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Original Russian Text Copyright c© 2002 by Megn, Braude, Rashkovskĭı, Sharykin, Shepelev, Inyutin, Vashchishin, Brazhenko, Bulatsen.
Interferometric Observations of 4C 21.53 and PSR 1937+214
at Decameter Wavelengths

A. V. Megn, S. Ya. Braude, S. L. Rashkovskiı̆, N. K. Sharykin, V. A. Shepelev,
G. A. Inyutin, R. V. Vashchishin, A. I. Brazhenko, and V. G. Bulatsen

Radio Astronomy Institute, National Academy of Sciences of Ukraine, Kharkov, Ukraine
Received January 25, 2001

Abstract—Preliminary resuts of interferometric observations of 4C 21.53 and PSR 1937+214 at 25 and
20 MHz are presented. The observations were obtained using the URAN-1 and URAN-2 interferometers,
with baselines of 42.4 and 152.3 km. In addition to the pulsar radiation, which provides about 70% of
the total flux of the object, radio emission from extended components with dimensions of several tens
arcseconds has been detected for the first time. The angular size of the pulsar is 3′′ at 25 MHz and 4

′′
.8 at

20 MHz. The pulsar’s low-frequency spectrum deviates appreciably from the power law derived at higher
frequencies. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The unusual properties of the radio source
4C 21.53 have attracted the attention of a number
of astronomers. This object, which lies close to
the Galactic plane (l = 57◦.54, b = −0◦.28), displays
typical strong scintillation on inhomogeneities in
the interplanetary plasma [1]. This indicates that
an appreciable fraction of its total flux density is
associated with very compact structures.

In 1982, the very rapid pulsar PSR 1937+214 with
a period of 1.557 ms [2] was discovered in 4C 21.53,
providing the scintillating component. Subsequently,
a large number of studies were undertaken [2–10],
primarily at centimeter and decimeter wavelengths,
and more rarely at meter wavelengths. These ob-
servations using radio interferometry, supersynthesis
and aperture synthesis techniques, and narrow-beam
radio telescopes yielded intensity measurements at
various frequencies, the source’s radio spectrum,
and radio images of 4C 21.53 and other surround-
ing regions of emission. Much attention has been
spent on elucidating the physical nature of the ra-
dio source 4C 21.53W, which is located closest to
PSR 1937+214, as well as the other components
of 4C 21.53W and their possible relation to the
pulsar. It became clear that 4C 21.53W consists of
three objects: the western component 4C 21.53W;
the eastern component 4C 21.53E, separated from
4C 21.53W by approximately 13′

.5 in right ascension
and 3′

.3 in declination; and the pulsar PSR 1937+214,
which is located ∼25′′ to the west and ∼ 2′

.2 to the
south of the center of 4C 21.53W. 4C 21.53E is an
1063-7729/02/4602-0110$22.00 c©
extragalactic object consisting of two compact fea-
tures separated by 0′′

.8 and does not have any physical
connection to the pulsar [3]. The physical nature of
the western component 4C 21.53W, which resembles
an extended radio nebulosity roughly 100′′ × 40′′ in
size at 1.48 GHz [3], and its relationship to the pulsar
have been extensively discussed in the literature. It
has been suggested that this radio emission might
represent a supernova remnant or HII region [2, 3–5,
7, 8].

Indirect evidence in favor of the first (nonthermal)
hypothesis is provided by other cases of observed
associations between supernova remnants and pul-
sars, as, for example, in the case of the Crab Neb-
ula, which is associated with a millisecond pulsar—
the rapidly rotating neutron star formed during the
supernova explosion. However, in contrast to the
Crab pulsar and nebula, PSR 1937+214 is located at
the southern edge of 4C 21.53W, rather than at the
center of the nebulosity; in some radio maps, such as
those at 10.7 GHz, the pulsar is even located beyond
4C 21.53W [4]. Of course, this could be due to a
southward drift of the pulsar since the explosion, over
a time of about 105–106 yr. In addition, no appre-
ciable linear polarization has been observed, as would
be characteristic of the radio emission of a supernova
remnant.

Evidence in favor of the second (thermal) hypoth-
esis suggesting that 4C 21.53W is a region of ion-
ized hydrogen is provided by the detection of weak
hydrogen recombination lines in this nebula. Unfor-
tunately, the spectral index of this object at centimeter
and decimeter wavelengths α (S ∝ ν−α, S is the flux
2002 MAIK “Nauka/Interperiodica”



4C 21.53 AND PSR 1937+214 AT DECAMETER WAVELENGTHS 111
density and ν is the observing frequency) takes on
values from 0.26 [3] to 0.03 [4], making it impossible
to distinguish between the two hypotheses on this
basis, since either an extended supernova remnant or
an HII region could have such a spectrum at these
frequencies.

Mantovani et al. [4] even suggested that the
southern part of 4C 21.53W is a plerion superno-
va remnant supplied by PSR 1937+214, while the
northern part is an HII region. Decisive evidence
supporting one or the other of these hypotheses could
be obtained from spectral measurements at very high
frequencies, in the infrared, where the intensity of a
supernova should be much weaker than that of an HII
region [4]. The infrared measurements of [10] showed
the presence of intense emission in this region, pro-
viding some confirmation of the thermal nature of
4C 21.53W. The distance to theHII region in this case
is estimated to be about 10.7 kpc, while the distance
to PSR 1937+214 is about 5 kpc [5, 7].

Nevertheless, the possible presence of a supernova
remnant in the region of the pulsar cannot be com-
pletely excluded: Sieber and Seiradakis [5] detected a
weak plateau of emission 19′ in radius at λ = 11 cm
and 16′ in radius at λ = 6 cm around PSR 1937+214
and 4C 21.53W. Some regions of this emission are
linearly polarized up to 50%, and its spectral index is
0.45. In addition, a linear polarization of 10%was de-
tected in the southern part of the nebulosity [4]. Thus,
we cannot rule out the presence of a weak supernova
remnant around PSR 1937+214, whose radiation has
been below the sensitivities of most observations.

In this connection, it is of considerable inter-
est to obtain new interferometric observations of
PSR 1937+214 and 4C 21.53 at decameter wave-
lengths. Earlier observations in this range us-
ing the UTR-2 radio telescope yielded the spec-
trum of 4C 21.53 from 10 to 25 MHz [11] and the
source’s radio structure at 20 and 25 MHz, based on
interplanetary-scintillation measurements [12]. After
these earlier observations, it remained to elucidate
whether all the radiation detected in [11] was from the
pulsar, or whether there was a significant contribution
from other regions. In addition, it is of interest
to more accurately determine the angular size of
PSR 1937+214 at decameter wavelengths. The
current paper addresses these questions.

2. INSTRUMENTS, MEASUREMENT
TECHNIQUE, AND DATA REDUCTION

The first interferometric observations of 4C 21.53
and PSR 1937+214 at decameter wavelengths were
carried out on the URAN-1 and URAN-2 interfer-
ometers, which are oriented nearly east–west and
ASTRONOMY REPORTS Vol. 46 No. 2 2002
have baselines of D = 42.3 km and 152.3 km. In-
terference fringes were formed by multiplying the sig-
nals of the north–south antenna of the UTR-2 radio
telescope [13] and the URAN-1 and URAN-2 an-
tennas [14, 15]. The observing method, described
in [16], enabled us to take into account the effect of
Faraday rotation, which is very important at these
wavelengths.

The spatial frequencies of the radio-brightness
distributions of 4C 21.53W and PSR 1937+214 in
the U–V plane measured by the URAN interferome-
ters are given by the expressions

U1 =
42276.7

λ
cos(T0 − 2◦.2), (1)

V1 =
15494.5

λ
sin(T0 − 2◦.2) − 1305.8

λ
for URAN-1 and

U2 =
152292.6

λ
cos(T0 + 0◦.38), (2)

V2 =
55815.4

λ
sin(T0 + 0◦.38) +

800.2
λ

for URAN-2. Here, T0 is the hour angle relative to the
culmination time in degrees and λ is the wavelength
in meters.

The observations were conducted simultaneously
at 25 and 20 MHz during nighttime and morning in
the period from April 17–26, 1999. Since it is not
possible to measure the phase of the visibility function
at these frequencies using theURAN interferometers,
we determined only the amplitude of the observed
visibility function γo for hour angles from −160m to
+120m. The method used to record and reduce the
data is described in [17].

The absence of phase information and insufficient
coverage of the U–V plane prevented the use of
standard image-reconstruction methods. Therefore,
we derived the parameters of model radio-brightness
distributions for sets of components with Gaussian
flux-density distributions1 for which the calculated
visibility function γc(T0) was in best agreement with
the observed visibility function γ̂o(T0). The quantity
γc(T0) was determined by the relation

γc(T0) =

∣∣∣∣∣

n∑

1

Si
S0
γi(T0)eiϕi(T0)

∣∣∣∣∣ , (3)

where
γi(T0) = exp

{
−[1.88Uj (T0) ∆θαi ]

2
}

(4)

× exp
{
−[1.88Vj(T0)∆θδi ]

2
}

and

ϕi(T0) =
2πDj

λ
[∆αi cos(T0) (5)

1Here, we present the angular sizes of Gaussian radio com-
ponents at the half-maximum level.
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Fig. 1. Measurements of the amplitude of the visibility
function γ̂o of 4C 21.53 and PSR 1937+214 for various
hour angles T0 at 25 MHz using the URAN-1 inter-
ferometer. The x’s with bars show the mean-weighted
observed values with their rms deviations ±σγ . The
dashed curve 1 shows the calculated dependence γc(T0)
for the best-fit two-component model. The solid curve 2
shows the calculated dependence γc(T0) for the best-fit
three-component model.
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Fig. 2. Same as Fig. 1 for 20 MHz.

+ ∆δi sin(δ0) sin(T0)] .

Here, ϕi(T0) is the phase of the visibility function
corresponding to component i relative to compo-
nent 1; γi(T0) is the amplitude of this visibility func-
tion; n is the number of components in the model
radio-brightness distribution; δ0 is the mean declina-
tion of this distribution; ∆αi = αi − α1, ∆δi = δi −
δ1, αi, δi, ∆θαi , ∆θδi , and Si are the right ascen-
sion, declination, angular dimensions, and flux den-
sity of model component i; S0 = ΣSi; and Uj(T0) and
Vj(T0) are the spatial frequencies of the jth URAN-1
and URAN-2 interferometers (j = 1, 2), given by (1)
and (2).

We used a χ2 criterion as a measure of the agree-
ment between the calculated model and observed vis-
ibility functions [18]:

χ2 =
N∑

i=1

[γ̂oi(T0) − γci(T0)]2

σ2
γi

(T0)
, (6)

whereN is the number of independent measurements
of the mean-weighted amplitude of the visibility func-
tion γ̂oi at various hour angles. We took the best
model to be that corresponding to the minimum χ2

min
for which there was a sufficiently high probability of
exceeding this valueWk(χ2 > χ2

min), where
k = N − 1 − p. (7)

Here, k is the number of degrees of freedom for the
given model and p is the number of parameters deter-
mined by the model radio-brightness distribution.

3. RESULTS

Figures 1 and 2 show the results of our URAN-1
observations in the form of the mean-weighted values
of the observed visibility function γ̂o at various hour
angles T0 at 25 MHz (Fig. 1) and 20 MHz (Fig. 2).
The analogous data for theURAN-2 observations are
presented in Fig. 3, for both 25MHz (×) and 20MHz
(◦). The vertical lines show the rms deviations, taking
into account both the random scatter in the measure-
ments and systematic errors.

According to the results of [3], 4C 21.53E and
4C 21.53W should not be detected at decameter
wavelengths, since their flux densities are below
the sensitivity of our instruments, and we should
have recorded emission only from PSR 1937+214.
However, we can see in Figs. 1–3 that our mea-
surements are inconsistent with the detection of
a single compact or extended component. In the
case of a single compact component, such as the
pulsar, the URAN-1 measurements of the visibility
function would have been nearly equal to unity and
would not have shown oscillations in the hour-angle
dependence γ̂o(T0). We would likewise not obtain
the observed dependence γ̂o(T0) in the case of a
single extended component; in addition, theURAN-2
signal would have been appreciably weaker than the
URAN-2 signal in this case, which was not observed.

The oscillations in γ̂o(T0) for the URAN-1 ob-
servations testify that the interferometer is detecting
the contributions of two or more components. At the
same time, there is essentially no hour-angle depen-
dence γ̂o(T0) for either frequency in Fig. 3, suggesting
that the expended components are nearly completely
resolved out so that essentially only the single com-
pact component is detected.

For this reason, we first considered a simple two-
component model. The dashed curves in Figs. 1
and 2 show the calculated dependences γ̂c(T0) for
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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Table 1. Parameters of the best-fit two-component model for 4C 21.53 and PSR 1937+214

Component ∆αi ∆δi ∆θαi ∆θδi Si/S0

Compact 0′′ 0′′ 3′′ ± 0.6′′ 3′′ ± 0.6′′ 0.704± 0.02

(5 ± 0.8) (5 ± 0.8) 0.704 ± 0.02

Extended 40 ± 2 137± 19 21± 3 170 ± 26 0.296 ± 0.02

Note: The values in parantheses correspond to 20 MHz.

Table 2. Parameters of the best-fit three-component model for 4C 21.53 and PSR 1937+214

Component ∆αi ∆δi ∆θαi ∆θδi Si/S0

Compact 0′′ 0′′ 3′′ ± 0.8′′ 3′′ ± 0.8′′ 0.704± 0.08

(4.8± 1) (4.8± 1)

First extended 35 ± 2 185 ± 14 20± 3 20± 3 0.183± 0.04

Second extended 45 ± 5 40 ± 19 14± 6 14± 6 0.113± 0.04

Note: The values in parantheses correspond to 20 MHz.

Table 3. Flux density from 4C 21.53 and PSR 1937+214 and from individual components for the two best-fit models

Frequency,
MHz

S0, Jy

Two-component model Three-component model

compact
component

extended
component compact component first extended

component
second extended

component

S, Jy

20 225 ± 29 158 ± 21 67± 10 158 ± 27 41± 10 26± 10

25 172 ± 23 121 ± 16 51± 7.5 121 ± 21 32± 8 19± 7
the best-fit model consisting of one compact and
one extended component, determined from the χ2

criterion. We searched for the best-fit model jointly
taking into account the data for the two interfer-
ometers at the two frequencies, assuming that the
coordinates of all component centers, the dimensions
of extended components, and the component flux ra-
tios were the same at the two frequencies. Table 1
presents the parameters for the corresponding model
radio-brightness distribution and their errors. Note
that, in this case, the ratio γmax/γmin = 1.52 and 1.57
at 25 and 20 MHz, respectively.

It follows that, apart from individual measure-
ments at 25 MHz at T0 = 40 and 60 min, which have
large errors, even the simple two-component model
γc(T0) agrees with the observations reasonably well.
This is reflected by the comparatively small value of
χ2

min for these dependences at the two frequencies.
For both interferometers at both 20 and 25 MHz,
χ2

min is between two and five, with the probability of
exceeding these values usually being no lower than
0.7. The lowest probability for exceeding χ2

min, equal
ASTRONOMY REPORTS Vol. 46 No. 2 2002
to 0.63, is obtained at 25MHz for the URAN-1 inter-
ferometer, where the measurements have the lowest
accuracy.

In the two-component model, URAN-2 can de-
tect only the compact component, since the extended
component is completely resolved if it has the di-
mensions indicated in Table 1. The flux density from
this extended component received by the URAN-2
interferometer is γe2Se, which, according to (2) and
(4), is 0.13 Jy at 25 MHz and 1.5 Jy at 20 MHz,
while the sensitivity of the instrument (for a signal-
to-noise ratio of unity) is about 10 Jy. Therefore, the
ratio γmax/γmin in Fig. 3 is essentially equal to unity.

Thus, the decameter flux density of 4C 21.53 is
contributed by at least two components: 70% is
from a compact and 30% from an extended compo-
nent. Table 1 shows that the center of the extended
component is displaced from the center of the com-
pact component by 142′′

.7 in position angle 16◦.3, in
reasonable agreement with the relative separation
of the centers of PSR 1937+214 and 4C 21.53W
presented in [5], 134′′

.4 in position angle 10◦.8. In
addition, the compact component is partially resolved
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Fig. 3. Measurements of the amplitude of the visibility
function γ̂o of 4C 21.53 and PSR 1937+214 for vari-
ous hour angles T0 at 25 MHz and 20 MHz using the
URAN-2 interferometer. The x’s and circles with bars
show the mean-weighted observed values with their rms
deviations ±σγ . The solid curve 1 shows the calcu-
lated dependence γc(T0) for the best-fit three-component
model at 25 MHz. The dashed curve 2 shows the same
calculated dependence for 20 MHz.

by URAN-2, indicating its angular size is 3′′ at
25 MHz and 5′′ at 20 NHz. We will show below
that these sizes of the compact component at de-
cameter wavelengths are in good agreement with the
measured angular size of PSR 1937+214 at higher
frequencies [9]. This suggests that our compact
component of 4C 21.53 corresponds to the pulsar
PSR 1937+214, while the extended component is
associated with 4C 21.53W. However, the size of
the extended component does not agree exactly with
the size of 4C 21.53W presented in [3] derived from
VLA observations at 1480 MHz, which indicate this
component to have dimensions of roughly 100′′ × 40′′
in right ascension and declination, respectively.

Although the χ2
min values for the two-component

model for the radio-brightness distribution are fairly
small when the probability of exceeding them is high,
the very large extent of the extended component in
declination appears somewhat doubtful from a physi-
cal point of view and suggests the presence of several
somewhat smaller extended components spread out
in declination. For this reason, we derived another
optimal (based on the χ2 criterion) three-component
model for the radio-brightness distribution, consist-
ing of one compact and two extended components.
The calculated dependences γc(T0) for this best-fit
model are presented in Figs. 1 and 2 by the solid
curves 2, and the corresponding model parameters
are given in Table 2.

Table 3 presents the total flux density S0 from
4C 21.53 and PSR 1937+214 together with the flux
densities of the individual components in the two
models.
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Fig. 4. Model radio-brightness distribution for 4C 21.53
and PSR 1937+214 superposed on a radio image of
the HII region 4C 21.53W obtained using the VLA
at 1480 MHz. 1 shows pulsar PSR 1937+214 at 25
and 20 MHz; 2, the extended component in the two-
component model; and 3 and 4, the two extended com-
ponents in the three-component model.

The dependences γc(T0) for URAN-1 for the
three-component model are fairly similar to those
for the two-component model. In particular, the
ratios γmax/γmin at 25 and 20 MHz are virtually the
same for the interferometer URAN-1 for the three-
component and two-component models. For both
interferometers at both frequencies, the value of χ2

min
is slightly lower for the three-component model (1.5
compared to 3.0); however the probability of exceed-
ing these values remains essentially unchanged due
to the larger number of parameters for the three-
component model. For this reason, and also due to
the comparatively large scatter of the data in Figs. 1–
3, it was not meaningful to try to find solutions for
more complex model radio-brightness distributions.
This could be attempted if we had substantially more
accurate measurements, increasing the χ2 values for
the two-component and three-component models;
we could then determine the parameters of these
models more accurately by re-minimizing χ2 and
possibly investigate more complex models as well.

Tables 1 and 2 show that the relative flux densities
and angular sizes of the compact components in the
two models are nearly the same. Only the dimensions
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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Table 4. Measurements of scintillation of 4C 21.53 at decameter wavelengths

Frequency, MHz S0, Jy ∆θe, arcsec Se/S0

20 250 ± 50 2.0+0.7
−1.2 0.85 ± 0.15

25 160 ± 25 1.5+0.5
−1.0 0.93+0.07

−0.2
of the extended component have changed appreciably.
The single component very elongated in declination
has been replaced by two comparatively small ex-
tended components widely separated in declination
and with approximately the same right ascensions.
The first, stronger, extended component is at the
northern end and the second at the southern edge
of the extended component for the two-component
model. Figure 4 shows schematics of the models
whose parameters are presented in Tables 1 and 2
superposed on a radio image of 4C 21.53W obtained
from VLA observations at 1480 MHz [3]. Here, 1
is pulsar PSR 1937+214, 2 the extended component
from Table 1, and 3 and 4 the extended components
from Table 2. The northern component from Table 2
is near the center of 4C 21.53W, while the southern
component is near the pulsar. We suggest that this
model corresponds better with our physical under-
standing of the structure of 4C 21.53W at decameter
wavelengths.

The calculated dependences γc(T0) for the three-
component model for URAN-2 are presented in
Fig. 3 by the solid (25 MHz) and dashed (20 MHz)
curves. In contrast to the analogous dependences
for the two-component model, where γc(T0) is es-
sentially constant, the three-component model gives
rise to slight variations in γc with T0, associated with
the incomplete resolution of the second extended
component by the URAN-2 interferometer. At 25
and 20MHz, γmax/γmin = 1.05 and 1.07, respectively.
The URAN-2 correlated flux densities at 25 and
20 MHz from the first extended component are 0.15
and 1.43 Jy and from the second extended component
are 1.41 and 4.75 Jy—no more than 1% and 3% of
the flux densities of the pulsar at 25 and 20 MHz.

It is of interest to compare these new data with
the results of earlier estimates of the characteristics
of the pulsar derived from interplanetary-scintillation
measurements, presented in Table 4 [12]. The data
in this table show a large amount of scatter, due to
the known limitations of scintillation measurements.
Nevertheless, our interferometric measurements of
the pulsar dimensions are, on average, a factor of 2–
2.5 higher than the values in Table 4, while the relative
flux is lower, especially at 25 MHz.

4. SPECTRAL MEASUREMENTS
The radio-brightness distribution is related to the

spectral characteristics of the emission S(ν). Fig-
ASTRONOMY REPORTS Vol. 46 No. 2 2002
ure 5 shows the radio spectrum of 4C 21.53W and
PSR 1937+214. The circles and triangles showmea-
surements of S(ν) for 4C 21.53W from 24 500 MHz
to 408 MHz and for PSR 1937+214 from 1415 MHz
to 25.6 MHz taken from [3, 5, 6]. At low frequencies
(ν ≤ 25 MHz), the x’s show the data of [11], and the
diamonds show our 25 and 20 MHz measurements
from the current paper. Figure 5 shows that the
spectrum of 4C 21.53W is nearly flat from 5000 to
608.5 MHz, with only a slight increase in S(ν) with
decreasing frequency (curve 1 with α1 ≈ 0.04). At
higher frequencies, S(ν) falls rapidly with increasing
frequency, but, at the lowest frequencies at which
measurements of 4C 21.53W have been made, 430
and 408 MHz, we can already note a significant
growth in the flux density with decreasing frequency,
with the spectral index becoming appreciably greater
than 0.04.

The spectrum of the pulsar (curve 2) is a power
law with spectral index α2 ≈ 2.44 at ν > 73.8 MHz
and α3 ≈ 1.74 at lower frequencies; the total spec-
trum for the object is presented for frequencies below
73.8 MHz. In Fig. 5, the squares show the interfero-
metric measurements of the flux density of the pulsar,
and the circled x’s, the flux densities for the two
extended components in the three-component model
based on our URAN observations. If we connect the
data for the extended components with the lowest-
frequency measurements of 4C 21.53W by power-
law dependences (dot–dashed lines 4, 5), the spectral
index for the first (northern) component is α4 ≈ 1.08,
while that for the second (southern) component is
α5 ≈ 0.95. In the two-component model, assuming
the single extended component should be identified
with 4C 21.53W yields a spectral index of 1.24.

As noted earlier in [11], the spectrum of the to-
tal radio emission at frequencies ν < 50 MHz is a
power law (linear in log S–log ν coordinates). How-
ever, taking into account only the radio emission of
PSR 1937+214 at decameter wavelengths, strictly
speaking, we already observe a curved spectrum, rep-
resenting a slower growth in the flux density with
decreasing frequency. An approximate spectrum for
the pulsar at ν < 73.8 MHz is given by the dashed
line 3. Radio interferometric observations with corre-
sponding resolution at 25 MHz < ν < 73.8 MHz are
needed to more accurately determine the spectrum of
the pulsar.
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Fig. 5.Spectrum of 4C 21.53Wand PSR 1937+214 from
10 to 2450 MHz. The circles show data from [5]; the
triangles, data from [3, 5, 6]; the x’s, data from [11]; the
diamonds and squares, data from the current study for the
total flux density and the flux density of PSR 1937+214,
respectively; and the circled x’s, the flux densities for the
extended components for the three-component model for
the radio-brightness distribution. The solid curve 1 is the
spectrumof 4C 21.53W; the solid curve 2, the spectrumof
PSR 1937+214 at ν > 73.8MHz; and the total spectrum
of the radio source at ν < 73.8 MHz; the dashed curve 3,
the expected spectrum of the pulsar at low frequencies;
and the dashed curves 4 and 5, the inferred spectra of the
extended components for our three-component model for
the radio-brightness distribution.

5. CONCLUSION

The main conclusion that can be drawn based
on our analysis of these new measurements is that,
in contrast to earlier suggestions that all observed
radiation at decameter wavelengths was due to the
pulsar [3, 6, 11], in fact, the decameter emission of
4C 21.53 includes contributions from both the pulsar
PSR 1937+214 (which provides about 70% of the
total flux density) and one or more extended compo-
nents located near 4C 21.53W and the pulsar. This is
probably the case at meter wavelengths as well (ν <
100 MHz), where the pulsar emission is received as a
continuous signal, since Fig. 5 (lines 4, 5) shows that
the expected emission of the extended components at
these frequencies is sufficient for their detection.

The second important result of this work is our
measurement of the angular dimensions of PSR
1937+214. For our most trustworthy, three-compo-
nent model for the radio-brightness distribution of
4C 21.53, the pulsar’s size is 3′′ at 25MHz and 4′′

.8 at
20 MHz. The angular size of the pulsar presented in
[9] was 15 milliarcseconds at 326 MHz. A power-
law frequency dependence is usually expected for
the angular size of a very compact source such as
a pulsar, due to scattering of the radiation in the
interstellar and interplanetary plasma: ∆θ ∼ ν−ζ .
Data obtained at 326 and 25 MHz, and also at 326
and 20 MHz, indicate that the spectral index is equal
to ζ = 2.06. Based on our measurements of ∆θ
at 25 and 20 MHz, ζ = 2.1; however this value is
very uncertain due to the relatively small frequency
difference.

According to [9], the values of ζ for a number
of pulsars fall in the range 2 < ζ < 2.18, in good
agrement with our data. This provides further con-
firmation that the compact object in the radio source
4C 21.53 is, indeed, the pulsar PSR 1937+2142.

We cannot draw such firm conclusions about the
nature of the extended components providing about
30% of the total emission at 25 and 20 MHz, since
our models with one and two extended components
are virtually indistinguishable from the point of view
of a statistical χ2 criterion. Note that extrapolat-
ing the emission of all radio sources observed near
PSR 1937+214 at shorter radio wavelengths to de-
cameter wavelengths assuming their spectral indices
α to be constant does not yield the flux density in Ta-
ble 3. For example, the extrapolated flux density of the
nearest source 4C 21.53E at frequencies ν < 30MHz
is < 2–3 Jy, with its intensity falling with further
decrease in frequency [3]. The remaining sources near
the pulsar have very small flux densities at shorter
radio wavelengths and modest spectral indices so
that there is no reason to expect their intensities at
decameter wavelengths to be as large as several tens
of Jy [5, 7].

It is possible that the extended regions providing
30% of the total flux density at decameter wave-
lengths are not associated with the radio sources
surrounding 4C 21.53W observed at frequencies ν >
365 MHz. In this connection, we will briefly consider
various possible explanations for the physical nature

2Note that, in the case of pulsar sizes derived from scintil-
lation measurements [12], comparison with measurements
at 326 MHz yield ζ = 1.75 and 1.79 for 20 and 25 MHz,
respectively.
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of the extended components detected at decameter
wavelengths.

First, we cannot completely rule out the possi-
bility that these regions of emission are associated
with 4C 21.53W. In our two-component model, the
extended component coincides with an appreciable
part of 4C 21.53W, and the two extended components
in our three-component model are located in the im-
mediate vicinity of 4C 21.53W. Furthermore, as noted
above, the coordinates of the extended component in
the former model relative to PSR 1937+214 are in
good agreement with data obtained at higher radio
frequencies. Further evidence supporting this identi-
fication is provided by the spectral dependences 4 and
5 for the extended components from 20 to 430MHz in
Fig. 5, which indicate spectral indices close to unity,
together with the substantial increase in the spectral
index of 4C 21.53W from 0.04 to 
1 at frequencies
ν < 608.5 MHz [5].

A second possibiliity is that the radio emission
of the extended components is associated with the
large, weak halo of emission around the pulsar with
a radius of about 19′ detected at 2700 MHz using
the 100-m Effelsberg telescope [5], which may be
the sought-for supernova remnant associated with
PSR 1937+214. In this case, we expect the spectral
indices of these components to be somewhat smaller
than in the first hypothesis. The flux density of this
halo at 2700 MHz is about 0.6 Jy; assuming its
emission to be synchrotron radiation and calculating
a power-law spectral index based on this measure-
ment and our own lower-frequency measurements
yields α ≈ 0.95 for our two-component model and
α ≈ 0.85 for the first (northern) component and α ≈
0.75 for the second (southern) component in our
three-component model. In both cases, the decrease
in the flux density of the extended components with
increasing frequency is not so rapid that we would not
be able to detect their emission at meter wavelengths,
at least at relatively long meter wavelengths (Fig. 5,
dependences 4, 5).

If the emission of the extended component(s) is
not associated with 4C 21.53W or a halo surrounding
PSR 1937+214 that has not yet been detected at
meter or shorter radio wavelengths, this implies that
its emission must have a rather steep spectral index.
If the sensitivity of the observations of 4C 21.53W
at 1480 MHz [3] was one to two orders of magni-
tude below the received flux density (about 1 Jy), the
spectral index of the extended component(s) must
no smaller than 1.5–2. Naturally, the probability of
detecting this emission at meter and shorter radio
wavelengths is substantially lower than in the pre-
vious cases. However, in spite of this large inferred
spectral index, we cannot consider this possibility to
be unlikely, since intense, steep-spectrum extended
ASTRONOMY REPORTS Vol. 46 No. 2 2002
components surrounding a number of quasars and ra-
dio galaxies have already been detected at decameter
wavelengths. For example, a halo with a size ∆θ =
45′′ and spectal index α = 1.56 [19] was detected
around the quasar 3C 154; a halo with ∆θ = 25′′ and
α = 1.4, around the quasar 3C 196 [20]; a halo with
∆θ = 20′′ and α = 1.1, around the quasar 3C 254
[21]; and a halo with < 60′′ and α ≈ 1.1, around the
radio galaxy Perseus A (3C 84A) [22].

Finally, another possible explanation for the ex-
tended component(s) detected near PSR 1937+214
at decameter wavelengths is that this object is located
quite near the Galactic plane. If there are appre-
ciable irregularities in the distribution of the radio
emission of the Galactic background, these could in
principle be detected by radio interferometers. Our
estimates for URAN-1 indicate that the detection of
the extended components would require a jump in
the temperature of the Galactic radio background by
thousands of Kelvin over an area of no more than
several arcminutes. Observations at decameter and
meter wavelengths (see, for example, [23–26]) do not
show any such jumps in temperature in the region
near 4C 21.53W and PSR 1937+214. Of course,
these observations had rather poor angular resolu-
tion, with a 0◦.5 × 21◦ beam at 12.6 to 25 MHz [23],
a 16◦.5 × 16◦.5 beam at 10 MHz [24], and a 7◦.5 beam
at 38 MHz [25]. Similar oservations have been car-
ried out with higher resolution only at relatively short
meter wavelengths and at higher frequencies, with
resolution 20′ at 178 MHz [26] and 16′ at 610.5 MHz
[27].

A conclusive test of this last possibility requires
measurements of the Galactic background at de-
cameter and long meter wavelengths with a narrow
beam in both dimensions, with resolution better than
several arcminutes. However, no instruments ca-
pable of providing such measurements are currently
available. Therefore, more accurate estimation of the
coordinates and dimensions of the regions of emission
responsible for the extended components detected at
decameter wavelengths and determination of their
physical nature requires interferometric observations
with corresponding resolution at meter wavelengths,
as well as more accurate interferometric measure-
ments at decameter wavelengths. Such observations
may become possible during solar-activity minimum.
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Abstract—Based on 70 years of published photoelectric observations, we have detected quasi-periodic
cophased oscillations of the times of the primary and secondary minima of RR Lyn, one of the brightest and
nearest eclipsing binaries in the northern sky (V = 5m. 54; r = 74 pc). Approximating these oscillations
using the light equation yields estimates of the orbital parameters of the third body in the system and
imposes constraints on its mass, M3. In the most probable case when the orbits of the eclipsing and
triple systems are coplanar,M3 = 0.10± 0.02M�, and the semimajor axis of the orbitA3 = 17.4± 3.5AU,
with a substantial eccentricity, e3 = 0.96 ± 0.02. We have carried out a detailed study of the apsidal
rotation of this eclipsing and now multiple system, which was suggested by Koch as a test of general
relativity as far back as 1973. Our high-precision WBV R photoelectric photometry (σobs ∼= 0m. 0032) has
removed some contradictions. At the same time, the proximity of the longitude of periastron ω to 180◦;
the close correlation between the jointly estimated values of ω, e and the limb-darkening coefficients for the
component disks, u1 and u2; and microfluctuations in the brightnesses of the stars prevent determination
of the rate of rotation of the elliptical orbit in the system, even using the most accurate measurements.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In our previous study [1], we presented high-
precision (σobs ∼= 0m. 003)WBVR photoelectric mea-
surements of RRLyn carried out at the Tien Shan and
Crimean Observatories of the Sternberg Astronomi-
cal Institute. The resulting light curves yielded pho-
tometric and absolute orbital elements, which could
be used to construct a self-consistent geometrical
and physical model of this unique eclipsing system,
and to confirm the evolutionary status determined in
1995 by Lyubimkov and Rachkovskaya [2, 3]. Table 1
presents the parameters of the system presented in [1]
and used below.

Due to its appreciable eccentricity (e = 0.078), the
orbit of RR Lyn should rotate in space with an apsidal
period of about 28 000 yrs, as a result of the effects of
general relativity and the tidal and rotational deforma-
tion of the components (see Section 2). Lavrov and
Lavrova [4] reported the detection of apsidal rotation
of RR Lyn with a period of 2000 yrs. However, this
period is more than an order of magnitude smaller
than that expected theoretically. One of the main
goals of our work was to resolve this problem.

In Section 2, we consider the question of apsidal
rotation in RR Lyn. It is not possible to derive both ω
and its rate of variation ω̇ from the available observa-
tions with sufficient accuracy, due to the proximity of
the longitude of periastron ω of the eclipsing system
to 180◦. Therefore, we expect this problem to remain
unsolved for quite some time to come.
1063-7729/02/4602-0119$22.00 c©
At the same time, we find that secular variations
of the light curve of RR Lyn are primarily associated
with the light equation at times of both primary and
secondary minima, rather than with apsidal rotation.
We present the solution of this equation in Section 3,
and have used it to estimate the parameters of a third,
unseen object in the system.

2. ROTATION OF THE LINE OF APSIDES

Since ourmain goal was to study apsidal motion in
the system, we first estimated the expected velocity of
this motion. The period of apsidal rotation due to both
tidal and rotational deformation of the components
Ucl can be derived from the simple relation [5]

P

Ucl
= C1k2,1 + C2k2,2, (1)

where P is the anomalistic orbital period, k2,i are
the known second-order parameters of the apsidal
rotation, and Ci are constants that depend on the
observed geometrical and physical characteristics of
the binary:

Ci =
(
Ri

a

)5{m3−i
mi

15f(e) (2)

+
(
wr,i
wk

)2(
1 +

m3−i
mi

)
g(e)

}
,

2002 MAIK “Nauka/Interperiodica”
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Table 1. Physical and geometrical parameters of the eclipsing RR Lyn

Parameter Primary Secondary

MassM ,M� 1.89 ± 0.07 1.49 ± 0.05

Radius R, R� 2.57 ± 0.04 1.58 ± 0.04

Luminosity L, L� 21.04± 1.47 5.31 ± 0.32

Effective temperature Te, K 7570± 120 6980 ± 100

Spectral type fromWBV R photometry Sp A6 IV F0 V

Relative radius r 0.0878± 0.0005 0.0541± 0.0011

Semimajor orbital axis a, R� 29.23 ± 0.34

Orbital inclination i, deg 87.45 ± 0.11

Orbital eccentricity e 0.0782± 0.0009

Longitude of periastron ω, deg 185 ± 5

Distance to the system, pc 73.5 ± 2.8

Age of the system t, 109 yr 1.08 ± 0.15
where

f(e) = (1 +
3
2
e2 +

1
8
e4)

1
(1 − e2)5

, (3)

g(e) = (1 − e2)−2. (4)

Here, Ri,mi, and wr,i are the radius, mass, and an-
gular velocity of axial rotation of component i, a the
semimajor axis of the relative orbit, e the eccentricity,
and wk the average angular velocity of the orbital
rotation. The indices of the constants Ci and the
other parameters, as well as the second indices of the
parameter k2,i, denote values for the primary (i = 1)
or secondary (i = 2) component.

The relativistic rotation of the line of apsides is
determined by the formula [6]

P

Urel
= 6.37 × 10−6M1 + M2

a(1 − e2)
, (5)

where the masses of the components and the semi-
major axis of the relative orbit are given in solar units.
This rotation has the same direction as the classical
rotation due to tidal and rotational deformation of
the components. Therefore, the resulting theoretical
period of apsidal rotation Uth can be derived from the
relation

P

Uth
=

P

Ucl
+

P

Urel
. (6)

Substituting the physical and geometrical parameters
of the system from Table 1 into (1)–(6), we obtain
Uth = 28100 ± 1400 yr.

In this case,

ω̇rel =
360◦

Urel
= 0◦. 0098(4) yr−1,

ω̇cl =
360◦

Ucl
= 0◦. 0030(2) yr−1,

ω̇th = ω̇rel + ω̇cl = 0◦. 0128(5) yr−1.

Here and below, the rms errors in units of the last
decimal place are given in parentheses. The apsi-
dal rotation constants k2,i in (1) were taken from
[7] in accordance with the known masses Mi and
gravitational accelerations gi of the components from
Table 1. We can see that the relativistic portion of
the periastron motion constitutes 76%. Therefore,
as far back as in 1973 [8], it was proposed that
RR Lyn could provide a crucial test of the theory
of general relativity. Orbital rotations with roughly
the same (and even lower) velocities were previously
detected in the eclipsing systems DI Her [9], EK Cep
[10], V 1143 Cyg [11], V 541 Cyg [12], and others.
Therefore, we expected to be able to detect the apsidal
rotation velocity ω̇obs in RR Lyn as well, since the first
photoelectric observations of this system were carried
out as long ago as the early 1920s [13].

The rotation of an elliptical orbit in an eclipsing
system is usually revealed by a cyclic shift of the sec-
ondary minimum at relative phase 0p. 5with a period U
equal to one complete revolution of the orbit in space.
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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Fig. 1. Master photoelectric light curve of RR Lyn in the λavg � 4500 Å band compiled from observations made by various
authors. The solid curve represents the standard curve used to determine the times of minima.
However, when U is several tens of thousand years,
as in the case of RR Lyn, only the difference between
the periods for the primary (PI ) and secondary (PII)
minima is detectable [14]:

∆P =
PI − PII

P
= 4e

P

U
(7)

×
(

sinω − e2 1 + 3
√

1 − e2

(1 +
√

1 − e2)3
sin 3ω

)
.

Assuming that the anomalistic orbital period P and
eccentricity e are constant, we can use this formula
to determine U from the observed ∆P and ω.

To derive ∆P from the observations, we first col-
lected all published photoelectric times of minima for
RR Lyn. These measurements had low accuracy,
apparently due to both random and systematic errors,
as well as the different techniques used by different
authors. Therefore, we decided to reanalyze all pub-
lished photoelectric observations of the system using
a single method, our iterative differential-correction
technique [15], which yields the times of both minima
of the light curve of an eclipsing system with an
eccentric orbit together with the other photometric
elements. The procedure used to determine the times
of minima in our iteration technique is similar to
the method of Hertzsprung [16]. We used the best
theoretical light curve (LC0) for the given spectral
band as a standard curve, relative to which residu-
als are minimized. This is especially important, be-
cause light curves for systems with elliptical orbits are
asymmetric relative to the phases of eclipse maxima.
ASTRONOMY REPORTS Vol. 46 No. 2 2002
This asymmetry is probably one of the reasons for
the large scatter in the times of minima obtained by
different authors. When constructing the theoretical
light curves LC0, we fixed the geometrical elements—
relative component radii r1,2, orbital inclination i, and
eccentricity e—for all spectral bands to be those for
the most accurate (σobs ≈ 0m. 003) V light curve for
RR Lyn, presented in Table 1. The limb-darkening
coefficients u1,2 were also fixed in accordance with the
known effective temperatures of the components T1,2

from Table 1 and the observing band.
Figure 1 presents a master light curve of RR Lyn

at λavg ∼ 4500 Å compiled from various observations
[1, 13, 17–20]. W,U, V and R observations are
also available [1, 17, 19, 20]. We used all these
published datasets, weighted in accordance with their
accuracies, to determine the average times of minima
presented in Table 2. Unfortunately, the authors of
[21–23] did not publish their individual observations;
therefore, we present the original times of minima
determined in [21–23] in the Table. Table 2 also
presents the epochs of observations EI and EII and
the differences between the observed, i.e., tabulated
(O), and calculated (C) times of minima. The calcu-
lated values are based on the linear ephemerides

Min I = JD�2 444 988d. 49734(45) (8)

+ 9d. 94 507 297(28) × EI ,

Min II = JD�2 444 595d. 17 303(48)

+ 9d. 94 507 328(32) × EII .
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Table 2.Heliocentric times of minima derived from photoelectric observations of RR Lyn

No. JD� E O–C Reference

Min I

1 2425 615.4934(7) −1948 −0d.00180 Huffer, 1931 [13]

2 2434 675.4583(5) −1037 +0.00163 Botsula, 1960 [18]

3 2438 046.8367(3) −698 +0.00029 Linnell, 1966 [19]

4 2442 104.4254(4) −290 −0.00078 Lavrov et al., 1988 [20]

5 2444 988.49594(25) 0 −0.00140 Khaliullin et al., 2001 [1]

6 2447 524.4924(3) 255 +0.00145 Isles, 1991 [23]

7 2448 936.69194(26) 397 +0.00063 Catton and Burns, 1993 [22]

Min II

1 2425 301.7306(9) −1940 −0.00027 Huffer, 1931 [13]

2 2434 759.4955(5) −989 −0.00006 Botsula, 1960 [18]

3 2437 941.9175(6) −669 −0.00151 Linnell, 1966 [19]

4 2444 595.17240(24) 0 −0.00063 Khaliullin et al., 2001 [1]

5 2447 220.67251(26) 264 +0.00013 Catton et al., 1989 [21]

6 2447 568.75226(26) 299 +0.00232 Catton et al., 1989 [21]
These ephemerides were determined simultaneously
with the parameters of the light equation (see Sec-
tion 3). Therefore, they differ from those obtained
in [1], where we took the directly observed times of
minima as initial values, and the orbital periods were
derived without using the light equation.

We can see that the periods for the primary and
secondary minima differ:

∆Pobs = PI − PII = −0d. 00000031(43).
However, we cannot draw any firm conclusions about
the rate of the apsidal rotation or the consistency of
the observed and theoretical parameters of the apsidal
motion in the system based on the difference of these
periods. First, the derived ∆Pobs is smaller than its
error. Second, we can see from (7) that the relation
between ∆P and U includes the function ω, which
varies rapidly as ω → 180◦. We already noted the
low accuracy of ω due to its proximity to 180◦ when
calculating the photometric elements in [1]. A clear
confirmation of this is provided by Fig. 2, which
presents relations between σO−C and ω derived from
the most accurate V light curve of RR Lyn from
[1], with various restrictions for the limb-darkening
coefficients of the component disks u1 and u2. Here,
σO−C denotes the standard deviations of the observed
from the theoretical light curve optimized for a spec-
ified value of ω; i.e., σO−C was minimized based on
variation of the other photometric elements, except for
the chosen (fixed) ω.
The σO−C(ω) relations indicate that the optimum
values for ω strongly depend on the restrictions im-
posed on u1 and u2. If we impose only the formal
restriction 0 < u1,2 < 1 (curve 1 in Fig. 2), the longi-
tude of periastron ω cannot be derived in the interval
from 160◦ to 200◦, even using our most accurate light
curve. However, we can impose stricter constraints
using the known effective temperatures of the com-
ponents (T1 = 7570 K, T2 = 6980 K, Table 1): u1 =
0.55 ± 0.05;u2 = 0.60 ± 0.05 for the V band. The
three curves in Fig. 2 plotted for u1 = 0.50, u2 = 0.55
(curve 2); u1 = 0.55, u2 = 0.60 (curve 3); and u1 =
0.60, u2 = 0.65 (curve 4) indicate that the interval of
reasonable ω values can be considerably narrowed:

ωobs = 188◦ ± 5◦.
The shift of the confidence interval for ωobs by 3◦
compared to the results of [1] is due to the stricter
theoretical constraints we have used for u1 and u2.
Figure 2 presents the corresponding critical values for
σO−C . We will not consider here the technique ap-
plied to determine the confidence intervals for param-
eters: certain statistical criteria used for this purpose
are described in detail in [24–26]. For the extreme
values of ω, σO−C increases from the minimum value
0m. 00316 for ω = 188◦ to 0.m00319, that is, by only
1%. The maximum absolute value of the deviation
of the theoretical light curves from the optimum light
curve LC0 for ω = 183◦ and 193◦ is smaller than
0.m0015 (< 1/2 σO−C). This is illustrated by Fig. 3a,
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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which plots the deviations from LC0 of individual V
observations of RR Lyn in Min II from [1] together
with the deviations of the theoretical curves for ω =
183◦ and 193◦ from the same optimum curve. We can
see that, in this interval, the theoretical curves for dif-
ferent ω values are difficult to distinguish against the
background of the measurement errors and bright-
ness microfluctuations. We do not present the corre-
sponding plot for Min I; however, it displays a similar
pattern. Figure 3 clearly demonstrates that, even
using the most accurate light curve, the uncertainty
in the longitude of periastron is no less than 10◦.

If we substitute the derived ωobs into (7), the ob-
served and theoretical ∆P have the same sign. How-
ever, the magnitude of the function of ω in (7) varies
by a factor of a few over the resulting interval for the
longitude of periastron. Therefore, we conclude that
we will not be able to determine the apsidal period
of RR Lyn with in the next few decades, even if the
accuracy of ∆Pobs is considerably increased due to
the large uncertainty in ω. Thus, the problem of de-
termining the apsidal rotation rate in this system will
probably remain unsolved at least during the current
century.

Here, we note the following. First, further in-
crease in the accuracy of observations will not yield
any substantial increase in the accuracy of ω, since
the achieved σO−C = 0m. 0032 is essentially limited by
physical brightness microfluctuations that occur in
δ Sct stars [1] rather than by random measurement
errors. Second, given the accuracy of other published
observations RR Lyn (σobs ≈ 0m. 010), the interval of
reasonable ω values extends from 160◦ to 200◦, even
for fixed u1 and u2; this is illustrated in Fig. 3b,
which is analogous to Fig. 3a but is based on the
observations of Botsula [18]. It is clear from Figs. 2
and 3 that, when the measurement accuracy is worse
than 0m. 004, we cannot even determine the quadrant
in which ω is located, so that even the direction of the
apsidal rotation cannot be found.

3. LIGHT EQUATION IN THE TIMES
OF MINIMA AND PARAMETERS

OF THE THIRD BODY

In spite of our lack of success in determining the
apsidal rotation rate, the revised times of minima for
RR Lyn and the substantial increase in their accuracy
are useful results. Indeed, they suggest a possible
reason for the contradiction between the expected
variations in the orbital period [18] and the appar-
ent detection of apsidal rotation with an anomalously
short period [4, 20]. Figure 4 presents the deviations
of the observed (O) times of minima (Table 2) from
those calculated (C) using the linear ephemerides (8).
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We can see that these deviations display a quasi-
periodic wave. The (O–C) values for both minima are
closely correlated, and their time dependence clearly
indicates the presence of a third body in the system.
The orbital parameters for such a multiple system are
determined from the so-called “light equation” [27]:

(O−C) + A =
Z

c
(9)

=
a3 sin i3

c
(1 − e3 cosE) sin (v + ω3),

where v andE are the apparent and eccentric anoma-
lies, respectively; c, the velocity of light; a3, the semi-
major axis; i3, the inclination; e3, the eccentricity;
and ω3, the longitude of periastron of the eclipsing
star’s orbit relative to the center of gravity of the triple
system. In this equation, the constant A ensures
that Z/c is equal to zero when the line of nodes is
intersected by the eclipsing binary, i.e., when the dis-
tance to the eclipsing binary is equal to the distance
to the center of gravity of the triple system. The
light equation is solved by minimizing the sum of
the squared deviations, yielding the elements of the
linear ephemerides (8) and the orbital parameters of
the triple system:
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P3 = 39.7 ± 4.2 yrs,

a3 sin i3 = (7.3 ± 1.1) × 1012 cm = 0.48 ± 0.07 AU,

e3 = 0.96 ± 0.02, ω3 = 28◦ ± 8◦,
T3 = JD 2447 520 ± 90.

Here, P3 is the period of the orbital rotation of the third
body, and T3 is the time of its periastron passage. The
derived parameters can be used to calculate the mass
function of the triple system

f(M) =
M3

3 sin3 i3
(M1 + M2 + M3)2

(10)

=
a3

3 sin3 i3
P 2

3

= 7.23 × 10−5M�.

Here, the masses are given in solar masses, a3 is in
astronomical units, and P3 is in years. Substituting
M1 + M2 = 3.38M� (Table 1), we obtain

M3 sin i3 = (0.10 ± 0.02)M�.

This value can be used to estimate the semimajor
orbital axis of the third body relative to the center of
gravity of the entire system:
A3 sin i3 = a3 sin i3
M1 + M2

M3
= 17.4 ± 3.5 AU.

The solid curve in Fig. 4 represents the theoretical
curve for the light equation (9) calculated using the
above orbital parameters of the triple system. Devia-
tions of the observations from this curve do not exceed
±2σ. At the same time, deviations of the observed
times of minima from the linear ephemerides reach
±6σ, as is evident from Table 2.

4. DISCUSSION

The contribution of the star with M3 = 0.10M�
to the total luminosity of RR Lyn in the optical is
negligibly small. It is impossible to detect such a
star spectroscopically against the background of the
brighter binary components. A third light of this
strength is also essentially impossible to detect in
the light curve of the eclipsing system. In essence,
the only possibility for further study and refinement
of the physical parameters for this triple system is
provided by measurements of the times of minima and
derivation of highly accurate light curves, in order to
detect signs of the dynamical effect of the third body
on the orbit of the binary. Simulations indicate that
the consequences of this effect could be quite varied
[28], even possibly including the disappearance of the
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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eclipses due to variation of the orbital inclination of
the eclipsing system [29, 30].

Currently, in addition to the lower limit for the
mass M3, we can also estimate its upper limit. For
this purpose, we plotted the relation between σO−C
and LV3 analogous to that between σO−C and ω in
Fig. 2. This dependence indicated that the contri-
bution of the third body to the visual luminosity of
the system is LV3 < 0.03. According to the mass–
luminosity relation for main-sequence stars, this im-
poses the following restriction on themass of the third
body and, accordingly, on the inclination of the orbit
of the triple system relative to the plane of the sky:

M3 < 0.9M�, i3 > 7◦.

Using numerical procedures presented in [28], we
can calculate possible time variations of the orbital
parameters of the eclipsing system (i, e, ω) due to
the dynamical interaction of the components. These
estimates indicate that such dynamical variations of
the light curve should be detectable, and that high-
precision photoelectric and spectroscopic measure-
ments aimed at refining the parameters of this unique
triple system should be continued.
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Abstract—We have derived a complete set of parameters for the close binary system UX CVn made up of
degenerate objects based on photometric and spectral observations. The total mass of the components is
close to one solar mass, so that its further evolution cannot result in a type-I supernova. The spectrum of
the binary indicates that the surface temperature of the hot subdwarf may have increased by 2000 K over
40 years. This heating rate is consistent with theoretical estimates for evolutionary tracks of low-luminosity
hot subdwarfs. We also determined the abundances for ten elements in the atmosphere of the primary,
which are consistent with the hypothesis that the binary is a member of Population II. There are signs of
synthesized material ejected onto the surface of the star. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The evolutionary status of the binary UX CVn
remained unknown over the past two latest decades.
The nature of the secondary could not be determined
from the radiation received from the system: light
curves did not include an eclipse phase, and the spec-
tra displayed only lines of the primary, without any
emission features. Accordingly, studies of UX CVn
[1–4] have considered the primary to be a hot sub-
dwarf of low luminosity and the secondary to be a
cool white dwarf. However, Ritter [5] pointed out
the internal inconsistency of a model for the system
with two evolved stars and a substantial orbital period
(Porb = 0.573703 days). He classified the binary as a
precataclysmic variable containing a late-type main-
sequence star. Further reviews of close binaries clas-
sified UX CVn in various ways: some concluded that
its status was uncertain [6, 7], while others assigned
the system to the class of precataclysmic variables
[8, 9] or suggested it was a degenerate-object binary
[10, 11].

To resolve this uncertainty, Shimanskiı̆ et al. [12]
acquired ten moderate-resolution spectra of the sys-
tem, which they used to model UX CVn in the frame-
work of both hypotheses about its nature. When the
theoretical models and observations at different or-
bital phases were compared, it became apparent that
the spectra did not display the reflection effect asso-
ciated with the presence of a main-sequence star and
that the secondary was a white dwarf. In this way, the
evolutionary status of the variable as a degenerate-
object binary was finally established.

Searches for degenerate-object binary systems
and estimation of their parameters have recently
received increasing attention. This is due in part
1063-7729/02/4602-0127$22.00 c©
to the evolutionary calculations for an completely
detached degenerate-object binary of [9, 13], which
indicate that these objects may be the progenitors
of type-I supernovae. As a result, a number of
studies of the spectra of single white dwarfs have
been carried out since the mid-1980s, searching for
signs of binarity. In spite of appreciable difficulties,
these studies have yielded positive results. The
review of Saffer et al. [14] generalizes data for
13 detached degenerate-object binaries with periods
between 0.15 and 4.8 days. It is extremely difficult to
determine the probabilities that specific systems will
be transformed into supernovae, since the necessary
parameters remain largely unknown. The masses of
both components have been estimated only for three
degenerate-object binaries, while the mass of the
less massive star is known for five systems. Under
these conditions, the current evolutionary status of
UX CVn enables the following promising studies,
which can potentially provide information about the
physics of degenerate-object binaries.

(1) Determination of all or most of the parameters
of the system, which, in the case of UX CVn, can only
be performed via joint analyses of the light curves, ra-
dial velocities, and spectra of the primary component,
i.e., without applying stellar-evolution theory. The
effectiveness of this approach was shown in [15] for
the object KPD 0422+5421.

(2) Studies of the chemical composition of the pri-
mary via modeling of synthetic spectra. These results
are relevant for further developments of the theory
of the chemical-element synthesis, since degenerate-
object binaries are believed to undergo two common-
envelope stages so that they should display signs of
inner material ejected onto their surfaces.
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Observed spectrum of UX CVn. The arrow indicates the HeII λ4686 Å line.
(3) Detailed studies of the radial-velocity curve
derived from a large set of new observations, aimed at
searches for effects of tidal deceleration of the stars.
Only isolated studies of this type exist; however, they
can provide unique information about the inner struc-
ture of the cores of hot stars, where there is residual
burning of helium and hydrogen.

Some of these problems can be attacked using
available observations. Here, we analyze observa-
tional data for UX CVn and redetermine some of the
system’s parameters, as well as its chemical compo-
sition. Section 2 presents a preliminary analysis of
the spectrum of UX CVn and identification of lines.
Section 3 describes the methods used in our modeling
of UX CVn and the derived parameters of the system.
Section 4 discusses the technique used to determine
the chemical composition of the primary and the re-
sults obtained.

2. SPECTRA OF UX CVn
We analyzed spectra of UX CVn using the data

acquired in [12]. The star was observed at the
Nasmyth-1 focus of the 6-m telescope of the Special
Astrophysical Observatory in the Northern Cau-
casus, with an SP-124 spectrograph [16] and a
PM1024 CCD array (with pixel size 24 × 24 mi-
cron). In addition, ten individual spectrograms were
acquired at three phases of the orbital period, ϕ =
0.20, 0.42, 0.64, in the interval∆λ3920–5250 Å with
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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Table 1. Lines in the spectrum of UX CVn and the equivalent widths determined in the current study (Wshi) and in [11]
(Whrk)

λ, Å Wshi, Å Whrk, Å Identification

3933 b 0.097 HeI(3935), CaII(3933)

3944 s 0.049 OII(3945)

3970 s 3.900 Hε, He(3964)

3995 s 0.098 0.087 NII(3995)

4009 s 0.520 HeI(4009)

4026 s 1.078 HeI(4026)

4035 s 0.079 NII(4035)

4042 s 0.176 0.082 NII(4041, 4043)

4048 b 0.038 OII(4048)

4054 s 0.018 OII(4054)

4070 s 0.241 0.172 OII(4069, 4069, 4072)

4075 s 0.131 OII(4075)

4085 s 0.225 OII(4083, 4084, 4085)

4088 s 0.405 OII(4089), SiIV(4088)

4102 s 3.930 Hδ

4119 s 0.347 HeI(4120), OII(4119, 4120, 4121)

4132 b 0.030 OII(4132)

4143 s 0.687 HeI(4143), OII(4141, 4142, 4145)

4153 s 0.143 0.122 OII(4153), CIII(4152)

4169 s 0.078 0.084 HeI(4168), OII(4169)

4185 b 0.031 OII(4185)

4189 b 0.023 OII(4189)

4199 b 0.120 HeII(4199), NII(4199), NIII(4200)

4219 s 0.028 NeII(4219)

4227 b 0.063 NII(4227)

4241 s 0.071 0.081 NII(4241)

4251 s 0.134 OII(4253,4254), SII(4253)

4265 s 0.010 CII(4267), OII(4263)

4275 b 0.168 OII(4275, 4276, 4276, 4277, 4277)

4281 s 0.046 OII(4281,4282)

4284 s 0.098 0.068 OII(4283), SIII(4285)

4291 b 0.049 OII(4291)

4303 b 0.055 0.067 OII(4302, 4303,4303, 4303)

4318 b 0.164 OII(4317, 4319, 4319)

4340 s 3.910 Hγ

4349 s 0.321 OII(4345,4347, 4349, 4351)

4366 s 0.174 0.147 OII(4366, 4369), SIII(4364)

4378 s 0.092 0.080 OII(4378, 4378)

4388 s 0.668 HeI(4387)

4396 s 0.097 OII(4395)
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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Table 1. (Contd.)

λ, Å Wshi, Å Whrk, Å Identification

4415 s 0.269 0.180 OII(4414, 4416)

4437 s 0.118 0.047 HeI(4437)

4448 s 0.162 0.085 OII(4446, 4448, 4448), NII(4447)

4471 s 1.230 HeI(4471), OII(4465, 4467, 4469)

4480 s 0.172 0.047 MgII(4481, 4481), AlIII(4479, 4479)

4488 s 0.085 0.085 OII(4488, 4489, 4489)

4499 s 0.084 OII(4500), NeII(4499, 4499)

4529 s 0.106 0.069 NII(4530), AlIII(4528, 4529)

4541 b 0.056 HeII(4541)

4552 b 0.146 0.112 SiIII(4552)

4566 s 0.104 0.101 SiIII(4567)

4574 s 0.086 SiIII(4574)

4591 s 0.142 0.158 OII(4591)

4596 s 0.090 0.085 OII(4596)

4601 s 0.056 0.070 OII(4602), NII(4601)

4608 s 0.045 0.037 OII(4609), NII(4607)

4613 s 0.047 0.037 OII(4613, 4613)

4629 s 0.255 CII(4629), NII(4630), SiIV(4631, 4631)

4640 s 0.367 OII(4638, 4641), NIII(4640)

4649 s 0.301 OII(4649, 4650), CIII(4647, 4650, 4451)

4661 s 0.128 OII(4661)

4675 s 0.265 OII(4673, 4676)

4686 s 0.380 HeII(4685)

4698 s 0.140 OII(4699, 4699)

4704 s 0.121 OII(4705)

4712 s 0.331 0.219 HeI(4713)

4751 b 0.061 OII(4751)

4819 s 0.108 SiIII(4819, 4819)

4828 s 0.148 SiIII(4828)

4862 s 3.690 Hβ

4906 s 0.072 OII(4906)

4921 s 0.954 HeI(4921)

4942 b 0.075 OII(4941, 4943)

4993 s 0.048 NII(4994)

5000 s 0.173 NII(5001, 5001)

5005 s 0.064 NII(5005)

5014 s 0.359 0.245 HeI(5015)

5046 s 0.188 HeI(5047), NII(5045)

Note: The notation “s” and “b” in the first column is explained in the text.
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a two-pixel resolution of 2.6 Å. The spectrograms
were processed in the MIDAS package using stan-
dard techniques [17]. Subsequently, the individual
spectrograms for each phase were added, transformed
to the laboratory wavelength system, and normalized
using a synthetic comparison spectrum [12].

Our analysis of the spectra of UX CVn [12] indi-
cated that variations in line profiles with orbital phase
are minimal (smaller than 2–3% in equivalent width);
they are determined by the asphericity of the primary,
and can easily be taken into account in spectral mod-
eling. Therefore, to increase the signal-to-noise ratio,
the spectra at phases ϕ = 0.20, 0.42, and 0.64 were
averaged and then renormalized using the procedure
described in [12]. In this way, we obtained a spectrum
of UX CVn with a signal-to-noise ratio of ∼ 210,
presented in Fig. 1.

The lines in the observed spectra were identified
via comparison with a synthetic spectrum calculated
using the SYNTH code and a Kurucz [18] model
atmosphere with Teff = 29250 K, log g = 4.04 [19],
and solar chemical composition [20]. The equiva-
lent widths of the observed lines were determined by
direct integration and approximation with Gaussian
and Lorentzian profiles or by convolution with a set
of Gaussian and Lorentzian profiles approximating
several close lines. Table 1 presents a complete list of
the identified lines together with the equivalent widths
measured both in our study and by Hambly et al. [11].
We estimate the errors in the equivalent widths to be
from∆W = ±15mÅ for unblended lines withWshi <

120 mÅ to ∆W = ±30 mÅ for lines with Wshi >

120 mÅ. For strong hydrogen and helium lines, the
errors are about 6–8% ofWshi. A substantial number
of the observed lines include contributions from sev-
eral components of various elements; this information
is also presented in Table 1. Line profiles marked by
an “s” were used to determine the parameters of the
primary’s atmosphere and its chemical composition
(see Sections 3, 4), while lines marked by a “b” were
considered unsuitable for quantitative analyses.

Based on 40 spectrograms obtained with the
5-m Mt. Palomar telescope, Greenstein [2] derived
the following equivalent widths for strong lines:
WH = 3.82 Å for the average width of Hβ and Hγ ;
W3 = 2.33 Å for the total width of theλλ4026, 4471 Å
neutral-helium triplet; W1 = 1.65 Å for the single
λλ4009, 4144, 4387 Å lines; and WMg = 0.19 Å
for the λ4481 Å Mg line. The corresponding values
obtained in our study (WH = 3.80 Å, W3 = 2.31 Å,
W1 = 1.87 Å, WMg = 0.17 Å) are completely con-
sistent with the data of [2], within the probable errors
inW .
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Fig. 2. Relations between (a) our equivalent widths Wshi
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dances [O/H] and excitation potentials for the lower levels
Eex of the lines studied.

Figure 2a shows that, for many faint lines, our
equivalent widths Wshi are systematically larger than
the values Whrk obtained by Hambly et al. [11], who
analyzed echelle spectra of UX CVn with resolution
∆λ/λ = 22000–60 000. The linear approximation of
the Whrk–Wshi dependence plotted in Fig. 2a yields
the relation Wshi = 5mÅ+ 1.342Whrk. These dis-
crepancies are probably primarily due to the fact that
only a Gaussian approximation is used to determine
the line equivalent widths in [11]. Our analysis in-
dicates that all lines with equivalent widths larger
than 120 mÅ display substantial wings, which are not
taken into account in a purely Gaussian approxima-
tion. Another factor affecting the calculated equiva-
lent widths is the uncertainty in the continuum level.
As we can see from Table 1, significant differences in
W occur primarily in lines in the wavelength interval
∆λ4410–4485 Å. However, the consistency between
Wshi for the HeI λ4471 Å and MgII λ4481 Å lines
and the data from [2] confirms that we have correctly
determined the continuum level in this interval.
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Fig. 3. (a) Model of UX CVn and (b) the observed [28]
(dots) and theoretical (curve) V light curves for the sys-
tem parameters in Table 2.

3. DETERMINATION
OF PARAMETERS OF UX CVn

Figure 3 presents our model for UX CVn as a
degenerate-object binary. The primary, a B subdwarf
with a degenerate helium core and thin hydrogen
envelope [9], is approaching the filling of its Roche
lobe and has a distorted shape, while the secondary
is a low-luminosity white dwarf. We assumed that
the contribution of the secondary to the total lumi-
nosity of the system is insignificant, as is confirmed
by the presence of only single lines in the spectra of
UX CVn. In addition, the evolution of a star after
ejection of its supergiant envelope to a white dwarf
with temperature Teff = 15000 K lasts about 107 yr
[9], which is several orders of magnitude shorter than
the star’s main-sequence lifetime. Therefore, it is very
unlikely that UX CVn contains a white dwarf with an
effective temperature higher than Teff = 20000 K.

We specified the following set of parameters affect-
ing the system’s radiation and accessible to estima-
tion:
A—the semimajor axis (in solar radii R�),
i—the orbital inclination to the line of sight,
M1—the mass of the primary (in solar masses
M�),
R1—the radius of the primary (in solar radii R�),
Teff—the effective temperature of the primary,
q =M2/M1—the mass ratio of the components.
To calculate the orbital phases ϕ≡E, we used the

refined ephemeris [12]

JD = 2441096.177 + 0.573704E. (1)

The temperature Teff can be derived from spec-
troscopic observations independently from the other
parameters. These remaining parameters are deter-
mined from a closed system of five equations and rela-
tions, the first of which is the generalized Kepler’s law

P 2M1(1 + q)
A3

= 0.0135, (2)

where P is the orbital period in days. The sec-
ond equation relates some parameters with the mass
function of the system

M1q
3

(1 + q)2
sin3(i) = f(m), (3)

which is derived from the radial-velocity curve. Here,
we will use the value f(m) = 0.110 previously ob-
tained in [12] for models with circular and elliptical
orbits, and consistent with the value f(m) = 0.113
obtained in [2].

Supplementary relations can be derived from the
light curves via theoretical modeling of the radiation
of a star close to filling its Roche lobe and alternately
turning its tidal zones toward the observer. In this
case, the light curve depends on all parameters of the
system; for the V band, it can be expressed in the
general form

FV (M1, q, A,R1, sin(i), Teff, ϕ) = mV (ϕ). (4)

Constraints on the desired parameters are im-
posed by the requirement of maximum consistency
between the theoretical and observed distributions
m(ϕ) in the UBV bands, based on a χ2 criterion. In
[12], we describe our model for the radiation of a star
that is close to filling its Roche lobe and derive corre-
sponding theoretical light curves using the ROSHE
package [12]. The observed light curve was based on
photometric observations carried out by Nelson and
Mielbrecht on the 1.3-m telescope of the Kitt Peak
Observatory [4]. We used only the most reliable V
light curve, for which the errors of individual observa-
tions were about 0.05m.

In a similar way, in their analysis of photometric
observations for KPD 0422+5421, Koen et al. [15]
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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acquired three additional constraints for the elements
of the system. As a result, all parameters were de-
termined using only light curves and radial velocities
in [15]. However, our test calculations indicate that,
due to the low quality of the UX CVn photometric
data, only two additional constraints can be imposed,
specified by the total amplitude of the brightness vari-
ations and the difference in the depths of the minima
(Fig. 3b).

A closed system of equations is formed by the
addition of a fifth relation involving the gravitational
force at the surface of the primary log g1:

logM1 − 2 logR1 = log g1 − log g�. (5)

The atmospheric parameters log g1 and Teff can
be derived simultaneously from the available spectro-
scopic and photometric data. In the case of UX CVn,
the atmospheric parameters of the primary vary over
its surface and, accordingly, with the orbital period of
the system. A preliminary analysis of the light curve
carried out using the ROSHE package indicated that
the amplitude of the temperature variations over the
orbital period was ∆Teff ≈ 500 K, while the corre-
sponding amplitude of variations in the gravitational
force was ∆ log g1 ≈ 0.02. These values are com-
parable to the probable errors in these parameters,
which we derived by averaging over the orbital period.
To take into account variations of the atmospheric pa-
rameters over the orbital period, we computed theo-
retical spectra separately forϕ = 0.20, 0.42, and 0.64;
the different Teff and log g1 values at different phases
were specified using estimates obtained from the light
curve analysis made using the ROSHE package.

We estimated log g1 and Teff using three methods:
(a) from the profiles of the Balmer lines;
(b) from a consideration of ionization balance for

neutral and ionized helium;
(c) from various photometric data.
We modeled the profiles of hydrogen and helium

lines using the SYNTH code to calculate a synthetic
spectrum taking into account about 500 000 lines
from the lists of Kurucz [18]. In the profile calcula-
tions, we took into account Stark broadening in ac-
cordance with the theory developed by Vidal, Cooper,
and Smith [21] for the Balmer lines and with the
results of [22, 23] for the helium lines. Stark broad-
ening for the remaining lines was taken into account
using the approximate formula proposed by Kurucz
and Furenlid [24]. As additional broadening pa-
rameters, we considered the microturbulence velocity
ξturb = 3.0; the instrumental profile, approximated by
a Gaussian with half-width 2.6 Å and the rotational
velocity V sin(i), chosen individually for each line to
achieve the best consistency between the observed
ASTRONOMY REPORTS Vol. 46 No. 2 2002
 

4320 4330 4340 4350 4360

0.7

0.8

0.9

1.0

4110410040904080 4120

0.7

0.8

0.9

1.0

H

 

γ

 

H

 

δ

 
(a)

(b)

 

λ

 

,

 

 

 

Å

 

r

 

λ

Fig. 4. Observed (solid) and theoretical (dashed) (a) Hγ

and (b) Hδ profiles in the spectrum of UX CVn. Model
atmospheric parameters are from Table 2.

and theoretical profiles. We took into account possi-
ble deviations from LTE for HeI lines using a 38-level
atomic model and the non-LTE computation method
of [25]. The non-LTE populations of HeI levels were
calculated with the NONLTE3 package developed by
Sakhibullin [26] and modified by Auer and Heasley
[27] for total linearization. Further, these non-LTE
populations were used directly in our calculations of
the synthetic spectra using the SYNTH code.

Since our preliminary study of the spectrum in-
dicated the need for a substantial increase in the
helium abundance, we investigated the possible effect
of variations in the atmospheric chemical composition
on the structure of the star. Blanketed model atmo-
spheres calculated using the BINARY2 code [28] and
parameters close to those of UX CVn indicate slight
variations in the atmospheric layers, with log τR <
1 when the He, O, and N abundances vary within
0.4 dex. Therefore, in our further studies, we used only
blanketed Kurucz models [18] with solar chemical
composition.

Our test calculations indicated that the effective
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Table 2. Parameters of UX CVn

Component Primary Secondary

Porb, days 0.573704∗ ± 0.000002
ϕ0, JD 2441096.177∗ ± 0.006
K , km/s −123.0∗ ± 3.4
γ, km/s −8.5∗ ± 2.8
e 0.10∗ ± 0.03
ω 349◦∗ ± 14◦

q 1.15± 0.12
Teff , K 29 700± 300
log g 4.13± 0.03
M/M� 0.45± 0.05 0.51± 0.01
R/R� 0.95± 0.05 ≤ 0.011∗∗

A/R� 2.86± 0.09
i 85◦ ± 5◦

r, kpc 3.13± 0.15
∗ Values from [12] are used.

∗∗ Estimate for models of [37] (see Section 4).

temperature of the star should be based primar-
ily on the HeI/HeII ionization balance, since the
HeII λ4686 Å line is sensitive to small variations
in Teff. On the contrary, fitting of the observed and
theoretical wing profiles for the Balmer lines was the
best way to derive log g1.

It is not possible to determine the optical color
indices of UX CVn based on photometric data alone,
since the estimated accuracy of the color indices is
about 0.m02 and they are insensitive to the atmo-
spheric parameters of the primary. Therefore, we
checked the atmospheric parameters using the ob-
served color indices (B–V = −0.29, U–B = −1.05,
[Q] = −0.84 [1], u–b = −0.17, b–y = −0.12, m1 =
0.08 [30], b–y = −0.11, m1 = 0.08, c1 = −0.09, [u–
b] = −0.29 [31]). The data were obtained at phases of
maximum brightness of UX CVn, i.e., for the highest
apparent surface temperature of the primary. We used
the calibrations of [18] as theoretical color indices.
Square brackets indicate color indices that are, to first
approximation, independent of interstellar absorption,
which is considered negligible for UX CVn [31].

We obtained the mean parameters for the at-
mosphere Teff = 29700 ± 300 K, log g1 = 4.13 ±
0.03, and [He/H] = 0.37 ± 0.07, and V sin i = 92 ±
11 km/s for the rotational velocity for the hydrogen
lines. Figure 4 presents examples of the agreement
between the theoretical and observed hydrogen line
profiles; the helium abundances calculated from lines
for different ionization stages are given in Table 3. The
light curve of UX CVn calculated using the ROSHE
code [4] yielded Teff = 29900 K and log g1 = 4.13 for
the atmosphere of the primary at maximum bright-
ness. The corrresponding theoretical color indices
[18] (B–V = −0.27, U–B = −1.03, [Q] = −0.83,
u–b = −0.19, b–y = −0.12,m1 = 0.07, c1 = −0.10,
[u–b] = −0.28) are consistent with the observations
within the probable errors 0.m02.

The difference between our effective temperature
Teff = 29700K and the values from the previous stud-
ies [19] (Teff = 29250 K) and [2] (Teff = 28000 K) is
probably not due to random errors. When analyzing
spectra of UX CVn acquired primarilly in 1952–1961,
Greenstein [2] classified the primary as a B2 star,
noting especially the absence of HeII lines. However,
HeII λ4686 Å line is clearly visible in our spectra
(Fig. 1b), and its equivalent width (Wλ = 380 mÅ)
exceeds the detection threshold of [2] (Wλ = 100–
150 mÅ) by an appreciable factor. SYNTH calcula-
tions for HeII λ4686 Å line profiles indicate that this
line can decay to Wλ = 150 mÅ only if the effective
temperature of the star decreases by at least 2000 K.
The value Teff = 29250 ± 200 K derived in [19] from
observations made in the early 1990s suggests a
gradual increase in the surface temperature of the
UX CVn primary by 2000 K over the past 40 years,
rather than short-term effective temperature fluctu-
ations. In the stage immediately after the ejection
of the comon envelope [9], the evolutionary tracks
of subdwarf primaries in binary systems (with M1 =
0.40M�, degenerate helium cores and thin hydrogen
envelopes) display a rate of heating no higher than
400 K over 100 years. However, as is noted in [9], the
duration of the high-luminosity phase of a subdwarf
tH depends strongly on the mass of the helium core
MHe (as tH ∼M−11.6

He ). Accordingly, the rate of heat-
ing of the UX CVn primary could reach values from
1000 K over 100 years for a mass ofM1 = 0.43M� to
4000 K over 100 years for a mass of M1 = 0.47M�.
These estimates indicate that UX CVn may provide a
unique means to test models for hot subdwarf evolu-
tion, and deserves further long-term monitoring.

Table 2 presents parameters for UX CVn derived
from the iterative solution of the system of equations
(2)–(5). The corrersponding theoretical light curve
is plotted in Fig. 3b. These parameters differ from
those collected in the reviews [29] and [7] by no more
than 15–20%. An object with the characteristics of
the primary (logL1 − logL� = 2.82, log Teff = 4.47)
is located in logL− log Teff diagrams (see Fig. 14 in
[9]) at the intersection of evolutionary tracks for sub-
dwarfs with M = 0.40M� and M = 0.55M�, con-
sistent with our estimate M1 = 0.45M�. The total
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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mass of the components is M1 +M2 ≈ 1.00M�; in
any case, it does not exceed the Chandrasekhar limit.
Therefore, further evolution of the object cannot result
in a type-I supernova. The distance to UX CVn,
r = 3.13 Kpc, exceeds the estimate r ≈ 1.5 Kpc sug-
gested in [4] by only a factor of two, leaving the basic
conclusion of the absence of a neutron star in the
system unaffected.

4. ELEMENTAL ABUNDANCES IN THE
ATMOSPHERE OF THE UX CVn PRIMARY

The high quality of the averaged spectrum of
UX CVn makes it possible to determine quantitative
abundances for most elements in the atmosphere of
the hot subdwarf and analyze the evolution of the
chemical composition in the system.

We determined the abundances of all elements by
modeling theoretical line profiles using the SYNTH
code and comparing these with the observed profiles.
The calculation of the theoretical spectra is described
in Section 3. The oscillator strengths for C, Mg,
Al, and Si ions correspond to the results of [32] (the
TOPBASE database); those for the other elements
were taken from [18]. The microturbulence veloc-
ity ξturb = 3.0 was determined from the requirement
that the resulting nitrogen and oxygen abundances
derived from the equivalent widths of the NII and OII
lines be independent. For several ions, we took into
account corrections for deviations from LTE in the
NII and OII lines [33, 34] and the NIII lines [35].
For MgII and SiIV, we carried out independent non-
LTE calculations using the NONLTE3 package [26]
and 45-level and 39-level atomc models, respectively.
Specific features of the non-LTE method used for
these elements will be considered in a separate study.

Table 3 presents the resulting chemical composi-
tion, while Figs. 2b and 2c shows the dependences
of the oxygen abundances on equivalent widths and
excitation potentials for lower levels of the OII lines
considered. The set of solar abundances is taken in
accordance with [20].

Let us consider some particular elemental abun-
dances in detail.

Helium. No substantial differences are ob-
served between abundances derived from the triplet
(log εHe = 11.39) and singlet (log εHe = 11.36) sys-
tems. The non-LTE corrections have different signs
for different HeI lines; their amplitudes do not exceed
∆non-LTE = 0.14dex. In total, taking into account
deviations from LTE increases the abundance by
∆non-LTE(He) = 0.01dex, with a negligible change in
the dispersion.

Carbon. We derived abundances only from the
strongest lines of both ionization stages. The value
ASTRONOMY REPORTS Vol. 46 No. 2 2002
derived from the weakly-blended CII λ4267 Å doublet
is more reliable. It was shown in [36] that the doublet
lines have substantial, negative non-LTE corrections,
which we did not take into account due to the small
Wλ. In total, the absence of numerous CII lines in the
interval ∆λ4720–4850 Å fully confirms that log εc is
extremely low.

Nitrogen. We essentially derived log εN from
six weakly-blended NII lines. Taking into ac-
count non-LTE corrections for the NII lines [33]
decreases log εN by ∆non-LTE(N) = −0.08dex. The
NIII λ4640 Å line displays substantial deviations
from LTE ∆non-LTE(N) = 0.38dex [35], which were
taken into account. We did not find any significant
trends in the nitrogen abundances as a function of
the equivalent widths, wavelengths, or excitation
potentials of the lower levels of the lines studied.

Oxygen. The abundance of this element can be
determined most reliably, due to the presence of 18
unblended OII lines. We can see from Figs. 2b, 2c
that log εO does not depend on the equivalent widths
and excitation potentials of the lower levels of OII
lines, confirming the correctness of our derived val-
ues Teff = 29700K and ξturb = 3.0. We also found
systematic differences in the abundances (∆ log εO =
0.16dex) calculated from lines in two spectral in-
tervals ∆λ3980–4500 Å and ∆λ4500–5000 Å. This
discrepancy is not eliminated when non-LTE correc-
tions are taken into account [33], which decreases the
average abundance by∆non-LTE(O) = −0.22dex.

Neon. Our basic estimate log εNe was derived
from the NeII λ4219 Å line. The calculated total
profiles of the NeII λ4499 Å and OII λ4500 Å lines in-
dicated good consistency between the theoretical and
observed spectra for the adopted log εNe and log εO
values.

Magnesium. Only the common line of MgII
λ4481 Å doublet is visible in the spectrum, blended
with the AlIII λ4479 Å doublet. The total profile
calculated for the solar abundance ratio indicates that
the fraction of magnesium in the equivalent width is
around 70%. Non-LTE corrections ∆non-LTE(Mg) =
−0.07dex were applied to the magnesium abundance
obtained under this assumption.

Aluminum. We determined log εAl primarily us-
ing the AlIII λ4529 Å doublet, assuming that the
nitrogen abundance derived from the NII λ4530 Å
lines should be log εN = 8.30.

Silicon. For the SiIII lines, an obvious de-
crease in log εSi can be seen when their equivalent
widths decrease, probably due to neglected devia-
tions from LTE. The most trustworthy abundance
is log εSi = 7.92, derived from unblended lines of the
SiIII λ4567, 4574 Å multiplet; this is consistent with
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Table 3. Average elemental abundances log ε in the atmosphere of UX CVn and their dispersions σ (the number of lines
used is given in parantheses.)

Element log ε� log ε1 ± σ log ε2 ± σ
He 11.00 HeI(12)∗ 11.37± 0.07 HeII(2) 11.36± 0.01
C 8.52 CII(1) 6.52 CIII(1) 6.71

N 8.01 NII(13)∗ 8.29± 0.08 NIII(2)∗ 8.31± 0.01
O 8.89 OII(24)∗ 8.72± 0.13
Ne 8.05 NeII(2) 8.17± 0.02
Mg 7.58 MgII(1)∗ 7.57

Al 6.43 AlIII(2) 6.47± 0.04
Si 7.51 SiIII(4) 7.86± 0.11 SiIV(1)∗ 7.91

S 7.17 SIII(2) ≈ 6.80
Fe 7.51 FeIII(3) < 6.20 FeIV(1) < 6.50

∗ Deviations from LTE have been taken into account (see Section 4).
the results for the SiIV λ4631 Å line, for which we
took into account non-LTE corrections.

Sulphur. We estimated log εS only from the
SIII λ4365 Å line under the assumption that the oxy-
gen abundance from OII λ4366 Å line was log εO =
8.80.

Iron. We did not detect any FeIII or FeIV lines
in the spectrum, including the FeIII λ4165 Å found
in [11]. The upper limits for the Fe abundances in
Table 3 were calculated for the strongest lines of both
ionization stages, assuming that the detection limit
for the lines in our spectra isWλ ≈ 20mÅ.

The elemental abundances in the atmosphere of
the UX CVn primary indicate that several factors af-
fected its formation. The low iron abundance confirms
that the system belongs to the old halo population
[1, 4]. This is consistent with the distance to UX CVn,
r = 3.13 kpc, which is essentially the object’s height
above the Galactic plane. According to evolutionary
models of binary systems that undergo a common
envelope stage [9], hot subdwarfs with masses M =
0.45M� can be formed from stars with initial masses
M = 1.40M�, which is also consistent with the idea
that UX CVn is a Galactic halo object.

The abundances of the other elements show signs
that material has been ejected into the atmosphere
of the subdwarf and reprocessed in the course of two
types of nuclear reactions: the carbon–nitrogen cycle
(the He and N excess and strong deficit of C) and the
α process and burning of light elements (the Si excess
and solar abundances for Ne, Mg, and Al). The abun-
dance ratios for CNO-group elements suggest that
the influence of the carbon–nitrogen cycle reactions
began after the initial enrichment of the atmosphere
in all heavy elements, including Si and S. Therefore,
we propose the following hypothesis for the chemical
evolution of the atmosphere of the primary.

(1) The first stage of enrichment in heavy elements
occurred during the transformation of the secondary
into a supergiant, with filling of its Roche lobe and ac-
cretion onto the primary. The observed silicon excess
and sulphur underabundance indicate that nuclear
synthesis in the secondary continued up to the stage
of α-process reactions, burning of light elements
(12C, 16O), and 24Mg and 28Si synthesis in the core
or a layer source. Material enriched with nuclear-
synthesis products was ejected to the surface and
accreted onto the primary, altering its initial chemical
composition.

(2) Further variations of the chemical composition
occurred after the evolution of the visible component
on the main sequence and its transition to the region
of giants and supergiants. The carbon–nitrogen cy-
cle of hydrogen burning brought about the repeated
reprocessing of CNO elements and helium synthesis,
until the current abundance ratios were established.

In this picture, silicon should dominate in the core
of the white dwarf. The estimate of its radius pre-
sented in Table 3 was derived from models of white
dwarfs [37] with magnesium-silicon cores and an ef-
fective temperature of Teff ≤ 10 000 K.

5. CONCLUSION

A comparison between the derived parameters of
the primary and evolutionary tracks from [9] indicates
that the stage of UX CVn’s evolution beginning from
the ejection of the common envelope is one of the
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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shortest known among close binaries. The low grav-
itation and relatively large radius of the hot subdwarf
result in considerable asphericity, making it easier to
estimate parameters of the system. However, the
review [14] and subsequent studies include at least
six young systems with orbital periods shorter than
one day and containing hot subdwarfs with log g <
5.6, for which the effects of asphericity can be used
when determining the system parameters. Numerous
lines of heavy elements should be observed in the
spectra of such subdwarfs, suitable for analyses of
the atmospheric chemical compositions of stars that
have undergone a common envelope stage twice. The
fruitfulness and practical importance of our current
study is illustrated by the following results we have
obtained for UX CVn.

(1) The radius of the primary component of
UX CVn R1 = 0.95R� does not exceed its Roche-
lobe radius R1 = 1.03R� within the error ∆R1 =
0.05R�, so the system is currently completely de-
tached.

(2) We have detected the HeII λ4686 Å line in
the spectrum of UX CVn, probably indicating an
increase in the surface temperature of the primary by
2000 K over 40 years. Overall, this rate of tempera-
ture increase is consistent with theoretical predictions
based on evolutionary models for hot subdwarfs in
close binaries after ejection of the common envelope
[9]. The corresponding variation of the radius of the
hot subdwarf does not exceed 3–4%, consistent with
our conclusion that the system has been completely
detached over the entire period during which it has
been observed.

(3) The total mass of the UX CVn components
is close to that of the Sun; further evolution of the
system cannot result in a type-I supernova.

(4) The absence of iron lines confirms that UX CVn
is a member of Population II (a halo object).

(5) The current abundance of heavy elements in
the atmosphere of the UX CVn hot subdwarf indi-
cates that mixing and mass exchange between the
components at the common envelope phase has had
an appreciable influence on the chemical evolution of
their atmospheres.
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Abstract—We present new spectroscopic observations of the peculiar supergiant IRC+10420. In 1997–
2000, we obtained three high signal-to-noise ratio spectra of the object at 4300–8000 Å with a spectral
resolution of 15 000 (20 km/s) using the 6-m telescope of the Special Astrophysical Observatory. From
our 2000 spectrum, we estimate the spectral type of IRC+10420 to be A2, corresponding to a temperature
of ∼ 9200 K. Many emission lines were detected, identified with lines of Fe I; Fe II, Ti II, Cr II, and Sc II
ions; and [O I], [Fe II], and [Ca II] forbidden lines. The radial velocity derived from absorption lines
without obvious emission components (He I λ5876, O I, N I, Si II) and from absorption components of
the Balmer lines is 93 ± 1 km/s. The redshift of photospheric lines relative to the star’s center-of-mass
velocity is interpreted as a consequence of scattering in the expanding, optically thick dust envelope. Both
emission and absorption lines show a correlation between radial velocity and oscillator strength. We found
variability in the relative intensities of theHα andHβ emission components. We conclude that IRC+10420
is rapidly evolving towards a Wolf–Rayet stage; the current rate of the photospheric temperature increase
is ∼ 120 K per year. Based on the intensity of the O I (λ7773) triplet, we estimate the star’s luminosity
to be Mbol = −9.5m. In all 1997–2000 spectra of IRC+10420, the He I λ5876 line has a significant
equivalent width of at least 200 mÅ; this may be possible in the presence of such a low temperature
due to the star’s high luminosity and the enhanced helium abundance in the supergiant’s atmosphere.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The source IRC+10420 is one of the most enig-
matic stellar objects of the northern sky. In is among
the brightest objects in the far infrared and was al-
ready detected in the earliest surveys. Based on a
photographic spectrogram with resolution R = 1000
and the intensity of the IR oxygen triplet, Humphreys
et al. [1] estimated the spectral type and luminosity
class of IRC+10420 to be F8–G0 and Ia. The spec-
tral energy distribution was very similar to that of η
Carinae over a wide wavelength range (0.5–20 µm);
the optical spectrum of IRC+10420 resembled that
observed for η Carinae (cF5) in 1892 three years be-
fore it began to display emission lines. Assuming that
the luminosities of IRC+10420 and η Carinae are the
same, Humphreys et al. [1] estimated the distance to
IRC+10420 to be 4–6 kpc. However, already in 1976,
differences between IRC+10420 and η Carinae were
noted in an analysis of their photometric histories and
broad-band polarimetric data [2].

Interest in IRC+10420 increased when OH maser
emission was discovered [3]; previously, the hottest
maser sources had been classified as M3 stars. The
kinematic distance was estimated to be 6.8 kpc in
1063-7729/02/4602-0139$22.00 c©
a classical interpretation of the two-peak OH spec-
trum. This led to the luminosity estimate MV <
−9.4m, unusually high for an F8I star. To explain the
presence of maser sources around an object that hot,
it was suggested that a powerful gas and dust enve-
lope had formed during the M-supergiant phase, with
the subsequent rapid evolution of IRC+10420 to the
left in the Hertzsprung–Russell (HR) diagram [4].
This proposed spectral evolution was confirmed much
later in observations with high spectral resolution
[5, 6].

Between 1972 and 1986, the object developed
strong emission in Hα [7, 8].

In an attempt to reconcile the radial velocities
obtained at moderate spectral resolution in the red
with the results of radio observations in OH lines,
Fix [7] suggested a model with an optically thick,
expanding dust envelope; repeated scattering in the
envelope increases the fraction of redshifted photons.
The resulting lower limit on the envelope’s angular
size (0.7′′ for a distance of 6 kpc) was later exceeded
by the size of structures revealed in photographs in
polarized light [9].
2002 MAIK “Nauka/Interperiodica”
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Table 1. Log of observations of IRC+10420

Spectrum No. Integration time, s Range, Å S/N Date

s16607 2 × 3200 4400–8000 ≤ 300 May 19, 1997

s24212 2 × 1800 4550–7900 ≤ 270 July 3, 1999

s27520 2 × 3200 4300–7900 ≤ 300 April 26, 2000
We will consider two hypotheses concerning the
evolutionary status of IRC+10420. In the first,
IRC+10420 is in a protoplanetary nebula (PPN)
phase [10, 11]. Indeed, the source possesses the main
observational properties of PPN candidates [12].

(1) An IR excess produced by a circumstellar dust
envelope is present.

(2) The regime for outflow from its surface has
apparently changed so that the large-scale mass loss
that was present in the past no longer occurs [11].

(3) The high-luminosity (Ia) object has spectral
types in the range B–G. Spectral type variations can
also be relatively rapid for PPNs [13, 14].

(4) The object has not displayed large-amplitude
photometric variability, since its brightness increased
by one magnitude between 1925 and 1975 [15].

Based on broad-band polarimetry and improved
radial velocities, Jones et al. [9] also concluded
that IRC+10420 was fairly distant. Comparing the
interstellar polarization and interstellar absorption for
IRC+10420 and surrounding stars, they estimated
the distance to be 4–6 kpc, corresponding to Mbol =
−9.1m–(−10.0m). As noted in [16], with such a
high luminosity (about 106L�), the object appears
on an evolutionary track for stars with masses of
20 − 40M�. This luminosity estimate forms the ba-
sis for the second hypothesis about the nature of
IRC+10420: the star is in transition between being
an OH/IR supergiant and a Wolf–Rayet star. Stars
evolve very rapidly in this part of the HR diagram, so
IRC+10420 provides a unique chance to observe the
corresponding evolutionary phase of massive stars.

The upper limit for the luminosity of a PPN is
104L�. The interstellar and circumstellar absorption
determined from the color excess,E(B − V ) = 2.2m,
is AV ≈ 6m–7m. Were IRC+10420 a protoplane-
tary nebula, its maximum distance would be only
∼600 pc, in contradiction with the pattern of the
interstellar polarization, the observed radial velocity,
and the intensities of interstellar sodium lines [9].

Thus, the most urgent tasks for determining the
evolutionary status of IRC+10420 are to monitor
spectral changes, develop models for the envelope,
and estimate the object’s distance and luminosity.

The aim of the current study was to improve our
knowledge of the spectral type and rate of evolution of
the optical spectrum of IRC+10420. To accurately
determine the spectral type, it is important to ob-
tain spectra over a wide wavelength range covering
wavelengths as short as possible, where the contri-
bution of the circumstellar envelope’s gas is lower
and photospheric absorption lines are not distorted
by the envelope emission. Our radial-velocity mea-
surements for numerous spectral features formed in
the stellar photosphere and the circumstellar enve-
lope have made it possible to distinguish patterns in
the behavior of lines formed by the dynamics of the
circumstellar matter. In turn, this can provide an
empirical basis for detailed modeling.

2. OBSERVATIONS AND REDUCTION

Our observations were obtained on the 6-m
telescope of the Special Astrophysical Observatory
(Russian Academy of Sciences). We used the
PFES prime-focus echelle spectrograph [17] with
a 1040 × 1170-pixel CCD detector. The spectra
covered the range 4300–8000 Å with a resolution
of λ/∆λ ∼ 15 000 (20 km/s). We selected three
spectra with high signal-to-noise (S/N ) ratios from
the spectrograms obtained from May 1997 to April
2000. An observation log is presented in Table 1. To
facilitate classification of the spectra of IRC+10420,
we obtained spectra of bright A–F high-luminosity
stars with the same instrument; we use the spectrum
of α Cygni (A2Ia) here. When removing cosmic-
ray traces, we performed a median averaging of pairs
of spectra obtained at adjacent times. We used
the spectrum of a hollow-cathode Th–Ar lamp for
the wavelength calibration. To remove the telluric
absorption spectrum, we recorded the spectrum of
the hot, rapidly rotating star HR 4687, which has no
intrinsic narrow lines, on each night.

We used the ECHELLE programs in the MI-
DAS (98NOV) system in the preliminary reduction
of the CCD echelle spectra (removal of cosmic rays,
background subtraction, wavelength calibration, ex-
traction of the spectral orders). The final spectral
reduction (normalization to the continuum, measure-
ments of radial velocities and equivalent widths for the
spectral lines) was done using the DECH20 package
[18].
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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3. THE SPECTRUM OF IRC+10420

We identified spectral features using the line lists
of [5, 6]. Improved line wavelengths, oscillator
strengths, and excitation potentials were taken from
the VALD atomic-line database [19]. An atlas of the
spectrum taken in 1997 can be found in [20].

3.1. Profiles of Lines of Light Elements and Metals

Emission and absorption lines from metal ions
(Fe II, Ti II, Sc II, Cr II), emission lines of Fe I,
and absorption lines of N I, O I, and Si II dominate
the optical spectrum of IRC+10420. Some emis-
sion features can be identified with forbidden [Fe II],
[Ca II], and [O I] lines. The profiles of metal-ion lines
are varied, from nearly symmetrical emission lines to
inverse P Cygni profiles and absorption profiles with
two emission components (Fig. 1). The N I, O I,
and Si II lines show almost symmetrical absorption
profiles (the centers of these line profiles are shifted
by, on average, 5 km/s toward the red relative to the
profile minima).

The He I λ5876 line (Fig. 2) is present in all spec-
tra of IRC+10420 taken in 1997–2000, as well as in
earlier spectra [5]. The equivalent width of this line
remained virtually the same (Wλ ≈ 200 mÅ) during
the entire period covered by our observations.

3.2. Spectral Type

After the first spectral-type determination for
IRC+10420 in 1972 (F8–G0 [1]), there were no
serious attempts to refine the object’s spectral type
for 20 years. Based on low-resolution 1.2–2.5 µm
IR spectra, Thompson and Boroson [21] concluded
that the intensities of the Brackett absorption lines in
1976 corresponded to a spectral type of F8 Ia (with
uncertainty due to the lack of IR observations for
a sufficient number of stars with similar subtypes).
Fix [7] remarked that, in an optical spectrum of
IRC+10420 taken in 1980 at 5000–8000 Å with a
reciprocal linear dispersion of 60 Å/mm, nearly all the
photospheric absorption lines appeared weaker than
those in the comparison star, γ Cygni (F8Ib). Using
quantitative criteria developed for high-resolution
echelle spectra, Klochkova et al. [5] estimated the
spectral type of IRC+10420 to be A5 based on
spectra taken in 1992–1996. Taking into account
the observations of Humphreys et al. [1], Klochkova
et al. [5] concluded that the star’s photospheric
temperature increased by more than 2000 K in less
than 25 years. This led us to continue our photometric
monitoring of the object.

Most absorption lines in the wavelength range
studied have emission components in their wings,
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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Fig. 1. Line profiles in the optical spectrum of
IRC+10420. From top to bottom, the dashed curves are
Fe II(46) λ5992, Fe II(74) λ6457, Ti II(70) λ5227, and
Fe II(42) λ4924; the solid curves are Fe II(73) λ7516,
[O I](1F) λ6300, and Si II(2) λ6347.

making it difficult to determine the temperature using
model atmospheres. To estimate the spectral type of
IRC+10420, we used relations between the equiva-
lent widths of selected lines and spectral type derived
from the spectra of normal supergiants [22, 23], se-
lecting lines with no obvious emission components.
The results are collected in Table 2.

The scatter of these spectral-type estimates is
large, from B8 to A6, but we can see that the spectral
types derived from Fe II lines are typically A0–A1,
while those from Ti II lines are A4–A5. To esti-
mate the photospheric temperature of IRC+10420,
we used the spectral-type–temperature relation for Ia
supergiants from [24]. The spectral type derived from
Fe II lines corresponds to a temperature of ∼ 9600 K,
while that derived from Ti II lines corresponds to
∼ 8300 K. The latter value is even lower than the
temperature derived in [5] based on model atmosphere
calculations. However, we can see in Fig. 3 that the
spectrum of IRC+10420 is in satisfactory agreement
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Fig. 2. He I λ5876 line profiles for IRC+10420 observed at different times.
with that of α Cygni. The Fe II, Cr II, and Si II
absorption lines in the spectra of the two stars are
virtually identical; one exception is the Ti II lines,
which are considerably deeper in the spectrum of
IRC+10420. On average, we estimate the spec-
tral type of IRC+10420 based on our 2000 spec-
trum to be A2, corresponding to a temperature of
∼ 9200 K. Thus, the star’s temperature increased by
more than 3000 K within 27 years. Below, we will use
120 K/year as an estimate of the rate of change of the
photospheric temperature.

3.3. Luminosity

The main source of uncertainty in stellar lumi-
nosity estimates derived from photometric observa-
tions are uncertainties in the object’s distance and

Table 2. Spectral type of IRC+10420 in 2000 from depen-
dences of equivalent widths on spectral type

Line Wλ, mÅ Spectral type

Fe II λ4352 Å 490 A1

Fe II λ4385 Å 400 B9–A1

Fe II λ4417 Å 470 A1

Ti II λ4444 Å 590 A5

Ti II λ4469 Å 560 A3–A6

Mg II λ4481 Å 600 B8–A0

Fe II λ4584 Å 490 A0–A2
the interstellar absorption. Estimated distances for
IRC+10420 are between 3.4 kpc [4] and 6.8 kpc
[3]. The interstellar absorption derived from mul-
ticolor photometry [2] and polarimetric observations
[9] is AV = 6m–7m. Various luminosity estimates
for IRC+10420 presented in the literature are in the
range Mbol = −8m–(−10m).

Luminosity determinations based on spectro-
scopic criteria are free from the drawbacks noted
above. It is well known that the intensity of the O I
λ7773 IR triplet is correlated with luminosity [25].
The equivalent width of the O I λ7773 triplet in the
spectrum of IRC+10420 is 2.8 Å, exceeding values
for all other known stars. In [25], the relation between
the absolute magnitude Mv and the equivalent width
of the oxygen triplet W(O I) was approximated with
a second-order polynomial in W(O I), leading to
unrealistic growth of the luminosity with increasing
intensity of the oxygen triplet for W(O I) > 2.3 Å.
Therefore, we plotted a new calibration curve (Fig. 4)
using the Mbol and W(O I) values for selected stars
from [25–29]. We approximated the W(OI)–Mbol
relation with an exponential law (dashed curve in
Fig. 4). According to this relation, an O I λ7773
triplet equivalent width of W(O I)= 2.8 Å corre-
sponds to an absolute magnitude of Mbol = −9.5m.
Note that we should also take into account the depen-
dence of the triplet equivalent width on temperature in
order to estimate the stellar luminosity more correctly.
With this in mind, we plotted a second calibration
curve using a sample of stars with spectral types
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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Fig. 3. Comparison of the spectra of IRC+10420 (spectrum s27520; thick curve) and α Cygni (thin curve). The agreement of
the Fe II and Cr II line profiles is good, but the Ti II lines are much deeper in the spectrum of IRC+10420.
from A0 to F0 (solid curve in Fig. 4). The small
number of measurements prevents us from plotting
a two-dimensional dependence of W(O I) on Mbol
and Teff. According to the new calibration curve,
the absolute magnitude of IRC+10420 is Mbol =
−9.1m. It was shown in [30] that the intensity of the
O I λ7773 triplet increased steadily with decreasing
effective temperature for early to late A stars, then
began to decrease steadily after type F0. Our 2000
spectrum of IRC+10420 corresponded to spectral
type A2, and we adopt Mbol = −9.1m as a lower
limit for the luminosity of IRC+10420. Thus, the
absolute magnitude of IRC+10420 estimated using
spectroscopic criteria is Mbol = −9.5m ± 0.4m.

3.4. Hydrogen lines

No Hα emission was noted in the 1972 low-
resolution spectrum of IRC+10420 [1]. However, as
early as November 1972, Herbig noted weak emission
wings of Hα and the Ca II infrared triplet in a higher
resolution (R = 10000) spectrogram (reported by
Irvine [8]). The Brackett series was observed in
absorption in 1984 [10]. By July 1986, Hα could
be readily detected in low-resolution spectra, and,
Herbig found inverted central peaks of the Hα and
Ca II emission lines using a Coudé spectrogram in
late 1986 [8]. Therefore, we suggest that the intense
development of the Hα emission profile accompa-
nied rapid evolution of the photospheric absorption
ASTRONOMY REPORTS Vol. 46 No. 2 2002
spectrum (see below). Based on the two-peaked Hα

emission and low-resolution spectra, Jones et al.
[9] suggested that the star was surrounded with a
rotating disk.

The wavelength interval covered using the CCD
detector in an individual echelle order near Hα is
∼200 Å. We selected the position of the frame so that
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Fig. 6. (a) Profile of the Hγ line in the optical spectrum of IRC+10420. The dashed curve is the absorption profile computed
using Kurucz’s model grid [31]. (b) The redshifted emission component can be seen more clearly after subtracting the
photospheric component from the observed Hγ profile.
the hydrogen lines were as close to the middle of the
frame as possible. The broad hydrogen-line emission
wings observed in our echelle spectra, which are due
to scattering on free electrons, impose limitations on
the accuracy with which the continuum level can
be traced in the orders containing these lines. The
wings of the Hα lines can be followed to velocities
of ±1500 km/s. When determining the continuum
level, we took into account information on the adja-
cent echelle orders; the energy distributions in echelle
spectra change gradually from one order to another.

The Hα and Hβ lines show complex two-peaked
profiles, with maximum intensities corresponding to
radial velocities of 40 and 145 km/s and a minimum
at 90 km/s (Fig. 5; here and below, we present values
relative to the local standard of rest, LSR). Since the
broad photospheric absorption is completely filled in
by emission, the observed profiles can have such a
shape in two cases: when a narrow envelope absorp-
tion line is superposed on a broad envelope emission
line and when two narrower emission lines with dif-
ferent radial velocities are combined. In the latter
case, the inner wings will have a gentler slope than
the outer wings. In our case, the intensities of the
emission wings facing each other fall off faster than
the intensities of the outer wings so that these com-
ponents are separated by an absorption component.
A combination of both cases is also possible.

The redshifted Hγ emission component can be
clearly distinguished after subtracting the absorption
profile (Fig. 6). The velocity of the blue and red
maxima are 25 and 150 km/s, and the velocity of the
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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Table 3. Relative intensities of hydrogen-line emission components and their ratios in the spectrum of IRC+10420∗

Date Teff, K Hb
α Hr

α Hb
α/Hr

α Hb
β Hr

β Hb
β/Hr

β Hb
γ Hr

γ Hb
γ/Hr

γ

July 1993 8200 6.35 2.97 2.138 1.33 1.03 1.291

Sept. 1995 8500 12.80 7.55 1.695 2.69 1.93 1.394

March 1996 8550 7.87 5.06 1.555

May 1996 8600 7.33 4.18 1.754

Apr. 1997 8750 5.68 3.16 1.797 2.23 1.11 2.010

July 1997 8800 6.31 2.98 2.161

May 1999 9050 7.43 5.10 1.457 2.49 2.18 1.142

March 2000 9200 8.36 6.61 1.265 2.10 2.31 0.909 0.84 0.70 1.200

∗ The superscripts b and r mean blueshifted and redshifted components, respectively.
minimum is 93 km/s. For the Hα and Hβ lines, the
effect of the photospheric absorption wing is rather
small due to the large intensities of the envelope com-
ponents.

To better distinguish the envelope components of
the hydrogen lines, we subtracted the spectrum of
α Cygni, a star with similar parameters, from the
2000 spectrum of IRC+10420. Since an emission
component is present in the Hα line of α Cygni, we
subtracted a synthetic spectrum for a supergiant with
Teff = 9200 K and solar abundances computed using
Kurucz’s model grid [31]. After approximately taking
into account the photospheric contribution in this
way, the velocity of the Hγ envelope component in the
spectrum of IRC+10420 became as high as 35 km/s.
At the other epochs, the intensities of hydrogen en-
velope components were obtained by subtracting a
photospheric absorption spectrum computed for the
temperature of IRC+10420 interpolated for the epoch
of the observation. The line intensities for 1993 were
taken from [6], and the remaining values were derived
from the results of [5, 20] and the present study.
Table 3 presents the intensities of the hydrogen enve-
lope components in units of the continuum intensity
and their ratios for all our epochs. Note that using
low-resolution spectra can only confuse the picture,
since the intensity ratios of emission peaks depend
strongly on the width of the spectrograph’s instru-
mental profile. For example, the ratio of the blue and
red Hα peaks in the spectrum of June 29, 1993, with
a resolution of R = 4000, was 1.66 [32], whereas the
echelle measurements taken one month later gave the
value 1.97 (cf. Table 3).

To estimate the flux ratios in corresponding com-
ponents of the Hα, Hβ , and Hγ lines in units of
the continuum level (Table 3), we re-normalize
taking into account the reddening-corrected ob-
served energy distributions [16]. We obtained for
ASTRONOMY REPORTS Vol. 46 No. 2 2002
the emission components for our 2000 spectrum
of IRC+10420 (with some uncertainty due to the
evolution of the continuum since the observations
of [32]) Hb

α/Hb
β/Hb

γ = 2.2/1.0/0.4 for the blueshifted

components, and Hr
α/Hr

β/Hr
γ = 1.7/1.0/0.3 for the

redshifted components. These ratios are close to
those for a recombination approximation, 3.0/1.0/0.4
[33]; i.e., the emitting medium is optically thin in the
corresponding transitions.

Figure 5 shows the Hα and Hβ line profiles for
different observation epochs. We can see that both
Hα emission peaks grow steadily with time, whereas
Hb
α/Hr

α decreases. Hb
β/Hr

β also decreases, but the
temporal behavior of the two components is different:
the red component’s intensity gradually increases,
while the intensity of the blue component fluctuates
within ±0.2 of the continuum intensity. There was
apparently a maximum of the hydrogen-line intensity
in the second half of 1995, with a subsequent abrupt
decrease; there was a minimum in mid-1997, and the
last spectra show a gradual increase in the Hα and
Hβ intensities. Overall, the pattern of the component
intensity variations are not consistent with the sug-
gestion of Jones et al. [9] that the Balmer lines are
formed in a rotating disk.

The Brackett hydrogen lines were observed in ab-
sorption in 1976 [21] and 1984 [10]. In the 1984
observations, Br11 was a pure absorption line [10];
in observations made in 1992, the core of the Br12
line was somewhat filled with emission, and strong
blueshifted emission was seen in lower members of
the Brackett and Pfundt series [32]. The detection
of emission in Hα by Herbig [8] and in the lower
members of the Brackett series by Oudmaijer et al.
[32] was separated by a considerable time interval.
The difference in the spectral resolutions of the Coudé
specrtogram used in Herbig’s observations in 1972
and the IR spectra of Oudmaijer et al. obtained in
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Fig. 7. Correlation between the radial velocities of lines
and their oscillator strengths. Open symbols correspond
to emission components, and the filled symbols, crosses,
and asterisks to absorption components. The solid line
shows the systemic velocity (77 km/s), and the dashed
line is the mean velocity of forbidden lines (84 km/s).

1984 was insignificant and cannot provide an expla-
nation for this large interval between the discover-
ies. Recombination theory (case B, medium optically
depth to Lyman photons) predicts an Hα/Brα ratio
of about 30 [34], so that growing Hα emission can
be observed for some time while the Brα emission is
still blocked by the dust envelope (according to the
computations of Oudmaijer et al. [32]; photospheric
radiation contributes only 6% of the total emission
near Brα).

3.5. Radial velocities
As noted above, the line profiles in the spectrum

of IRC+10420 are very diverse; nearly all lines
are asymmetric, and both photospheric absorption
components and envelope emission lines are often
present. We measured radial velocities using profile
segments near the maxima of emission components
and minima of absorption components. There are
essentially no significant differences in the radial ve-
locities among spectra s16607, s24212, and s27520.
Since spectrum s27520 exhibits the highest signal-
to-noise ratio over a wide wavelength range, we
present our radial-velocity measurements for this
spectrum only.

First and foremost, we are concerned with esti-
mates of the systemic velocity. The first estimates
of the center-of-mass velocity for IRC+10420 were
based on observations of OH maser lines [3]; the
mean position of the maser lines at 1612 MHz cor-
responded to a velocity of ∼75 km/s. Subsequent
observations of OH maser emission with good spa-
tial and spectral resolution yielded a mean velocity
VLSR = 74 km/s for maser condensations in the en-
velope of IRC+10420 [4]. However, Mutel et al. [4]
suggested that the systemic velocity of IRC+10420
could be closer to that for the low-velocity maser lines
(∼40–50 km/s). Based on observations of the J =
1− 0 transition of the CO molecule, Knapp and Mor-
ris [35] found a systemic velocity of VLSR = 80.9 ±
5.4 km/s and an expansion velocity for the molecular
envelope of ∼50 km/s. In their study of CO line
profiles corresponding to the J = 1–0, 2–1, 3–2, and
4–3 transitions using high signal-to-noise spectra,
Oudmaijer et al. [16] derived a systemic velocity of
VLSR = 77± 2 km/s and an expansion velocity for the
molecular envelope of ∼40 km/s. Below, we adopt
the value VLSR = 77 km/s for the systemic velocity of
IRC+10420.

The optical absorption and emission lines both
display a large scatter in radial velocity, VLSR = 25–
150 km/s (Fig. 7). A more detailed analysis reveals
several groups of lines having similar velocities or
showing the same trend in their velocity differences.
As a rule, lines within a group possess similar profiles,
characteristic of that group.

The first group includes purely photospheric ab-
sorption lines of Si II, O I, N I, He I, and Na I (D1,
D2), as well as the absorption components of the hy-
drogen lines (Table 4); their mean velocity is VLSR =
93.0 ± 1.3 km/s. The Na I lines have a mean velocity
of 103 km/s; if we exclude these, the velocity of the
group is VLSR = 91.3 ± 0.8 km/s. The photospheric
lines are shifted by approximately 15 km/s to the red
relative to the velocity of the system as a whole.

The second group consists of high-velocity hy-
drogen emission components, which have a mean
velocity of VLSR = 145 km/s.

The third group contains blueshifted hydrogen
emission components, strong saturated blueshifted
absorption components of Na I (D1, D2) lines, and the
K I λ7665 absorption line. The mean velocity for this
group is 33 km/s; the mean velocity for the hydrogen
lines is 38 km/s, while that for the Na I and K I
lines is 28 km/s. The presence of narrow interstellar
components of Na I and K I lines with a velocity of
15 km/s in the spectrum of IRC+10420 was shown
in [6]. In our spectra, these components cannot be
isolated from the envelope components, so the real
velocity of the Na I and K I envelope components is
higher and is nearly equal to that of the blueshifted
hydrogen components. It follows that the velocities
of the lines in the second and third groups differ by
±55 km/s from the velocities of the lines in the first
group.
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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Table 4. Mean LSR radial velocities (km/s) for several line groups in spectra of IRC+10420 at different epochs

Group of lines
Radial velocity, km/s

1996 1997 1999 2000

Emission components

[Fe II], [Ca II], [O I] 84 83 83 84

Fe II(46) 77 77 79 91

Fe II(40) 77 73 78 80

Fe II(48,49,74) (rabs > 0.8) 58 55 60 63

Absorption components

He I, O I, N I, Si II 87 91 90 92

Hα,β,γ 89 89 89 90

Na I(red) 107 107 104 103

Fe II(42,48,49) (rabs < 0.5) 95 96 94 95
The fourth group is formed by forbidden Fe II,
Ca II, and O I lines, all of which have approximately
equal radial velocities (within the errors); their mean
radial velocity is VLSR = 84 ± 1 km/s. The envelope
is optically thin to these forbidden lines, so the mean
radial velocity for these lines should be approximately
equal to that of the system as a whole. In reality,
the velocity of the forbidden lines coincides neither
with the systemic velocity nor with the velocity of the
photospheric lines.

The remaining Fe II, Ti II, Cr II, and Sc II lines
can be tentatively subdivided into two large groups
consisting only of emission or only of absorption lines.
The velocity scatter in both groups is very large. The
emission lines have velocities VLSR = 40–100 km/s,
and the absorption lines have VLSR = 90–130 km/s.
Such a large scatter cannot be explained solely by
the observational errors, since the uncertainty in the
radial velocities derived from a single line is ±5 km/s.
However, Figure 7 shows that there are correlations
between oscillator strength and velocity for both the
emission and absorption lines. Oudmaijer [6] found a
similar trend in the radial-velocity variations only for
emission lines, whereas he ascribed an approximately
constant velocity of ∼100 km/s to the absorption
lines.

A more detailed analysis of the radial velocities for
lines of different ions in the last two groups reveals
the following characteristics. The minimum velocity
of the Fe II absorption lines is V a

LSRmin
= 94 km/s,

which practically coincides with the mean velocity for
lines of the first group. The minimum absorption-line
velocities for other ions are also close to this value:
Ti II, ∼92 km/s; Sc II, ∼98 km/s; Cr II, ∼96 km/s.
As already noted, the radial velocities of these ion
ASTRONOMY REPORTS Vol. 46 No. 2 2002
absorption lines are correlated with their oscillator
strengths. This correlation is quite apparent for the
Fe II and Cr II lines; the tendency for Ti II lines
with higher radial velocities to have lower oscillator
strengths is less pronounced. Although the Sc II
ion possesses a small number of lines in a narrow
range of oscillator strengths, the general trend in the
radial-velocity variations is still apparent. Note that
the correlation between the velocities and oscillator
strengths of absorption lines is the same for lines
with obvious emission components and for those with
no detected emission components. The correlation
between radial velocity and oscillator strength is more
pronounced for emission lines of the Fe II, Ti II, Cr II,
and Sc II ions, independent of the ion species and the
presence of obvious absorption components. Note
that the presence of emission or absorption compo-
nents is characteristic of lines of specific multiplets.
For example, Fe II lines with multiplet numbers 25,
34, 35, 36, 40, 41, 46, 55, 57, 72, 73, and >100 have
only emission components, while those with multiplet
numbers 27 and 38 have only absorption components.
Fe II lines with multiplet numbers 37, 42, 43, 48, 49,
and 74 have both emission and absorption compo-
nents, although this last group also shows isolated
absorption or emission lines, probably because their
second components are too weak.

The upper limits for the radial velocities of emis-
sion lines are different for different ions, due to
the limited ranges of the corresponding oscilla-
tor strengths. The Fe II lines in the spectrum
of IRC+10420 have the widest range of oscillator
strengths. The highest Fe II emission radial velocity
exceeds somewhat the lowest absorption velocity,
and is equal to V e

LSRmax
= 100 km/s. On the side

of the highest oscillator strengths, the emission radial
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velocities converge to the velocity of the blueshifted
hydrogen components.

4. DISCUSSION

A large amount of observational data has been
accumulated during the many years in which
IRC+10420 has been studied, enabling us to refine
our understanding of the object’s nature. There
remains no doubt that it is a very luminous star, at
the Humphreys–Davidson limit. The radial velocity
of the system as a whole can be used to estimate the
dynamical distance to the object based on the Galac-
tic rotation curve. Many recent papers have dealt with
determinations of this rotation curve and estimates
of the Sun’s Galactocentric distance R�. There is
now evidence that R� is equal to 7.7 kpc, somewhat
smaller than the previously accepted distance of
8.5 kpc, and that the rotation velocity of the solar cen-
troid is θ0 = 200 km/s. The highest velocities along
lines of sight with l < 90◦ for objects participating in
the general Galactic rotation are exhibited by those
situated at so-called tangential points, i.e., points
at the minimum distance from the Galactic center
along their lines of sight. In the direction toward
IRC+10420 (l = 47.06◦, b = −2.54◦), the tangential
point is at a distance of r = 5.2 kpc from the Sun,
assuming R� = 7.7 kpc. Using the θ(R) relation
from [36–38], we obtain a velocity for this tangential
point of Vτ = 66 km/s, somewhat below the systemic
velocity of IRC+10420. The recent radio survey of
the Milky Way in CO emission [39] showed that the
maximum radial velocity of molecular clouds in the
direction l = 47◦, b = ±4◦ was 75 ± 2 km/s, in good
agreement with the systemic velocity of IRC+10420.
It is possible that IRC+10420 is near the tangential
point but belongs to a molecular complex that has a
projected peculiar component of its rotational velocity
about the Galactic center of ∼10 km/s. Thus, we
estimate the dynamical distance to IRC+10420 to be
approximately 5 kpc, in agreement with the distance
estimate from [9], which took into account interstellar
polarization measurements. The luminosity corre-
sponding to this distance corrected for interstellar
absorption, AV = 7m, is L ≈ 5 × 105L� (Mbol =
−9.5m). This value coincides with our luminosity
estimate for IRC+10420 derived from the intensity
of the O I λ7773 triplet.

Another unique feature of IRC+10420 is the rapid
increase of its photospheric temperature. In 1972,
its spectral type was G0–F8 [1], corresponding to a
temperature of 5700–6000 K [24]. Based on spectra
taken in 1995, Klochkova et al. [5] derived a temper-
ature of 8500 K using model atmosphere calculations.
Our estimates of the spectral type using data obtained
in 2000 correspond to a temperature of 9200 K.
In their analysis of photographic-range brightness
variations of IRC+10420 between 1900 and 1977,
Gottlieb and Liller [15] found that, following irregu-
lar brightness variations between 14m and 15m, the
brightness increased by 1.2m in 1925–1977 at a rate
of 0.025m per year. No information about the V -band
behavior of the object during this period is available.
Broad-band photometric data provide evidence that
the star’s luminosity has not changed considerably
since at least 1972; only small changes of the IR
brightness due to the large circumstellar envelope are
observed. Let us suppose that the 50-year brightness
increase detected in [15] was due solely to a growth in
the photospheric temperature, i.e., to variations in the
normal color index. We adopt the normal color indices
and effective temperatures for yellow supergiants from
[40] and the effective temperatures for M supergiants
from [41]. If we assume that the supergiant’s normal
color index in 1972 was (B − V )o = 0.66 (between
G0 and F8), it could have been as high as (B −
V )o = 1.86 in 1925, corresponding to a subtype later
than M5. The difference in the effective temperatures
corresponding to these subtypes is about 2600 K.
Thus, the hypothesis that the photographic bright-
ness increase was due to changes of the photospheric
temperature, with no luminosity increase, implies a
heating rate of 50 K/year between 1925 and 1972.
Incidentally, this hypothesis is also relevant for the
presence of OH maser lines (characteristic of super-
giants cooler than M3) in the vicinity of IRC+10420.

Following Fix [7], we assume that the 1980 spec-
trum was already hotter than F8, and therefore al-
ready different than the spectral type in 1972. If we
now suppose that Fix’s estimate corresponds to F5,
the next subtype after F8, the photospheric temper-
ature changed by 750 K in 1972–1980, at a rate of
90 K/year, by 2000 K in 1980–1995, at a rate of
130 K/year; and by 700 K in 1995–2000, at a rate of
160 K/year. It is obvious that the spectral changes of
IRC+10420 were less significant in 1972–1980 than
in 1980–1995. If the temperature continues to grow,
the object could reach the Wolf–Rayet phase in 100–
150 years.

If the temperature increase does not affect the
star’s luminosity variations, the stellar radius must
decrease in proportion to the square of its tem-
perature. In the last 30 years, the temperature of
IRC+10420 increased by a factor of 1.5, so its radius
must have decreased by more than a factor of two.
Interferometric observations of IRC+10420 in the
late 1997 show that the star’s radius was R = 460R�
[42]. We conclude that the radius of IRC+10420 was
a factor of 800 larger than the solar radius in 1972 and
only a factor of 400 larger in 2000. Our estimates of
Mbol and Teff can be used to estimate log g. According
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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to Eq. (1) from [30], the values Mbol = −9.5m and
Teff = 9200 K correspond to log g = 0.9. The star’s
mass implied by its radius and surface gravity is
∼45M�.

Computations of evolution with mass loss [43]
show that a 20M� star has a relative surface hydro-
gen abundance (in terms of numbers of particles) of
only 20%. Consequently, during the photospheric
temperature increase, helium lines should appear at
lower effective temperatures than for classical A su-
pergiants. Therefore, the presence of a strong He I
λ5876 line in the 1992–1996 spectra of IRC+10420
(when the metal-line spectral type was A5; cf. Fig. 2
in [5]) is no surprise. The atmosphere of a cool star
with this fraction of hydrogen replaced by helium
has a somewhat different coefficient for continuum
absorption by neutral atoms and negative hydrogen
ions, but it has a different mean molecular weight and
therefore a different scale height. This will necessarily
influence the intensity ratios for lines of metallic ions
and atoms. We will present an empirical and theoret-
ical analysis of these effects in a future paper.

Let us now consider the behavior of atomic and
ionic lines in the spectrum of IRC+10420. For the
luminosity corresponding to a distance of 5 kpc, the
mass-loss rate in earlier evolutionary phases was
∼10−3M�/yr [16]. The dynamical lifetime of the
circumstellar envelope is estimated to be 5000 years
[44]. Thus, the mass of the circumstellar envelope
of IRC+10420 is ∼5M�. There is no doubt that
a circumstellar envelope that large will significantly
influence the spectrum. If the envelope temperature is
∼1000 K [45], a considerable amount of matter will be
in dust and molecular phases. The only contribution
to the optical line spectrum made by atoms of cool
gas and dust in the envelope will be absorption in the
Na I and K I resonance lines. The envelope’s largest
influence on the optical spectrum of IRC+10420 is
absorption and scattering by dust. Following Fix
[7], it is natural to suppose that scattering by the
expanding dust envelope will lead to redshifts of the
absorption lines formed in the stellar atmosphere. If
we assume that scattering by dust grains is equally
probable in all directions and that the distribution
of matter in the circumstellar envelope is spherically
symmetrical, this redshift should be Vexp/

√
2, where

Vexp is the expansion velocity of the envelope. The re-
sults of radio CO-line observations yield an envelope
expansion velocity of Vexp = 40 km/s [16]. Therefore,
the redshift in question should be about 30 km/s.
If the scattering by dust grains is mainly “forward,”
then, independent of the distribution of matter in the
envelope, we should not observe any shifts in lines
corresponding to envelope absorption. The redshift of
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absorption lines indicated by our observations is 15–
20 km/s.

In his modeling of radiation transfer in the expand-
ing envelope of IRC+10420, Fix [7] found that the
redshifts for absorption lines should decrease signif-
icantly with increasing wavelength. However, we do
not detect any significant change in radial velocity
with wavelength in our spectra; a similar result was
obtained in [6] from a 1993 spectrum. Fix admit-
ted that the set of parameters used in his numerical
modeling of the circumstellar envelope of IRC+10420
was not unique. A modern two-component model for
the dust envelope around IRC+10420 assumes vari-
ations of grain sizes within two orders of magnitude
and a complex law for the density variations [45]. For
this reason, the absence of a dependence of radial
velocity on wavelength does not necessarily rule out
the possibility that the observed redshifts are a result
of repeated scattering of the star’s light in the dust
envelope.

Oudmaijer [6] put forth a different explanation for
the absorption-line redshifts, suggesting they were
associated with an infall of matter onto the stellar
surface. This hypothesis is consistent with the ob-
served inverse P Cygni line profiles. If this infall of
matter occurs below the dust envelope, scattering by
the expanding dust envelope should lead to a redshift
of emission components and a still greater redshift of
absorption components, which is not observed.

The emission and absorption components of clas-
sical (or inverse) P Cygni profiles are formed in the
same regions of the spherical circumstellar envelope.
In the case of IRC+10420, the emission and ab-
sorption components probably originate in different
regions. The absorption components are formed in
the more-or-less stationary atmosphere of the star,
while the emission components originate in a spatially
restricted region of the expanding envelope, not in
its entire volume (in the latter case, P Cygni pro-
files would be observed). The observed correlation
between oscillator strength and radial velocity could
result from the envelope’s different optical depths in
different lines. The envelope is optically thin to lines
with low oscillator strengths, and their radial veloc-
ities are close to the systemic velocity, whereas the
envelope is optically thick to lines with high oscillator
strengths, so we predominately see the approaching
side of the envelope’s surface.

The mean velocity of the forbidden lines is be-
tween the systemic velocity and the mean velocity of
atmospheric absorption lines. Let us suppose that
the forbidden lines are formed in a region below the
dust envelope. In this case, the forbidden lines will
experience the same redshift as the absorption lines,
due to scattering by grains in the dust envelope. After
taking into account this redshift, the mean velocity
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of the forbidden lines will be lower than the systemic
velocity. To obtain a consistent picture, we must
suppose that the region of formation of the forbid-
den lines also expands but that the receding part is
screened by the star, leading to blueshifts of the line
centroids relative to the systemic velocity. However,
the scattering in the dust envelope reduces the effect
of this screening of the receding portion of the gas
envelope by the star.

The behavior of the hydrogen lines must be rec-
onciled with this pattern. To explain the Hα profile,
Jones et al. [9] suggested a model with a circumstel-
lar disk rotating with a projected line-of-sight velocity
of 50 km/s. This model cannot explain the Brα,
Brγ , and Pfγ profiles, which display only blueshifted
emission components [32]. This model (cf. Fig. 12
in [9]) likewise cannot explain the pattern displayed
by the metallic and hydrogen radial velocities in our
spectra. Oudmaijer et al. [32] suggested that these
line profiles could be understood if there was a colli-
mated outflow along the line of sight. In this picture,
the IR lines are formed so close to the star that emis-
sion from the outflow directed away from the observer
is completely screened. The Balmer emission lines
are formed further from the star, so we can observe
both jets. The difference in the intensities of the
redshifted and blueshifted emission components are
due to screening of the receding portion of the outflow
by the star. This scheme is in contradiction with
the hypothesis of repeated scattering of radiation in
the dust envelope, which is capable of equalizing the
intensities of the blue and red emission components
of Hα, Hβ , and Hγ . In addition, no bipolarity in the
outer structures imaged by the HST in the optical is
observed [46].

5. CONSLUSIONS

We have presented the results of spectroscopic
observations of the peculiar supergiant IRC+10420
obtained in 1997–2000. Using the 6-m telescope of
the Special Astrophysical Observatory, we obtained
three spectra at wavelengths 4300–8000 Å with high
signal-to-noise ratios and a spectral resolution of
15 000 (20 km/s). The spectral type of IRC+10420
estimated from the spectrum obtained in 2000 was
A2, corresponding to a temperature of ∼ 9200 K.
Together with data published earlier, this indicates
an ongoing increase of the photospheric tempera-
ture. We conclude that IRC+10420 is continuing
its rapid evolution toward the Wolf–Rayet phase; the
current rate of the photospheric temperature increase
is ∼120 K/year. The intensity of the O I λ7774 triplet
yields a luminosity for the star of Mbol = −9.5m. All
spectra of IRC+10420 from 1997 to 2000 possess
an He I λ5876 line with significant equivalent width
(at least 200 mÅ); this is apparently possible at such
a low temperature due both to the star’s high lu-
minosity and the increased helium abundance in the
atmosphere of the supergiant.

We found many emission lines identified with lines
of Fe I; the Fe II, Ti II, Cr II, and Sc II ions; and
forbidden [O I], [Fe II], and [Ca II] lines. The radial
velocity derived from absorption lines with no obvious
emission components (He I λ5876, O I, N I, Si II) and
from the absorption components of the Balmer lines
is 93 ± 1 km/s. The redshift of photospheric lines
relative to the star’s center-of-mass velocity is the
result of scattering in the expanding, optically thick
dust envelope. Our observations show a correlation
between the radial velocities and oscillator strengths
of both emission and absorption lines. We detected
variability of the relative intensities of the Hα and Hβ

emission components.
Our analysis suggests two explanations for the

observed properties of IRC+10420. The first is based
on the hypothesis of multiple scattering of the stellar
radiation in the optically thick expanding dust enve-
lope [7, 47, 48]. In this case, it is difficult to explain
the observed intensity ratios of the blueshifted and
redshifted Balmer components. The second possi-
bility is that IRC+10420 has a rotating disk, with
regions outside the disk polarizing the optical and
IR radiation [9]. Distinguishing between these two
models will require spectropolarimetric observations
with high spectral resolution.

In summary, we are not yet able to formulate a
self-consistent interpretation explaining the results
of both broad-band polarimetric and high-resolution
spectroscopic observations of IRC+10420.
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Abstract—We estimate the reliability of previously derived normal energy distributions for stars by
comparing normal color indices in three photometric systems (WBV R, uvby, and Vilnius) calculated
using these distributions with indices derived from photometric observations. Earlier, we used photometric
data from WBV R and uvby catalogs to derive normal color indices for these systems not available in
the literature, in the form of mean color indices and indices obtained for representative groups of normal,
unreddened stars. The results can be used to estimate both the quality of our normal distributions and the
reliability of the normal color indices in the three photometric systems considered. c© 2002 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

The main goal of our current work was to check
the consistency between the normal stellar energy
distributions derived in [1–8] and the normal color
indices in various photometric systems. To this end,
we have compared the normal color indices calculated
from our distributions in three photometric systems
with those derived from photometric observations. In
[9], based on a comparison of observed and calcu-
lated color indices for many stars in three photomet-
ric systems, we concluded that an accuracy for the
calculated indices comparable to that of the observed
indices can be achieved if (i) accurate response func-
tions for the photometric systems are available, (ii)
the accuracy in the energy distributions for the stud-
ied stars is no worse than 2%, and (iii) the integrated
spectral energy distribution for the star used to specify
the zero point for the calculated color indices has
been reliably determined. Thus, we can check the
normal energy distributions for stars by comparing
normal color indices derived in the usual way from
photometric observations with those calculated from
the normal energy distributions.
We compared the observed and calculated normal

color indices in three photometric systems for which
the most observations are available: Vilnius [10],
uvby [11], and WBVR [12]. This enabled us, first,
to identify possible errors in the normal color indices
derived from photometric observations. Second, the
P and X bands of the Vilnius system and B band
of theWBVR system involve spectral intervals near
the Balmer discontinuity, where there is some uncer-
tainty in spectrophotometric data due to the difficulty
1063-7729/02/4602-0152$22.00 c©
in determining the continuum level in the spectra of
standard stars. The u and v bands of the uvby system
do not include this problematic region and can be
used to check the important spectral intervals before
and after the Balmer discontinuity. The reliability of
our spectral energy distributions at λ > 6000 Å can
be estimated only using WBVR photometry, since
the Hα-centered narrow S band in the Vilnius system
is not very appropriate for our purposes, and the uvby
system extends only to λ6000 Å.

2. DERIVATION OF NORMAL COLOR
INDICES

Unfortunately, normal color indices derived from
photometric observations of normal, unreddened
stars have been acquired only in the Vilnius system
[10]. NormalWBVR [12] color indices for individual
spectral subtypes are presented in [13]; however,
a somewhat nonstandard definition of “normal” is
applied in that study. Standard relationships between
the MK spectral classification and the normal uvby
color indices were derived in [14–18] only for a few
spectral subtypes. We do not risk using the data of
Straizys from [19, Table 26], since he does not give
references to the original studies. All these consid-
erations demanded that we derive normal WBVR
and uvby color indices ourselves from published
photometric observations, as mean values for normal
stars of a given subtype, since the normal energy
distributions were determined as mean values for
a sample of unreddened normal stars of a given
subtype, excluding various variables, peculiar stars,
binaries, etc.
2002 MAIK “Nauka/Interperiodica”
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Table 1.Normal color indices derived fromWBV R observations

Sp W–B B–V V –R n Sp W–B B–V V–R n

B1V −1.143 −0.198 −0.134 4 F0IV 0.013 0.298 0.255 9

B2V −0.952 −0.174 −0.128 5 F2IV −0.031 0.363 0.318 8

B3V −0.852 −0.159 −0.119 5 F5IV −0.119 0.431 0.371 15

B5V −0.705 −0.134 −0.085 12 B5III −0.646 −0.122 −0.069 8

B6V −0.639 −0.120 −0.068 11 B6III −0.533 −0.105 −0.060 6

B7V −0.569 −0.107 −0.065 12 B7III −0.566 −0.105 −0.059 16

B8V −0.429 −0.083 −0.047 25 B8III −0.461 −0.075 −0.032 16

B9V −0.334 −0.075 −0.048 11 B9III −0.282 −0.062 −0.025 16

A0V −0.049 −0.019 −0.014 23 A0III −0.095 −0.028 −0.009 9

A1V 0.013 0.012 −0.001 20 A3III 0.172 0.097 0.079 6

A2V 0.068 0.046 0.024 25 A5III 0.155 0.151 0.106 7

A3V 0.107 0.094 0.072 22 A7III 0.165 0.181 0.147 7

A4V 0.119 0.121 0.093 16 F0III 0.118 0.274 0.237 12

A5V 0.120 0.162 0.137 16 G7III 0.567 0.996 0.724 11

A7V 0.120 0.181 0.142 12 G8III 0.492 0.958 0.699 137

F0V 0.016 0.278 0.242 17 G9III 0.621 1.018 0.734 67

F5V −0.143 0.437 0.379 40 K0III 0.709 1.063 0.764 177

F6V −0.134 0.460 0.394 23 K1III 0.861 1.132 0.808 145

F7V −0.131 0.513 0.434 17 K2III 1.024 1.200 0.854 110

F8V −0.108 0.539 0.450 22 K3III 1.276 1.328 0.942 78

G0V −0.101 0.596 0.492 17 K4III 1.556 1.468 1.070 61

G2V −0.016 0.657 0.529 3 K5III 1.724 1.558 1.160 92

G8V 0.061 0.730 0.591 3 M0III 1.850 1.621 1.269 53

B2IV −1.063 −0.204 −0.153 4 M1III 1.901 1.663 1.361 41

B3IV −0.852 −0.144 −0.096 7 M2III 1.883 1.675 1.421 65

B5IV −0.713 −0.128 −0.079 9 M3III 1.866 1.686 1.563 44

B9IV −0.334 −0.076 −0.055 5 M4III 1.710 1.649 1.770 31

A3IV 0.112 0.079 0.058 7 M5III 1.615 1.623 1.936 8

A7IV 0.128 0.188 0.162 6
Preliminary lists of stars for this study were ob-
tained as follows. We chose stars of the required
spectral subtypes having reliable MK spectral clas-
sifications and complete UBV photometry and not
noted as variable, binary, peculiar, etc. from the cata-
log of Hoffleit [20]. These stars were primarily bright
< 6m. 5 and close to the Sun; parallaxes are available
for many, and most are located within 100–150 pc.
In the course of deriving the normal distributions,
we verified whether the number of chosen stars with
ASTRONOMY REPORTS Vol. 46 No. 2 2002
available spectrophotometric data was sufficient to
characterize the subtype as a whole by calculating
mean color indices for those normal stars with com-
plete UBV photometry. Using IUE data, parallaxes,
and maps of the distribution of interstellar absorption,
these stars were thoroughly analyzed to verify the
absence of interstellar absorption. We left only those
stars for which the scatter of the B–V color indices
did not exceed their natural dispersion [1–8]. TheB–
V values for the most nearby stars in each subtype
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Table 2.Normal color indices and indices in the uvby-β system derived from photometric observations

Sp b–y m1 c1 β n Sp b–y m1 c1 β n

B5V −0.057 0.103 0.433 2.704 33 G8V 0.448 0.260 0.289 2.577 6

B7V −0.044 0.109 0.553 2.734 15 B2IV −0.095 0.078 0.111 2.630 4

B8V −0.037 0.112 0.672 2.758 39 B3IV −0.053 0.085 0.296 2.656 15

B9V −0.031 0.123 0.836 2.809 33 B5IV −0.050 0.096 0.407 2.674 10

B9.5V −0.019 0.135 0.980 2.841 30 B9IV −0.031 0.122 0.808 2.793 12

A0V 0.007 0.152 1.005 2.875 78 A3IV 0.063 0.178 1.068 2.864 22

A1V 0.005 0.159 1.045 2.886 31 A7IV 0.117 0.191 0.943 2.821 8

A2V 0.020 0.177 1.062 2.891 28 F0IV 0.182 0.179 0.773 2.745 17

A3V 0.038 0.182 1.057 2.887 26 F2IV 0.242 0.165 0.645 2.695 11

A4V 0.062 0.184 1.039 2.871 10 F5IV 0.286 0.161 0.520 2.662 24

A5V 0.080 0.188 1.030 2.849 12 B5III −0.039 0.097 0.443 2.687 6

A7V 0.114 0.192 0.919 2.827 13 B7III −0.036 0.100 0.564 2.712 14

F0V 0.177 0.179 0.777 2.756 20 B8III −0.021 0.096 0.632 2.717 13

F5V 0.292 0.158 0.470 2.662 23 B9III −0.015 0.106 0.829 2.756 17

F6V 0.313 0.159 0.432 2.643 39 A0III −0.002 0.125 1.016 2.815 13

F7V 0.331 0.165 0.403 2.631 19 A3III 0.064 0.172 1.152 2.856 8

F8V 0.346 0.172 0.388 2.622 23 A5III 0.081 0.199 1.024 2.857 9

G0V 0.378 0.191 0.344 2.604 21 A7III 0.102 0.191 1.034 2.831 10

G2V 0.400 0.215 0.340 2.608 7 F0III 0.187 0.187 0.774 2.750 15

G5V 0.413 0.229 0.329 2.600 10
were used as standards to estimate the color excesses
for the remaining stars. We considered acceptable
color excesses to be no more than 0m. 05, smaller than
the natural dispersion of the color indices within a
subtype. We derived dependences of B–V on V for
each subtype, which did not display any systematic
increase of B–V with V , testifying to an absence
of appreciable absorption. Individual stars with very
blue or very red colors compared to other stars in the
subtype were excluded. We believe that we were able
to minimize errors related to interstellar absorption in
this way.
We took the observed color indices and indices

for stars from our resulting lists from [12, 21]. Un-
fortunately, not all stars selected from the catalog
of Hoffleit [20] had uvby and WBVR observations.
The number of stars used to derive the normal color
indices for each spectral subtype is different for these
two systems, since southern stars (with δ < −14◦)
have not been observed in theWBVR system.
We estimated the scatter of the color indices within

each spectral subtype in both photometric systems
and excluded several stars that seemed anomalous
compared to the majority of the sample stars. The
most scatter is shown by the c1 indices in the uvby
system, probably due to the low accuracy of obser-
vations in the u band. We adopted the mean color
indices calculated using the remaining stars in each
photometric system as the normal color indices for
these systems. They are presented in Tables 1 and
2, along with the numbers of stars used, n. The
standard deviations in theWBVR system are 0m. 02–
0m. 06 for W–B and 0m. 01–0m. 02 for B–V and V –
R; the standard deviations in the uvby system are
0m. 005–0m. 01 for b–y andm1 and 0m. 01–0m. 04 for c1.
Table 3 presents the differences ∆ between the

derived normal W–B and B–R color indices in the
WBVR system and the data from [13]. The differ-
ences between the color indices for main-sequence
spectral subtypes does not exceed the above accuracy
of the calculated values. Substantial discrepancies
occur for spectral subtypes K3III, M0III and M5III,
requiring additional verification of the reliability of
our data. B–V (UBV ) and B–V (WBVR) relations
constructed for stars of these subtypes show a clear
linear dependence between them. This enabled us to
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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Table 3. Comparison of derived normalWBV R color indices and the data of [13]

Sp W–B B–R (W–B)K (B–R)K ∆(W–B) ∆(B–R)

B5V −0.705 −0.219 −0.710 −0.239 0.005 0.020

A0V −0.049 −0.033 −0.064 −0.084 0.015 0.051

A5V 0.120 0.299 0.077 0.286 0.043 0.013

F0V 0.016 0.520 −0.017 0.530 0.033 −0.010

F5V −0.143 0.816 −0.158 0.810 0.015 0.006

G0V −0.101 1.088 −0.096 1.090 −0.005 −0.002

G2V −0.016 1.186 −0.053 1.150 0.037 0.036

B5III −0.646 −0.191 −0.685 −0.230 0.039 0.039

A0III −0.095 −0.037 −0.053 −0.050 −0.042 0.013

A5III 0.155 0.257 0.124 0.270 0.031 −0.013

F0III 0.118 0.511 0.039 0.500 0.079 0.011

K0III 0.709 1.827 0.743 1.790 −0.034 0.037

K3III 1.276 2.270 1.709 2.630 −0.433 −0.360

M0III 1.850 2.890 1.878 3.010 −0.028 −0.120

M5III 1.615 3.559 1.488 3.760 0.127 −0.201

Note. The index “K”marks the data of Kornilova and Kornilov [13].
estimate the difference betweenB–V (UBV ) andB–
V (WBVR) and to use this to translate our normal
color indices from the WBVR to the UBV system.
A comparison of the resulting values with the data of
Straizys [22] showed them to be in good agreement
(0m. 01–0m. 02), which we take as confirmation of the
reliability of our data.
Table 4 presents the differences ∆ between our

data and the results obtained by Crawford [15, 16] for
main-sequence B–F0 subtypes and A3–A5 giants,
and by Olsen [17] for G0V–G8V subtypes. Nearly all
subtypes display good agreement; a large discrepancy
is seen only for the c1 index for subtype A5V.

3. COMPARISON BETWEEN CALCULATED
AND OBSERVATIONAL NORMAL COLOR

INDICES

We derived calculated normal color indices in the
three photometric systems [10–12] based on nor-
mal energy distributions taken from [1–8] and the
response functions for these systems presented in
[23, 24, 12]. The calculation method is described
in detail in [9]. Table 5 presents the differences ∆
between the observed and calculated normal color
indices in these photometric systems. We analyzed
these differences taking into account upper limits for
possible errors introduced when deriving the normal
indices from photometric observations. According to
ASTRONOMY REPORTS Vol. 46 No. 2 2002
[19], the errors σ of the normal indices X–Y , Y –
Z and Z–V in the Vilnius photometric system are
about ±0m. 02–0m. 04 and reach ±0m. 05–0m. 06 for U–
P and P–X. These last indices are the least accurate
for supergiants. Estimates of the accuracies in the
derived normal WBVR and uvby color indices are
given above. All these values were treated as limits
for reasonable differences between the calculated and
observed color indices in the corresponding photo-
metric systems.
Columns 2–7 of Table 5 contain differences be-

tween observed and calculated color indices in the
Vilnius system relative to the V band. The columns
represent nearly all spectral subtypes for which we
have derived normal distributions. A systematic dif-
ference in V –S stands out. This may be due to either
an error in the zero-point determination or inaccuracy
in the response function adopted. We will consider
this problem below.
Columns 8–9 present comparisons for theWBVR

system, likewise for color indices relative to V . We
have considered these color indices, because the B
band encompasses the region of densification of the
Balmer lines, and, in the case of W–B, it would
be difficult to tell whether the W or B band were
responsible for any error.
The last three columns of Table 5 present compar-

isons for the uvby system. Unfortunately, no reliable
comparisons can be made for this system, since we
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Table 4.Derived normal color indices and indices in the uvby-β system compared with results of other studies

Sp m1 c1 β b–y ∆(b–y) ∆m1 ∆c1 ∆β

B5V 0.106 0.420 2.701 – - - −0.003 0.013 0.003

B7V 0.107 0.550 2.723 – - - 0.002 0.003 0.011

B8V 0.118 0.660 2.748 – - - −0.006 0.012 0.010

B9V 0.126 0.830 2.795 – - - −0.003 0.006 0.014

B9.5V 0.134 0.970 2.827 – – 0.001 0.010 0.014

A0V 0.154 1.010 2.861 – - - −0.002 −0.005 0.014

A2V 0.169 1.080 2.885 – – 0.008 −0.018 0.006

A3V 0.172 1.080 2.871 0.055 −0.017 0.010 −0.023 0.016

A4V 0.184 1.050 2.864 0.071 −0.009 0.000 −0.011 0.007

A5V 0.195 0.960 2.841 0.090 −0.010 −0.007 0.070 0.008

A7V 0.201 0.900 2.824 0.107 0.007 −0.009 0.019 0.003

F0V 0.191 0.790 2.768 0.158 0.019 −0.012 −0.013 −0.013

G0V 0.182 0.368 2.619 0.368 0.010 0.009 −0.024 −0.015

G2V 0.192 0.347 2.608 0.387 0.013 0.023 −0.007 0.000

G5V 0.221 0.320 2.588 0.420 −0.007 0.008 −0.009 0.012

G8V 0.265 0.293 2.567 0.456 −0.008 −0.005 −0.004 0.010

A3III 0.174 1.140 2.869 0.048 0.016 −0.002 0.012 −0.013

A5III 0.191 1.050 2.855 0.079 0.002 0.008 −0.026 0.002

A7III 0.204 1.000 2.823 0.097 0.005 −0.013 0.034 0.008

Note. Data for B, A and F subtypes are taken from [15, 16] and for G subtypes from [17].
were unable to derive observational normal color in-
dices for main-sequence early B subtypes, late giants,
and supergiants. Table 5 does not contain any com-
parisons in the ultraviolet for late giants for any of the
photometric systems, since the normal distributions
for these subtypes in [4] begin from λ3425 Å, making
it impossible to calculate ultraviolet color indices.
It follows from Table 5 that the observed and cal-

culated normal color indices are in good agreement
for most spectral subtypes. However, the differences
in U–V , P–V , c1, and W–V for spectral subtypes
A7V, B9IV, F0IV, B5III, B9III, A0III, A5III, and
F0III appreciably exceed the estimated reasonable
limits. Note that the discrepancies between the cal-
culated and observed normal color indices could be
due to the use of different stars to derive the normal
distributions and normal color indices.
Table 5 not only provides a convenient characteri-

zation of our normal distributions, but also enables us
to estimate the quality of normal color indices derived
from observations.
The final stage of our study is to compare our data

and the results obtained by Sviderskene [25] based
on calculated Vilnius color indices. When calcu-
lating the color indices from Sviderskene’s data, we
determined the constants specifying the zero-point
from the energy distribution for Vega from Table 1
in [25]. We carried out this comparison in order to
elucidate the origin of the systematic differences in
the calculated and observed normal V –S indices in
the Vilnius system. Color indices calculated from
our and Sviderskene’s data are presented in Table 6.
This table indicates an absence of any systematic
differences. When the same indices calculated using
Sviderskene’s data are compared with normal indices
derived from the photometric observations of [21],
systematic differences appear, of approximately the
same magnitude and in the same direction as when
our data are used (Table 5). Although the Vega-based
zero-point was set using different energy distribu-
tions for the calculations of the normal color indices
using our and Sviderskene’s data, the absence of
systematic discrepancies between these two calcu-
lated color indices suggests another reason for
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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Table 5. Comparisons between the observed and calculated normal color indices for three photometric systems Vilnius
photometric system,WBV R system, and uvby system

Sp ∆(U–V ) ∆(P –V ) ∆(X–V ) ∆(Y –V ) ∆(Z–V ) ∆(V –S) ∆(W –V ) ∆(B–V ) ∆(b–y) ∆m1 ∆c1

1 2 3 4 5 6 7 8 9 10 11 12

B1V 0.015 0.047 0.045 0.026 0.013 −0.032 0.108 0.067 – – –

B2V −0.068 −0.019 0.005 0.001 0.003 −0.033 0.066 0.045 – – –

B3V −0.077 −0.040 −0.015 0.016 0.009 −0.025 −0.017 0.012 – – –

B5V 0.011 0.014 0.008 0.022 0.009 −0.047 0.026 0.016 0.004 −0.002 0.030

B7V 0.031 0.012 0.022 0.032 0.022 −0.037 −0.022 0.005 0.017 −0.002 −0.037

B8V 0.030 0.037 0.029 0.017 0.007 −0.064 −0.001 0.008 −0.002 0.011 −0.034

B9V 0.179 0.150 0.061 0.031 0.021 −0.026 0.003 −0.002 0.000 0.011 0.054

B9.5V – – - - – – – – – −0.002 0.004 0.006

A0V 0.024 0.043 0.010 0.014 0.007 −0.019 −0.018 −0.018 −0.019 0.011 −0.037

A1V 0.033 0.056 0.040 0.025 0.014 −0.030 −0.014 −0.009 −0.008 0.012 −0.022

A2V 0.011 0.039 0.042 0.020 0.009 −0.027 −0.018 −0.013 −0.017 0.026 −0.025

A3V 0.014 0.058 0.058 0.029 0.009 −0.038 0.017 0.004 −0.009 0.011 −0.019

A4V – – – – – – 0.037 0.013 0.010 0.003 −0.019

A5V 0.016 0.050 0.065 0.023 0.019 −0.051 0.017 0.012 −0.003 0.012 −0.005

A7V −0.053 0.039 0.061 0.021 0.012 −0.023 0.012 −0.013 −0.006 0.029 −0.072

F0V −0.049 0.001 0.038 0.023 0.008 −0.036 −0.013 −0.028 −0.018 0.017 0.003

F5V 0.009 0.021 0.037 0.016 0.000 −0.014 −0.003 −0.008 −0.005 0.016 −0.012

F6V – – – – – – 0.014 −0.033 −0.013 0.010 0.035

F7V – – – – – – 0.041 −0.011 −0.013 0.009 0.053

F8V 0.023 0.022 0.013 0.006 −0.002 −0.049 0.042 −0.014 −0.013 0.013 0.000

G0V 0.069 0.065 0.027 0.015 −0.005 −0.019 0.003 −0.021 −0.013 0.010 0.041

G2V −0.025 −0.029 −0.006 0.023 0.012 −0.029 0.003 −0.006 −0.006 −0.006 0.009

G5V −0.028 0.002 −0.006 0.002 −0.007 −0.018 – – −0.025 0.012 −0.033

G8V 0.057 0.061 −0.010 0.003 0.001 −0.034 −0.079 −0.047 −0.018 −0.022 0.014

B2IV 0.039 0.042 0.012 −0.002 0.009 −0.051 0.031 0.013 0.000 0.024 −0.007

B3IV −0.070 −0.060 −0.029 −0.018 −0.010 −0.067 −0.004 0.024 0.015 0.019 −0.049

B5IV 0.080 0.065 0.016 0.006 0.001 −0.036 0.028 0.024 0.015 0.012 −0.031

B9IV 0.224 0.133 0.048 0.021 0.012 −0.004 −0.101 −0.020 −0.011 0.012 −0.049

A3IV 0.039 0.020 0.012 0.011 0.003 −0.048 −0.015 −0.022 0.007 0.008 −0.010

A7IV 0.010 0.013 0.040 0.026 0.011 −0.010 0.002 −0.034 −0.014 0.014 −0.006

F0IV −0.024 0.015 0.078 0.051 0.018 −0.013 −0.045 0.014 0.005 0.010 −0.098

F2IV −0.018 0.015 0.021 0.017 0.005 −0.061 0.005 −0.009 0.000 0.014 −0.029

F5IV 0.066 0.048 0.069 0.037 0.013 −0.043 0.012 0.008 0.012 0.004 −0.002

B2III 0.041 0.040 0.053 0.020 0.025 −0.069 – – – – –

B5III −0.107 −0.040 0.005 −0.005 0.001 −0.066 −0.065 0.002 0.002 0.041 −0.166

B6III −0.035 −0.041 −0.025 −0.022 −0.005 −0.052 0.026 −0.013 – – –
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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Table 5. (Contd.)

1 2 3 4 5 6 7 8 9 10 11 12

B7III 0.095 0.067 0.021 0.014 0.015 −0.046 −0.002 0.015 0.016 0.001 −0.040

B8III 0.157 0.104 0.021 0.010 0.013 −0.033 −0.019 0.021 −0.003 0.048 −0.142

B9III 0.166 0.077 −0.003 0.007 0.007 −0.030 −0.038 −0.017 −0.010 0.008 −0.030

A0III 0.173 0.105 0.070 0.034 0.026 0.029 −0.016 0.003 0.002 0.016 −0.037

A3III 0.006 −0.002 −0.005 0.000 0.002 −0.029 0.011 −0.011 −0.005 0.025 −0.006

A5III 0.125 0.050 0.052 0.017 0.008 0.000 0.046 0.008 0.001 0.023 −0.021

A7III 0.064 0.044 0.072 0.036 0.021 −0.036 0.015 0.003 0.001 0.018 −0.037

F0III −0.057 −0.010 0.067 0.027 0.015 −0.023 −0.047 0.011 0.013 0.049 −0.269

G7III – – – – – – – 0.055 – – –

G8III – 0.061 0.027 0.007 0.000 −0.025 – −0.017 – – –

G9III – – – – – – – −0.029 – – –

K0III – 0.122 0.058 0.024 0.010 −0.026 – 0.004 – – –

K1III – 0.183 0.108 0.044 0.023 −0.014 – 0.002 – – –

K2III – 0.100 0.049 0.026 0.009 −0.033 – −0.017 – – –

K3III – 0.014 −0.028 −0.023 −0.014 −0.057 – −0.013 – – –

K4III – −0.075 −0.072 −0.050 −0.015 −0.055 – −0.026 – – –

K5III – 0.044 0.033 0.012 0.013 −0.063 – −0.016 – – –

M0III – 0.068 0.049 0.017 0.017 −0.035 – −0.021 – – –

M1III – 0.204 0.103 0.031 0.015 −0.023 – 0.005 – – –

M2III – 0.220 0.076 0.030 0.022 −0.003 – −0.015 – – –

M3III – 0.121 0.044 0.020 0.002 −0.007 – −0.005 – – –

M4III – 0.071 −0.030 0.020 −0.015 −0.007 – −0.001 – – –

M5III – 0.108 0.025 0.092 0.042 −0.022 – 0.013 – – –

B1Iab −0.123 −0.045 0.011 −0.012 0.002 −0.039 – – – – –

B2Iab −0.003 0.006 0.017 −0.000 −0.009 −0.062 – – – – –

B5Iab 0.036 −0.004 0.022 0.008 −0.002 −0.049 – – – – –

B9Iab 0.007 −0.013 0.029 0.025 0.005 −0.082 – – – – –

G2Iab −0.150 −0.098 −0.068 −0.049 −0.015 −0.061 – – – – –
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Table 6. Comparison between normal Vilnius color indices calculated using our normal distributions and the results of
[25]

Sp ∆(U–V ) ∆(P–V ) ∆(X–V ) ∆(Y –V ) ∆(Z–V ) ∆(V –S)
B1V −0.031 −0.025 −0.004 −0.035 −0.008 0.020
B3V 0.101 0.082 0.038 0.004 0.006 −0.001
B5V −0.028 0.004 0.040 −0.025 −0.001 0.017
B7V −0.160 −0.048 0.009 −0.026 0.000 0.004
B8V −0.146 −0.072 −0.009 −0.015 0.007 0.022
B9V −0.191 −0.119 −0.044 −0.018 0.001 0.019
A0V −0.072 −0.031 0.026 −0.017 −0.002 0.000
A2V 0.026 0.016 0.032 0.000 0.016 0.027
A3V 0.018 0.001 0.008 −0.009 0.005 0.028
A5V 0.028 0.023 0.027 0.012 0.004 0.070
A7V 0.048 0.022 0.029 −0.030 0.003 −0.015
F0V 0.041 0.006 −0.023 −0.023 0.004 0.008
F5V −0.060 −0.014 0.052 0.019 0.008 0.000
F6V −0.083 −0.013 0.048 0.014 0.009 −0.001
F8V −0.070 −0.002 0.042 0.021 0.021 0.012
F0IV 0.050 0.009 −0.023 −0.019 0.000 −0.003
F2IV 0.017 0.006 0.034 0.014 0.018 0.010
F5IV −0.103 −0.070 −0.039 −0.012 0.002 −0.014
G0V −0.113 −0.020 0.052 0.013 0.018 −0.001
G2V −0.040 0.017 0.081 0.008 0.008 −0.002
G5V 0.031 0.046 0.101 0.025 0.021 −0.028
G8V −0.024 0.012 0.059 0.007 0.004 −0.005
B9III −0.147 −0.043 0.051 −0.001 0.012 0.002
A3III −0.027 0.001 −0.001 −0.013 −0.001 0.002
A5III −0.026 0.001 −0.005 −0.027 −0.006 −0.032
A7III −0.027 −0.029 −0.034 −0.022 −0.007 0.009
F0III 0.062 0.029 −0.034 0.027 0.010 0.020
B5Iab −0.001 0.014 −0.005 −0.013 0.013 −0.004
G2Iab 0.131 0.123 0.096 0.075 0.030 0.051
G8III – −0.011 0.059 0.007 0.007 −0.022
K0III – 0.004 0.057 0.013 0.016 −0.007
K1III – −0.011 0.050 0.012 0.008 −0.027
K2III – −0.046 0.074 0.009 0.017 0.000
K3III – −0.128 −0.014 −0.002 −0.007 0.008
K4III – 0.071 0.106 0.028 0.006 0.013
K5III – 0.012 0.056 −0.013 0.004 −0.004
M0III – −0.013 0.051 0.026 0.012 0.011
M1III – −0.105 −0.003 0.009 0.000 −0.002
M2III – −0.161 0.050 0.020 0.005 −0.005
M3III – −0.071 0.052 −0.009 −0.015 −0.055
M4III – −0.188 −0.020 0.082 −0.038 −0.013
M5III – −0.111 −0.027 −0.059 −0.056 −0.078
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the systematic differences between the calculated and
observed normal V –S values. These difference are
most likely due to inaccuracy in the response function
for the S band.

4. CONCLUSION

On the basis of observational data from cata-
logs [12, 21], we have derived normal color indices
in the WBVR and uvby photometric systems and
estimated their reliability by comparing these color
indices with results obtained in other studies. The re-
sults can be applied in some astrophysical problems.
Our comparison of color indices calculated us-

ing our normal distributions with those derived from
observations in three photometric systems (Vilnius,
WBVR, and uvby) indicates that the normal en-
ergy distributions derived in [1–8] form a consistent
system with the normal color indices in these three
photometric systems. Table 5 serves as a convenient
characterization of our normal distributions and can
also be used to estimate the reliability of normal color
indices in these systems.

5. ACKNOWLEDGMENTS

The authors are grateful to A.V. Kurchakov for
useful discussion.

REFERENCES
1. L. N. Knyazeva and A. V. Kharitonov, Astron. Zh. 70,
760 (1993) [Astron. Rep. 37, 382 (1993)].

2. L. N. Knyazeva and A. V. Kharitonov, Astron. Zh. 71,
264 (1994) [Astron. Rep. 38, 231 (1994)].

3. L. N. Knyazeva and A. V. Kharitonov, Astron. Zh. 71,
458 (1994) [Astron. Rep. 38, 400 (1994)].

4. L. N. Knyazeva and A. V. Kharitonov, Astron. Zh. 73,
67 (1996) [Astron. Rep. 40, 57 (1996)].

5. L. N. Knyazeva and A. V. Kharitonov, Astron. Zh. 73,
906 (1996) [Astron. Rep. 40, 823 (1996)].
6. L. N. Knyazeva and A. V. Kharitonov, Astron. Zh. 75,
70 (1998) [Astron. Rep. 42, 60 (1998)].

7. L. N. Knyazeva and A. V. Kharitonov, Astron. Zh. 75,
197 (1998) [Astron. Rep. 42, 169 (1998)].

8. L. N. Knyazeva and A. V. Kharitonov, Astron. Zh. 77,
619 (2000) [Astron. Rep. 44, 548 (2000)].

9. L. N. Knyazeva and A. V. Kharitonov, Astron. Zh. 77,
385 (2000) [Astron. Rep. 44, 334 (2000)].

10. V. Straizys and A. Kazlauskas, Baltic Astron. 2, 1
(1993).

11. D. L. Crawford and J. V. Barnes, Astron. J. 75, 978
(1970).

12. V. G. Kornilov, I. M. Volkov, A. I. Zakharov, et al., Tr.
Gos. Astron. Inst., Mosk. Gos. Univ. 63, 3 (1991).

13. L. N. Kornilova and V. G. Kornilov, in Spectropho-
tometric and Photometric Catalogues. Standard
Stars and Analogs of the Sun, Pulkovo, 2000, p. 40.

14. D. L. Crawford, Astron. J. 80, 955 (1975).
15. D. L. Crawford, Astron. J. 83, 48 (1978).
16. D. L. Crawford, Astron. J. 84, 1858 (1979).
17. E. H. Olsen, Astron. Asrtrophys., Suppl. Ser. 57, 443

(1984).
18. D. Kilkenny and D. C. B. Whittet, Mon. Not. R.

Astron. Soc. 216, 127 (1985).
19. V. Straizys,Multicolor Stellar Photometry [in Rus-

sian] (Mokslas, Vil’nyus, 1977).
20. D. Hoffleit, The Bright Star Catalogue (Yale Univ.

Observatory, New Haven, 1991, 5th ed.).
21. B. Hauck and M. Mermilliod, Astron. Astrophys.,

Suppl. Ser. 129, 431 (1998).
22. V. Straizys, Multicolor Stellar Photometry

(Pachart Publ. House, Tucson, 1992).
23. V. Straizys and K. Zdanavicius, Byull. Vil’nyussk.

Astron. Obs., No. 29, 15 (1970).
24. K. Kadaira, in Problems in Stellar Atmospheres and

Envelopes, Ed. by B. Baschek, W. H. Kegel, and
G. Traving (Springer-Verlag, Berlin, 1975), p. 155.

25. Z. Sviderskiene, Byull. Vil’nyussk. Astron. Obs.,
No. 80, 3 (1988).

Translated by K. Maslennikov
ASTRONOMY REPORTS Vol. 46 No. 2 2002



Astronomy Reports, Vol. 46, No. 2, 2002, pp. 161–171. Translated from Astronomicheskĭı Zhurnal, Vol. 79, No. 2, 2002, pp. 182–192.
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Abstract—The paper continues investigations of MHD turbulence in active solar regions. The statistical
distributions of the increments (structure functions) of the turbulent field are studied analytically in the
context of a refined Kolmogorov theory of turbulence. Since photospheric transport of the Bz component
of the magnetic field is quite similar to that of a scalar field in a turbulent flow, the theory of transport of a
passive scalar can be applied. This approach enables us to show that the structure functions are determined
by the competition between the dissipation of the magnetic and kinetic energies and to obtain a number of
relations between the structure-function parameters and energy characteristics of the MHD turbulence.
Taking into account general conclusions that can be drawn on the basis of the refined Kolmogorov
turbulence theory, the structure functions of the Bz field are calculated for eight active regions (from
measurements of SOHO/MDI and the HuairouSolar ObservingStation, China). These calculations show
that the behavior of the structure functions is different for the Bz field of each active region. The energy-
dissipation index of the fluctuation spectrum (which is uniquely determined by the structure functions) is
closely related to the level of flare activity: the more activity, the less steep the dissipation spectrum for a
given active region. This provides a means to test and, consequently, forecast the flare activity of active
regions. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Information on the turbulence of the photospheric
plasma can be very helpful in studying the genera-
tion and transport of solar magnetic fields and the
storage of free magnetic energy in the solar atmo-
sphere. The current paper continues the work of [1],
in which it was shown that analyses of power spec-
tra of the longitudinal photospheric magnetic field
provide evidence for Kolmogorov turbulence in active
regions and non-Kolmogorov turbulence in quiet re-
gions. However, this is only the most general infor-
mation about the type of turbulence. One relevant
direction for further study of the turbulence system is
the construction and analysis of structure functions of
the turbulent field.

The structure functions introduced byKolmogorov
[2] are statistical moments of the increments of the
turbulent field u(x):

Sq(r) = 〈|u(x + r) − u(x)|q〉. (1)

(Here, q is a real number.) For large Reynolds num-
bers in the inertial interval of scales, they obey the
power law

Sq(r) ∼ rζ(q). (2)

The function ζ(q) is among the main characteris-
tics of the turbulent field. A deviation of ζ(q) from a
straight line indicates intermittent structure, which is
equivalent to the concept of a multifractal in a fractal
1063-7729/02/4602-0161$22.00 c©
analysis [3, 4]; i.e. a set that consists of a number of
subsets, each with its own similarity law. Turbulence
theory describes this intermittency in another (equiv-
alent) formulation [5, 6]: the small-scale turbulence
tends to be concentrated in individual clumps sur-
rounded by extensive regions of flow containing much
smoother large-scale disturbances.

Moreover, our present study shows that, if the ran-
dom field considered is a passive scalar transported
by the turbulent flow, the function ζ(q) is determined
by the competition between the dissipation of the
passive-scalar energy and the kinetic energy of the
flow. In our case, when the role of the passive scalar
is played by the longitudinal magnetic field, ζ(q) de-
pends directly on the scale invariance of the dissipa-
tion of the magnetic energy. Since the dissipation of
free magnetic energy determines the flare activity of
a group, it is quite natural that the form of the ζ(q)
curve is closely related to the level of flare generation
of an active region (AR).

The analyses of the structure functions of the
magnetic field in the solar photosphere presented
here, both analytical (Sections 2, 3) and numerical,
based on magnetograms (Section 4), have been
performed purely in the framework of a refined Kol-
mogorov turbulence theory [5, 7, 8]. Recently, solar-
physics studies have frequently employed another
approach, based on fractal analyses [9–14] (see also
the Introduction in [1]). To provide a comparison
2002 MAIK “Nauka/Interperiodica”
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of these two approaches, we shall formulate our
conclusions in the contexts of both.

Russian terminology of recent years [15–17] uses
the terms “scaling” for the scale invariance in the
inertial scale interval and “scaling index” for the sim-
ilarity power-law index. We shall follow this conven-
tion.

2. BEHAVIOR OF STRUCTURE FUNCTIONS
IN THE REFINED KOLMOGOROV

TURBULENCE THEORY

The Kolmogorov theory of turbulence [2] is based
on the assumption that the turbulent flow is locally
isotropic; namely, the probability distributions for an
increment

∆u(r) = (u(x) − u(x + r)) (3)

are assumed to be independent of the initial spatial
point (uniform) and time (stationary) and to be invari-
ant with respect to rotation and mirror reflection of the
reference frame.

Consequently, to visualize the local isotropy, Kol-
mogorov proposed the hypothesis of a cascade re-
distribution of energy in turbulent flows: the energy
necessary to sustain stationary turbulence is supplied
from external sources via the continuous excitement
of motions on a scale L for the system in question.
The vortices on the scale L break up into smaller and
smaller vortices, until the scale η on which the vor-
tices decay due to viscosity is reached. This disrup-
tion is accompanied by a redistribution of the kinetic
energy of large vortices to that of smaller vortices; i.e.,
an energy transfer from scales L to scales η.

To describe turbulence mathematically, Kolmo-
gorov introduced two additional hypotheses, the so
called similarity hypotheses. We do not present their
original formulation here (see, for example, [2, 5]),
designated K41 in the literature, and use the refined
(refined K41) forms [5, 7, 8].

First Similarity Hypothesis. For an arbitrary
turbulent flow with a given viscosity coefficient ν,
the probability distributions for the increment ∆u(r)
restricted by the condition of fixed dissipation of en-
ergy εr

εr(x0, t) ≡
6
πr3

∫

|r1|<r/2
ε(x0 + r1, t)dr1 (4)

are isotropic and depend only on εr and ν. There
is a single combination of r and εr that gives the
dimension of velocity

ur = (rεr)1/3 (5)

and a single dimensionless combination

Rer =
urr

ν
=
r4/3ε

1/3
r

ν
= (r/ηr)4/3, (6)
where
ηr = (ν3/εr)1/4 (7)

is the scale length on which the effects of viscosity
begin to be important.

Second Similarity Hypothesis. For L� r �
ηr, i.e., within the inertial interval, distributions sub-
ject to the first hypothesis are independent of ν.

It follows from the first hypothesis that, for r 	 L
and fixed εr , the longitudinal and transverse structure
functions [5] of the field u(x)

S(L)
q (r) = 〈|uL(x + r) − uL(x)|q〉, (8)

S(N)
q (r) = 〈|uN (x + r) − uN (x)|q〉, (9)

take the forms (here, uL and uN are the projections
of the vector u onto the direction of r and the corre-
sponding perpendicular direction, and q is an arbitrary
real number that is not necessarily an integer; see, for
example, [6])

S(L)
q (r) = C(L)(ur)q/3β(L)

q (r/ηr), (10)

S(N)
q (r) = C(N)(ur)q/3β(N)

q (r/ηr), (11)

where the C are constants and the βq are functions of
(r/ηr).

According to the second similarity hypothesis, the
quantity ν must be absent from (10) and (11) in the
inertial interval. By virtue of relations (5)–(7), this
can occur only when

β(L)
q (r/ηr) = C1(r/ηr)q/3, (12)

β(N)
q (r/ηr) = C2(r/ηr)q/3 (13)

or
S(L)
q (r) = A1(εrr)q/3, (14)

S(N)
q (r) = A2(εrr)q/3. (15)

Relations (14) and (15) show that, within the iner-
tial interval, the longitudinal and transverse structure
functions of the locally isotropic turbulent vector field
obey the same power law. The importance of this
conclusion becomes clear if we recall that all findings
of the Kolmogorov turbulence theory, and especially
its experimental verification [5, 18], were obtained for
longitudinal structure functions. In our case, we have
a cross section of the vector field in the plane of the
sky and can determine only the transverse structure
function. The fact that relations (14) and (15) show
the same behavior for the transverse and longitudinal
structure functions in the inertial interval enables us
to work with the transverse functions while applying
the refined Kolmogorov theory.

Expressions (14) and (15) describe conditional
statistical features of the field (under the constraint of
fixed energy dissipation εr). To obtain unconditional
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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Fig. 1. Turbulence parameters calculated as functions of the moment q in terms of the longitudinal structure functions of the
turbulent velocity field determined from the wind velocitymeasured in the Earth’s atmosphere [18] (solid curves with asterisks):
(a) scaling index ζ(q) for the structure functions; (b) the derivative h(q) = dζ/dq; (c) scaling index τ (q/3) for fluctuations of
the energy dissipation in the turbulent flow; and (d) correction γ(q) to q/3 in the function ζ(q) of the passive scalar scaling
in (31) for weak intermittency of fluctuations of the scalar dissipation (see Section 3, case a). The dashed line marked K41
presents the behavior of the same parameter in the classical K41 theory.
characteristics, we must average the conditional fea-
tures over all possible εr [5]. A probabilistic averaging
of (14) and (15) for q = 3 yields (due to the ergodicity
theorem)

S3(r) = A(ε̄r). (16)

Here, ε̄ is the ensemble-averaged value of the random
variable ε(x, t). Since ε̄(x, t) is virtually constant in
regions small compared to L [5], ε̄r = ε̄ when r 	
L. Hence, for locally isotropic turbulent fields in the
inertial interval, the quantity ζ(3) in the expression

Sq(r) ∼ (r)ζ(q) (17)

is equal to unity.
This conclusion is rather general and does not re-

quire any additional hypotheses about the behavior of
the random field ε(x, t), except that necessary for the
application of the ergodicity theorem: the integral of
the correlation function ε(x, t) of the field must con-
verge [5]. However, for the structure functions, whose
dependence on εr is nonlinear, the single average
value ε̄r = ε̄ is not longer sufficient, and information
about the probability distribution of εr is required.

In the original turbulence theory (K41), Kol-
mogorov assumed that, within the inertial interval,
ASTRONOMY REPORTS Vol. 46 No. 2 2002
probability distributions subject to the similarity
hypotheses depend on the average energy dissipation
ε̄. Then

ζ(q) = q/3, (18)

which is a straight line with a slope of 1/3 and deriva-
tive

h(q) ≡ dζ(q)
dq

= 1/3 (19)

for arbitrary q.

If we assume that the moments 〈εqr〉 obey power
laws in the inertial interval or, in other words, that
the energy-dissipation field is a multifractal (see, for
example, [3]),

〈εqr〉 ∼ rτ(q), (20)

we obtain in the framework of the refined similarity
hypotheses [3]

ζ(q) = q/3 + τ(q/3). (21)

The function ζ(q) can now differ from a straight
line with slope 1/3, though it will pass through the
point ζ(3) = 1, by virtue of (16). Figure 1 shows the
functions ζ(q), h(q), and τ(q/3) for the velocity field
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of a turbulent flow (from wind-velocity measurements
in the Earth’s atmosphere [18]).

We have already seen that, from the point of view
of the general theory of turbulence, deviations of ζ(q)
from a straight line with slope 1/3 can be attributed to
individual features of the energy-dissipation field of a
given turbulent medium. The statistical characteris-
tics of the dissipation field carry the imprint of large-
scale motions, even in the inertial interval [5]. Thus,
in general, ζ(q) can be different for different types of
turbulent flows.

The assumption that the dissipation εr(x, t) has
a logarithmically normal (lognormal) probability dis-
tribution [7, 8, 19] (i.e., ln εr is distributed normally)
becomes, in fact, the Third Similarity Hypothesis.
For the velocity increment, this makes it possible to
express τ(q) explicitly in terms of a positive dimen-
sionless quantity µ [5]:

τ(q/3) =
q(3 − q)

18
µ, 0 < µ < 1. (22)

The experimental estimates [20, 21] show that µ is
0.2–0.4 for the velocity increment in a turbulent flow.
The assumption that the dissipation has a lognor-
mal distribution is equivalent to the assumption that
perturbations on very different scales are independent
[5]. In this case, ζ(q) must be convex for arbitrary q,
and still pass through the point ζ(3) = 1; h(q) must
decrease for arbitrary q; and τ(q/3) must be positive
for q < 3 and negative for q > 3. The functions ζ(q),
h(q), and τ(q/3) determined experimentally (solid
curves in Fig. 1) show precisely the required behavior.
Consequently, the hypothesis that the dissipation of
fluctuations of the kinetic energy has a lognormal dis-
tribution seems quite appropriate for turbulent flows
with high Reynolds numbers (see also Fig. 8.8 and
references to experiments in [3]).

Using (22) for q = 6, we obtain
µ = −τ(2) = 2 − ζ(6). (23)

The one-dimensional spectrum of the energy-
dissipation field εr(x, t) demonstrates the scaling [5]

E(ε)(k) ∼ kµ−1 ≡ kβ . (24)

Therefore, the form of ζ(q) can be used to verify the
similarity hypotheses for a given medium, investigate
fractal features of the dissipation. In addition, based
on the value of ζ(6), we can determine the quantity β,
the index of the spectrum of fluctuations in the energy
dissipation.

The physical meaning of the behavior of ζ(q), h(q),
and τ(q) is that mainly the effects of weak fields
are manifest at small q (q < 1), since raising this
quantity to a fractional power (followed by ensemble-
averaging) strengthens the contribution of regions
with weak fields and weakens that of strong fields;
similarly, at high q (for instance, q > 3), primarily
the behavior of strong fields is analyzed, since the
contribution of weak fields in averaged moments of
high orders is negligible. In view of this, the de-
crease in the function h(q) for the lognormal model
means that the h for weak fields exceeds that for
strong fields. Since h characterizes the degree of
differentiability (smoothness) of a given subset (h is
the Hölder exponent [22], which is equal to unity for a
function that is everywhere differentiable and zero for
a nondifferentiable function), we conclude that weak
fields are primarily smoother than strong fields in the
lognormal model for locally isotropic turbulence.

3. SCALING FEATURES OF THE Bz
COMPONENT OF THE MAGNETIC FIELD

Let us analyze the behavior of structure functions
of theBz component of the magnetic field in turbulent
flows.

We can use two-dimensional maps of the longi-
tudinal magnetic field detected in active solar regions
observed near the center of the solar disk (to minimize
the effect of projection) as measurements of the Bz
component of the field B in the coordinate system (x,
y, z), where the (x, y) plane is tangent to the solar
surface at the center of the magnetogram. Thus, Bz
is available on a grid

ω : (xi = i · ∆x, i = 1, . . . , Nx; (25)

yj = j · ∆y, j = 1, . . . , Ny),

where ∆x and ∆y are the magnetogram cell sizes and
Nx andNy are the numbers of points along the width
and length of the magnetograms. Using the defi-
nition (9), we can calculate the transverse structure
function of B:

S(N)
q (r) = 〈|Bz(x + r) −Bz(x)|q〉, (26)

where x ∈ ω, and r ≡ |r| takes on values from rmin =
2
√

∆x2 + ∆y2 to rmax < min(Nx∆x,Ny∆y).
On the other hand, the right-hand side of (26) is

completely consistent with the definition of the usual
structure function Sq(r) of a scalar fieldBz . Since the
Bz component of the photospheric magnetic field is
transported by turbulent plasma flows quite similar to
a scalar field [23], we can use the theory of transport of
a passive scalar [5]. If ε(B)(x, t) is the fluctuation field
for the magnetic-energy dissipaton and ε(v)(x, t) is
the fluctuation field for the kinetic-energy dissipation
(which has the same meaning as ε(x, t) in the previ-
ous section), the refined Kolmogorov theory gives for
the second (q = 2) structure function

S2(r) = C

〈
ε
(B)
r

(ε(v)r )1/3

〉
r2/3. (27)
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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Active regions, their flare activity, and turbulence parameters of the magnetic field

NOAA Date Time, UT Coordinates Image quality
Flare magnitude

∆h D(h6) β
optical X-ray

1 2 3 4 5 6 7 8 9 10

8375 Nov. 4, 1998 16:32 N18 W08 10 1N M1.0 0.063 1.82 –1.26

8323 Sept. 4, 1998 01:06 S16 W03 6.0 1F M1.5 0.191 1.34 –1.15

7216 July 4, 1992 00:29 N12 E12 6.0 1N M1.5 0.073 1.76 –1.02

7590 Oct. 20, 1993 04:12 N13 E18 5.5 1B M1.8 0.075 1.81 –0.95

6786 Aug. 20, 1991 02:19 S10 E04 5.5 2B M6.7 0.114 1.58 –0.85

6757 Aug. 4, 1991 06:28 N18 W09 6.5 2B X1.5 0.271 1.12 –0.60

6853 Oct. 3, 1991 03:21 S16 W20 7.0 4B M7.4 0.383 1.09 –0.45

6659 June 9, 1991 03:21 N29 W08 6.0 3B X1.2 0.453 0.88 –0.27
Generalizing (27) for arbitrary real q yields

Sq(r) = C

〈
(ε(B)
r )q−1

(ε(v)r )(q−1)/3

〉
rq/3. (28)

If we assume that fluctuations of the magnetic-
and kinetic-energy dissipation are statistically inde-
pendent, (28) takes the form

Sq(r) = C1r
τ (B)(q−1)r−τ

(v)((q−1)/3)rq/3, (29)

where τ (B)(q) and τ (v)(q) are the scaling indices of
the fluctuations of the magnetic- and kinetic-energy
dissipation:

〈(ε(B)
r )q〉 ∼ rτ

(B)(q), 〈(ε(v)r )q〉 ∼ rτ
(v)(q). (30)

Then, the scaling index ζ(q) (17) for the structure
functions of Bz takes the form

ζ(q) = q/3 + τ (B)(q − 1) − τ (v)((q − 1)/3) (31)

≡ q/3 + γ(q).
The contributions of the scaling indices for the fluc-
tuations of the magnetic- and kinetic-energy dissi-
pation in (31) have opposite signs. Consequently,
the degrees of intermittency of the magnetic- and
kinetic-energy dissipation compete in theBz scaling.
The ζ(q) plot forBz does not necessarily pass through
the point ζ(3) = 1, and in general, ζ(q) can be non-
convex, even when the lognormal law is valid for both
fields ε(B)(x, t) and ε(v)(x, t).

To elucidate the character of the competition be-
tween the magnetic and kinetic dissipation, we con-
sider two limiting cases.

(d) Weak intermittency of the magnetic-energy
dissipation. If the degree of intermittency of the
magnetic-energy dissipation is much lower than that
of the kinetic-energy dissipation:

|τ (B)(q − 1)| 	 |τ (v)((q − 1)/3)|, (32)
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the correction γ(q) to q/3 in the function (31) for the
passive scalar Bz will be mainly determined by the
kinetic-energy dissipation. Here, the correction γ(q)
is equal to the function τ (v)(q/3) mirror reflected and
shifted to the right by unity. The function γ(q) for this
case is shown in Fig. 1d.

(b) Strong intermittency of the magnetic-
energy dissipation. If the degree of intermittency
of the magnetic-energy dissipation is much higher
than that of the kinetic-energy dissipation:

|τ (B)(q − 1)| � |τ (v)((q − 1)/3)|, (33)

the correction γ(q) is mainly determined by τ (B)(q −
1), while the contribution of the negative term in (31)
is small. Here, the behavior of γ(q) is close to that
of τ(q/3) in Fig. 1c (assuming a lognormal law for
the probability distribution of the magnetic-energy
dissipation).

Further, we consider calculations of structure
functions for the photospheric longitudinal magnetic
field taking into account the general conclusions of
the refined Kolmogorov theory of turbulence pre-
sented above.

4. OBSERVATIONAL DATA
AND CALCULATIONS OF SCALING

INDICES FOR STRUCTURE FUNCTIONS

To calculate the turbulence parameters of the pho-
tospheric magnetic field, we selected the eight active
regions listed in the table. The first (NOAA 8375) was
observed by the MDI instrument of the SOHO space
laboratory. The observations and magnetogram are
presented in [1]. The other seven regions were
observed at the Huairou Solar Observing Station
(HSOS) of the Beijing Astronomy Observatory, in
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Fig. 2. Structure functions calculated from maps of the Bz component of the magnetic fields of the active regions NOAA 8375
and NOAA 8323 as a function of the logarithm of the scale length. The vertical dashed lines show the inertial interval.
the FeI 532.4 nm spectral line using a videomag-
netograph [24]. The resolution of the CCD camera
was 0.62′′ × 0.43′′, and the size of the field map was
512× 512 cells. The processing of the HSOS data on
solar magnetic fields is presented in detail in [25].

When selecting the active regions and magne-
tograms, we used two criteria. The first is that the ac-
tive region must be as close as possible to the center
of the disk so that we can neglect the effect of projec-
tion and treat the measured longitudinal field as the
Bz component. The second is that the image quality
must be as high as possible for the given observing
station. An evaluation (by the observer) of the image
quality using numbers from 0 to 10 is presented in the
fifth column of the table. In this scheme, the extra-
atmospheric SOHO/MDI observations have quality
10. The HSOS maps have qualities of two–four, with
the maximum quality being seven.

The sixth and seventh columns of the table present
the flare activity of the ARs: the magnitudes of the
most powerful flares in the optical and 1–8 Å X-ray
ranges (according to Solar Geophysical Data) de-
tected in the given active region over the entire obser-
vation period preceding the field measurement. For
seven active regions, these proved to be the most
powerful flares during the entire period when they
were visible on the disk. The flare activity of the ARs
in the table grows from top to bottom.
Figure 2 presents the structure functions Sq(r)
calculated using (26) for two active regions (on a
logarithmic scale). These were each calculated for 12
values of q from 0.5 to 6.0 separated by 0.5, though
Fig. 2 shows only those values corresponding to in-
teger q. Each structure function was calculated at
150 points along the scale length r. To obtain each
point for an individual function, from 3× 105 (small r)
to 1.5 × 105 (large r) field increments were averaged.
Therefore, the errors are very small and are smaller
than the plotted symbols. The vertical dashed lines
show the beginning and end of the inertial interval,
inside which the dependence of log Sq(r) on log r can
be assumed linear for all q. In choosing the inertial
interval, we used the conclusions of [1]: we considered
an apparent underestimation of log Sq(r) for decreas-
ing log r (a dip in the structure functions at small
scales) to be associated with insufficient telescope
resolution and deviations from a linear regime at large
scales to reflect the absence of turbulent structures
on such scales. With the 150 points available along
Sq(r), we determined the boundaries corresponding
to the vertical dashed lines (Fig. 2) by several meth-
ods. The changes in the slope ζ(q) of the structure
functions did not exceed the errors σ corresponding
to the uncertainty in the linear regression performed
within the inertial interval. The larger q, the greater
the deviations of logSq(r) from the linear regime we
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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Fig. 3. The functions ζ(q) calculated as slopes (on a logarithmic scale) of the structure functions Sq(r) within the inertial
interval. The classical Kolmogorov K41 line with the slope of 1/3 is shown dashed. The rms deviations are shown only for five
active regions and are of the same order for the others.
find in the inertial interval, and, accordingly, the larger
the errors σ shown in Fig. 3.

Figure 3 shows the ζ(q) indices as functions of
q for all the active regions in accordance with their
definition (17). For each, we can see deviations of ζ(q)
from the classical Kolmogorov K41 line with slope
1/3. ζ(q) is everywhere above the K41 line for the
ARs NOAA 8375 and 8323; close to the K41 line for
the ARs NOAA 7216 and 7590; and goes deeper and
deeper below the K41 line at high q (q > 3) and be-
comes more convex for the remaining active regions.
We especially emphasize that the active regions are
arranged here from top to bottom in the same order
as they are presented in the table: in order of growing
flare activity.
ASTRONOMY REPORTS Vol. 46 No. 2 2002
The characteristic features of ζ(q) are clearly
shown by its derivative h(q), presented in Fig. 4.
For each active region, h(q) takes its own form. For
NOAA 8375 and 7216, h(q) takes its maximum at
q∗ = 3 and q∗ = 2, respectively. This indicates an
inflection point in the ζ(q) plot: for q < q∗ and q > q∗,
ζ(q) is concave and convex, respectively. This form
for ζ(q) is not typical of structure functions of the
velocity increment in a turbulent flow (see Section 2
and Fig. 1). However, an inflection can be present
for a passive scalar as well. Since h is the Hölder
exponent of the process, and so describes the intensity
of oscillations (see Section 2), and since small q
values correspond to weaker fields, we can interpret
a decrease in h with decreasing q as a strengthening



168 ABRAMENKO

 

0

 
h
 
(
 
q
 

)
 

q

 

AR

8375

7216
7590

8323
6786

6757

6853

6659

1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

0.5

Fig. 4. The functions h(q) calculated as the derivatives dζ/dq. The line h = 1/3 corresponding to the K41 theory is shown
dashed. The active regions are marked in the same way as in Fig. 3.
of the intensity of oscillations of the weaker fields of
these two active regions. For the remaining active
regions, h(q) everywhere monotonically decreases,
although with different rates. For NOAA 7590, this
function only slightly deviates from the Kolmogorov
1/3 line, while the rate of the drop in h(q) and the
interval in which it occurs increase for the subsequent
active regions (i.e., with increase in the flare activity).

The interval ∆h of the h variations describes the
multifractal complexity of the system [3]: the broader
∆h, the richer the set of subsets/monofractals form-
ing the corresponding multifractal system. ∆h is pre-
sented in the eighth column of the table. We conclude
that, the higher the flare activity of a group, the more
rich and complex the multifractal field structure of the
field, and the broader the range [D(h(6)), 2] of the
fractal dimensionsD(h) of its subsets. The quantities
D(h(6)) calculated using the relation [3]

D(h(q)) = 2 + qh(q) − ζ(q) (34)

are given in the ninth column of the table. The quan-
tity D(h(6)) provides an estimate of the dimension of
the most complex subset (maximally concentrated in
rare individual peaks) in our sample. We can see from
the table that, the higher the flare activity of an active
region, the lower the dimension of the most complex
subset, and the richer the system of subsets forming
the multifractal Bz . However, NOAA 8323 shows
that these phenomena do not always accompany each
other: this group with extremely low flare activity has
a broad range ∆D(h) = [1.34, 2] compared to that of
the rather flare-productive AR NOAA 6757.
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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Let us consider the scaling of fluctuations of
the kinetic- and magnetic-energy dissipation. The
functions γ(q) calculated using (31) and the known
ζ(q) are shown in Fig. 5. In proportion to the increase
in flare activity, γ(q) gradually changes from being in-
creasing, concave, and positive (NOAA 8375) to de-
creasing, convex, and negative at q > 3 (NOAA 6659).
We can explain this behavior as an effect of the
competition between the τ (B) and τ (v) terms in (31)
and a gradual transition from weak intermittency of
the magnetic-energy dissipation (Case a, Section 3)
to strong intermittency (Case b).

In active regions with weak flare generation, Bz
plays the role of a passive scalar with weak intermit-
tency of fluctuations of the magnetic-energy dissipa-
ASTRONOMY REPORTS Vol. 46 No. 2 2002
tion. The scaling of the energy dissipation is mainly
determined by the dissipation of the kinetic energy.

In ARs with high flare activity, the behavior of Bz
is consistent with that of a component of a turbulent
flow, and its scaling is quite similar to that of the
transverse structure functions of a locally isotropic
turbulent field, with all three refined Kolmogorov hy-
potheses being fulfilled. Here, the scaling of the
energy-dissipation field is determined mainly by the
magnetic energy.

Deriving ζ(6) from observations and using (23)
and (24), we can calculate the index β for the energy-
dissipation spectrum E(ε)(k): the quantity β ≡ µ−
1 = 1 − ζ(6) in the expression E(ε)(k) ∼ kβ is pre-
sented in the tenth column of the table. We note
the following tendency: the higher the flare activity of
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a group, the less steep the energy-dissipation spec-
trum; i.e., the greater the fraction of the total dis-
sipation power that is concentrated on small scales.
In other words, the more small-scale fluctuations
contribute to the total dissipation spectrum, the more
powerful the flares that can be generated by that
active region.

Note that the assumption of a lognormal dis-
tribution for the dissipation of the total (magnetic
and kinetic) energy is not fulfilled for NOAA 8375
and NOAA 7216 (ARs with low flare activity). In
NOAA 6786, 6757, 6853, and 6659 (ARs with high
flare activity), the fluctuations of the magnetic-energy
dissipation obey a lognormal distribution.

5. CONCLUSIONS
Our analysis of the behavior of turbulence based

on refined Kolmogorov similarity hypotheses has en-
abled us to obtain formula (31), which describes the
scale invariance of the vertical component of the pho-
tospheric magnetic field, assuming that fluctuations
of the kinetic- and magnetic-energy dissipation are
statistically independent. This formula can explain
the observed behavior of the Bz scaling during the
increase in flaring: the higher the flare activity of
a group, the higher the intermittency (multifractal
composition) of fluctuations of the magnetic-energy
dissipation, and the less steep its dissipation spec-
trum; i.e., the larger the contribution of small-scale
fluctuations in the total of magnetic-energy dissipa-
tion spectrum.

Experimental evidence for intermittency of pho-
tospheric magnetic fields was first obtained in [11]
based on a fractal analysis. However, no relations be-
tween this intermittency and flare activity have been
studied until now. The relations we have discovered
are quite natural from a physical viewpoint: solar
flares are associated with excess magnetic energy and
its dissipation. However, a direct calculation of the

field ε(B)
r (x, t) from observational data requires infor-

mation on the total volume vector field and the time
behavior of associated processes, which is currently
virtually completely lacking. Therefore, the relation
between the scaling parameters of the Bz component
of the magnetic field and the dissipation of magnetic
energy should help appreciably in tests of the level of
flare activity of a group and flare forecasting based on
magnetograms of the longitudinal magnetic field.
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Abstract—The role of the stability of differential streams in a self-gravitating medium is studied. A
simple model with two two-dimensional streams in a thin layer that interact only gravitationally is
considered. Instability can develop if the stream-shear parameters have opposite signs; however this
condition is not sufficient, and, for some combinations of parameters, the Jeans instability can disappear
due to the drift of the perturbations when shear is introduced. The opposite situation is also possible:
the system as a whole can be unstable even if both subsystems are stable. Under certain conditions,
perturbations do not grow in time but waves are continuously emitted. Criteria are presented for the
instability of the system as the whole, depending on the region where the parameters of the subsystem
are localized. Common drawbacks of stability analyses in stellar dynamics are briefly discussed in this
context. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Stability criteria for rotationally symmetric per-
turbations in galactic disks have, by and large, been
formulated fairly convincingly [1–7]. In contrast, the
development of asymmetric perturbations is a much
more complex problem, due to the differential rotation
of the medium and analogous differential propagation
of waves. A perturbation that has arisen experiences
evolution similar to the case of rotational symmetry
but is also progressively sheared due to the differential
structure of motions. The result depends on the
relative rates of development of two processes: the
inherent instability mainly affects the amplitude of the
perturbation, while the shear displaces the local wave
vector. Therefore, the interplay of the two factors can-
not be simply compared arithmetically and requires a
more comprehensive study. This challenge is down-
played almost everywhere in the available literature:
some terms of equations are frequently omitted with-
out good reason, expansions in a small parameter are
employed where they are unlikely to be valid, etc. The
situation is more satisfactory concerning oscillation
and stability calculations for a differentially rotating
system as a single object.

Such analyses of stellar models are fairly numer-
ous [8]. Expansions of perturbations of the potential
in properly chosen systems of functions also yield
interesting results for elliptical galaxies [9, 10]. Simi-
lar calculations of global oscillations are available for
gaseous disks [11]. However, all these studies refer to
global perturbations, with wavelengths comparable
to the size of the system itself; strictly speaking,
1063-7729/02/4602-0083$22.00 c©
the notion of wavelength is irrelevant in such cases,
whereas the boundary of the system plays an im-
portant role, as is the case for the classic figures of
equilibrium [12].

Interfaces due to, e.g., sharp bends in angular-
velocity profiles are also possible. The simplest case
of tangential discontinuity was studied fairly long ago
[3]. In a separate publication [13], we analyzed the
stability of a discontinuity smoothed to some de-
gree. Cases with gradients of chemical composition
or temperature have their own particular features; un-
der certain conditions, such gradients are responsible
for an instability resembling the convective instability
[14].

Nevertheless, the problem of local perturbations in
the absence of sharp boundaries remains insufficiently
studied. As will be clarified below, the shear-induced
drift of a single wave mode always formally implies
stability. At least two interacting material streams
or wave processes carried by differential motion in
opposite directions are necessary for instability.

It is still not easy to choose a realistic model suit-
able for a more or less accurate analysis. For this
reason, we deal here with a somewhat artificial model,
which is, however, subject to typical difficulties in-
herently related to the differential structure of the
motion. In our opinion, a search for “realistic” models
is premature and cannot yet deepen our insight into
the problem, since other substantial difficulties that
have been neglected in past studies but appreciably
affect the results remain. As a result, incompletely
2002 MAIK “Nauka/Interperiodica”
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substantiated studies have accumulated, and a falla-
cious impression of adequate comprehension of the
problem arises, while appreciable shortcomings re-
main hidden.

It is the essence of some of these usually over-
looked difficulties that we seek to elucidate here using
a very simple model.

2. THE MODEL

We abstract ourselves from the rotation itself and
consider the differential structure of the translational
motion. More precisely, we consider a plane layer of
gas consisting of two interpenetrating components
with surface densities σ and σ̄. Their interaction is
purely gravitational. A similar situation can arise if
gas layers moving parallel to each other are separated
by a tangential magnetic field, which prevents them
from direct frictional interaction.

We assume that each component does not initially
expand or compress, being only sheared. Next, we
assume the presence of a neutral line common to the
two components, where the velocities of both media
vanish. Let us identify this neutral line with the x axis
in the coordinate system (x, y). Finally, we assume
uniform conditions and obtain the following form for
the velocity field in the initial steady state: v0x =
νy, v̄0x = ν̄y, v0y = v̄0y = 0. Thus, we introduce the
quantities ν and ν̄ as the shear coefficients. When
taken with opposite signs, they represent the densi-
ties of the vorticity. We use overbars everywhere to
discriminate between the components. In addition, in
the notation used below, t is time, G the gravitational
constant, p(x, y) the pressure, c the speed of sound,
Φ(x, y) the potential, γ = ν̄/ν, the symbol δ denotes
a linearized perturbation, λ is the growth rate, and µ
is the x component of the wave vector.

3. GOVERNING EQUATIONS

We use the regular equations of two-dimensional
hydrodynamics:

∂vx
∂t
+ vx

∂vx
∂x

+ vy
∂vx
∂y

= − 1
σ

∂p

∂x
− ∂Φ
∂x
, (1)

∂vy
∂t
+ vx

∂vy
∂x

+ vy
∂vy
∂y

= − 1
σ

∂p

∂y
− ∂Φ
∂y
,

∂σ

∂t
+
∂

∂x
(σvx) +

∂

∂y
(σvy) = 0.

We linearize equations (1) and separate the vari-
ables t and x in the usual way, using multiplication by
λ and iµ instead of t and x differentiation, respectively.
This yields

(λ+ iµνy)δvx + νδvy = −iµ
(
c2

σ
δσ + δΦ

)
, (2)
(λ+ iµνy)δvy = −c
2

σ

∂δσ

∂y
− ∂δΦ
∂y
,

(λ+ iµνy)δσ = −σ
(
iµδvx +

∂δvy
∂y

)

and similar equations for the second medium.
We apply a Fourier transform to system (2):

∫ +∞

−∞
δσeikydy = σ̂(k), (3)

and so on; then, according to the theory of gravitation
[15]:

Φ̂ = − 2πG√
k2 + µ2

(σ̂ + ˆ̄σ). (4)

As a result, we arrive at the system of equations
(
νµ
d

dk
+ λ

)
v̂x + νv̂y = iµ

(
c2

σ
σ̂ + Φ̂

)
, (5)

(
νµ
d

dk
+ λ

)
v̂y = ik

(
c2

σ
σ̂ + Φ̂

)
,

(
νµ
d

dk
+ λ

)
σ̂ = −iσ(µv̂x − kv̂y)

and a completely analogous system for the second
medium.

We are interested, however, in perturbations
growing from zero. These should conserve the same
specific vorticity that was present in the steady state:

1
σ

(
∂vy
∂x

− ∂vx
∂y

)
= const. (6)

Variation of (6) yields

iµδvy −
∂δvx
∂y

+
ν

σ
δσ = 0, (7)

and the Fourier transform of (7) is

iµv̂y + ikv̂x +
ν

σ
σ̂ = 0, (8)

with completely analogous relations for the other
medium. The consistency of (8) with system (5) can
easily be checked.

In view of relationship (8), only two independent
functions other than Φ̂ remain in system (5), and so
this system should reduce to one second-order differ-
ential equation. Indeed, applying again the differential
operator already present on the left-hand side to the
last equation of (5) yields, after some manipulation
and taking into account (8),
(
νµ
d

dk
+ λ
)2

σ̂ − 2µνσ̂
q

[
k

(
νµ
d

dk
+ λ
)
− νµ

]
(9)

+ q(c2σ̂ + σΦ̂) = 0,
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where the notation q = k2 + µ2 is used. A completely
analogous equation can be obtained for ˆ̄σ [the pa-
rameters λ, µ, k, and function Φ̂ given by (4) remain
common to both equations].

An exhaustive analysis of the system consisting of
(9) and its counterpart for ˆ̄σ is fairly difficult. Here,
we restrict our analysis to the case of weak shear;
i.e., we consider ν and ν̄ to be small compared to
the characteristic frequency µc. We also assume that
the corresponding system with ν = ν̄ = 0 is Jeans
unstable for the given µ, and a perturbation grows
exponentially in this system but does not move. If
shear is present, we do not wish to determine the
growth rate in all cases but are mainly interested
in the situation at the stability threshold, when the
quantity λ in (9) is also small.

Under these conditions, the well-known quasi-
classical approximation can provide useful guidelines.
Specifically, we seek the basic functions in the form

σ̂ = κei
∫
ψ(k)dk, ˆ̄σ = κ̄ei

∫
ψ(k)dk, (10)

where κ and κ̄ are slowly varying functions of k;
on the contrary, the phase ψ(k) varies rapidly due
to the presence of the small quantity ν or ν̄ in the
denominator.

After neglecting small terms in (9), in particu-
lar, those containing λ, we easily find for sufficiently
large k:

ψ = ± kc
µν
. (11)

It is known that self-gravitation decays as k be-
comes large [see (4)]; therefore, forψ specified by (11),
the first variable σ̂ plays a leading role in the equalities
(10), whereas ˆ̄σ appears only as a result of the rela-
tively weak gravitational response to σ̂. Conversely, if
we proceed from the differential equation for ˆ̄σ, then σ̂
will be of only minor importance and the formula

ψ = ± kc
µν̄
. (11*)

will operate instead of (11).

4. DRIFT OF PERTURBATIONS IN k

To clarify the boundary conditions at large k, we
return to the triplet of governing equations (5), re-
covering the original meaning for the factor λ: ∂/∂t.
If we consider the particular case where the initial
perturbation is restricted to one harmonic in y, i.e.,
t = 0, we have

v̂x = P1δ̄(k − k0), v̂y = P2δ̄(k − k0), (12)

σ̂ = P3δ̄(k − k0)
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(here, k0, P1, P2, and P3 are constants, and δ̄ is the
Dirac delta function). We then obtain from Eqs. (5),
neglecting the gravitation of the other subsystem,

∂

∂t
v̂x = νµP1δ̄

′(k − k0) +Q1δ̄(k − k0), (13)

∂

∂t
v̂y = νµP2δ̄

′(k − k0) +Q2δ̄(k − k0),
∂

∂t
σ̂ = νµP3δ̄

′(k − k0) +Q3δ̄(k − k0),

where Q1, Q2, and Q3 depend linearly on P1, P2, and
P3.

According to the physical meaning of Eqs. (13),
not only is the perturbation gradually deformed, but it
also drifts along the k axis at the constant speed−νµ.
In particular, this is the case for any sufficiently large
|k|.

Thus, in certain situations, harmonics with large
|k| in the expansion of the perturbation are generated
by harmonics with moderate k. The sign of k for the
admissible, continuously generated higher harmonics
depends on the signs of ν and ν̄. In particular, if the
shear is directed differently in the two media, e.g., if

ν > 0, ν̄ < 0, (14)

the “creeping” perturbations travel toward large neg-
ative k if the leading role is played by σ̂ and toward
large positive k if the leading role is played by ˆ̄σ. For a
drift in the opposite k direction, i.e., for k > 0 if σ̂ plays
a leading role and for k < 0 if ˆ̄σ does, both σ̂ and ˆ̄σ
should asymptotically approach zero. This yields the
four necessary boundary conditions for our fourth-
order system with respect to σ̂ and ˆ̄σ. In contrast,
if the shear direction is the same in the two media,
neither subsystem prevents the other from drifting
even at finite k, and the perturbation disappears as
t→ ∞.

5. TOPOLOGICAL PROPERTIES
OF SOLUTIONS FOR k �= 0

Let us now examine the quasi-classical asymp-
totics for the entire k axis. For convenience, we use
the ansatz

ψ =
v

ν
, λ = −iω. (15)

The second equality in (15) reflects the already
noted fact that our main concern is with marginal
stability. Here and below, we assume ν and ν̄ (pro-
portional to ν) to be small parameters. Upon omitting
terms small in this sense, we obtain for the func-
tion v(k)
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∣∣∣∣∣∣∣∣

−(µv − ω)2 + q
(
c2 − 2πGσ√

q

)
−2πGσ√q

−2πGσ̄√q −(µvγ − ω)2 + q
(
c̄2 − 2πGσ̄√

q

)

∣∣∣∣∣∣∣∣
= 0. (16)
Below, we will often use (16) in the unrolled form

f = XY − αX − βY +∆ = 0, (17)

where the notation X = (µv − ω)2, Y = (µvγ − ω)2
is used for brevity, and the coefficients on the right-
hand side of (17) have the form

α = q
(
c̄2 − 2πGσ̄√

q

)
, β = q

(
c2 − 2πGσ√

q

)
, (18)

∆ = c2c̄2q2 − 2πG(c2σ̄ + c̄2σ)q3/2.

We emphasize that the roots of (16) may coincide
pairwise for some k. In this case, within some nearby
interval of k, a complex k value will appear instead
of coinciding real ones. As the solution for σ̂ and
ˆ̄σ is extended into such an interval of imaginary v,
rapid damping should occur, and the harmonics cor-
responding to some finite wave-number intervals will
not actually appear in the solution. To elucidate the
situation, we note that, at large |k|, the roots always
remain real, in accordance with (11) and (11*).

Changes in the parameters can result in the dis-
appearance of the interval of imaginary v. A transi-
tion between the two cases—with and without such
intervals—is called a topological transformation. A
quite similar notion is used in quantum mechanics
[16].

The transformation takes place if the conditions

f = 0,
∂f

∂k
= 0,

∂f

∂v
= 0 (19)

are satisfied.
We write the second of these conditions in terms of

X and Y
∂f

∂k
= −α̃X − β̃Y + ∆̃, (20)

where

α̃ = 2c̄2k − 2πGσ̄ k√
q
, β̃ = 2c2k − 2πGσ k√

q
, (21)

∆̃ = 4kc2c̄2q − 6πGk(c2σ̄ + c̄2σ)√q.
If k �= 0, the common factor k on the left-hand sides
of (21) can obviously be omitted.

In principle, the system of equations (17) and (20)
can be solved forX and Y , after which these quanti-
ties can be used to determine v and ω. It is important
that, in this case, we should have X ≥ 0 and Y ≥ 0.
If we eliminate, for example, Y from these equations,
we arrive at the quadratic equation

−α̃X2 + (∆̃− αβ̃ + βα̃)X +∆β̃ − β∆̃ = 0. (22)

Checking the discriminant of (22) indicates thatX
and Y are real provided that

η < η∗, (23)

where η =
√
q/πG, η∗ = σ/c2 + σ̄/c̄2.

As η is varied from 0 to η∗, given the other pa-
rameters, the point (X,Y ) describes a curve. We will
prove that this curve does not actually go through the
quadrant X > 0, Y > 0. Indeed, such a curve could
leave the quadrant through infinite or zero values of
X and Y . However, one of the roots (22) becomes
infinite at α̃ = 0, η = σ̄/c̄2, Y = α = −πGσ̄√q < 0.
Similarly, for Y =∞, we have X < 0. On the other
hand, according to (22),X vanishes at∆β̃− β∆̃ = 0,
or, in unrolled form, at

η3,4 =
4c̄2σ + c2σ̄ ± c

√
σ̄(c2σ̄ − 8c̄2σ)

2c2c̄2
, (24)

obviously provided that the root on the right-hand
side of (24) is real. In this case, however, Y = ∆/β,
and the substitution of any root of (24) yields β >
0,∆ < 0; i.e. Y < 0. Similarly, X < 0 at Y = 0. The
possibility remains that the curve of admitted values
of X and Y forms a closed loop in the first quadrant,
which either does not touch the coordinate axes or
is anchored at the origin of the coordinate system
(where X = Y = 0, η = 0). In this case, however, a
maximum of η must be reached somewhere in this
loop; i.e., double roots for X,Y must be present at
the value η = η∗ already known to us. A fairly simple
calculation for this point yields

X = −πG√q
(
c2

c̄2
σ̄ + σ

)
< 0

and, similarly, Y < 0. Thus, for k �= 0, the combina-
tion of signs ofX ≥ 0, Y ≥ 0 leads to a contradiction
in any case. Therefore, a topological transformation
is impossible for k �= 0, which proves our statement.
Moreover, since the condition ∂f/∂v = 0 is not used
in the above proof, the combination f = 0, ∂f/∂k =
0 without a transformation is also impossible. Thus,
the branches of the curves v(k) at k �= 0 are never
directed horizontally, and the sections of increases
and decreases in these curves contact each other only
at the points where a vertical component is present.
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Below, we will frequently use Eq. (17) in the form

f = (X − β)(Y − α)−∆1 = 0, (25)

where∆1 = αβ −∆ = (2πG)2σσ̄q > 0.

6. TOPOLOGICAL PROPERTIES
OF SOLUTIONS FOR k = 0

It will be important for us to list various cases of
transformations for k = 0. For the case of a topolog-
ical transformation, we have the following expansion
in the vicinity of the values k = 0, v = v0, which zero
the function f(v, k):

f ≈ 1
2

[
k2∂

2f

∂k2
+ (v − v0)2

∂2f

∂v2

]
, (26)

since, by virtue of (20) and (21), the derivatives ∂f/∂k
and ∂2f/∂v∂k vanish. Furthermore, the second
derivative with respect to k can be considered a limit
for (1/k)(∂f/∂k), and the above considerations for
k �= 0 show that this second derivative also never
vanishes.

The classification of transformations for k = 0 is
based on the conditions (19), except for the trivial one,
∂f/∂k = 0.

We will frequently refer to particular values of α, β,
and∆ at k = 0, viz.,

α = µ2

(
c̄2 − 2πGσ̄

µ

)
, β = µ2

(
c2 − 2πGσ

µ

)
, (27)

∆ = c2c̄2µ4 − 2πG(c̄2σ + c2σ̄)µ3.

They also determine ∆1 = αβ −∆ =
= (2πG)2σσ̄µ2 > 0.

We can write the third of conditions (19) in un-
rolled form
∂f

∂v
= 2µ[(Y − α)

√
X + γ(X − β)

√
Y ] = 0. (28)

For convenience, we introduce the auxiliary variable
τ =

√
(Y − α)/(X − β). We then obtain, combining

(28) and (25),

Y − α = τ
√
∆1, X − β = τ−1

√
∆1. (29)

Further, we use (28) to obtain
√
X

Y
= − γ

τ2
,

√
β + τ−1

√
∆1

α+ τ
√
∆1

= − γ
τ2
,

which reduces to an algebraic equation for τ , viz.,

βτ4 +
√
∆1τ

3 − γ2
√
∆1τ − γ2α = 0. (30)

Conversely, if τ is a real root of (30), then the X
and Y constructed using relations (29) have the same
sign in any case. Only positive values of X and Y
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suit our needs. It is sufficient to impose the condition
Y > 0, which is equivalent to

τ > − α√
∆1
, (31)

and the necessary conditions (25) and (28) are satis-
fied for this choice of τ .

A point of uncertainty is the possibility of simul-
taneous changes in the signs of both

√
X and

√
Y ,

which is equivalent to trivial changes in the signs
of v and ω. The possible appearance of multiple
roots of (30) plays an important role. It is more
convenient to deal with the original system of equa-
tions (25) and (28) for X and Y rather than with
(30) itself. Coincident pairs (X,Y ) will be present
if the Jacobian of f and ∂f/∂v as functions of X
and Y vanish. This yields (Y − α)(X + β)/

√
X −

γ(X − β)(Y + α)/
√
Y = 0, or, when combined with

(28), (X + β)/X = −(Y + α)/Y .
We now use (25) to obtain XY = −∆/3, αX +

βY = 2∆/3, whence we immediately find

X =
∆±

√
∆(∆+ 3αβ)
3α

,

Y =
∆∓

√
∆(∆+ 3αβ)
3β

.

Since Eq. (28) can be rewritten

γ2 =
X(Y − α)2
Y (X − β)2 ,

substitution of the above critical X and Y values
yields the required condition for multiple roots:

γ2=
α

β

9αβ∆−∆2± (∆+3αβ)
√
∆(∆+3αβ)

9αβ∆−∆2∓ (∆+3αβ)
√
∆(∆+3αβ)

. (32)

Here, we can assume that ∆ < 0; otherwise, X and
Y will have opposite signs and γ will be imaginary.

Figure 1 depicts parameter-space regions charac-
terized by specific numbers of real roots for τ . Since
the ansatz τ = γτ1 reduces (30) to

γ

√
β

α
τ1

4 +

√
∆1

αβ
(τ3

1 − τ)− 1
γ

√
α

β
= 0,

it is clear that, qualitatively, the behavior of roots is
completely determined by two dimensionless param-
eters, and the following quantities can be used as such
parameters:

θ = arctan
∆
αβ
= arctan

(
1− ∆1

αβ

)
(33)

and γ̃ = |γ|
√∣∣∣∣
β

α

∣∣∣∣.
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Fig. 1. Graphic representation of the parameter-space regions for various types of transformations.
The cases of αβ > 0 and αβ < 0 should be con-
sidered separately. Let us also note the formal mean-
ing of simultaneous changes in the signs of α and β.
As is evident from (30), the roots for τ also change
their signs in this case; according to (29), X and Y
behave similarly. Thus, for fixed γ and ∆, one of the
parameter pairs (α, β) and (−α,−β) always has a

Transformations and their qualitative properties

Case I

Regions A B C

α > 0 – – – – 1) – –

β > 0 2) – +

α < 0 1) + –

β < 0 2) + – + – Impossible

3) – –

Case II

Regions D E E1 F

α > 0 1) + – 1) + – – –
β < 0 2) – – 2) – –

α < 0 1) + –
–

1) + –
–

β > 0 2) – – 2) – –

Note: Case I corresponds to αβ > 0, and Case II, to αβ <
0. In each row, the first sign refers to fvv and the second,
to fkk. The dashes indicate zero numbers of solutions for the
transformations. The impossibility of solutions is notedwhere the
presence of parameters in the given region contradicts physical
conditions.
physical meaning, while the other is not appropriate,
sinceX and Y are negative.

Case I. αβ > 0. The root of (32) can be found if
∆+ 3αβ < 0. Double roots of the equation exist in
the region tan θ < −3, and the relationship between
the dimensionless parameters is specified by the curve

γ̃2 = R(θ), (34)

where

R(θ) =
(9 − tan θ)tan θ ±

√
tanθ(tan θ + 3)3

(9− tan θ)tan θ ∓
√
tan θ(tan θ + 3)3

.

Case II. αβ < 0. This condition is sufficient to find
the root of (32), since ∆ < 0 entails ∆+ 3αβ < 0.
Thus,

γ̃2 = −R(θ) (tan θ > 0). (35)

Note that, in both cases, the two branches of the
curve, (34) and (35), are symmetric in the sense that
they transform into each other as γ̃ is replaced with
1/γ̃. Moreover, we always have ∆ < αβ so that we
do not need to construct full (θ, γ̃) diagrams and can
restrict our attention to the region tan θ < 1 for Case I
and to the region tan θ > 1 for Case II. Let us inves-
tigate the shape of the critical curves (34) and (35).
We actually have two graphs, since the definition of
γ̃ contains the nonanalytic modulus operation. Each
graph shows regions that are separated by the critical
curve and should be considered independently.

We next determine, first, the number of real roots
for τ and, second, the signs of α and β necessary for
X and Y to be positive, choosing between the two
possible combinations at a given γ̃ and θ. The regions
that must be considered in doing so are sequentially
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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separated, first, by the critical curves (34) and (35)
and, second, by the line at which X and Y change
their signs, momentarily becoming equal to zero or
infinity. This does not take place for X or Y alone;
otherwise, τ would become zero or infinite, which is
impossible for finite α and β within the graphs, in
view of (30). There is, however, the case where X
and Y vanish simultaneously. According to (29), this
means that τ = −α/

√
∆1 or τ = −

√
∆1/β, and both

cases are equivalent to∆ = 0. Thus, the straight line
∆ = 0, or θ = 0, should be considered the boundary
of dissimilar regions. Our considerations are based on
continuity and proceed either from the cases of small
and large γ or from the case of large∆.

(a) For small γ, it follows asymptotically from (30)
that

τ1 ≈ −
√
∆1

β
, τ2 ≈

(
γ2α√
∆1

)1/3

,

and two complex roots exist. At τ = τ1, it follows
from (29) that Y ≈ α−∆1/β = ∆/β, and we should
assume β > 0 for∆ < 0 (i.e., for region C) and β < 0
for regions B and E. At τ = τ2, formulas (29) imply
that Y ≈ α, and we have α > 0 in all three regions B,
C, and E.

(b) Similarly, for large γ, we have

τ1 ≈ − α√
∆1
, τ2 ≈

(
γ2

√
∆1

β

)1/3

and two complex roots. At τ = τ1, we find from
(29) that X ≈ β −∆1/α = ∆/α, and α > 0 should
be taken for∆ > 0 in region C, while α < 0 in regions
B and E1. At τ = τ2, it follows from (28) thatX ≈ β,
and β > 0 in all three regions B, C, and E1.

(c) Next, at the left edge of region A, the quantity
∆ tends to −∞, while ∆1 tends to +∞. Asymptoti-
cally,

τ1 ≈ −
√
∆1

β
, τ2,3 ≈ ±γ, τ4 ≈ − α√

∆1
.

For τ = τ1, we have again Y ≈ α−∆1/β = ∆/β;
since∆ < 0 in region A, α < 0, β < 0. For τ = τ4 we
have X ≈ β −∆1/α = ∆/α and also α < 0, β < 0.
Finally, for τ = τ2,3 we obtain Y ≈ ±γ

√
∆1.

One of these solutions is appropriate, being com-
patible with α > 0, β > 0 as well as with α < 0, β <
0. The same asymptotics ∆→ −∞,∆1 → +∞ are
valid at the vertical boundary of region D, where
we have two solutions for α > 0, β < 0 and two for
α < 0, β > 0. Finally, at the vertical boundary of
region F , we deal with small ∆1; asymptotically, τ ≈
(γ2α/β)1/4, and no real roots exist because the signs
of α and β are opposite.

We summarize the results in the table. To check
these, we observe that the transitions A → B, D → E,
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Fig. 2. Asymptotic behavior of the v(k) curves.

E1, and E, E1 → F always result in the loss of a pair
of roots of the same type, which go into the complex
region. The signs of the second derivatives fvv and
fkk are also given in our table. Moreover, we indicate
the order of disposition of |ω| for various solutions,
from larger to smaller |ω|, which we will need below.

We should, however, provide a basis for the appli-
cability of continuity reasons in this context. First, let
us check that fvv = 0 only at the boundaries of some
regions. Direct differentiation yields

∂2f

∂v2
= 2µ2[4γ

√
XY + Y − α+ γ2(X − β)],

and, after substituting X, Y , and
√
Y/X = −τ2/γ,

we obtain
∂2f

∂v2
= −4βτ

3 + 3
√
∆1τ

2 − γ2
√
∆1

τ
; (36)

at the point where this quantity vanishes, either a
multiple root of (30) appears or τ becomes 0 or ∞.

Thus, once the sign of ∂2f/∂v2 for the corre-
sponding solutions is determined in each of the re-
gions we have isolated, it will not change within the
region. We have already proved that the fkk cannot
vanish.

Let us note that the sign of ω is not important: ac-
cording to (17), a change in the sign of ω is simply ac-
companied by a change in the sign of v so that a com-
pletely symmetric transformation takes place. In the
special case of ω = 0, Eq. (25) becomes γ2(µv)4 −
(α+ βγ2)(µv)2 + αβ −∆1 = 0, and a double root
for v is possible only at ∆ = 0. Another particular
feature that could arise in our comparson of ω values
below is the coincidence of these values for the same
combination of parameters. Then, the two transfor-
mations under study should correspond to two dif-
ferent minima of f(v) with f(v) = 0, and the fourth-
power polynomial f(v) should reduce to the square
of a second-power polynomial, or, more strictly, to
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Fig. 3. Various types of behavior of the v(k) curves apart
from transformations. The horizontal and vertical axes
plot k and v.

f(v) = (
√
XY − u)2 with u = const. A comparison

of coefficients of different powers of v in this case
yields u = βγ, α = βγ2, γ̃ = 1, and the values of X
and Y at the points of minima satisfy the conditions
XY = αβ, αX + βY = 2αβ −∆1. RealX,Y satisfy
these equations only for α < 0, β < 0, which corre-
sponds to region A (since ω cannot be multivalued in
region B).

We now consider again the specified regions to
determine the relative disposition of the values of |ω|.
We will simultaneously note the signs of ∂2f/∂v2.

(a) Limiting transition γ → 0. As we know, at
τ = τ1, asymptotically, µγv−ω =

√
Y ≈

√
∆/β and

µv − ω =
√
X ≈ −γ

√
Y /τ2 ≈ (−γβ2/∆1)

√
∆/β.

Since γ is small, ω1 ≈ −
√
∆/β. If, however, τ = τ2,

then µvγ − ω =
√
Y ≈

√
α, µv − ω ≈ −γ

√
α/τ2 ≈

−∆1/(γ
√
α)1/3, and ω2 ≈ −√

α. In the cases where
the two solutions coexist (regions C, E), we have√
α >

√
∆/β, |ω2| < |ω1|.

Further, at τ = τ1, it follows from (36) that
∂2f/∂v2 ≈ −∆1/β (< 0 in region C and > 0 in
regions B and E). If, however, τ = τ2, then

∂2f

∂v2
≈ −3

√
∆1

(
γ2α√
∆1

)1/3

< 0
(for all three regions).
(b) The transition γ → ∞ is needed in region E1,

but the situation is completely symmetric with re-
spect to region E.

(c) For large |∆|, at τ = τ1, we have µγv − ω =√
Y ≈

√
∆/β, µv − ω ≈−γ

√
β3∆/∆1, (γ − 1)ω1 ≈√

∆/β. At τ = τ2,3 ≈ ±γ, we obtain
√
X ≈ −

√
Y /γ,

(γ − 1)ω2,3 ≈ 2
√
Y ≈ 2|γ|1/2∆1/4

1 . Finally, at τ =
τ4, we have µv − ω =

√
X ≈

√
∆/α, µγv − ω =√

Y ≈ −(τ2/γ)
√
X ≈ −

√
∆α3/(γ∆1), (γ − 1)ω4 ≈

γ
√
∆/α.
Comparing the values of ω for all four roots yields

|ω1,4| > |ω2,3|. The relative order of ω1 and ω4 is
not specified, and these quantities may even coincide
in some cases. However, since they coexist only
at α < 0, β < 0 (region A), no contradiction arises.
Apart from the asymptotics |∆| → ∞, there is no real
need to discriminate between the corresponding ω1

and ω4, since the signs of the corresponding second
derivatives also coincide pairwise (see below). We
recall that coexistence is impossible for τ = τ2 and
τ = τ3; only one solutions operates, depending on the
sign of γ.

It follows from (36) that ∂2f/∂v2 ≈ −∆1/β at
τ = τ1, ∂2f/∂v2 ≈ −2Y < 0 at τ = τ2,3, and
∂2f/∂v2 ≈ −γ2∆1/α at τ = τ4.

Let us consider the derivative with respect to k:
(
∂2f

∂k2

)

k=0

= −2
(
c̄2 − πGσ̄

µ

)
X (37)

− 2
(
c2 − πGσ

µ

)
Y + 4c2c̄2µ2 − 6πG(c2σ̄ + c̄2σ)µ.

If α < 0, β < 0, we subtract the zero-valued ex-
pression (17) with coefficient 2µ2 from the right-hand
side of (37) to obtain

(
∂2f

∂k2

)

k=0

= −2XY
µ

− 2πG(σ̄X + σY )
µ

c2α+ c̄2β < 0.

If α < 0, β > 0, then, using the representation
(25), we obtain

X = β +
∆1

Y − α > β (38)

and then, dividing (17) by µ2 and subtracting the
result from (37), we find that

(
∂2f

∂k2

)

k=0

=
XY

µ
− c̄2X − c2Y + 3c2c̄2µ2

− 4πG(c2σ̄ + c̄2σ).
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In view of (38),

−XY
µ

− c2Y + 2c2α− 2πGc̄2σµ < 0,

so that, again, ∂2f/∂k2 < 0. The same result cor-
responds to α < 0, β < 0. The question of the sign
of the second derivative remains open only for α >
0, β > 0.

For the solution common to regions A, B, and C
(note that nothing special occurs as a boundary is
intersected), it is convenient to consider the limit-
ing case α→ 0, β → 0 at the left edge of region A.
Then, as we saw, Y → |γ|

√
∆1,X →

√
∆1/|γ|. In

this limit, substituting the σ and σ̄ corresponding to
α = β = 0 into (37) yields

∂2f

∂k2
= −c̄2X − c2Y + c2c̄2µ2 ≤ −2cc̄

√
XY

+ c2c̄2µ2 = 2cc̄
√
∆1 + c2c̄2µ2 = −c2c̄2µ2 < 0,

and the requirement of continuity implies that this
last inequality is valid everywhere. There remains a
smaller solution for ω in region C, which vanishes at
the boundary ∆ = 0; there, X = Y = 0, ∂2f/∂k2 =
−c2c̄2µ2 > 0. This completes the filling of the table.

7. TOPOLOGY OF THE v(k) CURVES

Let us now consider the topology of the depen-
dences v(k) as a whole. Again, we can use the prop-
erty of continuity starting from large ω, with other
parameters being fixed. Transformations with k = 0
will then be encountered at certain discrete values
of ω, while the behavior of the functions v(k) with
k �= 0 can, by and large, be logically inferred from the
situation near k = 0. Having in mind searches for
instabilities, we restrict our analysis to the case γ < 0;
otherwise, as we saw, all perturbations drift away and
disappear.

Thus, we consider large ω > 0. If, for the moment,
we consider k to be constant, then, in view of (25),
we obtain the following asymptotic expansion at any
point on the k axis:

v1,2 =
ω

µ
± 1
µ

[√
β +

2πG2σσ̄q

(γ − 1)2ω2
√
β

]
+ o(ω−2),

v3,4=
ω

µγ
± 1
µγ

[√
alpha+

2πG2σσ̄q

(γ − 1)2ω2
√
α

]
+o(ω−2).

At k = 0, the first pair of roots is real if β(0) > 0,
and the second pair is real if α(0) > 0; otherwise,
they are complex. However, the complex roots also
become real as k is increased, and, quite similarly, the
solutions for large k can approximately be determined
from the relationX − β = 0 or Y − α = 0, except for
ASTRONOMY REPORTS Vol. 46 No. 2 2002
 
Type a Type b

Type dType c

Type e

Fig. 4. Various types of transformations. The horizontal
and vertical axes plot k and v. In Type b, an isolated
singular point on the v axis is indicated.

the case where different branches intersect. If not only
ω but also k is large, then, asymptotically, we have

v1,2 ≈ ω ± kc
µ

, v3,4 ≈ ω ± kc̄
µγ

. (39)

The two inner asymptotes necessarily intersect at
ω − kc
µ

=
ω − kc
µγ

, k∗ =
ω(1− γ)
c− γc .

Near this critical value k = k∗, the asymptotic for
v(k) is somewhat disrupted. At some distance from
the critical point, X − β and Y − α behave like ∼k2,
and the correction of order ∼k2 in the equations can
be considered relatively small. Near the asymptote
intersection point, f(v) < 0, as in the regions above
and below it; therefore, the roots for v near the above
critical k temporarily disappear, going into the com-
plex region. Thus, near k = k∗, the connectedness of
the curves v(k) is disrupted within a short interval:
two inner curves merge on both sides of the gap.
Generally, the outer asymptote also intersects the in-
ner one, but considerations similar to those presented
above indicate that the connectedness of the curves
v(k) is not disrupted near the intersection point.
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Now let us move toward smaller |ω|, keeping the
remaining parameters fixed. As we saw above, the
type of connectedness of the v(k) curves changes
in this case only as a result of transformations at
k = 0, which are possible at certain discrete values
of |ω|. (We do not include inflections of the curves
of v(k), which can appear and disappear at k �= 0, in
the concept of connectedness type.) We can immedi-
ately list various possible types of connectedness. We
also note transitional types corresponding to various
transformations. In each case, we plot only half the
diagram, since the region for k < 0 can simply be
obtained by mirror reflection from the region plotted
for k > 0. In contrast, the plots are not symmetric
with respect to the horizontal axis (and are presented
arbitrarily, in this sense), except for the case of ω = 0,
which will be discussed below.

Thus, we consider consecutively all regions of
variation of α, β, and ∆.

Region A, α > 0, β > 0. As proven above, at large
ω, as generally in the case of α > 0 and β > 0, we
will have topological Type 1 (see Fig. 3), with four
branches at small k and one discontinuity. The trans-
formation (there is only one; see table) produces a
momentary maximum in f simultaneously in v and
k, at k = 0. This is possible only if the inner region
f > 0 shrinks to a point, as with Type c in Fig. 4.
Conversely, an additional maximum could not appear,
since the equation f(v) = 0would acquire six roots in
this case. After the transformation, the singular point
disappears, and we arrive at Type 2 (Fig. 3).

Region A, α < 0, β < 0. At large ω, no solutions
for v exist near k = 0; i.e., we are dealing with Type 3
(Fig. 3), although it exhibits waviness at finite k. The
first transformation produces a zero minimum for f
and should follow Type b (Fig. 4). After this, the
intersecting branches will diverge, leading to Type 2
(Fig. 3). The second transformation can be related
to either the same minimum again reaching the level
f = 0 or the appearance of another, nearby, zero min-
imum. The first case, however, drops out, since it
leads back to Type 3 (Fig. 3), and the last transfor-
mation with fvv < 0 is impossible under these condi-
tions. Therefore, the remaining possibility is a second
transformation of Type d (Fig. 4) with a transition
to Type 1 (Fig. 3). Then, the third transformation
implies that the inner loop shrinks to a point as in
Type c (Fig. 4); after this point disappears, we finally
obtain Type 2 (Fig. 3).

Region B, α > 0, β > 0. This case is similar in all
respects to its counterpart for region A.

Region A, α < 0, β < 0. The beginning is the
same as for A: the transitions Types 3–b–2 (Figs 3,
4) occur, but the subsequent transformations do not.
Region C, α > 0, β > 0. We start again with
Type 1 (Fig. 3). The first transformation leads to
the vanishing of the f maximum; for this reason,
the inner loop disappears. This is a Type-c trans-
formation (Fig. 4), which leads to topological Type 2
(Fig. 3). The next transformation is again related to
the formation of a zero maximum of f ; however, the
branches are oriented crosswise. This is a Type-e
transformation (Fig. 4). Finally, the two branches
should diverge, and Type 4 (Fig. 3) is realized.

Region D, α > 0, β < 0. We start with Type 2
(Fig. 3), with two branches of v(k) at small k. The
first transformation is related to the zero minimum;
this, however, cannot mean the loop touches the v ax-
is, which would simply result in the formation of four
independent branches of v(k), since no space for an
isolated point with fvv < 0 and fkk < 0 would remain
between these branches after the next transformation.
We must assume that the first transformation pro-
duces an outer zero minimum, as in Type d (Fig. 4),
after which we arrive at Type 1 (Fig. 3). The second
transformation removes the inner loop, as in Type c
(Fig. 4), and, finally, topological Type 2 arises (Fig. 3).

Region A, α< 0, β > 0, region E, α> 0, β < 0,
and region E1, α < 0, β > 0. Topologically, they co-
incide with the case of α > 0 and β < 0 for region D.

Region E, α< 0, β > 0, region E1, α> 0, β< 0,
and region F. Type 2 (Fig. 3) persists without any
transformations.

Formally, the case of ω = 0 appears as the final
result of all of the transformation processes. This
case, however, can be directly examined (we already
dealt with the corresponding biquadratic form in v),
providing a trustworthy test for all our preceding rea-
soning: at ω = 0, we obtain Type 4 in region C and
Type 2 in all other cases (Figs. 3, 4).

8. INFERENCES ON STABILITY

Knowledge of the topology of the v(k) curves en-
ables us to identify cases leading to instability in the
system. First and foremost, a single v(k) branch
that goes to infinity but does not encounter a trans-
formation point clearly cannot produce an instability.
Indeed, due to the symmetry that is present, each half
of such a branch corresponds to one of the asymptotic
formulas (11) and (11*), while we have seen that
the evolution of a perturbation is accompanied by
motion along the k axis in a single direction. Thus,
a perturbation that corresponds to such a single v(k)
branch should be continuously renewed if k → ∞
and go to k → −∞, or vice versa. Obviously, this
situation does not arise autonomously and requires
an external intervention. We obtain the same result if
ASTRONOMY REPORTS Vol. 46 No. 2 2002



INTERPENETRATING DIFFERENTIAL STREAMS 93
both halves of the v(k) branch are turned in the same
direction, as in Type 3 (Fig. 3). On the other hand,
in topological Type 1 in the same graph, the v(k)
curve can be closed. The corresponding perturbation
should continuously circulate from smaller to larger k
and backward; however, this does not provide a basis
for instability, since an instability cannot arise against
the background of a single mode in a conservative
system (the interaction of two or more modes is nec-
essary).

Let us now turn to the cases with transforma-
tions. At the transformation point, the quasi-classical
approximation fails, and a somewhat more accurate
consideration is required. Let us take the perturba-
tion of the potential Φ̂ as the dependent variable and
choose the normalizing argument w = k/

√
ν instead

of k, assuming ν > 0 without loss in generality. In
addition to the parameters already known, a new
one appears, h = ω′/ν, where ω′ is the excess of
the actual ω over the value ω0 corresponding to a
transformation. Rearrangements that omit higher-
order terms in ν lead to a Schrödinger equation, in
essentially the same way as in numerous calculations
for normal density waves (see, e.g., [17] and refer-
ences therein):

d2ϕ

dw2
− (H + ρ2w2)ϕ = 0, (40)

where

ϕ(w) = e−iv0w/
√
νδΦ̂, ρ2 =

∂2f

∂k2

(
∂2f

∂v2

)−1

,

H = 2h
∂f

∂ω

(
∂2f

∂v2

)−1

(k = 0).

Here, the coincidence of the signs of fkk and fvv is
implied so that we are considering a Type-c transfor-
mation (Fig. 4). Formally, (40) is the Schrödinger
equation for a linear oscillator. If the perturbation
is concentrated near k = 0, then, as this point re-
cedes, the amplitude ϕ varies as exp(−w2/2λ); i.e.,
it decreases fairly rapidly, and a physically meaningful
solution exists only for some discrete set of real values
of the parameter H and, accordingly, ω′. We obtain
a discrete spectrum of stable perturbations localized
near k = 0.

It remains to consider the case of opposite signs of
fkk and fvv . Let

ρ21 = −∂
2f

∂k2

(
∂2f

∂v2

)−1

,

and, therefore,

d2ϕ

dw2
+ (ρ21w

2 −H)ϕ = 0. (41)
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A Schrödinger equation with the form (41) ap-
pears in quantum mechanics in the problem of the re-
flection of a particle from a potential barrier. In Type-b
or Type-e transformations (Fig. 4), perturbations in
either both left or both right branches will formally
come from an external source and should be absent
in an autonomous system. If, however, the solution of
(41) vanishes on one side, it vanishes completely so
that no autonomous perturbations exist.

When considering Type a (Fig. 4), we assume
that the perturbation decays exponentially beyond the
loop (the autonomy condition). We multiply (41) in
the standard manner by the conjugate function ϕ∗

and the conjugate equation by ϕ, subtract the two
resulting equations termwise, and integrate over the
entire interval of w corresponding to the loop. In this
way, we obtain

(H∗ −H)
∫

|ϕ|2 dw = 0,

which means that the actual ω is real. The pertur-
bation spectrum consists of stable discrete modes
with closely distributed frequencies ω, as is always the
case in similar quasi-classical problems. It remains
to consider Type d (Fig. 4). In this case, there should
be no perturbation on one of the branches that go
to infinity. Formally, this resembles the quantum-
mechanics problem of the passage of a particle
through a barrier: in that case, as well, there is no
transmitted wave behind the barrier. For definiteness,
we can suppose that

|γ|c > c̄; (42)

i.e., the first medium plays the leading role; otherwise,
we would simply permute the numbering of themedia.
If so, the outer branches correspond to the first of for-
mulas (39). Since ν > 0, the perturbation of the first
medium shifts to the left along the k axis and does not
reach the right infinite branch (Fig. 4). We apply cross
multiplication and subtraction in the same manner as
for Type a to obtain

(H∗−H)
∫ ∞

−ŵ
|ϕ|2 dw=

(
ϕ∗
dϕ

dv
− ϕdϕ

∗

dv

)

w=ŵ

, (43)

where the point−ŵ is taken on the left infinite branch,
within the region where the asymptotics (10) are
valid, viz.,

ϕ ∼ exp
(
−ik2c

2µν

)
= exp

(
− ic
2µ
w2

)
(w < 0)

(qualitatively, the factor preceding the exponent is
unimportant). Then, it follows from formula (43) that
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ImH < 0. In this case, ∂2f/∂v2 > 0. As for ∂f/∂ω,
a somewhat lengthy checking procedure based on the
formula

∂f

∂ω
= −2[(Y − α)

√
X + (X − β)

√
Y ]

=
(γ − 1)

√
∆1Y

τ

(with ∂f/∂ω not vanishing within the regions) yields
in the cases of interest: ω(∂f/∂ω) < 0; i.e., ∂f/∂ω <
0 for ω > 0, Im h > 0, λ > 0, and a Type-d transfor-
mation ensures the fulfillment of the necessary con-
dition for stability. This is typical of region A with
α < 0, β < 0 and is always the case for regions D, E,
and E1.

9. CONCLUSION

We have considered a somewhat artificial model
of a self-gravitating medium, which can nevertheless
be used as a representative example of a system with
sheared motion. The stability of such systems is
a very important question in both astrophysical and
geophysical contexts, as well as in the physics of
laboratory plasmas. It is important that a uniform,
unidirectional shear quenches all perturbations, just
as a combination of two uniformly sheared subsys-
tems does, even if they have different coefficients ν.
Instability can be manifest only if the shear directions
differ. (Specifically, our model implies the interpene-
tration of two subsystems, or, more precisely, contact
between them in a third dimension; however, a similar
instability mechanism can operate if the differently
sheared domains are spatially separated in y, but a
gravitational or some other long-range interaction is
present).

In fact, by analyzing the behavior of the system at
some critical, “transforming” values of the frequency
ω, we can only find the stability threshold, where
the instability first sets in. The development of the
instability at high growth rates is a separate issue.

We conclude that knowledge of the parameters
γ, α, and β in (18) is sufficient to make qualitative
judgements about the stability of a system. The
instability zone encompasses regions D, E, and E1

in Fig. 1 and, partly, also region A (provided that
α > 0 and β > 0). We emphasize that this criterion
does not simply coincide with the stability condition
for one or both subsystems. In particular, stability
is preserved in region F, although one subsystem is
unstable (formally expressed by the conditions α < 0
and β < 0). On the other hand, if α > 0 and β >
0, region A is part of the stability region for both
subsystems, provided that the shear is removed. We
emphasize again that our stability criterion is com-
plex and nonlinear. It would be impossible to obtain
this criterion using expansions in ν and ν̄ as small
parameters. The techniques developed in this study
can be applied to many other related models, although
various mathematical difficulties arise in this case.
However, when analyzing our model, we ascertained
that such difficulties reflect objective reality and must
unavoidably be dealt with.

Finally, the very notion of instability is modified to
some extent in sheared systems. We already touched
upon “true” instabilities that can develop entirely au-
tonomously. However, if even one subsystem were
unstable on its own, then, in the presence of a weak
shear, an external perturbation would move along
the k axis for a long time and substantially grow.
It would be carried into the zone of large k, where
the Jeans instability is switched off. Such an evo-
lutionary regime closely resembles the operation of
various technical amplifiers [18–20]. However, the
mathematical treatment of the action of such natural
or artificial amplifiers encounters a specific difficulty,
since the question of stability cannot be answered in
a “yes” or “no” fashion; instead, there is a gradational
transition from stability to instability.
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Abstract—The paper reports the results of a survey of Galactic star-forming regions in the methanol lines
8−1–70E at 229.8 GHz, 3−2–4−1E at 230.0 GHz, 00–1−1E at 108.9 GHz, and a series of J1–J0E
lines near 165 GHz. In addition to the methanol lines, lines of methyl cyanide (CH3CN), cyanoacetylene
(HC3N), methyl formate (HCOOCH3), and sulphur dioxide (SO2) were detected. Analysis of the data indi-
cates that the methanol emission arises in warm (30–50 K) gas. c© 2002MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The methanol molecule (CH3OH) is a slightly
asymmetric top with hindered internal rotation pos-
sessing a multitude of allowed microwave transi-
tions. Radio emission from methanol in the inter-
stellar medium has been actively studied since its
detection by Ball et al. in 1970 [1]. Narrow, bright
maser lines have been detected at many frequencies,
often observed against the background of broader
thermal features. Methanol masers have been found
in hundreds of star-forming regions in ourGalaxy and
the Large Magellanic Cloud [2]. Thermal methanol
sources have been investigated by Gottlieb et al. [3],
Friberg et al. [4], Slysh et al. [5], Kalenskiı̆ et al.
[6], and Hatchell et al. [7]. These studies have
shown that methanol is a widespread molecule and
is observed in cool and warm clouds as well as in hot
cores. A number of studies (see, for example, [9]) have
demonstrated the presence of methanol in the solid
phase in grain mantles. The methanol abundance
in cool (Tkin ≈ 10 K) and warm (Tkin ≈ 20–50 K)
regions is a few times 10−9 [4, 6]. In hot regions with
temperatures of the order of 100 K and higher, the
grain mantles evaporate, increasing the gas-phase
methanol abundance to 10−7–10−6 [10, 11].

In 1995, we undertook a search for maser and
thermal methanol sources in the 8−1–70E line at
229.75876 GHz (1 mm), 00–1−1E line at
108.89420 GHz (3 mm), series of J1–J0E lines at
2 mm (the frequencies of the j = 1, 2, 3, 4, and 5
are, respectively, 165.05019, 165.06114, 165.09931,
165.19053, and 165.36944 GHz, and 3−2–4−1E line
at 230.02706 GHz (1 mm) using the 30-m IRAM
telescope at Pico Veleta (Spain). These observations
resulted in the detection of new masers and a large
1063-7729/02/4602-0096$22.00 c©
number of thermal sources. The current paper is
devoted to the thermal sources; results for the new
masers are described by Slysh et al. [12].

2. OBSERVATIONS AND RESULTS

The observations were carried out on the 30-m
radio telescope of Institut de radioastronomie mil-
limétrique (IRAM), located at Pico Veleta (Spain),
on August 29–31, 1995. The source list contained
36 objects in which strong class I and II masers in
other methanol lines had been found earlier. The
equipment and observation technique are described
by Slysh et al. [12]. We detected emission in at least
one methanol line in 30 sources.

Broad, quasi-thermal lines in the 8−1–70E transi-
tion were detected toward 18 sources. We detected 28
thermal sources in the 00–1−1E line, among them the
galaxy IC 342, which was detected at the sensitivity
limit. Only thermal lines were found in the 3−2–4−1E
and J1–J0E transitions. The parameters of the lines
detected are given in Table 11, and the corresponding
spectra are presented in Figs. 1–4.

Table 2 lists upper limits for the line antenna tem-
perature for sources in which emission was not de-
tected in any line. Note that, in half the cases, when
the observations were carried out in bad weather, the
upper limits are high, about 1 K or greater. Higher
sensitivity observations of these objects may yield
positive results.

The sizes of four sources derived from observations
at 5–10 points are given in Table 3.

1Parameters of lines for 345.01+1.79, NGC 6334I(N), M 8E,
L 379 IRS3, DR 21West, and DR 21(OH) are given in [12].
2002 MAIK “Nauka/Interperiodica”
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Table 1.Gaussian line parameters

Source RA (1950)
Dec (1950)

∫
T ∗

AdV , K km s−1 VLSR, km/s ∆V , km/s T ∗
A, K

W3(OH) 02h23m16.5s I 8.8(0.4) −46.18(0.13) 5.85(0.37)

61◦38′57′′ II 3.8(0.4) −46.12(0.25) 6.09(0.71)

III 13.4(0.6); 11.7(0.6); 12.5(0.6);
12.3(0.6); 6.9(0.6)

−45.70(0.01) 5.16(0.10)

IV 4.5(0.1) −46.34(0.05) 4.94(0.13)

IC 342 03 41 57.5 I Not observed

67 56 40 II Not observed

III Not observed

IV 0.5(0.1) 45.65(4.58) 34.49(8.03)

Orion KL 05 32 47.0 I 48.8(7.6)* 6.71 (0.41) 5.52(1.05)

−05 24 23 II1 26.9(6.7) 7.6(0.7) 5.1(1.2)

III 29.8(8.5); 29.1(8.6); 34.0(8.5); 40.2(9.1)*; 7.70(0.50) 6.89(0.02)

IV 28.2(1.0) 8.00(0.09) 5.08(0.25)

OMC−2 05 32 59.4 I 11.1(2.3)* 11.30(0.46) 4.50(1.17)

−05 11 45 II <1.8*

III < 0.37

IV < 1.7

S231 05 35 51.3 I 2.81(0.74)* −14.30(0.33) 2.45(0.62)

35 44 16 II <1.5*

III <0.93*

IV 2.1(0.2) −16.54(0.16) 4.61(0.39)

NGC 6334 F4 17 17 32.4 I 21.0(1.3)* −7.70(0.17) 5.56(0.38)

−35 44 04 II 10.5(1.0)* −8.71(0.27) 5.32(0.55)

III 59.2(3.9); 70.9(3.9); 74.2(3.9);
47.5(3.9); 46.4(3.9)*

−8.09(0.10) 5.70(0.14)

IV 15.0(0.2)* −8.28(0.04) 5.01(0.09)

Sgr B2 17 44 10.7 I 18.2(1.8) 61.17(0.85) 16.76(2.03)

−28 22 17 II <0.75

III 20.6(2.0); 31.8(2.1); 34.0(2.1); 35.3(2.1) 62.01(0.29) 14.33(0.37

IV 8.4(0.3) 52.98(0.15) 8.72(0.32)

G0.54−0.85 17 47 04.4 I <0.7

−28 54 01 II <0.7

III1 3.0(1.0); 2.5(0.9); 5.3(1.2); < 3.0 16.71(0.32) 3.50(0.54)

IV 4.6(0.2) 16.35(0.09) 4.15(0.23)

G5.90−0.43 17 57 36.9 I 2.3(0.3) 6.25(0.33) 4.83(0.76)

−24 04 22 II <0.24

III 3.9(0.6); 5.1(0.6); 4.3(0.6); 3.2(0.5) 6.89(0.25) 6.89(0.41)

IV 2.7(0.1) 7.07(0.10) 5.58(0.26)
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Table 1. (Contd.)

Source RA (1950)
Dec (1950)

∫
T ∗

AdV , K km s−1 VLSR, km/s ∆V , km/s T ∗
A, K

G9.62+0.19 18 03 16.0 I 2.7(0.6) 4.11(0.46) 4.08(1.19)

−20 31 53 II <0.5

III 5.7(0.6); 5.0(0.6); 6.7(0.7); 5.3(0.7) 3.56(0.21) 6.53(0.32)

IV 4.9(0.2) 3.77(0.15) 6.86(0.38)

W31(1)5 18 05 40.0 I 20.8(1.0) 65.93(0.25) 10.87(0.61)

−19 52 24 II 9.7(1.1) 66.22(0.47) 8.86(1.27)

III 26.7(1.6); 31.4(1.6); 31.6(1.6); 25.2(1.7) 66.29(0.14) 8.23(0.18)

IV 13.5(0.2) 66.49(0.06) 7.78(0.15)

W31C 18 07 31.0 I 5.1(1.0) −3.81(0.52) 6.48(1.96)

−19 56 19 II <0.5

III 9.7(0.9); 11.0(1.0); 12.5(1.0); 11.2(1.0) −3.90(0.21) 8.62(0.32)

IV 9.2(0.2) −3.94(0.09) 7.50(0.21)

W33 Met 18 11 15.0 I <0.5

−17 56 43 II <0.5

III1 2.5(0.6); 1.3(0.6); 1.9(0.5); 1.3(0.5) 36.90(0.34) 4.04(0.62)

IV 2.3(0.2) 36.79(0.11) 3.19(0.34)

W33 Therm 18 11 19.7 I <0.45

−17 56 08 II <0.45

III 5.8(0.6); 6.2(0.6); 4.2(0.6); 3.3(0.6) 35.30(0.15) 4.31(0.23)

IV2 7.0(0.2) 36.01(0.09) 6.61(0.20)

GGD 27 18 16 13.8 I <0.24

−20 48 31 II <0.24

III <0.34

IV 0.9(0.1) 12.50(0.08) 2.20(0.23)

G34.26+0.15 18 50 46.2 I 11.8(0.6) 57.90(0.18) 7.06(0.43)

01 11 06 II 5.8(0.6) 57.39(0.54) 9.64(1.14)

III 10.9(0.8); 13.4(0.9); 14.6(0.9); 16.4(0.9) 58.26(0.12) 6.81(0.17)

IV 8.4(0.2) 57.88(0.08) 6.83(0.18)

G35.19−0.74 15 55 40.8 I 4.7(0.3) 33.82(0.07) 6.17(0.65)

01 36 30 II <0.39

III 4.3(0.7); 4.6(0.7); 5.3(0.7); 3.5(0.8) 32.65(0.32) 6.82(0.54)

IV 2.9(0.2) 33.47(0.17) 5.51(0.46)

W49N 19 07 48.3 I 1.8(0.4) 8.90(1.23) 11.52(2.90)

09 01 18 II <0.21

III 1.6(0.4); 3.6(0.5); 2.9(0.5); 1.1(0.4) 6.92(0.57) 10.78(0.65)

IV 2.2(0.1) 6.25(0.34) 10.40(0.75)
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Table 1. (Contd.)

Source RA (1950)
Dec (1950)

∫
T ∗

AdV , K km s−1 VLSR, km/s ∆V , km/s T ∗
A, K

W51E1/E26 19 21 26.2 I 38.8(0.8) 55.69(0.07) 7.62(0.18)

14 24 43 II 12.9(0.7) 55.51(0.22) 7.79(0.49)

III 36.5(2.2); 45.9(2.2); 46.8(2.2); 47.1(2.2) 56.02(0.12) 8.32(0.17)

IV 25.1(0.2) 55.74(0.02) 7.98(0.05)

W51Met2 19 21 28.5 I <0.30

14 23 32 II <0.30

III <0.39

IV 1.6(0.2) 54.86(0.21) 4.77(0.60)

Onsala 1 20 08 10.0 I <1.1*

31 22 40 II <1.1*

III Not observed

IV 2.3(0.3) 11.64(0.31) 5.68(0.78)

W75N 20 36 50.4 I <0.70*

42 27 23 II <0.70*

III Not observed

IV 1.5(0.1) 8.45(0.14) 3.29(0.32)

Cep A 22 54 19.2 I 3.2(0.4)1 −7.10(0.56) 7.57(1.00)

61 45 47 II 2.3(0.5)1 −5.11(0.71) 6.94(1.80)

III <0.37

IV 0.7(0.1) −10.04(0.31) 3.43(0.70)

IV 0.4(0.1) −4.85(0.33) 2.61(0.70)

NGC 7538 23 11 36.6 I 2.1(0.3) −59.02(0.41) 5.21(0.88)

61 11 50 II 1.4(0.3)1 −59.26(0.54) 4.89(1.16)

III 3.3(0.4); 3.8(0.4); 3.9(0.5); 3.4(0.4) −58.21(0.15) 4.46(0.23)

IV 3.0(0.1) −57.04(0.08) 5.01(0.19)

1—Detected at the sensitivity limit.
2—Probably a blend of several components.
3—Parameters of the J = 5 line are given for the direction (0, 10′′).
4—Detected the 195–204A

− methanol line with
∫

T ∗
AdV = 4.6(0.9) K km s−1, VLSR = −6.8(0.5) km s−1, ∆V = 4.4(0.9) km s−1.

5—Detected the 195–204A
− methanol line with

∫
T ∗

AdV = 5.2(0.9) K km s−1, VLSR = 65.9(1.1) km s−1, ∆V = 11.8(1.9) km s−1

and a blend of the 195–204A
+ and 34SO2 methanol lines with

∫
T ∗

AdV = 9.3(1.2) K km s−1, VLSR = 70.1(1.1) km s−1, ∆V =

15.9(2.2) km s−1.
6—Detected the 195–204A

− methanol line with
∫

T ∗
AdV = 5.3(0.5) K km s−1, VLSR = 56.4(0.4) km s−1, ∆V = 7.3(0.8) km s−1

and a blend of the 195–204A
+ and 34SO2 methanol lines 153.13–160.16 with

∫
T ∗

AdV = 8.8(0.7) K km s−1, VLSR =

58.1(0.5) km s−1, ∆V = 12.4(1.2) km s−1.
7—The 11–10E methanol line is blended with the (HCOOCH3 369,27–368,28A methyl formate line.
Note: ∗ Transition notation: I—8−1–70E, II—3−2–4−1E, III—J1–J0E

7, IV—00–1−1E. The last column lists 3σ upper limits for
the antenna temperature. Asterisks indicate observations for which the system noise temperature exceeded 3000 K; the calibration is
no longer trustworthy when the system temperature is so high.
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Fig. 1. Spectra of the sources at 229.8 GHz.
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Table 2. 3σ upper limits for the antenna temperature for objects toward which no emission was detected.

Source RA (1950) Dec (1950) 229.8, 230.0 GHz 165 GHz 108.9 GHz

S235B 05 37 31.8 35 40 18 2.1* 1.8* 1.0

NGC 2071 05 44 30.0 00 20 40 3.9* 2.0* 2.5

S 252 06 05 53.5 21 39 02 2.6* 0.4 1.1

NGC 2264 06 38 24.0 09 32 00 0.5 0.4 1.1

W48 18 59 13.8 01 09 20 0.4 0.5 0.5

G59.78+0.06 19 41 05.6 23 36 51 0.9* – 0.5

S 140 22 17 41.2 63 03 43 0.3 0.3 0.4

Note: Asterisks indicate observations during which the system noise temperature exceeded higher 3000 K.

Table 3. Source sizes in RA/Dec (arcsec)

Frequency, GHz W3(OH) G345.01+1.79 G34.26+0.15 W51E1/E2

108.9 38/– 31/– 56/<30 51/<20 40/38 33/31 26/25 15/13

165 < 25/ < 22 < 20/ < 16 < 21/ < 24 < 15/ < 18

229.8 < 27/ < 27 < 25/ < 25 < 18/ < 19 < 15/ < 16

230.0 < 54/ < 54 < 53/ < 53 < 21/ < 19 < 18/ < 16

Note: For each object, the left column gives the size of the source convolvedwith the beam, and the right column gives the deconvolved
size. At 165 GHz, the sizes in the 41–40E line are given.
In addition to the methanol lines, we also detected
and identified lines of HC3N, SO2, HCOOCH3, and
CH3CN; some lines could not be identified (Fig. 5,
Table 4). The line identification was based on the
coincidence of the observed frequencies with those

from the JPL catalog (http://www.jpl.nasa.gov/).
We simultaneously detected seven 9K–8K (K = 0–
6) CN3CN lines; therefore, there is no doubt about
the identification of lines of this molecule. We verified
the identification of other lines as follows. We plotted
rotational diagrams based on firmly identified lines,
whose intensities were taken from spectral scans of
four star-forming regions (a paper by L.E.B Johans-
son, S.V. Kalenskiı̆, and A.V. Alakoz containing these
results is in preparation), and then plotted the points
for a line to be analyzed on these diagrams (Fig. 6).
The line was considered to be identified if its point
appeared within the scatter due to known lines. Our
identification results are given in Table 4.
3. DISCUSSION

3.1. Methanol

We detected thermal emission at 108.9 GHz in
most of the sources; in many objects, we also found
thermal emission at 165, 229.8, and 230.0 GHz.
We have estimated the angular dimensions of four
sources, which are about 20′′–50′′ or less (Table 3).
The 108.9-GHz emission arises in a transition be-
tween levels with E/k = 0 and 5.23 K; it can be
excited even at the lowest temperatures and den-
sities encountered in molecular clouds (about 5 K
and 103 cm−3, respectively). Other lines require
higher temperatures and densities; however, even in
the 8−1–70E line, which has an upper level at 81 K,
appreciable emission can already arise at a kinetic
temperature of about 25 K (see below).

We detected the 195–204A
+ and 195–204A

−

methanol lines at 229.86419 and 229.93918 GHz, re-
spectively, toward NGC 6334F, W31(1), and
W51E1/E2. These lines, with E/k ≈ 800 K, can be
excited only in very hot and dense gas, for example,
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Table 4. Lines of other molecules detected during the survey

Molecule Transition Frequency, GHz Source
∫
T ∗

AdV , K km s−1 VLSR, km/s ∆V , km/s T ∗
A, K

HC3N 19–18 172849.300 W51E1/E2 87.0(0.82) 55.89(0.20) 8.92(0.49) 9.151

Cep A 15.15(0.41) –11.15(0.28) 4.31(0.71) 3.301

DR 21(OH)1 8.05(0.26) 3.16(0.49) 5.83(0.96) 1.301

G34.26+0.15 40.65(0.97) 59.91(0.44) 7.67(1.12) 5.001

HCOOCH3 132,11–122,10E 164955.670 W51E1/E2

HCOOCH3 132,11–122,10A 164968.621 W51E1/E2

HCOOCH3 147,7–137,6A
2 172693.626 W51E1/E2 26.35(0.80) 55.93(0.87) 10.84(1.57) 2.301

CH3CN 90–80 165569.089 NGC 6334F 15.3(1.88) –7.93(0.16) 5.71(0.22) 2.51

91–81 165565.899 NGC 6334F 26.4(1.96) –7.93(0.16) 5.71(0.22) 4.35

92–82 165556.329 NGC 6334F 18.5(1.84) –7.93(0.16) 5.71(0.22) 3.05

93–83 165540.385 NGC 6334F 21.8(1.90) –7.93(0.16) 5.71(0.22) 3.59

94–84 165518.072 NGC 6334F 16.2(1.80) –7.93(0.16) 5.71(0.22) 2.66

95–85 165489.399 NGC 6334F 14.5(2.36) –7.93(0.16) 10.48(1.87) 1.30

96–86 165454.377 NGC 6334F 14.5(2.04) –7.93(0.16) 7.87(1.20) 1.73

SO2 94,6–103,7 165123.634 Orion KL 84(5) 8.8(0.25) 30.2(0.33) 2.6

W51E1/E2 4.3(0.68) 56.8(0.17) 7.21(0.24) 0.57

Cep A 1.94(0.56) –10.4(0.34) 6.30(0.52) 0.29

DR 21(OH) < 0.1

G34.26+0.15 < 0.3

SO2 52,4–51,5 165144.651 Orion KL 196(5) 8.8(0.25) 30.2(0.33) 6.1

W51E1/E2 8.9(0.71) 56.8(0.17) 7.21(0.24) 1.16

Cep A 3.1(0.57) –10.4(0.34) 6.30(0.52) 0.69

DR 21(OH) < 0.1

G34.26+0.15 4.82(0.57) 57.6(0.21) 5.0(0.33) 0.91

SO2 71,7–60,6 165225.452 Orion KL 288(5) 8.8(0.25) 30.2(0.33) 9.0

W51E1/E2 14.3(0.75) 56.8(0.17) 7.21(0.24) 1.86

Cep A 4.64(0.58) –10.4(0.34) 6.30(0.52) 0.69

DR 21(OH) 1.81(0.28) –3.6(0.50) 6.48(0.74) 0.26

G34.26+0.15 5.07(0.55) 57.6(0.21) 5.0(0.33) 0.96

1—Assuming a mirror suppression of 7 dB.
2—Blended with the HCOOCH3 147,8–137,7 A and E lines.
in hot cores or under the action of radiation. Like
Hatchell et al. [7], we assumed that lines with such

high level energies are excited in gas that is distinct

from the bulk of the gas contributing to the emission
ASTRONOMY REPORTS Vol. 46 No. 2 2002
in the other lines observed, and we did not take these
lines into account in our subsequent analysis.

We detected seven sources in the 3−2–4−1E line
at 230.0 GHz. The lifetime of a molecule in the
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Fig. 5. The 165-GHz spectrum of W51 E1/E2.
upper level 3−2E to radiative deactivation is short
(about 100 s). Therefore, high densities, of the order
107 cm−3 and greater, are required for purely colli-
sional excitation of this level. However, the density
requirements are considerably eased if the source size
and/or methanol abundance are sufficiently great for
the methanol rotational lines to be optically thick.
Modeling by the method of a large velocity gradient
shows that if the optical depth in the 41–40E line is
about unity, the brightness temperature in the 3−2–
4−1E line can already be about 1 K at a density of
about 3 × 105 cm−3. Thus, the detection of emission
in the 3−2–4−1E line testifies to a high gas density
and/or large optical depth in the rotational methanol
lines.

An important method for the analysis of molecular
radio lines is the use of rotational diagrams [13]. As-
suming that all level populations for a given molecule
are thermalized (the lines used for the analysis are
optically thin, with J(ν0, Tex) � J(ν0, TBG), where
J(ν, T ) is the Rayleigh–Jeans brightness tempera-
ture for the specified intensity and frequency), we can
obtain the relationship

ln
3kW

8π3ν0Sµ2
= ln

N

Qrot
− Eu
kTrot

, (1)

where W =
∫
TR dV is the integrated intensity and

Qrot is the rotational statistical sum. The depen-
dence of 3kW/8π3ν0Sµ

2 on Eu/kTrot is called the
rotational diagram. Formula (1) shows that the slope
of the approximating straight line is proportional to
the temperature, and the point of intersection with
the vertical axis depends on the molecular column
density.

The ratios of various level populations for metha-
nol in interstellar gas are far from equilibrium [8].
Nevertheless, at gas densities of the order of 105 cm−3

or higher, the ratios of the populations of levels with-
in the same ladder can be described using a single
temperature, which is close to the kinetic temperature
[6, 8]. Thus, the kinetic temperature can be derived
from rotational diagrams based on the J1–J0E lines.
We have plotted rotational diagrams for 17 sources
using our 165-GHz data (Fig. 6). The points sat-
isfactorily fit the approximating straight lines for only
nine sources—NGC 6334I(N), Sgr B2, G5.90–0.43,
W31(1), W31C, W33Therm, G35.19–0.74, DR 21
(OH), and NGC 7538. The implied rotational tem-
peratures for these objects are in the range 12–35 K
(Table 5). Such temperatures are characteristic of the
extended (with sizes of the order of a parsec) warm
regions of dense gas detected in the lines of CS, NH3,
CH3CCH, and other molecules. The scatter of the
points on the diagrams for W3(OH), G345.01+1.79,
G9.62+0.19, and W49N is large, suggesting that
these sources have complex structures. This is con-
firmed by the different line intensity ratios observed
in different directions. The points in the diagrams
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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Fig. 6. Rotational diagrams derived from the 166-GHz observations. The horizontal axis plots E/k and the vertical axis
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for Ori KL, G34.26+0.15, and W51 E1/E2 lie along
arches, also possibly indicating the presence of com-
plex structures. In particular, such rotational dia-
grams should be displayed by objects consisting of
hot cores and cooler and/or less dense halos. In
such sources, the contribution of the core grows with
growing excitation energy of the transitions, resulting
in an arch-like arrangement of the points in rotational
diagrams. This is quite plausible, since all the three
sources contain hot cores [14]. Another possibility is
that the J1–J0E lines are not optically thin. This is
illustrated by the model rotational diagram of Fig. 6,
ASTRONOMY REPORTS Vol. 46 No. 2 2002
which was plotted as follows. Using the large velocity
gradient (LVG) method, we calculated the brightness
temperature in the J1–J0E lines for a source with a
kinetic temperature of 25 K, density of 106 cm−3, and
methanol density divided by the velocity gradient of
6.7 × 10−3 cm−3/(km/s pc−1). The J1–J0E lines
are optically thick in this model; the optical depth
in the 11–10E line is 2.6. The resulting rotational
diagram is arch-shaped, like the rotational diagrams
for Ori KL, G34.26+0.15, and W51 E1/E2.

We also modeled the methanol source in
W51E1/E2 using the LVG method. We calculated
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Table 5. Parameters of the sources determined using rotational diagrams

Source CH3OH CH3CN HCOOCH3 SO2

Trot, K N, 1016 cm−2 Trot, K N, 1017 cm−2 Trot, K N, 1015 cm−2 Trot, K N, 2015 cm−2

Orion KL 65 1.3 137 3.0

NGC 6334I(N) 18.8(1.0) 5.4

NGC 6334F 1110 1.1

Sgr B2 35.7(2.6) 74

G5.90-0.43 16.0(0.5) 2.1

W31(1) 18.5(0.9) 19

W31C 23.2(2.7) 11

W33 Therm 12.4(1.1) 1.8

G35.19-0.74 17.2(1.8) 2.5

W51E1/E2 189 2.4 254 2.4

DR 21(OH) 28.8(4.8) 3.3

NGC 7538 20.1(1.5) 2.7
the brightness temperature Tobs of the lines observed
using the data of Table 1, assuming that the source
size is the same in all the lines, and is equal to 15′′
(Table 3). Further, we calculated a set of models and
identified the model minimizing the sum of squared
deviations ∑

(Tobs − Tmod)2. (2)

This best-fit model has a gas temperature of 25 K,
density of 107 cm−3, and E-methanol density divided
by the velocity gradient of 2× 10−3 cm−3 (km/s pc−1).
The relative E-methanol abundance is about 3 ×
10−9 cm−3. This simple model does not describe
the methanol emission region in W51 with sufficient
accuracy, possibly because the region is nonuniform.
Nevertheless, the model provides rough estimates of
the temperature, density, and methanol abundance,
and also demonstrates that warm (30–50 K) regions
can yield appreciable emission in the 8−1–70E line.
The values of the methanol density and abundance we
have obtained are consistent with previous estimates
(see, for example, [6]) and are probably typical of
warm clouds.

3.2. Other Molecules

A number of molecules, including cyanoacety-
lene (HC3N), methyl formate (HCOOCH3), methyl
cyanide (CH3CN), and sulphur dioxide (SO2), were
detected toward W51E1/E2. Some were also de-
tected toward Ori KL, DR 21(OH), Cep A, NGC
6334F, and G43.26+0.15 (Table 4). The rotational
diagrams for these molecules are presented in Fig. 6.
We found a very high rotational temperature,
Trot = 1110 K, for the methyl cyanide detected toward
NGC 6334F in the 9K–8K line series. This is not
surprising, since it is known that strong methyl-
cyanide emission arises in hot cores, where the
abundance of these molecules is strongly enhanced
due to evaporation from grain mantles. However,
the points corresponding to K = 3 and K = 6 in the
rotational diagram lie far below the approximating
line, indicating high optical depth [15]. This high
optical depth in the methyl-cyanide lines leads to
overestimation of the rotational temperatures, so that
the value 1110 K should be considered an upper limit.

It is known that the methyl-formate emission
in Orion arises in the so-called Compact Ridge.
Emission of CH3OH, CH3OCH3, and some other
molecules is observed in the same area. Various
authors (see e.g. [13]) have obtained rotational tem-
peratures for HCOOCH3 in the range 25–90 K. The
points corresponding to our detected lines fit the rota-
tional diagram well for Trot = 65 K, in agreement with
previous results. The points corresponding to the
lines detected toward W51 E1/E2 fit the rotational
diagram for Trot = 189 K, which considerably exceeds
the temperature derived from methanol lines. This
discrepancy may indicate either that the methanol
and methyl-formate emission arises in different re-
gions, or that our analysis methods are not suitable
for the emission region in W51 E1/E2. For example,
this area may be nonuniform, the HCOOCH3 lines
may be optically thick, etc. Since, in Orion, CH3OH
and HCOOCH3 are observed in the same region, the
latter hypothesis seems more probable.
ASTRONOMY REPORTS Vol. 46 No. 2 2002
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TheSO2 lines detected toward OrionKL are broad
(≈30 km/s), corresponding to a plateau region. The
points for our detected lines fit the rotational diagram
well for Trot = 137 K, in agreement with previous
results (119–138.5 K [13, 16]). In W51 E1/E2, we
detected much narrower lines with a rotational tem-
perature of 254 K. Such a high temperature suggests
that the emission arises in a hot core.

3.3. IC 342

We detected 108.9-GHz emission from this near-
by (≈2 Mpc) Scd galaxy at the sensitivity limit. Ear-
lier, 2K–1K methanol lines at 96 GHz [17] and 3K–
2K lines at 145GHz [18] were detected in IC 342. The
antenna temperature integrated over the 108.9-GHz
line profile (0.5 K km s−1) is a factor of four lower
than that of the 3K–2K lines. The lower intensity
at 108.9 GHz is due to the lower strength of this
line compared to the 3K–2K lines, and also to the
fact that a blend of several components is observed
at 145 GHz.

4. CONCLUSIONS

Our observations at 1, 2, and 3 mm have yielded
detections of both maser and thermal methanol
sources. The thermal emission in the 00–1−1E, J1–
J0E, 8−1–70E, and 3−2–4−1E lines arises in warm
(12–35 K) gas; however, a contribution by hot cores
cannot be excluded.

In addition to the methanol lines, we have detected
lines of methyl cyanide (CH3CN), cyanoacetylene
(HC3N), methyl formate (HCOOCH3), and sulphur
dioxide (SO2). We derived a very high rotational
temperature, Trot = 1110 K, for the methyl-cyanide
9K–8K line series detected toward NGC 6334F; this
may be a consequence of a high optical depth in
these lines. The points for the lines detected toward
W51 E1/E2 fit their rotational diagram well for Trot =
189 K, which considerably exceeds the temperature
derived from the methanol lines. This discrepancy
may indicate that the analysis methods used are not
appropriate for the emission region in W51 E1/E2.
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