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1. INTRODUCTION

The quantum theory of gravity in four-dimensional
space-time encounters fundamental difficulties which
have not yet been surmounted. These difficulties can be
arbitrarily divided into conceptual and computational.
The main conceptual problem isthat the Hamiltonianis
alinear combination of first-class constraints. This fact
makes the role of time in gravity unclear. The main
computational problem is the nonrenormalizability of
gravity theory. These difficulties are closely inter-
twined. For instance, depending on the computational
procedure, the constraint algebra may or may not con-
tain an anomalous contribution (central charge). The
presence or absence of an anomaly in the first-class
constraint algebra has a decisive influence on the quan-
tization procedure and the ensuing physical picture.

These fundamental problems can be successfully
resolved using relatively simple models of generally
covariant theories in two-dimensional space-time.
These models particularly include two-dimensional
gravity models, both pure and interacting with matter,
and also two-dimensional string models (see, for exam-
ple [1-6] and the literature cited therein).

In the present paper we present a canonical quanti-
zation of two-dimensional gravity minimally coupled
to real scalar and spinor Majorana fields. All the con-
structions and calculations are given before the fina
result is obtained. The physical states of the theory are
fully described. The complete state space has similar
properties to the multidimensional Fock spaceinwhich
boson and fermion operators are acting. The calcula-
tions begin with the average values of the metric tensor
relative to states close to the ground state.

However, the present study should merely be per-
ceived as one of the first steps aong the way to the
anomaly-free quantization (if thisis at al possible) of
some of the theories which, in more traditional quanti-
zations, are anomalous. Only further studies, including
a systematic study of the discrepancies in the predic-
tions (which are encountered in different approaches to

quantization) for observablesin the highest orders, will
serve as a criterion for the correctness of the selected
guantization route.

The progress achieved in the construction of a two-
dimensional quantum theory of gravity is associated
with two ideas. These ideas will be formulated below
after the necessary notation has been introduced.

We shall postulate that space-time is topologically
equivalent to a two-dimensional cylinder. The time
coordinate t varies between minus infinity and plus
infinity while the spatial coordinate ¢ varies between 0
and 21t All these functions are periodic with respect to
the coordinate 0. The set of coordinates (t, o) is
denoted as {x*}. The metric tensor in space-time is
denoted by g, so that the square of the interval iswrit-
ten as

ds’ = gydt® + gy, do” + 2g,,dtdo. (1.1)
Most of the formulas and notation in the Introduction
are taken from [2]. The metric tensor is then parame-
trized as follows:

2 .2 0O
g = €04~V VL,
O v -10 (1.2)

g=detg,, = —u’e”.

Leti,j=0,1andn;=diag(1,-1). Weintroduce the
orthonormalized basis { e/} so that

guveiue\j} = r]ij- (13)
To be specific we take
w -1 oMo - 00
e = ue oo & T TRl 1.4
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2 VERGELES

The dyad {eiu} is uniquely determined by the equa-

tions e,e = §, — e,e = §;. Taking into account

(1.4), we have
e = %Jg g eﬁ = epg'lvg (1.5)
We analyze the action
21 [l 1
S-= IdtIdGJ—_g;%(nR—ZA)
0 (1.6)

+= g“"a fo, f+ my‘gbplp[;

Here G isthe gravitational constant, A isthe cosmo-
logical constant, R is the scalar curvature of space-
time, n and f arethereal scalar fields, | isthe two-com-
ponent spinor Mgjoranafield, and {y} are two-dimen-
sional Dirac matrices. We then assume that

O 10 O 10
_Ho1 _Ho
0100 010 0
(1.7)
01 o O
=y =0t 0o
J0-18

The Magjorana nature of the spinor field implies that

P = y"fpt (the superscript t indicates transposition). In
our case, we have

w=%(p% o=¢, x=x" (18)

The covariant differentiation operation of the spinor
field is determined in accordance with the formula

0o 1

o 20

I
\ER

B =
(1.9)

The form of connectedness w, is obtained uniquely
from

dow + 0w 0w = 0,
where ol = ede“. Hence, we find
Wy = [u' +up' —%(p +p'v+ v')}dt
(1.10)
+ ﬁ(p +p'v +v'do.

Here and subsequently the dot and prime denote the
partial derivativesd/ot and 0/00, respectively. Using the
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Cartan structure equation, we can easily establish the
relationship
J—gRdt Odo = 2dw™. (1.11)
Sincethe fields ¢ and x in (1.8) are real and belong
to Grassmann algebra, we have
e)@x) = 0, X(Ix(x) = 0. (1.12)

Using (1.12), we can make the substitution
D — (9/0x*)y in (1.6). Thus, the fermion compo-
nent of the action is proportional to the expression

e{ @+ (U+v)Qg + XX —(U—-V)XX'}-
In this last expression the factor e may be eliminated
by substituting
@— ePp, X — eP%.
On account of (1.12), no additional derivatives of the
field p appear in the action when this substitution is

made. Consequently, the Lagrangian of this system has
the form

¥ = Idcgﬁrl@[u‘lh(p +vp + V)

+HEU(p+Vp+V) u—up‘D Auge? }
(1.13)

1, .2 . 2 2\ £12
+2u[f +2vif' —(u"=v) "]

i - . g
#5100+ (u+ V)09 + XX ~(u=v)XX1

We denote by T, T, and Tt the fields canonically
conjugate to the fields 1, p, and f, respectively. The
fields u and v in (1.13) are Lagrangian factors. We
obtain the Hamiltonian of the system (1.13) by a stan-
dard procedure:

H = J'do(u% +vP),

€ = 2nGTqurp+2nG[ (n"=n'p) +Ae*]
(1.14)

# (104 £7) + (- 09 + XX),

1 1 1 i J i 1
P = LN+ T+ T+ 500 + 5XX T

We make the following canonical transposition of vari-
ables:

)\roz_l' L

_p 1 _ -
5 4T[Ge (2n'coshz —4nGm, sinh),
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CANONICAL QUANTIZATION OF TWO-DIMENSIONAL GRAVITY 3

Art o= —% /ﬁe‘pMnancoshZ—2n‘sinh2),

(1.15)
-1 = /Ti\—GepsinhZ,

O )\ (o]
+ = _ ’__ .
T, + 1 G cosh

Here we have

a

Y(0) = 2nG I doT,(0).
0

The variables describing the matter remain unchanged.
In the new variables the Hamiltonian (1.14) has the

form
&= J-H e B B Y

+%[T[2+ f'2+i(—(p(p'+xx')], (1.16)

ST D S I
= —(Tor” + Tur') - T + 506 + 5XX'F

So far the analysis has been classical. In order to quan-
tize the system, we must first begin by defining the
commutation relations for the canonically conjugate
variables. In our case, we have

[r°(0), To(0)] = [r'(0), Ty(0)]
= [f(0), M0")] = id(c—a).

For the fermion degrees of freedom we have the anti-
commutation relations

{®0), ®(0)} = {x(0),x(c")} = d(c-0"). (1.18)
All the other commutators or anticommutators of the
fundamental fieldsr?, 1t,, f, 71, and Y are zero. It is easy

to check that the Heisenberg equations i0 = [0, 7]
obtained using the commutation relations (1.17) and
(1.18) are the same as the L agrange equations, where O
is any operator.

Sincethefieldsuand v in (1.14) are Lagrangian fac-
tors, the quantities (1.16) are constraints In terms of
classical analysis, they are first-class constraints. How-
ever, it is well-known that as a result of quantization,
anomalies or a central charge may appear in this sys-
tem: the algebra of simultaneous commutators of ‘€ and
% contains a central charge. The existence of this cen-
tral charge in the constraint algebra radically compli-
cates the quantization problem. In particular, the sys-
tem (1.16)—(1.18) may be nonself-consi stent.

Recently an anomaly-free approach to the quantiza-
tion of the system (1.16)—(1.18) has been proposed in
various studies [1-4,6]. In this approach no central

(1.17)
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charge is present in the quantum algebra of the quanti-
ties (1.16). This implies that al the operators (1.16)
may be treated as first-class constraints in the Dirac
sense. This hew approach is used in the present study.

The idea of a new approach to quantization arose
when studying a model describing pure gravity. This
model is obtained from the model (1.16) by deleting the
second terms on the right-hand sides of the system
(1.16). It was shown in [1-4, 6] that in pure gravity the-
ory the central charge is zero if the scalar product is
positive definitein the entire scalar state space. Therea
son for this phenomenon isthat in the new approach the
operator ordering procedure in the quantities € and %
differsradically from the ordering in traditional quanti-
zation.

We now formulate the assumptions used asthe basis
to devel op the new quantization method.

1) The entire state space H in which the fundamen-
tal operator fieldsr?, T, f, 1T, and Y act has a positive
definite scalar product. No indefinite metric is present
in the H¢ space.

In order to formulate the next assumption, we
denote the set of operators (1.16) by L and the set of all
the material fields f, Y by Y. From the operators L we
eliminate the degrees of freedom describing the mate-
rial fields and we denote the set of operators thus
obtained by L©. Hence the operators L© only deter-
mine the dynamics of the gravitational degrees of free-
dom and

(L y] = 0. (1.19)

2) Inthetheory (1.16) there existsaunitary transfor-
mation U such that

uL@ut = L. (1.20)
Asaresult of (1.19) and (1.20) thefields
Y = yyput (1.21)

commute with all the operators L.

We shall clarify the important role of this last
assumption in the quantization of this system. We pos-
tulate that in the theory (1.16) thereis a state |[0Cwhich
annuls all the operators L© and al the annihilation
operators of thefields . According to the reasoning put
forward above this is possible. Then the state U|OCis
annulled by all the operators L and al the annihilation
operators of the fields W. The physical space of the
states annulling all the operators L is constructed from
the ground state U|OCLising the creation operators of the
fields W. Consequently the problem of quantizing the
system (1.16)—(1.18) is solved completely.

In the second assumption, the properties of the uni-
tary transformation U of interest to us are only
described in broad outline. Subsequently this unitary
transformation is constructed explicitly for the model
of two-dimensional gravity studied in the present arti-
cle. The equivalent of formula (1.20) then has a more
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4 VERGELES

complex form. Nevertheless, fairly good progress can
be made in the calculations by using the constructed
unitary transformation.

2. QUANTIZATION OF PURE GRAVITY

The problem of quantizing two-dimensional pure
gravity was studied in [1-4]. In [4, 6] the author
described an anomaly-free quantization of a two-
dimensional string whose constraint system isthe same
as the constraint system of two-dimensional pure grav-
ity in the representation (1.16). This gives us the possi-
bility of using the methods developed in [4, 6].

Let usassumethat a=0, 1 and ng, = diag(-1, 1). In
the gauge u = 1, v = 0 the Heisenberg equations for the
fieldsr?, @ = n®m, have the form

0o° d’ma_, po°_ @’

B¢ a0’ B aa®

Consequently, the fields r and & contain both pos-
itive- and negative-frequency modes:

=0. (21

a_ino

(aqe

—a_-ino

+a,.e ),

ﬁZn

nz0

ﬁ
T[a(O') — _+_z(aaema

n#—O

(2.2)

a II'IG)

We assume that ag = dj = p2. From the conditions
that the fields (2.2) areredl it follows that

U u _af _
X =x% af =af, a> =a’,.

(2.3)

In order to satisfy the commutation relations (1.17), we
impose the constraint that the nonzero commutators of
the new variables should have the form

[ag, af] = [63, 00 = M8, .,
B¢ P = in® 0

The set of operators (1.16) is equivaent to the two
series of operators

2n
_ 1. —ino
=5 I doe (€ +P),
0 (2.5)

2n

= _1. ino _ _
L, = 2J’doe (€-=P), n=0+=1,...
0
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Using (2.2) wefind
1
Ln = z: Zaﬁ mOam *s
m (2.6)
L, = 1. as_ .o
"2 Z n-md

The ordering of the operatorsin (2.6) is determined in
accordance with the general quantization conditions
and plays a decisive role. The aim of quantization isto
search for that space of physical states on which all the
operators (2.6) go to zero and in which there is a math-
ematically correct and positive definite scalar product.

In the present article we adopt two approachesto the
quantization of this system.

Thefirst approach iswell-known. It was formulated
by Dirac and is described by the following scheme. Let
us assume that { x,} isacomplete set of first-class con-
straints. The physical states then satisfy the conditions

Xnl Bp = 0. (2.7)

The conditions for consistency of the theory then fol-
low from (2.7)

[Xm Xnl = ChonXi- (2.8)

In (2.8) the coefficients c'mn may be operator quantities
and should be positioned to the | eft of the constraints ;.

The following difficulty is encountered when quan-
tizing (2.2)—«2.8) (for further details see [6]). It follows
from the conditions (2.7) that al the physical states do
not depend on certaininitial dynamic variables. For this
reason the following problems arise:

a) Determining the scalar product on the physical
state space;

b) Caculating the matrix elements relative to the
physical states.

Thisis because not all the initial dynamic variables
are operators in the physical state space. Hence the
matrix elements of these variables are not determined
in physical space. Although the observable quantities
do not depend on these dynamic variables, neverthe-
less, serious difficulties may arise when the matrix ele-
ments of the observable quantities are calculated in
physical space.

We shall subsequently call the quantization (2.7)—
(2.8) the first method of quantization.

In [6] a different method of quantization was
applied to the system (2.4), (2.6). The idea of this
method involves somewhat weakening the Dirac condi-
tions (2.7) by replacing them with the conditions

[P|x./PO= 0. (2.9)
Here P numbers the physical states. The quantization
conditions (2.9) are similar to the Gupta—Bleuler con-
ditions in €lectrodynamics when the equality 0,A" = 0
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CANONICAL QUANTIZATION OF TWO-DIMENSIONAL GRAVITY 5

isonly satisfied in the sense of the mean value, and also
to the quantization conditionsin ordinary strong theory
when the Virasoro algebra generators also only satisfy
the conditions L, = 0 in the sense of the mean value. In
this case, averaging is performed relative to the physi-
cal states.

The fundamental difference between the quantiza-
tion method proposed here and the Gupta—Bleuler
guantization and the generally accepted string quanti-
zation is that in our approach the entire state space has
a positive definite scalar product. We subsequently
show that thisfact can be used to make an anomaly-free
guantization of atwo-dimensional string.

The conditions for consistency of the theory, which
replace the Dirac conditions (2.8), now have the form

P|[Xm Xn]|PO= 0. (2.10)

The physical meaning of the conditions (2.10) isasfol-
lows. Let us assume that the Hamiltonian of the system
has the form used in the generally covariant theories:

%T = ZVme'

We assume that at timet the conditions (2.9) are satis-
fied. At an infinitely close timet + ot the constraint ¥,
isgiven by

Xn(t +0t) = Xq(t) + i5tz Vi X Xnl (®)-

Thus the self-consistency conditions (2.10) yield the
equality (2.9) at any time. The method of quantization
(2.9), (2.10) is subsequently called the second method
of quantization. We initially apply the first method of
guantization to the model (2.6). We introduce the nota-
tion

1

0 1 + 0
x, = xX£x, ol = al+a,,

: X (2.11)
a* = al+ar.

The nonzero commutation relations of the new vari-
ables are obtained using (2.4):

[GS)1GE1_)] = _2m6m+n1 [GE‘:)! GEW_)] = _2m6m+n’
[x,af] = [x,al] = -2i5,, 412
We write the operators (2.6) in the new variables:

1 ¥ (= 1 SN

L, = _EZ al al) = _Ez al? a® (213

Where possible subsequently, for the operators with
abar we do not write those relations which are exactly
the same as those for the operators without a bar. By
definition, in (2.13) the ordering operation implies that
either the elements a®) are positioned to the left of all
the operators a® or the converse is true. Both these
orders are equivalent (see [4, 6]).
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We perform the canonical transformation

o — UyaUl, &@— U,auU;), x— U,xui,

'sz+
UM = eXp%Zp %

In this canonical transformation only the variables O(Ef)

and X_change, as given by the formulas

2
65 = UyaU], = of? -,

* (2.14)
= x_+M2X

+

% = U,x.Ul

For uniformity, in this section weintroduce the notation
a5 =al formzo.

Subsequently, instead of the operators (2.13) we use
the operators

_ +) =(9)
L, = —EZagfmam .
m
Thereason for this substitution will become clear in the
following sections.

We define the vector state space in which the
dynamic variables of the system act, aslinear operators.
We represent the entire state space Hqp as the tensor
product of the gauge state space Hg and the physical
state space Hpp:

Hep = He O Hpp. (2.16)

The space Hg is generated by its vacuum vector [0; G[J
which is determined by the following properties:

a’ |0; GO= 0, al|o;GO=0, m>0,

(2.15)

(2.17)

(0; G|O; GO= 1.
The basis of the space Hg consists of vectors of thetype
ao...al...al...a0; GO mn,l,r>0. (218)

Therefore Hg is a Fock space with a positive-definite
scalar product.

Thebasisin the physical Dirac state space Hpp con-
sists of two series of states |kig, k = (K%, k)| possessing
the following properties:

a9k = aGkg =0, m=0421,.. (219

The relationships (2.12) with m = 0 are rewritten in the
form

(p2+M?)KG = 0. (2.20)

From thisit can be seen that vectors of the basis set |k(3
are split into two series of vectors |k, each parame-
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6 VERGELES

trized by a single continuous real parameter. For
instance,

plk+D = +k|k+0d,

POkl = /K + M?|k0},

—0o<k<+o00,

(2.21)

Since the operators p* are Hermitian, the scaar
products

[k+|k'+0) = o(k—k),

are self-consistent.

Quantization conditions similar to (2.19) were used
in[1, 2, 4, 6] and much earlier by Dirac in electrody-
namics (see [§)]).

Note. We stress that the variables a5, a5, n # 0,

being linear operatorsin the space Hg, are not generally
operatorsin theqoace Hpp. In fact asaresult of theaction

of the operators 0( ) and 0( on the vectors [k—{3 we
obtain vectors Whl ch do not belong to the physical
space Hpp.

Asaresult of (2.13) and (2.19) the following equal-
ities hold

Lolpt = Lolpld = 0, [plh OHpp.  (223)

Hence the model (2.6) is quantized using the first
method.

We shall now quantize this model using the second
method. We postulate that the entire state space Hc in
which theinitial variablesact, isexpressed asthe tensor
product

k-|K+3 = 0 (222

He = Hg O Hp. (2.29)

Here the space H is defined in accordance with (2.17),
(2.18). The space Hp has a basis with the properties
(2.20)~2.22). If the vector is |pC0 Hp, it satisfies the
conditions (2.19) with m=0.

We draw attention to the fact that the operators a”

and a'” with n# 0 (or combinations of these) act in the
space Hg but their action is not determined on any one
vector from the space Hp This distinguishes Hp from
Hpp (see (2.19)). Thus, the entire state space (2.24) is
the tensor product of the spaces in which the corre-
sponding operators act. Quite clearly, the space (2.24)
has a positive definite scalar product.

For the following cal cul ations we need to determine
the ordering of the operators. The ordering (2.15) is
equivalent to the ordering

= 3P M) - 3 (@hal-alar), 229)

m>0

which we shall use subsequently.
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In our opinion, in this particular model the most
convenient physical states satisfying the conditions
(2.9) are states which are coherent in terms of gauge
degrees of freedom. In Hg space we analyze the coher-
ent state

|z, z; GO= |_| expm— (|z_m| +|zm| +|z m| +|zm| )
m>0 (2.26)

+ n%(z?ma% + Z O + 220+ 20 ) Ho; GO
O

a

Here z;, and Z, are complex numbers. We subse-

quently assumethat 2 = 23 and Z = 2%,. The aster-
isk indicates complex conjugation. By definition we
have

29 =2+7 =797

We a so introduce the notation

10 =20, 3 =4, m#o,
o VL (2.27)
4= 40 M
Z

Throughout this article it is assumed that z) > 0.
We denote the basis vectors in Hp space as [z,+[],

Zo=k”. We have

2ot = +Zztl, % = 0. (2.28)
Thelast equality in (2.28) is a consequence of the rela
tionship (2.19) withm=0.

Let us assume that the sets of complex numbers
{z, 7} satisfy the equations (2.28) with the upper sign
and

L(2 = (9 ~” =0,
(2= z (2.29)
L(2 =0, n=0,4=1,...
Using the notation
Z(+)(O') = zemc (+)
Z(+)(0) = _Incz(+)

e

these equations can be rewritten in the more convenient
form:
202 (o) = 0,

07 70) = 0. (229)
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CANONICAL QUANTIZATION OF TWO-DIMENSIONAL GRAVITY 7

The functions Z9(a), Z7(0), 2”(0) and Z7(0) are
real and periodic and their zero harmonics satisfy
(2.27) and (2.28).

The states
|z, 20 = |tz +7z; G |z,£0 (2.30)

are called basis physical statesif conditions (2.28) and
(2.29') are setisfied.

According to these definitions, the basis physical
states have the following properties:

0 5 0 .

Oz 220} = xz° |z, z£[3,
1 mlZ, Z£L3 1 mlZ, Z£Lp (2.31)
Onlz, 20 = *z,jz, z£[}, m=0.

It rapidly follows from formulas (2.25), (2.29), and
(2.31) that in our case the conditions (2.9) are satisfied:

[z, z+|L,|z, zx[} = O,
[z, z+|L,|z, 2+ = 0.

We check whether the self-consistency conditions
(2.10) are satisfied. For this it is sufficient to confirm
that

(2.32)

[z, z#|(L,L_,— L ,L,)|z 20, = 0.
Simple calculations show that

(2.33)

n n
~1.2 ~] o~
= % Z m(n—m) + n(dg)” + 2n Z a0
m=1 m=1
+ z (n+m)a o

m=n+1

(2.34)

+ (m— n)ama +:L,L, .
mzn+1

Similarly
Z m(n — m)+n(0(°) +2n Z aca’,

+ z (n+m)asa’, (2.35)

m=n+1

+ z (m=n)a‘,am+: LL,:.

m=n+1

Here the operators a® are expressed in terms of the

operators a®, a7 in the same way that the operators

a? are expressed in terms of the operators a™, a©.
Since: L,L_, = L_L,:, fromthelast two equalities
we have

Ll,—L.,L, = 2nL,. (2.36)
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The ordering on the right-hand side of equality
(2.36) is defined in accordance with (2.25). It can be
seen from (2.36) that the equations (2.33) are satisfied,
i.e., the self-consistency conditions (2.10) are satisfied.

Note that generally
(%, z|L,|z £, £ 0. (2.37)

We can see that the second method also yields a self-
consistent quantum theory of the model (2.6).

We shall briefly discussion the superposition princi-
ple in the second method of quantization.

We assume that the states |z, [} and |Z, Z+[} are
physical. Isthe state

|z, z£[3 + |Z, Z£0d (2.38)

physical?

In our view, the superposition principle need not
necessarily be extended to nonphysical gauge degrees
of freedom. Thus, if in more complex theoriesusing the
second method of quantization, the superposition prin-
ciple in Hg space is bounded, in our opinion this does
not invalidate the method. In physical state space the
superposition principleis fully obeyed.

3. INCLUSION OF MATTER

It can be seen from the commutation relations (1.17)
and the anti-commutation relations (1.18) that boson
and fermion fields have the following expansions in
terms of modes [cf. (2.2)—«2.4)]:

f(o) = =— (0( e +a,e'"),
T T
(3.1)
no) = L+ =3 (@, +ae™),
T T,
_ 1 ing
@o) = J——z;;[z Bne
n (3.2)
X(0) =

1 A ~-ino
—/\/—2_-1—_[; Bne .

We further assume that a, = a, = p. Since the fields
(3.1) and (3.2) arereal, we have

x'=x, a'=a., al =a.,
T n _nT _n n (33)
Bn = B—m Bn = B—ﬂ-

The commutation relationships (1.17) and (1.18) are
equivalent to

[0 Qp] = [0 O] = MOpp, [XP] =0, (34)

{Bmv Bn} = {Bm’ Bn} = 6m+ n: (35)
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8 VERGELES

We only write the nonzero commutation rel ationships.
We shall subsequently denote the operators (2.6) by

L® and LY, respectively. Taking into account the

contribution of the material degrees of freedom, the
Fourier components (2.5) have the form

L, = LY

35 for -]

It is convenient to begin constructing the unitary
transformation indicated at the end of the Introduction,
which solves the quantization problem, by defining the
creation and annihilation operators of the field (1.21).
In other words, our first task is to construct boson and
fermion creation and annihilation operators of matter
which commute with all the operators (3.6). We can see
that the problem with slightly weaker conditions has a
solution. Thisis sufficient for our purposes.

We shall analyze the “ gravitationally dressed” oper-
ators of the material fields:

(3.6)

zﬁmnan,

n

= Z‘/l/tm,nan, An = (3.7)

B, = ZFJI/Lm’an, B = ZFJTAm,an. (3.8)

Theinfinite-dimensional matrices.Jt,, , M n, FJT/Lm, n
and "L, , in (3.7) and (3.8) are determined in the
Appendix. The elements of these matrices depend on
the operators (X./p;, O(S) p., GS) /p,) whose relative

commutators are zero. Thus, all the matrix elementsin
(3.7) and (3.8) mutually commute

It is easy to check by means of direct calculations
that the nonzero commutators of the operators (3.7) and
(3.8) have the following form:

[An Al = [An Ad] = M3, (3.99)

{Bm Ba} = {Bm Bn} = 3pun (3.9)
Using (3.4), (3.7), and (A.14) we find
[Amf An] = ZIMm,IJM«n,—I

! (3.10)

m+n-

=nS My ML, = md
2
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The equalities (3.98) are thereby established. As a
result of (3.5), (3.8), and (A.14) we have

{Bm1 Bn} = ZFMm,IFMn,—I = zFMm,IFMEl—n-

i | (3.12)

From this it follows that the commutation relations
(3.9b) arevalid.

The operators (3.7) and (3.8) introduced here differ
only negligibly from the DDF operators used in the
string theory (see[9, 10]).

Itis easy to see from these definitions that:
[, Al = [ag, Ad]

(3.12)
= [ai), Byl = [al, B] = 0.

The relations (3.12) remain valid if instead of o, we
substitute ﬁﬁ,f) or X,.

Now;, instead of a' we must introduce the vari-

ables &f;) into the theory, which conserve the previous
form of the commutation relations with the variables

o) and have zero commutators with the new variables
(3.7), (3.9).

From the definition (3.7) we find

= S [al, M
2

We use (A.16) and also reverse the inequalities (3.7).
Asaresult, we obtain

n,I]aI'

LU

_ _2n
[ mv n] _p+%§*/mnl mMI pmp!

Here the sum in brackets is calculated using formulas
(A.3), (A.10), and (A.12). Thus, we find

m# 0.

[ n] - __z*/‘/‘“r_np n\ps m#0,
(3.13)

[C( , n] = _EAH'

+

Here the equality (3.11) was taken into account. The
following relations also hold

[G(O_)y 'E\n] = _ﬂz\m
P (3.14)

[aD) A =0, mz0.
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CANONICAL QUANTIZATION OF TWO-DIMENSIONAL GRAVITY 9

Similarly, using formulas (3.8), (A.4), (A.l11),
(A.12), and (A.14) we obtain

_ 1 ~
[0, Bo] = == (n+ Pl 0B,
p

[a® B.] =0, mz0,

3.15
[af?, B,] = —pﬂBn, (319

[GE)_), Bn] = _pﬂén.

It follows directly from formulas (3.13)—3.15) and
also (3.9) and (3.12) that the variables

~(-) _ 0 -1 q 0
a) = al - p+ZMmp+q§A A-*5-B,B
P, q
m# 0,
~( _ _ 3.16
65265 = qf? - L (3.16)

xS {AA AoA,+ p(B_,B, + B_yBy) + 2M?}
p

commute with al the operators A,,, A,, B,,, and B:

(a5, Al =[5, Adl

. (3.17)
=[G, Byl = [&y),Bd] = O.
The number M? in braces in (3.16) can also be taken as
the result of normal ordering [cf. (2.14)].

If al quantities without a bar in formulas (3.13)—
(3.17) are replaced by the same quantities with a bar
and at the same time al quantities with a bar are
replaced by the same quantities without abar, thesefor-
mulas remain valid.

We shall now determine the normal ordering of the
creation and annihilation operators (3.7) and (3.8).
These operators are by definition assumed to be nor-

mally ordered if all the creation operators A, A,
B_j, B are positioned to the left of all the annihila-
tion operators Ay, Apn, By, and Byy .

Theright-hand sides of the equalities (3.16) contain
guadratic forms of the operators (3.7) and (3.8). These
quadratic forms are represented as sums which are not
normally ordered. However the right-hand sides of the
equalities (3.16) can in fact be considered to be nor-
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mally ordered, since the following equalities are satis-
fied

S oy - o oA~ BB, B
Pa (3.18)
= S M peofPpA—E57B,B .

p.q

In order to prove the equalities (3.18) it is sufficient to
establish that

S (A, +PB,B,) = 5t (AA,+ pB,;By)

p p

= Z(ApA_p+ pB_,B,) :.

(3.19)

The first equality in (3.19) follows directly from the
definition of ordering and the commutation relations
(3.9). In order to prove the second equality in (3.19), it
should be borne in mind that formally

0

z n = {(-1),

where {(s) is a Riemann zeta function:

s = z n°.

The zeta function has a unigue analytic continuation to
the point s = —1 where {(-1) = -1/12. This regulariza-

tion of the divergent sum ) ”_ n is now generaly
accepted. Thus, we can assume that

(3.20)

é;né— EL;“@ = {-D)-{(-1) =0

Here the first divergent sum appears as a result of the
ordering of the boson operators and the second appears
as a result of the ordering of the fermion operators.
From this follows the second equality in (3.19).

Thus, the right-hand sides of the equalities (3.16)
can equally well be taken to be normally ordered rela-
tive to the operators (3.7) and (3.8) or disordered and
written in the form of sums contained in (3.16). For
some calculations the disordered variant of the right-
hand sides of (3.16) is more convenient.

We shall now prove the following commutation
relation;

65,69 = [ay,as’) = (a9, as’] = 0. (321)
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10 VERGELES

Let m# 0 and n # 0. We take the variables a5 in the
form (3.16). We then have

[al), a1 = 1al, ol

1 -0y (3.22)
_B'Z[O‘m np+q]%°‘ Aq— quBqEr
* p.q
Here we use the definition (3.16) for a f() and the com-

mutation relations (3 17). On the right-hand side of
(3.22) wereplace 0( by its value as given by (3.16)

[a$), a8

My gl =[G5, M4 o1}

_ 1 5O 1
- p+z{[an ’
p.q

x A - E5TB,BE

O
_b- q[G() B Bq]%

+ Blzpzqﬂ/t;%pméan, ALA,

Using formulas (A.17), (3.13), and (3.15), after redefin-
ing the notation of the indices in some sums we trans-
form this last expression to give

p—q
Z [szm—(pw) ~m+n) %b‘pAq Bqu%
_erM_ml,qﬂM;,lp—rApAq
r (3.23)
+33(+ PIE Al oM BBy |
5 ma+rfnp-rBpSe | O
-

—iz{m<—»n}.

+

Here the components of the sums over r which are anti-
symmetric in terms of the indices m and n are obtained
using the relations (A.18). As aresult, al the termsin
(3.23) are mutually reduced. Thus, we have proven that
the commutator (3.22) is zero. The relations

[ay, a1 =0, mz0, nzo,

are proven by exactly repeating these procedures.
Similarly, it is established that

(@5, a1 = (@, aml = o.
The equalities
[O(En),aﬁ)] =0, m#0, n%0
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follow trivialy from the fundamental commutation
relations (3.4), (3.5) and the definitions (3.16). The
validity of the commutation relations (3.21) is thus
completely proven. In addition, from the definitions
(3.16) and the commuitation relations (3.12) we have
[, 657 = [af),an] = -2md,., a2
[x,,a] = [%,al] = -2i8,.

The explicit form of the new variable X_ is not given
here since this variable is not U%d bel ow.

=(%)
y (Xm y Oy Oy, Bmf

Bm}, (or moreaccurately their Ilnear combi nat|ons) are
canonical. It follows from the commutation relations
(3.9), (3.12), (3.17), and (3.21) that the set of variables

The initial variables {x,, a

(x, %, 0?69 a® a5 A Am By, Bu}  (3.25)

is also canonical.

We shall now determine the unitary transformation
appearing in (1.21). We define the unitary operator U
using the following equalities:

Ux, = x,U, Ux_ = XU,
Uay = alu, ual =afu,
Ua, = AU, UB, = B,U,
uat = allu, ...

and so on for the other operators with a bar. We know
that equalities of the type (3.26) uniquely determinethe
linear operator U and this operator is unitary [11].

We must express the operators (3.6) in terms of the
new variables. To do this we represent the operators
LY from (3.6) in the form (2.13) and express the oper-

ators o fn) , a, and B, intermsof the operatorsx,, a,,’,

O(m , A, and B, using formulas (3.7), (3.8), and (3. 16)

As aresult of simple calculations using the sum rules
(A.20) and (A.21) we arrive at the following formulas:

(+)
n - _Zzan mam

(3.26)

(+)N

T oo Rl C B RS
Ln = > n-mdm ) +Gn N (3.27)
m
N = Z{A_|A|—A_|A|+I(B_|B|—B_|B|)}.
|

Repeating the reasoning put forward to prove (3.19),
we arrive at the equality

N=N: (3.28)
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CANONICAL QUANTIZATION OF TWO-DIMENSIONAL GRAVITY 11

The validity of the equalities (3.27) can be con-
firmed by a simpler method. This involves calculating
the commutators of the operators (3.7), (3.8), (3.16)
with the operators L, in the representations (3.26) and
(3.27). Theresults of these calculations agree.

Using (3.26) and (3.27), we find that

L = UDL(O) (+>NOEJT
L, = UDL‘O’ —(*’Noﬁﬂ (3.29)
O
No = Z[O‘—|0‘| — a0, + (BB — B4R

1>0

The relations (3.29) are an exact variant of (1.20).
Although the formulas (3.29) are dightly more com-
plex than (1.20), the new method of quantization based
on the assumptions put forward at the end of the Intro-
duction can be devel oped further.

We note that the operators (3.7), (3.8) used here dif-
fer substantially from the gravitationally dressed oper-
atorsin [2]. For the operators (3.7), (3.8) we have

m
O((+)Am

[Aml Ln] = 2_p+ n (330)

and so on. We stress that it is impossible to construct a
set of operators which can be expressed linearly in
terms of the operators of the materia fields and also
commute with all the operators L, and L. (A similar
situation is encountered in closed string theory when
the transverse degrees of freedom are described by

DDF operators.) A different approach to the model
being studied was applied in [2]: the authorsintroduced

new operators L, and L, which differ from the opera-
tors L, and L, by values proportional to the Planck
constant. The operators L;, and L, have the same alge-

braasL,and L,.Atthesametimethereisaset of grav-

itationally dressed operators {C,, C,} which describe
the degrees of freedom of the material fieldsand arelin-
early coupled to them, and also commute with all oper-

ators L, and L,. This factor simplifies the formal

guantization procedure. However, significant difficul-
ties are encountered when we attempt to express the
initial dynamic variables in terms of those operators
used for quantization.

In the present paper, unlike[2], we give explicit for-
mulas which can be used to expresstheinitial variables
interms of the new variables (see (3.16)). This makesit
possible to calcul ate the matrix elements of the metric
tensor (1.2) (see Section 5).
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4. PHYSICAL STATE SPACE

The formulas abtained in Sections 2 and 3 can be
used to quantize the model being studied.

As aresult of the existence of a unitary transforma-
tion having the properties (3.26) and (3.29), we can
confirm that the state space of the system (3.6) is iso-
morphic with the state space of the two interacting sys-
tems: pure gravity and free fields (3.1), (3.2). Bearing
in mind this unitary transformation, we can construct
the physical state space directly inthe theory with inter-
action.

Wefirst apply thefirst quantization method. For this
we define two families of states using the formulas [cf.
(2.19)]

)|k+@ = G k3 = 0,

(4.1)
=0,+1, ...,
Anlk£y = Aqlkl}
= B,|k+(} = Bnk+} = 0, (4.2)

n>0.

We also impose the constraint
Aokl = Aolkxld = 0,

which is not necessary and is merely used to simplify
the formulas. In addition, we assume that relations
(2.21) and (2.22) are setisfied.

The reason why the quantity M2 > 0 was introduced
in formulas (2.14) and (3.16) now becomes clear: asa
result of this constraint and condition (4.1) withm=10
the operator p, has no zero eigenvalues in the physical
space Hpp. Thus, the unitary transformation (3.26) is
defined correctly and the operators A, can act on the
states |k+Lg .

All the physical states are linear combinations of
basis states having the form

[k+; n;, 0y, m;, ML

= (A, An...B .. B )kt OHE, (43)
n;, n;, m;, m, >0,
Ez + f —E 0 (4.4)
n m->n-» ma=0. .
AADILDR DR

Theentire physical state spaceisexpressed asthedirect
sum

Hpp = HS2 O HE) (4.5)
Asaresult of relations (4.1), (4.4), and (3.9), we have
NIG =0, | BOHep. (4.6)
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Now using (3.27), (4.1), (4.2), and (4.6) we obtain

L B =Ly G =0. 4.7

It follows from the commutation relations (3.9) and

equalities (4 2), (2.22) that the scalar product in the

HE) and HS) statesis positive definite and these states
are mutuaJ ly orthogonal.

This implies that an anomaly-free quantization of
the system (3.6) has been performed using the first
method.

We now apply the second method of quantization.
By definition, the state spaceis generated by two series
of states |z, z£[} having the following properties. The
states |z, z+[} satisfy eguations (2.28), (4.2) and also
[cf. (2.31)] the equalities

1 .
é(a(_2+0( Dz 220 = =2z, z+03,

%(ag)—&ﬁ?ﬂz, 740} = +7,|z, 7+[3, (4.8)
m>0,
and similarly for the quantities with a bar.
It follows from (2.28) that
aSlz 20 = 0. (4.9)

The basis states in the physical space are denoted by
|z, z£; n;, 0y, m, ML}. They are constructed using the
operators A, ..., m> 0 in accordance with (4.3) and
(4.4). The physica state space Hp is expanded as a

direct sum of the orthogonal subspaces H(P+) and H(p_) .
The scalar product in the Hp spaceis positive definite.

As aresult of the commutation relations (3.12) and
(3.17), equations (4.8) and (4.9) also hold for physical
states if these physical states are “pure” in relation to
the gauge degrees of freedom. Here we take “ purity” to
mean that al the physical states have the same set of

parameters { zo, 25} .

We shall not demonstrate in detail that in this case
the quantization conditions (2.9) and (2.10) are satis-
fied. This follows directly from al the reasoning put
forward above. Here we merely stress the following
important fact: averaging in (2.9) and (2.10) can only
be performed in the space of the gauge degrees of free-
dom Hg [see (2.17), (2.18)]; averaging in (2.9) and
(2.10) need not be performed over variables described

by the operators A, Am, By, Bm.

5. CALCULATION OF AVERAGES

In the model studied the most interesting quantity is
the average value of the metric tensor (1.2) relative to
the physical states. For this, in accordance with (1.2),
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we need to calculate the average of the expression
exp(2p) since the parameters u and v are Lagrange
numerical factors.

In order to begin our calculations we postulate that
theformulas (1.15) valid in classical theory also holdin
guantum theory. This assumption allows us to express
the unknown quantity in terms of the quantum fields 1@,
ra(2.2) asfollows:

A

G
Taking into account (2.2) thisinequality is rewritten in
the convenient form for us:

2p(c) _ i +) mc@ =) —|moD (51)

In (5.1) thevariables O ‘( ) should be expressed interms

of thenew variables @, Gy and Anm, Bm, An, and B,
in accordance with (3.16). Then we can calculate the
average values of the expression (5.1) using the results
of the previous section.

On the right-hand side of (5.1) all the variables in
the first set of brackets commute with all the variables
in the second set of brackets. Bearing thisin mind and
also the results of Section 4, we can confirm that the
following formulaisvalid to calcul ate the averages rel-
ative to the basis vectors

0= - <Za‘+) ”“"><z—” ‘”“">. (5.2)

We use the second method of quantization to calcu-
late the averages in expression (5.2). We first calculate

the averages relative to the ground state |z, z£[}. We

e = i + 2 — 1),

express the variables o'’ in the form
al) = ah+al, a) = 5(al)+ay),
(5.3)
an = 3(a) + @)

and use formulas (4.8) and (2.28). Thus, we obtain

<z z+ Za“) ez > zz“) €™, (54)
Similarly wefind
—( ) —|nc _( ) —|n0
<z z+ Z > z . (59)
It follows from (3.16), (3.18), and (4.2) that
(zz+|(@0 -0z 24)p = (5.6)
No.1 2000
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Combining formulas (5.2), (5.4), (5.5), (5.6), and
(2.29), we obtain
<z, 7+e*z, 2+>p = —

z (0).

%zm(c)'( ) (5.7)

In order to find more complex matrix elements, we
need to make additional calculations.

Asaresult of (A.2), we have

u' = Zepis - few(E. + &),

_ el mo, . ma
E+ - p+mzom( 74 am"'Z a—m)l (58)

| 1 m_0 -m_1
p+z m(z =27 ay).

m>0

E_:

Here a, and a_, are defined in accordance with (5.3).

As aresult of the relations (4.8), when calculating the
matrix elements we need to order the operatorsin (5.8)
s0 that the functions of &, areto theleft of the functions
of ¢_. Thisis easily achieved since the commutator

2
1
[§+lE ] Eb 0 Z m
is a c-number which commutes with &, and &_. Then

using the well-known Baker—Hausdorff formula we
obtain

d = exp[ EAD } %e‘* e". (5.10)

Now the averages of expression (5.10) are calculated
using relations (4.8):

(5.9)

2
2+lulz. 2 dlog?
(z,z+|u|z, z+)p Dexp[ th.0 Zom}
0 " (5.11)
><expEl—L !
O

p+n¢0 n .

Since the argument of the first exponential function on
the right-hand side of (5.11) is an infinitely large nega-
tive number, the average of (5.11) is zero. Thisimplies
that in calculations of the matrix elements below the
average sign the elements of the matrix Jl/L;ﬁ areinfact
only nonzero for | = 0. This fact which applies equally

to the elements of the matrix J(_/L;,l. substantially simpli-
fies the calculations. Using (A.9) and (A.10) we abtain

ay’

J’/‘J;’]] = .
P-

(5.12)
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Bearing this observation in mind and also formula
(A.12) we note that the matrix elements should be cal-
culated using the following relations

( )
50, < & . = =
ay) = : z(A—pAp"' PB_pBy) 1

+

(5.13)

m# 0,

and the second formula (3.16) (for m= 0). Using (5.2),
(5.4), and (5.13), we can calculate the diagonal matrix
element of the metric tensor relative to the basis state

[pCE |z, z+; my, Ay, m, M, Cintheform (4.3), (4.4):

< p|e2p(0)| p> — _Zl;_@z(n(o)

5.14)
- (+) 0 (
xm'z( ’(o)+z—“‘gm n,+ Y mOg

O A7) K 0o
The functions Z9(0), 2”(c), and Z7(0) satisfy

(2.29). To derive formula (5.14) we used equality (4.4)
and assumed that the basis vector is normalized.
Further calculations of averages together with their
study and interpretation are outside the scope of the
present study.
Calculations of the matrix elements from the metric
tensor using the first method encounter serious difficul-

ties. Thisisbecause the variables o'’ are not operators

in the physical state space Hpp. Thus averages having
the form

<za(+) '”‘°> <Z“+) "”‘°> N (5.15)

are not determined. As aresult of the quantization con-
ditions (4.1) and (4.2) we could assumethat the average
(5.2) iszero if the matrix element is calculated relative
to the generating states |k+[3. However, this does not
rescue the general situation since averages of the type
(5.15) (see (5.12) and (5.14)) must be calculated to cal-
culate the matrix elementsrelative to the excited states.

6. CONCLUSIONS

In the present paper we have applied two methods of
guantization to the theory of two-dimensional gravity.
The first method using the Dirac approach allows us to
achieve complete quantization. Thisimplies

(a) constructing a physical state space with a posi-
tive definite scalar product;

(b) explicitly expressing physicaly meaningful
guantities in terms of those operators used to construct
the physical state space.

However the averages of the metric tensor cannot be
calculated using the first method for fundamental rea
sons. This statement holds to a lesser extent when the
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physical state space is constructed using the operators
A, B,, ..., determined in Section 3.

In addition to the problems (@) and (b) the second
method of quantization can also solve the following
problem:

(c) calculating the averages of the metric tensor rel-
ative to the physical states.

On the basis of these results we can conclude that
the second method of quantization should be used sub-
sequently to study other models.

To conclude we make the following observation.

The model (3.6) can easily be quantized in a “light
cone” gauge. In the terms used in the present study
using this gauge implies

imposing second-class constraints:

alf) =0, a7 =0, af =o,

(xfn) =0, m#0.

(6.1)

Then, in accordance with (5.2) and (5.6), the average of
the metric tensor relative to the ground stateis zero. On
the other hand, in the second method of quantization, in
accordance with (5.7) and (2.29'), the average of the
metric tensor relative to the ground state is generally
nonzero. From thisit can be seen that imposing special
calibration conditions which ssimplify the solution of
the quantization problem should be avoided if possible.
In our case, imposing the constraints (6.1) significantly
degrades the results.

This work was supported by the VNSh program
(grant No. 96-1596821).

APPENDIX

L et us assume that T is some “time-like” parameter
and z = €. We introduce the following operator func-
tions:

1 (+)_—n
q(T>Eq(z)=2 +2n z+pz a;’z
(A1)
a0 = a(2) = Linz+ 5 Lgm m
q(t) =a(2) 2p++ilnz+p+nZOnO(n z".
By definition we have
) X O (X(+) |
u@2) =€ = zexpH-— Fy —z'0
@ pﬁzpﬂexpmn;nm 0 (A2

u(z) =%,

Let the contour C in the plane of the complex vari-
able z go counterclockwise once around the point z= 0.
We define four infinite-dimensional matrices according
to the formulas

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

1 dz_-n m

[ — saf7Z U (A.3)
F _ 1 dZ —n m
Mo = 5=6=7"u"G. (A-4)

The definitions of the matrixes th,n and Fﬂm,n are
obtained from (A.3) and (A.4) by substitutingg — g
and u — 0. Here and subsequently we have

S P - (+)

q=gd= q 1+= Z an
n¢0

We draw attention to the fact that al the quantities

(A.1)—(A.5) should be considered to be formal seriesin

the elements of free associative commutative involutive
agebra 4@ with the generatrices {x./p,, o'’ /p,,

a ﬁ,f) /p,}. This assumption holds until any averages are
calculated relative to physical states. The coefficients at
the monomials relative to the generatrices of the alge-
bra 4™ in the expansions of (A.1)<(A.5) are finite
polynomiasin z and z*. Hence, the integralsin (A.3)
and (A.4) are determined correctly. The matrix ele-
ments of the matrices (A.3) and (A.4) thusbelong to the
algebra A,
From (A.2) we have

(A.5)

(+)

a.’ _ O
varlnu(z) = varlnz—var[ 190 e
C c c ¢0n P+ 0O

Here varcF(2) implies the change in the function F(2)
(generally nonunique around the contour C) for asingle
counterclockwise circuit around the contour C. For this
definition of the contour the second term on the right-
hand side of thelast equality makes no contribution and
we have

varlnu(z) = varlnz = 2. (A.6)
C C
From (A.2) and (A.5) wefind
+00 ( )
du@@ _ u@ Op
G - 7 _p+ z z0. (A7)

n=-—o

Thislast inequality is a consequence of the fact that in
A agebra there are no relations apart from those
derived from its commutativeness.

The transform of the contour C in ™) algebra for
the mapping (A.2) is denoted by C*.

The mapping (A.2) can be inverted. Thisisaconse
guence of inequality (A.7). Thisinversion implies that
thereisan anaytic function z(u) of the variable u which
invertsthe equation (A.2) into anidentity. The function
z(u) is aformal series of the variables { a™/p,}. Equa-
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tion (A.2) may be inverted by an iterative method in
powers of the variables a)/p,. Let us assume that

Z(u) = z(o)(u) + z(l)(u) + ...,

where

(')(u) — Z (') -n

n=—-ow

and z) are homogeneous functions of the variables
a®/p, to the power i. Using equation (A.2) we obtain
X

O = 11a-d -
z7(u) = ue ", 6—2p+,

(+)
Z(l)(u) — ue—iBZ ( —|6 )

n#z0

29 = u "E'E%{znp Cah }

nz0

(A.8)

a(+) —|6 (+) —|6
SRR PCt

and so on. Equation (A.2) uniquely determines each
successive term Z)(u) in terms of the previous ones.

It also follows from (A.6) that for a single counter-
clockwise circuit of the variable u around the circuit
C*, the variable z goes once counterclockwise around
the circuit C. From thisit follows that a closed integral
over thevariable zalong the circuit C may be converted
into a closed integral over the variable u along the cir-
cuit C* and conversely. In accordance with (A.7) and
(A.5) we have

—n|:| dZ

U
% dz (A9)

ZD

The matrices which are the inverse of (A.3) and (A.4)
are represented most simply in the form

nz0

du —In

n| = me . , (A.10)

M = me SuZ(@)™ (A.12)

In order to provethe equalities MM = MEM =1,
FAMFM = FMFM = 1 we use the identities

] dz, z0
%dizgf(z, u@) = an Z f(z;, u(zy)) Z n E;E
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BJ f(u, 20)
; . ] (A.12)
_ 1 Uy sCU]
= ﬁfu_lf(ula 2u)) Y n 0
C* n=—o
s=0,1, ...

In (A.12) the function f(z, u) is expanded as a Laurent
series in terms of its arguments and integration is per-
formed in the counterclockwise direction. The identi-
ties (A.12) are based on the obvious equalities

dZn

fz =f Y = 219,

C*
Asaresult of (A.6) and (A.12) for s= 0 we have

+o00

-1 _ dUl -n
l_z J‘/Lm,IJ‘/LI,n - 2T[| u, ul
. | c (A.13)
B T P B T
o e Z O0zO — 2T[I_f = Om-n-
C = —o0

In(A.13) itisimplied that u=u(2) and z; = z(u,). Thus,
the equality MM = 1 is established. The relations
MM = 1, FMFME = 1, and FAMCYFAL = 1 are estab-
lished similarly.

Formulas (A.3) and (A.10) directly yield the rela-
tion

LMy = nl (A.14)

which is valid for al | and n. From (A.4), (A.9), and
(A.11) we obtain

F M;}I = Fm_l - (A.14)
The nonzero commutators 0( ) and 0( ) with u(2) and
U(2) areobtained using (A.2) and (2.12):
[0 u@] = —>2'u@, m#o,
(A.15)
[0( ,u@@] = 5—2 "u(2)

and similarly for barred quantities.

From the definitions (A.3) and (A.4) alowing for
(A.15) it follows that

[ nl] - _E*/Mml ms
a@ FU T = - 1
[ m n,I] - 2T[ip+
No. 1 2000
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dZ I+m n 12 -1/2
fT @@ @y
m#0,
[O(E)_)' M ] = _EMH I
[CX _) F n,I] = _&F‘/anl

The commutation relations (A.16) conserve their form

if barred quantities are substituted everywhere in

(A.16). The relations (A.16) exhaust al the nonzero

commutators between a©, a”, M, AL, FA(, and AL .
From (A.14) and (A.16) we then obtain

[Gg),,/l/l,;’ld = %D*/‘/L—I,—(m+n)a miO,
i | (A.17)
af), Mh] = D2l = — A
[ 1] R o,
In Section 3 we use the following formulas:
Z‘/‘/L_ml,Hq'/‘/L;,lp—q = ‘A/L(_r::]+n),(l+p)’ (A18a)
-1 -1 -1 -1
zq(Mm,l+an,p—q_Mn,Hqu,p—q) (A18b)
= (M=n)JM_ + p), (m+n)»
-1 -1 -1
Zq( ml+anp q Mn,|+qu,p—q) (A18C)

= (Mm=n)(p—=DM_g+ 5 —(m+n)-

Using formulas (A.10) and (A.12) for s = 1 we can
obtain the following relation:

Z qM;wl.l +q=/‘/’“;.lp—q
q = —00
Since we are only interested in the antisymmetric com-
ponent of the relation (A.19) in terms of the indices m

and n, on the right-hand side we can remove u™ from
beneath the differentiation sign. Also bearing in mind

fduup”d(u z").
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that (dz/du)du = dz we obtain (A.18b). The other for-
mulas [(A.18a) and (A.18c)] are proven similarly.

The following formulas also hold:

ZMMWJQSM$MM»
n-— Ip*/‘/tl_lq n- IqMI_lp)

51

(A.21)

1
I~
o]

+ -1
( )‘/‘/L(n—l),(erQ)’

which we derived using formulas (A.9), (A.10), and
(A.12).
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Diffraction Reflection of Light in a Cholesteric Liquid Crystal
in the Presence of Wave Irreversibility and Bragg Formula
for Media with Nonidentical Forward and Return Wavelengths
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Abstract—An analysisis made of the diffraction reflection of light in acholesteric liquid crystal in the presence
of magnetooptic activity which leadsto waveirreversibility and in particular to nonidentical forward and return
wavelengths. It is shown that in this particular case, the Bragg formula containing a single wavelength which
is the same for the forward and return waves should be written to include two wavelengths. Relations are put
forward which generalize the Bragg formula for media with nonidentical forward and return wavel engths and
examples of using these relations are considered. A boundary-value problem is solved for alayer of cholesteric

liquid crystal. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The propagation of light in cholesteric liquid crys-
tals (CLCs) isknown to have diffraction properties[1, 2].
In media whose spatial structure exhibits right-{eft
asymmetry such as gyrotropic mediaand CLCs, which
by definition should also be classed as gyrotropic [3],
wave irreversibility occurs in the presence of magne-
tooptic activity [4]: the wave vector surface has no cen-
ter of symmetry with the result that the quantities char-
acterizing the properties of the medium (phase velacity,
moduli of the angles of rotation of the polarization
plane and circular dichroism, and so on) differ for
mutually opposite directions of propagation.

If diffraction reflectionisanalyzedinaCLC aslight
propagates along the axis of the medium in the pres-
ence of amagnetic field, thefield induces magnetooptic
activity inthe medium which leadsto thewaveirrevers-
ibility noted above. In order to avoid effects involving
distortion of the structure which occur under the influ-
ence of the field, it is advisable to select CLCs with
Franck moduli Ks,, K43 [2, p. 244], for which no distor-
tion occurs until the field reaches a certain critical
value, and then the Bragg formula

2dsing = nA

becomes meaningless since thereis not one wavelength
but two different ones (as aresult of the wave irrevers-
ibility) for the forward and return directions of propa-
gation.

In Section 2 we shall analyze diffraction reflection
in a CLC under conditions of wave irreversibility and
we shall calculate the wavelengths of the forward and
return waves at frequencies coinciding with the bound-
aries of the frequency range of diffraction reflection.

Direct calculations show that the wavelengths of the
forward and return waves differ and the form of the
relationship which expresses the condition for amplifi-
cation of wavesreflected at periodicinhomogeneitiesin
the medium differs from the Bragg formula. Accord-
ingly, in the Laue equation [5] the moduli of the wave
vectors of the forward and return waves are different
and the diagram which expresses this equation geomet-
rically [5] is asymmetric relative to the plane perpen-
dicular to the vector of the reciprocal grating and
bisecting it.

Itisfound that waveirreversibility in the sense of no
center of symmetry at the wave vector surfaceisastrin-
gent constraint for changing the form of the Bragg for-
mula. Specifically, this change also occurs in a natu-
rally gyrotropic medium in the presence of periodic
inhomogeneity. The different wavelengths of the for-
ward and return waves in this medium is attributed to
the different polarization of these waves. Periodically
inhomogeneous naturally gyrotropic media are investi-
gated in Section 3.

In Section 4 we analyze diffraction reflection for
k # ks (k; and k are the wave vectors of the forward
(incident) and return (scattered) waves) for propagation
inclined toward the planes of the layers neglecting
interaction between the forward and return wavesin the
dispersion equation. We also briefly consider the case
where an external magnetic field is present in a natu-
rally gyrotropic medium.

In Section 5 we present results for the propagation
of light across a CLC layer possessing wave irrevers-
ibility.

1063-7761/00/9001-0102$20.00 © 2000 MAIK “Nauka/ Interperiodica’



DIFFRACTION REFLECTION OF LIGHT IN A CHOLESTERIC LIQUID CRYSTAL

2. DIFFRACTION REFLECTION IN A
MAGNETOACTIVE CHOLESTERIC LIQUID
CRYSTAL AND THE BRAGG FORMULA

2.1. Dispersion Equation

We consider the propagation of light at frequency w
along the axis of a CLC (z axis) in the presence of an
external magnetic field directed along this axis. Using
the method of circular components [1] or using a
method of converting in the wave equation to the field
components relative to the X' and y* axes which rotate
together with the structure [6] (the X' axisis everywhere
oriented along the director, the y' axis is perpendicular
tothex axis, and thethreeaxesx', y', and zform aright-
handed system), in either case we arrive at the follow-
ing equation:

2 2
9 [%(el re)+ 2q2}‘3{§ — 492 gk,
C C (1)

250)2

ZEEW -
Dczgl q D]0282 q |:| C g O

Here 210/J{ isthe spatial period of thefield in thelocal
system of the medium, €, and &, are the principal values
of the permittivity tensor of the CLC along thex and y'
axes, respectively, g isthe z-component of the gyration
vector directed along the z axis, which is responsible
for the magnetooptic activity, q = 2r/o, and o is the
pitch of the helix. The projections k;,,0f the wave vec-
tors of the circular components of the field are related
to the roots of equation (1) by

Kz = g £ 0, )

as in the case of no magnetooptic activity analyzed in
[1, 2]: the difference isthat the roots of equation (1) for
g # 0 differ from the roots of this equation for g =

2.2. Determination of the Boundaries
of the Diffraction Reflection Region and the Values
of g at these Boundaries

We shall now determine the boundaries w;, and
of the diffraction reflection region (the subscript g indi-
cates the presence of magnetooptic activity). We shall
assumethat €,, €,, and g are real. Outside the region of
diffraction reflection the values of J{, are real, while
inside thisregion they have an imaginary part, i.e., they
are complex. The same applies to krfu since the value
of gin (2) isreal. Since the coefficients of equation (1)
are real, its complex roots should be complex-conju-
gate. Thus, at the boundaries of the diffraction reflec-
tion region at which theimaginary parts of the complex
roots of equation (1) vanish on leaving this region,
these roots should be multiples. (For g = 0 the bound-
aries of the region of diffraction reflection are usually
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determined from the constraint that equation (1) has
zero roots[1, 2] and these are automatically multiples.)

We denote the multiple roots of equation (1) for g=0
by K. For g =0 we have J{,= 0 at the boundaries w,
and w, of the diffraction reflection region. In view of
the smallness of g, the values of J{,, will differ little
from their valuesfor g =0, i.e., from zero. (The magne-
tooptic rotation of the plane of polarization in fields of
~10* G in nonmagnetic dielectrics in the optica fre-
guency rangeis~10 deg/cm. At the wavelength (in vac-
uum) A = 5 x 10 cm and the permittivity € ~ 5, we
obtain g ~ 10°°.) Neglecting the fourth power of F in
(1), we arrive at the following expression for J{:

-1

2 2
o = 2050+ HE[%(SH SEEIINC
where
W’ 2w’ W',
= ﬁ?(el"'sz)"'zq}mgsl_qm qD
2 (4)

w o2 U
+—=9 [Zq ——2(51+€2)}D
c c UJ

The roots will be multiplesif n = 0. From the equation
n = 0 we determine the boundaries w,, and w,, of the
frequency region of diffraction reflection. To within
terms containing g to the second power, we have

2

_ qc g
o " A/_l|: 2e,(3e, + 52)} ©
2

- 9c¢ g
Wag = A/‘i 282(382+81)] ©

Substituting into (3) n = 0 and the values of the fre-
quencies (5) and (6), we obtain the values J; ,4(w)
and J{; ,4(w,g) Of the multiple roots, confining our-
selves to quantitieslinear in g:

_ 299
S7{1,29(001:‘;,) = _3€1+82 (7)
at the frequency w = w4 and
_ __299
H i 2g(00yg) = —3€2+ £ (8)

at w = wy,. Therelative error in the determination of the
multiple roots associated with the neglect of 5763 in(1)
is of the order of g%/€? (e ~ &, ~ &,).
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Fig. 1. Diagram describing the Laue equation for a magne-
toactive CLC. As a result of the wave irreversibility, the
moduli of the wave vectors of the forward and return waves
(k; and ks, respectively) differ.

2.3. Laue Diagram and Bragg Formula

Using (2), (7), and (8) we obtain for the z-compo-
nents of the wave vectors of waves with diffraction
polarization

Kir = Kz = —20g(3e,+€,) % €]
at frequency w4 and

ki, = ky, = —2q09(3e,+€;) " £q (10)

at frequency wy,.

To be specific, we shall analyze one of these fre-
quencies, say W = w4 From (9) we have for the z-com-
ponent of the wave vector of the forward wave (propa
gating in the direction of the z axis)

ki = —209(3€e;, +€5) +0. (11)
For the return wave (ks < 0) we have
kzs = - 2qg(3€1 + 82) —d. (12)

In accordance with (11) and (12) we have |k,;| # |K|-
Thus, the wavel engths of the forward and return waves,
A; and A, aso differ:
_2m_ am _ o

kis [Kad 1% 29(3e,+€,) "

Ais (13)

Figure 1 gives adiagram illustrating the Laue equa-
tion
ki—k; =1, (14

wheret = 2rm/d, d = o/2 isthe period of inhomogene-
ity of the medium.
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A characteristic feature of this diagram is that the
moduli of the vectors k; and k, differ so that thereis no
symmetry relative to the plane perpendicular to the vec-
tor T which bisects the latter (this plane isindicated by
the dashed line in the figure).

Projecting the Laue equation onto the direction r,

we obtain
21, 211 _ 2Tt
Ao * A od’ (15)

which merely yields the Bragg formula in its usual
form

2dsing = nA
(inthiscasen=1, ¢ =10U/2) when A; = A

In the following section we consider an example of
another medium for which the Bragg formula in its
usual form also cannot be applied because of a differ-
ence between A; and A

(16)

3. PERIODICALLY INHOMOGENEOUS
ISOTROPIC NATURALLY GYROTROPIC
MEDIUM

3.1. Material Equations

We shall analyze the propagation of an electromag-
netic wave of frequency w in a medium described by
the material equations

—iQtr i1z —i1z

D=80E+%(As)e [e "+e "|E+yrotE,

17
B =H,

where Q is the frequency of the wave modulating the
permittivity of the medium, Ae is the percent modula-
tion, T = 2r/d, and d isthe period of the inhomogeneity
of the medium. The equations (17) describe a naturally
gyrotropic isotropic medium [3, 5, 7, 8] with spatialy
modulated permittivity. This modulation may be cre-
ated, for example, by a plane ultrasonic wave. We shall
assume that in the wave equation for the electromag-
netic wave we can neglect the time dependence of the
parameters of the medium but allow for their time
dependencein the final results. Whereasin the absence
of spatial dispersion (y= 0) this procedure can be
adopted for Q/w < 1 [9], for y # 0 we aso need to
impose the constraint

2

‘QAS < %y
w c

: (18)

in order to correctly conserve y in the wave equation,
neglecting the time derivatives given above. Assuming
that the length of the ultrasonic wave is of the order of
the wavelength of light (which is required for diffrac-
tionreflection, i.e., Q/v ~w/c, where v isthe velocity
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of the mechanical wave), we write condition (18) inthe
form

2
W

VY
C

%
C)\Ae‘ <
The usual values of the angle 9, of rotation of the plane
of polarization per unit path length of theray are afew
degrees per centimeter. Assuming 4, = 5 deg/cm, we
obtain |oy/c?| ~ 10, Consequently relation (19) is
reduced to the inequality

(19)

“i’Ae <01,
C

whichis easily satisfied.

3.2. Diffraction Reflection

We shall expressthe field of a monochromatic wave
propagating in amedium along the z axis in the form

E(zt)

Eoexp(iky,z) + z Eexp(i kmzz)} exp(—iwt). (20)

Using equations (17) we obtain from the wave equation
m= %12, ... . (21)

In atwo-wave approximation which takes into account
the spatiad components Egexpli(k,Zz — wt)] and
E_;exp[i(k 4,z — wt)] we obtain the following equation
for ko

Ky, = ko, + mt,

2 2
W 2 W

[_250 —ko, + _2Vk0z}
C

2 (22
| o= koe=0)" ¥ 2v(k02— )|- ‘;"% 0.

In order to determine k,, and k_;, at the boundaries of
the diffraction reflection region, we express kg, in the
form

T
Ko, = 5+ X (23)
For k_;, we then have
K, = —g +X. (24)

Substituting (23) into (22) we obtain the equation for x:

2

4 00 3 [p) TD oo 2|2

X —Zny —[ZD €+ 20 C4y }x
2 f @)
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[poz T2|j (A)“(As)2 w2 _
te=Sg——f————-—-—Yy =0.
Dcz 40 C4 4 4C4

In an isotropic homogeneous medium the spatial
dispersion leads to a change in the moduli of the wave
vectors by avalue of the order of w?y/c? [5]. Assuming
that x in (25) isavalue of this order and neglecting x to
the fourth and third powers, we obtain from (25)

[POZ TZEFA)Z
= [m?o* ZDEV”“}
(26)

(27)

we obtain from (27) the following expression for the
multiple roots:

_1

(JL)
X1,2 = 2V (28)

Thus, in accordance with (23), (24), and (28), we have

_T 10 _ T
kOZ - 2+202v1 k—lz - 2+2C2y'

(29)
Formulas (29) are satisfied when the polarization of the
wavesis given by

EOX - | Eoy = 0, E—lX - | E—ly = O (30)

(the forward wave is right circularly polarized and the
return wave is left circularly polarized). When the
polarizations of both waves are the reverse, y in (29)
should be replaced by —y.

According to (29), the wavelengths of the forward
and return waves differ so that the Bragg formula
should contain two wavelengths, as in the case of a
CLC possessing wave irreversibility.

The frequency boundaries of the diffraction reflec-
tion region are determined from the equation u = 0 in
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Fig. 2. Diagram describing the Laue equation for an isotro-
pic naturally gyrotropic periodic inhomogeneous medium.
The circles give the lines of intersection of the wave vector
surface with the plane k, and k.

(27). Assuming arelative error of the order of T2y?/Ag,
for these boundaries we have

W I Ae -1/2
P2 _ 1 aef]
c 2%0_

>0 @D

The following relation was assumed to derive (31)

< J2]he]. (32)

‘c_o
C\/

4. OBLIQUE PROPAGATION OF LIGHT.
GENERALIZATION OF THE BRAGG FORMULA

In Sections 2 and 3 we considered the propagation
of light perpendicular to the layers and we allowed for
the interaction of the forward and return waves. For a
CLC this can be seen from the fact that we used an
exact dispersion equation which allows for al the
waves (we selected those solutions corresponding to
diffraction polarization). For a medium described by
equations (17), we obtained a dispersion equation to
determine kg, and k_,, allowing for both waves with the
z-components of the wave vectors kg, and k_,,. We shall
now consider oblique propagation with respect to the
layers neglecting interaction of the waves.

4.1. Condition for which Wave Interaction
at Periodic Inhomogeneities
in a Medium Can Justifiably Be Neglected

According to (29), the difference between the wave-
lengths of the forward and return wavesis caused by the
presence of spatial dispersion which makes the contri-
butions ~w?y/ 2¢? to the moduli of the wave vectors of
these waves. In order to conserve the effect of different
wavelengths we must retain the quantities w?y/2¢? in
ko, and k.. We now determine the conditions under
which the contribution of the spatial dispersion can be
correctly retained while neglecting wave interaction at
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periodic inhomogeneities. Substituting into (29) the
value of 1/2 from (31) we obtain

W 1w’
ka = =JE& Tt

c 2¢77 c4 /e,

(the two signs correspond to the two frequency bound-
aries of the diffraction reflection region). Hence, at the
boundaries of the diffraction reflection region wave
interaction produces a correction to the wave vector

moduli given by (w/c)Ae/4, /e, and the spatial disper-

sion changes these moduli by w?y/2c?. Thus, it isjusti-
fiable to neglect wave interaction when determining the
wavelengthsiif

(33)

Ag
2,&
For light having the wavelength in vacuum A = 6 x
107% cm relations (32) and (34) for wry/c? ~ 0.1 give

Al < 10° < J2Ag].
&

oY > : (34)

‘w

(35)

These relations are satisfied, for example, for
g,05, Ae=5x10".

Figure 2 shows a cross section over the plane (passing
through the z axis) of the wave vector surface for
medium (17) neglecting periodic inhomogeneity. The
two spheres correspond to right and left circularly
polarized waves. the moduli of the wave vectors for
these waves (i.e., theradii of the spheres) are given by:

_ w 1(;)2 + w 1()32
k = —«/g_o’fé‘zy, k' = E«/S_o—é—zv
c c

c
(the superscripts “—" and “+" correspond to left and
right circular polarizations).

(36)

4.2. Laue Diagram

We shall now assume that a periodic inhomogeneity
is created in the medium and relation (34) is satisfied.
Then, assuming a relative error of the order
(Ae/eg)(wyl/c) we can use the expressions (36) for k*
and k= and construct a diagram which geometrically
describes the Laue equation, assuming that the moduli
of the wave vectors are equal to theradii of the spheres.

Figure 2 shows a situation which satisfies the Laue
equation. Since no inhomogeneities occur in the direc-
tion of the x axis, the tangential components of the

wave vectors are the same:
k,cosd, = k;coso;. (37)

This relation is also obtained by projecting the Laue
equation onto the plane perpendicular to t. Sincek, # k;,
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we have

¢s¢¢i-

Projecting the Laue equation onto the t direction, we
obtain

(38)

2n

kssSingg+ kising; = d

(39)

Thisrelation isthe phase condition for amplification of
waves scattered at periodic inhomogeneities in a
medium. Since ¢; # ¢, formula (39) does not reduce to
the usual form of the Bragg formula.

4.3. Case Where a Magnetic Field is Present

In the presence of a magnetic field directed along
the z axis, the term i[gE] responsible for the magne-
tooptic activity formed asaresult of the presence of this
field is added to the right-hand side of the first of the
material equations (17). Assuming a relative error of
the order g? in the moduli of the wave vectors, for the
moduli k* and k- we have [4, 10]

= —ﬂ[1+ cost|J+(wA;€_C0)yE],

where | is the angle between the direction of propaga-
tion of the wave and the z axis along which the external
field isapplied.

The Bragg formula has the form (sind; = cosy;,

(40)

cosd; = siny;, singg = —cosy,, cosdg = siny, see
Fig. 3)
10 + @ 1
c“/_[1+2l}_ sing, + CyA/S_OD}smq)i
211 (41

—«/_0[ _%D—E—Sln¢s+ VA/—D} ings = —

To this formula we need to add the following (which
replaces the relationship ¢ = ¢, satisfied for A, = A)):

[1+;E€g Sn¢|+wV}E}COS¢i
(42)
= [1¢ED— sins+ oo A/l_oD]COSq)S'

The four variants of the signs on the left- and right-
hand sides of expressions (41) and (42) correspond to
the four situations:. right and left polarizations of the
scattered wave for right and left polarizations of the
incident wave.

A diagram expressing the Laue equation isshownin
Fig. 3. Note that the diagrams plotted in Figs. 2 and 3
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Fig. 3. As Fig. 2 for the case of an external magnetic field
which produces wave irreversibility.

for light incident normal to the layers have the same
form asthediagramin Fig. 1 for aCLC.

4.4. Generalization of the Bragg Formula

The Bragg formula for a periodically inhomoge-
neous medium in which the wavel engths of the forward
and return waves differ has the form

21 21 2T ng, = 2_nn
A(9) AMog)™ 7 d

to which we need to add the following formula because
of the presence of the two angles ¢; and ¢ which gen-
eraly differ

——sing, + (43)

cosd)I = ——C0Sf, (44)

>\(¢)
(instead of ¢; = §).

The dependence of A on ¢ isgiven by the dispersion
equation.

?\(¢s)

5. PROPAGATION OF LIGHT ACROSS
A PLANE-PARALLEL LAYER
OF CHOLESTERIC LIQUID CRYSTAL
WITH WAVE IRREVERSIBILITY

We analyze the normal propagation of plane-polar-
ized light across a plane-parallel CLC layer possessing
wave irreversibility. We shall study two variants: prop-
agation in two mutually opposite directions. Figure 4b
gives the results of calculating the difference between
the transmission coefficients for different wavelengths
outside the region of diffraction reflection and Fig. 4a
gives the results for this region. The difference AT =
T, — T, is plotted on the ordinate where T, is the trans-
mission coefficient when light is incident on the layer
in the direction of the z axis which lies in the direction
of the gyration vector g perpendicular to the layer
boundaries; T, is the transmission coefficient for the
opposite direction of propagation of the incident light.
The components of the permittivity tensor are g, = 2.290,

€,=2.143; g=10", the helix pitchis0.42 um; the layer
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AT, 1074 in different coefficients T, and T, for the two mutually

opposite directions of propagation of plane-polarized
- @ light across the layer.
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Abstract—Computer calculations are made of the intensity of multiple small-angle neutron scattering using
the general Moliére formula[8] over awide range of variation of the Born parameter, embracing the diffraction
and refraction regimes, and a transition region between diffraction and reflection. A comparison is made with
approximate formulas obtained earlier by Maleev et al. [9, 10] in the limiting cases of the Born parameter a < 1
and a > 1 for the diffraction and refraction regimes, respectively. It is shown that over awide range of values
of a the results of the calculations using the approximate and general formulas are the same. The theoretical
conclusions were checked experimentally using data from measurements of small-angle neutron scattering
for the domain structure of ferromagnets. Measurements were made of the neutron beam broadening for
samples of different thickness and these were used to determine the effective domain sizesin pureiron and
nickel exposed to thermal treatment and plastic deformation, and aso in the Invar aloys FegsNizs and FesPt.
An analysisis made of the angular dependence of magnetic small-angle neutron scattering at the asymptote.

© 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Multiple small-angle scattering is one of the main
physical processes accompanying the propagation of
corpuscular or wave radiation through inhomogeneous
media. It is observed in the broadening of the primary
beam as a result of multiple refraction or diffraction
from various types of inhomogeneities whose effective
radius Ry is considerably greater than the wavelength
A of theincident radiation (Rg > A). This phenomenon
was first analyzed in 1926 by Nardroff [1] for the mul-
tiple refraction of X-rays. Nardroff derived a formula
linking the broadening of the primary beam with the
effective size of the particles at which refraction takes
place. Subsequently, an effect involving changesin the
width of the X-ray scattering curve was analyzed for
diffraction processes of various orders [2].

Multiple neutron scattered was first observed by
Hughes et al. [3] when neutrons passed through an
unmagnetized pureiron plate. In this case, the broaden-
ing of the primary neutron beam occurred as aresult of
multiple refraction and diffraction at the domain struc-
ture. This effect wasthen studied in greater detail in [4, 5]
where the effective domain size was determined from
the results of the broadening of a primary beam of
monochromatic neutrons. Recently this method has
also been widely used to determine the size of the scat-
tering particles in nonmagnetic powder and porous
materials [6, 7]. A method based on an analysis of the
line curvature near the zero scattering angle developed
in[7] ishighly original in this respect.

The problem of multiple particle collisions was con-
sidered theoretically by Moliére (see, for example, [8])
who obtained an expression for theintensity of multiple

processeswritten in an integral form, whichisvalid for
an arbitrary value of the Born parameter. However, this
theory has not been widely used to analyze the experi-
mental results because of the complexity of analyzing a
general expression. In order to simplify this, the authors
of [9, 10] used various approximate solutions of this
problem which can give expressions for the multiple
scattering intensity in an easier form for analysis. In
particular, the case a < 1 was considered in [9] (the
Born approximation or diffraction regime) and the case
a > 1 (non-Born approximation or refraction regime)
in[10]. In both approximations multiple scattering was
considered as random processes described by a Gauss-
ian function. Both solutions yielded the conclusion that
the broadening of a primary neutron beam is propor-
tiona to the square root of the scattering order:
O(L/MY?, where L is the sample thickness and I) is the
neutron mean free path. This showed fairly good agree-
ment with the experimental results [4—6]. However, in
the refraction regime where the sample thickness
exceeded some critical value (L > L) another law was
identified, i.e., a linear dependence of the broadening
on thickness. However, the experimental confirmation
reported in [11] was cast into doubt by these same
authors because of the large experimental error associ-
ated with the nonidentical domain structure in samples
of different thickness. In addition, the dependence of
the broadening on the thicknessin the transition region
from refraction to diffraction where the parameter a is
close to one was left undefined. The angular depen-
dence of the multiple scattering intensity for large scat-
tering vectors was also not determined in this region.
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The aim of the present paper is to study multiple
small-angle neutron scattering over a wide range of
particle sizes or the Born parameter a, covering the dif-
fraction and refraction regimes, and also the transition
region from diffraction to refraction, by means of
numerical calculations using the Moliére formula. On
the basis of these calculations and an analysis of sim-
pler analytic expressions obtained in [9, 10] we discuss
the results of experimental investigations of multiple
magnetic scattering of neutrons at the domain structure
in various ferromagnetic materials such as pure iron
and nickel, and also in the Invar aloys FezNiss and
FesPt.

2. NUMERICAL CALCULATIONS

In general, the intensity of multiple small-angle
scattering for an arbitrary value of the Born parameter
o has been calculated using the Moliére formula [8]
written in the following form:

I(q, L) = ]_J/\JOE(\k%exp[

where

_ an
0/\ - F‘O[JO

Sisthe area of the beam cross section, g = 4tsinB/A is
the transferred neutron momentum, 6 is the scattering
angle, k = 217A is the wave number, Jy(X) is a Bessel
function, and a(qg) = do/dQ isthe differential cross sec-
tion for single scattering which is calculated as the
square of the scattering amplitude. Following [12], in
general we can write thisin the form

o(q) = KR’

GADL}d/\ 1)

"b(a)da, 0 = oulye

2

x a-r(cos(ou/l—xz) - 1)\]0(qu)de} ©)

1 2
+ {Isin((x N1— X2)Jo(qRX)XdX} E‘
O
0

In accordance with [13], the total cross section for sin-
gle scattering per particle g, is given by
i -1
o. = amRPOL_Sina _ cosa —1n 4
0 |:2 az W

where a isthe Born parameter, defined as
=gy = Y
a=2v = EkR, 5)

U isthe energy associated with the inhomogeneity, E is
the neutron energy, and R is the inhomogeneity radius.
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In adifferent formulation this parameter a has the fol-
lowing form [10]:

a = 2AR3(Nb), (6)

where &(Nb) isthe contrast, d(Nb) = |[N;b; — Ngby|. Here
N isthe nuclear density and b isthe amplitude of coher-
ent neutron scattering. The subscripts“0” and “1” refer
the matrix and the inhomogeneity, respectively.

Formulas from [9, 10] written in the following form
were used as approximate solutions of the multiple
neutron scattering problem:

1(g,L) = Ipg(q, L) +1,(q, L) +1;(q, L), (7)
wherefor a < 1 we have

lo(g, L) = 14(0, L)exp(—q°/ 1), (8)
_ 1 |BL
q; = R E- 9

In this case, the parameter B was defined as B =
In(4L/1y) + Inln(4L/1y), where 14 = 1/(ngy) is the mean
free path, n is the volume density of the inhomogene-
ities, and 04 = TTa?R?/2 is the integral cross section for
single scattering.

We used the following expressions for the terms I,
and I, [5]:

dcraS

1(q1 L) Py dQ (10a)
doas 1

1,(aL) = —-—SL o R (10b)

where do,/dQ = a%k?/2q* is the differential cross sec-
tion for single scattering at the asymptotic limit for
spherical particles of radius R having smooth surfaces.

For the case v > 1 (refraction and diffraction in the
non-Born approximation) the differential and total
cross section for single scattering was calculated in
accordance with [13] using the formulas

% _ sz{ a? +Ji(qR)
dQ (o®+ (R’ (GR)
(11)
J;(aR) . [ 2 2
_0(2+2(O((1R)2 é(g%)sn @R }
o, = 2nR’. (12)

In expression (11), the first term describes refraction,
the second describes Fraunhofer diffraction, and the
third has an interference nature.

Neglecting the third termin (11), the authors of [10]
obtained different expressions for the multiple scatter-
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ing intensity for L < Lyand L > L, where L, isacer-
tain critical thickness

= |,0°Ina. (13)

Here |, = 1/(no,) is the neutron mean free path in the
refraction regime. For L < L, the expressions for the
intensity of the multiple processes, and therefore the
broadening of the primary neutron beam, were similar
to these expressions for the diffraction regime:

r k
Haw = 2R FeprTh o
D2q2D
_a oL
% = 2RyT, 2T (13)

and the expression for 1} (g, L) is the same as formula
(10a).1

For samples of thickness L > L, the multiple scat-
tering intensity was described by formulas of a differ-
ent type:

k2
I (q, L) = ZSTTE—_%—)—E”—Z’ (16)
LJin0ll
% = 5 F AR (17)

Here the multiple scattering intensity at the asymptotic

limit is proportional to g and the broadening has alin-
ear dependence on the sample thickness.

Thus, in addition to comparing the results of the cal-
culations using general and approximate formulas, it
would be interesting to check the validity of the conclu-
sions that the different types of dependences of the
broadening on the thickness and of the intensities on
the wave vector exist for the refraction regime when
L<LpandL >L,.

2.1. Dependence of Neutron Beam Broadening
on Sample Thickness

Numerical calculations of neutron beam broadening
asaresult of multiple processes were made for a hypo-
thetical sample comprising a system of spherical parti-
cles of the same size, distributed uniformly in vacuum.
Thedensity of nuclei inside the particle was assumed to
be N = 8 x 10% cm~ and the amplitude of coherent neu-
tron scattering was assumed to be b = 1 x 1022 cm.
According to the Babinet principle, this system may be
represented as a matrix having the appropriate density
inwhich pores of radius R are uniformly distributed. In
both casesthe nuclear contrast isd(NB) = NB. The sam-
ple thickness was taken to be 2 and 10 cm. The calcula
tions were made for neutron wavelengths close to the

1An expression for Irl(q, L) was obtained by Yu. N. Skryabin.
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Fig. 1. Dependences of neutron mean free path | on Born
parameter o, calculated using various formulas: (18), (4)—
solid curves, (19)—dashed curves, (20)—dot-dash curves.
The scale for the inhomogeneity radiusis shown above. The
calculations were made for volume concentrations of inho-
mogeneities p = 0.02 (1) and 0.3 (2).

experimental conditionsA = 0.5 and 1 nm. The particle
or pore size was varied between 10 nm and 1 mm. The
volume fraction of inhomogeneities p was taken to be
0.02 and 0.3 which isvalid for systems having low and
high inhomogeneity concentrations, respectively.

The neutron mean free path was cal culated using the
formula

1

no,’

where 1/n = 41R?%(3p) and o, is described by formula
(4). The mean free path was cal cul ated as a function of
o or Rand isgiven by the solid curvein Fig. 1 on alog-
arithmic scale for two values of p: 0.02 (1) and 0.3 (2).
The dashed and dot-dash curves also give the mean free
paths |4 and |, calculated using the approximate formu-
las valid in the diffraction and refraction regimes,
respectively:

(18)

_2 1

= — 19
3pA°N°P°R 19
=50 (20

It can be seen that the lines |y and |, intersect at o = 2
(v = 1) whereas the true curve [(R) hasaminimum at a
dlightly higher value of a and exhibits oscillating
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Fig. 2. Dependences of the primary neutron beam broaden-
ing on the inhomogeneity size or Born parameter a for a
hypothetical sample of thicknessL =2 cmin the diffraction
(1) and refraction (2 and 3) regimesfor avolumeinhomoge-
neity concentration p = 0.3. The dashed curve givesthe crit-
ical thickness Lg introduced in [10] to determine the range

of validity of the dependence wx(L).

0,/2TR?

Fig. 3. Integral cross section for single scattering calculated
using thegeneral formula(4) (solid curve) and intherefraction
limit using formula (2) alowing for (circles) and neglecting
(dashed curve) theinterferenceterminformula(11) for thesin-
gledifferentia cross section for neutron scattering.

behavior in the range a = 2-20. It can be seen that the
character of the curves depends weakly on the volume
concentration of inhomogeneities p.

In order to explain the dependences of the primary
neutron beam broadening on the size of the inhomoge-
neities, we first calculated the angular broadening of
the neutron beam using formulas (9), (15), and (17)
obtained in the diffraction and refraction regimes

w, = 0.325./pNbA® J %n— + InInA'LEr (213)
a<l,
w, = 0.459./pNbA® J an Inln D (216)

a> 1, L<|_0,
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Wy = O.241p)\R£, a>1, L>L,, (21c)

where w; is the line width at half height. The results of
the calculations for the volume concentration of inho-
mogeneities p = 0.3 are plotted in Fig. 2 (solid curves
1, 2, and 3). Similar dependences were obtained for p =
0.02. The dashed curve gives the dependence of the
critical thickness L, on the inhomogeneity radius R or
the Born parameter a calculated using formula (13). It
was found that the range of sizes where the condition
L > L, can besatisfied in practice and where the depen-
dence w;(R) should be used, is very narrow and corre-
spondsto a ~ 2-10.

Naturally thereliability of these dependences can be
checked by means of numerical calculations, using the
general formulas (1)—(3) which are valid for an arbi-
trary value of the Born parameter. For this purpose we
first calculated the differential cross section for single
scattering do/dQ for each particle size R and then cal-
culated the Fourier transform of the scattering cross
section 6,. We then determined the angular depen-
dence of the multiple scattering cross section 1(q) and
the full width at half-height of this curve w(R). The cal-
culations were made for the sample thickness L = 2 cm,
which satisfied the condition L > L, for R=5x 10 cm.
Theresults of these calculations are given by the circles
inFig. 2. It can be seen that the values of w(R) obtained
using the Moliére formula are accurately described by
the sections of the curves w;(R) and w,(R) calculated
using the approximate formulas (21a) and (21b). More-
over, the broadening only depends monotonically on
the size and no anomalies are observed in the transition
region. Similar cal culations made for asample of thick-
ness L = 10 cm and for A = 1 nm revealed the same
dependence. This suggests that the dependence ws(L)
for L > L, does not in fact exist, although the mathe-
matical solution of the problem in [10], made assuming
that the third term in formula (11) makes a small con-
tribution, was performed correctly.

In order to show the influence of the third term in
expression (11) on the final results of the calculations
of the total neutron scattering cross section, we made
numerical calculations of the single scattering cross
section in the crossover region. Figure 3 gives various
dependences of this cross section in arbitrary units. The
first, shown by the solid curve, was calculated using the
general formula(4). The second dependence, shown by
the circles, was obtained from formula (2) using
expression (11) where all terms including the interfer-
ence term were taken into account. It can be seen that
for a > 2 these two dependences are very similar. How-
ever, if we neglect the third term in formula (11), we
obtain the expression g, = 21R?, shown by the dashed
curvein Fig. 3, which differs substantially from the true
scattering cross section given by the solid curve in the
range of a values between 2 and 30. Hence, neglecting
the interference term in formula (11) leads to apprecia-
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Table 1. Beam broadening calculated using formulas (1) and (2) using the single scattering cross section in the refraction
limit (11) alowing for (column 3) and neglecting (column 5) the interference term in the cross section (11) and results

obtained using formulas (21)

a R, pm w(3), mrad W,, mrad w(2), mrad Wws, mrad

1 2 3 4 5 6

24 3 15 13 83 81

4.8 6 10 85 24 20

8 10 6.4 6.3 11 7.2
16 20 5.0 4.2 5.0 18
24 30 35 3.3 35 0.8
80 100 14 16 14 0.07

ble inaccuracies in the calculations of the total scatter-
ing cross section in this range of a values.

Similar inaccuracies are observed in the calcula
tions of the primary beam broadening. Table 1 givesthe
primary beam broadening calculated from formula (1)
using the differential single scattering cross section
(112) allowing for (column 3) and neglecting (column 5)
the third term; results of calculations using the formu-
las (21) are also given for comparison. It can be seen
that if thethird term is neglected [w(2), column 5], then
for a < 10 (the condition L > L, is satisfied), the values
of the neutron beam broadening are in fact close to those
obtained from the formula for ws(L) (column 6). If this
term istaken into account in the cal cul ations, the values
of w [w(3), column 3] are closer to the broadening val-
ues corresponding to the curve w,(R) (column 4). At the
same time, as a increases, the contribution of the inter-
ference term to the cross section (11) decreases and the
values given in columns 3 and 5 become comparable
and close to the values of w,(R) calculated using for-
mula (21b).

Consequently, the conclusion reached in [10] that a
critical thickness L, exists and that the dependences
w; O L and I(g) O g are obtained for L > L, should be
attributed to neglecting the interference termin the sin-
gle scattering cross section in the refraction regime.
However, this neglect of the interference term does not
distort the main results derived from the numerical cal-
culations of broadening using the general Maliére for-
mula. Thisisthat the approximate formulas obtained in
[9, 10] for broadening in the diffraction regime for any
L and in the refraction regime for L < L, can be jointly
used over the entire range of variation of a, including
the transition regime from diffraction to refraction.
The diffraction approximation can be applied as far as
o ~ 10-15 while the formulas obtained in the refraction
approximation hold for larger a.

2.2. Angular Dependence of Multiple Scattering

We shall now check the conclusions of the approxi-
mate theories[9, 10] in relation to the predicted depen-
dences of the multiple scattering intensity on the trans-
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ferred momentum. It can be seen from expression (7)
that the multiple scattering intensity can be represented
asthe sum of three componentsl,, |, and I,. Thefirst of
these accurately describes the broadening of the pri-
mary neutron beam as a result of multiple processes
since the profile of the multiple scattering curve (1) is
close to Gaussian. Differences between the curves 1(q)
calculated using the general formula (1) and formula
(8) only occur for large and very small g. We shall first
discuss the difference between these curves for large q
which is directly relevant to the experimentally mea-
sured angular dependences of small-angle neutron scat-
tering. The range of very small transferred momentais
less easily measured.

In the approximate theories [9, 10], the deviation of
the dependences (g, L) from the Moliéreline profileis
taken into account by theterms|, and I, for which ana-
lytic expressions are given by formulas (10a) and (10b)
where |, and |, are proportional to g and q°, respec-
tively. Calculations of the dependence of the multiple
scattering cross section on the transferred momentum
for particles of different sizes using the Moliére for-
mula showed that at the asymptote the multiple scatter-
ing intensity is described by the law 1(g) O g In this
case, the contributionfrom |, isnot significant. Thiscan
be seen clearly from Fig. 4 which gives various depen-
dences I(q) for 100 nm particles.

It also follows from the results of the numerical cal-
culations that the macroscopic cross sections for single
and multiple neutron scattering at the asymptote have
the same value. From the data plotted in Fig. 4 we can
form an opinion on the quantitative determination of
the “asymptotic limit.” If the value of the scattering
vector g, at which the multiple scattering cross section
agrees with its asymptotic value to within 10% is taken
as the asymptotic limit, we obtain g, = 10w. However,
on the experimental curvesfor multiple neutron scatter-
ing typical dependences for the asymptotic limit are
observed at angles an order of magnitude smaller. This
characteristic of the experimental dependences can nat-
urally be explained by the experimental line profile for
multiple scattering at the domain structure of ferromag-
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Fig. 4. Differential cross sections for multiple scattering
lo(a) (curve 1), 11(0) (2), 15(g) (3), and scattering cross sec-
tion calculated using the general Moliére formula (curve 4)
for 100 nm particles. Curve 5 gives the squared Lorentz
function most frequently used to describe the experimental
curves for multiple scattering at the domain structure of fer-
romagnets.

nets. This is usually described by a squared Lorentz
function which reaches its asymptotic limit | O q*
morerapidly that the M oliére multiple scattering curve.

3. MULTIPLE MAGNETIC
SMALL-ANGLE NEUTRON SCATTERING

Multiple small-angle neutron scattering effects at
magnetic inhomogeneities can be analyzed theoreti-
cally asfor nuclear ones. The only differenceisthat in
this case, the energy associated with the inhomogeneity
isgiven by U =—u - 8B and the Born parameter a in the
formulasfor the single scattering cross sections (3) and
(4) iswritten in the form

_ 2nu (BB
A E

Here E and p are the neutron energy and magnetic
moment, respectively, 0B = B; — B, is the magnetic
contrast, and B, and B, are the magnetic inductions of
the matrix and the inhomogeneity, respectively. For a
ferromagnet with a chaotic domain structure the mag-
netic domains at whose boundaries multiple refraction
takes place act asinhomogeneities.

(22)
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In order to use the conclusions of the theory
described above to analyze magnetic multiple neutron
scattering at the domain structure in a ferromagnet, we
need to make some observations. Thefirst relatesto the
fact that in general the domains are not spherical. How-
ever, all the formulas given above imply that they are.
The possibility of applying the theory to aspherical
inhomogeneities was discussed in [9, 13] for chaoti-
cally oriented particles of arbitrary shape. It was shown
in analyses of multiple scattering using this theory that
the shape of theinhomogeneities does not play asignif-
icant role. Particles of any shape can be considered as
spherical with the characteristic dimension Ry, which
isof the order of magnitude of the cuberoot of theinho-
mogeneity volume: Ry ~ VY3,

The second observation relates to the concept of
contrast in multiple scattering at a domain structure.
Sincein this case the magnetic domains themselves are
the inhomogeneities, the contrast is determined by the
magnetic induction of the domain which is considered
to be avector. Then for the two neighboring domainsin
a ferromagnet with 180-degree domain walls we have
B, = —B, when the inhomogeneity dimension R is the
same as the domain thickness. For a ferromagnet with
a chaotic domain structure the domain thickness is
replaced by some effective radius Ry which is equal to
half the wavelength of an averaged alternating-sign
step function of amplitude is B, and the corresponding
contrast is|dB| = 2B.

Thethird observation concernstheinitial conditions
of the theory which assumes that multiple neutron scat-
tering takes place at dilute systems, for which the ratio
of the volume occupied by the inhomogeneities AV to
the sample volumeV is much lessthan one (AV/V < 1).
A multidomain ferromagnet is undoubtedly a concen-
trated system since, as follows from the above reason-
ing, the analysis of the domain structure as an inhomo-
geneous system is made using the Ising model where
p = 0.5. This may give rise to some characteristic fea
tures mainly associated with the experimental profile of
the multiple scattering curve. This may be why the pro-
file of the experimental curve is closer to the squared
Lorentz function than the Moliére scattering curve.

4. EXPERIMENT

In order to check the conclusions of this multiple
scattering theory experimentally, we used the results of
an investigation of small-angle magnetic neutron scat-
tering in ferromagnetic materials such as pure nickel
and iron, and also in the alloys FezsNiss and FesPt.

The experiment was carried out using the D6 small-
angle neutron scattering device mounted in the hori-
zontal channel of the IVV-2M reactor (Zarechnyi) at
wavelength A = 0.478 nm and angular instrumental line
width wy = 8 min. We used a neutron beam formed in
a dlit geometry. The beam width was 1 mm and the
height varied between 8 and 30 mm. The samples were
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Fig. 5. Field dependences of neutron beam broadening and
domain size for the Invar alloy FesPt. The domain size was

cal culated assuming that the magnetic contrast in the sample
remains constant as the external magnetic field increases,

parallelepipeds or disks of various thickness. In order
to vary the domain size, the metal samples were sub-
jected to plastic deformation and heat treatment, and a
nickel sample with a fine-grained structure was
obtained by thermoplastic deformation. All the mea
surements were made at room temperature.

The experimentally measured neutron beam broad-
ening effects are only of a magnetic nature. This can be
seen from Fig. 5 which gives the field dependence of
the neutron beam broadening for Invar aloy Fe;Pt as an
example. Here and subsequently the neutron beam broad-
ening is taken as the angular value w = (W5 — w()¥2,
wherew; and w, are thetotal half-height widths of the
curve giving the intensity as a function of the scatter-
ing angle with and without the sample, respectively.
An externa magnetic field of several kilo-oersted
causes the neutron beam broadening effect to disappear

and appreciably reduces the small-angle scattering
intensity.

4.1. Dependence of the Neutron Beam Broadening
on the Sample Thickness

Typical dependences of the neutron beam broaden-
ing as a function of the sample thickness for pure iron
areshownin Fig. 6 using alog-og plot. It can be seen
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w, mrad

100

Fig. 6. Experimental dependences of neutron beam broad-
ening on the thickness of pure iron samples after various
treatment: (®) annealing at 1000°C for 2 h; (©) 10% defor-
mation; (0J0) 15% deformation; (A) 25% deformation. The
straight lines show the fitting of the experimental points to
power dependences.

that for al the iron samples exposed to various treat-
ment to change the domain structure, the dependence of
the broadening on the thickness is described by the
power function w [ LP with the exponent B close to
0.5-0.6. This agrees with the conclusions of the
approximate theories put forward above, where therad-
icand expression in formulas (21a) and (21b) hasalog-
arithmic cofactor in addition to thethicknessL. In order
to determine how significantly this influences the pro-
file of the dependence w(L), we cal culated the broaden-
ing directly using the Moliére formula (1) for thishypo-
thetical sample and expressed the results in two vari-
ants: w = f(LP) and w = f(LF[In(4L/l) + InIn(4L/1)]®). It
was found that in the first case the exponent 3 is
10-15% higher than 0.5. Thus, we can assume that the
experimentally determined values of B fal within the
limits of the theoretical thickness dependences and the
experimental accuracy. The spread of points in Fig. 6
can be attributed to the fact that when the thickness
dependences of the neutron beam broadening are mea-
sured using a set of samples, the domain structureisnot
identical. For thisreason it is best to study the thickness
dependence of the broadening by rotating a plane-par-
alel sample about the vertical axis in the beam. The
results of such an experiment obtained using a plate of
ordered Fe;Pt alloy are plotted in Fig. 7. The experi-
mental dependence is accurately described by the
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Fig. 7. Thickness dependence of the broadening obtained by
rotating a planar sample of FesPt alloy measuring 3 x 15 x

15 mm? about the vertical axis.

power law w [ L% which is similar to that observed
for pureiron. In addition, it is easily seen that extrapo-
lating the experimental dependence to zero thicknesses
gives anonzero cutoff on the abscissa. The existence of
a cutoff was discussed in [9] and is a consegquence of
the fact that the argument of the root function in the
expression for w(L) has alogarithmic cofactor in addi-
tion to the thickness. After calculating the broadening
using the general formula (1) and expressing this as a
function of the argument (LIn(...))Y2 we obtained alin-

MEN’'SHIKOV

ear dependence which, when extrapolated to L = 0,
passes through the origin. (Note that the value of w(0)
isnot determined since the multiple scattering theory is
valid for L > 1). This dependence is observed for any
value of the parameter a.

On the basis of the agreement between the experi-
mental and calculated values of the thickness depen-
dences, we subsequently made a complex analysis of
the experimental data in order to determine the effec-
tive sizes of the magnetic domains and the neutron
mean free path using formulas similar to (21a) and
(21b). In this case, we expressed these in the form:

wy = Ky EJ En Inln4|‘D a<l, (239

_ ., 0B L
w, = k’EK/EEnZ InIn2I

6.97 x 10 erg/G and k=

g

B a>1,

(23b)

where kg = 9.85 x
10%* erg/G.

The procedure involved first defining the magnetic
contrast in accordance with the known values of the
induction for these materials, and constructing graphs
of the broadening as a function of the inhomogeneity
size for a single sample thickness over a wide range of
sizes similar to the graphs plotted in Fig. 2. Then, the
experimental values of the broadening were used to deter-
mine the typical domain Size and scattering regime. The
formulas (23) were then used to fit the theoretica thick-
ness dependences to the experimental ones to determine
thefinal domain size and the neutron mean free path. An
example of thisfitting is shownin Fig. 8.

A similar treatment of the experimental data was
made for al the samples. The results presented in Table 2
indicate that iron samples annealed at 1000°C and
deformed by 10% and 15% scatter in the refraction
regime and the deformed nickel samples scatter in the
diffraction regime. However, the alloys FegNiss and

Table 2. Results of an analysis of experimental data on the thickness dependence of broadening. The second column gives
the experimental broadening for samples of thicknessL = 1 cm, the third column gives the exponent in the thickness depen-
dence of the broadening, the fourth column gives the Born parameter, the fifth column gives the effective domain thickness,

and the sixth gives the neutron mean free path. The error in the determination of the exponent iSAf =

+0.05

Sample w, mrad B a R, pm [, um Scattering regime
1 2 3 4 5 6 7
Fe annealed 20 0.51 60 62 82 refraction
Fe 10% deformed 34 0.57 38 39 52 refraction
Fe 15% deformed 36 0.61 22 22 29 refraction
Fe 25% deformed 47 0.54 17 18 23 transition
Ni 40% deformed 38 0.57 1 4 19 diffraction
Ni fine-grained 22 0.45 0.3 1 76 diffraction
FegsNiss 31 0.52 6 11 15 transition
FesPt 65 0.52 8 8 12 transition
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90 No.1 2000



MULTIPLE SMALL-ANGLE NEUTRON SCATTERING

Fe;Pt and 25% deformed iron are located in the transi-
tion region. It can also be seen from Table 2 that sub-
stantial neutron beam broadening is observed for Fe;Pt.
This can be attributed to the fairly small effective size
of the magnetic domains R = 8 um and the high mag-
netic induction B = 21600 G. The smallest average
domainsize R = 1 um with amean free path | = 76 um
was obtained for fine-grained nickel.

By analyzing the neutron beam broadening in an
external magnetic field, we can follow the changein the
domain size during magnetization of the sample. This
isshownin Fig. 5for Fe;Pt aloy. It can be seen that ini-
tially when grain boundary displacement processes
predominate, the size of the domains varies only
dlightly whereas when a field of around 2 kOe is
reached, the domain size increases sharply. This result
was obtained assuming that the magnetic contrast
remains constant with increasing magnetic field. In fact
in the region of the rotation processes the contrast
decreases so that the increase in the domain size at the
concluding stage was not as steep as that shown in the
figure.

4.2. Dependence of Scattering Intensity
on Transferred Neutron Momentum

It follows from the previous analysis that the broad-
ening of a primary neutron beam after its propagation
through an unmagnetized ferromagnetic plate fairly
accurately confirms the conclusions of the theory of
multiple neutron scattering at domains as at inhomoge-
neities of effective radius Ry. The experimentally
observed angular dependence of the magnetic scatter-
ing intensity is not so obvioudly related to the multiple
processes. This is primarily because the multiple scat-
tering cross section at the asymptote goes over to the
single scattering cross section, which also varies as q*
(Porod law). In addition, for high values of q single
scattering effects may be observed at small-scale inho-
mogeneities|ocated within asingle domain. Finally, for
small transferred momenta below the critical value q,
inglastic scattering effects take place at spin waves
which may distort the angular dependences of the mul-
tiple scattering intensity.

In the present study we attempted to isolate these
contributions and estimate their absolute values for
pure metals (iron and nickel) where no small-scalefluc-
tuations of the magnetization occur inside the domain,
and also for Invar alloys FezsNigs and Fe;Pt where such
fluctuations may occur as aresult of the presence of an
inhomogeneous magnetic structure [14] attributed, for
example, to antiferromagnetic interaction between
Fe—-Fe atoms against the background of ferromagnetic
interaction between Ni—Ni and Ni—Fe atoms[15].

Before analyzing the experimentally measured
angular dependences, we make some observations on
the possible influence of vertical divergence on the
dependence 1(q) since a dlit geometry was used in our
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Fig. 8. Dependences of neutron beam broadening on thick-
ness. Circles—measured values, solid curves—fitting using
formulas (23): (1) FesPt; (2) 25%-deformed iron; (3) FegsNiss.

experiment. Taking into account the specific geometry,
we made a theoretical estimate of the influence of ver-
tical divergence on the angular intensity distribution
using well-known techniques [16]. This showed that
for the geometric parameters of our system the influ-
ence of vertical divergence on the function 1(q) is neg-
ligible. This conclusion also follows from the results of
checking these dependences experimentally for various
dit heights before the sample and the counter. These
experiments showed that in our geometry the resolution
of the diffractometer in the vertical plane has no signif-
icant influence on the measured angular dependence of
the intensity, which distinguished our system from a
double crystal spectrometer where these effects are
substantial [17].

The results of an experimental investigation of the
dependences of the small-angle neutron scattering inten-
Sity on g can be seen for samples of pure iron of different
thickness in the annealed and deformed states (Fig. 9). In
the range of transferred momenta g < 0.2 nm* these
dependences are described by the power law I(q) O g%,
which agrees with the conclusions of the approximate
theories [9, 10] and with the numerical calculations
using the Moliére formula (1). It can be seen from
Fig. 10 that the dependences on q are very sensitive to
the external magnetic field as aresult of changesin the
domains under magnetization. The absolute value of
the intensity in small angles is reduced by several fac-
tors of 10 when the sample is transferred from the
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Fig. 9. Experimental dependences of thedifferential neutron
scattering cross section on the transferred momentum et the
asymptote for annealed (O, ®) and 25% deformed (I, m) iron
samples of thicknessL = 1.2 cm (O, O0) and 2.5 cm (e, m).

demagnetized to the magnetized state and the depen-
dence 1(g) O g™ with n = 4 becomes distorted in the
direction of decreasing n when a many-domain sample
is converted to asingle-domain one.

Similar dependences are observed for FezNigs
alloy, as can be seen from Fig. 11 which gives the pro-
file of the scattering curves as a function of the direc-
tion of the magnetic field rel ative to the neutron scatter-
ing vector. However, in the range of small transferred
momenta where multiple processes are observed at the
domain structure, an increase in the external magnetic
field changes the behavior of 1(g) whereas for large q
this influence is small. Here the dependence 1(q) is
described by a power law with n ~ 1.5-2 and is attrib-
uted to single neutron scattering at magnetic fluctua-
tions of the paramagnetic inclusion type in aferromag-
netic matrix. It was shown in [18] that in Invar aloys
scattering at these inhomogeneities is described by a
Lorentz function and the characteristic size of the inho-
mogeneitiesis of the order of afew nanometers. Thisis
significantly smaller than the effective radius of thefer-
romagnetic domain which, according to Table 2, istens
of micron for these alloys.

Experiments to study the angular dependences of
the scattering intensity in a magnetic field in various
directions relative to the scattering vector can also be
used to estimate the contribution to small-angle diffrac-
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Fig. 10. Angular dependences of the multiple neutron scat-
tering cross section for an annealed iron samplein azero mag-
netic field (o) and infields of 0.5 (o) and 2 kOe (o).

tion from inelastic scattering of neutrons at spin waves.
This scattering exists in the range of angles below the
critical value 6, = #%/(2mD), where D is the coefficient
of exchange hardness in the quadratic dispersion law
for the spin waves E = Dg?, mis the neutron mass, and
f is Planck’s constant. The procedure for isolating the
small-angle magnetic inelastic scattering described in
[19] involvesinvestigating the angular dependences for
two directions of the external magnetic field on the
sample, paralel and perpendicular to the scattering
vector. Figure 11 gives these angular dependences for
FegsNigs dloy in the magnetic field H = 4 kOe. It can be
seen that for scattering vectors g < 0.1 nmt in the absence
of a magnetic field I, -¢(q) reaches 10°-10° arb. units
whereas the values of I 4(Q) and I, 54(d) do not

exceed 10* arb. units. Hence, the inelastic neutron scat-
tering intensity is approximately two orders of magni-
tude lower than the multiple scattering intensity at the
domain structure.

By investigating the angular dependences of the
intensity for two directions of the external magnetic
field, we can determine the critical angle 6.0f the scat-
tering processes at spin waves. It can be seen from
Fig. 12 that the difference scattering intensity near zero
angle is negative, then changes sign as the angle
increases, passes through a maximum and then, after
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Fig. 11. Experimental dependences of the neutron scattering
intensity on the transferred momentum at the asymptote for
FegsNigs alloy in azero magnetic field (x) and in afield of
4 kOe paralel (@) and perpendicular (O) to the scattering
vector. Sample thicknessL = 0.7 cm.

reaching a critical value, becomes zero. The dashed
curveinthisfigure givesthe similar differenceintensity
for spin-wave neutron scattering from [19] calculated
for FesNig, alloy allowing for the influence of the
external magnetic field and dipole—dipole interaction.
Also plotted are the results of studying magnetic small-
angle neutron scattering in a sample of ordered Fe;Pt
aloy. The arrows indicate the angular positions corre-
sponding to the experimental values of the critica
angle. These are 80 and 120 min for FeggNigs and FesPt,
respectively. The exchange hardness coefficientsfor the
spin waves D, calculated from these data are 120 and
90 meV A2, respectively, which satisfactorily agree
with the published data[20].

Thus, in measurements of the angular dependence
of magnetic small-angle neutron scattering for unmag-
netized samples of ferromagnetic materials inelastic
spin-wave scattering effects are observed but their
intensity is fractions of percent of the total intensity of
multiple neutron scattering at the domain structure.
Nevertheless, we can assume that spin wave scattering
distorts the behavior of the dependence 1(q) O g when
the angle 6. becomes appreciable as a result of the
smallness of the exchange hardness coefficient D. For
example, this effect is observed in FegNigs (Fig. 11)
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Fig. 12. Angular dependences of the difference intensity of
neutron scattering Iy |q(d) and Iy ;q(d) measured in a

magnetic field of 4 kOe for Invar alloys FeggNiss (0) and
FesPt (@). The arrows indicate the critical angles 6., for the

existence of long-wavel ength spin waves. The dashed curve
gives the difference intensity for FeggNigg alloy calculated

theoretically in [19].

and Fe;Pt alloys for which the angular dependence at
the asymptote obeys the law 1(q) O g rather than
I(g) O g*. In addition the angular dependence of the
small-angle scattering intensity reveals characteristics
which are observed as stepsin alog-og plot. However,
these aspects require further study.

5. CONCLUSION

These numerical calculations of the general Moliére
formula for the multiple neutron scattering intensity
show that its analytic analogs obtained in the approxi-
mationsa < 1[9] and a > 1[10] can be used jointly
to analyze the experimental data on small-angle mag-
netic neutron scattering. Multiple scattering is observed
as a broadening of the primary beam whose thickness
dependence is expressed by the power functionw I LP,
where 3 = 0.5-0.6. Using the corresponding experi-
mental dependences of the broadening on the sample
thickness, we can make approximate estimates of the
effective size of the magnetic domains.

In measurements of the angular dependence of the
small-angle magnetic neutron scattering intensity for
unmagnetized samples, we must bear in mind that there
is aways a range of angles where multiple neutron
scattering is observed at the domain structure. This
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generally corresponds to the range of transferred
momenta q < 1 nm where the small-angle scattering
intensity is extremely sensitive to the external magnetic
field and is approximately two orders of magnitude
higher than the intensity of inelastic scattering at spin
waves which takes place in this range of angles.

The question naturally arises asto whether it is pos-
sible to carry out small-angle neutron scattering exper-
iments to identify spin wave fluctuations without
applying an external magnetic field to the sample. This
need frequently arises because of the design character-
istics of a device where it is difficult to make tempera
ture measurements in an external magnetic field. The
answer to this question may be positive if we only take
into account the range of small transferred momentain
which multiple neutron scattering effects are small.
Information on spin fluctuations is usually only con-
centrated in that part of the angular dependence where
the exponent inthe law | 00 g™ is close to two.
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Abstract—Photoprocessesinitiated on the surface of porous silicon irradiated with laser radiation with various
wavelengths (A = 266, 337, and 532 nm) in awide range of intensities (up to 2 x 10’ W/cm?) were investigated.
L aser-induced luminescence and laser mass-spectrometry were used as experimental procedures. X-ray reflec-
tion was used to determine the parameters of the porous silicon films. The photoluminescence spectra obtained
at different wavelengths and low intensities were analyzed. This analysis showed that for an optically thin layer
of porous silicon the luminescence spectrum does not depend on the wavelength of the exciting radiation. This
indicates the existence of a separate system of levelsin porous silicon that are responsible for the luminescence.
The behavior of the photoluminescence spectra as a function of the intensity g of the exciting radiation was
investigated. It was shown that the luminescence intensity isanonlinear function of g. At high intensities of the
exciting radiation, the luminescence intensity saturates and a short-wavel ength shift of the spectrais observed;
thisis due to the high concentrations of photoexcited carriers. This increases the probability of the experimen-
tally observed nonequilibrium photodesorption of H, and Si from the surface of porous silicon. © 2000 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

The steady interest in the photophysical properties
of nanoporous silicon is due primarily to the fact that
this material is viewed as a promising materia for
developing a new generation of optoelectronic devices
[1]. A unique photophysical property of nanoporous
silicon is its photoluminescence, discovered by Can-
ham in 1990 [2] (bulk silicon is an indirect gap semi-
conductor, and radiative transitions are strongly sup-
pressed in it). However, even though there are many
works devoted to this problem, the reason for and the
physical mechanisms of photoluminescence of porous
silicon are still not completely understood [3].

Asiswell known [3-6], porous silicon consists of
an aggregate of nanocrystals separated by a character-
istic distance which is aso of the order of severa
nanometers. Such a structure possesses avery high spe-
cific surface area, reaching of the order of 300 m?/cmd.
Existing models explaining the intense visible-range
photoluminescence from porous silicon can be
reduced to two alternatives. The first model asserts
that transitions between size-quantization levelsin sil-
icon nanocrystals are radiative [ 7-9], and the surface
istreated as a source of a nanoradiative recombination
channel, where the presence of dangling bonds sup-

presses luminescence. Here, the smaller the character-
istic size of the nanocrystals, the shorter the wave-
length of the observed photoluminescence is. In the
second model, silicon compounds formed as a result
of anodic etching or localized states on the surface of
nanocrystals (surface complexes Si-H, and oxygen
vacancies) play the main role in the photolumines-
cence [10, 11]. In this case, the size-quantization lev-
els determine the absorption, but they bear no relation
to luminescence.

There recently have appeared works endeavoring to
combine certain characteristic features of these two
models in order to explain the photoluminescence of
porous silicon [12, 13]. In this approach it is assumed
that the absorption spectrum of porous silicon can
indeed be explained by size-quantization effects, and
surface complexes of the type Si-H, passivate the dan-
gling bonds and close the nonradiative relaxation chan-
nels, while aradiative transition occurs with participa
tion of localized levels associated with the surface and
with the position of the size-quantization levels in the
nanocrystals themselves. This makes it possible to
unite the size-quantization shift of the photolumines-
cence band and the high efficiency of the photolu-
minscence.
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M ost works on the photoluminescence of poroussil-
icon have been performed for low (up to 3 W/cm?)
power densities of continuous-wave exciting laser radi-
ation But, even in these works [7, 10] have shown that
as the radiation power increases, the photolumines-
cence spectra undergoes a shift and distortion, which
seem to be due to a characteristic feature of the energy
structure of the nanacrystals and its behavior under the
conditions of strong excitation at high intensities
(10%-10° W/cm?). Investigation of the processes giving
rise to such evolution of the photoluminescence spectra
can give additional information about its mechanismin
porous silicon. Thisis how of great interest. Moreover,
these investigations make it possible to understand the
characteristic features of the el ectronic excitation rel ax-
ation and transfer processes and to answer questions
concerning the possibility of photoprocesses, such as
photodesorption, photodissociation, and ablation,
occurring on the surfaces of nanocrystals of porous sil-
icon [12, 14].

In summary, our objectivein thiswork wasto inves-
tigate the photoprocesses occurring on the surface of
porous silicon under irradiation with high-power laser
radiation.

2. EXPERIMENTAL PROCEDURE
AND SAMPLES

Layers of porous silicon were obtained by anodiza-
tion in an electrolyte (HF(49%) : C,HsOH ina1:2
volume ratio) in a two-chamber electrochemical cell.
Platinum was used as the cathode. After anodization,
the samples were rinsed in deionized water and dried in
astream of dry air.

One of the main stepsin the sample preparation pro-
cessis choosing the film formation regimes. On the one
hand, it is known that porous silicon films can possess
alayered structure; different layers have different pho-
toluminescence properties. Indeed, the properties of the
porous-silicon layer formed can vary during the anod-
ization process [15], and under certain conditions even
the etching mechanism changes. On the other hand, it
has been shown that the photol uminescence spectracan
depend strongly on the wavel ength of the exciting radi-
ation. Effects associated with the nonuniformity and
different excitation apparently can be distinguished if
the film of porous silicon is sufficiently thin so that it
can be treated as being uniform and so that the excita-
tion conditions at different wavelengths do not differ
much. At the same time, preliminary investigations
have shown that immediately after the onset of anod-
ization there exists a certain period during which a sta-
tionary state of etching is established (this period
decreases with increasing anodization current density).
This suggests that a layer with variable characteristics,
which is determined by a transition from the etching
regime of the initial smooth surface to a stationary
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regime in which extended pores are formed, should
exist on the outer boundary. The thickness of this layer
presumably could be several diameters of an average
pore. Several samples were prepared using different
current density j and anodization duration t with a sur-
facelayer in theform of athin film of poroussilicon and
one sample was prepared in the form of athick film. The
constant value of the charge Q = jt = 0.15 C/cm? with dif-
ferent current densities was chosen as the parameter for
thin films: j = 1, 10, and 50 mA/cm?. In what follows
these samples are designated asnos. 1, 2, and 3. Wafers
of standard (100) p-type KDB10 silicon (resistivity p ~
10 Q cm) were used as substrates. To prevent variance
of the parameters, due to differences between wafers,
from having an effect, the entire series of samples was
prepared from the same wafer. The sample no. 4 witha
thick film was obtained with Q = 0.85 C/cm? (j =
12 mA/cn?, t = 425 s, KDB12 substrate).

For thin films, the thickness and effective porosity
were determined by measuring the angular dependence
of the intensity of the mirror X-ray reflection near the
angles of total external reflection [16]. The thickness of
the thick film was estimated from the image of the
cleavage surface in an optical microscope and was
~10 pm.

To study the photoluminescence of poroussiliconin
awide range of intensities of the exciting radiation and
for various wavelengths, a laser fluorimeter, equipped
with a repetitive-pulse YAG-Nd** laser with the har-
monics A = 532 and 266 nm and a nitrogen laser (A =
337 nm). The pulse duration was 10 ns. A collection of
interchangeabl e filters and a system of focusing lenses
made it possible to change the power density of the
laser radiation at the sample from 7 x 10* to 107 W/cm?
for A = 532 nm and from 10° to 4 x 10° W/cm? for A =
266 nm. The power density of the nitrogen laser was
10* Wicm?,

The possible irreversible photoprocesses that could
be initiated on the surface of porous silicon by high-
power laser radiation (photodesorption, photodissocia-
tion, and ablation) were traced by | aser-mass spectrom-
etry [12].

In summary, the combination of methods used made
it possible to monitor the development and structure of
the porous silicon films and to investigate the photopro-
cesses occurring in porous silicon irradiated with high-
power laser radiation, starting from photoluminescence
and ending with photodesorption and ablation.

3. EXPERIMENTAL RESULTS

The results of X-ray reflection measurements of the
gructural parameters of the films are presented in the
table.

Experiments with pulsed pumping were performed
using the following wavelengths of the exciting radia-
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tion: A = 532, 337, and 266 nm. Since specialy pre-
pared samples with very thin porous layers were used
(d =105, 92, and 85 nm), the radiation with each wave-
length could be absorbed over the entire depth of the
porous layer. This made it possible to decrease (a) the
effect of the structural nonuniformity of the porous sil-
icon over depth on the experimenta results [17] and
(b) the effect of a difference in the absorption coeffi-
cients for the first two wavelengths, which in the case
of thick films always results in a mismatch between the
depths of the luminescing regions. We also note that by
choosing sampleswith athin porous|ayer it ispossible,
according to our estimates, to eliminate any effect due
to the reabsorption of the characteristic luminescence
in the porous-silicon layer. Reabsorption of photolumi-
nescence must be taken into account only for thick-
nesses of such samples greater than 10 um.

The luminescence spectra for thin films are pre-
sented in Fig. 1. It is evident that the positions of the
maxima in the photoluminescence spectra of porous
silicon films obtained with different current densities
are different. A large shift into the short-wavelength
region corresponds to a high current density. This
agrees with the well-known result that films formed
with ahigh current density have smaller silicon nanocrys
tals. It is dso evident that on switching from A = 532 nm
to A = 266 nm the maximum of the spectrafor samples
nos. 1 and 2 shifts into the short-wavelength region,
while the position of the spectrum of sample no. 3
remains virtually unchanged. For comparison, the
spectrafor sample no. 4 with athick film of poroussil-
icon, for which this shift is greatest, 34 nm, is pre-
sented in Fig. 2. The results obtained for the shift
agree qualitatively with the results of other investiga-
tions for comparatively thick films of porous silicon
(d>1 um) [9]. Apparently, the observed dependence
of the shift on the film thickness and on the conditions
of formation (porosity and current density) is more
important. As one can see from the plotsin Figs. 1 and 2,
the shift of the maximum of the photoluminescence
spectrum decreases monotonically with thickness. It
is15and 10 nm for samplesnos. 1 and 2, respectively.
For the thinnest sample (no. 3, thickness d = 85 nm)
this shift is virtually absent, and the spectra obtained
at three wavelengths (266, 337, and 532 nm) areiden-
tical to within the limits of the experimental error.

The physical reason for the observed shift could be
the difference not only in the optical thickness of the
sample but also in their porosity. Indeed, samples with
a higher porosity typically have smaller nanocrystals
and, asis well known, long-wavelength radiation (A =
532 nmin our case) will be absorbed only by relatively
“large’ crystalites, whose luminescence spectrum is
shifted into the “red” region of the spectrum. But, then,
the largest shift of the spectra should be expected for
the third sample, for which this shift is absent. To con-
firm the arguments presented above, a control experi-
ment was performed using thin samples of nanoporous
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Fig. 1. Photoluminescence spectra of samples of poroussil-
icon. (1) sample no. 1, A =532 nm, (1) sampleno. 1, A =
266 nm; (2) sampleno. 2, A =532 nm, (2) sampleno. 2, A =
266 nm; (3) sampleno. 3, A =532 nm, (3') sampleno. 3, A =
266 nm, (3") sample no. 3, A = 337 nm. Laser power flux

density gpeg = 2.5 x 10° W/cm? and ggg, = 2 x 10° W/em?.

silicon, whose luminescence spectrum with a maxi-
mum in the region 580-610 nm indicates that the char-
acteristic size of the crystallitesis very small. However,
even in this case, good agreement was observed
between the luminescence spectra for excitation with
radiation with A = 532 and 266 nm.

Therefore it can be concluded that the shift of the
photoluminescence spectra in the thicker samples
(nos. 1 and 2 and aso no. 4) is due precisely to the dif-
ferent absorption coefficient, more accurately, the dif-
ferent “optical thickness’ for different wavelengths.
For sample no. 3 the optical thicknesses for all excita-
tion wavelengths are the same.

In thick samples the short-wavelength radiation
(with A = 266 and 337 nm and two to three orders of
magnitude larger absorption coefficient than for A =
532 nm) excites the top layer, where the porosity is
greater than the average porosity of the sample and
which is more strongly oxidized. For this reason, the
spectrum of such samples will be shifted into the short-

Structural parameters P and d of films of porous silicon
according to measurements performed by the method of total
external reflection of X-rays[21]

Sample no. P, % d, nm
1 58+ 1 105+1
2 38x1 92+1
3 55+ 1 85.0+ 0.5

Note: P isthe porosity; d isthe average film thickness.
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Fig. 2. Photoluminescence spectraof asample of poroussil-
icon under excitation with radiation with A = 532 and
266 nm.

wavelength region compared with the spectrum
obtained by excitation with A = 532 nm radiation, for
which nanocrystals are excited on the surface and in the
interior volume of the porous layer.
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Thus, we arrive at the following important conclu-
sion. In sampleswith the same optical thickness, for the
entire excitation spectrum lying above the absorption
edge, the photoluminescence spectrum of porous sili-
con does not depend on the excitation wavelength (in
our case for radiation with A < 532 nm). Under these
conditions, irrespective of the photon energy, after
excitation the charge carriers relax nonradiatively on a
separate system of levelsin nanocrystals of porous sil-
icon, and luminescence occurs from this system.

We shall now examine the behavior of the photolu-
minescence for various intensities of the exciting radi-
ation. Figures 3 and 4 show the dependence of the pho-
toluminescence intensity of the same samples on the
radiation power q for wavelengths A = 266 and 532 nm,
respectively. The laser fluorimeter was tuned to the
wavelengths corresponding to the maxima of the pho-
toluminescence spectra for small g. The nonlinear
dependence of the photoluminescence intensity for g >
7 x 10° W/en? at A = 266 nm and g > 2 x 10° W/cm? at
A =532 nm with the intensity | subsequently reaching
values for which the photoluminescence saturates is
especially interesting.

One explanation for the experimentally observed
character of the dependence of | on qis saturation of the
excited states. Indeed, sincethelifetime of the photoex-

0.2+ i
i
i : it
' i ! ; @
X &
*‘} : 0.1F T
0.251 i §
s ¥
Ei
3
P 0 5 10 15 20
0 100 200 300 400
g, 103> W/cm?

Fig. 3. Photoluminescence intensity versusthe power density q of the exciting radiation for samplesnos. 1, 2, and 3. The wavelength

isSA =266 nm.
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Fig. 4. Photoluminescenceintensity versusthe power density q of the exciting radiation for samplesnos. 1, 2, and 3. The wavelength

isA =532 nm.

cited carriersin porous silicon is of the order of T ~ 10—
100 ps[3, 4], it can be expected that carriers are effec-
tively transferred into excited states under our experi-
mental conditions. Estimates made on the basis of [18]
show that an appreciable deviation from alinear depen-
dence 1(qg) should be expected for

hw
> =
Qo 2 ey
where ¢ is the absorption cross section of the radiation
exciting the luminescence.

For A =532 nm g, > 108 W/cm?, and for A = 266 nm
Qo > 2 x 10* W/cn?. It is evident that the experimental
dependences confirm these estimates.

Thus, high concentrations of photoexcited carriers,
for which, for example, nonradiative Auger recombina-
tion of carriers can be significant [19], will correspond
to the flux densities of the exciting radiation (q =
107 W/em? for A = 532 nm) which were realized under
our experimental conditions.

To obtain amore complete picture of the behavior of
the photoluminescence for various intensities we must
examine the photoluminescence spectra.

The photoluminescence spectra obtained for the
same samples with various limits of g and pump wave-
lengths A = 266 and 532 nm, respectively, are displayed
in Figs. 5 and 6. It is evident in the figures that as the
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intensity of the laser radiation increases, the spectra
shift into the short-wavelength region. The shift of the
maxima of the photoluminescence spectra with excita-
tion by light with wavelength A = 266 nm is A\ = 35,

I, arb. units
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Fig. 5. Photoluminescence spectra of samples of poroussil-
icon under excitation with A = 266 nm radiation for two val-

ues of the power density: g, = 2.5 x 10°W/cm? and g, =
10* Wicm?: (1) sample no. 1 with g4, (1) sample no. 1 with
0y (2) sample no. 2 with gy, (2) sample no. 2 with gy;
(3) sample no. 3 with gy, (3') sample no. 3 with gs.
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I, arb. units
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Fig. 6. Photoluminescence spectra of samples of porous sil-
icon under excitation with A = 532 nm radiation for two val-
ues of the power density: g, = 2 x 10° W/cm? and q, =
2.5 x 10° W/em?: (1) sample no. 1 with g, (1') sample no. 1
with g; (2) sample no. 2 with gy, (2') sample no. 2 with gy;
(3) sample no. 3 with gy, (3") sample no. 3 with g,. Thedis-

tortion of the spectrain the range 550-570 nm is caused by
the OS-23-1 filter, which cuts off A = 532 nm radiation.
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Fig. 7. Characteristic mass spectrum under the action of

radiation with g = 5 x 106 W/cm? on the surface of the
porous-silicon sample.

30, and 25 nm, respectively, for samples nos. 1, 2, and
3 (Fig. 5); for excitation with light with wavelength A =
532 nm the shift isAA =45, 40, and 5 nm, respectively,
for samplesnos. 1, 2, and 3, respectively (Fig. 6).

Time-resolved spectroscopy [9, 10, 20] records the
shift of the maximum of the photoluminescence with
time into the long-wavelength region, i.e., “fast” relax-
ation, with atime of the order of 10 ns; radiative relax-
ation occurs in the short-wavelength range; “sow”
relaxation (1 ~ 10-100 ps) occurs in the long-wave-
length range [3, 9]. Some investigators[9] attribute this
to the fact that in smaller nanocrystals (and, corre-
spondingly, shorter-wavelength  photoluminescence
spectrum), the radiative relaxation time is shorter than
in nanocrystals with alarger characteristic size.

Thus, the short-wavelength shift of the photolumi-
nescence spectrum of porous silicon with increasing q
can be explained by the fact that in this case the smaller
nanocrystals, for which the dependence of | on qistill
linear, start to make alarge contribution to the photolu-
minescence, while in large nanocrystal s photolumines-
cence starts to saturate.

It should also be noted that the magnitude of the
shift of the maximum of the photoluminescence with
increasing g is directly proportional to the thickness of
the sample. This can be explained by the fact that the
nanocrystalsin athinner sample are more uniform with
respect to their characteristic size and therefore
undergo saturation for close values of g.

M ass-spectrometric investigations showed that for g
ranging from 3 x 106 to 8 x 106 W/cm? photodesorption
of H, and Si is observed simultaneously at values for
which photoluminescence saturates. The characteristic
mass spectrum is shown in Fig. 7, and the interpreted
mass spectrum is displayed in Fig. 8. Generally speak-
ing, the high carrier densities realized under our exper-
imental conditions on nanocrystals should lead to a
sharp increase in the probability of surface photopro-
cesses, such as photodesorption, observed in our exper-
iments, and photodissociation. Efficient laser photoox-
idation is possible. On the other hand, the observed
photodesorption, in principle, increases the number of
dangling bonds and therefore also the number of non-
radiative relaxation channels. This mechanism can lead
to anirreversible degradation of luminescence.

The dependence of the luminescence intensity at the
maximum of the spectrum on the time or on the number
of laser pulsesisdisplayedin Fig. 9 for A =532 nm and
q=8x 106 W/cm?. It isevident that for 2000 pulsesthe
intensity decreases by 40%.

As the intensity of the exciting radiation increases
further (above 8 x 106 W/cm? for A = 532 nm), a sharp
and irreversible decrease in the photoluminescence
intensity occurs. Mass-spectrometric investigations
show that in this case the following products of laser
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Fig. 8. Interpreted mass spectrum under the action of radia-

tion with g = 5 x 10% W/cm? on the surface of a porous-sil-
icon sample.
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Fig. 10. Characteristic mass spectrum under action of radi-

ation with g = 2 x 107 W/cm? on the surface of asample of
porous silicon.

action areformed: H,, Si, C,H,, and SO (Figs. 10, 11),
which are characteristic for ablation and destruction of
the porous layer [21].

4. CONCLUSIONS

Photoprocesses occurring under the action of laser
radiation on the surface of porous silicon were investi-
gated in awide range of intensities, up to ~10” W/cm?,
for wavelengths A = 532, 337, and 266 nm.

It was shown that samples with the same optical
thickness for the entire excitation spectrum lying above
the absorption edge, the photoluminescence spectrum
of porous silicon does not depend on the excitation
wavelength (in our case for radiation with A < 532 nm)
in the linear region of the dependence 1(q). Under these
conditions, irrespective of the photon energy, after
excitation the charge carriers relax nonradiatively on a
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Fig. 9. Peak intensity of the luminescence of sample no. 3
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Fig. 11. Interpreted mass spectrum under action of radiation

with q = 2 x 10" W/cm? on the surface of asample of porous
silicon.

separate system of levelsin nanocrystals of porous sil-
icon, and luminescence occurs from this system.

The nonlinear character of the dependence of the
photoluminescence intensity on g, due to the high level
of excitation of the semiconductor, was observed
experimentally.

The shift of the luminescence spectrum as a func-
tion of the intensity of the exciting radiation into the
short-wavel ength region of the spectrum was observed
and investigated.

Photodesorption with formation of H, and Si was
observed for q ~ 8 x 105 W/cm?.

It was shown that nonequilibrium photodesorption
gives rise to new nonradiative relaxation channels on
account of an increase in the number of dangling
bonds. For g > 9 x 106 W/cm? and A = 532 nm, asharp
decrease in the photoluminescenceintensity on account
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of an increase in the nonradiative relaxation rate as a  10. K. L. Narasimhan, S. Banerjee, A. K. Srivastava, et al.,

result of heating and ablation was observed.
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Abstract—The specific heat of atwo-dimensional spin gap system SrCu,(BOj), realizing the Shastry—Suther-
land model was measured between 1.3 and 25 K under various magnetic fields up to 12 T. The analysis based
on an isolated dimer model in a low temperature region revealed that the value of the spin gap at zero field is
A =344K. It turned out that A decreases in proportion to H due to the Zeeman splitting of the excited triplet
levels. This simplest model, however, fails to reproduce the result in a high-temperature region, suggesting
rather strong spin—spin correlation of the system. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Exactly solvable models have been extensively
studied in the area of strongly correlated electron sys-
temsfor the purpose of €lucidating various exotic phys-
ical phenomena because some rigorous results can be
derived from them, sometimes providing us a crucial
key to solve underlying problems of the phenomena.
Such models, even if being far from realistic, can
remain tantalizing theoretical subjects owing to the
beauty of the solutions. For example, Majumdar and
Ghosh first proved that an exact dimer ground state for
z one-dimensional spin chain imposed a stringent con-
dition on the first and second nearest neighbor interac-
tions[1]. Stimulated by this discovery, anumber of sys-
tems with the identical exact wave function have been
explored from the theoretical point of view for one-,
two,- and three-dimensions (see, for example [2] and
references therein). However, in spite of extensive
efforts by chemiststo tailor experimental examples, no
material had been discovered for along time.

Recently, we reported the magnetic properties of an
inorganic compound SrCu,(BO3),, which consists of a
two-dimensional orthogonal dimer lattice, concluding
that this material verifies the Shastry—Sutherland
model, which has the exact dimer ground state [3-5].
Although an imaginary lattice Shastry and Sutherland
considered—i.e., atwo-dimensional square lattice with
some additional diagona bonds—differs from the real
one of SrCu,(BOs),, these two are equivaent from a
topologica point view. The value of the spin gap was
estimated from various measurements like measure-

This article was submitted by the authorsin English.

ments of the temperature variation of the magnetic sus-
ceptibility (34 K) [6] and €lectron spin resonance (ESR;
34.7 K) [7]. It was aso found that the spin system for
SrCu,(BOy), isfairly frustrated, located very close to the
critical point (J/J). = 0.70 between the exact dimer state
and the Nédl-ordered state [3, 5]: the ratio of intradimer
and interdimer interactions, respectively, J = 100 K and
J' =68K,is0.68. Furthermore, severa quantized plateaux
were observed in the magnetization [3, 6, 8], which origi-
nates from the extremely localized triplet excitations[5].

In the present paper, we performed the specific heat
measurement of SrCu,(BO3), under magnetic fields H
in order to obtain more information on the exchange inter-
actions as well as the effect of the spin-gapped behavior
upon H. The data were analyzed in terms of an isolated
dimer model, and the spin gap in the absence of the field
was evaluated to be 34.4 K . Furthermore, it wasfound that
application of magnetic fields causes the Zeeman splitting
of the excited triplet states, leading to a H-linear decrease
in the value of the spin gap.

2. EXPERIMENT

The specific heat measurement was performed by a
heat-relaxation method [9] in a temperature range
between 1.3 and 25 K under magnetic fields between 0
and 12 T. A bulk single crystal of SrCu,(BO,), was
used, which was grown by the traveling solvent floating
zone (TSFZ) method with an image furnace using asol-
vent, LiBO, under flowing O, gas (P, = 1 atm,
99.99%). For a detailed procedure of the crysta
growth, see [10]. A piece of the crystal with the
dimensions of 2 x 2 x 1 mm was attached to a sapphire
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substrate by a small amount of Apiezon N grease. The

C/T, mJ/(K* mol
IR mob magnetic fields were applied perpendicular to the ab

1000

SrCu2(BO3)2

800

600

400

200

T,K

Fig. 1. C/T versus T measured at H =0 (@), 6 (0), 9 (a), and
12 T (»). Dotted curves are the calculations based on the
isolated dimer model for A(O) = 34.4 K. Dot-dashed curve

represents the phonon term, BT (B = 0.460 mJ/K* mol).
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Fig. 2. Logarithmic plot of CT2 as a function of 1/T. Solid
lines denote thefit to equation (2). Inset shows the magnetic
field variation of A(H).

plane, i.e., the Shastry—Sutherland lattice. The substrate
was weakly coupled by tungsten wires to a copper heat
sink. A bare chip of Cernox resistance sensor (Lake
Shore) was used as a thermometer to minimize the
addenda heat capacity. The magnetic field dependence
of the thermometer was calibrated using a capacitance
thermometer. The heat capacity of the sample was
obtained by subtracting the addenda heat capacity,
which was determined in a separate run without the
sample. No appreciable magnetic field dependence was
observed for the addenda heat capacity. The resolution
of the measurement was about 0.5%, and the absolute
accuracy determined from the measurement of a Cu
standard was better than 5%. The measurements were
performed with increasing temperature.

3. RESULTS AND DISCUSSION

A total specific heat divided by T, C/T, measured in
the absence of a magnetic field is plotted as a function
of T by closed circlesin Fig. 1. With decreasing T from
15K, C/T rises, reachesaround maximum at 7.5 K, and
then falls rapidly, approaching naught. These behav-
iors, that isto say, the so-called Schottky anomalies are
typical of spin—singlet system with afinite spin gap to
alowest exited state. A gradual increasein C/T with T
above 15 K comes from the phonon term, with is in
genera known to vary as C O BT3. As aso shown in
Fig. 1, qualitatively similar features described above
appear even when magnetic fields are applied, indicat-
ing that the system still has a spin—gapped ground state
at least for H < 12 T. A prominent difference is that a
peak of C/T shiftsto lower temperature with rising H:
the temperature at which C/T-T curve reaches a maxi-
mum (=T,,») for H=6.9and 12 T is, respectively, 7.3,
6.9 and 6.8 K, implying areduction in the actual size of
the spin gap A(H) with H. This is quantitatively dis-
cussed below.

Because of a lack of an appropriate theory for the
specific heat from the standpoint of the Shastry—Suther-
land model, we will analyze the experimental data uti-
lizing the isolated dimer model, where J' is neglected
and only J istaken into consideration. Let us define the
magnetic specific heat under a certain magnetic field H
as C(H). Take the example of H = 0, C(0) is given by
the following formula,

3R(A(0)/T)?exp(A(0)/T)
[1+3exp(A(0)/T)]?

C(0) = 1)

where R is 8.30 J/(K mol) (see, for example, [11]).
Likewise, C(H) for afinite magnetic fieldsis easily cal-
culated. In the low temperature limit, the magnetic spe-
cific heat the isolated dimer model can be reduced to
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the following expression as long as the system isin a
gapful state:

C(H) O T %exp(—-A(H)/T). )

Thus CT?isplotted against /T in alogarithmic scale as
shownin Fig. 2. One can see al dataroughly follows a
linear reversd-temperature dependency. Using the
reduced expression of equation (2), we obtained A(Q) =
BIK,ABT)=275K,A(9T)=225K,and A(12T) =
16.8 K. The deviation from the calculations (the solid
linesin Fig. 2) inlower temperature region, more prom-
inent in case of lower field, isfor amost part dueto the
phonon contribution which is neglected here and will
beincluded later. The obtained values of A(H) are plot-
ted in the inset of Fig. 2 as afunction of H. Itisclear
that A(H) decreases nearly in proportion to H. The ori-
gin of the decrease should be the Zeeman splitting of
the excited states. Namely, a three-fold degeneracy of
the lowest excited triplet states (S= 1) in the absence of
the magnetic field islifted up by applied magnetic field.
A(0) was estimated to be 35.0 K using the following
relation: A(H) = A(O) — gugH, where g is the g-factor of
the Cu?* dectron spin and g is the Bohr magneton. An
isotropic g-vaue, i.e., g = 2.0 was assumed. The obtained
va ue of A(0) isconsstent with that obtained in other mea:
surements using a single crystalline SrCu,(BO;), such as
the magnetic susceptibility (34 K) [6], ESR (34.7 K) [7]
and Boron nuclear magnetic resonance (B-NMR; 36 K)
[12], Cu-NMR (35 K) [12], and neutron scattering
(34K) [13].

Next, let us take a phonon term into consideration.
Then, the total specific heat is given by the sum of the
magnetic and phonon terms, C = C(H) + BT3. Dotted
curves in Fig. 1 denote the results of the global least-
square fit in the T range well below the spin-gap size,
namely, 2.6 K <T<4.8Kfor0T,24K <T<4.1K for
6T,21K<T<35Kfor9T,and 15K <T<28K for
12 T, from which we obtained once again a reasonable
vaueof A(0) =34.4K together with 3 = 0.460 mJ(K* mol)
and g =2.03. The phonon contribution is independently
shown by the dot-dashed curve in Fig. 1, which aso
seems to reproduce the temperature dependence of the
experiment above 15 K.

As demonstrated above, it seems that the isolated
dimer model nicely reproduces the experimental data,
providing aconsistent value of A(0). In ahigher temper-
ature region, however, the deviation between the exper-
iment and the theory is appreciable. One can notice
fromFig. 1 that experimental T, islower ascompared
with the theoretical one in any magnetic field, and
above T, the value of experimental C/T is much sup-
pressed. In Fig. 3, we show the T variation of the mag-
netic entrope of the system for H = 0, which should
reach 2RIn2 ideally in the high-T limit. For compari-
son, atheoretical curvefor theisolated dimer model for
A(0) = 34.4 K is shown by the solid line. The experi-
mental entropy starts to deviate largely from the theo-
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Fig. 3. Magnetic entropy of SrCu,(BOs), at H = 0 (circles).
Solid curve represents the magnetic entrope for the isolated
dimer model for A(0) = 34.4 K.

retical one at around 10 K. For example, the magnetic
entropeat 25 K istill about and 74% of that for theiso-
lated dimer model and 62% of the full entropy. This
indicated that the spin system of SrCu,(BO,), is effec-
tively correlated over much higher temperatures, and
thus consistent with the estimation of exchange con-
stants by Miyaharaand Ueda; J = 100K and J' = 68 K
[5]. Itis noteworthy that the value of Jisidentical with
that of A(O) for the isolated dimer model, and J = 35K
(=A(0)) derived from the isolated dimer model is too
much smaller.

To summarize, we have measured the specific heat
of SrCu,(BOs;), under various magnetic fields. From
the fitting based on the isolated dimer model, the gap
was estimated to be 34.4 K, which isin good agreement
with the values determined from other physical mea-
surements. With increasing H, the gap decreasesin pro-
portion with H. The simple dimer model, however, can
not explain the data at all in higher-temperature, region,
suggesting rather stronger correlation of the spin sys-
tem. We are looking forward to a theory based on the
Shastry—Sutherland model with J and J' to reproduce
our specific heat data over the whole T range.
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Abstract—The spatiotemporal dynamics of asystem of two thin films possessing a resonance nonlinearity and
irradiated on both sides with spatially uniform monochromatic light with the same intensity isinvestigated. The
conditions under which bistability and symmetry breaking occur in the system are obtained. It is shown that
self-pulsations can arise in the system as aresult of the retardation of the light between the films, if the aperture
of the incident beam is sufficiently small, and the dynamical regimes arising in the process are investigated
numerically. As the beam aperture increases, the pulsations break down and a stationary spatially nonuniform
field distribution is established. The transverse structures arising in this case are studied, and the relation
between the symmetry breaking, bistability, self-pulsations, and spatial structures in the system investigated is

established. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In recent years, a great deal of attention has been
devoted to the development of optical methods for
transferring and processing information. One of the
main advantages of optical over traditional methods is
the possibility of using spatialy distributed signals,
which isimpossible in ordinary electronics because of
the extremely long wavelength of the carrier radiation.
In this connection, it is now urgent to study the mecha-
nisms leading to the formation of spatial light struc-
tures (patterns) in laser and nonlinear-optical systems
[1, 2]. Theinvestigations of the spontaneous formation
of patternsin opticsisa so important from the standpoint
of the general theory of nonequilibrium systems, sinceit
is possible to determine the mechanisms leading to self-
organi zation, which are common to optical and hydrody-
namic, chemical, and biologica systems|[3].

Our objective in the present work is to investigate
the spatiotemporal dynamics of the transmission of
light through a system of two thin films of a nonlinear
medium in a more general form than in preceding
works. It has been shown previously that, together with
bistability, in such a system symmetry breaking, where
for identical fieldsincident on asystem from both sides
the reflected fields have different amplitudes [4], and
the appearance of asymmetric structures[5], instability,
and chaos [6] can be observed. We shall show, taking
into consideration the spatial degrees of freedom and
retardation effects, that the spontaneous formation of
spatial structures and temporal pulsations are occur by
the same feedback mechanism in which the phase rela-
tions in the feedback circuit play akey role.

As is well known, the appearance of spatia struc-
turesis closely related with the existence of bistability
in the system [7, 8]. This bistability is even observed in
the presence of a single thin film of two-level atoms
[9-12]. When external feedback, accomplished using a
mirror, isintroduced into the system, more complicated
dynamical regimes, such as the appearance of self-pul-
sations [13-15] and formation of transverse static and
traveling spatial structures [16-19], can appear. A sys-
tem consisting of two thin bistable films is an elemen-
tary abject for studying the effect of feedback in multi-
film systems.

In the present paper symmetry breaking in asystem
of two filmsisinvestigated and the relation of symme-
try breaking with bistability is determined in a more
general case than in [4], specifically, without imposing
any conditions on the phase relations in the films. This
paper is organized asfollows. The model describing the
system under study is presented in Section 2. In Sec-
tions 3 and 4 the stationary states are determined ana-
Iytically and their stability is analyzed on the symmet-
ric and asymmetric branches of the solutions, and the
regions of spatial and temporal instabilities are deter-
mined. In Section 5 the temporal dynamics generated
by instabilities on the symmetric and asymmetric
branches are compared. It is found that stable periodic
pul sations can appear only on the asymmetric branch of
the solution, while on the symmetric branch we
observed only quasistable pulsations, which are due to
switching from one bistable branch to another and
whose decay time increases exponentialy as the dis-
tance between the films increases. Quasipulsations of
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Fig. 1. A system consisting of two films separated by adis-
tanced,; E( *) arethe amplitudes of the fieldsincident on the

first (+) and second (-) films, E(lt) arethe amplitudes of the

fields transmitted through the films, and E(zi) arethe ampli-
tudes of the fields which reach the opposite film.

thiskind have been investigated in the general theory of
differential equations with retardation [20].

In Section 6 it is shown that the temporal dynamics
of the system becomes qualitatively different when the
transverse spatial coordinates are taken into account. In
this case the oscillatory solutions break down and the
system passes into a stationary spatially nonuniform
state, and even an attempt to stabilize the most unstable
static spatial harmonics does not lead to the appearance
of oscillatory solutions, but rather only new classes of
stationary spatially nonuniform solutions arise. The
general conclusions are given in Section 7.

2. MODEL

Let us consider a system of two thin nonlinear films
located at adistance d from one another and separated by
alinear medium with acomplex refractive index n + in'
(Fig. 1). The system is illuminated from both sides by
monochromatic spatially uniform light fields with

amplitudes EE,” and Eg_) , respectively. The amplitudes

of the fields transmitted through the first and second

filmsare E\” and E{”, respectively, and ES” and E{”

are the amplitudes of the fields reaching the opposite
films (see Fig. 1).

We shall use the Bloch eguations for the polariza-
tion and the popul ation difference between the level s of

two-level atomsto describe the interaction of light with
thefilms:

10 .HWE;
= Blo- w)-£p-iE O
dw, W +1
= - JTl +%(E}*RJ+R}*EQ, )
where R, j =1, 2, isthe slowly varying part of the off-

diagonal element of the density matrix of a two-level
atom; W isthe transition dipole moment; T, and T, are
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the longitudinal and transverse relaxation times; w is
the frequency of the incident radiation; and, wy is the
resonance transition frequency of the atomsin thefilm.
The polarization inthe film is P = uNR, where N is the
density of atoms in the film. Taking account the nor-
malization relations

T2 (L)_(.l)o R]
y = =, A - ’ = W'! r, = =
Tl W I J J W (3)
JT.T .
] = EJHTH1 I = 11 21

equations (1) and (2) transform into the following equa-
tions for the normalized polarization and population
difference of atomsin the films:

r = y(=1+id)r; +iygw, 4%

: [

W, = —(w;+ 1)+ é(e}‘rJ —r1}e). (5)
It was shown [6, 11] that the effective field in afilm

can be represented in the form

€ —eE,)+e(2)—|0(rl, (6)

e, = e +&” —iar,, (7)
where a isthe nonlinearity parameter inthefilmandis
given by

_ 2mNLop’T, @®
B hc ’

where L is the film thickness. The relations (6) and (7)
were obtained in the approximation where the film
thicknessis small compared with the wavelength of the
incident radiation.

The propagation of the field in the linear medium
between the films satisfies the diffraction equation,
which can be written in the following operator form as

(1, 1) = pep(is) e@Fita (1), (9)

where, respectively, p = exp(kn'd) are the losses, s =
knd is the phase shift, T is the propagation time of the
light between the fields, ry = (X, y) is the transverse
component of the radius vector of the point (X, Y, 2),
kp = (K. K)) is the transverse component of the total
wave vector k of thelight field, and A isthe transverse
part of the Laplacian. The amplitudes of the fields
transmitted through the first and second films, accord-

ingto[11], are &{” = &{” —iar, and & = &} —iar,,
respectively.
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Fig. 2. Stationary states for the parametersa = 10, A =2, p = 0.5, and y = 0.1. The solid lines mark stable states and dashed lines
mark states which are unstable with respect to perturbationswith 6 = 0. (a) s= 0: bistability on the symmetric branch of the solution;
(b) s=0.51T no symmetry breaking or bistability; (c) s= 1t symmetry breaking.

3. STATIONARY UNIFORM STATES
OF THE SYSTEM

It has been demonstrated in [6, 4] in the particular
case of no offset of the frequency from resonance and s
amultiple of T1that bistability and symmetry breaking
are possible in a system of two films. In what follows,
we shall study the relation between these two phenom-
enain ageneral form.

We obtain the following relations for the stationary
values of thefieldsin the films:

ey = € +iar, +iapexp(is)r,, (10)
€p = e t+iar,+iapexp(is)ry, (11)
ey = 57+ pexp(is)el’, (12)
e = €+ pexp(is)ef”. (13)

Here the stationary values of the polarization and pop-
ulation difference have the form

ne;
r= —~—, (14)
1+le|
1
= —— (15)
1+Ble
where
1 i—A
= —, = =12
P 1+A? 1+A% :
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When the incident fields are the same (gy; = ey,), the
stationary symmetric state e = e, = e, can befound from
the equation

e+i0(r][1+pexp2(is)]e, (16)
1+lel

which iswell known from the theory of bistability [7, 8].
To analyze symmetry breaking we substitute the
expressions (14) and (15) into equations (10) and (11),
and after smple algebraic transformations we obtain

Llan[1-pexp(is)]e
1+B|el|2

e+ |0(r][1—pexp(2|s)]e2.
1+Blej

It isevident from the expression (17) that both parts
contain the same bistable function asthefirst part of equa-
tion (16) with one difference: sisreplaced by s+ 1t It is
obvious from the S shape of this function that the same
value of the right(left)-hand hand part of the expres-
sion (17) can be obtained for different values of e, (&,).
This situation corresponds to the equality (17) with dif-
ferent values of e; on the left-hand side and e, on the
right-hand side, i.e., symmetry breaking with the same
incident fields. It is found that bistability of the sym-
metric solution (16) isrelated with symmetry breaking,
described by the expression (17) by replacing sby s+ 1t
Thiscan be seenin Fig. 2, which shows the dependence
of the stationary population difference in the films on
the magnitude of the incident field g,

€1 = € =

1

(17)
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Fig. 3. Regions of static instability for the parameters in
Fig. 2a, 1 = 50. The dots show the boundaries of the regions
where instability with respect to AH perturbations occurs;
triangles and crosses show the boundaries of regions with
instability with respect to symmetric (dw; = dw,) and asym-
metric (dw, = —dws,) static disturbances, respectively.

It isevident that as s changesfrom s=0 (Fig. 2a) to
s = 1t (Fig. 2c), bistability is replaced by symmetry
breaking for the same values of the population differ-
ence (or light intensity) in thefilms. For an intermediate
value of the phase s (see Fig. 2b) neither bistability nor
symmetry breaking occur in the system. The condition
for the existence of bistability (symmetry breaking) is
determined by the inequality

[2cos(argA) —|A]% + 27|A| <0, (18)
where A =ian[1—pexp(is)]. It transformsinto a simi-
lar condition obtained in [4] under the corresponding
simplifying assumptions.

Figure 2 demonstrates the important role of phase
effects in the transmission of light between the films.
These effects determine the development of spatial and
temporal instabilities, as will be shown below. We note
that an equality similar to equation (17) has been inves-
tigated in [13] in a study of 2t pulsations in a system
consisting of afilm deposited on a dielectric substrate.
Inthiswork e, and e, represent the values of thefield in
successive half-periods of the pulsations, and the tran-
sition from aregime with pulsations to a regime where
only bistability is present, just asin our system atran-
sition from symmetry breaking to bistability, can be
accomplished only by changing the phase relations in
the feedback circuit. Thus, the same algebraic relations
describe the mutually complementary effects observed
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in nonlinear systems: bistability, symmetry breaking,
and 2t pulsations.

4. STABILITY OF STATIONARY STATES

To investigate the stability of a state of equilibrium
with respect to spatiotemporal perturbations (or;, dw;),
we shall linearize the system (4)—(5). Linearizing rela-
tive to disturbances proportional to exp(At + rk-) gives
asystem of equationsfor A:

0 (g, O OfF, O
DDlUlmFlmszlu (19)
0u, D, (0F, 0 0OF,0
H-1+ia+aw, 0 e 5
O . . U
D, =0 0 -1-iA+aw; —ie/ [ (20)
0 0
E%(iej*—arf) %(—iej—arj) v
E aw; exp(io) 0 oU
U, = E 0 aw; exp(—i0) 0% (21)
a . .
E—y?e}* exp(i0) —%ej exp(—i®) 0 E

where F; is the perturbation vector: F; = (&r;, dr] ,

dw)", © =8 + s+ AT, and 8 = k d/k characterizes the
transverse perturbation with wave number k5. Since 6
and A appear in the expression for © in the same way,
the spatial and temporal instabilities manifest them-
selvesin the same way.

The equation (19) is a characteristic quasipolyno-
mial, in which the unknown quantity A appears in the
form of powers A" and in the form of terms of the form
exp(-At). The boundaries of stability are obtained from
equation (19) by making the substitution A =iQ, where
Q isareal quantity. If Q =0, we have aregion of insta-
bility relativeto “static” disturbances (with zero tempo-
ral frequency), and in the opposite case we have regions
of instability relative to disturbances of the Andronov—
Hopf (AH) type. Curves of neutral stability of the sys-
tem with respect to static (marked by triangles and
crosses) and AH (marked by dots) instabilities on the
symmetric branch for parameters corresponding to
Fig. 2aaredisplayed in Fig. 3. It is evident that the AH
zones are embedded in the static zones, so that their
presence results only in an increase in the order of the
instability of the system. A numerical experiment
shows that this has no qualitative effect on the dynam-
ics of the system. As the retardation time T increases,
the number of such zones increases, as all new roots
intersect the imaginary axis, while existing zones
approach the boundary of static instability.
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Fig. 4. (a) Stationary curve for the parametersa =20, A=2,p=0.5,s=1, y=0.1, and T = 10. The solid lines mark stable states,
the dashed lines mark states whose instability is determined primarily by static perturbations with 6 = 0, and the thick lines show
states which are unstable with respect to static perturbationswith 6 # 0 and with respect to AH perturbations. (b) Boundaries of the
neutral stability of states corresponding to the part of the asymmetric branch in the left-hand rectangle in Fig. 4a. (c) Boundaries of
neutral stability of the states lying on the part of the asymmetric branch in the right-hand rectangle in Fig. 4a. The triangles show the
boundaries of stability with respect to static perturbation; the dots show the boundaries of stability with respect to AH perturbations.

As one can see from the expression for ©, a dis-
placement along sin it is compensated by an opposite
displacement along 6. If for such a change in s the
quantitiesg(w;, r;), satisfying equation (19), once again
correspond to stationary states of the system, then the
instability zones merely shift along the 6 axiswithout a
change in form. Such a situation occurs in the case of
the symmetric branch considered above, since the val-
ues of g, determined by equation (19), remain station-
ary values of the system as a function of s because the
incident field is correspondingly adjusted according to
the expression (16).

For parameters corresponding to the case in Fig. 23,
the regions of instability marked by trianglesin Fig. 3
are responsible for the development of symmetric per-
turbations (dw; = dw,), while the region marked by the
crosses corresponds to the development of asymmetric
perturbations (dw; = —OW,).

We shall now investigate theinstability on the asym-
metric branch of the solution. Analysis shows that a
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spatiotemporal instability on the asymmetric branch is
possible only if afork-type bifurcation, corresponding
to the appearance of asymmetric solutions, becomes
subcritical, which is achieved by increasing the nonlin-
earity parameter a. An example of thisis presented in
Fig. 4. Figure 4adisplaysthe stationary dependences of
w; on the incident field g,,. Regions of instability, cor-
responding to the stationary states on the asymmetric
branch located in the left- and right-hand rectangles in
Fig. 4aare presented in Fig. 4b. To save space, we show
only the zones corresponding to the upper part of the
asymmetric branch, since the zone on the bottom part
of the branch hasasimilar form. It followsfrom Fig. 4b
that the states marked by the thick line in Fig. 4a are
unstable with respect to static perturbations with 6 £ 0,
i.e., here spatial structures can arise. Moreover, these
states are unstable with respect to AH perturbations,
and zones of thisinstability do not overlap with regions
of staticinstability for 0 8<0.25,0.75<6< 1.25, and
so on, which indicates the possibility of the excitation
of pulsations. In contrast to the situation on the sym-
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metric branch, the regions of instability on the asym-
metric branch do not shift along the 8 axis as s varies,
but rather they are compressed or stretched in the verti-
cal direction, since the relations between the stationary
values of g(w;, r;) in the two films change. One of the
minima of the curve of neutral stability with respect to
the static perturbations aways lies on the 8 = 0 axis,
just asin Fig. 4b.

The stationary states on the part of the asymmetric
branch located in the right-hand rectangle in Fig. 4aare
unstable for w; ranging from -0.41 to —-0.03 with
respect to static disturbances with any value of 6,
including 6 = 0. As aresult of this, spatially uniform
disturbances, transferring the system into stable sta-
tionary states existing for given parameters, will
develop. In turn, the regions of static instability also
contain regions of AH instability and a secondary static
instability, which only increase the order of theinstabil-
ity of the solutions, and just asin the case of embedded
AH zones on the symmetric branch, they have no qual-
itative effect on the dynamics of the system.

5. TEMPORAL DYNAMICS

We shall consider first the case where the aperture of
the incident light beam is comparatively small, so that
only the zero spatial harmonic can be excited. In this
case, only theinstability onthe® =0 axisinFigs. 3and
4 need be considered.

As aready mentioned, the regions of AH instability
on the symmetric branch aways lie inside the static
zones, in contrast to the related system of a thin film
with a mirror [16], which makes it difficult to obtain
AH pulsations, similarly to [16], since after the tran-
sient process a stationary stable state is established in
the system. However, in [6, 13], where differentia
equations with aretarded argument reduced in the limit
of very large retardation T — oo to discrete mappings,
