these defects
exist. According to the results obtained in [4], the
sources responsible for the appearance of an excess vol-
ume can be separated into three groups, namely, decay-
ing (n < 1), stationary (n = 1), and growing (1 < n < α)
sources. The parameter α is determined by the mecha-
nism of mass transfer. The excess vacancies (or the
material) have had time to be absorbed by growing par-
ticles of the new phase. This process is accompanied by
a decrease in the supersaturation of the system and,
accordingly, in the number of new-phase particles [4].

For decaying sources, we obtain N ∝  tn – 1,  ∝  t1/3, and

εii ∝  tn, where n < 1. Moreover, we have N  ∝  tn – 2/3;
that is,

(17)

It can be seen from relationships (16) that the self-

consistent source (εii ∝   ∝  tn) is characterized by

n = 5/6 [5]. As a consequence, expressions (17) take the
form

(18)

Hence, it follows that the factor 

varies very slowly with time in the range of its maxi-
mum (a change in the time interval by several orders of
magnitude leads to only an insignificant variation in
this factor). It is also evident that the exposure of the
material to irradiation over the period of time corre-
sponding to the most efficient operation of the source
makes the main contribution to the swelling.

Therefore, beginning from the instant at which

AV F ≈ 4πN , the factor  in expres-

sion (15) can be taken equal to its maximum value of
1/4. Hence, in this time interval, which is most impor-
tant for the swelling of the material, relationship (14)
can be represented in the very simple form
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As can be seen from relationship (19), the swelling rate
for a stationary source is linear in time:

(20)

5. PULSED IRRADIATION

As was noted above, the quasi-steady-state approx-
imation can be used under the conditions of so-called
rapid adjustment when the concentration profiles of the
supersaturated solid solutions formed by vacancies and
interstitial atoms have had time to adjust to the varying
conditions of irradiation in a cycle. These conditions
are specified by the following relationships:

for an ensemble of vacancy pores,

where

for dislocations

where

Here, ∆t1 is the duration of irradiation in one cycle and
∆t2 is the pulse separation in one cycle.

The second type of conditions that offer the possi-
bility of averaging over cycles in the framework of the
proposed approach can be formulated as follows: the
changes in the parameters of the ensembles of pores
and dislocations for a time ∆t2 in one cycle should be
small. Quantitatively, these conditions can be written in
the following form:

for pores,

for interstitial dislocation loops,

Here,  and  are the times of evaporation of a
pore and a dislocation loop, respectively, with sizes
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averaged over the ensemble in the absence of irradia-
tion.

For pulsed operation of the source K, when the
source operates for a time ∆t1 and does not operate for
a time ∆t2, we have

(21)

where t = (∆t1 + ∆t2)n is the duration of n cycles of
pulses from the point-defect source. Note that, in rela-
tionship (21), the term associated with the solid solu-
tion contributes to the swelling rate throughout the
source-operation period.

As follows from relationship (21), in order to
increase this term, it is necessary that the number of
nucleated pores at the nucleation stage for the given K
be as large as possible.

It should be remembered that relationship (21) was
derived from the expressions describing the fluxes of
vacancies incident on pores in the quasi-steady-state
approximation. This holds true for the inequality ∆t1 @

. Here,  is the mean size of pores formed in the
course of the preceding cycles and DV is the diffusion
coefficient of vacancies.

Moreover, the condition for a small change in the
parameters of the system during one cycle of the source
operation should be satisfied; that is,

6. CONCLUSIONS

It should be noted that, when irradiation leads to
nuclear reactions with the formation of an atomic gas,
this factor proves to be very important for the source of
atoms per lattice site:

This can be explained by the fact that the fluxes of
gas atoms incident on pores bring about separation of
the fluxes of point defects. In this case, vacancies pre-
dominantly pass into pores with the gas, whereas inter-
stitial atoms are involved in the dislocation subsystem.

The mechanical load acting on the material results
in an asymmetric distribution of pores in the grain
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boundaries and thus substantially affects the material
structure. The initial stage of the evolution of the micro-
structure (nucleation of pores filled with a gas under
irradiation) plays an important role in the swelling of
materials. All these problems will be considered in
future publications.
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Abstract—It is shown that a spatially localized collective excitation of the crystal lattice (soliton) can form and
propagate in a structurally unstable crystal. This soliton is a structural defect consisting of two interphase
boundaries separated by another phase and can be considered a pulse of the elastic-strain field with a charac-
teristic length l ≈ 10–8–10–4 cm and a duration τp ≈ 10–13–10–9 s. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In continuum mechanics, it is postulated that the
local topology of a medium does not change under
deformation, i.e., that the particles located in the imme-
diate vicinity of a material particle remain the same. In
other words, the structure and interparticle links are not
rearranged. Based on this smooth-manifold model, an
elegant phenomenological theory of elastic continuum
has been developed [1]. At the present time, however, it
has become clear that many phenomena associated with
structural phase transformations, the formation of
defects, plasticity, and fracture of crystals cannot be
treated in terms of a model of a medium with invariable
local topology. Changes in the structure of real solids
must be taken into account.

In [2], it was proposed that, in a crystal subjected to
an external mechanical force, there appear structural
states of another lattice in the space of interstitial sites
in addition to the structural states of the original crystal
lattice. Therefore, in a loaded crystal lattice, the atoms
have additional degrees of freedom; the crystal trans-
fers to a state with low shear stability, and its behavior
becomes nonlinear.

In crystals undergoing a martensitic transformation
under an external influence, the low shear stability and
crystal lattice nonlinearity can be simply taken into
account using the model of double-well crystal poten-
tial for atoms and the pseudospin representation [3]. By
combining the ideas put forward in [2, 3], we assume
that, in a loaded crystal, the structural instability and,
hence, the double-well crystal potential for atoms arise
even at the nonlinear-elasticity stage.

In the course of loading a crystal, according to the
experimental stress–strain curve, the stage of linear
elastic strains is followed by a stage of nonlinear elastic
strains [1]. The latter stage is characterized by various
anomalous effects, e.g., an experimentally observed
increase in the velocity of sound [4]. At the nonlinear-
elasticity stage, nonlinear collective excitations appear
in the crystal lattice, which determine the nonlinear
1063-7834/05/4703- $26.00 ©0484
behavior of the crystal. It is convenient to study local-
ized collective excitations in a crystal in terms of a
quantum system of pseudospins [3], which interacts
with pulses of the elastic-strain field.

A few recent experimental and theoretical studies
have been devoted to the interaction of an elastic-strain
field with matter [5–7]. It is of particular interest to con-
sider the case where elastic-strain pulses are several
oscillation periods long (ultrashort pulses). Lasers
make it possible to generate nanosecond and picosec-
ond pulses [6, 7]. Solutions for ultrashort pulses in the
form of unipolar (half-wave) solitons and dissipative
structures were found in [8, 9]. In a structurally unsta-
ble crystal, two energy levels interacting strongly with
the elastic-strain field are considered and treated as an
even and an odd state of an atom moving in a double-
well crystal potential. These states differ in energy due
to quantum tunneling of the atom between the two
wells of the crystal potential. The frequency separation
ω0 between these states in a structurally unstable crystal
is typically 109–1013 s–1 [3], which is a few orders of
magnitude less than the electron transition frequencies.
Therefore, at frequencies much lower than the optical
electron transition frequencies, an elastic-strain pulse
will interact predominantly with two energy levels of
an atomic system. The probability of optical transitions
between these levels will be small. In this paper, we
study the interaction of an ultrashort elastic-strain pulse
with a structurally unstable crystal.

2. THE HAMILTONIAN 
AND BASIC EQUATIONS

We write the Hamiltonian of the system in question
in a semiclassical approximation in which the structur-
ally unstable crystal is described quantum mechani-
cally and the elastic-strain field is treated classically.
The length of an ultrashort pulse is assumed to be l =
cτp ≈ 10–8–10–4 cm @ a, where c is the velocity of
sound, τp ≈ 10–13–10–9 s is the pulse duration, and
 2005 Pleiades Publishing, Inc.
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a ≈ 10–9 cm is the characteristic length scale of the dou-
ble-well potential. For the sake of simplicity, we use the
molecular-field approximation (MFA) [10], in which
each atom is assumed to move in a mean field produced
by the other atoms. This approximation makes it possi-
ble to describe a structural transition from the initial to
the final phase via a pretransition state under an exter-
nal influence [3].

The Hamiltonian of a pseudospin quantum system
interacting with the internal molecular field can be writ-
ten in the MFA in the form

(1)

where " is the Planck constant; "ω0 is the energy differ-
ence between the even and odd states of an atom; "J0
and "I0 are the two- and three-particle interaction con-
stants of pseudospins, respectively, characterizing the
asymmetry of the double-well potential; the angular
brackets signify the quantum averaging; Sx, Sy, and Sz

are the Pauli operators; and summation over a is carried
out over all atoms on the crystal lattice.

An elastic-strain pulse is assumed to propagate
through a three-dimensional structurally unstable crys-
tal and cause a change in the asymmetry of the double-
well potential. This change is described by the Hamil-
tonian

(2)

where  is the elastic-strain tensor of the crystal at
the atomic lattice site a, related to the atomic displace-

ments Ua = ( , , ) through the equation

(3)

and Fpq are the pseudospin–phonon coupling constants.
In addition to Hamiltonians (1) and (2), we use the

Hamiltonian of the elastic-strain field

(4)

where ρ is the average density of the crystal, Pj (j = x,
y, z) is the elastic-strain field momentum associated
with dynamic displacements, and λjklm is the elastic-
modulus tensor of the crystal [1]. Integration in Eq. (4)
is performed over the entire volume of the crystal. Here,
the semiclassical approximation is used in which the
pseudospin dynamics is described quantum mechani-
cally and the elastic-strain field is treated classically.
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Thus, the total Hamiltonian of the system is

(5)

In the semiclassical approximation, the evolution of the
spin operator is governed by the Heisenberg equation

(6)

and the elastic-strain field is described by the classical
Hamilton equations for a continuum,

(7)

With Eqs. (7), the classical interaction Hamiltonian
〈Hint 〉  can be written as

(8)

Here, n(r) = (r – ra) is the atomic density distri-
bution function and δ(r – ra) is the Dirac delta function.

Let a longitudinal–transverse elastic-strain pulse be
propagated in a cubic crystal parallel to one of the four-
fold axes (taken to be the z axis). We consider the one-
dimensional case where all dynamic variables depend
only on z and t. The symmetry operations of the system
under study in this case are rotations through 90° about
the z axis (x  y, y  –x, z  z) and reflections
x  –x and y  –y. Taking into account that the
vector S is axial, i.e., that, under reversal of one of the
coordinate axes, the corresponding component of this
vector remains unchanged and the other two change
sign, the Hamiltonian Hint can be rewritten as

(9)

where F1 = Fzz and F2/2 = Fxz = Fzx = Fyz = Fzy.

Under the above assumptions, the Hamiltonian Hph
takes the form

(10)

In Eq. (10), we use the Voigt notation for fourth-rank
tensors: λ11 = λzzzz and λ44 = λxzxz = λyzyz From Eqs. (7)–
(10), we obtain

(11)

(12)
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where a|| = , a⊥  = , U = 〈Sx 〉 , W = 〈Sy 〉 ,
and R = 〈Sz 〉 .
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Taking the quantum average of the Heisenberg
equations (6), we obtain a set of equations for U, W, and
R. By putting the derivatives equal to zero in the left-
hand side of Eq. (6), we find the equilibrium values U0,
W0 = 0, and R0. Introducing the notation U = U0 + u,
W = w, and R = R0 + r, we obtain the following set of
equations for the deviations of the quantum values of
the components of the pseudospin S = (Sx , Sy , Sz) from
their equilibrium values in the case where the shear
component of the elastic-strain pulse Ω = F2(εxz + εyz) is
nonzero and εzz = 0:

(14)

(15)

(16)

Here, ω1 = J0R0 + , ω2 = ω0 – , and  = J0 +
2I0R0. The set of equations (14)–(16) should be solved
in combination with Eq. (13) for the shear component
of the elastic-strain field, which can be rewritten in the
new notation in the form

(17)

The set of equations (14)–(17) is closed and self-
consistently describes the dynamics of both the struc-
turally unstable crystal and an elastic-strain pulse prop-
agating in it.

In general, the nonlinear set of equations (14)–(17)
is very difficult to analyze. Therefore, following [8, 9],
we consider the case where

(18)

Here, ω+ and ω– are the frequencies of the soft pseu-
dospin mode in the pretransition state and in the initial
(or final) phase, respectively. The spectral width of an

ultrashort pulse is ∆ω ≈  ≈ 1012–109 s–1. Therefore,
for the low-frequency mode, we have ω±τp > 1. Putting
ω± ≈ 1012–109 s–1, we obtain τp > 10–12–10–9 s.

Condition (18) is more stringent than the restriction
to low frequencies under which the MFA does not dis-
tort the real pattern of the interaction between an
ultrashort pulse and the structurally unstable crystal.
Under condition (18), the dynamic parameters of an
elastic-strain pulse vary fairly slowly, which indicates
that the interaction of the pulse with the crystal is weak
and the crystal is excited insignificantly. Therefore, we
can assume that the nonlinear effects in the process
under study are weak.
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3. SOLITON IN A CRYSTAL 
IN THE PRETRANSITION STATE

In the pretransition state [3], the order parameter R0

is zero and U0 = (1/2) ; therefore, we
have ω1 = 0 and ω2 ≠ 0. By differentiating Eq. (16) with
respect to time and substituting Eq. (15) into it, we
obtain

(19)

Using inequality (18), it can be found that the left-hand
side and the last term in the right-hand side of Eq. (19)
are of a higher order of smallness than the first two
terms in the right-hand side. Therefore, we can solve
Eq. (19) for r using an iterative method. Taking into
account the relation between r and Ω , we reduce
Eq. (17) to a close nonlinear equation for Ω:
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where

The right-hand side of Eq. (20) contains a nonlinear
and a dispersion term and, hence, is of a higher order of
smallness than the terms in the left-hand side. There-
fore, we can use the approximation of unidirectional
propagation along the tunneling axis (parallel to the z
axis) in much the same manner as was done in [8, 9]. As
a result, we obtain
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where τ = t – z/ . Equation (21) is a modified
Korteweg–de Vries equation,
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where

A single-soliton solution to Eq. (22) has the form
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where

Solution (23) describes a unipolar (half-wave) soliton.
Unlike the envelope soliton, this soliton does not con-
tain high-frequency oscillations. If the interaction of
the elastic-strain pulse with the crystal in the pretransi-
tion state stimulates the appearance of the initial phase
εxz + εyz > 0 (or, alternatively, the final phase εxz + εyz <
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0), then the initial phase with r > 0 (or the final phase
with r < 0) arises inside the soliton.

It follows from Eq. (23) that the velocity of this soli-
ton exceeds the phase velocity  of a low-frequency
plane wave. It should be stressed, however, that the con-
stitutive equations (14)–(16) do not include relaxation.
This approximation is valid with the proviso that

(24)

where γ is a relaxation parameter characterizing the
soft-mode damping. To make an estimate, let us
assume that γ ≈ 108 s–1 and is practically independent
of temperature for the structurally unstable crystal in
the pretransition state. Putting also ω0 ≈ 1013 s–1, ω± ≈
ω0(T±)–1/2 |T – T± |1/2, T± ≈ 102 K, |T – T±| = 10 K, and
|T – T±|/T± ≈ 10–1, we find that ω± ≈ 10–1/2ω0 = 3 ×
1012 s–1 and inequality (24) is not satisfied for  =
1013 s–1. Therefore, solitons 10–13–10–9 s long of the
type considered here are not excited at temperatures
close to the stability limits T±.

4. SOLITON IN THE INITIAL 
OR FINAL PHASE OF THE CRYSTAL

Let us consider the crystal in the initial state with
R0 > 0 (or the final state with R0 < 0), where R0 ≠ 0 and,
hence, ω1 ≠ 0. By differentiating Eq. (16) and substitut-
ing Eq. (15) into it, we find

(25)

We solve Eq. (25) for r using an iterative method and
then, taking into account the relation between r and Ω ,
reduce Eq. (17) to a close nonlinear equation for Ω ,

(26)

where

The right-hand side of Eq. (26) contains a nonlinear and
a dispersion term and, hence, is of a higher order of
smallness than the terms in the left-hand side. There-
fore, we can use the approximation of unidirectional
propagation along the tunneling axis parallel to the z
axis. As a result, we find
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where τ = t – z/ . Equation (27) is the Korteweg–de
Vries equation

(28)

where

A single-soliton solution to Eq. (28) has the form

(29)

where

The velocity of the soliton exceeds the phase veloc-
ity  of a low-frequency plane wave, as is the case in
the pretransition state. If the crystal in the initial (or
final) state interacts with an elastic-strain pulse stimu-
lating the appearance of the final phase εxz + εyz < 0 (or
the initial phase εxz + εyz > 0), then the final phase with
r < 0 (or the initial phase with r > 0) arises inside the
soliton.

In the immediate vicinity of the stability limits T±,
the soliton described by Eq. (29) cannot form due to
high damping of the soft mode. Indeed, at |T – T±| = 1 K
and |T – T±|/T± ≈ 10–2, where the critical-oscillation fre-
quency is ω– ≈ J0(T±)–1/2 |T – T±|1/2 ≈ 1013 s–1, J0 ≈
1014 s–1, and Tc ≈ 102 K, the soliton with a duration of
less than τp ≈ 10–12 s is not excited. Therefore, solitons
10–13–10–9 s long of the type considered here cannot be
excited at temperatures close to the stability limits T±.

5. DISCUSSION OF THE RESULTS

From the results described above, we can draw the
important conclusion that a spatially localized collec-
tive excitation of the atomic lattice—a soliton—can be
excited and propagated in a structurally unstable crys-
tal. This soliton is, on the one hand, a structural defect
consisting of two interphase boundaries with another
phase between them and, on the other hand, an elastic-
strain pulse with a characteristic length l ≈ 10–8–
10−4 cm and a duration τp ≈ 10–13–10–9 s. The soliton
velocity slightly exceeds the velocity of a plane acous-
tic wave, which is likely the reason why the velocity of
sound is experimentally observed to increase at the
stage of nonlinear elastic strains [4].

It is reasonable to assume that the soliton found the-
oretically to arise in a structurally unstable crystal is the
collective nonlinear excitation responsible for the
behavior of the lattice at the stage of nonlinear elastic
strains.
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The elastic-strain soliton can arise in a structurally
unstable crystal system only if a soft undamped mode
exists. However, as the crystal stability limit is
approached, the frequency of the corresponding soft
mode tends to zero, whereas the relaxation parameter γ
remains practically unchanged. Therefore, in the imme-
diate vicinity of the stability limits T±, the soft mode in
a structurally unstable crystal is generally overdamped
and the elastic-strain soliton cannot arise in this case.
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Abstract—The optical absorption spectra of single-crystal ferroborate GdFe3(BO3)4 and GdFe2.1Ga0.9(BO3)4
are measured and interpreted. It is found that the absorption edge and the absorption bands A, B, and C observed
below the edge are close to those for FeBO3. A many-electron model of the band structure of GdFe3(BO3)4 is
suggested including strong electron correlations between the iron d states. It is shown that GdFe3(BO3)4 has a
charge-transfer dielectric gap. A rise in pressure is predicted to result in a crossover between the high-spin and
low-spin states of the Fe3+ ion, collapse of the magnetic moment, a weakening of Coulomb correlations, an
abrupt reduction in the energy gap, and an insulator–semiconductor transition. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

For more than 30 years, studies of the rare-earth
oxiborates with the huntite structure RM3(BO3)4 have
been carried out in order to fabricate high-efficiency
functional materials for laser, piezoelectric, and acous-
tic devices. These crystals, along with the high-temper-
ature superconductor cuprates and manganites exhibit-
ing colossal magnetoresistance, are examples of sys-
tems with strong electron correlation (SEC). SEC
determines their electronic structure and magnetic,
optical, and electrical properties.

The rare-earth ferroborate GdFe3(BO3)4 has the

huntite structure belonging to space group R32( ),
with Z = 3. The rare-earth Gd3+ ions have a prismatic
environment, and the Fe3+ ions have an octahedral envi-
ronment [1]. GdFe3(BO3)4 is known to be an easy-plane
antiferromagnet with a Néel temperature TN = 38 K [2,
3]. At 10 K, all the sublattices are subjected to the spin-
flop reorientation transition into the easy-axis antiferro-
magnetic (AFM) phase. This material is an insulator at
room temperature.

Of the entire collection of oxiborates of transition
metals, FeBO3 ferroborate is the most interesting and
most similar for comparison with the single-crystal
GdFe3(BO3)4 studied in the present work. This com-
pound has been studied for a long time, and its mag-
netic [4, 5], optical [6], and dielectric properties are
well known. Recently, optically induced disordering of
the magnetic order was observed to occur in this com-
pound under pulsed optical pumping [7]. At normal
pressure, this material is a charge-transfer insulator
with an optical gap of 2.9 eV [6, 8]. FeBO3 is a typical
representative of the systems with SEC [9]. Recent
studies of this compound under high pressure have

D3h
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shown dramatic changes in its magnetic and electrical
properties associated with the insulator–semiconductor
transition [10–12].

This work is devoted to the optical absorption spec-
tra and the electronic structure of GdFe3(BO3)4, which
have not yet been studied. Section 2 describes the spec-
imens and experimental techniques used. In Section 3,
we present the measured optical absorption spectra of
GdFe3(BO3)4 and GdFe2.1Ga0.9(BO3)4. In Section 4, the
optical properties are analyzed in the terms of the multi-
band model of the electronic structure of GdFe3(BO3)4
and are compared with those of FeBO3. Section 5 is
concerned with predictions of the influence of an
increase in pressure on the optical properties and elec-
tronic structure.

2. SPECIMENS AND EXPERIMENTAL 
TECHNIQUE

GdFe3(BO3)4 and GdFe2.1Ga0.9(BO3)4 single crys-
tals were grown from a solution in melt using the group
technique with a seed [13]. The obtained single crystals
were dark green (GdFe3(BO3)4), green
(GdFe2.1Ga0.9(BO3)4), or transparent in the visible
region. To carry out optical measurements, specimens
from bulk isometric crystals were prepared in the form
of thin plates with their planes either parallel or normal
to the threefold axis C3. The thickness of the plates
intended for optical measurements was about 53 µm for
the first crystallographic orientation of plates and about
42(37) µm for the second orientation, with the area of
plates in both cases being about 2 mm2. The spectra of
optical absorption D = ln(I0/I) for both GdFe3(BO3)4
and GdFe2.1Ga0.9(BO3)4 were obtained using a double-
beam spectrometer (designed at the Institute of Physics,
© 2005 Pleiades Publishing, Inc.
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Siberian Division, Russian Academy of Sciences) in
the range 10000–40000 cm–1 (1.24–4.96 eV) at 300 K.
The slit spectral width of the grating monochromator
used was 10 cm–1. The absorption was measured with
an accuracy of 3%.

3. OPTICAL ABSORPTION SPECTRA 
OF GdFe3(BO3)4 AND GdFe2.1Ga0.9(BO3)4

The measured optical absorption spectra of
GdFe3(BO3)4 and GdFe2.1Ga0.9(BO3)4 are shown in
Fig. 1. In the spectrum of GdFe2.1Ga0.9(BO3)4, the B
peak is clearly observed to split. In Fig. 2, the
GdFe3(BO3)4 absorption spectra for two directions of
the incident light beam with respect to the crystallo-
graphic C3 axis are shown in comparison with the spec-
trum of the well-known compound FeBO3 [6, 8].

2.0 2.2
0.60

0.64

0.68(a)

(b)

A
B

C
B

B

A

C

0.6

0.7

0.8

0.9

1.0
lo

g
(I

0/
I)

1.4 1.8 2.2 2.6 3.0
E, eV

2.0 2.2
0.935

0.940

0.945

1.0

1.1

1.2

lo
g

(I
0/

I)

B

Fig. 1. Optical absorption spectra at T = 300 K for
(a) GdFe3(BO3)4 and (b) GdFe2.1Ga0.9(BO3)4.

B–O and Fe–O lengths and the energy gaps in FeBO3 and
GdFe3(BO3)4

B–O, Å Fe–O, Å Eg, eV

FeBO3 1.3790 2.028 2.9

GdFe3(BO3)4 1.3676 2.029 3.1
PH
The energy band gap, which determines the funda-
mental absorption edge in GdFe3(BO3)4, is equal to
Eg = 3.1 eV, which is slightly higher than the corre-
sponding value in FeBO3 (Eg = 2.9 eV). Three groups
of bands were observed (at E = 1.4, 2.0, 2.8 eV), which
were the same for both crystallographic orientations. It
was found that the bands in the spectra of GdFe3(BO3)4
and FeBO3 have similar energies to within an accuracy
of several tenths of an electronvolt. Based on this simi-
larity, we assumed that the optical properties of FeBO3
and GdFe3(BO3)4 are identical in the range 1.0–3.5 eV.

The influence of the rare-earth Gd3+ ion on the opti-
cal spectrum was clarified by studying high-resolution
Fourier spectra. It was established that the Gd3+ ion
does not have any fundamental absorption bands up to
32264 cm–1 (4 eV) [14]; therefore, the A, B, C bands
can be associated with absorption of Fe3+ ions. Thus, all
transitions are related to the Fe3+ ion and its nearest
environment.

The difference between the local crystal structures
of GdFe3(BO3)4 and FeBO3 is as follows: the single-
crystal GdFe3(BO3)4, unlike FeBO3, has a slightly dis-
torted coordination oxygen octahedron FeO6 and three
pairs of equal Fe–O lengths that are fairly close in value
(the table shows the mean lengths for GdFe3(BO3)4).

(a)

(b)

(c)

A B

C

0

0.1

0.2

0.3

0.4

0.5

D

0

0.2

0.4

0.6

0.8

1.0

D

1.2 1.6 2.0 2.4 2.8 3.2
E, eV

0
0.5
1.0
1.5
2.0
2.5
3.0

D
A B

C

Fig. 2. Optical absorption spectra (a, b) of GdFe3(BO3)4 for
the c and a directions, respectively, and (c) of FeBO3.
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Therefore, along with the cubic component, the crystal
field also has a low-symmetry component. However,
this component is small and we will neglect it in our
further discussion.

Thus, the band groups A, B, and C observed in
GdFe3(BO3)4 (as well as in FeBO3; Fig. 2c) can be
interpreted as d–d transitions from the ground state of
iron ions with spin S = 5/2 to an excited state with spin
S = 3/2, more specifically, 6A1g(6S)  4T1g(4G) for the
A group of bands, 6A1g(6S)  4T2g(4G) for the B group,
and 6A1g(6S)  4A1g, 4Eg(4G) for the C group. Further-
more, the Fe–O and B–O lengths (see table) for
GdFe3(BO3)4 and for FeBO3 are virtually identical,
which allows one to infer that the electronic structures
of these two crystals are similar in the energy range up
to 4 eV in the vicinity of the Fermi level.

4. ANALYSIS OF THE OPTICAL PROPERTIES 
OF GdFe3(BO3)4 IN TERMS 

OF A MULTIELECTRON MODEL OF THE BAND 
STRUCTURE OF OXIBORATES: 

COMPARISON WITH FeBO3

This section contains an analysis of the properties of
GdFe3(BO3)4 in the terms of the multielectron model
used in [15] to calculate the FeBO3 band structure. This
model is also valid for GdFe3(BO3)4 in the energy range
up to 4 eV.

In insulator GdFe3(BO3)4, there are localized Fe3+ d
electrons in FeO6 octahedra and localized Gd3+ f elec-
trons in the GdO6 triangle prism. Within the BO3 group,
strong sp hybridization occurs between the boron and
oxygen orbitals. According to calculations of the
FeBO3 band structure, the hybridization of the Fe d
electrons with the sp electrons of the BO3 group is neg-
ligibly small. The top of the filled valence band Ev and
the bottom of the empty conduction band Ec are formed
by the sp orbitals of the BO3 group, which, therefore,
determine the band gap Eg = Ec – Ev.

According to one-electron first-principles calcula-
tions, in the case where the Fe3+ d5 terms and Gd3+ f 7

terms are partly occupied, there will be partly filled
bands, which corresponds to the metal state. However,
owing to SEC, both the d and f electrons are in the
Mott–Hubbard insulator regime. Therefore, in order to
adequately describe the electronic structure and the
optical properties of GdFe3(BO3)4, the multielectron
approach should be used with inclusion of SEC. Since
the bond lengths within the BO3 group are close to the
corresponding lengths in FeBO3 (see table), we can
assume that the band gaps Eg = Ec – Ev are also similar
for these crystals. A certain decrease in the B–O bond
length in GdFe3(BO3)4 results in strengthening of the
B–O hybridization and in Eg increasing to 3.1 eV as
compared to 2.9 eV in FeBO3. The one-electron
scheme of the valence and conduction bands is super-
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
imposed by one-particle d- and f-electron resonances at
energies

(1)

where E(dn) and E( f n) are the energies of the many-
electron terms of iron and gadolinium. These energies
are calculated with inclusion of SEC effects. Since Fe–
O and Gd–O hybridization is weak, the Ω levels inter-
act with sp bands of the BO3 group only weakly.

The absence of absorption for the Gd3+ ion within
the energy range "ω ≤ 4 eV indicates that the filled level
Ωfv = E( f 7) – E( f 6) is very low, while the empty level
Ωfc = E( f 8) – E( f 7) is very high. Therefore, only iron d
states fall into the band gap Eg and we can conclude that
the electronic structures of FeBO3 and GdFe3(BO3)4 in
the energy range studied are similar. Moreover, because
the Fe–O lengths of the FeO6 octahedra are similar in
FeBO3 and in GdFe3(BO3)4, we may also expect that
the same will be true for both the Racah parameters A,
B, and C and the cubic crystal-field component ∆ =
εd(eg) – εd(t2g) for the iron ion. Taking SEC into
account, the energies of the fundamental terms of the dn

configurations can be expressed in terms of these
parameters as follows [15, 16]:

(2)

Here, εd is the one-electron energy of a d electron in the
atom. In the cubic crystal field, this level splits: εd(t2g) =
εd – 0.4∆ and εd(eg) = εd + 0.6∆. The Racah parameters
and the crystal field depend on the number of d elec-
trons in the dn configuration; however, this dependence
is weak and we neglect it for the sake of simplicity. In
the GdFe3(BO3)4 compound, as in FeBO3, the d–d tran-
sitions in Fe3+ with the energies

(3)

determine the absorption spectrum at "ω < Eg. Using
the experimental energies of d–d transitions and the
Tanabe–Sugano diagrams, the Racah parameters are
determined to be B = 0.084 eV, C = 0.39 eV, and ∆ =
1.57 eV; these parameters are similar to the Racah
parameters for FeBO3. The parameter A and the one-
electron energies εd are determined by the Fe3+ ion and
are taken to be the same as in FeBO3 [15], namely, A =
3.42 eV and εd = –14.84 eV.

The high intensity of absorption band C in the spec-
trum of GdFe3(BO3)4 is explained, as in FeBO3, by the
superposition of an additional charge-transfer absorp-

Ωd E d
n 1+( ) E d

n( ), Ω f– E f
n 1+( ) E f

n( ),–= =

E E5
1 d

4,( ) 4εd 6A 21B– 0.6∆,–+=

E A6
1 d

5,( ) 5εd 10A 35B,–+=

E T5
2 d

6,( ) 6εd 15A 21B– 0.4∆.–+=

εA E T4
1( ) E A6

1( ), εB– E T4
2( ) E A6

1( ),–= =

εC E E4
1( ) E A6

1( )–=
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tion mechanism, i.e., by the p6d5–p5d6 process. The cre-
ation of an excess electron due to the Fe3+  Fe2+

transition (Fig. 3) requires an energy

(4)

Similarly, the annihilation of an electron is associated
with the Fe3+  Fe4+ transition and requires an energy

(5)

The levels Ωc and Ωv are expressed in terms of the
Racah parameters as

(6)

(7)

and can be interpreted as the top and bottom Hubbard
subbands. The difference between them determines the
effective Hubbard parameter

(8)

Ωc E T5
2 d

6,( ) E A6
1 d

5,( ).–=

Ωv E A6
1 d

5,( ) E E5
1 d

4,( ).–=

Ωc εd 5A 14B 0.4∆,–+ +=

Ωv εd 4A – 14B 0.6∆;+ +=

Ueff Ωc Ωv– A 28B ∆–+ 4.2 eV.= = =

Fe4+, d4 Fe3+, d5 Fe2+, d6

Fig. 3. Diagram of the Fe4+, Fe3+, and Fe2+ terms; the cross
indicates the ground term 6A1g, which is filled at T = 0.

–1.4 0 2.8 3.1
E, eV

N(E) Ωv Ωc

εcεv

v c

Fig. 4. Density of states of GdFe3(BO3)4. The Fermi level
lies above the valence band top εv.
P

This value of Ueff is typical of d ions in the middle
of the 3d series. For example, this value of Ueff can be
compared to the correlation energy kT* = 4.92 eV,
which was determined for crystal Fe1.91V0.09BO4 from
the temperature dependence of resistance using the
Éfros–Shklovskiœ law [17].

It should be noted that borates have different mag-
netic ordering temperatures (TN1 = 38 K for
GdFe3(BO3)4 and TN2 = 348 K for FeBO3). The effect of
magnetic order on the optical properties is different in
the three temperature ranges: (i) below the magnetic
ordering temperature, T < TN1, the electronic structures
of both borates are qualitatively similar but differ quan-
titatively due to the splitting of the A, B, and C bands in
the molecular field, because their temperatures TN dif-
fer by a factor of 10; (ii) in the range TN1 < T < TN2, the
electronic structures of borates should differ due to
their magnetic properties being different; (iii) and in the
paramagnetic phase, namely, at T > TN2, the electronic
structures of both borates are similar both qualitatively
and quantitatively. The last conclusion is valid if there
is no contribution from the Gd3+ f electrons, which
appears only if the exciting energies are "ω ≈ 4 eV or
higher. For the same reason, substitution of neodymium
for gadolinium causes additional lines to appear in the
absorption spectrum and results in a more complicated
electronic structure of the substituted crystals
Gd1 − xNdxFe3(BO3)4.

Taking into account all these considerations and the
experimental data, we come to the model of the elec-
tronic structure of GdFe3(BO3)4 shown in Fig. 4.

5. PROPERTIES OF GdFe3(BO3)4 
UNDER HIGH PRESSURES PREDICTED 
FROM THE MANY-ELECTRON MODEL

From the above discussion and calculations, as well
as from the similarity between the electronic structures
of GdFe3(BO3)4 and FeBO3, it follows that
GdFe3(BO3)4 will exhibit the following behavior: a
crossover from the high-spin to low-spin state of the
Fe3+ ion, collapse of the magnetic moment, a weaken-
ing of Coulomb correlations, an abrupt reduction in the
energy gap, and an insulator–semiconductor transition.

According to [18], the effect of an increased pres-
sure on the electronic structure is mainly due to an
increase in the crystal field ∆:

(9)

As a result, as can be seen from the Tanabe–Sugano
diagrams for Fe3+ [19], the high-spin 6A1(S = 5/2) term
and the low-spin 2T2(S = 1/2) term approach each other
(Fig. 5a).

∆ P( ) ∆ 0( ) αP.+=
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Therefore, at P = Pcr, the crossover can also occur in
GdFe3(BO3)4, which results in a collapse of the mag-
netic moment (Fig. 5b):

(10)

where n5/2 and n1/2 are the probabilities of the Fe3+ ion
being in the S = 5/2 and S = 1/2 states, respectively. At
T = 0, we have n5/2 = 1 up to the crossover point, and
then this probability becomes zero above Pcr; the prob-
ability is n1/2 = 0 at P < Pcr and n1/2 = 1 at P > Pcr.

For FeBO3, the critical pressure Pcr is about 47 GPa
[11]. For GdFe3(BO3)4, a similar crossover can be
expected and the critical pressure should have a similar

S
z〈 〉 5/2n5/2 1/2n1/2,+=

Pcr P

(a)

(b)

(c)

5/2

E
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n1/2
~~
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(Sz)

n5/2

Fig. 5. (a) Fragment of the Tanabe–Sugano diagram for the
crossover from the high-spin 6A1(S = 5/2) to low-spin
2T2(S = 1/2) iron terms, (b) the probability of an Fe3+ ion
being in the S = 5/2 and 1/2 states, and (c) the collapse of
the magnetic moment.
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value, because the Fe–O length and the critical field ∆
are close to the respective values for FeBO3. Under
high pressure, the energies of the lower and the upper
edges of Hubbard bands change due to the crossover
[18]. We thus get for Fe3+

(11)

(12)

As a result, the Hubbard effective correlation
parameter decreases (Fig. 6), which means there is a
decrease in the gap between the Hubbard subbands:

(13)
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Fig. 6. Crossovers of terms for the d4, d5, and d6 configura-
tions and the jump in the effective Hubbard parameter.
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A dramatic (almost threefold) decrease in SEC thus
occurs, and instead of the Mott–Hubbard insulator we
get the semiconductor state (Fig. 7).

A further increase in pressure can result in closure
of the semiconductor gap (due to the increase in the
small d-band width) and in the subsequent transition to
the metal state.

6. CONCLUSIONS

The optical properties of the grown single crystals
GdFe3(BO3)4 and GdFe2.1Ga0.9(BO3)4 have been stud-
ied. It has been proved both theoretically and experi-
mentally that, in the paramagnetic phase, the electronic
structure and the optical spectra of GdFe3(BO3)4 and
FeBO3 are similar to each other in the energy range
below 4 eV in the vicinity of the Fermi energy. A many-
electron model of the band structure of GdFe3(BO3)4
has been suggested taking into account SEC of iron d
states. It has been established that, under normal condi-
tions, GdFe3(BO3)4 is a charge-transfer insulator with
SEC. In terms of the many-electron model, an increase
in pressure was predicted to result in a crossover from
the high-spin to low-spin state of the Fe3+ ion in
GdFe3(BO3)4, collapse of the magnetic moment, Cou-
lomb correlation weakening, an abrupt reduction in the
energy gap, and an insulator–semiconductor transition.
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Abstract—The magnetization curve and magnetization correlation function are calculated for a ferromagnetic
chain of single-domain nanoparticles with a randomly oriented anisotropy axis for different ratios between the
exchange correlation and anisotropy energies. It is shown that the coercive force decreases as the exchange cor-
relations increase. For strong exchange correlations, the magnetization curve is described by the following three
successive magnetization processes as the applied field is increased: (i) nonuniform rotation of the magnetiza-
tion of stochastic domains, (ii) collapse of the magnetic solitons, and (iii) nonuniform rotation of exchange-cor-
related magnetization vectors of the nanoparticles. For high fields, the calculated correlation function of the
transverse magnetization components coincides with that predicted from linear theory. At low and zero fields,
the main parameters of the correlation function (the variance and correlation radius) tend to certain finite values
rather than diverge (as is the case in linear theory). The irreversible variation in the magnetization at low fields
(the hysteresis loop) and the hysteresis of the main parameters of the correlation function are calculated. © 2005
Pleiades Publishing, Inc.
1. INTRODUCTION

The interest in simulating model systems with ran-
domly oriented magnetic anisotropy is related to gain-
ing a detailed understanding of the mechanisms of for-
mation of unique magnetic properties of amorphous
and nanocrystalline magnets. One of the main reasons
giving rise to these properties of amorphous and nanoc-
rystalline magnetic alloys is the randomly oriented
local magnetic anisotropy coexisting with a strong
exchange correlation of magnetic moments [1, 2]. Ori-
entational randomness of anisotropy in these materials
generates a specific magnetic microstructure, which
can be described as an ensemble of stochastic magnetic
domains. It was found that the average self-consistent
characteristics of these domains (anisotropy and size)
determine the main integral properties (coercivity and
permeability) of amorphous and nanocrystalline mag-
nets [3]. The stochastic magnetic domain is defined as
follows. In [4], it was shown that a randomly oriented
local magnetic field destroys the long-range magnetic
order in a disordered ferromagnet. However, ferromag-
netic ordering (correlations) is still preserved on a finite
scale: due to exchange interaction, the magnetic order
extends over distances that are large in comparison with
interatomic distances. This ferromagnetically ordered
region is a stochastic domain. To describe the magnetic
structure of such systems with “intermediate” magnetic
order, it is necessary to study the magnetization corre-
lation function Km(r) [5].

The correlation function Km(r) can be directly
reconstructed from experimental studies of small-angle
neutron scattering in nanostructured ferromagnets [6,
1063-7834/05/4703- $26.00 0495
7]. One of the main parameters of this function, vari-
ance Km(0), can be determined from the magnetization
curve near saturation [8]. Recent studies have shown
that the correlation radius Rm can also be determined
from the magnetization curve [9, 10]. However, in the
low-field region, perturbation theory does not apply and
a linear analytical theory of the magnetization curve
cannot be developed. At the same time, this region has
been intensively studied experimentally and the interest
in applying simulation methods to the description of
nanomagnets has increased. We note a general fact: the
importance of simulation experiments increases in con-
nection with the possible description of new physical
effects.

The published micromagnetic simulations deal with
some applied problems of magnetism [11–16] (numer-
ical studies of magnetization curves of a specific nar-
row class of materials) and some fundamental problems
[17–22]. Those studies have shown that both the shape
of the magnetization curve and the form of the magne-
tization correlation function are determined by the
grain size and the fundamental magnetic constants. We
believe that, in those studies, insufficient attention was
paid to establishing the relation of the magnetic struc-
ture in various fields and at different relative magni-
tudes of exchange correlations and anisotropy to the
magnetization curve of a model system, i.e., to work
aimed at solving the main problem in magnetic material
science of nanomagnets. Indeed, it has now become
clear that the form of the magnetization correlation
function Km(r) (which characterizes the spin structure)
is related to the shape of the magnetization curve, M(H)
© 2005 Pleiades Publishing, Inc.
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(which is a magnetic property of a nanomagnet). The
aim of this study is to investigate simultaneously both
the correlation function and the magnetization curve for
a simple model system, namely, a chain of exchange-
coupled nanoparticles with randomly oriented anisot-
ropy. Our simulation is intended to provide answers to
the following questions.

(1) How does the form of the magnetization curve
change in the intermediate regime between weak (rela-
tive to the exchange correlation energy) and strong
anisotropy?

(2) What are the features of the magnetization curve
at low fields in the case of weak anisotropy?

(3) What is the character of the behavior of the cor-
relation function of a nanostructured magnet at low
fields?

The model considered is a special case of the model
of a nanomagnet with one-dimensional inhomogene-
ities of magnetic anisotropy. However, it will be shown
that this model exhibits the general laws characterizing
nanomagnets. Furthermore, it is known that significant
research attention has been recently turned to a new
class of magnetic materials, one like magnetic nanow-
ires. It was found that these materials are most often in
the form of nanochains of exchange-bound nanoparti-
cles [23, 24]. Therefore, our model can also be applied
to describe experimental results on the magnetization
of nanowires.
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Fig. 1. Dependence of the calculated total energy of the
chain on the number of iterations. The inset shows the
dependence of the number of iterations required to attain the
energy minimum on the parameter Rc/δ.
PH
2. METHOD AND MODEL

A discrete analog of our model is a one-dimensional
chain of spins s with random anisotropy at each site i
with a constant nearest neighbor exchange interaction
J. It is known that the energy of such a chain can be
written as a sum over the sites of the chain:

 (1)

Likewise, for a nanochain of ferromagnetic grains,
we can write the energy as

 (2)

E Jsisi 1+ K sini( )2 Hsi+ +( ).
i

∑–=

E
1
8
--- A

Rc
2

------ θi θi 1+–( )cos θi θi 1––( )cos+( )
i
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Fig. 2. Magnetization curves calculated at different values
of the parameter 2Rc/δ.
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where the direction of the local magnetization vector is
characterized by the angle θi measured from the direc-
tion of the field H; the distance between the neighbor-
ing sites is equal to the nanoparticle size 2Rc (in this
case, Rc is the correlation radius of random anisotropy);
A ≡ J(2Rc)2 is the exchange interaction constant; Ms is
the saturation magnetization; K = HaMs/2 is the local
magnetic anisotropy energy density, related to the

anisotropy field Ha;  is the angle of the easy magne-
tization axis (a random function); and H is the external
magnetic field. Since we are interested only in the states
corresponding to the minimum energy, it is convenient
to write Eq. (2) as

(3)

where δ/Rc =  is a dimensionless parameter
characterizing the ratio between the exchange correla-
tion and anisotropy energies and h = H/Ha. In our case
(the anisotropy is random at each site), we have Rc = 1/2
(see, e.g., [20]). We intentionally retained the quantity
Rc in Eqs. (2) and (3) in order to use, when interpreting
the results, the important concept of scaling (the direct
dependence of the minima of the total energy on the
dimensionless parameters δ/Rc and h) in systems with
random anisotropy.
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Fig. 3. The coercive force as a function of the reduced cor-
relation radius of local anisotropy. The dashed line is the
function Hc = kHa(2Rc/δ)2/3.
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In this study, we disregard the contribution of
dipole–dipole interaction to the total energy for several
reasons. First, in earlier simulations of similar systems
[11, 12], it has been shown that the magnetic structure
and the magnetization curve of nanomagnets only
weakly depend on the magnetic dipole interactions, in
contrast to those of large-grain and single-crystal ferro-
magnets. This result is qualitatively clear, since only
exchange correlations and magnetic anisotropy partici-
pate in the formation of the basic unit of the spin struc-
ture, the stochastic magnetic domain. Second, the
inclusion of long-range magnetic dipole forces
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Fig. 4. Magnetization curve starting from the demagnetized
state of the nanochain for the case of Rc/δ ≈ 0.28.
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Fig. 5. Magnetization curve in the first field range
(Rc /δ ≈ 0.28).
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increases the amount of computational time required
(which is long even if we disregard these forces) by
orders of magnitude.

There are two different methods for solving our prob-
lem numerically: (i) numerical solution of the differ-
ential equation obtained by minimizing functional (2)
or (3) [18–20] and (ii) a straightforward choice of the
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Fig. 6. (a) Magnetic structure of a fragment of the chain at
different values of the external field in the second range.
(b) Dependence of magnetization on the number of mag-
netic solitons in the second field range.
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Fig. 7. Dependence of the correlation function for the trans-
verse magnetization components on the external field (from
top to bottom: h = 0, 0.1, 0.2, 0.3, 0.4) for 2Rc/δ = 0.35.
PH
spin distribution corresponding to the minimum of total
energy (2) or (3) (see, e.g., [17]). The advantage of the
first method in the case of Rc/δ ! 1 (strong exchange
correlations, weak anisotropy) is that the computation
speed is high, in contrast to the second method, where
the computation time increases sharply with decreasing
ratio Rc/δ (see inset to Fig. 1). In the case where Rc/δ is
of the order of unity or larger (strong anisotropy, weak
exchange correlations), the first method fails, since the
system becomes strongly nonlinear and divergences
appear when the differential equation is solved numer-
ically. Moreover, the solution to the differential equa-
tion is assumed to be unique and, therefore, cannot be
used at low fields, where hysteresis arises. In this case,
the problem is solved using the second method.

A procedure for calculating the magnetization curve
using the first method was suggested and described in
[18, 19]. With the second method, the magnetization
curve can be found as follows: for a certain field (e.g.,
H = 0), “relaxation” of the system is performed (by
choosing the magnetization distribution that corre-
sponds to the minimum energy), then the field is varied
slightly and relaxation from the previous state is per-
formed. We assume that this procedure allows one to
reach the local energy minima responsible for hystere-
sis.

The relaxation is performed as follows. The angle θi
at site i is changed by ∆, and the energy at this site is
calculated. If the energy increases as compared to the
previous state, the state is not stored in memory and the
angle is changed by –∆; this procedure is repeated with
a subsequent decrease in the step to ±0.0001 rad. This
procedure is performed successively for each site.

Due to the coupling between the nearest neighbors,
the state at site i is changed when minimizing the
energy at site i + 1. Therefore, to minimize the energy,
we have to come back and perform the relaxation at site
i again. By performing such iterations for the entire
chain, we found that the total energy first decreases and
then ceases to vary at a certain stage (Fig. 1). We
assume that this state corresponds to the energy mini-
mum. We note that the choice of another sequence of
step-by-step spin relaxation can result in a different
random distribution of magnetization; however, for a
sufficiently long chain, the average characteristics do
not change. In the calculations, we used chains 1000- to
5000-spins long and periodic boundary conditions.
Since the energy of a nanochain is invariant under rota-
tions in the plane normal to the external field, we aver-
aged over the angle in this plane when averaging the
projection of the magnetization onto the field axis.

3. RESULTS AND DISCUSSION

Figure 2 shows the magnetization curves calculated
for different values of the parameter 2Rc/δ characteriz-
ing the ratio between the anisotropy and exchange cor-
relation energies. The curve in Fig. 2a corresponds to
YSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
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zero exchange correlation energy and reproduces the
classical result of Stoner and Wohlfarth for a system of
noninteracting single-domain particles (or very large
crystallites, with Rc @ δ) with random easy-axis anisot-
ropy [25]. In this case, the coercive field is hc = 1/2 (Hc =
Ha/2) and the residual magnetization is Mr = (1/2)Ms.
The coercive force decreases with decreasing 2Rc/δ, i.e.,
as exchange correlations are included (Figs. 2b, 2c). The
dependence of Hc on 2Rc/δ obtained from the calcu-
lated magnetization curves is plotted in Fig. 3. In the
region of 2Rc/δ < 1, the calculated dependence of the
coercive force becomes close to the analytical depen-
dence of the average anisotropy field of a one-dimen-
sional magnetic block (stochastic magnetic domain)
[18, 26, 27]:

 (4)

By comparing the curves in Fig. 3, we see that Hc as a
function of 2Rc/δ follows the same power law as does
〈Ha〉  and that these quantities differ by a constant factor,
Hc = k〈Ha〉 . In our case, k ≈ 0.48. This correlation
between the dependences of Hc and 〈Ha〉 corresponds to

Ha〈 〉 Ha 2Rc/δ( )2/3
.=
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Fig. 8. Field dependence of the magnetization correlation
radius Rm on (a) a linear and (b) a logarithmic scale (for
2Rc/δ = 0.35).
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a model in which the magnetic structure of the
nanochain is considered a system of exchange-uncou-
pled magnetic blocks with randomly oriented anisot-
ropy axes averaged over each block.

For strong exchange correlations, a steplike feature
arises on the magnetization curve (Figs. 2c, 4). This
feature appears at 2Rc/δ ≈ 0.4 and becomes more pro-
nounced at stronger exchange correlations (2Rc/δ ! 1).
In Fig. 4, we show the calculated magnetization curve
starting from the demagnetized state of the nanochain
for the case of 2Rc/δ ≈ 0.28. We see that this magneti-
zation curve can be divided into three parts, corre-
sponding to three field ranges.

In the first range, the magnetization increases with
field due to nonuniform rotation of the magnetizations
of stochastic domains. This interpretation is confirmed
by the fact that the M ~ H–2 dependence is satisfied in
this region (Fig. 5). We note that this dependence was
predicted and observed experimentally in [10]. The
average anisotropy field 〈Ha〉  of a block determined
from the Akulov low-field dependence agrees well with
the value of 〈Ha〉  calculated from Eq. (3).
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Fig. 9. Field dependence of the magnetization variance
dm = Km(0) on (a) a linear and (b) a logarithmic scale (for
2Rc /δ = 0.35).
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In the second field range of the M(h) curve, the mag-
netic structure proves to be an ensemble of magnetic
blocks with the average magnetizations oriented along
the field and an additional ensemble of localized
regions in which the magnetization is not reversed;
these regions are topological magnetic solitons whose
structure and size do not depend on the external field
within the second range (Fig. 6a). As the field increases,
the magnetization of magnetic solitons is reversed in a
jumplike manner and the solitons decrease in number
and disappear in fields above Ha (h > 1). Figure 6b
shows the dependence of the magnetization on the
number of magnetic solitons in the second field range.
The linear dependence indicates that the magnetization
reversal in each soliton provides an equal contribution
to the increase in magnetization. Since the solitons do
not differ in size or magnetization in the second range,
we may consider them as a sort of magnetization
quanta.

The magnetic structure of the nanochain in the third
field range of the reversible M(h) dependence is a sto-
chastic magnetic structure or “magnetization ripples”
(see, e.g., [28]). This structure is described well by the
one-dimensional linear theory of reversible processes
of inhomogeneous magnetization rotation [29].

We calculated the correlation function for the trans-
verse components of magnetization for each magnetic
state of the nanochain corresponding to a point on the
calculated hysteresis loop (for 2Rc/δ ≈ 0.35). Figure 7
shows the Km(r) dependence calculated for different
fields. The main parameters of the function Km(r) are
the variance dm = Km(0) and the correlation radius Rm.
We see that both the variance Km(0) and the magnetic
correlation length 2Rm decrease with increasing exter-
nal field. For our simple model, the field dependences
of dm = Km(0) and Rm(h) can be calculated in the entire
field range.

Figures 8 and 9 show the calculated field depen-
dences of the correlation radius Rm(h) and the variance of
the transverse components of magnetization dm(h) plot-
ted on both linear and logarithmic scales. We see that the
h dependences of the main parameters of the correlation
function Km(r), as well as the M(h) dependence, are char-
acterized by a region of reversible variation and a region
of irreversible changes (hysteresis). The reversible varia-
tions in Rm(h) and dm(h) are the simplest to explain. At
high fields, the calculated Rm and dm are identical to
those predicted from linear theory (Figs. 8b, 9b).
Indeed, according to linear theory [29], in fields below

HR = 2A/Ms , we have Rm =  ≡ δh–1/2 and

dm = (aHa)2  = a2(Rc/δ)h–3/2. In fields above
HR, Rm tends to a constant value, which is approxi-
mately equal to the correlation radius of random mag-
netic anisotropy (Rc = 1/2 in our case), and the variance
of magnetization behaves as dm = (aHa)2H–2 = a2h–2. It
is seen in Figs. 8b and 9b that the calculated functions

Rc
2

2A/MsH

HR
1/2–

H
3/2–
P

Rm(h) and dm(h) exhibit similar behavior. We note that
these results were obtained both by directly minimizing
the total energy (in the present work) and by solving the
corresponding differential equation (in [30]).

The irreversible variations in Rm(h) and dm(h) are
most difficult to explain. We see that, as the field
approaches zero, the quantities Rm and dm do not
diverge (contrary to the predictions from linear theory)
but rather tend to finite values. The variations in Rm(h)
and dm(h) with field are hysteretic. We point out specific
features of this hysteresis. First, we see that Rm(0) in the
demagnetized state is smaller than Rm(0) in the state
with residual magnetization (the opposite is true for
dm(0)). Second, we see that there is a field range (close
to h = 1) where Rm(h) increases with H, in disagreement
with the prediction from linear theory. We note that this
field range coincides with the region where magnetic
solitons exist and a specific feature arises on the mag-
netization curve (the second range).

The behavior of Rm(h) and dm(h) in the field range
h < 1 (H < Ha) allows us to assert that the quantitative
characteristics of a stochastic domain (its size and aver-
age anisotropy) are fairly arbitrary in many respects (at
least, in the one-dimensional case). Therefore, these
quantities can only be evaluated by order of magnitude.

Thus, in our simulation we succeeded in providing
answers to all three questions stated in Section 1.

ACKNOWLEDGMENTS

This study was supported by the Krasnoyarsk
Regional Science Foundation (grant no.12F0011C), the
Russian Foundation for Basic Research (grant no. 04-
02-16230), and the Governmental Support Foundation
(grant no. MK-1684.2004.2).

REFERENCES

1. V. A. Ignatchenko and R. S. Iskhakov, Zh. Éksp. Teor.
Fiz. 72, 1005 (1977) [Sov. Phys. JETP 45, 526 (1977)].

2. R. Alben, J. J. Becker, and M. C. Chi, J. Appl. Phys. 49,
1653 (1978).

3. G. Herzer, IEEE Trans. Magn. 26, 1397 (1990).
4. Y. Imry and S.-K. Ma, Phys. Rev. Lett. 35, 1399 (1975).
5. J. M. Ziman, Models of Disorder: The Theoretical Phys-

ics of Homogeneously Disordered Systems (Cambridge
Univ. Press, London, 1979; Mir, Moscow, 1982).

6. J. Weissmuller, A. Michels, J. G. Barker, A. Wieden-
mann, U. Erb, and R. D. Shull, Phys. Rev. B 63, 214414
(2001).

7. A. Michels, R. N. Viswanath, J. G. Barker, R. Birringer,
and J. Weissmuller, Phys. Rev. Lett. 91, 267204 (2003).

8. V. A. Ignatchenko, R. S. Iskhakov, and G. V. Popov, Zh.
Éksp. Teor. Fiz. 82, 1518 (1982) [Sov. Phys. JETP 55,
878 (1982)].

9. R. S. Iskhakov, S. V. Komogortsev, Zh. M. Moroz, and
E. E. Shalygina, Pis’ma Zh. Éksp. Teor. Fiz. 72, 872
(2000) [JETP Lett. 72, 603 (2000)].
HYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005



MAGNETIZATION CURVE AND MAGNETIC CORRELATIONS 501
10. R. S. Iskhakov, V. A. Ignatchenko, S. V. Komogortsev,
and A. D. Balaev, Pis’ma Zh. Éksp. Teor. Fiz. 78, 1142
(2003) [JETP Lett. 78, 646 (2003)].

11. H. Kronmuller, R. Fischer, M. Seeger, and A. Zern,
J. Phys. D: Appl. Phys. 29, 2274 (1996).

12. R. Fischer and H. Kronmuller, J. Magn. Magn. Mater.
184, 166 (1998).

13. J. Fidler and T. Schrefl, J. Magn. Magn. Mater. 203, 28
(1999).

14. W. M. Saslow and N. C. Koon, Phys. Rev. B 49, 3386
(1994).

15. O. Nedelko, P. Dikukh, and A. Slawska-Waniewska,
J. Magn. Magn. Mater. 254–255, 281 (2003).

16. I. R. McFadyen and I. A. Beardsley, J. Appl. Phys. 67,
5540 (1990); I. A. Beardsley and J. S. Zhu, J. Appl. Phys.
67, 5352 (1990).

17. R. Dickmann and E. M. Chudnovsky, Phys. Rev. B 44,
4397 (1991).

18. A. A. Ivanov, V. A. Orlov, and G. O. Patrushev, Fiz. Met.
Metalloved. 84 (2), 47 (1997) [Phys. Met. Metallogr. 84,
125 (1997)].

19. A. A. Ivanov and G. O. Patrushev, Fiz. Met. Metalloved.
86 (4), 1 (1998) [Phys. Met. Metallogr. 86, 331 (1998)].

20. A. A. Ivanov, V. A. Orlov, and G. O. Patrushev, Fiz.
Tverd. Tela (St. Petersburg) 41, 1432 (1999) [Phys. Solid
State 41, 1311 (1999)].
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
21. B. Dieny and B. Barbara, Phys. Rev. B 41, 11549 (1990).
22. D. R. Denholm and T. J. Sluckin, Phys. Rev. B 48, 901

(1993).
23. H. Zeng, R. Skomski, L. Menon, Y. Liu, S. Bandyo-

padhyay, and D. J. Sellmyer, Phys. Rev. B 65, 134426
(2002).

24. R. S. Iskhakov, S. V. Komogortsev, A. D. Balaev,
A. V. Okotrub, A. G. Kudashov, V. L. Kuznetsov, and
Yu. V. Butenko, Pis’ma Zh. Éksp. Teor. Fiz. 78, 271
(2003) [JETP Lett. 78, 236 (2003)].

25. E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc.
London, Ser. A 240, 599 (1948).

26. R. S. Iskhakov, S. V. Komogortsev, A. D. Balaev, and
L. A. Chekanova, Pis’ma Zh. Éksp. Teor. Fiz. 72, 440
(2000) [JETP Lett. 72, 304 (2000)].

27. R. Skomski, J. Phys.: Condens. Matter 15, R841 (2003).
28. V. A. Ignatchenko, Zh. Éksp. Teor. Fiz. 54, 303 (1968)

[Sov. Phys. JETP 27, 162 (1968)].
29. V. A. Ignatchenko and R. S. Iskhakov, Fiz. Met. Metall-

oved., No. 6, 75 (1992).
30. A. V. Luk’yanenko and S. V. Komogortsev, in Proceed-

ings of the II Baikal International Conference on Mag-
netic Materials (Irkutsk, 2003), p. 72.

Translated by I. Zvyagin



  

Physics of the Solid State, Vol. 47, No. 3, 2005, pp. 502–507. Translated from Fizika Tverdogo Tela, Vol. 47, No. 3, 2005, pp. 487–492.
Original Russian Text Copyright © 2005 by Berzhanski

 

œ

 

, Gorbovanov, Polulyakh.

                                                                                    

MAGNETISM
AND FERROELECTRICITY
Nuclear Spin Resonance of 53Cr in Ferromagnetic CuCr2S4 : Sb
V. N. Berzhanskiœ, A. I. Gorbovanov, and S. N. Polulyakh
Taurida National University, ul. Yaltinskaya 4, Simferopol, 95007 Ukraine

e-mail: roton@crimea.edu
Received May 27, 2004

Abstract—The influence of variable valence on NSR spectra of 53Cr nuclei in ferromagnetic CuCr2 – xSbxS4
(x = 0, 0.02, 0.07) at T = 77 K is considered. For quadrupole nuclei in locally anisotropic positions, the effects
of variable valence result in averaging of not only the resonance frequency but also of the quadrupole and mag-
netic anisotropy constants. The significant difference between the experimental and calculated values of these
constants indicates the important role of the intrinsic electronic contribution to the anisotropy of hyperfine fields
of compounds containing Cr4+ ions. Additional lines caused by intrinsic and induced defects in the structure are
observed in the spectra of doped and undoped compounds. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Ferromagnets based on chromium chalcogenide
spinels ACr2X4 (where A = Cd, Hg, Cu, and others; X =
S, Se, Te) form an important class of magnetically
ordered materials. Most of them are semiconductors.
Of these compounds, copper spinels CuCr2X4 stand out
due to their metal conductivity and high temperatures
of magnetic ordering [1]. When analyzing the physical
properties of these compounds, it is important to deter-
mine the cation valence state. This can be done using
the NSR method.

In magnetically ordered materials, the NSR fre-
quency is controlled by the local hyperfine field at
nucleus sites [2]. This field is directly proportional to
the ion magnetic moment. A change in the valence state
results in a changed magnetic moment, so the hyperfine
field, to a first approximation, is directly proportional to
the number of unpaired electrons.

The variable-valence effect consists in the ion
valence that fluctuates in time taking on one of two pos-
sible values. These fluctuations in a paramagnetic
nuclear-spin system result in a switching between two
frequencies, an effect well-known in the theory of elec-
tron spin resonance (ESR) [3, 4]. If the fluctuation fre-
quency is lower than the difference between the reso-
nance frequencies in each state (slow switching), the
magnetic resonance spectrum is a superposition of
spectral lines. In the case of rapid switching, a single
line at an averaged frequency is observed.

The influence of variable valence on the NSR spec-
tra of 53Cr nuclei in ferromagnetic CuCr2S4 was exper-
imentally observed in [5, 6]. An analysis of the fre-
quency position of spectral lines showed that both tri-
and tetravalent chromium ions coexist at low tempera-
tures. As the temperature increases, an additional line
appears whose frequency position corresponds to a
state with fractional valence Cr3.5+. A further tempera-
ture increase strengthens this line, and, at T = 77 K, the
1063-7834/05/4703- $26.00 0502
chromium ions are observed to be predominantly in the
Cr3.5+ state.

Chromium ions in the spinel structure occupy tetra-

hedral sites with local symmetry m. In this case, the
anisotropy of the local magnetic field and the electric
quadrupole interactions have a significant effect on the
spectral line shape. However, the spectral line shape
was not discussed in [5, 6]. However, analysis of the
NSR line shape yields information on the influence of
vacancies and different-valence impurities on the phys-
ical properties of these compounds. As a rule, actual
samples are nonstoichiometric and contain anion
vacancies. In contrast to oxygen spinels, anion vacan-
cies in chalcogenide spinels do not cause a change in
the interatomic distances. For example, the CuCr2S4 – y

structure remains homogeneous over the range 0 ≤ y ≤
0.17 [1].

When studying copper NSR in CuCr2S4, quadrupole
broadening of spectral lines was established in [7] from
the existence of multiphoton spin-echo signals, despite
the fact that copper ions occupy tetrahedral sites, at
which there should be no electric field gradient. This
indicates local distortions of tetrahedral sites.

Impurity ions, as well as anion vacancies, have a
significant effect on the physical properties of chalco-
genide spinels. For example, when studying the mag-
netic properties of CuCr2 – xSbxS4, the transition to the
spin-glass phase was observed in [8] at high dopant
concentrations, which indicates the strong influence of
these impurities on exchange interactions.

This study is devoted to the influence of the variable
valence, anion vacancies, and doping with antimony on
the 53Cr NSR line shape in copper sulfochromite.

3
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2. EXPERIMENTAL

NSR signals were studied using a pulsed incoherent
NSR spectrometer. NSR spectra were measured from
the dependence of the amplitude V of the two-pulsed
echo signal on the oscillation frequency of the ac mag-
netic field of exciting pulses. Polycrystalline
CuCr2 − xSbxS4 samples with various degrees of Sb sub-
stitution (x = 0, 0.02, 0.07) at T = 77 K were studied.
The 53Cr NSR spectra of these samples are shown in
Fig. 1 (solid curves).

It was experimentally found that the NSR spectrum
of an undoped compound depends on the time interval
between exciting pulses and consists of a main portion
and an additional line at a frequency of 33 MHz, which
is observed only at short (10–30 µs) intervals between
exciting pulses. In doped compounds (Fig. 1), this line
disappears and another additional, fast-relaxing line
arises at high-frequencies, with its maximum being at
approximately 41.5 MHz.

We assumed that the low-frequency line in the
undoped compound is caused by chromium ions
arranged near anion vacancies. To verify this assump-
tion, a sample was annealed in chalcogen (sulfur) vapor
(in a preliminarily evacuated quartz cell) for 9 h at
600°C. The masses of the sample and of the added sul-
fur were 585 and 50 mg, respectively. Figure 2 shows
the 53Cr NSR spectra for the sample before (curve 1)
and after annealing (curve 2). We can see that annealing
in sulfur vapor does indeed entail the disappearance of
the additional spectral line.

3. DISCUSSION 
OF THE EXPERIMENTAL RESULTS

3.1. Main Portion of the Spectrum

When analyzing the main portion of the spectrum,
we assume uniaxial local symmetry of B positions. The
53Cr nucleus is a quadrupole with spin I = 3/2. The NSR

V

32 34 38 40 42
ν, MHz

36

x = 0.07

x = 0.02

x = 0

Fig. 1. Experimental and calculated 53Cr NSR spectra (solid
and dashed curves, respectively) in CuCr2 − xSbxS4  at T =
77 K.
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spectrum of this nucleus is a triplet consisting of a cen-
tral line (corresponding to the magnetic spectroscopic
transition ±1/2  ) and two quadrupole satel-
lites. The resonance frequency ν depends on the angle
θ between the electronic magnetization vector and the
〈111〉  crystallographic direction. The NSR frequency is
given by

 (1)

where ν0 is an isotropic constant, νA is the anisotropy
constant, νq is the quadrupole constant, and η is the
asymmetry parameter. This formula defines the reso-
nance frequencies of the quadrupole satellites. For the
central line, we have νq = 0.

In [9], it was assumed that the angle θ takes on two
fixed values (0, π/2) and the numerical constant values
were taken as ν0 = 38.47 MHz, νA ≈ 0.34 MHz, and νq ≈
0.6 MHz. In this case, major disagreement between the-
ory and experiment is observed at low frequencies; this
part of the spectrum was not observed in [9].

When analyzing the inhomogeneously broadened
spectral line, we assume that the angle θ takes on any
value with equal probability. In this case, a powder
spectrum is observed [10] and the spectral line for a
quadrupole nucleus with spin I = 3/2 can be described
by a model spectrum consisting of three peaks,

 (2)

in the range ν0 – 2∆ν < ν < ν0 + ∆ν(1 – ηcos2ϕ) and
g1(ν) = 0 at other frequencies ν. For the central line and
quadrupole satellites, ∆ν is equal to νA and νA ± νq,
respectively. We also assume that the inhomogeneous
broadening of the spectral line at a fixed angle θ is
described by a Gaussian with standard deviation σ,

1/2+−

ν ν0 νA νq±( ) 3 θcos
2

1– η θ 2ϕcossin
2

+( ),+=

g1 ν( ) 1
8π∆ν
--------------=

× ϕd

3 η 2ϕcos–( ) 1 η 2ϕcos– ν0 ν–( )/∆ν+( )
----------------------------------------------------------------------------------------------------------

0

2π

∫

V
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36

CuCr2S4

1

2

Fig. 2. 53Cr NSR spectrum (1) before and (2) after sample
annealing.
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Table 1.  Fitting constants for echo spectra of 53Cr nuclei

x ν0, MHz νA, MHz νq, MHz η σ

0 37.95 ± 0.01 1.54 ± 0.01 0.45 ± 0.01 0 0.04 ± 0.01

0.02 37.80 ± 0.01 1.52 ± 0.01 0.45 ± 0.01 0.095 ± 0.005 0.06 ± 0.01

40.32 ± 0.01* 0.30 ± 0.05*

0.07 38.10 ± 0.01 1.30 ± 0.01 0.46 ± 0.01 0.200 ± 0.005 0.46 ± 0.01

40.64 ± 0.01* 0.46 ± 0.05*

* The values correspond to the high-frequency line at 41.5 MHz.
 (3)

The observed line shape g(ν) can be written as [11]

 (4)

Expression (4) was used for numerical approximation
of the main portion of the experimental spectra. Con-
stants ν0, νA, νq, and η were varied so as to minimize the
root-mean-square deviation between calculated and
experimental data. The high-frequency lines in doped
samples were also fitted by Eq. (4). The fits are shown
in Fig. 1 by dashed curves, and the corresponding
parameters are listed in Table 1.

As follows from Table 1, doping with antimony
increases the inhomogeneous broadening σ, which is
typical of NSR in magnetically ordered materials.
Moreover, the asymmetry parameter η also increases.
This is due to the fact that both the anisotropy and qua-
drupole constants are sensitive to the charges and mag-
netic moments localized at lattice sites. The increase in
the asymmetry parameter is indicative of a decrease in

g2 ν ν'–( ) 1

σ 2π
-------------- ν ν'–( )2

2σ2
--------------------– 

  .exp=

g ν( ) g1 ν'( )g2 ν ν'–( ) ν'.d

∞–

∞

∫=

|ν
A
|, 

M
H

z
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Fig. 3. Calculated lattice contribution to the anisotropy con-
stant.
PH
the local neighborhood symmetry caused by antimony
ions substituted for chromium ions.

3.2. Anisotropy Constant

The anisotropy constant includes intrinsic and lat-
tice contributions. To estimate the lattice contribution,
we use the model of point magnetic dipoles, within
which the fields exerted on nuclei by the magnetic
moments of lattice ions are calculated.

In the case of chromium chalcogenide spinels, it is
sufficient to consider only the magnetic moments of
chromium ions. We assume that the magnetic moments
of all ions are oriented along the same crystallographic
direction due to exchange coupling. Since the dipole
field decreases rather slowly with distance, calculations
cannot be restricted to only the first coordination shell;
the contributions of more distant ions should also be
included, which improves the field calculation accu-
racy. Calculations show that, with inclusion of ions sep-
arated from a given ion by a distance no longer than six
cell parameters (14460 ions), the dipole field is calcu-
lated with an accuracy of better than 0.5%.

In Fig. 3, the solid curves correspond to the lattice
contributions to the anisotropy constant calculated as a
function of the cell parameter at various values of the
magnetic moments of ions occupying B positions in the
spinel structure.

It is of interest to compare the calculated and exper-
imental data for a number of chalcogenide spinels. In
Fig. 3, open circles are experimental values of the
anisotropy constant at T = 4.2 K, taken from [12]. The
numerical values of the unit cell parameter are taken
from [1]. In these compounds, chromium is in the triva-
lent state and we can assume with good accuracy that
there are three Bohr magnetons per ion. As follows
from Fig. 3, the lattice contribution is insufficient for
describing the experimental values and, therefore, the
contribution from the electron shell of an ion to the
anisotropy of the local magnetic field exerted on its own
nucleus should be included. Most likely, this contribu-
tion is from covalent effects, which result in an electron
density transfer to the eg orbital of the chromium ion.

The closed circle in Fig. 3 corresponds to the exper-
imental value of the anisotropy constant in CuCr2S4 cal-
YSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
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culated using Eq. (1). The CuCr2S4 cell parameter is
also taken from [1]. As follows from Fig. 3, the devia-
tion of the experimental value from the value calculated
within the model of point dipoles for copper spinel is
significantly higher than that calculated for cadmium
and mercury spinels. This difference is explained by the
chromium valence state in CuCr2S4.

Indeed, at T = 77 K, chromium can be in the Cr3+ and
Cr4+ states with equal probability. The Cr4+ state exhib-
its strong spin–orbit coupling, which is indicative of a
significant deviation of the electron shell symmetry
from spherical; therefore, the contribution from this
electron shell to the anisotropy constant is substantial.

Based on the experimental value of the anisotropy
constant in CuCr2S4, we can estimate this constant for
the Cr4+ state. Since rapid exchange takes place in the
case under consideration, the experimental value of the
anisotropy constant in CuCr2S4 is its average over the
Cr3+ and Cr4+ states:

 (5)

Assuming that the anisotropy constant of the Cr3+ ion in
CuCr2S4 is of the same order of magnitude as in other
chalcogenide spinels, namely, νA(Cr3+) ≈ 0.5–0.6 MHz,
we obtain νA(Cr4+) ≈ 2.3–2.4 MHz.

Substitution of Sb5+ for chromium ions in spinel
octahedral sites should decrease the fraction of tetrava-
lent chromium ions, which, in turn, should vary the
anisotropy constant away from the value of νA(Cr4+). As
follows from Table 1, an increase in the dopant concen-
tration indeed causes νA to decrease.

3.3. Quadrupole Constant

The quadrupole constant νq in a uniaxial crystallo-
graphic position is defined by the nucleus quadrupole
moment Q and the electric field gradient (EFG) Vzz at
the nucleus site: νq = eQVzz/4h (in the case of spin I =
3/2). The EFG tensor component Vzz can be written as

the sum of the lattice contribution  and the intrinsic

(or valence) contribution  [13]:

 (6)

where R and γ∞ are the screening and antiscreening con-
stants, respectively.

The lattice contribution can be estimated in terms of
the model in which every ion is a point charge of a cor-
responding value. Moreover, the local symmetry of the
anion positions in the spinel structure allows the exist-
ence of an electric dipole moment; therefore, the dipole
contribution to the quadrupole constant can be more sig-
nificant than the contribution of only point charges [14].

The necessity of considering electric dipole
moments of anions entails a two-stage calculation of
the quadrupole constant; we calculate the dipole
moments first and then the lattice contribution itself.

νA Cr
3.5+( ) νA Cr

3+( ) νA Cr
4+( )+[ ] /2.=

Vzz
l

Vzz
e

Vzz 1 γ∞–( )Vzz
l

1 R–( )Vzz
e

,+=
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The dipole moments are calculated using an iterative
procedure. Initially, the electric field at the anion site is
assumed to be due to only the point electric charges (of
both cations and anions). Based on the calculated field,
the electric dipole moments of the anions are calcu-
lated, and then the procedure is repeated again with
inclusion of the dipole fields of the anions. The calcula-
tion is complete when the new value of the dipole
moment is identical to the preceding value to within a
specified accuracy.

The lattice contribution  is calculated with an
accuracy of better than 1% for a number of chromium
chalcogenide spinels with inclusion of ions within a
sphere six cell parameters in radius. The results are
shown in Table 2. The numerical values of the anion
polarizabilities are taken from [15], and the structural
data are taken from [1].

In contrast to the anisotropy constant, the calculated
quadrupole constants  cannot be used for direct com-
parison with the experimental values, because the
experimentally observed value of νq differs from the

calculated value of  by a factor of 1 – γ∞, where γ∞ is
the antiscreening factor [13].

Table 2 lists the experimental values of the quadru-
pole constant for cadmium and mercury spinels taken
from [12]. In these compounds, the chromium ion is in
the Cr3+ state at 4.2 K. Assuming the Cr3+ electron shell
to be spherically symmetric to a first approximation, we
disregard the contribution from the valence electrons to
the field gradient at the nucleus site. Then, by compar-
ing the calculated and experimental values of the qua-
drupole constant, we find that 1 – γ∞ = 1.46–1.73. To a
first approximation, due to the rather narrow range of
numerical values of the factor 1 – γ∞, we can restrict our
consideration to only the lattice contribution in the case
of Cr3+ ions.

In copper sulfochromite, the Cr3+  Cr4+

exchange frequency is higher than the difference
between the quadrupole splittings of the NSR spectra in

νq
l

νq
l

νq
l

Table 2.  Electric field gradient at the chromium nucleus sites

Com-
pound

Cell 
parame-

ter, Å

Anion 
parame-

ter u

νq, MHz

calculation

ex
pe

ri
m

en
t

model
of point
charges

model of
point charges
and dipoles

CdCr2S4 10.240 0.3901 0.047 0.594 0.95

CdCr2Se4 10.755 0.3894 0.027 0.568 0.98

CuCr2S4 9.814 0.3841 –0.09 0.740 0.45

CuCr2Se4 10.334 0.38 –0.149 0.589 0.097

HgCr2S4 10.237 0.391 0.067 0.649 0.95

HgCr2Se4 10.753 0.389 0.019 0.568 0.99
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each state. Therefore, we can calculate  for copper
sulfochromite under the assumption that the copper ion
is monovalent and that the chromium valence is +3.5
(Table 2). When comparing the calculated and experi-
mental results, we assume that the experimentally
observed value of the quadrupole constant is equal to its
average over the Cr3+ and Cr4+ states,

 

Moreover, we assume that “defreezing” of the orbital
angular momentum for the Cr4+ ion is so small that the
contribution from the valence electrons to the field gra-
dient at the nucleus site can be neglected to a first
approximation. In this case, we obtain 1 – γ∞ = 2.87–
3.14 for Cr4+. This value of the antiscreening factor for
tetravalent chromium is larger than that for trivalent
chromium, which is in good agreement with the lower-
ing of the electron shell symmetry in the Cr4+ state and
with the results obtained for the anisotropy constant.
The rather close antiscreening factors for the Cr3+ and
Cr4+ ions result in the fact that doping with antimony

νq
l

νq Cr
3.5+( ) νq Cr

3+( ) νq Cr
4+( )+[ ] /2.=

Anion
vacancy

Cr

〈001〉

〈111〉

〈010〉

〈100〉

Fig. 4. Anion vacancy–based impurity center.

Cr

〈001〉

〈100〉

〈010〉

Sb

Fig. 5. Antimony ion arrangement in the spinel structure.
P

does not have a significant effect on the quadrupole
splitting of the NSR spectrum (Table 1).

3.4. Additional Spectral Lines

In the low-frequency region of the 53Cr NSR spec-
trum, an additional fast-relaxing line is observed in
undoped spinel. We assume that this line is caused by
anion vacancies in CuCr2S4. It is known that the forma-
tion of anion vacancies in chromium chalcogenide
spinels results in only local distortions in the lattice and
does not change the general symmetry or cell parameter
of CuCr2S4 – y in the range 0 ≤ y ≤ 0.17.

Chromium ions occupy octahedral sites in the spinel
structure. The nearest neighbors to the chromium ion
are six anions. The lines connecting a chromium ion
with its nearest neighbor anions are parallel to the
〈100〉-type directions of the spinel crystal structure. If
an anion vacancy arises in the nearest neighborhood,
then one of the 〈100〉  directions becomes symmetrically
distinguished and the angle θ in Eq. (1) is measured
from this axis (Fig. 4).

The anion vacancy charge at the impurity center is
compensated due to a decrease in the chromium
valence (2Cr4+  2Cr3+). The anion vacancy in the
nearest neighborhood of a chromium ion weakens the
electron density transfer to the chromium ion. It seems
that the decrease in the electron density transfer results
in the local electron magnetization vector being fixed
along a 〈111〉-type direction. In this case, the angle θ in
Eq. (1) takes on the “magic” value at which the spec-
trum degenerates into a single line. The decrease in the
transferred electron density also weakens the hyperfine
magnetic field at the chromium nucleus site, which is
observed experimentally.

Faster relaxation of the additional line in undoped
CuCr2S4 also agrees well with the proposed mecha-
nism, since the vacancy formation provides an addi-
tional channel for coupling between the nuclear-spin
system and the lattice, which acts as a thermodynamic
reservoir in relaxation processes.

Doping with antimony (even in small amounts)
causes the additional low-frequency line to disappear.
Apparently, in the presence of Sb5+ ions, whose positive
charge is higher than that of major chromium ions,
anion defects disappear.

We assume that the influence of the antimony impu-
rity on the chromium NSR spectra is similar to that of
anion vacancies; namely, the direction from the chro-
mium ion to the nearest neighbor antimony ion (one of
the 〈110〉  directions) becomes symmetrically distin-
guished (Fig. 5). However, the Sb5+ impurity defect
does not fix the direction of the electron magnetization
vector, so we assume that the angle θ can take on any
value with equal probability, just as is the case for the
main portion of the spectrum (Table 1).
HYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
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When chromium ions are substituted for by anti-
mony ions, the cation sublattice valence is compensated
due to an increase in the number of Cr3+ ions at the
impurity center (with the result that, e.g., at x = 0.5,
only Cr3+ remains in the compound). Therefore, the
impurity line frequency is observed in the high-fre-
quency range in this case.

The presence of a high-frequency line in doped sam-
ples indicates the appearance of chromium ions (or
their clusters) with high spin densities. In other words,
substituting for Cr4+ ions with ions of a higher valence
(Sb5+) results in the formation of complexes that consist
of two Cr3+ ions and one Cr4+ ion, between which fast
electron exchange takes place. Since the magnetic
moment of chromium ions is dictated by the number of
unpaired 3d electrons, a complex of three crystallo-
graphically equivalent ions (Cr3+  Cr4+  Cr3+)
exchanging through one 3d electron will have a mag-
netic moment of (8/3)µB per ion. The frequency posi-
tion of the high-frequency line (Table 1) corresponds to
ions of these complexes.

4. CONCLUSIONS

An analysis of the 53Cr NSR spectra in
CuCr2 − xSbxS4  at T = 77 K has shown that the effects
of variable valence of quadrupole nuclei in locally
anisotropic positions result in averaging of not only the
resonance frequency but also of the quadrupole and
magnetic anisotropy constants.

The equilibrium concentration of anion vacancies
causes the formation of an additional low-frequency
line in the 53Cr NSR spectrum. This indicates weaken-
ing of exchange coupling of Cr ions at defect centers
based on anion vacancies.

Sb5+-based impurity centers yield an additional
spectral line in the high-frequency region. The forma-
tion of this line is associated with a change in the ratio
of the Cr3+ to Cr4+ ion concentration due to valence
compensation.

The lattice model for calculating the dipole mag-
netic and electric fields is not capable of explaining the
experimental values of the anisotropy of these fields.
This necessitates inclusion of the contribution from the
electron shell of ions. The determined values of the
anisotropic and quadrupole constants of the Cr4+ ion are
significantly higher than those for the Cr3+ ion due to
the electronic configuration of the Cr4+ ion. The asym-
metry of the electron cloud of the Cr4+ ion is caused by
the spin–orbit coupling, which is much stronger for
Cr4+ ions than for Cr3+ ions in CdCr2S4.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
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Abstract—The structural morphology and magnetic properties of thin FeTaN films with a high Ta content
(10 wt %) prepared by annealing compounds deposited by reactive rf magnetron sputtering in an Ar + N gas
mixture are studied. The dependence of the properties of FeTaN films on their nitrogen content and annealing
temperature were established. The deposition and thermal treatment regimes favoring the preparation of thin
nanostructural FeTaN films with high soft magnetic characteristics [Bs = 1.6 T, Hc = 0.2 Oe, and µ1 (1 MHz) =
3400] were determined. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Thin ferrite films are currently attracting intense
research interest because they offer considerable appli-
cation potential for use, for instance, in high-density
magnetic-recording media, magnetic sensors, micro-
wave applications, etc. [1–3]. The advantages of fer-
rites in the form of thin films lie in the rich diversity of
their magnetic and electrical properties, high chemical
stability, and mechanical strength. An important appli-
cation of magnetic films is associated with devices
developed for superhigh-density information recording
and reading. Indeed, films of Ba–M-type hexagonal fer-
rites are very promising as carriers in this case due to
their high coercivity. In turn, the use of such informa-
tion carriers imposes stringent requirements on record-
ing devices. To achieve superdense information record-
ing on such carriers, the saturation field in the core of a
write head should be as high as ~20 kG or even higher
[4, 5]. Nanostructural FeXN films, where X = Hf, Nb,
Zr, Si, B, or Al, satisfy these requirements (see, e.g., [6]
and references therein). However, each of these ions
introduced as a third element affects the magnetic prop-
erties of the synthesized material differently. It was
suggested in [7] that doping with Ta could substantially
improve the soft magnetic characteristics of Fe–N films
due to the relatively strong interaction of Ta with nitro-
gen ions [8], which enhances the solubility of N atoms
in FeTaN films and improves their soft magnetic prop-
erties. FeTaN films 0.6 µm thick and with a high
(12.5 wt %) tantalum content were prepared [9] and
found to be amorphous after deposition. Annealing of
amorphous FeTaN compounds deposited at a nitrogen
partial pressure of 7.5% yielded films with sufficient
soft magnetic characteristics [9]. It was revealed in [10]
that the magnetic properties of FeTaN films have the
best thermal stability. The technology of preparation of
1063-7834/05/4703- $26.00 ©0508
FeTaN films with fairly high soft magnetic characteris-
tics is described in [11].

As is evident from available publications, there is
still much to refine in the technology of preparation of
magnetic films with preset properties. Thin magnetic
films are prepared using a variety of methods, among
them sol-gel technology, magnetron sputtering, laser
ablation, molecular beam epitaxy, etc. (see, e.g., [11–
13]). The ratio of components in the compound and the
technological regime employed (sputtering conditions,
gas pressure at sputtering, substrate temperature) affect
the properties of FeXN films very strongly. Annealing
of deposited compounds is a process essential to the
formation of these properties. The annealing tempera-
ture can be varied within a broad range, which makes it
possible to purposefully control the film properties.
Hence, film annealing requires thorough study. This
communication reports on a study of the effect of the
preparation conditions and concentration of N ions on
the microstructure and magnetic properties of thin
(~1000 nm) FeXN films for X = Ta.

2. EXPERIMENTAL CONDITIONS

Thin FeTaN films were prepared by rf reactive mag-
netron sputtering from a composite target in a mixture
of Ar and N2 gases onto glass plate substrates. The com-
posite targets were pure iron platelets, with part of them
screened by a foil of highly purified Ta. The content of
Ta ions in sputtered films can be controlled by properly
varying the area of the Fe plate screened by a Ta foil.
Experiments showed that, by screening 20% of the iron
plate area by a Ta foil, an FeTaN compound can be pre-
pared in which 10 wt % of Fe ions are replaced by Ta
ions. The number of N ions in FeTaN was determined
by the partial pressure of nitrogen in the Ar + N2 gas
 2005 Pleiades Publishing, Inc.
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mixture in the sputtering chamber during the film dep-
osition. The conditions of FeTaN film preparation are
listed in the table. The films were annealed in a vacuum
furnace at a pressure of ~1 × 10–5 Torr.

Structural characterization of the films was carried
out with an x-ray diffractometer. Phase analysis was
performed by x-ray diffractometry and Mössbauer
spectroscopy (MS) with detection of conversion and
Auger electrons (conversion electron MS). The film
morphology was studied using electron transmission
and atomic-force microscopy (AFM). The saturation
magnetization Ms and the coercivity Hc of films were
measured with a high-sensitivity (10–3 emu) vibrating-
sample magnetometer. The anisotropy energy was
derived from B–H hysteresis loops as described in [14].

3. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1a presents x-ray diffraction patterns
obtained after deposition of FeTaN films at different
partial nitrogen pressures P(N2) by sputtering in an
Ar + N2 gas mixture. As follows from the diffracto-
grams in Fig. 1a, nitrogen-free FeTa films consist of
α-Fe crystallites in which the interplanar spacing
d(110) = 2.073 Å exceeds that for pure α-Fe (2.026 Å).
This suggests that Ta ions substitute for Fe ions in the
α-Fe lattice to form an α-Fe(Ta) substitutional solid
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Fig. 1. X-ray diffractograms (a) of as-deposited films and
(b) after their annealing at 450°C plotted vs. partial nitrogen
pressure P(N2) in the sputtering chamber.
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solution. The (110) diffraction line of the α-Fe state
broadens with increasing partial pressure P(N2) and
shifts toward smaller angles. These changes can be
explained by assuming that nitrogen atoms enter the
α-Fe lattice interstitially and stretch it. Films deposited
at pressures P(N2) ≥ 3% do not have a crystalline struc-
ture; i.e., they are practically amorphous. This conclu-
sion is corroborated by direct measurements (below
room temperature) of the magnetic characteristics of
films deposited at P(N2) = 5% (Fig. 2). If a film were to
consist only of nanosized α-Fe crystallites, the coercivity
Hc would be lower than its room-temperature value or
remain constant, because Hc depends on the exchange
coupling between grains and should be inversely propor-
tional to the magnetization Ms [15]. However, as is evi-
dent from Fig. 2, both Ms and Hc grow monotonically as
the temperature decreases to –173°C.

Figure 3 displays the dependence of the saturation
induction Bs  and coercivity Hc of as-deposited films on
the partial nitrogen pressure. As seen from Fig. 3, unan-
nealed films do not have the properties needed for the
development of magnetoresistive heads. As shown in
[15], the main condition for the formation of the
required soft magnetic characteristics in such materials

Conditions of FeTaN film preparation

Pressure in chamber 5 × 10–7 Torr

Pressure at sputtering 2 × 10–3 Torr

Partial nitrogen pressure
in the Ar + N mixture

0–10%

RF sputtering voltage 2.8 kV

Substrate temperature 20°C

Film thickness 400 nm

Deposition rate 20–28 nm/min
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Fig. 2. (1) Saturation induction Bs and (2) coercivity Hc
(measured below room temperature) of films deposited at
P(N2) = 5%.



 

510

        

KAMZIN 

 

et al

 

.

                                            
is a small or very low magnetic anisotropy (a few joules
per cubic meter). In α-Fe with grains of the order of
10 nm in size, the magnetic anisotropy is a few joules
per cubic meter because the nanosized α-Fe crystallites
are coupled by exchange interaction. In polycrystalline
nitrogen-free films, the size of the α-Fe particles
exceeds the exchange coupling length between them. In
this case, the magnetization process depends on the
magnetocrystalline anisotropy of these grains, as is the
case with bulk iron samples (Hc = ~50 Oe).

As already mentioned, the most efficient method of
preparing nanostructural alloys involves thermally con-
trolled crystallization of amorphous compounds.
Therefore, we studied the dependence of the magnetic
characteristics on the annealing temperature Tann on
films deposited at P(N2) = 5%. The experimental data
thus obtained are presented in Fig. 4. For films annealed
at low temperatures, the saturation induction Bs is seen
to be low, whereas the coercivity Hc is high and coin-
cides with that measured on amorphous films. Increas-
ing the annealing temperature brings about a mono-
tonic increase in the saturation induction Bs and a
smooth falloff of the coercivity Hc. The quantities Bs
and Hc are observed to undergo sharp changes in the
temperature range Tann = 350–400°C. As the annealing
temperature is increased still further, Bs and Hc do not
change, which indicates termination of the crystalliza-
tion of α-Fe nanoparticles in the film. Thus, the opti-
mum temperature for film crystallization lies in the
region 400–450°C. This is why the deposited amor-
phous compounds were annealed in a vacuum furnace
at 450°C.

Figure 1b shows x-ray diffractograms of films taken
after annealing for different partial nitrogen pressures
P(N2). The diffractograms in Fig. 1b taken before and
after annealing do not exhibit any pronounced differ-
ences for films deposited at pressures P(N2) < 3%.
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Fig. 3. (1, 2) Saturation induction Bs and (3, 4) coercivity Hc
measured (2, 4) after deposition of the films and (1, 3) fol-
lowing their annealing at 450°C and plotted vs. partial nitro-
gen pressure P(N2).
PH
However, deposition at pressures P(N2) ≥ 3% produces
nanosized crystallites, which become embedded in the
amorphous matrix. The products of crystallization in
films deposited at different P(N2) are different.

Figure 3 plots the saturation induction Bs and coer-
civity Hc of annealed films as a function of partial nitro-
gen pressure P(N2). It can be seen that annealing
increases the saturation induction Bs of the films, with
the enhancement of Bs being the largest in films depos-
ited at high pressures P(N2). In films deposited at pres-
sures P(N2) < 5%, the value of Bs remains practically
unchanged. Films prepared at P(N2) ≥ 5% exhibit a
monotonic decrease in Bs. The dependence of the film
coercivity Hc on P(N2) is somewhat different, as is evi-
dent from Fig. 3. As P(N2) increases, Hc decreases rap-
idly to reach its lowest value at P(N2) = 5%, after which
it grows smoothly. Such changes in magnetic properties
can be assigned to the crystallization of compounds that
differently affect the coercivity of the films. Indeed, in
films deposited at pressures P(N2) ≤ 5%, the enhance-
ment of Bs should be ascribed to annealing-induced
crystallization of predominantly nanosized α-Fe parti-
cles. Annealing of films deposited at pressures P(N2) >
5% initiates simultaneous crystallization of α-Fe nano-
particles and of the TaN compound. Figure 5 shows
Mössbauer spectra of films deposited at a partial nitro-
gen pressure P(N2) = 5% (Fig. 5a) and subsequently
annealed at 450°C (Fig. 5b), as well as of a film depos-
ited at P(N2) = 7% and annealed at 450°C (Fig. 5c). The
spectrum of the film deposited at P(N2) = 5% (Fig. 5a)
does not have a Zeeman line structure and consists of
broad lines, which indicates that this compound is
amorphous.

The Mössbauer spectra of films deposited at P(N2) =
5% and annealed at 450°C (Fig. 5b) demonstrate a Zee-
man sextuplet with linewidths of 0.30 ± 0.03 mm/s and
an effective magnetic field at the iron-ion nucleus sites
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Fig. 4. (1) Saturation induction Bs and (2) coercivity Hc of
films deposited at P(N2) = 5% as a function of annealing
temperature Tann.
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of 333.8 ± 0.4 kOe. The areas of the Zeeman sextuplet
lines are in the ratio 3 : 4 : 1 : 1 : 4 : 3. This means that
the magnetic moments of iron ions in the film are per-
pendicular to the wave vector of the γ radiation striking
the film surface along the normal. Therefore, the mag-
netic moments of iron ions are confined to the film
plane. In the region of zero velocity of the Mössbauer
source, the spectrum exhibits lines suggesting that the
films have a small amount of a compound in which iron
is in the paramagnetic state. The parabolic shape of the
background spectral line also implies the presence of a
small amount of iron in the amorphous state. Atomic
force microscopy of a film obtained at P(N2) = 5% and
Tann = 450°C reveals α-Fe grains ~5–10 nm in size,
which is less than the ferromagnetic-exchange length.
The fraction of nanocrystallites in the volume of these
films is the largest. Thus, AFM, x-ray diffraction
(Fig. 1b), and Mössbauer spectroscopy measurements
(Fig. 5b) suggest that annealing of films deposited at
P(N2) = 5% causes primarily α-Fe nanoparticles to
crystallize in the amorphous matrix, with the (110)
plane of these α-Fe grains being oriented predomi-
nantly parallel to the film surface.

As seen from Fig. 5c, the Mössbauer spectrum of a
film deposited at P(N2) = 7% and then annealed at
450°C consists of broad lines (~2 mm/s) of the Zeeman
sextuplet. An analysis of this spectrum revealed it to be
actually a superposition of lines belonging to the α-Fe
state and TaxNy-type compounds. The total sextuplet line
areas are approximately in the ratio 3 : 4 : 1 : 1 : 4 : 3,
which indicates that the magnetic moments of the iron
ions are confined to the film plane. In the region of zero
velocity, the spectrum contains lines indicating the
presence of a small amount of iron compounds in the
paramagnetic state in the films. Hence, the data
obtained using Mössbauer spectroscopy may be con-
sidered direct evidence supporting the validity of the
results obtained in AFM and x-ray diffraction studies,
which suggest simultaneous annealing-induced crystal-
lization of α-Fe nanoparticles and compounds of the
TaN type in films deposited at pressures P(N2) > 5%.

It was conjectured in [16] that, if a segregated TaN
compound is dense enough, it blocks the exchange cou-
pling between α-Fe particles, thus destroying the soft
magnetic properties of the films. This conjecture is
borne out by measurements of the magnetic character-
istics of these films, which are presented in Fig. 3.

Films in which only nanosized α-Fe particles crys-
tallize have high soft magnetic characteristics, because
the effective anisotropy in this case is substantially sup-
pressed by exchange coupling among the α-Fe nano-
particles [14]. Note that, as follows from experiments,
annealing of films deposited at P(N2) = 5% brings
about the formation primarily of α-Fe nanoparticles
crystallizing in the amorphous matrix, with the (110)
plane of these α-Fe grains being oriented predomi-
nantly parallel to the film surface.
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4. CONCLUSIONS

Our studies have established the conditions favor-
able for the preparation of thin soft magnetic FeTaN
films with a tantalum content of 10 wt % by using con-
trolled crystallization of deposited amorphous com-
pounds. The dependences of the microstructure and
magnetic properties on partial nitrogen pressure in the
sputtering chamber have been determined. It was
shown that Ta ions in nitrogen-free films substitute for
Fe ions in the α-Fe lattice to form a crystallizable α-
Fe(Ta) solid solution. The films deposited at higher par-
tial nitrogen pressures are practically amorphous in
structure. Annealing gives rise to the formation of
nanocrystalline α-Fe and other TaN-type phases, which
are embedded in the amorphous matrix of the films. It
was established that films deposited at a partial nitrogen
pressure P(N2) = 5% have high soft magnetic character-
istics. This is accounted for by the fact that the films
thus prepared are made up primarily of nanosized α-Fe
crystallites distributed over an amorphous matrix, with
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Fig. 5. Conversion electron Mössbauer spectra of films
(a) deposited at P(N2) = 5%, (b) deposited at P(N2) = 5% and
then annealed at 450°C, and (c) deposited at P(N2) = 7% and
annealed at 450°C.
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the α-Fe grains being less than 10 nm in size. The films
have a cluster structure and possess induced uniaxial
anisotropy, which originates from N ions occupying
octahedral positions in the α-Fe lattice.
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Abstract—Analytical expressions are derived for the rates of longitudinal and transverse nuclear spin relax-
ation under conditions of fast modulation of the magnitude and direction of a hyperfine field induced by
unpaired electrons of an ion. The results obtained are used to explain the data available in the literature on the
55Mn spin relaxation in the ferromagnetic metallic phase of doped perovskites, in which the modulation of
the hyperfine field is caused by the hopping of eg electrons between Mn3+ and Mn4+ ions. It is demonstrated
that, within this model, the rates of longitudinal and transverse relaxation are characterized by the same tem-
perature dependence and their ratio is independent of temperature, which is in agreement with the experi-
mental data. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In recent years, increased interest has been expressed
by researchers in manganites of the general formula
La1 − xAxMnO3 (A = Ca, Sr, Pb). This is explained by the
fact that these materials exhibit unusual magnetic and
transport properties, which are controlled primarily by
the content x of Mn4+ ions. According to the model of
double exchange, which was proposed by Zener [1], the
eg electrons can easily execute hoppings (with a fre-
quency fhop) from Mn3+ to Mn4+ ions, provided the spins
at both sites have parallel orientations. Consequently,
ferromagnetic ordering of manganites has often been
accompanied (especially in the case of doping at a level
x = 0.3) by the formation of a ferromagnetic metallic
phase with a drastically decreased electrical resistance.

Manganite compounds have been intensively stud-
ied using nuclear magnetic resonance (NMR) and, in
particular, 55Mn NMR [2–7]. Owing to the hyperfine
interaction, the frequency fNMR of 55Mn NMR depends
on the charge state of the ion; hence, at temperatures
above the ordering temperature, the NMR lines of Mn3+

and Mn4+ ions are recorded individually. However, at
temperatures below TC, at which the manganite under-
goes a transition from the paramagnetic insulating
phase to the ferromagnetic metallic phase, these lines
merge into a single line, because, in this temperature
range, the hopping frequency exceeds the NMR fre-
quency: fhop > fNMR [2–7]. Savosta et al. [3–5] investi-
gated the temperature dependences of the rates of lon-

gitudinal ( ) and transverse ( ) 55Mn nuclear spin
relaxation for this averaged spectrum. It was found that

the temperature dependences of the relaxation rates 

and  are identical to each other and that the ratio

T1
1–

T2
1–

T1
1–

T2
1–
1063-7834/05/4703- $26.00 0513
T1/T2 falls in the range from 10 to 60 and does not depend
on temperature. This behavior is observed not only in the
ferromagnetic metallic phase but, sometimes, also in the
ferromagnetic insulating phase (dρ/dT < 0, where ρ is the
electrical resistivity), which indicates the presence of fer-
romagnetic metallic clusters in this phase [5].

The aforementioned similarity between the temper-
ature dependences of the rates of longitudinal and
transverse nuclear spin relaxation was qualitatively
explained in [3]. The purpose of this work was to per-
form an analytical investigation of the 55Mn nuclear
spin relaxation occurring in samples with mobile carri-
ers through the mechanism proposed in [3].

2. ANALYTICAL TREATMENT

Manganese ions in doped manganites are located in
a crystal field, which is usually treated as the sum of the
basic term of cubic symmetry and a small addition of
crystal fields of lower symmetry. Following Section 3
in the paper by Kubo et al. [8], we will restrict our con-
sideration to the specific case in which a Mn4+ ion
resides in an octahedral cubic crystal field and a Mn3+

ion additionally experiences a relatively weak tetrago-
nal crystal field due to the Jahn–Teller distortion; i.e.,
we will disregard crystal fields of lower (for example,
orthorhombic) symmetry.

Let us consider nuclear spin relaxation in a zero
external magnetic field. In a Mn4+ ion, the 55Mn nucleus
with a gyromagnetic ratio γn undergoes a contact hyper-
fine interaction with the electron shell. For a ferromag-
netic phase with a preferred direction z (the easy mag-
© 2005 Pleiades Publishing, Inc.
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netization axis), the effective nuclear spin Hamiltonian
can be written in the form

 (1)

where  is the effective contact hyperfine field in the
Mn4+ ion in ferromagnetic manganite. This field differs
from the effective hyperfine field in a free ion, which
can be calculated, for example, by the Hartree–Fock
method [9].

The symmetry of the environment of the nuclear
spin in Mn3+ ions is lower than cubic symmetry; in this
case, the tensor describing the electron–nuclear interac-
tion is not reduced to a scalar [10]. In [8], the 55Mn
nuclear Hamiltonian for a Mn3+ ion with a tetragonal
distortion of the environment was calculated in the fol-
lowing form:

 (2)

where θ is the angle between the direction z and the tet-
ragonal axis Z, the x axis lies in the plane containing the
axes z and Z, and H' is the parameter of the dipole field
induced by an eg electron at the site of the nucleus
removed over a distance r and averaged over the d wave
functions. The absolute value of this parameter for a free
Mn3+ ion can be determined from the expression [8]

 

where µB is the Bohr magneton. For the compounds

under consideration, , , and H' are adjustable
parameters.

The Hamiltonian of 55Mn nuclei in manganites
doped at a level x, which is averaged by eg electron hop-
pings and corresponds to a single NMR line, has the
form

 (3)

Here, the averaging is performed over the distribution
of Mn3+ and Mn4+ ions in accordance with the doping
level:

 

 (4)

 

It follows from expression (3) that the 55Mn nucleus, on
average, “sees” the field aligned along the direction
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PH
deviated from the electronic quantization axis z;
namely, it is quantized in the system of coordinates (ξ,
η, ζ), which is related to the system of coordinates (x,
y, z) through the transformation

 

where  = . In the system of coordinates
(ξ, η, ζ), we have

 (5)

 (6)

According to the mechanism proposed in [3], the
relaxation of a nuclear system with Hamiltonian (5) is
associated with the fluctuations of the local fields on the
nucleus due to hoppings of the eg electrons between
Mn3+ and Mn4+ ions; i.e., in the terminology used by
Abragam [10], the first-order relaxation takes place. In
the system of coordinates (x, y, z), the interaction
responsible for the relaxation can be represented as

 (7)

 (8)

In the “nuclear” system of coordinates (ξ, η, ζ), the
relaxation Hamiltonian (7) takes the form

 (9)

 (10)

By analogy with the case of chemical exchange
[10], the correlation function of the z component of the
local field with respect to the hopping electron spins is
taken to be an exponential function [3],

 (11)

The time dependence (t) also includes a fast
exponential function describing the precession of the eg

electron with a frequency ωe in the exchange field of a
ferromagnetic metal:1 

 (12)

1 In the case when the estimates are made using an exchange field
of 81.2 T in manganite [4] and taking into account that the corre-
lation times τe calculated in [3] should be multiplied by the coef-

ficient [4x(1 – x)]–1 > 1 (see, below, expression (19)), the fre-
quency of the fast exponential function, according to the data pre-
sented in [3, Fig. 8], exceeds the rate of hopping of an eg electron

at a temperature T > 200 K. Then, the terms with (t) can be
disregarded.
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The correlation time corresponding to hoppings of
electron holes is given by the expression

 (13)

where E is the hopping activation energy.
Then, we use the expressions derived by Moriya

[11] (see also the monograph by Turov and Petrov [12])
for the rates of nuclear spin relaxation due to fluctua-
tions of the local fields at the nucleus under consider-
ation:

 (14)

 (15)

It should be noted that expressions (14) and (15)
hold in the approximation of small correlation times,
i.e., times that are shorter than the inverse root-mean-
square fluctuation of the local field in frequency units;
the braces in these expressions designate the symme-
trized product.

Upon substituting the fluctuations of the local fields
described by formula (10) into expressions (14) and
(15), we obtain the following relationships for the rates
of the longitudinal and transverse 55Mn nuclear relax-
ation:

 (16)

 (17)

By assuming that  @ 1, replacing the corre-
sponding designations, and changing over from the
first-order relaxation to the second-order relaxation
[10], relationships (16) and (17) can be transformed in
such a way that they become consistent with the results
obtained by Moriya [11] (expressions (2.26), (2.27)),
who also assumed that the nuclear quantization axis
deviates from the electronic quantization axis.

Let us now consider the temperature range in which

the inequality  @ 1 holds true. If the anisotropic
contribution to the electron–nuclear interaction is alto-
gether absent or is considerably smaller than the isotro-
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pic contribution, it can be assumed that sinΘ ≈ 0 and
cosΘ ≈ 1. Taking into account that, in this case,

 (18)

we obtain the following relationships for the rates of the
longitudinal and transverse 55Mn nuclear relaxation:

 ≈ 0 and

 (19)

As could be expected, expression (19) at x = 1/2 is
transformed into the Anderson formula for the effect of
narrowing due to fast motion (see, for example, expres-
sion (21) in the paper by Mizoguchi and Inoue [13]).

For localized Mn3+ ions that are characterized by a
nonzero orbital moment and serve as relaxation centers
with a strongly anisotropic fluctuation spectrum, in the

limiting case, we have Θ  π/2 and, hence,  =

2 . Note that this relationship was not observed for
doped perovskites [6].

In the intermediate case of the relationship between

the parameters , , and H', the ratio of the rate
of transverse relaxation to the rate of longitudinal relax-
ation is given by the formula

 (20)

In order to estimate ratio (20), it can be averaged over
the angle θ with due regard for relationships (4). As a
result, we obtain the expression

. (21)

By assuming that  ≈  and using the esti-
mates obtained by Papavassiliou et al. [7], we find

/  ~ 30, which is in agreement with the experi-
mental data [3, 5, 6]. It is necessary to note that the
experimental temperature dependences of the relax-

ation rates  and  turn out to be entirely similar to
each other (this similarity is described by expression
(20)) and that these rates increase exponentially with an
increase in the temperature T [3, 5]. Savosta et al. [3]
explained this behavior in terms of the quadratic tem-
perature dependence of the activation energy, which is
characteristic of spin polarons. It should also be noted
that, if the nuclear relaxation were to be associated with
the scattering of conduction electrons by nuclear spins
(i.e., with the Korringa mechanism), its temperature
dependence, with any form of electron–nucleus interac-
tion, would be linear [12]. Hence, there is good reason
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to believe [3] that the ferromagnetic metallic phase of
doped manganites is not a common metal.

Note that some researchers [4, 14] have observed
two different ferromagnetic metallic phases in manga-
nites. In particular, Savosta and Novák [4] revealed that
the coexistence of these two phases manifests itself in
asymmetry of the 55Mn NMR line, which can be
decomposed into two lines. According to the assump-
tion made in [4], the broader line (the correlation time
τe is longer) corresponds to more insulating regions,
whereas the narrower line (the correlation time τe is
shorter) is attributed to more metallic regions. Heffner
et al. [14] noted spatially inhomogeneous spin–lattice
relaxation in ferromagnetic metallic phase samples of
doped manganites, which can also be explained by the
coexistence of two different ferromagnetic metallic
phases.

3. CONCLUSIONS

Thus, we derived analytical expressions for the rates
of longitudinal and transverse 55Mn nuclear spin relax-
ation under conditions of fast thermally activated
motion of charge carriers (holes), which modulate the
hyperfine interaction in the Mn3+–Mn4+ system. These
formulas are consistent with the experimental data
obtained earlier in [3, 5, 6] for the ferromagnetic metal-
lic phase of manganites of different compositions.
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Abstract—The magnetic structure of single-crystal TbFe11 − xCoxTi  compounds has been studied over a broad
temperature range and in strong magnetic fields (up to 14 T). Measurements of magnetization and magnetostric-
tion and a study of the domain structure revealed that spin-reorientation transitions (SRTs) in TbFe11 − xCoxTi sin-
gle crystals depend substantially on the cobalt concentration. It was established that the SRT temperatures and
threshold magnetic fields are governed by the interplay between the magnetic anisotropies of the 3d and terbium
sublattices. It is shown that, in these compounds, the low-temperature phase with planar anisotropy is separated in
temperature from the high-temperature phase with uniaxial anisotropy by an intermediate metastable phase con-
taining domains of the uniaxial or planar phase. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The materials used to fabricate modern high-effi-
ciency permanent magnets include intermetallic com-
pounds of 3d and 4f metals. Rare-earth (RE) 4f metals
provide a high saturation magnetization and giant
anisotropy, while 3d elements (iron or cobalt) account
for the high values of the magnetic-ordering tempera-
ture and coercivity, as well as for the high remanent and
saturation magnetizations [1]. Among these com-
pounds is Nd2Fe14B, which has recently been enjoying
wide application. Magnetic materials based on RE
intermetallic compounds, R(Fe,Co)11Ti, with the
ThMn12 crystal structure are also promising [2–8].

The magnetic sublattices of the RE and 3d transition
metals in these intermetallics are coupled by strong
exchange interaction. The interplay between the mag-
netic anisotropies of the 3d and RE sublattices gives
rise to spin-reorientation phase transitions (SRTs). Sub-
stitution of cobalt for iron on the 3d sublattice in
RFe11Ti compounds has a significant effect on the
structure of the 3d band, which makes R(Fe,Co)11Ti RE
intermetallic compounds particularly interesting for
investigating the effect the electronic structure exerts
on the magnetic properties, phase transitions, and
exchange coupling [9–12].

The present communication reports on a study of the
effect of substitution (of cobalt for iron) on the 3d sub-
lattice on the character of exchange coupling, magnetic
ordering, and domain structure in Tb(Fe,Co)11Ti inter-
metallic compounds with the ThMn12 tetragonal crystal
1063-7834/05/4703- $26.00 0517
structure. Coordinated experimental investigations of
the magnetic properties and domain structure of single
crystals of TbFe11 − xCoxTi compounds were carried out
over a broad range of temperatures and magnetic fields.

2. EXPERIMENTAL TECHNIQUES 
AND SAMPLES

The TbFe11 − xCoxTi alloys to be studied were pre-
pared by rf melting in alundum crucibles in an argon
environment on a Donets-1-type setup. The alloy com-
ponents were high-purity metals Tb and Ti, as well as
99.9%-pure Fe. The alloys thus prepared were sub-
jected to high-temperature annealing in an SShVL-type
resistance furnace. To improve homogeneity, the ingots
were crushed again and remelted in vacuum. The sin-
gle-phase state of the alloys was established from x-ray
diffraction patterns of powder samples of the com-
pounds. All of the TbFe11 − xCoxTi compounds thus pre-
pared (x = 0, 1, 2, 3, 4, 5) crystallize in the ThMn12 tet-
ragonal structure (space group I4/mmm). It was found
that heating of the alloys to 1800 K followed by rapid
cooling to 1500 K with subsequent slow cooling to
1400 K over 3–8 h produces single crystals of the main
phase in the form of (110) plates and [001]-oriented
needles. Single crystals of the TbFe11 − xCoxTi com-
pounds were prepared from these ingots. The quality of
the single crystals was checked by Laue diffraction.

The temperature and field dependences of the mag-
netization of the TbFe11 − xCoxTi compounds were mea-
sured (i) in magnetic fields of up to 3 T at temperatures
© 2005 Pleiades Publishing, Inc.
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from 300 K to the Curie point with a vibrating sample
magnetometer, (ii) within the temperature range 77–
300 K in fields of up to 1.2 T with a pendulum magne-
tometer, and (iii) at temperatures ranging from 4.2 to
250 K and in magnetic fields of up to 14 T with a capac-
itor magnetometer in a superconducting coil at the
International Laboratory of Strong Magnetic Fields and
Low Temperatures (Wroçlaw, Poland). The Curie tem-
peratures (TC) of the compounds were derived from the
temperature dependences of the magnetization mea-
sured in a field µ0H = 5 × 10–2 T. The domain structure
of TbFe11 − xCoxTi single crystals on differently ori-
ented surfaces and in a broad temperature range, 4.2–
370 K, was studied using the magnetooptical Kerr
method at the Max Planck Institute of Physics (Stut-
tgart, Germany).

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Magnetic Properties

The Curie temperature of the TbFe11 − xCoxTi com-
pounds was defined as the point of fast falloff of the
specific magnetization measured in a field of 500 Oe
(Fig. 1). Our studies showed that substitution of cobalt
for iron in the TbFe11 − xCoxTi system gives rise to a
monotonic growth of the Curie temperature TC (Fig. 1).
As the cobalt concentration increases, TC varies at a rate
of ~90 K/atom in the range from x = 1 to 2 and at a rate
of 20 K/atom in the range from x = 4 to 5 (Fig. 2). The
Curie temperature is determined primarily by the
exchange coupling on the 3d sublattice, which contains
atoms of iron and cobalt. As follows from neutron dif-
fraction measurements [13], Co atoms in compounds
with the ThMn12 structure occupy primarily the 8f and
8j positions, where the distance between Fe atoms is
less than a critical value of ~0.24 nm and the exchange
coupling integral between Fe atoms is negative. Co
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Fig. 1. Temperature dependence of magnetization of
TbFe11 − xCoxTi compounds plotted for different cobalt
concentrations.
PH
atoms have a positive exchange integral; therefore, sub-
stitution of Co for Fe enhances the positive exchange
coupling on the 3d sublattice, with the result that the
Curie temperature also increases. It should be pointed
out that the difference in the Curie temperatures
between the TbFe11 − xCoxTi and YFe11 – xCoxTi com-
pounds (the Y magnetic moment is zero) does not
exceed 10%.

As the Co concentration increases, the saturation
magnetization σS for TbFe11 − xCoxTi single crystals
first grows weakly to reach a small maximum at x = 2
and then decreases, which correlates with the behavior
of magnetization in other RE intermetallic compounds
under substitution of Co for Fe, as well as in Fe–Co
binary alloys. This phenomenon can be explained in
terms of the band theory of magnetism as a result of
successive filling of the 3d bands with positive and neg-
ative spin orientation under replacement of iron with
cobalt (the number of 3d electrons per atom in Co is
larger by one than that in Fe) [14].

The magnetization isotherms σ(H) of single-crystal
TbFe11 − xCoxTi have a complex pattern indicating the
occurrence of spin-reorientation phase transitions in
these compositions, with the temperature and character
of the transitions depending substantially on the cobalt
concentration. It is of particular interest that sharp
jumps are observed to occur in σ(H) curves of
TbFe11 − xCoxTi single crystals at critical values of the
magnetic field Hcr. Let us consider the magnetic prop-
erties of the TbFe9Co2Ti compound in more detail. Fig-
ure 3 presents magnetization isotherms along the [001],
[110], and [100] crystallographic directions of a
TbFe9Co2Ti single crystal measured at 4.2 K in mag-
netic fields of up to 140 kOe. We see that the [100] axis,
along which the magnetization rapidly reaches satura-
tion, is the easy magnetization axis (EMA) and that the
[001] axis, where the magnetization field is the stron-
gest, is the hard magnetization axis (HMA). Hence, the
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Fig. 2. Concentration dependences of the critical magnetic
field and Curie temperature for TbFe11 − xCoxTi single
crystals.
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basal plane is an easy plane at T = 4.2 K. Figure 4 dis-
plays magnetization isotherms measured along the
[001] axis of a TbFe9Co2Ti single crystal in the temper-
ature interval 80–300 K and at magnetic fields of up to
12 kOe. In the low-temperature region, the σ(H) curves
follow a practically linear course typical of the case
where [001] is the hard magnetization axis. As the tem-
perature increases, a jump appears in the σ(H) curves at
a critical magnetic field H = Hcr, after which the curve
rapidly reaches saturation. At high temperatures, T >
275 K, the [001] axis becomes an easy axis, thus sug-
gesting spin reorientation in the TbFe9Co2Ti com-
pound. Near the spin-reorientation transition tempera-
ture (TSR = 275 K), characteristic breaks take place in
the magnetization isotherms (Fig. 4). This behavior of
magnetization is evidence of a first-order magnetiza-
tion process (FOMP), which is induced by a magnetic
field. These phase transitions are associated with the
spontaneous magnetization vector IS transferring from
one minimum of magnetocrystalline anisotropy (MCA)
to another [15]. Hence, at low temperatures, T < TSR,
TbFe9Co2Ti has planar anisotropy and becomes a
uniaxial ferrimagnet at high temperatures. These two
states are separated in temperature by an intermediate
phase, which is metastable, because, as will be shown
below, uniaxial-phase and planar-phase domains coex-
ist in this state. In the σ(H) curves (Figs. 3, 4), we
clearly see that, in the vicinity of the FOMP, there is a

field where  is maximum and positive (H =

Hcr1) and a field where  is maximum in mag-
nitude and negative (H = Hcr2). The field interval Hcr1–
Hcr2 defines the FOMP phase transition region. There is
practically no hysteresis in this region. Figure 5 plots
the temperature dependence of the average value of Hcr

for a TbFe9Co2Ti single crystal. The average value of
Hcr was derived from the maximum of the first deriva-
tive of σ(H), which corresponds to the inflection point
in the magnetization curves. The critical field Hcr

decreases with increasing temperature for all cobalt
concentrations, with the Hcr(T) curves becoming practi-
cally linear at high temperatures. Figure 2 shows the
concentration dependence of Hcr obtained at T = 4.2 K
for TbFe11 − xCoxTi single crystals. The maximum of
this curve is seen to lie at x = 2.

An external magnetic field decreases the spin-reori-
entation transition temperature.

The SRT noticeably influences the dependences of
magnetostriction on temperature and external magnetic
field. Indeed, the temperature dependence of longitudi-
nal magnetostriction λ||(T) measured along the [001]
axis of a TbFe9Co2Ti single crystal in magnetic fields of
up to 12 kOe reveals a clearly pronounced maximum at
T = 269 K, a temperature close to TSR (Fig. 6). Decreas-
ing the magnetic field shifts the maximum in the λ||(T)
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Fig. 3. Magnetization isotherms of a TbFe9Co2Ti single
crystal measured at 4.2 K along the [001], [110], and [100]
crystallographic axes.
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curve toward lower temperatures; for instance, at H =
3.5 kOe, the maximum is seen at T = 251 K.

The observed behavior of λ||(T) can be interpreted in
the following way. For T > TSR, magnetostriction along
the [001] axis should be fairly small, because this effect
has even parity and displacements of boundaries of
antiparallel domains do not contribute to magnetostric-
tion; furthermore, there is no rotation-induced magne-
tostriction, as the vector MS does not rotate in a field H ||
[001]. When cooled below TSR, the vector NS rotates
through an angle θ0 relative to the [001] axis, while the
application of a magnetic field restores MS to align with
[001]; therefore, rotation-induced magnetostriction
takes place. The observed effect will be λ = λc –
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Fig. 6. Temperature dependence of the longitudinal and
transverse magnetostriction of a TbFe9Co2Ti single crystal
measured at different magnetic fields.

25 µm

Fig. 7. Domain structure of the TbFe9Co2Ti intermetallic
compound in the EMA + EP intermediate state at T = 295 K.
P

λccos2θ0, where λc is the magnetostriction constant and
θ0 is the angle between the magnetization vector and
the c axis.

3.2. Domain Structure

The domain structure (DS) of TbFe11 − xCoxTi single
crystals was studied on differently oriented surfaces
and over a broad temperature range, 4.2–370 K, by the
magnetooptic Kerr method with a Polywar Met metal-
lographic microscope (Reichner-Jung, Germany), on
which a cryostat with the sample was mounted. The
technique employed in these low-temperature studies
was described in considerable detail in [16–18]. The
DS transformation occurring during a spin-reorienta-
tion transition in TbFe11 − xCoxTi compounds was
observed for two compositions, TbFe11Ti and
TbFe9Co2Ti. In TbFe11 − xCoxTi compounds, the mag-
netostriction is high (λ ~ 10–4) and the magnetoelastic
contribution to magnetocrystalline anisotropy is quite
large. Therefore, these compounds enable one to follow
the effect of both substitution and the uniaxial magnetic
anisotropy induced by the magnetoelastic contribution
on the DS rearrangement pattern. Two cases were con-
sidered in this work: (i) transition from the magneti-
cally uniaxial to a magnetically biaxial state (with easy-
plane anisotropy) in TbFe11Ti and (ii) transition from
the magnetically uniaxial to a magnetically biaxial state
(with easy-plane anisotropy and the preferred easy axis
induced by the magnetoelastic contribution) in
TbFe9Co2Ti.

At high temperatures, the TbFe11Ti compound is
magnetically uniaxial. As the temperature is lowered to
TSR = 310 K, the anisotropy type changes from the easy-
axis to easy-plane MCA and an EMA–EP metastable
state sets in. After this, a crossover to the easy-plane
anisotropy takes place at TSR2 = 290 K, which is
observed in the DS patterns.

The extreme case of the effect of stresses on the pat-
tern of DS variation in the course of spin reorientation
was studied on TbFe9Co2Ti. The magnetoelastic contri-
bution to MCA in compounds of the Tb(Fe,Co)11Ti sys-
tem is large. Therefore, in the easy-plane anisotropy
region, Tb(Fe,Co)11Ti compounds quite frequently
show a situation where one of the [110]-type EMAs is
made preferred by the stresses present in the sample as
the easiest axis of magnetization. This crystal is also
magnetically quasi-uniaxial in the low-temperature
region, where easy-plane anisotropy prevails. The mag-
netic phase diagram of Tb(Fe,Co)11Ti compounds was
shown in [8] to have a transition region within which
the energies of the high-temperature (I) and low-tem-
perature (II) phases turn out to be equal. In this region,
the TbFe9Co2Ti compound exhibits two DS systems
HYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
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corresponding to the low- and high-temperature phases
(Fig. 7).

Phase I has a stripe DS. In the case exemplified in
Fig. 7, the phase with such domains lies directly under
the plane of observation. The EMA of this domain sys-
tem, which coincides with the [110] crystallographic
axis of the tetragonal lattice, makes an angle of approx-
imately 60° with the sample surface. Domain system I,
representing a magnetic phase with EMA-type anisot-
ropy, is located under phase-II domains. These are 180°
stripe domains with the magnetization aligned with the
[001] axis. DS I magnetizes system II, thus causing a
periodic variation of domain width in the star system.
Figure 8 illustrates the DS variation for the TbFe9Co2Ti
compound in the temperature interval corresponding to
the crossover from the EMA to EP anisotropy with a
preferred, easiest magnetization axis. Note that, in this
case, phases I and II coexist in the temperature interval
220–360 K.

(‡) (b)

(c) (d)

(e) (f)

Fig. 8. DS rearrangement in a TbFe9Co2Ti single crystal
during the phase transition from (a) the EMA to (d–f) an EP
state with a preferred EMA. The sample temperature is
(a) 370, (b) 326, (c) 293, (d) 220, (e) 200, and (f) 80 K.
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4. CONCLUSIONS

Spin-reorientation transitions in TbFe11 − xCoxTi
compounds are driven by magnetocrystalline interac-
tions with two major contributions.

In the low-temperature region, FOMP-type SRTs
are driven primarily by the interplay between different
crystal-field parameters that determine the anisotropy
on the RE sublattice. The MCA energy reaches a mini-
mum as a result of the MCA constants of the first and
higher orders having opposite signs. As the temperature
increases, mutual compensation of the MCAs of the 3d
and 4f sublattices plays a substantial role. Single-ion
MCA of terbium ions with a negative Stevens coeffi-
cient favors planar anisotropy, whereas that of Fe ions
is favorable for uniaxial anisotropy. Substitution of
cobalt for iron reduces the 3d-sublattice MCA, because
the single-ion MCA constants of iron and cobalt have
opposite signs. As a result, the SRT temperature
decreases substantially with increasing cobalt concen-
tration. In the vicinity of the MCA compensation point,
a spontaneous SRT transition occurs, which is associ-
ated with the magnetization vector switching from the
basal plane to the c axis. The coexistence of domains
with a uniaxial and a planar phase in the SRT proximity
substantiates the presence of a metastable phase in the
transition region.
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Abstract—The angular dependence of the magnetic birefringence of sound in hematite is experimentally
investigated as a function of the direction of a magnetic field applied in the basal plane of the hematite crystal.
It is found that, at room temperature, the curve of magnetoacoustic oscillations in the magnetic field, i.e., the
oscillatory dependence of the amplitude of an acoustic wave transmitted through the crystal on the magnetic
field strength, is characterized by hexagonal and uniaxial anisotropy. It is shown that the hexagonal anisotropy
is governed by the basal-plane anisotropy of higher orders. The appearance of the uniaxial magnetic anisotropy
in the basal plane of the crystal is explained by the mechanical stresses arising in the sample when piezoelectric
transducers are glued to the sample ends. This assumption is confirmed by the observed change in the direction
of the uniaxial anisotropy axis under variations in the boundary conditions. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Magnetic birefringence of a transverse acoustic
wave propagating along the hard magnetization axis C3
in the easy-plane antiferromagnet α-Fe2O3 was
observed experimentally in our recent work [1]. In
accordance with the inferences made from the theory of
birefringence [2], we revealed that the amplitude of an
acoustic wave transmitted through the sample exhibits
oscillations dependent on the magnetic field strength H
(magnetoacoustic oscillations) and that the polarization
of the acoustic wave changes from linear at the entry
into the sample to elliptic at the exit from the sample.
The nature of this phenomenon is associated with the
lifting of the degeneracy in the spectrum of transverse
acoustic waves with wave vector k || C3 due to the mag-
netoelastic interaction [3]. During propagation of the
acoustic wave along the C3  axis, only one of the two
normal modes of transverse vibrations efficiently inter-
acts with the magnetic subsystem, specifically with
vibrations of the antiferromagnetic vector L in the basal
plane of the crystal. These vibrations correspond to the
low-frequency quasi-ferromagnetic branch of the spec-
trum of spin waves in two-sublattice easy-plane antifer-
romagnets, including hematite α-Fe2O3 [2, 3]. Owing
to the renormalization of the elastic moduli resulting
from the magnetoelastic coupling, the velocity of the
interacting mode (magnetoelastic mode) becomes dif-
ferent from that of the noninteracting mode and
depends on the magnetic field H (due to the dependence
of the antiferromagnetic resonance frequency ωf 0 on
the magnetic field H). This leads to a phase shift
between the normal modes of transverse vibrations
1063-7834/05/4703- $26.00 0523
∆ϕ(H), whose magnitude at the exit from the sample of
length d in the direction of propagation of the acoustic
wave is determined by the expression ∆ϕ(H) = ∆kd/2,
where ∆k(H) is the difference between the wave vectors
of the normal modes of transverse vibrations. There-
fore, the amplitude of the resultant wave at the exit from
the sample is an oscillating function that depends on the
magnetic field strength [1, 2]. Investigation into the
angular dependence of the birefringence has revealed
that the curves of magnetoacoustic oscillations in a
magnetic field substantially depend on the direction of
the magnetic field in the basal plane of the crystal [1].
In particular, we observed a 60° periodic dependence of
the amplitude of an acoustic wave on the magnetic field
strength. This dependence can be explained in terms of
the fields of the fourth- and sixth-order basal-plane
anisotropy. It is worth noting that the hexagonal depen-
dence overlaps with a 180° periodic dependence. The
latter dependence indicates a strong uniaxial magnetic
anisotropy in the basal plane of the crystal. However,
this anisotropy has defied explanation in terms of crys-
talline or magnetic anisotropy [4] and can be associated
with the generation of additional magnetostriction
fields [5, 6]. In our experiments, there are two most
probable factors responsible for the generation of these
fields: (i) residual stresses in unannealed samples,
which were sawed from a single-crystal boule grown
along one of the twofold axes in the basal plane of the
crystal sample, and (ii) mechanical stresses arising in
the sample when piezoelectric transducers are glued to
the sample ends parallel to the basal plane of the sample
[5, 6]. According to [5, 6], the inhomogeneous strains
© 2005 Pleiades Publishing, Inc.
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induced by these stresses can be comparable in magni-
tude to the spontaneous striction in hematite [7]. The
main objective of this work was to elucidate the origin
of the periodicity in the angular dependence of the mag-
netic birefringence of sound. For this purpose, we car-
ried out new experiments with annealed hematite sam-
ples. The results of these experiments are discussed in
this paper.

2. EXPERIMENTAL TECHNIQUE
We measured the amplitude of a transverse ultra-

sonic wave (at a frequency f ≅  91 MHz) transmitted
through a hematite sample (k || C3) as a function of the
strength and direction of the magnetic field applied in
the basal plane perpendicular to the C3  axis of the crys-
tal. The measurement procedure and requirements for
samples were described in detail in [1]. We note only
that the ellipticity of the acoustic wave at the exit from
the crystal sample allows one to specify the directions
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Fig. 1. Oscillations of the amplitude of the transmitted
acoustic wave as a function of the magnetic field H (ϕH ≅  0)
at angles ξ ≅  30° (ϕ0 ≅  30°) (solid line) and ξ ≅  120° (ϕ0 ≅
120°) (crossed line).

2

1

0

–1
60 120 180 240 360

ϕH, deg

∆H
, k

O
e

300

(a)

(b)

0

2

1

0

–1
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P

of polarization of the emitting and receiving piezoelec-
tric transducers arranged at the plane-parallel ends of
the sample at any angle to each other. It is most conve-
nient (first of all, for comparison with theory) to
arrange them either parallel or perpendicular to each
other [1]. Below, we will present the results of measure-
ments performed for their orthogonal orientation and
two directions of polarization of the input piezoelectric
transducer (emitter). In the first case, the direction of
polarization of the emitter made an angle ξ = 30° with
the preferred twofold axis C2 (the growth axis of the
single-crystal boule). In the second case, the angle ξ
was equal to 120°. The receiving piezoelectric trans-
ducers were glued accordingly.

The measurements were carried out at room temper-
ature in magnetic fields 3 ≤ H ≤ 20 kOe, which were
applied in the basal easy-magnetic plane of the sample.
The sample was rotated in a magnetic field. The direc-
tion of the magnetic field in the basal plane of the crys-
tal was specified by an angle ϕH measured from the
same preferred twofold axis C2. The single crystals
were annealed in air according to the standard proce-
dure: the samples were uniformly heated to an anneal-
ing temperature of 1100°C for 3 h and were then
annealed at this temperature for 6 h. After annealing,
the samples were cooled in the furnace to room temper-
ature over a period of 20 h.

3. EXPERIMENTAL RESULTS

Figure 1 shows the experimental curves of magne-
toacoustic oscillations of the amplitude of the trans-
verse ultrasonic wave A⊥ (H) for these samples at an
angle ϕH = 0 for orientations of the transducers at
angles ξ ≅  30° (solid line) and ξ ≅  120° (crossed line).
Figure 2 depicts the dependences of the magnetic field

strength (ϕH) = (ϕH) – (0), which cor-
responds to the nth maximum in the curve A⊥ (H), on the
field direction for both orientations of the emitter. It can
be seen from Fig. 2 that the magnetic field strength

(ϕH) in both cases (i.e., at ξ = 30° and 120°) is a
periodic function with a period of 60°. In turn, this
function overlaps with a 180° periodic function indicat-
ing an anisotropy with a considerable amplitude. A
comparison of Figs. 2a and 2b (points) clearly demon-
strates that the axis of this anisotropy is rotated through
an angle of 90°. It should be noted that the results of the
experiments performed with annealed samples for ori-
entation of the emitter at an angle ξ ≅  30° differ very
insignificantly from the results obtained for unannealed
samples under the same conditions [1]; hence, the latter
results are not presented in these figures to avoid over-
crowding. Therefore, we can assume that the residual
strain associated with the single-crystal growth is small
as compared to the strain caused by spontaneous stric-
tion and that the observed uniaxial anisotropy in the

∆Hm
n( )

Hm
n( )

Hm
n( )

∆Hm
n( )
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basal plane of the crystal sample is related to the bound-
ary conditions [6].

4. DISCUSSION

The experimentally observed magnetoacoustic
oscillations (Fig. 1) can be described by the expression
obtained in [2] (in relative units):

 (1)

where ϕ0 is the angle between the direction of polariza-
tion of the excited wave and the direction of polariza-
tion of the normal (transverse) magnetoelastic mode.
Expression (1) allows us to obtain only qualitative
agreement with the experimental data; however, there is
a significant quantitative discrepancy between theory
and experiment. A similar situation occurs with other
easy-plane antiferromagnets, such as MnCO3 [8] and
FeBO3 [9]. The possible reasons for the absence of a
close quantitative agreement between theory and exper-
iment were discussed in detail in [10]. One of the theo-
retical models that provides a good fit of the calculated
data to the experimental dependence of the amplitude
of the transverse ultrasonic wave A⊥ on the magnetic
field strength H was considered in [6].

The experimental angular dependence of the mag-

netic field (ϕH) = (ϕH) – (0), which cor-
responds to the nth maximum in the curve A⊥ (H) (this
is also true for any other point in the curve of magne-
toacoustic oscillations), is approximated well by the
function

 (2)

This function can be interpreted as follows. According
to expression (1), the amplitude of the acoustic wave at
the exit from the sample is largest under the condition

 (3)

In the case of the sufficiently strong fields used in the
experiment, for which the inequality ∆k/k ! 1 is satis-

fied, the difference between the wave vectors ∆k( )
can be represented by the approximate expression [2]

 (4)

where Vη is the velocity of the noninteracting mode, C44
is the elastic modulus, ρ is the density of the crystal, B14
is the component of the tensor of the magnetoelastic
coupling, HE is the exchange magnetic field, and M0 is
the equilibrium magnetization of the sublattices. By
assuming the uniaxial anisotropy and taking into
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account the fourth- and sixth-order basal-plane anisot-
ropy, the antiferromagnetic resonance frequency of the
quasi-ferromagnetic mode ωf 0 has the form [5, 11]

 (5)

It follows from expressions (4) and (5) that the mag-

netic field strength , at which condition (3) is sat-
isfied, is a composite periodic function of the angle ϕH.

Relationship (5) includes the following magnetic

fields: HD is the Dzyaloshinski field,  is the isotro-
pic part of the field of spontaneous magnetostriction, Ha

is the effective field of the basal-plane anisotropy of
higher orders [4], and Hp is the magnetostriction field
induced by strains arising under the action of an arbi-
trary external force applied in the basal plane of the
crystal at an angle θ to the preferred twofold axis C2 [5,
11]. An example of this force is pressure applied in the
basal plane of the crystal, whose effect on the antiferro-
magnetic resonance frequency ωf 0 was thoroughly
investigated earlier. Following the conclusions drawn
in [6], we can assume that, in the case under consider-
ation, the nonzero additional magnetostriction field Hp

induced in the basal plane of the crystal is determined
by the mechanical boundary conditions. These condi-
tions are created when piezoelectric transducers with a
strong anisotropy of the thermal expansion coefficient
(the X cut of lithium niobate) are glued to the sample
ends parallel to the basal plane of the crystal. Harden-
ing of the glued area (epoxy resin) is accompanied by
the heat release. As a result, the transducer plate expe-
riences strong tension in the preferred direction in the
plane of the cut. In turn, this tension gives rise to inho-
mogeneous mechanical stresses at the sample ends.
These stresses, like the magnetostriction fields induced
by them, should possess axial symmetry. Apparently,
the direction of the axis of this symmetry is determined
by the direction of the maximum extension of the
piezoelectric transducer. In our opinion, this assump-
tion is confirmed by the experimentally observed
change in the phase of the uniaxial anisotropy by an
angle of 90° upon regluing of both piezoelectric trans-
ducers with a 90° rotation of the polarization vectors.

From the above consideration, it follows that the
parameters α, β, and χ, which are involved in expres-

sion (2) for the approximating function ∆ , are
determined by the following factors: the parameter β is
determined by the magnetostriction field Hp of external
stresses, the angle α is governed by the orientation of
the X axis in the cut plane of the piezoelectric trans-
ducer with respect to the C2 axis of the crystal in the
basal plane, and the parameter χ depends on the mag-
netic field of the hexagonal basal-plane anisotropy Ha.
The experimental angular dependences of the magnetic
field strength corresponding to the maximum in the
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2
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curve of magnetoacoustic oscillations (Fig. 2) are
approximated by functions of form (2) with the follow-
ing parameters: β ≅  0.5, χ ≅  0.8, and α ≅  17° in Fig. 2a
and β ≅  0.5, χ ≅  0.8, and α ≅  105° in Fig. 2b (solid
lines). As can be seen from Fig. 2b, the approximating
function describes the experimental curve satisfacto-
rily. Moreover, this function entirely corresponds to the
change in the anisotropy axis by an angle of 90° under
variations in the boundary conditions and describes
well the general trend of the observed dependence.
Based on the experimental data, the exchange-strength-
ened values of these fields can be estimated as

 ≈ 4.6 kOe and  ≈ 1.8 kOe. The
basal-plane anisotropy field is comparable in magni-
tude to the published data [4].

5. CONCLUSIONS

The observed angular dependence of the magnetic
birefringence of the transverse acoustic wave in easy-
plane antiferromagnets is determined by the distribu-
tion of relatively weak magnetic fields in the basal
plane of the crystal. This demonstrates a high sensitiv-
ity of the ultrasonic methods, which can be efficiently
used to investigate not only the elastic and magne-
toelastic properties of strong magnets but also their
purely magnetic properties.
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Abstract—The electronic structure and magnetic properties of the crystalline and fullerene-like forms of nickel
dichloride NiCl2 are investigated in the framework of the local spin density functional theory. It is demonstrated
that the band gap can be reproduced in the energy band spectrum of the NiCl2 compound with inclusion of the
magnetic ordering in the calculation of the band structure. The metamagnetic nature of the NiCl2 dichloride
(i.e., the transition from an antiferromagnetic phase to a ferromagnetic phase in a weak magnetic field) is
explained in terms of a small difference (0.025 eV/cell) between the total energies of the ferromagnetic and anti-
ferromagnetic phases. Polyhedral three-shell nanoparticles of the NiCl2 compound exhibit magnetic properties
(the magnetic moment of nickel lies in the range 2.0–2.3 µB). For isostructural nanoparticles of the FeCl2
dichloride, the magnetic moment of iron is larger and falls in the range 4.2–4.5 µB, whereas nanoparticles of
the CdCl2 dichloride are found to be nonmagnetic. The results of analyzing the interatomic interactions indicate
that the composition of fullerene-like nanoparticles of the dichlorides under investigation can deviate from the
1 : 2 stoichiometric composition. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Among the magnetic materials suitable for a wide
range of practical applications, quasi-two-dimensional
metamagnetic systems are of particular interest. The
best known representatives of these systems are nickel
dichloride NiCl2 and isostructural d metal dihalides of
the CdCl2 type. In the ground state, the NiCl2 dichloride
is an antiferromagnetic material. The NiCl2 compound
in the antiferromagnetic phase has a structure consist-
ing of nickel ferromagnetic layers in which the adjacent
layers are antiferromagnetically ordered [1, 2]. The
NiCl2 dichloride undergoes a transition from the anti-
ferromagnetic phase to the ferromagnetic phase in
weak magnetic fields.

The mechanism responsible for the formation of a
band gap in the energy band spectrum of the NiCl2
dichloride and a number of other crystalline nickel-con-
taining compounds has been a matter of great discus-
sion between different groups of researchers [3]. In par-
ticular, the one-electron spin-restricted calculations
performed by Ackerman et al. [4] predicted that the
NiCl2 dichloride should possess metallic conductivity.
However, Ronda et al. [3] carried out experimental
investigations of the photoconductivity in nickel
dichloride and revealed that the energy band spectrum
of this compound is characterized by a band gap of
~4.6 eV. Antoci and Minich [5] and Zaanen et al. [6]
assumed that the formation of a band gap in the band
spectrum of nickel dichloride can be caused by transi-
tions from a Ni 3d–Cl 3p occupied band to a Ni d empty
energy band rather than by transitions between d–d
1063-7834/05/4703- $26.00 0527
states of nickel; i.e., the band gap in the band spectrum
of this compound is associated with charge-transfer
transitions and is not a Mott–Hubbard gap, in contrast
to the case with nickel oxide NiO. The question regard-
ing the role played by magnetism in the formation of a
band gap in the energy band spectrum of the NiCl2
dichloride remains open.

Quite recently, Hacohen et al. [7] synthesized
unique quasi-one-dimensional and quasi-zero-dimen-
sional nanostructures of nickel dichloride (namely, nan-
otubes and polyhedral fullerene-like nanoparticles,
respectively) through reactive laser ablation [7]. More-
over, Hacohen et al. [8] and Popovitz-Biro et al. [9]
prepared a number of fullerene-like nanoparticles from
related metal dihalides, such as CdI2, CdCl2, and FeCl2.
However, there are no reliable data on the electronic
and magnetic properties of these low-dimensional sys-
tems.

In this work, the electronic structure and magnetic
states of the crystalline (two-dimensional) and
fullerene-like (zero-dimensional) forms of the NiCl2
dichloride were thoroughly investigated within the
local spin density functional theory formalism for the
first time. Moreover, we examined the magnetic prop-
erties of FeCl2 and CdCl2 fullerene-like nanoparticles.

2. COMPUTATIONAL TECHNIQUE, RESULTS, 
AND DISCUSSION

Nickel dichloride NiCl2 has a layered structure

(space group ) consisting of molecular layers,R3m
© 2005 Pleiades Publishing, Inc.



 

528

        

 

 

ENYASHIN 

 

et al

 

.

                                                                              
Ni

Cl

Y

Z X

a2

Fig. 1. Atomic structures of a fragment of the NiCl2 molecular layer (a1 and a2 are translational vectors) and a polyhedral (fullerene-
like) nanoparticle of the composition (NiCl2)48.
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each composed of three Cl–Ni–Cl atomic networks
(Fig. 1). The band structure of the NiCl2 crystal was cal-
culated using the linearized muffin-tin orbital method
[10] for three phases, namely, the nonmagnetic, ferro-
magnetic, and real antiferromagnetic phases. The anti-
ferromagnetic phase has a structure composed of nickel
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ferromagnetic layers in which the adjacent layers are
antiferromagnetically ordered [1, 2]. For the nonmag-
netic phase of the NiCl2 compound, the energy at the
Fermi level EF coincides with the maximum of the den-
sity of nickel d states. Owing to the ferromagnetic
ordering, the total energy of the system decreases by
~0.31 eV and the energy band spectrum is character-
ized by a band gap of ~0.35 eV (Fig. 2). Thus, the com-
parison of the results obtained for the nonmagnetic and
ferromagnetic phases of the NiCl2 dichloride shows
that the band gap can be reproduced in the energy band
spectrum of this compound with inclusion of the in-
plane magnetic ordering in the band structure calcula-
tion performed in the framework of the local spin den-
sity functional theory.

In the NiCl2 compound, Ni2+ ions have a 3d8 config-
uration in which six electrons occupy the t2g bands and
two electrons are localized in the eg bands. In the ferro-
magnetic phase of the NiCl2 compound, electrons
occupy the t2g spin-up states, the eg spin-up states, and
the t2g spin-down states. The top of the valence band is
formed by the eg bands overlapping with the Cl 3p
states; i.e., the formation of the band gap is associated

with transitions between the  hybridized states and

the  unoccupied states (Fig. 2). The magnetic
moment of nickel is equal to 1.3 µB.

The inclusion of the antiferromagnetic ordering
between the nickel ferromagnetic layers leads to a low-

ering of the  occupied band and to an increase in the
band gap to 0.42 eV. It should be particularly empha-
sized that the total energy of the antiferromagnetic
phase is 0.025 eV lower than the total energy of the fer-
romagnetic phase. In this case, the band structures of
the antiferromagnetic and ferromagnetic phases differ
insignificantly. Therefore, the electronic properties of

eg
↑

eg
↓

eg
↑
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the NiCl2 dichloride are only slightly affected by the
antiferromagnetic ordering and the metamagnetic
nature of this compound (i.e., the transition from the
antiferromagnetic phase to the ferromagnetic phase in a
weak magnetic field) can be explained in terms of the
very small difference between the total energies of the
ferromagnetic and antiferromagnetic phases.

Atomic models of the low-dimensional structures of
the NiCl2 compound were constructed on the basis of a
Cl–Ni–Cl molecular layer. This layer can be described
by the primitive translational vectors a1 and a2 (Fig. 1).
Models of the chiral and achiral nanotubes were
obtained by rolling “ribbons” cut from a layer of width
|c | = na1 + ma2 [7, 11]. Fullerene-like nanoparticles
were modeled with the use of NiCl2 layer fragments
serving as nanoparticle faces. In order to provide alter-
nation of the Ni–Cl bonds, vertices of these fullerene-
like nanoparticles, unlike carbon fullerenes, must be
occupied by even numbers of atoms. With due regard
for this requirement, it is possible to construct only one
type of polyhedral particles in which the face walls are
built of NiCl6 octahedra shared by edges and each ver-
tex is formed by two octahedra shared by faces (Fig. 1).
In order to ensure the stoichiometric composition
NiCl2, it is necessary to remove two chlorine atoms, for
example, from two vertices of the fullerene-like nano-
particles (Fig. 1). Such fullerenes of the stoichiometric
composition NiCl2 are three-shell nanoparticles of the
cage type in which the outer and inner shells are com-
posed of chlorine atoms and the middle shell consists of
nickel atoms. These nanoparticles have octahedral mor-
phology, which was experimentally observed by Haco-
hen et al. [7].

The electronic and magnetic properties of NiCl2,
FeCl2, and CdCl2 fullerene-like nanoparticles were
investigated using the example of polyhedral nanopar-
ticles of the composition (MeCl2)48. The particle geom-
etry was optimized by the MM+ molecular mechanics
method with allowance made for dipole interactions.
The calculations were performed using the spin-polar-
ized discrete-variational method [12]. The model den-
sities of states are presented in Fig. 3. The Cl 3p states
are localized in the energy range 8–2 eV below the
Fermi level EF. The near-Fermi states predominantly
involve the Ni 3d orbitals. Fullerene-like nanoparticles
of the composition (NiCl2)48 are characterized by a
metal-like band spectrum. A similar band spectrum is
obtained for (FeCl2)48 nanoparticles. For (CdCl2)48
nanoparticles, the upper valence band is primarily
formed by the Cl 3p states and the lowest free energy
states are of the mixed Cd 5s–Cl 3p type. The band gap
is approximately equal to 0.5 eV. The atomic magnetic
moments of the (NiCl2)48, (FeCl2)48, and (CdCl2)48
fullerene-like nanoparticles were calculated from the
populations of the atomic spin orbitals. According to
these calculations, the atomic magnetic moments are
equal to 2.0–2.3 µB for the (NiCl2)48 nanoparticles and
4.2–4.5 µB for the (FeCl2)48 nanoparticles. The
(CdCl2)48 nanoparticles are found to be nonmagnetic.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
The calculations of the overlap integrals and the
effective atomic charges Q demonstrated that the Cou-
lomb interactions play a dominant role in the stabiliza-
tion of the (NiCl2)48 and (FeCl2)48 fullerene-like nano-
particles, whereas the covalent component of the bond
is small (the overlap integral is less than 0.1 e). The
degree of ionicity of the bond is estimated from the
Pauling formula and is approximately equal to 75%.
The atomic charges of the metallic shell of the nanopar-
ticles fall in the range +(0.33–0.41) for nickel and in the
range +(0.35–0.46) for iron. Two groups of atoms can
be clearly distinguished among the nonequivalent chlo-
rine atoms involved in the outer and inner shells of the
fullerene-like nanoparticles. For atoms of the first
group, the effective atomic charges Q lie in the range
−(0.19–0.36) for the (NiCl2)48 nanoparticles and in the
range –(0.25–0.30) for the (FeCl2)48 nanoparticles. For
atoms of the second group, the effective charges Q are
considerably smaller and equal to ~–0.07 for the
(NiCl2)48 nanoparticles and –(0.01–0.10) for the
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Fig. 3. Model densities of d states of metal atoms in
(a) (NiCl2)48, (b) (FeCl2)48, and (c) (CdCl2)48 fullerene-
like nanoparticles according to the spin-polarized discrete-
variational calculations. The vertical line indicates the edge
of the occupied band.
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(FeCl2)48 nanoparticles. This implies that chlorine
atoms of the latter group are weakly bonded to metals
atoms and can easily leave the nanoparticle cage. This
group contains 36 chlorine atoms located in the inner
shell of the nanoparticle. Therefore, the 1 : 2 stoichio-
metric composition of the fullerene-like nanoparticle can
change to 1 : 1.25. This ratio is in good agreement with
the results obtained in [7–9], according to which the
composition of the dichloride fullerene-like nanoparti-
cles synthesized is characterized by a ratio of 1 : 1.2 (or
less).

3. CONCLUSIONS
Thus, the electronic structure and magnetic states of

the crystalline and fullerene-like forms of the NiCl2
dichloride were investigated using the linearized muf-
fin-tin orbital and discrete-variational methods in the
framework of the local spin density functional theory. It
was demonstrated that the band gap can be reproduced
in the energy band spectrum of the NiCl2 crystal with
inclusion of the magnetic ordering in the calculation of
the band structure. The calculations of the total energies
for three phases, namely, the nonmagnetic, ferromag-
netic, and antiferromagnetic phases, showed that the
antiferromagnetic phase is more stable. The metamag-
netic nature of the NiCl2 dichloride and the transition
from the antiferromagnetic phase to the ferromagnetic
phase in a weak magnetic field were explained in terms
of the small difference between the total energies of the
ferromagnetic and antiferromagnetic phases.

It was established that NiCl2 polyhedral three-shell
(fullerene-like) nanoparticles possess magnetic prop-
erties (the magnetic moment of nickel is equal to 2.0–
2.3 µB). For isostructural fullerene-like nanoparticles of
the FeCl2 dichloride, the magnetic moment of iron is
larger and falls in the range 4.2–4.5 µB, whereas nano-
particles of the CdCl2 dichloride are found to be non-
P

magnetic. The results of analyzing the interatomic
interactions indicate that the composition of dichloride
fullerene-like nanoparticles can deviate from the 1 : 2
stoichiometric composition.
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Abstract— The Raman spectra and elastic moduli of KPb2Cl5 crystals were studied experimentally. The results
are interpreted using a parameter-free model of the crystal lattice dynamics with inclusion of the multipole
moments of the electron shells of ions. The calculated and experimental results are in good agreement. It is
shown that not only the halogen ions but also the heavy cations make a significant contribution to the eigenvec-
tors of high-frequency lattice vibration modes, which accounts for the relatively low frequencies of these
modes. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The current development of solid-state systems of
infrared nonlinear optics and photonics has stimulated
a search for and the creation of new materials that have
a broad spectral window in the IR region (the low-fre-
quency boundary is 30 µm). Because of this trend,
interest has recently arisen in studying the optical and
spectral properties of complex halides containing
heavy cations, which have a relatively short phonon
spectrum in contrast to traditional oxide systems.

Crystals of the Me+Pb2Hal5 family (where Me+ is an
alkali metal and Hal is a halogen) have the abovemen-
tioned spectral window in the IR region, and there exist
techniques for growing relatively large single crystals
of these compositions [1]. Unlike many other complex
halides, these crystals are sufficiently resistant to the
atmosphere. A rather loose packing of ions having large
radii in the lattice opens up wide possibilities for vary-
ing the compositions and properties of these crystals
and for their use as active laser media [2]. However, the
physical properties of these crystals have not been stud-
ied in detail.

In this work, we study the vibrational spectrum and
elastic properties of KPb2Cl5 crystals, which belong to
this family. In this study, we intend to elucidate the
nature of formation of the low-frequency boundary of
the spectral window of the crystal and determine the
structural blocks and interactions that control its posi-
tion. This study also allows us to obtain information on
the relation between the crystal structure and the crystal
elastic moduli, which are of interest from both the
standpoint of materials-science characterization of the
material and its possible applications in acoustooptical
IR devices.
1063-7834/05/4703- $26.00 ©0531
To interpret the vibrational spectrum and to estab-
lish a relation between the lattice vibration frequencies
and the lattice structure, we use the first-principles
approach developed recently in [3–5]. It should be
noted that, in the case of low-symmetry structures with
a large number of atoms in a unit cell, the use of empir-
ical methods (see, e.g., [6, 7]), which are traditionally
employed for this purpose, requires a large number of
fitting parameters, which cannot be determined using a
limited amount of experimental data. Therefore, the
application of parameter-free methods becomes very
important.

2. EXPERIMENTAL

KPb2Cl5 crystals belong to the monoclinic space
group P21/c and have a = 8.854(2) Å, b = 7.927(2) Å,
c = 12.485(3) Å, β = 90.05(3), V = 876.3(4) Å3, Z = 4,
and a density of 4.781 g/cm3. The coordinates of the
atoms are given in Table 1, and the projection of the
structure on the bc plane is shown in Fig. 1 [8].

To fabricate optical-grade single crystals, the starting
PbCl2 and KCl reagents were repeatedly purified by
resolidification. KPb2Cl5 crystals were grown using the
Bridgman crystal growth technique in a two-zone fur-
nace. The linear temperature gradient in the growth
region of the furnace was about 20 K/cm, and the veloc-
ity of ampoule motion to the cold zone was 2–4 mm/day.
The technique is described in more detail in [9]. The
crystal structure was determined at room temperature
using a STOE STADI4 single-crystal diffractometer
and MoKα radiation (2θmax = 80°). The samples chosen
had no inclusions or defects visible under a polarizing
microscope and were subjected to a mechanical treat-
 2005 Pleiades Publishing, Inc.
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ment followed by polishing in a solution of hydrochlo-
ric acid.

Raman spectra were excited with polarized 514.5-nm
radiation from a 500-mW Ar+ laser. The spectra were
recorded on a U-1000 spectrometer (I.S.A. Jobin Yvon,
France). For experiments, we used 2 × 2 × 4-mm sam-
ples, with the edges orientated along the crystallo-
graphic axes.

The elastic moduli Cλµ were determined by measur-
ing the velocities of bulk acoustic waves (BAWs) fol-

Table 1.  Atomic coordinates (×104) in crystal KPb2Cl5

X Y Z

K(1) 5092(5) 514(6) 1696(4)

Pb(1) 65(1) 58(1) 1742(1)

Pb(2) 2547(1) 4359(1) 9937(1)

Cl(1) 9585(4) 1655(5) 4023(3)

Cl(2) 2218(4) 405(4) 9986(3)

Cl(3) 5401(5) 1798(6) 4186(4)

Cl(4) 2355(5) 3117(5) 2204(3)

Cl(5) 7702(6) 3449(5) 1885(3)
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Fig. 1. Projection of the KPb2Cl5 structure on the bc plane.
The pseudohexagonal packing of the channels that contain
metal cations and are extended along the a direction is
shown. Numerals are the ion numbers (identical to those in
Fig. 4).

3
2

P

lowed by solving the inverse problem of crystal acous-
tics.

The BAW velocities were measured using four sin-
gle-crystal samples in the form of a rectangular paral-
lelepiped with linear dimensions of about 6 mm. The
faces of the first sample were normal to the [100],
[010], and [001] crystallographic axes. The faces of the
other three samples were normal to the axes of the coor-
dinate system that is obtained by rotating the initial sys-
tem through 45° about one of the following three axes:

axis X1 ([100], ,  directions), X2

( , [010],  directions), or X3

( , , [001] directions). Using the

crystal symmetry and this set of directions, we can per-
form two independent measurements in different crys-
tallographic directions for each velocity to be mea-
sured. X-ray orientations of the samples were carried
out to an accuracy of better than ±5'. The opposite faces
of the samples were parallel to each other with an accu-
racy of better than ±2 µm/m.

The velocities of longitudinal and shear BAWs were
measured using a pulse ultrasound method [10]; the
block diagram of the setup employed is shown in Fig. 2.
The operation of the setup is based on measuring the
time of propagation of an ultrasound pulse in a sample.
A short (10-ns) video pulse from generator 1 is supplied
to piezoelectric transducer 2 (the BAW velocities are
measured with piezoelectric transducers based on lith-
ium niobate with a resonance frequency of 29.5 MHz);
after multiple reflections in sample 3, a pulse train is
preliminarily amplified by amplifier 4 and then is visu-
ally recorded by oscilloscope 5. The main pulse train of
time-interval counter 6 activates generator 1, and the
delayed-pulse train synchronizes the sweep of oscillo-
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Fig. 2. Block diagram of the ultrasound experimental setup:
(1) G5-11 video-pulse generator, (2) piezoelectric trans-
ducer, (3) sample, (4) U2-5 resonance amplifier (30 MHz),
(5) S7-9 sampling oscilloscope, (6) I2-26 time-interval
counter, (7) diode limiter of the probe-pulse amplitude, and
(8) ATsP 1 analog-to-digital converter.
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scope 5. The experimental procedure consists in mea-
suring the time interval between two sequentially
reflected radio pulses on the oscilloscope screen. This
scheme gives an accuracy of 10–2 and 10–4% for abso-
lute and relative measurements of the BAW velocities,
respectively.

3. RESULTS AND DISCUSSION

3.1. Vibrational Spectrum

The vibrational representation is reduced to the fol-
lowing irreducible representations at the center of the
Brillouin zone:

 (1)

where the parentheses contain the Raman tensor com-
ponents for which the corresponding lattice vibrations
are active. Note that, because of the low symmetry and
the complex crystal structure, it is impossible to sepa-
rate vibration modes related by individual atomic sub-
lattices using group-theoretical considerations.

The experimental Raman spectra of KPb2Cl5 crys-
tals recorded at room temperature are shown in Fig. 3.
As expected, the spectra are restricted to low frequen-
cies; indeed, all the lines are below 250 cm–1. The spec-
tra are strongly anisotropic, and the spectral lines are
highly polarized. The number of well-resolved peaks is
slightly smaller than the number of modes determined
from Eq. (1); therefore, their interpretation requires
comparison of the peaks with the results of model cal-
culations.

The vibrational spectrum of the KPb2Cl5 crystal lat-
tice was calculated in terms of the generalized Gordon–
Kim model [3, 4], in which distortions of the electron
densities of ions are included. Taking these distortions
into account is especially important for low-symmetry
structures, since the interactions of multipole moments
of ions in them contribute substantially to the total lat-
tice energy and the crystal vibration frequencies.

Following [3, 4], we calculated the electron-density
distribution of each ion in the presence of an external
field of the corresponding symmetry:

 (2)

where Pl(cosθ) are Legendre polynomials. The spheri-
cally symmetrical component of an external potential
was taken to be the Watson sphere potential

 (3)

In the calculations, we took into account dipole (l = 1)
and quadrupole (l = 2) electron-density distortions.

The radii of the Watson spheres for each ion were
determined by minimizing the total crystal energy

Γ 24Ag xx yy zz xy yx, , , ,( )=

+ 24Bg xz zx yz zy, , ,( ) 24Au 24Bu,+ +

V ext
l( )

r
l( )

Pl θcos( ),=

VW

Z ion/RW , r– RW<
Z ion/r, r– RW .>




=
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(Table 2). Table 2 also contains the dipole (αd) and qua-
drupole (αq) ion polarizabilities calculated using a
modified Steinheimer equation [3, 4]. The corre-
sponding values of induced dipole (P) and quadrupole
(Q) moments were found by minimizing the total
crystal energy with respect to the corresponding
moment: ∂E/∂Pα = 0 and ∂E/∂Qαβ = 0. The expres-
sions used to calculate the total crystal energy, dipole
and quadrupole moments, and the dynamical matrix
can be found in [4, 5].

The equilibrium values of the lattice parameters
were refined by minimizing the total crystal energy as a
function of these parameters. For this purpose, we used
the experimentally determined atomic coordinates in
the unit cell (Table 1). The values obtained (a = 8.7 Å,
b = 7.6 Å, c = 12.5 Å) agree well with the experimental
data.

The eigenvectors obtained by diagonalizing the
dynamical matrix were subjected to symmetry analysis.
We constructed the complete vibrational representation
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Fig. 3. Polarized Raman spectra of crystal KPb2Cl5.

Table 2.  Calculated parameters of the interionic interactions
in crystal KPb2Cl5

Parameter K+ Pb2+ Cl–

RW, Å 1.85 1.85 1.16

αd, Å3 0.7 1.6 3.3

αq, Å5 0.9 1.5 5.8
5
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P(g) of the crystal space group, which was used to cal-
culate the projection operators [11]:

 (4)

where N(ρ) is the dimension of the representation ρ of
point symmetry operation, N(g) is the dimension of the
symmetry group, χρ(g) is the character of the matrix of
the irreducible representation ρ, Γ(g) is the vibrational
representation of the symmetry operation of the irre-
ducible representation ρ of group G, and Γρ is the pro-
jection operator. Summation is taken over all symme-
try-group operations. A vibration eigenvector f is trans-
formed according to the irreducible representation ρ of
group G if it satisfies the criterion [11]

 (5)

Γρ
N ρ( )
N g( )
------------ χρ g( )Γ g( ),

g G∈
∑=

Γρf
N g( )
N ρ( )
------------f .=

Table 3.  Experimental and calculated frequencies of
Raman-active lattice vibration modes in crystal KPb2Cl5

Ag, ω, cm–1 Bg, ω, cm–1

calculation experiment calculation experiment

34i 38i

26i 28i

25i 6

21 18 28 33

34 27 39 40?

41 35 45 42

45 43 46 48

53 50 57 57

57 56 64

58 67

60 62 71

67 74 75

73 73 80 85

76 84

86 85 90 88

91 95 95

92 100

101 103 108

106 108 107 119

110 120 115 132

123 124 120 144

129 127 129 158

134 132 140 173

159 200? 161 202
P

This algorithm of expansion of the eigenvectors of the
dynamical matrix in terms of irreducible representa-
tions was realized using the Mathematica 4.2 software
package.

The experimental and calculated frequencies of the
Raman spectrum are given in Table 3. Note that these
experimental and calculated frequencies agree well in
the middle portion of the spectrum. For the lowest fre-
quencies (below 20 cm–1), the calculated frequencies
depend strongly on small changes in the atomic coordi-
nates; their variation within the experimental error can
result in significant (up to 100%) changes in the vibra-
tion frequencies.

Figure 4 shows the relative contributions of the
atomic displacements to the eigenvectors of the corre-
sponding modes (the renormalization to ionic masses
was taken into account). To check the correctness of the
procedure, we calculated the atomic displacements for

Table 4.  BAW velocities in a KPb2Cl5 single crystal (exper-
iment)

No. Propagation
direction

Wave
type Polarization Velocity,

m/s

1 [001] QL [001] 2766.2

2 SS [010] 1520.8

3 QSF [100] 1532.6

4 QL 3027.4

5 QSS 1442.5

6 QSF [001] 1529.1

7 [010] L [010] 2717.8

8 SF [001] 1731.3

9 SS [100] 1521.0

10 QL 2894.0

11 QSS 1464.6

12 SF [010] 1610.2

13 [100] QL [100] 3010.3

14 QSS [001] 1532.8

15 SF [010] 1730.6

16 QL 2778.9

17 QSS 1471.5

18 QSF [100] 1637.7
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Fig. 4. Relative ion-vibration amplitudes of (a) the acoustic mode, (b) high-frequency mode, and (c) low-frequency mode. (d) The
relative ion-vibration amplitude of a middle-range Raman-active mode. (e) The relative ion-vibration amplitude of a Raman-inac-
tive polar mode.
the acoustic mode. The results support the correctness
and are shown in Fig. 4a. Figure 4b shows the atomic
displacements for the highest frequency spectrum
mode, which corresponds to the spectral-window
boundary of the crystal. It is seen that, although the
maximum displacements correspond to chlorine ions,
the contribution of heavy metal ions to the eigenvector
of this vibration remains significant, which is likely to
account for the relatively low value of the correspond-
ing frequency (as compared, e.g., to the frequencies in
high-symmetry perovskite-like chloride systems [15]).

As is seen in Figs. 4c–4e, the low symmetry of the
structure leads to a strong interaction between the
vibrations of atomic sublattices in virtually all vibration
modes; in particular, even the lowest frequency modes
contain a significant contribution from the displace-
ments of light chlorine ions.
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3.2. Elastic Moduli

The problem of determining the elastic moduli Cλµ
by measuring the BAW velocities for monoclinic media
was solved in [12] and discussed in detail in [13]. In the
chosen crystallographic setting, the elastic-modulus
matrix of the crystal has the form [14]

 (6)

C11 C12 C13 0 C15 0

C12 C22 C23 0 C25 0

C13 C23 C33 0 C35 0

0 0 0 C44 0 C46

C15 C25 C35 0 C55 0

0 0 0 C46 0 C66 
 
 
 
 
 
 
 
 
 

.

5
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Table 5.  Experimental and calculated elastic moduli of crystal KPb2Cl5 (in units of 1010 N/m2)

Elastic modulus C11 C12 C13 C15 C22 C23 C25 C33 C35 C44 C46 C55 C66

Experiment 4.34 1.93 1.77 –0.55 3.53 1.52 0.05 3.62 0.06 1.11 0.03 1.10 1.43

Calculation 4.00 1.30 1.37 –0.03 3.87 1.42 0.01 3.47 0.01 1.30 0.03 1.30 1.24
The independent elastic moduli were separately deter-
mined using the method of special directions [12, 13].
The measured BAW velocities and the main BAW char-
acteristics are given in Table 4. The experimental error in
determining the BAW velocities was less than 0.5 m/s.

The elastic moduli Cλµ are calculated from the
known eigenvalues ρv2 of the Green–Christoffel tensor
[13] Γαγ = Cαβ, γδnβnδ by solving the Green–Christoffel
equations (Γαγ – ρv2δαγ)Uδ = 0 for each crystallographic
direction. Here, ρ = 4.780 g/cm3 is the density of the
crystal under study; v is the velocity of BAW with
polarization Uδ; nα are the direction cosines of the wave
normal; and Cαβ, γδ is the elastic-modulus tensor, whose
components are related to the elastic-modulus matrix
Cλµ by the well-known Voigt transformation [14].

The elastic moduli of the single crystal are calcu-
lated using the procedure described in [12, 13] and are
given (in units of 1010 N/m2) in Table 5, which also pre-
sents the elastic moduli calculated in the Gordon–Kim
model. For centrosymmetric crystals, the elastic moduli
are related to the dynamical matrix of a crystal by the
expressions [6]

 (7)

where V is the unit cell volume, k and k' are the ion indi-
ces, Na is the number of ions in the unit cell, mk is the
ion mass, and

 

are the coefficients of expansion of the dynamical
matrix D in powers of the wave vector q for the second-
order term.

A comparison of the experimental and calculated
values shows that they agree well with each other.

4. CONCLUSIONS

We have recorded the polarized Raman spectra of
KPb2Cl5 crystals and interpreted them using a parame-
ter-free model with inclusion of the higher multipole

Cαβ γδ, αβ γδ,[ ] γβ αδ,[ ] αγ βδ,[ ] ,–+=

αβ γδ,[ ] 1
2V
------- mkmk'Dkk' αβ,

γδ
,

k k', 1=

Na

∑=

Dkk' αβ,
γδ ∂2

Dkk' αβ,

∂qγ∂qδ
---------------------

q 0=

=
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moments of ions of the crystal lattice. The model devel-
oped has been shown to provide good agreement
between the calculated and experimental frequencies of
the vibrational spectrum of the low-symmetry ionic
crystal with a complex structure. The eigenvectors of
lattice vibrations were determined and analyzed. It was
found that the frequencies of the phonon spectrum are
low due to the significant (although small) contribution
of heavy cations even to the eigenvectors of the highest
frequency vibration modes.

Using the same approach, we have experimentally
and theoretically determined the elastic moduli of the
crystal and achieved good agreement between the
experimental and calculated values.
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Abstract—Polarized Raman spectra of single-crystal LiCuVO4 containing quasi-one-dimensional cuprate chains
are measured. The force constants of the valence force field are calculated for the phonon modes at the center of
the Brillouin zone with an accuracy sufficient to describe the experiment. From the results, it follows that the crys-
tal contains rigid Cu–O–V–Cu–O–V structural rings with a charge distributed along their bonds. © 2005 Pleiades
Publishing, Inc.
1. INTRODUCTION

Low-dimensional spin systems are attracting the
attention of scientists because simple models with a
small number of parameters can used to describe them
over a wide temperature range. These systems are also
highly topical because of their implications for high-
temperature superconductivity.

The LiCuVO4 crystal is a one-dimensional spin sys-
tem with a distinctive geometric pattern of Cu2+ ions
(spin 1/2), which are placed mainly along one axis [1].
Consequently, the intrachain interaction dominates
over the interchain interaction [2–4]. NMR measure-
ments of 65Cu and 51V [5] show that the magnetic prop-
erties of the LiCuVO4 crystal are mainly determined by
bivalent copper; however, vanadium, which is suppos-
edly pentavalent, also carries a small magnetic
moment. According to magnetic measurements, the
susceptibility has a wide maximum at TM = 28 K and its
temperature dependence is described well by the Bon-
ner–Fisher model of a one-dimensional antiferromag-
netic chain with spin 1/2 [4]. At TN ~ 4 K, the suscepti-
bility has a narrow peak accompanying the antiferro-
magnetic transition, which is due to interaction in other
dimensions [6, 7].

In the present paper, we report on Raman spectra
measurements of the LiCuVO4 single crystal in the
range 50–1000 cm–1 for different scattering geometries
at room temperature. Based on these measurements and
the IR data from [8], we develop a dynamic model of
the phonon subsystem at the center of the Brillouin
zone.

2. LiCuVO4 CRYSTAL STRUCTURE

The LiCuVO4 crystal has space symmetry group

Imma (  no. 72) with two formula units per unit cell.D2h
28
1063-7834/05/4703- $26.00 ©0539
The orthorhombic cell has the following parameters at
room temperature: a = 5.662 Å, b = 5.809 Å, and c =
8.758 Å [1]. Atoms occupy the following positions: Cu
(4a) at (0, 0, 0), Li (4d) at (1/4, 1/4, 3/4), V (4e) at (0,
1/4, 0.386), O1 (8h) at (0, 0.0164, 0.2748), and O2 (8i)
at (0.2352, 1/4, 0.9993). The crystal structure is shown
in Fig. 1. Atoms O1 and O2 are numbered as 7–10 and
11–14, respectively. The origin in Fig. 1 is displaced by
(0, 1/2, 0) relative to the standard position for the Imma
group from the International Tables. The Cu–O2 chains
along the b axis formed by copper atoms 1 and 2 and
oxygen atoms O2 (11–14) are seen in Fig. 1. Each of the
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 2005 Pleiades Publishing, Inc.
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four Cu–O intervals in the chain is equal to 1.97 Å. The
oxygen atoms of two adjacent copper chains belong
simultaneously to two vertices of VO4 tetrahedra,
which interlink chains and form Cu–V layers in the ab
plane. The two other oxygen atoms O1 in the VO4 tet-
rahedra (numbers 7–10 in Fig. 1) are bonded to the cop-
per atoms of adjacent Cu–V layers. The length of this
Cu–O bond is 2.41 Å, which is 0.4 Å longer than the
Cu–O bond inside a chain. Chains formed by Li atoms
3 and 4 and oxygen atoms O1 (7, 9 and 8, 10) are situ-
ated along the a axis (Fig. 1). The Li–O bonds in the
chains are 2.11-Å long and are shorter than the Li–O
bonds along the c axis, which are 2.18-Å long. Li
atoms, which are in a slightly distorted octahedral envi-
ronment, link Cu–V layers. Cu and Li atoms are situ-
ated in the inversion centers.

3. EXPERIMENTAL RESULTS

Raman spectra of single-crystal LiCuVO4 were
excited by an argon laser (λ = 515.5 nm) and recorded
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Fig. 2. Raman spectra of the LiCuVO4 crystal for the diag-
onal scattering geometry corresponding to the Ag modes.
Points are experimental data, and the solid line is a least
squares fit by the additive-oscillator model. The star denotes
the laser spontaneous emission line.

Table 1.  Vibrations of the LiCuVO4 crystal

Symmetry Frequency, cm–1 Note

5Ag (R) 152 306 450 740 872

2B1g (R) 229 353

4B2g (R) 186 249 402 735

4B3g (R) 152 213 305 848

6B2u (IR) 113 182 236 325 466 872 [8]

6B3u (IR) 259 326 393 486 624 733 [8]

4Au 110 303 388 591 Calculated

8B1u (IR) 101 178 301 362 463 513 817 904 Calculated
PH
using a Jobin Yvon T64000 spectrometer in the back-
scattering geometry. Polarized Raman spectra were
measured using samples precisely oriented relative to
the crystallographic axes of the orthorhombic cell. We
used samples in the form of 4 × 1 × 1 mm prisms. The
data obtained are shown in Figs. 2 and 3.

According to group theory analysis, the LiCuVO4
crystal has the following set of phonon modes [8].

15 Raman-active modes, 5Ag + 2B1g + 4B2g + 4B3g;
20 IR-active modes, 8B1u + 6B2u + 6B3u; and
4 inactive modes, 4Au.
Three acoustic modes (B1u, B2u, B3u) are excluded

from the list.
IR reflection spectra of the LiCuVO4 single crystal

for the B2u and B3u phonons were measured and studied
in [8], and the results are listed in Table 1.

The number of experimentally observed lines in the
Raman spectra of the crystal exceeds the number of
phonon modes at the Brillouin zone center given by the
factor-group analysis. This discrepancy is especially
evident in the high-frequency range (above 650 cm–1).
In this range, we expect stretching modes ν1 and ν3 of
the distorted VO4 groups (the notation for the VO4-tet-
rahedron modes is taken from [8]). Triply degenerate
vibration ν3 is split into three modes: Ag, B2g, and B3g.
Vibration ν1 is not degenerate and transforms into the
Ag mode in the crystal. Hence, in the high-frequency
range, there should be four lines in the Raman spectrum
(2Ag + B2g + B3g) and four lines in the IR spectrum
(2B1u + B2u + B3u). In the IR spectrum, the B2u line corre-
sponding to the stretching vibration V–O1 (r = 1.67 Å)
has a frequency of 872 cm–1 and the B3u line corre-
sponding to the V–O2 vibration (r = 1.8 Å) has a fre-
quency of 733 cm–1 [8]. Studies of the dynamical
matrix of each of the V–O1 and V–O2 vibrations show
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that the stretching V–O1 vibration contributes to spec-
tra of Ag, B3g, B2u, and B1u symmetries and that the V–
O2 vibration contributes to Ag, B2g, B3u, and B1u. There-
fore, these vibrations correspond to lines 872 and
740 cm–1 in the Ag spectrum, 735 cm–1 in the B2g spec-
trum, and 848 cm–1 in the B3g spectrum (the most
intense line in this region after exclusion of Ag-type
lines) (Figs. 2, 3). This identification is based on the
assumption that the 733 cm–1 line of the IR spectrum
corresponds to the stretching V–O2 vibration. How-
ever, noticeable line 835 cm–1 in the (bb) scattering
geometry is certainly related to the stretching V–O
mode and the appearance of this mode (837 cm–1) in the
B2g symmetry does not contradict the correlation anal-
ysis. The line frequencies assumed as the basis for the
calculations below are set off in bold in Figs. 2 and 3.

4. DYNAMIC MODEL
We studied a simple dynamic model of lattice vibra-

tions at wave vector k = 0 in a LiCuVO4 crystal within
the harmonic approximation. The unit cell of the
LiCuVO4 crystal is made up of 14 atoms. The dynami-
cal matrix is a 42 × 42 matrix. The symmetry permits
149 second-order invariants based on atom displace-
ments. Hence, in general, the potential energy includes
149 constants. The requirement that the potential
energy be invariant under infinitesimal translations
reduces the number of constants by 23. Actually, this
condition is equivalent to the requirement that the fre-
quencies of acoustic modes be zero. The remaining 126
constants are independent. They completely determine
the quadratic part of the energy. The phonon frequen-
cies are found by diagonalizing the dynamical matrix.
In our case, there are 39 frequencies. We assume that
there is no accidental degeneracy of frequencies of the
same symmetry. Then, according to the general theory
of stability for parameter-dependent matrices [9], in
order for the solution to the crystal dynamics problem
to be stable near the given (experimental) frequencies it
is sufficient to take into account 39 interaction con-
stants. This means that there are 39 interaction con-
stants that can be adjusted in such a way that they will
produce dynamical-matrix frequencies that approxi-
mate experimental values with any predetermined
accuracy.

Let us write the potential energy of the vibrating
crystal in the form

 (1)

Here, qi and αi are variations in the bond coordinates

and bond angles, respectively [10], and ri = ,
where ri, 1 and ri, 2 are the equilibrium distances used to
determine the angle coordinate. Equation (1) is used
only to introduce the force constants. After substituting
the expressions for qi and αi according to [10] into
Eq.(1), calculations are performed in the real coordi-
nate space. The dynamical matrix is reduced to the

2V f i j, qiq j ci j, rir jα iα j hi j, riα iq j.+ +∑=

ri 1, ri 2,
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      200
quasi-diagonal form determined by the crystal symmetry
by using the symmetry coordinates introduced in [8].

We estimate the upper bound of the V–O bond–
stretching constant in the LiCuVO4 crystal using the
expression 4f = mω2, where the frequency is ω =
872 cm−1, m is the vanadium mass, and the factor 4 char-
acterizes the tetrahedral environment: f = 5.7 mdyn/Å.
An analogous estimation for the octahedral Cu–O bond
using the frequency ω = 633 cm–1, taken from [11] for
the CuO crystal, gives f = 2.5 mdyn/Å.

In order to obtain the force constants of the VO4

group in a zero approximation, we performed calcula-
tions based on Eq. (1) and experimental values of the
eigenfrequencies of the [VO4]3– complex. The internal-
vibration frequencies of [VO4]3– are taken from [12]:

 = 818 cm–1, ωE = 319 cm–1,  = 780 cm–1, and

 = 368 cm–1. Here, the subscript denotes the sym-

metry of the corresponding vibration under the assump-
tion that the equilibrium configuration of the [VO4]3–

complex has the symmetry of an ideal tetrahedron. As
a result of the calculations, we obtained the following
values: f11 = 4.86, f12 = 0.76, c11 = 0.75, and c12 = 0.19
in units of mdyn/Å. Here, f11 is the bond-stretching con-
stant for V–O, f12 is the bond–bond interaction constant
for (V–O1)(V–O2), c11 is the bond–bending constant for
O–V–O, and c12 is the angle–angle interaction constant
for two angles with a common V–O bond. It is worth
noting that the values of the constants f12 and c11 char-
acterizing the extent of bond covalence are large.

The values of the force constants shown above are
used as zero-approximation parameters, which are
identical for both VO4 groups contained in the unit cell
of the LiCuVO4 crystal. The values of the constants for
cuprate chain are taken from [11]: the bond-stretching
constant for Cu–O is 1.28 mdyn/Å, and the bond-bend-
ing constant for O–Cu–O is 0.32 mdyn/Å. The initial
value for the Li–O bond is 0.4 mdyn/Å. The calcula-
tions are carried out using a perturbation theory algo-
rithm [13] and the Maple 6 software package. All fre-
quencies in Table 1 obtained from the Raman (Figs. 1,
2) and IR [8] experiments are fitted except for the Au
and B1u symmetries. The resulting values of the force
constants are shown in Table 2. The variations of the
constants shown in the table are those caused by a
change in any frequency from the full list (including Au
and B1u) by 1 cm–1. We note that the calculations are
performed to the third or even fourth decimal place.
This sensitivity of the constants is due to the strong
nonlinearity of the secular equations for frequencies in
the dynamic problem for the crystal under consider-
ation. The calculations are performed until a precision
|ωexp – ω|/ωexp = 0.01% is achieved. The ion displace-
ments for the calculated normal modes are shown in
Fig. 4.
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Table 2.  Bond coordinates and calculated force constants, with their variations corresponding to a 1-cm–1 shift of any of the
frequencies listed in Table 1

No. Con-
stant Atoms Interaction Atom numbers according

to Fig. 1
Bond length, Å

Angle, deg
Constant value,

mdyn/Å

1 f 1 V–O1 (q1)2 5–7 1.67 5.48 ± 0.01
2 f 2 V–O2 (q2)2 5–11 1.80 4.488 ± 0.006
3 f 3 Cu–O2 (q3)2 1–11 1.97 1.355 ± 0.003
4 f 4 Li–O1 (q4)2 3–7 2.11 0.329 ± 0.001
5 f 5 Li–O2 (q5)2 3–11 2.18 0.5139 ± 0.0005
6 f 6 Cu–O1 (q6)2 1–7 2.41 0.146 ± 0.006
7 c1 O1–V–O1 (α1)2 7–5–8 108.7 0.273 ± 0.003
8 c2 O1–V–O2 (α2)2 7–5–11 108.9 0.162 ± 0.001
9 c3 O2–V–O2 (α3)2 11–5–12 112.3 0.708 ± 0.005

10 c4 O2–Cu–O2 (α4)2 11–1–12 85.0 0.131 ± 0.001
11 c5 O2–Cu–O2 (α5)2 11–1–13 95.0 0.313 ± 0.002
12 c6 O2–Cu–O1 (α6)2 11–1–7 91.5 0.407 ± 0.007
13 c7 O2–Cu–O1 (α7)2 14–1–7 88.5 0.488 ± 0.004
14 c8 Cu–O1–V (α9)2 1–7–5 127.9 –0.076 ± 0.001
15 cc1 α2α3 (7–5–11)/(7–5–12) –0.178 ± 0.001

16 cc2 α2 (7–5–11)/(8–5–11) 0.136 ± 0.001

17 cc3 α4α5 (11–1–12)/(11–1–13) 0.418 ± 0.001

18 cc4 α5 (11–1–13)/(12–1–14) 0.033 ± 0.002

19 cc5 α4 (11–1–12)/(13–1–14) 0.343 ± 0.001

20 cc6 α2 (7–5–11)/(9–6–14) –0.040 ± 0.001

21 cc7 α2 (7–5–11)/(9–6–13) –0.014 ± 0.001

22 ff 1 q1 (5–7)/(5–8) 0.15 ± 0.01

23 ff 2 q1q2 (5–7)/(5–11) 0.794 ± 0.005

24 ff 3 q2 (5–11)/(5–12) 1.585 ± 0.006

25 ff 4 q3 (1–13)/(1–11) 0.235 ± 0.003

26 ff 5 q3 (1–13)/(1–12) 0.111 ± 0.003

27 ff 6 q3 (1–13)/(1–14) –0.286 ± 0.003

28 ff 7 q1 (5–7)/(6–9) 0.05 ± 0.01

29 ff 8 q2 (5–11)/(6–13) –0.235 ± 0.006

30 ff 9 q2q3 (5–11)/(1–13) –0.349 ± 0.003
31 ff 10 q2q3 (5–11)/(1–11) 0.927 ± 0.003
32 ff 11 q4q5 (3–10)/(4–12) 0.0497 ± 0.0003
33 ff 12 q5q5 (3–11)/(4–12) –0.3374 ± 0.0005

34 ff 13 q3 (1–13)/(2–11) –0.320 ± 0.003

35 ff 14 q3q6 (1–13)/(2–9) 0.087 ± 0.001
36 ff 15 q2q4 (5–11)/(3–7) 0.518 ± 0.003
37 ff 16 q2q5 (5–11)/(4–13) 0.460 ± 0.001
38 ff 17 q4q5 (3–7)/(3–11) –0.0380 ± 0.0003

39 ff 18 q4 (3–9)/(4–9) 0.092 ± 0.001
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B1u

B2u

B3u

905 cm–1 817 cm–1 513 cm–1 463 cm–1

362 cm–1 301 cm–1 178 cm–1 101 cm–1

872 cm–1 466 cm–1 325 cm–1 236 cm–1

182 cm–1 113 cm–1

733 cm–1 625 cm–1 486 cm–1 393 cm–1

326 cm–1 259 cm–1

B1g

Fig. 4. Ion displacements in the normal phonon modes of the LiCuVO4 crystal. Insert shows enlarged view of the lattice part used
for graphical representation of the modes. Atoms are numbered according to Fig. 1.
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Fig. 4. (Contd.) 
As mentioned previously, the solution to the
dynamic problem in the nondegenerate case is single-
valued and stable in some vicinity of the obtained solu-
tion. This is true in regard to the mathematical part of
P

the problem. However, before proceeding to this part,
we should identify the spectrum, set the dimensionality
of the problem, and choose the interaction constants.
The possibilities for spectrum identification were dis-
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cussed above. The full dynamic problem for the center
of the Brillouin zone of the LiCuVO4 crystal should
contain 39 frequencies except the acoustic modes.

The introduction of symmetry coordinates makes it
possible to exclude four more equations for the Au
vibrations and eight equations for the B1u vibrations,
since their frequencies are unknown. However, this
makes the full dynamic problem unstable.

Without constraints, the frequencies of the Au and
B1u symmetries become complex values. For this rea-
son, we constrained them in the following way: the
lowest frequencies of the Au and B1u modes should not
be any smaller than 100 cm–1, and the highest frequency
of the B1u mode cannot exceed the maximum observed
frequency in the spectrum range of stretching vibra-
tions of the VO4 group (904 cm–1). According to the
correlation analysis [8], the high-frequency lines ν1 and
ν3 of the VO4 group do not contribute to the Au spec-
trum. Therefore, the upper bound of Au frequencies
should be determined by the maximum frequency of
the Cu–O subsystem; i.e., it cannot exceed 630 cm–1.

5. RESULTS AND DISCUSSION

First, let us verify our identification of the Raman
spectra. As noted above, there is obvious ambiguity
concerning lines 740 and 835 cm–1 of the Ag symmetry
and lines 735 and 837 cm–1 of the B2g symmetry. If the
force constants are calculated using frequency pair 835
and 837 cm–1 for the given symmetries instead of 740
and 735 cm–1, the constant f 3 for the Cu–O bond in
chains is reduced to the values typical for the Li–O
bond. Therefore, we conclude that these frequencies in
the Raman spectra are due to a structural transforma-
tion of the surface layer caused by the substitution of
Cu by Li in cuprate chains. There are two reasons for
this transformation. One reason is the high mobility of
Li [14] and the way in which the Li–Cu sublattices are
ordered during the crystal growth; indeed, highly
mobile Li atoms predominantly fill vacancies at the sur-
face. The other reason is the substitution of Cu2+ ions by
Li+ facilitated by hydrogen, which is readily adsorbed
on the surface of the LiCuVO4 crystal during its storage
because the crystal contains oxygen.

Let us discuss the calculation results shown in Table
2. The difference between the constants for V–O1 (f 1 =
5.48 mdyn/Å) and V–O2 (f 2 = 4.488 mdyn/Å) is due to
the difference in the bond lengths, 1.67 and 1.8 Å,
respectively; the value n in the expression f 1/f 2 =
(r2/rl)n is about 2.66. The values of the bond-stretching
constants f 2 for the V–O bond and f 3 and f 6 for the
Cu–O bond are smaller than the upper boundaries esti-
mated above. This fact suggests that there is a charge
between these atoms, which screens the interaction
between the ions. For the Cu atom, the constant f 6 =
0.146 mdyn/Å is almost an order of magnitude smaller
than the constant f 3 = 1.355 mdyn/Å in a cuprate chain.
The constant f 6, together with the constant f 5 of the
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      200
Li–O2 bond, determines the coupling of Cu–V layers.
The small values of the constants are in agreement with
the layered structure of the crystal along the c axis. The
small value of the constant f 6, together with the large
values of the bond-bending constants c7 and c8, is due
to the distributed charge above the Cu chain.

The force constant ff 3 has an unexpectedly large
value, 1.585 mdyn/Å (Table 2). This constant deter-
mines the variation in the potential energy associated
with a simultaneous change in the length of two V–O2
bonds between atoms 5–11 and 5–12. In conjunction
with the large value of the bond-bending constant for
these atoms, this fact means that there is a large charge
between V atoms belonging to adjacent tetrahedra
(atoms 5, 6 in Fig. 1) and along the appropriate V–O2
bonds. Taking into account the large value of the bond-
bending constant c5 between atoms 11–1–13 of a Cu
chain (see also the values of constants c6, c7), we can
say that there is a rigid structural ring Cu–O–V–O–Cu
formed by atoms 1  11  5  12  1 
14  6  13  1 and that a significant electron
charge is distributed along this ring.

The 740 and 735 cm–1 lines differ from all other
lines of the spectrum in that they have a larger width. A
possible reason for the broadening of the lines could be
coupling to the magnetic subsystem of the crystal [8].
The magnetic atom Cu does not take part in the g-type
vibrations because it resides at the inversion center.
However, displacements of the adjacent oxygen atoms
change the angle of the Cu–O2–Cu bond in the chain,
thus modifying the exchange constant [15] and the
ground state of the phonon subsystem. In addition, cou-
pling is possible through the exchange interaction with
the distributed charge of the Cu–O–V–O–Cu ring.
Because of the large values of the constants ff 3 and ff 2,
the variation in the V–O2 distance due to the displace-
ment of oxygen atoms of the Cu chain causes a signifi-
cant change in the potential energy, which cannot but
modify the exchange constant (in the adiabatic approx-
imation, the potential energy is the ground-state energy
of the electron subsystem).

In concluding, let us indicate the possible reasons
for the appearance of the extra lines. The LiCuVO4
crystal is opaque in visible light; therefore, the penetra-
tion depth of the laser beam is small and the chance of
interference from surface effects is high. One of the
effects is modification of the surface-layer structure due
to the atoms being implanted from air. Another surface
effect is the change in the crystal symmetry due to the
boundary, which leads to modification of the selection
rules. This modification includes both a violation of the
translational symmetry close to the surface (along the
surface normal) and disappearance of the reflection
plane parallel to the surface. Due to the latter, lines
from the IR spectrum and lines that are absent in the
Raman spectra of bulk samples appear in the Raman
spectra. The larger beam penetration depth, the smaller
these effects. The high concentration of radiation power
during micro-Raman measurements in absorbing crys-
5
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tals can lead to significant local heating of the measure-
ment area. Due to the superionic properties of the
LiCuVO4 crystal [14], this can cause a depletion of Li
in the measurement area. In addition, nonlinear effects
due to many-phonon processes are possible. This is
supported by the B1g spectrum shown in Fig. 3, where
lines in the region of the stretching vibrations of the
VO4 group are present on the background of a wide dif-
fusion band. Finally, one more reason for the appear-
ance of extra lines is the presence of magnetic atoms in
the lattice. In this case, additional lines can appear in
the region of the phonon excitation spectrum due to the
magnon–magnon [16] and magnon–phonon [17] inter-
actions in the paramagnetic phase. In order to confirm
any of the reasons for the appearance of extra lines in
the spectrum, further investigations are necessary.

6. CONCLUSIONS

For the first time, the polarized Raman spectra of the
LiCuVO4 crystal at room temperature have been mea-
sured. Full information about the components of the
polarizability tensor αij is reported, and symmetry iden-
tification of the lines is performed. Comparison of the
experimental spectra and predictions based on a factor-
group analysis demonstrates good correlation, which

confirms the Imma–  (no. 72) symmetry group for
the structure of the LiCuVO4 crystal.

The interaction constants are determined precisely
in the framework of the valence force field model by
numerical calculations. The constants describe well the
Raman spectra from the present work and the IR spec-
tra obtained earlier in [8]. The analysis of the force field
constants leads to the conclusion that the LiCuVO4
crystal lattice contains a rigid structure ring Cu–O–V–
Cu–O–V with a charge distributed over its bonds.
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Abstract—Polarized spectra of reflectance R(ν) and transmittance Tr(ν) of single-crystal CdTiO3 samples have
been obtained in the frequency range 7 < ν < 1000 cm–1 and for temperatures from 5 to 300 K using IR Fourier
spectroscopy and submillimeter-range techniques. Dispersion analysis was carried out in terms of the additive-
oscillator model, and dielectric responses ε'(ν) and ε''(ν) were calculated. The polar modes were assigned to
particular symmetry types, and their oscillator parameters (dielectric contributions, normal frequencies, damp-
ing constants) were determined. The numerical values of the components of the static permittivity tensor, ε11
and ε33, are shown to be almost fully determined by the total dielectric contributions due to the B3u and B1u
phonons, respectively. In the low-frequency domain, lines showing anomalous behavior of the oscillator param-
eters, which is characteristic of soft ferroelectric modes, were observed. It is shown that, in CdTiO3 at cryogenic
temperatures, there exist several different polar states with switching in the direction of the spontaneous polar-
ization vector. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The continuing interest in perovskite-type com-
pounds stems from the rich variety of their properties
(dielectric, optical, magnetic, etc.), which can be used
to advantage in many applications [1]. In recent years,
some doped and nonstoichiometric perovskite compo-
sitions have revealed new phenomena and characteris-
tics, for instance, relaxor states [2], colossal magnetore-
sistance [3], and electrostriction [4]. This gives one
grounds to consider the perovskite structural type to be
one of the most promising in applied materials science,
and investigating the properties of materials of this
structural type is a problem of current, major signifi-
cance.

The anomalous properties of the perovskites can be
traced predominantly to the various instabilities in their
crystal lattice, which give rise to structural distortions.
One of the most widely encountered types of structural
distortion of a perfect cubic perovskite (space group
Pm3m) is associated with the lattice being unstable to
two types of comparatively small tilts of the octahedra,
namely, inphase and antiphase tilts for conjugate octahe-
dra, which correspond to phonon modes at the Brillouin
zone edge [5]. As a result of these dynamic instabilities,
their interplay, and a sequence of structural phase trans-
formations, the lattice symmetry lowers to orthorhombic
[5], which corresponds to one of the most representative
structural types (GdFeO3 structural type) among dis-
torted perovskites [6]. The perovskite mineral proper,
CaTiO3, belongs to this structural type below approxi-
1063-7834/05/4703- $26.00 ©0547
mately 1380 K [7]. Similar distortions are also character-
istic of cadmium titanate CdTiO3 [5, 8].

Ferroelectricity in CdTiO3 below 50 K was discov-
ered by Smolenskiœ [9]. The anomalous dielectric and
optical behavior was later established to exist over a
substantially broader temperature interval both in
ceramic and single crystal samples [10–14] prepared by
a variety of technologies.

X-ray studies of CdTiO3 carried out on single crys-
tals [8] at room temperature have shown this represen-
tative of the perovskite family to have a centrosymmet-
ric structure belonging to space group Pnma. Structural
measurements performed at cryogenic temperatures
have recently been published [15]. It has been estab-
lished that the CdTiO3 structure at 20 K can be satisfac-
torily described in terms of the P21ma polar space
group, with the Ti atoms displaced toward the face cen-
ter of the TiO6 octahedron. Actually, this is inconsistent
with the previous conclusion reached by the same
authors [10, 11] that the CdTiO3 symmetry is Pn21a
below about 88 K.

In view of the abovementioned structural uncertain-
ties and of the lack of detailed spectroscopic studies of
the lattice dynamics (with the exception of rather frag-
mentary remarks made in [10, 16]), we present here the
results of investigating spectra of reflectance R(ν) and
transmittance Tr(ν) measured by us on a CdTiO3 single
crystal in the frequency range ν = 7–1000 cm–1 and
within the temperature interval 5 < T < 300 K. Note that
the Raman measurements reported in [10] did not
 2005 Pleiades Publishing, Inc.
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reveal any spectral anomalies associated with a phase
transition and that the spectral IR studies reported in
[16] were made only above the phase transition point.

2. EXPERIMENT

The CdTiO3 samples on which submillimeter-range
transmittance spectra in the frequency region 7–32 cm−1

and IR reflectance spectra in the range 30–1000 cm−1

were obtained were very thin plates of high optical
quality measuring approximately 3 × 4 mm (for the
growth technique used and characterization of the crys-
tals, see [17]). The transmittance and reflectance spec-
tra were measured with a BWT-based, laboratory-type
Épsilon spectrometer [18] and a Bruker-113v IR Fou-
rier spectrometer, respectively.

Quantitative information on the phonon-mode
parameters was extracted from dispersion analysis
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Fig. 1. Spectra (a) of IR reflectance R(ν) and (b) of the real,
ε'(ν), and (c) imaginary, ε''(ν), parts of the permittivity of a
CdTiO3 single crystal obtained at 100 K in the E || a geom-
etry (B3u modes). Points are experiment, and solid lines are
fittings with the model of additive oscillators. The figures
above the peaks in the dielectric loss spectrum ε''(ν) are
numerical values of the normal frequencies of the B3u
phonon modes.
PH
made in terms of an additive-oscillator model [18] in
which

 (1)

 (2)

Here, ε∞ is the high-frequency dielectric contribution,
νi is a normal frequency, γi is the damping constant, and
∆εi is the dielectric contribution for the ith mode.

3. EXPERIMENTAL

Since CdTiO3 has a centrosymmetric structure at
room temperature, one may expect that the IR spectra
will exhibit 25 polar phonon modes of three symmetry
types [17]:
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Fig. 2. Spectra (a) of reflectance R(ν) and (b) of the real,
ε'(ν), and (c) imaginary, ε''(ν), parts of the permittivity of a
CdTiO3 single crystal obtained at 100 K in the E || c geom-
etry (B1u  modes). Points are experiment, and solid lines are
fittings with the model of additive oscillators. The figures
above the peaks in the dielectric loss spectrum ε''(ν) are
numerical values of the normal frequencies of the B1u
phonon modes.
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All light-reflectance measurements were carried out on
40-µm-thick single-crystal plates with the unit cell axis
b perpendicular to the sample plane. Because of this
geometric constraint, only the B1u (E || c) and B3u (E ||
a) phonon modes could be observed. Figures 1 and 2
display CdTiO3 IR reflectance spectra obtained at T =
100 K for two orientations of the vector E of the excit-
ing electromagnetic wave with respect to the unit cell
basis. Both spectra are well polarized and correspond to
the B3u (Fig. 1) and B1u  (Fig. 2) phonon modes. The
E || a spectrum (B3u modes) clearly exhibits six lines
(Fig. 1), whereas for E || c (B1u  modes) the number of
observed resonance features (Fig. 1) is twice as large,
exceeding the number of modes expected from Eq. (3).
Note, however, that some lines are very weak. Because
the normal mode frequencies in the two spectra are
numerically different (see table), we believe that these
very weak features in the E || c spectrum may actually
be manifestations of the B2u  modes (not studied directly
in our experiment), which could be observed due to the
presence of small regions with domain structure in the
sample resulting in a certain depolarization of the spec-
trum.

Below room temperature, the spectral resonances
become narrower and their frequencies shift mostly
toward higher values. Some of the low-frequency lines,
however, exhibit a noticeable decrease in the normal fre-
quency with decreasing temperature. These visual obser-
vations were corroborated by a numerical analysis.

Least squares fitting of Eqs. (1) and (2) to experi-
mental spectra yields the numerical values of the
dielectric contribution ∆εi, normal frequency νi, and
damping constant γi for each mode. The solid lines in
Figs. 1 and 2 show the model reflectance spectra
obtained using this procedure. The oscillator parame-
ters for each mode are shown in the table. The model
spectrum is seen to approximate the experimental one
very well. Slight discrepancies are seen only close to
the weak features, which have almost no influence on
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
the numerical values of the oscillator parameters for the
main resonances.

We used the parameters obtained for each oscillator
to reconstruct the dielectric functions ε'(ν) and ε''(ν)
from Eqs. (1) and (2). Figures 1 and 2 show these func-
tions at 100 K for the orientations E || a and E || c. These
spectra clearly reveal the main difference between the
low- and high-frequency modes; namely, the former
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Fig. 3. Temperature dependence of the low-frequency part of
the dielectric loss spectrum ε''(ν) obtained on CdTiO3 in the

E || a geometry (B3u modes). The strong line at 40–80 cm−1

corresponds to a soft mode whose condensation drives the
ferroelectric state with Px || a and polar-phase symmetry

P21ma– . The two higher frequency lines soften insig-
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Polar-phonon parameters in CdTiO3 at T = 100 K

B3u modes (ε∞ = 5.74) B1u modes (ε∞ = 5.74) B3u modes (ε∞ = 5.74) B1u modes (ε∞ = 5.74)

∆i νi, cm–1 γi, cm–1 ∆i νi, cm–1 γi, cm–1 ∆i νi, cm–1 γi, cm–1 ∆i νi, cm–1 γi, cm–1

593.9 43.8 8.45 0.70 321.5 3.76

396.6 60.6 7.08 0.09 349.5 4.81

55.1 95.5 5.77 0.4 95.8 0.50 0.57 383.4 9.23

56.4 111.4 2.83 0.95 387.1 11.99

14.4 143.2 2.27 0.07 458.0 10.34

1.5 164.8 3.09 0.22 483.3 9.90

7.2 177.1 2.43 1.2 511.0 7.18

7.7 225.3 6.05 0.84 525.5 9.61

0.26 283.9 3.23 0.01 579.7 33.32 0.02 582.3 21.6

0.34 305.9 5.95
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modes are substantially stronger than the latter and,
hence, provide the dominant contribution to the static
permittivity. Furthermore, it is primarily the low-fre-
quency resonances that exhibit a marked enough varia-
tion in their oscillator parameters with temperature.
Figures 3 and 4 illustrate the temperature-induced evo-
lution of the spectra of the imaginary part of the permit-
tivity in the low-frequency domain. The lowest fre-
quency lines in both spectra undergo substantial soften-
ing down to about 80 K; below 50 K, however, the
frequencies of these resonances start to grow. Note that
the lowest frequency B3u mode (Fig. 3) resembles a soft
ferroelectric mode in many respects, whereas the anal-
ogous B1u  mode is markedly harder (Fig. 4).

The temperature dependence of the oscillator
parameters of all modes obtained by fitting them to the
IR reflectance spectra is displayed in Fig. 5. Above
200 cm−1, the modes are seen to undergo only barely
noticeable frequency shifts. Figure 5b also shows the
temperature dependences of the total (Σi∆εi) dielectric
contributions due to all modes of all symmetry types
and of the contributions due to the lowest frequency
modes only (∆ε1). We clearly see that it is the lowest
frequency modes that determine the behavior of these
dependences. To make this conclusion still more
revealing, Fig. 5c compares the inverse dielectric con-
tribution [∆ε1(T)]–1 due to the lowest frequency B3u soft

200 40 60 80 100
Frequency, cm–1

500

1000

1500

2000

2500

3000

3500

4000
ε''

CdTiO3

B1u modes

50 K

100 K

5 K

150 K

200 K

Fig. 4. Temperature dependence of the low-frequency part
of the dielectric loss spectrum ε''(ν) obtained in the E || c
geometry (B1u  modes). The strong low-frequency line
exhibits only quasi-soft behavior. The existence and con-
densation of this critical soft mode could bring about the

formation of a polar phase of the Pnm21–  symmetry.C2v
7

PH
500 100 150 200 250 300

100

200

300

400

500

ν,
 c

m
–

1

(a)

(b)

(c)

E ||c E ||a

0 50 100 150 200 250 300

Σ∆εi, E ||a
∆ε1, E ||a
Σ∆εi, E ||c
∆ε1, E ||c

100
200
300
400
500
600
700
800

∆ε

0 50 100 150 200 250 300
T, K

0

1

2

3

4

5

(∆
ε 1

)–
1 , 1

0–
3

0

1

2

3

4

5

6

ν2 , 1
03  c

m
–

2

ν2(E ||a)
Fit

Fit
(∆ε1)–1

Fig. 5. Temperature dependences of the oscillator parame-
ters of phonon modes in CdTiO3 obtained from a dispersion
analysis of IR reflectance spectra. (a) Temperature depen-
dences of normal phonon mode frequencies: open symbols
correspond to B3u modes, and filled symbols correspond to
B1u  modes; (b) temperature dependences of the total
(Σi∆εi) and individual (∆ε1, lowest-frequency) dielectric
contributions due to the B3u and B1u phonon modes; and
(c) temperature dependences of the square of the frequency
of the soft B3u mode (squares and the dashed line) and the

inverse of the dielectric contribution from this mode, (∆ε1)–1

(circles and dashed line).
YSICS OF THE SOLID STATE      Vol. 47      No. 3      2005



POLAR PHONONS AND SPECIFIC FEATURES OF THE FERROELECTRIC STATES 551
105 15 20 25 30
0

0.05

0.10

0.15

0.20

0.25

0.30

T
ra

ns
m

is
si

on

T = 300 K
E ||c
d = 14 µm

T = 5 K
E ||c
d = 14 µm

T = 170 K
E ||a
d = 14 µm

T = 5 K
E ||a
d = 14 µm

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

105 15 20 25 30

20 25 30 35 40
Wave number, cm–1

0

0.2

0.4

0.6

0.8

105 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 6. Submillimeter-range transmittance spectra of a CdTiO3 single-crystal plane-parallel plate (circles) d = 14 µm thick (along
the unit cell b axis) obtained at different temperatures. In the E || a geometry, the B3u modes are active, and in the E || c geometry,
the B1u modes are active. Spectral fitting (solid lines) was performed using the Fresnel relations for a dielectric layer with the values
of ε' and ε'' taken from Figs. 1 and 2. Note that the scales in all four panels are different.
mode and its normal frequency squared, (T). The
almost exact coincidence of the two graphs suggests
that the temperature dependence of the dielectric con-
tribution is governed exclusively by the variation in the
normal frequency of the mode rather than in its oscilla-

tor strength (which is fi = ∆εi ). In concluding the
description of the FIR reflectance spectra, we stress that
the behavior of the soft modes in the temperature inter-
val 50–100 K was not determined to sufficient accu-
racy, because their frequencies dropped below the
instrumental capabilities of the Bruker-113v Fourier
spectrometer. This is why the temperature dependence
graphs in Fig. 5 exhibit breaks.

More reliable quantitative information on the
dynamic behavior of the soft mode in CdTiO3 was
derived from submillimeter-range transmittance spec-

ν1
2

ν i
2
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tra Tr(ν) measured at frequencies of 7 to 32 cm−1 on a
very thin (d = 14 µm) plane-parallel plate. Figure 6
demonstrates typical spectra obtained for the two polar-
ization directions that isolate B3u and B1u  modes. The
positions of the Tr(ν) transmittance peaks on the fre-
quency scale and their separations are determined by
the refractive index n(ν), and the peak values of Tr(ν)
are determined by the extinction coefficient k(ν) (the
imaginary part of the refractive index).

The solid lines in Fig. 6 are fits to the experimental
Tr(ν) dependence obtained using the Fresnel relations
for the transmittance of a plane dielectric layer. This fit-
ting procedure allows one to derive the real and imagi-
nary parts of the refractive index, n(ν, T) and k(ν, T);
the real and imaginary parts of the permittivity, ε'(ν, T)
and ε''(ν, T); and the reflectance R(ν, T) [18].
5
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Figure 7 plots the temperature dependences of the
normal mode frequencies and dielectric contributions
obtained using the above procedure for submillimeter-
range spectra in the E || c and E || a geometries.
Although the low-temperature dielectric contribution
for E || a, as estimated from the submillimeter-range
spectra, is slightly larger than that derived from a simi-
lar estimate of the reflectance spectra (Σi∆εi ≈ 1000 as
obtained from the submillimeter-range spectra at 5 K
and Σi∆εi ≈ 800 as obtained from the reflectance mea-
surements), they are clearly consistent if we take into
account the large error involved in the derivation of the
normal mode frequencies by extrapolating the reflec-
tance tails to the low-frequency domain. This allows us
to propose that there is an absence of “subphonon”
excitations (central peaks or relaxations) in CdTiO3
spectra within the temperature and spectral regions
covered.
P

4. COMBINED EXPERIMENTAL RESULTS 
AND DISCUSSION

Recent IR spectroscopic studies of calcium titanate
CaTiO3 and calculations of its lattice dynamics [19]
have established that the lowest frequency spectral lines
are the three lines with symmetries B1u, B2u, and B3u that
originate from the polar, threefold-degenerate F1u
phonon at the Brillouin zone center of the cubic modi-
fication. Considering the close structural similarity
between CaTiO3 and CdTiO3 [8], it appears only natu-
ral to assume that the situation should be the same for
CdTiO3.

If cadmium titanate undergoes phase transitions to
polar states, then the IR active B1u, B2u, and B3u modes
should also become Raman active. This does occur in
the CdTiO3 crystal [17], in contrast to the conclusions
drawn earlier in [10].
HYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
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Figure 8 combines data on the low-temperature
dependence of soft mode frequencies in Raman and IR
spectra. The low-frequency IR spectra were found to
have two lines corresponding to B1u  and B3u modes with
an anomalous temperature dependence, while the
Raman spectra have three such lines. We assume that
these lines originate from the threefold-degenerate,
lowest frequency F1u polar mode of the cubic phase. All
the lines undergo an anomalous temperature depen-
dence in the range 50–80 K, where anomalies in the
behavior of the optical and dielectric constants of
CdTiO3 have also been observed [10–14]. We attribute
these anomalies to structural phase transitions to polar
states with an attendant decrease in symmetry to at least
the C2v crystal class. Now the polar modes become
Raman active, as is evident from the corresponding
spectra [17]. The slight differences (5 cm−1 at most)
between the frequencies of the 30 cm−1 line in the yz
and zy spectra (Fig. 8) observed at temperatures below
50 K are probably due to the complex domain structure
of the ferroelectric phases, to the sample not being sin-
gle phase, or again to the manifestation of polariton
effects. Due to purely geometric constraints on the sam-
ple shape (thin plates), we did not succeed in studying
B2u  phonons in IR spectra. As follows convincingly
from dielectric measurements [11], however, one of the
phonon modes of this symmetry should be soft. The
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dashed line in Fig. 8 specifies its tentative behavior in
the Pnma phase.

To make our arguments more revealing, we con-
ducted an analysis of the dielectric measurements
reported in [11]. Figure 9 displays the temperature
dependences of ε(T) and ε–1(T) taken from [11]. First,
we immediately see the inverse permittivity along the b

axis, (T), to follow the Curie–Weiss law in the

range 88–200 K. Second, the ε[101](T) and (T) per-
mittivities along the a and c directions follow a more
complex course (the Curie–Weiss law is satisfied only
within a very narrow temperature interval), with the

minimum in the (T) relation shifted by approxi-
mately 5–6 K toward lower temperatures as compared

to that in (T). Third, both the ε[101](T) and (T)
graphs exhibit a sharp break at about 60 K. This last
observation correlates with Raman studies [17], which
likewise revealed two singular points in this tempera-
ture interval. The fact that the positions of these singu-
lar points in our measurements and those derived from
dielectric studies [11] differ somewhat can be attributed
to the different technologies of crystal growth
employed. Thus, the available experimental data sug-
gest (see also [12, 13]) a multistage character of the
transition to different polar states in CdTiO3.

Because the B1u mode softens very little indeed
(Fig. 8), it may be considered noncritical. On the other
hand, the B2u and B3u modes should be treated as critical
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critical. The chosen arrangement of the paths corresponds to
the situation where the B2u  mode is the first to condense.
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P

degrees of freedom that are associated with phase tran-
sitions to polar states. In this case, local singularities
near ferroelectric phase transitions in CdTiO3 can be
viewed in terms of models with two single-component
order parameters. Condensation of the B2u polar mode
brings about a lowering of crystal symmetry down to

the  group with an attendant onset of spontaneous
polarization Py (Ps || b), whereas B3u-mode condensa-

tion should provide the  symmetry of the ferroelec-
tric phase with Px  (Ps || a). The effective Landau poten-
tial in this case can be written as

 (4)

Here, ai, bi, and γ are renormalized constants of the true
multicomponent potential of the cubic perovskite
phase, whose properties will be considered in a later
paper. By introducing sixth-order polarization terms in
Eq. (4), we allow for the possibility of first-order phase
transitions, which follows from both spectroscopic data
[17] and dielectric measurements [11].

We refer the reader to [20] for a more detailed anal-
ysis of model (4) and display one of the phase diagrams
applicable to our situation in Fig. 10. There are two
ways to lower the crystal symmetry by transforming the

orthorhombic  phase into a phase with a changed
direction of the polarization vector. As we go along the
thermodynamic path t' shown in Fig. 10, the B2u and B3u

modes are softened simultaneously and a first-order
phase transition occurs at TC1' (set by our data at about

78 K); as a result, the  phase (Py ≠ 0) arises under
condensation of displacements associated with the B2u

mode. Next, due to a cascade of two first-order phase
transitions at TC2' and TC3' with an intermediate mono-

clinic phase of symmetry  (Pxy ≠ 0; here, both modes
condense), the spontaneous polarization vector changes

to Px || a in the  phase (Px ≠ 0). Alternately, Py can
switch to Px directly along the thermodynamic path t"
at the first-order phase transition point TC2''; in this case,
there is a fairly large region where both polar states

(  and ) coexist. Along the thermodynamic
paths inclined to the coordinate axes in the phase dia-
gram, both modes become soft, with the B2u  mode con-
densing first (this mode is softer than the B3u mode).

Obviously enough, this model is consistent with all
the experimental data available [11, 17], including the
“contradictory” information derived from x-ray mea-
surements [10, 15]. However, in order to unambigu-
ously identify which of the t' and t" paths is realized in
CdTiO3, a more comprehensive investigation of the
temperature interval 50–90 K is certainly needed.
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5. CONCLUSIONS

(1) First measurements of polarized IR spectra of
crystalline CdTiO3 made in the range 5–300 K have
been performed. Symmetry assignment of the lines has
been made in good agreement with factor group theory
predictions and Raman spectra [17] assuming the

Pnma–  space group. This symmetry is suggested to
hold for CdTiO3 in the temperature range from 78 to
300 K.

(2) Dispersion analysis was employed to determine
the oscillator parameters (dielectric contributions, fre-
quencies, damping constants) for all experimentally
observed polar modes, and their temperature depen-
dence was established.

(3) IR spectroscopic study of the dynamic behavior
of the CdTiO3 crystal in the range 5–300 K has revealed
a quantitative correlation with quasi-static measure-
ments of ε(ν, T) in the kilohertz-frequency range [11–
13], which substantiates the conclusion that there are
no subphonon low-frequency excitations (central peak)
in this crystal.

(4) Low-temperature studies of IR spectra revealed
a soft B3u mode whose condensation should result in the

 polar state. This finding correlates with x-ray dif-
fraction data [15] and, when considered together with
Raman data [17] and dielectric measurements [11],
suggests a multistage transformation of the CdTiO3

structure into different polar states with Pna21–

and Pmc21–  symmetries involving switching in the
direction of the spontaneous polarization vector.

(5) The temperature region between 50 and 90 K
requires additional comprehensive investigation
because there is an indirect evidence for complex
dynamic behavior of CdTiO3 in this temperature inter-
val. At any rate, our preliminary analysis of experimen-
tal data conducted in terms of the model of two interact-
ing polar modes allows the existence of one more inter-

mediate polar phase of monoclinic symmetry Pb–

between the Pna21–  and Pmc21–  phases in this
narrow temperature interval.

ACKNOWLEDGMENTS

This study was supported by the Russian Founda-
tion for Basic Research (project nos. 03-02-16720, 04-
02-16228) and, in part, by the Foundation of the Presi-

D2h
16

C2v
2

C2v
9

C2v
2

Cs
2

C2v
9

C2v
2

PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
dent of the Russian Federation (project nos. NSh-
2168.2003.2, NSh-1415.2003.2).

REFERENCES
1. M. E. Lines and A. M. Glass, Principles and Application

of Ferroelectrics and Related Materials (Clarendon,
Oxford, 1977; Mir, Moscow, 1981).

2. G. A. Samara, J. Phys.: Condens. Matter 15, R367
(2003).

3. A. P. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997).
4. S. E. Park and T. R. Shrout, J. Appl. Phys. 82, 1804

(1997).
5. V. B. Shirokov and V. I. Torgashev, Kristallografiya 49,

25 (2004) [Crystallogr. Rep. 49, 20 (2004)].
6. N. W. Thomas, Acta Crystallogr. B 52, 16 (1996).
7. B. J. Kennedy, C. J. Howard, and B. C. Chakoumakos,

J. Phys.: Condens. Matter 11, 1479 (1999).
8. S. Sasaki, C. T. Prewitt, J. D. Bass, and W. A. Schulze,

Acta Crystallogr. C 43, 1668 (1987).
9. G. A. Smolenskiœ, Dokl. Akad. Nauk SSSR 70, 405

(1950).
10. P.-H. Sun, T. Nakamura, Y. J. Shan, Y. Inaguma, and

M. Itoh, Ferroelectrics 217, 137 (1998).
11. Y. J. Shan, H. Mori, H. Imoto, and M. Itoh, Ferroelectrics

270, 381 (2002).
12. M. E. Guzhva, V. V. Lemanov, P. A. Markovin, and

T. A. Shuplygina, Ferroelectrics 218, 93 (1998).
13. M. E. Guzhva, V. V. Lemanov, and P. A. Markovin, Fiz.

Tverd. Tela (St. Petersburg) 43, 2058 (2001) [Phys. Solid
State 43, 2146 (2001)].

14. H. El-Mallah, B. E. Watts, and B. Wanklyn, Phase Tran-
sit. 9, 235 (1987).

15. Y. J. Shan, H. Mori, K. Tezuka, H. Imoto, and M. Itoh,
Ferroelectrics 284, 107 (2003).

16. A. S. Knyazev, Yu. M. Poplavko, and V. P. Zakharov, Fiz.
Tverd. Tela (Leningrad) 16, 2215 (1974) [Sov. Phys.
Solid State 16, 1446 (1974)].

17. V. I. Torgashev, Yu. I. Yuzyuk, V. B. Shirokov, V. V. Lema-
nov, and I. E. Spektor, Fiz. Tverd. Tela (St. Petersburg)
47 (2), 324 (2005) [Phys. Solid State 47, 337 (2005)].

18. A. A. Volkov, Yu. G. Goncharov, G. V. Kozlov, S. P. Leb-
edev, and A. M. Prokhorov, Infrared Phys. 25, 369
(1985).

19. V. Zelezny, E. Cockayne, J. Petzelt, M. F. Limonov,
D. E. Usvyat, V. V. Lemanov, and A. A. Volkov, Phys.
Rev. B 66, 224303 (2002).

20. Yu. M. Gufan and E. S. Larin, Fiz. Tverd. Tela (Lenin-
grad) 22, 463 (1980) [Sov. Phys. Solid State 22, 270
(1980)].

Translated by G. Skrebtsov



  

Physics of the Solid State, Vol. 47, No. 3, 2005, pp. 556–559. Translated from Fizika Tverdogo Tela, Vol. 47, No. 3, 2005, pp. 536–539.
Original Russian Text Copyright © 2005 by Imashev, Mulyukov, Sharipov, Shavrov, Koledov.

                            

LATTICE DYNAMICS
AND PHASE TRANSITIONS

                   
Martensitic Transformation and Electrical Properties 
of a Ni2.14Mn0.81Fe0.05Ga Alloy in Its Different Structural States

R. N. Imashev, Kh. Ya. Mulyukov, I. Z. Sharipov, V. G. Shavrov, and V. V. Koledov
Institute for Metal Superplasticity Problems, Russian Academy of Sciences, 

ul. Khalturina 39, Ufa, Bashkortostan, 450001 Russia

e-mail: Ramil_imashev@imsp.da.ru

Received June 22, 2004

Abstract—Phase transformations in a Ni2.14Mn0.81Fe0.05Ga alloy in different structural states are studied from
the temperature dependences of its electrical resistivity. The dependences obtained indicate that, in the coarse-
grained state, this alloy undergoes two structural phase transformations: intermartensitic modulation transfor-
mation and martensite–austenite transformation. In the nanocrystalline state, these transformations are absent.
The recrystallization of a nanocrystalline sample at 773 K for 30 min results in the martensite–austenite trans-
formation; however, the phase transformation related to a change in the martensite modulation period does not
occur in this state. The resistivity is shown to depend on the structural state of the alloy. © 2005 Pleiades Pub-
lishing, Inc.
1. INTRODUCTION

The unique combination of the physical properties
of Ni2MnGa alloys, which exhibit a shape-memory
effect (SME) [1], has recently attracted considerable
research interest. This circumstance stems from the fact
that the thermoelastic martensitic transformation
inducing an SME in these alloys occurs in their ferro-
magnetic state and that the temperature of this struc-
tural phase transition is sensitive to an applied magnetic
field [2], mechanical stresses [3], the introduction of
impurity atoms, and a deviation from the stoichiometric
composition [4–6]. For example, the substitution of Ni
for Mn atoms results in an increase in the martensite–
austenite transition temperatures and in a decrease in
the Curie temperature [5]. Phase transitions in alloys
are known to be accompanied by changes in their phys-
ical properties. One of the properties that are most sen-
sitive to these processes is the electrical resistivity,
whose variation allows one to exactly establish the tem-
peratures of the onset and completion of a structural
phase transition.

The formation of a nanocrystalline (NC) state in
materials substantially changes their physical proper-
ties [7]. However, there are no systematic data on the
effect of the structural state of Ni2MnGa alloys on their
physical properties and the character of phase transi-
tions in them. Therefore, in this work, we studied the
temperature dependences of the resistivity of a
Ni2.14Mn0.81Fe0.05Ga alloy in its different structural
states.
1063-7834/05/4703- $26.00 ©0556
2. EXPERIMENTAL

A polycrystalline Ni2.14Mn0.81Fe0.05Ga alloy was
fabricated using a technique described in [2]. The NC
state was formed by severe plastic deformation (SPD).
To this end, flat 0.5-mm-thick disks 6 mm in diameter
were cut from the initial polycrystalline ingots. The
disks were subjected to shear deformation in Bridgman
anvils at a pressure of 7 GPa by rotation through an
angle of 10π at room temperature. An intermediate
structural state was produced by annealing NC samples
in vacuum at a pressure of 10–3 Pa at 773 K for 30 min.
The resistivities of the samples were measured using
the four-point probe method.

The microstructure of a coarse-grained sample was
examined on an AXIOVERT 100A optical microscope
equipped with a digital video camera and a computer.
The microstructures of the NC states of the
Ni2.14Mn0.81Fe0.05Ga alloy were examined on a JEM-
2000EX transmission electron microscope.

3. RESULTS AND DISCUSSION

The microstructure of the coarse-grained sample at
283 K (low-temperature phase) shown in Fig. 1 demon-
strates that this sample is polycrystalline with a mean
grain size of about 0.5 mm. The grains contain charac-
teristic martensite plates. The disorientation of the mar-
tensite plates in different grains indicates that the grain
boundaries are high-angle boundaries. The grain
boundaries contain pronounced cracks, which obvi-
ously lead to high brittleness of the coarse-grained sam-
 2005 Pleiades Publishing, Inc.
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ple; the cracks appear after several austenite–marten-
site–austenite cycles.

Figure 2 shows that an NC sample consists of very
small crystallites without clear boundaries between
them. The mean grain size of the crystallites is esti-
mated to be 10 nm. The electron diffraction pattern of
the sample is a set of diffraction rings consisting of
reflections that are strongly diffused in the azimuthal
direction. This feature indicates the presence of both
significant internal stresses and high-angle misorienta-
tions of the crystallographic axes of various crystallites
with respect to each other. The structure of the NC sam-
ple changes significantly after annealing at 773 K
(Fig. 3). Clear boundaries form between crystallites,
whose mean size is 200 nm. Some grains have bound-
aries with a typical fringe contrast, which indicates
recrystallization. The color contrast between the grains
demonstrates their misorientation. The electron diffrac-
tion pattern taken from an area of 0.5 µm2 contains
clear undiffused reflections, which indicate that the
internal stresses have relaxed.

Figure 4 shows the temperature dependences of the
resistivity ρ for three structural states. The measured
values of the resistivity ρ for the three states are seen to
differ substantially. The resistivity is maximum in the
NC state (Fig. 4c); this should be caused by the small
crystallite sizes, a high defect density, and disordering
of the alloy. These assumptions are supported by the
fact that ρ is minimum in the coarse-grained state
(Fig. 4a) and has intermediate values in the annealed
state (Fig. 4b).

The ρ(T) dependence for the coarse-grained state is
rather complex. Upon heating from 80 to 268 K, the
resistivity increases almost linearly. In the range from
270 to 273 K, it increases sharply by 0.15 µΩ m and
then again increases linearly up to 294 K. In the range
from 294 to 297 K, the resistivity decreases jumpwise
by 0.7 µΩ m. At higher temperatures, the resistivity
increases smoothly; however, near the Curie point, the
curve has a weak discontinuity in slope. Upon cooling,
ρ behaves similarly; in the range 294–297 K, ρ varies
virtually reversibly, but the change in it that was
observed in the range 270–273 K is repeated only in the
range 222–242 K.

This complex character of the ρ(T) dependence is
obviously due to the fact that a number of different
phase transformations occur in the coarse-grained sam-
ple. For example, the sharp increase in ρ at 270 K upon
heating should be caused by a change in the modulation
period of the martensite [8–11], which in turn begins to
transform at 294 K into the high-temperature cubic
phase (austenite). The latter transformation induces the
jumpwise decrease in resistivity observed at this tem-
perature. Indeed, the austenite phase has a higher crys-
tallographic symmetry as compared to the martensite
and, hence, should have a lower resistivity. This trans-
formation ends at 297 K. Upon cooling, the reverse aus-
tenite–martensite transformation proceeds almost
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
0.1 mm

Fig. 1. Microstructure of a coarse-grained sample (the mar-
tensite phase).

100 mm

Fig. 2. Microstructure and an electron diffraction pattern of
an NC sample.
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reversibly. The transformation related to martensite
modulation is significantly delayed and occurs over a
wider temperature range.

An analysis of the ρ(T) dependence of the sample
with an NC structure shows that, over the entire temper-
ature range, the variation in ρ upon heating and cooling
is smooth and reversible, which indicates the absence
of structural phase transformations in this state. This
feature should be due to both the small crystallite sizes
and possible disordering of the compound caused by
SPD. The fact that ordering compounds can be disor-
dered during SPD was established in [12–14]. The fol-
lowing circumstance is important here. In the range
260–360 K, ρ remains virtually unchanged, although it
increases relatively rapidly at lower temperatures. The
character of the ρ(T) dependence is determined by the
scattering of free carriers by phonons, lattice defects,
and magnetic inhomogeneities. Earlier, we found that,
in the NC state, the alloy under study has no ferromag-
netic properties [15] and is in a superparamagnetic
state. Apparently, the observed ρ(T) dependence is
related to a transition from the superparamagnetic to
paramagnetic state at about 260 K.

In contrast to the coarse-grained state, the structure
forming after annealing at 773 K exhibits only one
rather sharp change in ρ during both heating and cool-
ing (Fig. 4b); this change takes place in the range 260–
290 K. This specific feature in the ρ(T) dependence is

100 mm

Fig. 3. Microstructure and an electron diffraction pattern of
a recrystallized sample (the austenite phase).
P

more pronounced upon cooling of the sample and is
related to the austenite–martensite phase transforma-
tion, which is accompanied, as in the coarse-grained
state, by an increase in ρ. However, the intermartensitic
modulation transformation is absent in this case. The
occurrence of the martensite transition in the recrystal-
lized sample is caused not only by the increased crys-
tallite size and a decreased defect density but also by
possible ordering of the Ni2.14Mn0.81Fe0.05Ga compound
during annealing. In [16], it was reported that the mar-
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Fig. 4. Temperature dependences of the resistivity of the
alloy in (a) the quasi-crystalline, (b) recrystallized, and
(c) nanocrystalline states.
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tensitic-transformation temperature of stoichiometric
and near-stoichiometric Ni2MnGa alloys increases in
proportion to the long-range order parameter squared.
However, the structural-transformation temperature
should also depend on the grain size. The martensitic
transformation is known to occur via the motion of
transformation dislocations, which are atomic marten-
site steps in interphase boundaries. Therefore, the mar-
tensitic-transformation temperature depends on the
grain size, since grain boundaries are barriers for dislo-
cation motion and, hence, restrict the mean path length
of dislocations [17]. The absence of the intermartensitic
modulation transformation is likely due to the fact that
both the increased degree of ordering of the compound
and the increased crystallite size reached under the
annealing conditions are insufficient for this phase
transformation to occur. The broadening of the temper-
ature range of the structural transformation is explained
by the fact that the grain sizes in the recrystallized state
vary from 100 to 300 nm and, hence, the martensitic
transformation begins at different temperatures
throughout the bulk of the sample.
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Abstract—On the basis of the microscopic theory of lattice dynamics, simulation of the electric potentials cre-
ated by optical phonons in semiconductor superlattices is performed. It is shown that the spatial distribution of
the amplitudes of electric potentials differs from that in a dielectric continuum predicted by the conventional
macroscopic model without dispersion. A modified macroscopic continuum theory is proposed that takes into
account the dispersion of short-range interatomic forces and allows one to obtain analytical expressions for the
potentials of electron–phonon interaction. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Polar optical vibrations in semiconductor nano-
structures are a source of strong electron–phonon inter-
action and, therefore, are important for the study of car-
rier transport. Displacements of the ions participating
in optical vibrations create an electric polarization in
the crystal. In the absence of free charges, the electric
displacement arising in this case satisfies the condition
∇ (εE) = 0. In a nonuniform medium like a nanostruc-
ture, the permittivity ε depends on spatial coordinates
and the calculated electric fields E and the related
potentials appear to be different from those in a bulk
material due to quantum confinement of phonons. In an
elementary version of the theory (the so-called dielec-
tric continuum model [1]), the frequency dependence
of the permittivity ε(ω) of a separate layer of the hetero-
structure is assumed to be the same as in the corre-
sponding bulk material, where it is determined by the
phonon spectrum of the material. The calculated poten-
tials for each separate layer are matched using the con-
tinuity condition at the heterointerfaces. The solutions
obtained are divided into two types. Potentials of the
first type are related to bulk phonons confined to a layer.
These potentials are also confined to the active layer
and vanish at the heterointerfaces. Potentials of the sec-
ond type are localized near the heterointerfaces and are
associated with interface vibrations.

A fundamental difficulty in the dielectric continuum
model [1] is given by the incompatibility of the bound-
ary conditions for electric and mechanical components
of the envelope function of the phonon field at the inter-
faces. The amplitudes of mechanical displacements for
the confined bulk phonons appear to be discontinuous
in this model. The electrostatic contribution is only
~10% of the phonon energy, which makes the predic-
tions from the dielectric continuum model doubtful to a
certain degree [2]. On the other hand, the requirement
1063-7834/05/4703- $26.00 0560
of continuity of the mechanical component leads to dis-
continuity of the potentials and to the absence of inter-
face potentials [3]. Attempts to resolve this problem by
including the dispersion of short-range interatomic
forces in the dielectric continuum model [3, 4] result in
an unjustified complication of the theory. For this rea-
son, most of the studies of transport processes have
been performed using the dielectric continuum model
[5] with dispersionless short-range interatomic forces.

2. MICROSCOPIC CALCULATION 
OF THE POTENTIALS OF ELECTRON–PHONON 

INTERACTION IN AN AlAsnGaAsm [001] 
SUPERLATTICE

In [6], it was demonstrated that phonon electric
fields can be directly calculated on the basis of micro-
scopic theory.

We calculated the phonon spectrum of the superlat-
tice (Fig. 1) using the phenomenological bond charge
model [7]. The AlAsnGaAsm [001] structure belongs to

the  symmetry group if n + m = 2p and to the 
group if n + m = 2p + 1. The symmetry classification of
long-wavelength vibrations depends on the total num-
ber of monolayers in the superlattice unit cell. The
decomposition of the vibrational representation at the Γ
point can contain one-dimensional fully symmetric Γ1
representations, one-dimensional Γ3 representations
(which transform as the z component of a vector), and
two-dimensional Γ5 representations (which transform
as the x, and y components). The number of different
irreducible representations is determined by the total
number of monolayers in the unit cell of the specific
superlattice.

Calculations show that, in the AlAsnGaAsm [001]
structure, the ion displacements corresponding to opti-

D2d
5

D2d
9
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Fig. 1. Frequencies of AlAs-like phonons in the (AlAs)8(GaAs)12 [001] superlattice in two symmetry directions, Z(0, 0, π/D) and
M = (π/a, 0, 0). D = 10a is the superlattice period, and a is the zinc blende lattice constant. In the central part (Γ–Γ), the frequencies
of long-wavelength phonons (q  0) are plotted as functions of the angle θ (0 ≤ θ ≤ π/2) between the wave vector and the super-
lattice growth axis (z axis). The left-hand panel corresponds to the microscopic bond charge model, and the right-hand panel shows
the calculation in the modified continuum model including dispersion of short-range forces. The irreducible representations at the
center of the Brillouin zone are also indicated.
cal vibrations are localized in separate (AlAs)n or
(GaAs)m sublayers (subcells) and that the phonon fre-
quencies for different sublayers correspond to different
energies. The number of representations according to
which the long-wavelength phonons in the active sub-
cell transform is determined by the number Nc of mono-
layers in the subcell. If Nc = 2m, the decomposition for
phonons of this layer is Γ = m(Γ1 + Γ3 + 2Γ5). If Nc =
2m + 1, the decomposition for phonons of this sublayer
has the form Γ = mΓ1 + (m + 1)Γ3 + (2m + 1)Γ5). Cal-
culations [6] show that the vector sn = pnMnun varies
smoothly with the ion number n and is an envelope
function for optical vibrations. Here, pn = zn/Zn is the
sign of the ion charge (Zn = |zn | is the magnitude of the
charge) and Mn is the ion mass.

The envelope of ion optical displacements for Γ1

phonons has only a component parallel to the growth
axis of the superlattice (the z axis) and is an odd func-
tion with respect to the center of the active sublayer. For
Γ3 phonons, the displacement envelope also contains
only a z component and sn is an even function. For the
two-dimensional Γ5 representation, the displacements
lie in the xy plane (normal to the growth axis) and can
be divided into two types: Γ5(g) with even displacements
sn and Γ5(u) with odd displacements.
PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      200
The frequencies of Γ1 vibrational modes are inde-
pendent of the direction of the vector q in the long-
wavelength limit.

For any direction of the wave vector, Γ1 phonons
create potentials whose amplitudes are periodic func-
tions (with the period of the superlattice) and even with
respect to the center of the active layer (AlAsn in
Fig. 2). They do not create macroscopic fields.

In the long-wavelength limit, the frequencies of Γ3
vibrational modes have a strongly pronounced depen-
dence on the direction of the wave vector, which is anal-
ogous to that for the longitudinal–transverse (L–T)
splitting of optical modes in cubic crystals. The poten-
tials created by Γ3 phonons are odd functions with
respect to the center of the active layer (Fig. 2) and
exhibit a substantial (nonanalytic) dependence on the
direction of the wave vector. When propagating in the
direction q ⊥  z, these phonons are transverse, Γ3T, and
create periodic potentials with the superlattice period
(local fields).

When propagating in the q || z direction, Γ3 phonons
are longitudinal, Γ3L, and produce both local and mac-
roscopic fields. The macroscopic electric field Emacro is
directed along the z axis.

In the q || z direction, all Γ5 phonons are transverse,
their frequencies are doubly degenerate, and these
phonons do not create electric fields. For long-wave-
5
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Fig. 2. Periodic part of the amplitude of the electric potentials created by long-wavelength phonons. Dashed lines correspond to the
microscopic calculation, and solid lines, to the modified continuum model. For Γ3L phonons propagating in the q || z direction, the
macroscopic component is also shown (dash-dotted lines).
length Γ5(g) phonons with q ⊥  z, the L–T splitting
Γ5(g)  Γ5L(g) + Γ5T(g) occurs. Longitudinal Γ5L(g)
phonons create a macroscopic field Emacro (in the xy
plane) directed along the vector q ⊥  z. In the long-
wavelength limit, the potentials created by these
phonons do not depend on Γ5(u) phonons remain degen-
erate and, like Γ5T(g) phonons, do not create electric
fields.

The average potential created by long-wavelength
Γ3L and Γ5L(g) phonons depends on the wave vector as
q–1. The average potential produced by Γ1 phonons is a
constant dependent on the phonon frequency.

We see in Fig. 2 that the form of the potentials of
long-wavelength phonons differs substantially from
that obtained in the dispersionless continuum model
[1–3]. Above all, this is true for the potentials of Γ3
phonons. In contrast to the potentials of the model
developed in [1–3], they are finite at the heterointer-
PH
face. The phonons whose displacements are localized
in one of the layers (AlAs in Fig. 2) also create signifi-
cant potentials in the inactive layer (GaAs in Fig. 2),
where there are no ion displacements for these modes.
The potentials of Γ1 phonons are localized in their
active layer; however, they also have nonzero values at
the heterointerface.

In the long-wavelength limit, there are no surface
vibrations; they appear only at finite values of the
phonon wave vector.

Figure 3 shows the amplitudes of the potentials for
two short-wavelength AlAs-like phonons in the same
superlattice with a wave vector q = (201)π/D (where
D is the superlattice period) and frequencies ω(3)(q) =
376.6 cm–1 and ω(5)(q) = 372.2 cm–1 generated by the
long-wavelength Γ3 and Γ5 phonons, respectively. We
see in Fig. 3 that, for q ≠ 0, the interface vibrations are
hybridized with bulk modes. As q increases, the ampli-
YSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
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tudes of the potentials decrease and, at q ≈ π/a (where
a is the lattice constant of the bulk material), are an
order of magnitude smaller than at the center of the
Brillouin zone.

Straightforward application of the simulation results
to transport processes is nonproductive, since it
requires significant computational effort. However, in
our microscopic calculations, the potentials of the elec-
tron–phonon interaction exhibit important features that
cannot be explained in terms of simplified macroscopic
models, such as that considered in [1–3].

In the following section, we suggest a different mac-
roscopic approach, which explains these features and is
not hampered by the problem of incompatibility of the
boundary conditions. This method is applied to calculate
the electric potentials created by phonons with an arbi-
trary wavelength in a superlattice of the AlAsnGaAsm
[001] type.

3. ELECTROSTATIC POTENTIALS 
OF POLAR VIBRATIONS IN CRYSTALS 

WITH A LARGE UNIT CELL: 
MACROSCOPIC THEORY

Phenomenologically, the energy of a vibrating crys-
tal lattice in the presence of an electric field can be writ-
ten in the form [6]

 (1)

Here, un is the ion displacement at site n of the crystal
lattice, zn is the ion charge, E(r, t) is the electric field at

the point r, (r, r') is the high-frequency dielectric
tensor, Φαn, α'n' is the force matrix of the short-range
forces, α and β are Cartesian indices, and the quantity

 determines the β component of the

dipole moment density created by the displacement of
ion n. As noted above, for structures with a large num-
ber of particles in a unit cell, the quantity sn = pnMnun

varies smoothly with the number n and acts as an enve-
lope function for optical vibrations.

The ion displacements sn are functions of the dis-
crete variable rn, whereas the fields are assumed to
depend continuously on r. Therefore, a problem regard-
ing transition to the continuum limit arises [8], which
can be solved as follows. We introduce a set of func-
tions {fi(r)} localized within a unit cell and satisfying

W
1
2
--- unΦ̃nn 'u

n '

nn '

∑ z
nun

Q̃n r( )E r t,( ) rd∫
n

∑–=

–
1

8π
------ E r t,( )ε̃∞ r r ',( )E r ' t,( ) r r '.dd∫

ε̃αβ
∞

z
n

uα
n
Qαβ

n r( )α∑
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the following orthonormalization condition on a dis-
crete set of points:

 (2)

Here, rn is the equilibrium ion position; n0 is the num-
ber of ions in the unit cell; Ωa is the volume per atom;
and i, j = 1, …, n0. We assume that the transition to the
continuum limit for the phonon polarization field
implies that the number of atoms in the unit cell n0
tends to infinity, whereas the volume of the unit cell
remains constant, Vc = const; therefore, formally, the
volume per atom vanishes, Ωa  0. We also assume
that rn varies quasi-continuously and replace summa-

tion by integration according to the rule  

. Furthermore, we assume that the functions

{fi(r)} can be chosen so that, in this continuum limit,
the following relations are satisfied:

 (3)

Ωa f i* rn( ) f j rn( )
n 0=

n0 1–

∑ δij,=
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1– rd
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It is convenient to introduce functions of the Wannier
type (“standard vibrational modes”)

 (4)

Here, the vector q is restricted to the first Brillouin
zone, L is a vector of the direct lattice, and N0 is the
number of unit cells in the crystal. Using Eq. (2), we
write the ionic displacements as an expansion:

 (5)

where

 (6)

The matrix τii ' (q) is related to the positively defined
mass matrix

 (7)

by the relation (q) = (q) (q).

The derivative –∂W/  determines the α compo-
nent of the force acting on ion n. We define the electric
displacement at the point r as the variational derivative
D(r, t) = –4πδW/δE(r, t). For atomic displacements
and fields, we assume a harmonic time dependence of
the form exp(iωt) with a frequency ω. The electric field
and the electric displacement are written in the form of
an expansion in terms of functions (4), which are con-
sidered a basis with a continuous variable. In this case,
the condition ∇ D = 0 connects the expansion coeffi-
cients of the ionic displacements and fields.

The classical equations of motion for ionic displace-
ments can be reduced to the form

 (8)

where the matrix

 (9)

is determined by the short-range forces.

Fiq r( ) N0
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PH
Using Eq. (3), we can write the contribution of
lVong-range forces as

 (10)

Here,

 (11)

 (12)

The matrix (q) describes the high-frequency polar-
ization

 (13)

The quantities Fαiq(r) in Eq. (11) are defined as
Fαiq(r) = ∂Fiq(r)/∂rα. Equation (8) is an eigenvalue
problem for the lattice vibration frequencies ω(m)(q).

For longitudinal fields, disregarding the retardation
effects, we have E(r, t) = –∇ϕ (r, t), where the potential
is given by

 (14)

After performing the standard quantization procedure
for atomic displacements (5), the potentials in Eq. (14)
produced by these displacements can be found to be

 (15)

 (16)

Here, (t) and (t) are the phonon creation and
annihilation operators, respectively, and S(m)(q) are the
eigenvectors of Eq. (8) corresponding to ω(m)(q). In
Eq. (16), the potential created by a phonon with fre-
quency ω(m)(q) is expanded in terms of certain “stan-
dard” potentials φαi(r |q). These potentials are created
by “standard modes” (in which the atomic displace-
ments are directed along the α axis and their magni-
tudes are given by the functions Fiq(rn)) and are deter-
mined by

 (17)

W̃ q( ) 4πζ̃ q( )Ṽ q( ) 1̃ k̃ q( )Ṽ q( )+( )
1–
ζ̃

+
q( ).=

Vα j α ' j ', q( ) 1
4π
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Fα jq* r( )Fα ' j 'q r '( )
r r '–

---------------------------------------- r r ',dd∫=

ζα i α 'i ', q( )

=  Ωa τ ij q( )F jq* rn( )pnz
n

Qαα '
n r( )Fi 'q r( ) r.d∫

nj

∑

k̃

κα j α ' j ', q( )

=  F jq* r( )εαα '
∞ r r ',( )F j 'q r '( ) r r 'dd∫ δαα 'δjj ' .–

ϕ r t,( ) 1
4π
------ ∇ E r ' t,( )

r r '–
---------------------- r '.d∫=

ϕ̃ r t,( ) N0
1/2– ϕq

m( ) r( ) ãmq
+ t( ) ãmq t( )+( ),

qm

∑=

ϕq
m( ) r( ) "

2n0ω m( ) q( )
--------------------------- φα i r q( )Sα i

m( ) q( ).
α i

∑=

ãmq
+ ãmq

φα i r q( )
Fβ' j 'q r '( )

r r '–
--------------------- r 'd

V

∫
ββ' jj '

∑=

× 1̃ k̃ q( )Ṽ q( )+( )β' j ' βj,
1–

ζβj α i,
* q( ).
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4. POLAR VIBRATIONS IN SEMICONDUCTOR 
BINARY SUPERSTRUCTURES

We assume that the unit cell of a superstructure con-
sists of subcells made up of different materials, which
we denote by index c. For binary compounds, each of
the subcells is assumed to contain 2Nc atoms, so n0 =

.

If the frequencies  and  of long-wavelength
transverse optical phonons in the bulk materials are
substantially different, e.g., as is the case with GaAs
and AlAs, then the optical vibrations in isolated sub-
cells of the superlattice can be considered indepen-
dently, which is also confirmed by simulations. The cri-
terion for the applicability of this approximation is

4π (ε∞Ωaµc |  – |)–1 ! 1. Here, µc and Zc are the
reduced mass and the magnitude of the ionic charge in
subcell c, respectively.

In this case, it is convenient to choose the functions
fi(r) so that set (3) is a union of bases, ,
for which each of the functions fλc(r) is nonzero only in
its own subcell c.

The model in which τcλ, cλ' (q) = ,

ζαcλ, α'cλ' (q) = (Ωaµc)–1/2Zcδλλ 'δαα ', and (r, r') =
ε∞δαβδ(r – r') corresponds to the nonpolarizable-ion
approximation and to a superstructure fabricated from
materials of the zinc blende type with close values of
the dielectric constant ε∞, e.g., a GaAs/AlAs super-
structure. In this model,

 (18)

5. PLANAR GEOMETRY

In the continuum approximation, a superlattice is a
periodic repetition of a bilayer of thickness D (0 < z ≤
D) consisting of two layers (subcells) made up of
binary compounds with c = 1 (0 < z ≤ d1) and c = 2 (d1 <
z ≤ D). The z axis is perpendicular to the layer planes.
It is convenient to choose basis (2) in the form fcλ(r) =
S–1/2exp(iKr)ψcn(z), where the vectors K and r lie in
the layer planes (i.e., K, r ⊥  z) and S is the area of a
layer in the plane normal to the z axis. Accordingly, λ ≡
(n, K) becomes a composite index. The Brillouin zone
is one-dimensional; therefore, the wave vector is writ-
ten as q = (K, k), where its z component k varies in the
limits –π/D ≤ k < π/D.

Next, we use an approximation in which vibrations
in different layers are independent. To be specific, we
consider the layer with c = 1 (0 < z ≤ d1). Passing to the
next layer with c = 2, it suffices to properly displace the

2 Ncc∑
ω1 ω2

Zc
2 ω1

2 ω2
2

f λc r( ){ }⊗ c∑

µc
1/2– δλλ '

εαβ
∞

Wαcλ α 'cλ ', q( )
4πZc

2

ε∞Ωaµc

------------------Vαcλ α 'cλ ', q( ).=
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origin, zc = z – d1, and to make the substitution d1 
d2 = D – d1. Therefore, the arguments do not depend on
the subcell index, and we write zc and dc without the
layer index in the subsequent formulas where this does
not give rise to any misunderstanding.

In the “active” subcell with c = 1 (0 ≤ z ≤ d), it is
convenient to choose functions ψcn(z) that vanish out-
side this sublayer and have the form

 (19)

within this sublayer. In Eq. (19), n = 1, …, Nc, where
2Nc is the number of atomic monolayers in the subcell.
It is convenient to direct one of the coordinate axes,
e.g., the y axis, along the vector K. Then, it follows
from Eq. (11) that VxnK'βn'K''(K, k) = 0, whereas for α,
β = y, z the matrix elements are nonzero only if K' =
K'' = K; we denote them by VαnK, βn'K(K, k) ≡
Vαβ(nn' |K, k). The calculation of matrix elements (11)
reduces to evaluating the expression

 (20)

Here, K = |K |, L is an integer, (z, K) = iKψn(z), and

(z, K) = dψn(z)/dz. The calculated matrix elements
(20) are listed in Appendix 1.

Standard potentials (16) in the planar geometry can
be written in the Bloch form

 (21)

Here, ϑ  = Kd/π and  = ; the func-

tions (z |K, k) are calculated using Eq. (17) and
given in Appendix 2.

To calculate the contribution of short-range forces

(9), we introduce a 3 × 3 matrix (Q) whose eigenval-
ues reproduce the spectrum of optical phonons in the
bulk binary compound corresponding to c = 1 without
the polar component, i.e., as if the phonons were non-
polar. This spectrum of “nonpolar” phonons can be
obtained using the data from microscopic theory; the

ψn z( ) 2/d πnz/d( )sin=

Vαβ mn K k,( )( ) 1
2KD
------------ e

ikLD
zΨα

m*
z K,( )d

0

d

∫
L ∞–=

∞

∑=

× z 'e
K z z '– LD–– Ψβ

n
z ' K,( ).d

0

d

∫

Ψy
n

Ψz
n

ψαnK r q( ) S
1/2–

iKr( ) ikz( )expexp=

×
ϕ1

π ϑ2
n

2
+( )

-------------------------Uα
n( )

z/ K k,( )( ).

ϕc

4πZc

ε∞------------ 2dc/Ωaµc

Uα
n( )

∆̃c
5
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corresponding technique is described in [6]. In this
case, the short-range-force matrix can be written as

 (22)

where Q varies within the Brillouin zone of the bulk
binary crystal. Matrix elements (9) include the quantity

 (23)

As k  ±πn/d, the contribution of integral (23) to

matrix elements (9) is maximum and equal to .
Keeping only these leading terms in Eq. (9), we obtain

 (24)

In this approximation, the matrix elements are indepen-
dent of the longitudinal component k of the wave vector.

6. EXACT SOLUTION 
IN THE DIELECTRIC-CONTINUUM MODEL

If we disregard the dispersion of short-range forces,
matrix (24) becomes

 (25)

where  is the frequency of transverse phonons in the
bulk material corresponding to layer c.

In the continuum limit, Eqs. (8) form an infinite sys-
tem whose solution can be found exactly. The details of
the solution are not trivial; the calculations were per-
formed using the Maple language in the Scientific
Notebook shell and cannot be reproduced in detail in
the framework of a journal article. We give only the
final result.

The potentials are written in the Bloch form

(26)

where φ(m)(z + DL|K, k) = ψ(m)(z |K, k) and L is an inte-

ger. For phonons whose optical displacements (q)
are confined to the active layer c = 1 (0 < z ≤ d), the peri-
odic part extends over the entire unit cell 0 ≤ z ≤ D. The
periodic part of the potential φ(m)(z |K, k) for these
phonons is given below.

Φαβ
c rn rn ',( ) 1

N0
------ µc pn∆αβ

c
Qx Qy Qz, ,( )pn '

Q

∑=

× iQ rn rn '–( )( ),exp

ikz–( )ψn z( ) zdexp

0

d

∫ 2d
πn 1 1–( )n

e
idk

–( )
kd( )2 πn( )2

–( )
------------------------------------------.=

i d/2

ΘαnK α 'n 'K ', δKK 'δnn ' ∆αα '
c

Kx Ky
πn
d

------, , 
 





≈

+ ∆αα '
c

Kx Ky
πn
d

------–, , 
 





.

ΘαnK α 'n 'K ', K k,( ) ωc
2δKK 'δnn 'δαα ' ,=

ωc
2

ϕq
m( ) r( ) S

1/2–
iKr( ) ikz( )φ m( )

z K k,( )( ),expexp=

SαnK
m( )
P

The solutions are written as φ(m)(z |K, k) =
["/2ω(m)(K, k)]1/2χ(m)(z |K, k). We introduce the nota-

tion η = KD, ξ = kD, σ = Kd/2,

 (27)

The function Θ(z, d) = 1 if 0 ≤ z ≤ d and Θ(z, d) = 0 for
all other values of z.

(1) For a given layer, there are two solutions, labeled
m = (±), which depend on the phonon propagation
direction q = (K, k):

 (28)

 

(29)

 

As K and k increase, functions (29) are more and more
strongly localized near the interface and are the poten-
tials of interface vibrations.

(2) Longitudinal optical ion displacements corre-
spond to the direction-independent polar solutions

 =  + 4π /(µ1ε∞Ωa) with infinite degeneracy:
m = 1, …, ∞. The potentials created by these vibrations
are nonzero only in the active layer (the layer c = 1, i.e.,
0 ≤ z ≤ d), and in this layer they are

 (30)

ϕ1

Uq
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1 Hq/ Hq
2

Bq
2

+±( )/2,=

Hq 2σcosh
η 2σsinhsinh
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---------------------------------,–=
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(3) Transverse optical ion displacements correspond to

direction-independent nonpolar solutions  = 
with infinite degeneracy: m = 1, …, ∞. These vibrations
do not create electric fields.

For phonons whose ionic displacements are concen-
trated in the second layer, c = 2 (d < z ≤ D), the solutions
have a similar form. They can be obtained from
Eqs. (28)–(30) by shifting the origin, z'  z – d, with
the subsequent replacement d  D – d and substitu-

tion of the parameters , ζ2, and µ2 of the bulk phonon
spectrum corresponding to this layer.

The fields calculated from Eqs. (28)–(30) and the
ionic displacements given in Appendix 3 fully agree
with the pattern of the interface vibrations and their
potentials (29) and with the confined bulk vibrations
and their fields (30) obtained numerically in the contin-
uum model in [1–4]. We note that, as far as we know,
the solution in the continuum model has not been pre-
viously obtained in an analytical form. An analysis of
the solutions obtained shows that potentials (29) are
nonanalytic functions at q  0. In this long-wave-
length limit, fields (29) are macroscopic and extend
over the entire superlattice if k @ K; in the case of k !
K, these fields are local and have the superlattice
period. In the limiting case d  D  ∞, Eqs. (28)–
(30) reduce to the well-known expression [9] for scat-
tering potentials produced by long-wavelength polar
phonons in a bulk cubic crystal. Potentials (29) and (30)
are continuous at the interfaces. However, calculations
based on Eq. (5) show that the optical ionic displace-
ments are discontinuous for even m, in accordance with
the conclusion that the boundary conditions for
mechanical and electrodynamic components of optical
vibrations are incompatible in the dispersionless con-
tinuum model [2]. To achieve simultaneous continuity
of fields and ionic displacements, it is necessary to take
into account dispersion of short-range forces [2, 3].

7. DIELECTRIC-CONTINUUM MODEL 
MODIFIED BY INCLUDING DISPERSION 

OF SHORT-RANGE FORCES

To calculate the spectrum with allowance for the

crystal symmetry, we take the matrix (Q) in Eq. (22)
in the form

 (31)

Here, A(k) = X1 + X2k2 + X3k4, B(k) = X4 + X5k2 + X6k4,
G(k) = X7 + X8k2 + X9k4, and k = Qac/2π, where ac is the
lattice constant of the material of the layer c. Since

ωt m( )
2 ω1

2

ω2
2

∆̃c

∆xx
c Q( ) ωc

2 1 A k( )kx
2

B k( ) ky
2

kz
2

+( )+ +( ),=

∆yy
c Q( ) ωc

2 1 A k( )ky
2

B k( ) kx
2

kz
2

+( )+ +( ),=

∆zz
c Q( ) ωc

2 1 B k( ) kx
2

ky
2

+( ) A k( )kz
2

+ +( ),=

∆αβ
c Q( ) 2ωc

2G k( )kαkβ, α β .≠=
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there are 3Nc degrees of freedom for optical vibrations
in the layer c, Eq. (8) involves 3Nc × 3Nc matrices. The
parameters of the bulk AlAs and GaAs spectra are cho-
sen by comparing them with the spectra calculated in

the bond charge model [6, 7] (Z1 = Z2 = 0.65 ,

ε∞ = 12, a1 = a2 = 5.65 Å, MAl = 26.98Mp, MGa =
69.72Mp, MAs = 74.92Mp) and are listed in the table.

The basis functions in the form of Eq. (19) do not
take into account the short-range interaction of (AlAs)n
and (GaAs)m sublayers. The agreement with micro-
scopic calculations is improved if we allow for the
interaction between the subcells phenomenologically
by introducing an effective thickness of the active layer
deff = d + δ into the formulas in Appendix 2. For
(AlAs)n(GaAs)m [001] superlattices with any values of
n and m such that n + m = 20, the results agree equally
well with the simulation results if we take δ to be equal
to the thickness of one monolayer.

Figure 1 shows the spectrum of AlAs-like optical
phonons in the (AlAs)8(GaAs)12 [001] superlattice (D =
56.5 Å, deff = 37.67 Å) calculated using the microscopic
bond charge model (to the left) and the macroscopic
model based on Eqs. (8), (24), and (31) (to the right).

We see in Fig. 1 that, in the region |q| ≤ 2π/D, which
is important for charge carrier scattering, the agreement
is quite good. The deviations near the Brillouin zone
boundary |q| ~ 2π/a are more significant and have a qual-
itative character; this is not surprising, since Eqs. (31)
correctly take into account the symmetry of the spec-
trum of bulk phonons only in the long-wavelength
limit.

In the presence of dispersion of short-range forces,
bulk modes (30) and interface modes (29) are mixed.
As a result of hybridization, both the potentials and
optical ionic displacements are now continuous.

ε∞
e0

Parameters of the short-range force matrix  for bulk materials

Parameter AlAs GaAs

, cm–1 364.39 271.36

X1 –0.5637 –0.5441

X2 0.2689 0.2110

X3 –0.0256 –0.0097

X4 –0.8293 –0.5771

X5 0.7346 0.5385

X6 –0.2001 –0.1535

X7 –0.1514 –0.1672

X8 0.1785 0.0369

X9 –0.0518 0.0199

∆̃

ω

5
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The results obtained are illustrated in Figs. 2 and 3
through the example of AlAs-like phonons in the
(AlAs)8(GaAs)12 [001] structure. The potentials are cal-
culated using Eqs. (16) and (21) (see also the formulas
in Appendix 2). Solid lines show the local components
of the potentials:

 (32)

For Γ3L phonons, there also exists a macroscopic com-

ponent of the potential, (z, k) = ,
shown by the dash-dotted line in Fig. 2. The results
shown in Figs. 2 and 3 are typical. We see that the
agreement between the two models is quite good. The
reasons for the quantitative disagreement are related to
the fact that, in the microscopic bond charge model, the
high-frequency polarizability of the medium is effec-
tively taken into account, whereas in the macroscopic
model we used the rigid-ion approximation.

The agreement between the microscopic calcula-
tions and our version of the continuum model for
(AlAs)n(GaAs)m [001] superlattices is the same for any
values of n and m (for both even and odd n and m such
that n + m = 20) up to (AlAs)2(GaAs)18 [001].

8. CONCLUSIONS
Numerical analysis performed in terms of a realistic

model of interatomic interaction has shown that the
spatial distribution of the amplitudes of interaction
potentials between electrons and optical phonons in a
superlattice differs substantially from that predicted by
the simple macroscopic dispersionless dielectric con-
tinuum model [1–3]. The physical reason for this dis-
agreement is the fact that the simple macroscopic
model includes only the long-range component of
interatomic forces. The modified macroscopic model
developed in this study agrees with the simulation
results only if dispersion of the short-range interatomic
interaction is taken into account.

The advantage of our modified macroscopic model
over our numerical microscopic calculations is that the
potentials of electron–phonon interaction are obtained
analytically in a form more convenient for calculating
scattering probabilities, thus simplifying the analysis of
transport processes.

It should be noted that the above features of the
behavior of the potentials are important in considering
the electron scattering between minibands. For scatter-
ing processes inside a miniband, the differences
between our model and the dispersionless continuum
model are not of crucial importance, since the matrix

φloc
m( )

z K k,( ) φ m( )
z K k,( ) φ m( )

K k,( ),–=

φ m( )
K k,( ) D

1– φ m( )
z K k,( ) z.d

0

D

∫=

φmacro
m( )

izkφ m( )
0 k,( )
P

elements of the potentials of Γ3 phonons do not make a
contribution because of the symmetry and the values of
the potentials of Γ1 phonons at the heterointerface are
small, as seen in Fig. 2. Nevertheless, in this case, the
use of analytical expressions for electron–phonon inter-
action potentials also leads to an appreciable reduction
in the amount of calculations.

APPENDIX 1

MATRIX Vαα 'jj ' (K, k) 
IN THE PLANAR GEOMETRY

We write out only the nonzero intralayer matrix ele-
ments for c = 1.

 

 

 

 

Here, Vαβ(mn |K, k) = Vβα(mn |K, k). In addition to the
previous notation, we set

 

 

 

 

The matrix Vαβ(mn |K, k) is Hermitian, which can be
verified by straightforward calculation.

APPENDIX 2

PHONON POTENTIALS 
IN THE PLANAR GEOMETRY

In the calculation, we used the formulas from
Appendix 4. In the chosen coordinate system, we
obtain

(z |K, k) = 0,

 

VαcmK ' βcnK '', q( ) Vαβ mn K k,( )δKK 'δKK '' ,=
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Here, Sn(x) = (ex – (–1)ne–x)/2 and Cn(x) = (ex +
(−1)ne−x)/2.

APPENDIX 3

SOLUTION TO EQ. (8) IN THE DISPERSIONLESS 
DIELECTRIC CONTINUUM MODEL

In the calculation, we used the formulas from

Appendix 4. We write out the eigenvectors (q) =

(n |K, k)δKK'.

For the direction-dependent frequencies (28), we

have (n |q) = 2n (n |K, k) /(ϑ2 + n2),

where the quantities (n |K, k) are different for even

and odd (2m |q) = , (2m |q) = ,

(2m + 1 |q) = , and (2m + 1 |q) = – .

For the chosen coordinate axes, we have (n|K, k) = 0.

For the direction-independent polar solutions ,
the eigenvectors are

 

 

For the nonpolar solutions , we have

 

 

APPENDIX 4

RELATIONS USED IN THE CALCULATIONS
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For 0 ≤ z ≤ d, the following relations are valid:
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Abstract—A theory of quasi-stationary states and lifetimes of electrons, holes, and excitons in an open cylin-
drical semiconductor quantum wire containing a quantum dot surrounded by two identical antidots (with poten-
tial barriers of finite height) is developed using the scattering matrix method. The energy spectra and lifetimes
of electrons, holes, and excitons in a β-HgS/β-CdS/β-HgS/β-CdS/β-HgS nanoheterosystem are calculated and
analyzed as functions of the geometric parameters of the quantum dot involved. It is demonstrated that an
increase in the height of the quantum dot leads to a decrease in the energy of quasi-stationary exciton states of
the Breit–Wigner type and to an increase in their lifetimes. The lifetime of exciton states is long enough for
these states to be observed in the experiment. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Considerable advances have been made in the study
of low-dimensional semiconductor systems since the
advent of new techniques for growing nanocrystals.
The use of these techniques has opened up strong pos-
sibilities for designing and fabricating a great variety of
nanoheterosystems (two-dimensional quantum wells,
one-dimensional quantum wires, zero-dimensional
quantum dots) and their combinations [1, 2].

Virtually all theoretical and experimental investiga-
tions of nanoheterosystems have dealt with so-called
closed systems, i.e., systems for which the environment
is considered a maximum potential barrier for quasipar-
ticles (electrons, holes, excitons). In these systems,
states with quasiparticle energies lower than the poten-
tial of the environment are always stationary. Excited
quasiparticles (for example, excitons) can lose energy
only due to interaction either with other quasiparticles
or with fields.

The particular interest expressed by researchers in
open nanoheterosystems is explained by the fact that, in
open systems, unlike closed systems, quasiparticles can
always penetrate through the potential barrier into the
environment [3]. This provides an additional channel of
energy relaxation for excited quasiparticles in a quan-
tum well. This specific feature of open systems can be
of great importance in designing lag-free high-speed
detectors.

The existing theory of quasi-stationary states of
electrons and holes in composite spherical quantum
dots and cylindrical quantum wires was developed
using the scattering matrix method by Buczko and Bas-
sani [4] and in our previous studies [5, 6]. In those
1063-7834/05/4703- $26.00 0571
works, the energy spectra and lifetimes of quasiparti-
cles in specific nanoheterosystems were calculated as
functions of the geometric parameters of the nanosys-
tems and the dynamical characteristics of quasiparticles
(for example, the longitudinal quasi-momentum in the
case of quantum wires).

Unfortunately, no satisfactory theory of quasi-sta-
tionary states of electron, holes, and excitons in open
combined nanoheterosystems has been offered to date.
In this respect, it is of interest to investigate the specific
features in the behavior of quasi-stationary states even
if only in relatively simple systems. One of these sys-
tems, which can be fabricated using modern experi-
mental techniques, is a semiconductor quantum wire
that contains a quantum dot separated from the other
part of the quantum wire by two identical quantum anti-
dots with potential barriers of finite height (Fig. 1).

For this system, two different problems arise
depending on the position of the spatial point at which
a quasiparticle is initially formed in the nanoheterosys-
tem. The first problem is associated with scattering. It
is assumed that a specific physical process occurring in
one part of the quantum wire brings about the formation
of a free quasiparticle (electron, hole, exciton). This
quasiparticle has an energy and a quasi-momentum and

R µ0
e,h ε0 µ1

e,h ε1 µ0
e,h ε0 µ1

e,h ε1 µ0
e,h ε0

h1 h1h0

Fig. 1. Schematic drawing of the nanoheterosystem.
© 2005 Pleiades Publishing, Inc.
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moves to another part of the quantum wire through the
quantum antidots and the quantum dot. It is necessary
to determine the coefficients of transmission and reflec-
tion for the “quantum antidot–quantum dot–quantum
antidot” system. The second problem deals with quasi-
stationary states of a quasiparticle that is originally
located within the quantum dot. It is assumed that, upon
the initial excitation, the quasiparticle located in the
quantum dot will penetrate through the potential barri-
ers into the quantum wire (completely isolated from the
environment). It is necessary to determine the energies
and lifetimes of the relevant quasi-stationary states. It is
this problem that is solved in the present study.

2. HAMILTONIAN AND THE SCATTERING 
MATRIX OF AN ELECTRON (HOLE)

IN A COMPOSITE CYLINDRICAL QUANTUM 
WIRE WITH AN OPEN QUANTUM DOT

Let us consider a composite semiconductor cylindri-
cal quantum wire that contains a quantum dot sur-
rounded by two identical quantum antidots. The
nanowire, the quantum dot, and both quantum antidots
have the same radius R. The heights of the quantum dot
and the quantum antidots are equal to h0 and h1, respec-
tively (Fig. 1). From symmetry considerations, the ori-
gin of the cylindrical coordinate system is conveniently
chosen at the center of the quantum dot with the OZ
axis aligned parallel to the principal axis of the system.
It is assume that the materials of the quantum wire and
the quantum dot possess identical physical characteris-
tics (effective masses, permittivities), whereas the
material of two quantum antidots in the general case
has other physical characteristics. The composite quan-
tum wire is in an environment that provides an infinite
potential barrier for any quasiparticles in this system.

It is assumed that, at some instant of time, a specific
physical action (for example, exposure to an electro-
magnetic field) brings about the formation of quasipar-
ticles (excitons) located in the quantum dot. Since the
height and width of the potential barriers of both quan-
tum antidots are finite, the quantum dot is an open sys-
tem. As a consequence, excitons can penetrate through
the potential barriers; hence, their states become quasi-
stationary and have a finite lifetime.

In this paper, the quasi-stationary spectrum and life-
times of the exciton states generated in an open cylin-
drical quantum dot located in a quantum wire and sep-
arated from the wire by two quantum antidots will be
investigated as functions of the geometric parameters
of the system.

 
Material parameters of the system under investigation

µe, µ0 µh, µ0 Ue, eV Uh, eV a, Å ε Eg, eV

CdS 0.2 0.7 3.8 6.3 5.818 5.5 2.5

HgS 0.036 0.044 5.15 5.65 5.851 11.36 0.5
PH
Before analyzing the spectrum and lifetimes of the
exciton states, it is necessary to investigate the quantum
states of electrons and holes in the nanosystem under
consideration.

Hereinafter, the geometric sizes of the nanohetero-
system components are assumed to be such that the
effective-mass approximation will be valid for elec-
trons (holes) and that the interaction between an elec-
tron and a hole will be determined by the Coulomb
potential with permittivities of the corresponding mas-
sive materials.

Therefore, the effective masses of electrons (holes)
are considered to be known and equal to the effective
masses of these quasiparticles in massive analogs of
nanocrystals:

 (1)

We also assume that the lattice constants of the well
material a0 (subscript 0) and the barrier material a1
(subscript 1) are very close in magnitude. In particular,
the lattice constants of the β-HgS and β-CdS com-
pounds used in the nanosystem studied in this work are
taken to be such (see table) that (a1 – a0)/a0 ≤ 1%. As a
result, the interfaces between the subsystems are suffi-
ciently abrupt. This makes it possible to use the approx-
imation of rectangular potential energy barriers for
electrons and holes; that is,

 (2)

where  are the potential energies of the electron
and the hole in the corresponding materials with
respect to vacuum. For ρ > R, we have Ue(ρ, ϕ, z) =
Uh(ρ, ϕ, z) = ∞.

Since the theories of the quasi-stationary spectrum
of electrons and holes in the system under investigation
are equivalent, we consider the theory for electrons and
temporarily omit the index e.

In order to determine the quantum states of elec-
trons, it is necessary to solve the Schrödinger equation

 (3)

with the Hamiltonian

 (4)
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By virtue of the symmetry of the problem, the wave
function ψ(r) is conveniently sought in the following
form [7]:

 (5)

where m = 0, ±1, ±2, … is the magnetic quantum num-
ber, Jm( ) is the Bessel function of integer order,

and  are the zeros of the Bessel function (nρ is the
radial quantum number, which determines the ordinal
number of the zero of the Bessel function at a fixed
magnetic quantum number m).

After substituting the wave function defined by
expression (5) into the Schrödinger equation, we sepa-
rate the variables and obtain the following equation for
the zth component of the wave function:

 (6)

Since the potential energy of the electron is symmet-
ric with respect to the variable z, Eq. (6) is invariant
with respect to the transformation z  –z. Therefore,
we can restrict our consideration to the range of the
variable z from 0 to ∞. It should be noted that, in this
case, the solutions to Eq. (6) are divided into even (+)
and odd (–) solutions [8]:

Ψnρm r( ) πR
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1/2–
=

× Jm

xnρm

R
---------ρ 

  e
imϕϕ z( ),

ρxnρm/R

xnρm

∂2

∂z
2

-------ϕ z( ) ϕ z( )
2µ z( )

"
2

------------- E U ρ ϕ z, ,( )–( )
xnρm

2

R
2

----------–+  = 0.
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Here,  = 2µ0/"2E – /R2,  = 2µ1/"2(U – E) +

/R2, U = U0 – U1, and S± is the scattering matrix (S-
matrix). The energy is reckoned from the top of the
potential well (material 0).

Then, by using the continuity conditions for the
wave function and the probability density flux at all the
interfaces,

(8)

and the normalization conditions for the wave function

 (9)

it is possible to derive analytical relationships for the
coefficients A±, B±, and C± and the scattering matrix in
the form
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(11)
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In this study, we do not analyze the specific features
of the wave functions for quasi-stationary states of elec-
tron and holes. Therefore, we can omit rather cumber-
some analytical expressions for the coefficients A±, B±,
and C± and restrict our consideration to a theoretical
treatment and calculation of the scattering matrix.

According to the general theory [3], the real and
imaginary parts of the poles of the scattering matrix in
the complex energy plane
 (12)

determine the energies  and the half-widths

 of the quasi-stationary states, respectively. The

quantum number nz numbers the poles of the scattering
matrix at fixed values of the quantum numbers nρ and
m. The half-width of the level and the lifetime of elec-

Ẽnρmnz
Enρmnz

iΓnρmnz
/2–=

Enρmnz

Γnρmnz
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trons and holes in the states |nρmnz〉 are related by the
expression

 (13)

Therefore, relationships (10)–(13) describe the
energy spectrum and the lifetimes of exciton electrons
and exciton holes in quasi-stationary states that are gen-
erated in an open cylindrical quantum dot located in a
cylindrical quantum wire.

3. ENERGY SPECTRUM AND LIFETIMES 
OF QUASI-STATIONARY STATES OF EXCITONS 

IN AN OPEN CYLINDRICAL QUANTUM DOT 
LOCATED IN A CYLINDRICAL QUANTUM WIRE

In order to solve the problem of the quasi-stationary
spectrum of an exciton produced in a cylindrical quan-
tum dot separated from the cylindrical quantum wire by
two quantum antidots, we need to solve the
Schrödinger equation

 (14)

with the Hamiltonian

 (15)

Here, Eg0 is the band gap of the quantum dot material;
He, h are the Hamiltonians of noninteracting electrons
and holes, which are determined by formula (4) for
each quasiparticle; and

 (16)

is the electron–hole interaction potential, in which the
permittivity ε(re, rh) is a composite function of the elec-
tron and hole positions in the nanosystem.

Equation (14) cannot be solved exactly. In this
respect, the quasi-stationary states of excitons will be
examined using the results obtained in the previous sec-
tion and the perturbation theory approach.

The lifetimes  and the energy spectrum  of
excitons in the quasi-stationary states can be calculated
under the assumption that the electron–hole interaction
energy is less than the difference between the quantum-
confinement energies (the validity of this assumption
will be confirmed by numerical calculations). Since the
electron–hole interaction is relatively weak, the life-
times of exciton states can be determined from the rela-
tionship [9]

 (17)
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However, the quantity  cannot be calculated from

the wave functions  of the quasi-stationary states
for the open nanosystem, because their components

(ze, h) are normalized to the δ function (9) rather

than to unity. Nonetheless, the quantity  can be
calculated with a good accuracy if it is remembered that
the electron and hole energy levels expressed through
the poles of the scattering matrix [formula (10)] for the
open quantum dot and those found by solving the
Schrödinger equation for the closed quantum dot (when
the barrier antidots are extended over the entire length
of the quantum wire) are very close to each other. This
means that the electron–hole binding energy can be cal-
culated as the diagonal matrix element:

 (18)

where the wave functions of the stationary states of the
exciton

 (19)

are determined by the wave functions of the stationary
states of the electron and the hole in the closed quantum
dot; that is,

 (20)

Here, the axial wave functions (ze, h) of the station-

ary (s) states of the electron and the hole are derived
from the corresponding Schrödinger equations with the
Hamiltonian for the closed nanosystem. These equa-
tions are solved in a trivial way. As a result, we have

 (21)

where θ(ze, h – z0) is the Heaviside theta function.
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The quantity  is calculated in the cylindrical
coordinate system taking into account that the permit-
tivity as a composite function of the variables re and rh

can be approximately represented in the form

 (22)

where  are the probabilities of finding the exciton in
the quantum dot (index 0) and in both antidots (index 1),
respectively.

Therefore, the relationship describing the quantity

 takes the form

(23)

In relationship (23), two integrals are taken in the gen-
eral form and the last four integrals are calculated using
a computer at specified parameters of the systems.

4. ANALYSIS AND DISCUSSION 
OF THE RESULTS

Before proceeding to an analysis of the energy spec-
trum and the lifetimes of exciton states in the nanohet-
erosystem as functions of its geometric parameters, it is
necessary to investigate the corresponding characteris-
tics for electrons and holes that form excitons.

The energies  and the lifetimes of elec-
trons (e) and holes (h) as functions of the height h0 of
the cylindrical quantum dot at a fixed value of its radius
(R = 10aHgS) and a fixed height of the quantum antidots
(h1 = 4aCdS) were calculated in terms of the theory
described in the preceding sections. The material
parameters of the system are listed in the table. The
results of the calculations are presented in Fig. 2.

It is evident that the energy spectra and the lifetimes
of electrons and holes exhibit qualitatively identical
behavior and that the quantitative differences are asso-
ciated only with the differences in their effective
masses and potential energies. Consequently, we can
restrict our consideration to an analysis of the spectrum
and the lifetimes of electronic states.

As can be seen from Fig. 2, an increase in the height
h0 of the cylindrical quantum dot brings about a shift of

all the quantum energy levels  to the low-energy

range and an increase in the lifetimes  in the corre-
sponding states. The spectral levels form groups in
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which levels have the same quantum number nρ. These
groups consist of subgroups composed of levels with the
same quantum number m. In turn, the subgroups include
levels with different quantum numbers nz. An increase in
any one of the three quantum numbers (nρ, m, nz) results
in an increase in the energy of the corresponding state
and a decrease in the lifetime. Therefore, the group of
levels with the quantum number nρ = 1 corresponds to
the lowest energies. In this group, the subgroups of levels
with the quantum numbers m = 0, 1, 2, … are located on
the energy scale in order of increasing energy from bot-
tom to top. These subgroups each involve levels with the
quantum numbers nz = 1, 2, 3, …. The groups of levels
with the quantum numbers nρ = 2, 3, … lie at higher
energies. These groups contain their own subgroups with
the quantum numbers m and nz.

The analysis demonstrates that all the electronic
states are doubly degenerate with respect to the quan-
tum number m (except for m = 0). Furthermore, it can
be seen from Fig. 2a that there is an accidental degen-
eracy of different states, because the levels of all the
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groups and subgroups (except for the levels of the same
subgroup) intersect each other with a change in the
height h0 or the radius ρ0 of the quantum dot. Note that,
when the levels of different subgroups within the same
group intersect each other (  = ), the ine-

quality  >  holds for m > m' at the intersec-
tion points. If the levels of the different subgroups
belonging to different groups cross each other (  =

), the inequality  >  is satisfied at

nρ > . Physically, this hierarchy of lifetimes is asso-
ciated with the fact that, at equal energies, quasiparti-
cles in the states in which they are more smeared in the
plane perpendicular to the direction of motion along the
principal axis penetrate through the potential barrier
harder.

The calculated dependences of the binding energy

, the excitation energy , and the lifetime

 of an exciton on the quantum dot height h0 are
plotted in Figs. 3a, 3b, and 3d, respectively. For com-
parison, Fig. 3c shows the dependences of the time

 of flight of the exciton along the quantum dot on
the quantum dot height h0. The latter dependences were
calculated under the assumption that the exciton, which
is a quasiparticle formed by an electron and a hole,
moves at a mean velocity estimated as vex = 1/2(v e + vh).
As a result, we have

 

The calculations were performed for the states in
which the hole in the ground state |101〉  interacts with
the electron residing in several quantum states |nρmnz〉 .

It can be seen from Fig. 3 that a decrease in the
quantum dot height h0 leads to an increase in the mag-
nitude of the exciton binding energy for all the states,
because this favors a spatial approach of the exciton
electron and the exciton hole.

For fixed sizes of the quantum dot, the specified
quasi-stationary state |101〉  of the hole, and the quan-
tum numbers nρ and m of the electron, an increase in the
quantum number nz of the electron is accompanied by a
decrease in the binding energy. This can be explained as
follows: the hole retains its position in the quantum dot,
the electron penetrates into the barrier with a higher
probability, and, hence, the mean distance between the
electron and the hole increases.

An increase in the quantum dot height h0 results in a
decrease in the energies of the exciton in all the states
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(Fig. 3b), because the shifts of the corresponding
energy levels of the electron and the hole are more sig-
nificant than the decrease in the magnitude of the bind-
ing energy of these quasiparticles.

The increase in the exciton lifetime  with an
increase in the quantum dot height h0 (Fig. 3d) is due to
the aforementioned dependences of the lifetimes 

and  on the quantum dot height h0 and their total

contribution to the time  in accordance with rela-
tionship (17).

A comparison of the times  of exciton flight

along the quantum dot (Fig. 3c) and the lifetimes 
of the exciton in the same states (Fig. 3d) demonstrates
that the latter times are several orders of magnitude
longer than the former times. This implies that all the
states under investigation are resonance quasi-station-
ary states of the Breit–Wigner type. Therefore, the exci-
ton states are fairly well localized within the quantum
dot and their lifetimes are long enough to be observed
experimentally.

In conclusion, we should note that the theory devel-
oped in this study is also applicable to analyzing the
energy spectra and the lifetimes of excitons in other
similar heterosystems composed of different semicon-
ductor materials.
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Abstract—The effect of the equilibrium magnetic configuration on the conditions for transmission of an elas-
tic-wave through a finite magnetic superlattice consisting of ferromagnetic and superconducting layers is stud-
ied within an effective-medium approximation with correct inclusion of the dynamic coupling between the spin
and elastic subsystems. The superlattice is assumed to be sandwiched between nonmagnetic media. © 2005 Ple-
iades Publishing, Inc.
1. INTRODUCTION

Currently, analysis of the specific features of trans-
mission of a bulk elastic wave through an acoustic mul-
ticomponent coupled system exhibiting one-, two-, or
three-dimensional ordering (phononic crystal) is of par-
ticular interest in view of the potential practical appli-
cations of these composite materials [1, 2]. In this
respect, studying the elastic dynamics of phononic
crystals containing magnetic components (magnetic
photonic crystals [3, 4]) is of importance, because the
dimensionless linear dynamic magnetoelastic coupling
constant ξ can be varied within a wide range (0 < ξ< 1)
by varying an external magnetic field or the tempera-
ture. Up to now, however, phononic crystals consisting
of nonmagnetic components have been primarily stud-
ied. One simple example of a one-dimensional mag-
netic phononic–photonic crystal is a two-component
magnetic superlattice consisting of alternate, equidis-
tant, acoustically coupled magnetic and nonmagnetic
layers. If the nonmagnetic medium in this superlattice
is an ideal diamagnet, e.g., a superconductor (2λ/t 
0, where λ is the London penetration depth, t is the
thickness of the superconducting layer), then this struc-
ture can be considered a one-dimensional magnetic
phononic crystal, because the acoustic interlayer cou-
pling is the only mechanism that forms the spectrum of
collective excitations in this case. To describe the
dynamics of this crystal consistently, the magnetoelas-
tic and magnetic dipole–dipole interactions should be
taken into account simultaneously. However, in the case
of an acoustic superlattice of the ferromagnet–super-
conductor type, calculating the spectrum of normal
elastic SH waves by the transfer-matrix method
involves matrices with minimum dimensions of 4 × 4
[5]. If we restrict ourselves to the case of sufficiently
small wavenumbers (thin-layer superlattice), the spec-
1063-7834/05/4703- $26.00 0578
trum of collective excitations of a finite acoustic mag-
netic superlattice can be found using the effective-
medium approximation [6]. We note that the elastic
dynamics of an infinite, uniform, magnetized ferromag-
net exhibits the following important property: an elastic
shear SH wave with wave vector k not directed along
the equilibrium magnetization vector M can propagate
only if k ⊥  M || u (where u is the elastic atomic dis-
placement of the lattice). However, the effect of gyrot-
ropy on the reflection and refraction of a bulk elastic
shear wave incident on the surface of a finite acoustic
superlattice of the easy-axis ferromagnet–ideal dia-
magnet type has not yet been studied.

In this paper, we consider the influence of the mag-
netoelastic interaction on the reflection and transmis-
sion of an elastic SH wave incident on a finite, acoustic,
thin-layer superlattice of the easy-axis ferromagnet–
ideal superconductor type.

2. BASIC RELATIONS

We consider a magnetic superlattice consisting of
equidistant ferromagnetic (medium 1) layers with a
thickness of d1 each that are acoustically coupled via
identical superconducting layers of an ideal supercon-
ductor (medium 2) with a thickness of d2 each. There-
fore, in each superconducting layer, the London pene-
tration depth satisfies the condition 2λ ! d2. It is well
known that a shear surface acoustic wave (SAW) of the
SH type can propagate near the surface of an easy-axis
ferromagnet if the atomic-displacement vector u in this
wave with wave vector k⊥  satisfies the condition n ⊥  u ||
M ⊥  k⊥  (M is the equilibrium magnetization of the fer-
romagnet) [7].

We assume that medium 1 of the superlattice is a
single-sublattice easy-axis ferromagnet [7] (with the
© 2005 Pleiades Publishing, Inc.
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easy axis along the z axis) and that the elastic properties
of both magnetic and nonmagnetic media are isotropic.
In this case, the energy density W of the single-sublat-
tice uniaxial ferromagnet (medium 1), including the
interaction energy between the spin and elastic sub-
systems, is given by [7]

 (1)

where b is the uniaxial-anisotropy constant, γ is the
magnetoelastic (isotropic) interaction constant, λ1 and
µ1 are the Lamé coefficients of the magnetic medium,
uik is the elastic strain tensor, and hm is the magnetic
dipole field. The dynamics of the nonmagnetic medium
(medium 2, with Lamé coefficients λ2, µ2) is described
by the basic equation of elasticity theory. For the mag-
netic medium, this equation is supplemented by the
Landau–Lifshitz equations and the magnetostatics
equations. The requirement that the superlattice be
acoustically continuous at the interfaces between the
magnetic and nonmagnetic layers leads to the equations

 (2)

 (3)

where N = 0, 1, …; ξ is the coordinate along the inter-
faces between the magnetic and nonmagnetic layers;
σik is the elastic stress tensor; and labels 1 and 2 indi-
cate the medium which the corresponding quantity
describes. Since the superconducting medium is
assumed to be an ideal diamagnet, the electromagnetic
boundary conditions at the interfaces between the mag-
netic and nonmagnetic layers have the form

 (4)

Thus, the only mechanism that forms the spectrum of
collective excitations in the superlattice is the indirect
interaction between the layers via phonons; that is, this
superlattice is a magnetic phononic crystal.

As mentioned above, an elastic shear wave can
propagate through an infinite easy-axis ferromagnet
described by Eq. (1) only if its wave vector is perpen-
dicular to the easy axis and u || M || z [7]. Therefore, in
what follows, we assume that (i) k ∈  xy, (ii) the equilib-
rium magnetization points along the same direction in
all magnetic layers of the easy-axis (z axis) ferromag-
net–superconductor superlattice and is perpendicular to
the normal n to the interfaces, and (iii) n || x (without
loss of generality, because the magnetic medium is
assumed to be isotropic in the xy plane).

In the absence of an external magnetic field, two
essentially different types of equilibrium magnetic con-
figurations can exist in the superlattice at hand, namely,
with parallel (configuration A) and antiparallel (config-
uration B) orientation of the magnetizations of any pair
of adjacent ferromagnetic layers. In terms of translation
symmetry, these two structures are different. Indeed, in

W 0.5 bmz
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configuration A, the period of the magnetic superlattice
(DA) consists of two layers (a magnetic layer of thick-
ness d1 and a superconducting layer of thickness d2);
that is, we have DA = d1 + d2. In configuration B, the
superlattice period (DB) consists of four layers: two fer-
romagnetic layers with a thickness of d1 each and two
superconducting layers of thickness d2 acoustically
coupled with the former; that is, DB = 2DA. As already
mentioned, we restrict our consideration to the ranges
of frequencies ω and wave vectors k⊥  for which the
superlattice can be considered to be thin-layered [6].
Therefore, the wave-vector component (k|| parallel to
the normal to the superlattice surface for the elastic
shear wave in the magnetic (k||, 1) and superconducting
(k||, 2) layers of the building block of the superlattice is
much less than the inverse thickness of the respective
layer (d1, d2):

 (5)

Thus, for both configurations A and B, the acoustic
superlattice can be considered a spatially uniform
effective medium characterized by the components of
the elastic stress tensor (〈σ i 〉) and elastic strain tensor
(〈ui 〉) averaged over the superlattice period DA or DB =
2DA for configurations A and B, respectively. Introduc-
ing the relative thicknesses of the magnetic (medium 1)
and nonmagnetic (medium 2) layers

 (6)

we can write any physical quantity P averaged over the
superlattice period in the form

 (7)

for configuration A and

 (8)

for configuration B.

In Eq. (8), labels 1 and 3 correspond to neighboring
ferromagnetic layers (each with a thickness of d1)
whose magnetizations are opposite in direction and
labels 2 and 4 correspond to two identical nonmagnetic
layers (each with a thickness of d2) that, together with
the two magnetic layers, make up one building block of
the acoustic magnetic superlattice of thickness DB =
2(d1 + d2) = 2DA.

The relation between the averaged elastic stress ten-
sor 〈σ ik 〉  and the elastic strain tensor 〈uik 〉  is determined
by the effective elastic moduli cik and can be found by
taking into account that σix and u are continuous at the
interfaces between neighboring layers. In the case of
µ1 = µ2 = µ and for the chosen geometry of propagation
of the elastic SH wave (M || u || z, k ∈  xy, n || x), the
effective moduli associated with the tensor components
〈σ i 〉  and 〈ui 〉  of interest to us have the form

k || 1, d1 ! 1, k || 2, d2 ! 1.
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 (9)

 

for configuration A and

 (10)

for configuration B. Here,  = ω0(ω0 – ωme) +

,  =  – f2ω0ωme,  =  – ω0ωme, and

 =  – ωmeω0(1 + f1) + . For any values of
k⊥ , f1, and f2, we have ω1 > ω3 > ω2 and ω1 > ω2 > ω4.

Thus, in contrast to the effective elastic moduli ,

, and  of an infinite ferromagnet (with M || z) cal-
culated neglecting the magnetic dipole–dipole interac-
tion and given by

 (11)

the effective moduli of the acoustic magnetic superlat-
tice in Eqs. (9) and (10) not only exhibit time dispersion
but also depend strongly on the relative thicknesses of
the magnetic and nonmagnetic layers. It should be par-
ticularly emphasized that, although the acoustic mag-
netic superlattice at hand contains gyrotropic (ferro-
magnetic) layers, the effective uniform elastic medium
characterized by moduli (9) or (10) may either possess
(in configuration A,  = –  ≠ 0) or not possess (in

configuration B,  =  = 0) gyrotropic properties.

It is easy to verify that, in the case of γ  0 (where
there is no magnetoelastic interaction), the effective
elastic moduli in Eqs. (9) and (10) coincide with the
respective elastic moduli of a nonmagnetic bilayer
superlattice [6].

In Eqs. (9) and (10), in accordance with the notation
used in [7], ωme = gHme4 is the magnetoelastic band gap,
ω0 = g(HA + Hme4) is the FMR frequency, HA is the
uniaxial magnetic anisotropy field, Hme4 is the magne-
toelastic field, and g is the gyromagnetic ratio. Since we
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are studying the elastic dynamics of a magnet–ideal
diamagnet acoustic superlattice using the effective-
field method, conditions (4) are satisfied in the bulk of
each magnetic layer. For this reason, in the wavenum-
ber range under study, the inclusion of the magnetic
dipole–dipole interaction does not lead to additional
(other than magnetoelastic) mechanisms of time disper-
sion of the elastic moduli given by Eqs. (9) and (10). In
the k ∈  xy and u || z geometry, this interaction reduces
to renormalization of the uniaxial magnetic anisotropy
constant β  β – 4π. In what follows, we also assume
that the densities of the magnetic (ρ1) and nonmagnetic
(ρ2) media of the superlattice are equal, ρ1 = ρ2 = ρ. In
this case, for an elastic SH wave propagating through
an infinite acoustic superlattice of the easy-axis ferro-
magnet–ideal superconductor type with k ∈  xy, n || x,
and u || z (considered in the effective-medium approxi-
mation with inclusion of the magnetoelastic and mag-
netic dipole–dipole interactions), the frequency spec-
trum for both magnetic configurations is given by

 (12)

where  = µ/ρ. It follows from Eqs. (9)–(12) that, in
the presence of magnetoelastic and magnetic dipole
interactions, the elastic shear wave is a single-compo-
nent excitation of the type

 (13)

for both configurations A and B. The case of  > 0 cor-
responds to a propagating bulk (trigonometric) elastic

SH wave, whereas at  < 0 (  = – ) the only
wave that can propagate along the surface of the mag-
netic superlattice at hand is a hyperbolic elastic shear
wave, for which

  0, x  –∞, (14)

if the superlattice occupies the lower half-space, x < 0.

It is known that the conditions for reflection and
transmission of a wave incident on a medium are
closely related to the topology of the isofrequency sur-
face of the corresponding type of normal vibrations [8].
For the infinite acoustic superlattice under study,
according to Eq. (12), the structure of the cross section
of the isofrequency surface of the normal elastic SH
wave by the plane of incidence remains qualitatively
unchanged with a variation in the equilibrium magnetic
configuration but depends critically on the sign of the
quantities c|| and c⊥  (Figs. 1–3). In order to determine
the conditions for transmission of an elastic shear wave
through a finite layer of this effective magnetic
medium, it is necessary to investigate the reflection of
the SH wave in the case where this wave is incident
from a semi-infinite nonmagnetic medium onto the
acoustically continuous interface between this medium
and a semi-infinite superlattice of the type under study.
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3. SPECIFIC FEATURES OF THE REFLECTION 
OF A BULK ELASTIC SH WAVE 

FROM A SEMI-INFINITE ACOUSTIC 
SUPERLATTICE 

OF THE MAGNET–SUPERCONDUCTOR TYPE

Within the effective-medium approximation, the
conditions at the acoustically continuous interface (x =
0) between a semi-infinite ferromagnetic superlattice
(x < 0) and a semi-infinite superconductor (x > 0) have
the form

 (15)

Here and henceforth, the superscript plus sign denotes
quantities related to the upper half-space. By carrying
out a standard calculation [8] and using Eqs. (9)–(13)
and (15), it can be shown that, for a bulk transverse SH
wave that is incident from the nonmagnetic medium
onto the boundary of the semi-infinite acoustic mag-
netic superlattice and is polarized perpendicular to the
plane of incidence (u || M || z, k ∈  xy), the reflection
coefficient R for two types of equilibrium magnetic
configuration (A, B) is given by

(16)

 (17)

where  = (  – )/c||,  = (  – c⊥ )/c||, and
a = µ+/µ. Here and henceforth, A–S and B–S indicate
the interface between the semi-infinite superconductor
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Fig. 1. Cross section of the isofrequency surface of Eq. (12)
by the xy plane for a bulk elastic SH wave propagating in an
easy-axis ferromagnet–ideal superconductor superlattice
with the A or B configuration in the case where k⊥  || y, u || z,

n || x, c|| < 0, and c⊥  > 0; f± = ±k  and α± =

±ωk⊥ / .
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(S) and the semi-infinite magnetic superlattice for the
case of the A and B equilibrium magnetic configura-
tions, respectively.

It follows from Eqs. (16) and (17) that, if both ine-

qualities  > 0 and  > 0 are simultaneously true, the
bulk elastic SH wave can pass through the interface
between the nonmagnetic and magnetic half-spaces at
x = 0 without reflection in the case of the B configura-
tion (RBS = 0). For the A configuration, due to acoustic
gyrotropy, there is no angle of incidence at which trans-
mission of the wave is possible without reflection (0 <
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582 TARASENKO et al.
|RAS | < 1). Both the transmitted and reflected bulk shear
waves undergo a phase shift (φA and ψA, respectively)
with respect to the bulk elastic SH wave incident on the
superlattice surface:

 (18)

It should be noted that, for the A configuration and
given values of ω and k1, the phase shifts φA and ψA cal-
culated from Eqs. (18), in combination with Eqs. (9)
and (16), are nonreciprocal with respect to the replace-
ment k⊥   –k⊥ .

For the values of ω and |k⊥ | at which the inequality

 < O(  > 0) is true (Figs. 4, 5), the bulk SH wave
incident on the interface is totally reflected for both
magnetic configurations of the magnetic superlattice,
with the reflected shear wave undergoing an additional
phase shift φ (R = expiφ). For the A configuration and
given values of ω and k⊥ , the additional phase shift is
nonreciprocal with the replacement k⊥   –k⊥  and
depends, according to Eq. (16), not only on the gyrotro-
pic properties of the superlattice but also on the rela-

φAtan
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Fig. 4. Region I corresponds to the total internal reflection

of a bulk elastic SH wave [Eq. (16) with  = – , α2 >

0 incident from outside onto an easy-axis ferromagnet–
ideal superconductor superlattice with the A configuration
in the case of k⊥  || y, u || z, and n || x; ωA± is determined from
Eqs. (9) and (12) for kx = 0, and k∗∗ is defined by the con-
dition ω2 = ωA–.

k||
2 α2

k⊥
2

PH
tionship between the acoustic parameters of the two
media:

 (19)

where  = – .

It follows from Eqs. (16) and (17) that R = –1 for

 = 0. Therefore, in the case where a ≠ 0, the bulk uni-
form shear SH wave cannot propagate along the acous-
tically continuous interface (x = 0) between the mag-
netic superlattice and a superconductor. For the B con-
figuration, this effect is independent of the frequency ω
and wavenumber k⊥  of the bulk shear wave. As for the
A configuration, it can be seen from Eq. (16) that R = 1
along the line

 (20)

in the ω–k⊥ plane. Therefore, the bulk uniform shear

wave with  = 0 can propagate in the nonmagnetic
half-space along the acoustically continuous interface
between this half-space and the magnetic superlattice
with the A configuration. This effect is also due entirely
to acoustic gyrotropy (c∗  ≠ 0).

The reflection coefficient R given by Eqs. (16) and

(17) with substitutions k||  iαk⊥  and   iqk⊥  can
have a pole in the ω–k⊥  plane, which, according to the
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Fig. 5. Region I corresponds to the total internal reflection

of a bulk elastic SH wave [Eq. (17) with  = – , α2 >

0] incident from outside onto an easy-axis ferromagnet–
ideal superconductor superlattice with the B configuration
in the case where k⊥  || y, u || z, and n || x; ωB± is determined
from Eqs. (10) and (12) for kx = 0.
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2
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general theory of wave processes [8], corresponds to
the dispersion law Ωs(k⊥ ) of the SH SAW propagating
in the geometry in question (n || x, u || z, k⊥  || y) along
the acoustically continuous [satisfying Eqs. (15)] inter-
face between a superconductor and a superlattice with
configuration A or B.

For the shear SAW propagating along the interface
x = 0, we have

 (21)

for the A configuration and

 (22)

for the B configuration. In both cases, q2 = 1 – ω2/  > 0,

 = µ+/ρ+, a = µ+/µ, and µ1 = µ2 = µ ≠ µ+. It follows
from Eqs. (21) that the dispersion law of the SH SAW
propagating along the interface (x = 0) between a super-
conductor and a superlattice with the A configuration is
nonreciprocal under reversal of the direction of wave
propagation, ω(k⊥ ) ≠ ω(–k⊥ ).

For the branch of spectrum (21) with σ = –1, we
have ω > ω2. However, this branch can have not only
the long-wavelength but also a short-wavelength limit-
ing point, for which the wave number can be deter-
mined from Eq. (21) by putting ω =  (  > ω1).
Therefore, following the terminology accepted in
polariton dynamics [9], this SH SAW is a virtual shear
SAW or a shear SAW of the second type. In the case of
σ = 1, it follows from Eqs. (21) that at a ≠ 0 the struc-
ture of the spectrum of the SAW in question depends
critically on the ratios of  (  < ω1) to ω2 and ω3 (ω2

< ω3). Analysis of Eqs. (21) shows that, in the case
where σ = 1 and where the interface is acoustically con-
tinuous, the SAW in question has only one branch; its
long-wavelength limiting point can be determined from
Eq. (21) at q = 0. If  > ω3, the dispersion curve of the
SH SAW described by Eq. (21) is defined for ω > ω2.
Beginning at the q = 0 line, this curve asymptotically

approaches the frequency  as the wavenumber
increases (for d1 > d2). In the elastostatic limit
ω/stk⊥   0 (q  1), in the case where a ≠ 1 (µ2 = µ∗ ,
µ1 = µ), this frequency is given by

 (23)
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In the specific case where a = 1 and d1 > d2, we have

 = ω0 – 0.5ωme.
If ω2 < ω < ω3 and σ = 1, then dispersion relation (21)

also has a long-wavelength limiting point [which can be
found from Eq. (21) at q = 0] and the spectrum lies in
the range ω > ω2. However, now, the spectrum has a
short-wavelength limiting point; its wavenumber can
be found from the relation

 (24)

Therefore, this branch corresponds to a shear SAW of
the second type, whereas at  > ω3 this branch is
found to correspond to a SAW of the first type.

Finally, at ω2 >  and σ = 1, it follows from
Eqs. (21) that the dispersion curve of the shear SAW
lies in the range ω < ω2 for all values of k⊥  and the fre-
quency ω =  is the long-wavelength limiting point.
In the elastostatic limit, this dispersion curve

approaches the frequency  given by Eq. (23).

Thus, at σ = 1 and –1 and ω2 <  < ω3, dispersion
relation (21) corresponds to a shear SAW of the second
type. Otherwise, the dispersion relation has only a long-
wavelength limiting point, which is typical of SAWs of
the first type.

By comparing Eqs. (21) and (22), it can be seen that
the distinctive feature of the collective shear SAW
propagating in the magnetic superlattice with the B
configuration, described by Eq. (22), is the reciprocity
of its spectrum under reversal of the direction of wave
propagation, ω(k⊥ ) = ω(–k⊥ ), despite the fact that the
superlattice contains magnetic layers that exhibit
acoustic gyrotropy in the geometry in question. The
spectrum of this wave has both a long-wavelength (at
q = 0) and a short-wavelength limiting point (ω∗  = ω1,

 = ω2/ ; that is, this wave is a virtual shear SAW.

The specific features of the reflection of the bulk
elastic SH wave from the interface between the mag-
netic superlattice and a superconductor have a signifi-
cant effect on the conditions of transmission of this
wave through an acoustically continuous structure,
such as a superconductor–magnetic superlattice–super-
conductor (S–A–S or S–B–S) sandwich.

4. SPECIFIC FEATURES OF THE REFLECTION 
OF A BULK ELASTIC SH WAVE 

FROM THE SURFACE OF A FINITE ACOUSTIC 
SUPERLATTICE OF THE MAGNET–

SUPERCONDUCTOR TYPE

We consider a finite magnetic superlattice made up
of layers of an easy-axis ferromagnet (medium 1) and
of an ideal superconductor (medium 2). The superlat-

Ω̃–

ω+
2

st
2
k ⊥

2 ω3
2 ω̃–

2–

ω1
2 ω̃2–

------------------.=

ω̃+

ω̃+

ω̃+

Ω̃+

ω̃+

k*
2

c⊥ st
2

5



584 TARASENKO et al.
tice has a thickness 2d (–d < x < d) and is embedded in
an infinite superconducting medium. We assume that
Eqs. (2)–(4) are satisfied at the interfaces of this sand-
wich; therefore, the sandwich is an acoustically contin-
uous structure. Using the effective-medium approxima-
tion and the energy density given by Eq. (1), the bound-
ary conditions at the outer surfaces of the finite
superlattice x = ±d can be written in the form

 (25)

In this case, for a bulk elastic shear wave (with u || z and
k ∈  xy) incident from the upper half-space onto the
magnetic superlattice–superconductor interface x = d,
the reflection coefficient V is given by

 (26)

where

 

 (27)

 

for the S–A–S configuration and

 (28)

for the S–B–S configuration.

Here, in the notation introduced in [8], Vij is the
reflection coefficient for the bulk single-component SH
wave incident from the ith medium onto the interface
between the ith and jth media, subscript 3 corresponds
to the medium in the region x > d, subscript 2 corre-
sponds to the superlattice (–d < x < d), and subscript 1
corresponds to the medium in the region x < –d. At
d  ∞, Eq. (26) for V reduces to Eqs. (16) and (17)
for the reflection coefficient of the elastic shear SH
wave incident on the acoustically continuous interface
between the magnetic superlattice and a semi-infinite
superconductor with the A–S (V = RAS) and B–S (V =
RBS) configurations, respectively. The poles of expres-
sions (26)–(28) for the reflection coefficients with the
substitution ik||  ±αk⊥  (ik||  ±qk⊥ ) in the ω–k⊥
plane give the spectrum of the SH SAW propagating
along a finite acoustic magnetic superlattice of the easy

σik
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P

ferromagnet–ideal superconductor type that is in acous-
tic contact at x = ±d with a nonmagnetic medium:

 (29)

 (30)

By analyzing the magnitude of the reflection coeffi-
cient V given by Eqs. (26)–(28), it can be verified that
the elastic SH wave can pass through the finite superlat-
tice without reflection (|V | = 0) for both the A and B
configurations if the superlattice is a half-wave plate

[8]:  = mπ, where m = 1, 2, … (  > 0). Further-
more, transmission of the bulk elastic wave without
reflection is also possible if

 (31)

For this condition to be satisfied, the finite magnetic
superlattice must be nongyrotropic; i.e., its magnetic
configuration must be of the B type, for which Eq. (28)
takes place. Equation (31) coincides with the condition
that the acoustically continuous interface between a
semi-infinite magnetic superlattice and a semi-infinite
superconductor be reflectionless. It should be stressed
that condition (31) cannot be satisfied for the superlat-
tice with the A configuration because it exhibits acous-
tic gyrotropy.

The situation for the S–A–S and S–B–S magnetic
sandwich structures under study is similar to that for the
interface between two semi-infinite media considered
above; namely, the uniform (k|| = 0) bulk SH wave can
propagate through the nonmagnetic medium only for
the S–A–S configuration and only if c||k|| – ic∗ σk⊥  = 0

(  < 0).

In the case where  < 0, transmission without
reflection, as well as the total reflection, is impossible

for the elastic bulk wave (  > 0) incident on the finite
(–d < x < d) magnetic superlattice, 0 < |V | < 1. Further-
more, it follows from Eqs. (26)–(28) that the reflected
and transmitted bulk elastic SH waves undergo a phase
shift with respect to the incident wave.

In the case where the superlattice (with the A or B
configuration) occupies the lower (x < –d) and upper
(x > d) half-spaces between which a superconducting
layer (–d < x < d) is sandwiched and tightly bound to
them, the reflection coefficient of the bulk elastic SH
wave incident on the surface of the layer vanishes as
d  0. We note that, under certain conditions, the

bulk SH wave (  > 0) can also pass without reflection
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(|V | = 0) through the acoustic superlattice in question in

the case where α2 > 0 (  < 0). Let us consider the case
where the antiferromagnet–ideal superconductor
superlattice (–d < x < d) is tightly bound (e.g., at x = d)
to an elastically isotropic nonmagnetic layer (with
thickness t and elastic parameters µ0, ρ0) and this
bilayer structure is in acoustic contact (at x = –d and x =
d + t) with semi-infinite identical ideal diamagnetic
media (x ≥ d + t and x ≤ –d) with elastic parameters µ+
and ρ+. The elastic parameters of the magnetic superlat-
tice (µ1 = µ2 = µ, ρ1 = ρ2 = ρ, st = µ/ρ) are assumed to
be such that

 (32)

Calculations show that, in this case, the reflection coef-

ficient of the bulk elastic SH wave (  > 0, u || z || M,
n || x) incident from the upper half-space onto the sur-
face x = d + t of this structure with the A or B equilib-
rium magnetic configuration is given by (see also [8])

(33)

In the limit as d  0, Eq. (33) reduces to Eq. (26) for
the reflection coefficient V of the acoustically continu-
ous structure consisting of a finite magnetic 2t-thick
superlattice sandwiched between two semi-infinite
identical nonmagnetic media.

It follows from Eq. (33) that the bulk SH wave (  >
0) passes without reflection (|W | = 0) through this finite
acoustic superlattice with a nonmagnetic coating on
one side if

 (34)

(  = –  > 0, α2 > 0). Note that the first of equa-
tions (34) can be satisfied only for c|| < 0 and gives the
spectrum of the shear SAW (at α2 > 0, ω < s0k⊥ ) propa-
gating along the acoustically continuous interface
between the semi-infinite superlattice in question and a
semi-infinite elastically isotropic ideal diamagnet (with
shear modulus µ0 and density ρ0). Therefore, the trans-
mission of the bulk shear wave without reflection (W =
0) is in this case resonant in nature and is accompanied
by excitation of a shear SAW near the superlattice–non-
magnetic coating interface. Naturally, in the case of the
superlattice with the A magnetic configuration, which
exhibits acoustic gyrotropy, the total-transmission
effect and the spectrum of the shear SAW will be non-
reciprocal in nature.
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It should be noted that, if the excited shear SAW is
of the first type, resonant transmission under condi-
tions (34) occurs at any angle of incidence of the bulk

(  > 0) SH wave. In the case where a virtual shear
SAW is generated under conditions (34), the condition

for resonant transmission of the bulk SH wave (  > 0)
without reflection is more restrictive, because the vir-
tual shear SAW propagates along the interface between
the semi-infinite superlattice and its nonmagnetic coat-
ing. In addition to Eqs. (34), in this case, the condition
k⊥  ≥ k∗  must be satisfied, where k∗ is the short-wave-
length limiting point of the spectrum, α(ω∗ ) = 0, of the
excited virtual SH SAW.

So far, we have considered the transmission of a
bulk shear elastic wave through a finite magnetic super-
lattice (–d < x < d) in acoustic contact with nonmag-
netic media on both sides, x > d and x < –d, with equal
elastic parameters. It is also of practical interest to ana-
lyze the transmission of the bulk SH wave through this
acoustically continuous structure in the case where the
elastic parameters of the nonmagnetic media in the
regions x > d and x < –d are different (µ+, ρ+ at x > d and
µ–, ρ– at x < –d, where µ+ ≠ µ–, ρ+ ≠ ρ–). Calculations
analogous to those described above show that transmis-
sion without reflection is possible only in the case of the
superlattice with the B configuration and a thickness
satisfying the condition 4k||d = πν (ν = 1, 2, …); further-
more, the surface impedances of the outer media must
satisfy the condition

 (35)

These conditions, according to [8], correspond to the
case of a quarter-wave antireflective layer.

5. CONCLUSIONS

We have considered the transmission of a bulk elas-
tic shear wave through a finite acoustic superlattice of
the easy-axis ferromagnet–superconductor type using
the effective-medium approximation with consistent
inclusion of the magnetoelastic interaction. An analysis
has been performed for a superlattice with in-plane
magnetized ferromagnetic layers in the case where the
equilibrium magnetic moments of neighboring layers
are parallel or antiparallel to each other (the A and B
configurations, respectively). Although an infinite fer-
romagnetic medium exhibits gyrotropy in the Voigt
geometry, the propagation of the elastic wave through
the magnetic superlattice in this geometry reveals mac-
roscopic acoustic gyrotropy only in the A configuration,
whereas the B configuration does not exhibit acoustic
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gyrotropy (in the long-wavelength limit). Therefore, for
given values of the frequency ω and wavenumber k⊥ ,
the conditions for the transmission of a bulk SH wave
through a thin-layer magnetic acoustic superlattice
depend critically on its equilibrium magnetic configu-
ration. In particular, in addition to the “half-wave”
mechanism for transmission without reflection that is
known to exist for nonmagnetic layers [8], there is
another (resonance) mechanism for reflectionless trans-
mission in a finite magnetic superlattice of the easy-
axis–superconductor type with the B equilibrium con-
figuration. In a finite magnetic superlattice with the A
configuration, this resonance does not occur. It has been
shown that, in a magnetic superlattice with the A con-
figuration in acoustic contact with a nonmagnetic
medium, the uniform elastic shear wave can propagate
along the interface. This will be the case if the fre-
quency and wavenumber of the wave satisfy the disper-
sion relation of a shear SAW propagating, in this geom-
etry, along the mechanically free surface of a semi-infi-
nite magnetic superlattice of this type. It has been
shown for the first time that the bulk elastic SH wave
can pass without reflection through a finite easy-axis
ferromagnet–superconductor thin-layer superlattice
with the A or B configuration in acoustic contact with a
nonmagnetic coating of finite thickness. Physically, this
effect is due to the fact that the incident bulk elastic
wave causes resonance excitation of a shear SAW prop-
agating along the interface between the finite magnetic
superlattice and the nonmagnetic coating of finite
thickness.

Due to gyrotropy, the effects indicated above are
nonreciprocal under a change in sign of the wave vector
projection of the elastic SH wave onto the superlattice
surface in the case of the superlattice with the A mag-
netic configuration.
P

A study of the influence of nonuniform exchange
interaction on the effects considered in this paper is cur-
rently underway.

ACKNOWLEDGMENTS

One of the authors (S.V.T.) is grateful to I.E. Diksh-
teœn for supporting the idea behind this study and for
helpful discussions.

REFERENCES
1. T. T. Wu, Z. G. Huang, and S. Lin, Phys. Rev. B 69 (9),

094301 (2004).
2. R. Sainidou, N. Stefanou, and A. Modinos, Phys. Rev. B

69 (6), 064301 (2004).
3. Yu. I. Bespyatykh, I. E. Dikshteœn, V. P. Mal’tsev,

S. A. Nikitov, and V. Vasilevskiœ, Fiz. Tverd. Tela (St.
Petersburg) 45 (11), 2056 (2003) [Phys. Solid State 45,
2160 (2003)].

4. A. Figotin and I. Vitebsky, Phys. Rev. E 63, 066609
(2001).

5. M. G. Cottam and D. R. Tilley, Introduction to Surface
and Superlattice Excitations (Cambridge Univ. Press,
Cambridge, 1989).

6. S. M. Rytov, Akust. Zh. 2 (1), 72 (1956) [Sov. Phys.
Acoust. 2, 68 (1956)].

7. Yu. V. Gulyaev, I. E. Dikshteœn, and V. G. Shavrov, Usp.
Fiz. Nauk 167 (7), 735 (1997) [Phys. Usp. 40, 701
(1997)].

8. L. M. Brekhovskikh, Waves in Layered Media, 2nd ed.
(Nauka, Moscow, 1973; Academic, New York, 1980).

9. Surface Polaritons: Electromagnetic Waves at Surfaces
and Interfaces, Ed. by V. M. Agranovich and D. L. Mills
(North-Holland, Amsterdam, 1982; Nauka, Moscow,
1985).

Translated by Yu. Epifanov
HYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005



  

Physics of the Solid State, Vol. 47, No. 3, 2005, pp. 587–594. Translated from Fizika Tverdogo Tela, Vol. 47, No. 3, 2005, pp. 565–571.
Original Russian Text Copyright © 2005 by Ignatchenko, Mankov.

                                                          

LOW-DIMENSIONAL SYSTEMS
AND SURFACE PHYSICS
Effect of the Correlation Properties 
of One- and Three-Dimensional Inhomogeneities 
on the High-Frequency Magnetic Susceptibility 

of Sinusoidal Superlattices
V. A. Ignatchenko and Yu. I. Mankov

Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036 Russia
e-mail: vignatch@iph.krasn.ru

Received June 30, 2004

Abstract—The effect of one- (1D) and three-dimensional (3D) inhomogeneities on the high-frequency mag-
netic susceptibility at the boundary of the first Brillouin zone of a ferromagnetic superlattice is studied. The
study is performed with an earlier developed method of random spatial modulation (RSM) of the superlattice
period. In this method, structural inhomogeneities are described in terms of the random-phase model, in which
the phase depends on three coordinates in the general case. The frequency spacing ∆νm between two peaks in
the imaginary part of the averaged Green’s function, which characterizes the gap width in the frequency spec-
trum at the boundary of the Brillouin zone, is calculated as a function of both the root-mean-square fluctuations
γi and the correlation wavenumbers ηi of phase inhomogeneities (i = 1 and 3 for 1D and 3D inhomogeneities,
respectively). The function ∆νm(γ1, η1) for 1D inhomogeneities is shown to be symmetric with respect to inter-

changing the variables  and η1, whereas the function ∆νm(γ3, η3) for 3D inhomogeneities is strongly asym-

metric with respect to interchanging  and η3. This effect is associated with the difference in form between
the correlation functions of 1D and 3D inhomogeneities and can be used to determine the dimensionality of
inhomogeneities from the results of spectral studies of such superlattices. © 2005 Pleiades Publishing, Inc.
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γ3
2

1. INTRODUCTION

One-dimensional periodic structures (superlattices)
have been extensively applied in various devices.
Despite the progress made in the production of such
structures, their characteristics are still far from ideal in
many cases. This is caused by the fact that the proper-
ties of real superlattices depend on technological fac-
tors, such as random scatter of the layer thicknesses
(one-dimensional structural inhomogeneities) and ran-
domly strained interfaces between layers (two- and
three-dimensional inhomogeneities). Therefore, it is
challenging to theoretically study the effect of random
structural inhomogeneities on the physical properties of
superlattices and, in particular, on the characteristics of
waves propagating in such materials. Apart from the
applied aspects of such studies, it should be noted that
partly randomized superlattices are convenient objects
for the development of new methods in theoretical
physics to investigate media without translational sym-
metry. At present, different-type models and methods
are being used to develop a theory of randomized
superlattices. In initially sinusoidal superlattices, one-
dimensional randomization is taken into account by
introducing a random phase [1, 2]. In superlattices with
a rectangular profile of the coordinate dependence of a
1063-7834/05/4703- $26.000587
material parameter along the superlattice axis, random-
ization is modeled by a disturbance in the sequence of
layers of two different materials [3–9] or by random
deviations of the layer–layer interfaces from their ini-
tial arrangement [10–12]. There are also methods based
on the superlattice correlation functions of a postulated
shape [13, 14], applications of the geometrical-optics
approach [15], and the development of a dynamic the-
ory of elastic composite media [16].

In [17], we proposed another method for investigat-
ing the effect of superlattice inhomogeneities on the
wave spectrum, which we called the method of random
spatial modulation (RSM) of the superlattice period.
Let us briefly review this method. The spectral proper-
ties of any inhomogeneous medium are known to be
best described in terms of averaged Green’s functions.
The only characteristic that describes a random
medium and enters into an expression for an averaged
Green’s function is the correlation function K(r), which
depends on the distance r = x – x' between two points
in the medium. Therefore, the first part of the problem
reduces to finding the function K(r) for a superlattice
that contains certain structural inhomogeneities. The
second part of the problem consists in extracting spec-
tral characteristics from the Green’s function that con-
tains this correlation function by using standard
 © 2005 Pleiades Publishing, Inc.



 

588

        

IGNATCHENKO, MANKOV

                                                                                                                                                            
approximate methods. To describe structural inhomo-
geneities in a sinusoidal superlattice, we used the
model of a random phase, which was considered a ran-
dom function of all three coordinates with an arbitrary
correlation radius (the authors of [1, 2] considered only
a one-dimensional δ-correlated random function). To
find the correlation function K(r) of the superlattice, we
have developed a method which is a generalization of
the well-known method of determining the time corre-
lation function for a randomly frequency-(phase-)mod-
ulated radio signal [18, 19] to the case of spatial (in
general, three-dimensional) modulation of the superlat-
tice period (phase). This method is advantageous in that
the shape of the correlation function of a superlattice is
derived under general assumptions about the character
of random spatial modulation of the superlattice period
rather than being postulated. It has been shown that, in
general, this function has a complex form, which
depends on the inhomogeneity dimensionality, the
structure of the interface between layers, etc. Knowl-
edge of the correlation functions corresponding to dif-
ferent types and dimensionalities of inhomogeneities
allowed us to use the averaged Green’s functions to find
the eigenfrequencies, damping, and other wave charac-
teristics of superlattices [17, 20–28]. The RSM method
allowed us to consider inhomogeneities of different
dimensionalities in terms of a single model. The effect
of one- (1D) and three-dimensional (3D) inhomogene-
ities on a wave spectrum has been studied for sinusoidal
superlattices and superlattices with zero and arbitrary
thicknesses of the interfaces between layers. We have
also studied the effect of a mixture of 1D and 3D inho-
mogeneities [26, 27] and the effect of the anisotropy of
a correlation function [28]. However, some important
problems have not been solved. For example, the
authors of [25–28] showed how the difference in form
between correlation functions for 1D and 3D inhomo-
geneities manifests itself in the characteristics of the
wave spectrum of a superlattice when the root-mean-
square phase modulation varies in magnitude. In this
work, we study the dependences of the wave-spectrum
characteristics on both the root-mean-square phase
fluctuations and the correlation radii of inhomogene-
ities and demonstrate radical differences in character
between these dependences for 1D and 3D inhomoge-
neities. We use the true correlation functions obtained
by us earlier in [17]. With these functions, we deter-
mined the range of applicability of the approximate
analytical expressions for the correlation functions of
3D inhomogeneities that were used in [25–28] to sim-
plify computations.

2. CALCULATION PROCEDURE

Let us recall, in brief, the main features of the RSM
method, which was developed in [17] to find the corre-
lation functions of a superlattice having 1D, 2D, or 3D
inhomogeneities of its period. The coordinate depen-
P

dence of the uniaxial magnetic anisotropy of a ferro-
magnetic superlattice was taken to be

 (1)

where β0 is the mean value of the anisotropy, ∆β is its
root-mean-square deviation, and ρ(x) is a centered
(〈ρ〉  = 0) and normalized (〈ρ2〉  = 1) function. The func-
tion ρ(x) describes the periodic variation in the mag-
netic-anisotropy parameter along the z axis, as well as
random spatial modulations of this parameter. Angle
brackets mean averaging over an ensemble of random
realizations. In [17], this function was taken in the form

 (2)

where q = 2π/l is the wavenumber of the superlattice
and l is its period. Inhomogeneities are characterized by
a random spatial phase modulation u(x), which in gen-
eral is a function of all three coordinates: x = {x, y, z}.
By introducing the function χ(x, r) = q[u(x + r) – u(x)]
and averaging the product ρ(x)ρ(x + r) over χ with a
Gaussian distribution and over the coordinate-indepen-
dent phase ψ with a uniform distribution (see [17] for
more details), we obtain the correlation function of the
superlattice in the form

 (3)

where the structure function Qi(r) has the form

 (4)

 (5)

for 1D and 3D inhomogeneities, respectively. Here, k||
and k0 are the correlation wavenumbers of 1D and 3D

inhomogeneities, respectively (r|| =  and r0 =  are
the correlation radii of inhomogeneities), and

 (6)

where σ1 and σ3 are the root-mean-square fluctuations
of the gradients of the functions u1(z) and u3(x).

We consider the situation where an external mag-
netic field H0, the static part of the magnetization M0,
and the magnetic-anisotropy axis are directed along the
superlattice axis (z axis). By linearizing the Landau–
Lifshitz equation for the magnetization (Mx, My ! M0,
Mz ≈ M0) and introducing circular projections for the
resonance (positive) components of the magnetization
and the external magnetic field, we obtain an equation
for spin waves in the form [20]

 (7)

Here, m = Mx + iMy, h = Hx + iHy, Λ = ∆β/α, and the
frequency ν (measured in wave-vector units) is equal to
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 (8)

where ω0 is the frequency of uniform ferromagnetic
resonance, g is the gyromagnetic ratio, and α is the
exchange constant.

The high-frequency spin-wave susceptibility χ(ν, k)
is proportional to the averaged Green’s function G(ν, k)
of Eq. (7):

 (9)

where h0 is the high-frequency field amplitude. The
proportionality coefficient a(k) for the case of a spin-
wave resonance in a thin magnetic film was analyzed in
detail in [20]. The averaged Green’s function for Eq. (7)
has the form

 (10)

where M(ν, k) is the classical analog of the mass oper-
ator. It was shown in [23] that, using an approximation
similar to the Bourret approximation [29], this quantity
can be represented in general in the form

 (11)

where the correlation function K(r) for a sinusoidal
superlattice is determined by Eq. (3).

For 1D and isotropic 3D inhomogeneities, integration
over angles in Eq. (11) can be preformed exactly. As a
result, the following expressions were obtained in [23]:

 (12)

for 1D inhomogeneities and

 (13)

for 3D inhomogeneities. (Note that in [23] there is a
misprint in the expression corresponding to Eq. (12).)
Further integration in these expressions with the true
functions Q1(rz) and Q3(r) specified by Eqs. (4) and (5)
cannot be conducted analytically. Therefore, the disper-
sion, damping, and susceptibility were studied in our

ν
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previous papers by using the following approximating
correlation functions:

 (14)

for 1D inhomogeneities and

 (15)

for 3D inhomogeneities, where L = exp(–3 ) is the
asymptotic expression of K3(r) at r  ∞. The approx-
imate expressions (14) for K1(rz) were grounded in
[17], whereas the range of applicability of approxima-
tion (15) for K3(r) has not been determined. We will
return to this problem later.

3. SPIN-WAVE SPECTRUM 
AND THE HIGH-FREQUENCY SUSCEPTIBILITY 

OF A SUPERLATTICE

The dispersion and damping of spin waves are spec-
ified by a transcendental equation for the complex fre-
quency ν = ν' + iν''; this equation is obtained by equat-
ing the denominator of Green’s function (10) to zero:

 (16)

The high-frequency susceptibility of a ferromagnet is
proportional to the complex Green’s function G(ν, k) =
G '(ν, k) + iG ''(ν, k), which depends on the real fre-
quency ν of the external high-frequency field and the
real wave vector k. The wave spectrum ν = ν(k) in a
superlattice is known to have a band structure. At the
value k = nq/2 corresponding to the boundary of the nth
Brillouin zone, a gap (forbidden band) forms in the fre-
quency spectrum. For sinusoidal superlattices, the
boundary of the first Brillouin zone is of special inter-
est, since the widths of the subsequent band gaps
decrease rapidly with increasing zone number [22]. In
superlattices with sharper interfaces between layers,
the decrease in the band-gap width with an increase in
n is less pronounced (such situations were considered
in [22, 24, 25]). Here, we restrict ourselves to the study
of the magnetic susceptibility of a sinusoidal superlat-
tice at the boundary of the first Brillouin zone: k = kr ≡
q/2. In the case where there are no inhomogeneities and
natural wave attenuation can be neglected, the gap
width in the spectrum at k = kr is equal to Λ [this is the
distance between the split-spectrum levels ν+(kr) and
ν−(kr)]. The G ''(ν) dependence at k = kr exhibits two δ
peaks spaced Λ apart. As the root-mean-square fluctua-
tion γ of inhomogeneities increases, the spacing  –

 between the spectrum levels decreases and the gap
in the spectrum closes at a certain critical γ value. An
increase in γ is accompanied by an increase in the
damping ν''(k); this function of k reaches a maximum at
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k = kr. As γ increases, the peaks in the G ''(ν) depen-
dence weaken and approach each other until merging at
a certain value of γ. Qualitatively, the variation in the
spacing between the peak maxima ∆νm corresponds to

the variation in the difference  –  between the
eigenfrequencies; however, there is no exact quantita-
tive relation between these quantities at γ ≠ 0 [20]. This
qualitative description of the variation in the spectral
gap width and in the spacing between the G ''(ν) max-
ima with increasing root-mean-square fluctuations is
valid for both 1D and 3D inhomogeneities. However,
the quantitative differences between the effects of 1D
and 3D inhomogeneities are very substantial. For
example, in the presence of 1D inhomogeneities, the
band gap is closed (or two G ''(ν) maxima merge) at a
critical value of γ1, which is well below the correspond-
ing critical value γ3 for 3D inhomogeneities [23].

As noted above, approximate correlation functions
(14) and (15) were used in [17, 20–28] to analyze the
eigenfrequencies, damping, and magnetic susceptibil-
ity of a superlattice. These approximations make it pos-
sible to study the ν(k) spectrum; otherwise, transcen-
dental equation (16) for ν(k) cannot be represented in
an explicit form without integrating in Eqs. (12) and
(13) for the mass operator. However, the susceptibility
can be studied without making assumptions regarding
K(r), since numerical integration can be performed for
each value of ν in Eqs. (12) and (13) to construct the
G(ν) dependence. Therefore, to calculate the depen-
dences of G ''(ν) on γi and ηi, we use both approximate
expressions and true expressions (4) and (5) for the
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Fig. 1. Effect of  and η1 on the spacing between peaks in

the imaginary part (ν) of the Green’s function at the

boundary of the first Brillouin zone of a superlattice with
1D inhomogeneities.

γ1
2

G1''
P

structure functions of 1D and 3D inhomogeneities in
Eqs. (12) and (13) for the mass operator, respectively.

3.1. 1D Inhomogeneities

With the approximate expression for K1(rz) in

Eq. (14) corresponding to the condition  ! 1, the
integral in Eq. (12) for M1 can easily be calculated. At
the boundary of the first Brillouin zone (k = kr), we thus
obtain a simple expression for the Green’s function in
the two-wave approximation under the condition Λ,

 ! ν:

 (17)

where X = (ν – )/Λ is the dimensionless frequency

detuning from the value ν =  and η1 = k||q/Λ is the
dimensionless correlation wavenumber. By equating
the denominator of this function to zero, we obtain a
quadratic equation for the complex frequency ν, from
which we find

 (18)

As follows from this expression, the spectral gap ∆ν =
 –  is closed at  ≥ 1. From Eq. (17) with the

real frequency ν, we find that the function (ν) has
two peaks; the spacing ∆νm between them decreases

with increasing γ1 and η1, and at  ≥ 1/ , these
peaks merge to form one peak.

Figure 1 shows the dependence of ∆νm on  and η1

calculated by substituting exact structure function (4)
into Eq. (12) for the mass operator and performing the
integration numerically. As is seen from Fig. 1, the
function ∆νm is symmetric with respect to interchanging

the variables  and η1 and is a function of their product
with a rather high accuracy. This symmetry is clearly vis-
ible for approximate analytical expressions (17) and (18)
and is due to the fact that the effective correlation radius

of a one-dimensional sinusoidal superlattice at  ! 1

is equal to ( k||)–1, i.e., is inversely proportional to the

product η1. This symmetry is not so obvious for the

∆νm(η1, ) dependence calculated with the exact cor-

relation function. At small values of the product η1,
the spacing ∆νm between the peaks is slightly in excess
of Λ, which agrees with the analogous effect obtained
for the gap width in the wave spectrum in [17]. In that
work, this effect was explained in terms of Gaussian
correlations, which correspond to the lower line in
Eq. (14).
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3.2. 3D Inhomogeneities

With approximate expression (15) for the correla-
tion function of 3D inhomogeneities, the integral in
Eq. (13) for M3 can be calculated exactly. At the bound-
ary of the first Brillouin zone, the Green’s function in
the two-wave approximation and under the condition

Λ,  ! ν takes the form

 (19)

where η3 = k0q/Λ is the dimensionless wavenumber of
3D inhomogeneities.

By equating the denominator of this function to
zero, we obtain a cubic equation for the complex fre-

quency; the dependence of the frequency on  was
analyzed numerically in [25]. As follows from Eq. (19),
the Green’s function is not symmetric with respect to

interchanging the parameters  and η3 in the case of
3D inhomogeneities. Indeed, unlike function (17),

which contains only the product η1, function (19)

contains not only the product η3 but also the asymp-
totic value L of the correlation function, which depends

on  alone.
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Figure 2 shows the frequency dependence of the

function  at the boundary of the first Brillouin zone
of the superlattice (k = kr) calculated numerically with
exact structure function (5) in Eq. (13) for the mass

operator. Both curves in Fig. 2 correspond to η3 = 4.

However, the solid line was plotted at  = 1 and η3 =

4, whereas the dashed line was plotted at  = 4 and

η3 = 1. In the first case, the function (ν) is seen to
have two pronounced peaks (i.e., there is a gap in the
wave spectrum), whereas in the second case both peaks
merge to form one broad peak (the gap in the spectrum
is closed). Figure 3 shows the dependence of the spac-

ing between the peaks ∆νm on  and η3 calculated
using exact structure function (5). This dependence dif-

fers radically from the ∆νm( , η1) dependence for the
1D inhomogeneities shown in Fig. 1: the function ∆νm

for 3D inhomogeneities is asymmetric with respect to

interchanging  and η3. The difference between the
spectral characteristics of superlattices with 1D and 3D
inhomogeneities is due to the radically different corre-
lation functions of 1D and 3D inhomogeneities. This
difference can clearly be illustrated using approximate
analytical expressions (14) and (15), whose asymptotic
behavior coincides with that of the exact functions
K1(rz) and K3(r). For 1D inhomogeneities, the correla-
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tion function tends to zero at rz  ∞, whereas the
descending portion of K3(r) at r  ∞, tends to a non-

zero asymptotic value L, which depends on  and is
independent of η3.

In this work, the magnetic susceptibility of a partly
randomized sinusoidal superlattice is calculated for the
first time using the exact correlation functions K1(rz)
and K3(r). This allowed us to compare the exact results
and the results calculated with approximate correlation

γ3
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η3

0.2

0.4

0.6
γ 32

Fig. 4. Ranges of applicability of approximate expres-
sion (15) for the correlation function and approximate
expression (19) for the Green’s function. The differences
between Eq. (19) and the Green’s function as calculated
using the exact correlation function do not exceed 10% in
the region between the solid lines and 20% in the region
between the dashed lines.
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γ 32

Fig. 5. Ranges of applicability of approximate expres-
sions (20) for the correlation function and (21) for the
Green’s function. The differences between Eq. (21) and the
Green’s function as calculated using the exact correlation
function do not exceed 10% in the region restricted by solid
lines and 20% in the region restricted by dashed lines.
P

functions (14) and (15) and determine the range of
applicability of the latter functions. For 3D inhomoge-
neities, the range of applicability of approximate
expression (15) for the correlation function and approx-
imate expression (19) for the Green’s function is shown
in Fig. 4. To find this range, we compared both the spac-
ing between the peaks in the imaginary part of the
Green’s function and the peak widths obtained using
the approximate and exact correlation functions. Then,

on the ( , η3) parametric plane, we determined the
region where the difference between these characteris-
tics did not exceed 10% (solid lines) or 20% (dashed
lines). It should be noted that the peak width was found
to be a critical characteristic in most cases. The spacing
between the peaks is described by approximate expres-
sion (19) with a much higher accuracy than is the peak
width. As is seen from Fig. 4, there is a rather broad

region of parameters  and η3 in which the approxi-
mate analytical expression for the Green’s function (19)
is valid. The fact that this expression gives bad results

for small values of  came as a surprise.

For this reason, we calculated the Green’s function
for 3D inhomogeneities using another approximating
correlation function,

 (20)

This function differs from Eq. (15) in that it falls off as
a Gaussian rather than exponentially, as is the case in
Eq. (15). With Eq. (20), the integral in Eq. (13) for M3
can also be calculated exactly. In the two-wave approx-

imation and under the conditions used above (Λ,  !
ν), the Green’s function at the boundary of the first Bril-
louin zone can be found to be

 (21)

where D(s) =  is Dawson’s integral. The fre-

quency dependence of the function (ν) as described

by Eq. (21) is compared with (ν) calculated using
the exact correlation function. The characteristics for
comparison were the same as above, namely, the spac-
ing between the peaks and the peak width. As a result,
we obtained the range of applicability of Eq. (21) and
approximate correlation function (20) of a superlattice
(Fig. 5). It is seen that this region overlaps only partially
with the region shown in Fig. 4. A comparison of these
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regions shows that, e.g., at small values of η3 and  ≈
0.3–0.5, the approximation of the correlation function
by Eq. (15) is more exact as compared to Eq. (20). At

small values of  and η3 ≈ 2–5, the situation is
reversed and Eq. (20) is more exact. Thus, approxima-
tions (15) and (20) complement each other.

4. CONCLUSIONS

We have studied the effect of the correlation proper-
ties of 1D and 3D structural inhomogeneities of an ini-
tially sinusoidal ferromagnetic superlattice on its high-
frequency magnetic susceptibility. To describe the sto-
chastic properties of inhomogeneities, we used correla-
tion functions derived earlier using the method of ran-
dom spatial modulation of the superlattice period [17].
In this method, structural inhomogeneities in a super-
lattice are described in terms of the model of a random
phase, which is assumed to depend on the z coordinate
in the case of 1D inhomogeneities and on all three coor-
dinates (x, y, z) for 3D inhomogeneities. The random
phase is characterized by a monotonically decreasing
correlation function with arbitrary values of the relative
root-mean-square fluctuations γi and normalized corre-
lation wavenumbers ηi, where i = 1 and 3 for 1D and 3D
inhomogeneities, respectively. As shown earlier in [17],
the form of the correlation functions Ki(r) of the super-
lattice obtained using this model and the RSM method
depends only weakly on the form of the correlation
functions characterizing the stochastic properties of the
random phase. However, this form depends strongly on
the dimensionality of inhomogeneities: for 1D inhomo-
geneities, we have K1(rz)  0 as rz  ∞, whereas
for 3D inhomogeneities K3(r) tends to a nonzero

asymptotic value L = exp(–3 ) as r  ∞.

These correlation functions have been used to calcu-
late the averaged Green’s function Gi(ν, k) from which
the high-frequency susceptibility is determined in the
case of 1D and 3D inhomogeneities. The mass operator
of the Green’s function was found in the Bourret
approximation by performing numerical integration of
expressions containing the exact correlation functions
K1(rz) and K3(r) for the 1D and 3D cases, respectively.
The frequency dependence of the imaginary part G ''(ν)
of the Green’s function was studied at a fixed value of
the wave vector k corresponding to the boundary of the
first Brillouin zone of the superlattice (experimentally,
the wavenumber can be fixed due to the size effect in
the situation corresponding to a spin-wave resonance in

a superlattice film [20]). In this case, the (ν) depen-
dence exhibits two peaks and the spacing between the
peaks ∆νm approximately corresponds to the gap width
in the wave spectrum at the boundary of the Brillouin
zone. The dependence of ∆νm on γi was studied earlier
in [20, 23] using approximate expressions for K1(rz)

γ3
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2
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and K3(r). In this work, we have studied the depen-
dences of ∆νm on both γi and ηi using exact expressions
for K1(rz) and K3(r). For 1D inhomogeneities, the two-
dimensional function ∆νm(γ1, η1) was shown to be sym-

metric with respect to interchanging the variables 
and η1 (Fig. 1), whereas in the case of 3D inhomogene-
ities the function ∆νm(γ3, η3) is strongly asymmetric

with respect to interchanging  and η3 (Fig. 3). This
effect is associated with the difference in form between
the correlation functions for 1D and 3D inhomogene-
ities. For the correlation function K1(rz), the correlation

radius is inversely proportional to the product η1,
which causes the function ∆νm to be symmetric with

respect to interchanging  and η1. The correlation
radius of the function K3(r) is inversely proportional to

the analogous product η3. However, the function
K3(r) differs from K1(rz) in terms of the asymptotic
value L, which divides the entire correlation volume
into two parts, one of which is characterized by a finite
correlation radius (above the asymptotic value L) and
the other by an infinite correlation radius (below L).

This asymptotic value depends on  and is indepen-
dent of η3, which leads to asymmetry of the function

∆νm(γ3, η3) with respect to interchanging  and η3.
This effect can be used to determine the dimensionality
of structural inhomogeneities in a superlattice by spec-

tral methods if independent changes in the values of 
and ηi can be controlled technologically.

We have also compared the functions ∆νm(γ3, η3) as
calculated using either the exact correlation function
K3(r) or approximate analytical expressions for this
function. This comparison allowed us to construct dia-
grams in the ( , η3) plane (Figs. 4, 5) that determine
the range of applicability of the approximate analytical
expressions for K3(r), namely, Eq. (15), which was used
earlier in [25–28], and Eq. (20), which was derived in
this work. These diagrams also specify the range of
applicability of approximate analytical expressions (19)
and (21) for the Green’s function.
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Abstract—The dependence of the condensation coefficient of bismuth ions on the energy of particles deposited
from an ion beam on silicon substrates is investigated experimentally. It is found that, as an accelerating voltage
is applied to the substrate, the condensation coefficient of bismuth ions drastically increases at voltages ranging
from 0 to 10 V and monotonically decreases at voltages higher than 60 V. The critical temperature of conden-
sation of bismuth particles deposited from the ion beam is 100 K higher than that from the vapor phase. © 2005
Pleiades Publishing, Inc.
1. INTRODUCTION

The considerable interest expressed by researchers in
the behavior of bismuth particles on a solid surface is
explained by the possibility of using this metal as a sur-
factant for the growth of heteroepitaxial films on semi-
conductor crystals (Si, Ge, etc.) [1]. At present, cleaning
of silicon substrates from contaminants and natural
amorphous oxide films has been performed using a com-
plex technology of heating under ultrahigh vacuum [2].

Ion sputtering is an efficient method for cleaning
surfaces of materials. The use of this method at low ion
energies does not lead to radiation damage of the sub-
strate [3] but can provide sputtering of an oxide film
and the formation of active nucleation centers for the
growth of epitaxial layers on the surface. The occur-
rence of these processes on the surface can be judged
from an increase in both the condensation coefficient of
the deposited material and the critical deposition tem-
perature.

In this connection, the purpose of the present work
was to determine experimentally the dependence of the
condensation coefficient of bismuth ions on the ion
energy and the substrate temperature.

2. EXPERIMENTAL TECHNIQUE

Low-energy bismuth ions were deposited under vac-
uum at a residual pressure of approximately 5 × 10–4 Pa
on heated Si(001) substrates coated with a natural
amorphous oxide film. The operating vacuum was
maintained by an Orbitron getter-ion pump.

Bismuth ions were produced by a vacuum arc dis-
charge plasma separated from neutral components
(atoms, molecules, microparticles) with the use of a
curved plasmaguide to preclude spatial separation of
1063-7834/05/4703- $26.00 ©0595
singly and doubly charged ions (Fig. 1). The flux den-
sity of bismuth ions was characterized by an ionic cur-
rent through the substrate. The ionic current density
was equal to 0.2 mA cm–2. This value corresponded to
a particle flux density of 1.25 × 1015 cm–2 s–1. The ion
energy was measured with a multigrid probe according
to the technique described by Ionov [4] and was then
used to construct the energy distribution of bismuth
ions N(E) (Fig. 2). The mean energy of bismuth ions in
the ion beam with respect to the cathode was deter-
mined to be E0 = 18 eV, and the half-width of the energy
distribution was approximately equal to 12 eV. In order
to increase the energy of deposited particles, an accel-
erating voltage U was applied to the substrate and var-
ied in the range from 0 to 100 V. This was accompanied
by a shift in the ion energy distribution N(E); as a result,
the energy of each ion arriving at the substrate
increased by a value U and reached E = E + U (eV). The
condensation coefficient of bismuth ions k was deter-
mined from the ratio between the effective thickness h
of the film deposited under specific conditions and the
thickness hR of the film deposited on a cold substrate
(T = 25°C) in the absence of an electric potential at a
constant ionic current and at a constant time of arc com-
bustion (τ = 5 min). The arc-discharge sputtering was
carried out in parallel with the deposition of bismuth
ions evaporated from an effusive cell. The equality of
the ion flow to the vapor flow was checked against the
thickness of the films deposited on cold substrates. The
effective thickness was determined from the intensity
of the Bi Lα analytic line in the x-ray fluorescence
spectrum measured on a Sprut-2 spectrometer.
 2005 Pleiades Publishing, Inc.
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Fig. 1. Schematic diagram of the experimental setup: (1) sub-
strate holder, (2) shutter, (3) quartz sensor for measuring the
thickness of a coating, (4) effusion cell, (5) plasmaguide,
(6) magnetic system for ion-beam rotation, (7) vacuum
chamber, (8) magnetic system for ion-beam focusing, and
(9) cathode unit.
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Fig. 2. Energy distribution N(E) of bismuth ions produced
by the vacuum arc discharge plasma.
P

3. RESULTS AND DISCUSSION

The dependence of the condensation coefficient of
bismuth ions on the accelerating voltage can be divided
into the following three portions (Fig. 3): (i) the first
portion (from 0 to 10 V) corresponds to an abrupt
increase in the condensation coefficient of bismuth
ions, (ii) the second portion (from 10 to 60 V) is char-
acterized by a constant value of the condensation coef-
ficient, and (iii) the third portion (from 60 to 100 V)
corresponds to a monotonic decrease in the condensa-
tion coefficient.

The observed jump in the condensation coefficient
of bismuth ions in the first portion of the experimental
curve indicates that some process occurs on the sub-
strate surface with a threshold energy below which no
condensation takes place. This means that only bismuth
ions with an energy higher than the critical value Ecr (E
> Ecr) can be retained on the substrate. The number
K(Ek, U) of these ions is determined by an integral of
the energy distribution function N(E), for which the
threshold energy of condensation serves as the lower
limit of integration.

If the energy distribution of bismuth ions N(E) is
known, the critical energy of nucleation can be deter-
mined from the experimental dependence of the con-
densation coefficient on the ion energy. In actual fact,
when an accelerating voltage is applied to the substrate,
the energy distribution of bismuth ions is displaced by
a value U with respect to the threshold energy. With a
set of values U, we can obtain a system of integral equa-
tions for numerically calculating the critical energy Ecr:

 (1)

Figure 3 presents the results of numerically solving
the above system of integral equations for different crit-
ical energies Ecr. It can be seen from Fig. 3 that the
experimental dependence of the condensation coeffi-
cient of bismuth ions on the accelerating voltage is
approximated well by a theoretical curve obtained for
the threshold energy Ecr = 24 eV.

According to Mesyats and Barengol’ts [5], doubly
charged ions account for ≈17% of the total number of
charged bismuth particles. Therefore, the energy distri-
bution function obtained in our case is the sum of the
energy distribution functions for singly and doubly
charged ions. Since these distributions are independent
of charge multiplicity [5], their shape can be described
by the same energy distribution function N(E). In this
case, the system of integral equations (1) takes the fol-
lowing form:

 (2)

K Ecr U,( ) N E U+( ) E.d

Ecr

∞

∫=

K Ecr U,( ) N E U+( ) Ed

Ecr

∞

∫ N E 2U+( ) E.d

Ecr

∞

∫+=
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The numerical solution of the system of integral
equations (2) gives the best fit to the experimental curve
at the critical energy Ecr = 25 eV, which corresponds to
the threshold energy of the process.

This threshold energy can be associated with the
activation of the surface due to the destruction of the
amorphous oxide film and the formation of nucleation
centers. According to Samsonov [6] and Goronovskiœ et
al. [7], the dissociation energy for amorphous silicon
oxide SiO2 is estimated as U0 = 8 eV per molecule. As
follows from the estimates made in accordance with
Isaev [8], the dissociation energy for this oxide at a
temperature of 270°C decreases and amounts to 7.6 eV
per molecule. The threshold energy of sputtering can be
estimated from the formula E ≈ 4U0 [9]. For SiO2, this
energy is equal to 30 eV, which entirely corresponds to
the critical energy Ecr obtained in our case. With a fur-
ther increase in the ion energy, the condensation coeffi-
cient of bismuth ions remains almost unchanged and
does exceed 0.6 at the substrate temperature Ts =
270°C. The observed decrease in the condensation
coefficient of bismuth ions in the third portion of the
curve can be associated with the processes of reflection
and self-sputtering of bismuth atoms from the substrate
at high energies of the deposited ions. The temperature
dependences of the condensation coefficients for bis-
muth films deposited from the ionic beam and the vapor
phase are compared in Fig. 4. As can be seen from this
figure, the critical temperature of condensation of bis-
muth ions with a mean energy of 30 eV is approxi-
mately 100°C higher than that upon deposition from the
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0.6

k

1
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3
4

Fig. 3. Dependences of the condensation coefficient of bis-
muth ions k = h/hR on the accelerating voltage U according
to (1) the experimental data and (2–4) the results of numer-
ical integration of expression (1) for threshold energies
Ecr = (2) 20, (3) 25, and (4) 30 eV.
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vapor phase and reaches 300°C. This increase in the
critical temperature can be caused by a change in the
dominant mechanism of nucleation due to the penetra-
tion of bismuth ions into the surface layer of the sub-
strate and the formation of active nucleation centers.

4. CONCLUSIONS

(1) It is found that an increase in the ion energy is
accompanied by a jump in the condensation coefficient
of bismuth ions. This jump can be associated with the
destruction of the natural amorphous oxide film on the
silicon surface. The threshold energy of the onset of
condensation is determined to be Ecr = 25 eV.

(2) A monotonic decrease in the condensation coef-
ficient of bismuth ions is observed at accelerating volt-
ages higher than U = 60 V. This decrease is caused by
the processes of reflection and self-sputtering of bis-
muth ions from the growth surface.

(3) Upon condensation of bismuth ions with an
energy higher than 30 eV, the critical condensation tem-
perature increases to 300°C due to a change in the
nucleation mechanism.

This behavior of the condensation coefficient of bis-
muth ions indicates that the surface undergoes an acti-
vation due to cleaning from contaminants and the
destruction of the amorphous oxide film. The results of
this work can be used to prepare bismuth nanolayers
and to produce nucleation centers for the growth of epi-
taxial layers.

300 350 400 450 500 550 600
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Fig. 4. Dependences of the condensation coefficient of bis-
muth ions on the substrate temperature upon deposition
from (1) the vapor phase and (2) the ion beam (U = 10 V).
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