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Abstract—The results of a search for galaxies with straight structural elements, usually spiral-arm rows
(“rows” in the terminology of Vorontsov-Vel’yaminov), are reported. The list of galaxies that possess (or
probably possess) such rows includes about 200 objects, of which about 70% are brighter than 14m. On
the whole, galaxies with rows make up 6–8% of all spiral galaxies with well-developed spiral patterns.
Most galaxies with rows are gas-rich Sbc–Scd spirals. The fraction of interacting galaxies among
them is appreciably higher than among galaxies without rows. Earlier conclusions that, as a rule, the
lengths of rows are similar to their galactocentric distances and that the angles between adjacent rows
are concentrated near 120◦ are confirmed. It is concluded that the rows must be transient hydrodynamic
structures that develop in normal galaxies. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The long, straight features found in some galaxies,
which usually appear as straight spiral-arm rows and
persist in spite of differential rotation of the galaxy
disks, pose an intriguing problem. These features,
first described by Vorontsov-Vel’yaminov (to whom
we owe the term “rows”) have long escaped the
attention of researchers. They have attracted interest
in recent years owing to a series of papers by Chernin
et al., who described straight structural rows in the
nearby galaxies M101 and M51 (see [1] and refer-
ences therein) and suggested a qualitative interpre-
tation of these features. They linked the formation of
such rows to the fact that powerful shock fronts form-
ing along spiral arms have a tendency to straighten
and become flat, so that sites of shock-triggered star
formation can form linear structures. This raises the
question as to what factors determine the conditions
for the development of rows. To answer this question,
we must analyze data for as many galaxies as possible
whose spiral patterns exhibit these features.
Chernin et al. [1] described 15 spiral galaxies with

rows, which they found primarily by inspecting the
NASA Atlas of Galaxies [2]. It was shown that, as
a rule, the row lengths are similar to their galacto-
centric distances and that these features are found
in both two-armed (M51, NGC4303) and multi-
armed (M101, NGC1232) galaxies, which appear to
be quite normal as far as their integrated parameters
are concerned. More extensive samples are required
to estimate the rate of occurrence of galaxies with
rows.
In the current paper, we study a sample of several

thousand spiral galaxies whose Palomar sky atlas
1063-7729/01/4511-0841$21.00 c©
images were reproduced by Vorontsov-Vel’yaminov
and analyze the general properties of these objects.

2. THE SAMPLE OF GALAXIES
WITH STRAIGHT ROWS

To identify galaxies with rows, we inspected about
7000 photographs stored in the collection of the
Sternberg Astronomical Institute, which consists
of enlarged reproductions of nonoverexposed blue
images of (mostly spiral) galaxies that are, with
few exceptions, brighter than 15m, adopted from
the Palomar sky atlas. The collection contains
about one-fourth of all galaxies north of δ = −45◦
catalogued in the five volumes of the Morphological
Catalog of Galaxies of Vorontsov-Vel’yaminov [3]. It
lacks, however, nearby galaxies with large angular
diameters. Excluding nonspiral galaxies and galaxies
with poorly defined morphological structure leaves us
with 4200 objects, which make up the basic sample
used below.
An inspection of the photographs enabled identi-

fication of about 200 bona fide galaxies possessing
(or likely possessing) straight rows, which make up
about 5% of all the galaxies considered. Figure 1
shows several galaxies with rows by way of example.
Inmost cases, the rows appear as straight stretches of
spiral arms (or, more rarely, of ring-shaped features),
where they form regular hexagonal structures. How-
ever, the relationship between these straight rows and
a regular pattern is by no means evident. Linear
features such as bars are not considered to be “rows.”
The mean magnitude of galaxies with rows is ap-

proximately the same as that of galaxies without them
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. The most typical examples of galaxies with rows.
(∼ 14m), although the scatter of the magnitude dis-

tribution is large in both cases. However, identifying

galaxies with rows is undoubtedly more uncertain
among faint systems. Some galaxies with rows could

be overlooked due to insufficiently good seeing, es-

pecially in the case of faint galaxies. On the other
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hand, if identification is based on a visual inspection
of photographs with insufficient resolution, this same
factor could yield false detections of rows, which then
contaminate the final sample. The subsample of
galaxies brighter than 14m contains about one thou-
sand objects. Of these, we found 157 galaxies (about
15%) exhibiting rows. The sample size decreases
substantially as we consider brighter galaxies. For
example, the NASAAtlas of Galaxies [2] gives photos
of about 200 nearby galaxies with well-defined spiral
arms, of which about 15 objects [1] exhibit well-
defined rows, corresponding to about 8% of the entire
sample, although the statistical error of this fraction
is rather high.

The table provides information on the entire sam-
ple of galaxies with rows. Its columns give (1) the
name of the galaxy according to the PGC and NGC
catalogs; (2) its morphological type; (3) its integrated
magnitude B0 corrected for Galactic extinction and
the inclination of the galaxy to the line of sight; (4) its
heliocentric radial velocity V0; (5) its absolute magni-
tudeMB (H0 = 75 km/s Mpc); (6) the HI mass-to-
light ratio, M(HI)/LB (in solar units), inferred from
the HI index of the RC3 catalog; (7) the number of
rows detected in the galaxy; and (8) its VV number
in the catalog of interacting galaxies [5]. We adopted
the integrated parameters of the galaxies from the
LEDA electronic database and RC3 reference catalog
of galaxies [4]. Figures 2a and 2b show distributions
of the morphological types of galaxies with and with-
out rows. It is evident that the fraction of objects
with rows is especially high among late Sbc–Scd
galaxies. Figures 3a and 3b compare the absolute
magnitudes of the two groups of galaxies. Galaxies
with rows have absolute magnitudes ranging from
−17m to −22 .m5 with the mean and median over
the entire sample equal toMB = −20 .m4 and −20 .m7,
respectively. Galaxies without rows exhibit the same
general type of luminosity distribution.

The number of rows in a galaxy ranges from one
to nine (Fig. 4), with the mean over the entire sample
being close to three rows per galaxy. We found no cor-
relation between the number of rows and the absolute
magnitude of the galaxy.

The linear sizes L of rows vary over a wide
range and can exceed 20 kpc in some cases (M101,
Fig. 5). The mean and median row lengths are 4.9
and 4.0 kpc, respectively. We found the length of
a row to be well correlated with the galactocentric
distance d of the farthest tip of the row—the further
from the galactic center, the longer the row. Fig-
ure 6 illustrates this correlation. The lengths and
galactocentric distances d of the rows are expressed
as fractions of the optical radii of their galaxiesD25/2.
The solid line in Fig. 6 shows the relation L = d; the
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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Fig. 2.Histograms of morphological types of galaxies (a)
with and (b) without rows. Shaded entries correspond to
interacting galaxies.

dotted lines, two regression fits to the observational
data: d = 0.87L+ 0.11 and d = 1.13L− 0.25. The
standard deviation is 0.11.

The angle between adjacent rows is usually close
to 120◦. Figure 7 shows the distribution of these
angles. The median and mean are 122◦ and 125◦,
respectively.

The galactic rotation curves, which are available
only for a small fraction of the galaxies in our sample,
exhibit no apparent anomalies. For three galaxies
with rows (M101, M51, and NGC3631), the gas
velocity fields were studied throughout the disk in
great detail using both optical and radio methods.
In each of these, the gas motions are dominated by
regular differential rotation, although noncircular ve-
locities (both local and ordered, associated with the
spiral structure) are also present. This pattern is
fairly typical of spiral galaxies. On the other hand,
the galaxy with well-developed spiral arms NGC157,
in which the rotation is only slightly differential (the
linear rotation velocity increases monotonically with
galactocentric distance throughout the entire region
of the spiral arms) and the wave nature of the spirals
is indicated directly through analysis of the velocity
field [6], fails to show even the slightest sign of rows.
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Galaxies possessing (or possibly possessing) rows

PGC/NGC Type B0 V0, km/s MB MHI/LB Number of VV Comments
rows

PGC

120 SBc 13.6 4389 −21.1 0.21 5 254 1

2151 Scd 14.6 4929 −20.0 2 548
2720 Sc 13.7 11 236 −22.8 5 527
3011 Sb 15.3 5855 −19.9 0.13 2 554
3846 SB(rs)bc 13.2 5639 −20.8 2

3853 SAB(rs)d 12.1 1094 −18.6 0.7 2

4189 SB(s)c 12.8 5708 −21.6 0.35 6 2

4227 SB(rs)c 12.9 6044 −21.6 4

4672 SBc 13.6 5168 −21.2 0.39 3 *

4915 SBc 14.0 5869 −21.4 2 951

5227 SAB(rs)c 14.2 10 848 −21.6 5

5362 SAB(r)bc 13.1 5538 −21.2 3

5715 Sbc 15.4 12 435 −21.8 2 301 3

7359 Sbc 14.5 8054 −21.3 0.21 2 12

7967 SBbc 13.6 5275 −20.7 0.29 3

8360 SAB(s)cd 14.0 3256 −19.1 0.82 2

8961 Sbc 13.4 7563 −22.4 0.3 2 323
8974 SAB(s)cd 11.7 2289 −20.7 0.44 2

9899 SAB(rs)cd 11.2 903 −19.5 0.63 4

10 587 Scd 12.5 4044 −21.2 4

11 691 SAB(r)c 13.2 4747 −20.7 2

12 184 SA(s)c 14.9 4223 −19.6 0.72 4 1071

15 429 SAB(rs)c 13.4 3541 −19.9 0.7 4

15 821 SAB(rs)c 11.1 716 −18.6 0.38 3

15 831 SAB(rs)c 13.1 4531 −20.7 0.27 2

15 950 SBb 13.5 3487 −20.4 4 1110
18 047 SA(rs)c 13.9 3121 −19.1 0.44 3

19 682 SBbc 14.3 4645 −20.9 3 1168
19 789 SA(s)cd 14.1 1442 −17.6 1.02 3

20 911 Sb 13.3 4031 −21.0 1 528
23 321 Sbc 14.2 5696 −21.1 0.54 1 1219

23 935 SBc 14.6 11 159 −22.1 0.31 2 413
23 936 SA(rs)c 13.5 5488 −20.8 0.24 3

26 132 Sc 15.6 11 634 −21.1 1 155
27 546 SBc 15.2 6825 −20.1 3 83

28 888 SAB(rs)c 13.1 5144 −21.1 0.46 6
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(Contd.)

PGC/NGC Type B0 V0, km/s MB MHI/LB Number of VV Comments
rows

30 814 SAB(rs)c 12.7 3136 −20.2 3

30 891 Sc 15.5 11 535 2 *

31 551 SB(r)b 11.9 3706 −21.5 5 1, 2

32 495 SA(rs)c 13.0 3399 −20.4 3

32 620 SBb 14.6 10 397 −21.6 2 233

32 846 SA(s)c 14.4 8355 −20.8 2 466

34 006 SAB(rs)c 13.7 7781 −21.4 0.43 1

35 006 SA(rs)bc 12.5 5040 −21.6 2

35 570 SBd 15.3 2 444

37 400 SB(rs)bc 13.7 6972 −21.1 0.38 3

37 444 SB(s)cd 13.2 1892 −18.8 0.52 2

38 024 SA(rs)bc 13.6 6133 −21.0 0.54 4

39 014 SBc 14.5 7118 −21.1 1 128

39 483 SBc 13.8 733 −16.7 2 431

41 011 14.7 7148 4 1541

41 291 SB(r)bc 13.7 5462 −20.6 2

44 032 SB(rs)bc 14.1 10 389 −21.7 3

44 213 Sc 15.3 13 413 −21.8 2 1580

44 810 SBbc 16.0 2 418

45 921 SBb 14.8 10 571 −21.6 3 451

46 041 SBc 14.9 2326 −18.4 2 438 2

46 114 Sab 14.4 9243 −21.6 1 250

46 770 15.6 8834 −20.1 1 235 3

46 878 SB(s)c 12.4 2661 −20.3 0.23 4

47 198 SB(rs)bc 12.9 3990 −20.8 2

47 808 SBc 15.0 5016 −20.1 0.7 2 4

47 867 Sbc 14.4 4962 −20.1 0.98 5 1635

50 120 SB(s)c 12.6 3322 −20.7 3

51 169 SA(rs)c 12.8 6711 −21.9 4

51 456 SAB(s)cd 12.3 2683 −20.5 2

52 853 SB(s)cd 13.8 2046 −18.4 2

53 134 SBcd 13.2 1951 −17.6 0.92 2 815 3

54 776 SAB(s)c 12.2 2859 −20.7 3

54 849 SB(r)bc 11.2 1480 −20.4 0.21 3

55 750 SA(rs)c 14.1 4526 −19.8 0.32 3

56 014 SAB(r)b 14.9 9310 −20.6 0.29 2
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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(Contd.)

PGC/NGC Type B0 V0, km/s MB MHI/LB Number of VV Comments
rows

59 133 SB(rs)bc 13.3 7180 −21.6 3

61 583 Sbc 15.3 4624 −19.7 4 1866

66 076 Sbc 12.6 4881 −21.5 0.16 4

66 333 Sb 14.6 8269 −21.9 4 748 1

68 344 SB(s)c 13.0 4304 −20.8 2

68 543 SA(s)c 15.2 6412 −19.5 0.45 4

69 439 SAB(s)bc 12.8 4695 −21.3 0.29 2

70 020 SBb 13.7 7255 −21.2 2

71 314 SB(r)c 13.3 6926 −21.5 2

72 444 SB(r)bc 11.9 2961 −21.0 0.39 4

NGC

70 Sbc 14.2 7167 −21.3 0.12 3 166

91 SBbc 14.5 5341 −20.7 0.49 2 881

180 SB(rs)bc 13.0 5280 −21.3 0.44 3

210 SAB(s)b 11.2 1634 −20.4 0.52 2

266 SB(rs)ab 12.2 4657 −21.9 0.14 3

309 SAB(r)c 12.2 5662 −22.2 0.23 3 2

341 SBb 13.8 4499 −20.4 2 361

378 SB(r)c 13.4 9603 −22.1 3

514 SAB(rs)c 11.9 2468 −20.7 0.3 2

613 SBbc 11.0 1485 −20.7 0.12 4 824

628 SA(s)c 9.7 656 −20.2 0.56 3

642 SBc 13.6 5885 −21.5 3 419

858 SB(rs)c 13.8 12 356 −22.3 2

864 SAB(rs)c 11.1 1560 −20.5 0.5 4

918 SAB(rs)c 12.4 1509 −19.2 0.35 4

927 SB(r)c 13.9 8260 −21.3 0.28 5

947 SBc 13.3 4938 −21.5 1 1028

1042 SAB(rs)cd 11.2 1373 −20.0 0.26 2

1097 (R)SB(r)b 9.6 1273 −21.2 0.25 1

1144 S 13.8 8696 −22.2 2 331

1179 SB(rs)d 12.3 1778 −19.4 0.61 2

1232 SABc 10.7 1681 −21.3 0.29 8 *

1241 SBb 13.2 4026 −21.0 1 334

1255 SAB(rs)bc 11.3 1697 −20.5 2

1288 SBc 12.6 4538 −21.3 0.12 3 2
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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(Contd.)

PGC/NGC Type B0 V0, km/s MB MHI/LB Number of VV Comments
rows

1313 SBc 9.7 461 −19.3 0.47 2 436

1347 SBc 14.1 1760 −18.0 2 23

1642 SA(rs)c 12.9 4633 −21.1 4

1961 SBbc 11.8 3930 −22.9 0.33 5 1110

2207 SBbc 12.1 2747 −21.6 0.2 5 1155 2

2222 Sb 14.4 6983 −21.7 2 315

2223 SBbc 12.5 2721 −21.1 0.23 5

2276 SBc 12.0 2405 −21.3 0.18 3 1189

2326 SB(rs)b 12.7 5985 −21.9 3

2342 Sc 13.1 5276 −22.2 0.17 4 1176

2388 S? HII 14.2 4063 −19.5 0.61 3

2445 Irr 13.9 3994 −20.4 0.62 3 117

2523 SB(r)bc 12.0 3452 −21.5 2

2535 Sc 13.3 4097 −21.3 0.41 2 9

2565 SBbc 13.4 3589 −21.0 0.34 5 * 1

2595 SAB(rs)c 12.7 4330 −21.2 0.24 3

2614 SA(r)c 13.2 3457 −20.3 0.27 6 2

2623 Sab 14.0 5532 −21.3 2 79 3

2633 SBab 12.9 2162 −20.3 0.27 2 519

2642 SB(r)bc 12.9 4334 −20.9 0.19 3

2750 Sc 12.8 2672 −20.4 0.31 1 541

2763 SB(r)cd 12.4 1893 −19.7 3

2817 SAB(rs)c 13.3 3534 −20.0 2

2857 SA(s)c 12.9 4887 −21.6 0.28 4 *

2889 SAB(rs)c 12.0 3365 −21.2 0.1 2

2935 SAB(s)b 11.8 2277 −20.6 2

2936 S 13.9 6989 −21.4 4 316

2942 SAc 13.4 4425 −20.9 0.35 4

2997 SAc 10.1 1087 −21.3 0.2 3

3027 SBc 12.2 1059 −20.0 0.8 2 358

3052 SAB(rs)c 12.1 3770 −21.3 0.18 4

3124 SB(r)c 12.2 3561 −21.1 0.38 9 2

3184 SAB(rs)cd 10.1 593 −19.8 0.26 3

3346 SB(rs)cd 12.4 1259 −18.8 0.22 4

3351 SB()b 10.0 778 −20.2 0.13 3 1

3423 SA(s)cd 11.2 1010 −19.4 0.26 5
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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PGC/NGC Type B0 V0, km/s MB MHI/LB Number of VV Comments
rows

3434 SA(r)b 14.2 3633 19.2 0.34 2

3456 SB(rs)bc 12.7 4192 −21.0 2

3486 SAB(r)c 10.6 681 −19.5 0.47 3

3504 (R)SAB(s)ab 11.5 1539 −20.2 0.03 2

3627 SBb 9.6 727 −21.1 0.03 3 2

3631 Sac 11.1 1158 −20.6 0.23 3 *

3646 Sc 11.8 4249 −22.7 0.18 3 * 1

3672 SA(s)c 11.3 1862 −20.6 0.41 2

3673 SB(r)b 11.8 1940 −20.1 0.14 3

3786 Sba 13.4 2718 −20.0 0.36 2 228

3861 Sb 13.5 5083 −21.3 0.2 3 1469

3888 SBc 12.7 2407 −20.5 0.28 2 455

3891 Sbc 12.9 6361 −21.8 0.29 4

3897 SBbc 13.4 6411 −21.4 0.5 3

3905 SB(rs)c 12.9 5768 −21.5 0.19 2

3930 SBc 12.5 916 −18.7 0.82 4 1478

3938 SAc 11.1 809 −19.8 0.32 5

3963 SAB(rs)bc 12.2 3186 −21.1 0.27 2

3968 SAB(rs)bc 12.8 6392 −21.8 0.37 4

4137 SBc 14.9 9300 −21.2 1 454

4152 SBc 12.7 2165 −20.1 0.32 2 1508

4303 SABc 10.2 1575 −21.8 0.2 3 1

4321 SABbc 10.1 1579 −22.1 0.1 2

4535 SABc 10.7 1958 −21.9 0.2 5

4548 SB(rs)b 11.0 486 −21.0 0.04 3

4561 SBc 13.0 1405 −19.1 0.53 2 571

4676 SBa 14.1 6614 −21.3 1 224 3

4779 SB(rs)bc 12.8 2829 −20.1 0.21 3

4902 SB(r)b 11.4 2625 −21.2 0.14 5 2

4939 SA(s)bc 11.1 3109 −22.0 0.29 1

5000 SBbc 13.9 5608 −20.9 0.23 3 460

5085 SA(s)c 12.8 1956 −19.1 0.44 6 2

5149 SBbc 13.1 5658 −21.3 2

5161 SAc 12.0 2388 −21.5 0.43 3

5194 Sc 9.0 461 −20.6 0.11 9 1

5218 SBb 13.1 2878 −20.6 1 33
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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PGC/NGC Type B0 V0, km/s MB MHI/LB Number of VV Comments
rows

5230 SBc 13.2 6852 −21.7 0.21 5

5247 SBbc 10.7 1357 −20.5 0.14 5 2

5293 SA(r)c 13.4 5785 −21.1 0.26 4

5339 SB(rs)a 12.5 2735 −20.3 3

5350 SB(r)b 11.9 2312 −20.8 0.3 4

5427 SBc 12.1 2619 −21.2 0.66 3 21 2

5457 Sbc 8.3 240 −20.8 0.49 8

5468 SAB(rs)cd 12.4 2842 −20.5 0.47 4

5579 Sc 14.3 3602 −19.8 0.45 3 142

5595 SBc 12.7 2697 −20.9 0.29 4 530

5679- Sc 14.4 7483 −21.3 3 458
5679Н Sb 14.4 7500 −21.4 2 458 2

5829 Sc 13.9 5697 −21.0 0.39 4 7 2

6118 SA(s)cd 11.1 1571 −20.6 0.2 5

6412 SBc 12.3 1323 −19.8 0.25 3 *

6872 SBb 12.6 4799 −22.8 2 * 2

6946 SABcd 9.7 37 −20.6 0.17 6 1892

7137 SABc 13.1 1683 −19.5 0.16 3

7298 SA(s)c 13.9 5035 −20.2 0.6 2

7479 SB(s)c 11.3 2378 −21.3 0.18 2

7610 SBc 13.5 3554 −20.5 1.08 2 *

7685 SAB(s)c 13.5 5642 −20.9 0.26 4

7741 SB(s)cd 11.5 755 −18.9 0.32 2

7757 SA(rs)c 12.7 2955 −20.3 0.36 3 407

7805 Sbc 14.3 4768 −20.3 2 226

Asterisks in the VV column indicate interacting galaxies with no VV numbers. Comments: 1—ring galaxies with straight-line ring
rows (hexagons); 2—most typical examples of galaxies with rows. 3—Galaxies with straight tails, purportedly of tidal origin.
About ten galaxies with rows that are not classed
as interacting systems do nonetheless possess close
companions. However, there are usually no radial
velocity measurements for these companions, making
it impossible, with few exceptions, to say anything
certain about their physical association with the main
galaxy.
ASTRONOMY REPORTS Vol. 45 No. 11 2001
3. GALAXIES WITH ROWS AMONG
INTERACTING AND NONINTERACTING

GALAXIES

The new version of the catalog of interacting
galaxies of Vorontsov-Vel’yaminov et al. [5] lists a
total of 2014 systems (about 4000 galaxies) detected
in the Palomar Sky Atlas during the compilation of a
five-volume morphological catalogue of galaxies. The
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Fig. 3. Histograms of absolute magnitudes of galaxies
(a) with and (b) without rows. Shaded entries correspond
to interacting galaxies.
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available images for 1200 of these galaxies enable
determination of the shape of their spiral arms. We
found rows in 85 of the 1200 galaxies considered (7 ±
0.7% of all galaxies). These statistics include a num-
ber of galaxies with straight tidal tails. The fraction of
galaxies with rows among noninteracting galaxies of
our sample is substantially lower,

√
119/3000 ≈ 4 ±

0.4% of the entire sample. These proportions can be
expressed in a different way. The fractions of interact-
ing galaxies among galaxies without and with rows
are 28 ± 1% and 43 ± 5%, respectively. It follows
that interacting galaxies occur almost twice as often
among galaxies with rows. This is not due to differ-
ences in the luminosities of the two types of objects:
interacting and noninteracting galaxies have similar
absolute-magnitude distributions (Figs. 3a, 3b).

As a rule, rows are found in only one component
of an interacting galaxy. The only system where
rows were detected in both components is VV458 =
MCG1-37-34/35.

In addition to galaxies with rows that are straight
features of their internal structure, a few interact-
ing galaxies have straight features that Vorontsov-
Vel’yaminov referred to as bridges or tails. These
features are the results of tidal interaction, and their
nature probably differs from that of rows. However, it
is not always possible to unambiguously distinguish
these structural features, since tidal tails are often
extensions of spiral arms.

Figure 4 shows the distribution of the number of
rows in interacting galaxies. The mean number of
rows in an interacting galaxy is 2.8, which is lower
than that for noninteracting galaxies. The distribu-
tion of the number of rows in interacting galaxies
peaks at two rows per galaxy, whereas the mean value
for noninteracting galaxies is closer to three rows per
galaxy (Fig. 4). In addition, the fraction of objects
with only one row is appreciably higher among in-
teracting galaxies. Of course, a role is played here
by the contribution of straight tidal-induced features.
However, galaxies with many (8–9) rows are roughly
equally rare among interacting and noninteracting
galaxies.

Figure 5 illustrates the distribution of row lengths
in components of interacting and noninteracting
galaxies. The range of row lengths is appreciably
broader for interacting galaxies than for single ob-
jects. Rows in the external part of a spiral pattern
are encountered much more frequently in interacting
galaxies (mainly due to long bridges and tails);
however, the conclusion that interacting galaxies
have longer rows remains valid even if we exclude
galaxies with tidal features: the fraction of short (2–
4 kpc) rows in interacting galaxies is lower than the
corresponding fraction in noninteracting galaxies.
The close correlation between the size of rows and
their galactocentric distance leads us to conclude
that, in noninteracting galaxies, rows occur more
often in outer regions, where the manifestations of
interaction events are stronger.
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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4. GAS CONTENT AND STAR FORMATION
IN GALAXIES WITH ROWS

Information on the gas content in galaxies with
rows is presented in Fig. 8a, which shows the distri-
bution of the M(HI)/LB ratio (in solar units). This
distribution peaks at 0.29, and the meanM(HI)/LB
for the entire sample is virtually identical (0.30).
These values are typical of late-type spirals. Galaxies
with and without rows have similar distributions of
gas content (Fig. 8b) (counting late-type galaxies
exclusively in both cases). The somewhat increased
fraction of interacting galaxies among gas-rich sys-
tems is a clear manifestation of observational selec-
tion effects: the dynamically cold disk component—
a layer of diffuse medium—is more susceptible to
gravitational perturbations and provides a favorable
medium for the development of high-contrast tidal
features, so that its brightness can be enhanced
substantially by triggered star formation in perturbed
regions.
UBV photometry is available for about half of all

galaxies with rows. On a (U −B)0–(B − V )0 color–
color diagram, they lie along the intrinsic galaxy
color line and do not deviate appreciably from this
line (Fig. 9). Although the rows themselves contain
multiple sites of star formation, their contribution to
the integrated luminosity is too weak to have any
appreciable effect on the galaxy colors.

5. DISCUSSION AND CONCLUSIONS

It is evident from the distribution of morphologi-
cal types (Figs. 2a, 2b) that galaxies with rows are
found predominantly among late-type spirals, where-
as, in the relatively small number of cases involving
early-type (Sa–Sb) galaxies, most rows are found
in interacting systems. Overall, there are nearly
twice as many interacting systems as noninteracting
systems among galaxies with rows. It is evident
that interaction acts only as a factor stimulating the
formation of rows, probably via the development of
strong shocks associated with gas perturbations in
the galactic disks. Of the factors considered here,
only one apart from membership in an interacting
system affects the fraction of galaxies with rows, the
relative gas content (HI). Rows are virtually absent
from galaxies with flocculent spiral patterns, even in
those with a large number of star-forming regions.
This applies to both interacting and noninteracting
galaxies.
The high gas content and relatively high fraction

of interacting systems among galaxies with rows is
consistent with the idea that the formation of rows
is a hydrodynamic process associated with density
waves. If we consider only late-type galaxies, which
usually have high gas contents, galaxies with rows
do not differ systematically from galaxies with smooth
spirals in their integrated properties (luminosity, color
index, gas content, rotational velocity). Moreover, in
some galaxies, a prominent row is found on one side
of the disk, while a normal smoothly curved spiral is
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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located on the opposite side at the same galactocen-
tric distance. This leads us to conclude that rows are
transient features of the spiral structure in galaxies
whose spiral arms are formed by large-scale density
waves. The frequency of occurrence of galaxies with
well-defined rows implies that, on average, a normal
spiral galaxy has rows during no less than 6–10%
of its lifetime. However, the most well-defined rows
are usually observed in galaxies with well-defined
(Grand Design) spiral structure, so that the fraction
of galaxies with rows and, consequently, the tidal
lifetime of the rows in these galaxies should exceed
these estimates.
If each row were to be formed independently of

other rows, adjacent straight features in galaxies
would be an extremely rare phenomenon. The fact
that many galaxies exhibit straight spiral-arm rows
passing into each other indicates that adjacent rows
form and disrupt synchronously. The necessary con-
dition for this should be the presence of a large-scale
density wave to synchronize star formation on scales
ranging from several kpc to more than 10 kpc. In
this case, the development of nonstationary processes
associated with the external interaction stimulates
the appearance of rows in interacting galaxies. Cases
in which these conditions are fulfilled are illustrated by
comparatively nearby galaxies with numerous rows
ASTRONOMY REPORTS Vol. 45 No. 11 2001
belonging to gas-rich interacting systems (M51,
M101).
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Abstract—Various origins for the formation of the heavy-element abundance gradients observed in nearly
all disk galaxies are analyzed in the framework of evolutionary models. In an isolated galaxy, there is a
radial gradient of the abundance of heavy elements only early in its evolution (the first several billion years),
which subsequently practically disappears. The gradients of chemical compositions of young objects and
the interstellar gas require that typical disk galaxies be open systems (i.e., that they eject some heavy
elements into circumgalactic space and/or accrete intergalactic gas) and that the rates of both processes
be dependent on galactocentric distance. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The chemical evolution of a disk galaxy is deter-
mined by star formation, stellar evolution, enrichment
of the interstellar gas with heavy elements, the ejec-
tion of heavy elements into intergalactic space, and
the accretion of intergalactic gas. Observations show
that, in most disk galaxies, these processes interact
to produce negative radial gradients of abundances of
heavy elements—oxygen, iron, nitrogen, carbon, etc.
This has been the subject of many observational and
theoretical studies (see reviews [1, 2]).

In the disk of our own Galaxy, virtually all the
most abundant elements (C, N, O, Ne, S, Fe, Ar,
Al) show radial gradients. The gradients for many
types of objects with ages from 10 to 104 Myr within
R ∼ 5–15 kpc of the Galactic center (open clusters,
HII regions, planetary nebulae, B stars) have similar
values of –0.05 to –0.08 dex kpc−1 (see, e.g. [3–6]
and many other papers). However, the uncertainties
are fairly high, even if we consider a single element
and type of object. For example, estimates of the
oxygen abundances in HII regions vary from −0.13
[7] to −0.05 [8]. At the same time, according to the
data of Kaufer et al. [9], the relative oxygen abun-
dances in B stars are virtually constant (and equal to
zero) in the same interval of Galactocentric distances.
In addition, four B stars in the central part of the
Galaxy (R ∼ 2 kpc) whose chemical composition was
determined by Smartt et al. [10] were also found to
have solar oxygen abundances.

Nevertheless, it can be considered well established
that heavy-element abundances are a factor of two to
five higher in the central part of the Galaxy than at
1063-7729/01/4511-0854$21.00 c©
its periphery. The similarity between the gradients in-
ferred from young and old objects indicates that they
do not depend significantly on age, at least during
most of the Galaxy’s lifetime. Observations of disk
galaxies show that chemical composition gradients
of about –0.03 to –0.1 dex kpc−1 are characteristic
of such systems [11–15], so that the Milky Way is
typical in this respect.
There have been many attempts to explain the

origin of radial gradients of chemical composition. As
a rule, “static”models (i.e., including only star forma-
tion and the return of gas to the interstellar medium
by evolved stars) fail to reproduce the gradients: it
is necessary to take into account gas motions in one
way or another [16]. The dynamical factors involved
can be subdivided into two groups : (1) accretion at
a rate that depends on galactocentric distance and
(2) radial gas flows in the galactic disk.
The first hypothesis is especially popular, since

introducing accretion makes it possible to simultane-
ously resolve the “G-dwarf problem” [1]. To repro-
duce the observed gradients, we must assume that
the time scale for accretion depends on galactocentric
distance R, so that gas accumulates at the center of
a galaxy and heavy elements are produced at a higher
rate there [16–19].
The accreting gas could originate from (1) the

galactic halo (in this case, accretion corresponds to
the ongoing formation of the disk) and (2) matter
swept up by the galaxy as it moves through the in-
tergalactic medium. In their theoretical analysis of
metallicity gradients in several spiral galaxies, Molla
et al. [20] concluded that their results were inconsis-
tent with sustained gas infall onto the disk, arguing
2001 MAIK “Nauka/Interperiodica”
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in favor of the former scenario. On the other hand,
Chiappini et al. [18] suggest that the formation of
a disk from halo gas is inconsistent with the fact
that these subsystems have very different angular-
momentum distributions.
Kennicut [21] summarized arguments against

sustained gas infall onto the Galactic disk. Mod-
ern observational data can be reconciled with the
accretion scenario only if the accretion rate is much
lower than the current star-formation rate. Direct
observations of gas accretion onto the Galactic
disk are available only for individual high-velocity
clouds and say nothing about the role in the disk’s
evolution played by the periodic accretion of such
clouds. Even if these clouds provide an infall of
intergalactic gas onto the disk at a mean rate of
0.5M�/yr, as estimated by Blitz et al. [22], due to its
episodic nature, this process cannot produce a regular
and sustained heavy-element distribution across the
disk. Moreover, the typical sizes of high-velocity
intergalactic clouds (up to 25 kpc [22]) substantially
exceed the interval of Galactocentric distances where
the gradient is observed (about 10 kpc).
Another argument against a radial dependence of

the accretion rate is that the accumulation of gas by a
galaxy can be a self-regulating process. An enhanced
accretion rate in the central region of a galaxy should
lead to more active star formation and, consequently,
to more intense energy release by young stars. This
energy (e.g., in the form of galactic fountains and
wind) can act against the infall of gas onto the disk,
weakening the dependence of the accretion rate onR.
A possible alternative scenario to radially depen-

dent accretion could be radial gas flows in the galactic
disk. Lacey and Fall [23] identified three main ori-
gins for the development of radial gas motions in a
galactic disk: (1) infall onto the disk of a material with
low angular momentum; (2) viscosity of the gaseous
disk; (3) gravitational interaction between the gas and
spiral density waves. It has been shown that taking
these processes into account together with radially
dependent accretion can explain the development of
chemical-composition gradients (see e.g. [24] and
[25] and references therein). However, thus far, radial
gas flows lack a sound theoretical basis and must
be artificially added to models. Moreover, to equal-
ize the radial gas distribution and solve the G-dwarf
problem, a model must include radially dependent
accretion even if radial inflows are present [25].
Our model for the evolution of a disk galaxy can

reproduce the distribution of stellar metallicities in the
solar neighborhood even without assuming accretion
of gas with low Z [26, 27]. Thus, the main incen-
tive for introducing accretion into the model disap-
pears. The aim of this paper is to elucidate whether
this model can also reproduce the radial gradients of
ASTRONOMY REPORTS Vol. 45 No. 11 2001
heavy-element abundances. Section 2 describes our
disk-galaxy model; Section 3, the results of modeling
the evolution of the Galaxy using a closed model,
which we use as a reference solution. Section 4 gives
the results of introducing various factors describing
matter exchange with the intergalactic medium into
our standard model. In Section 5, we discuss our
results and formulate our conclusions.

2. THE MODEL

As a basis, we used a single-zone, evolutionary
model for a disk galaxy, for which the underlying ideas
were formulated by Firmani and Tutukov [28]. A
detailed description of this model can be found in [27].
On the whole, the model follows Tinsley’s [29] for-
malism with one important difference: the thickness
of the gaseous disk of the galaxy is not fixed and is
determined by two competing processes, energy input
into the interstellar medium as a result of supernova
explosions and dissipation of the kinetic energy of
gas in interstellar-cloud collisions. Thus, the main
quantitative parameter of the interstellar gas is not
its surface density, as in many other models, but its
volume density ρg.
We take the star-formation rate ψ in the Galaxy

to be proportional to the square of the gas volume
density:

ψ ∝ ρ2
g. (1)

This relation follows from the assumption that star
formation is self-regulated by the ionizing radiation
of young, massive stars [30, 31]. The evolution of the
gas mass in the galaxy is described by the equation

dMg

dt
= −ψ(t) (2)

+

Mmax∫

Mmin

psi(t− τM)(M −Mr)φ(M)dM − Ṁout
g + Ṁ in

g ,

whereMg is the mass of gas in the galaxy, ψ(t) is the
star-formation rate, φ(M) is the initial mass function
(IMF), Mmin and Mmax are the limiting masses of
forming stars, τM is the lifetime of a star of massM ,
Mr is the mass of a stellar remnant, Ṁout

g is the rate

of mass ejection into circumgalactic space, and Ṁ in
g

is the rate of accretion of intergalactic gas. We will
use a Salpeter IMF with mass limitsMmin = 0.1M�
andMmax = 100M�.
The evolution of the mass of chemical element i is

described by the equation
d
dt

(ZiMg) (3)
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=

Mmax∫

Mmin

ψ(t− τM) [Zi(t− τM)(M −Mr)

+Pi(M)] φ(M)dM − Zi(t)ψ(t) − Ṁout
i + Ṁ in

i .

Here, Zi(t) is the relative abundance of element i at
time t and Pi(M) is the mass of element i synthesized
in a star of massM . The last two terms describe mass
exchange with the intergalactic medium. We will
analyze the evolution of the abundance of oxygen—
neglecting, for the sake of simplicity, the produc-
tion and destruction of oxygen in intermediate-mass
stars—and of nitrogen (an element produced largely
in long-lived stars). We adopted the oxygen synthesis
data from [32]. When determining nitrogen abun-
dances, we used the results of computations reported
in [33].
In our previous papers [26, 27, 34, 35], we showed

that our model can successfully reproduce a number
of fundamental properties of disk galaxies: the cur-
rent star-formation rate, distribution of stellar heavy-
element abundances, dependence of Z on mass (lu-
minosity) of a disk galaxy, the [O/Fe]–[Fe/H] corre-
lation, etc.. Unlike other similar models, our model
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Fig. 1. Results for the standard model.
can also reproduce the distribution of heavy elements
perpendicular to the galactic disk (i. e., the vertical
gradient of chemical composition).
We will analyze the radial gradient of chemical

composition in the Galaxy; thus, single-zone models
are no longer adequate. We chose to model the
radial structure of the Galaxy using a superposition
of two models: one describing the inner part of the
galaxy (Model A) and the other describing the outer
part (Model B). Increasing the number of models (to
improve the radial resolution) does not significantly
change the overall results.
In both models, the system is a cylinder with a

fixed mass M and radius R and a time-dependent
height. We assume that M(R) ∝ R in the Galaxy,
as follows from its flat rotation curve. Therefore,
the parameters of our models are Model A—M =
0.5 × 1011 M�,R = 5 kpc andModel B—M = 1.5 ×
1011 M�, R = 15 kpc. In both models, the initial
half-thickness of the disk H was taken to be equal to
15 kpc. We considered both closed and open models.
In the closed model, the Galaxy evolves as an isolated
system without mass exchange with circumgalactic
space: (Ṁ in

g = Ṁout
g = Ṁ in

i = Ṁout
i = 0). In the

open model, the Galaxy ejects heavy elements or
accretes intergalactic gas with Z = 0. We integrated
the model equations to a time t = 1.2 × 1010 yr.

3. RESULTS FOR THE CLOSED MODEL

We used the closed model, in which the Galaxy
does not exchange matter with the surrounding
space, as our reference solution. Figure 1 shows
its main characteristics: star formation rate (SFR)
and abundances of oxygen ZO and nitrogen ZN as
functions of time. The solid and dashed curves
correspond to Model A and Model B, respectively. At
the initial stage of the Galaxy’s life, the gradient of the
oxygen and nitrogen abundances is about 0.05 kpc−1.
This gradient comes about because, for the adopted
mass distribution in the Galaxy (M(R) ∝ R), the
initial density in the inner regions is a factor of three
higher than in the outer regions. Combined with
the adopted quadratic dependence of the SFR on the
gas density, this means that the time scale for star
formation at the Galactic center is shorter than at the
periphery, implying a faster accumulation of heavy
elements at the center. Therefore, the closed model
can adequately explain the chemical-composition
gradient for old objects. However, the gradient
ZO disappears by the time the Galaxy reaches an
age of t ∼ 3 × 109 yr. The situation is similar for
nitrogen; however, since this element is synthesized
in long-lived, intermediate-mass stars, the nitrogen
abundances in the outer and inner regions equalize
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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at a later stage, when the Galaxy is t ∼ 5 × 109 yr
old. This absence of a gradient is typical of models
in which the star-formation parameters (and the rate
of gas accretion onto the disk) are independent of R
[16, 36]. A decrease in the gradient with time was also
noted in models with radially varying accretion, such
as those in [19, 20].

The absence of any significant dependence of ZO

and ZN on t (Fig. 1b) in our model is due to the fact
that we take into account the finite lifetime of stars.
If the star-formation rate decreases with time, the
enrichment of the ISM with heavy elements synthe-
sized in massive stars at late stages of the Galaxy’s
evolution is compensated by the supply to the ISM of
gas with low Z ejected by long-lived, low-mass stars
formed during the main episode of star formation and
whose lifetimes are shorter than the age of the Galaxy.
As a result, Z is maintained at an approximately
constant level. The “asymptotic” values ZO and ZN

are determined by fixed parameters of stellar evolution
and the shape of the IMF and are, accordingly, virtu-
ally the same in outer and inner regions.

3.1. Variation of the Duration
of the “Initial Accretion Phase”

In our earlier paper [34], we assumed that a galaxy
does not form instantaneously and introduced an “ini-
tial accretion phase,” during which the mass of the
galaxy increases linearly. By the end of this phase,
the initial accretion ceases and the galaxy evolves as
a closed system from this time onward. We assume
here that the Galaxy forms instantaneously, to avoid
introducing an additional parameter into the standard
model, i.e., the difference between the durations of the
initial accretion phase in outer and inner regions of
the Galaxy (the meaning of this parameter is similar
to that of the time scale for accretion of unprocessed
halo gas in the models noted in the introduction).

It is evident from Fig. 1 that the development of
an abundance gradient in the early evolution of the
Galaxy is due to the fact that star formation does not
proceed simultaneously in the outer and inner regions
of theGalaxy. If theGalaxy forms from away its center
to its periphery, the initial accretion is likely to last
longer at the periphery than at the center. Allowance
for this fact shifts the peak of the star-formation rate
in the outer regions further into the future, prolonging
the existence of the gradient. Note, however, that the
oxygen abundance gradient has already disappeared
1–2 Gyr after the end of accretion. Therefore, for
young objects to exhibit the gradient associated with
the delay of primary star formation at the periphery of
the Galaxy, this delay should be very large, compara-
ble with the age of the Galaxy.
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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Fig. 2. Results for the standard model with dark matter.

3.2. The Role of Dark Matter

Our assumption that M(R) ∝ R in the Galaxy
was based on its flat rotation curve. The shape of the
rotation curve depends on the distribution of gravi-
tating mass, which can consist partly of dark matter.
We already pointed out that the main episode of star
formation in the outer regions of the Galaxy is delayed
relative to the central region, due to the low initial
density there. If we suppose that the mass of the outer
regions is partly contained in dark matter, we can
adopt even lower gas densities, further delaying the
onset of mass star formation. Together with curves
for the standard model, Fig. 2 shows curves computed
for models whose outer regions contain some mass
fraction of dark matter. We considered two cases,
with the dark-mass fractions equal to one-third and
two-thirds of the initial mass of the outer region
(corresponding to initial gas masses of 1011 M� and
5 × 1010 M�, respectively). It is evident from the
figure that the gradient increases during the initial
evolution of the Galaxy; however, even in this case, it
eventually levels off. Note that the adopted dark-mass
fractions for the disk are probably strongly overesti-
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Fig. 3. Results for the model with accretion.

mated and that, in reality, dark matter accounts for a
much smaller fraction of the disk mass [37].

4. RESULTS FOR THE OPEN MODEL

As we saw above, a closed model of the Galaxy
fails to reproduce the chemical-composition gradi-
ents for young objects and the ISM, as in other stud-
ies [16, 23, 36]. Thismeans that wemust abandon the
idea that the Galaxy is a closed system and suppose
that it accretes intergalactic matter with low heavy-
element contents and/or loses heavy elements, e.g.,
via Galactic wind and expulsion of dust by the pres-
sure of stellar radiation [34, 38].
Note that, in this case, we are dealing with the

accretion of intergalactic matter, not of gas ejected
by halo stars. Accretion of processed halo matter is
already implicitly included in the standard model and
leads to constancy of the abundance gradients.

4.1. Accretion of Intergalactic Gas

The development of gradients can be affected not
only by accretion with a rate that decreases with time,
specified in our model via the duration of the initial
accretion phase, but also by accretion of ambient gas,
again, provided that its rate depends on Galacto-
centric distance. In Fig. 3, the evolutionary curves
for the inner region are computed for the standard
closed model, while those for the outer region are
computed assuming accretion of gas with Z(O,N) = 0
at a constant rate of 2M� yr−1. Such accretion
rates are expected for a galaxy moving at a veloc-
ity of 100–300 km/s through intergalactic space of
density 10−3–10−4 cm−3. In this case, the negative
abundance gradients of both oxygen and nitrogen
vary little throughout the evolution of the Galaxy, in
agreement with observations.
However, there are two arguments against this

possibility. First, it is not obvious why accretion
of intergalactic gas should be more efficient at the
periphery than at the center of the Galaxy. Obser-
vational evidence of the infall of intergalactic clouds
onto the Galactic disk has been found both far from
the center [39] and in the solar neighborhood [40],
and even near the Galactic center [41]. Second, the
metallicities of intergalactic gas (and of high-velocity
clouds) are lower than the solar value but are not
equal to zero. The dashed curve in Fig. 3 corresponds
to the case when the value of Z(O,N) in the accreting
gas is one-third of the current oxygen abundance in
the ISM at any time (according to X-ray data, ZO

in the intergalactic medium is about one-third of the
solar value [42]). We can see that the gradient levels
off with time, even if accretion is present.

4.2. Open Model with Ejection

In our previous papers [26, 38], we showed that
a spiral galaxy loses heavy elements into the sur-
rounding space via at least two mechanisms: (1) the
expulsion of dust by stellar radiation pressure and
(2) Galactic wind. In both processes, the fraction
of ejected heavy elements depends on the mass of
the galaxy: low-mass galaxies eject matter more effi-
ciently. It seems logical to assume that a similar law
works in our Galaxy—it is easier for heavy elements
to leave the periphery than the center.
In Fig. 4, the curves for Model A again correspond

to the standard case, while Model B assumes that
30% of the heavy elements synthesized in the disk
of the Galaxy are ejected into the surrounding space
via Galactic wind (with an ejection efficiency that is
somewhat higher than our estimates for the Galaxy
as a whole [26]) and the expulsion of dust by stellar
radiation pressure. It is evident that these models
are characterized by very constant gradients. This
is due to the fact that a fixed fraction of heavy ele-
ments is ejected from the Galaxy at any given time.
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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Of course, the actual situation is more complicated:
as the Galaxy evolves, its shape and, therefore, its
gravitational potential change. As a result, the frac-
tion of ejected heavy elements should be a function
of both radius and time. Moreover, as we already
noted in the Introduction, the ejected matter interacts
with infalling matter, affecting the parameters of both
ejection and accretion. Nevertheless, this mechanism
seems to be the most natural one.

5. DISCUSSION AND CONCLUSIONS

The distributions of heavy elements in both our
own and other disk galaxies exhibit negative ra-
dial gradients of Z of about dlogZ/dR ≈ −0.03 to
−0.1 kpc−1. Numerical simulations of the evolution
of disk galaxies show that the development of these
gradients cannot be explained by “static” models, in
which individual portions of the galactic disk evolve in
isolation from each other and from the circumgalactic
medium. It is necessary to introduce gas motions
within the disk and/or matter exchange with the
surrounding space.
Of the various mechanisms invoked to explain the

abundance gradient, the most popular is accretion at
a rate that depends on galactocentric radius. This
makes it possible to understand the observed gradi-
ents and also to solve the G-dwarf problem. Our
model [27] was able to resolve the G-dwarf problem
without invoking accretion. In the current paper,
we have answered the question as to whether this
same model is capable of reproducing the chemical-
composition gradients in our Galaxy.
Our analysis shows that, in a closed model of the

Galaxy, a gradient similar to that observed is present
during the first several billion years, due to the time
lag between the main star-formation episodes at the
center (R < 5 kpc) and periphery (R < 15 kpc) of
the Galaxy. The gradient then levels off. A modifi-
cation of the closed model—introducing dark matter
and delaying the onset of mass star formation at the
periphery of the Galaxy—does not solve the problem
of the decrease in the gradient with time. The dif-
ference in chemical composition between the center
and periphery of the Galaxy that develops early in the
Galaxy’s evolution can persist until the present time
only if the formation of the outer regions of the Galaxy
is not yet completed; i.e., the main episode of star
formation there has not yet ended.
To explain the observed gradient (in our model),

we must suppose that the Galaxy actively exchanges
matter with intergalactic space. Introducing accre-
tion of intergalactic matter makes it possible to re-
produce the observed gradient only if (1) gas accretes
mainly at the periphery of the Galaxy and (2) the
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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Fig. 4. Results for the model with ejection.

abundance of heavy elements in this gas is� Z�/3.
We believe that it is more natural to suppose that the
ejection of heavy elements from the Galaxy occurs at
a rate that depends onR.

Possible explanations of the negative gradient of
chemical composition are not confined to accretion
of gas and loss of heavy elements by the Galaxy. A
similar gradient also develops if radially dependent
star-formation parameters are introduced into the
model. For example, the coefficient of proportionality
in (1) could depend on R if we allow for stimulation
of star formation by spiral arms. The minimum mass
of forming stars could also depend on the Galac-
tocentric radius, due to the decrease in the mean
blackbody temperature of the interstellar gas from the
center toward the periphery. An increase in Mmin

increases the number of supernovae per unit mass of
gas converted into stars; i.e., it increases the efficiency
of converting gas into heavy elements. However,
issues connected with quantitative estimates of these
parameters are not sufficiently well understood to be
included in realistic evolutionarymodels of theGalaxy
and we, accordingly, do not discuss them further here.
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Possess Massive Spheroidal Subsystems?
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Abstract—The condition for gravitational stability of the stellar disks of the galaxies NGC 936 and
NGC 3198 makes maximum disk models unacceptable. We present mass estimates for these objects’
spheroidal components. The mass of the dark halo of NGC 3198, within four disk radial scale lengths, ex-
ceeds its disk mass by a factor of 1.6 to 2. The masses of the disk and spheroidal subsystem (halo +bulge),
within four radial scale lengths, are approximately the same for NGC 936. c© 2001 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

The possible existence of an invisible massive
component in S galaxies is one of the most important
problems in the physics of galaxies. The presence of
extended regions in the gas rotation curves showing
no decrease with radius beyond the optical radius
are among the features that provide evidence for
the presence of massive halos, whose mass may
appreciably exceed that of the visible matter in the
disk,Md. Within the optical radius, the halomassMh

can be comparable to and even exceed Md. Among
other signatures, this is suggested by the efficient
stabilization of the global bar mode by the massive
spheroidal subsystem [1–3], but here the situation
is more complex: the asymmetrical bar forming in
the disk leads to a gravitational interaction with
the halo matter, resulting in a transfer of angular
momentum from the disk to the spheroidal subsystem
[4]. Analyzing the results of dynamical modeling
of interacting disk/bar/halo subsystems, Dabattista
and Sellwood [5] concluded that the halo mass within
the optical radius had to be small compared to the disk
mass and, in particular, that maximum disk models
(MDMs) were suitable for the galaxies NGC 936 and
NGC 3198. The MDM is based on the observed
rotation curve of the gaseous subsystem, Vgas, and
the condition that the disk mass be the maximum
possible for the case when the mass-to-luminosity
ratio in the disk population is approximately constant
and the circular velocity in the galaxy’s equatorial
plane Vc is equal to Vgas.

The observed radial distribution of stellar veloc-
ity dispersions constrains the value of µ ≡Ms/Md,
whereMs is themass of the spheroidal halo+ bulge+
1063-7729/01/4511-0861$21.00 c©
core subsystem. For the stellar disk to be gravitation-
ally stable, the system must not be cool: cr > ccritr ,
where cr is the stellar radial velocity dispersion [6–
9]. The velocity dispersions in the stellar disks of
NGC 936 and NGC 3198 are known. Earlier [10],
we considered a model that satisfactorily described
the velocity curve and stellar velocity dispersion in
NGC 3198. Here, we show that the gravitational
stability condition for the stellar disks makes max-
imum disk models unacceptable for NGC 936 and
NGC 3198 and leads to underestimated masses for
their spheroidal subsystems.

2. GRAVITATIONAL STABILITY
OF A STELLAR DISK

We assume that there is an exponential dis-
tribution of matter in the disk, �(r, z) =
�0 sech2(z/h) exp(−r/L), so that the disk subsys-
tem is governed by three parameters: the disk’s radial
scale length L, vertical scale length h, and central
surface density σ0 = 2h�0.

We will describe the spheroidal components (halo,
bulge, core) with the masses Mh,Mb,Mc and scale
lengths a, b, c, respectively. The matter of the bulge
and core will be assumed to be confined to radii
(rb)max and (rc)max, respectively. We will not con-
sider the density distributions of the individual com-
ponents but instead restrict our treatment to the inte-
grated density µ = Ms/Md = (Mh +Mb +Mc)/Md.

For the disk to be gravitationally stable to non-
axially symmetrical perturbations, it is necessary
that cr ≥ ccritr . The minimum stellar radial velocity
dispersion required for stability, ccritr , is traditionally
described using Toomre’s parameter QT = ccritr /cT ,
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. Radial dependences of the gas rotational velocity
Vgas (crosses), model circular velocity Vc (thick solid
curve), and observed cobs (dots) and theoretical ce (curves
1–4, see text) stellar velocity dispersions for variousmod-
els for NGC 3198 (a, b, c).

where cT = 3.36Gσ/κ, σ is the local surface density,
and κ = 2Ω ×

√
1 + r dΩ/(2Ω dr) is the epicyclic

frequency, which we will determine from the circular
rotational velocity of the system as a whole, Vc = rΩ.
The local gravitational stability of an infinitely thin,
uniform stellar disk rotating as a rigid body requires
that QT ≥ 1 [6]. This condition was derived for
axially symmetrical perturbations. If the rotation
is differential, as in the case of spiral waves, QT is
increased. The value of Toomre’s parameter depends
on the character of the rotation curve. ValuesQT � 3
are required for a flat rotation curve; lower values,
QT � 2, are needed in regions of rigid-body rotation
[8]. Inhomogeneity of the disk, described by the radial
dependence of the surface density and stellar velocity
dispersion, leads to higher ccritr values. Dynamical
modeling with Kuzmin–Toomre disks led to the
conclusion that the condition QT ≥ 2.2–2.4 must be
fulfilled to ensure gravitational stability of a stellar
disk [11]. The condition QT � 2.3 was obtained for
dynamical models neglecting vertical motions [11]. In
some cases, it may be important to take into account
the disk’s finite thickness [12]. This factor has a
stabilizing influence on gravitational instability, lead-
ing to lower radial velocity dispersions. Our three-
dimensional dynamical models with exponential disks
show that, as a rule, within two radial scale lengths
(r < 2L), the disk is stable if QT � 1.5 [10]. Strictly
speaking, this parameter varies with radius (increases
towards the center), but this only strengthens our
conclusions.

Spectroscopic observations with a long slit posi-
tioned along the major axis of a galaxy yield the mea-
sured stellar velocity dispersion cobs to be comparable

to ce =
√
c2ϕ sin2 i+ c2z cos2 i .We will assume for the

dispersion of azimuthal velocities, that cϕ = κcr/2Ω
and for the dispersion of vertical velocities, that cz =
0.5 cr , corresponding to a lower limit of cz/cr = 0.5–
0.6 for the dispersion ratio in the solar neighborhood
[13, 14].

3. NGC 3198

The gas rotation curve Vgas has a plateau extend-
ing to at least 30 kpc. The radial scale length of the
stellar disk is L = 2.7 kpc, and the galaxy’s inclina-
tion is i = 72◦ [15]. We will use the data of Bottema
[16] on the radial distribution of cobs. The vertical
scale length h is not known from observations; we
will assume h/L = 300 pc/2.7 kpc = 0.11. The un-
certainty in h will not influence our final conclusions.
Because of the large inclination of NGC 3198, the
uncertainty in the ratio cz/cr also has little influence
on the conclusions.

The rotation curve for the MDM is shown in
Fig. 1a. The contribution of the halo to the system’s
mass within r = 4L does not exceed 37%. In this
case, the central surface density of the disk is σ0 =
764 M� · pc−2. Figure 1b shows a model with a
more massive spheroidal subsystem, with µ = 1.6
(σ0 = 501 M� · pc−2). Figure 1c presents the radial
distributions of the observed velocity dispersion,
cobs [16], and the ce(r) dependence for the central
part of the disk, assuming QT = 2.3 in the MDM
(curve 1). The condition cobs < ce appears to be valid
everywhere, with an ample margin. Since the old
stellar disk of NGC 3198 should be gravitationally
stable, the MDM is not appropriate for this galaxy if
we assume QT ≥ 2.3. The condition QT = 2.3 leads
to dispersions so high that we will not further discuss
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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this case, bearing in mind that the finite thickness
of the disk plays a significant role in determining the
gravitational stability of real galaxies [12].

In the MDM case, the criterion QT = 1.5 also
means that cobs < ce (curve 2 in Fig. 1c). Only in the
case of amoremassive halo, withµ = 1.6, 2 (curves 3,
4, Fig. 1c), is the disk stable in the region r ≤ 2L. If
we do not take into account data on the velocity dis-
persion, we can approximate the rotation curve Vgas
for NGC 3198 with Vc over a wide range of µ values.
For this galaxy, it is possible to develop models with
0.3 � µ � ∞. The case of µ = ∞ was considered in
[15]. However, taking into account the observational
velocity dispersion data places strong constraints on
this freedom. For NGC 3198, a massive disk with
a low-mass halo is gravitationally unstable and the
stellar disk satisfies the stability criterion only for µ �
1.6. Refinement of the minimum halo mass within
the radius r = 4L = 10.72 kpc needed for stability
requires the development of a dynamical model for the
galaxy, which yields µ = 2.1 [10]. This conclusion is
completely compatible with the current paper’s esti-
mates.

4. NGC 936

NGC 936 is an SB0 galaxy containing a central
bar and a disk with a radial scale length L = 3.7 kpc
[17]. The rotation curve outside 8 kpc is unknown;
thus, in the MDM, we will not be concerned with
achieving a plateau at the edge of the stellar disk.

The orbital velocities of stars are known only with-
in two disk radial scale lengths, and the gas rotational
velocity is known only near r � 2L. Therefore, when
constructing the circular velocity, we will adopt V∗ �
Vc for the velocity of the stars. This approach gives
a lower limit for the disk mass. In addition to the
thick disk, the central region’s important components
are the core and the bulge/bar needed to describe the
kinematics within r < L.

In the MDM, the relative contribution of the
spheroidal component is small, µ = 0.16 (Fig. 2a).
When QT = const = 1.5, we formally have cobs < ce
in the region r > 0.6L (curve 1 in Fig. 2c). We
should take into account the radial dependence of
QT needed for stability. At the stability limit, the
ratio of the central radial velocity dispersion cr(r = 0)
to the maximum circular velocity in a system with
no halo is � 0.7–0.8. Adopting the value 0.7, the
condition cobs < ce is fulfilled everywhere (curve 2
in Fig. 2c). However, the margin is not wide and a
component with moderate mass is sufficient to bring
the cobs and ce values into agreement (Figs. 2b, 2c).
The disk is clearly gravitationally stable for µ � 1.
The color index of NGC 936 corrected for Galactic
and intergalactic reddening is B − V = 0.95 [18].
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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Obviously, the old population of the stellar disk should
have some margin of stability (cobs > ce), such that
our estimates of the characteristics of the spheroidal
subsystem should be considered lower limits. In addi-
tion, the galaxy’s observed central velocity dispersion
cobs includes a contribution from high-velocity bulge
stars.

The stellar velocity curve of NGC 936 is well
known, but the gas rotational velocity is known only
near r � 8 kpc. The difference between Vgas and V∗ is
not large: V∗/Vgas = 320/360 = 0.89. This provides
additional evidence of a relatively massive halo, since
dynamical models with no halo give V∗/Vgas � 0.7.
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The resulting total mass estimate for the spheroidal
subsystem of NGC 936 and the character of the
mass distribution in this subsystem (a fairly rari-
fied halo with a/L = 4.64 kpc/3.7 kpc = 1.3 and the
absence of a very compact, massive core, c/L =
0.143 kpc/3.7 kpc = 0.039) permit the formation of
a bar via the development of a global bar mode.

5. DISCUSSION

Debattista and Sellwood’s [5] conclusion that
there was no massive dark halo within the optical
radius of the stellar disk is based on dynamical models
reflecting the interaction between the bar and halo.
The bar leads to appreciable rotation of the halo at
on average about 25% of the disk rotational velocity.
Note that inferred rotation of the halo should not be
taken as evidence that it does not exist. Elliptical
galaxies rotate at typical speeds of 20–60 km/s,
permitting halo rotation in SB galaxies. The galaxy
NGC 3198 probably has no significant bar, and this
galaxy’s rather massive halo may be nonrotating.

The conclusion of Debattista and Sellwood [5] that
the MDM is applicable to NGC 936 and NGC 3198
contradicts the observational data on the stellar ve-
locity dispersions in the disks of these objects. The
gravitational stability condition places limits on the
masses of the stellar disks. As a result, themass of the
spheroidal subsystem (halo+bulge) of NGC936may
be comparable to the disk mass within the optical ra-
dius, whereas the mass of the dark halo of NGC 3198
may exceed the mass of the disk by a factor of 1.5–2.
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Abstract—The luminosity L of radio pulsars due to synchrotron radiation by the primary beam at
the magnetosphere periphery is derived. There is a strong correlation between the observed optical
luminosities of radio pulsars and the parameter Ṗ /P 4 (where P is the pulsar period). This correlation
predicts appreciable optical emission from several dozen pulsars, in particular, from all those with P <
0.1 s. Agreement with optical observations can be achieved for Lorentz factors of the secondary plasma
γp = 2–13. Plasma with such energies can be produced only when the magnetic-field structure near the
neutron-star surface deviates substantially from a dipolar field. The peak frequency of the synchrotron
spectrum should shift toward higher values as the pulsar period P decreases; this is, in agreement with
observational data for 27 radio pulsars for which emission has been detected outside the radio band.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

After the discovery of pulsed optical emission from
the radio pulsar PSR 0531+21 in the Crab Nebula,
this emission was thought to be synchrotron radiation
[1–3]. In 1972, Zheleznyakov and Shaposhnikov
[4] presented a detailed model for the synchrotron
radiation of PSR 0531+21 from optical to gamma-
ray energies for the case of a power-law or piece-
wise power-law energy distribution for the emitting
electrons, with electron pitch angles ψ ∼ 1. Pacini
and Salvati [5, 6] estimated the optical luminosity
that could result from synchrotron radiation of the
secondary electron–positron plasma in short-period
pulsars. Another formula relating the luminosity of
a radio pulsar in hard-energy bands (from optical to
gamma-ray) to other parameters of these objects was
obtained in [7]. One basic parameter critically af-
fecting both the spectrum and character of the emis-
sion is the pitch angle ψ of the emitting charges.
Our analysis of cyclotron instability in a pulsar mag-
netosphere and the kinetics of processes resulting
in both on increase and decrease in the transverse
momentum of the electrons enabled us to calculate
the electron pitch-angle distribution. In the case
of PSR 0656+14, which has been most thoroughly
studied in the optical, the spectral peak corresponds
to optical frequencies (3 –9) ×1014 Hz [8]. As was
shown later [9], under certain circumstances, the
peaks of the synchrotron spectra for other pulsars
possessing pulsed optical emission could also be in
the optical.

It is the aim of the present paper to investigate
the possibilities of obtaining agreement between the-
1063-7729/01/4511-0865$21.00 c©
oretical results and the available optical data for radio
pulsars.

2. DESCRIPTION OF THE MODEL

Our studies [7, 10] used a model with an emitting
torus localized near the light cylinder (Fig. 1). Rel-
ativistic electrons filling this torus are responsible for
the synchrotron luminosity, which can be compared
with the observed luminosities of pulsars. We shall
use here a formula derived in [7], changing the factor
related to the average energy of the emitting electrons
in the cone of open field lines. The dependence of the
electron Lorentz factor in the beam γb on the angle θ
in the model of Fawley et al. [11] can be written [12]
as

γ = γbf(θ) = γb[1 − 0.944
(

θ

θc

)2

(1)

+ 1.063
(

θ

θc

)4

− 1.119
(

θ

θc

)6

],

where θc is the angular radius of the cone. Then, we
can calculate the value of γ/γb using the formula

f(θ) =

∫ θc

0 f(θ)dθ
θc

, (2)

which turns out to be 0.74. Using the model de-
veloped in [7], the total synchrotron power of the
incoherent electron emission in the torus L takes the
form

L ≈ 16π8e4R6
∗I

m3c11
B2

0γbṖ sin4 β sin2 ψ

P 8
. (3)
2001 MAIK “Nauka/Interperiodica”



866 MALOV

 

µ
Ω

β

 

r

 

LC

Fig. 1. Schematic model of the magnetosphere.

Here, R∗ is the radius of the neutron star, I is its
moment of inertia, B0 = Bs sin β is the magnetic field
at the neutron-star surface, β is the angle between the
axis of rotation of the neutron star and the magnetic
moment �µ, P is the pulsar period, and Ṗ is its time
derivative. We assume in (3) that the emission is
generated near a light cylinder with radius

rLC = cP/2π (4)

at a distance from the neutron-star surface

r =
rLC
sin β

(5)

and that the magnetic field has a dipolar structure:

B = Bs

(
R∗
r

)3

. (6)

3. PITCH ANGLES
OF THE EMITTING ELECTRONS

Solving the kinetic equation describing the mo-
mentum distribution of the electrons in a beam at
the magnetosphere periphery, we obtain for the pitch-
angle distribution of the particles [8]

ξ(ψ) = Ce−Aψ
2
, (7)

where C = const,

A =
2m2c4γ2

b (ωB/ωp)
2

πe2ργp|E(k)|2 , (8)

γp is the Lorentz factor for the electrons of the sec-
ondary plasma, ρ is the radius of curvature of the
field lines, ωb = eB/mc, ωp = 4πnpe2/m, np is the
density of the secondary plasma, and |E(k)|2 is the
energy density of oscillations at the frequency corre-
sponding to the resonance wavenumber k.

Using the Goldreich–Julian formula [13] for the
density of particles in the beam

nb = B/Pce (9)

and the estimates

ρ = rLC = cP/2π, (10)

|E(k)|2 = mc2nbγbc/2ω (11)

for the average pitch angle of an emitting electron, we
obtain [9]

ψ̄ =

∞∫
0

ψe−Aψ
2
dψ

∞∫
0

e−Aψ2dψ

=
1√
πA

=
√
πmcγb

2
√

2ePBγp
. (12)

This angle is measured in the rest frame of the
plasma. In the observer’s frame,

ψ̄H ≈ ψ

2γp
=

√
πmcγb

4
√

2ePBγ2
p

(13)

=
mc4γbP

2

32
√

2π5/2eR3
∗Bsγ2

p sin3 β
= 1.9 × 103 γbP

2

γ2
pB0 sin2 β

.

The Lorentz factor of the electrons in the beam is
γb = 106–107. The value of γp depends substantially
on the magnetic-field structure near the neutron-star
surface in the region of formation of the secondary
plasma. In particular, γp ∼ 103 for a dipolar magnetic
field and γp = 2–10 for a multipolar structure with
ρ ∼ R∗ ∼ 106 cm [14]. In the dipolar case, we obtain
for a pulsar with P ∼ 1 s and B0 ∼ 1012 G

ψ̄H ≈ 2 · (10−9−10−8) sin−2 β, (14)

whereas in the multipolar case,

ψ̄H ≈ (2 · 10−5−5 · 10−3) sin−2 β. (15)

We shall assume below that the magnetic-field
structure just near the surface differs considerably
from a dipolar field and that γp ≤ 10. Then, as follows
from (15), γbψH 
 1 and we can use well-known
formulas of synchrotron radiation (for example, from
[15]).
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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Fig. 2. The spectrum of synchrotron radiation by a single
electron.

4. SYNCHROTRON RADIATION
BY THE PRIMARY ELECTRONS

The spectrum of synchrotron radiation by rela-
tivistic electrons depends substantially on their en-
ergy distribution. In the case of the primary beam, this
distribution can be taken to be monoenergetic [7]:

N(γ) = N0δ(γ − γb). (16)

The synchrotron spectrum for this distribution will
be similar to the radiation spectrum for a single elec-
tron (Fig. 2), with a maximum at the frequency

νm ≈ 0.29ν0, (17)

where ν0 = 3
4π

eB sinψ
mc γ2

b . At ψ � 1, we obtain from
(13)

νm =
0.87γ3

b

16
√

2πPγ2
p

. (18)

Taking the Lorentz factors γb = 106 and γp = 10,
we obtain for five radio pulsars with pulsed optical
emission [16] peak frequencies in the range from 5.6×
1014 Hz to 6.6 × 1015 Hz (Table 1).

The peak for PSR 0656+14 corresponds to the op-
tical, as was already noted in [8]. Since the intensity
decreases with decreasing frequency as ν1/3 in the
range ν < νm, then, if the emission at the peak is fairly
strong, this emission should also be detectable at
optical frequencies for all the pulsars listed in Table 1.
The νm values for pulsars with P ∼ 1 s correspond to
the infrared range. Note that, if γb = 107, the peak
frequency increases by three orders of magnitude;
however, the intensity in the optical for this value of
γb will be only an order of magnitude less than at the
maximum. Moreover, if we take the minimum value
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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Fig. 3.Observed relation between the optical luminosities
of radio pulsars Lopt (in arbitrary units, see text) and
Ṗ /P 4 (where the period P is in seconds).

γp = 2, we obtain an additional increase in νm by a
factor of 25. The maximum values of νm are indicated
in column 6 in Table 1. These frequencies correspond
to peaks at gamma-ray energies, but the intensity in
the optical could still be appreciable.

The magnetic-field magnitudes in [17] were calcu-
lated using the relation

|IΩΩ̇| =
2m2

⊥Ω4

3c3
(19)

for the magnetic moment m = BR3
∗. In (19), Ω is the

angular velocity of the neutron star. However, in fact
(see, for example, [18]),

m = BR3
∗/2; (20)

thus, the calculated magnetic field is decreased by
a factor of two. Precisely these corrected values for
the field are presented for logB0 in the right-hand
subcolumn of column 5 in Table 1.

Let us now estimate the total synchrotron lumi-
nosity of the electrons in the beam. Using (3) and
(13), we obtain

L =
π3e2Iγ3

b Ṗ

128mc3P 4γ4
p

= 2.27 × 107 γ
3
b Ṗ−14

γ4
pP

4
, (21)

where we have adopted I = 1045 g cm2 and Ṗ−14 =
Ṗ /10−14. The luminosities that can be obtained in
the model are presented in column 7 of Table 1. The
left-hand subcolumn corresponds to Lorentz factors
γb = 106 and γp = 10 and the right-hand subcolumn
corresponds to γb = 107 and γp = 2. The calculated
values of L are similar to the observed luminosities
[16]; thus, the theoretical and observational values
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Table 1.

No. PSR P , ms Ṗ−14 logB0 (G) νm, Hz logL (erg/s) Lopt

1 2 3 4 5 6 7 8

1 B 0531+21 33 42 12.68 12.88 6.58 × 1015–1.64 × 1020 28.91 34.70 106

2 B 0540-69 50 48 12.70 13.00 4.34 × 1015–1.08 × 1020 28.24 34.03 1.4 × 105

3 J 0633+1746 237 1.1 12.21 12.51 9.16 × 1014–2.29 × 1019 23.90 29.69 0.1

4 B 0656+14 385 5.5 12.67 12.97 5.64 × 1014–1.41 × 1019 23.75 29.55 0.3

5 B 0833-45 89 12 12.53 12.83 2.44 × 1015–6.10 × 1019 26.64 32.43 21

Lopt is expressed in arbitrary units, such that the luminosity of PSR B0531+21 is equal to 106.
can be brought into agreement through appropriate
choice of γp and γb.

Note that the magnitude of the magnetic field B
does not appear in (21). This fortunate circumstance
enables us to avoid having to consider the field struc-
ture in outer regions of the pulsar magnetosphere and
to use for the estimates only the observed parameters
P and Ṗ together with the values of γb and γp, which
are nearly constant over the magnetosphere.

Shearer et al. [16] found a strong correlation be-
tween the optical luminosity and the magnetic field at
the light cylinder. This is surely a strong (and, prob-
ably, decisive) argument in favor of the idea that the
optical emission is generated at the magnetosphere
periphery. In this case, L ∝ (Ṗ 1/2/P 5/2)3. On the
other hand, (21) leads to a slightly different functional
dependence: L ∝ Ṗ /P 4. If we use the data of [16], in

 

0 2

15

 

γ

 

b

 

/10

 

6

 

10

5

4 6 8 10

 
γ

 

p

Fig. 4.Dependence of the Lorentz factor of the secondary
plasma γp on the Lorentz factor of the beam γb from
relation (23).
which the optical luminosities are presented in units
of 10−6 of the luminosity of PSR 0531+21 (Table 1),
we obtain the following relation between the observed
values of Lopt and the ratio Ṗ /P 4 (Fig. 3):

logLopt = (1.30 ± 0.19) log
(
Ṗ−14/P

4
)

(22)

− 4.21 ± 1.02,

with the correlation coefficient being ρ = 0.97 ± 0.14.
This strong correlation shows that our model can
describe the observed optical emission of radio pul-
sars. Using (21) and (22) together with the optical
luminosity of PSR 0531+21 logL (erg/s) = 34.1, we
obtain the following mean value for the five pulsars:

γ3
b /γ

4
p = 3.42 × 1016. (23)

The corresponding γp and γb values are plotted in
Fig. 4, where γb varies from 106 to 107. As follows
from this dependence, γp takes on values from 2.3 to
13.1 for the above range of γb. In order for secondary
plasma with these Lorentz factors to be formed, the
magnetic field near the neutron-star surface must
differ substantially from a dipolar field. We are in
agreement with Shearer et al. [16] that the opti-
cal emission is formed at the periphery of the pulsar
magnetosphere; the agreement between (21) and the
observational data supports this point of view. We
emphasize that (22) was derived using only five ob-
jects; therefore, more reliable conclusions should be
obtained if the number of known pulsars with optical
emission can be increased.

However, we can already predict that a radio
pulsar will produce appreciable optical radiation if
Ṗ−14/P

4 is sufficiently large. This parameter takes
on values from 250 to 3.55 × 107 for the five objects
in Table 1. The mean value log(Ṗ−14/P

4) = 3.90 for
38 pulsars with P < 0.1 s from [17] is in the same
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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Table 2.

No. PSR Ṗ−14/P
4 logL∗ (erg/s) d, kpc No. PSR Ṗ−14/P

4 logL∗ (erg/s) d, kpc

1 2 3 4 5 1 2 3 4 5

1 B 0114+58 5.62 × 103 27.64 2.14 25 1634-45 1579 27.09 4.84

2 0138+57 195 26.18 2.89 26 1643-43 3894 27.48 6.85

3 0355+54 742 26.76 2.07 27 1706-44∗ 8.59 × 104 28.82 1.82

4 0456-69 315 26.39 49.40 28 1715-40 148 26.06 6.29

5 J 0538+2817 876 26.83 1.77 29 1718-35 410 26.50 6.36

6 0540+23 421 26.51 2.54 30 1719-37 350 26.43 2.51

7 0611+22 479 26.57 4.72 31 1727-33∗ 2.28 × 104 28.25 4.24

8 J 0631+1036 1520 27.07 6.56 32 1737-30 343 26.42 3.28

9 0740-28 2160 27.22 1.89 33 1754-24 434 26.53 3.50

10 0906-49 1.16 × 104 27.95 6.57 34 1757-24∗ 5.24 × 104 28.61 4.61

11 1046-58∗ 4.06 × 104 28.49 2.98 35 1800-21∗ 4.22 × 104 28.51 3.94

12 1055-52 387 26.48 1.53 36 1821-19 409 26.50 5.19

13 1221-63 230 26.25 2.29 37 1822-14 374 26.46 5.42

14 1317-53 150 26.07 4.23 38 1823-13∗ 7.08 × 104 28.74 4.12

15 1338-62∗ 1.82 × 104 28.15 8.66 39 1828-10 223 26.24 3.63

16 1356-60 2399 27.27 5.91 40 1832-06 463 26.56 6.34

17 1449-64 268 26.32 1.84 41 1838-04 534 26.62 5.16

18 1508-57 2474 27.28 12.69 42 1841-05 226 26.24 6.16

19 1509-58∗ 2.96 × 105 29.36 4.40 43 1842-04 548 26.63 4.72

20 1535-56 139 26.03 4.01 44 1853+01 4101 27.50 3.30

21 1556-57 368 26.46 6.30 45 1855+02 134 26.02 8.58

22 1557-50 148 26.06 5.34 46 1915+13 502 26.59 4.07

23 1607-52 474 26.57 3.34 47 2011+38 316 26.39 13.09

24 1610-50∗ 1.76 × 104 28.14 7.26 48 2334+61 170 26.12 2.47

The period P in column 3 is in seconds. The asterisks denote pulsars whose optical luminosity exceeds 1028 erg/s.
interval.1 Therefore, if the distance to a pulsar is not
extremely large, it is worthwhile to search for optical
emission from this object, since its mean luminosity
is of the order of 1028 erg/s. The mean value for most
of the pulsars from [17] is log(Ṗ−14/P

4) ≈ 0.14 (i.e.,
Ṗ−14/P

4 ≈ 1) for 497 sources with P > 0.1 s and
measured values of Ṗ . According to (21), their optical
luminosity should be extremely small. Nevertheless,
for several objects (Table 2), their values of Ṗ−14/P

4

1The total number of pulsars with P < 0.1 s in this catalog
is 41. When calculating the mean value log(Ṗ−14/P 4),
we excluded the three pulsars that were already included in
Table. 1.
ASTRONOMY REPORTS Vol. 45 No. 11 2001
could result in high optical luminosities L∗, as cal-
culated for γ3

b /γ
4
p from (23). Pulsars with logL∗ > 26

are listed in Table 2. This luminosity was chosen arbi-
trarily based on the lower integrated radio luminosity
of the pulsars [20]. We emphasize that it will be quite
difficult to detect optical emission from most of these
objects, due to their considerable distances from the
Earth. Nevertheless, the pulsars with luminosities
> 1028 erg/s, marked by asterisks in Table 2, could
be appreciable optical emitters. Indeed, optical flux
was detected from two pulsars not listed in Table 1,
PSR 1055-52 and PSR 1509-58 [19]. PSR 1509-
58 possesses the maximum luminosity among the
sources from Table 2, while PSR 1055-52 is the most
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Table 3.

No. PSR Ṗ−14/P
4 logL∗ (erg/s) d, kpc

1 0823+26 2.15 24.22 0.38

2 0950+08 5.61 24.64 0.12

3 1929+10 43.69 25.30 0.17

4 J0454+5543 17.50 25.13 0.79

5 0906-17 2.57 24.30 0.63

6 1133+16 46.20 25.55 0.27

7 1451-68 2.07 24.21 0.45

8 J1908+0734 40.84 25.50 0.58

9 J1918+1541 13.42 25.02 0.68

nearby. PSR 1706-44, which has a high expected
luminosity and a fairly small distance, was detected
as an X-ray and gamma-ray source. The peak of its
synchrotron spectrum probably occurs in a band that
is harder than the optical.

Another argument in favor of the proposed model
is the fact that six of the nine radio pulsars marked
by asterisks in Table 2 also possess emission at X-ray
or gamma-ray energies. Moreover, PSR 0355+54,
PSR 2334+61, and PSR J0538+28 were identified
in [19] as hard emitters. This may be explained by
their rather small distances. As is noted above, optical
(and probably harder) emission should be expected
from pulsars with short periods (P < 0.1 s). X-ray
and gamma-ray emission from nine such pulsars—
1951+32 (P = 40 ms), 1259–63 (48 ms), J0437–47
(6 ms), 1821–24 (3 ms), J2124–33 (5 ms), 1957+20
(1.6 ms), J1012+53 (5 ms), J0218+42 (2 ms), and
J0751+18 (3.5 ms)—was reported in [19].

There is soft X-ray emission from three other
pulsars with logL∗ = 24.22 − 25.30 [19] (Table 3).
These objects are very nearby and, therefore, may
have detectable fluxes. In addition, Table 3 contains
pulsars with d < 1 kpc and Ṗ−14/P

4 > 1, which
could also be used for searching for pulsed nonther-
mal radiation.

It follows from the above considerations that the
proposed synchrotron model can explain the avail-
able observations of radio pulsars in hard bands and
predict for which sources the probability of detecting
hard emission is high.

5. CONCLUSIONS

(1) We have derived a refined formula for the syn-
chrotron power emitted by the primary-beam parti-
cles in radio pulsars when the emission is generated
at the magnetosphere periphery. The corresponding
power L depends on the pulsar period P and its
derivative Ṗ , as well as on the Lorentz factors of
the beam γb and secondary plasma γp, and does not
depend on the magnitude of the magnetic field in the
region in which the radiation is generated.

(2) In accordance with this dependence, we found
a strong correlation between the observed optical lu-
minosity Lopt of pulsars and the ratio Ṗ /P 4, with a
correlation coefficient close to unity.

(3) The predicted and observed luminosities can
be brought into agreement if γp = 2–13. In or-
der for secondary plasma with such Lorentz factors
to be formed, the magnetic-field structure near the
neutron-star surface must strongly deviate from a
dipolar field, as was proposed, for example, in the
classic paper by Ruderman and Sutherland [21].

(4) We predict appreciable optical emission to
be observed from radio pulsars with large values of

Ṗ−14/P
4. All pulsars with P < 0.1 s (log Ṗ−14/P 4 =

3.90) belong to this category. In addition, we expect
strongsynchrotronradiationfrom57 other pulsars (Ta-
bles 2,3) withP > 0.1 s (Ṗ−14/P

4 =139–2.96×105).
All 27 pulsars that have been detected at optical to
gamma-ray energies [19] are included in our list of
expected emitters. This result demonstrates that
our model describes the essence of the observed
phenomenon.

(5) It follows from (18) that the shorter the period
of a pulsar, the harder the energy at which the peak of
its synchrotron radiation is observed. As a result, our
list of possible synchrotron radio pulsars includes not
only optical but also X-ray and gamma-ray objects.
Among the 27 radio pulsars whose emission has been
quantitatively measured outside the radio band [19],
we can see a tendency of the period to decrease as
the hardness of the peak radiation increases: 7 optical
objects have P̄ = 163 ms, 27 X-ray emitters have
P̄ = 139 ms, and 6 gamma-ray pulsars have P̄ =
116 ms. This represents further evidence in favor
of the proposed model. As noted above, if the peak
frequency in a pulsar spectrum is located at X-ray
or even gamma-ray energies, such a pulsar can still
emit appreciable optical emission, since the intensity
decreases with decreasing frequency as ν1/3.
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Abstract—We have synthesized Doppler tomograms of gas flows in the binary system IP Peg using the
results of three-dimensional gas-dynamical computations. Gas-dynamical modeling in combination with
Doppler tomography enables identification of the key elements of flows in Doppler maps without solution
of an ill-posed inverse problem. A comparison of the synthetic tomograms with observations shows that,
in the quiescent state of the system, the most luminous components are (1) the shock wave induced by
interaction between the circumbinary envelope and the stream from the Lagrange point L1 (the “hot line”)
and (2) the gas condensation at the apogee of the quasi-elliptical disk. Both the single spiral shock wave
arm in the gas-dynamical solution and the stream from L1 contribute little to the luminosity. In the active
state of the system, when the stream fromL1 does not play an appreciable role and the disk dominates, both
areas of enhanced luminosity in the observational tomograms are associated with the two arms of the spiral
shock wave in the disk. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As a rule, observations of binaries are photometric
or spectrographic. The first technique provides in-
formation on the temporal dependence of the star’s
brightness in some waveband I(t), while the second
yields the temporal dependence of the wavelength for
a given line λ(t) via its Doppler shift. Given the
ephemeris φ(t), the dependences I(t) and λ(t) can be
transformed into a light curve I(φ) and radial-velocity
curve VR(φ).

Recently, observations of binaries in the form of
consecutive (trailed) spectrograms in some emission
line I(λ, t) (or, in other words, I(VR, φ)) have be-
come widespread. The most suitable method for the
analysis of such spectrograms is Doppler tomogra-
phy [1]. In this technique, the orbital variability of
emission-line intensity is translated into a luminosity
map in two-dimensional velocity space. A Doppler
tomogram is constructed by transforming a num-
ber of spectrograms for consecutive times I(VR, t)
(or, equivalently, consecutive orbital phases I(VR, φ))
into a luminosity distribution in the (Vx, Vy) plane.
In order to transform the distribution I(VR, φ) into
the Doppler tomogram I(Vx, Vy), the radial velocity
is expressed in terms of the projection of the velocity
vector onto the line of sight VR = −Vx cos(2πφ) +
1063-7729/01/4511-0872$21.00 c©
Vy sin(2πφ) (here, Vz ∼ 0; the minus sign before Vx
is dictated by the choice of coordinate system); the
inverse problem described by the following integral
equation is solved (see Appendix A in [1]):

I(VR, φ) =
∫ ∫

I(Vx, Vy)g(VR (1)

+ Vx cos(2πφ) − Vy sin(2πφ))dVxdVy,

where g(V ) is the normalized local line profile (for
example, a δ function) and the integrals are taken
from −∞ to +∞. This inverse problem is ill-posed;
its solution requires special regularization (for ex-
ample, using the maximum entropy method [2, 1],
the method of filtered inverse projection [3], the rapid
maximum entropy method [4], etc; see also [5, 6]).

The solution of this inverse problem yields a
Doppler map, i.e., the distribution of the radiation
intensity at the frequencies of some emission line in
velocity space. In a number of cases, Doppler maps
are easier to interpret than the initial spectrograms;
in addition, tomograms may indicate (or, at least,
give hints of) some peculiarities in the flow structure.
In particular, a line with a double-peaked profile
corresponding to circular motion (for example, in the
accretion disk) becomes a blurred ring in the Doppler
map. In other words, binary components are resolved
in velocity space, despite the fact that they cannot
2001 MAIK “Nauka/Interperiodica”
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be spatially resolved directly in observations. This
makes Doppler tomography a powerful technique for
the study of binaries.

Unfortunately, the problem of reconstructing the
spatial distribution for an emission-line intensity
based on a Doppler map is, in general, not solv-
able, since points separated by large distances can
have the same velocity and contribute to the same
location in the Doppler map. Therefore, the trans-
formation I(Vx, Vy) → I(x, y) is impossible without
some a priori assumptions being made as about the
structure of the velocity field.

The situation changes dramatically when gas-
dynamical computations are used together with
Doppler tomography. In this case, there is no need
to solve the inverse problem, since the Doppler tomo-
gram can be constructed directly: ρ(x, y) & T (x, y) →
I(x, y) and I(x, y) & Vx(x, y) & Vy(x, y) →
I(Vx, Vy) → I(VR, φ). Difficulties arise only when
transforming the spatial distributions for the density
and temperature ρ(x, y), T (x, y) into the intensity
distribution for some emission line I(x, y). The
profiles of optically thick lines should be calculated
using the radiative transfer equation (see, for exam-
ple, [7]). Here, when deriving the synthetic Doppler
tomograms, we assumed that the medium was opti-
cally thin and the intensity of the recombination line
considered was I ∼ ρ2T 1/2 [8, 9].

2. PARAMETERS OF THE SYSTEM

The variable star IP Peg was discovered by
Lipovetskiı̆ and Stepanian [10] in 1981. In 1985,
Goranskij et al. [11] showed that IP Peg was an
eclipsing dwarf Nova (orbital period 3h.79) with a deep
eclipse and a peak in its light curve.

The binary is fully determined by a set of pa-
rameters consisting of the orbital period P , masses
of the components M1 and M2, distance between
the centers of the components A, and the orbital
inclination i. Of all these parameters, only P can
be determined directly from observation, while M1,
M2, A, and i (or alternatively M , q, A, and i, where
M =M1 +M2 is the total mass of the system and
q =M2/M1 is the mass ratio of the components)
must be derived from observational data. These four
parameters are related via Kepler’s third law, Ω2A3 =
GM (Ω = 2π/P is the orbital angular velocity and G
is the gravitational constant); therefore, another three
independent relationships must be found if they are all
to be determined.

Several methods for deriving relationships be-
tween the parameters of a binary from observations
are known.
ASTRONOMY REPORTS Vol. 45 No. 11 2001
(a) We can derive q = K1/K2 from the radial-velocity
amplitudes

K1 = AΩ sin i
M2

M
= AΩ sin i

q

1 + q
,

K2 = AΩ sin i
M1

M
= AΩ sin i

1
1 + q

for the accretor and donor, and, taking into account
the angular velocity of rotation for the binary pre-
viously determined from observations, establish the
relationship between A and i.
(b) We can find the relationship between q and i from
the phase width ∆φ of the eclipse of the white dwarf
by the donor star (in eclipsing systems).

Determining K1, K2, and ∆φ from observations
enables calculation of the desired binary parameters.
Other methods for establishing relationships between
binary parameters exist. For example, the velocity
Vrot = RRL(q,A)Ω sin i corresponding to rotational
broadening of the absorption lines of the donor star
(RRL is the effective radius of the Roche lobe) can be
used to establish the relationship between q, A, and
i. The desired parameters can also be refined using
supplementary relations.1

The half-amplitude of the radial velocity of the
white dwarf in the IP Peg system was determined
in [13–15, 19]: Marsh [15] obtained K1 = 175 ±
15 km/s; Shafter [14],K1 = 164 km/s; andWood and
Crawford [13],K1 = 141 km/s. The half-amplitude of
the radial velocity of the donor was determined in [15–
17, 18]: Marsh [15] obtained K2 = 305 ± 15 km/s;
Martin et al. [16, 17], K2 = 288–298 km/s; and
Beekman et al. [18], K2 = 331.3 ± 5.8 km/s. Here,
we adopt the radial-velocity half-amplitudes from [13,
19]: K1 = 148 km/s andK2 = 301 km/s.

Having fixed the values for K1 and K2, let us
now use the second relationship between the desired
parameters. For this purpose, we will use the width
of the eclipse of the white-dwarf by the donor star,
which has been measured fairly accurately: Wood
and Crawford [13] obtained ∆φ = 0p.0863 and Marsh
[15] obtained ∆φ = 0p.0858. The width of the eclipse
of the white-dwarf by the donor yields a relationship
between the orbital inclination i and mass ratio q in
the form (see, for example, [20, 21])(

Atan(π∆φ) sin i
YRL

)2

+
(
A cos i
ZRL

)2

= 1. (2)

1Here, we do not consider methods for determining binary
parameters based on eclipse of the hot spot [12, 13], since
we consider a substantially different model for the flow; we
also do not consider methods based on the radius–mass
dependence for the donor star, since this is derived for single
stars.
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Fig. 1. Relationship between the orbital inclination i and
the mass ratio of the binary components q = M2/M1

for the width of the eclipse of the white-dwarf by the
donor star ∆φ = 0p.0863. The dashed curve represents
calculations of the Roche-lobe radius according to (3).
The solid curve corresponds to exact calculations of the
Roche-lobe size in the Y and Z directions. We also show
i and q obtained in [13, 15, 18], as well as the values
adopted in our computations: i = 82◦.0 and q = 0.49.

Here, ZRL(q) and YRL(q) are the dimensions of the
donor Roche lobe in the Z (normal to the orbital
plane) and Y (along the orbital motion of the donor)
directions. The functions ZRL(q) and YRL(q) are
usually presented in an approximate form [22]:

ZRL(q)/A = YRL(q)/A (3)

= RRL/A ≈ 0.462
(

q

1 + q

)1/3

.

Figure 1 presents the derived dependence between i
and q for the adopted value of ∆φ = 0P.0863 (dashed
curve). However, using the approximate formula (3)
can result in some loss of accuracy. Therefore, we
calculated the relations ZRL(q) and YRL(q) in the
interval 0.3 ≤ q ≤ 0.7 exactly and approximated them
with errors < 0.1% using the formulas

YRL(q)/A ≈ −0.14858q2 + 0.32031q + 0.18991,

ZRL(q)/A ≈ −0.14466q2 + 0.30559q + 0.18320.

The derived dependence i(q) is also presented in
Fig. 1 (solid curve). We also show the i and q values
adopted by Wood and Crawford [13], Marsh [15], and
Beekman et al. [18].

Using the above K1 and K2 values and the re-
fined dependence i(q), we will adopt for further com-
putations the following parameters for the IP Peg
system: q = 0.49, M1 = 1.02M�,M2 = 0.5M�, and
i = 82◦.0. The inner Lagrange point L1 is located at
a distance D = 0.573A = 0.812R�, while the center
of mass of the system is at a distance 0.329A =
0.466R� from the accretor.

The adopted parameters imply a velocity for the
rotational broadening of the donor’s absorption lines
of Vrot = 143 km/s. Observational values for Vrot
are Vrot = 146 km/s [23] and Vrot = 125 km/s [24].
The consistency between the computed and observed
parameters in the supplementary relation suggests
that the values we have for the parameters of IP Peg
are correct.

Note also two factors that were not considered in
our model. There have been numerous suggestions
[16, 18] that the orbits of the components may devi-
ate from being circular (with eccentricities e = 0.05–
0.075). In addition, some observational peculiarities
of IP Peg have been interpreted as evidence of the
presence of a third body in the system [25, 26]: a star
with mass 0.05–0.1M� . Here, we assume that the
system contains only two stellar components rotating
in circular orbits.

3. THE MODEL

3.1. Gas-Dynamical Model

A complete description of the three-dimensional
gas-dynamical model is presented in [27], and we
note only key elements of the model here. We used
three-dimensional Euler equations in Cartesian coor-
dinates to describe the gas flows in the binary system.
This system of gas-dynamical equations was closed
with the equation of state for an ideal gas with adi-
abatic index γ. To take into account radiation loss
in the system, we assumed that γ was close to unity
(γ = 1.01), which corresponds to a case that is close
to isothermal [28, 29].

The computations were carried out in a non-
inertial reference frame rotating with the binary.
The results of the gas-dynamical computations and
corresponding Doppler tomograms are presented in a
coordinate system in which the origin is at the center
of the accretor, theX axis is directed from the accretor
to the donor, the Y axis is directed along the orbital
motion of the donor, and the Z axis is normal to the
equatorial plane and oriented such that the coordinate
system is right-handed (upper panel in Fig. 2). Fig-
ure 2 also indicates the phase angles of the observer,
the accretor, the donor, the Roche lobe of the accretor,
and the ballistic trajectory from the point L1. The
lower panel in Fig. 2 presents the coordinate system
used for the Doppler tomograms. It is very easy to
transform the donor shape from spatial coordinates to
coordinates in velocity space, since the donor star is
fixed in the rotating coordinate system. A point r that
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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is fixed in the rotating coordinate system moves with
velocity Ω × r in the laboratory system. Since this
expression is linear in the distance to the rotational
axis, the projection of the donor’s shape onto the
orbital plane is preserved in velocity coordinates;
since the velocity vector for each point of the donor
is normal to the radius vector, all points of the donor
rotate by 90◦ counterclockwise (shaded areas in the
upper and lower panels of Fig. 2). The location of
the accretor in velocity space is specified by the point
(0,−K1). Figure 2 also presents concentric circles
corresponding to various disk radii, as well as their
images in the velocity plane (for Keplerian rotation).
The inner circle has larger velocities and forms the
outer circle on the Doppler tomogram.

We used a higher-order Roe–Osher difference
scheme [30, 31] when deriving the numerical solution
of the gas-dynamical equations. The computation
domain had the form of a parallelepiped [−D . . .D] ×
[−D . . . D] × [0 . . .1 /2D]; due to the symmetry of
the problem, the computations were carried out only
in the upper half-space. We cut a sphere of radius
1/100D from the computation domain to represent
the accretor. We adopted free-outflow conditions for
the boundary conditions at the accretor and outer
boundary. Matter with ρ = ρ(L1), Vx = c(L1), and
Vy = Vz = 0 was injected into the system at the grid
node corresponding to L1, where c(L1) is the sound
speed at the donor-star surface. Since the system
of equations is scalable in ρ and P , the value for
ρ(L1) can be chosen arbitrarily. We adopted the value
ρ(L1) = 1 and took the sound velocity at the inner
Lagrange point to be 5.5 km/s, which roughly corre-
sponds to T (L1) = 3500 K. We adopted rarified gas
with ρ0 = 10−5 · ρ(L1), P0 = 10−4ρ(L1)c2(L1)/γ,
and V0 = 0 for the initial conditions.

3.2. Method for Constructing
the Synthetic Doppler Tomograms

Before considering the synthetic Doppler maps for
IP Peg, we should emphasize the complexity of ana-
lyzing Doppler tomograms for eclipsing systems (see,
for example, [32]). Synthetic Doppler maps imply
that each point of a geometrical area contributes to a
corresponding point in the velocity plane and that this
point is visible at any orbital phase. Indeed, it follows
from (1) that

I(VR, φ+ π) = I(−VR, φ)
and Doppler maps can be constructed only for sets
of consecutive spectrograms I(VR, φ) that can be
mapped symmetrically when the system is viewed
“from the opposite side,” i.e., when there are no
eclipses and no elements of the binary are obscured by
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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Fig. 2. Top: the coordinate system used with the phase
angles of the observer. The orbital rotation of the binary
is counterclockwise. The star denotes the accretor. The
filled Roche lobe of the donor star is shaded. The Roche
lobe of the accretor and the ballistic trajectory from L1

are marked with solid curves. The dashed and dot–
dash curves indicate concentric circles corresponding to
various disk radii. Bottom: the coordinate system in
velocity space. The notation is the same.

others. It is obvious that eclipsing systems are incon-
sistent with this assumption. When a Doppler map
is constructed from observations, eclipsed sections
of the consecutive spectrograms are simply excluded
from the input data set. The resulting Doppler map
corresponds to the case without eclipses (in other
words, to a “transparent” donor star). In our case,
our transformation of the results of the gas-dynamical



876 KUZNETSOV et al.

 

0.4

 

X

 

/

 

R

 

�

 

–0.2

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.1 0 0.1 0.2 0.3 0.4 0.5

 
Y

 
/

 
R

 
�

 

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4

 
Y

 
/

 
R

 
�

 

A

D
C

B

(b)

(‡)

Fig. 3. (a) Density distribution in the equatorial plane
of the system. The arrows denote velocity vectors in
the laboratory coordinate system. The star marks the
accretor. The dashed curve indicates the accretor’sRoche
lobe. The white dotted curve represents a tidal spiral
shock. A gas-dynamical trajectory of a particle ejected
fromL1 is shown by the white curve with circles. Another
gas-dynamical trajectory passing through the shock at
the edge of the stream is marked by the black curve with
squares (see also Fig. 4). (b) Distribution of ρ2T 1/2 in
the equatorial plane of the system. The black dotted curve
indicates the shockwave along the edge of the stream (the
hot line). A, B, C, and D denote zones with the highest
intensity of radiation. The remaining notation is the same.

computations assumes that all data have been used,
which also corresponds to a transparent donor.

Doppler tomograms display luminosity in the ve-
locity coordinate plane. Let us denote the velocity
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and black curve with squares display gas-dynamical tra-
jectories in velocity space (see also Fig. 3a). A, B, C, and
D denote the same zones of maximum radiation intensity
as in Fig. 3b.

vector field in the laboratory coordinate system (the
observer’s frame) U = (Ux, Uy, Uz). When the ob-
server is situated in the orbital plane of the binary, the
coordinates of the Doppler tomogram (Vx, Vy) coin-
cide with Ux and Uy . When the system is inclined,
these coordinates are specified using the projectionU
onto the plane formed by the vectors n and n× Ω,
where n is the direction from the observer to the
binary.

The intensity of a line in velocity space is calcu-
lated as follows:

I(Vx, Vy) ∼
∫

O

∫

Ux

∫

Uy

I(x, y, z)δ(Ux(x, y, z) (4)

× sin i+ Uz(x, y, z) cos i− Vx)
×δ(Uy(x, y, z) sin i+Uz(x, y, z) cos i−Vy)dVdUxdUy,
where dV = dxdydz and i is the orbital inclination.

As was noted above, when constructing the
synthetic Doppler tomograms, the intensity was
expressed in the form I ∼ ρ2T 1/2.

4. RESULTS FOR THE QUIESCENT STATE
OF IP Peg

To carry out three-dimensional gas-dynamical
modeling for IP Peg in its quiescent state, we used
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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Fig. 5. Doppler map of IP Peg in Hγ and Hβ for the quiescent state of the system [40]. Figure reproduced by the courtesy of
S. Wolf and A. Bobinger.
the model presented in Section 3.1, continuing the
computations until a steady-state flow regime was
attained. Figure 3a presents the morphology of the
gas flows in the binary together with distributions
of the density and velocity vectors in the equatorial
plane of the system (theXY plane). We also can see
in Fig. 3a the gas-dynamical trajectory of a particle
ejected from L1 (white curve with circles) and a gas-
dynamical trajectory passing through the shock wave
at the edge of the stream from L1 (black curve with
squares, see also Fig. 4 below). These results, as
well as our previous studies [33, 34], indicate that the
rarified gas of the circumbinary envelope substantially
affects the structure of gas flows in semidetached
binaries. The circumbinary envelope interacts with
and deflects the stream from L1. In particular, this
results in a shockless interaction between the stream
and the accretion disk, and, consequently, in the
absence of a hot spot at the edge of the disk. At the
same time, the interaction between the circumbinary
envelope and the stream forms an extended shock
along the edge of the stream (a hot line). The hot
line model is consistent with observations [35, 36]. In
addition, Fig. 3a displays a spiral shock (white dotted
curve), which originates in the accretion disk due to
the tidal effect of the donor star. The existence of
double-arm spiral shocks was discovered in [28, 37,
38]. In our computations, only a single-arm spiral
shock is visible, whereas the flow structure in the area
where the second arm should be located is specified
by the stream from L1, which apparently inhibits
the formation of the second arm of the tidal spiral
shock. The flow structure beyond the equatorial plane
indicates that some of the circumbinary envelope
interacts with the flow, passing around it from above
ASTRONOMY REPORTS Vol. 45 No. 11 2001
and below, resulting in the formation of a “halo.” It
is suggested in [27] that this halo is formed by matter
that (1) rotates around the accretor (is gravitationally
bound with it), (2) does not belong to the disk, (3)
interacts with the stream (collides or bypasses), and
(4) is either accreted or leaves the system after the
interaction.

Figure 3b presents the ρ2T 1/2 distribution in the
equatorial plane of the system. As in Fig. 3a, the
white dotted curve in Fig. 3b indicates the spiral
shock wave. The black dotted curve displays the
shock along the edge of the stream, the hot line. Since
the quantity displayed in Fig. 3b is proportional to
the intensity of a recombination line, its distribution
can be used to identify the features of the flow that
make the largest contributions to the radiation of
the system. We can see that four areas of the flow,
denoted A, B, C, and D, radiate the most. The letter
A denotes the shock along the edge of the stream (hot
line) due to the collision of the circumbinary envelope
gas with the stream. The letter B denotes the stream
from L1 or, more precisely, the part of this stream
with maximum I, where the gas density is still fairly
high and the temperature increases appreciably due
to dissipation. The letter C marks the area of the
disk near the apogee. We can see that the disk has
a quasi-elliptical shape, so that a condensation forms
in the disk during the approach toward the apogee,
when the velocity of the matter decreases, resulting in
a zone of enhanced radiation. The letter D denotes a
condensation behind the spiral shock.

Figure 4 presents a synthetic Doppler tomogram
constructed from our gas-dynamical computations.
The basic features of the flow structure were analyzed
in the equatorial plane of the system (Figs. 3a, 3b);
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Fig. 6. (a) Density distribution in the equatorial plane of
the system in its active state. The arrows denote velocity
vectors in the laboratory coordinate system. The star
marks the accretor. The dashed curve indicates theRoche
lobe of the accretor and the white dotted curve the arm of
the tidal spiral shock. (b) Distribution of ρ2T 1/2 in the
equatorial plane of the system in its active state. A and B
denote zones with a maximum intensity of radiation. The
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however, for comparison with observations, the inten-
sity was integrated along the z coordinate in accor-
dance with (4); i.e., the tomogram takes into account
all z layers of the computation grid. Figure 4 also
displays two gas-dynamical trajectories (in velocity
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Fig. 7. Synthetic Doppler tomogram for the system in its
active state. The Roche lobe of the donor star (thick black
curve) and the accretor (star) are shown. A and B denote
the same zones with maximum radiation as in Fig. 6b.

coordinates) corresponding to the gas-dynamical tra-
jectories in Fig. 3a.

The shock resulting from the interaction between
the circumbinary envelope and the flow from L1 is lo-
cated along the edge of the stream (in spatial coordi-
nates). The three latest, larger symbols (white circles
and black squares) on the gas-dynamical trajectories
in Fig. 3a denote the sections of these trajectories that
pass through the shock. The location of these parts
of the trajectories on the Doppler map corresponds
to the area A to the left of the donor star. A spiral
arm is located in the same region in the tomogram,
starting approximately from the center of the donor
star and situated above L1. It can be shown that
this feature is related to the circumbinary envelope
flowing around the stream rather than to the shock
wave. We can see from Fig. 4 that the flow from L1

(the origin of the trajectory is denoted by the white
curve with circles) is transformed into the spiral armB
in the third quadrant2 of the Doppler map. The region
of enhanced radiation near the disk apogee, area C,
is seen in Fig. 4 as a darkening at the boundary
between the first and fourth quadrants. The tidal
spiral shock (white dotted curve in Figs. 3a, 3b) or,

2The quadrants of the coordinate plane are numerated in the
usual way: the first quadrant is in the upper right (corre-
sponding to Vx > 0, Vy > 0), and the other quadrants are
numbered consecutively counterclockwise.
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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Fig. 8.Dopplermap of IP Peg in the He IIλ 4686 Å line for the active state of the system for two different nights of observations
[49]. Reproduced by courtesy of Morales-Rueda.
more exactly, the zone of enhanced density behind the
shock (area D) forms the bright arm in the first and
second quadrants of the Doppler map.

In summary, we can conclude from the synthetic
Doppler tomogram for IP Peg in its quiescent state
that four elements of the flowmake the largest contri-
butions to the luminosity: the hot line, the brightest
part of the stream from L1, a condensation near the
disk apogee, and a condensation behind the spiral
shock. Obviously, the contributions of these elements
to the total luminosity can differ, depending on the
specific features of the system. It is also evident
that model computations cannot be used to estimate
which of these elements dominates. However, by
comparing synthetic tomograms with observations,
we are able not only to answer this question but
also to determine which of the gas-dynamical model
parameters require adjustment, enabling us to refine
our picture of the flow pattern in the system.

Doppler tomograms for the quiescent state of the
system were constructed in [19, 39–42]. As a typical
example, Fig. 5 presents Doppler maps in the Hγ

and Hβ lines from [40]. The distinctive features of
these tomograms are a bright spot in area A and
a brightening in area C. When compared with our
synthetic tomogram (Fig. 4), it is apparent that the
largest contributions to the luminosity in the observed
tomogram of IP Peg in its quiescent state are made by
the shock at the edge of the stream (the hot line) and
the condensation near the disk apogee. The absence
of appreciable signs of a spiral wave implies either
that it is absent from the system or that it is present
but has a relatively small intensity. Note also that,
in the observational tomogram, the contribution from
the stream (area B) is fairly small.
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5. RESULTS FOR THE ACTIVE
STATE OF IP Peg

Observations (see, for example, the latest reviews
[6, 43]) indicate that the disk dominates in the flow
structure during outburst. We can therefore assume
that the relative role of the stream from the inner
Lagrange point decreases in that stage. At present,
we have only a qualitative idea of the nature of the
outbursts and their parameters; therefore, any correct
modeling of outburst-induced variations of the flow
structure remains impossible. In order to obtain a
gas-dynamical pattern qualitatively similar to flow
structures during flares, following [44, 45], we as-
sumed the absence of mass exchange between the
components of the system after steady-state flow was
attained. There is no doubt that this type of model
cannot describe an outburst and the subsequent in-
crease of the disk size; however, qualitatively, it can
adequately reflect the effects of the disk and stream
on the flow pattern. Studies of the structure of the
residual accretion disk have indicated that the flow
pattern is already altered substantially at times of
about 0.3–0.4 of the orbital period after the time of
mass-exchange termination. The stream from L1

disappears, and, consequently, its effect on the flow
structure is terminated. The shape of the accretion
disk changes from quasi-elliptical to virtually circular.
A second spiral shock appears in the disk structure,
resulting from the gravitational effect of the donor
star, which is suppressed by the stream from L1 in
systems with constant mass transfer. It is clear that
this flow pattern qualitatively displays all features ob-
served in the active state of IP Peg. This provides
hope that synthetic tomograms based on this gas-
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dynamical solution will reveal characteristic features
of IP Peg during outburst.

Figure 6a presents distributions of the density and
velocity vectors, while Fig. 6b shows the distribution
of ρ2T 1/2 in the equatorial plane of the system. We
can see that condensations behind the arms of the
spiral shock make the largest contribution to the ra-
diation of the system. These areas are marked A and
B in Fig. 6b. Figure 7 presents the synthetic Doppler
tomogram for this model. Both bright arms in the first
and third quadrants are due to emission in the areas
of enhanced density behind the arms of the tidal spiral
shock.

Observational Doppler tomograms for the active
state of the system were constructed in [19, 46–49].
Figure 8 presents typical examples of such tomo-
grams [49]. Their characteristic features are bright
arms in the first and third quadrants of the Doppler
map. When the synthetic and observational tomo-
grams are compared, it is apparent that both bright
arms are due to radiation from condensations behind
the arms of the tidal spiral shock (areas A and B).

6. CONCLUSIONS

Gas-dynamical modeling combined with Doppler
tomography can be used to identify the basic ele-
ments of flows in Doppler maps without solution of an
ill-posed inverse problem. Comparison of synthetic
tomograms with observations enables refinement of
gas-dynamical models and interpretion of the obser-
vational data.

We have presented synthetic Doppler tomograms
for gas flows in the binary system IP Peg based
on three-dimensional gas-dynamical computations.
Identification of the areas in the flow responsible for
zones of enhanced emission in Doppler maps shows
that these areas are different for the quiescent and
active states of the system. In the quiescent state, the
major contribution to the luminosity in tomograms
is made by the shock at the edge of the stream (hot
line) and a condensation near the disk apogee. The
contributions from the single arm of the spiral wave
and the stream are small. The situation changes dra-
matically when the system goes into its active state.
In the corresponding gas-dynamical flow pattern, the
stream from L1 does not play an important role and
the system is dominated by the disk and two arms of
the spiral shock. Comparison between synthetic and
observational tomograms indicates that both zones
of enhanced luminosity in the active state of IP Peg
are associated with the arms of the spiral shock in the
disk.
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Federation (99-15-96022, 00-15-96722, 00-15-
96553) and the INTAS (grant no. 00-491). The
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Abstract—We have calculated evolutionary tracks for stars with high abundances of heavy elements. An
abundance increase from the solar level (∼ 0.02) to 0.1 (for ∆Y/∆Z = 0–2.4), which corresponds to the
central regions of the disk components of giant galaxies, shifts the main sequence towards lower effective
temperatures; however, it does not appreciably affect either the luminosity of the stars or their lifetime on
the main sequence. Increasing the heavy-element abundance to 0.2 for ∆Y/∆Z = 2.4 shifts the main
sequence towards higher effective temperatures, appreciably increases the luminosity of the stars, and
substantially accelerates their evolution. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The evolution of single and binary stars with solar
compositions and with compositions characteristic
of the Galactic halo, where the relative abundances
of heavy elements are nearly an order of magnitude
lower than in the solar region of the Galactic disk,
has been rather well studied. Variations of the basic
observed parameters of stars in the course of evo-
lution driven by nuclear synthesis, such as surface
temperature and luminosity, have been calculated.
The evolution of the internal structure of stars has
also been modeled, from main-sequence stars to the
formation of the final products of stellar evolution:
degenerate dwarfs, neutron stars, and black holes
(see, for example, [1]).

The structure and evolution of stars with heavy-
element contents enhanced by factors of two or three
compared to the Sun have also been investigated in
numerous studies. We note here, for example, a pio-
neering work [2] (for Z up to 0.05) and a recent study
[3] (for Z up to 0.04). However, there are at least
two reasons to expand stellar-evolution modeling to
stars with even higher heavy-element abundances.
In their study of 13 spiral galaxies, van Zee et al.
[4] concluded that the abundance of heavy elements
increased from the edge of the disk toward its center.
The gradient d logZ/dR was −0.04 to −0.07 kpc−1.
For our Galaxy, this gradient is −0.05 to −0.1 kpc−1

([5–7]). As a result, the heavy-element abundance in
the central regions of the disk of our Galaxy can be a
factor of three to ten higher than in the solar region
and can reach ∼ 0.1. It is particularly notable that the
color characteristics of galaxies vary with their radii
together with increasing heavy-element abundance,
so that, for most galaxies, the color of the stellar
1063-7729/01/4511-0882$21.00 c© 2
population reddens toward the center in accordance
with the metal-abundance increase [8].

Another incentive to study the evolution of stars
with high heavy-element abundances is provided by
the modeling of galactic evolution on timescales of
∼ 1013 yr. Tutukov et al. [9] indicated that, during the
evolution of disk galaxies, the abundance of metals
increases with time, reaching ∼ 0.1–0.2 by ages of
∼ 1012 yr.

Here, we study the evolution of single stars for
Z = 0.1–0.2. The helium abundance in cases of high
heavy-element abundances is of particular interest.
Empirical estimates yield a broad interval for the ratio
∆Y/∆Z, from two [2] to six [11]. We have chosen
the value 2.4 [12] to construct two series of models
with Z = 0.1 and Z = 0.2. However, calculations
of the evolution of galaxies [9] indicate that, while
the heavy-element content increases with the age of
a galaxy, the helium abundance can remain almost
constant up to ages of ∼ 1012 yr. Therefore, we
also constructed a series of models with Z = 0.1
and a helium abundance close to the solar value
(∆Y/∆Z = 0).

2. METHOD FOR STELLAR-EVOLUTION
CALCULATIONS

We computed the evolution of stars using a code
based on the trial run method. We applied the tab-
ulated equation of state calculated in [13, 14]. The
opacity was estimated using tables from [15, 16]. The
nuclear-reaction rates were taken from [17, 18]. We
took into account neutrino energy losses following
the formulas derived by Beaudet et al. [19]. The ratio
l/Hp from the mixing-length theory was taken to
be 1.8, since this corresponds to the standard model
001 MAIK “Nauka/Interperiodica”
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for the contemporary Sun obtained using this same
code. The boundaries of the convective zones were
determined using the Schwartzschild criterion. We
assumed zero mass loss in the course of the stellar
evolution, since we are concerned here primarily with
stars on the main sequence (MS) and in the initial
stage of helium burning.

There are no opacity tables for Z > 0.1; we cal-
culated the tracks for stars with Z = 0.2 by adopting
the opacity tables for oxygen for the opacities of the
higher abundances. To test the validity of this ap-
proach, we compared our results with opacity coef-
ficients extrapolated from the tables for Z = 0.08 and
Z = 0.1. This comparison indicated that the opacities
obtained using these two methods differ by only a few
percent.

We carried out stellar-evolution calculations for
four series of models, whose initial chemical compo-
sitions are presented in Table 1. Series 1 corresponds
to a solar-type initial chemical composition; series 3,
to a composition at late stages of galactic evolution
(an approximate age of 1012 yr); and series 2 and 4, to
possible current chemical compositions of the central
regions of the stellar disk in our Galaxy and in other
giant galaxies for various values for ∆Y/∆Z.

3. RESULTS

3.1. Position of the Main Sequence

Figure 1 presents the locations of the four calcu-
lated series of models on a zero-age Hertzsprung–
Russell (HR) diagram. For comparison, the position
on the main sequence of a star with mass 100M� and
the chemical composition of series 1 are indicated.
Increasing Z with constant Y (series 4) results in the
well known shift of the main-sequence towards lower
effective temperatures, which explains the reddening
of stellar populations with approach toward the cen-
tral regions of galaxies with chemical compositions
corresponding to model series 4 and 2.

For series 2 and 3, the shift of the main sequence
with an increase inZ is relatively small, even when the
hydrogen abundance decreases by nearly an order of
magnitude (series 3). For series 3, however, the main
sequence is shifted in the opposite direction, towards
higher effective temperatures. The positions of stars
on the main sequence are also altered for this series
of models: as Z increases, a star moves upward, in
the direction of increasing luminosity. This is due
to a decrease in the mean opacity resulting from an
increase in the helium abundance. The differences in
the positions for stars with Z = 0.02 and Z = 0.1 are
relatively small; however, increasing Z to 0.2 shifts
the stars more appreciably, primarily due to the very
small abundance of hydrogen corresponding to this
ASTRONOMY REPORTS Vol. 45 No. 11 2001
Table 1. Stellar chemical composition

Series of models Z X Y ∆Y/∆Z

1 0.02 0.700 0.280 –
2 0.10 0.428 0.472 2.4
3 0.20 0.088 0.712 2.4
4 0.10 0.620 0.280 0.0

Table 2. Basic parameters of ZAMS stars

M/M� Series logTeff (K) log(L/L�) Tc, 107 K ρc, g/cm3

0.1 1 3.479 −2.900 0.447 345

0.1 2 3.463 −2.859 0.589 243

0.1 3 3.652 −2.110 0.981 256

0.1 4 3.441 −2.978 0.478 269

1 1 3.734 −0.176 1.28 72.7

1 2 3.764 0.089 1.74 80.3

1 3 4.017 1.332 2.43 51.2

1 4 3.656 −0.539 1.20 51.4

3 1 4.085 2.007 2.53 37.4

3 2 4.088 2.174 2.55 22.1

3 3 4.333 3.216 3.13 14.8

3 4 3.957 1.694 2.31 27.3

10 1 4.403 3.746 3.32 10.8

10 2 4.405 4.043 3.29 6.50

10 3 4.557 4.736 3.81 5.13

10 4 4.326 3.672 3.05 7.36

30 1 4.586 5.024 3.92 3.37

30 2 4.566 5.242 3.83 2.85

30 3 4.620 5.671 4.27 2.66

30 4 4.515 5.025 3.64 2.93

Table 3. Relative mass of convective nuclei for MS stars

M/M� Series 1 Series 2 Series 3 Series 4

1 – 0.074 – –
3 0.196 0.202 0.259 0.161

10 0.312 0.335 0.487 0.284
30 0.515 0.566 0.754 0.502

Z. The largest shift occurs for masses near 1M�.
For small masses near 0.1M�, the shift decreases
substantially.

Table 2 presents the basic parameters of stars
with masses 0.1, 1, 3, 10, and 30 M� on the zero-
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age main sequence (ZAMS) for the four calculated
chemical compositions. Compared to series 1, the
parameters for series 2 and 3, on the one hand, and for
series 4, on the other hand, vary in opposite directions.
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The most pronounced variations of the characteristic
stellar evolution occur for series 3, that is, forZ = 0.2.

Table 3, which presents the relative masses of the
convective cores of stars for series 1–4, illustrates
the structural variation of zero-age main-sequence
stars due to variations in their chemical compositions.
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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Note that a star with mass 1M� possesses a small
convective core only in series 2. For stars of other
masses, increasing Z in series 2 and 3 results in
appreciable increases in the convective core’s mass,
whereas, in series 4, on the contrary, the mass of
the convective core decreases due to the decrease in
stellar luminosity.

3.2. Evolution of Stars
with Moderate and High Masses

Figures 2, 3, and 4 present tracks in the HR dia-
gram for stars with masses 1M�, 3M�, and 10M�,
respectively. These figures clearly indicate shifts of
the evolutionary tracks towards lower luminosities
and effective temperatures for series 4 and in the
opposite direction for series 2 and 3. This is especially
pronounced forZ = 0.2 (series 3): the tracks for a star
of a given mass for Z = 0.2 are located in the region
occupied by tracks of stars with solar composition
and masses that are nearly a factor of three larger.

Table 4 presents times of hydrogen burning in the
center of the star (i.e. the lifetime of the star on the
main sequence) formasses 1, 3, 10, and 30M� for se-
ries 1–4. In accordance with luminosity increase for
an increase inZ, the stellar evolution is accelerated in
series 2 and 3. For series 3, there is additional acceler-
ation due to the low hydrogen abundance, so that the
lifetime of a star on the main sequence becomes one
to two orders of magnitude shorter than for series 1.
In accordance with the obtained luminosity decrease,
some deceleration of the stellar evolution occurs for
series 4.
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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3.3. Evolution of Low-mass Stars

We studied the evolution of low-mass stars using
a star with mass 0.1 M� as an example. Figure 5
presents the tracks of such a star on a HR diagram
for four calculated chemical compositions (the evolu-
tion of the star is towards increasing luminosity and
effective temperature). The tracks were calculated
to an age of 1013 yr. Note that the star remains
entirely convective during this time for all chemical
compositions. The small initial hydrogen abundance
for series 3 and also the acceleration of the evolution
for this track due to the luminosity increase some-
what change the characteristic evolution of the star
for Z = 0.2: after 5.4 × 1012 yr, it begins to cool
due to hydrogen burning and its luminosity begins
to decrease. However, when the central hydrogen
abundance decreases to 3.56 × 10−3, the luminosity
and effective temperature of the star begin to increase
again. This is associated with the nonequilibrium
character of hydrogen burning, which results in an
increase in the 3He abundance.

Figure 6 shows the corresponding variations of
hydrogen density in the star as a function of time.
The times for the hydrogen density to halve are 2.44×
1012, 2.76 × 1012, 9.79 × 1011, and 3.45 × 1012 yr for
the tracks for series 1, 2, 3, and 4, respectively. The
substantial increase in the stellar luminosity for series
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Table 4. Time in years for the central hydrogen density to decrease to 10−6

M/M� Series 1 Series 2 Series 3 Series 4

1 1.126 × 1010 4.508× 109 1.005 × 108 2.293× 1010

3 3.644 × 108 1.861× 108 6.000 × 106 6.931 × 108

10 2.979 × 107 1.325× 107 1.431 × 106 2.941 × 107

30 9.382 × 106 7.007× 106 6.986 × 105 1.058 × 107
3, which is almost an order of magnitude higher than
for the track for series 1, appreciably accelerates the
hydrogen burning. Thus, the evolution of low-mass
stars with chemical compositions characteristic of
late stages of galactic evolution (ages of ∼ 1012 yr)
is changed, especially in the final stages of their evo-
lution. However, the degree of acceleration of the
evolution is not as high as for more massive stars.

4. CONCLUSIONS

Our study of the evolution of stars with enhanced
metal abundances corresponding to those in the cen-
tral regions of giant galaxies has led to the following
conclusions.

(1) An increase in the heavy-element abundance
to 0.1 shifts the main sequence and giant branch
towards lower effective temperatures, independent of
the value of ∆Y/∆Z, provided this ratio lies in the
interval 0–2.4. This provides an explanation of the
reddening towards the center observed in most disks
of giant spiral galaxies (for the same star-formation
history) [8]. There exist a few galaxies whose disks
become bluer toward their central regions; however,
this may be due to star-formation activity in the nuclei
of these galaxies [20] or may occur when the galactic
nucleus accretes material from old stars from the
spherical component or intergalactic gas with low
abundances of heavy elements [21]. Unfortunately,
this effect is difficult to estimate quantitatively due
to the lack of sufficient data on the star-formation
histories of such galaxies. However, it is clear qual-
itatively that, whatever the origin of acceleration of
star-formation (for example, interaction with nearby
galaxies), it results in a blueing of the corresponding
disk galaxies [22].

(2) Increasing the heavy-element abundance to
0.1 does not substantially affect either the luminos-
ity of stars with masses 0.1–30 M� or their main-
sequence lifetimes, independent of ∆Y/∆Z, provided
this ratio lies in the interval 0–2.4. This justifies the
use of stellar models with solar chemical composition
for studies of the evolution of galaxies to ages of
∼ 1012 yr.

(3) Increasing the heavy-element abundance to
0.2 for ∆Y/∆Z = 2.4, which corresponds to the late
stages of evolution of galaxies with ages of the order
of 1012 yr, substantially alters the evolution of the
corresponding stars: the main sequence shifts to-
wards higher effective temperatures, the luminosity of
the stars increases, and their evolution is appreciably
accelerated. Therefore, modeling of the future evolu-
tion of galaxies based on tracks for stars with solar
chemical composition is applicable only to Z = 0.1
and ages ∼ 1012 yr. For higher ages and heavy-
element abundances, the lifetimes of stars become
considerably shorter; the mass and nature of their
remnants also vary in accordance with the masses
of their convective cores. The decrease in the stellar
lifetimes accelerates the evolution of galaxies at these
phases.
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Precision WBV R Photoelectric Photometry
of the Eclipsing System RR Lyncis
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Abstract—We carried out accurate (σobs ≈ 0m. 003) WBV R photoelectric photometry of RR Lyn and
obtained light curves of this eclipsing system. Our analysis of the light curves using an iterative differential-
correction method yields a self-consistent system of geometrical and physical characteristics of the two
components of the system and their evolutionary states. The system’s age is estimated to be t = (1.08±
0.15)× 109 yr. Observations in all filters are fitted satisfactorily by the same geometry (r1,2, i, e, and
ω). An analysis of blanketing effects in the W , B, V , and R bands indicates that the atmospheric
chemical compositions of both components of the system are peculiar: the primary shows an excess
([Fe/H]I = 0.31± 0.08) and the secondary a deficit ([Fe/H]II = −0.24± 0.06) of heavy elements. This
is in qualitative and quantitative agreement with the results of an earlier spectroscopic study of RR Lyn
by Lyubimkov and Rachkovskaya (1995). The derived physical characteristics of RR Lyn provide evidence
that the metallicity effects are probably restricted to the stellar surface layers, while their interiors have
normal chemical abundances. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The eclipsing binary RR Lyn (=BD+56◦1125 =
HD 44 691; P = 9d.945; A6IV + F0V; V = 5m. 54;
e = 0.08) is interesting first and foremost because its
primary component shows very obvious features of
so-called “metal-line” stars, whose nature remains
poorly understood [1].

The most detailed spectroscopic studies and radial
velocity curves for RR Lyn are presented by Popper
[2], Kondo [3], and Lyubimkov and Rachkovskaya [4,
5]. Photoelectric light curves for the system have been
published by Huffer [6], Magalashvili and Kumsishvili
[7], Botsula [8], Linnell [9], and Lavrov et al. [10].
In 1977, the star was proposed for use as a test
target for studies of the relativistic advance of orbits
of eclipsing systems [11]. Botsula [12] suspected an
apsidal advance with a period U ≈ 2000 yr for this
system; however, this result is far from that expected
theoretically (Uth ≈ 28 000 yr) and could not be con-
firmed by later observations.

The photometric elements for RR Lyn derived by
various authors from its light curves differ consider-
ably. Discrepancies between the times of minima ob-
served at close epochs that could not be attributed to
observational errors were noted, as well as deviations
from Russell’s model, in particular, the need to invoke
gaseous flows and a “third light” (L3 ≈ 15–30%) to
obtain a satisfactory description of the light curves [8,
9, 12–14]. However, other evidence for the presence
of a third star in the system is lacking [9].
1063-7729/01/4511-0888$21.00 c©
To resolve these contradictions and derive more
accurate geometrical and physical parameters of the
components, we included RR Lyn in our program of
photometric studies.

2. OBSERVATIONS

Our WBVR photometric measurements of
RR Lyn were acquired using the 50-cm reflector
(AZT-14) at the Tian Shan Mountain Observatory
of the Sternberg Astronomical Institute (SAI) and
the 60-cm Zeiss-600 reflector at the SAI Crimean
Observatory. As in previous observations by other
authors, 11 Lyn ≡ BD + 56◦1136 = HD 46 590 was
used as the comparison star. The star 11 Lyn was one
of the standards used when preparing our “Catalog of
WBVR Magnitudes of Bright Northern Stars” [15].
For this reason, it was studied photometrically, for
variability, over many years and its brightness is very
stable. Table 1 presents magnitudes and color indices
for the variable and comparison star. The rms errors
of the magnitudes are about 0m. 010 in all filters; the
errors of the color indices are about 0m. 005.

We determined the errors of the differential mea-
surements, σobs, for each night from the internal
agreement of the observations of standard stars, as
well as of the comparison star. For example, on one
of the best nights, JD 2 444 595, the σobs values were
0m. 0029, 0m. 0024, 0m. 0020, and 0m. 0023 for the W , B,
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. V light curve of RR Lyn near Min I from obser-
vations at the SAI Crimean Observatory. The lower part
of the figure shows O–C deviations of individual observed
data points from the theoretical curve computed with the
derived photometric elements.

V , and R filters, respectively (based on 95 measure-
ments of RR Lyn in each of the four filters near the
secondary minimum over more than eight hours of
observations at the Tian Shan Observatory). This
good accuracy of individual measurements, typical of
many nights of our observations of RR Lyn, is due to
the excellent astronomical conditions for photometric
measurements at the Tian Shan Observatory, which
is at an altitude of 3000 m above sea level. At the
same time, the standard error of our measurements
on one of the best nights at the SAI Crimean Ob-
servatory (altitude of about 500 m, JD 2444988,
145 measurements of RR Lyn during 6 hours of
observations, Min I) was only 0m. 0033 in the V filter.
Altogether, we obtained 275 individual brightness
measurements of RR Lyn in the V filter and 124
measurements in each of the W ,B, and R filters.

The results of our differential measurements of
RR Lyn are presented in Tables 2 and 3 and Figs. 1
and 2. They have been corrected for atmospheric
extinction using the technique described in [16] and
reduced to the standard WBVR photometric system
[17]. The Julian times of the observations, JD�, are
heliocentric. The tables contain differences between
the corresponding magnitudes for the variable and
comparison star, ∆m = m(RR Lyn)−m(11 Lyn).
Figure 3 shows the variations of theW–B,B–V , and
B–R color indices with the phase of the orbital cycle.
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Fig. 2. W , B, V , and R light curves of RR Lyn near
the secondary minimum from observations at the Tian
Shan Observatory. The lower part of the figure shows O–
C deviations of individual observed data points from the
theoretical curves computed with the derived photometric
elements.

3. PHOTOMETRIC
AND ABSOLUTE ELEMENTS

We determined the photometric elements using
the iterative differential-correction method developed
by us for the analysis of light curves of eclipsing
systems with elliptical orbits [18]. We first analyzed
the individual V measurements from Tables 2 and 3,
i.e., those having the best accuracy and complete-
ness. Table 4 presents the photometric elements of
RR Lyn along with their error estimates obtained by
us in an unrestricted (simultaneous) search. Here
and below, r1,2 are the components’ relative radii,
expressed as fractions of the system’s major axis; u1,2

is the limb darkening coefficients of the disks; L1,2,3

is the component luminosities, expressed as fractions
of the total luminosity; i is the orbital inclination; e
is the eccentricity; ω1 is the longitude of periastron of
the primary (ω2 = ω1 + 180◦); EI is the heliocentric
time of the primary minimum (expressed as JD�);
EII is the heliocentric time of the secondary minimum
(JD�); and σO–C is the rms deviations of individual
data points from the theoretical curve.

The subscript “1” and term “primary” refer to the
component eclipsed in the primary (deeper) minimum
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Table 1. Magnitudes of RR Lyn and the comparison star 11 Lyn

Star W B V R W–B B–V V –R Sp

RR Lyn 5m. 880 5m. 761 5m. 540 5m. 362 0m. 119 0m. 221 0m. 178 A6IV + F0V

11 Lyn 5m. 927 5m. 882 5m. 877 5m. 880 0m. 045 0m. 005 −0m. 003 A2V

Table 2. Individual Tian Shan WBV R measurements of RR Lyn

JD� –
2 444 000

∆m(RR Lyn− 11 Lyn) JD� –
2 444 000

∆m(RR Lyn− 11 Lyn)
W B V R W B V R

595.08774 0.152 0.047 –0.168 –0.338 595.20032 0.225 0.109 –0.100 –0.258

595.09116 0.163 0.047 –0.161 –0.330 595.20380 0.224 0.106 –0.103 –0.266

595.09474 0.165 0.055 –0.153 –0.320 595.20720 0.218 0.101 –0.101 –0.266

595.09841 0.171 0.053 –0.152 –0.321 595.21129 0.218 0.102 –0.102 –0.275

595.10290 0.172 0.070 –0.143 –0.312 595.21559 0.215 0.096 –0.110 –0.277

595.10626 0.184 0.067 –0.141 –0.309 595.21902 0.211 0.095 –0.113 –0.281

595.10956 0.186 0.071 –0.135 –0.301 595.22258 0.202 0.090 –0.117 –0.286

595.11298 0.191 0.075 –0.133 –0.298 595.22636 0.198 0.084 –0.120 –0.290

595.11685 0.201 0.084 –0.122 –0.290 595.22999 0.196 0.083 –0.127 –0.298

595.12106 0.204 0.087 –0.120 –0.295 595.23348 0.190 0.078 –0.130 –0.300

595.12455 0.206 0.090 –0.110 –0.281 595.23785 0.177 0.072 –0.136 –0.303

595.12895 0.211 0.092 –0.110 –0.271 595.24134 0.176 0.067 –0.142 –0.310

595.13249 0.216 0.095 –0.111 –0.267 595.24516 0.171 0.059 –0.147 –0.316

595.13572 0.221 0.100 –0.106 –0.268 595.24886 0.163 0.053 –0.154 –0.326

595.13918 0.224 0.106 –0.098 –0.266 595.25227 0.157 0.048 –0.159 –0.329

595.14295 0.227 0.104 –0.099 –0.262 595.25609 0.147 0.042 –0.168 –0.339

595.14648 0.229 0.109 –0.098 –0.262 595.25944 0.140 0.037 –0.177 –0.341

595.14970 0.229 0.110 –0.094 –0.254 595.26268 0.135 0.033 –0.177 –0.350

595.15391 0.235 0.111 –0.095 –0.258 595.26592 0.128 0.025 –0.187 –0.354

595.15730 0.244 0.114 –0.092 –0.225 595.26929 0.117 0.018 –0.190 –0.359

595.16061 0.240 0.114 –0.089 –0.253 595.27263 0.115 0.017 –0.198 –0.366

595.16395 0.240 0.114 –0.088 –0.253 595.27640 0.112 0.007 –0.200 –0.375

595.16758 0.242 0.116 –0.086 –0.250 595.28068 0.101 –0.001 –0.290 –0.381

595.17125 0.237 0.111 –0.087 –0.253 595.28415 0.097 –0.007 –0.217 –0.392

595.17491 0.234 0.116 –0.089 –0.250 595.28971 0.085 –0.015 –0.223 –0.398

595.17828 0.240 0.111 –0.087 –0.250 595.29266 0.075 –0.022 –0.232 –0.403

595.18164 0.237 0.111 –0.091 –0.247 595.29616 0.070 –0.030 –0.238 –0.410

595.18549 0.236 0.115 –0.090 –0.251 595.29964 0.060 –0.030 –0.245 –0.417

595.18980 0.233 0.116 –0.094 –0.250 595.30475 0.046 –0.040 –0.251 –0.422

595.19330 0.234 0.113 –0.094 –0.259 595.30915 0.042 –0.045 –0.260 –0.436

595.19688 0.233 0.111 –0.092 –0.257 595.31262 0.039 –0.052 –0.265 –0.437
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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Table 2. (Contd.)

JD� –
2 444 000

∆m(RR Lyn− 11 Lyn) JD� –
2 444 000

∆m(RR Lyn− 11 Lyn)
W B V R W B V R

595.32180 0.022 –0.065 –0.280 –0.450 615.39020 –0.035 –0.124 –0.333 –0.511

595.32512 0.016 –0.071 –0.283 –0.457 615.39367 –0.044 –0.121 –0.338 –0.514

595.32866 0.012 –0.076 –0.287 –0.463 626.27671 –0.039 –0.126 –0.338 –0.518

595.33211 0.007 –0.079 –0.293 –0.469 626.28157 –0.044 –0.124 –0.339 –0.516

595.33410 0.002 –0.082 –0.296 –0.469 627.27740 –0.036 –0.125 –0.338 –0.512

595.33994 –0.010 –0.087 –0.303 –0.477 627.28157 –0.037 –0.122 –0.338 –0.511

595.34578 –0.016 –0.095 –0.309 –0.485 627.28921 –0.036 –0.125 –0.339 –0.514

595.35227 –0.019 –0.099 –0.316 –0.497 627.29337 –0.036 –0.122 –0.342 –0.518

595.35875 –0.023 –0.105 –0.322 –0.501 627.46207 –0.053 –0.142 –0.330 –0.521

595.36320 –0.029 –0.108 –0.325 –0.501 627.46707 –0.053 –0.121 –0.339 –0.520

595.36396 –0.032 –0.109 –0.325 –0.503 627.47115 –0.049 –0.112 –0.343 –0.503

595.36805 –0.039 –0.114 –0.332 –0.509 627.47532 –0.054 –0.142 –0.333 –0.523

595.37188 –0.039 –0.114 –0.333 –0.516 628.22551 –0.033 –0.118 –0.333 –0.512

595.37570 –0.039 –0.119 –0.337 –0.510 628.23355 –0.037 –0.121 –0.335 –0.514

595.37918 –0.042 –0.120 –0.335 –0.516 628.23772 –0.037 –0.122 –0.366 –0.511

595.38281 –0.048 –0.122 –0.338 –0.518 628.24466 –0.038 –0.122 –0.338 –0.517

595.38731 –0.050 –0.121 –0.337 –0.520 629.08970 –0.038 –0.120 –0.330 –0.516

595.39098 –0.041 –0.122 –0.335 –0.516 629.09456 –0.034 –0.121 –0.339 –0.511

595.39464 –0.048 –0.125 –0.341 –0.519 692.09814 –0.034 –0.124 –0.336 –0.512

595.39891 –0.046 –0.126 –0.340 –0.521 629.10498 –0.039 –0.123 –0.333 –0.510

595.40267 –0.051 –0.126 –0.342 –0.520 629.23206 –0.032 –0.120 –0.337 –0.517

595.40636 –0.050 –0.125 –0.337 –0.521 629.23554 –0.039 –0.120 –0.336 –0.511

595.41100 –0.047 –0.127 –0.342 –0.521 692.23970 –0.042 –0.123 –0.335 –0.507

595.41471 –0.055 –0.128 –0.343 –0.517 629.24595 –0.051 –0.123 –0.339 –0.514

595.41830 –0.050 –0.130 –0.341 –0.517 629.45359 –0.037 –0.128 –0.340 –0.512

595.42200 –0.050 –0.126 –0.343 –0.516 630.05429 –0.035 –0.124 –0.331 –0.519

595.42541 –0.050 –0.125 –0.343 –0.517 630.05845 –0.045 –0.121 –0.340 –0.516

615.37631 –0.035 –0.119 –0.326 –0.504 630.06262 –0.043 –0.121 –0.338 –0.509

615.37979 –0.046 –0.121 –0.331 –0.507 630.30012 –0.007 –0.090 –0.297 –0.477

615.38326 –0.042 –0.124 –0.335 –0.514 630.30359 –0.011 –0.084 –0.289 –0.472

615.38673 –0.038 –0.123 –0.334 –0.518 630.30776 –0.020 –0.082 –0.285 –0.466
(Min I). The values of EI and EII were determined
iteratively together with the other photometric
elements. Analyzing our own and other published
photoelectric timings of minima [6, 8, 19–21] using
the least squares solution, we derive the following
ephemeris for computing times of minima for RR Lyn:

EI = JD� 2 444 988.49594(30) + 9.9450738(7)E,
EII = JD� 2 444 595.17240(30) + 9.9450745(7)E.
ASTRONOMY REPORTS Vol. 45 No. 11 2001
In parentheses, we present the standard errors of
the corresponding values in units of the last digit.
Though the recurrence periods for the primary and
secondary minima differ, this difference is currently
within the derived errors. For comparison, Ta-
ble 4 presents the photometric elements obtained in
[6, 9, 13].

Table 5 presents the solution for ourW ,B, V , and
R light curves for a fixed geometry. The geometrical
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Table 3. SAI Crimean Observatory V measurements of RR Lyn

JD� –
2 444 000

∆V JD� –
2 444 000

∆V JD� –
2 444 000

∆V JD� –
2 444 000

∆V JD� –
2 444 000

∆V

988.40404 –0.119 988.45744 –0.007 988.50254 0.035 988.54834 –0.032 988.59504 –0.138

988.41394 –0.097 988.45884 –0.006 988.50394 0.030 988.54964 –0.032 988.59634 –0.145

988.41554 –0.093 988.46054 –0.007 988.50544 0.034 988.55134 –0.030 988.59844 –0.149

988.41784 –0.090 988.46294 0.001 988.50674 0.028 988.55284 –0.037 988.59974 –0.146

988.41924 –0.085 988.46434 0.012 988.50824 0.022 988.55434 –0.049 988.60134 –0.157

988.42084 –0.079 988.46574 0.004 988.50984 0.025 988.55594 –0.048 988.60284 –0.164

988.42234 –0.081 988.46724 0.003 988.51124 0.027 988.55734 –0.047 988.60494 –0.156

988.42374 –0.074 988.46874 0.014 988.51254 0.022 988.55884 –0.050 988.60644 –0.169

988.42524 –0.069 988.47014 0.015 988.51404 0.025 988.56044 –0.057 988.60814 –0.176

988.42674 –0.067 988.47154 0.017 988351564 0.018 988.56184 –0.058 988.60954 –0.174

988.42824 –0.060 988.47304 0.016 988.51714 0.016 988.56394 –0.063 988.61094 –0.177

988.42984 –0.059 988.47444 0.023 988.51924 0.015 988.56534 –0.065 988.61284 –0.182

988.43164 –0.056 988.47604 0.018 988.52064 0.011 988.56704 –0.076 988.61424 –0.192

988.43314 –0.047 988.47774 0.024 988.52204 0.011 988.56854 –0.080 988.61564 –0.195

988.43464 –0.051 988.47904 0.027 988.52364 0.010 988.57024 –0.076 988.61704 –0.202

988.43604 –0.047 988.48064 0.025 988.52504 0.015 988.57174 –0.084 988.61854 –0.203

988.43744 –0.040 988.48214 0.022 988.52664 0.006 988.57334 –0.091 988.62014 –0.199

988.43884 –0.036 988.48354 0.025 988.52814 0.002 988.57484 –0.088 988.62164 –0.217

988.44054 –0.039 988.48514 0.028 988.52994 0.000 988.57934 –0.096 988.62324 –0.215

988.44194 –0.030 988.48654 0.025 988.53144 0.003 988.57804 –0.097 988.62454 –0.211

988.44324 –0.029 988.48814 0.026 988.53304 –0.007 988.57944 –0.101 988.62644 –0.217

988.44434 –0.027 988.48944 0.032 988.53464 –0.007 988.58104 –0.102 988.62804 –0.225

988.44594 –0.026 988.49094 0.025 988.53614 –0.007 988.58264 –0.103 988.62964 –0.223

988.44744 –0.023 988.49234 0.032 988.53764 –0.008 988.58404 –0.109 988.63114 –0.226

988.44884 –0.020 988.49374 0.031 988.63914 –0.011 988.58564 –0.114 988.63274 –0.232

988.45024 –0.015 988.49534 0.033 988.54074 –0.011 988.58714 –0.124 989.30194 –0.341

988.45174 –0.012 988.49684 0.026 988.54234 –0.021 988.58874 –0.116 989.30334 –0.335

988.45304 –0.010 988.49834 0.024 988.54384 –0.017 988.59034 –0.116 989.30474 –0.335

988.45454 –0.009 988.49964 0.027 988.54534 –0.021 988.59204 –0.133 989.30614 –0.336

988.45594 –0.009 988.50104 0.027 988.54694 –0.028 988.59354 –0.138 989.30754 –0.336
parameters r1,2, i, e, and ω were fixed in accordance
with the solution of the most complete (V ) light curve:
there is no reason to expect a dependence of these
parameters on the spectral band considered for RR
Lyn. Thus, when solving the W , B, and R light
curves, we varied only the photometric characteristics
of the components: L1, L2, u1, and u2.

Together with the W , B, V , and R light curves
of RR Lyn near the minima, Figs. 1 and 2 present
the O–C deviations of the observed data points from
the corresponding theoretical curves plotted for the
photometric elements in Tables 4 and 5 and the cor-
responding σO–C values.

The derived elements lead us to the following con-
clusions.

(1) There are no significant systematic variations
of O–C with orbital phase. This indicates that the
model used is in good agreement with our observa-
tions and that there is no need to invoke a third light
to describe the observations. Most of the anomalies
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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Table 4. Photometric elements of RR Lyn

Parameter Our results (V ) Huffer [6] (λ ∼ 4500 Å) Botsula [13] (λ ∼ 4600 Å) Linnell [9] (V )

r1 0.0878± 0.0005 0.080 0.090 0.082

r2 0.0541± 0.0011 0.050 0.057 0.066

i 87◦.45± 0◦.11 87◦.8 87◦.0 88◦.3

e 0.0782± 0.0009 0.081 (fixed) 0.079 0.080 (fixed)

ω 185◦ ± 5◦ 164◦ 181◦ 167◦ (fixed)

L1 0.7835± 0.0039 0.794 0.780 0.6738

L2 1− L1 1− L1 1− L1 0.3262

L3 0 (fixed) 0 (fixed) 0 (fixed) 30.4%

u1 0.43± 0.08 0.0 (fixed) 0.6–0.8 0.2908

u2 0.59± 0.12 0.0 (fixed) 0.8 0.295

Fixed parameters are indicated.

Table 5.W , B, V , and R light-curve solution for RR Lyn with fixed geometrical parameters.

Parameter W B V R

L1 0.7524± 0.0011 0.7938± 0.0010 0.7835± 0.0008 0.7656± 0.0009
L2 1− L1 1− L1 1− L1 1− L1

u1 – – 0.43± 0.08 –

u2 0.38± 0.10 0.69± 0.08 0.59± 0.07 0.16± 0.09
σO–C ( MinI ) – – 0m. 0037 –

σO–C (MinII) 0m. 0034 0m. 0024 0m. 0022 0m. 0023
and discrepancies in the light curves of RR Lyn re-
ported earlier were apparently due to the insufficient
accuracy of most early observations.

(2) The observations in all bands (W , B, V , and
R) can be satisfactorily described with the same ge-
ometry (r1,2, i, e, and ω). In both the light curves
and the O–C curves, we can see physical brightness
fluctuations with an amplitude of about 0m. 003 and
a time scale of ∼ 1h characteristic of δ Sct stars.
Additional studies are need to determine which of the
stars (RR Lyn or 11 Lyn) is responsible for these
fluctuations.

(3) Tables 4 and 5 show that the limb-darkening
coefficients derived for the components u1 and u2

are appreciably below the theoretically expected value
(uth ≈ 0.60). However, due to partial eclipses and the
ellipticity of the orbit, the values of u1 and u2 and of
the longitude of periastron ω are not determined very
accurately. This is mainly due to mutual correlations
between the estimates of u1, u2, e, and ω, which were
found simultaneously.

(4) The variations of W–B and B–V with or-
bital phase in Fig. 3 are in qualitative agreement
ASTRONOMY REPORTS Vol. 45 No. 11 2001
with similar curves for U–B and B–V presented
by Linnell [9], but our curves are appreciably more
accurate and we have observations in the R band.
Figure 3 clearly shows a situation that at first seems
paradoxical: in the secondary minimum, B–V and
V –R become bluer, as expected for an eclipse of the
cooler secondary (Sp II = F0V), but W–B simulta-
neously becomes much redder. Taking into account
the geometry of the eclipse and the luminosity ratio
of the components, the known dip in the (U–B, B–
V ) diagram in the region of A stars of luminosity
classes IV–V (Sp I = A6IV) can explain only about
30% of this effect. It will become clear below that
the remaining 70% of the unusual behavior of W–
B is the result of anomalies of the heavy-element
abundances in the atmospheres of both components.

Based on our data presented in Tables 1–5 and
published spectroscopic data [2–5], we can calculate
the physical and geometric parameters of both com-
ponents of RR Lyn collected in Table 6.

To determine the components’ ages t1 and t2
presented in Table 6, we plotted log g(t) relations
for the two stars (Fig. 4), i.e., evolutionary tracks
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Table 6. Main physical and geometric characteristics of the eclipsing binary RR Lyn

Parameter Primary component Secondary component

Mass,M 1.89± 0.07M� 1.49± 0.05M�

Radius, R 2.57± 0.04R� 1.58± 0.04R�

Luminosity, L 21.04± 1.47L� 5.31± 0.32L�

Effective temperature, Te 7570± 120 K 6980± 100 K

Spectral type fromWBV R photometry, Sp A6IV F0V

Gravity, log g 3.894± 0.019 4.214± 0.025
Age, t (1.08± 0.15)× 109 yr (0.97± 0.32)× 109 yr

Radius excess,∆logR 0.214± 0.007 0.045± 0.012
Luminosity excess,∆logL 0.259± 0.029 0.092± 0.025
V 5m. 805± 0.015 7m. 202± 0.024
W–B 0m. 177± 0.017 −0m. 079± 0.020
B–V 0m. 207± 0.011 0m. 273± 0.012
V –R 0m. 153± 0.013 0m. 265± 0.015
Absolute bolometric magnitude, Mbol 1m. 48± 0.07 2m. 88± 0.07
Metallicity, [Fe/H] 0.31± 0.08 −0.24± 0.06
Orbital period, P 9d.9450740± 0d.0000007
Orbital semi-major axis, a 29.23± 0.34R�

Orbital inclination, i 87◦.45± 0◦.11
Distance to the system, r 73.5± 2.8 pc

Photometric parallax, πph 0′′.0136± 0′′.0005
Trigonometric parallax, π 0′′.0120± 0′′.0010
Age of the system, t (1.08± 0.15)× 109 yr
for stars with normal chemical abundances (Z =
0.02) and masses M1 = (1.89 ± 0.07)M� and M2 =
(1.49 ± 0.05)M� , using stellar models computed by
Claret and Gimenez [22]. Our choice of this particular
diagram for the age determinations was based on the
fact that the gravity (g ∝M/R2) is very sensitive to
age and the radii needed to compute this quantity
can be derived from light curves much more accu-
rately than, for instance, luminosities or other stellar
parameters. The widths of the evolutionary track
strips in this diagram represent the uncertainties
in the component masses. The position where the
evolutionary track crosses the line y = log gobs yields
the desired age for the star. The resulting ages t1 and
t2, presented in Table 6, are in good agreement with
each other within the experimental error. Because the
accuracy of t1 is higher, we adopt this value as the age
of the RR Lyn system:

t = (1.08 ± 0.15) × 109 yr;
this is, in good agreement with the value t = (1.1 ±
0.3)× 109 yr derived by Lyubimkov and Rachkovskaya
[5] using other data.

4. SPECTRAL TYPES, EFFECTIVE
TEMPERATURES, AND METALLICITIES

OF THE COMPONENTS

The primary of RR Lyn is a metal-line star, making
it difficult to determine its effective temperature Te
from spectroscopic data. Its spectral type depends on
the system of lines used; the mean estimates are A3,
A7, and F0 based on lines of calcium, hydrogen, and
metals, respectively [2, 3]. Spectral-type estimates
for the secondary based on spectroscopic data also
show a wide range: F0V–F3V [2–5]. Thus, we hoped
that the results of our multicolor photometry study
would lead to a better estimate for Te, especially since
we were able to reliably separate the light of the two
components in each of theWBVR bands.
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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The components’ excess radii, ∆ logR, and lumi-
nosities, ∆ logL, presented in Table 6 were calcu-
lated relative to the zero-age main-sequence (t = 0)
and normal chemical composition (Z = 0.02) stellar
models from [22]. In accordance with its excess radius
(∆logR1 = 0.214) and excess luminosity (∆ logL1 =
0.259), we attribute the primary to luminosity class
IV, though both components are usually classified
spectroscopically as class V stars.

The components of the system are plotted in a
(B–V , V –R) two-color diagram in Fig. 5. We have
ASTRONOMY REPORTS Vol. 45 No. 11 2001
plotted the corresponding MK spectral types for lumi-
nosity classes IV–V along the axes of this diagram in
addition to the color indices from theWBVR catalog
[15]. The values of B–V and V –R do not depend
strongly on luminosity class and metallicity in the
color range of interest and are good indicators of ef-
fective temperature. We introduced small metallicity
corrections in accordance with [23, 24], shown in
Fig. 5 as blanketing vectors, and then estimated the
spectral types of components of RR Lyn:
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Sp(RR Lyn) = A6IV + F0V.

Figure 4 indicates that the secondary has not yet
significantly left the main sequence, so that we can
use the known scales of effective temperatures Te and
bolometric corrections B.C. for stars of luminosity
class V for this star [25]:

Te(F0V) = 6980 ± 100 K,
B.C.(F0V) = −0m. 01.

At the same time, the primary has already begun
to leave the main sequence and its temperature is
rapidly decreasing. It is not possible to obtain unique
calibrations for this comparatively rapid phase of evo-
lution; therefore, we used the ratio of the surface
brightnesses of the components to determine Te for
this star:

I1
I2
=
L1

L2

(
r2
r1

)2

=
ec2/λT2 − 1
ec2/λT1 − 1

.

With the above values for the relative luminosities
L1,2 and radii r1,2 (Tables 4 and 5) and assuming
the components’ effective temperatures to be equal to
their brightness temperatures, we obtain

Te(A6IV) = 7570 ± 100 K.
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This Te value is an average of the results derived
from light-curve solutions in two bands, T1 = 7565 K
for B and T1 = 7575 K for V . Most of the radiation
of both components is restricted to these bands. The
W band is strongly distorted by metal-line blanketing
and cannot be used for this purpose.

The light-curve solution can be used to deter-
mine I1/I2 very accurately, making the Te value for
the primary obtained using this ratio the most re-
liable and accurate currently available. Note that
the Te value derived from our multicolor photometry
is significantly lower than spectroscopic estimates,
T1 = 8000–8300 K [3–5]. This contradiction may
reflect the unusual atmospheric structure of metal-
line stars.

The components’ absolute luminosities L and
bolometric magnitudes Mbol computed using the
above absolute radii and temperatures are also given
in Table 6. These parameters enable us to find the
distance to the system r and its photometric parallax
πph from the relation

Mbol = V + B.C.+ 5 + 5 log πph.

Substituting the parameters of the primary from Ta-
ble 6 and the bolometric correction B.C. = −0.01
[25], we obtain

πph = 0
′′
.0137 ± 0′′.0005, r = 73.5 ± 2.8 pc.
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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The Hipparcos trigonometric parallax for the star [26]
is π = 0′′.01201 ± 0′′.00097. We can see that the πph

and π values are in agreement within the experimental
error. However, our πph value is now probably the
most reliable and accurate.

Figure 6 plots the components of the RR Lyn
system in a (W–B, B–V ) two-color diagram. In
this diagram, metal-deficient stars are located above
and to the left of stars having the same luminosity
and temperature but normal abundances, whereas
metal-abundant stars are located below and to the
right, demonstrating an ultraviolet deficiency [23, 24].
A star’s metallicity, [Fe/H], can be determined from
the length of the blanketing vector [27]. The blan-
keting vectors for both components are plotted in
Fig. 6. Note that the parameters of the vectors were
computed for (U–B, B–V ) diagrams and we had to
introduce small (� 10%) corrections for the different
spectral reaction curves of the W and U bands [17,
23]. This yields

[Fe/H] = +0.31± 0.08
for the primary and

[Fe/H] = −0.24± 0.06
for the secondary.

These values demonstrate both qualitative and good
quantitative agreement with the spectroscopic results
obtained by Lyubimkov and Rachkovskaya [4].

5. CONCLUSIONS

Our accurate (σind � 0m. 003) multicolor WBVR
photoelectric measurements have enabled us to
develop a self-consistent geometrical and physical
model for the eclipsing system RR Lyn and to derive
the photometric and physical elements presented in
Table 6.

An important result of our study is the conclu-
sion that both components of the system have pecu-
liar atmospheric chemical compositions: the primary
shows an excess of heavy elements; the secondary, a
deficiency. This follows from our analysis of the inte-
grated effects of blanketing by heavy elements in the
broad W , B, V , and R bands. It has been known for
a long time that the primary had a peculiar chemical
composition; namely, that it was a metal-line star. It
was only in 1995 that Lyubimkov and Rachkovskaya
[4, 5] demonstrated that the chemical abundances
for the other star in the system were also abnormal
based on spectroscopic studies. However, in contrast
to the primary, the secondary has a heavy-element
deficiency. This unexpected result required confirma-
tion, which is provided by our multicolor photometric
analysis. Since the components of RRLyn were most
probably formed simultaneously and had the same
ASTRONOMY REPORTS Vol. 45 No. 11 2001
initial chemical composition and this system has not
experienced mass transfer, this result argues in favor
of the diffusion theory. This theory explains chemical-
abundance anomalies as being a consequence of the
separation of elements in the stellar surface layers
under the influence of the force of gravity and the
opposing radiation pressure [28].

The main physical characteristics of both compo-
nents of RR Lyn (their masses, radii, and luminosi-
ties) show none of the anomalies often ascribed to
metal-line stars and, within the errors, are consistent
with current evolutionary models for stars of normal
chemical composition [22]. Attempts to describe the
primary and secondary using evolutionary tracks from
[22] with ZI = 0.03 and ZII = 0.01 lead to contradic-
tions. This indicates that the chemical-abundance
anomalies of the components of RR Lyn are restricted
to the stellar surface layers, while the interiors have a
normal chemical abundance, Z = 0.02. This result
is important to our understanding of the nature of
metal-line stars, and the RR Lyn system provides us
with a unique opportunity to continue studies con-
cerned with the metal-line phenomenon.
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Abstract—The observed mass distribution for the compact remnants of massive stars (neutron stars
and black holes) and its relationship to the possible mechanism of ejection of the envelopes of type II
and Ib/c supernovae are analyzed. The observed lack of compact remnants with masses 1.5–3 M�
suggests a magneto-rotational mechanism for the supernovae, and a soft equation of state for neutron
stars with limiting masses near 1.5M�. The observational consequences of this hypothesis are discussed.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Current astrophysical data indicate that the
masses of compact objects arising as a consequence
of stellar evolution (white dwarfs, neutron stars (NS),
and black holes (BH)) have different distributions
within theoretically permitted intervals. The observed
masses of white dwarfs lie in a wide range from
several tenths of solar mass to nearly the Chan-
dresekhar limit (∼ 1.2 M�), with low-mass white
dwarfs encountered most often. We are not concerned
with these objects here and will not consider them
further. In contrast to white dwarfs, the masses of
neutron stars lie within a very narrow interval: the
masses for 26 neutron star radio pulsars in binary
systems are consistent with a normal distribution
with mean mass 1.35 M� and dispersion 0.04 M�
[1]; the total scatter in the masses of five binary
neutron stars whose masses have been determined
accurately based on observations of relativistic effects
is only 7%. As noted by Thorsett and Chakrabarty
(1999) [1], there is currently not a single radio pulsar
in a binary system with different components whose
mass exceeds 1.45 M�. If we add the less accurately
determined masses of neutron stars in X-ray binaries
[3] to this sample, the observed mean mass of neutron
stars isMNS = (1.35 ± 0.15) M� (the same mean as
above with a larger dispersion).

More than a dozen black hole candidates in close
X-ray binary systems are known (see [2, 3] and ref-
erences therein). The classical lower limit for the
mass of an invisible component in such a binary,Mx,
is determined by the mass function f(Mo), which is
derived from the radial-velocity curve of the optical
component. Using estimates for the inclination of the
1063-7729/01/4511-0899$21.00 c©
binary orbit to the line of sight, we can obtain an esti-
mate for the mass Mx. In this way, it was discovered
that the masses of black-hole candidates are nearly
equally distributed in the interval ∼4–40 M�, with a
mean value of about 10M�.

In addition to the reliable dynamical determina-
tions of the masses of neutron stars and black holes in
binary pulsars and X-ray novae, there exists a number
of less accurate mass estimates for compact objects
in X-ray binaries. For example, (1) the mass of the
neutron star in the low-mass X-ray binary Cyg X-2
has been estimated to be 1.8 ± 0.2 M� [4]; (2) mass
estimates for the neutron star in the Vela X-1 X-ray
pulsar are MNS ∼ 1.9 M� [5] and MNS ∼ 1.4 M�
[6]; and (3) in the eclipsing low-mass X-ray binary
4U 1700–37, MNS = 1.8 ± 0.4 M� [7] (possibly in-
dicating that this object is a low-mass black hole
[8]). Until the high masses of these neutron stars
are verified, we will consider them to be uncertain.
The possible existence of low-mass black holes in
transient X-ray sources is discussed below.

Thus, we assume that current reliable measure-
ments of neutron-star masses lie in the narrow inter-
val MNS = (1.35 ± 0.15) M�, masses of black holes
lie in the wide interval MBH > 3 M�, and no objects
have currently been reliably detected with masses in
the gap between those for neutron stars and black
holes from 1.5 to 3 M�. This bimodality in the mass
distributions for compact objects is noted in [9] and
illustrated in Fig. 1.

Can we find an overall explanation for this
pattern?
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic of the mass distributions for neutron
stars and black holes.

Neutron stars and black holes are the products
of the evolution of massive stars. The matter in the
cores of these stars undergoes thermonuclear evolu-
tion, forming heavy elements corresponding to those
up to the iron peak. The masses of the helium cores,
manifest as helium stars or Wolf–Rayet stars if the
stars lose their hydrogen envelopes during their evo-
lution, lie in a wide range from∼ 3 to∼50M� [9–11].
According to the computations of [12], the masses
of the iron cores before collapse lie in the interval
from 1.25 to 2.05 M�. The core masses depend
monotonically on the initial masses of the stars on the
main sequence. The masses of the remnants formed
during collapse depend on many other factors (rota-
tion, accretion onto the collapsed core, etc.), further
exacerbating the problem of the observed narrowness
of the distribution of known neutron-star masses.

In this way, evolutionary considerations do
not provide any preconditions for the develop-
ment of the mass distribution described above.
What can we try to do to obtain such a distribu-
tion?

After completion of the nuclear evolution of a fairly
massive (>8–10 M�) star of the sort that could form
a neutron star or black hole, there is a core collapse,
which should be accompanied by the ejection of a
shell, leading to a type II or Ib/c supernova. After
the expansion of the shell, the compact remnant of
the stellar collapse becomes observable. If the shell
is ejected “efficiently” (i.e., it receives an energy of
the order of the binding energy associated with the
remnant), a low-mass compact remnant forms whose
mass is of order the mass of the collapsed core of the
supernova percursor.1 If the shell is ejected ineffi-
ciently, a large transfer of matter from the envelope to
the forming compact object is inevitable. As a result,
the mass of the latter can substantially grow and

1A small transfer of mass onto the compact object is also
possible, for example, from the inner regions of the shell.
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to the formation of a black hole with a mass of the order of
the mass of a proto-neutron star for the case M > MOV;
and, branch III to the formation of a neutron star.

approach the total mass of the supernova precursor
(or at least make up an appreciable fraction of this
mass).

If we suppose that the ejection of the envelope
during the supernova explosion is sharply (even in
a steplike manner) weakened for supernova precur-
sors with core masses above some threshold, the
continuous sequence of precursor masses will be
divided into two ranges. It remains to imagine
how this might come about.

2. THE CORE COLLAPSE

Let us consider various paths for the core collapse
of a supernova precursor. The formation of a com-
pact object during core collapse can occur in two
ways. The first is via an intermediate stage with
a hot proto-neutron star lasting several seconds or
tens of seconds, in which there is intense radiation of
thermal energy by the neutrino flux, after which the
hot neutron star “cools” or, if its mass exceeds the
Oppenheimer–Volkov limit for neutron matter MOV,
collapses into a black hole. The second is a direct col-
lapse into a black hole, bypassing the metastable hot-
neutron-star stage, if the star’s mass exceeds some
value Mdir > MOV (for a more detailed description
of this process, see, for example, [13] and references
therein). These possible paths for collapse are shown
schematically in Fig. 2.
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As was shown by Bisnovatiı̆-Kogan [14], hot neu-
tron stars can remain stable up to masses of the order
of ∼ 7 M�. In a dynamical collapse, the maximum
mass of a hot neutron star is lower and depends sub-
stantially on the entropy per nucleon in the collapsing
core material. In [14], the maximum mass somewhat
exceeded 15M�, while, in modern computations, this
value is lower, ∼(2–4) M� (see [15] and references
therein).

If we make some assumptions as to the efficiency
with which envelopes are ejected on each of the
branches in Fig. 2, we can investigate the qualitative
appearance of possible mass distributions for the
resulting compact objects. Further, we will consider
only the situation when the efficiency of the shell
ejection does not increase with the mass of the
collapsing core.

If a shell is efficiently ejected in any type of collapse
(for all branches in Fig. 2), we will obtain a dis-
tribution in which neutron stars make a continuous
transition to low-mass black holes. In this case,
massive (> 3M�) black holes do not form at all. The
mass distribution for compact remnants expected in
this case is shown in Fig. 3a.

If the shell ejection is weaker in the case of direct
collapse to a black hole (branch I in Fig. 2) than in the
formation of a proto-neutron star, then the lower two
branches II and III form a continuous distribution of
masses of neutron stars and low-mass black holes (as
in the previous case). The maximum black-hole mass
in this part of the distribution is roughly equal to the
maximum possible mass of a hot neutron star formed
via dynamical collapse ∼Mdir (taking into account
the mass defect during its cooling and subsequent
collapse). More massive black holes (with masses of
the order of the mass of the supernova precursor) are
separated from less massive black holes (which form
after cooling of a hot proto-neutron star) by a gap, as
is shown in Fig. 3b.

Note that, if for evolutionary reasons the masses
of the collapsing cores do not exceedMdir, both of the
cases considered cease to differ from each other and
lead to the distribution depicted in Fig. 3a.

If shell ejection is efficient only on the lower branch
III in Fig. 2, leading to the formation of neutron stars,
then the upper branches I and II give birth to massive
black holes separated from the neutron stars born
via branch III by a gap (Fig. 3c). In this case, the
distribution of neutron-star masses ends near MOV

(or somewhat lower, due to the mass defect)2.

2The distribution of neutron-star masses cannot be broken
off appreciably below MOV, since the initial distribution of
masses for the collapsing cores is continuous and broad.
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Fig. 3. Expected mass distribution for neutron stars and
black holes in the following cases: (a) efficient shell ejec-
tion on all three branches I–III (shown in Fig. 2); (b) shell
ejection during direct collapse to a black hole (branch I)
that is weaker than that during the formation of a neutron
star (branches II and III); (c) efficient shell ejection only
during the formation of a neutron star (branch III), with
branches I and II forming massive black holes, possibly
with accretion-induced collapse (AIC) into black holes
with masses ∼ MOV; and (d) inefficient shell ejection for
all collapse paths, so that neutron stars are either absent
or are born only at the lower end of the mass distribution.

Finally, if the envelope is always “poorly ejected,”
this will form a broad, continuous distribution of mas-
sive black holes, which may extend to the region of
low-mass black holes, and neutron stars will either
not be formed at all or will be born in small num-
bers only at the lower end of the mass distribution
(Fig. 3d).

As we can see by comparing Figs. 1 and 3, only
the third possibility, corresponding to Fig. 3c, is in
agreement with observations.

3. SUPERNOVA MECHANISMS

Let us now consider various mechanisms of su-
pernova explosions in accordance with the collapse
schemes discussed in the previous section.

Currently, we know of three qualitatively different
mechanisms for type-II supernova explosions. For
a long time, it was thought that energy was trans-
ferred to the envelope via the neutrino flux from the
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hot, compact remnant. This type of model has been
studied for many years, and although it has proved
successful in explaining supernova explosion, subse-
quent studies have placed doubt on earlier conclu-
sions (see [16] and references therein). The neutrino
mechanism cannot explain the ejection of the super-
nova shell in either the spherically symmetric or the
axially symmetric (with rotation) case [17]. There is
some hope that the situation can be saved by large-
scale neutrino convection [18]. Intensive investiga-
tions in this direction are underway (these are three-
dimensional, much more unwieldy problems; see, for
example, [19] and references therein).

The main flux of neutrinos is emitted in the hot-
neutron-star stage, which lasts about 10 s [20]. In
a direct collapse, the hot stage is appreciably shorter
(of the order of the dynamical time scale for the col-
lapse) and, consequently, is less efficient. Thus, if
a pure neutrino mechanism were to be responsible
for a supernova explosion, we would have the second
scenario, (Fig. 3b) in which the envelope’s ejection is
weakened in the case of direct collapse3. Note that the
neutrino mechanism acts for any type of collapse and
can act jointly with other mechanisms of supernova
explosion.

Another mechanism [21] is associated with the
division of the rapidly rotating collapsing stellar core
into two parts, two neutron stars4. The parts of the
binary core then approach one another, due to the
emission of gravitational radiation until the compo-
nent with the smaller mass (and larger size) fills its
Roche lobe. Further, there is an exchange of mass
until the mass of the smaller component reaches the
lower limit for the mass of a neutron star (about
0.1 M�), at which point there is an explosive deneu-
tronization of the low-mass neutron star [22]. This
additional release of energy fairly far from the center
of the collapsing star can efficiently eject its envelope.
This mechanism can act only for the most rapidly
rotating supernova precursors.

The approach of the binary core up to its merging
can last from several minutes to several hours (or
days), i.e., appreciably longer than the hot neutron
star can exist. Analysis of this scenario is complicated
due to the presence of two components. If both parts
of the core collapse into black holes (either via direct
collapse or via a hot-neutron-star stage), this mech-
anism will not operate and a single massive black hole
will form at the end of the approach. The mechanism

3Currently, this scenario makes possible only the case in
Fig. 3c (when there is virtually no shell ejection) and, in prin-
ciple, in the presence of a very powerful neutrino flux, the case
in Fig. 3a, neither of which is consistent with observations.

4At least the smaller part should form a neutron star.
can operate when at least one of the core parts is a
neutron star. The second part can be either a neutron
star or a black hole, with the black hole forming either
directly after cooling of a hot neutron star or as a
result of accretion-induced collapse (AIC) during the
approach stage (in these cases, low-mass black holes
are formed). Thus, we have the situation shown in
Fig. 3b, although the gap in the mass distribution can
be blurred due to the large number of degrees of free-
dom in this model (primarily due to the unknown rate
of accretion of the envelope material in the approach
stage), thus leading to a situation that is closer to that
shown in Fig. 3d.

The last of the supernova scenarios we will consi-
der, magneto-rotation, was first proposed by Bisno-
vatyı̆-Kogan in 1970 [23]. The idea behind this mech-
anism is very simple: the envelope is ejected by the
magnetic field of a rapidly rotating compact object.
The shell is accelerated by the slowing of the neu-
tron star’s rotation. Since this simple idea involves
the generation and amplification of magnetic fields,
as well as complex three-dimensional hydrodynamics
that are strongly affected by radiative transport, real-
istic computations of this scenario are extremely dif-
ficult. The results of two-dimensional computations
[24] indicate that the magneto-rotational mechanism
can transform several percent of the rotational energy
of the compact object into kinetic energy of the shell
and that the magneto-rotational outburst (the stage
in which there is appreciable acceleration and ejection
of the shell) lasts 0.01–0.1 s. However, this stage
is preceded by a “winding” phase, when the toroidal
magnetic field is linearly amplified to the critical value
at which the shell is ejected (∼ 1016–1017 G). The
duration of this stage depends on the initial magnetic
field of the neutron star and the velocity of its rotation
and can vary from a fraction of a second up to minutes
(or even hours). This mechanism requires that the
neutron star’s rotation be fairly rapid (corresponding
to periods of the order of several milliseconds) but not
as rapid as required by the core-division mechanism.

Depending on the relationship between the time
required for amplification of the magnetic field tB
and the time for required (neutrino) cooling of the
hot neutron star tν , we will obtain different mass
distributions for the compact objects. During direct
collapse into a black hole, the magnetic field does
not have time to be amplified and there is no shell
ejection. The magneto-rotational mechanism always
operates in the lower branch of Fig. 2, and the shell is
ejected most efficiently. On the middle branch, where
the mass of the hot neutron star exceeds MOV, there
will only be a magneto-rotational outburst when tB <
tν . Otherwise (tB > tν), the neutron star cools and
collapses before themagnetic field has time to become
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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sufficiently amplified, thus preventing ejection of the
shell. When tB < tν , we obtain the distribution in
Fig. 3b, and, when tB > tν , we obtain the distribution
in Fig. 3c.

Thus, only a “pure” magneto-rotational mecha-
nism (i.e., in which the magneto-rotational outburst
occurs after cooling of the neutron star, since it re-
quires tB > tν) can, in principle, reproduce the ob-
served mass distribution for compact objects without
invoking additional assumptions.

Here, we should comment on the anisotropy of
supernova explosions that is implied by the ob-
served high spatial velocities of neutron stars, 300–
500 km/s (see, for example, [25–28]. Recent Chan-
dra X-ray observations of a two-sided asymmetric
ejection along the direction of motion of the young
Vela pulsar [29] show that the spatial velocity of this
neutron star is directed nearly along its rotational
axis. There is also evidence that the spatial velocity
and rotational angular momentum of the Crab pulsar
are coincident [27]. This can be explained by the
“rocket” mechanism of acceleration of motion [30],
which requires a noncentral location for the magnetic
dipole moment of the neutron star. Another natural
explanation for the coaxiality of the rotation and
spatial velocity of pulsars is provided by the magneto-
rotational scenario for the ejection of the supernova
shell, due to the asymmetry of the magnetic field in
the presence of differential rotation of the collapsing
core [31]. In the alternative supernova mechanism
of Imshennik [21] for the explosion of a low-mass
component, the second neutron star also acquires
a high spatial velocity [32]; however this velocity
should be perpendicular to the rotational axis of
the neutron star; this is in contradiction with existing
observations.

We emphasize that it is not currently known pre-
cisely which of these mechanisms (or which combi-
nation of them) gives rise to the ejection of the shells
of type II supernovae in reality. It is clear that the
neutrino mechanism alone is insufficient. Magneto-
rotational core collapse and division of a rotating core
have not been studied well enough for us to be able to
use them to fully describe a supernova explosion and
place constraints on the parameters of the precursor
(except for the presence of rapid rotation).

4. THE OPPENHEIMER–VOLKOV LIMIT

Let us see what is required for the mass distri-
bution for compact objects shown schematically in
Fig. 3c to be consistent with observations. The broad
distribution of black-hole masses does not place any
constraints on the core collapse in the scheme we
ASTRONOMY REPORTS Vol. 45 No. 11 2001
considered above. The wide gap from 1.5–3 M�
between the masses of neutron stars and black holes
indicates that no fewer than several solar masses from
the envelope should fall onto the compact object dur-
ing an inefficient shell ejection. However, this effect
does not fit into our scheme and places appreciable
constraints on the process for the formation of black
holes during the collapse.

In contrast to the black-hole masses, the neutron-
star mass distribution enables us to draw certain
interesting conclusions. We will consider the nar-
rowness of the neutron-star mass distribution in the
following section. Here, we note that, according to
Fig. 3c, the upper limit of the distribution of ob-
served neutron-star masses should be close to the
Oppenheimer–Volkov limit. It follows from this fact
and from the observational data discussed in the in-
troduction that

MOV � (1.4 − 1.5)M�.

This maximum neutron-star mass is possible in the
case of certain soft equations of state for the neutron
material, which are currently considered acceptable.
Examples are the equations of state GS1, PAL6, and
PCL2 from the work of Lattimer and Prakash [33].

5. NARROWNESS OF THE NEUTRON-STAR
MASS DISTRIBUTION

Thus, we can explain (1) the broad distribution of
black-hole masses, (2) the gap between the masses of
neutron stars and black holes, and (3) the sharp upper
limit for the distribution of neutron-star masses. It
remains to be explained why the masses of neutron
stars lie in such a narrow interval (∆M/M ∼ 10%).

We would normally expect a fairly rapid growth in
the number of neutron stars as their masses decrease
as a direct consequence of the monotonic dependence
of the mass of the neutron star on the mass of the per-
cursor core and also of the observed initial mass dis-
tribution for stars (a Salpeter law dN ∝M−2.35dM ),
which rises sharply toward smaller masses. Precisely
this type of behavior is observed for white dwarfs but
not for neutron stars. How can we explain this?

According to theoretical calculations, the mini-
mum mass of a proto-neutron star during the collapse
of an iron core is (0.9–1.2) M� [34, 35]. Thus, if
the collapse occurs without any additional accretion,
the resulting interval of neutron-star masses will be
from ∼(0.9–1.2) M� to ∼(1.4–1.5) M� (MOV), i.e.,
appreciably broader than is observed.

What will change if a small fraction of the enve-
lope falls onto the collapsing core? (We will consider
this question in more detail in the following section.)
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The answer is obvious: accretion leads to an in-
crease in the neutron-star mass and, consequently,
to a narrowing of the overall mass distribution. The
lower limit of the mass interval is increased, while the
upper limit does not change, since neutron stars with
masses exceeding MOV become black holes and are
no longer observed as neutron stars. An accretion
of (0.1–0.2) M� is sufficient to turn the broad the-
oretical interval of neutron-star masses (see above)
into the observed narrow interval. We must be careful
here, however, since a quite small further increase in
the accretion (for example, to (0.2–0.4) M�) could
result in a complete absence of neutron stars.

6. ACCRETION ONTO A NEUTRON STAR

Our analysis would not be complete without a
discussion of the influence of accretion processes on
the resulting mass distribution. Such processes can
occur either immediately after the supernova explo-
sion, with part of the stellar envelope falling onto
the newly formed compact remnant, or at appreciably
later evolutionary stages, when the rotation of the
magnetized compact object becomes slow enough for
the surrounding matter to reach its surface.

In the latter case, for single neutron stars and
systems of two compact objects, accretion can occur
only from the interstellar medium. If the maximum
accretion rate in this regime is ∼ 1010–1011 g/s
over the Hubble time (∼ 1010 yr), the mass of the
star grows by no more than several hundredths of
a solar mass. Accretion in binary systems is much
more efficient, even for characteristic accretion rates
of ∼ 10−9–10−10 M�/yr in low-mass systems, and
neutron stars can increase their mass by several
tenths of a solar mass.

The growth of the mass of the forming neutron star
can come about due to a so-called “fall-back” of part
of the supernova shell onto the compact objects (see,
for example, [35, 36]). We distinguish this process
from the incomplete shell ejection considered above
since it occurs after the other physical processes of
interest to us (cooling of the hot neutron star, the
magneto-rotational outburst, etc.) and influences
the mass distribution for compact objects after it has
already formed (according to one of the schemes in
Fig. 3).

It is probably impossible to exclude the fall-back
of part of the ejected shell in any of the supernova
models. In the neutrino model, the inner layers of
the ejected shell have the lowest speeds5, which could

5The distribution of speeds in the ejected supernova shell is
close to that for an isotropic expansion regime (v ∝ r).
prove to be lower than the escape velocity for the in-
nermost parts of the shell. In the magneto-rotational
mechanism, the magnetic field accelerates material
primarily in the plane of the rotational equator; this
effect is much less powerful or even absent along the
poles. Up to the magneto-rotational outburst, the
amplified magnetic field hinders the infall of material
onto the core but accretion becomes possible after
this outburst. The question of accretion onto com-
pact objects in supernova models with core division
remains open. Current estimates of the efficiency
of fall-back accretion in supernovae diverge strongly
[35, 36].

Accretion acts on the mass distribution for com-
pact object as follows: the masses of neutron stars
grow, and some of them cross overMOV and collapse
into back holes (forming accretion-induced black
holes). The number of remaining neutron stars
decreases, while their mean mass grows. The lower
limit for the observed mass distribution also rises,
with this effect being more clearly expressed the
weaker the variation in the mass increase ∆M from
star to star. If ∆M is sufficiently high for all neutron
stars (see previous section), then all neutron stars
collapse into black holes.

Accretion-induced black holes have masses that
slightly (by roughly ∆M ) exceedMOV and differ in no
way from other low-mass black holes. Therefore, it is
possible to detect such black holes only in the third
scenario (Fig. 3c), which is of the most interest to us
and which suggests that low-mass black holes do not
form directly in the course of supernova explosions.
Even if there is no fall-back of part of the supernova
shell, the formation of accretion-induced black holes
is expected in X-ray binary systems. The distribution
of accretion-induced black holes is shown schemat-
ically in Fig. 3c by the dashed curve. It stands to
reason that, if Mdir slightly exceeds the limiting mass
MOV, the post-accretion distribution in Fig. 3c will
differ only slightly from the distribution in Fig. 3b.

Accretion onto black holes increases their mass,
but it is impossible to detect this effect, since we
have essentially no information on their initial mass
distribution.

7. DISCUSSION

Let us summarize the suppositions required to
obtain the observed mass distribution for compact
objects presented in Fig. 1 and the consequences
following from them.
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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Suppositions

(1) The magneto-rotational mechanism for super-
nova explosions with tB > tν .

(2) In inefficient shell ejection; no less than (1.5–
2)M� falls onto the core.

(3) MOV � (1.4–1.5) M�.

(4) Must be a mechanism for increasing the lower
limit for NS masses. For example, accretion of
∼ (0.1–0.2) M� from the shell.

We note the following in connection with these
suppositions.

In point (2), the lower limit MBH need not be
sharp. The existence of a small number of black holes
in the gap does not contradict our model.

In point (4), the mechanism for narrowing the
neutron-star mass distribution need not be the one we
have considered. If a different mechanism operates,
this will not change our conclusions.

The question arises as to whether it is possible to
reject soft equations of state for neutron matter with a
lower mass limit for neutron stars ofMOV � 1.4M�.
First, the observed constraints on the equations of
state (for example, from the R(M) dependence de-
rived from observations of X-ray bursters [38], cooling
of single neutron stars [37], etc.) are not strong due
to their large uncertainties. The situation is compli-
cated by the similarity in the masses of known neu-
tron stars, which makes it difficult to chose a single
equation of state from amongst the large number of
possibilities, since measurements of the mass–radius
dependence have, so far, effectively been made at a
single point.

Second, let us consider the minimum periods of
millisecond pulsars whose rotation have been wound
up by accretion in binary systems. Currently, the
shortest known period is 1.56 ms, while soft equations
of state allow neutron stars to achieve periods to
0.7 ms. Population syntheses for millisecond pulsars
for various equations of state were recently conducted
in [39]. The results indicate that we should observe
a significant percent of submillisecond pulsars with
masses to 1.7 M�. Such pulsars can be detected in
modern observations [40], but thus far they have not
been. On the other hand, in order for the rotation to be
wound up to the shortest allowed periods, the neutron
star must accrete a fairly large amount of material,
about (0.1–0.15) M� [41, 42]. At the value MOV ≈
1.5 M�, the neutron star can reach the limiting mass
ASTRONOMY REPORTS Vol. 45 No. 11 2001
Consequences

(1) Only two groups of compact objects form di-
rectly during core collapse: NS and massive
BH. Low-mass BH can form only later, after
accretion.

(2) Explains the broad gap between the distribu-
tions of masses for NS and BH.

(3) Explains the observed lack of NS with masses
larger than 1.45 M�. Corresponds to the softest
equations of state for NS.

(4) Explains the narrowness of the observed distri-
bution of NS masses.

and collapse into a black hole before its rotation
increases to the shortest allowed period. Could it
be that the very absence of millisecond pulsars with
the shortest allowed periods can be explained by the
Oppenheimer–Volkov limit and the observed mass
distribution for neutron stars?

Black holes that form as a result of the accretion-
induced collapse of neutron stars cannot fill the
mass gap. In accretion in massive binary sys-
tems, the growth in the mass of the accreting com-
pact object is limited by the Eddington luminosity,
1038(Mx/M�) erg/s, which is already reached at
accretion rates of Ṁcr � 10−8 M�/yr, while the
accretion time is � 106 yr. In low-mass binaries, re-
alistic accretion rates are Ṁ < 10−8 M�/yr, implying
a total mass for the star � 1M�.

However, if the collapse of neutron stars into black
holes occurs during the accretion of matter in binary
systems, with our supposition that MOV ≈ 1.5 M�,
we would expect the presence of black holes with
low masses (of the order of 1.6 M�) in low-mass X-
ray sources. Currently, we know of X-ray sources
in which there are no obvious signs of the presence
of neutron stars (periodic pulsations, X-ray bursts),
primarily X-ray transient sources. One means to
distinguish the type of compact object present in an
accretion binary is through analysis of quasi-periodic
oscillations (QPOs) in the X-ray emission. However,
observations of rapid variability by the RXTE satel-
lite [43, 44] indicate that the properties of QPOs for
sources in the low (hard) state that are neutron stars
and black holes are very similar. There remains the
possibility of distinguishing sources based on their
high-frequency power spectra [45], if kilohertz QPOs
are associated with the presence of a surface on the
compact object. However, in the case of black holes
with masses of the order of 1.5 M�, high-frequency
QPOs could also be generated in the inner parts of
the accretion flow; thus, it is difficult to distinguish
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neutron stars and black holes based only on their
power spectra.

Note that all the arguments we have presented
could be decisively changed if the compact objects we
observe are in reality so-called “strange” stars.

8. CONCLUSIONS

Using our two suppositions that
(a) the supernova shell is ejected via the magneto-

rotational mechanism, with the time for amplification
of the field exceeding the time for cooling of the hot
proto-neutron star (tB > tν) and

(b) the maximum mass for neutron stars (the
Oppenheimer–Volkov limit) is close to MOV �
1.5 M�, we can explain important features in the
observed mass distribution for compact objects: the
narrowness of the distribution of measured neutron-
star masses MNS = 1.35 ± 0.15 M� and the lack
of compact remnants with masses between 1.5 and
3M�.

Our analysis enables us to make the following ad-
ditional predictions, which are subject to verification
with astrophysical observations.

(1) There should exist black holes with masses of
about 1.5 M� (single or in binaries). They could be
detected in low-mass X-ray transient sources.

(2) As a consequence of magneto-rotational su-
pernova outbursts with the formation of neutron
stars, there could be a correlation between the power
of supernova explosions and the presence of neutron
stars: neutron stars should be associated with the
most powerful supernova remnants. Black holes
are expected in remnants with lower energies. In
addition, supernova remnants with neutron stars and
black holes could differ in their geometrical form and
dynamics of explosive expansion.

(3) Coaxiality of the rotational angular momentum
of a pulsar and its spatial velocity, as observed for the
Vela and Crab pulsars, should be a general property
of all radio pulsars.

Confident detections of neutron stars with masses
appreciably exceeding 1.4 M� would represent a di-
rect refutation of our proposed ideas. Currently, there
are no reliable determinations of such masses for
neutron stars.
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Abstract—A general theory of terrestrial nutation is proposed assuming that the Earth is made up of
four envelopes (atmosphere, mantle, fluid core, and solid core) and taking account of all important forces
(viscous, electromagnetic, etc.). A theory for the effect produced on the Earth’s nutation by viscous forces
in the fluid core is developed based on experimental data on the viscosity of molten iron under pressure. The
proposed theory predicts nutation in longitude and inclination with an rms deviation of 0.35 milliarcseconds.
c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The axis of the Earth’s figure, instantaneous rota-
tional axis, and angular-momentum axis move with
respect to an inertial reference frame due to the gravi-
tational forces of the Sun, Moon, and planets. This
is called precessional–nutational motion. The pre-
cessional period is ∼ 26 000 yrs. Over the time dur-
ing which telescope observations have been available,
∼ 300 yr, we can assume that the precession forms a
linear (or secular) motion of the axis with the nutation
harmonics superimposed on it. The orbits of the Earth
and Moon, as well as those of other planets revolving
around the Sun, determine the periods of the nuta-
tional harmonics. The period of the main harmonic
is 18.6 yr and is related to the period of motion of the
nodes of the Moon’s orbit. The maximum amplitude
of the nutation is ∼ 9′′. The remaining nutational
harmonics have smaller amplitudes.

The Earth’s nutation is an elliptical motion, since
it is the sum of two circular motions with equal peri-
ods but different amplitudes and opposite directions.
We shall call counterclockwise and clockwise mo-
tions observed from the north celestial pole “forward”
and “reverse” motions, respectively. Another repre-
sentation of the nutation is a decomposition into two
components: nutation in longitude and in inclination.
The relationship between these two representations
is discussed in the appendix. We shall take the pe-
riods (or frequencies) of the nutational harmonics for
reverse motions to be negative and those of forward
motions to be positive.

The traditional method for constructing a theory of
the Earth’s nutation is the following. An amplitude–
frequency transformation function is calculated for a
given model of the Earth, and this function is multi-
plied by the amplitudes of nutational harmonics com-
puted for a completely rigid Earth. Then, corrections
1063-7729/01/4511-0908$21.00 c©
are added taking into account the difference between
the model and real Earth. Using this method, Wahr
[1, 2] obtained nutational series composed of 106 har-
monics constructed for an elastic, ellipsoidal Earth
with a fluid outer core and elastic mantle. In 1980,
this series was accepted by the International As-
tronomy Union (IAU) as a standard for astronomical
computations [3]. The model determines the nor-
mal modes (i.e, resonance properties) of the Earth.
The model employed by Wahr [1, 2] defines three
normal modes: the Chandler wobble (CW), nearly
diurnal nutation (FCN), and a tilted mode (TOM).
The difference between the model and real Earth leads
to changes in the frequencies of the normal modes
(and to the appearance of new modes), as well as
to changes in the amplification. This is especially
important when the frequencies of the lunar–solar
potential are close to the frequencies of normal modes.

Beginning in the early 1980s, regular radio ob-
servations using very long baseline interferometry
(VLBI) were begun. At present, VLBI observa-
tions make the most important contribution to the
determination of nutational motions [4]. For most
harmonics, the accuracy of VLBI measurements of
nutation amplitudes is no less than 0.1 milliarcsecond
(mas). The results of 18 years of VLBI observations
have introduced some corrections to the IAU1980
theory [4]. The differences between the observations
and theory are within ±15 and ±5 mas for nutation
in longitude and inclination, respectively. These dif-
ferences appreciably exceed the observational errors,
thus verifying the reliability of these results.

Improvements in the accuracy of observations
have shown that Wahr’s [1, 2] nutation theory must
be replaced by an improved theory. In 1994, the XXII
IAU General Assembly (The Hague, Netherlands)
created a working group on the “Nonrigid Earth
2001 MAIK “Nauka/Interperiodica”



THEORY OF NUTATION OF A NONRIGID EARTH 909
Nutation Theory.” The main goal of this working
group was to develop a new nutation theory that could
be used to determine the Earth’s position in space
with an accuracy to better than one milliarcsecond.
The report of the working group [5] considers, in
detail, the problems that must be solved to construct
a new theory. The working group included effects
produced on the nutation by the fluid core, oceans,
and atmosphere among the most poorly modeled
phenomena. We accordingly focus on these effects.

The basis of our theory is the analytical approach
of [6], which can be outlined as follows. We first write
a system of equations for the angular momenta of
the whole Earth and the envelopes included in the
model (in [7], a fluid core and solid core), except
for the mantle. We obtain a system of algebraic
equations in the frequency domain. The solution of
the homogeneous system yields the frequencies and
amplitudes of the normal modes. The solution of
the nonhomogeneous system is represented as the
product of the transformation function and the nu-
tation amplitudes for a completely rigid Earth. We
then add corrections taking into account additional
effects, such as inelastic dissipation in the mantle
and the effect of the oceans. The unknown internal
parameters of the Earth (such as the compression of
the core–mantle boundary) are determined through
fitting to obtain the best agreement between theory
and observation.

All Earth-nutation theories can be divided into
two groups: empirical theories and theories based on
solutions of equations of rotational motion. Empirical
theories derive the coefficients of the transformation
function through fitting to obtain the best agreement
between theory and observation. The SF2000 the-
ory [7] and the theory of Herring [8] are examples
of this type of theory. Theories based on solutions
of rotational equations are, in turn, divided into nu-
merical, analytical, and semi-analytical categories.
Numerical theories are based on numerical integra-
tion of equations and analytical theories on analytical
solutions of the equations of rotational motion, with
the Earth’s internal parameters specified by some
model for the Earth’s internal structure [10]. How-
ever, these models cannot completely determine all
of the internal parameters of the Earth with sufficient
accuracy. Therefore, semi-analytical theories, which
estimate unknown internal parameters based on the
best agreement between theoretical nutation ampli-
tudes and observations [6, 10], are most commonly
used. Our theory is semi-analytical.

The main distinctions of our theory from previous
semi-analytical theories are the following:

(1) the atmosphere is included in the momentum
equations simultaneously with the solid and fluid
ASTRONOMY REPORTS Vol. 45 No. 11 2001
cores, yielding a six-dimensional system of equations
for the complex amplitudes;
(2) the viscosity of the fluid core is taken into account,
which, together with account of the magnetic field,
leads to a magneto-viscosity tensor;
(3) atmospheric tides are taken into account.

Section 2 presents five different models for the
Earth for which we have computed nutational har-
monics, while Section 3 describes the method used
to take into account the atmosphere, viscosity, and
magnetic field. Section 4 considers the results of
calculations of the nutational harmonics for the given
models, and Section 5 discusses our results.

2. MODELS FOR THE EARTH

Each model assumes that the Earth rotates and is
ellipsoidally stratified.
Model A includes the atmosphere, mantle, fluid

core, and solid core. This model takes into account
torque due to viscous forces and neglects that due to
magnetic forces. We adopt the corrections to the in-
elasticity of the mantle and the oceans, as well as the
rigid-body nutation amplitudes, from [11]. The model
fits the compression of the core–mantle boundary in
order to match the real part of the calculated ampli-
tude of the annual reverse nutation with the observed
amplitude. The viscosity is varied to obtain the best
agreement with the observations. The remaining
parameters are taken from the PREM model [12]
(presented in [11]), except for the dynamical com-
pression of the whole Earth, which is taken to be
e = 0.003 284 915 [11]. We adopt the atmospheric
parameters from [13, 14].
Model B is the same as Model A except for the

elimination of the atmosphere as one of the Earth’s
envelopes.
Model C is the same as Model A except for the

elimination of the solid core. The fluid core occupies
the entire space inside the mantle.
Model D is the most complete. The Earth con-

sists of the atmosphere, mantle, fluid core, and solid
core. The Earth’s core is modeled taking into account
electromagnetic and viscous forces. In the simplest
case, the geophysical dynamical compression of the

whole Earth is taken from [6] and is e =
C −A

A
=

3.284 520 155 008 × 10−3. To fit the theoretical nu-
tation amplitudes to the observed amplitudes, we
vary the independent components of the magneto-
viscosity matrix Sab and the elasticity parameters γ
and κ. The nutation amplitudes are calculated for
various nutation series for the rigid Earth, taking
into account corrections for dissipation in the mantle
(calculated for various dissipation models) and for the
oceans.
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Fig. 1. The viscosity of the Earth’s fluid core as a function
of radius.

Model E is equivalent to Model A except that a
rigid-body series is used, with corrections taken from
Model D for the inelastic mantle dissipation and the
oceans.

3. NUTATIONAL EFFECTS OF THE LIQUID
CORE VISCOSITY, ATMOSPHERE,

AND ELECTROMAGNETIC FORCES

3.1. Effects of Viscosity

Nutation theory assumes that the Earth rotates
with an average angular velocity Ω0. Each enve-
lope of the Earth is spherically stratified; that is, the
hydrostatic equilibrium produced by the gravitational
and centrifugal forces determines surfaces of constant
density. The mantle is assumed to be elastic.

Our computation of the Earth’s nutation was sim-
ilar to that performed in [15, 6]. The main dynamical
equations in the theory of [15] are those of conser-
vation of angular momentum, with the first of these
applied to the whole Earth and the second to the fluid
core. The more complicated theory presented in [7]
takes into account the rotation of the solid inner core
and uses two additional equations for the temporal
evolution of the angular-velocity vector and the axis
of the figure of the solid core.

There are four coordinate systems, each with its
origin at the Earth’s center of mass, introduced to
describe the Earth’s rotation and motions of the en-
velopes. The Cartesian coordinate system of basis
vectors e1, e2, e3 is inertial, with e3 directed along the
average rotational vector of the Earth; the nutation I
coordinate system rotates (with respect to the iner-
tial system) with constant angular velocity Ω0 about
the axis I3 = e3. The axes i1, i2, i3 of the terrestrial
coordinate system are associated with the Tisserand
axes for the mantle. In this case, the deformations
produced in the mantle by exciting potentials do not
contain any rotations [17]. The transformation from
the I system to the i system is realized by a rotation
of the mantle. The i′ coordinate system, which is also
associated with Tisserand axes, is used for the solid
core.

The free rotation of the solid core implies that
the i and i′ axes do not (generally) coincide. The
inclination of the solid core is determined by the unit
vector ns = i′3 − i3.

We assume that the Earth’s instantaneous angu-
lar velocity Ω is related to the angular velocities of the
fluid Ωf and solid Ωs cores as follows:

Ω = Ω0 + w = Ω0(i3 + m)
Ωf = Ω + wf = Ω0(i3 + m + mf ) (1)

Ωs = Ω + ws = Ω0(i3 + m + ms).

Here, the dimensionless vectors m,mf ,ms are per-
turbations in the angular velocities of the envelopes
produced by the lunar–solar, gravitational, and cen-
trifugal potentials. The computation of the four un-
known vectors m,mf ,ms, and ns as functions of the
exciting potentials represents a complete solution of
the problem.

Here, we shall not study the evolution of the ax-
ial components of the vectors m,mf ,ms associated
with changes in the length of the day. It is convenient
to represent the equatorial components of an arbi-
trary vector m as a complex number m̃ = m1 + im2.
Further, symbols with a tilde will represent complex
numbers formed from such combinations of equato-
rial components.

In a reference frame fixed to the mantle, the dy-
namical Euler equations take the form [6]

∂H
∂t

+ Ω× H = L, (2)

∂Hf

∂t
− ωf ×Hf = 0, (3)

∂Hs

∂t
+ Ω × Hs = Ls, (4)

where H, Hf , and Hs are the angular momenta of the
whole Earth, fluid core, and solid core; and L, Lf , and
Ls are the torques applied to the whole Earth and its
fluid and solid cores. This system contains equations
for the momenta of the whole Earth, of the Earth’s
outer fluid core, and of the inner solid core.

We can transform system (2)–(4) into a system of
differential equations in small vectors m, mf , ms,
and ns. The amplitude of the perturbation (m) of
the angular velocity of the mantle’s rotation does not
exceed 4 × 10−8 [6] in the diurnal frequency range.
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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The main terms in (2)–(4) are first order in m = |m|,
or O(m).

Consider first the effect produced on the Earth’s
nutation by the viscosity of the fluid core. Equa-
tion (2) for the whole Earth does not change, since the
viscous forces are internal forces and cannot change
the total angular momentum H. Equations (3) and
(4) are affected by the viscosity, as we will now verify.

For the fluid core, we can express the dynamical
equations in the form [6]

∂Hf

∂t
− ωf × Hf = −

∫

V

ρr× GdV, (5)

where the force G is obtained by integrating the mo-
mentum equations for an ideal fluid in the reference
frame used. We can assume that the right-hand
side of (5) is zero to within O(mε2), where ε is the
Earth’s geometrical compression. To take account
of viscosity, we must add the torque due to viscous
forces:

L(η)
f =

∮

Sf

r× p(η)
n dS, (6)

where the surface density of the viscous-stress force
is

p(η)
n = η(r)

3∑
i,j=1

(
∂vi
∂xj

+
∂vj
∂xi

)
njei. (7)

Here, η(r) is the dynamical viscosity of the fluid core;
v = v(v1, v2, v3) = ve + vv is the residual velocity
describing deviations of the fluid velocity from uniform
rotation due to elastic deformations (ve) and viscous
friction (vv); and n is a normal to the surface of the
fluid core.

We can similarly derive expressions for the torques

applied to the mantle L(η)
m and inner core L(η)

s . In
accordance with the conservation of angular momen-
tum, we obtain

L(η)
s + L(η)

m + L(η)
f = 0.

To calculate the torques L(n)
m and L(n)

s , we must
know the viscosity of the fluid core. Various esti-
mates yield viscosities spread over 10–14 orders of
magnitude: from 10−2 to 108 Pa s according to [17]
and from 10−3 to 1011 Pa s according to [18]. Either
small-scale or global vortices are possible, depending
on the viscosity (for low and high viscosities, respec-
tively). Various types of fluid motions yield various
torques. The use of semi-analytical theories enables
us to select the viscosity appropriate for the observed
nutation.

In studying molten metals exposed to pressures
reaching 10 GPa, Brazhkin [19, 20] showed that
ASTRONOMY REPORTS Vol. 45 No. 11 2001
there is a significant growth in the viscosity along the
melting curve. Extrapolating the results obtained for
molten iron to the pressures and temperatures typical
of the Earth’s core suggests that the viscosity of the
Earth’s fluid core is rather high: from 101–103 Pa s
at the mantle–core boundary to 107–1011 Pa s at
the boundary between the outer and inner cores
[19]. Figure 1 presents the model for the viscosity
distribution we used for the Earth’s fluid core. The
solid and dashed curves in Fig. 1 indicate the region
of permitted viscosity values proposed in [19].

It is important to our model that the viscosity
significantly increases only in a rather thin layer (with
a thickness of about 100 km) near the boundary be-
tween the solid and fluid cores. This is due to the fact
that the viscous torque is proportional to the product
of the surface area and the velocity gradient. Since the
surface area of the core–mantle boundary exceeds the
surface area of the solid core by about a factor of ten
and the viscosity decreases exponentially with radius,
we can neglect the integrals over the core–mantle

boundary. Therefore, we assume that L(η)
m � L(η)

s ,
such that

L(η)
s = −L(η)

f . (8)

Further, we must derive the viscous stress tensor
from (7) and substitute it into (6). Computation of
the surface integral results in an expression for the

viscous torque L(η)
f .

Thus, if we know the velocities v, we can calculate
via (6) the viscous torque L(η)

f applied to the fluid core
and then immediately use (8) to obtain the viscous

torque L(η)
s applied to the solid core. Using the

right-hand sides of (3) and (4), including the viscous
torques, we can solve the corrected system of equa-
tions (2)–(4) and obtain the nutation parameters.

Let us compute the velocities v. To avoid com-
plicated calculations, we should select a special ref-
erence frame whose angular velocity is taken to be
the angular velocity of the fluid core. To eliminate the
effect of v, this reference frame was determined in [6]
assuming the corresponding torque to be zero:

∫
V
ρr× vedV = 0.

This defines the angular velocity of the fluid core as
the angular velocity of the Tisserand axes associated
with the core.

To determine the nonrotating portion of the veloci-
ties v, we use the following heuristic reasoning. First,
we assume that the effects on the nonrotating portion
of the velocities produced by the viscosity and elastic
deformations are independent of each other. As we
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will show below, the viscous torque is of order O(m).
In this case, the effect of the interaction of the elastic
and viscous forces is of order O(m2). We neglect
such small quantities. Therefore, we can define a
reference frame rotating with the angular velocity of
the fluid core by assuming that the torques attributed
to the elastic and viscous portions of the nonrotating
velocities are separately equal to zero. This reference
frame becomes the Tisserand frame for the fluid core
with an accuracy to O(m2).

Second, let us assume that the velocities vv de-
pend on the radial distance r from the center of the
Earth as follows:

vv(r) = Ω(r) × r, (9)

Ω(r) = Ωs +
Ω′ − Ωs

δr
(r − rs) + O(δr2),

rs + δr > r > rs,

where rs = 1221 km is the radius of the solid core
and δr = 100 km is the thickness of the layer of high
viscosity. The smallness of this thickness compared
to the radius of the solid core forms the basis for
this approximation and enables us to use a series
expansion in a small parameter. Here, Ω(r) is the
angular velocity of the fluid layer at a distance r from
the center of the Earth. Thus, we assume that the
fluid core consists of two components: a nonviscous
core and a viscous layer with thickness δr at the
boundary between the solid and fluid cores. Let Ωs be
the angular velocity of the Tisserand reference frame
for the solid core rotating with respect to the inertial
frame and Ω′ be the angular velocity of rotation at the
boundary of the viscous portion of the fluid core (the
outer boundary of the viscous layer with thickness
δr).

If the torque attributed to the nonrotating portion
of the velocities is zero, we obtain

Ω′ = Ωf + O(mε2), (10)

where Ωf is the angular velocity of rotation of the
fluid core (or the angular velocity of the Tisserand
reference frame defined for the mantle). The velocities
(9) combined with (10) yield

∂vi
∂xj

=∂j


 3∑
p,k=1

εipk

(
Ωsp+

Ωfp − Ωsp
δr

(r−rs)
)

xk




=
3∑

p,k=1

εipk

(
Ωsp +

Ωfp − Ωsp
δr

(r − rs)
)

+
3∑

p,k=1

εipk

(
Ωfp − Ωsp

δr

)
njxk.
Substituting this into (7), we obtain

p(η)
n = −η(rs)

3∑
i,j=1


 3∑
p,k=1

εipk

(
Ωfp − Ωsp

δr

)
njxk

+
3∑

p,k=1

εjpk

(
Ωfp − Ωsp

δr

)
nixk)


njei

or

p(η)
n = −η(rs)

Ωf − Ωs

δr
× r. (11)

For the inner core, we obtain a similar expression
but of opposite sign (since an outward normal for the
inner core is an inward normal for the fluid core and
vice versa).

Substituting (11) into (6) yields

L(η)
f = −η(rs)r4

s

π∫

0

2π∫

0

n× Ωf − Ωs

δr
× n dφ sin θdθ.

We transform the integrand using the formula for the
double vector product

n × Ωf −Ωs

δr
× n =

Ωf − Ωs

δr

− n
(

Ωf − Ωs

δr
n
)

,

2π∫

0

n× Ωf − Ωs

δr
× n dφ

= 2π
Ωf − Ωs

δr
− π

δr




(Ωf1 − Ωs1) sin2 θ

(Ωf2 − Ωs2) sin2 θ

2 (Ωf3 − Ωs3) cos2 θ


 .

Integration yields
π∫

0

2π∫

0

[
Ωf − Ωs

δr
− n

(
Ωf − Ωs

δr
n
)]

dφ sin θdθ

=
8π
3

Ωf − Ωs

δr
.

Therefore, the viscous torque applied to the fluid core
is

L(η)
f = −η(rs)

8π
3

Ωf − Ωs

δr
r4
s . (12)

Using (8), we can obtain the viscous torque applied
to the solid core:

L(η)
s = WΩ2

0(mf − ms), (13)

W = η(rs)
8π
3

r4
s

δrΩ0
;

i.e., the viscous torque is of order O(m).
With the same notation used in [7], assuming

that the variations of the equatorial components of
the angular velocities of the envelopes m̃, m̃f , m̃s are
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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determined by harmonics of the tidal potential with
frequency σ (we express frequency in units of the
average angular velocity of the Earth’s rotation Ω0;
i.e., the frequency σ in usual units corresponds to
the frequency σΩ0), we obtain the torque equations
ASTRONOMY REPORTS Vol. 45 No. 11 2001
taking into account the effects of viscosity and the
solid core (i.e. for Model B for the Earth):

Mx = y, (14)

where
M =




σ(1 + κ) + κ− e (1 + σ)
(Af

A + ξ
)

(1 + σ)
(
As
A + ζ

)
(1 + σ)α3es

As
A

σ(1 + γ) 1 + ef + σ(1 + β) − iWAf
σδ + iWAf

−σα1es
As
A

σ(1 + θ) − esα3 σχ + α1es + iWAs
σν + 1 + σ − iWAs

(1 + σ − α2)es

0 0 1 σ




,

x =




m̃

m̃f

m̃s

ñs




, y =




(κ− e + σκ)φ̃

σγφ̃

(σθ − α3es)φ̃

0




.

Here, A,Af , As and e, ef , es are the equatorial mo-
ments of inertia and dynamical compression coeffi-
cients for the whole Earth, the fluid core, and the
solid core, respectively, while σ is the frequency of
the harmonic of the tidal potential φ̃. The remaining
Greek symbols denote the elastic constants and coef-
ficients of the gravitational interactions for the Earth’s
envelopes.

We find the frequencies of the normal modes by
setting the determinant of (14) equal to zero. Two
of these frequencies are the Chandler frequencies for
the Earth (CW) and for its fluid core (ICW). They are
approximately

σCW =
A

Am
(e− κ), σICW = (1 − α2)es.

The viscosity does not change these frequencies but
affects two almost diurnal frequencies, the frequen-
cies of the reverse (RFCN) and forward (PFCN) free
nutation of the core, which are approximately

σRFCN = −1−
(
1+

Af
Am

)
(ef−β) + i

(
1+

Af
Am

) W

Af
,

σPFCN = −1 +
(
1 +

Af
Am

)
(ef − β)(α2es + ν)

+
W 2

AfAs
+ i

[(
1 +

Af
Am

)
(ef − β)

W

As

−
(
1 +

Af
Am

) W

Af
(α2es + ν)

]
.

We selected an initial W that depended on the vis-
cosity η in accordance with the Earth’s Q factor (see
Appendix) for the frequency σRFCN . We then varied
it to obtain the best agreement with the observations.

We have used the same dependence of the viscos-
ity on the radius (Fig. 1), though we decreased some-
what the viscosity at the boundary between the solid
and fluid cores to provide the best agreement with the
observations. In addition, we expect the viscosity to
be positive (the variations could in principle lead to an
impossible negative viscosity).

3.2. Effects of the Atmosphere

To estimate the effects of the atmosphere, we must
add a fourth equation to the torque equations (2)–(4)
(Model A):

∂Ha

∂t
+ Ω× Ha = La. (15)

In (15), Ha is the angular momentum of the rotation
of the atmosphere and La is the torque applied to the
atmosphere.

The components of L̃a were obtained in [21] and
can be expressed in the form L̃a = −iU(c̃a3 + h̃/Ω0),
where the parameter U depends on the shape of the
Earth’s figure. The variations of the atmosphere’s
moment of inertia c̃a3 are related to the exciting at-
mospheric functions χ [22] via the expression χ =
(c̃a3 + h̃/Ω0)/(C −A).

The system of torque equations taking into ac-
count the atmosphere, viscosity, and solid core (for
Model A) becomes six-dimensional, and takes the
form

Mx = y, (16)

where
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M =


= σ(1 + κ) + κ− e (1 + σ)
(Af

A + ξ
)

(1 + σ)
(
As
A + ζ

)
(1 + σ)α3es

As
A (1 + σ)Aa

A (1 + σ)Aa
A ea(1 + κ′)

σ(1 + γ) 1 + S22 + σ(1 + β) σδ + S23 −σα1es
As
A 0 σ( ξτ + hf )Aa

Af
ea

σ(1 + θ) − esα3 σχ + α1es + S32 σν + 1 + σS33 (1 + σ − α2)es 0 σ( ζτ + hs)Aa
As

ea

0 0 1 σ 0 0

σ − ea 0 0 0 1 + σ
(
1 + σ + U

Ω2
0

)
ea

0 0 0 0 1 σ,




x =




m̃

m̃f

m̃s

ñs

m̃a

ña




, y =




(κ− e + σκ)φ̃− (1 + σ)(1 + κ′) c̃
a
3
A

σγφ̃− σ( ξτ + hf )
c̃a3
Af

(σθ − α3es)φ̃− σ(ζ/τ + hs)
c̃a3
As

0

−
(
1 + σ + U

Ω2
0

) c̃a3
Aa

0




.

The components of the viscous tensor Sab are
S22 = ef − iWAf

, S23 = iWAf
, S32 = iWAs

, and S33 =

−iWAs
. The remaining parameters have the same

meaning as previously. When solving system (16), we
assume that variations in the atmosphere’s moment
of inertia c̃a3 are due to atmospheric tides [23].

The formulas for deriving approximate values for
the already known normal modes have the same form
as those in Model B. However, this does not mean
that there are no atmospheric effects. The effect of
the atmosphere is indirect, and taking it into account
changes the conditions for determining the unknown
internal parameters of the Earth’s structure in formu-
las for the normal modes.

Model A proposes two additional normal modes
that were absent from Model B: the atmospheric
Chandler frequency σACW and the almost diurnal
reverse frequency of the free nutation of the atmo-
sphere σRFAN . Approximate formulas for these were
obtained in [21]:

σACW =
(
1 +

U

Ω2
0

)
ea,

σRFAN = −
(
1 +

U

Ω2
0

ea + (κ + β − 2ξ)
A

Am

)
,

where the parameter U is determined by the shape of
the Earth’s surface and ea is the dynamical compres-
sion of the atmosphere.
3.3. Effects of the Magnetic Field

The magnetic field was neglected in Models A
and B. It is not necessary to compute the magnetic
force since this was done in [24]. In accordance
with [24], the magnetic forces are taken into ac-
count by adding the terms KCMB + KICBAs/Af
to S22, −KICBAs/Af to S23, −KICB to S32, and
KICBAs/Af to S33, where KCMB and KICB de-
pend on the radial component of the magnetic field,
conductivity, depth to which the magnetic field pen-
etrates, and the radii of the boundaries between the
core and mantle and between the solid and fluid cores.
Then, the viscous matrix Sab becomes magneto-
viscous and has the following components:

S22 =
(
ef + Re

(
KCMB +

As
Af

KICB

)
, (17)

Im(KCMB) +
AsIm(KICB) −W

Af

)
,

S23 =
(
−As

Af
Re(KICB),

W −AsIm(KICB)
Af

)
,

S32 =
(
−Re(KICB),

W

As
− Im(KICB)

)
,

S33 =
(

Re(KICB),−W

As
+ Im(KICB)

)
.

The remaining equations and the matrix M (see
(16)) retain their previous forms. Note that this
is the most general formulation of the problem:
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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for zero magnetic numbers KCMB and KICB, it
results in six-dimensional viscous models similar to
Model A; neglecting the atmosphere gives rise to
four-dimensional viscous models similar to Model
B; without the atmosphere and viscosity, we obtain
a four-dimensional magnetic nonviscous model of
the type in [24]; without the atmosphere, viscosity,
and magnetic forces, we obtain a four-dimensional
nonviscous and nonmagnetic model of the type in
[7]; neglecting the solid core, magnetic forces, and
viscosity, we obtain a four-dimensional nonviscous
and nonmagnetic model similar to Model C [14].

In general, the magneto-viscosity matrix Sab
enables us to determine only the following combi-
nations of quantities: ef + Re (KCMB), Im(KCMB),
Re(KICB), and AsIm(KICB) −W. However, for the
Earth’s magnetic field, the real part of KCMB is
equal to the imaginary part of KCMB [24] and we
can also determine ef and Re(KCMB) = Im(KCMB)
separately.

4. CALCULATION RESULTS

Using a system of equations of type (14) or (16),
we can find the unknown quantities m̃, m̃f , etc. as
functions of the exciting potentials. The complex
function m̃ describes the position of the Earth’s in-
stantaneous rotational axis with respect to its fig-
ure axis, which is very close to the i3 axis. This
function is none other than the polar motion. In the
frequency domain, the polar motion m̃ is related to the
nutation ζ̃ (see Appendix) via the simple kinematic
formula [15]:

ζ̃(σ) = − m̃(σ)
1 + σ

, (18)

with the ratio ζ̃(σ)/m̃(σ) being independent of the
Earth’s internal structure.

To determine the nutation ζ̃(σ) of the elastic
Earth, we first find the nutation ζ̃R(σ) of the rigid
Earth, then multiply it by the transformation function
q̃(σ) [17], since

q̃(σ) =
ζ̃(σ)

ζ̃R(σ)
=

m̃(σ)
m̃R(σ)

, (19)

where m̃R is the polar motion of the rigid Earth. We
can find the function m̃R from (14) or (16), assuming
that all elastic parameters and moments of inertia of
the core and atmosphere are equal to zero. This yields

(σ − e)m̃R = −eφ̃,

and we can find ζ̃R using (18) and (19).
The nutation of the rigid Earth has been derived

using various methods (see [5] for details) and with
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varying accuracies. The accuracy of the theory of
the elastic Earth will depend on the accuracy of this
nutation theory, since the errors will also be multi-
plied by the function q̃(σ). However, the accuracy of
nutation theory for the rigid Earth currently exceeds
the accuracy of VLBI observations. The amplitudes
obtained for the nutational harmonics of the elastic
Earth are corrected to take into account the effects of
the oceans and mantle dissipation (see Section 2).

The transformation function used to calculate the
amplitudes was represented in the resonance form

q(σ) = R + R′(1 + σ) +
N∑
i=1

Ri
σ − σi

,

where R,R′, and Ri are the resonance coefficients,
σi are the frequencies of the normal modes, and N is
the dimension of the system of equations (14) or (16).

For the observed amplitudes of the nutational
harmonics, we fit various parameters of the Earth’s
structure in order to reach the best agreement be-
tween the model and observations. In Models A, B,
and C, we fit the dynamical compression of the core–
mantle boundary ef , with the criterion for goodness
of fit being the agreement between the reverse annual
nutation amplitude and the observed amplitudes, for
which we used the nutation amplitudes presented in
[24].

Table 1 compares the theoretical amplitudes of
these three models with the observations. Those for
which the deviations exceed the observational errors
are marked in bold. If we compare the data for Mod-
els B and C, we can see that their deviations from the
observations are approximately equal in magnitude
but opposite in sign. Therefore, we supposed that
Model A (atmosphere + mantle + fluid core + solid
core + viscous forces) should be in almost complete
agreement with observations.

However, contrary to our expectations, the dis-
crepancy actually becomes somewhat larger for
Model A (Table 1). This is due to the fact that the
dynamical compression of the core–mantle boundary
was varied in these theories in order to obtain agree-
ment between the amplitude of the reverse annual
nutation and the observations. The compression ef
in Models B and C is different; thus, the transfor-
mation functions also differ. Due to this difference in
the resonance amplification, the unification of these
models does not provide a linear addition of errors.

The unification of Models B and C into Model A
has not provided improved agreement with the ob-
servations. However, these computations have ver-
ified the following important conclusion: it is not
possible to take into account atmospheric effects in
semi-analytical models via the addition of constant
corrections. This is associated with the fact that such
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Table 1.Deviations of theoretical amplitudes of the nutation harmonics for Models A, B, and C from observations

Period, days Observed amplitudes [24] Model A Model B Model C

−13.66 (−3.63, −0.03) (−0.01, −0.02) (−0.01, −0.02) (0.01, 0.02)

−182.62 (−24.57, −0.06) (0.04, 0.00) (0.00, 0.00) (0.01, 0.01)

−365.26 (−33.05, 0.35) (0.00, 0.42) (0.00, 0.42) (0.00, −0.42)

−6798.38 (−8024.88, 1.43) (−0.31, 0.57) (0.01, 0.06) (−0.47, −0.57)

6798.38 (−1180.50, −0.07) (0.15, 0.04) (0.10, 0.04) (−0.06, 0.18)

365.26 (25.64, 0.12) (0.03, 0.10) (0.08, 0.10) (−0.04, −0.12)

182.62 (−548.47, −0.51) (0.31, 0.00) (−0.21, 0.00) (−0.08, 0.00)

13.66 (−94.20, 0.13) (0.14, 0.13) (0.02, 0.13) (−0.04, −0.13)

Table 2.Deviations of theoretical amplitudes of the nutation harmonics for Models D and E from observations

Period, days Observed amplitudes [24] Model D Model E

−13.66 (−3.64, −0.03) (−0.00, −0.02) (−0.00, −0.02)

−182.62 (−24.57, −0.06) (0.04, 0.02) (0.04, −0.01)

−365.26 (−33.06, 0.35) (−0.00, 0.00) (−0.00, −0.42)

−6798.38 (−8024.88, 1.43) (−0.32, 0.34) (−0.02, 0.64)

6798.38 (−1180.46, −0.07) (0.13, 0.06) (0.08, 0.02)

365.26 (25.65, 0.12) (−0.01, −0.01) (−0.001, 0.08)

182.62 (−548.48, −0.51) (−0.01, 0.02) (0.14, −0.06)

13.66 (−94.18, 0.13) (0.00, −0.02) (−0.01, −0.02)

Table 3. Resonance characteristics for Model D for the Earth

Modes Period, days Resonance coefficients Ri

CW 394.52 (−5.817 951 9× 10−4,−2.774 4× 10−9)

RFCN 426.71 (−1.201 517× 10−4,−8.693 3× 10−7)

ICW 2381.98 (−4.078 41× 10−8, 1.676 1× 10−11)

PFCN 367.52 (1.216 028 9× 10−6,−4.871 844× 10−7)

ACW 23.64 (4.6 × 10−15, 1.8 × 10−16)

RFAN 36.37 (4.702× 10−13, 1.1 × 10−15)

R = (1.051 273 517,−6.444 156 4× 10−7)

R′ = (−0.281 414 161 4, 4.08× 10−14)
corrections change when the parameters are varied
(in particular, the compression ef ). Therefore, we
must either appropriately vary the corrections or take
the atmosphere into account in the torque equations.
We believe that the latter approach is more correct
from both the methodological and physical point of
view.

In Models E and D, we varied the independent
components of the tensor Sab and other parameters,
with the criterion for goodness of fit being the min-
imization of the weighted sum of the squared devia-
tions of the theoretical from the observed amplitudes
(we eliminated the 18-yr and 6-yr harmonics, since
the accuracy of their detection is the lowest). We did
not fit the geophysical dynamical compression of the
whole Earth and took it to be e = 3.284 520 155 008 ×
10−3 [5]. Thus, we estimate the accuracy of the theory
from the deviations of the amplitudes of the main
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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Fig. 2. Deviations of the theoretical nutation (in inclination) from the observations. Model D provides full agreement with
observations (within the observational errors). Model E displays worse agreement, though it is more physical.
nutational harmonics (their real and imaginary parts)
from the observed values.

We calculated the nutation amplitudes for all com-
binations of the nutation series for a completely rigid
Earth (using three series [25, 26, 27]) and corrections
taking into account the effects of inelastic dissipation
in the mantle (five models) and of the oceans (six
models) [25, 29]. Upon comparison of our calcula-
tions with the observations, we decided to use the
rigid-body nutation series from [26], corrections for
the inelastic mantle dissipation for a β model with
α = 0.15 from [25], and corrections for the effects of
oceans and oceanic flows from [28]. Note that the
differences between various contemporary rigid-body
series are almost negligible and any of them could, in
principle, be adopted; we prefer the series from [26].

We selected corrections taking into account the
effects of the oceans and inelastic mantle dissipation
based on achieving the best agreement with both the
nutation observations and other geophysical observa-
tions. Corrections for the oceans [28] were calculated
ASTRONOMY REPORTS Vol. 45 No. 11 2001
by solving the Laplace tidal equations for the world
ocean level determined from satellite observations.
Corrections for mantle dissipation were calculated
by solving the continuous-medium equations for the
mantle, with the parameter α = 0.15 being verified
by satellite observations [29]. These corrections also
turn out to be the most consistent with nutation
observations, confirming that our model describes
well the effects of the Earth’s mantle, oceans, and
atmosphere.

Our fitting indicates the following Earth parame-
ters:

ef = 2.673 074 529 217 239 × 10−3,Re(KCMB)

= Im(KCMB) = 2.670 849 687 083 623 × 10−3,

Re(KICB) = 5.373 476 463 538 518 × 10−2,

−W

As
+ Im(KICB) = 3.443 181v818v0 × 10−4,

k = 1.042 013 671 875 × 10−3,

γ = 1.965 103 515 625 008 × 10−3.
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Fig. 3. Deviations of the theoretical nutation (in longitude) from observations.
The deviations of the nutation amplitudes for Model D
and from the observations are presented in Table 2.

The agreement with observations is virtually com-
plete for Model D (the nutation deviations in longi-
tude and inclination are smaller than 1 mas). How-
ever, the imaginary part of every eigenfrequency of the
matrix M for Model D is negative:

σCW = (2.528 05 × 10−3, −5.15 × 10−9),
σACW = (0.042 176 5, 0.00),

σICW = (4.142 579 × 10−4, −1.429 6 × 10−7),
σRFAN = (−1.027 417 7, 0.00),

σRFCN = (−1.002 337 1, −1.868 659 × 10−5),

σPFCN = (−0.997 270 0, −3.457 123 × 10−4).

The imaginary parts of σACW and σRFAN are smaller
than 10−14 and negative. We assume that they are
approximately equal to zero.

We should emphasize that the eigenfrequencies of
M are those calculated for the Earth without oceans
and mantle dissipation. Consequently, the originally
elastic system becomes self-exciting when the mag-
netic and viscous forces are added, whereas it should
display the opposite behavior (see Appendix).

We believe that Model D does not take into ac-
count all relevant forces in the Earth’s core, such as
that due to the significant inclination (∼ 11◦) [31] of
the rotational axis of the solid core with respect to that
of the mantle.

Table 3 presents the periods of the normal modes
(in days), dynamical compression of the core–mantle
boundary, and resonance coefficients for Model D
(ef = 2.673 074 529 × 10−3).

With the additional requirement that the imagi-
nary parts of the eigenfrequencies be positive, Model
E, which includes viscosity but neglects the magnetic
field, proves to be preferable. Table 2 presents the de-
viations of the nutation amplitudes from the observed
values. This nutation model is much better than
Models B and C, but its accuracy is not sufficiently
high (the deviations in longitude and inclination are
about 2 mas, while current requirements are for ac-
curacies better than 1 mas). Figures 2 and 3 compare
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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the theoretical nutations for the main harmonics for
Models D and E in longitude and inclination with the
IAU1980 theory and observations.

5. DISCUSSION

One can use nutation theory for two main pur-
poses: to predict the nutation in longitude and incli-
nation for an assumed model of the Earth’s structure
and to determine the parameters of the Earth’s in-
ternal structure from observations of nutation angles.
Our theory has been successful in connection with
the first problem; i.e., it predicts the nutation angles
with the required accuracy (the rms deviation of the
theoretical from the observed nutation is 0.35 mas).
We have constructed a nutation theory, since we
have completed the nutation series using the adopted
model for the Earth. However, our theory is less suc-
cessful in solving the second problem, since we have
not taken into account all features of the structure of
the Earth’s core in Model D (for example, the possible
inclination of the inner core).

Our calculations show that six-dimensional nuta-
tion models are more accurate than four-dimensional
models. This seems obvious, since the number of
parameters characterizing the Earth’s structure is
increased. However, we note that the transition from
the four-dimensional to the six-dimensional theory
does not expand any possibilities for adjusting the pa-
rameters in Eqs. (14) or (16), simply because none of
the atmospheric parameters were adjusted. It might
seem that adjusting the parameters of the magneto-
viscosity matrix and the two elastic constants γ and
k would provide any result desired, but this is not the
case. The reason for this is that the calculations are
very insensitive to variations in k and γ. In addition,
there are only two independent components in the
magneto-viscosity matrix, for example, S22 and S33,
and only S22 varies appreciably. This means that
we can vary only one complex parameter, S22, de-
termined by the structure of the Earth’s core, namely
by the compression of the core–mantle boundary, the
magnetic field, and viscosity. Therefore, our fitting
can determine the properties of only part of the Earth:
the fluid core + solid core + their interactions. If there
were another dependence of the nutation amplitudes
on the parameters γ, k, and S33, we would be able
to obtain complete agreement with the observations
for any combination of corrections taking account of
the effects of the mantle and oceans, especially for the
corrections selected by us. However, in practice, this
did not occur.

The next very important question is the practical
application of the nutation series for Model D. To give
a clear and well-based answer, let us transform Eqs.
(16) by expressing m̃f , m̃s, and ñs in terms of m̃, m̃a,
ASTRONOMY REPORTS Vol. 45 No. 11 2001
and ña using the second, third, and fourth equations.
System (16) then takes the form

Sg = h1 + h2,

where S is a 3 × 3 matrix, g = (m̃, m̃a, ña)x is a col-
umn vector, and the function h1 describes the effects
of the external tidal potential on the part of the Earth
made up of the mantle, atmosphere, and oceans, with
their interactions (i.e., h1) being independent of the
core structure and interactions inside the core. On
the contrary, the function h2 depends on the core
structure and interactions in the core. To the first
approximation, h2 takes into account only the elastic
fluid core.

The fact that the corrections providing the best
agreement with the nutation observations are also
in agreement with other observations testifies to the
fact that our theory provides a good description the
part of the Earth made up of the mantle, atmosphere,
and oceans, as well as of the frequency dependence
of h2. However, the negative imaginary parts of the
eigenfrequencies indicate that our theory inaccurately
relates the coefficients of h2 to the Earth’s structural
parameters. Thus, our theory for Model D can be
used to predict the nutation angles (the first problem
of nutation theory) but not to separately estimate the
viscosity, magnetic field, and other parameters of the
Earth’s core structure based on nutation observations
(the second problem of nutation theory). Additional
work is necessary to solve the second problem, which
we are in the process of carrying out 1.

As a first step, we can propose to improve the
initial torque equations (3) and (4) in order to take
into account the large inclination of the solid core
and the triaxial structure of the core–mantle bound-
ary. Improvement of the corrections for the oceans
could be the next step. Corrections for the oceans in
the form of the series [28] are probably sufficient to
achieve an accuracy ∼ 1 mas. To increase the accu-
racy of the theory, we must find another dependence
of the corrections on frequency. This problem has
been partially solved in [24], where the corrections for
the oceans are represented as approximations in the
form of a quadratic trinomial that must be added to
the transformation function for short periods (shorter
than 50 days). This expression does not describe the
effects of the oceans over the whole frequency range
and is unacceptable even as an approximation. Nev-
ertheless, the use of frequency-dependent corrections
improves the accuracy of the nutation theory.

1Similar difficulties appear in other nutation theories, for ex-
ample, in the MHB2000 theory (in contrast to our theory, this
model neglects the viscous forces and atmosphere). This is
quite natural, since our analytical theory is a generalization
of all previous models.
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In our opinion, in order to correctly take into ac-
count the oceans, it is necessary to solve the Laplace
equations for the real oceans and seas with boundary
conditions specified at coastlines. This will yield a
set of ocean eigenmodes that will lead to changes
in the Earth’s transformation function and nonlinear
variations in the corrections.

In the MHB2000 nutation theory recommended
by the IAU, the imaginary parts of the frequencies in
the resonance formula for the transformation function
are quite physically reasonable. This was attained
by replacing the formula nutation amplitude =
transformation function × nutation amplitude
of a completely rigid Earth + corrections for
dissipation in the oceans and mantle, with the
formula nutation amplitude = new transformation
function × nutation amplitude of a completely
rigid Earth. In this transition, the strong dissipation
in the mantle and oceans hides the nonphysical
components of the magnetic tensor (viscosity and
atmosphere were neglected).

6. CONCLUSIONS

We have constructed a nutation theory for var-
ious models of the Earth’s structure. This theory
is presented as a set of nutational harmonics and
amplitudes determined by the model used for the
Earth. The theory includes 1498 nutation harmonics
whose frequencies are determined by lunar–solar and
planetary tidal potentials. It satisfies all the IAU
requirements, providing an rms deviation of about
0.35 mas. Our theory is realized using software with
a convenient user interface, which can be found at
http: // lnfm1.sai.msu.ru/∼kazaryan/TEST/home-
page/russian/program/prog.htm. In addition, this
software can be used to determine the nutation angles
calculated by empirical series obtained from observa-
tions [4].

Currently, we are searching for additional factors
that should be taken into account and considering
various models for the internal structure of the Earth’s
core that would enable one not only to construct
an approximation for h2, but also to derive a more
accurate relation between the h2 coefficients and the
Earth’s core parameters consistent with available ob-
servational data (both geophysical and astrometri-
cal).

7. ACKNOWLEDGMENTS

The authors are grateful to V. Dehant for pre-
senting us with the complete rigid-body series of the
Earth’s nutation RDAN98. We thank the referee
for helpful remarks. This work was supported by
the Russian Foundation for Basic Research (project
no. 98-05-64797) and the “Universities of Rus-
sia” (project 2-5547) and “Integration” (K0641) pro-
grams.

REFERENCES
1. J. M. Wahr, Geophys. J. R. Astron. Soc. 64, 651

(1981).
2. J. M. Wahr, Geophys. J. R. Astron. Soc. 64, 705

(1981).
3. P. K. Seidelmann, Celest. Mech. 27, 79 (1982).
4. 1998 IERS Annual Report (Observatoire de Paris,

Paris, 1999).
5. V. Dehant, F. Arias, C. Bizouard, et al., Celest. Mech.

Dyn. Astron. 72, 245 (1999).
6. P. M. Mathews, B. A. Buffet, T. A. Herring, and

I. I. Shapiro, J. Geophys. Res. 96, 8219 (1991).
7. T. Shirai and T. Fukushima, Astron. J. 119, 2475

(2000).
8. IERS Conventions, IERS Tech. Note 21 (Observa-

toire de Paris, Paris, 1996).
9. J. Getino and J. M. Ferrándiz, Mon. Not. R. Astron.

Soc. 306, L45 (1999).
10. P. M. Mathews, T. A. Herring, and B. A. Buffet,

J. Geophys. Res. (2001) (in press).
11. P. M. Mathews, B. A. Buffet, T. A. Herring, and

I. I. Shapiro, J. Geophys. Res. 96, 8243 (1991).
12. A. M. Dziewonski and D. L. Anderson, Phys. Earth

Planet. Inter. 25, 297 (1981).
13. T. Sasao and J. M. War, Geophys. J. R. Astron. Soc.

64, 729 (1981).
14. V. E. Zharov, Doctoral Dissertation in Mathematical

Physics [in Russian] (St. Petersburg, 1998).
15. T. Sasao, S. Okubo, and M. Saito, in Proceedings of

IAU Symposium No. 78, 1980, p. 165.
16. H. Moritz and I. I. Mueller, Earth Rotation: Theory

and Observation (Ungar, New York, 1987; Naukova
Dumka, Kiev, 1992).

17. V. N. Zharkov, Internal Structure of the Earth and
Planets [in Russian] (Nauka, Moscow, 1983).

18. D. L. Anderson, Theory of the Earth (Blackwell Sci.
Publ., Boston, 1989).

19. V. V. Brazhkin, Pis’ma Zh. Éksp. Teor. Fiz. 68, 469
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APPENDIX

VARIOUS REPRESENTATIONS
OF NUTATION

Mathematically, it is convenient to represent the
nutation of the Earth’s axis as a complex number
ζ̃(t) = ∆ε(t) + i∆ψ(t) sin ε0, where ε0 is the inclina-
tion of the ecliptic toward the equator. The angles ∆ε
(nutation in inclination) and ∆ψ (nutation in longi-
tude) are expressed via a series:

∆ε(t) =
N∑
j

[
∆εrj cos Θj(t) + ∆εij sinΘj(t)

]
, (20)

∆ψ(t) =
N∑
j

[
∆ψrj sinΘj(t) + ∆ψij cos Θj(t)

]
,

where Θj(t) is the tidal argument [4], ∆ψrj and ∆εrj
are the real (cophasal) coefficients of the jth term
(of the N total) of the expansion, and ∆ψij and
∆εij are the imaginary (quadrature) coefficients, with
their phase being shifted by 90◦ with respect to ∆ψrj
and ∆εrj . In the IAU1980 nutation theory, ∆εij =
∆ψij = 0. For the real Earth, the quadrature terms
∆εij ,∆ψij differ from zero. This indicates dissipation
inside the Earth at the given frequency.

The right-hand sides of (20) are frequently ex-
pressed as the sum of the forward and reverse nuta-
tion [9, 25]. The tidal argument is a linear combi-
nation of five basic arguments [9], with each being
ASTRONOMY REPORTS Vol. 45 No. 11 2001
a function of time t and angular frequency σi : Θi =
σit + φi, where φi is the phase of the argument. The
frequency of the nutation σi = dΘi/dt is positive for
most harmonics. The conventional form [9] of the
nutation ζ̃(t) is

ζ̃(t) = −a(t) = −
N∑
j

(
apje

−iqjΘj(t) + arje
iqjΘj(t)

)
,

where apj and arj are the amplitudes of the forward and
reverse nutation and qj is the sign of the frequency
σj ; i.e., qj = sign(σj). We represent the amplitudes
apj and arj in the form

ap,rj = ap,rrj − iap,rij ,

where the subscripts r, i denote the real and imagi-
nary parts of the forward (reverse) nutation, to obtain

aprj = −(∆εrj − qj∆ψrjsinε0)/2, (21)

arrj = −(∆εrj + qj∆ψrjsinε0)/2,

apij = (qj∆εij + ∆ψijsinε0)/2,

arij = −(qj∆εij − ∆ψijsinε0)/2.

In the general case, the frequency is complex: σ̃ =
σ1 + iσ2, with σ2 � σ1. The complex part is associ-
ated with energy dissipation at the tidal frequency σ1

and, consequently, with the Earth’s Q factor at this
frequency:

σ = σ1

(
1 +

i

2Q

)
.

When there is dissipation, the σ2 must be positive.
Indeed,

cos Θ̃ = Re eiΘ̃ = Re ei[(σ1+iσ2)t+φ] = cos Θe−σ2t,

and in the absence of excitement, the nutation ampli-
tudes (20) will decrease with time only for positive σ2.

Translated by V. Badin
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Abstract—When the coupled Earth–Moon system is considered rather than a closed terrestrial system
(the Earth’s atmosphere, ocean, inner and outer cores, and mantle), an eigenfrequency of free oscillations
of the Earth is transformed into an eigenfrequency of the Earth–Moon system, making it possible to
understand the increase in the Chandler period in a natural way. The eigenmodes of the coupled Earth–
Moon system are determined by solving a linear, homogeneous set of equations with two degrees of
freedom. c© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The basic problem of astrometry is the construc-
tion, maintenance, and improvement of spatial and
temporal coordinate systems, such that these sys-
tems remain as close as possible to an inertial coor-
dinate system. Currently, such inertial systems are
based on objects located beyond the Galaxy and pos-
sessing negligible proper motions. To solve applied
problems within the solar system, we use a dynamical
coordinate system based on precise positions of the
Sun and planets, which are continuously moving with
respect to the observer. Determining the relationship
between an inertial and dynamical coordinate system
requires an adequate theory for the translational and
rotational motion of the Earth.

Such a theory should provide exact equations re-
lating Earth-rotation parameters (the polar motion
and nonuniformity of the rotation) to data on the
shape, deformations, and mass distribution of the
Earth’s interior, taking into account all mutual forces
between the Earth, planets, and Sun. This problem
is extremely difficult, since neither numerical values
for the parameters appearing in the equations nor the
structure of these equations are known to a sufficient
accuracy. As a result, there is some discrepancy
between the observational data and predictions of ex-
isting theoretical models. For example, it is not pos-
sible to obtain an analytical description of the Earth’s
rotation parameters. This necessitates searches for
new approaches to the analysis of polar motions, in
particular of the excitation of free-nutational oscilla-
tion in the motion of the Earth’s poles (the Chandler
motion). We will consider a coupled Earth–Moon
1063-7729/01/4511-0922$21.00 c©
system rather than a closed system composed of the
Earth’s atmosphere, ocean, core, and mantle.

The Earth and Moon are separated by only
0.002 6 AU. The center of gravity (barycenter) of the
Earth–Moon system is 4672 km from the Earth’s
center, and the Earth’s mass is 81.30 times greater
than the Moon’s. As a result, the Earth substantially
perturbs the motion of the Moon in its heliocentric
orbit.

On the other hand, the mass of the Moon is suf-
ficiently large to produce appreciable perturbations in
the heliocentric motion of the Earth. For comparison,
the mass of the largest satellite of Neptune (Nereid)
is a factor of 770 less than the mass of Neptune, the
mass of the largest satellite of Saturn (Titan) is a
factor of 4030 less than the mass of Saturn, and the
mass of the largest satellite of Jupiter (Ganymede)
is a factor of 1220 less than the mass of Jupiter.
Moreover, the orbital momentum of the Moon is a
factor of five greater than the angular momentum of
the Earth. (In all the other systems mentioned above,
the angular momentum of the planet turns out to be
much greater than the total orbital momentum of all
its satellites.)

The specific features of the coupling between the
Earth and Moon enable us to treat the Earth–Moon
system as a binary planet. At the same time, the
entire lunar orbit lies beyond the region where the
attraction of the Earth is greater than the attraction
of the Sun: the Sun’s attraction exceeds the Earth’s
by a factor of 2.18. The Earth and Moon represent
a binary dynamical system of coupled bodies whose
parameters are affected by external forces. The most
substantial perturbation is produced by the Sun.
2001 MAIK “Nauka/Interperiodica”
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The first studies to be undertaken on the motion of
systems of coupled bodies began relatively recently.
This is partially due to the difficulty of solving this
problem. For example, solutions for the relative mo-
tion of two rigid bodies whose masses are attracted
by Newtonian universal gravitation are known only in
very special cases [1]. The need to analyze the general
properties of the motions in a system of coupled bod-
ies arose in connection with the dynamics of satellite
systems, which began to be vigorously developed at
the beginning of the 1960s. There is an extensive bib-
liography of published works in this area concerning
the motions of rigid-body and gyrostatic satellites;
in some cases, they take into account the elastic
properties of the satellites or some their elements. The
mathematical methods developed in these papers may
be useful for studies of the specific features of motion
of natural celestial bodies that cannot be explained in
the framework of classical celestial mechanics.

One such effect is the increase in the period and
variation in the amplitude of the Earth’s eigenmodes
(i.e., Chandler oscillations). The eigenmodes of in-
dividual bodies change when they are in a coupled
system. As early as 1829, in his short paper “On the
New General First Principle of Mechanics,” Gauss
concluded that, “It is very significant that, when free
motions cannot occur under the present conditions,
they are modified by Nature in precisely the same way
as is done by a mathematician when he obtains a least
squares fit to the results of observations correspond-
ing to quantities related to each other by the required
dependences.”

We show here that the increase in the period of
free nutation of the Earth (the Chandler period) can
be explained very simply when the motion of the
Earth–Moon–Sun coupled system is considered: an
eigenfrequency of oscillations of the free Earth is
transformed into an eigenfrequency of the Earth–
Moon system as a result of the mutual influence of
oscillations inside the system. We assume there to
be a contactless coupling mechanism associated with
the gravitational forces. This interpretation of the
increase in the period of free nutation of the Earth was
first considered in our previous work [2].

2. EQUATIONS OF THE COUPLED MOTION

Structure of Coupling
in the Sun–Earth–Moon System

Wewill perform a preliminary analysis of the struc-
ture of the coupling in the three-body Sun–Earth–
Moon system. These bodies interact with each other
via gravitational forces and moments. The interaction
forces for each pair of directly interacting bodies are
governed by the law of universal gravitation.
ASTRONOMY REPORTS Vol. 45 No. 11 2001
The gravitational forces between the Earth and
Moon vary as functions of the distance between the
bodies. These can be considered internal forces in
the Earth–Moon system and produce an appreciable
external effect only because there is an external force
field interacting with them.

We introduce the notation e1 = GmS , e2 = GmE ,
and e3 = GmM . The quantities e1, e2, and e3 charac-
terize the intensity of the corresponding source, and
G is the gravitational constant. Then, the Newtonian
field whose sources are at the points ri (i = 1, 2, 3)
will be characterized by the quantity

E =
∑ ei

|r− ri|3
(r− ri). (1)

The Sun plays a special role in the three-body sys-
tem under consideration, since e1 � e2 and e1 � e3.
Therefore, when deriving equations for the coupled
motion of the Earth andMoon, we assume the motion
of a point mass with the mass of the Sun (mS) to be
given.

If we take the Sun as a basis body, the positions of
the Earth and Moon will be described by the radius
vectors r1 and r2 of their centers of masses. The
radius vector ∆r = r2 − r1 describes the positions of
the Earth (mE) and Moon (mM ) at any time during
their motion relative to the Sun (Fig. 1).

The motions of the Earth and Moon in their he-
liocentric orbits are affected by the forces of mutual
attraction in the Earth–Moon system. The effect of
these forces is similar to the imposition of constraints
on the motion of the Earth andMoon around the Sun.
In this case, the constraints represent an idealized
model of the internal interaction forces. This model
enables us to take into account the basic effect of the
interaction without specifying the physical nature of
the corresponding forces.

Lagrange Equations of the First Kind
We shall consider the special case when real rigid

bodies are approximately described by three point
masses mS , mE , and mM . The interaction between
the point masses mE and mM constrains their pos-
sible displacements, i.e., the domains of variability
of their coordinates and velocities. This can be ex-
pressed by a constraint equation describing a surface
of the form

f (t, r1, r2) = 0. (2)
We will show that motions of the points m1 = mE

and m2 = mM in the presence of the indicated con-
straints differ from free motion only under the action
of the active force Fi (i = 1, 2) from the Sun.

Let ri and vi be the radius vector and velocity of the
ith point mass at time t. Then, in the absence of con-
straints, its position at time t+ dtwill be described by
the radius vector:
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mE

mM

mS

r2

r1

∆r

Fig. 1. Positions of the Earth (mE) and Moon (mM ) in
the course of their motion relative to the Sun (mS).

ri(t+ dt) = ri + vidt+ 1/2dt2
Fi
m

+ . . . . (3)

When the constraints are imposed for the same values
of ri, vi, and t, the pointmassmi will have the position

r′i(t+ dt) = ri + vidt+ 1/2dt2wi + . . . (4)

at time t+ dt, where wi is the acceleration of the ith
point mass. Expressions (3) and (4) were derived
using Taylor expansions.

The difference between (3) and (4) represents the
deviation of the point mass from its free motion due to
the constraints:

ri(t+ dt) − r′i(t+ dt) (5)

= 1/2dt2
(
Fi
mi

− wi

)
. . . .

According to Gauss’ principle of least constraint, the
real motion of the system of point massesm1 andm2

is such that the constraint function

Z ≡
2∑
i=1

1
mi

(Fi −miw)2 (6)

possesses a minimum; i.e., δZ = 0. The quantity
Z can be considered the sum of the squares of the
“lost forces” divided by the masses. By varying only
the acceleration δwi, we obtain for the system of two
point masses the expression

2∑
i=1

(Fi −miwi + λ∇f, δwi) = 0, (7)

where ∇f is the gradient of the scalar constraint
function and λ is the Lagrange factor (constraint
coefficient).

Two vector Lagrange equations of the first kind
follow directly from (7):

miwi = Fi + λ∇f or wi =
Fi
mi

+ λi∇f, (8)
where λi = λ/mi i = 1, 2.
The same derivation can be generalized to the

nonholonomic case (nonintegrable constraints).
Since Gauss’ principle treats the behavior of the
system only at the present time, the nonstationary
character of the constraint (i.e., its explicit time
dependence) does not affect the derivation of (7)
and (8).

Only the most general assumptions concerning
the constraint equations (2) and the forces responsi-
ble for these constraints were used when deriving (7)
and (8). As can be shown [3], the following are true
for a system of two coupled point masses attracted by
the coordinate origin:
(a) if the relative velocity v0 of one of these points rel-
ative to the other is constant, then λ is also constant;
(b) the center of inertia of the points moves along an
eclipse whose center is at the coordinate origin;
(c) when considering motion relative to the center of
inertia, the straight line joining the two points will
rotate uniformly with respect to the center of inertia,
thus describing a plane.

Constraint Coefficient

We can write the vector sums of the Newtonian
attraction forces acting onmE andmM as

mE r̈E +
k2mE

r2
E

rE
|rE |

= G
mEmM

|rM − rE |2
(rM − rE)
|rM − rE|

,

(9)

mM r̈M +
k2mM

r2
M

rM
|rM | = G

mEmM

|rE − rM |2
(rE − rM )
|rE − rM | ,

where k2 = Gms. We divide the first equation of (9)
by mE and the second by mM and introduce the
dimensionless time τ = n∗t, where n∗ is the average
sidereal motion of the Moon. In addition, we assume
that the Moon rotates uniformly about the Earth in a
circular orbit. We denote r′E = n∗2

rE , r̈′E = n∗2
r̈E ,

r′M = n∗2
rM , and r̈′M = n∗2

r̈M . Then, using the
above notation, the system of equations (9) takes the
form

r̈′E +
k2n∗4r′E

r′3E
= − µ

1 + µ
∆r′, (10)

r̈′M +
k2n∗4r′M

r′3M
=

1
1 + µ

∆r′,

where µ = mM/mE . We now combine the left-hand
and right-hand sides of (10) to obtain

(
r̈′E + r̈′M

)
+ k2n∗4

(
r′E
r′3E

+
r′M
r′3M

)
=

1 − µ

1 + µ
∆r′.

(11)
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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Using (7) and (8), we can write the right-hand side of
(11) in the form

1 − µ

1 + µ
∆r′ =

(
1
mE

+
1

mM

)
λ∇f. (12)

We denote λ̃ =
mM +mE

mEmM
λ. Then,

1 − µ

1 + µ
∆r′ = λ̃∇f. (13)

To find the coefficient λ̃, we must determine the scalar
function f and calculate∇f .

The kinematics of the Sun–Earth–Moon system
correspond to the motion of a spatial triangle with
revolving pairs. A schematic of the kinematic con-
straints is drawn in Fig. 2. The radius vectors r1,
r2, and ∆r correspond to those in Fig. 1. Here, X1,
X2, andX3 are the horizontal axes of the orthonormal
bases for the corresponding bodies; ε is the inclination
of the Earth’s rotational axis Z2 to the axis of the
ecliptic Z1; β is the angle between the axis of the
lunar orbit Z3 and Z1; and q1, q2, and q3 are positive
angles (generalized parameters). In this case, the
constraints are given by the equalities

r2 − r1 − ∆r = 0, GT
1 G

T
2 G3 = E3, (14)

whereG1,G2, andG3 are the transformationmatrices
and E3 is a unit matrix.

The system in Fig. 2 possesses a cyclic structure.
Precisely the presence of cycles is responsible for the
constraints imposed on the mutual motions of the
bodies forming the system of fundamental cycles.

The above constraint equations contain neither
quantities associated with the specified absolute mo-
tion of the basis body (Sun) nor those characterizing
the absolute motion of the Earth and Moon. This is
quite natural, since the cycles are responsible for the
internal coupling between the bodies, which do not
depend on the absolute motion of the system. To get
around difficulties associated with differentiating the
constraint equations (14), we take into account the
fact that, for any body of a given cycle, each geometric
quantity determined in its intrinsic coordinate system
can be represented by geometric quantities related to
other bodies of the cycle and parameters specifying
the relative motions at the cycle joints.

The parameters defining the motion of the system
of point massesmE andmM relative to their center of
mass (barycenter), which moves in a specified Keple-
rian orbit, are the radius vectors of the points ρE and
ρM specified by the relations

ρE = − mM

mM +mE
∆r, (15)

ρM =
mE

mM +mE
∆r,

mEρE +mMρM = 0. (16)
ASTRONOMY REPORTS Vol. 45 No. 11 2001
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Fig. 2. Schematic of kinematic constraints in the Sun–
Earth–Moon system.

We now combine the first and second equations of
(15) to obtain

ρM + ρE =
mE −mM

mM +mE
∆r (17)

or

∆ρ =
mE −mM

mM +mE
∆r. (18)

We determine the scalar function f relating the
coordinates of the points mE and mM from (18) by
multiplying the right-hand and left-hand sides of this
equation by n∗2 and squaring them. We then have

f =
∣∣∆ρ′

∣∣2 −
(
mE −mM

mE +mM

)2 ∣∣∆r′∣∣2. (19)

Consequently,

|∇f | = −2
(
mE −mM

mE +mM

)2 ∣∣∆r′∣∣ (20)

or

|∇f | = −2
(

1 − µ

1 + µ

)2 ∣∣∆r′∣∣ . (21)

After substituting (21) into (13), we obtain

2λ̃ = −1 + µ

1 − µ
. (22)

The constraint coefficient λ̃ does not depend on the
coordinate systems and is specified by the coupling
of the physical characteristics of the bodies mE

andmM .
If we do not use the adopted idealized scheme

(representing the Earth and Moon as point masses),
the complex system of two coupled bodies can be
represented as two separate (partial) systems that are
mutually coupled. The degree of physical coupling
between such partial systems is specified by the pa-
rameter σ, which is called the coupling strength [4].
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Fig. 3. Uniform rotation of the centers of masses of the
Earth and Moon about the ecliptic axis.

Taking into account (22), the coupling strength of
the Earth–Moon system is

σ =
(

1 + µ

1 − µ

)
/
∣∣ν2

1 − ν2
2

∣∣ , (23)

where ν1 and ν2 are the partial frequencies of the
Earth and Moon. We can see that the coupling
strength depends not only on the constraint coeffi-
cient but also on the closeness of the partial frequen-
cies.

3. EIGENFREQUENCIES OF THE SYSTEM
OF COUPLED BODIES

In a system of coupled bodies (such as the Earth–
Moon system), the eigenfrequencies (partial frequen-
cies) of the individual bodies differ from those of the
system. This difference is determined by the ampli-
tude of the constraint coefficient and the closeness of
the partial frequencies, as can be seen in (23).

The appearance of a tendency for the oscillations of
the Earth and Moon to become coherent is illustrated
by the following idealized model of the system. Let
us suppose that this model retains the structure of a
real system determined by the number of bodies, their
sequence, and the mechanism of their interaction
described by the number of degrees of freedom in it.

We describe the motion of the centers of masses
of the Earth and Moon in a polar coordinate system
using some simplifications (Fig. 3). We take into
account the extended nature of the Earth by repre-
senting it as two point masses m = mE/2 separated
by a distance of two Earth radii and rotating about
the center of mass of the Earth with the period of its
proper motion.

The classical linear theory is based on the empir-
ical fact that the angle between the axis of rotation
of the Moon and the axis of the ecliptic, and also
the inclination of the lunar orbit to the ecliptic, are
small. We shall assume that the centers of mass of
the Moon and Earth rotate uniformly about the axis
of the ecliptic in circular orbits under the action of
a Newtonian force determined by the corresponding
force functions with a period T = 365.25 days. If we
neglect the interaction between the Earth and Moon,
the motion of the point masses mE and mM will be
stable with respect to the radius vectors of each point.

The interaction between the Earth and Moon re-
sults in oscillations about the stable motion deter-
mined by the external force. We identify the effect of
the external force (from the Sun) with the imposition
of stationary constraints in the coordinate system
rotating with the radius vector SM (Fig. 3).

We define the forces of Newtonian interaction be-
tween the Earth and Moon F1 = −F2 to be internal
forces in the Earth–Moon system. These forces are
directed along the line joining the centers of mass
of the Earth–Moon system and do not affect the
equilibrium motion of the point massesmE andmM .
This is true if we do not take into account the physical
properties of the Earth–Moon system that constrain
the motion of the individual bodies. For example, if
the rotation and extent of the Earth are approximately
taken into account, as is shown in Fig. 3, the effect of
the lunar attraction force on the Earth will differ from
the action of the same force on the point mass mE .
To illustrate this, we expand the force F1 into the two
components F′

1 and F
′′
2, each directed along the lines

ρ′ and ρ′′ joining the massesm and the center of mass
of the Moon. We represent the resulting forces as the
sum of tangential and normal components:

F1 = F′
1Ψ + F′

1r, F′′
1 = F′′

1Ψ + F′′
1r. (24)

Let us consider what relation should exist between
F′

1 and F2 in order for the system of point masses m
and mM to be in equilibrium with respect to the axis
EX. The motion of the point m can be conveniently
described by the polar coordinates r andψ; themotion
ofmM , by the Cartesian coordinatesX and Y . In this
case, the equilibrium state is equivalent to imposing
ideal constraints of the form

r = R, Y = 0. (25)

Moreover, ψ andX ′ are related through the formula
X ′ = R cosψ + ρ′ sin q1 (26)

= R cosψ + ρ′

√
1 −

(
R

ρ′

)2

sin2 ψ,

where ψ = ϕ− θ0, R is the Earth’s radius, and q1 is
the angle of inclination of ρ′ to the axis EX. The
statistical principle of virtual work in this case will
take the form

RF1ψδψ − F2δX
′ = 0. (27)

We now find the variation
δX ′ = −R sinψ (28)
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×


1 +

R cosψ

ρ′
√

1 −
(
R
ρ′

)2
sin2 ψ


 δψ.

Substituting (28) into (27), we obtain

F ′
1ψ = −F2 sinψ (29)

×


1 +

R cosψ

ρ′
√

1 −
(
R
ρ′

)2
sin2 ψ


 .

Thus, for equilibrium motion, it is necessary that the
tangential component F ′

1ψ applied to the point m
satisfy condition (29).

The same condition for the diametrically opposite
pointm has the form

F ′′
1ψ = −F2

R cosψ sinψ

ρ′′
√

1 −
(
R
ρ′′

)2
sin2 ψ

, (30)

where ρ′′ is the distance from the corresponding point
to the center of mass of the Moon. If we take ρ′ ≈
ρ′′ ≈ ρ, then the torque will be

τ = F ′
1ψR− F ′′

2ψR (31)

or
τ = −F2R sinψ. (32)

In this case, the constraints imposed on the normal
components F′

1r and F
′′
1r follow from the definition of

the interaction forces F1 and F2.
Variations of the physical conditions in the sys-

tem result in small oscillations about the equilibrium
motions. From a mathematical point of view, these
small oscillations are associated with the quadratic
dependence of the potential energy on the coordi-
nates. In this case, if there is sufficient physical cou-
pling between the bodies in the system and the free
(partial) frequencies are quite close to each other, the
oscillations will be “equalized;” i.e., eigenfrequencies
of the system (different from the partial frequencies)
will arise. The appearance of eigenfrequencies in
the system of constrained bodies is a consequence of
Gauss’ basic principle of constrained systems. These
eigenfrequencies are determined by the properties of
the mechanical system.

Taking into account the kinematics of the coupled
Earth–Moon system and the form of the constraint
equation, the following statements are true [3]:
(1) the motion of the barycenter of the constrained
system is subject to the same laws as is the free
system;
(2) the law of areas is in effect;
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(3) the principle of conservation of energy holds in the
same form as for the free system.

We now find the interrelation between the partial
frequencies and the eigenfrequencies of the coupled
Earth–Moon system, where the basic frequencies are
the eigenfrequency of the free motion of the Earth ν1

and the eigenfrequency of the Moon ν2. The basic
requirement for ν1 and ν2 is that they be close to each
other, which ensures the required coherence of the
oscillations. Then, taking into account the constraint
coefficient λ̃ and the corresponding choice of coor-
dinates and initial conditions, we obtain a system of
homogeneous equations with two degrees of freedom:

ξ̈ + ν2
1ξ − 2λ̃

(
ν2
2 − ν2

1

)
η = 0, (33)

η̈ + ν2
2η − 2λ̃

(
ν2
2 − ν2

1

)
ξ = 0,

where ξ, η are coordinates characterizing small devi-
ations from the equilibriummotions.

Solving the above equations, we obtain the pos-
sible proper oscillations of the system ω1 and ω2 for
various ratios of the partial frequencies ν1 and ν2:

ν2 > ν1, (34)

ω2
1 = k1ν

2
1 − k2ν

2
2 , ω2

2 = k1ν
2
2 − k1ν

2
1 ,

ν2 = ν1 = ω1 = ω2, (35)

ν2 < ν1, (36)

ω2
1 = k1ν

2
2 − k2ν

2
1 , ω2

2 = k1ν
2
1 − k2ν

2
2 .

The coefficients k1 and k2 (k1 > k2) are the roots
of the equation

k2 − k − 1.05043 = 0 (37)

and depend on the constraint coefficient (λ̃ =
0.512453). For λ̃ = 0.5, Eq. (5) takes the form

k2 − k − 1 = 0; (38)

i.e., its roots are Fibonacci numbers (k1 = Φ, k2 =
Φ−1). It is interesting that these numbers arise in
various ways in descriptions of parameters and pro-
portionalities of the solar system. For example, the
periods of revolutions and beat periods of the planets
form a geometric progression with denominator Φ,
and so on.

Let us take ν1 = 0.90588 yr−1 (Tν1 = 403.2 days)
and ν2 = 1 yr−1 (Tν2 = 365.25 days). Substituting
these values into (34), we obtain two eigenfrequencies
of the Earth–Moon system: ω1 = 0.84004 (Tω1 =
434.8 days) and ω2 = 1.05594 (Tω2 = 345.9 days).
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4. CONCLUSIONS

Oscillations in the Earth–Moon system obey the
basic dynamical principle of constrained systems.
The mutual influence of the partial frequencies gives
rise to proper oscillations in the constrained system.
This process is based on a complex redistribution
of energy, involving all the movable elements of the
system.

Using a model taking into account all the ba-
sic features of the real Earth–Moon system, we
have derived a general law for the appearance of
eigenfrequencies in the constrained system. In this
model, taking into account the derived constraint
coefficient λ̃ and the partial oscillations with periods
Tν1 = 403.2 days and Tν2 = 365.25 days, the periods
of proper oscillations in the coupled Earth–Moon
system are Tω1 = 434.8 days and Tω2 = 345.9 days.

Therefore, the increase in the period of the proper
oscillations of the Earth (the Chandler period) turns
out to be a natural consequence of the appearance of
eigenfrequencies in the constrained system.

Changing the physical conditions in the real
Earth–Moon system (e.g., making the parameters
dependent on energy) leads to deviations of the
frequencies for the proper motion from the mean
values specified by (33).
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