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Abstract—The consequences of the introduction of new international standards and regulations that impose
limitations on the community noise of passenger airplanes and restrict the operation of noisy airplanes are
analyzed. The need in developing new methods for reducing the aircraft noise is stated. The main noise
sources inherent in passenger airplanes of different types are considered. The ways of increasing the effi-
ciency of noise-suppressing systems used in power plants and the ways of reducing the intensity of airplane
noise sources are determined. The methods for reducing the noise both inside and outside an airplane are
described. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION
The problems of noise control in aviation, which

arose in the middle of the twentieth century with the
beginning of intense operation of jet airliners, are still
quite topical and form an important part of the global
environmental concerns of humanity. In recent years,
the growing public resentment towards the adverse
effects of aircraft noise on local communities has
resulted in setting new international standards that
impose stronger limitations on the noise produced by
passenger airplanes in the residential areas near air-
ports. The passenger airplanes designed in the last few
years are less noisy, as compared to the airplanes
designed at the early stage of passenger aviation. How-
ever, because of the growth of the total amount of air
conveyances and the increasing intensity of airplane
operation, the environmental conditions near airports
cannot be noticeably improved and may even become
worse in the next ten years, if no considerable progress
is achieved in the development of technologies for
noise control in aviation [1, 2]. For the Russian special-
ists in aviation acoustics, the problem of primary con-
cern is to provide the competitive ability of Russian air-
liners from the viewpoint of community noise they pro-
duce, as well as from the viewpoint of the acoustic
comfort in their cabins.

INTERNATIONAL REQUIREMENTS
FOR THE NOISE OF SUBSONIC PASSENGER 

AIRPLANES
The problem of reducing the level of aviation noise

is one of the main aviation-related environmental prob-
lems and is of primary concern to international environ-
mental and aviation organizations. The noise levels in
airport areas are regulated by the requirements of
1063-7710/03/4903- $24.00 © 20241
Annex 16 of the ICAO (International Civil Aviation
Organization) Standard and, in Russia, additionally, by
the AP-36 Aviation Rules, which determine the stan-
dard noise levels depending on the date of application
for the airworthiness certificate of a given aircraft.

The standards for the community noise are set
depending on the maximal take-off mass of an airplane
and specified for three fixed reference points near the
runway. These points characterize the main stages of
the flight: the take-off, for which the reference point is
at the side of the runway, and the climb and descent, for
which the reference points lie on the runway axis (Fig. 1).
The standard noise requirements are expressed as effec-
tive perceived noise levels (EPNL) with allowance for
the noise spectral composition and duration. If the
application for the airworthiness certificate was submit-
ted before October 1977, the requirements formulated
in Chapter 2 of Annex 16 of the ICAO Standard are in
effect; if the application was submitted later, more
stringent requirements formulated in Chapter 3 of the
same document should be met (Fig. 2). The modern
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Russian airplanes, Il-96-300 and Tu-204 with PS-90A
Russian engines, which were accepted for regular
flights in the 1990s, had been designed to satisfy the
community noise standards of Chapter 3 (Fig. 3).

In 2001, the ICAO issued a new standard for aircraft
noise, which comes into effect on January 1, 2006 and
imposes more stringent requirements on the commu-
nity noise; i.e., the new standard of Chapter 4 of
Annex 16 will be introduced. According to this stan-
dard, the noise levels from a new airplane, when sum-
marized over three reference points, must be 10 EPN
dB lower than the allowable noise levels given in Chap-
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Fig. 2. Growing requirements for the community noise of
airplanes.
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Fig. 3. Airplane noise levels at reference point 1 lying at the
side of the runway. (1) The solid line displays the require-
ments of Chapter 3 of the ICAO Standard.
ter 3 (Fig. 2). In addition, the decrease in the noise lev-
els at any two points of measurement should be no less
than 2 EPN dB. The purpose of the new standard is a
further decrease in the community noise near airports.

For the same purpose, resolution A.28.3 of the
ICAO assembly prohibits the use of airplanes that do
not meet the noise standards of Chapter 3 or that only
meet the requirements of Chapter 2. This prohibition
has been in effect since April 1, 2002. The ICAO com-
mittee on aviation-caused environmental problems is
also considering the possibilities for a gradual exclu-
sion of airplanes that meet the requirements of Chapter
3 with a narrow noise level margin. The European
Community passed a resolution that limits the use of
airplanes modified and recertified as complying with
the requirements of Chapter 3. These are the airplanes
whose acoustic characteristics were improved to fit the
standards of Chapter 3 after a modification of their
power plants, but such airplanes still remain noisier
than modern passenger airplanes. The resolution intro-
duces rules of operation that prevent the adverse effects
of, e.g., old foreign airplanes, on the acoustic condi-
tions in European airports.

Thus, the decisions taken by the ICAO in 2001 and
imposing more stringent requirements on the aviation
noise result in various kinds of limitations and bans that
have been introduced by international organizations to
prevent the operation of noisy airplanes in airports.
Obviously, the imposition of more stringent require-
ments on the community noise levels of airplanes is in
line with the general prospects of air transport develop-
ment. Therefore, the solution of the complex scientific
and engineering problems related to the improvement
of the acoustic characteristics of passenger airplanes is
the major task of today’s aviation acoustics.

NOISE OF A SUBSONIC JET AIRPLANE

The community noise levels of subsonic passenger
airplanes gradually decreased over the last 30–35 years
(Fig. 4). This decrease was achieved on the basis of an
increase in the efficiency of the fuel consumption and a
decrease in the noise generated by the high-velocity
exhaust jets of the engines. The main noise sources of a
modern by-pass turbojet engine are the jet and the fan,
while the internal combustion chamber and the turbine
stages usually make a smaller contribution to the total
noise produced by the engine.

A decrease in the noise intensity is obtained with the
help of engineering developments and the use of effec-
tive means of sound absorption in the ducts of the
power plants [3–5]. For example, a noise reduction in
by-pass turbojet engines with a low by-pass ratio m < 2
(where m is the ratio of the gas flow rate through the
outer duct to the gas flow rate through the inner duct)
was achieved by using a common mixing chamber for
the high-velocity outer and low-velocity inner flows,
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
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Fig. 4. Tendency for a decrease in the community noise levels of airplanes.
i.e., through a reduction of the exhaust velocity of the
engine (Fig. 5).

A substantial decrease in the aircraft noise levels
was obtained with the appearance of by-pass turbojet
engines with high by-pass ratios m = 5–8 and relatively
low exhaust velocities of jets. Since, for the engines of
latest designs, the exhaust jet is no longer the main
source of noise, a further reduction of aircraft noise is
mainly related to the suppression of noise generated at
the engine inlet or to a balanced noise suppression (in
the inlet duct, chevron nozzles, flow mixers, and the
engine exhaust) [6–8].

The noise of the engine fan is determined by the
inhomogeneities of the oncoming flow interacting with
hard surfaces and contains two components: the dis-
crete tones due to the interaction of the wakes of the
rotor and stator blades and the broadband noise gener-
ated by the turbulent oncoming flow. In modern
engines, a decrease in the fan noise is achieved owing
to the optimization of the blade shape, the limitation of
the number of inlet guide vanes, the decrease in both
rate of rotation and number of blades, the optimal com-
bination of the fan blades with the stator blades, and,
hence, the reduction of the effects of interactions
between the rotating blades and the flow inhomogene-
ities and between the inhomogeneous flows and the sta-
tor blades.

The noise intensity at the engine inlet can be reduced
by introducing a sound-absorbing treatment in the air
intake ducts, which consists of sound-absorbing struc-
tures tuned to the absorption of the fan noise (Fig. 6a).
These structures have been repeatedly improved in order
to raise their efficiency, to simplify their manufacture
technology, and to reduce their weight. The importance
of investigations aimed at the development of noise sup-
CAL PHYSICS      Vol. 49      No. 3      2003
pression systems of high acoustic efficiency for the ducts
of power plants is determined by the necessity for the
Russian airliners to satisfy the new severe requirements
imposed by the ICAO on the aircraft noise, because it is
the necessary condition for their operation at interna-
tional airports [9, 10].

NOISE SUPPRESSION SYSTEMS
FOR POWER PLANTS

In the ducts of the power plants of airplanes with
by-pass turbojet engines, such as the widely used Tu-
154M (Fig. 5a), sound-absorbing structures (SASs) in
the form of one- or two-layer honeycomb sandwiches
of the resonance type with perforated panels are com-
monly used (Fig. 6). The geometric parameters of the
SAS (the height of the honeycomb filler, the perforation
percentage, the hole diameter, and the thickness of the
face panel) are chosen so as to provide the maximum
noise suppression at the blade frequency of the fan
impeller (1.5 < f < 2.5 kHz). However, when this noise
component is suppressed, its harmonics with frequen-
cies up to 5–6 kHz persist in the community noise of the
airplane. A further increase in the efficiency of SASs,
which is dictated by the ever-increasing requirements
for the aircraft noise, necessarily involves the suppres-
sion of the high-frequency noise components, which
correspond to the second and third harmonics of the
blade frequency of the fan impeller, without reducing
the efficiency of noise suppression at the fundamental
frequency. To reduce the levels of the high-frequency
noise components, it is necessary to use multiparameter
SASs with an improved acoustic efficiency [11, 12].

The single-layer resonance-type SASs widely used
in aircraft power plants have a number of disadvan-
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Fig. 5. Examples of engine designs with (a) low and (b) high by-pass ratios. (c) Dependence of noise produced by (1) the fan with
a noise suppressing system and (2) the jet on the by-pass ratio.
tages. In addition to the insufficiently wide absorption
band, they exhibit a dependence on the sound pressure
level and, hence, on the engine operation mode. Evi-
dently, single-layer honeycomb SASs cannot reduce
the power plant noise to a level that complies with the
new severe requirements for the aircraft noise and the
limitations for the airplane operation. Therefore, in the
last few years, the research and production enterprises
of the aviation industry were working on the scientific
and engineering problems concerned with the increase
in the efficiency of noise-suppressing systems for air-
craft engines.

One of the main reserves for raising the efficiency of
noise suppression in the engine ducts is the increase in
the sound attenuation at the fundamental blade fre-
quency of the fan impeller and its harmonics and the
simultaneous extension of the attenuation band to
higher frequencies without any changes in the length of
the treatment (SAS) along the duct axis. An increase in
the attenuation at a fixed frequency can be achieved, on
the one hand, by choosing the parameters of the SAS on
the basis of a detailed study of the field structure in the
duct and, specifically, with allowance for the parame-
ters of the boundary layer and the real velocity profile;
on the other hand, it can be achieved by making the
conditions of sound propagation more complicated: for
example, various inserts treated with sound-absorbing
material and oriented along the duct can be introduced
into the latter. The attenuation band can be extended by
using more complex SASs with a greater number of
geometric parameters, so that these SASs affect the
acoustic impedance of the structure. In the last few
years, at the Zhukovskiœ Central Aerohydrodynamics
Institute, new methods have been developed for
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
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increasing the efficiency of sound suppression in the
ducts of aircraft engines on the basis of determining the
optimal impedance of the duct walls and the “realiza-
tion” of this impedance by using specially designed
SASs [12, 13]. Particular attention has been given to
studying the ways of increasing the efficiency of multi-
layer combined structures with varying geometry along
the duct by using resonant structures of different
shapes, volume absorbers, composite materials, and
perforated and grid panels. By varying the parameters
of the SAS, changing the resonant frequency of the
structures, and extending the absorption band, it is pos-
sible to considerably enhance the sound attenuation in
the engine ducts.

Formulation of the Problems of Determining
the Efficient SAS

In the general form, the problem of sound propaga-
tion and attenuation in a duct with an SAS treatment
becomes complicated when the effect of the flow with
parameters varying along the duct is taken into account.
Since an exact solution of the problem of sound propa-
gation in an inhomogeneous duct with a flow is impos-
sible, various analytic and numerical methods are
developed for obtaining approximate particular solu-
tions. The problem becomes even more complicated
when the effect of the boundary layer formed at the sur-
faces bounding the flow is considered. Of practical
interest is the general solution to this problem for the
case of the acoustic field generated by a simple source.
For example, one can construct the Green function for
the Blokhintsev equation in the principal small-param-
eter approximation for a smoothly inhomogeneous
treated duct with a subsonic compressible flow when
the boundary layer is ignored. The presence of the
boundary layer manifests itself, first, in the refraction of
sound, which leads to a change in the angle of the sound
wave incidence on the duct wall and to the attenuation
in the course of the propagation, and, second, in the for-
mation of hydrodynamic disturbances in the boundary
layer under the effect of sound, so that these distur-
bances, being convected by the flow, give rise to acous-
tic disturbances. The solution to the problem with
allowance for only the refractive effect of the boundary
layer was obtained for an axisymmetric duct with a sub-
sonic compressible flow on the condition that the cross
section and the wall impedance of the duct slowly vary
along its axis [14]. As a result, the solution to the
waveguide problem of the sound propagation in a
smoothly inhomogeneous duct in the presence of a
potential flow was obtained and the Green function that
determines the general solution for a given distribution
of sources was constructed.

A theoretical problem of special interest is the deter-
mination of the optimal geometric and aeroacoustic
parameters of SASs on the basis of the real spectral
characteristics of acoustic fields in the ducts, the
boundary layer flow parameters at the duct walls, and
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
the mean velocity profiles in the duct. The parameters
of the SAS should be determined so as to affect both the
discrete components and the broadband part of noise
produced by the engine. Evidently, to reduce the levels
of discrete components, it is expedient to use resonant
structures, while, for reducing the broadband noise,
volume absorbers are preferable. The goal of the stud-
ies carried out in the last few years was the development
of high-efficiency multiparameter SASs that combine
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Fig. 6. Variants of a two-layer treatment with perforated and
microporous layers. (a) A two-layer sound-absorbing treat-
ment with a perforated surface layer; (b) photographs of a
grid layer with different magnifications; (c) schematic rep-
resentation of a two-layer treatment: (1, 2) perforated or
grid layers, (3) honeycomb filler, and (4) rigid base.
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the properties of resonant structures and volume
absorbers.

One can separate several important problems con-
cerned with the development of high-efficiency SASs.
One of them is the detailed study of the mechanisms of
sound absorption in perforated panels with the aim of
developing better methods for determining the imped-
ance characteristics of SASs. The second problem is
concerned with studying the effect of an increase in the
number of degrees of freedom of a resonant structure
on its acoustic efficiency. By controlling the degrees of
freedom, it is possible to extend the frequency band of
effective noise suppression without increasing the area
of the sound suppressing system. This problem deals
with multilayer and combined SASs. The next important
problem is related to studying the efficiency of
microporous permeable panels as absorbing layers.
Microporous panels are manufactured using different
technologies. The Russian mass production materials
include grid panels with a serge weaving (Fig. 6b).

In designing SASs for engine ducts, the fundamen-
tal problem is to obtain the maximum possible attenua-
tion at a given frequency or in a given frequency band
with a limited length of the treatment. This refers in full
measure to the ducts of engines with a high by-pass
ratio, where the possibilities of mounting the SAS are
limited (Fig. 5b) while a considerable reduction of the
noise levels is required at both the blade frequency and
its harmonics. For real power plant duct lengths in the
frequency band under consideration, it is appropriate to
use the method of determining the optimal impedance
of SASs from the condition of the maximal ratio of
acoustic energy flows at the inlet and outlet of the muf-
fler duct [11]. Using the solution to the problem of
determining the optimal attenuation in a treated duct on
the basis of calculating the energy flow from a point
source positioned symmetrically with respect to the
walls, it is possible to calculate the geometric parame-
ters of the SAS from the condition that the impedance
is optimal and to determine the dependences of the opti-
mal impedance and the maximum possible attenuation
in the duct on both frequency and distance from the
source.

The optimal sound attenuation in a duct with a
source lying on the duct axis is achieved when the
impedances of the SAS on opposite walls are equal.
However, most of the real sources of engine noise do
not lie in the middle of the duct, and the equality of the
SAS impedances on opposite walls is unnecessary.
With the introduction of an additional argument,
namely, the impedance of the second wall, the solution
of the problem is considerably complicated, because, in
this case, the acoustic field in the duct is a function of
many variables. On the other hand, the introduction of
the variability of the SAS impedance extends the possi-
bilities for raising the efficiency of the system of noise
suppression in the duct. If the source is not in the mid-
dle of the duct, the maximal attenuation at a given fre-
quency occurs at certain unequal values of the SAS
admittance on opposite duct walls [12]. In this case, the
attenuation is higher than the attenuation achieved
when the source lies in the middle of the duct, as well
as when the treatment impedance takes equal values on
opposite duct walls.

Multilayer SASs

The sound attenuation in a duct with a two-layer
SAS can be determined with different optimization
conditions. The geometric parameters of a two-layer
structure, namely, the depth of the air cavities of the
layers and the perforation percentage of the panels, can
be calculated from the condition that its impedance
takes optimal values at two frequencies simultaneously.
The optimal impedance at each frequency can be deter-
mined in two ways: on the assumption that the imped-
ance values on opposite duct walls are different and on
the assumption that these values are equal. For exam-
ple, in the cases considered in [12], the efficiency of a
two-layer structure coincides with the optimal one at
the maxima of the frequency characteristics of attenua-
tion. On the whole, the structure, whose geometric
parameters are determined on the assumption that the
impedance takes different values on opposite walls,
proves to be more efficient. The dips in the frequency
characteristics of attenuation are related to the limited
attenuation bands of individual layers, which presum-
ably is a consequence of the presence of a large associ-
ated mass of the perforated panels. Hence, using two-
layer treatments, it is possible to make their impedances
equal to the optimal values corresponding to the maxi-
mal attenuation at two frequencies simultaneously. As a
result, the frequency spectrum of attenuation is broad-
ened compared to the case of single-layer structures. To
obtain more uniform frequency characteristics of atten-
uation, it is expedient to use fine-pore grids with a small
associated mass and also to use structures containing
several layers.

The use of thin smooth permeable grids (Fig. 6b) as
absorbing layers of the SAS offer considerable prom-
ise. Experimentally, it was found that the impedance of
a single-layer grid structure is independent of the sound
pressure level and that the associated mass of such a
structure is small, at least when the structure is rela-
tively deep [15]. These facts, along with the smooth-
ness of the surface layer, make such structures attrac-
tive for use in the ducts of aircraft engines, where it is
necessary that the SAS be effective in a wide range of
engine operation modes, from landing to take-off.

To calculate the impedance of a structure with a grid
layer, one has to use rather complicated mathematics
based on the Green function approach. The main effects
that should be taken into account in calculating the
impedance of a single-layer structure include the losses
due to the viscosity and the heat transfer in the pores of
the surface grid and at the walls of the air cavity (reso-
nator), as well as the effect of the lateral and rear walls
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
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on the associated mass [15]. The inclusion of the losses
due to the viscosity and the heat transfer at the walls of
the air cavity is possible through the introduction of the
appropriate wall admittance of the nonlocally reacting
type. The losses in the holes of the grid strongly depend
on the shape and dimensions of the holes; in particular,
in the case of a serge weaving, the holes have smooth
inlets and outlets, which hinders the formation of jet
flows [16, 17]. This fact partially accounts for the weak
dependence of the impedance on the sound pressure
level.

The impedance of a two-layer structure is a sum of
the impedance of the surface grid, the inertial imped-
ance of the surface grid with a load equal to the internal
layer impedance, the inertial impedance of the surface
grid with a load corresponding to an infinite column
thickness, and the impedance of the first layer (without
the surface grid) loaded with the impedance of the sec-
ond layer [13]. When the depth of the first layer is
small, the two-layer structure behaves as a single-layer
one of the total thickness with a higher resistance and a
lower resonance frequency. The latter is caused by the
higher inertial parameter due to the effect of the second
layer. As the depth of the first layer increases, a second
resonance emerges at a higher frequency. Simulta-
neously, the first resonance shifts to lower frequencies.
The operating range of such a two-layer structure is the
wide frequency band that covers both resonance fre-
quencies.

Owing to the small associated mass, the grid struc-
tures, especially the two-layer ones, offer advantages
over the structures with perforated panels from the
viewpoint of their bandwidth and sound absorption
coefficient [15]. Figure 7 presents a comparison
between the sound absorption coefficients measured
experimentally for single-layer and two-layer SASs
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Fig. 7. Comparison between the sound absorption coeffi-
cients of a single-layer SAS, a two-layer SAS with perfo-
rated panels, and a two-layer grid SAS.
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with perforated panels and a two-layer grid SAS. The
sound absorption coefficient α of a two-layer structure
with perforated panels has two maxima corresponding
to two tuning frequencies (the second peak is beyond
the operating range of the experimental setup). The
large resistance and inertial mass of this structure are
undesirable, because, in the corresponding frequency
region, the frequency characteristic of sound attenua-
tion in the duct will exhibit a dip. A correct choice of
the geometric parameters of a two-layer SAS with a
perforated panel should make the spike in the real part
of the impedance as small as possible or shift it to the
edge of the frequency range of interest. In the case of a
two-layer grid structure, because of the small associ-
ated mass and a moderate resistance value, the fre-
quency characteristic of the absorption coefficient has a
single smooth maximum without any dips. This struc-
ture provides a sufficiently high sound absorption coef-
ficient within the whole frequency range of practical
interest. One can see that a two-layer grid structure has
a wider frequency characteristic of α compared to the
two-layer structure with perforated panels.

If the surface layer of the treatment may be fouled
so that the grid structure may loose its absorbing prop-
erties, it is expedient to use combined two-layer SASs
with the surface layer in the form of a perforated panel
and the inner layer in the form of a grid panel. Figure 8
compares the characteristics of the sound absorption
coefficient obtained for three variants of two-layer
structures: with two perforated panels, with a perfo-
rated surface panel and an inner grid panel, and with
two grid panels. The geometric parameters of the first
and second layers of the SAS were chosen so as to
make them best suitable for using the structures in the
ducts of modern engines. From the viewpoint of the
sound absorption efficiency, the SAS with a perforated
surface panel and an inner grid panel occupies the inter-
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Fig. 8. Frequency dependences of the sound absorption
coefficient for two-layer structures: (1) with perforated pan-
els, (2) with a perforated surface panel and an inner grid
panel, and (3) with grid panels.
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Fig. 9. Samples of (b, c) homogeneous and combined SASs (a) with different perforations of the surface layer and (d) with different
resonator volumes.
mediate place between the two-layer SASs with perfo-
rated panels and grids.

The purpose of research carried out in this area is the
choice of micron grids that are most suitable for power
plants of airplanes, as well as the refinement of the
effect of the interaction between the perforated surface
panel and the grid panel and between two grids in order
to determine the optimal distance between them and the
optimal combination of their parameters.

Combined SASs

An extension of the absorption band to both higher
and lower frequencies is possible by using multiparam-
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2.001.601.25
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2.50

Fig. 10. Frequency dependences of the sound absorption
coefficient for a combined SAS (—) and for homogeneous
SASs (– – –) with a hole diameter d = 2 mm and different
perforation percentages of the surface panel: F = (1) 6, (2) 9,
(3) 12, and (4) (3 ∪  6 ∪  9 ∪  12)%; Linc = 140 dB.
eter treatments, i.e., combined two-layer structures of
different thicknesses with a varying perforation of sur-
face layers [18].

For the practical application in air intake ducts, the
structures most suitable from the viewpoint of extend-
ing their absorption band are combined SASs with an
absorbing surface that consists of resonator units
repeated in two mutually perpendicular directions, each
unit consisting of several resonators tuned to different
frequencies. The resonators forming a unit are tuned by
varying the perforation percentage or the resonator vol-
ume in neighboring cells (Fig. 9). If we draw an anal-
ogy to a two-layer structure, whose impedance is deter-
mined as a series connection of impedances of its con-
stituent elements, the impedance of the combined
structure under consideration can be represented as a
parallel connection of the elements forming the unit. To
make the frequency characteristic of absorption as uni-
form as possible in a wide frequency band, it is neces-
sary to choose the appropriate geometric parameters of
the cells forming a unit with allowance for the effect
they produce on each other.

An exact determination of the impedance of a com-
bined structure consisting of several differently tuned
cells usually presents a complex diffraction problem,
which requires solving the wave equation with a peri-
odically inhomogeneous surface. By introducing a set
of limitations concerning the conditions of the sound
incidence and the relations between the geometric
parameters and the sound wavelength, one can obtain
an approximate expression for the impedance of a com-
bined sound-absorbing structure [3]. For this purpose,
it is sufficient to know the impedance of each of the
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
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homogeneous structures, whose elements form the
combined SAS, and the fraction the area of each ele-
ment makes of the total area of the unit.

The comparative study of combined resonant SASs
that was carried out at normal sound incidence by a
high-level interferometer showed a considerable exten-
sion of the frequency characteristics of the absorption
coefficient α, as compared to the corresponding charac-
teristics of the homogeneous SASs whose elements
form the combined SAS (Fig. 10). The combined SAS
under investigation had the form of a unit of four iso-
lated resonant cells, which were tuned to an individual
frequency each and, pairwise, to two resonance fre-
quencies or three different frequencies. The frequency
characteristic of a combined SAS consisting of four dif-
ferent cells actually represents the envelope of the char-
acteristics of α of three homogeneous SASs. The fourth
cell with the minimal perforation percentage F = 3%,
which has the maximal resistance compared to the
other three cells, made practically no contribution to the
total absorption. To extend the frequency characteristic
of the sound absorption coefficient, it is important to
provide the maximal efficiency of all cells of the struc-
ture. This presents the subject of the inverse problem,
which consists in the determination of the parameters
of a combined SAS from the condition that the sound
absorption coefficient α be maximal in the given fre-
quency band.

It is well known that the impedance of a resonant
structure strongly depends on the intensity level of the
incident sound. The characteristics of sound absorption
by combined SASs that were obtained for different
sound pressure levels Linc at the sample surface showed
a decrease in their nonlinearity. Figure 11 presents the
results of studying the sound absorption coefficient of a
combined SAS, whose cells have different hole diame-
ters d, and a similar SAS, whose inner partitions are
eliminated. One can see that, in the second case, i.e., for
a homogeneous structure with holes of different diam-
eter, the sound absorption coefficient strongly depends
on the sound pressure level at the sample surface. For a
combined SAS consisting of four cells with holes of
different diameter, the effect of sound level variation is
considerably reduced, which is an important advantage
from the point of view of its application in the ducts of
an aircraft engine.

Low-Frequency SASs

An effective reduction of the engine noise level in
the low-frequency region is possible with the use of
small-size low-frequency resonators. The absorption
band can be extended by changing the geometric
parameters of resonators and the perforation percentage
of the surface layer. The use of such structures is expe-
dient for engines with a superhigh by-pass ratio m ≥ 10
or for cowled propfans and, in particular, for the NK-93
engine that is under development in Russia. Such
engines exhibit a noise spectrum with a spectral maxi-
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mum shifted to lower frequencies, as compared to the
spectral maxima characterizing the noise of modern by-
pass turbojet engines; namely, this maximum occurs at
frequencies of 300–500 Hz. To reduce the noise levels
in this frequency region, the honeycomb resonant SASs
are unsuitable because of their relatively large thick-
ness required in this case. A decrease in the SAS thick-
ness to 40–70 mm can be achieved through structural
changes that cause a considerable increase in the asso-
ciated mass and, hence, a resonance frequency shift to
the low-frequency region. The corresponding means
may be grids introduced in the air cavities or pipes of
different length and diameter.

In each section, the system of resonators may
include, for example, two or three resonators tuned to
different frequencies and positioned close to each other.
Each resonator consists of a rectangular cavity with
holes in the form of a throat oriented toward the inci-
dent sound. The use of pipes of sufficient length and
width makes it possible to reduce the total height of the
sound-absorbing section due to the increase in the asso-
ciated mass (Fig. 12). The resonators belonging to the
same section are tuned to different frequencies, which
allows the extension of the absorption band. Tuning is
possible by choosing the appropriate lengths and diam-
eters of the pipes and the volume of each resonator
within a given section.

The results of testing by a low-frequency interfer-
ometer showed that an increase in the pipe length δ and
a decrease in the throat diameter d lead to a decrease in
the resonance frequency (Figs. 12a and 12b). The fre-
quency characteristic of the sound absorption by a com-
bined structure consisting of several resonators is in
fact the envelope of the characteristics of individual ele-
ments. The use of metal grids placed in the resonator
throat leads to an extension of the frequency character-
istic of sound absorption (Fig. 12c), while the reso-
nance frequency remains practically unchanged.
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Fig. 11. Effect of the sound pressure level at the surface of
an SAS with hole diameters d = 1, 2, 3, and 4 mm on the
sound absorption coefficient for Linc = 110 (- - -) and 140 dB
(—): (1) a combined structure and (2) a structure without
inner partitions.
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The use of pipes of different lengths and diameters
makes it possible to design variants of combined SASs
by analogy with those considered above and intended
for noise suppression in the higher frequency region. To
prevent the undesired sound generation, low-resistance
grids may be placed at the pipe inlet.
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Fig. 12. Frequency dependence of the sound absorption coef-
ficient of a resonant structure: (a) h = 50 mm, d = 20 mm, the
perforation percentage is F = 5.5%, and δ = (1) 20, (2) 40,
and (3) an inhomogeneous structure with δ = 20 and 40 mm;
(b) h = 50 mm, δ = 20 mm, d = (1) 20, (2) 15 mm, and an
inhomogeneous structure with d = 15 and 20 mm; (c) d =
20 mm, δ = 20 mm, and h = (1, 2) 100 and (3, 4) 50 mm for
a structure (1, 4) with and (2, 3) without a metal grid.
Multisectional SASs

Studies that are of practical interest from the point
of view of obtaining the maximum sound attenuation in
the power plant ducts are those aimed at increasing the
efficiency of sections or combinations of sound-absorb-
ing treatments with different parameters and properties
[18]. The efficiency of a two-section treatment may be
even higher than the algebraic sum of the individual
efficiencies of the two sections. Presumably, this is
related to the presence of the impedance jump, which
causes the reflection of sound waves and the transfor-
mation of low-order modes to higher-order ones, while
the latter are more efficiently absorbed by the treat-
ment. The tuning frequency of a two-section SAS is
intermediate between the tuning frequencies of the two
sections.

To provide the required efficiency of the system of
noise suppression in a power plant, it is necessary to use
several structures with different geometric parameters,
i.e., to use a multisectional treatment. One can con-
struct many combinations of SASs with different tun-
ing frequencies and different area of their mounting, so
that each of these combinations will provide the
required frequency band of noise suppression. In prac-
tice, the parameters of interest of an SAS include the
area of the sections and their tuning frequencies; a mul-
tisectional SAS should provide the required efficiency
of noise suppression and have the minimal area. In
other words, it is necessary to solve the problem of a
balanced noise reduction by each of the sections, so that
the resulting frequency characteristic of this SAS be
close to the required one, e.g., in the sense of the rms
approximation. For example, for the outer contour duct
of an engine with a high by-pass ratio, the problem can
be solved as follows. We assume that the duct can be
divided into sections that have the form of pieces of a
ring channel with a constant height within each section,
while the heights of different sections may be different.
Each section is treated with SASs over the whole lateral
inner surface. The number of sections, their initial
dimensions, and the preliminary tuning frequencies of
the SASs are determined. Then, for the duct under con-
sideration, the optimal impedances of each of the sec-
tions are determined for the least attenuated mode.
From the optimal impedance, the perforation percent-
age and the depth of the air cavity are determined at the
preliminary tuning frequency of each of the pieces with
given initial dimensions. The necessary dimensions of
the sections and the frequencies corresponding to max-
imal attenuation are determined so as to make the cal-
culated attenuation spectrum as close as possible to that
required for the power plant under consideration.

NOISE PROBLEMS OF A SUPERSONIC 
PASSENGER AIRPLANE

The necessity to satisfy the requirements imposed
on the community noise in airport areas leads to an
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
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unordinary situation in connection with the develop-
ment and possible operation (expected in the second
decade of the XXI century) of supersonic transport air-
craft of the second generation (SST-2) in both Russia
and western countries. The experience gained from the
operation of the first-generation SST, Tu-144 and Con-
cord, which were developed in the late 1960s, showed
that, to satisfy the currently effective requirements of
Chapter 3 of the ICAO Standard, it is necessary to
reduce the noise level produced by these airplanes at the
take-off conditions by about 20 dB [19, 20] (Fig. 4). The
acuteness of the problem of the SST noise suppression
is determined by the necessity of using engines with a
high thrust-to-weight ratio to provide a cruising flight
with a supersonic speed. The issue velocity of the
power plants of both Tu-144 and Concord reached a
value of 900 m/s and was more than 1.5 times higher
than the outflow velocity of the engines of subsonic
passenger airplanes used at that time. For comparison,
note that, in the engines of modern subsonic passenger
airplanes, which allow a further strengthening of the
noise standards, the issue velocities are within 300–350
m/s.

The possibility of providing low levels of commu-
nity noise near airports is the decisive condition for the
beginning of the operation of SST-2, and this possibil-
ity depends on the development of efficient methods for
suppressing the jet noise of these airplanes [21, 22]. A
possible solution to this problem may be the use of
engines with a variable operation cycle, namely, a by-
pass turbojet engine for the take-off and landing and a
turbojet engine for the cruiser flight. However, the vari-
ation of the operation cycle alone is not enough to sat-
isfy the requirements imposed on the community noise
by, e.g., Chapter 3 of the ICAO Standard, and it is nec-
essary to use the latest advances in jet noise control.
The noise control methods that were recently devel-
oped in connection with the SST-2 operation problem
include intensification of the jet mixing with the sur-
rounding medium, reduction of the resulting issue
velocity, and passive sound absorption [23–26]. The
intensification of the jet mixing processes can be
achieved by varying the parameters of the flows in the
inner and outer engine contours and by using a multi-
element or multilobe nozzle in combination with an
ejector. In this case, it is desirable that the flow velocity
at the ejector outlet be comparable with the issue veloc-
ity of modern engines.

In an engine with a variable operation cycle, the jet
mixing can be accelerated by using the so-called
“inverted” velocity and temperature profiles of the
engine outlet flow, when the high-head and high-tem-
perature flow occurs in the outer contour [19]. Model
studies showed that the use of the inverted profile of the
flow parameters leads to a decrease in the maximum
levels of the jet noise by 5–7 dB and to a decrease in the
acoustic power by up to 5 dB. An additional decrease in
the noise levels may be achieved by creating a gaseous
shield between the exhaust flow and the observer, e.g.,
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by separating part of the gas flow downstream from the
combustion chamber to form a secondary heated flow
that is parallel to the main one [27]. In this case, the
acoustic effect is based on the reflection and refraction
of sound waves as a result of their passage through the
gas layer. A considerable reduction of the noise levels,
by about 10 dB, is observed in the high-frequency
region at the observation angles corresponding to the
directions of the most intense jet noise radiation. Evi-
dently, to obtain the maximal acoustic effect, it is expe-
dient to use certain combinations of jet noise control
methods.

In the development of the power plants for SPA-2,
an especially important problem is the design of an effi-
cient ejector muffler that suppresses the jet noise at the
take-off and landing stages of the flight and is elimi-
nated from the flow or partially transformed to a
streamlined body at the cruiser flight stage (Fig. 13a).
The difficulties encountered in designing an ejector
device are related to the problems of obtaining a per-
fectly expanded main flow for a wide range of pressure
ratios and engine operation modes, as well as obtaining
acceptable thrust characteristics of engines at real oper-
ating conditions. An ejector device should be designed
so as to minimize the noise of wave structures in the
flow by creating optimal systems of variable geometry
for the exhaust nozzles.

The acoustic effect achieved with the use of an ejec-
tor muffler occurs at the expense of the reduction of the
flow velocity in the zone of mixing with the surround-
ing medium. For example, in an axisymmetric ejector
device consisting of a shell, an ejector, a central body,
and hollow pylons, an efficient mixing of the main flow
with the ejected air results from the flow separation into
a number of jets of smaller transverse size and the ejec-
tion of the surrounding air into the mixing zone through
additional windows in the lateral walls (Fig. 13b). At
the stage of the supersonic cruiser flight, the pylons are
transformed so that they close the external airflow and
form the supersonic part of the nozzle with a low
thrust loss. A similar structure is used in the rectangu-
lar multielement ejector nozzle consisting of a shell,
corrugations, central body, lateral walls, and leafs of
the ejector [23].

In ejector mufflers, one can distinguish two charac-
teristic zones of jet mixing (Fig. 14). One of them lies
at the outlet of the corrugated nozzle elements. In this
zone, the high-speed jets are mixed with ejected air.
Since the characteristic size of the flow is determined
by the geometric dimensions of individual lobes, the
noise generated by this part of the flow is a high-fre-
quency noise, which is usually called the “lobe noise.”
The second characteristic zone of mixing lies at the
ejector outlet where the issuing flow is mixed with sur-
rounding air. Since the flow has a greater transverse
dimension and a lower velocity, the noise from this part
of the flow is a low-frequency one and is called the
“mixing noise.” An approximate evaluation of these
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Fig. 13. Noise-suppressing ejector nozzles with the air ejection (a) through an annular slot and (b) through additional windows:
(1) main flow, (2) ejector, (3) ejected air, (4) central body, (5) sound-absorbing treatment, (6) corrugated nozzle, and (7) pylons.
noise components is possible on the basis of the deter-
mination of the main gas-dynamic and geometric
parameters of the flow with the use of the theory of
flow mixing in an ejector [20]. The acoustic efficiency
of ejector nozzles, which was measured at static take-
off and landing conditions, proved to be as high as
15−17 dB in the intervals of frequencies and observa-
tion angles corresponding to most intense noise radia-
tion (Fig. 15).

A further reduction of the noise level can be
achieved using SASs mounted on the inner surface of
the ejector [28] (Fig. 14). The parameters of the SAS
should be adjusted so as to provide the maximum sup-
pression of the high-frequency lobe noise. Along with
solving the direct problem, which consists in the deter-
mination of the acoustic field formed in the ejector duct
under consideration as a function of the aeroacoustic
parameters of the duct and, specifically, of the treat-
ment impedance, it is of practical interest to solve two
inverse problems: first, to determine the preferable or
optimal values of the treatment impedance that provide
the maximum sound attenuation in the duct and, sec-
ond, to determine the geometric parameters of multipa-
rameter sound-absorbing treatments so as to make their
real impedance as close as possible to the optimal value
in the given frequency range. In this case, the attenua-
tion provided by the specific treatment will be the max-
imum possible one in the given frequency range.

It should also be noted that, because of the severe
weight and area limitations, the sound-absorbing treat-
ments mounted on the duct walls must have the highest
possible efficiency. The solution of the direct problem
for, e.g., a point source localized in the region of the
maximal flow noise generation, should be performed
with allowance for the refraction and reflection effects
arising at the flow layer boundaries and in the boundary
layer and affecting the mode structure of the field in the
duct and, hence, the parameters of the SAS [29]. The
optimal impedance is determined from the condition of
minimal energy at the outlet of the treated part of the
ejector duct. For example, the solution of a number of
problems for single-layer, two-layer, and combined
treatments was obtained for a rectangular duct with
identical SASs mounted on its opposite sides [30]. Sin-
gle-layer honeycomb resonant structures provide the
maximum possible attenuation at their tuning frequen-
cies, and a two-layer structure provides the maximal
attenuation at two frequencies simultaneously. Experi-
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
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Fig. 14. Increase in the acoustic efficiency of an ejector nozzle: (1) the optimization of the parameters of SASs, (2) the change in
the initial nozzle configuration, and (3) the increase in the efficiency of air ejection and the intensification of the flow mixing.
mental studies were performed with two-layer struc-
tures made of composite materials, including perfo-
rated sheets and baffles attached to them so as to form
resonant air cavities. It was found that, in the presence
of sound-absorbing treatments in the ejector duct, a
noise reduction of 11 dB can be achieved in a wide fre-
quency range.

Recent studies show that a promising SST-2 can fit
the current ICAO Standard for community noise of pas-
senger airplanes if a by-pass engine with an ejector
muffler is used at take-off and landing and the optimal
operation procedures are used in the course of the
flight. To satisfy the new, more stringent requirements
imposed on the community noise near airports, it is
necessary to apply a variety of noise-control tech-
niques.

ACOUSTIC FIELD OF AN AIRPLANE
WITH PROPFAN ENGINES

The operating experience gained with various air-
planes shows that the use of propellers provides higher
economical efficiency of aircraft power plants, as com-
pared to turbojet engines, for the speeds of flight corre-
sponding to Mach numbers less than 0.75 [31]. The
An-70 Russian–Ukrainian airplane is the world’s first
airplane with a propfan power plant, which includes an
eight-blade front propeller and a six-blade rear propel-
ler. This airplane has remarkably good take-off and
landing characteristics.

To obtain preliminary estimates of the noise charac-
teristics of this airplane, the acoustic field generated by
a propfan was measured in a “flying” laboratory [32].
The main noise sources of a coaxial propfan were ana-
lyzed: the noise level produced by the rotation of the
eight-blade front propeller L8, the noise level produced
by the rotation of the six-blade rear propeller L6, and the
noise level Lint caused by the aerodynamic interaction
between the blades of the propellers in the coaxial con-
figuration with unequal numbers of blades in the front
and rear propellers (Fig. 16). In the zone of propeller
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rotation  = 0 (where  = x/Dp, x is the distance from
the plane of rotation of the front propeller along the
fuselage, and Dp is the propeller diameter), the total
acoustic load level Lt on the fuselage is determined by
the noise components caused by the rotation of the front
and rear propellers, namely, by the first harmonics of
the noise produced by the rotation of these propellers
with the frequencies f8 and f6, respectively.

The narrow-band analysis in the high-frequency
region of the noise spectra revealed many discrete com-
ponents at the frequencies fp representing combinations
of the rotation frequencies of the front and rear propel-
lers (Fig. 17). The directivity of these noise components
Lp is more uniform than that of the harmonics of the
rotation noise. The intensity of the discrete noise com-
ponents at the combination frequencies is determined
by the aerodynamic interaction of the propellers and the
effects of the interaction of the vortex wakes and pres-
sure fields produced by the propellers. In the coaxial
configuration, the rear propeller operates in a field of
velocities varying in azimuth and produced by the front
propeller; the blades of the front propeller produce a
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Fig. 15. Noise spectra in the direction of the maximal noise
radiation from the jets issuing from the nozzles: (1) initial
circular nozzle, (2) ejector nozzle of Fig. 13a, and (3) ejec-
tor nozzle of Fig. 13b.
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vortex sheet that is incident on the blades of the rear
propeller. The most intense vortices can be the end ones
formed by the front propeller blades at off-design con-
ditions. It was found that, in the spectral characteristics
of a coaxial propfan noise, the relation between the lev-
els of the discrete components and the broadband noise
is determined by the geometric and aerodynamic
parameters of the propellers, the operating mode of the
power plant, and the airflow conditions around the pro-
pellers.

The pronounced directivity of the propeller noise
harmonics and the presence of many discrete high-fre-
quency noise components may cause problems for a
passenger airplane with a propfan power plant as to the
acoustic comfort inside the plane and the community
noise limits determined by the ICAO Standard.

Effective measures for reducing the propeller noise
include an increase in the number of blades, a decrease
in their relative thickness, a more swept shape, and the
optimal choice of the load distributions over the blade
surfaces and the blade geometry that reduce the wave
processes in the airflow around the blades [33–35]. A
decrease in the levels of the discrete noise components
at the combination frequencies can be achieved by
changing the rotation rates of the front and rear propel-
lers and by increasing the distance between the planes
of blade rotation, i.e., by reducing the aerodynamic
interaction of the propellers. Some of the methods of
noise reduction are ineffective for supersonic and close-
to-supersonic velocities of the flow around the blades.
The possibilities offered by other methods, such as a
decrease in the relative thickness and an increase in the
width of the blades, proved to be practically exhausted
because of the technological difficulties in manufactur-
ing this kind of blade. Therefore, to reduce the propeller
noise and the loads on the airplane fuselage, it is neces-
sary to consider specific methods, such as the choice of
the optimal load distribution over the blade surface and
the blade geometry that reduce the wave processes in
the flow around the blade and, hence, reduce the corre-
sponding noise levels. In this case, the calculation of
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Fig. 16. Distribution of acoustic load levels along the fuse-
lage surface; (1) the solid vertical line represents the plane
of rotation of the front propeller.
the field of pressure disturbances caused by coaxial
propellers with blades of an arbitrary shape is based on
the determination of the fields of forces acting in the
blade cross sections and the determination of the effects
produced in the surrounding medium by the aerody-
namic loads applied to the blades. It should be noted
that the measures taken with the aim of reducing the
noise must not affect the aerodynamic characteristics of
the propellers.

Currently, in the studies of the possibilities of
increasing the efficiency of power plants, some atten-
tion is also paid to propellers and coaxial propfans
mounted in ring cowls. At equal thrusts, the diameter of
a cowled propeller is smaller than that of an open pro-
peller, which makes it possible to realize different con-
figurations of power plants in the airplanes.

Let us list the possible contradictory consequences
of the use of a cowled propfan for solving the acoustic
problems of airplanes. The specific feature of the con-
figuration with a cowled coaxial propfan is the presence
of pillars supporting the cowl, while, in a turbojet
engine, they may be an integral part of the stator. Under
the assumption that the noise caused by the interaction
of propellers produces the same effect as the noise of
the rotor–stator interaction with the same axial separa-
tion of blades, a cowled coaxial propfan is character-
ized by the additional noise due to the interaction of the
propeller with the pillars, as compared to an open prop-
fan.

With the same engine length, the structure of a
cowled propfan requires a decrease in the distance
between the rows of propeller blades, as compared to an
open propfan, which inevitably leads to higher noise
levels due to the interaction between the propellers. At
the same time, with the same thrust of the power plants,
the end velocities of the blades of a cowled propfan are
smaller, which results in a less intense noise radiation.
However, the inner wall boundary layer in the cowl
causes perturbations of the oncoming airflow at the
ends of the propeller blades, which may cause an
increase in the noise radiation. In addition, in such a
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Fig. 17. Noise spectrum of a coaxial propfan; (1) the eight-
blade front propeller and (2) the six-blade rear propeller.
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structure, it is difficult to realize propeller blades with
large sweep angles to obtain lower noise levels at cruis-
ing speeds. On the other hand, the presence of a cowl
screens the propfan noise and provides the possibility
of mounting SASs on the inner surfaces.

To obtain an exact description of the sound field of
a cowled coaxial propfan, one needs exact information
on the additional mechanisms of blade loading due to
the nonstationary aerodynamic interaction between the
blade rows and the effects of interactions of ring vorti-
ces, the vortex sheet behind the blades, and the flow
inhomogeneities caused by one of the blade rows and
interacting with other blade rows. In addition, it is nec-
essary to describe the additional noise sources that
appear when the propeller operates at a nonzero angle
of attack or an inhomogeneous velocity field, as well as
the noise sources due to the flow interaction with the
pillars supporting the cowl. The multitude of the mech-
anisms of noise generation in a cowled coaxial propfan
complicates the development of the noise computation
methods and the parametric studies of the acoustic
characteristics of an airplane.

FLOW NOISE FROM THE AIRFRAME 
ELEMENTS

In the development of the new generation of passen-
ger airplanes with low noise levels, in addition to the
problem of further suppression of the power plant
noise, the problems of reducing the flow noise caused
by the airflow around the airframe elements, the high-
lift devices, and the landing gear of the airplane become
increasingly important [10, 36]. One can consider the
noise of the flow around the airframe elements as the
lower limit for the reduction of the airplane noise. For
example, at landing conditions, the noise levels pro-
duced by the power plant of a modern airplane are close
to the noise levels produced by the airflow around the
landing gear, the high-lift devices, and the airframe
(Fig. 18). The studies in this area are especially topical
for the large passenger airplanes under development.

The noise of the flow around the airframe elements
is determined by the fluctuations of the parameters of
turbulent flows in the slots formed by the slats and flaps
at take-off and landing conditions, in the boundary lay-
ers at the skin surfaces, and in the wakes behind the air-
frame elements (Fig. 19). The most intense noise is
generated by the flow around the landing gear, the flaps
of the trailing edge of the wing, and the slots in the lead-
ing edge of the wing.

As a rule, the acoustic disturbances generated by
these sources cannot be fully calculated because of the
complex structure of the fields of the turbulent stress
tensor in the flows and the fluctuating forces acting on
the airplane surfaces in the real flows around the air-
frame elements. Therefore, the evaluation of the noise
sources is performed using both numerical methods
and experimental data obtained in the model conditions
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
or in the conditions imitating real stages of flight. In
numerical calculations, the attention is focused on the
determination of the turbulent flow structure resulting
from the flow around the airframe elements [37]. For
example, it was shown that the noise generated by the
flow around the flaps is caused by intense pressure fluc-
tuations related to the fluctuations of the vorticity field
near the flap edges.

The approaches currently used for estimating the
flow noise around the airframe are based on the mea-
surements of the airplane noise with the engines oper-
ating in reduced power conditions and on the determi-
nation of the dependences of the noise characteristics
on the speed of flight, the airplane weight, the position
of the high-lift devices, etc. Such an approach allows
one to estimate the acoustic characteristics of the flow
noise from the airframe only when the configurations of
the initial and calculated airplanes are geometrically
similar. Other approaches are associated with the deter-
mination of the noise generated by the flows around
individual elements: the slats, the wing, the flaps, the
landing gear, etc. in a wind tunnel whose working sec-
tion contains a sound-absorbing treatment [38, 39].

From the point of view of reducing the noise inten-
sity, the most difficult source is the airflow around the
landing gear. In studying the formation of this source,
an important role is played by the experimental aeroa-
coustic studies in conditions close to those of real oper-
ation, along with the studies of the flow noise around
large-scale models. The studies of the flow noise
around full-scale landing gears of modern airplanes
show that, when the landing gear enters the oncoming
airflow, the most noticeable increase in the spectral
noise levels occurs in the region of low acoustic fre-
quencies. A decrease in the flow noise levels can be
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dard; and (4) the noise levels expected for the flow noise
from the airframe.
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1 2

3 4

Fig. 19. Sources of the flow noise produced by the airframe of an airplane: (1) the flow around the slats and the flow separation from
the surface; (2) the boundary layer at the fuselage surface; (3) the turbulent wakes and vortex formations behind the trailing edge
of the wing, flaps, fuselage, and tail unit; and (4) the flow around the landing gear.
achieved by making the landing gear streamlined and
by using fairings and interceptors.

The flow noise around the high-lift devices is mainly
generated by the complex vortex structures accompa-
nying the formation of the lift of the wing (Fig. 20).
Currently, an especially important problem is the deter-
mination of the relation between the noise intensity and
the geometry of the high-lift devices. The dominant
noise source formed in the airflow around a slat is the
turbulent flow accelerated in the slot of the slat and con-
vected past the rear edge of the slat [38, 40]. In addition,
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5

Fig. 20. Possible mechanisms of noise generation by the
flow around the slat: (1) the oncoming airflow; (2) the flow
through the slot between the slat and the wing; (3) the flow
separation from the slat surface and the build-up of the flow
instability; (4) the interaction of the flows; and (5) the vor-
tex formation.
the flow in the slot is combined with the nonstationary
flow component. The vortex separation from the lower
edge of the slat gives rise to low-frequency discrete
components. Moreover, the flow around the devices pro-
viding the deflection of the slat surfaces gives rise to a
small-scale turbulence in the slot flow, which leads to a
noise generation in the high-frequency region [41, 42].

Noticeable noise levels can also be generated by the
flow around some auxiliary load-bearing elements, e.g.,
braces or control elements of the high-lift devices. If
one airframe element falls into the wake of another ele-
ment, e.g., the flap falls into the wake of the landing
gear pillars, the noise level may increase. The levels of
the flow noise from the airframe elements can be
reduced by developing a rational structural scheme, in
which the noise-generating elements do not come into
the turbulent wake formed by the airframe elements
located upstream from them, or by reducing to the max-
imal possible extent the mutual effects of the elements
in the flow.

The introduction of more stringent limitations for
airplane noise will not only restrict the production of
airplanes with imperfect acoustic characteristics but
also initiate the development of new types of airplanes.
The current problem of reducing the noise levels by
10−15 dB within 20–25 years may require the realiza-
tion of structural schemes in which the fuselage struc-
ture and the engine configuration in the airplane will be
based on entirely new ideas. For example, according to
one of the concepts, the structure of the wing gradually
passes into the fuselage structure, and the power plant
is mounted on the upper surface of the whole airplane
structure. The airplanes of the “flying wing” type may
have a lower weight compared to conventional struc-
tures and, hence, may be less noisy with the same pas-
senger capacity and flight range. The important feature
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
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Fig. 21. Tendency toward the noise level decrease in the cabins of passenger airplanes: (1) the GOST 20296 State Standard; (2) the
newly proposed GOST State Standard; and (3) a future airliner.
of this configuration is that, in the flying wing scheme,
the fuselage will prevent the propagation of the power
plant noise toward the ground and will exhibits better
aerodynamic characteristics at take-off and landing;
hence, the flow noise around the airframe elements will
be considerably reduced.

INTERIOR NOISE OF PASSENGER AIRPLANES

The competitive ability of airplanes is determined
by both their community noise characteristics and the
acoustic comfort in their cabins. In Russia, the allow-
able noise levels in airplane cabins and the correspond-
ing measurement techniques are regulated by the
GOST 20296-81 State Standard. International stan-
dards for the interior noise of airplanes have not yet
been devised. Large companies of the aircraft industry
usually establish their own standards for the allowable
noise levels to provide the acoustic comfort inside the
airplanes and to make the latter competitive (Fig. 21).

From the scientific point of view, the problem of
providing the allowable noise levels in aircraft cabins
includes the study of the mechanisms of the energy
transformation from pressure fluctuation fields to sound
via thin-wall structures and the study of the noise con-
trol techniques suitable for acoustic fields in aircraft
cabins.

A popular method of noise reduction in cabins is the
use of sound-insulating structures which simulta-
neously serve as heat insulators. A typical sound-insu-
lating structure (Fig. 22) consists of two impermeable
layers (the fuselage skin and the interior panel),
between which layers of a sound-absorbing material
are fixed. The sound-proofing properties of this struc-
ture may vary within wide limits, depending on the fill-
ing factor of the sound-absorbing layers in the space
between the skin and the interior panel, the compres-
sion of these layers, the acoustic properties of the layer
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
material, and the surface mass of the interior panel. To
provide a better effect of the second wall, a vibration
insulation is necessary between the interior panels and
the fuselage structure. As a rule, in the board structures
of passenger airplanes with turbojet engines, the space
between the fuselage and the interior panel is filled with
a soft loose-fiber material made of extra-thin fibers
(1−3 µm in diameter) with a low mass per unit volume
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Fig. 22. Schematic representations of the (a) conventional
and (b, c) advanced sound-insulating structures: (1) skin,
(2) heat and sound insulation, (3) air gap, (4) interior panels,
(5) honeycomb, (6) vibration-absorbing coating, and
(7) resonator.
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(10–20 kg/m3). The total mass of this heat-insulating
sound-proofing material may constitute a considerable
part of the take-off mass of the airplane: up to 0.5%.
Therefore, the problem of increasing the acoustic effi-
ciency of such materials is quite topical [43].

In the last few years, studies of acoustic characteris-
tics of various loose-fiber materials produced in Russia
and in other countries by different technologies were
carried out [44–46]. The materials had different fiber
diameters (from 0.7 to 25 µm) and volume densities
(from 9 to 100 kg/m3). The analysis of the experimental
results made it possible to construct general universal
characteristics of sound attenuation in these materials
with the use of dimensionless parameters. The resulting
computational model developed for a wide frequency
range can serve for the optimization of heat-insulating
sound-proofing structures used in airplane cabins, as
well as for the development of the corresponding rec-
ommendations for the manufacturers.

An effective way to enhance the dissipative proper-
ties of the board structures is to mount vibration-
absorbing treatments with a high loss coefficient
(higher than 0.2) on their surfaces [47]. For example,
the sound-proofing property of a stiffened panel is con-
siderably improved if this panel is treated with a layer
of a vibration-absorbing material of the SKL type
(Fig. 23). In the medium- and high-frequency regions

f > 400 Hz, or at  = 10 /fcr > –11, where fcr is the
critical frequency of wave coincidence, the measured
values of the sound-proofing coefficient R differ little
from the results of calculations by the “mass law” with
allowance for the panel skin and the treatment of the
panel (curve 1). In the low-frequency region, the actual
efficiency of the vibration-absorbing treatment is lower
than that calculated by the mass law with allowance for
the mass of the skin, the stringers, and the treatment
(curve 2).

f flog
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Fig. 23. Frequency dependence of the sound-proofing coef-
ficient of an airplane panel (s) treated with a layer of vibra-
tion-absorbing material and (d) without this layer.
The experimental investigations show that the use of
conventional heat-insulating sound-proofing treatments
and a vibration-absorbing treatment on the skin surface
of the fuselage panel is ineffective in the low-frequency
region from the point of view of sound insulation,
because the dominant role of the panel resonance
modes is not reduced to any considerable extent in the
low-frequency region, while the inertial properties of
the panel are used insufficiently. Because of the effect
of the resonance modes and the relatively large distance
between the load-bearing elements, the mass of the
load-bearing framing of the fuselage structure has a
minor effect on the sound insulation in the low-fre-
quency region. At low frequencies, the effect of the
sound-absorbing structures can be enhanced by
increasing the gap between the skin and the interior
panel. However, even when the gap is large, the effect
of the second wall is practically insignificant for the fre-
quencies f ≤ 250 Hz, i.e., in the frequency range corre-
sponding to the most intense noise radiation of the tur-
bofan or propeller power plants of airplanes. For
example, a decrease in the noise level in the cabin of
an Il-114 airplane requires a considerable improvement
of the sound insulation of its board at low frequencies,
which cannot be achieved with conventional sound-
insulating structures. The necessity to maintain the
interior noise levels in the low-frequency region below
the allowable limit in airplanes with propeller and tur-
boprop engines is one of the most complicated prob-
lems in aviation acoustics.

To satisfy the requirements of the State Standard for
the acoustic comfort in airplane cabins, it is necessary
to raise the sound-proofing ability of the board struc-
tures in the narrow low-frequency bands corresponding
to the fundamental blade frequency of propellers and its
low-frequency harmonics. In the region of these sound
frequencies, the sound-proofing ability of layered
structures is limited by the mass law and determined by
the surface mass of the structures. The required
increase in the sound-proofing ability of the airplane
board at low frequencies cannot be achieved with the
structures of allowable mass that are conventionally
used in aviation. The problem of reducing the low-fre-
quency noise in the cabin can be solved by taking a set
of measures that include the application of active meth-
ods and different unconventional passive methods of
noise suppression [47–49]. To increase the sound-
proofing ability of a structure, it is possible to use such
active methods that immediately affect the physical
processes governing the sound energy transfer through
it. One of these methods (characterized by a high effi-
ciency) is the use of mass simulators of the load-bear-
ing framing of the fuselage and acoustic resonators,
which hinder the sound transmission through the inte-
rior panels. Another effective method of low-frequency
noise reduction is the synchrophasing of propellers; the
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
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Fig. 24. Sound-proofing coefficient of a panel with and without resonators: (a) resonator, (b) panel; h = (1) 8, (2) 4, (3) 2, and (4) 1 cm;
(5) panel without resonators.
main difficulty in its realization is the complexity of the
design and mass production of the equipment maintain-
ing the operating modes of all engines in the preset lim-
its of possible variation.

The specialists in aeroacoustics pay special atten-
tion to the active methods of interior noise suppression.
The main effort in developing the active systems of
noise suppression is aimed at reducing the effect of
broadband and discrete low-frequency noise compo-
nents on the passengers of airplanes with propeller or
turbofan power plants. The studies include the develop-
ment of individual noise-proofing means for passengers
and the development of “antinoise” systems optimally
distributed over the cabin and the fuselage structure.
The difficulties in the practical application of antinoise
systems include not only their complexity and high
cost, but also their labor-consuming mounting and tun-
ing in the airplane cabins. Therefore, the studies con-
cerned with the development of efficient and practica-
ble methods of low-frequency noise reduction are of
practical significance.

The sound-proofing property of the board of a pro-
peller airplane can be enhanced by using resonant sys-
tems mounted on the interior panels [49, 50]. The good
prospects for this method are determined not only by its
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
acoustic efficiency but also by the possibility of its
practical realization. As an example, Fig. 24 schemati-
cally represents a panel with a resonant system and dis-
plays the frequency characteristic of the sound-proof-
ing coefficient R of a panel with the resonant system for
different values of the acoustic layer thickness h and the
sound-proofing coefficient of a panel of the same sur-
face mass without the resonant system. A computa-
tional model was developed for evaluating the acoustic
efficiency of such systems when included in the board
structure of the airplane fuselage with allowance for the
elastic-inertial properties of the fuselage skin with stiff-
ening ribs (with stringers and frames), acoustic charac-
teristics of heat-insulating sound-proofing layered
treatments, vibroacoustic characteristics of the interior
panels with resonant systems, and characteristics of the
acoustic volume of the airplane cabin. The results of
calculations and laboratory experiments provide the
possibility of determining the most promising struc-
tures with resonant systems, which should be used in
airplanes for reducing the interior noise at the funda-
mental blade frequency of the propeller and at its lower
harmonics. The important condition for the efficiency
of these systems is their optimal distribution over the
fuselage structures and the passenger cabin.
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Recently, a new method was proposed and studied
to improve the sound insulation by mass simulators of
the stiffening ribs of fuselage structures [47]. The
essence of the method consists in mounting additional
linear elements on the fuselage skin, so that these ele-
ments simulate the stiffening ribs in terms of the linear
mass and are made of materials with a lower Young’s
modulus and a higher loss coefficient than the material
of the panel elements (the skin and the stiffening ribs).
Such mass simulators of the load-bearing framing
make it possible, first, to artificially reduce the interval
between the linear elements and, hence, to increase the
upper cutoff frequency of the frequency band where the
“nonresonant” sound insulation is determined not only
by the mass of the skin but also by the mass of the stiff-
ening ribs and their simulators. Second, the use of mass
simulators with a rather strong dissipation reduces the
effect of the resonance excitation of the panel on its
sound-proofing property because of the introduction of
additional loss. Third, with the introduction of the mass
simulators, the role of the inertial properties of the
structure eigenmodes becomes more significant.

The fundamental possibility of raising the sound-
proofing abilities of plane and cylindrical fuselage pan-
els at low frequencies by introducing stiffening rib sim-
ulators was confirmed experimentally. Specifically,
experimental evaluation of the efficiency of mounting
rubber strips with different linear mass on cylindrical
fuselage panels with a large curvature radius (2.8 m)
was carried out [47]. It was shown that the mass of the
simulators enhances the inertial properties of the modes
that predominate in the sound energy transfer at low
frequencies, while the artificial decrease in the intervals
between the concentrated linear masses (the stiffening
ribs and their simulators) extends the frequency band
where the mass of the load-bearing elements affects the
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Fig. 25. Frequency dependence of the sound-proofing coeffi-
cient of a cylindrical airplane panel supplemented with
(1) duralumin stringers with a density of 0.4 kg/m and rubber
strips with densities of (2) 0.4, (3) 1.1, and (4) 1.5 kg/m.
sound insulation. In addition, since the rubber simula-
tors of the load-bearing framing have stronger dissipa-
tive properties than those of an untreated panel, their
mounting on the panel reduces the effect of resonance
vibrations on the sound insulation. Owing to the effect
of the aforementioned factors, the mounting of simula-
tors on untreated panels makes the sound-proofing
properties of the latter comparable with those calcu-
lated by the mass law with allowance for the total mass
of the skin, the stiffening ribs, and their simulators. Fig-
ure 25 presents the results of studying the effect of the
rubber strips mounted in the middle of a stringer cell on
the sound-proofing coefficient of a cylindrical panel.
One can see that, in the frequency range f > 250 Hz, the
mounting of duralumin stringers is less effective than
the similar mounting of rubber strips with the same lin-
ear mass density. As the linear density of the rubber
strips increases, the increase in the sound-proofing
coefficient becomes greater and reaches, e.g., a value of
12 dB when the total mass of the panel increases
approximately twofold. The use of simulators of the
load-bearing framing is expedient in certain local
zones of the fuselage, e.g., in the zone of maximal
acoustic loads caused by the power plant. The calcu-
lations show that the use of simulators of the load-
bearing framing in the zone of the maximal acoustic
loads on the fuselage surface of a short-range airplane
may provide an additional decrease in the interior
noise levels by 8–10 dB.

Thus, a considerable reduction of the noise levels
in airplane cabins can be achieved by increasing the
efficiency of the sound-insulating board structures.
The acoustic comfort in the cabin can be improved
with the use of resonant systems in the interior panels,
the use of materials with enhanced sound-absorbing
properties, vibration-absorbing materials that improve
the sound insulation at resonance frequencies, materi-
als with combined properties, and multilayer sound-
insulating structures made of new materials and opti-
mized with allowance for the effects of the space–time
structure of the aeroacoustic fields at the outer fuse-
lage surface.

A reduction of the noise levels inside and outside a
passenger airplane is possible only by the combined
solution of many problems concerned with decreasing
the intensity of the power plant noise sources and with
developing high-efficiency sound-absorbing and
sound-insulating materials and airplane structures. The
reduction of the noise produced by the airplanes, both
currently in operation and under development, is the
problem of prime importance, and this problem is
directly related to the competitive ability of Russian air-
craft engineering.

The research and design projects concerned with
noise control in aviation are included in the Federal
Special-purpose Program “Development of Civil Avia-
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
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tion Engineering in Russia for the period from 2002 to
2010 and up to 2015.”
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Abstract—Acoustic models are considered for different animals that inhabit the deep scattering layers of the
ocean and form a scattered acoustic field. These animals are divided into several groups that differ in their acoustic
properties: fish with and without swim bladders, crustaceans, small squids, and other animals whose bodies consist
of soft tissues and have no hard or gaseous inclusions. Normalized criteria are chosen for the quantitative compar-
ison of the scattering properties of the animals. For the animals of each group, computational models are presented
and analyzed. Generalized curves are constructed for the quantitative comparison of the backscattering cross sec-
tions of animals from different groups and of different sizes at different sound frequencies. In addition, these
curves allow one to estimate the absolute values and the frequency characteristics of the scattering cross sections
of animals for wide frequency and size ranges. © 2003 MAIK “Nauka/Interperiodica”.
† One of the widespread acoustic inhomogeneities of
the water column of the deep ocean is represented by
the deep scattering layers (DSL), i.e., horizontally
extended assemblages of small marine animals. In con-
structing an acoustic model for the DSL, information is
needed on the acoustic properties of the marine animals
inhabiting these layers and responsible for the scattered
field. The animals can be divided into several different
groups that differ in their acoustic properties: fish with
and without swim bladders, crustaceans, small squids,
and various animals with soft tissues of the body with-
out hard or gaseous inclusions. In this paper, we present
the comparative estimates of the scattering cross sec-
tions of the main inhabitants of the deep scattering lay-
ers. These estimates were obtained using theoretical
models and formulas approximating the experimental
data and are undeniably approximate for several rea-
sons: first, because of the variety of forms and struc-
tures of the bodies of animals belonging to each of the
groups; second, because of the impossibility of taking
into account the details of the body structure of the live
animals in the model; and, third, because of the lack of
experimental data on the acoustic and mechanical prop-
erties of the live tissues and on the direct measurements
of the scattering properties of individual inhabitants of
the DSL. One of the last publications in this area of
research is the paper by Benoit-Bird and Whitlov [1].

To remove the ambiguity related to the difference in
the size of the animals of the same group, we use nor-
malized characteristics for the purposes of comparison:
the backscattering cross section σ normalized to the
squared typical size l of an animal, σ* = σ/l2, and also

† Deceased.
1063-7710/03/4903- $24.00 © 20263
the size l normalized to the sound wavelength λ, l* =
l/λ. Below, the latter will be called normalized size or
normalized frequency, or simply frequency.

The typical size of the animals in the DSL is within
1 to 20 cm. The acoustic properties of the DSL are best
studied in the frequency range within 1–20 kHz. We
will assign the values l* < 1 to the low-frequency range
and the values l* > 1 to the high-frequency range.

We start with the low-frequency range and the mod-
els for fish with swim bladders. Such a model was first
proposed in [2], where expressions were obtained for
the resonance frequency ( fr) and the scattering cross
sections in the range ka ! 1, where a is the radius of the
sphere whose volume equals that of the swim bladder.
The first of these expressions has the form

(1)

Here, P is the static pressure at the depth where the fish
is located, γ = cp/cv = 1.4 is the specific heat ratio for
gas at constant pressure and volume, ρ is the water den-
sity, and µ is the shear modulus of live tissues surround-
ing the bladder. For an open-bladder fish whose swim
bladder volume does not depend on depth, we can set
a ≅ 0.05l. Introducing the corresponding corrections in
Eq. (1) and the following formulas, we can write them
in a form more convenient for practical calculations.

Among all the quantities in Eq. (1), the shear modu-
lus is the least studied, and all information available to
us about this quantity is presented in the publications
by Lebedeva [3, 4]. We used these data to construct the
dependence µt( f ) shown in Fig. 1. In this figure, the
shaded area characterizes the scatter of the experimen-
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tal data. Because of a certain indeterminacy of these
results, many of the following calculations are per-
formed for two values of the shear modulus: µ = µmin =
0.3µt and µ = µmax = 3.0µt, which covers the major part
of the shaded area in Fig. 1.

Figure 2 shows the dependence of the resonance fre-
quency on the radius a and on the fish length l = 20a
(the lower horizontal scale). The plots are constructed
for different depths of the fish and for different values
of the shear modulus. The plots in Fig. 2 show that the
aforementioned scatter of the shear modulus values
does not lead to a significant indeterminacy of the res-
onance frequencies; for the most part, they are deter-
mined by the size of the fish and by its depth. The res-
onance frequencies (excluding very large fish at very
small depths) remain in the frequency range from sev-
eral to ten or twenty of kilohertz.

Taking into account the aforesaid relation between
the size of a fish and its swim bladder, the backscatter-
ing cross section can be written in the form [2]

(2)

where Q is the quality factor of the oscillatory system
formed by the swim bladder and the tissues of the fish
body. The sound scattering by such an oscillatory sys-
tem can be considered isotropic. This determines the
simple relation of the total and backscattering cross
sections of a fish with a swim bladder at low frequen-
cies: σ0 = 4πσ.
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Fig. 1. Experimental data for the shear modulus of live tis-
sues: (1) the average value (approximately) and (2) the data
scatter region.
The physical nature of the quality factor was consid-
ered in [5], where it was shown that its value is almost
totally determined by two kinds of losses: the scattering
loss (ηs) and the shear loss (ηµ) in live tissues surround-
ing the swim bladder. The quality factor can be written
in the form

(3)

The results of calculations show that the ratio of
these two kinds of losses depends on the size of the fish,
its depth, and the quantity µ. The fraction of the shear
loss is maximal for small fish at shallow depths, where
it approaches 100%, but this fraction decreases almost
to 50% as the depth increases to 1000 m. For relatively
large fish in the DSL (l ≅ 20 cm), the shear loss almost
disappears at large depths and the quality factor is
determined only by the scattering loss. The values of
both kinds of losses depend on the shear modulus and,
therefore, on the resonance frequency. All these facts
make the dependence of the quality factor on the fish
size ambiguous. The calculations performed using
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Fig. 2. Resonance frequency versus the fish size at different
depths z. The lower boundary of each shaded region corre-
sponds to µ = µmin, and the upper boundary, to µ = µmax.
The dashed lines corresponds to free gas bubbles in water.
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Eq. (3) showed that, for real possible variations of the
parameters involved in this formula, the quantity Q can
change from 4 to 15.

Figure 3 presents the resonance curves σ(f) corre-
sponding to a fish length of 10 cm, two depths, and two
extreme values of the shear modulus. The resonance
backscattering cross section, σr , can reach hundreds of
square centimeters, the width of the resonance region is
small, and the resonance frequency strongly varies only
as the depth changes. The shear modulus noticeably
affects only the resonance cross section value. At fre-
quencies below the resonance region, the scattering
cross section decreases as f 4; above this region, the
cross section decreases slower and, for ka ≅  0.3l* ≅  0.3,
this model ceases to be valid for estimations.

At relatively high frequencies, l* > 1, the role of the
swim bladder in the sound scattering from fish
decreases and the scattering ceases to be isotropic. The
measurements performed at the Andreev Acoustics
Institute showed that, in the high-frequency region,
both the scattering pattern and the backscattering dia-
gram of fish have maxima, which correspond to the
insonification of the “flattest” parts of the fish body (the
side surface, the back, and the belly), and dips, which
correspond to the head and tail aspects. The form of
these experimental angular dependences was described
in detail by Andreeva and Samovol’kin [6].

Love [7] carried out a comprehensive study to deter-
mine the characteristics of the scattering cross section
of fish in the high-frequency region. In his generalizing
work [7], on the basis of ample experimental data, he
showed that the scattering cross sections of fish, with or
without swim bladder, differ little from one another in
the high-frequency region. Therefore, they can be com-
bined into a single group; for l* ≅  1–15, they are almost
independent of the parameter l*. Love considered the
dependence of the backscattering cross sections on the
fish insonification aspect and presented the numerical
characteristics for all possible aspects. For the quantita-
tive description, he chose the quantity 4πσ*.

Let us present some values of the normalized back-
scattering cross sections calculated on the basis of the
data taken from [7]. For the dorsal insonification
aspect, σ* =  = 3.3 × 10–3; this quantity being aver-
aged over all aspects yields 〈σ*〉 = 1.6 × 10–3. These val-
ues are practically independent of the normalized fish
length when l* = 1–15.

For estimating the backscattering cross sections of
fish without swim bladders in the low-frequency
region, we have no reliable experimental or calculated
data. As an approximation, such estimates can be
obtained on the basis of the high-frequency values of
σ* for l* ≅  1 by calculating the dependence σ*(l*) cor-
responding to the decay law proportional to (l*)4 in the
low-frequency range. For such estimates, we need to
omit the transition region near l* ≅  1 and restrict our
consideration to the values l* < 0.3. Using the afore-

σ1*
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mentioned value  = 3.3 × 10–3, for l* = 0.01, we
obtain the normalized backscattering cross section of
fish without swim bladders σ* ≅  10–10. This value is
much smaller than the typical values for fish with swim
bladders not only in the resonance region but outside it
as well.

Figure 4 presents the frequency dependences of the
normalized backscattering cross sections for the fish
models described above. At low frequencies, these
dependences for fish with a swim bladder, for the afore-
mentioned reasons, are not uniquely related to the fish
size and the insonifying frequency. Therefore, these
dependences are represented in Fig. 4 by shaded
regions 1 and 2. Region 1 approximately bounds the
possible values of the scattering cross sections  at
the resonance frequency of the swim bladder. The cal-
culations of the quantity  corresponding to region 1
were performed for typical fish sizes from 3 to 20 cm
and depths from 30 to 1000 m. In region 1, the values

σ1*

σr*

σr*

σ, cm2

102

101

100

10–1

10–2

10010–1 101 f, kHz

10 m

700 m

Fig. 3. Resonance curves for the backscattering cross sec-
tions of 10-cm-long fish with swim bladders for different
depths and shear modulus values. The solid lines refer to
µ = 0.3µt, and the dashed lines, to µ = 3µt.
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of  vary from 0.04 to 0.5 and correspond to fish with
a normalized length l* from 0.03 to 0.3. The large num-
ber of affecting factors hinders a more exact determina-
tion of the boundaries of this region. However, for each
particular case, the calculation can be performed by the
formulas presented above. At frequencies below the
resonance, the scattering cross sections decrease by the
law that rapidly approaches the fourth power of fre-
quency, (l*)4, which determines the boundaries of
region 2.

Line 3' in this figure corresponds to the value ,
while line 3", to the value 〈σ*〉  averaged over all possi-
ble insonified aspects (according to the data from [7]).
Lines 4' and 4" determine the approximate dependences
for fish without swim bladders in the low-frequency
range. These lines are drawn on the basis of levels 3'
and 3", respectively. Since such estimates are insuffi-
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Fig. 4. Comparative estimates of the normalized frequency
characteristics and backscattering cross sections of animals
belonging to acoustically different groups in the DSL: (1) at
resonance frequencies; (2) fish with swim bladders at fre-
quencies below the resonance region; (3') fish according to
the data of [7] for the dorsal insonification aspect; (3'') fish
according to the data of [7]: the average value over all
aspects; (4' and 4'') fish without bladders for levels 3' and 3'',
respectively; (5 and 6) small crustaceans: calculations by
formulas (4) and (5), respectively; (7) squids; (8 and 9) ani-
mals with soft homogeneous body tissues: formulas (6) and
(7), respectively; and (10) the conditional animal with the
same tissues.
ciently strict, the low-frequency branches of the calcu-
lated dependences σ*(l*), as well as the boundaries of
regions 1 and 2, are represented by dotted lines.

The second group of marine animals in the DSL,
after fish, consists of crustaceans whose typical size is
several centimeters; the most massive part of the crus-
tacean body contains muscular tissues surrounded by a
thin but much harder chitin testa. In its shape, this part
is similar to a somewhat curved cylinder or an ellipsoid
of revolution; its length is considered as the typical size
of the crustacean, l. To describe the scattering proper-
ties of the animals of this group, theoretical models
were developed and experimental data on the scattering
cross sections were approximated. The main problems
related to this subject were considered in detail in [8],
and here we use the basic results of this publication.

Despite the apparent simplicity of the shape of the
crustacean body, all computational models are
described by rather cumbersome formulas. From our
point of view, their complexity is inconsistent with the
inaccuracy of initial data, namely, the scarcity of the
data on the properties of the live tissues and on the
angular dependences of the sound scattering by live
crustaceans. For numerical estimates, it is expedient to
use relatively simple approximate formulas obtained
from the sufficiently large experimental data arrays,
while the theoretical models can be used for clearing up
the role of various factors affecting the process of the
sound scattering by crustaceans and for explaining
some effects observed in the measurements.

Most data used for constructing the empirical
dependence σ*(l*) were obtained for the mesopelagic
crustaceans freely swimming in a fish pond or in the sea
[8]. The special case is the investigation of freshwater
shrimps whose size and body structure are similar to
marine crustaceans [6]. The measurements testify to the
closeness of their acoustic characteristics. In addition,
the investigations of the freshwater shrimps are valu-
able, because they were carried out with live animals by
the unique measuring system at the Andreev Acoustics
Institute, to which the delivery of live crustaceans from
the ocean is practically impossible. These experiments
provided reliable records of the scattering patterns and
angular dependences of the backscattering cross sec-
tions of crustaceans with the insonification and scatter-
ing angles smoothly varying within 360° [8].

The angular pattern of the backscatter from crusta-
ceans is similar to that obtained for fish in the high-fre-
quency region: it also has the typical maxima corre-
sponding to the side and dorsal insonification aspects
and the dips for the head and tail aspects. However, the
experiments also revealed significant differences. The
maxima are not “monolithic,” as for fish, but represent
groups of narrow peaks whose number and height grow
with increasing frequency. We do not know any appro-
priate quantitative description of the complex shape of
these angular characteristics of crustaceans in the high-
frequency region. In most cases, in the full-scale sound-
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
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ing of crustacean assemblages, the irregularity of the
angular characteristic of each of them is automatically
smoothed out: the sounding directional pattern simulta-
neously spans a large number of species whose orienta-
tion relative to the horizon undergoes small and random
variations. The analysis of the experimental directional
patterns of the backscatter shows that the effective
“smoothed” cross section is, by a factor of 2–3, smaller
than the calculated value of σmax corresponding to the
dorsal aspect of the model considered in [8]. All these
facts testify to the advantage of the empirical formulas
over the computational models.

In our previous paper [8], we considered the numer-
ous results of measuring the backscattering cross sec-
tions of crustaceans in water when individual crusta-
ceans or their assemblages were insonified from above.
The experiments were carried out by different authors,
by different methods of measurement, and at different
frequencies. These results were recalculated to the
quantities σ*(l*) chosen for comparing the acoustic
properties of different animals. On the basis of the set
of these data, two empirical formulas [8] were proposed
for practical estimates of the backscattering cross sec-
tions of crustaceans that inhabit the DSL. These formu-
las differ in frequency ranges. For high frequencies at
dorsal (or side) insonification aspect, it has the form

(4)

For the low-frequency region, for any aspect, we have

(5)

These formulas correspond to curves 5 and 6 in Fig. 4.
In the high-frequency part, in contrast to the depen-
dence σ*(l*) for fish, a noticeable growth of the nor-
malized scattering cross sections of crustaceans is
observed as the frequency increases. Andreeva and
Lysak [9] proposed a computational model for a crusta-
cean to explain this feature. It was shown that, at low
frequencies, for l* = 2–3, the scattered field is small and
determined mainly by the soft tissues of the body. As l*
increases to 10–20, the scattered field noticeably grows
due to the contribution introduced by the testa of the
crustacean.

The information on the backscatter of acoustic
waves by small squids is presented in [1]. It was
obtained for several kinds of squids whose size (the
length of the mantle) l was approximately within 1 to
5 cm, while the sound frequency used in the experiment
was 200 kHz. This corresponds to the interval l* = 1.2–
6.2. In the cited experiment [1], the target strength TS =
10  expressed in decibels per unit area was chosen
for the characterization of the backscattering cross sec-
tion. These data, being recalculated to the normalized
scattering cross sections and the squid length, are
shown in Fig. 4 as region 7. The vertical size of this
region corresponds to the difference in σ* obtained for
different kinds of small squids. Approximations con-
structed for the data that were obtained for individual

σ* 7 10 5– 10 0.13l*– , for l* 1.1–15.≅××=

σ* 10 4– l*( )4, for l* 1.1.<=

σlog
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kinds of squids studied by the authors [1] show that the
quantity σ* almost does not depend on l* for the afore-
mentioned interval of values of the quantity l*.

Consider now the scattering cross sections of the
last group of DSL inhabitants: marine animals whose
bodies consist of soft homogeneous tissues and have no
hard or gaseous inclusions. Experimental and theoreti-
cal investigations concerned with this issue were per-
formed for the Black Sea jellyfish, and the results of
these studies are presented in [6, 10]. The experiments
were carried out in the frequency range from 20 to
200 kHz for l* > 1. In the low-frequency range, the
measurements proved to be impossible because of the
smallness of the scattering cross sections. The corre-
sponding theoretical model was constructed using the
small perturbation method.

Experimentally, it was found that, on the average,
the backscattering cross section of jellyfish does not
depend on its insonification aspect. This allowed us to
propose a model of spherical shape with a volume equal
to that of the scattering object. To make the comparison
with other types of scatterers more convenient, the
model diameter is also designated by l. For such a
model, we proposed simplified semiempirical formulas
that rather accurately describe the backscattering cross
sections of jellyfish, when averaged over all insonifying
aspects, in both high- and low-frequency ranges. In the
plane σ(l), these models define two linear segments
approximating the theoretical curve with a sufficient
accuracy. In the high-frequency region, it is a horizontal

line σ = , and, in the low-frequency region, a

sloping line σ = 1.9l2(δK)2(l/λ)4. Here, δK = (K – K0)/K0,
where K0 is the bulk modulus of water and K is that of
the scatterer tissues. The value of δK was chosen
according to the experimental results on the basis of the
best agreement of the calculated and measured values
of σ in the high-frequency region. In the region l* ! 1,
the straight line almost coincides with the calculated
curve. The optimal position of the boundary between
high- and low-frequency linear approximations corre-
sponds to l ≅ 0.3λ and almost does not depend on the
variations of the quantity δK within a factor of 2–3.

Passing to the normalized values of the size (fre-
quency) and the backscattering cross section, we obtain
simple formulas convenient for calculating the charac-
teristics σ*(l*) for jellyfish-like inhabitants of the DSL.
In the high-frequency range, we have

(6)

and, in the low-frequency range, we have

(7)

The results of calculation by these formulas are repre-
sented in Fig. 4 by lines 7 and 8. These expressions can
be used for estimating the scattering properties of other
animals of this group that have substantially different

l2
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configurations only after the applicability of the spher-
ical model to these animals is additionally investigated.

The general consideration of Fig. 4 allows one, in
a wide range of normalized frequencies from l* ! 1 to
l* ≅  10–15, to compare the sound intensities backscat-
tered by the animals of the DSL that have the same size
but belong to different groups from the viewpoint of
their acoustic properties.

Although the estimates presented above are fairly
rough, it is clear that, in the low-frequency range, the
scattering cross section of fish with swim bladders is
several orders of magnitude greater than the scattering
cross sections of any other animals of the same size in
the DSL. In the high frequency range l* > 1, the nor-
malized backscattering cross sections of most animals
are much greater than at low frequencies. However, the
fish with a swim bladder is again the exception, for
which the high-frequency values of σ* remain smaller
than the resonance values pertaining to low frequen-
cies.

Of special interest are the relatively high values of
the low-frequency scattering cross sections of jellyfish.
Apparently, this can be explained by the inadequacy of
the normalization chosen for the animals of this group,
which substantially differ in their model shape from
other animals. The volumes of fish and crustacean mod-
els of the same size l only slightly differ from one
another, because both have a strongly elongated form.
The volume of the spherical model of jellyfish of the
same size l is much greater, and this difference is not
compensated by the normalization accepted for low fre-
quencies. Let us consider a conditional animal that is
close in shape to crustaceans and fish, but, in acoustic–
mechanical properties, to jellyfish. In this case, we can
show that its backscattering cross section at low fre-
quencies will be an order of magnitude smaller than that
corresponding to line 8 in Fig. 4. The dashed line 10
shown in this figure corresponds to the conditional
animal.

The increase in the normalized backscattering cross
section of crustaceans in the high-frequency region of
l* is determined by the peculiarities of their body struc-
ture: the presence of a compact hard testa surrounding
the soft tissues. Its contribution to the field scattered by
a crustacean noticeably grows as the frequency
increases. Neither fish nor jellyfish have similar fea-
tures of the body structure.

The plots in Fig. 4 allow one to estimate the abso-
lute values of the backscattering cross sections of the
animals that inhabit the DSL, as well as their fre-
quency characteristics σ( f ). For each value of l*, at a
chosen size l, there is a corresponding sound fre-
quency f = c(l*/l), and vice versa, for each frequency
f there is a corresponding normalized value of l* = l/λ.
This allows one, from the plots of Fig. 4, to determine
the normalized value of σ* for animals of each group
for any specific values of l and f and to calculate the
absolute value of the backscattering cross section by
the formula σ( f ) = σ*l2.

As an example, we consider the numerical charac-
teristics of the scattering from a 5-cm-long crustacean
at a frequency of 5 kHz (the wavelength λ = 30 cm). For
this case, we have the normalized value l* = 0.17 and,
according to curve 6 in Fig. 4, the normalized scattering
cross section is σ* = –75 dB relative to unity, or σ* ≅
3 × 10–8. The absolute value of the backscattering
cross section can be easily evaluated as σ = σ*l2 = 7.5 ×
10–7 cm2. To obtain the corresponding frequency char-
acteristic, one has to repeat this calculation for other
frequencies in the high-frequency region, while, in the
low-frequency range, one should use the fact that the
variations of σ at l = const are proportional to f 4.

Thus, the plots shown in Fig. 4 not only give a clear
idea about the relationship of the intensity of sound
waves scattered by the animals of different groups in
the DSL but also allow one to readily estimate the abso-
lute values of the backscattering cross sections in a
wide frequency range for animals of different sizes.
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Abstract—The problem of determining the type of fastening of a circular plate inaccessible to direct observa-
tion from the natural frequencies of its symmetric flexural vibrations is considered. The uniqueness theorem for
the solution to this inverse problem is proved, and a method for the reconstruction of unknown boundary con-
ditions is indicated. An approximate formula for the determination of unknown boundary conditions from three
natural frequencies is obtained. It is assumed that the natural frequencies can be given approximately, within a
certain accuracy. The method of an approximate calculation of unknown boundary conditions is illustrated by
four examples of different cases of the plate fastening (a free support, an elastic fixing, a floating fixing, and a
free edge). © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Circular plates are parts of various devices. If it is
impossible to observed the plate directly, the only
source of information on the possible defects of its fas-
tening can be the natural frequencies of its flexural
vibrations. A question arises: “Is it possible to deter-
mine unambiguously the type of fastening of a circular
plate from the natural frequencies of its symmetric flex-
ural vibrations?” This paper gives and substantiates a
positive answer to this question.

Similar problem statements were proposed in [1–9].
These papers can be conventionally divided into three
groups.

The first group is related to the problems of acoustic
diagnosis. For example, a question was put in [1]: “Is it
possible to determine the shape of a drum from its
sounding?” Problems of acoustic diagnosis of mecha-
nisms were solved in [2, 3]. The size of an object and
its location in a chamber were determined in [4] from
the natural frequency shifts. One more paper [5] was
devoted to the method of detecting the railway sleepers
that lost close contact with the railroad bed by means of
impact excitation of vibrations and analysis of the
resulting acoustic signals. Unlike all these and similar
papers, below, we determine not the shape of a region,
the dimensions of an object, or its position but the con-
ditions of the plate fastening.

The second group of papers is devoted to the prob-
lem of noise suppression in car and aircraft engines.
However, in the papers devoted to this topic, the solu-
tions that satisfy the necessary requirements to noise,
pressure, and other parameters, are sought (see, e.g.,
[6]). Inverse boundary problems are also formulated in
these papers. For example, conditions at the input and
1063-7710/03/4903- $24.00 © 20269
output of exhaust pipes and pipe systems were studied
in [7, 8]. Contrary to these studies, this paper studies
not the conditions at the input and output of pipe sys-
tems but the boundary conditions for the plate vibration
problem.

In the third group of papers, so-called inverse spec-
tral problems are considered. In these papers, it is nec-
essary to reconstruct the coefficients of a differential
equation and the boundary conditions (see [9], for
example). However, in these studies, not a single spec-
trum is used as the data for the reconstruction of the
boundary conditions (as in this paper) but several spec-
tra or other additional spectral data (for example, the
spectral function, the Weyl function, or the so-called
weight numbers). Moreover, the main purpose of these
studies is the reconstruction of the coefficients in an
equation and not in the boundary conditions, whereas
the purpose of the present paper is the reconstruction of
the boundary conditions of a spectral problem with
known coefficients in an equation from a single spec-
trum.

Thus, this paper differs from the papers of the afore-
mentioned three groups in both formulation and
method of solution.

My previous papers [10, 11] were devoted to the
reconstruction of boundary conditions of spectral prob-
lems, and, in our common work with I.Sh. Akhatov
[12], the fastening at one end of a rod was determined
from the natural frequencies. The present paper contin-
ues the studies described in these papers.

Let us give the mathematical formulation of the
problem before describing the methods of its solution.
003 MAIK “Nauka/Interperiodica”
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FORMULATION OF THE INVERSE PROBLEM

The problem on symmetric vibrations of a circular
plate is reduced [13] to the following spectral problem:

(1)

(2)

Here, Ui(y) = (Ljy)r = a (i = 1, 2) are the lin-
ear forms characterizing the plate fastening, where

λ = , a is the plate radius, ω is the fre-
quency parameter, D is the flexural rigidity of the plate,
ν is the Poisson ratio, h is the thickness, and ρ is the
density.

Let us denote the matrix consisting of the coeffi-
cients aij of the forms U1(y) and U2(y) by A, and its
minors, by Mij:

The determination of the forms U1(y) and U2(y) is
equivalent to the determination of a linear span 〈a1, a2〉
constructed using the vectors ai = (ai1, ai2, ai3, ai4)T (i =
1, 2).

Different cases of circular plate fastening are given
in [14–16]. They are listed below together with their
corresponding matrices A.

1. Clamping: 

2. Free support: 

3. Free edge: 

4. Floating fixing: 

5. Five different kinds of elastic fixing:

d4y

dr4
--------

2
r
---d3y

dr3
-------- 1

r2
----d2y

dr2
--------

1

r
3

----dy
dr
------+– λ4y–+ 0,=

U1 y( ) 0, U2 y( ) 0.= =

aijj 1=
4∑

L1y r( ) y r( ),=

L2y r( ) y r( )d
dr

-------------= ,

L3y r( ) d2y r( )
dr2

---------------
ν
r
---dy r( )

dr
-------------+ ,=

L4y r( ) d
rd

----- d2y r( )
r2d

--------------- 1
r
---+

y r( )d
dr

------------- 
  ,=

ρhω2/D( )1/4

A
a11 a12 a13 a14

a21 a22 a23 a24

, Mij
a1i a1 j

a2i a2 j

.= =

1 0 0 0

0 1 0 0
;

1 0 0 0

0 0 1 0
;

0 0 1 0

0 0 0 1
;

0 1 0 0

0 0 0 1
;

It is necessary to note that, in all nine cases, we have

(3)

Therefore, in terms of the spectral problem given by
Eqs. (1) and (2), the above inverse problem is formu-
lated as follows: the coefficient aij of the forms U1(y)
and U2(y) of the problem given by Eqs. (1) and (2) are
unknown; the rank of the matrix A constructed from
these coefficients is equal to two, and the minors M14
and M23 of this matrix are equal to zero; and the non-
zero eigenvalues λk of the problem given by Eq. (1) are
known. It is necessary to reconstruct the linear span
〈a1, a2〉  of the vectors ai = (ai1, ai2, ai3, ai4)T (i = 1, 2).

Note that we deal with the uniqueness of the recon-
struction of the linear span rather than of all coefficients
aij, since, for example, the boundary conditions

and

at r = a are equivalent, while their corresponding coef-
ficients aij are different.

UNIQUENESS OF THE SOLUTION
TO THE INVERSE PROBLEM

Let us consider the following spectral problem
together with the problem set by Eqs. (1) and (2):

(4)

(5)

Here,  = (Ljy(r))r = a (i = 1, 2) are the
linear forms characterizing the plate fastening.

Let us denote the matrix constructed from the coef-

ficients bij of the forms  and  by B, and its

minors, by :

We denote the linear span of the vectors bi = (bi1, bi2,
bi3, bi4)T (i = 1, 2) by 〈b1, b2〉 .

0 1 0 0

c1 0 0 1
; 1 0 0 0

0 c2– 1 0
; 0 0 1 0

c1 0 0 1
;

0 0 0 1

0 c2– 1 0
;

c1 0 0 1

0 c2– 1 0
.

M14 0, and   M23 0.= =

y r( ) 0,
dy r( )

dr
------------- 0= =

y r( ) dy r( )
dr

-------------– 0, y r( ) dy r( )
dr

-------------+ 0= =

d4y

dr4
--------

2
r
---d3y

dr3
-------- 1

r2
----d2y

dr2
--------–

1

r
3

----dy
dr
------ λ4y–+ + 0,=

Ũ1 y( ) 0, Ũ2 y( ) 0.= =

Ũi y( ) bijj 1=
4∑

Ũ1 y( ) Ũ2 y( )
M̃ij

B
b11 b12 b13 b14

b21 b22 b23 b24

, Mij
b1i b1 j

b2i b2 j

.= =
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Theorem of the uniqueness of solution to the
inverse problem. Let the following conditions be
valid:

(6)

(7)

If the nonzero eigenvalues {λk} of the problem
given by Eqs. (1) and (2) and the nonzero eigenvalues

 of the problem defined by Eqs. (4) and (5) are
identical with allowance for their multiplicity, the lin-
ear spans 〈a1, a2〉  and 〈b1, b2〉  are also identical.

Proof. A general solution to the problem on vibra-
tions of a circular plate (see [14]) is the function

where standard notations for Bessel functions are used.

The boundary conditions Ui(y) = 0, i = 1, 2 are used
to determine the constants C1 and C2. The equation for
frequencies is obtained from the condition of the exist-
ence of a nonzero solution for Ci. The latter solution
exists if and only if [17] the determinant of the corre-
sponding system

is equal to zero.

Applying the Laplace theorem to calculate the
determinants, we obtain

(8)

Using Eq. (7), we obtain

(9)

From the properties of the Bessel functions J0 and I0,
it follows that the function ∆(λ) is an entire function of
the first order. Since ∆(λ) ò 0, from the Hadamard fac-

rankA rankB 2,= =

M14 M̃14 M23 M̃23 0.= = = =

λ̃ k{ }

y r( ) y r λ,( ) C1J0 λr( ) C2I0 λr( ),+= =

∆ λ( ) U1 J0( ) U1 I0( )
U2 J0( ) U2 I0( )

≡

∆ λ( ) M12 L1J0( ) L2I0( ) L2J0( ) L1I0( )–[ ]≡
+ M13 L1J0( ) L3I0( ) L3J0( ) L1I0( )–[ ]

+ M14 L1J0( ) L4I0( ) L4J0( ) L1I0( )–[ ]
+ M23 L2J0( ) L3I0( ) L3J0( ) L2I0( )–[ ]

+ M24 L2J0( ) L4I0( ) L4J0( ) L2I0( )–[ ]
+ M34 L3J0( ) L4I0( ) L4J0( ) L3I0( )–[ ] .

∆ λ( ) M12 L1J0( ) L2I0( ) L2J0( ) L1I0( )–[ ]≡
+ M13 L1J0( ) L3I0( ) L3J0( ) L1I0( )–[ ]
+ M24 L2J0( ) L4I0( ) L4J0( ) L2I0( )–[ ]
+ M34 L3J0( ) L4I0( ) L4J0( ) L3I0( )–[ ] .
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torization theorem (see [18]), it follows that the deter-
minant ∆(λ) of the set of equations

for the determination of the constants Ci and the deter-

minant (λ) of the set of equations

for the determination of the constants  are connected
by the relation

(10)

where a is a real number, k is a nonnegative integer
number, and C is a nonzero constant.

Since y(r, –λ) = y(r, λ), ∆(λ) and  are even
functions of λ. Then, we find from Eq. (10) that a = 0 and
k = 2m.

Hence,

(11)

where

Let us show that m is equal to zero. Let us assume
the contrary. Let m ≠ 0. Expanding the functions fi(λ)
(i = 1, 2, 3, 4) into the Maclaurin series, we find, with
the help of the MAPLE software, that the functions

at m ≠ 0 form a system of linearly independent func-
tions. Taking this fact into account, we obtain from
Eq. (11) the relations

which, together with Eq. (7), contradict the condition
given by Eq. (6), according to which the rank of the
matrix A is equal to two. Thus, m = 0.

By virtue of the linear independence of the functions

U1 y( ) 0, U2 y( ) 0= =

∆̃

Ũ1 y( ) 0, Ũ2 y( ) 0= =

C̃i

∆ λ( ) Cλ keaλ∆̃ λ( ),≡

∆̃ λ( )

M12 Cλ2mM̃12–( ) f 1 λ( )

+ M13 Cλ2mM̃13–( ) f 2 λ( )

+ M24 Cλ2mM̃24–( ) f 3 λ( )

+ M34 Cλ2mM̃34–( ) f 4 λ( ) 0,≡

f 1 λ( ) L1J0( ) L2I0( )= L2J0( ) L1I0( ),–

f 2 λ( ) L1J0( ) L3I0( )= L3J0( ) L1I0( ),–

f 3 λ( ) L2J0( ) L4I0( )= L4J0( ) L2I0( ),–

f 4 λ( ) L3J0( ) L4I0( )= L4J0( ) L3I0( ).–

f 1 λ( ) f 2 λ( ) f 3 λ( ) f 4 λ( ),,,,

λ2m f 1 λ( ) λ2m f 2 λ( ) λ2m f 3 λ( ) λ2m f 4 λ( ), , ,

M12 M̃12 M13 M̃13 M24 M̃24= = = = =

=  M34 M̃34= 0,=

f 1 λ( ) f 2 λ( ) f 3 λ( ) f 4 λ( ),,,
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we obtain from Eq. (11) the equation

(12)

which is equivalent to proportionality of the bivectors
a1 ∧  a2 and b1 ∧ b2.

It is known (see [19]) that there is a natural bijective
correspondence between the classes of proportional
nonzero bivectors and two-dimensional subspaces of
the vector space. In this correspondence, the vector
product x1 ∧  x2 of the vectors of the arbitrary subspace
basis x1, x2 answers to each subspace, and the subspace
〈x1, x2〉  answers to each bivector x1 ∧  x2.

Therefore, from Eq. (12), it follows that 〈a1, a2〉  =
〈b1, b2〉 , which was to be proved.

Remark 1. The conditions given by Eqs. (7) do not
limit the physical formulation of the problem. They are
needed only to reconstruct the boundary conditions
from three natural frequencies and not from a greater
number of them.

METHOD OF RECONSTRUCTING
THE BOUNDARY CONDITIONS

FROM THREE NATURAL FREQUENCIES

From the proven uniqueness theorem, it follows that
it is sufficient to use the first n eigenvalues to recon-
struct the boundary conditions approximately. The cor-
responding method is described in [12]. It is based on
the possibility of the reconstruction of the entire func-
tion ∆(λ) by all its zeros with the help of the Weierstrass
function (an infinite product) and the approximate
reconstruction of the function ∆(λ) by its first n zeros
with the help of a finite product with a large number of
factors.

Another way to reconstruct the boundary conditions
is the method based on solving a set of linear algebraic
equations. It is simpler in use and more precise (since
there is no error accumulation).

Let λ1, λ2, and λ3 be the first three eigenvalues of the
spectral problem set by Eqs. (1) and (2), i.e., three first
roots of the function ∆(λ). It follows from Eq. (9) that
λ1, λ2, and λ3 satisfy the equations

(13)

Equations (13) represent a set of three equations in
four unknowns M12, M13, M24, and M34. As it follows
from the uniqueness theorem, this set has a solution that
is unique, accurate to a constant. Thus, Eqs. (13)
uniquely within a constant determine the bivector

from which the boundary conditions are determined by
the method developed in [12].

M12 M13 M14 M23 M24 M34, , , , ,( )T

=  C M̃12 M̃13 M̃14 M̃23 M̃24 M̃34, , , , ,( )T
,

∆ λ j( ) M12 f 1 λ j( ) M13 f 2 λ j( )+=

+ M24 f 3 λ j( ) M34 f 4 λ j( )+ 0, j 1 2 3., ,= =

M12 M13 M14 M23 M24 M34, , , , ,( )T a1 a2,∧=
If the first three eigenvalues λj of the problem given
by Eq. (1) are known only approximately,

the inverse problem of the determination of boundary
conditions can be solved approximately. To do this, we
substitute the values of µj (j = 1, 2, 3), which approxi-
mately coincide with the first three positive eigenval-
ues, into Eq. (13). We obtain a set of three homoge-
neous algebraic equations in four unknowns M12, M13,
M24, and M34:

(14)

The resulting set of equations has an infinite number
of solutions. From the proved uniqueness theorem, it
follows that unknown minors can be determined
approximately, accurate to a coefficient. Thus, if µj (j =
1, 2, 3) differ from the first three eigenvalues only
slightly, the resulting set of equations must have a rank
equal to three and a solution determined accurate to a
constant. Calculations conducted using MAPLE soft-
ware confirm this statement. Unknown minors are
determined accurate to a constant. In this case, the order
of the calculation error almost does not differ from the
order of the error of closeness between the values of µj
and λj and only in some cases can grow by four orders.
However, the main advantage of this method is the fact
that only the first three eigenvalues are needed for its
realization.

EXAMPLES

Let us consider the application of the method for the
determination of the boundary conditions from the
eigenvalues by using specific examples. In all examples
considered below, we assume for definiteness that the
plate radius is equal to unity and the Poisson ratio ν is
equal to 1/3 (according to Wertheim).

Example 1 (Free Support)

If

are the values of (ρh /D)1/4 that correspond to the
three natural frequencies ωi determined by a frequency
meter, the solution to the set of equations (14) deter-
mined accurate to a constant has the form

(15)

λ j µ j j(≈ 1 2 3 ),, ,=

M12 f 1 µ j( ) M13 f 2 µ j( ) M24 f 3 µ j( )+ +

+ M34 f 4 µ j( ) 0.≈

µ1 2.232449096,= µ2 5.455111632,=

µ3 8.613495974=

ωi
2

M34 10 13– , M24 0.6198612900 10 12–× ,–= =

M12 0.2186626466 10 9–× ,–=

M13 0.2380103959.=
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In addition, according to the problem statement, we
have M14 = 0 and M23 = 0.

Let us determine the linear span corresponding to
these minors. Let x = (x1, x2, x3, x4)T be an arbitrary vec-
tor of the desired linear span 〈a1, a2〉 . In this case, the
coordinates of the vector x satisfy the condition

(16)

Since

condition (16) is equivalent to vanishing of both minors
bordering M13.

Expanding the corresponding determinants with
respect to the third line, we obtain

We substitute the values of Mij [Eqs. (15)] into these
equations. The values of M12, M23, M14, and M34 can be
set equal to zero (the accuracy is 10–8, i.e., rather high).
Therefore, we can assume that x2 = 0 and x4 = 0, and an
arbitrary vector of the desired linear span has the form
x = (x1, 0, x3, 0)T.

As the base vectors for this linear span, we can
choose, for example, the vectors

a1 = (1, 0, 0, 0)T and a2 = (0, 0, 1, 0)T.

Therefore, the desired boundary conditions have the
form

This means that the edge inaccessible to direct
observation is freely supported.

It is necessary to note that the type of fastening of
the plate edge is determined correctly. The values of µ1,
µ2, and µ3 given above approximately coincide with the
first three roots of the equation ∆(λ) = 0. The accuracy
of the approximation is equal to 10–9.

Example 2 (Elastic Fixing)

If 

rank
a11 a12 a13 a14

a21 a22 a23 a24

x1 x2 x3 x4

2.=

M13
a11 a13

a21 a23

0,≠=

x1M23 x2M13 x3M12+– 0,=

x1M34 x3M14 x4M13+– 0.=

L1y r( ) y r( ) 0,= =

L3y r( ) d
2
y r( )

dr2
----------------

ν
r
---dy r( )

dr
-------------+ 0.= =

µ1 3.822859373,= µ2 7.014140157=

µ3 10.172993460=
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are the values of (ρh /D)1/4 corresponding to the three
natural frequencies ωi determined by a frequency
meter, the solution to the set of equations (14) deter-
mined accurate to a constant has the form

We can assume approximately that the bivector a1 ∧
a2 is equal to

accurate to a constant. The approximation accuracy is
10–7.

Let us determine the linear span corresponding to
this bivector. Let x = (x1, x2, x3, x4)T be an arbitrary vec-
tor of the desired linear span 〈a1, a2〉 . In this case, the
coordinates of the vector x satisfy the condition

(17)

Since

condition (17) is equivalent to vanishing of both minors
bordering M12.

Expanding the corresponding determinants with
respect to the third line, we obtain

The values of M13, M23, and M14 can be set equal to
zero (the accuracy is equal to 10–7, i.e., rather high).
Therefore, we can assume that –x3 = 0 and x1 – x4 = 0,
and an arbitrary vector of the desired linear span has the
form x = (x1, x2, 0, x1)T.

As the base vectors of this linear span, we can
choose, e.g., the vectors

a1 = (0, 1, 0, 0)T and a2 = (1, 0, 0, 1)T.

Therefore, the desired boundary conditions have the
form

ωi
2

M13 0.7280190 10 8–× , M12 0.1458655,–= =

M24 0.1458655, M34– 10 11– .= =

M12 M13 M14 M23 M24 M34, , , , ,( )T

=  1 0 0 0 1 0, , , , ,–( )T

rank
a11 a12 a13 a14

a21 a22 a23 a24

x1 x2 x3 x4

2.=

M12
a11 a12

a21 a22

0,≠=

x1M23 x2M13 x3M12+– 0,=

x1M24 x2M14 x4M12+– 0.=

L2y r( ) dy r( )
dr

------------- 0,= =

L1 L4+( )y r( ) y r( ) d
dr
----- d2y r( )

dr2
---------------

1
r
---dy r( )

dr
-------------+ 

 + 0.= =
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Precisely these boundary conditions (the first kind
of elastic fixing c1 = 1) were used in selecting the values
of µ1, µ2, and µ3, which coincide with an accuracy of
10–9 with the first three roots of the corresponding char-
acteristic equation ∆(λ) = 0.

Example 3 (Floating Fixing)

If 

we have, accurate to a constant,

We can approximately assume that the bivector a1 ∧
a2 is equal, accurate to a constant, to

The approximation accuracy is 10–5.
Therefore, the desired boundary conditions have the

form

The values of µ1, µ2, and µ3, which coincide with an
accuracy of 10–9 with the first three roots of the corre-
sponding characteristic equation ∆(λ) = 0, were
selected according to these conditions.

Example 4 (Free Edge)

If 

we have

We can assume approximately that the bivector a1 ∧
a2 is equal, accurate to a constant, to

The approximation accuracy is 10–6.

µ1 3.831705970= , µ2 7.015586670,=

µ3 10.17346814,=

M13 0.3403043 10 6–× , M12 0.2587103 10 5–× ,–= =

M24 0.6014163, M34– 10 9– .= =

M12 M13 M14 M23 M24 M34, , , , ,( )T

=  0 0 0 0 1 0, , , , ,( )T .

L2y r( ) dy r( )
dr

------------- 0,= =

L4y r( ) d
dr
----- d2y r( )

dr2
---------------

1
r
---dy r( )

dr
-------------+ 

  0.= =

µ1 3.012657950,= µ2 6.205965863,=

µ3 9.371213583,=

M24 10 9– , M34 0.1454148,= =

M13 0.6555181 10 7–× ,–=

M12 0.8146801 10 6–× .–=

M12 M13 M14 M23 M24 M34, , , , ,( )T

=  0 0 0 0 0 1, , , , ,( )T .
Therefore, the desired boundary conditions have the
form

This means that the edge inaccessible to direct
observation is free.

It is necessary to note that, as in the preceding exam-
ple, the values of µ1, µ2, and µ3 approximately coincide
with the first three roots of the characteristic equation
∆(λ) = 0 corresponding to a free edge. (The approxima-
tion accuracy is 10–7.)

Remark 2. How essential is the utilization of pre-
cisely the first nonzero eigenvalues for the approximate
reconstruction of the boundary conditions? Maybe it is
sufficient to use an arbitrary finite set of eigenvalues
(natural frequencies) for this purpose? Let us consider
an example showing that even the utilization of an infi-
nite set of nonzero eigenvalues as the reconstruction
data still does not guarantee the uniqueness of the
reconstruction of the boundary conditions.

For a plate with a free edge in the case of large k and
symmetric vibrations, the eigenvalues λk are almost
equal to the values λk = kπ (see [13]), while, for a plate
clamped along its contour at large λk and symmetric
vibrations, the problem eigenvalues λk are almost equal
to the values λk = (k + 1)π. If we ignore the sequence
order of eigenvalues, starting from the eighth one, they
almost coincide on the set of numbers {kπ}.

Therefore, totally different boundary conditions
correspond to the infinite set of eigenvalues {kπ} (k =
8, 9, 10, …). Thus, for the uniqueness of the reconstruc-
tion of boundary conditions, it is essential to use pre-
cisely the first nonzero eigenvalues.

Thus, the type of fastening of a circular plate can be
fully determined from the first natural frequencies mea-
sured by a frequency meter with a certain error.
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Abstract—The basic effects that restrict the potentialities of the ultrasonic imaging of brain structures by
echo sounding through thick skull bones are considered. It is demonstrated that the main interfering factors
are the echo signals from multiple reflections in the bone, its unknown inhomogeneity in depth, and the
strong attenuation. To eliminate these effects, the use of a matched spatial processing and complex wideband
signals with their subsequent correlation compression is proposed. A simulation of the proposed signal pro-
cessing techniques confirmed the possibility of brain structure imaging with a spatial resolution of about 1 mm
by ultrasonic echo sounding with acceptable intensities through bones up to 20 mm thick at frequencies of
1–2 MHz. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Ultrasonic methods of medical diagnostics belong
to the most popular methods of medical examination.
They provide acoustic images of viscera with high res-
olution and contrast. At the same time, ultrasonic diag-
nostics of brain structures encounters some difficulties.
The major restrictions are caused by the thick skull
bones, which attenuate and distort the ultrasonic field.
Therefore, transcranial ultrasonic diagnostics is usually
conducted through the so-called “acoustic transparence
windows,” i.e., the regions where the skull bones are
thin (temporal regions and eyeballs) [1]. However, the
anatomic location of such “windows” and their small
area make it impossible to obtain high-quality ultra-
sonic images.

Investigations of signal processing techniques that
eliminate or reduce the interfering effect of thick skull
bones were started over 20 years ago [2]. However, cer-
tain progress in this area was achieved only in the last
six or seven years, when researchers turned their atten-
tion to the methods of phase conjugation developed
earlier in coherent optics and radar. The methods of
phase conjugation are referred to differently in the lit-
erature: medium-matched filtration [3, 4], method of
time mirrors [5–8], matched space–time processing,
etc. The physical meaning of all these methods is the
same despite the names: before obtaining the image of
an object lying under an inhomogeneous layer, it is nec-
essary to evaluate in some way the parameters of the
layer, or, more specifically, its complex transfer func-
tion, and adjust the amplitude–phase distributions of
the fields in the radiation and reception modes. As for
1063-7710/03/4903- $24.00 © 0276
the formulated problem, this means that it is necessary
first to measure the profiles of the lower and upper
boundaries of the bone, the local thicknesses, and the
local transmission factors in the region, through which
the diagnostics will be performed. In this case, it is usu-
ally assumed that ultrasonic attenuation at some fre-
quency is the same for the whole region of the bone,
and its value is determined only by the local thickness.
With this data available, it is possible to calculate the
amplitude–phase distribution of the exited ultrasonic
field in the radiation mode, which is necessary for the
field transmitted through this bone region to form a
plane or spherical wave. The same operations must be
performed in the reception mode. In this approach, it is
important that the brain structure under examination is
assumed to lie in a medium that can be considered as an
analog of free space and is separated from it by an inho-
mogeneous layer, i.e., by the thick skull bones. It is this
assumption that provides an opportunity to calculate
the amplitude–phase distributions correcting the wave
fronts for all possible angular directions and distances,
at which objects can be located, from the measured
bone parameters. If the object lies within the inhomo-
geneous layer, it is necessary to measure (but in what
way?) all transfer functions from each point of the
object to each elementary receiver to reconstruct the
image. This can be accomplished theoretically, but not
yet in practice.

The bone parameters can be measured in different
ways. In some works on ultrasonic transcranial surgery,
when focused ultrasound is used for brain surgery [9–
11], the authors suggest first to obtain an X-ray or NMR
image of the specified bone region. Then, after measur-
2003 MAIK “Nauka/Interperiodica”
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ing its local thickness values, it is possible to calculate
the necessary time delays (phases) in all elements of the
radiating two-dimensional array and to form a corre-
sponding amplitude–phase distribution by then posi-
tioning the array at exactly the same place using precise
positioning systems. Despite the complexity of the pro-
posed procedure, it provides an opportunity to measure
the bone thickness to a very high accuracy, because the
resolution of the X-ray or NMR techniques constitutes
fractions of a millimeter and the two-dimensional pro-
file of the bone region is measured rather than the one-
dimensional one.

In this paper, we suggest measuring the bone profile
with the help of the same multielement ultrasonic sen-
sor that is used for imaging. The measurement accuracy
in this case is lower than in the case of NMR tech-
niques, but there are also certain advantages, because
such measurements allow one to take into account the
local complex transmission factors for the sensor–skin
layer–bone system.

Below, we consider the major physical and techno-
logical aspects of ultrasonic transcranial diagnostics
through thick skull bones in more detail by using the
results of the previous investigations [12]. The main
goal of the studies presented in the first part of the paper
is to develop a full-scale computer model for the whole
system and to perform simulation experiments for the
determination and optimization of the requirements for
the system prototype.

1. MAIN PHYSICAL PHENOMENA
AND LIMITATIONS

Attenuation

High ultrasonic attenuation in bones (which can
reach 12–45 dB/cm within the frequency range 1–5 MHz
[2, 13, 14]) is a negative factor for the penetration of a
probing ultrasonic pulse to the brain. The attenuation of
sound intensity by four orders of magnitude or more
seems catastrophic at first glance, especially if we take
into consideration the fact that the acceptable intensity of
ultrasound is restricted by severe medical safety stan-
dards.

Multiple Reflections

Even if we assume that the level of the reflected use-
ful signal is sufficient to be detected, we encounter
another problem: multiple reflections of the probing
signal from the outer and inner surfaces of the bone.
Simplistically, such a bone behaves as a plate with two
reflecting surfaces, and a part of the signal transmitted
through the bone is necessarily reflected from the lower
bone boundary. Then, part of the reflected signal is
transmitted through the upper bone boundary and
arrives at the receiver, but the remainder is again
reflected from the upper bone boundary and reaches the
lower boundary. Then, the whole process will be
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
repeated, and a time sequence of signals with attenuat-
ing amplitudes will be represented in the received sig-
nal, so that the useful signal occurs among these signals
or after them (depending on the distance to the object
under examination). If the device operates in a standard
pulsed mode, the useful signal can be either “covered”
by the multiple reflections or appear somewhere
between them. The common processing techniques
used for pulsed ultrasonic scanners are incapable of
detecting and identifying such a signal.

Curvilinearity and Irregularity of the Lower Bone 
Boundary

One more obstacle is the curvilinearity and irregu-
larity of the lower bone boundary. The upper boundary
of the skull bones is sufficiently smooth but curvilinear,
while the lower boundary is both curvilinear and irreg-
ular in thickness. For example, within a bone segment
100 mm in length, the bone thickness may randomly
vary from 8 to 15 mm. The two-dimensional curvilin-
earity of the bone and its irregular lower boundary may
lead to unpredictable effects of ultrasonic wave refrac-
tion and a strong defocusing of the image. In this con-
nection, it should be noted that, today, ultrasonic exam-
inations are mainly performed using one-dimensional
arrays with cylindrical lenses, and such a “knife-like”
ultrasonic beam may leave the observation plane
because of the curvilinearity of the lower boundary.

Scattering Effects

The next effect of ultrasonic interaction with a bone
is the scattering. In reality, a bone is not homogeneous.
From the physical point of view, it can be represented
as a plate with inclusions characterized by different
acoustic values of velocity and density and with dimen-
sions comparable to or smaller than the wavelength
used for sounding. Such a structure can transform an
incident sound wave into a set of waves scattered in dif-
ferent directions. Ultrasonic scattering in bones is
rather poorly studied, because such measurements in
vivo are very difficult for many reasons.

2. PROBLEM FORMULATION, MODELS,
AND BASIC PARAMETERS

In the analysis, we proceeded from the following
suppositions and the previous experience in detecting
and processing weak acoustic signals that propagate in
layered inhomogeneous media with scatterers. Not
only the signal intensity (or power) is important for the
signal detection but also its excess over the noise level,
which is characterized by the energy output signal-to-
noise ratio. The latter depends on the signal-to-noise
ratio at the receiver input, the complexity of the probing
signal, and the gain factor of the system, which is gov-
erned by the spatial geometry of the radiating and
receiving arrays. In the case of a coherent processing of
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signals, the output signal-to-noise ratio is directly pro-
portional to these parameters. For simplicity, we
assume that the gain factor of the system is the product
of the number of emitters and the number of receivers
divided by the number of the parameters under evalua-
tion. The signal complexity is the product of the prob-
ing signal bandwidth by the time of coherent observa-
tion. If the pulsed sounding mode is used, which is
common to ultrasonic scanners, the signal complexity
is the number of pulses used for accumulation. A sim-
ple summation of echo signals in a coherent system
leads to an amplification of the echo signal (the echo
signals are equal for different pulses) and to a reduction
of noise (noise is different for different pulses).

Most ultrasonic devices intended for medical exam-
ination use probing signals with a low complexity, and,
therefore, the gain due to the time processing is usually
small. This is connected with the fact that, in echo
sounding of open organs, the absorption in soft tissues
is not that strong and it is sufficient to use simple

Fig. 1. Sagittal section of skull and major blood vessels of
brain (the Velisius circle).
pulses. When multielement sensors are used, the angu-
lar scan with the number of elements of spatial resolu-
tion that is equal to the number of receivers of the array
is formed, and, therefore, the gain factor in this case is
approximately equal to unity. If all receivers are used to
form only one element of resolution (and this is just the
case in fully digital systems with electronic scanning),
the gain is about 100–512, because modern ultrasonic
scanners contain approximately this number of receiv-
ers. If time accumulation is used, it has the form of an
incoherent accumulation of frames. In this case, the
gain increases as the square root of the number of accu-
mulated frames. Thus, the gain due to processing can
be about 103 (60 dB). The expected low level of an echo
signal in the case of sounding through a thick bone
means that, for a system to be efficient, the aforemen-
tioned effects of multiple reflection and scattering must
be approximately at a level of –60 to –70 dB of the
probing signal; otherwise, the gain of the processing
system must be increased by 60–70 dB. Hence, the
summary range of the system must be 110–120 dB with
allowance for the fact that it is sufficient to have a ten-
fold excess of the signal over the noise level at the out-
put of the processing system for the appropriate evalu-
ation of the signal. This means that the use of broad-
band probing signals with a large base and the
application of matched spatial processing should be the
only possible solution, because we cannot increase the
output beam intensity limited by medical standards.

Figure 1 schematically represents the skull (a sagit-
tal section at the skull base) with the major blood ves-
sels, i.e., the so-called “Velisius circle” formed by the
major great arteries. The skull bones have a sufficiently
smooth upper surface and an uneven lower boundary.
The real thickness of skull bones in different places
fluctuates from a few millimeters to 15–18 mm. The
blood vessels lie within the brain tissue and have a very
complex geometry and different sizes. From the view-
point of ultrasonic examination, it is important to evalu-
ate the state of vessels with diameters from 1 to 7−8 mm.
To set the acoustic properties of a model medium, we
use the measurement data from [2, 13, 14]. Specific val-
Parameters of the acoustic computational model

Model component
Density,
kg/m3

Sound velocity,
m/s

Frequency,
MHz

Attenuation
coefficient, m–1

Bone (obstacle) 2000 3400 0.80 92

1.20 170

1.60 320

1.80 430

2.25 530

Medium studied by echo sounding (brain tissue) 1000 1500 0.30 8.5

0.87 14

1.70 18

Object under examination (vessel) 1000–1050 1570 – –
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ues of the acoustic parameters used for simulation are
summarized in the table. Most calculations are con-
ducted for a standard detection scheme using a trans-
ducer that combines the functions of a radiator and a
receiver, because the majority of medical ultrasonic
scanners are designed in this way. Since the anatomic
structure of a skull is quite complex, we use a simplified
model and investigate only the effects that are essential
for this analysis. Therefore, for a better understanding
of the main phenomena, we represent the computa-
tional model as follows.

We consider the brain tissue as a homogeneous
medium, into which we place a reflecting object of a
simple shape (e.g., a spherical scatterer). On one side,
the brain tissue contacts the bone, which we represent
(at the first stage) as a homogeneous plate. We do not
consider the effects connected with the excitation of
transverse waves in either the bone or the medium
under examination (brain), because their behavior is
analogous to that of longitudinal acoustic waves. The
only difference is their smaller propagation velocity.
Moreover, we have to exclude from our consideration
the processes of scattering from the microstructures of
the bone and brain tissues. Therefore, in further calcu-
lations, we assume that the media under study are
absorbing with the absorption coefficient equal to the
attenuation coefficient. 

The object under investigation has the form of a
sphere filled with a medium that differs from the sur-
rounding medium (brain) in its density and/or the
sound velocity. For the simulation, we select the param-
eters of the simplified acoustic model that are shown in
the table.

The scattering amplitude of the object under exami-
nation is involved in the algorithm of calculating the
field excited by the object in response to a probing wave
and determines the amplitude of the echo signal. The
theory of scattering gives the following expression for
a spherical object:

(1)

where k0 = ω/c0 is the wave number in the medium sur-
rounding the object, ω is the cyclic frequency, c0 is the
sound velocity in the surrounding medium, cin is the
sound velocity within the object, µ = 2k0sin(ϑ /2), ϑ  is
the angle between the directions of sounding and recep-
tion (ϑ  = π for a combined transceiver), and r is the
object radius. In this study, we proceeded from the
assumption that, if the signal is excited by the object,
the only obstacle for its detection is the noise compara-
ble to or exceeding the signal. The fact that, in the echo
sounding of the brain through the acoustic transparence
windows (the bone thickness is ≤2 mm), the signals
from internal structures are detected reliably, while, in
the case of thicker bones, they vanish, does not mean
that the signal is not transmitted through the bone but
only points to a decrease in the level of the reflected sig-

f 4π
k0

2

µ3
-----

cin c0–
c0

---------------- µr( )sin µr µr( )cos–[ ] ,=
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nal below the dynamic range of the system or to its
masking by stray signals combined with noise.

A really difficult situation may arise only when, in
the course of the propagation to the object, the probing
signal is distorted in such a way that the identification
of the reflected signal, which almost does not contain
the features of the initial signal, becomes difficult.
However, at the first stage, we did not find any physical
background for such a situation.

Thus, we can formulate the basic questions for the
simulation as follows:

(1) Is it possible to detect ultrasonic signals from the
internal brain structures in the case of the echo sound-
ing through thick skull bones, or do some factors make
such a detection fundamentally impossible?

(2) What specific effects, apart from attenuation, are
caused by the presence of thick bones?

(3) What can be the absolute noise level normalized
to acoustic pressure in the detection system?

(4) What intensity of the probing beam is necessary
for the level of the signal from the structures of interest
to exceed the noise level?

(5) What is the expected level of stray signals, i.e.,
the signals scattered from other structures, and how do
they mask a signal from the object under examination?

(6) How is it possible to suppress or eliminate the
stray signals?

3. RESULTS OF SIMULATION

To analyze different variants of signal processing
and different choices of the optimal parameters of the
system, the ULTRABRAIN-1!H simulation program
[12] was used. This program allows one to perform a
full-scale simulation of the ultrasonic system. In this
paper, we do not describe the details of the program
structure and the calculation procedures and present
only the results of simulation and the conclusions.

With the ULTRABRAIN-1 program, it is possible,
by setting the geometric–acoustic models of a region of
the skull bone and brain structures, to obtain their two-
dimensional images for

(1) various types of broadband signals;
(2) various algorithms of time processing (square-law

and linear detection and correlation processing); and
(3) various types of spatial processing (unfocused or

focused images) involving additional subprograms for
matched processing (additional programs for a prelim-
inary evaluation of the geometric–acoustic parameters
of the bone were developed for this purpose).

It is possible to vary the input parameters of transmit-
ting–receiving arrays, the acoustic parameters of biolog-
ical structures and signals, and the processing parame-
ters over a wide range to achieve the maximal efficiency
of the selected processing scheme and algorithms. The
criterion of the processing efficiency is not only the out-
put contrast of the image, which actually is the output
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signal-to-noise ratio, and the transmitted dynamic range
but also other parameters, such as the spatial resolution
in angle and distance, the lateral field level, etc. Regret-
fully, there is no universal criterion for evaluating the
quality of an acoustic image. The standard techniques
evaluating the operation of ultrasonic scanners require,
e.g., the measurement of more than 16 parameters [1].
Therefore, at the simulation stage, the main criterion of
efficiency was chosen to be the degree of similarity of the
ultrasonic image of an object to its X-ray image.

Calculation of the Backscattered Field

In calculating the backscattered field, depending on
the frequency for spherical objects of different size, it
was assumed that the incident field was a plane wave of
unit amplitude and the bone thickness was 20 mm. The
calculations showed that the expected levels of echo
signals in the case of sounding through a 20-mm-thick
bone are 103–105 times smaller than the level of the ini-
tial probing signal in a frequency range of 1–3 MHz.

Sounding Radiation Intensity

Knowing the attenuation of echo signals with
respect to the probing signal and the level of normal-
ized noise, we can calculate the sounding radiation
intensity that is necessary for echo signals to exceed the
noise level. In the calculation, we assumed that the sig-
nal must exceed the noise by a factor of ten (20 dB) to
provide a good enough evaluation. Additionally, it was
assumed that the object radius was 1 mm.

The results of calculation showed that, with the
ultrasonic intensity 0.15–0.25 W/cm2, it is possible to
“operate” through the skull bones with a thickness up
to 21 mm in a frequency range approximately up to
1.2 MHz; in the case of the skull bones with a thickness
of 12–15 mm, it is possible to use a frequency up to
2 MHz with the same intensity value. It is necessary to
note that the medical limit for the radiation is
1−2 W/cm2. The calculations were conducted for the
intensity at the obstacle surface. At the obstacle–
medium boundary, the intensity is approximately one
order of magnitude smaller for a 20-mm-thick bone
because of the attenuation. Standard Doppler ultrasonic
scanners operate with input ultrasonic intensities up to
0.12 W/cm2, while medical standards allow ultrasonic
intensities up to 0.15 W/cm2 (domestic standards) or
0.3 W/cm2 (European standards) [1]. In fact, the fre-
quency range of the signal can be wider, since, as indi-
cated above, the irradiation mainly affects the bone tis-
sue, and the main danger for soft tissues, i.e., cavita-
tion, is impossible at these intensities.

Another danger for tissues, apart from cavitation, is
heating. However, based on the data of [1] and calcula-
tions that are not presented here, we can state that a suf-
ficient excess of the echo signal over the noise level is
realized at moderate irradiation intensities that do not
cause heating of tissues.
Interfering Echo Signals and the Bone Inhomogeneity

As interfering echo signals, we consider the acous-
tic fields that are excited by structures extraneous to the
study under the effect of the sounding field. These are
mainly the echo signals from the obstacle–external
space and obstacle–probed medium boundaries. From
the given model data, it follows that the acoustic prop-
erties of the bone and the brain tissue differ substan-
tially. Therefore, when the probing pulse propagates
through their boundary, a rather strong reflected pulse
propagates in the opposite direction. Apart from these
interfering signals, multiple reflections from the bone
tissue are present. The wave fronts undergo unpredict-
able distortions because of the bone inhomogeneity in
thickness. As it was already mentioned, matched spatial
processing can eliminate these phenomena or at least
considerably reduce their influence. This statement is
based on the facts that, first, there is a real possibility to
measure the inhomogeneity parameters and, hence,
construct an optimal matched filter, and, second, the
parameters of such a filter do not change in time but
only depend on the spatial coordinates, i.e., on the spe-
cific position of the sensor.

In our previous paper [2], we also considered another
way to eliminate the signals of multiple reflections,
namely, on the basis of the diversity transmission–
reception scheme. In this scheme, the multiply reflected
signals propagate in the direction of radiation and do not
hit the receiver. For this scheme of operation to be effi-
cient, it is necessary that the scattering from the object
be close to isotropic. This condition is satisfied, e.g., for
the scattering by the form elements of blood. However,
for brain structures and vessel walls, the scattering indi-
catrices are a priori unknown, although large practical
experience in ultrasonic examination of various internal
organs testifies to a wide scattering indicatrix for biolog-
ical tissues. However, the diversity scheme does not
eliminate the problem of the unknown ultrasonic refrac-
tion at the curvilinear bone boundary and the problem of
the wave front distortions.

Effect of the Instrument Noise

The root-mean-square voltage die to the electric
noise in the transducer–amplifier circuit of a high-qual-
ity ultrasonic instrument must be about

 = 3 × 10–9 ,

where  is the noise voltage in volts and ∆ν is the
reception bandwidth in hertz. The sensitivity of a mod-
ern piezoelectric transducer is about γ ≅  7 × 10–6 V/Pa.
Using this value, we transform Vn into equivalent
acoustic noise:

Vn ∆ν

Vn

Pn
Vn

γ
------ 4.286 10 6– ∆ν  Pa.×= =
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A body emits acoustic noise related to the body temper-
ature by the formula

 = 4πν2c–1ρkT∆ν,

where c is the sound velocity, ρ is the substance density,
k = 1.38 × 10–23 J/K is the Boltzmann constant, ν is the
radiation frequency, and T is temperature in kelvins.
Substituting the values of the velocity and density cor-
responding to bones and taking T = 310 K, we obtain

which, at a frequency of 1 MHz, yields

These estimates demonstrate that, in chosing spe-
cific technological solutions, it is necessary to take into
account both kinds of noise.

Simulation Examples

The simulation scheme is shown in Fig. 2. The pro-
gram simulates the positioning of a multi-element
transceiver at a preset place on a skull, the generation of
signals of a required form, their propagation with
allowance for the acoustic parameters of media, the
reflection of useful signals, their reception, and the sub-
sequent space–time processing. Figure 3a demonstrates
the shape of the signal envelope at the output of the cen-
tral angular channel in the case of echo sounding
through a bone 20 mm thick. A reflecting object 1 mm
in size was positioned at a distance of 80 mm. The fre-
quency and duration of the probing pulse were 1.7 MHz
and 1.5 µs, respectively, and the number of receiving
elements in the array was 128. One can see that signals
from multiple reflections are received first, and then,
the useful signal. Although the 80-mm distance pro-
vides separate reception of the signals reflected from
the boundaries and the useful signal, the latter is barely
visible.

Figure 3b gives another example, when a complex
signal 40 µs in length was used with a subsequent cor-
relation compression and a bone-matched spatial pro-
cessing. Here, we do not present the detailed algorithms
of matched processing. Their various versions can be
found in [3–7]. We only note that the local values of the
bone thickness under the sensor di(x) and the local trans-
mission coefficients Ai(x) are measured first. These data
are stored and then used to form the adjusting ampli-
tude–phase distribution Φ(x) = Ai(x)exp{kdi(x)sinα},
where α is the variable observation angle in the azimuth
plane and k is the wave number. Then, the initial ampli-
tude–phase distribution of the signal in the radiation
mode, e.g., a spherical wave of unit amplitude for the
selected value of α and distance range, is multiplied by
the conjugate adjusting distribution Φ*(x) and fed to
the receiver elements in the radiation mode. The same
distribution is used for the reception of reflected sig-
nals.

PT
2

PT
2

3.162 10 20– ν2∆ν ,×=

PT 1.778 10 4– ∆ν  Pa.×=
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Comparing Figs. 3a and 3b, one can see that the
matched processing allows one to single out the desired
signal against the background of interfering signals,
which are compressed into a single narrow pulse.

Figure 4 presents two-dimensional acoustic images
of a point object for two cases of processing. The image
shown in Fig. 4a is obtained through a thick bone with-
out matched processing. One can see that the image is
smeared and the resolution is low. Figure 4b shows the
same image after the matching procedure. The indeter-
minacy of the body size at the 0.7-level almost corre-
sponds to the given parameters of spatial resolution:
1 mm in the azimuth (the X coordinate) and 0.5 mm in
the distance (the R coordinate).

Ultrasonic transducer

Bone

Vessels

Fig. 2. Simulation scheme.
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Fig. 4. Image of a point reflector (a) without matched processing and (b) with matched processing.

Fig. 5. (a) X-ray image of a brain blood vessel section with an aneurism and (b) the geometric-acoustic model of this area. The den-
sity values are 1400, 925, and 1060 kg/m3 for the bone, brain, and blood, respectively. The sound velocity values are 3360, 1530,
and 1550 m/s for the bone, brain, and blood, respectively. The bone thickness is 18 mm.

(‡) (b) (c)

Fig. 6. Reconstructed images of the vessel model: (a) image in the absence of bone-matched processing; (b) reconstructed image
with matched processing, the reconstruction only with respect to velocity; and (c) the same image reconstructed taking into account
both density and velocity.
Figure 5a presents an angiogram (X-ray image) of a
section of brain vessels. On the right-hand side of the
picture, at the point of the vessel bifurcation, one can
clearly see an aneurism, one of the most dangerous
involvements of brain vessels.

A simplified geometric–acoustic model of this area
is shown in Fig. 5b. Further, using the anatomic atlas of
brain, this vessel model was “placed” under thick skull
bones. In this model experiment, we assumed that the
bone thickness and the curvatures of the lower and
upper surfaces are equal, with a radius of 18 cm.

The proposed processing algorithms provide an
opportunity to reconstruct acoustic images of objects
with different densities and/or ultrasonic propagation
velocities, because only one of these parameters or both
of them can change simultaneously in biological struc-
tures.
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
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Figure 6a demonstrates the ultrasonic image of the
vessel model when the matched processing is not used.
One can see that the image quality is very low, and only
a certain region that partially resembles of the vessel
model is visible. Figures 6b and 6c show the results of
a simulation experiment with the bone-matched filtra-
tion. Figure 6b demonstrates an ultrasonic image of the
reconstructed vessel region when its model differs from
the brain tissue only in the ultrasonic propagation
velocity. Figure 6c shows the image of the same region
in the case when the reconstruction was performed tak-
ing into account both velocity and density. This image
was obtained using a phase-keyed signal with a carrier
frequency of 1.5 MHz and a bandwidth of 900 kHz. The
total dynamic range was –130 dB. In the radiation
mode, the beam was focused at each element of resolu-
tion in angle and in distance with the use of matched
processing for both radiation and reception.

CONCLUSIONS

The calculations described above and the results of
simulations allow us to make the following conclu-
sions:

(1) To reliably separate the signals reflected from the
brain structures in the case of echo sounding through
the skull bones whose thickness is 20 mm or more, the
ultrasonic system must have a total dynamic range no
less than 120–130 dB.

(2) Ultrasonic intensities of the order of 0.2–0.3 W/cm2

provide the detection of reflected signals in the case of
echo sounding through thick skull bones at frequen-
cies within 1–2 MHz. These ultrasonic intensities
comply with the medical standards for ultrasonic
intensity limits.

(3) The instrument noise and the thermal noise of
the sensor-amplifier unit are comparable in their levels,
and it is necessary to take into account both types of
noise in the system design. It is desirable to have the
normalized noise levels of the input amplifiers below

(1–3) nV/ . A reduction of the instrument and ther-
mal noise by an order of magnitude allows one to use
radiation frequencies up to 3–3.5 MHz.

(4) When the number of elements in the transmit-
ting–receiving array is equal to N = (128–256), the sys-
tem must provide the radiation and correlation process-
ing of broadband signals with the relative bandwidth
∆F/F ≥ (0.7–1.5). In this case, the focusing must be
used in both radiation and reception modes.

(5) The matched spatial processing of signals con-
siderably reduces the effects of multiple reflections in
thick bones and the defocusing of wave fronts. To real-
ize the matched processing, it is necessary to prelimi-
narily introduce the calibration of the bone region
located under the ultrasonic transducer. The calibration
consists in measuring the local thickness of the bone
and the transmission coefficients. To provide higher
calibration accuracy, it is desirable to perform it at a fre-

Hz
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quency higher than the frequency used for echo sound-
ing. The values obtained are used for constructing a
matched filter and for an automated amplification con-
trol in depth with allowance for different attenuation of
the signal in frequency and for the local frequency
attenuation in the bone.

Our studies confirmed that the main obstacles for
echo sounding through thick skull bones are the effects
of multiple reflections and the curvilinearity of the
lower boundary of the bone rather than the high ultra-
sonic attenuation. Nevertheless, in contrast to the
known ultrasonic scanners for open organs, which
operate at frequencies up to 7–10 MHz, the frequency
range of the signals utilized in transcranial diagnostics
proves to be narrower. In the case of bones with a large
thickness (over 20 mm), the utilization of signals with
frequencies higher than 3 MHz is problematic. How-
ever, the main restriction in this case lies in the rela-
tively high level of intrinsic instrument noise and ther-
mal noise of piezoelectric ceramics and amplifiers
rather than in some special physical phenomena. At the
same time, the use of frequencies up to 2 MHz provides
an opportunity to obtain ultrasonic images of vessels
through thick bones with a spatial resolution of the
order of 1 mm. The factor least investigated is the ultra-
sonic scattering in skull bones. Therefore, the only way
to clarify its effect is a direct experiment.

The proposed approaches give rise to the new tech-
nological requirements for the basic units of an ultra-
sonic system intended for transcranial diagnostics:

(a) The transmitting and receiving ultrasonic trans-
ducers must be broadband and well matched with the
bone. In addition, the transverse dimension of the array
must be somewhat greater than that of common linear
ultrasonic sensors, and the sensor surface should be
concave.

(b) The computational means used for the space–
time signal processing must be fully digital, sufficiently
fast, and multichannel. The best technological solution
is the scheme of the elementary channel–A/D converter
type.

Note that the purpose of this study was the visualiza-
tion of the “static” brain structures, i.e., the walls of
blood vessels, brain ventricles, etc. The same matched
processing technique can be used for the ultrasonic
visualization of blood circulation (using the Doppler
mapping). However, for the observation of blood circu-
lation through thick skull bones, the use of other meth-
ods of signal processing without matched filtration is
also possible [15].

The second part of this work will be devoted to the
analysis of technological requirements, ways of their
technological realization, and some results of experi-
ments with biological phantoms and live objects.
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Abstract—Characteristics of a compensated receiving antenna array consisting of four drifting radioacoustic
relaying buoys are studied experimentally. The signal frequency is 21 Hz. The array gain is 11.4 dB, and its
noise immunity is 3.8 dB. © 2003 MAIK “Nauka/Interperiodica”.
A group of drifting radioacoustic relaying buoys
(RARB), which receive underwater signals and trans-
mit them via radio channel to an aircraft or vessel, can
be used as a low-frequency, drifting, spatially devel-
oped, underwater acoustic antenna array (DAAA). It
can be used for detecting and locating sources of low-
frequency acoustic signals, e.g., of biological or seis-
mic nature [1–10]. Cetaceous animals are known to
transmit intense acoustic pulses at frequencies of 20
and 12.5–200 Hz [1, 2]. Underwater earthquakes and
volcanic eruptions are accompanied by acoustic noise
whose maximal intensity occurs in the frequency range
from several units to several tens of hertz [6–9]; such
signals can be used to warn us about catastrophic tsuna-
mis [6]. To receive and study these signals, stationary
underwater acoustic arrays [1, 4, 6, 7] and self-con-
tained acoustic buoys [2, 3, 8, 10] were used.

In contrast to RARB, a DAAA offers higher gain
and better noise immunity; it can serve to detect low-
frequency sound sources and determine their range
within the Fresnel zone, which can be rather long if the
DAAA aperture is large.

In comparison with stationary underwater arrays,
the advantage of the DAAA consists in its mobility, i.e.,
in the possibility of rapidly deploying it in an arbitrary
ocean region; its drawbacks are the limited operation
time, which is determined by the capacity of the self-
contained power sources, and the constraints imposed
by the weather conditions during its transportation.

In comparison with rigid-structure arrays, the
advantage of DAAA consists in the possibility of creat-
ing a spatially developed aperture 1 to 10 km in length,
which provides accurate location of the sources of low-
frequency noise; the drawback is the need for additional
tools for positioning the drifting receivers with an accu-
racy sufficiently high for the compensation and coher-
ent summation of signals over the array aperture.

A fundamental difficulty in constructing a DAAA
with a large aperture is the possibility of a spatial decor-
relation of the signals when the sound speed field is
1063-7710/03/4903- $24.00 © 20285
nonuniform in the underwater sound channel (USC)
with a stable vertical sound speed distribution or with
random space–time variations of the sound speed. In
view of these fundamental and technical difficulties, the
idea that the DAAA cannot be used in practice was put
forward [11].

Here, we present numerical estimates that are evi-
dence of the feasibility of a DAAA, although with some
restrictions in its frequency band, aperture, and distance
from the signal source. The approximate nature of the
estimates leaves space for some doubts. Therefore, this
paper presents the description of an in-sea experiment
on the implementation of a DAAA.

Because of the inevitable deviations of the RARB
units from the target positions, the DAAA proves to be
a space-tapered antenna array (AA). The distance sep-
arating the reception points (the nodes of the AA) can
exceed the signal wavelength. Such an AA can be
called a sparse one. In contrast to equidistant AAs, due
to different spacings of the sparse compensated random
AA, it has no side lobes of the directivity pattern (DP)
that have the same level as the main lobe. This feature
ensures an unambiguous signal detection [12–14].

Let us estimate the acceptable value of the uncon-
trolled random rms deviation of the DAAA nodes from
the target positions with the known coordinates. Let a
tone signal of frequency f propagate in a homogeneous
medium with a velocity c. Upon introducing the instru-
mental time displacement τi = ∆ri/c of the signal or its
phase rotation by ϕi = 2πf∆ri/c, where ∆ri is the dis-
tance of the ith node from the conventional phasing sur-
face, the signals received at the nodes and in the associ-
ated AA channels are equalized in their phases and
combined in phase. At the summator output, the gain
coefficient (in dB) of the AA is K = 20 , where N
is the number of nodes. Random displacements δr of
the nodes from the target positions (calculated along
the direction towards the signal source) lead to a phase

Nlog
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change δϕ = 2πf δr/c and to the loss in the AA gain by
∆K [14]:

(1)

For definiteness, let us assume that ∆K ≤ 3 dB is an
allowable value for which the AA is efficient. Then, we
obtain the conditions

(2)

where λ is the sound wavelength. As the frequency
decreases, the requirements for the accuracy of the
node positioning become less strict.

To determine the coordinates of the DAAA nodes,
the well-developed methods [15] of underwater acous-
tic positioning can be applied. Systems of underwater
navigation use acoustic beacons and provide a position-
ing accuracy of ±1 to ±0.1 m [15]. With δr = 1 m, con-
dition (2) is met at the frequencies f < 160 Hz. For
positioning the DAAA nodes, expendable explosive
sound sources or pulse-transmitting buoys can be used.

Random inhomogeneities of the refraction index in
water lead to random displacements of the signal phase
whose random rms deviation δϕ linearly decreases as
the frequency becomes lower [16]:

(3)

where a is the mean size of the inhomogeneities and 
is the mean square refraction index. According to the
measurements in different ocean regions [17], the value

of  is within 2 × 10–9 to 3 × 10–6 m. With such val-
ues, in view of Eq. (3), condition (2) is met at r < 120–
1700 km for the frequency f = 200 Hz.

The vertical sound speed distribution is the strongest
inhomogeneity of the refraction index; it most strongly
affects the misphasing of the signal over the AA aper-
ture. The accuracy of the data on the vertical sound
speed distribution along the propagation path is usually
insufficient to calculate the signal phase [18], and the
numerical statistical modeling of the phase distribution
over the aperture of a long AA provides no agreement
with the experimental data [19]. Therefore, let us
restrict our consideration to approximate estimates.

Let the signal of cyclic frequency ω propagate in an
underwater sound channel as a group of modes with
phase velocities v  ∈  [v 1, v 2]. At point 1 (the distance r1

from the source), the mode phases are ϕ1 ∈  ,

. At point 2 (the distance r2 from the source),

∆K 10 1 δϕ2–( ) 1

N3
------δϕ2+log–=

≈ –10 1 δϕ2–( )log 10 1 2πf δr/c( )2–[ ] .log–=

δϕ 0.7, δr 0.11c/f , δr/λ 0.11,≤ ≤ ≤

δϕ 2π f
c
--- 2µ2ar,=

µ2

aµ2

ωt
ωr1

v 1
--------–

ωt
ωr1

v 2
--------–
the mode phases are ϕ2 ∈  , . The

phase difference between the modes with the same
ordinal numbers at points 1 and 2 is ∆ϕ12 ∈  [ω∆r/v1,
ω∆r/v2], where ∆r = r2 – r1. Introducing an instrumental
phase compensation ∆ϕ‡ = –ω∆r/v1 into the AA channel
that corresponds to point 1, we obtain the phase differ-
ence ∆ϕ ≤ ∆ϕ12 – ∆ϕ‡ ∈  [0, ω∆r∆v /v1v2], which remains
uncompensated. The uncompensated phase difference
between points 1 and 2,

(4)

decreases as ω and ∆r decrease. Assuming that the
mode phase difference is uniformly distributed within
the interval ∆ϕun, we arrive at the following rms esti-
mate for the uncompensated phase difference:

(5)

At some distance from the source, the rapidly
decaying modes are absorbed by the sea floor, and the
sound field is determined by the discrete spectrum of
the modes captured by the USC. Their phase velocities
are v ≤ ch where ch is the sound speed in water near the
bottom. Then, one can set v 2 = ch. Let the communicat-
ing points be near the USC axis where the sound veloc-
ity is equal to cax. Accepting the values v 1 = cax and
∆c = ch – cax, we obtain

(6)

If, as earlier, the allowable value is δϕun ≤ 0.7, the
condition for the AA efficiency in the zone of the dis-
crete mode spectrum takes the form

(7)

where λax = cax /f is the wavelength at the USC axis and
∆rm is the maximal length of the AA along the direction
towards the signal source.

To estimate ∆ϕun in the far-field zone, we use the ray
theory and the formulas presented in the monograph
[20]. Let the sea depth be h, the depth of the USC axis

be zax, and the sound speed gradient be a =  > 0

and a1 < 0 under the USC axis and above it, respec-

tively. The maximal depth of the ray is zh = a /8,
where rh is the length of the ray cycle. For the ray with
the maximal depth h, the corresponding phase velocity

at the USC axis is v 2 = cax . Introducing the

instrumental phase compensation, ∆ϕa = –ω∆r/cax, we
obtain from Eq. (4)

ωt
ωr2

v 1
--------– ωt

ωr2

v 2
--------–

∆ϕun ω∆r∆v /v 1v 2,≤

δϕun
π
3

-------∆r∆v /v 1v 2= 1.8 f∆r∆v /v 1v 2.≈

δϕun 1.8 f∆r∆c/caxch.≈

f 0.4caxch/∆rm∆c, or ∆rm/λ 0.4ch/∆c,< <
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2
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where A1 = 1 +  and A2 = 1 + .

Assuming that a ! 1 and omitting the small term

, we arrive at the estimate

(8)

(9)

If the allowable value is δϕun ≤ 0.7, we obtain the con-
dition for the AA efficiency:

(10)

where rav =  is the geometrical mean distance
from the source to the AA. Expressions (8)–(10) are
valid for r < rh = 2 /a and

(11)

The loss in the AA gain is

(12)

For the northwestern region of the Pacific Ocean, in
the warm season, with zax = 75 m, cax = 1452 m/s, h =
5.3 km, a = 1.2 × 10–5 m–1, rav = 30 km, ∆rm = 1 km, and
∆K ≤ 3 dB, Eq. (10) yields f ≤ 35 Hz. If such an AA is
focused (i.e., if it is compensated for the cylindrical
wave front), the determination of the distance r from

the source is possible for r <  ≈ 20 km, where dp =
1 km is the projection of the AA aperture on the plane
that is perpendicular to the direction towards the
source.

The estimates presented above show the possibility
of implementing an efficient DAAA several kilometers
long for a distance of several tens of kilometers from
the signal source at frequencies of several tens of hertz.

The experiment on the DAAA implementation was
carried out in the Black Sea, in the region with the sea
depth h = 820 m, at a wind speed of Beaufort 3. The ver-
tical sound speed distribution is shown in Fig. 1. The
parameters had the following values: zax = 60 m, cax =
1460 m/s, and ch = 1482 m/s. With the radar of the
research vessel, five vessels were observed at the dis-
tances 10–20 km, which corresponds to a high-density
traffic (4 × 10–3 vessel/km2). Therefore, the noise of the
ship traffic predominated in the interfering noise at fre-
quencies lower than 100 Hz. The experimental layout is
illustrated in Fig. 2. As the source of tone signal, an
underwater sound projector of 21 Hz was used. It was
deployed at a depth of 60 m and was cable-connected to
the transmitting vessel. The DAAA consisted of four
RARBs whose hydrophones were at a depth of 150 m.
The sound speed was cr = 1465 m/s at the reception
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depth, the corresponding acoustic wavelength being λ =
69.8 m. The DAAA was located within a rectangle of
830 × 34 m. The aperture of the DAAA was d = 830 m.
The rms deviations of the reception points from the
nodes of an equidistant four-node linear AA with an
aperture d was δla = 100 m ≈ 1.4λ along the baseline
and δlp = 16 m ≈ 0.2λ in the perpendicular direction.
The mean distance between the reception points was
lav = 277 m ≈ 4λ. The distance from the transmission
point to the center of the baseline was r = 2.9 km,
rav ≈ r. The azimuth angle, as measured from the per-
pendicular to the center of the baseline, was θ = 39°,
∆rm = 520 m. With the radar of the receiving vessel, the
coordinates of the transmitting vessel and the RARBs
were determined, with rms deviations of about 30 and
15 m, respectively. To improve the positioning of the
reception points, the underwater acoustic method was
used. A source of tone pulses, with a carrier of 1 kHz,
was deployed from the transmitting vessel to a depth of
55 m. From the time differences τi1 in reception of the
pulses at the nodes i and 1, the range differences ∆ri1 =
ri – r1 = τi1/cp were determined with the rms deviations
δr ≈ 2 m and δr/λ ≈ 0.03 m. In this case, condition (2)
was met, and, according to Eq. (1), the loss in the gain
was ∆K = 0.9 dB. The values of τi1 were specified to
compensate the DAAA. The measurements of τi1 were
carried out twice in half an hour. During this time
interval, the configuration of the DAAA remained
unchanged within the measurement accuracy.
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Fig. 1. Vertical sound speed distribution.
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The positions of the RARBs were also amended
when the receiving vessel went along the baseline with a
constant speed. In such tacks, the time of crossing the
traverse of each RARB was recorded. The rms deviation
of the resulting values was no higher than 5 m ≈ 0.07λ.

The radio signals of the RARBs were received at the
receiving vessel; then, the underwater acoustic signals
were separated and tape recorded. The replayed signals
were filtered within the 5-Hz band around the central
frequency of 21 Hz, fed to the analog-to-digital con-
verter, and computer-processed in the digital form. The
frequency of the signal sampling was 200 Hz, and the
number of samples was 4096 for each RARB, which
corresponded to the duration T = 20.5 s of a computer-
stored realization. The signal processing algorithm was

S Ä

R

θ

1 2 3 4

r

O
d

rr

Fig. 2. Experimental layout: (1–4) hydrophones of the
RARBs; (S) transmitting vessel, from which the sound
sources were deployed; (R) receiving vessel, which
received the radio signals of the RARBs; d = 830 m is the
array aperture; O is the array center (the midpoint of the
baseline); AO is the perpendicular to the baseline at its mid-
point; θ = 39° is the azimuth angle to the signal source; r =
2900 m is the distance to the source; rr = 2000 m is the dis-
tance from the array to the receiving vessel.

Table 1.  Cross-correlation matrix of the signals Rsij in channel
pairs (i, j)

i, j 1 2 3 4

1 1 1 0.8 0.9

2 1 1 0.9 0.9

3 0.8 0.9 1 0.8

4 0.9 0.9 0.8 1

Table 2.  Cross-correlation matrix of noise Rpij in channel
pairs (i, j)

i, j 1 2 3 4

1 1 0.3 0.2 0.3

2 0.3 1 0.2 0.2

3 0.2 0.2 1 0.3

4 0.3 0.2 0.3 1
the one conventionally used for a compensated adaptive
AA [21]:

(13)

where Dsp is the energy of the sum of both signal and
noise at the output of the processing circuit, pi(t) is the
acoustic signal received at the ith node (channel) of the
DAAA, t is the running time, τi1 = ∆ri1/cp is the instru-
mental delay time in the ith channel, and Ta = 19.5 s is
the time of signal integration.

In addition, the energy of the sum of signal and
noise was measured at the inputs of all channels within

the time interval Ta: Dspi = .

With the sound source switched off and the same
compensation, the energy of noise was measured at the
channel input and at the output of the processing sys-
tem: Dpi and Dp, respectively. Then, the empirical signal-
to-noise ratio (SNR) was calculated at the input, Ei =
(Dspi – Dpi)/Dpi, and at the output, Ea = (Dsp – Dp)/Dp. The
empirical values of Ei ranged from 12 to 47; the mean

SNR values were  =  = 25 and Ea = 61 at the

input and output, respectively. The mean input energy is

given by the formula  = . The

empirical gain of the DAAA is K = 10 (Dsp –

Dp)/ ] = 11.4 dB. When the signals are in phase and
the noise is fully decorellated in all channels, we obtain
KT = 20  = 12 dB. The loss in the gain KT – K =
0.6 dB is close to the estimate obtained above for the
multimode sound propagation.

The empirical noise immunity of the DAAA is κ =
10( ) = 3.8 dB. If the signals are in phase and
the noise is fully decorrelated for all pairs of the chan-
nels, κT = 10  = 6 dB. The loss in the noise immu-
nity is estimated as ∆κ = κT – κ = 2.2 dB and is greater
than the loss in gain. Let us show that the loss in the
noise immunity can be explained by a partial correla-
tion of noise over the DAAA aperture. Tables 1 and 2
represent the matrices of the normalized empirical
cross-correlation values for the signals Rsij and the
noise Rpij in the channel pairs (i, j) at the delay times
τij = τi1 – τj1 corresponding to the DAAA compensation.

If, for the sake of simplicity, we set Ei = const = , we
can use the following expression [22]:

(14)
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Using the values from Tables 1 and 2, we obtain κ =
3.2 dB and ∆κ = 2.8 dB. If the noise is fully decorre-
lated, we assume that Rpij = 0 at i ≠ j and, using the val-
ues of Rsij from Table 1, we obtain from Eq. (14) κ =
5.7 dB and ∆κ = 0.3 dB. These values show that the loss
in the noise immunity, which is caused by a slight deco-
rrelataion of the signal, is insignificant and close to the
loss in gain.

The estimates presented above and the experimental
data confirm the possibility of using a group of drifting
radioacoustic relaying buoys to implement the low-fre-
quency compensated receiving antenna array with an
aperture of several kilometers at frequencies of several
tens of hertz and with distances of several tens of kilo-
meters to the sound source.

After performing the aforementioned experiments,
we developed and successfully tested a specialized dig-
ital processor for processing the signals of a 16-channel
DAAA.
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Abstract—The inverse scattering problem involving experimental data with errors is considered in its statisti-
cal formulation. An algorithm for retrieving regularized estimates of the characteristics of spatially distributed
scatterers (the phase velocity and absorption inhomogeneities) is developed. The algorithm takes into account
the multiple scattering and generalizes the Wiener filtering to the nonlinear case. For weak scatterers, this non-
linear generalization is reduced to the linear Wiener filtering. The performance of the algorithm is verified by
model examples simulating the operation of active acoustic tomography systems against various noise levels.
The necessity of taking into account the multiple scattering and the fundamental role of the nonlinear filtering
in the regularization procedure is demonstrated. It is remarkable that the noise robustness achieved in the recon-
struction of strong scatterers with the optimal regularization algorithm is only slightly inferior to that achieved
in the case of weak scatterers. © 2003 MAIK “Nauka/Interperiodica”.
1. MAXIMAL POSTERIOR PROBABILITY 
ESTIMATE OF SCATTERER CHARACTERISTICS 

IN THE PRESENCE OF NOISE

In this paper, we address the problem of reconstruct-
ing the acoustic characteristics (e.g., the phase velocity
and the absorption coefficient) of scattering inhomoge-
neities of a medium from noise-distorted scattering data
in terms of the statistical approach. This inverse scatter-
ing problem belongs to the class of ill-posed problems.
Therefore, a stable solution can only be obtained by reg-
ularization methods. To date, methods for solving linear
ill-posed problems are elaborated. Such problems
include, in particular, the linear statistical problems, in
which the optimal regularization relies on the prior sta-
tistical information [1, 2] and can be reduced to a filter-
ing procedure. However, methods for solving nonlinear
ill-posed problems are not sufficiently advanced and are
currently under development [3, 4]. The nonlinearity of
the solution with respect to raw scattering data and, pos-
sibly, a simultaneous nonlinearity of the data with
respect to unknown functions (these functions describe
the scatterer and its secondary sources or internal fields)
make the problem intricate and difficult to solve.

In this paper, we use the general statistical formula-
tion of the inverse scattering problem as the problem of
the optimal (in terms of the maximal posterior probabil-
ity) estimation of the function ε(r) related to the desired
unknown characteristics of the scatterer as follows:

(1)ε r( ) ω2 c0
2– c 2– r( )–[ ] 2iωα r ω,( )/c r( ),–=
1063-7710/03/4903- $24.00 © 20290
where an ~exp(–iωt) time dependence is assumed.
Here, c0 and c(r) are the sound velocity in the lossless
background medium outside the scatterers and in the
scattering region R, respectively, and α(r, ω) is the
amplitude absorption coefficient in R. The algorithm
of the solution consists in the minimization of a func-
tional. The functional relies on the discrepancy
between the experimental scattering data and their esti-
mates that follow from the Lippmann–Schwinger equa-
tions and on the prior information about the correlation
properties of noise and the desired characteristics of the
scatterer. In addition, the constraining equations are
involved, which are included directly into the func-
tional or used as separate additional equations.

It should be noted that a similar statement of the
problem was addressed in [5], where a very strong sim-
plifying assumption was made that no nonradiating
configurations of secondary sources were present and,
as a consequence, the propagation operator with the
Green’s function as its kernel was invertible. Unfortu-
nately, this assumption is only valid for certain model
scatterers when significant prior information about the
function describing a particular scatterer is available:
for instance, for a scatterer modeled by a set of point
inhomogeneities whose strengths are unknown and
locations are known. On the contrary, the algorithm
reported below is free from such restricting assump-
tions and it allows for the multiple scattering in the
most rigorous mathematical formulation. As a result,
we obtain regularized estimates of the velocity and
absorption distributions in a scatterer localized in
003 MAIK “Nauka/Interperiodica”
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space. The price of this optimal approach is a more com-
plex resultant system of nonlinear equations and a com-
paratively high (however, as simulations show, admissi-
ble for modern computers) computational burden.

The initial functional can be constructed in the R
space (spatial representation) as well as in the K space
(momentum representation), which is conjugate to the
R space. The earlier paper [6] used the spatial represen-
tation, in which the scatterer’s function ε(r) and the
total internal field U(r, k0) are estimated (here, k0 is the
wave vector of the incident monochromatic plane wave
exp(ik0r)). The present paper employs the momentum
representation, in which the functions to be estimated
are the spatial spectrum (k') of the scatterer and the
spatial spectrum T(k', k0) of the secondary sources
ε(r)U(r, k0) arising in the scattering region:

The prime means that the vector k' belongs to the
D-dimensional K space of wave vectors of arbitrary
direction and length. An unprimed vector belongs to the
K0 space of wave vectors of a fixed length |k0| = k0,
where k0 is the wave number in the background
medium outside the scatterers. The momentum repre-
sentation is convenient when the background medium
is lossless and homogeneous, the sounding fields are
plane, and the plane-wave expansion of the scattered
field is used. Below, we assume that these conditions
are met. These assumptions do not restrict the general-
ity of the proposed method of constructing the optimal
solution and the conclusions that follow from the real-
ization of this method.

The experimental scattering data are the values of
the complex scattering amplitude Texp(k, k0), where k,
k0 ∈  K0. The values of Texp are related to the desired val-
ues of  through the Lippmann–Schwinger equation

(2)

where (|k'|, k0) is the spatial spectrum of the Green’s
function of the homogeneous infinite medium and
n(k, k0) is the noise signal received from the direction
k when the primary plane wave is emitted in the direc-
tion k0. We assume that the functions n and  are real-
izations of Gaussian random processes with the correla-
tion functions N and ε, respectively. Then, the maximal
posterior probability estimation procedure amounts to

ε̃

T k' k0,( ) ε r( )U r k0,( )[ ] ik'r–( )exp r,d

R

∫≡

k' K , k0 K0.∈ ∈

ε̃

Texp k k0,( ) ε̃ k k0–( )=

+
1

2π( )D
-------------- ε̃ k k'–( )G̃ k' k0,( )T k' k0,( ) k'd

K

∫ n k k0,( ),+

k k0, K0; k' K ,∈ ∈

G̃

ε̃
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the minimization of the functional F, which is quadratic
in the case we consider below:

(3)

where

(4)

(5)

The symbol “+” means Hermitian conjugation. Physi-
cally, the term F0 is a quadratic form of the discrepancy
between the scattering amplitude values (or between
the wave fields in the spatial representation). These val-
ues are, on the one hand, measured experimentally
(Texp) and, on the other hand, estimated from Eq. (2) at
n ≡ 0. The term FA allows for the prior statistical infor-
mation about the scatterer characteristics weighted with
the function β( , ). Without loss of generality, we

assume in Eq. (5) that 〈 (k')〉  = 0 for ∀ k' ∈  K, where 〈 ·〉
means averaging over an ensemble of scatterers of the
class we consider.

Functional (3) should be supplemented with con-
straining equations of the type of Lippmann–
Schwinger equations for the unknown T(k', k0):

(6)

F ε̃ ε̃+ T T+, , ,( )

=  F0 N 1– ; ε̃ ε̃+ T T+, , ,( ) FA ε–1
; ε̃ ε̃+,( ),+

F0 … T exp
+ k01 k1,( ) ε̃+ k1 k01–( ) ∫–

K0

∫∫=

–
1

2π( )D
-------------- T + k01 k1',( )G̃

+
k1' k0,( )ε̃+ k1 k1'–( ) k1'd

K

∫

× N 1– k1 k01, ; k2 k02,( ) Texp k2 k02,( ) ε̃ k2 k02–( ) ∫–

–
1

2π( )D
-------------- ε̃ k2 k2'–( )G̃ k2' k0,( )T k2' k02,( ) k2'd

K

∫ dk1

× k01 k2 k02,ddd

FA ε̃+ k1'( )β k1' k2',( )ε 1–
k1' k2',( )ε̃ k2'( ) k1' k2' ,dd

K

∫∫=

k1 k01 k2 k02, , , K0; k1' k2', K .∈ ∈

k1' k2'

ε̃

T k' k0,( ) ε̃ k' k0–( )=

+
1

2π( )D
-------------- ε̃ k' k''–( )G̃ k'' k0,( )T k'' k0,( ) k'',d

K

∫
k' K .∈
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Indeed, expression (6) contains exact functions T(k', k0)
for all k' ∈  K, whereas the experimental data Texp(k', k0)
are distorted by noise and known only for |k'| = k0:

In the spatial representation, these constraining equa-
tions are considered for the wave fields inside the scat-
tering region. It should be noted that the constraining
equations can be included directly into the functional F
through the undetermined function-valued Lagrange
multipliers [6].

When calculating variations of the functional F with

respect to the unknown functions (c)dVc, we intro-
duce the quantity dVc representing the elementary vol-
ume with the origin at the point c ∈  K in the Cartesian
coordinates, where c is an arbitrary fixed vector. The
equations

(7)

together with Eqs. (6) written for all k0 constitute a
complete system of equations for the estimates of the
desired quantities  and the unknown auxiliary quanti-
ties T. Variation (7) can be calculated and the transfor-
mations can be performed for the two-dimensional, as
well as three-dimensional, problem for arbitrary corre-
lation functions N and ε. The resultant expression is
lengthy, but, in essence, simple. For the two-dimen-
sional problem with measurement errors δ-correlated
with respect to direction, this expression has the form

(8)

The discrete version of relationship (8) for å directions
of the incident field and å directions of the scattered
field is

where  is the Kronecker delta defined for the dis-
crete vector argument. In terms of our representation,
for the two-dimensional problem, n0(∆k)2 is a dimen-
sionless quantity. Physically, this is the power of noise
n(k, k0) enclosed in the solid angle (∆k)2 at k0 = 1 and
defined in the space of pairs of wave vectors k, k0 ∈  K0
used in the measurements. The dimensional coefficient
n0 has the physical meaning of the noise power density
in this space: it is the noise power per unit solid angle.

Texp k k0,( ) T k k0,( ) n k k0,( ),+=

k k0 k0.= =

ε̃+

δF ε̃ ε̃+ T T+, , ,( )/δ ε̃+ c( )dVc[ ] 0=

ε̃

N 1– k1 k01; k2 k02, ,( ) 1/n0( )δ k2 k1–( )δ k02 k01–( ),≈
k1 k01 k2 k02, , , K0.∈

N 1– k1 k01; k2 k02,,( ) 1/W0( )δk1 k2, δk01 k02, ,≈

∆ϕ 2π/M, ∆k k0∆ϕ ,= =

W0 n0 ∆k( )2;≡
δk1 k2, 1 for k1 k2; 0 for k1 k2≠={ } ,=

δk1 k2,
With expression (8), Eqs. (7) take the following dis-
crete form:

(9)

The system of equations (9) and (6) implies that the
spatial spectrum of the scatterer is localized in a circle
of radius 2k0. Hence, we can limit our analysis to esti-
mating (h) only for |h| < 2k0. Independent samples
are taken over an irregular grid in h. The grid is irreg-
ular, because the measurements use a discrete set of
vectors k0, k ∈  K0 that is uniform in angle. Due to the
reciprocity theorem, only half of the directions of the
vector k (index n) are considered for a particular k0
(index m):

(10)

where

A similar procedure is used to define the independent
discrete values of c that are the parameters of Eqs. (7)

and, consequently, Eqs. (9): c ∈  {0 ∪  (  – )},

where  = {k0, ϕβ = } and  = {k0, ϕα = }.

The matrix that acts on the unknown quantities (h)
in Eqs. (9) is written as

(11)

where E(c, h) is the unit matrix and

The coefficients S satisfy the conditions

For S(h), the vector c is replaced with the vector h, and

the argument (ϕα – ϕβ), with the argument (ϕn – ).
The coefficient S appears because of the difference in
the descriptions of the wave vector spaces K0 and K,
which enter into expressions (4) and (5). This is due to
the difference in the physical meanings of the correla-
tion matrices ε and N, which is also observed in the

spatial representation. Indeed, for ε( , ) ≡

, the vectors ,  ∈  K take all admis-
sible discrete values within the region of spatial fre-

A c h,( )ε̃ h( )
h
∑ Texp' c( ) I1 c( ) I2 c( ).+ +=

ε̃

h 0 kn k0
m–( )∪{ } ,∈

k0
m k0 ϕ0

m,{ } , ϕ0
m ∆ϕ m 1–( );= =

∆ϕ 2π/M, m 1 M, ;= =

kn k0 ϕn,{ } , ϕn ∆ϕ n 1–( );= =

n m 1+( ) m M/2+( ), .=

k
nα k0

mβ

k0
mβ ϕ0

mβ k
nα ϕ

nα

ε̃

A c h,( )

=  E c h,( ) β c h,( )κ c h,( )W0ε 1–
c h,( ),+

κ c h,( ) S c( )S h( )C h( )/ 2C c( )( ).=

S c( ) ϕα ϕβ–( )sin at c 0 and c 2k0;≠≠{=

∆ϕ /3 at c 0 or c 2k0= = } .

ϕ0
m

k2' k1'

ε̃ k2'( )ε̃+ k1'( )〈 〉 k1' k2'
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quencies of our interest. For N(k2, k02; k1, k01) ≡ 〈n(k2,
k02)n+(k1, k01)〉 , the vectors k1, k2, k01, k02 ∈  K0 vary
only in direction.

The coefficient C(h) is the number of constant vec-
tors h = k – k0 that can be formed by two vectors k,
k0 ∈  K0 when each of the vectors k and k0 takes M dis-
crete values:

The quantity C(c) is defined in a similar manner. The
quantities (c) are the scattering data averaged over
these sets:

The term I1(c) has the same structure, but Texp is
replaced by ( (c) – T). The last term in Eqs. (9),
I2(c), is expressed as

The number M 2/2 + 1 of algebraic equations (9) is
equal to the number of unknown values of (h). These
equations are supplemented with sampled Eqs. (6), which
makes it possible to estimate the unknown T(k', k0) for k'
used in Eqs. (9) (in particular, at |k'| = k0).

It should be noted that scatterer (1) may consist of
the velocity component (index c) and dissipation com-
ponent (index α) simultaneously (the functions εc(r)
and εα(r) are real, but their Fourier transforms are not):
ε(r) = εc(r) + iεα(r). Therefore, (k') = (k') + i (k'),
where k' ∈  K. Then, the optimal procedure is the one
that estimates each of these components separately.
When the c and α components are uncorrelated, the
term FA (see Eq. (5)) is replaced with a sum of similar
terms for each of them. The variation of the total func-
tional F is calculated independently with respect to
both unknown functions  and ; i.e., variations (7)
are replaced with the relationships

C h( ) M at h 0;={=

2 at h 0 and h≠ 2k0; 1 at h≠ 2k0= } .

Texp'

Texp' c( )

=  

1
M
----- Texp k0

m2 k0
m2,( ) at c

m2 1=

M

∑ 0=

Texp k
nα k0

mβ,( ) Texp k0
mβ– k

nα–,( )+[ ] /2

at c k
nα k0

mβ, where c 0 and c 2k0≠≠–=

Texp k0
mβ– k0

mβ,( ) at c 2k0
mβ i.Â., k

nα k0
mβ–=( ).–=












ε̃

I2 c( ) S c( )
C c( )
------------- ∆k( )2

2π( )2
------------- T + k0

m1 k
n1 c–,( )

n1 m1 1+=

m1 M+

∑
m1 1=

M

∑=

× G̃
+

k
n1 c– k0,( ) Texp k

n1 k0
m1,( ) T k

n1 k0
m1,( )–[ ] ;

∆k 2πk0/M, k0
m1 k

n1 k0.= = =

ε̃

ε̃ ε̃c ε̃α

ε̃c ε̃α

δF/δ ε̃c
+ c( )dVc( ) 0, δF/δ ε̃α

+ c( )dVc( ) 0.= =
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To improve the quality of estimating the c and α com-
ponents, we can additionally use the prior information
that εc(r) and εα(r) are real and that the sign of the func-
tion εα(r), which is responsible for the absorption, is
known.

To find the correlation function of the scatterer’s

spatial spectrum ε(h, c) = , one should
know the respective prior characteristics of this kind of
scatterer or an analytical estimate for the scatterer
model being used. Our numerical simulations assumed
that each realization of the random scatterer is a single
inhomogeneity or a set of inhomogeneities of the same
type and that the effective linear size of the region
where the inhomogeneities may occur is L. The ele-
mentary inhomogeneities, random in amplitude, sign,
and location, are uniformly distributed over this region.
A full ensemble of single random inhomogeneities is
characterized by the following statistical parameters:
the mean-square amplitude, the effective linear size l,
and the characteristic width of the spatial spectrum
≅ 2π/l. This is a model of the “cluster” scatterer with
the mean cluster size ≈l. For this model, ε(h, c) ≈

ε0 Γ(h – c), where ε0 is the scatterer’s average

statistical spectral “energy” density. It determines the
spatial frequency domain where it is necessary to allow
for the scatterer’s spectral components (the width of the
domain is ≅ 2π/l). The function Γ(h – c) determines the
domain where the correlation between the spectral

components (h) and (c) is significant; this func-
tion is related to the overall scatterer size L: the corre-
lation is observed when |h – c| ≤ 2π/L. In the model we
consider below, Γ(h – c) ≈ exp[–(h – c)2(L/π)2].

To construct the matrix ε–1(c, h), the regularization

technique must be used: ε–1(c, h) = [ε(h, c) + θE]–1,
where E is the unit matrix and θ is the regularization
coefficient chosen in accordance with the maximal

value .

2. NUMERICAL SCATTERER 
RECONSTRUCTION

The experimental scattering data (k, k0) ≡

(ϕ, ϕ0) in the absence of noise (  ≡ Texp when
n(k, k0) ≡ 0) were simulated by solving the direct prob-
lem1 with the given scatterer function ε(r). The Lipp-
mann–Schwinger-type equation (6) was solved by an
iterative method, and the values T(k', k0) (k' ∈  K) found
were interpolated onto the Ewald’s circle |k'| = k0 at

1 We intend to describe the numerical technique used to solve the
direct problem in a subsequent paper.

ε̃ h( )ε̃+ c( )〈 〉

h c+
2

------------- 
 

ε̃ ε̃+

ε h c,( )
h c,( )

max

Texp
0

Texp
0 Texp

0
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each given k0. The values  were distorted by noise
uncorrelated in angle (see Eq. (8)) in the form of a zero-
mean Gaussian sequence with an rms amplitude devia-
tion σn for the components Ren(k, k0) and Imn(k, k0).
We assumed that σn = qTmax (q ≥ 0), where Tmax ≡

. The input noise-to-signal ampli-

tude ratio In was calculated as the ratio of the noise norm

||n|| to the norm  of the noise-free scattering data:

In = ||n||/ . Here, ||n|| = 

or, in terms of discrete quantities, ||n|| =

∆ϕ ; in a similar way, we have

 = ∆ϕ . In the simulations,

we introduced independent errors with equal deviations

σn to two equal sets . Accordingly, two realizations
of the experimental data Texp(k, k0) distorted by inde-
pendent noises were generated. The effective input

noise-to-signal ratio was  = In/ .

The values (h) were estimated by solving the
inverse problem defined by Eqs. (6) and (9). The solu-
tion was interpolated from irregular grid (10) to a regu-
lar Cartesian grid, and the final scatterer estimate (r)
in the R space was calculated through the inverse Fou-
rier transform. The relative rms error in (r) was calcu-
lated as the ratio of the residual between the estimate

(r) and the true function ε(r) to the norm of the func-

tion ε(r): νε = .

2.1. Reconstruction of Weak Scatterers

Consider the Born approximation (single scattering)
in order to compare the result with that given by the
optimal processing in the case of strong scatterers. In
the Born approximation, the terms I1(c) and I2(c) on
the right-hand side of Eqs. (9), which allow for the mul-
tiple scattering, are dropped. Additional constraining
equations (6) are also unnecessary. Then, with allow-
ance for the prior information about the correlation of
the spatial spectra of noise and scatterer, the Born esti-
mate  can be found for (M 2/2 + 1) spatial fre-
quencies h (see (10)) from the system of algebraic
equations

(12)

In the low-noise approximation, we have W0  0 and
A(c, h)  E(c, h), and we obtain  = (c),
which is evident for weak scatterers. As we noted

Texp
0

Texp
0 k k0,( )

k k0, K0∈
max

Texp
0

Texp
0 n ϕ ϕ 0,( ) 2 ϕ ϕ 0dd

0

2π∫0

2π∫

n k k0,( ) 2

k k0,∑
Texp

0 Texp
0 k k0,( ) 2

k k0,∑
Texp

0

In' 2

ε̃

ε̂

ε̂

ε̂

ε̂ r( ) ε r( )– 2

r∑ / ε r( ) 2

r∑

ε̃Born h( )

A c h,( )ε̃Born h( )
h
∑ Texp' c( ).=

ε̃Born c( ) Texp'
above, for the further comparison with stronger scatter-
ers, we used two realizations of the experimental data.
The overdetermined system (12) obtained above was
solved by the least-squares method. In the Born approx-
imation, the least-squares solution to the overdeter-
mined problem is equivalent to the solution of the non-
overdetermined problem with the scattering data aver-
aged over realizations.

Regularization filtering in the Born approximation
is similar to the classical Wiener filtering. In fact, the
matrix [A(c, h)]–1 in Eq. (12) acts as a filter. According
to Eq. (11), the noise-to-signal energy ratio is associ-
ated with the quantity W0ε–1(c, h), which enters into
Eq. (11) with the weighting function β(c, h)κ(c, h).
Choosing the weighting function β(c, h) as

(13)

adjusts the filtering procedure in Eq. (12) to the Wiener
scheme, which provides the optimal solution to the lin-
ear inverse problem. The filtering consists in suppress-
ing high spatial frequencies in the spectral estimate

. At the same time, at low spatial frequencies, the
effect of noise persists. As the noise-to-signal ratio
grows, the optimal solution requires a better filtering.

In the numerical experiment, we reconstructed a
weak scatterer of Gaussian shape with the maximal
phase velocity contrast of ∆c/c0 = 0.01 and the half-
width (measured at a level of 1/e) a/λ0 ≈ 0.82. The addi-
tional phase shift through the scatterer’s central section
is ∆ψ ≅  0.03π. Each of the two independent data real-
izations Texp(k, k0) contained a noise component with
σn = 0.15Tmax and In ≈ 75%; i.e., the input noise-to-sig-
nal ratio was high. The results of the numerical recon-
struction are reported in [7]. The reconstruction without
regularization filtering ignores the prior information
about the scatterer and the actual noise, because it
assumes that W0 = 0 in Eq. (11). In this case, the relative
error of the estimate (r) was νε ≈ 50%, which was
almost the same as the effective input noise-to-signal
amplitude ratio  ≈ 53%. When the reconstruction
uses the regularization filtering, the matrix N is formed
for the true noise intensity, at which W0 = (σn)2 and the
optimal factor β(c, h) of Eq. (13) is taken. The quality
of the estimate (r) in the presence of the same errors
becomes noticeably better: νε ≈ 9%.

It should be noted that, independently of whether
the filtering was applied or not, at a sufficiently high
noise intensity, νε is a linear function of . At low
noise intensities, νε decreases slower due to the discret-
ization errors. It is also important that the estimate (r)
obtained by the regularization filtering rather weakly
depends on the regularization parameters. For example,
one can choose β(c, h) ≡ 1 and it is sufficient to estimate
the matrix ε(h, c) for approximate values of l and L.

β c h,( ) 1/κ c h,( )=

ε̃ h( )

ε̂

In'

ε̂

In'

ε̂
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Fig. 1. Middle-power refractive–absorptive scatterer (the velocity contrast is ∆c/c0 = 0.2, the additional phase shift is ∆ψ ≅  0.55π,
and the amplitude absorption in the scatterer is 4.2 times): (a) the central sections of the true scatterer (dashed lines) and the scatterer
reconstructed in the Born approximation from noise-free data (solid lines); (b) the real and imaginary parts of the scattering data
(normalized by the maximum of the noise-free real part) at ϕ0 = 0 in the absence (thick line) and presence of noise with the deviation
of σn = 0.15Tmax (thin line); and (c, d) the scatterer reconstructed from the noisy data at σn = 0.15Tmax (c) by the weak regularization
filtering and (d) by the matched filtering.
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2.2. Scatterer Reconstruction Taking into Account
the Multiple Scattering

To estimate middle-power and strong-power scatter-
ers, it is necessary to solve Eqs. (9) and (6) together.
Since the system is nonlinear with respect to the
unknown ( , T ), it must be solved by an iterative tech-
nique. In the numerical simulation, we used an iterative
scheme that alternatively estimated  and T [8, 9]. At
every particular iteration step of number j, the estimate

(h) is a solution to subsystem (9), whose terms I1(c)
and I2(c) appearing on the right-hand side are formed
from the estimates  and T(j – 1) obtained at the pre-
vious step. The initial estimate (j = 1) in this iterative
procedure is the smoothed Born estimate (h) [see
Eq. (12)]. The use of two realizations of the noise-dis-
torted scattering data Texp makes subsystem (9) overde-
termined and suggests that it should be solved in terms
of the least-squares method, which additionally
improves the convergence of the iterative scheme. It
should be noted that multiple scattering causes an
implicit nonlinear dependence of the right-hand side of
Eqs. (9) on Texp. Therefore, unlike the Born approxima-
tion, the least-squares solution to subsystem (9) with
redundant data Texp collected from all realizations is not
equivalent to the solution of the nonoverdetermined
subsystem with the initial data averaged over the real-
izations.

To avoid the possible oscillating divergence of the
iterative solution, we partially (in the relaxation man-
ner) introduce the correction:  = (1 – γ)  + γ ,

where  is the final spectral estimate on the jth itera-
tion and 0 < γ ≤ 1 (in the numerical examples described
below, γ = 1/8). Next, we solve subsystem (6) for the
estimate Tj(k', k0) based on the particular weighted val-
ues , after which the calculations are repeated. As is
known, since Eqs. (6) contain a convolution, to solve
these equations, a domain should be introduced around
the support of the function (r) (  is the spectrum of
this function), where the latter is defined to be zero.

The convergence of the iterative procedure was esti-
mated in terms of the current residual ||Tj – Texp|| =

∆ϕ . The iterations

were terminated when ||Tj – Texp|| became comparable
with the norm ||n|| of the error due to the noise. Note
that, in principle, this reconstruction technique remains
operable at any frequency. However, because the scat-
tering power of an acoustic scatterer grows with fre-
quency, the iterative procedure should be improved at
high frequencies in order to ensure its convergence
(which we will discuss below). In the problems related
to medical diagnosis of soft tissues, which is the pri-
mary concern of this algorithm, frequencies of a few
megahertz are used.

ε̃

ε̃

ε̃ j

ε̃ j 1–( )

ε̃Born

ε̃ j' ε̃ j 1–( ) ε̃ j

ε̃ j'

ε̃ j'

ε̂ ε̃ j'

T j k k0,( ) Texp k k0,( )– 2

k k0,∑
Below, we present the results of our numerical sim-
ulations for two refractive–absorptive scatterers ε(r) =
εc(r) + iεα(r) of a middle-power intensity. The functions
Reε(r) = εc(r) and Imε(r) = εα(r) are modeled by Gaus-
sian inhomogeneities, each of them characterized by
the half-width a/λ0 ≈ 0.82, as in the case of a weak scat-
terer. The first scatterer has a simple structure (Fig. 1a):
its real and imaginary parts are modeled by a single
inhomogeneity. The amplitude of the function Reε(r)
corresponds to the velocity contrast ∆c/c0 = 0.2, and the
additional phase shift through the central section is ∆ψ
≅  0.55π. The amplitude of the function –Imε(r) corre-
sponds to a maximal amplitude absorption coefficient
of ≈0.96 Np/λ0 (see Eq. (1)), and the total absorption
along the central section is ≈1.44 Np, i.e., the amplitude
attenuation is 4.2 times. The second scatterer has a
more complex structure (Fig. 2a). The function Reε(r)
is modeled by four inhomogeneities located asymmet-
rically with respect to the origin; the function Imε(r) is
modeled by one inhomogeneity. Two inhomogeneities
of Reε(r) have equal amplitudes. According to Eq. (1),
they correspond to velocity contrasts that are close in
magnitude and opposite in sign: ∆c/c0 = 0.1 and –0.077.
The additional phase shift for these inhomogeneities
are ∆ψ ≅  0.27π and ∆ψ ≅  –0.24π, respectively. The two
remaining inhomogeneities have lower equal ampli-
tudes and opposite contrasts: ∆c/c0 ≈ ±0.05 (∆ψ ≅
±0.13π). The amplitude of the function –Imε(r) corre-
sponds to a ≈0.4-Np/λ0 attenuation, while the total
attenuation along the central section is ≈0.58 Np, i.e.,
the amplitude attenuation is 1.78 times. Although the
maximal contrast of the complex scatterer is lower than

that of the first scatterer, the norms  of the scat-
tering data are approximately equal for both scatterers.

The fact that the shapes and widths of the refractive
and dissipative inhomogeneities were the same
allowed us to reconstruct the function ε(r) as a whole,
without using the scheme that estimates the c and α
components separately. The number of transmission
and reception directions was M = 32 for the simple
scatterer and 64 for the complex scatterer. The matrix
ε–1(c, h) was formed at L = l = 2a for the simple scat-
terer and at l = 2a and L = 2l = 4a for the complex scat-

terer; θ = 10–6  in both cases.

The results of the reconstruction of these scatterers
demonstrate that it is necessary to allow for the multiple
scattering. They also reveal the fundamental role of the
nonlinear filtering as regularization. The Born approxi-
mation is insufficient for a high-quality reconstruction.
Even in the absence of noise, the Born estimate (r)
obtained from Eq. (12) significantly differs from the true
scatterer function: the relative reconstruction error is νε ≈
64% for the simple scatterer (Fig. 1a) and 42% for the
complex scatterer (Fig. 2d).

Texp
0

ε h c,( )
h c,( )

max

ε̂Born
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Fig. 2. Middle-power refractive–absorptive scatterer of a
more complex structure (the minimal-velocity contrast is
∆c/c0 = –0.077 with the additional phase shift ∆ψ ≅  –0.24π,
the maximal-velocity contrast is ∆c/c0 = 0.1 with the phase
shift ∆ψ ≅  0.27π, and the amplitude absorption in the scat-
terer is 1.78 times): (a) the real and imaginary parts for the
true scatterer; (b, c) the scatterer reconstructed from noisy
data at σn = 0.15Tmax by (b) the weak regularization filtering
and (c) the matched filtering; and (d) the central sections of
the imaginary parts of the true scatterer (dashed line) and the
scatterer reconstructed in the Born approximation from
noise-free data (solid line).
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003



298 BUROV et al.
To study the effect of the regularization filtering on
the quality of the scatterer estimate in the presence of
an intense noise, we used the reconstruction procedure
with allowance for the multiple scattering, i.e., with the
full system of Eqs. (9) and (6). As in the case of the
weak scatterer, two scattering data realizations corre-
sponded to independent errors with the deviation σn =
0.15Tmax. Then, for the simple scatterer,  ≈ 56%; an
intense noise is illustrated by one data realization in
Fig. 1b. For the complex scatterer,  ≈ 108% because
of the higher error norm.

Our reconstruction procedure successively used the
correlation matrix N calculated at two different noise
intensities. The regularization filtering matched with
the noise intensity assumed that the true error level
was such that W0 = (σn)2 = (0.15Tmax)2. The weak reg-
ularization filtering assumed a 1502 weaker level: W0 =
(10–3Tmax)2. The reconstruction by the weak filtering,
which is necessary to provide the convergence of the
iterative procedure on the whole, gives a very low
reconstruction quality. For instance, for the simple scat-
terer, νε ≈ 66% (Fig. 1c). This error is somewhat higher
than that for the weak scatterer mentioned above (Sec-
tion 2.1) and reconstructed without filtering at the
same input ratio . For the complex scatterer, νε ≈
55% (Fig. 2b). Thus, the reconstruction error νε after
the weak filtering is of the order of the relative input
data error.

The matched regularization filtering provides a suf-
ficiently high reconstruction quality. Even with the
above intense noise, νε ≈ 15% for the simple scatterer
(Fig. 1d) and νε ≈ 17% for the complex scatterer
(Fig. 2c). These values of νε show that, when multiple
scattering must be taken into account, additional errors
arise (as compared to the result of reconstructing the
weak scatterer).

It is important to note that the mechanism of the
spectral regularization filtering is always the same irre-
spective of the iteration number j, because the matrix
A(c, h) in Eqs. (9) and (11) remains the same for all
iteration steps. This matrix is the one that contains the
information about the correlation properties of noise
and scatterer. Therefore, at each iteration step, the reg-
ularization filtering amounts to the Wiener-type filter-
ing, similar to the filtering in the case of weak scatter-
ers. The solution (h) obtained from Eqs. (9) is similar
to Born estimate (12) with the right-hand side corrected
for the multiple scattering (based on the results of the
previous cycle of iterations). We thus obtained a nonlin-
ear generalization of the Wiener filtering for recon-
structing sufficiently strong scatterers, which provides
a regularized solution that is close to the optimal one.
Note that a simple filtering procedure that cuts off the
spatial spectrum of the scatterer at each iteration step,
which also improves the convergence, was proposed in
[10].

In'

In'

In'

ε̃ j
Our simulations revealed the following unexpected
effect. It was found that it is sufficient to apply the
matched regularization procedure only at the final cycle
of the iterative procedure. Indeed, after a preliminary
solution with the weak regularization filtering is
obtained, one more iteration cycle can be performed
with the use of the matched filtering (Figs. 1c, 2b). The
reconstruction quality of such a one-step matched fil-
tering is actually the same as that of the multistep
matched filtering. This fact is of interest for applica-
tions. It allows one first to reconstruct the scatterer
using the filtering procedure that assumes a certain
noise intensity much lower than the true one. After that,
the result is processed once by a different, stronger, fil-
ter. By varying the parameters of this additional filter, a
variant that is optimal for the particular scatterer and
measurement errors can be chosen. However, we failed
to theoretically justify this simplified approach. Per-
haps, it is only efficient for not too strong scatterers of
a rather simple shape.

3. CONCLUSIONS

Thus, an algorithm for the statistical estimation of
the scatterer characteristics is proposed and studied. Its
performance is corroborated by numerical simulations,
although the algorithm is rather complicated in terms of
computations. To extend the convergence region of the
iterative process for application purposes, it is expedi-
ent to simultaneously estimate [11] all the unknown
quantities with the filtering applied to each of them.
The storage and performance capacities required for
this procedure must be much greater than those of a
personal computer. In addition, to provide a unique
solution in the case of strong scatterers, one should use
redundant data; otherwise, the iterative procedure may
converge to a false solution [12].
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Abstract—The prerequisites to formation and the characteristics of a jet that occurs at the open end of a
waveguide guiding an intense sound wave are studied. The velocity field is measured by a hot-wire anemometer.
The previously developed method of separating the jet velocity Vjet from the amplitude of the oscillating particle
velocity Vosc, which is applicable only when Vjet > Vosc, is supplemented with the method of oscillogram pro-
cessing applicable for Vjet ≤ Vosc. Thus, a full picture of the jet evolution in space, starting from the waveguide
outlet, is obtained. The experimentally determined spatial distribution of the jet velocity is found to agree well
with the numerically simulated dependences reported by other authors. For the oscillating velocity amplitude
at the open end of the waveguide, a threshold value, beyond which the formation of the acoustic jet takes place,
is revealed. The frequency dependence of this threshold value is determined. The dependence of the maximal
jet velocity on the oscillating velocity amplitude in the outlet waveguide cross section is found to be close to
linear. © 2003 MAIK “Nauka/Interperiodica”.
In the last few years, acoustic jets have attracted the
attention of researchers in connection with the good
prospects of their use in aerodynamic systems.

Since the mid-1990s, a series of publications con-
cerned with the design and application of acoustic jet
generators have appeared in the AIAA journal and
AIAA papers [1–3]. These miniature millimeter-sized
devices are made in the form of a Helmholtz resonator
whose rear wall performs harmonic oscillations while
the front wall has a relatively small opening. The oscil-
lations of the rear wall can be excited electrically,
piezoelectrically, or mechanically. When the rear wall
moves inside the cavity, an air flow comes out of the
cavity through the opening, and its separation from the
sharp edges of the opening gives rise to vortices. When
the initial velocity is sufficiently high, the separated
vortices form an acoustic jet. The motion of the rear
wall in the opposite direction gives rise to a flow from
the surrounding medium into the cavity of the jet gen-
erator. Within each oscillation cycle, the average mass
flow through the opening is zero while the momentum
of the vortices is nonzero. Since the dimensions of the
generators are small, the usual oscillation frequencies
are within 1–1.5 kHz. The attractive feature of these
devices is their low energy consumption, as well as the
fact that the jet is formed from the surrounding medium
without any special air supply. The potentialities of the
generators, whose acoustic jets may reach velocities
above 20 m/s, are rather promising. In particular, they
can be used for the fuel agitation in engines to intensify
the combustion, cooling solid surfaces, and changing
the direction and the degree of turbulization in station-
ary flows to reduce the flow noise.

The first experimental studies of the characteristics
of acoustic jets were described in Acoustical Physics
1063-7710/03/4903- $24.00 © 0300
years ago [4, 5]. In one experiment [4], the jet was pro-
duced by a low-frequency source of a vibration-reso-
nance type. The device was designed and studied in
connection with the practical task of powder spraying.
In the other experiment [5], the jet was formed as a
result of the propagation of intense sound through a
hole in a screen placed in the waveguide cross section.
This study was performed in connection with the obser-
vation of the nonlinear absorption of intense sound by
resonant systems [6].

Soon after the generators of acoustic jets found wide
application in engineering, an AIAA paper [7] appeared
reporting on the first experimental study of the effect of
an acoustic jet on a steady flow produced by a fan. This
experiment included the measurements of the jet veloc-
ity at the generator axis and the measurements of the jet
profiles at different distances from the generator outlet.
All measurements were performed well away from the
outlet (starting from ten calibers).

Almost simultaneously, another AIAA paper
reported on the numerical simulation of an acoustic jet
[8]. It considered the jet characteristics only outside the
generator, while the velocity profile in the outlet cross
section was preset analytically. Later on [9], a direct
numerical simulation was used to solve nonstationary
Navier–Stokes equations with allowance for the com-
pressibility of the medium, which made it possible to
determine the resulting field both inside and outside the
generator cavity. The authors of the latter paper stressed
that the problem they considered was not only of prac-
tical significance but also instructive for understanding
the fundamental processes in the physics of gases and
liquids.
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Oscillograms of the hot-wire anemometer signal (a) in the outlet cross section of the waveguide and (b) at a distance of 4 mm
from it; the frequency is 255 Hz.
Experimental values of the jet velocity and the
velocity fluctuation along the generator axis were pre-
sented in [10]. These values agree well with the calcu-
lated ones for distances greater than five calibers and
noticeably deviate from the calculations for smaller dis-
tances from the outlet. An explanation of this discrep-
ancy will be proposed below.

In our previous publications [11, 12], we studied the
spatial evolution of the acoustic jet formed at the open
end of a waveguide when an intense sound wave prop-
agates through it. In the present study, we determine the
dependence of the maximal velocity of the jet on the
amplitude of the oscillating particle velocity in the out-
let cross section; we also reveal the threshold value of
the latter velocity beyond which the jet begins to form
and determine the frequency dependence of this thresh-
old value. As far as we know, these issues were not con-
sidered in the literature.

The experimental setup was similar to that described
earlier [6]. The waveguide was a circular tube whose
inner diameter was d0 = 2.35 cm, and length, 74 cm.
One end of the tube was connected through a tapered
concentrator to a loudspeaker, while the other end was
open. The velocity field inside and outside the
waveguide was measured by a wire probe of a constant-
temperature hot-wire anemometer (DISA, Denmark),
and the pressure field of the sound wave was measured
by a half-inch capacitor microphone (Bruel & Kjaer,
Denmark). The measurements were performed at the
resonance frequencies of the system, which were deter-
mined by the maximal oscillating velocity amplitude in
the outlet cross section of the waveguide. For the struc-
ture used in our experiment, the resonance frequencies
were 175, 255, and 358 Hz.

To process the anemometric data and separate the
acoustic jet velocity Vjet from the oscillating velocity
amplitude Vosc caused by both acoustic oscillations and
random fluctuations, we used the technique described
in [13]. The jet velocity was estimated from the rms
value of the signal produced by the hot-wire anemom-
eter, and the oscillating component of the velocity was
determined from the standard variance of this signal. It
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
should be noted that this technique is applicable only
when Vjet > Vosc. For the opposite case Vjet ≤ Vosc, we
used the direct processing of oscillograms. The latter
method is described below.

As was mentioned in [12], at a sound level of 160 dB,
which corresponds to an oscillating velocity amplitude
of 10 m/s, only a harmonic wave is observed in the
waveguide, as well as in its outlet cross section. The
oscillogram of this wave is shown in Fig. 1a. Neither
the microphone nor the probe of the hot-wire anemom-
eter detect any distortions of the sinusoidal profile. The
transformation of the sound energy into the hydrody-
namic one begins immediately outside the outlet of the
waveguide, the velocities satisfying the inequality Vjet <
Vosc. The appearance of a concurrent flow leads to an
increase in the oscillation energy within one half-period
and to its decrease within the other half-period by the
value of the flow velocity (Fig. 1b). In this case, the jet
velocity is determined as half of the difference between
the average values of the maximal and minimal ampli-
tudes of the measured signal while the oscillating
velocity amplitude is determined as the half-sum of
these values. The quantitative estimates of Vjet and Vosc
are obtained with allowance for the probe calibration
curve recorded in the sound field at a given frequency
(since the sensitivity of the probe is frequency depen-
dent). The use of the standard technique at small dis-
tances from the outlet leads to erroneous results and to
a discrepancy between the experimental and computa-
tional data, which presumably was the case in [10].

Figure 2 presents the spatial distributions of the jet
velocity Vjet, which is normalized to the oscillating
velocity amplitude in the outlet waveguide cross sec-
tion V0, along the waveguide axis (the x axis) at the
three chosen resonance frequencies at a sound level of
160 dB. The distances are expressed in calibers, i.e.,
normalized to the diameter d0 of the waveguide open-
ing. One can see that the decrease in the jet velocity
with distance is faster at the higher frequency (358 Hz).
The behavior of the experimental dependence agrees
well with that obtained in [10] from the numerical sim-
ulation of the jet formation process.
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The evolution of the acoustic jet in space can be rep-
resented by three regions. In the first region, which in
our experimental conditions covers the distances from
one to two calibers, the jet formation occurs due to the
sound wave energy decrease. The velocity of the result-
ing jet reaches its maximal value, which is comparable
with the oscillating velocity amplitude in the outlet
waveguide cross section. This fact makes the phenom-
enon under study essentially different from the Ray-
leigh, Eckart, and Schlichting flows whose velocities
are an order of magnitude smaller than the oscillating
velocity of the sound wave. Figure 3 shows the trans-
verse profile of the jet at the distance corresponding to
its maximal velocity. One can see that the jet width is
greater for the lower frequency. The second region cov-
ers the distances between two and four calibers and cor-
responds to the stabilization of the jet. The velocity of
the jet varies only slightly in this region, while the Rey-
nolds number reaches a value of 16000. As a result, an
active turbulization of the jet begins because of its inter-
action with the surrounding medium, and this effect is
clearly reflected in the power spectrum. The third
region is characterized by a decrease in the jet velocity
and a broadening of the jet profile. Figure 4 presents the
profiles of the jet velocity for the frequency of 358 Hz
at distances of 1.3, 2.1, and 6.0 calibers. From this fig-
ure, it follows that, at a distance of six calibers, the
velocity of the jet decreases by a factor of two while the
width of its profile increases by a factor of two.

The error in the determination of the jet velocity is
mainly caused by the inaccuracy of the probe calibra-
tion and the error in positioning the probe when it is
moved along the axis. In our experiments, the total
error did not exceed 10%.

The probe of the hot-wire anemometer already stops
detecting the sound wave in the second region because
of its insufficient sensitivity. Therefore, the sound field
outside the waveguide was measured by a half-inch

0.2

0 2

Vjet/V0

x/d0

4 6 8 10

0.4

0.6

0.8

1.0

175 Hz
255 Hz
358 Hz

Fig. 2. Distribution of the dimensionless velocity along the
waveguide axis.
condenser microphone. The results of the sound pres-
sure measurements along the waveguide axis and along
straight lines inclined at an angle θ to it are shown in
Fig. 5. The sound field formed in our experiment is sim-
ilar to the field produced by a spherically divergent
sound wave generated by a point source.

By varying the sound level in the waveguide over a
wide dynamical range from 138 to 166 dB (which cor-
responds to the variation of V0 from 0.8 to 15 m/s), we
revealed a threshold value of the oscillating velocity
amplitude at the open end of the waveguide: when the
threshold was exceeded, the acoustic jet emerged. In
this respect, the jet under study resembles the Schlich-
ting flow, which is also characterized by a sound inten-
sity threshold; the latter is related to the loss increase
due to the convective term in the Navier–Stokes equa-
tions.

Figure 6 presents the experimental dependence of
the maximal jet velocity Vjet on the oscillating velocity
amplitude in the outlet waveguide cross section V0.
One can see that, when the oscillating velocity ampli-
tude is smaller than some critical value Vt, the jet is
absent.

To determine the threshold value Vt with higher
accuracy, we represented the aforementioned experi-
mental dependences using logarithmic coordinates.
The resulting plots have the experimental points con-
centrated along two intersecting straight lines. A
change in the slope angle of such a line corresponds to
a change in the mechanism of the sound energy loss.
Equations describing these straight lines are deter-
mined by the least squares method, and the critical
value is determined as the point of their intersection. An
example of such a processing for a frequency of 175 Hz
is shown in Fig. 7. From this figure, it follows that, at
the given frequency, we have Vt = 2.4 m/s.

0.2

0

Vjet/V0

r/d0

0.5 1.0 1.5

0.4

0.6

0.8

1.0

175 Hz
255 Hz
358 Hz

Fig. 3. Dimensionless profile of the maximal jet velocity at
a distance of 1.3 calibers.
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The dependence of Vjet on V0 can be expressed as

Vjet ∝  , where the exponent ε can be determined
from Fig. 7. This exponent ε is nothing but the slope of
the straight line in the region V0 > Vt, and the slope is
calculated by the least squares method. For the fre-
quency of 175 Hz, we obtain ε = 0.8.

The experimental data for the two other frequencies
were processed in the same way.

An important parameter that determines the condi-
tion of the jet formation is known to be the ratio of the
displacement amplitude to the characteristic geometric
dimension of the system. The table summarizes the crit-
ical values obtained for the oscillating velocity ampli-
tude Vt, the corresponding displacement amplitudes ξt

V0
ε

0.2

0 0.5

Vjet/V0

r/d0

1.0 1.5

0.4

0.6

0.8

1.0

x/d0 = 1.3

x/d0 = 2.1

x/d0 = 6.0

5

5

Vjet, m/s

V0, m/s
10 15

10

15
175 Hz
255 Hz
358 Hz

0

Fig. 4. Dimensionless profile of the jet velocity at different
distances from the open end of the waveguide; the fre-
quency is 358 Hz.

Fig. 6. Dependence of the maximal jet velocity on the oscil-
lating velocity amplitude in the outlet cross section of the
waveguide.
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normalized to the waveguide diameter d0, and the expo-
nent ε characterizing the dependence of Vjet on V0 for all
three frequencies.

The threshold value of the oscillating velocity
amplitude Vt increases approximately twofold within
one octave. At the same time, the normalized displace-
ment ξt/d0 for the waveguide in use remains approxi-
mately the same and is on average equal to 0.09. It
should be noted that the value reported in [14] for the
corresponding parameter is an order of magnitude
greater. This can be explained by the fact that the
authors of the cited paper determined this parameter
from only the field visualization pattern. As a result,
they have found the criterion not for the jet formation
threshold but for the conditions of the jet with a fully
developed turbulence.
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p, dB
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4 6 8 10

120

130

140

θ = 0
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0

Fig. 5. Distribution of the sound pressure level outside the
waveguide along the waveguide axis and at an angle θ to it;
the frequency is 358 Hz.
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Fig. 7. The same dependence as in Fig. 6, but represented in
logarithmic coordinates; the frequency is 175 Hz.
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The average value of the exponent is ε = 0.9; i.e., the
dependence under consideration is close to a linear one,
and the slight deviation is presumably caused by the
spherical spread of the sound wave outside the
waveguide.

Thus, by supplementing the standard method of
experimental data processing, which is valid only for
Vjet > Vosc, by the method of oscillogram processing
valid for Vjet ≤ Vosc, we obtained a full picture of the jet
evolution in space, starting from the waveguide outlet.
The spatial distribution of the jet velocity obtained from
our experiment agrees well with the numerically simu-
lated dependences obtained by other authors [10]. The
dependence of the jet velocity on the oscillating veloc-
ity amplitude in the outlet cross section of the
waveguide is found to be close to a linear one. From
the experimental data, we determined the critical
value of the oscillating velocity amplitude in the outlet
waveguide cross section, so that the jet formation
occurs when this value is exceeded. We also determined
the dependence of this critical velocity on frequency.

Parameters of the acoustic jet

f, Hz Vt, m/s ξt/d0 ε

175 2.4 0.093 0.8

255 3.1 0.082 0.7

358 4.9 0.093 1.1
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Abstract—The evolution wave equation that describes the nonlinear propagation of bounded acoustic beams
in two-phase marine sediments is derived. The equation is numerically studied in application to marine sedi-
ments with different physical parameters. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The propagation of high-intensity acoustic waves in
marine sediments finds increasing application in study-
ing the properties of the ocean floor (see, e.g., [1–3]).
The propagation of nonlinear one-dimensional sound
waves in marine sediments was studied in [4]. The one-
dimensional approach is valid for beams that can be
treated as unbounded in the transverse direction. Actual
beams have finite cross sections, and, if the transverse
size of a beam is comparable with the wavelength, dif-
fraction phenomena may be observed. In this paper,
along with nonlinear phenomena, we consider the dif-
fraction divergence of a bounded sound beam in the
course of its propagation in two-phase marine sedi-
ments. We derive an approximate nonlinear wave equa-
tion that describes the evolution of a high-intensity
three-dimensional beam in which an increase in the
front steepness leading to the shock wave formation is
accompanied by the diffraction of the beam. Since the
complex combination of nonlinear and diffraction pro-
cesses does not allow one to solve the problem in an
explicit form, we perform a numerical analysis of the
phenomena at hand.

1. DERIVATION OF APPROXIMATE NONLINEAR 
WAVE EQUATIONS FOR ACOUSTIC BEAMS

IN MARINE SEDIMENTS

To derive the approximate evolution wave equation,
we start from the continuity equations for the densities
and momenta of the liquid and solid phases of the sed-
iments consisting of a rigid frame and pores filled with
water [4]:

∂
∂t
-----mρ f

∂
∂xi

-------mρ f v i+ 0,=

∂
∂t
----- 1 m–( )ρs

∂
∂xi

------- 1 m–( )ρsui+ 0,=
1063-7710/03/4903- $24.00 © 20305
(1)

Here, ρf and ρs are the densities of the liquid and solid
phases, v and u are the respective velocities, m is the
porosity of the sediment frame, P is the pressure in the
liquid, and σij are the stresses acting on the volume ele-
ment of the frame. Below, we will show that, in the case
at hand, the sound absorption is sufficiently small in the
sense that the attenuation length is greater than the dis-
tances at which the diffraction or discontinuities can be
developed. Therefore, in deriving the evolution equa-
tion, we ignore the absorption to simplify the calcula-
tions, the main objective of which is far from consider-
ing the theoretical aspects of absorption. In the linear
approximation, the variable part of the pressure P is
given by the expression [5, 6]

(2)

where

Here, kf , ks, and k are the bulk moduli of the fluid, the
mineral grains constituting the frame, and the frame
itself, respectively; U is the displacement of the frame;
V is the displacement of the fluid; and ξ is the volume
of the fluid flowing into the volume element of the
medium and out of it. By using the variables δρf and δρs

∂
∂t
-----mρ f v i

∂
∂x j

-------mρ f v iv j+
∂
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∂
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=  
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-------σij
∂
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instead of ξ and U, where δρf = –ρ0f divV and δρs =
–ρ0s divU, Eq. (2) can be represented in the form

(3)

where ν = 1 – m – k/ks. In what follows, we will omit
the subscript “0” for the equilibrium values. According
to [4], the linear part of the stress tensor σij is

(4)

where µ is the shear modulus of the frame and Uij is the
strain tensor.

In the general case of finite-amplitude waves, one
should take into account the nonlinear parts of the pres-

sure Pn and the stress tensor , which are the next
terms in expansions (3) and (4). Their explicit forms
will be given below for several limiting cases.

A well-known fact is that the nonlinearity of the
medium and the finite beam width lead to distortions of
the wave front, both along the propagation direction
(the x axis) and across it (the y and z axes). We assume
that the perturbations of the medium are small, so that
a small parameter can be introduced:

where c is the speed of sound in the sediment. With this
parameter, we can considerably simplify Eq. (1). Tak-
ing into account that the beam boundaries are rather
sharp in the transverse directions and, hence, the
parameters vary more rapidly in these directions than
along the propagation path, we introduce new variables
[7, 8]

(5)

and set v y, z/c ~ uy, z/c ~ . Substituting variables (5)
and the moving coordinate τ = t – x/c into Eq. (1), we
retain the quantities up to the order of e2 and eliminate
the velocities v  and u. As a result, we obtain the equa-
tions for δρf and δρs (for simplicity, in the equations
presented below, we write ρf and ρs instead of δρf and
δρs in the derivatives of δρf and δρs):

(6)
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ρ0 f

-------δρf
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----------–
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ρscG
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ρ f G
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ρsG
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ρ f
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∂2ρ f

2

∂τ2
----------- 1

c2
----∂2Pn

∂τ2
-----------;+ +
(7)

Here, ∆ = ∂2/∂y2 + ∂2/∂z2 and  =  – k/ksPn (the
nonlinear stress tensor is considered for the one-dimen-
sional case, which corresponds to the accepted approx-
imations). From here on, we omit the primes for the x,
y, and z coordinates. In Eqs. (6) and (7), the left- and
right-hand members have the orders of ~e and ~e2,
respectively.

Let us eliminate one of the variables, δρf or δρs,
from the linear part of these equations: let it be, e.g.,
δρs. Note that Eq. (1) (or Eqs. (6) and (7)) allow two
independent longitudinal modes: the so-called fast and
slow waves. However, according to [6], the slow wave
(in contrast to the fast one) is a strongly attenuated dif-
fusion mode and, therefore, it makes no noticeable con-
tribution to the sound field. In this single-mode case,
the elimination of δρs leads to the disappearance of the
linear part of the equation if c is the velocity of the fast
wave. Thus, we arrive at the approximate nonlinear
equation for a bounded beam in marine sediments:

(8)
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In passing from Eqs. (6) and (7) to Eq. (8), the quantity
δρs involved in the nonlinear parts is expressed through
δρf by the formula

(9)

which can be obtained from the linear equations and is
valid to an accuracy of ~e.

Equation (8) was derived without imposing any lim-
itations on the values of the bulk moduli of the liquid
and solid phases. Actually, the ratio kf/ks noticeably var-
ies depending on the type of the sea floor (sand, clay,
silt, and so on). For instance, in the case of a sandy
frame, the bulk modulus ks of the quartz grains is much
greater than that of the water filling the pores. In this
case, G ≈ m/kf (if m is not close to zero), and the equa-
tion takes the form:

(10)

Here, cf is the speed of sound in water.
It is easy to show that, if the sediment porosity is

m  1, Eq. (8) takes the form of the evolution equa-
tion for the beam in a homogeneous liquid with Pn =

:

which is equivalent to the corresponding equation given
in [8]:
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where γ is the adiabatic index in the equation of state

In the case m  0, in view of Eq. (9), Eq. (8) takes
the form of the evolution wave equation in a solid with

 = (δρs)2/ (3/2k + 2µ +  + 3  + ) ≡

(δρs)2/ , where , , and  are the nonlinear
constants in the expansion of the elastic energy of the
solid [9]:

here, cs is the speed of sound in the solid.

2. NUMERICAL STUDY OF THE SOUND BEAM 
PROPAGATION IN MARINE SEDIMENTS

To numerically study the propagation of acoustic
beams in marine sediments in the presence of nonlinear
phenomena and diffraction, we consider Eq. (10) repre-
sented in the form

(11)

with the boundary condition

Here, since ρf = ρ0f + δρf and ρs = ρ0s + δρs, the quan-
tity  = δρf is the density perturbation in the medium;
the factors a1, a2, and a3 depend on the equilibrium den-
sity values ρ0f and ρ0s; A is the density perturbation
amplitude at the boundary; ω is the perturbation fre-
quency; and (r) is the normalized perturbation
amplitude, which is a rapidly decaying function of the
transverse coordinate r. Equation (11) ignores the dissi-
pation of sound. In two-phase media like sandy marine
sediments, the absorption coefficient depends on the
frequency almost linearly [10]. The choice of the fre-
quency dependence of the absorption coefficient is
known to influence the evolution of nonlinear processes
[11]. Therefore, it is advantageous to consider the prob-
lem of wave absorption in two-phase media and the
form of the corresponding operator in Eq. (11). This
problem will be considered in a separate paper. Note
the following fact. In Eq. (10), the last two terms
involve nonlinear parts of the pressure and the stress
tensor. These quantities can be represented as expan-
sions in powers of δρf and δρs, starting from the qua-
dratic terms (the linear terms of these expansions are
given by Eqs. (3) and (4)). Therefore, the nonlinearity
coefficient a3 of Eq. (11) also includes the contribution
of the last two terms appearing in square brackets in
Eq. (10).
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Table 1.  Physical parameters of marine sediments and the calculated factors for cases 1–5

Parameter Units 1 2 3 4 5

[13] [14, 17] [18] [14, 19] [20]

m 0.4 0.38 0.47 0.36 0.47

c cm/s 1.7 × 105 1.7 × 105 1.7 × 105 1.7 × 105 1.7 × 105

k dyn/cm2 1.08 × 109 1.99 × 109 4.36 × 109 1.00 × 109 4.36 × 108

µ dyn/cm2 5.00 × 108 1.19 × 109 2.61 × 108 1.00 × 109 2.61 × 108

ks dyn/cm2 3.60 × 1011 4.00 × 1011 3.60 × 1011 3.60 × 1011 3.60 × 1011

[13, 14] [14] [14] [19] [14]

ω s–1 6.28 × 104 6.28 × 104 6.28 × 104 6.28 × 104 6.28 × 104

α cm–1 4.0 × 10–3 4.0 × 10–3 2.0 × 10–3 3.0 × 10–3 2.0 × 10–3

a1 1.0 1.0 0.9 1.0 0.98

a2 cm/s –0.99 × 105 –0.99 × 105 –0.82 × 105 –1.05 × 105 –0.89 × 105

|a3| cm2 s/g 3.04 × 10–5 2.95 × 10–5 2.65 × 10–5 3.05 × 10–5 2.90 × 10–5

|N| 1.20 1.17 1.27 1.15 1.29

xk cm 65.4 63.4 69.0 62.1 69.7

Ldisc cm 27.0 27.0 27.0 27.0 27.0

Ldiff cm 32.7 31.7 34.5 31.1 34.8

Ldiss cm 2.50 × 102 2.50 × 102 5.00 × 102 3.34 × 102 5.00 × 102
Let us introduce the dimensionless variables

where r0 is the characteristic width of the beam and xk =

(|a1/a2|)ω . In the further consideration, we omit the
prime and “wave” signs to simplify the notations. As a
result, we arrive at the equation in the conventional
Khokhlov–Zabolotskaya form:

(12)

where N = (a3/a2)Aω2  is the dimensionless general-
ized coefficient of nonlinearity.

To perform an approximate analysis of the solution
of Eq. (12), we consider the equations consisting of the
mixed derivative and one of the remaining terms. The
solutions to these equations depend on the parameters
that have the length dimension and determine the scale
of the process evolution. These parameters are the dif-

fraction length Ldiff = 1/2|a1/a2|ω  and the distance of
the discontinuity formation Ldisc = 1/2|a1/a3|(Aω)–1.

To clarify the meaning of the factors in Eq. (11), we
compare these parameters with the corresponding
quantities for homogeneous media [12]. In the latter

case, Ldiff = ω /c and Ldisc = 2ρ0c(γ + 1)–1(Aω)–1.
Therefore, the quantity 2|a2/a1| corresponds to the
speed of sound c, and the ratio 1/2|a1/a3| corresponds to
the quantity 2ρ0c(γ + 1)–1.
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The factor N in Eq. (12) can be expressed through
the quantities Ldiff and Ldisc as |N| = Ldiff/Ldisc. The quan-
tity N characterizes the predominance of one of the pro-
cesses: the shock front formation or the diffraction. If
N > 1, nonlinear effects manifest themselves before
the diffraction divergence of the beam. If N < 1, the
beam diverges before the shock front can be formed.

In the numerical study of Eq. (12), we considered
the boundary conditions of the form

(13)

According to [12], the solution to the problem
defined by Eqs. (12), (13) is a periodic function τ with
a period of 2π. To solve this problem numerically, we
used the method of conservative finite-difference
schemes of gas dynamics [12].

Tables 1 and 2 present the values of the input param-
eters for ten different cases. These cases cover different
properties of marine sediments, which vary over a wide
range, depending on the medium constituting the frame
(coarse sand, fine sand, clay, and so on), the frame
porosity, and other physical characteristics. The upper
row in the tables shows the references from which we
took the values of the physical parameters for sedi-
ments of different types. Along with the parameters, the
tables show the calculated values of the factors a1, a2,
and a3 together with the values of N, xk, Ldiff, Ldisc, and
Ldiss ~ 1/α, where α is the amplitude absorption coeffi-
cient taken from the experiment and Ldiss is the distance
within which the wave is absorbed. In cases 1–7, the sound
speed value in marine sediments, c = 1.7 × 105 cm/s, is

ρ τ r 0, ,( ) e r
2– τ .sin=
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Table 2.  Physical parameters of marine sediments and the calculated factors for cases 6–10

Parameter Units 6 7 8 9 10

[14] [14] [10] [10] [10]

m 0.4 0.36 0.39 0.44 0.47

c cm/s 1.7 × 105 1.7 × 105 1.84 × 105 1.74 × 105 1.7 × 105

k dyn/cm2 5.3 × 1010 5.3 × 1010 6.69 × 1010 5.69 × 1010 5.12 × 1010

µ dyn/cm2 2.61 × 108 2.61 × 108 1.29 × 109 3.21 × 109 5.00 × 109

ks dyn/cm2 3.60 × 1011 7.00 × 1010 3.60 × 1011 3.60 × 1011 3.60 × 1011

ω s–1 6.28 × 104 6.28 × 104 8.8 × 104 8.8 × 104 8.8 × 104

α cm–1 4.0 × 10–3 3.0 × 10–3 8.0 × 10–3 8.0 × 10–3 8.0 × 10–3

a1 0.76 × 10–1 1.7 × 10–1 0.35 × 10–1 –1.7 × 10–1 –2.3 × 10–1

a2 cm/s –0.98 × 104 –1.7 × 104 –1.9 × 104 1.2 × 103 7.6 × 103

|a3| cm2 s/g 2.2 × 10–6 5.0 × 10–6 0.95 × 10–6 4.9 × 10–6 6.9 × 10–6

|N| 0.90 1.20 0.4 3.3 × 101 6.9

xk cm 48.6 64.9 16.8 1272. 267.7

Ldisc cm 27 27 21 20 19

Ldiff cm 24 32 8.4 64 130

Ldiss cm 2.50 × 102 3.34 × 102 12.5 × 10 12.5 × 10 12.5 × 10
taken from [14]. In cases 8–10, the value of the speed c
for different sediment components is taken from [10]. In
all cases, A = 10–2 g/cm3, r0 = 10 cm, cf = 1.5 × 105 cm/s,
ρf = 1.0 g/cm3, and ρs = 2.65 g/cm3 (the latter value is
the density of quartz grains, because the frame is
formed by a sandy medium in the case at hand). The
values of m, k, ks, µ, and the absorption coefficient α are
taken from the papers referred to in the tables. The fac-
tor a3 is a complex combination of the sediment physi-
cal parameters and their density (or pressure) depen-
dences, which are not always known. This factor can be
estimated if the nonlinearity coefficient (usually
denoted as B/A) is known. This coefficient varies from
8 to 12 for water-saturated sand [15, 16], and, hence, by
the order of magnitude, the factor a3 can be estimated

as |a3| ~  ≈ (4–6) . Note that, in water, the

nonlinearity coefficient (B/A) is about 5 to 6; i.e., the
nonlinearity of marine sediments is stronger than that
of water. According to [15], although the water filling
the pores makes the major contribution to the sediment
nonlinearity coefficient, the contributions of the bulk
and shear moduli of the frame to the sediment nonlin-
earity prove to be quite significant. Since the sign of a3
is not determined, the tables present the absolute values
of N. As for the factor a2, which governs the diffraction
and affects the value of N, it can change its sign depend-
ing on the relation between the sediment porosity and
the elastic characteristics of the frame. Therefore, in the
general case, N can also change its sign.

To illustrate the results of calculations, we present
the plots for the normalized density disturbance ρ at the
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beam axis (r = 0) as a function of τ for different normal-
ized distances x.

For the first seven cases, the results are close to each
other. Hence, it is sufficient to analyze one of them
(case 1, for instance). Note that, in all cases, the values
of Ldiss noticeably exceed the values of Ldisc and Ldiff.
This means that, at the distances under consideration,
the absorption is relatively small. In case 1, Ldisc is
somewhat smaller than Ldiff and the nonlinear phenom-
ena progress somewhat faster than the diffraction. Fig-
ure 1 shows the decay of the amplitude and a slight
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Fig. 1. Wave form of the density disturbance at the beam
axis (r = 0) versus τ for the following nonnormalized dis-
tances: x = (a) 13.1, (b) 26.2, (c) 39.2, and (d) 52.3 cm
(case 1).
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Fig. 2. Wave form of the density disturbance at the beam axis (r = 0) versus τ for the indicated nonnormalized distances (cases 9
and 10).
increase in the wave front steepness at the distances x ~
2Ldisc. The amplitude decay is mainly governed by the
diffraction-caused divergence of the beam.

Case 8 is characterized by a somewhat lower value
of Ldisc and a many-times-lower value of Ldiff. This
means that the nonlinear effects weakly manifest them-
selves against the background of the diffraction.

Now, we consider cases 9 and 10. In case 9, the
value of Ldiff is about five times greater than in case 10,
the values of Ldisc being approximately the same. In
both cases, the values of Ldiff are many times higher
than those of Ldisc. Therefore, a discontinuity front of
the shock wave is formed, which appears nearly vertical
in Fig. 2. In view of the relatively small value of Ldiff in
case 10, the nonlinear process progresses along with
the less active diffraction of the beam, which leads to a
greater phase shift of the beam. Such a behavior is char-
acteristic of the nonlinear propagation of acoustic
beams and can be attributed to the interaction of nonlin-
ear and diffraction processes [12, 21]. In the last three
cases, the length of discontinuity is somewhat smaller
than in the previous cases because of the higher fre-
quency of the exciting wave.

The numerical analysis described above reveals the
main features of the high-intensity acoustic beam
propagation in water-saturated marine sediments. The
analysis shows that the nonlinear distortions and, to
some extent, the diffraction divergence of the beam
affect the sound propagation in two-phase media of
this type, as in the case of the evolution of these phe-
nomena in homogeneous liquids, for which a detailed
analysis using a new spectral approach was performed
in [11, 22].
ACKNOWLEDGMENTS

We are grateful to V.A. Khokhlova for useful discus-
sions. 

This work was supported by the Russian Foundation
for Basic Research, project no. 01-02-17039.

REFERENCES

1. R. Carbo and A. C. Molero, J. Acoust. Soc. Am. 108,
1545 (2000).

2. T. K. Stanton, J. Acoust. Soc. Am. 108, 551 (2000).

3. T. N. Gardner, J. Acoust. Soc. Am. 107, 163 (2000).

4. V. G. Bykov and V. N. Nikolaevskiœ, Akust. Zh. 36, 606
(1990) [Sov. Phys. Acoust. 36, 342 (1990)].

5. M. A. Biot, J. Acoust. Soc. Am. 34, 1254 (1962).

6. R. D. Stoll, Ocean Seismo-Acoustics, Low-Frequency
Underwater Acoustics (Plenum, New York, 1986).

7. S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov,
Zh. Éksp. Teor. Fiz. 50, 474 (1966) [Sov. Phys. JETP 23,
316 (1966)].

8. E. A. Zabolotskaya and R. V. Khokhlov, Akust. Zh. 15,
40 (1969) [Sov. Phys. Acoust. 15, 35 (1969)].

9. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 7: Theory of Elasticity, 3rd ed. (Nauka,
Moscow, 1965; Pergamon, New York, 1986).

10. L. Bjørnø, in Lecture at Institute of Acoustics, Spring
Conference’76, Liverpool (1976).

11. S. S. Kashcheeva, O. A. Sapozhnikov, V. A. Khokhlova,
et al., Akust. Zh. 46, 211 (2000) [Acoust. Phys. 46, 170
(2000)].

12. N. S. Bakhvalov, Ya. M. Zhileœkin, and E. A. Zabo-
lotskaya, Nonlinear Theory of Sound Beams (Nauka,
Moscow, 1982; Am. Inst. Phys., New York, 1987).
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003



DIFFRACTING ACOUSTIC BEAMS OF FINITE AMPLITUDE IN MARINE SEDIMENTS 311
13. A. Turgut and T. Yamamoto, J. Acoust. Soc. Am. 87,
2376 (1990).

14. N. P. Chotiros, J. Acoust. Soc. Am. 97, 199 (1995).
15. J. M. Hovem, J. Acoust. Soc. Am. 66, 1463 (1979).
16. F. A. Boyle and N. P. Chotiros, J. Acoust. Soc. Am. 103,

1328 (1998).
17. P. R. Ogushwitz, J. Acoust. Soc. Am. 77, 453 (1985).
18. M. Stern, A. Bedford, and H. R. Millwater, J. Acoust.

Soc. Am. 77, 1781 (1985).
19. J. M. Hovem and G. D. Ingram, J. Acoust. Soc. Am. 66,

1807 (1979).
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
20. R. D. Stoll and T. K. Kan, J. Acoust. Soc. Am. 70, 149
(1981).

21. O. V. Rudenko, S. I. Soluyan, and R. V. Khokhlov, Dokl.
Akad. Nauk SSSR 225, 1053 (1975) [Sov. Phys. Dokl.
20, 836 (1975)].

22. A. E. Ponomarev, V. A. Khokhlova, and O. A. Sapozhni-
kov, in Proceedings of X Session of the Russian Acousti-
cal Society (GEOS, Moscow, 2000), p. 13.

Translated by E. Kopyl



  

Acoustical Physics, Vol. 49, No. 3, 2003, pp. 312–315. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 49, No. 3, 2003, pp. 372–375.
Original Russian Text Copyright © 2003 by Kanev, Mironov.

                                                           
Dipole Resonance Scatterer of Sound
N. G. Kanev* and M. A. Mironov**
* Moscow Institute of Physics and Technology,

Institutskiœ per. 9, Dolgoprudnyœ, Moscow oblast, 141700 Russia
** Andreev Acoustics Institute, Russian Academy of Sciences,

ul. Shvernika 4, Moscow, 117036 Russia
e-mail: mironov@akin.ru
Received December 25, 2001

Abstract—A dipole resonance scatterer of sound in the form of a short (in comparison with the quarter-wave)
tube closed on one side with a stretched membrane is investigated theoretically and experimentally. The coef-
ficient of sound transmission through the cross section of a measuring tube, into which the resonance scatterer
is placed, is calculated and measured. It is shown that the waveguide is totally blocked at the resonance fre-
quency of the resonator. © 2003 MAIK “Nauka/Interperiodica”.
It is well known that monopole resonators, such as a
gas bubble in a liquid or a Helmholtz resonator, are
highly efficient scatterers of sound at the resonance fre-
quency [1]. The monopole scattering is caused by the
volume velocity produced by the scatterer. In this
paper, we consider a resonator of the dipole type. Such
a scatterer creates the scattered field due to the force
that it applies to the surrounding medium. The strongest
scattering effect occurs in waveguides that are narrow
in comparison with the wavelength. In what follows,
we theoretically and experimentally investigate the
scattering of sound by a dipole scatterer in a narrow
waveguide.

Suppose that a harmonic wave of frequency ω prop-
agates in a circular tube with a cross-sectional area S.
The linear size of the waveguide cross section is
assumed to be small in comparison with the sound
wavelength. In some cross section of the waveguide, we
place a dipole resonator in the form of a body fixed to a
spring (Fig. 1). The area of the resonator cross section
is assumed to be small in comparison with the cross-
sectional area of the waveguide. The solution of the
scattering problem in the one-dimensional case consists
in the determination of the reflection and transmission
coefficients and the conditions that minimize the sound
transmission through the waveguide cross section in
which the resonator is positioned.

Let u be the particle velocity of the medium in the
cross section where the resonator is positioned and v  be
the particle velocity of the resonator itself. Then, the
equation of motion of the resonator has the form [1]

(1)

where m and µ are the mass and the added mass of the
body, κ is the elasticity coefficient, and r is the friction

mv̇ –µ v̇ u̇–( ) κ v td∫– rv ,–=
1063-7710/03/4903- $24.00 © 20312
coefficient. For harmonic oscillations of frequency ω,
Eq. (1) yields the following expression for the force
with which the body acts on the medium:

(2)

The reflection V and transmission W coefficients are
calculated with the use of the boundary conditions in
the cross section where the scatterer lies. These condi-
tions are formulated as the equality of particle veloci-
ties and the equality of the pressure drop (i.e., the dif-
ference in pressure on the two sides of the cross sec-
tion) to the force F divided by the area S. The result of
the calculation is represented in the form

(3)

where

(4)

and

(5)

is the resonance frequency of the body oscillation.

The case of the minimal transmission (or maximal
reflection) is of most interest. It is clear that the coeffi-
cient W is minimal at ω = ω0. Introducing the Q-factor

of oscillations Q =  and using Eq. (3) at the reso-
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nance frequency, we obtain the minimal coefficient W
in the form

(6)

In the absence of losses, at the resonance frequency,
the transmission coefficient is equal to zero. As follows
from Eq. (6), one can reduce the transmission coeffi-
cient W by increasing the Q-factor and the added mass.
To increase the added mass µ, one can use the following
design of the resonator (just this design was used in our
experiment).

A tube of length L and cross-sectional area σ (σ !
S) is closed at one end by a stretched membrane, and at
the other end, it is open (Fig. 3a). In such a resonator,
the stretched membrane is the elastic element and the
membrane mass is the mass element. The added mass
is the mass of the medium in the tube. It is equal to µ =
ρΩ = ρσL. With an increase in the tube volume Ω , the
added mass also increases. Thus, the efficiency of the
scatterer depends on the scatterer volume (Fig. 2). The
width of the region, within which the transmission
coefficient W does not exceed a certain level, increases
with increasing volume. For example, at the level W =

0.3 (–10 dB), it measures  ≈ 0.16k0 .

The resonator in the form of a tube with a mem-
brane can be mounted either inside (Fig. 3b) or outside
(Fig. 3c) the waveguide.

Solving the corresponding system of equations that
takes into account the finite distance between the tube
ends, we find that the transmission coefficient is again
given by Eq. (3) with the coefficient K given by Eq. (4),
in which resonance frequency ω0 of the free resonator
is replaced by

(7)

The change (decrease) in the resonance frequency fol-
lows from the fact that the added mass µ is increased by
the mass of the medium oscillating in the waveguide
between the tube ends. Formulas (3), (4), and (7)
remain valid as long as the tube length is shorter than
0.2 of the sound wavelength.

The experiments with the dipole resonance scatterer
were performed using an automated aeroacoustic inter-
ferometer [2, 3]. This instrument is made as a circular
waveguide 10 cm in diameter and 2 m in length. The
sound source is positioned at one end of the waveguide,
and the active absorber (compensator) ensuring the
total absorption of the incident wave is mounted at the
other end. The specimen is placed in the middle of the
waveguide. The reflection and transmission coefficients
are measured with two pairs of microphones installed
on both sides of the specimen, which in our case is the

W ω0( ) 1/ 1
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Fig. 2. Transmission coefficient W(ω) for different resona-
tor volumes: (I) Ω , (II) 2Ω , and (III) 4Ω .

Fig. 3. (a) Actual structure of the dipole resonator: (1) the
tube of length L and cross-sectional area σ (!S), (2) the
membrane stretched over one end of the tube, and (3) the
open end of the tube. (b, c) Ways of mounting the dipole res-
onator (b) inside and (c) outside the waveguide: (1) the
waveguide, (2) the dipole resonator, and (3) the stretched
membrane of the resonator.

A

B

C

S1

2

Fig. 1. Dipole resonator in a narrow waveguide: (1) the
vibrating body of mass m and added mass µ; (2) the spring
with the elasticity coefficient κ; A is the amplitude of the
incident wave, B is the amplitude of the reflected wave, C is
the amplitude of the transmitted wave, and S is the area of
the waveguide cross section.
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dipole resonator. The parameters of the dipole resona-
tor geometry are as follows: the tube length is L = 20 cm
and the tube diameter is 5.8 cm. The resonator natural
frequency measured outside the waveguide is f0 =
255 Hz. Figure 4 shows the measured coefficients W
and V. The frequency of minimal transmission was
found to be fw = 228 Hz, i.e., lower than the frequency
f0, which is in good agreement with Eq. (7). At the scat-
terer resonance frequency, the measured transmission
coefficient was –15 dB. The relative bandwidth, in
which the transmission coefficient is below or equal to
–6 dB, measures 0.074. In Fig. 4, the solid line shows
the theoretical function W(ω). To take into account the
loss in the resonator, we introduced a small imaginary
addition to the natural frequency: f0 = 255(1 – i ×
0.005) Hz, which corresponds to the resonator’s
Q-factor Q = 100.

As the resonator length L decreases, the mass of air
in the tube decreases and, consequently, the resonance
frequency increases. Figure 5 shows the transmission

–15

200

V, dB

Frequency, Hz

0

220

–10

–5

240 260

Fig. 4. Transmission coefficient versus frequency: theory
(solid line) and experiment (crosses).
coefficient measured for resonator tubes of different
length L (the initial resonator was shortened without
changing the membrane tension). For L = 15 cm, this
frequency was fw2 = 254 Hz; for L = 10 cm, it was
fw3 = 295 Hz; for L = 5 cm, it was fw4 = 347 Hz; and,
finally, for L = 2 cm, it was fw5 = 386 Hz. At these fre-
quencies, the minimal values of the transmission coef-
ficient appeared to be almost equal. The relative band-
width decreases with decreasing tube length: for a
length of 0.2 m, it measures 0.074, and for a length of
0.02 m, it is only 0.018. From the dependence of the
frequency fw on the tube length, one can estimate the
membrane mass m. This mass appeared to be about
1.7 × 10–4 kg, which measures a quarter of the added
mass for tube length L = 0.2 m. The membrane tension
is about 2.2 × 103 N/m.

In Fig. 5, the heavy solid curve (the background)
represents the transmission coefficient measured with
no specimen in the measuring tube. In this case, only
the wave generated by the source propagates in the
waveguide, so that W = 1 for all frequencies. Deviations
of the transmission coefficient from 0 dB are presum-
ably caused by the incomplete absorption of the inci-
dent wave by the compensator.

It is of interest to compare the efficiencies of the
dipole and monopole scatterers. As a monopole scat-
terer, we consider a Helmholtz resonator. For a Helm-
holtz resonator inserted in a narrow waveguide, the
coefficient of sound transmission through the cross sec-
tion in which the resonator is positioned has the form

(8)

where ω0 is the resonance frequency, S is the area of the
waveguide cross section, and Ω is the resonator volume.
Equation (8) does not take into account the mechanical
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Fig. 5. Transmission coefficient for different resonator lengths.
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loss. For the dipole resonator, for m ! µ and, again, with-
out taking into account mechanical loss, Eqs. (3) and (4)
yield the following expression for W:

(9)

Expressing the added mass involved in Eq. (9) through
the dipole scatterer volume Ω = µ/ρ, we find that reso-
nance curves (8) and (9) corresponding to the two types
of scatterers under study identically coincide for equal
volumes. This means that, in narrow waveguides, both
monopole and dipole scatterers provide the sound scat-
tering with identical efficiencies. It should be noted
that, in the case of sound scattering in free space, the
resonance scattering cross section of a dipole exceeds
that of a monopole by a factor of three [5].

The main results of this study are the experimental
realization of the dipole resonance scatterer and the
corroboration of the fact that the scatterer occupying
only a small part of the waveguide cross section can
considerably (by 15 dB) decrease the transmitted
sound. This property makes it possible to use dipole
scatterers as new effective means of noise reduction in
different applications. In connection with this, we plan
further investigations aimed at increasing the efficiency
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of the scatterer by active methods [4, 5] and broadening
the bandwidth by using several scatterers with identi-
cal or different resonance frequencies. In the latter
case, the resonance frequencies must be distributed
over the working band of the scattering unit according
to a certain law. Such a structure resembles the fuzzy
structures that have become quite popular in recent
years [6, 7].

REFERENCES
1. M. A. Isakovich, General Acoustics (Nauka, Moscow,

1978).
2. A. Ya. Gorenberg, F. F. Kamenets, I. I. Sizov, and

A. E. Vovk, in Proceedings of X Session of the Russian
Acoustical Society (GEOS, Moscow, 2000), Vol. 2, p. 68.

3. V. V. Tyutekin, Akust. Zh. 47, 843 (2001) [Acoust. Phys.
47, 746 (2001)].

4. G. M. Emms and C. Fox, Appl. Acoust. 62, 735 (2001).
5. P. A. Nelson and S. J. Elliott, Active Control of Sound

(Academic, New York, 1992).
6. G. Maidanik and K. J. Becker, J. Acoust. Soc. Am. 104,

2628 (1998).
7. M. Strasberg, J. Acoust. Soc. Am. 100, 2878 (1996).

Translated by A. Vinogradov



  

Acoustical Physics, Vol. 49, No. 3, 2003, pp. 316–327. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 49, No. 3, 2003, pp. 376–388.
Original Russian Text Copyright © 2003 by Korenbaum, Tagil’tsev, Kulakov.

             
Acoustic Phenomena Observed in Lung Auscultation
V. I. Korenbaum, A. A. Tagil’tsev, and Yu. V. Kulakov

Institute of Physics and Information Technologies, Far-East State University,
ul. Sukhanova 8, Vladivostok, 690600 Russia

e-mail: v_kor@poi.dvo.ru
Received December 7, 1995; in final form, November 22, 2001

Abstract—The results of studying respiratory noise at the chest wall by the method of acoustic intensimetry
reveal the presence of frequency components with different signs of the real and imaginary parts of the cross
spectrum obtained for the responses of the receivers of vibratory displacement and dynamic force. An acoustic
model is proposed to explain this difference on the basis of the hypothesis that the contributions of both air-
borne and structure-borne sound are significant in the transmission of respiratory noise to the chest wall. It is
shown that, when considered as an acoustic channel for the basic respiratory noise, the respiratory system of an
adult subject has two resonances: in the frequency bands within 110–150 and 215–350 Hz. For adults in normal
condition, the air-borne component of the basic respiratory noise predominates in the region 100–300 Hz in the
lower parts of lungs. At forced respiration of healthy adults, the sounds of vesicular respiration are generated
by the turbulent air flow in the 11th- through 13th-generation bronchi, and the transmission of these sounds to
the chest wall in normal condition is mainly through air and is determined by the resonance of the vibratory
system formed by the elasticity of air in the respiratory ducts of lungs and by the surface mass density of the
chest wall. It is demonstrated that the distance from the chest wall to the sources of structure-borne additional
respiratory noise, namely, wheezing with frequencies above 300 Hz, can be estimated numerically from the
ratio between the real and imaginary parts of the cross spectrum on the assumption that the source is of the qua-
drupole type. © 2003 MAIK “Nauka/Interperiodica”.
The auscultation of lungs, i.e., listening to respira-
tory and vocal sounds transmitted to the chest wall, was
proposed by R. Laenec [1] at the beginning of the
19th century. Despite the long history and wide-spread
application of this procedure in medical practice, it
underwent no radical changes and remained a kind of
medical art to this day [2–4]. Numerous attempts to
introduce objective acoustic methods into the ausculta-
tion of lungs have been made since the 1950s without
any substantial results. This situation is likely to be
caused by the lack of understanding of the processes
underlying the formation (generation and radiation)
and propagation (transmission) of sounds in the human
respiratory system, such a lack of understanding being
acknowledged by all leading specialists in the medical
field under discussion [2–9].

STATE OF THE ART

Origin of Respiratory Sounds

The fact that respiratory noise originates from the
air flow through the respiratory system is generally rec-
ognized [5, 9]. Different features of noise correspond to
lung sounds of different types: they include [3] the
basic respiratory noise characterizing the normal condi-
tion of the respiratory system and the additional respi-
ratory noise associated with deviations from the norm.
According to conventional classification, the basic res-
piratory noise is classed into the bronchial and vesicu-
1063-7710/03/4903- $24.00 © 20316
lar noise types. Bronchial noise consists of the sounds
detected over the trachea and the projections of the
largest ducts of the respiratory tract, i.e., the main bron-
chi. Experiments carried out by different authors with
the aim of determining the characteristic frequency
bands of bronchial sounds provided rather contradic-
tory results: 710–1400 Hz [10], 500–1000 Hz [2], 100–
800 Hz [6], 60–700 Hz [11], and 75–900 Hz [12].
Vesicular noise is detected over the lower parts of lungs
in normal condition. Its frequency band lies below that
of bronchial noise, but the experimental estimates
obtained for this band from different experiments are
also contradictory: 80–400 Hz [13], 180–355 Hz [10],
50–600 Hz [6], and 100–130 Hz (at maximum) [2]. The
basic respiratory noise represents broadband pro-
cesses. The additional respiratory noise falls into two
main types: prolonged (more than 250 ms) narrow-
band processes corresponding to wheezing [5] and
short explosive sounds (broadband processes) heard as
crackles [4, 5].

The bronchial sounds are believed to result from the
air flow through the trachea and large bronchi and
caused by the turbulent pressure fluctuations in this air
flow [14].

As for the vesicular sounds, several hypotheses have
been put forward to explain their origin. The noise
detected over a normal lung was called “vesicular res-
piration” by Laenec [1], because he believed that this
noise was caused by the friction between air and the
003 MAIK “Nauka/Interperiodica”
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walls of alveoli (vesicles). This hypotheses was multi-
ply subjected to question. In 1834 [15], the vesicular
noise in normal respiration was explained by the air
passage through the glottis. The resulting sound was
assumed to transform in the course of its propagation
through the respiratory ducts of a lung, after which it
was transmitted to the chest wall. Subsequent physio-
logical and clinical experiments [2, 4, 5] gave contra-
dictory results, some of them being in favor of the first
hypothesis and some, in favor of the second one.
Finally, it was demonstrated [16] that the source of
vesicular noise does not lie in the alveoli: it lies farther
toward the periphery of the bronchial tree, noticeably
farther than the source of bronchial noise. These results
were confirmed by the determination of the “coherence
distances” of the basic respiratory noise on the chest
surface [6]. The characteristic size of coherence zones
of vesicular noise was found to be about 6 cm for fre-
quencies within 50–600 Hz and 12–18 cm for frequen-
cies within 100–150 Hz. According to the authors of the
cited publication [6], these results testify that the vesic-
ular sounds originate from a depth greater than that cor-
responding to the alveolar hypothesis. The classical
interpretation of wheezing sounds attributes them to the
excitation of vibrations of the viscous or liquid contents
in the air duct lumen [3]. However, wheezing is also
observed in the absence of secretion in the bronchi. The
hypothesis put forward by Forgacs [4] explains these
sounds by the self-oscillation processes that occur
when the air flow excites vibrations in compressed parts
of the mucous membrane of the respiratory tract. This
hypothesis was confirmed by visual observations [17].
Subsequent experiments [18] showed that two types of
vibrations are possible: first, with a closure of the respi-
ratory tract (longitudinal vibrations) and, second, with-
out the closure, owing to the vibrations of the mucous
membrane areas near the equilibrium position (flexural
vibrations).

Transmission of Respiratory Sounds

For years, the transmission of respiratory and vocal
sounds to the chest wall through the air ducts of the
bronchial tree was believed to be purely airborne [1–4].
Nemerovskiœ [19] made an attempt to represent this
hypothesis in the form of an acoustic model based on
the propagation of travelling plane waves through nar-
row pipes. Although he obtained encouraging results
for low frequencies of 80–100 Hz, no agreement with
experimental data could be achieved for frequencies
above 200 Hz.

In 1989, an acoustic model of a structure-supported
transmission of vocal sounds to the chest wall was pro-
posed [20]. This model was based on the vibrations of
a quarter-wavelength air column in a single narrow pipe
representing the bronchial tree. These vibrations were
assumed to be partially transformed due to the finite
wall stiffness into pulsating vibrations of the lateral sur-
face of the cylindrical pipe. As a result, cylindrical
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
waves propagated via the lung tissue (structure) to the
chest wall. Currently, this model with various improve-
ments [7, 8] is considered as the basic one. However,
the quantitative estimates [7, 21] obtained from this
model agree well with the measured amplitude–fre-
quency response of the respiratory tract [19, 21] only
for frequencies above ~200 Hz. For lower frequencies,
the model leads to considerable discrepancies.

Recently, experiments were carried out with the aim
of studying the effect of the density of gas inhaled by a
subject on the acoustic transfer function and on the time
of sound transmission from the trachea to different
chest areas when an artificial broadband signal was
supplied to the subject’s mouth cavity [22, 23]. As a
rule, the gas used for breathing in such experiments was
heliox (a mixture of helium (80%) and oxygen (20%)).
In [24], this approach was used to study the basic respi-
ratory noise. The results of the aforementioned studies
testify that, in the frequency range below ~300 Hz, no
considerable changes of acoustic characteristics occur
when the gas inhaled by the subject changes from air to
heliox. The authors of [22] also report on the absence of
changes in the frequency band 300–600 Hz; relying on
this result, they conclude that the propagation of sound
via the lung parenchyma (structure) predominates. On
the other hand, the authors of [23] observed consider-
able changes in the acoustic characteristics within 300–
1200 Hz. This result was interpreted as a consequence
of a change in the path of sound propagation in the
aforementioned frequency band. The authors of [24]
reported on noticeable changes in the noise measured
on the chest wall at frequencies within 300–600 Hz,
while the measurements over the trachea revealed a fre-
quency shift “similar to the shift of the speech formants
in helium.”

The difficulties in obtaining objective records of
acoustic signals propagating in lungs were believed
[19] to be related to the masking of some acoustic
effects by other acoustic effects. However, it was estab-
lished [19] that acoustic vibrations of frequency 80–
100 Hz supplied to the air channel of the bronchial tree
through the mouth propagate predominantly via the air
ducts. Only a small part (not exceeding 5%) is trans-
formed and propagates via the lung structure.

One more remarkable result of the aforementioned
study [19] is the experimental observation and theoret-
ical explanation of the resonance effect in the so-called
acoustic resonant circuit formed by the elasticity of air
enclosed in the respiratory ducts of the lung and by the
mass of the chest wall. The resonance of the acoustic
resonant circuit was expected to lie within 80–100 Hz
[19].

The study described below proceeds from the
hypothesis of the mutual masking of the air-borne and
structure-borne acoustic signals of respiratory noise in
lungs. For the case of vocal sounds, this hypothesis was
confirmed by our previous experiments [25]. The pur-
pose of the present study is to refine the picture of
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acoustic effects in human lungs on the basis of this
hypothesis by using the intensimetry approach to
studying the sounds transmitted to the chest wall [25].

METHOD OF STUDY

The respiratory noise was recorded by a combina-
tion acoustic transducer (CAT) [25] consisting of an
accelerometer with a contact base and a microphone
with a stethoscopic head, which were mounted coaxi-
ally to form a single unit. In our previous publication
[25], it was shown that, in the frequency range above
100 Hz, a CAT positioned on the surface of a human
chest can be considered as constrained. In these condi-
tions, the microphone of the CAT represents a receiver
of vibrational displacement and the accelerometer is a
receiver of dynamic force. Synchronous responses of
the CAT channels at the points of the human chest sur-
face were subjected to cross-spectral processing [25].

More than 100 realizations of respiratory noise
associated with eupnea were recorded by placing the
CAT in different positions on the chest surfaces of three
adult volunteers. The recording process was controlled
by a physician (a pulmonologist) who performed a
simultaneous auscultation and a subjective classifica-
tion of the sounds observed in the experiment. In addi-
tion, the state of the subjects tested was verified by the
data of the clinical anamnesis, which included the
results of X-ray and spirographic examinations.

The signals were recorded by an A-1014 SONY tape
recorder with an additional amplification and filtering
of signals in the frequency band within 100–1000 Hz.
The signals from the tape recorder were supplied to a
processing system based on an IBM PC [26]. The sam-
pling frequency was 12048 Hz. The cross-spectral pro-
cessing was based on the fast Fourier transform proce-
dure. A total of 1024 spectral samples were taken.
Weighting was performed with the Humming window,
and averaging was done within the duration of a sample
containing 8192 time readings with a 75% overlapping
of subsamples. The cross spectra of inhalation, exhala-
tion, and segments with additional respiratory noise
were calculated separately.

The CAD channels were preliminarily calibrated
within 100–1000 Hz by the comparison method [25],
and their amplitude–frequency and phase–frequency
responses were taken into account in calculating the
cross spectra. The forms of the spectra, the frequencies
of the main spectral maxima, and the behavior of the
sign of the imaginary part of the cross spectrum were
characterized by high individual reproducibility [27].

For the theoretical evaluation of the bronchial tree
zones responsible for the generation of the basic respi-
ratory noise, the approximate method of determining
the frequencies of the spectral maxima of respiratory
noise in different parts of the bronchial tree was used
[28]. The method is based on the semiempirical model
of the air flow noise in ventilation systems [29].
ACOUSTIC MODEL

Generation of Basic Respiratory Noise

The application of the approach described in [28] to
the case of eupnea, which is characterized by the max-
imal values of the instantaneous volume flow rate of
about 2–3 l/s, shows that the dominant part in the gen-
eration of the basic respiratory noise is played by the
turbulent flow noise. Indeed, the velocities that are nec-
essary for the development of the separation phenom-
ena are usually not reached in this case, and the noise of
the turbulent boundary layer is too weak to account for
the effects observed in the experiment. If we assume
that the main spectral maxima of the basic respiratory
noise are determined by the flows with the maximal
values of the instantaneous volume flow rate, the
expression [28] evaluating the frequency of the spectral
maximum of a turbulent flow in the bronchi (on the
assumption that we deal with a regular dichotomic
branching of the bronchial tree) can be represented in
the form

(1)

where V is the maximal volume flow rate, j is the order
of the bronchial tree generation, dj is the diameter of the
bronchi of the jth generation, and the condition of the
existence of the turbulent flow noise has the form [29]

(2)

Respiratory Tract

The respiratory system is represented by a branch-
ing narrow air-filled pipe surrounded along its perime-
ter by the lung tissue whose acoustic impedance [7] is
much greater than that of air. In addition, according to
[19], the air volume in the respiratory parts of the lung,
i.e., in the acini represented by a set of branches of ter-
minal bronchioles (the 16th generation of the bronchial
tree branches [3]), and the chest wall together form an
acoustic resonant circuit. This acoustic system should
be characterized by two fundamental resonance fre-
quencies.

The first frequency, i.e., the frequency of the acous-
tic resonant circuit [19], can be approximately repre-
sented in the form [30]

(3)

where K = ρ0 /h is the stiffness, ρ0 is the air density,
c0 is the velocity of sound in air, h is the thickness of the
air layer of the parenchyma (according to morphomet-
ric data [31], its average value is about 5 mm), m = ρwlw
is the surface mass density of the chest wall, ρw is the
chest wall tissue density close to the water density [7],
and lw is the chest wall thickness of about 2–4 cm. With
allowance for these values, the eigenfrequency given by
Eq. (3) is of the order of 110–150 Hz, which is close to

f max 0.2V / 2 jd j
3( ),≈

q V / 2 jd j
3( ) 200.>=

f arc K /m( )0.5/2π,≈

c0
2
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the results reported in [19]. Thus, if the sound wave
propagating through the respiratory tract contains
vibrations with frequencies within this band, an effi-
cient vibration excitation occurs in some chest areas,
and this excitation characterizes the air-borne compo-
nent of sound in the whole mechanism of sound trans-
mission. It should be noted that, since the resonance of
the vibratory system does not depend on the point of the
force application, the adequacy of the frequency values
obtained for the acoustic resonant circuit is confirmed
by the observations described in [2], which showed that
the fundamental frequencies of the percussion tones
over healthy lung areas are within 100–130 Hz.

On the other hand, the whole bronchial tree, as a
system of narrow acoustic pipes open at the mouth end
(from the point of view of the respiration through the
mouth and the utterance of vowels), is characterized by
a set of wave resonances. Since, for the frequencies f >
farc, the impedance of the acoustic resonant circuit is of
a mass character and the condition 2πfm/ρ0c0 @ 1 is
satisfied, we can consider a quarter-wave series [30] in
compliance with [20, 21]. The velocity of sound in the
air ducts of the bronchial tree is practically the same as
in air [19], and the length of a branch of the bronchial
tree from the larynx to the chest wall can vary within
23–38 cm [31]. Then, the first frequency of the afore-
mentioned series, i.e., the frequency of the quarter-
wave resonance, should be of the order of 215–350 Hz.

Thus, at frequencies of 215–350 Hz, a standing
wave is excited, and the maximal sound pressure ampli-
tude of this wave should occur at the closed end of the
pipe. However, since the total cross section of the pipe
increases as the chest wall is approached, the maximal
sound pressure amplitudes occur in the region of the
large bronchi and the trachea segment lying inside the
chest [25]. It is precisely this region where the most
efficient excitation of the structure-borne sound takes
place as a result of the transformation of part of the
standing wave energy into cylindrical pulsations of the
respiratory tract, this conclusion being in good agree-
ment with medical observations [3]. According to [7, 8,
21], cylindrical waves formed in the aforementioned
way propagate via the tissues, including the paren-
chyma and the chest wall, and are detected by acoustic
receivers as the structure-borne sound component of
the total sound transmission. At the same time, the res-
onance of the air column gives rise to the chest wall
vibrations at the closed end of the pipe. These vibra-
tions characterize the air-borne component of voice
transmission, which is clearly observed in the lower
parts of the lungs [25]. In the upper parts of the lungs in
normal condition [25], at the same frequencies, a com-
petition of the air-borne and structure-borne sound
components is observed as the source of structure-
borne sound is approached. However, at the resonance
frequencies of the acoustic resonant circuit, sound
transmitted through these lung zones in normal condi-
tion is purely air-borne [25, 27].
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
We note differences in the conditions of excitation
of the two types of resonance vibrations described
above. The resonance of the acoustic resonant circuit is
excited by any sound whose frequency is close to reso-
nance when this sound is transmitted to the chest wall
via the air ducts. By contrast, the effective excitation of
forced vibrations of the quarter-wavelength pipe [30]
requires the presence of acoustic perturbations near the
open end of the pipe, i.e., in the region of the trachea
and large bronchi.

It should also be noted that, in asthenic persons (at
least one such case was observed by us), the resonance
of the acoustic resonant circuit may be shifted to higher
frequencies, toward the quarter-wave resonance. As a
result, the quarter-wavelength pipe proves to have not a
rigid but a resonant cover, and the quarter-wave reso-
nance is considerably reduced; i.e., the two-resonance
system under consideration may become constrained.

Transmission of Basic Respiratory Noise

As will be shown below, the sources of basic respi-
ratory noise form a fairly complex distributed system.
According to the model of noise generation considered
above, we assume that this system is a set of pulsating
point sources whose pulsations result from the averag-
ing of the turbulent pressure fluctuations at the wall of
the respiratory tract. Consider one of these sources and
assume that it pulsates in a medium characterized by
the average density ρ and sound velocity Ò with the
sound pressure pjs. By analogy with [7, 25], in the first
approximation, we ignore the rereflected waves
because of the strong attenuation. Specifying the wave
number in the tissues ks and the distance r from the
source to the outer chest wall via the tissues, according
to [32], we obtain the following expressions for the
pressure ps and vibrational particle velocity v s of the
structure-supported wave:

(4)

For the particle displacement in a structure-supported
wave at a perfectly soft boundary [25], we have ξs ≈
–i2v s/ω, where ω is the circular frequency. The
response of the CAT microphone (receiver of vibra-
tional displacement) will presumably be described by
the expression ums ≈ gmξs, where gm is the conversion
factor of the microphone together with the stethoscopic
chamber in terms of the vibrational displacement [25].
The CAT accelerometer measures the pressure force
Fp ≈ –2Sps, where S is the area of the contact region
between the sensing element of the accelerometer and
the body. Thus, the accelerometer response can be
described by the expression uas ~ –2gf psS, where gf is
the conversion factor of the accelerometer in terms of
the dynamic force. Note that the same electric response
at the accelerometer output can be represented in the

ps p js iksr–( )exp( )/r,=

v s p js 1 1/iksr+( ) iksr–( )exp( )/ρcr.=
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form analogous to that in [25]: uas ~ gvv s, where gv is
the conversion factor of the accelerometer in terms of the
vibrational particle velocity. Then, assuming that the
wave is locally plane, we obtain gf ~ –gv /(ρcS). Hence,
for the accelerometer response, we have uas ~ –2gv ps/ρc.
Passing to the calculation of the cross spectrum of the
microphone and accelerometer channels [25], we
obtain (the polarity of the accelerometer is inverse, as
in [25])

(5)

From this expression, it follows that, for the structure-
borne component of basic respiratory noise, as well as
for the structure-borne component of vocal sound trans-
mission [25], both real and imaginary parts of the cross
spectrum are of negative sign.

The air-borne sounds [25] reaching the receivers
propagate through a narrow pipe loaded at its end by a
concentrated mass characterizing the parameters of the
chest wall. Since the concentrated mass moves as a
whole, the vibrational particle velocity v a measured at
its outer surface can be calculated through the sound
pressure at the pipe end pt [30]:

(6)

where l is the pipe length and l/c0 characterizes the time
delay between air-borne and structure-borne sound.
The vibrational displacement of the concentrated mass
at the pipe end can be determined as

(7)

Evidently [25], the microphone (receiver of vibrational
displacement) measures the quantity uma ≈ gmξa, and the
accelerometer (receiver of dynamic force) responds to
the inertial force of both the mass of the medium
involved in the vibrations and the dynamic mass of the
receiver ((m1) – Fi = aam1). Thus, the response of the
receiver of dynamic force is proportional to the acceler-
ation aa and can be represented in the form uaa ≈ gvv a
[25]. Passing to the calculation of the cross spectrum of
the channels, we obtain

(8)

As a result, the cross spectrum obtained for air-borne
sound proves to be purely imaginary with a positive
imaginary part.

The comparison of expressions (6) and (8) shows
that the signs of the imaginary part of the cross spec-
trum of respiratory noise are different for different
sound components: the air-borne sound is characterized
by spectral components with the positive sign, and the
structure-borne sound, by components with the nega-
tive sign, which agrees well with the results obtained
earlier [25] for vocal sounds. It should be noted that the
mutual compensation of the aforementioned spectral
components does not occur as a result of the difference
in the frequency responses of the air-borne and struc-

Ws –4gmgv p js
2 i 1+ /ksr( )/ ρ2r2c2ω[ ] .∼

v a i pt iωl/c0( )/ ωm( ),exp–=

ξa pt iωl/c0( )exp / ω2m( ).–=

Wa i gmgv pt/ ω3m2( )[ ] .∼
ture-supported sound transmission channels. In addi-
tion, we note that the signs of expressions (5) and (8)
depend on the polarity of the accelerometer connection.
The essential factor is the difference in the sign (phase)
characteristics of the air-borne and structure-borne
sound components, which reflects the features of their
formation and propagation.

When sound waves are excited in both the air ducts
and the lung tissues, the output signals of the receivers
have the form

(9)

where pjaSj/Sp ≈ pt (to simplify the expression, we
assume that the amplitude–frequency responses of the
air and structure transmission channels are implicitly
determined in terms of the sound pressures produced by
the source in air pja and in the structure pjs, respec-
tively), Sj is the cross-sectional area of the bronchus in
which the sound is generated, Sp is the total cross sec-
tion of the peripheral parts of the bronchial tree, and
k = ω/Ò0. Performing evident transformations, we arrive
at the relations that determine the real and imaginary
parts of the cross spectrum of the receivers W and the
proper spectra of the microphone Fm and the acceler-
ometer Fa:

(10)

where τ = r/c – l/Ò0, A1 = pjaSj /(Spωm), and A2 =
2pjs/(ρcr).

With allowance for the fact that, in the presence of
both air-borne and structure-borne signals, not only the
values of Im(W), Re(W), Fa, and Fm but also the value
of the delay τ are determined experimentally (e.g.,
through the autocorrelation function of the signal of
each of the receivers), the system of equations (10) can
be used not only for the determination of the parameters
of the source of received sounds but also for the source
localization.

ua gv i p jaS j ikal–( )/ Spωm( )exp–{≈
– 2 p js iksr–( )exp[ ] /ρcr } ,

um gm p jaS j i– kal( )exp / Spω
2m( )–{≈

– 2 p js i 1/ksr+( ) iksr–( )exp[ ] /ρcrω} ,

Im W( ) gmgv A2
2 A1

2– A1A2c ωτ( )/ rω( )cos–{ } /ω,–∼

Re W( ) gmgv A2
2c/ rω( ) 2A1A2 ωτ( )cos+{–∼

– A1A2c ωτ( )/ rω( ) } /ω,sin

Fa gv
2 A1

2 A2
2 2A1A2 ωτsin( )sin–+{ } ,∼

Fm gm
2 A1

2 A2
2c2/ rω( )2 A2

2++{∼

+ 2A1A2 c ωτ( )/ rω( ) ωτ( )cos+sin[ ] } /ω2,
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In particular, if only the structure-borne component
is present, we have

(11)

From relations (11), we derive

(12)

Hence, in principle, from the measurements of the real
and imaginary parts of the spectrum of structure-borne
sound, one can determine the distance from the chest
wall to the source of the detected structure-borne sound
via the tissues. This possibility is of special interest for
studying the additional respiratory noise. However, an
essential difficulty is encountered in this case. Above,
we assumed that the source of the basic respiratory
noise is of monopole type, whereas, for the additional
respiratory noise, this hypotheses is questionable.

Generation and Transmission of Additional 
Respiratory Noise

Among possible types of additional respiratory
noise, we consider wheezing with frequencies above
~300 Hz. The source of this sound [4] is the zone of tis-
sue closure in the bronchus lumen (presumably, no far-
ther than 9th- and 10th-generation bronchi [28]). This
zone has a linear configuration and, under longitudinal
vibrations [28], causes a ring extension (the positive
half-wave) of segments of the respiratory tract wall in
the directions perpendicular to the line of the tissue clo-
sure. Since the force in the direction parallel to the line
of the tissue closure is absent, these segments of the res-
piratory tract wall experience a ring compression due to
the elasticity within the aforementioned half-period.
The vibration pattern described above resembles the
quadrupole mode of vibrations of a piezoelectric cylin-
der, i.e., a transverse quadrupole. It should be noted that
a similar hypothesis was formulated earlier [33] in
application to crackles.

Let us consider a two-dimensional model of the
structure-supported transmission of wheezing pro-
duced by a source in the form of a transverse quadru-
pole. The orientation of the source is of no importance,
because, by analogy with expression (12), we deal with
the relative quantity Im(W)/Re(W). The sound pressure
of a transverse quadrupole [32] has the form

(13)

where Qxy is the quadrupole strength and xy/r2 =
cos(x, r)cos(y, r). After some obvious calculation, the
radial part of the particle velocity of a transverse qua-
drupole (the tangential part can be ignored in view of

Im W( ) gmgv A2
2/ω,–∼

Re W( ) gmgv A2
2c/ rω2( ).–∼

r cIm W( )[ ] / 2πf Re W( )[ ] .∼

ps iks
3ρcQxy iksr–( )xy/ 4πr3( )exp–=

× 1 3i/ ksr( ) 3/ ksr( )2––[ ] ,
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the features of the subsequent signal processing [25])
can be represented in the form

(14)

Expressing (as before) the response of the accelerome-
ter (receiver of dynamic force) through the sound pres-
sure given by Eq. (13) and calculating the cross spec-
trum W of the receiver responses by analogy with
expressions (8), (11), and (12), we divide the real part
of the spectrum by its imaginary part to obtain

(15)

We assume that the experimentally measured value of
the ratio of the real and imaginary components of the
cross spectrum at the spectral maximum of the wheez-
ing is Re(W)/Im(W) = C. Introducing the notation
z = 1/ksr, we obtain the equation

(16)

which can be solved numerically for each specific
source of wheezing in the case of the purely structure-
supported sound transmission.

Note that the quantity ksr = 1/z obtained by solving
Eq. (16) involves the average velocity of sound in the
chest tissues c. Since, according to [7], the propagation
of sound in the lung tissue occurs through two media
with widely different sound velocities (the parenchyma
and the chest wall), we can write the expression

(17)

where rp is the distance to the source via the paren-
chyma, cp is the sound velocity in the parenchyma, and
cw is the sound velocity in the chest wall. Taking into
account that ksr = 2πfr/c and performing obvious trans-
formations of Eq. (17), we obtain

(18)

RESULTS AND DISCUSSION
According to expressions (1) and (2) and the known

Weibel morphometry of a statistical average respiratory
system of an adult [19], we calculated the frequencies
characteristic of noise produced in different parts of the
bronchial tree (Table 1) at eupnea (V = 2–3 l/s). Of
course, the idealization of the respiratory tract model
and the use of the statistical average values of V and dj
allows us to consider the resulting values only as esti-
mates, but the qualitative features of noise generation at
eupnea become evident. In particular, at eupnea in nor-
mal condition, practically no noise is produced in the
lung parenchyma (the bronchial tree branches from
16th to 23rd generations), which coincides with the
assumption [4] of the “silence of the lung parenchyma
of a healthy subject.”

v sr ks
3Qxyxy/ 4πr3( ) iksr–( )exp[ ]–=

× i 6/ ksr( ) 15i/ ksr( )2– 15/ ksr( )3–+[ ] .

Re W( )/Im W( ) 3/ ksr( ) 12/ ksr( )3 45/ ksr( )5.+ +=

45z5 12z3 3z C–++ 0,=

c r/ rp/cp lw/cw+( )=

=  rp lw+( )cpcw/ rpcw lwcp+( ),

rp cp/ 2πfz( ) lwcp/cw.–=
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Figures 1–5 present the cross spectra obtained
experimentally for the responses of the CAT channels
(the near-spine and shoulder-blade lines on the left and
on the right) in the case of typical respiratory sounds at
eupnea.

The cross spectrum shown in Fig. 1 characterizes
the inhalation in vesicular respiration. According to the
model accepted above, this signal corresponds to an
almost purely air-borne sound whose spectral maxi-
mum lies within 100–160 Hz, which immediately sug-
gests that the acoustic resonant circuit plays an impor-
tant role in its formation. Judging from the spectral
characteristics of Fig. 1, the noise of the inhalation
phase can be formed in the regions of the 11th through
13th generations of the bronchial tree or its zeroth and
first generations, in compliance with the data shown in
Table 1. However, noise propagating toward the chest
wall from the region of the main bronchi is more
strongly attenuated because of the increase in the total
cross section toward the periphery of the bronchial tree.
Thus, the most probable zone of noise generation accom-
panying a deep inhalation at normal vesicular respiration
[34] should be the region of the 11th- through 13th-gen-
eration bronchi, which qualitatively agrees with the
results reported in [6, 16]. Nevertheless, in the trans-
mission of these sounds to the chest wall (through air,
at least), a fundamental role is played by the respiratory
part of lungs owing to the mechanism of the acoustic
resonant circuit. The latter fact shows that Laenec’s [1]
understanding of the origin of these sounds was close to

Table 1.  Noise generation in the bronchial tree at eupnea
(V = 2–3 l/s)

j q, 1/s fmax, Hz

0 340–515 68–102

1 578–868 116–174

2 874–1312 175–262

3 1423–2135 285–427

4 1371–2057 274–411

5 1457–2186 291–437

6 1423–2135 285–427

7 1248–1926 256–385

8 1214–1821 242–364

9 1069–1604 213–320

10 910–1365 182–273

11 754–1131 150–226

12 569–854 114–170

13 443–664 89–133

14 301–451 60–90

15 212–318 42–64

16 141–211 –

17–23 Below 200 –
reality. We also note that the results obtained by us val-
idate the above model of the structure-supported trans-
mission of basic respiratory noise. According to ana-
tomic data, the distance from the 11th- through 13th-
generation bronchi to the chest wall is within several
centimeters (of the order of the longitudinal sound
wave in the lung parenchyma), and, hence, each of
these bronchi can be represented as a pulsating point
source described by Eqs. (4).

A sharp change in the imaginary part of the spec-
trum during inhalation (Fig. 2), which is associated
with the attenuation of the amplitudes of positive spec-
tral readings, can be interpreted according to the pro-
posed model as a considerable reduction of noise pro-
duced in the 11th- through 13th-generation bronchi
directly connected through air ducts with the CAT zone
or as a local change in the parameters of the acoustic
resonant circuit (a decrease in the air layer of the paren-
chyma) due to pathology. An increase in the amplitude
of the negative spectral components testifies to the
enhancement of the structure-supported transmission
from the neighboring group of bronchi, which can be
related to the presence of carnifications in the lung tis-
sue due to pathological processes. In turn, a sharp noise
decrease in the “own” group of bronchi testifies to a
reduced ventilation of the given parenchyma region.
The latter effect can be caused either by a closure of the
corresponding air ducts of the bronchial tree or by
pathological changes of the parenchyma region venti-
lated by this group of bronchi, which agrees well with
clinical data (pneumosclerosis).

In the case of exhalation (Fig. 3), the noise spectrum
noticeably broadens because of the appearance of com-
ponents with frequencies within 200–300 Hz. Judging
from Table 1, these components may be caused by the
noise in the region of the first and second generations of
the bronchial tree, as well as in the region of the 9th and
10th generations. By analogy with the previous case,
one would take into account the sound attenuation due
to the increase in the total cross section at the periphery
of the bronchial tree and, hence, choose the second
variant. However, the aforementioned frequencies lie in
the region of the quarter-wave resonance of the bron-
chial tree if the latter is considered as an acoustic pipe.
This fact does not allow us to exclude the possibility of
the forced vibration excitation, which is most efficient
in the large bronchi located near the pressure node of
the standing wave [30]. In addition, at the phase of
inhalation (Figs. 1 and 3 refer to signals from the same
chest area of the same patient), although the conditions
for the sound propagation from the 9th- and 10th-gen-
eration bronchi to the chest wall are more favorable
(propagation along the flow [29]), these spectral com-
ponents are not observed. Hence, the noise of frequen-
cies 200–300 Hz should be attributed to the region of
the first- and second-generation bronchi; i.e., it may be
interpreted as the noise of bronchial respiration in med-
ical terms. At the same time, the frequency region
within 100–160 Hz exhibits no considerable changes
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
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Fig. 1. Imaginary and real parts of the cross spectrum obtained for the responses of the CAT channels at inhalation over the lower
zone of the lung in normal condition.

Fig. 2. Imaginary and real parts of the cross spectrum obtained for the responses of the CAT channels at inhalation over the middle
zone of the lung at reduced ventilation.

Fig. 3. Imaginary and real parts of the cross spectrum obtained for the responses of the CAT channels at exhalation over the lower
zone of the lung in normal condition.
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Fig. 4. Imaginary and real parts of the cross spectrum obtained for the responses of the CAT channels at exhalation over the upper
zone of the lung (structure-borne additional respiratory noise): (a) the main part of the exhalation and (b) the wheezing before the
cough impulse at the end of the exhalation.
compared to the phase of inhalation (Fig. 1) and, pre-
sumably, does not differ from it in the mechanism of
noise generation. It should also be noted that, according
to the anatomic data, the bronchi of the first and second
generations, when considered as the sources of the
structure-borne basic respiratory noise, evidently sat-
isfy the model of Eqs. (4).

The exhalation shown in Fig. 3 is characterized by
the predominance of the air-borne sound transmission
and can be considered as normal, while the exhalation
shown in Fig. 4a is characterized by weaker air-borne
sounds in the high-frequency region and by the appear-
ance of a pronounced structure-borne component in the
frequency band 150–400 Hz. This effect can be inter-
preted as an enhancement of the transmission of bron-
chial sounds from the neighboring groups of bronchi
because of the carnifications in the lung tissue, which
agrees well with the X-ray and clinical data.

Now, we consider the pronounced discrete spectral
components observed in Fig. 4 (540, 710, and 345 Hz)
and in Fig. 5 (300 Hz). From the medical point of view,
these acoustic signals are classed as wheezing. Natu-
rally, wheezing may also differ in the way of transmis-
sion: it can be air-borne (Fig. 5) or structure-borne
(Fig. 4).

By numerically solving Eqs. (16) and (18) with the
parameters cp = 30 m/s, cw = 2000 m/s [7], and lw = 2 cm,
we determined the distances (Table 2) to the sources of
wheezing represented in Fig. 4 (a patient with a clini-
cally confirmed exacerbation of chronic bronchitis).
The analysis of the results shown in Table 2 testifies
that the calculated distance values are reasonable from
the anatomic point of view. Note that the calculated
distances (several centimeters) also validate the model
of the structure-supported transmission described by
Eqs. (13) and (14). An observation of very small dis-
tances to the sources of wheezing with different fre-
quencies of spectral maxima (Fig. 4) can be interpreted
as the presence of permeability disorders of the respira-
tory tract in the same chest area. Depending on the con-
striction of respiratory ducts at different exhalation
phases, these disorders cause variation of the frequen-
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
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Fig. 5. Imaginary and real parts of the cross spectrum obtained for the responses of the CAT channels at exhalation over the lower
zone of the lung (air-borne additional respiratory noise).
cies of the mechanical resonator due to a closure of the
respiratory duct walls [28]. The latter effect may be an
indication of a local pathological change caused by an
inflammation process in the respiratory tract, as well as
a deformation of the respiratory tract by adjacent patho-
logically changed areas of lung tissue. By the simulta-
neous or sequential calculation of the distance to the
source of wheezing from several zones of the chest with
the help of the difference distance-measurement meth-
ods, one can estimate the position of the source in the
lung. Taking into account that different sources of
wheezing are statistically independent, it is fundamen-
tally possible to realize the emission acoustic tomogra-
phy of these sources in the lungs by applying the nar-
rowband spectral analysis. Of course, the verification of
the proposed acoustic interpretations and the evaluation
of the precision parameters require comprehensive
clinical studies, but the fundamental diagnostic potenti-
alities of the proposed approach seem to be rather
promising.

Using the acoustic model developed above, let us
consider the changes that may occur in the acoustic pat-
tern of respiratory noise when air is replaced by heliox.
Note that previous studies of the gas dependence of res-
piratory sounds [22–24] were performed with the use of
the conventional procedure of respiratory sound detec-
tion, which did not allow one to judge the type of trans-
mission. However, a certain comparison with the
results of these studies is possible for the frequency
characteristics of respiratory sounds.

The density of the gas mixture representing the
heliox is ρhe ≈ ρ0/3.1. The sound velocity in heliox
[35] is che ≈ 1.9c0. Using formula (3), we obtain an
expression for the resonance frequency of the acoustic
resonant circuit in heliox: farche ≈ 1.08 , which

means that the resonance of the acoustic resonant cir-
cuit is shifted only slightly. On the other hand, since the
sound velocity in heliox is twice as high as in air, the

f
arc0
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quarter-wave resonance must be shifted from the region
215–350 Hz (in air) to the region 410–670 Hz (in
heliox).

In accordance with the model described above, the
dominant component of the basic respiratory noise at
eupnea is the turbulent flow noise. The dynamic viscos-
ities of air, oxygen, and helium are known to be close to
each other. However, the Reynolds number involves the
kinematic viscosity whose value in heliox is three times
that in air. This fact underlies the conclusion [24] that
the change from air to heliox must be accompanied by
a change in the characteristics of the basic respiratory
noise. However, the turbulent flow considered by us as
the main source of the basic respiratory noise repre-
sents a motion with a fully developed turbulence [36].
It should be noted that, in the case under study, the fully
developed turbulence is achieved not because of the
large Reynolds numbers but mainly because of the tur-
bulence of the oncoming flow, which is determined by
the configuration of the bronchial tree [9]. For a fully
developed turbulence, the parameters of the motion of
the large-scale components (of the order of the diame-
ter of the respiratory tract) responsible for the noise
given by Eq. (1) are practically independent of the vis-
cosity of the medium [36]. Hence, the spectral charac-
teristics of noise produced in the bronchial tree should
not noticeably deviate from those given in Table 1.

Table 2.  Distances from the surface of the chest wall to the
sources of wheezing

Figure number
Frequency

of the spectral
maximum, Hz

Distance, cm

Fig. 4a 540 7.5

Fig. 4a 710 8.1

Fig. 4b 345 8.0
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Thus, according to the proposed acoustic model, no
changes should be expected in the generation and trans-
mission of respiratory noise in heliox, as compared to
air, in the frequency region below approximately 200 Hz
(the upper edge of the broadband frequency maxima
corresponding to the resonance of the acoustic resonant
circuit) in both lower and upper parts of lungs. In the
parts located near the main bronchi and at the trachea,
an attenuation of sounds with frequencies within 215–
350 Hz should be observed along with an amplification
of sounds within 410–670 Hz. In the lower parts of
lungs, because of the filtering properties of the paren-
chyma [20], only the attenuation of sounds within 215–
350 Hz should be observed. These conclusions are in
qualitative agreement with most experimental observa-
tions described in the cited papers [22–24].

Summarizing the results of our study, we conclude
that, using the method described in our previous publi-
cation [25] for measuring the respiratory noise at the
chest wall, we experimentally revealed the frequency
components characterized by different signs of the
imaginary part of the cross spectrum obtained for the
vibrational displacement and the dynamic force. The
acoustic model developed on the basis of combining the
results of earlier studies [19, 20, 28] explains the afore-
mentioned difference from the point of view of the
hypothesis that the contributions of both air-borne and
structure-borne sound components are significant in the
mechanism of sound transmission to the chest wall. In
the framework of our approach, we made the following
inferences:

(1) When considered as an acoustic channel for the
basic respiratory noise, the respiratory system of an
adult subject has two resonances: first, the resonance of
the vibratory system formed by the elasticity of air in
the respiratory ducts of lungs and by the surface mass
density of the chest wall, this resonance lying within a
frequency band of 110–150 Hz, and, second, the quar-
ter-wave resonance of the whole bronchial tree as a sys-
tem of narrow pipes, which occurs within 215–350 Hz.

(2) For adult subjects in normal condition, the fre-
quency components responsible for the air-borne sound
transmission in the basic respiratory noise predominate
in the frequency region between 100 and 300 Hz in the
lower parts of lungs, while the frequency components
responsible for the structure-supported transmission
predominate in the higher-frequency region.

(3) Vesicular noise (the sounds of vesicular respira-
tion) observed in healthy adults at forced respiration is
generated by the turbulent air flow in the 11th- through
13th-generation bronchi; its transmission to the chest
wall in normal condition occurs mainly by air and is
determined by the resonance of the vibratory system
that is formed by the elasticity of air in the respiratory
ducts of lungs and by the surface mass density of the
chest wall.

(4) The distance from the chest wall to the sources
of structure-borne additional respiratory noise, namely,
wheezing with frequencies above 300 Hz, can be esti-
mated numerically from the ratio between the real and
imaginary parts of the cross spectrum of vibratory dis-
placement and dynamic force for narrowband spectral
components of these sounds on the assumption that the
source is of the quadrupole type.
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Abstract—The energy distribution between different types of seismic waves produced by a source of longitu-
dinal and transverse waves with an arbitrary radiation pattern in an elastic half-space is considered. With an
appropriate choice of the angular distribution functions, this source can model an earthquake source. A direct
theoretical comparison of the energy distributions of seismic waves generated by an underground explosion and
an earthquake is carried out. Analytical relationships that describe the dependence of the energy distribution
between different types of waves on the parameters of the medium and the source are derived. © 2003 MAIK
“Nauka/Interperiodica”.
In recent years, various methods of monitoring
underground nuclear explosions (UNEs) have under-
gone extensive development. Of particular interest are
the seismic methods. An important area of application
of the seismic monitoring methods is discrimination
between UNEs and other seismic sources, such as
earthquakes and regular industrial explosions. The
problem of discriminating between UNEs and indus-
trial explosions has been studied in [1–4] and is not
considered in this paper.

There are different methods for discriminating
between earthquakes and UNEs, which use the char-
acteristics of seismic signals observed at teleseismic
and regional distances. One of the most used and effi-
cient methods is the one based on the so-called mag-
nitude criterion mb : MS, which represents the differ-
ence between the magnitudes of bulk P waves and sur-
face waves produced by the same source [5–8]. The
magnitude is understood as the logarithm of the wave
amplitude-to-period ratio [5, 7, 9]. This method has a
solid experimental basis, but its theoretical corrobora-
tion has not been completed. For this purpose, it is
important to substantiate the criterion not only quali-
tatively but also quantitatively, because only in this
case is it possible to predict the situations in which it
becomes inoperative.

For heavy explosions or earthquakes (>10 kilo-
tons), which are observed at teleseismic distances,
the magnitude criterion is quite reliable. The analysis
of experimental data [5, 8] and some theoretical
results [7] show that the magnitude difference
between the bulk and surface waves, mb – MS, for
1063-7710/03/4903- $24.00 © 20328
UNEs is greater than for earthquakes approximately
by unity. However, for low-power sources (<2 kilo-
tons), which can only be observed at regional dis-
tances, no reliable criteria exist [9]. This occurs,
because the low-power sources produce waves of
short wavelength, and it is therefore necessary to take
into account the inhomogeneity of the earth’s crust.
The structure of the seismic fields becomes complex,
consisting of bulk longitudinal and transverse waves
along with surface and channel waves refracted by
and reflected from the inhomogeneities. Therefore, a
correct reconstruction of the parameters characteriz-
ing the seismic source is a very intricate and labori-
ous problem. Difficulties associated with the magni-
tude description of the energy characteristics also
refer to the bulk waves produced by earthquakes,
whose seismic field strongly depends on a large num-
ber of parameters that determine the source’s orienta-
tion in space and can be used efficiently only after
averaging over many observation points. Also, a low-
power source excites the fundamental mode of the
earth less efficiently, so it may not be detected against
other quasi-Rayleigh waves.

Although the magnitude criterion is a very conve-
nient tool in experimental practice, its use in theoreti-
cal analysis encounters a number of problems associ-
ated with the insufficiently clear, from the physical
viewpoint, definition of magnitude. In particular, in
terms of the magnitude of the bulk or surface waves,
the earthquake intensity is evaluated for a rather nar-
row frequency band, while the main part of the energy
may be concentrated in another frequency range. This
003 MAIK “Nauka/Interperiodica”
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is why quantities are being sought that would take into
account the source spectrum more adequately. In par-
ticular, the “energy” magnitude based on an estimate
of the P wave energy, which is calculated by integrat-
ing the source function spectrum, has been proposed
[10]. By all means, the magnitude criteria actually
characterize the energy relationships. Therefore, it
seems reasonable to perform theoretical analysis
directly in terms of the energy characteristics, which
have a clear physical meaning.

The energy distribution among various types of
waves in an elastic half-space has been considered in a
number of publications [11–15].

This paper continues the previous study [14] where
this problem was considered for waves generated by a
spherically or cylindrically symmetric source embed-
ded in the elastic half-space. Here, we will study a
point source of longitudinal or transverse waves with
an arbitrary radiation pattern and, accordingly, the
energy distribution between seismic waves of various
types produced by such a source in the half-space.
With an appropriate choice of the angular distribution
functions, this source can be used as a model of an
earthquake source. We perform a direct theoretical
comparison of the energy distributions of seismic
waves produced by an underground explosion and
earthquake. We also derive analytical relationships
that describe the dependence of the energy distribu-
tion between different types of waves on the parame-
ters of the medium and the source.

1. ORIGINAL EQUATIONS

We define the energy carried by a wave as the
energy flux transferred in the form of this wave
within the whole emission time through a closed sur-
face Σ enclosing the region where the wave is formed
[12, 14]:

where (r, t ) = (r, t ) (r, t ) is the energy flux

density in the ith direction; (r, t ) and (r, t ) are
the mass velocity and the stress tensor in the wave,
respectively; the index α indicates that the quantity
refers to the particular wave type; and ni are the com-
ponents of the vector orthogonal to the surface.

It is convenient to choose the surface Σ so that its
normal coincides with the energy flux direction. For
example, for bulk waves, this will be a spherical sur-
face; for surface waves, a cylindrical one.

E
α

Sni tqi
α r t,( ),d

0

∞
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Σ
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qi
α

V j
α σij

α

V j
α σij

α
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It should be noted that not all of the energy that is
transferred through the surface Σ can be attributed to
the wave. Part of it is spent for the static deforma-
tions in the medium. It has been shown that the
expression for the energy carried by the wave is as
follows [14]:

(1)

where (r, ω) and (r, ω) are the frequency spec-
tra of the displacement vector and of the stress tensor.
The energy of static deformations can be written as
follows:

Consider an embedded seismic point source placed
a distance h from the surface of an isotropic elastic half-
space. The source generates longitudinal elastic P
waves and transverse S waves with respective radiation
patterns.

Let us represent the wave field in terms of displace-
ment potentials of the longitudinal waves, Φ(r, ϕ, z),
and transverse waves, Y(r, ϕ, z):

(2)

To find the wave fields, note that it is convenient to
represent the S wave as a superposition of vertical and
horizontal components, SV and SH. To this end, repre-
sent the potential Y of the transverse wave in the cylin-
drical coordinate system (r, ϕ, z) as a superposition of
two vectors [16]:

(3)

In this case, the displacement uSH = rot(0, 0, ΨSH)
will lie in the horizontal plane, which corresponds to
the SH wave, and uSV = rotrot(0, 0, ΨSV) will corre-
spond to the SV wave.

E
α

Sni
1

2π
------ ωiω

2
------ u j

α r ω,( )σij
α r ω–,( ){d

∞–

∞

∫d

Σ
∫°=

– u j
α r ω–,( )σij

α r ω,( ) }

=  Sni
1

2π
------ ωiωIm u j

α r ω,( )σij
α* r ω,( ){ } ,d

∞–

∞

∫d

Σ
∫°

u j
α σij

α

Est
α 1

2
--- Sniu j

α r t = ∞,( )σij
α r t = ∞,( ).d

Σ
∫°=

u grad Φ rot Y.+=

Y rot 0 0 ΨSV, ,( ) 0 0 ΨSH, ,( ).+=



330 MAXIMOV et al.
The system of wave equations for the potentials in
the cylindrical coordinates is as follows:

(4)

where fl(θ, ϕ), fSV(θ, ϕ), and fSH(θ, ϕ) are the patterns
of the P, SV, and SH waves in spherical coordinates
and Qα(ω) are their spectra. It should be noted that,
due to relationship (3), for the functions QSV(ω) and
QSH(ω) to have the same dimensionality, the special
multiplier QSV(ω) is deliberately factored out from
cs /ω.

The boundary conditions that require the normal
and tangential stress on the free surface of the half-
space to be zero, (σzr , σzϕ, σzz) = (0, 0, 0)|z = 0, lead to the
following equations [16–18]:

(5)

To find the fields, we will use the Fourier-series
expansion in the angle ϕ in Eqs. (4) and (5), the Han-
kel transform in the epicentral distance (r  s), and
the Laplace transform in the coordinate z  ξ [19].

Finally, the potentials of the seismic waves in the
half-space can be represented as

with similar formulas for ΨSV and ΨSH, where
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(6)

νl = , νs = , and D± = 1 ±

 is the Rayleigh dispersion function.

As we see from (6), the expression for the potential
of the longitudinal wave consists of the direct longitu-
dinal P wave emitted by the source and of the longitu-
dinal PP and SP waves reflected from the surface. A
similar structure is observed in the potential of the
transverse SV wave, which consists of the direct S wave
produced by the source and of the reflected SS and PS
waves. The potential of the SH wave consists of two
terms: the direct and reflected SH waves.

At large distances from the source, the P and S
waves are separated and, therefore, the energies they
carry can be considered independently. To determine
how much energy is emitted in the form of bulk longi-
tudinal and transverse waves in the elastic half-space,
consider the energy flux through a hemisphere of a
large radius R. To this end, we change from the cylin-
drical to spherical coordinates, (r, ϕ, z)  (R, θ, ϕ).
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2. ENERGY OF THE P WAVES

The displacement field of the longitudinal wave and
its potential Φ are related as

Using asymptotic formulas for the Bessel functions for
large arguments, the longitudinal potential can be writ-
ten as

(7)

Here, Φn(s, 0, ω) is the value of the potential at the
boundary of the half-space.

By taking a derivative of expression (7) with respect
to R and retaining only the first-order terms in R, we
obtain the radial component of the displacement

Assuming that R is a large parameter ,

this integral can be estimated by the method of saddle
points. It can be shown that the saddle point is at s* =

– sinω and the radial component of the displacement is

(8)

Using a similar technique to calculate the θ and ϕ
components of the displacement, we can see that they
have a higher order of smallness in R; i.e., in our

approximation,   0 and   0. Therefore, to
calculate the energy of the P wave, it is sufficient to
know only the radial component of the stress tensor

(9)
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Due to the symmetry of Eq. (1), the contribution of
the second term in Eq. (9) is zero. In addition, in the

chosen approximation, we have   – uR .

Therefore, the energy of the P wave can be written as

(10)

Next, let us evaluate the energy of the P wave emit-
ted by the source into the half-space. From Eqs. (6), we
determine the potential of the direct longitudinal wave
at the boundary:

(11)

Then, by substituting Eq. (11) into Eq. (10), we obtain

(12)

The energy of the longitudinal PP and SP waves
reflected from the surface can be obtained in a similar
manner. The respective potentials are as follows:

(13)

(14)

By substituting Eqs. (13) and (14) into Eq. (10), we
obtain the following expressions for the energy of the
reflected longitudinal waves:
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where

Expressions (12) and (15) are written in terms of the
P-wave angles, whereas expression (16) uses the angles
of the transverse wave. These angles are related through
the Snell’s law:
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3. ENERGY OF THE SV WAVES
Now, let us determine the energy of the transverse

SV wave produced by the source. The vector potential
of the SV wave in the cylindrical coordinates (r, ϕ, z)
can be written as

Changing to the spherical coordinates (R, ϕ, θ), we
obtain

We are interested in the field on a hemisphere of a
large radius, for which we obtain that the displacement is
primary determined by the orbital component, while the
radial and azimuthal components have a higher order of
smallness in R and, hence, can be set equal to zero:

By analogy with Eq. (7), we write
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Then, the orbital displacement component is given by
the expression

(17)

Since, in this case, the radial and azimuthal dis-
placement components vanish, it is sufficient to know
only the (Rθ) component of the stress tensor for calcu-
lating the energy of the SV wave:
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Expressions for the energy carried by the direct and
reflected bulk SV waves are obtained in the same way
as those for the longitudinal waves:
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Expressions (20) and (21) are written in terms of the
transverse wave angles, whereas expression (22) uses
the angles of the longitudinal wave.

Using Eqs. (12), (15), (16), and (20)–(22), one can

show that EP = EPP + EPS and  =  + .

4. ENERGY OF THE SH WAVES

The energy of the direct and reflected SH waves can
be determined in a similar manner. Since the transverse
SH wave, being reflected from the interface, does not
transform into other wave types, the energy of the direct
wave emitted by the source towards the interface is
equal to the energy of the reflected SH wave. Therefore,
it is sufficient to find only the energy of the SH wave
produced by the source.

The vector potential of the SH wave in the cylindri-
cal coordinates is

In the spherical coordinates,

At large distances from the source, the azimuthal
displacement component predominates:

(23)

Therefore, the stress tensor component of interest
(Rϕ) is

Following the same procedure as with the P waves
and SV waves, we obtain the expression for the energy
of the SH wave:
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5. ENERGY OF THE RAYLEIGH WAVES

The Rayleigh wave generated by a point source is a
cylindrical wave. Therefore, it is convenient to use the
cylindrical coordinates for calculating its energy flux.

The Rayleigh wave corresponds to a pole of the inte-
grands in Eqs. (6). It can easily be seen that the poten-
tial of the SH wave and the terms in the potentials of the
P and SV waves that are associated with the direct
waves have no poles. Therefore, they do not contribute
to the Rayleigh wave.

With Eqs. (2) and (3) taken into account, the relation
between the components of the displacement vector
and the stress tensor, on the one hand, and the potentials
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of the longitudinal and transverse waves Φ and ΨSV , on
the other hand, becomes as follows:

(25)

(26)

By applying the Fourier transform in the azimuthal
angle and the Hankel transform in the epicentral dis-
tance, Eqs. (25) and (26) can be represented as

(27)

When deriving system (27), we implied that the
radius of the surface Σ is much longer that the wave-
length. The Rayleigh dispersion relation has the form
D–(s, ω) = 0, which is equivalent to the equation
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A root of this equation can be represented as sR =

, where cR is the velocity of the Rayleigh wave. By

virtue of the residue theorem, system (27) can be
reduced to

where  = (s, z, ω);  = (s, z, ω), and

By substituting the expressions for the residues and
integrating with respect to the vertical coordinate z, the
following expression for the Rayleigh wave energy is
obtained:

(28)

Here, the coefficients Bi are given by the expressions
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It can easily be seen that, at fSV = 0 and fl = 1,
expression (28) is reduced to the formula for the
energy of the Rayleigh wave produced by an isotropic
point source of P waves in the half-space [14].

6. DISTRIBUTION OF THE SEISMIC ENERGY 
PRODUCED BY AN EARTHQUAKE

Thus far, in our calculations, we have not specified
the source functions that appear on the right sides of
Eqs. (4). Now, we will try to define them in such a man-
ner that the displacements in the longitudinal and trans-
verse waves produced by the point source in the far-
field region coincide with the respective displacements
produced by a shear crack source. This model provides
a fairly complete characterization of the processes
accompanying the propagation of waves generated by a
real seismic earthquake source.

The most wide-spread view of the earthquake
source is that it has the form of a surface on which shear
displacements evolve (a discontinuity plane) [16].
Given a shear discontinuity on the discontinuity plane
Σ, displacements at any point of the medium can be cal-
culated. For the sake of simplicity, assume that the
direction of the displacement jump is constant over the
discontinuity plane and is determined by the vector n:

In this case, the frequency-domain representation of
the displacement in the far-field region is as follows:

(29)

Here, g is the unit radius vector, n is the vector orthog-
onal to the discontinuity plane,
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Displacements for the direct bulk waves, which follow
from Eqs. (8), (17), and (23) after the potential at the inter-
face is substituted in them, acquire the following form:

(30)

(31)

(32)

where

and FSH (ϕ, θ, ω) is analogous to FSV (ϕ, θ, ω).
The comparison of Eqs. (30) with Eqs. (31)–(32)

shows that they are equivalent when the following con-
ditions are met:

(33)

(34)

In these expressions, the factors like

 are deliberately omitted, because they

account for the fact that, in our coordinate system, the
source is located at z = h rather than at z = 0.

To render the angular distribution functions con-
crete, let us choose the coordinate system such that the
vector n lies in the zy plane and introduce the χ and Ω
angles as follows: χ is the angle between the vector n
and the z axis and Ω is the angle between the vector n
and the zy plane (Fig. 1). In this case, the vectors n and
n can be written in terms of g, eθ, and eϕ as

(35)
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By substituting Eqs. (35) into Eqs. (34), the radiation
pattern can be expressed in terms of the angles ϕ, θ, χ,
and Ω . We also note that expressions (10), (19), and
(24) for the energies contain only quadratic forms of
displacements integrated over the azimuthal angle.

Taking into account that (ϕ, ω)Fβ(ϕ, –ω)dϕ =

(ϕ, ω)fβ(ϕ, –ω)dϕ, the following expression for

the energy of the direct longitudinal wave is obtained:

This means that the energy of the emitted P wave is
independent of the source orientation in space.

Expressions for the energies of the SV and SH
waves in terms of the S-wave angles are as follows:
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Fig. 1. Coordinate system and the angles Ω and χ.
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Due to Eqs. (33), we find that the energy of the S
wave is also independent of the angles χ and Ω and is
given by the expression

Let us take a particular spectral function of the
source in Eqs. (36). Let it be

(36)

where τ is the characteristic radiation time and U0 is the
maximal displacement on the elastic radius. Such a
function has been used for estimating an explosion
[14]. This function is chosen, because explosions and
earthquakes with similar spectral functions are most
difficult to discriminate, and also in view of our attempt
to formulate a discrimination criterion based on the dif-
ference in the angular distribution functions. Thus, for
spectral function (36), we obtain

To calculate the integrals with respect to frequency
for the Rayleigh wave, we use the embedded source

approximation: h @ (cRτ)/2 . In this case, due to the
rapid decay of the exponential, the low-frequency
asymptotics of the source function makes the dominant
contribution to the integral. Then, expression (28) is
reduced to

The three terms in the brackets above are the contribu-
tions to the Rayleigh wave made by the longitudinal
waves, transverse waves, and interference of these,
respectively. Omitting the interference term, the bulk-
to-surface wave energy ratio can be written as

(37)
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Relationship (37) allows us to calculate  as a

function of , which is similar to the regression
relationship mb : MS. Taking a logarithm of this expres-
sion, we obtain

where

The term A(σ, Ω, χ) here is only determined by the ori-
entation of the shear crack and by Poisson’s ratio of the
medium (or by the velocity ratio of the longitudinal and
transverse waves) at the earthquake site. The term
B(σ*) is a logarithm of the ratio of the reduced depth h*
to the emitted wavelength clτ. It is independent of the
earthquake intensity and is primarily determined by the
strength of the medium, σ*, at the place where the
earthquake occurred. The last term, C(h), characterizes
the effect of the deviation of the real depth from the
reduced one.

For an explosive source, a similar relationship was
obtained in [14]. It differs from the relationship pre-
sented above by the term AEXPL(σ):

Figure 2 shows ratio (37) versus the angles Ω and χ,
which determine the crack orientation and the direction
of the shear.

As we see from Fig. 2, the energy of the Rayleigh
waves can vary over a sufficiently wide range, depend-
ing on the crack orientation and the direction of the
shear.

Figure 3 presents  versus  for explo-
sions and earthquakes in a medium with Poisson’s ratio
σ = 0.2, all other parameters being the same. The
energy is measured in kilotons. Note that, since the
energy of the seismic waves is but a few percent of the

explosion energy, the variation in  in Fig. 3 from
–2 to 0 corresponds to an explosive force of 1 to 100 kt,
which corresponds to a bulk wave magnitude mb of 4 to
6 units. The “Earthquakes” region refers to earthquakes
whose depth is equal to the explosion depth; the “Deep
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Earthquakes” region, to the earthquakes that are three
times as deep.

The boundaries of the earthquake region are deter-
mined by the maximal and minimal energy of the Ray-
leigh wave, depending on the orientation of the shear
crack. As we see in Fig. 3, at the same depth, the explo-
sion line and the earthquake region are about two
units apart. Since even shallow-focus earthquakes
occur at greater depths than UNEs, due to the C(h)

term in the expression obtained above for , the
earthquake region in Fig. 3 will move toward the UNE
region. Thus, at depths about three times as deep as the
those of the UNEs, these regions will be displaced with
respect to each other by unity, as shown in Fig. 3.

To compare our results with experimental data, we
include Fig. 4 borrowed from Marshall and Basham
[6]. It presents an experimental distribution of mb : MS

for UNEs and earthquakes observed in central Eurasia.
The comparison between Figs. 3 and 4 visually indi-

cates that the energy function  :  quite
adequately follows the magnitude criterion mb : MS.

Thus, we have studied the energy distribution
between different seismic waves produced by an
embedded source of P and S waves with an arbitrary
radiation pattern in an elastic half-space.

Explicit formulas are obtained for the energies of
the emitted (direct and reflected) longitudinal and
transverse bulk waves and the Rayleigh wave. The
spectral and angular source functions being chosen
appropriately, these results may correspond to an
explosive source or earthquake source.

The energy relationships between different types of
seismic waves produced by UNEs and earthquakes in
an elastic half-space are used to construct the functions

 : , which are similar to the magnitude
ratio mb : MS. Explosions and earthquakes of the same
spectral distribution and with equal seismic moments
were found to differ by two magnitude units. This is a
large margin for discriminating between them, even
when the earthquakes occur at greater depths than the
explosions. It is also shown that the energy of the sur-
face Rayleigh waves produced by earthquakes strongly
depends on the crack orientation and the direction of
the shear.

Note that the solution to the problem of energy dis-
tribution in a homogeneous half-space should only be
regarded as the first necessary step in solving the real
problem of discriminating between UNEs and low-
intensity earthquakes, because, in a homogeneous half-
space, no higher-order surface quasi-Rayleigh and
Love waves are excited. At the same time, these modes
of surface waves predominate at regional distances.
These are the so-called Log waves. For these waves to
occur, the presence of a stratified structure consisting of
at least one stratum is necessary.
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Fig. 3. Dependence of  on  for explosions and
earthquakes in a medium with Poisson’s ratio σ = 0.2. The
“Earthquakes” region refers to earthquakes whose depth is
equal to that of explosions; the “Deep Earthquakes” region,
to earthquakes three times as deep.
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Fig. 4. Experimental distribution of mb versus MS for UNEs
(the full dots) and earthquakes (the empty dots) observed in
central Eurasia (following [6]).
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In our opinion, the next step in this direction will be
the solution to the problem of the energy distribution
produced by a source with an arbitrary radiation pattern
in a stratified elastic medium.

REFERENCES
1. A. T. Smith, Bull. Seismol. Soc. Am. 79, 1089 (1989).
2. D. B. Harris and G. A. Clark, Bull. Seismol. Soc. Am. 70,

2037 (1990).
3. M. A. H. Hedlin, J. B. Minster, and J. A. Orcutt, Bull.

Seismol. Soc. Am. 80B, 2143 (1990).
4. A. T. Smith, Bull. Seismol. Soc. Am. 83, 160 (1993).
5. I. P. Pasechnik, G. G. Dashkov, L. A. Polikarpova, and

N. G. Gamburtseva, Izv. Akad. Nauk SSSR, Fiz. Zemli,
No. 1, 28 (1970).

6. P. P. Marshall and P. W. Basham, Geophys. J. R. Astron.
Soc. 28, 431 (1972).

7. J. L. Stevens and S. M. Day, J. Geophys. Res. 90 (B4),
3009 (1985).

8. O. K. Kedrov, in Complex Research on Physics of the
Earth, Ed. by M. A. Sadovskiœ (Nauka, Moscow, 1989),
pp. 189–203.

9. D. Carr, in Seismic Verification (Technology Department
Sandia Natl. Lab., Albuquerque, New Mexico, 1994),
Report No. SAN 94-0086, pp. 11–21.
10. T. B. Yanovskaya, Yu. V. Roslov, and E. L. Lyskova,
Fiz. Zemli, No. 1, 3 (1996).

11. G. F. Miller and H. Persey, Proc. R. Soc. London, Ser. A
223 (1192), 55 (1955).

12. S. Ya. Kogan, Seismic Energy and Methods of Its Deter-
mination (Nauka, Moscow, 1975).

13. V. V. Gushchin, V. P. Dokuchaev, Yu. M. Zaslavskiœ, and
I. D. Konyukhova, in Study of the Earth by Nonexplosive
Seismic Sources (Nauka, Moscow, 1981), pp. 113–118.

14. G. A. Maksimov, Fiz. Zemli, No. 11, 31 (1996).
15. H. Levine and G. C. Gaunaurd, J. Acoust. Soc. Am. 110,

31 (2001).
16. K. Aki and P. G. Richards, Quantitative Seismology,

Theory and Methods (Freeman, San Francisco, 1980;
Mir, Moscow, 1983), Vols. 1, 2.

17. L. D. Landau and E. M. Lifshits, Course of Theoretical
Physics, Vol. 7: Theory of Elasticity, 4th ed. (Nauka,
Moscow, 1987; Pergamon, New York, 1986).

18. L. M. Lyamshev, Akust. Zh. 10, 81 (1964) [Sov. Phys.
Acoust. 10, 65 (1964)].

19. G. A. Korn and T. M. Korn, Mathematical Handbook for
Scientists and Engineers (2nd ed., McGraw-Hill, New
York, 1968; 5th ed., Nauka, Moscow, 1984).

Translated by A. Khzmalyan
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003



  

Acoustical Physics, Vol. 49, No. 3, 2003, pp. 339–343. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 49, No. 3, 2003, pp. 400–404.
Original Russian Text Copyright © 2003 by Mourga.

                                                                                        
Acoustic Streaming in a Sound Field
near a Free Boundary

V. A. Mourga
St. Petersburg State Marine Technical University,

ul. Lotsmanskaya 3, St. Petersburg, 190008 Russia
e-mail: rector@smtu.ru
Received August 7, 2000

Abstract—Stationary acoustic streaming that occurs near the free boundary of a compressible viscous liquid
in the field of a standing sound wave excited along this boundary is theoretically investigated. © 2003 MAIK
“Nauka/Interperiodica”.
Flows near a moving boundary occupy a special
place in the theory of acoustic streaming (see, e.g., [1–3])
primarily because of the necessity to take into consid-
eration the deformation (perturbation) of the boundary.
The stationary flow generated in an incompressible liq-
uid by a surface oscillation (a wave on the water sur-
face) that was predetermined in the form of a traveling
or standing wave was investigated in [4]. The flow aris-
ing in the sound field near the boundary between two
liquids whose corresponding parameters have compa-
rable values was considered in [5]; the deformation of
the boundary was shown to be negligible in this case.
The present paper considers a compressible liquid in
which acoustic streaming is caused by sound waves
incident of the free flat boundary from the side of the
liquid. In this case, the perturbation of the surface plays
an essential role. In addition, one cannot restrict the
consideration to the boundary layer approximation (see
below). The flows considered here appear to be much
weaker in comparison with the flow considered in [5];
nevertheless, in the absence of other stationary flows, it
may significantly affect the transfer processes, such as
heat transfer (cooling of the liquid surface by sound).

The effect of the boundary deformation cannot be
described by conventional methods of the perturbation
theory (decomposition of the solution in power series)
because of the presence of a thin acoustic boundary
layer. Therefore, it is necessary to use a coordinate sys-
tem in which the surface of the liquid coincides with the
coordinate surface; hence, the coordinate system must
be curvilinear and moving.

Let the unperturbed surface of the liquid be the hor-
izontal plane Y = 0 in the Cartesian coordinate system
X, Y, Z, where the Y axis is directed upward and the liq-
uid fills the lower halfspace (Y < 0). We assume that the
pattern of the process is two-dimensional and is inde-
pendent of Z. Additionally, we introduce the curvilinear
coordinate system x, y, z in which the x coordinate runs
along the surface (deformed in the general case), the y
1063-7710/03/4903- $24.00 © 20339
coordinate is measured from the surface and runs in the
upward direction (not along the normal), and the z axis
coincides in direction with the Z axis. Thus, the latter
coordinate system is nonorthogonal (in contrast to the
orthogonal system used in [4]). The surface of the liq-
uid coincides with the coordinate surface y = 0 at any
time. Within the accuracy adequate for our purposes,
we have

(1)

where ζ(x, t) is the (vertical) displacement of an oscil-
lating element of the boundary from its unperturbed
position, ζ ' = ∂ζ/∂x, ζ '' = ∂2ζ/∂x2, t is time, ex and ey are
the base vectors of the coordinate system, a is an arbi-
trary vector expressed as a = axex + ayey, and aX and aY

are the components of the vector a in the Cartesian
coordinate system. Using expressions (1), we can
obtain the differential relationships required for the fur-
ther consideration:

(2)

x 1 ζ'2+ X X , y≈d

0

X

∫ Y ζ ,–= =

∂
∂X
------- ∂

∂x
------ ζ'

∂
∂y
-----,

∂
∂Y
------–

∂
∂y
-----, ex ey⋅ ζ',= = =

∂ex

∂x
-------- eyζ'', aX ax, aY ay axζ',+= = =

∇ ex
∂
∂x
------ ζ'

∂
∂y
-----– 

  ey
∂
∂y
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∂
∂x
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  ,+=

∇ a⋅
∂ax

∂x
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∂ay

∂y
--------,+=

∇ 2 ∂2

∂x
2
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∂y
2
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∂x∂y
------------–

ζ''∂
∂y
--------,–+=
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∂ay

∂x
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∂y
-------- ζ'
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  axζ''.+ +–=
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Note that the expression for the divergence of a vector
coincides in form with the corresponding expression in
the Cartesian coordinates. In what follows, this fact will
allow us to introduce the current function of a station-
ary flow in a very simple manner, which justifies the use
of the nonorthogonal coordinate system.

Let two identical harmonic plane waves propagate
in the xy plane from the bulk of the liquid to the sur-
face so as to form a symmetric pattern with respect to
the y axis. Together with the reflected waves, they
form a standing sound field extending along the sur-
face of the liquid. In the first (acoustic) approxima-
tion, the deformation of the boundary can be
neglected, so the x and y coordinates are Cartesian. We
assume that the inequality

is satisfied, where ν is the kinematic viscosity, ω is the
oscillation frequency, c is the sound velocity, k0 = ω/c,
and δ is the thickness of the boundary layer. We repre-
sent the oscillating velocity vector v as the sum v = v1 +
v2, where v1 and v2 are the potential and solenoidal vec-
tors, respectively; the projections of the oscillating
velocity vector on the x and y axes are u = u1 + u2 and
v  = v 1 + v 2. In the first approximation, the initial equa-
tions are as follows:

(3)

Here, ρ0 is the unperturbed density of the liquid, ρ' is
the acoustic density, and p' is the acoustic pressure. At
the free boundary (y = 0), the normal and tangential
components of the stress tensor must vanish:

(4)

Equations (3) are equivalent to the following equations
for complex amplitudes (here and below, we omit the
temporal factor exp(–iωt)):

(5)

νω
c

2
------- 

 
1 2/ k0δ

2
-------- ε ! 1= =

∂v
∂t
------ –

1
ρ0
----- ∇ p' ν∇ 2v

1
3
---ν∇∇ v,⋅+ +=

∂ρ'
∂t
------- ρ0∇ v⋅+ 0, p' ρ'c

2
.= =

p' 2νρ0
∂v
∂y
-------–

2
3
---νρ0∇ v⋅+ 0,=

∂u
∂y
------ ∂v

∂x
-------+ 0.=

∇ 2v1
ω2

c
2

------ 1
4
3
--- iνω

c
2

---------+ 
  v1+ 0,=

p'
iρ0c

2

ω
------------∇ v1,⋅–=

∇ 2v2
iω
ν

------v2+ 0, ∇ v2⋅ 0.= =
Neglecting small quantities of the order of ~ε2, we rewrite
the first boundary condition (4) in the form ∇ · v1 = 0; the
particular solution to Eqs. (5) can be written as

(6)

where k2 + γ2 = , k = k0sinθ, γ = k0cosθ, θ is the
angle of wave incidence on the boundary, A is the
reflection coefficient, the combined amplitude of the
longitudinal (along the x axis) oscillating velocity of
two incident waves is equal to unity, σ = –(1 + i)/δ, and
B is an unknown constant. It is clear that |k0/σ| ~ ε.
From the boundary conditions, we obtain A = –1 and
B = –4γ/σ; thus, we find that Eqs. (6) reduce to

(7)

As can be seen from Eqs. (7), the order of magnitude of
v2 is ~ε2; nevertheless, this expression is valid, because
it is obtained from the equation of continuity and the
expression for u2, and the latter, in turn, is valid because
its order of magnitude is ~ε. In the boundary layer
approximation, all quantities with the order of magni-
tude ~ε and higher should be discarded, so the constant
B becomes equal to zero and the field is purely poten-
tial.

In the second approximation, quadratic in the oscil-
lation amplitude, one has to take into account that the
coordinate system is both curvilinear and moving. For
the absolute motion of liquid, equations of motion have
the form

(8)

Here, w is the total velocity of liquid particles, which is
a sum of oscillating and stationary components; v0 is
the velocity of the boundary element along the y axis,

v 0 = ; η is the dynamic viscosity, which is assumed to
be positive; and ρ = ρ0 + ρ'. The differential operators
have the form given in Eqs. (2), excluding the fact that
nonlinear corrections in the quadratic terms in Eqs. (8)

u1 kx e
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v 2
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should be neglected in these operators, so that the latter
acquire the Cartesian form. Applying the curl operator
to both sides of the first equation and averaging over
time, we obtain from Eqs. (8) the following equations
valid to the second-order terms (in the oscillation
amplitude):

(9)

Here, the angular brackets mean averaging over time at
fixed x and y coordinates; V is the average (Euler)
velocity of liquid particles; v is the (real) oscillating
velocity whose components have the complex ampli-
tudes given in Eqs. (7), so that w = V + v; and Ω =∇ ×
v. In Eqs. (9), the operators ∇  and ∇ 2 have the Cartesian
form, because the second term on the right-hand side of
the first equation allows for the curvilinear character of
the coordinate system; this term appears because of the
nonlinear corrections (2) to the Laplasian and curl oper-
ators. From the equation of continuity (the second
equation in Eqs. (9)), it follows that vector U = V +
〈ρ '(v – v0)/ρ0〉  is the vector of the average velocity of
the liquid mass transfer. Excluding ρ' with the use of the
continuity equation (in the acoustic approximation) and
using the complex amplitudes of the oscillating veloc-
ity, we represent this vector in the form

(10)

where the asterisk means the complex conjugate quan-
tity; only the real part of the above expression is physi-
cally meaningful. Now, we introduce the function of
current Ψ:

(11)

Using Eqs. (10), (11), and (7) and performing some cal-
culations, we obtain the following equation for the
function of current instead of Eqs. (9):

(12)

Here, again, only the real part of the expression is phys-
ically meaningful. Only two boundary conditions are
necessary at the liquid boundary: the kinematic condi-
tion and the condition that the tangential force acting on
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the surface is zero. In our coordinate system, the first
condition has the form

(13)

where f(x, y, t) = 0 is the equation describing the sur-
face of the liquid. However, in our case, this equation
is y = 0; for this reason, we have ∂f/∂t = 0, ∂f/∂x = 0,
and ∂f/∂y = 1.

Using Eqs. (1), for the arbitrary vector a, we have

Taking into account the relationships above, from
Eq. (13), we obtain wy = v 0. By averaging over time, we
obtain

(14)

because v 0 is a purely periodic function of time, which
corresponds to the assumption that the drift of the
boundary is absent. The second condition expressed in
the Cartesian coordinates has the form

(15)

where Xi (i = 1, 2) denotes the coordinates X and Y, ni
are the projections of the unit vector normal to the sur-
face of the liquid, and τi are the projections of the unit
vector tangential to the surface of the liquid. Approxi-
mately, we can write τX = 1, τY = ζ', nx = –ζ', and nY = 1.
Changing in Eq. (15) to curvilinear coordinates accord-
ing to the rules formulated in Eqs. (1), we obtain, after
averaging over time,

(16)

As earlier, in Eq. (16), we use only the first-approxima-
tion quantities in the nonlinear terms.

Assume that the desired solution to Eq. (12) has the
form (the final result will justify this assumption)

(17)

where Φ is the solution to the homogeneous equation
and ϕ is the particular solution to Eq. (12). The latter
can be calculated by the fourfold integration of the
right-hand side of Eq. (12) with respect to y. At y = 0,
we have in particular

(18)
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The function Φ satisfies the equation

(the figures in parentheses mean the order of the deriv-
ative with respect to y), whose bounded solution is

(19)

where N and P are unknown constants. Using Eqs. (10),
(11), and (17), we rewrite the first boundary condi-
tion (14) in the form Φ + ϕ = 0. Assuming that the func-
tion ϕ is small in comparison with the function Φ (this
assumption will be justified below), we find from
Eq. (19) that N = 0 at y = 0. For the second boundary
condition, the calculation of the expression in angular
brackets gives

(20)

Then, according to Eq. (10), we have

(21)

Taking into account Eqs. (11), (17), (18), (20), and (21),
we rewrite condition (16) in the form

(22)

Finally, using solution (19) for Φ and neglecting the
small terms, we obtain from Eq. (22)

Consequently, we have the following expression for the
function of current

The components of the vector of average velocity of
mass transfer can be written in the form

(23)

where, again, the partial solution ϕ and dϕ/dy is
neglected.

In the general case, the velocity of mass transfer U
does not coincide with the average velocity of an indi-
vidual liquid particle UL (which is the Lagrange veloc-
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ity). According to Rayleigh [6], the velocity of an indi-
vidual particle in a moving coordinate system is

where x is the radius vector connecting the point that
coincides with particle position averaged over the oscil-
lation period and the point where the particle occurs at
the given instant, and vR is the relative oscillating veloc-
ity of the particle. By virtue of (10), one can show that
the Lagrange velocity is related to the velocity of mass
transfer through the relationship

(24)

The calculation of the second term in Eq. (24) with

allowance for the fact that vR = v – v0 =  gives a quan-
tity whose order of magnitude is determined by the
expression

The comparison of this result with Eqs. (23) shows that
the correction to U in Eq. (24) has a relative magnitude
of the order of ~ε and should be omitted. Thus, in the
case under consideration, we have U = UL.

The velocity of mass transfer is maximal at the
boundary of the liquid (y = 0) and is equal to

If we write the total amplitude of the longitudinal oscil-
lating velocity as 2u0 sinθ (u0 is the velocity amplitude
of each of the incident waves), the expression above is
rearranged to the form

(25)

From this expression, one can see that the most
intense streaming appears when the waves are incident
on the surface at an angle of π/4. The velocities of mass
transfer in the Rayleigh flow near a rigid wall [6] and
near a boundary between two liquids, whose corre-
sponding parameters have comparable values [5], are,

on the order of magnitude, equal to ~ /c and /ck0δ,
respectively. The comparison of these quantities with
Eq. (25) shows that the acoustic streaming considered
in this paper is relatively weak. The structure of the
streaming is similar to that considered in [5]: the
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streaming consists of large-scale vortices that occur
along the boundary and have a characteristic size of the
half-wavelength of sound.
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Abstract—Two phenomenological models of hysteretic equations of state for media with imperfect elasticity
are described and compared. On the basis of these equations, a theoretical study of nonlinear effects caused by
the acoustic wave propagation in an unbounded medium is performed. The profiles, parameters, and spectra of
waves are determined. The distinctive features of nonlinear wave processes in such media are revealed, so that
these features can be used to choose the appropriate hysteretic equation of state for analytically describing the
experimental data. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Traditionally, the propagation and interaction of
acoustic waves in various solid media is described in
terms of the five-constant (or nine-constant) elasticity
theory [1, 2]. This theory, being essentially mathemati-
cal, determines the nonlinear (in the quadratic or cubic
approximations, respectively) equation of state for
homogeneous media (i.e., the dependence of the elastic
stress tensor σij on the components of the elastic strain
tensor εij). For longitudinal stresses σ and strains ε, the
equation of state can be formally derived from the Tay-
lor expansion of a smooth single-valued differentiable
(i.e., analytic) function σ = σ(ε) to the terms quadratic
(or cubic) in ε:

(1)

where E =  is the elastic modulus, γ =

 is the parameter of the quadratic non-

linearity, and |γε| ! 1. In homogeneous solids, such a
nonlinearity is caused by the dependence of intermo-
lecular forces on the molecular displacements, and the
parameter γ is rather small and does not exceed a value
of 10 [2]. The simplest nonlinear effect that accompa-
nies the propagation of a harmonic wave is the genera-
tion of its higher harmonics. In such media (at small
distances from the source, well before the shock front
formation), the amplitude of the nth harmonic is pro-
portional to the nth power of the amplitude of the initial
wave propagating with a constant velocity without
attenuation.

In describing microinhomogeneous media, which
include most types of rock and some metals and struc-

σ ε( ) E ε γ
2
---ε2– …+ 
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--------------
ε 0=
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tural materials (because of their complex structure and
the presence of microdefects like cracks, grains, dislo-
cations, etc.), such an approach is inapplicable. For
these media, the equations of state correspond to the
type and number of defects in them and, as a rule, are
nonanalytic (i.e., nonsmooth and nondifferentiable).
For example, the presence of cracks in a solid may lead
to a difference between its elastic moduli of compres-
sion and tension. A granular structure of the material
may change the power of the nonlinear term in the
equation of state, specifically, from an integer of 2, as
in the five-constant elasticity theory, to a fractional
power of 3/2 [3, 4]. One-dimensional defects of the
crystal lattice, i.e., dislocations, lead to a hysteretic
(ambiguous) stress–strain dependence σ = σ(ε, )
(where  is the strain rate) for polycrystals [5, 6]. As a
rule, the effective nonlinear parameter of microinho-
mogeneous media exceeds the corresponding parame-
ter of homogeneous media and materials by three to
four orders of magnitude. Therefore, the character of
the nonlinear effects accompanying the propagation
and interaction of elastic waves may be not only quan-
titatively but also qualitatively different for different
microinhomogeneous media. This fact can be used in
the diagnostics and nondestructive testing of such
media. From the viewpoint of the latter applications, a
favorable factor is that the nonlinear acoustic properties
of such media are more sensitive to the presence of
defects, as compared to the linear properties.

In recent years, in acoustics (and seismoacoustics
[7]), the nonlinear wave processes occurring in various
microinhomogeneous media have been more and more
often described by equations of state containing a hys-
teretic nonlinearity. In our previous publications [3, 8–
14], hysteretic equations of state with quadratic and
cubic nonlinearities were derived from the analysis of
experimental amplitude dependences of the nonlinear
loss, the resonance frequency shift, and the levels of

ε̇
ε̇
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higher harmonics, which were observed in various
metal (copper, zinc, and lead) and rock (granite, mar-
ble) resonators. The equations were used to study non-
linear wave processes in an unbounded medium and in
a bar resonator by the perturbation method. The com-
parison of the analytic calculations with the experimen-
tal results made it possible to determine the values of
the hysteretic nonlinear parameters of these media. In a
series of theoretical and experimental studies [15–18],
the main results of which were described in a review
[19], hysteretic dependences were obtained by numeri-
cally simulating the behavior of a medium containing
an ensemble of Priesach–Mayergoys elements [20, 21],
which possess a trigger-type hysteresis. In the frame-
work of the hysteresis obtained in this way, a numerical
study of the nonlinear distortion of an initially har-
monic wave was carried out, and from the comparison
of the numerical calculations with experimental data,
the values of the effective nonlinear parameters were
determined for sandstone, limestone, and concrete. In
the following publications [22–26], on the basis of the
results obtained in [15, 16], an analytic (in the quadratic
approximation) description of such a hysteresis was
proposed and a theoretical study of the propagation and
interaction of initially harmonic waves and triangular
pulses was performed. However, in some of the cited
papers [22, 24, 26], the form of the hysteresis was
determined by a single parameter and was strictly sym-
metric, which is more likely to correspond to the behav-
ior of real solids undergoing shear deformation rather
than compressional or tensile one. Other papers [23,
25] used the assumption that the parameters determin-
ing the average slope of the hysteresis loop and its qua-
dratic nonlinearity are identical. All these rather strin-
gent constraints considerably narrow the class of media
described by the cited theory.

Hysteretic properties are typical of many microin-
homogeneous media and, especially, of “soft” metals
and rock. However, one should not expect that all such
media can be described by a single universal equation
of state with different numerical values of nonlinear
parameters for different media (just as the linear defor-
mation of homogeneous and isotropic media is
described by the same Hooke law [1, 2] with different
elastic coefficients for different media). The nonlinear
acoustic properties of microinhomogeneous media are
widely diversified (as compared to those of homoge-
neous media), because even a single medium can
exhibit different behavior in different amplitude and
frequency ranges. For example, in experimental studies
of the nonlinear effects of amplitude-dependent inter-
nal friction in acoustic bar resonators, the dependences
of the resonance frequency shift and nonlinear loss on
the wave amplitude were found to obey different power
laws: for unannealed copper, the exponent in the power
law was equal to 1, and for annealed copper, to 1/2 [3,
8, 9]; for unannealed and annealed zinc, the exponents
were equal to 1 and 2, respectively [13, 14]; for lead,
the exponent was equal to 2 at small amplitudes and to
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
1/2 at large amplitudes [12]; for granite and sandstone,
it was equal to 1 [11, 27, 28]; and for marble, to 2 [11].
In the cited review [19], the authors also mentioned the
linear dependence of the resonance frequency shift on
the excitation amplitude of resonators made of sand-
stone, limestone, and concrete. The manifestation of
identical dependences of the propagation velocity vari-
ation and the nonlinear loss on the wave amplitude
testifies that the medium possesses a hysteretic non-
linearity. Another manifestation of such a nonanalytic
nonlinearity is the identical power-law dependence
(with the hysteretic nonlinearity exponent) of the level
of higher harmonics generated in the medium on the
wave amplitude at the fundamental frequency [8–10].
Precisely these kinds of dependences were observed
in [3, 8, 9, 11, 14].

In the cited publications [3, 8–19, 22–26], different
kinds of hysteresis were used, and, presumably, there
still exists no unified approach to choosing the hyster-
etic equation of state for one or another medium. In
connection with this, the elaboration of principles for
making such a choice is a topical problem of nonlinear
acoustics (and seismoacoustics). We believe that some
progress in this direction may be achieved by studying
and comparing different nonlinear effects that occur in
media with different kinds of hysteretic nonlinearity,
because the character of nonlinear wave processes is
governed by the nonlinearity of the medium.

In this paper, which consists of two parts, we theo-
retically study the effects of nonlinear propagation of
continuous and pulsed longitudinal acoustic waves in
media whose equations of state possess a hysteretic
nonlinearity. First, we describe two basic (asymmetric
in the general case) models of hysteretic equations of
state, and then, in the framework of these equations, we
study the evolution and nonlinear distortion of the con-
tinuous (Part I) and pulsed acoustic waves in an
unbounded medium and in a ring resonator (Part II). On
the basis of these studies, we reveal the distinctive fea-
tures that characterize the nonlinear processes in such
media and allow one to choose the appropriate hyster-
etic equation of state for an analytic description of
experimental results. In describing such nonlinear pro-
cesses, we assume that the nonlinearity of the equation
of state of a medium predominates over the kinematic
nonlinearity of the equations of motion, so that the lat-
ter can be ignored. In this approximation, we can
assume that ε = U and ρ = const (U is the longitudinal
displacement and ρ is the density), and the equations of
the elasticity theory in the Lagrangian and Eulerian
forms coincide.

2. HYSTERETIC EQUATIONS OF STATE
FOR MEDIA WITH AN IMPERFECT ELASTICITY

Many phenomenological equations of state have
been constructed for media with hysteretic nonlinear-
ity, and their detailed description can be found in the lit-
erature [29–31]. The first analytic description of a
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mechanical hysteresis was proposed in 1938 by Dav-
idenkov [32] for explaining the amplitude-dependent
internal friction in materials with the so-called imper-
fect elasticity; the internal friction itself was attributed
to the microplastic deformation of the material. In
1956, Granato and Lucke developed the physical theory
of amplitude-dependent internal friction in polycrystals
[5, 6] on the basis of the Koehler’s string model of dis-
locations [33]. In both these theories, the equation of
state of the medium contains a hysteresis: the area of
the hysteresis loop determines the nonlinear loss, and
the wave-period average of the derivative σε(ε, )
determines the defect of the elastic modulus. In differ-
ent hysteresis models, the nonlinear loss and the defect
of the elastic modulus depend on the strain wave ampli-
tude in different ways, but their ratio r (at relatively
small amplitudes) is constant and amplitude-indepen-
dent in most cases [29–31]. Presumably, there is no
general factor responsible for the hysteretic behavior of
various materials. However, for polycrystals, the hys-
teresis was found to be caused by the separation of dis-
locations from impurity atoms [5, 6, 34]. (The idea that
the mechanical hysteresis is caused by the defects of the
crystal lattice was first put forward by Prandtl as early
as in 1913 [35]. In 1940, Read proved experimentally
that plastic deformation affects the amplitude-depen-
dent internal friction of metals, and he explained this
phenomenon on the basis of the dislocation motion
[36].) The Granato–Lucke theory provides a fairly good
qualitative (and sometimes, quantitative) explanation
of the experimental data on the amplitude dependences
of the nonlinear loss and the defect of the elastic mod-
ulus only for certain sufficiently pure polycrystals. The
nonlinear effects that occur in other solids with imper-
fect elasticity are described by phenomenological hys-
teretic equations.

In this paper, we use the simplest dependences σ =
σ(ε, ) that reflect the main and characteristic features
of the hysteresis manifesting itself in some metals and
rocks, such as unannealed copper [3, 8, 9] and zinc
[18], granite [11], sandstone [19, 27, 28], and limestone
[19]:

—each hysteresis branch is a quadratic function of
strain;

—the transition from one branch to another occurs
with a change of sign of ε and (or)  while the function
σ = σ(ε, ) remains continuous;

—for infinitely small strains, the hysteretic nonlin-
earity is negligibly small;

—the ratio r of the nonlinear damping decrement to
the defect of the elastic modulus (at small strain ampli-
tudes) is constant.

It should be noted that the first of the aforemen-
tioned features is not universal and common to all sol-
ids in which mechanical hysteresis manifests itself,
because, for marble [11], lead [12], and annealed zinc
[13, 14], each hysteresis loop is a cubic rather than qua-

ε̇

ε̇

ε̇
ε̇

dratic function of strain (this case is not considered in
our paper).

In the general case, the equation of state of a
medium can be represented in the form

(2)

where f(ε, ) is a nonlinear function of strain and strain

rate and |fε(ε, )| ! 1. (Note that, in equations of state
(1) and (2), it is also necessary to take into account the
linear term η  [1, 2]. However, since it is not this term
that determines the character of nonlinear wave pro-
cesses, we assume that it is small and can be ignored.
Then, the formulas obtained below will be valid at the

distances x ! L0 = 2 /ηω2, where η is the viscosity of
the medium, C0 is the velocity of a small-amplitude
longitudinal wave, and ω is the wave frequency.)

In the first model of hysteresis, the nonlinear func-
tion has the form

(3)

where |α|εm ! 1, |β1, 2|εm ! 1, and |β1, 2| @ 1. This equa-
tion involves three independent nonlinear parameters,
α and β1, 2, which are responsible for the defect of the
elastic modulus and for the nonlinear loss. Generally
speaking, the nonlinearities of the first and second
terms in Eq. (3) can also be independent, but for the
ratio r (at small strain amplitudes) to be independent of
the wave amplitude εm, it is necessary to set the power
of the first term to be equal to the power of the hyster-
etic nonlinearity, i.e., equal to 2. One can easily see
that, at α = 0 and β1 + β2 = 0, the defect of the elastic
modulus and the nonlinear loss are equal to zero, and
Eqs. (3) describe a quadratic nonlinearity, as the five-
constant elasticity theory. From Eq. (3), it follows that,
when β1 + β2 ≠ 0, zero stresses (strains) correspond to
nonzero strains (stresses). Usually, such nonzero strains
are called microplastic ones, and nonzero stresses,
residual ones. According to this terminology, we call
the first hysteresis (Fig. 1a) inelastic. This kind of hys-
teresis was proposed by Davidenkov [32]; later, it was
observed in the experiments on static deformation of
Australian sandstone, South-African quartzite [37], and
LiF and NaCl crystals [38–41] and used for describing
the amplitude-dependent internal friction (the damping
decrement and the defect of elastic modulus) in these
crystals.
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In the second model of hysteresis, the nonlinear
function has the form

(4)

where |γ1, 2 | ! 1, |γ3, 4 | ! 1, |γ1–4| @ 1,  > 0, and

 < 0. This model contains four nonlinear parameters,
γ1–4. Depending on their relationship, Eqs. (2) and (4)
describe a broad class of media: when γ1 = –γ2 = –γ3 =
γ4, we have Eq. (1); when γ2, 4 = 0, we obtain an equa-
tion with a linear return branch (as in the Granato–
Lucke model [5, 30]). For such a medium (at small
wave amplitudes), both the damping decrement and the
defect of elastic modulus are proportional to the wave
amplitude and, hence, we automatically obtain r =
const [10]. In this model, zero stresses correspond to
zero strains and vice versa, and, therefore, we call the
second hysteresis (Fig. 1b) an elastic one. This hyster-
esis was proposed in [10] and used for describing the
results of experimental studies of nonlinear acoustic
effects in bar resonators made of polycrystalline metals
and different kinds of rock [3, 11–14].

In Eqs. (3) and (4), the quantities εm and  (unlike
the parameters α, β1, 2, and γ1–4) do not characterize the
medium itself but are determined by its maximal and
minimal strain. In the first model of hysteresis, the hys-
teresis branches are interdependent and, hence, εm is the
wave amplitude (εm > 0). In the second model of hyster-
esis, its positive (ε > 0) and negative (ε < 0) branches
are defined independently and, therefore, in the general

case, the quantities  are different; i.e.,  ≠ – .

(The values of  and  correspond to the amplitudes
of the positive and negative half-periods of the wave.)
For the inelastic hysteresis, the nonlinear function is
nonanalytic at two points, ε = εm and ε = –εm, and for

the elastic hysteresis, at three points: ε = , ε = ,
and ε = 0. We also note that, in the hysteresis models, a
positive nonlinear loss corresponds to the clockwise
motion of the working point in the stress–strain dia-
gram σ = σ(ε, ). This corresponds to the condition that
the sums of nonlinear parameters satisfy the inequali-
ties β1 + β2 > 0 and γ1, 3 + γ2, 4 > 0. So far, we impose no
other conditions on the parameters α, β1, 2, and γ1–4 in
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addition to these inequalities and assume that these
parameters are different, which reflects the asymmetry
of the stress–strain diagram of a solid at its compression
and tension. The presence of this asymmetry is con-
firmed, in particular, by the results of experimental
studies of the amplitude-dependent internal friction in
some metals and rocks. For example, for polycrystal-
line copper (depending on its granular structure, which
changes under annealing), the values of the parameters
γ1 + γ3 and γ2 + γ4 varied from 6.6 × 102 and 1.8 × 103

to 1.9 × 104 and 1.5 × 105, respectively [3]; for unan-
nealed polycrystalline zinc, these parameters were
equal to 6.3 × 103 and 2.6 × 104 [14]; and for granite,
they were 9.2 × 103 and 7 × 103 [11]. The wide differ-
ence (several times) in the parameters γ1 + γ3 and γ2 + γ4

testifies to a wide difference in the parameters γ1–4.
Despite the fact that both hysteresis models contain
only the terms that are linear and quadratic in strain, the
nonlinear function f = f(ε, ) is a function of a general
form; i.e., it contains both even and odd components
that depend on the strain in the same way (quadratically
in the case under consideration). As a result, at small
distances from the source, where the nonlinear attenua-
tion of the initial wave is insignificant, the amplitudes
of all its higher harmonics (both even and odd) are pro-
portional to the square of the strain amplitude of the ini-

ε̇

σ

–εm ε
εm

(‡)

σ

εm ε
εm

(b)

–

+

Fig. 1. Dependence σ = σ(ε, ) for media with (a) an inelas-
tic hysteresis and (b) an elastic hysteresis.

ε̇
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tial harmonic wave [10]. For media with a cubic hyster-
etic nonlinearity, the amplitudes of higher harmonics
(at the same small distances) are proportional to the
cube of the strain amplitude of the initial wave. This
distinctive feature allows one to determine the power of
the nonlinear term in the hysteretic equation of state [3,
11–14].

The hysteretic equations presented above notice-
ably differ from one another: the second equation can-
not be derived from the first one, and the first equa-
tion, from the second one. In addition, unlike the sec-
ond equation, the first equation is not an evolutionary
one. This fact specifically manifests itself in that, in
the inelastic hysteresis, both hysteresis branches
depend on the strain amplitude εm, which should not
take place, because, in this case, the residual stress is
determined by the wave amplitude εm, and such a
dependence violates the causality principle: before
being affected, the medium already “knows” the
future strain amplitude and the velocity with which
the wave will propagate in it. Therefore, the first hys-
teretic equation can be used only for describing
steady-state periodic waves, whereas, for describing
transient processes and propagation of unipolar pulses
(or disturbances), it is inapplicable. However, in this
paper, taking into account the limited applicability of
the first equation, we study the propagation of contin-
uous waves and pulsed disturbances in the framework
of both hysteretic equations and then, with the aim of
revealing the common and distinctive qualitative fea-
tures of nonlinear acoustic effects in such media, we
perform a comparative analysis of the results.

θp1

ε
εm

+

θm
–θm

+

θp2

θ

1
2

εm
–

ε

εm

θm
–θm

+ θ

1

–εm

2

(‡)

(b)

Fig. 2. Evolution of an initially harmonic wave in media
with (a) an inelastic hysteresis and (b) an elastic hysteresis
for (1) x = 0 and (2) x > 0.
3. ELASTIC WAVES
IN AN UNBOUNDED MEDIUM

Hysteretic equations of state (2)–(4) together with
the equation of motion [42–44]

(5)

allow us to study nonlinear wave processes in media
with imperfect elasticity. To solve these equations, we
use the method of “sewing together” simple waves cor-
responding to each hysteresis branch. This method was
proposed in [45] and then developed in [22–26]. Substi-
tuting Eqs. (2)–(4) in Eq. (5) and changing to the vari-
ables τ = t – x/C0 and x = x, we obtain an equation for
the waves travelling in the positive direction along the
x axis [42–44]:

(6)

where C0 = (E/ρ)1/2. This equation describes simple
strain waves for each hysteresis branch. For an initially
harmonic wave ε(x = 0, t) = ε0sinωt, its solution (for the
first and second hysteresis models) has the form

(7)

(8)

where θ = ωτ and k = ω/C0.
Figures 2a and 2b show the profiles of simple waves

described by Eqs. (7) and (8) at a distance x from the
source. From these plots, one can see that, within each
period, ambiguities are formed in the wave (because of
the nonanalytic character of functions (3) and (4)) near
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the points ε = ±εm for the first hysteresis model and near

the points ε =  and ε = 0 for the second model. For
the latter, two types of ambiguities are possible: the first

type, near the points ε = , where simple waves inter-
sect (as in the first model at ε = ±εm), and the second
type, near the points ε = 0, where the superposition of
simple waves takes place. The elimination of ambigu-
ities associated with the superposition of simple waves
is achieved by introducing discontinuities in the wave
profile, which are determined from the momentum con-
servation law [42–44]. In a medium described by
Eq. (1), the discontinuities of the wave profile are
formed at the “trailing edge” (  < 0) when γ > 0 and at

the “leading edge” (  > 0) when γ < 0. Then, in the first
hysteresis model in the case of β1, 2 ≥ 0 (we will mainly
consider this case in our study), no discontinuities will
be formed in the wave at all, and the ambiguities near
the points of intersection of simple waves can be elim-
inated by sewing them together at these points. From
Eq. (7), we can easily determine the values of the wave

amplitude εm(x) and the phases (x) corresponding to
the points of intersection of simple waves (Fig. 2a):

(9)

Let us consider the asymptotic profile of wave (7) at
small and large distances from the source. From Eqs. (7)
and (9), it follows that, when x ! x0 = 4/(β1 + β2)ε0k,
the wave form is close to the initial one and εm ≅  ε0, and
when x ≥ x0, the wave profile becomes triangular:

(10)
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The amplitude and propagation velocity of this wave
are determined by the expressions

(11)

Thus, at large distances from the source (x @ x0), an
initially harmonic wave propagating in the medium
with an inelastic hysteresis is transformed to a wave
with a triangular profile with an amplitude εm, which is
independent of the initial amplitude and decays accord-
ing to the law εm(x) ~ x–1.

Consider the evolution of the wave spectrum. At
small distances, we have

(12)

while the damping decrement δ and the relative varia-
tion of the wave velocity ∆C/C0 are determined by the
expressions

(13)

At large distances (x @ x0), we obtain

(14)

(15)

From Eq. (14), it follows that the relative level ζ of the
first harmonic in the triangular wave is determined by
the expression

(16)
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a discontinuity is formed in the wave at its leading (or
trailing) edge at the point ε = 0 at the distance x* =
2/|β1, 2|ε0k. In this case, Eqs. (9) will be valid up to the
coordinate x1 = x*(χ/sinχ) > x*, where χ =
π|β1, 2|/(|β1, 2| + |β2, 1|); at this distance, the discontinuity
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amplitude becomes equal to the wave amplitude. At
large distances, the wave will contain discontinuities
whose amplitude is determined as εm(x) = 2π/|β1, 2|kx.

Now, we determine the form of the wave and its
parameters in a medium with an elastic hysteresis. To
simplify the calculations, we assume that γ1–4 > 0. In
this case, the first type of ambiguities is also eliminated
by sewing together simple waves at the point of their
intersection. From Eq. (8), we obtain

This equation yields

(17)

where µ± = (γ1, 3 + γ2, 4)kx/8.

From the first of equations (17), it follows that, as in
the medium with an inelastic hysteresis, at small dis-
tances from the source (x ! x0 = min[4/(γ1 + γ2)ε0k;

4/(γ3 + γ4)ε0k]), the relation  ≅  ε0 is valid, but at
large distances (x @ x0), the wave amplitude decreases

according to a different law:  =  ~

(ε0/x)1/2.

To eliminate the ambiguities of the second type, in
the wave profile, we introduce discontinuities deter-
mined from the following condition: the area cut off by
the given discontinuity below the curve ε = ε(x, θ) at
ε > 0 should be equal to that at ε < 0 (Fig. 2b) [42–44].
Since (at γ1–4 > 0) at small and large distances from the

source, relations  ! ε0 are valid, we can find

the amplitudes (x) and phases θp1, 2(x) of the dis-
continuities by using the approximate expression for
ε = ε(x, θ) that follows from Eq. (8) and is valid near the
discontinuities at any distances, and outside the discon-
tinuities, at large distances:
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where (x) = 4µ±  + 2  – π.

From the condition that the areas cut off by the dis-
continuities below the curve ε = ε(x, θ) are equal, at the
discontinuity points θp1, 2(x), we obtain

(19)

where µ1, 2 = .

Thus, at large distances, in a medium with an elastic
hysteresis, the positive and negative half-periods of an
initially harmonic wave acquire a pentagonal shape
with the amplitudes decreasing according to the law

 ~ (ε0/x)1/2.

Consider the spectral composition of the wave. At
small distances, by analogy with Eq. (12), we have
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(20)
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At large distances (at γ1 = γ4, γ2 = γ3, when µ+ = µ–

and  =  = εm), we obtain

(22)

(23)

From Eq. (22), it follows that the relative level of the
first harmonic in this wave is determined by the simple
expression

(24)

Expressions (16) and (24) will be used in the second
part of our study to determine the amplitude of a
steady-state wave in a ring resonator.

4. CONCLUSIONS

The comparison of Eqs. (12), (13) with Eqs. (20),
(21) shows that, for small distances, the expressions
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obtained for the damping decrement, the variation of
the wave velocity, and the amplitude of the second har-
monic in the framework of the two hysteresis models
are similar. Hence, by measuring these parameters, one
can conclude whether the medium possesses (or does
not possess) a hysteretic nonlinearity, but the type of
hysteresis cannot be uniquely determined (without
using additional physical considerations). However,
certain distinctions manifest themselves in the wave
profiles: in a medium with an inelastic hysteresis, the
wave has no discontinuities, while in a medium with an
elastic hysteresis, two discontinuities occur within one
wave period. These distinctions lead to a difference in
the spectral composition of waves: in a medium with an
inelastic hysteresis, even harmonics higher than the
second one are absent, while in a medium with an elas-
tic hysteresis, these harmonics are present.

From Eqs. (12) and (13), it follows that, for the
determination of the three independent nonlinear
parameters of the inelastic hysteresis, α and β1, 2, it is
necessary to measure at least three independent param-
eters of the wave: the damping decrement, the relative
velocity variation, and the amplitude of the second har-
monic. Then, the amplitudes of higher harmonics will
be uniquely determined by these quantities. On the
other hand, from the experimentally measured ampli-
tude of one of these higher harmonics (e.g., the third
one), it is also possible to determine independently the
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value of the parameter β1 + β2, which was found earlier
from the measurement of the damping decrement. The
comparison of the values of β1 + β2 obtained from the
two independent measurements allows one to judge
whether the inelastic hysteresis is valid (if the values
are close) or invalid (if the values are different) for
describing the medium under study.

From Eqs. (20) and (21), it follows that, to deter-
mine the four independent nonlinear parameters γ1–4 of
the elastic hysteresis, it is necessary to measure no less
than four independent parameters of the wave at a given
distance x: the damping decrement, the relative velocity
variation, the amplitude of an even (e.g., second) har-
monic, and its phase Ψ2 (relative to the second har-
monic of the fundamental frequency wave received at
the same distance x). In this case, the amplitudes of
higher harmonics and their phases Ψn (relative to the
phase of the nth harmonic of the fundamental fre-
quency wave at the same distance) will be uniquely
determined by these quantities. (The phase of the sec-
ond harmonic in the medium should be determined
with respect to the phase of the second harmonic of the
wave received at the fundamental frequency. For this
purpose, one should take the square of the received fun-
damental frequency wave and select from it the second
“instrumental” harmonic. After this, the phase of the
wave corresponding to the second harmonic in the
medium should be compared with the phase of the
aforementioned “instrumental” second harmonic.)

Using the experimentally measured amplitudes and
phases of higher harmonics, it is possible to determine
independently the values of the parameters an and bn,
and, from the latter, to derive the values of the parame-
ters a1 and b1. The comparison of the values obtained
for the parameters a1 and b1 from two pairs of indepen-
dent measurements allows one to judge whether the
elastic hysteresis is suitable (or unsuitable) for describ-
ing the given medium. A similar procedure has been
used earlier [3, 8, 9, 11, 14] for analytically describing
the nonlinear acoustic effects in bar resonators made of
metals and rocks whose equations of state were deter-
mined by an elastic hysteresis. In the cited publications,
the values of the nonlinear parameters determined from
the resonance frequency shift, the nonlinear loss, and
the level of higher harmonics were in good agreement
with each other.

As one can see from Eqs. (14), (15) and (22), (23),
the qualitative distinctive features that allow one to
choose the appropriate type of hysteresis for describing
a given medium manifest themselves in the wave at
large distances x ! x0 ~ (γ0kε0)–1, where γ0 = [(β1 +
β2)/4, max{(γ1 + γ2)/4, (γ3 + γ4)/4}] is the effective
parameter of hysteretic nonlinearity. These features
manifest themselves in the wave form, the amplitude
dependence of the damping decrement, and the depen-
dences of the wave amplitude on the initial amplitude
and the distance. However, it should be noted that not
every medium with hysteretic nonlinearity allows the
realization of highly nonlinear wave propagation. This
is explained by the fact that the expressions derived

above are valid for distances x ! L0 = 2 /ηω2, while
considerable nonlinear distortions of a wave occur at
the distances x ≥ x0. Therefore, strictly speaking, for the
realization of such wave propagation conditions, the
following inequality should be satisfied: x0 ! L0, or

ε0 @ ϑ /2πγ0, where ϑ  = πηω/  is the damping decre-
ment. Estimates show that, e.g., for annealed copper
and for granite, at ϑ  ≅  10–2, η = 1.6 × 102 cm2/s, γ0 ≅  104

[3, 11, 46], and ω ≅ 2 × 104 s–1 (L0 = 104 cm, x0 = 1.6 ×
103 cm), the amplitude ε0 should be greater than 2 ×
10–7 (γ0Re = 2γ0ρ ε0/ηω ≥ 6 × 102). Nevertheless, the
proposed procedure of determining the type of hyster-
etic equation of state can also be used at smaller strains
and for other solids with the damping decrement ϑ
greater and the nonlinear parameter γ smaller than the
chosen values, because the character of the nonlinear
wave processes (the amplitude dependence of the non-
linear loss and the variations of the wave velocity and
the levels of higher harmonics) is determined by the
nonlinearity of the solid rather than by its viscosity η
(or damping decrement ϑ).
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Abstract—In piezoceramic ultrasonic transducers, the thickness vibrations are usually accompanied by the
excitation of Lamb waves, which are difficult to control. Therefore, the normal velocity distribution over the
radiating surface is unknown. As a result, the ultrasonic field generated by the transducer cannot be predicted
with the desired accuracy. The purpose of this study is to develop and experimentally validate a new method for
evaluating the normal velocity distribution over the surface of an ultrasonic transducer. The method consists in
measuring the amplitude and phase of the acoustic pressure field over a certain reference surface and then cal-
culating the acoustic field at the transducer by using the Rayleigh integral. The accuracy and stability of the
method are illustrated numerically. The method is tested experimentally with a focused piezoceramic trans-
ducer. In the experiment, the reference surface is represented by a plane perpendicular to the axis of the acoustic
beam. The ultrasonic field is scanned by a needle hydrophone, which is moved by a micropositioner. The mea-
surements show that the method provides an accurate prediction of the acoustic field generated by a source with
an unknown nonuniform normal velocity distribution. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Piezoceramic transducers are widely used in visual-
ization, ultrasonic therapy, nondestructive testing, and
acoustic microscopy. To theoretically predict the acous-
tic fields they emit, it is necessary to know the normal
velocity and acoustic pressure distributions on the radi-
ating surface. The Rayleigh integral approximation [1],
which represents the acoustic pressure at a given point
in space as a superposition of spherical waves whose
amplitudes are proportional to the normal velocity
component at the corresponding points of the trans-
ducer, is most commonly used. For simplicity, it is usu-
ally assumed that the vibrations of a piezoceramic plate
are determined by the thickness mode, i.e., that they are
uniform over the radiating surface. However, the accu-
racy of this approximation is not very high, because the
thickness vibrations of piezoceramic transducers are
accompanied by other modes that are difficult to con-
trol, in particular, by the Lamb waves [2, 3]. Therefore,
the distribution of the normal velocity over the trans-
ducer surface is nonuniform. It is difficult to theoreti-
cally predict the structure of the elastic vibrations of a
piezoceramic plate, because the boundary conditions,
which depend on the manner the plate is fixed to the
body, and the electromechanical parameters of the
piezoceramic material are known with a limited accu-
racy. At first sight, the optical interferometry method
1063-7710/03/4903- $24.00 © 20354
can be used to directly measure the normal velocity of
the transducer surface vibrations. However, such mea-
surements are only possible for a source operated in air.
If the transducer operates in water, the acoustooptical
interaction in the liquid plays a significant role. As a
result, the signal from the interferometer cannot be
explicitly related to the displacement of the surface [2].
Thus, the normal velocity (and, all the more so, the
acoustic pressure) distribution over the piezoelectric
transducer is actually unknown.

In this paper, we propose a method for reconstruct-
ing the normal velocity and the acoustic pressure on the
surface of a transducer. The idea of the method is to use
the time reversibility of the wave process [4]. The
reconstruction procedure consists of two stages. First,
the amplitude and phase of the wave is measured over a
certain reference surface in front of the transducer. Sec-
ond, the phase of the wave is reversed and the acoustic
field is calculated numerically on the surface of the
transducer by using the Rayleigh integral over the ref-
erence surface. Similar approaches were proposed ear-
lier for calculating the acoustic fields produced by
transducers. One of them represents the transducer as a
multielement antenna array. The acoustic pressure mea-
sured experimentally at a number of points on the ref-
erence surface is expressed as a superposition of spher-
ical waves produced by individual array elements and,
003 MAIK “Nauka/Interperiodica”
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then, the resultant system of linear algebraic equations
is solved for the particle velocity on these elements [5].
The method has a clear limitation associated with the
necessity to numerically solve systems of complex lin-
ear equations of a very high order. For example, if the
pressure is measured over a 100 × 100 grid, the number
of equations is 10000, which makes the solution of the
problem by a personal computer actually impossible.
The other method relies on the angular spectrum calcu-
lated from the parameters of the wave measured over
the reference surface perpendicular to the acoustic axis.
Theoretically, the field at other points in space can be
calculated exactly from the angular spectrum and, in
particular, the source distribution over an emitting sur-
face can be reconstructed. In the practical realization,
the accuracy of reconstructing the spatial source distri-
bution can be limited by irregularities greater than the
wavelength, because small-scale features of the distri-
bution correspond to exponentially decaying (inhomo-
geneous) components of the angular spectrum. If the
inhomogeneous waves are taken into account, the accu-
racy proves to be rather high. Such an approach is the
basis of the so-called near-field acoustic holography
[6–8]. Unfortunately, it is only applicable to compara-
tively low-frequency waves, for which the field can be
measured at distances from the transducer that are
smaller than or comparable to the wavelength. In the
megahertz frequency range (medical applications and
nondestructive testing), the distance between the mea-
surement plane and the transducer is, as a rule, much
longer than the wavelength. Therefore, the information
on the high-frequency components of the angular spec-
trum is lost and, for the reconstruction algorithm to be
stable, the inhomogeneous components of the spectrum
must be set equal to zero [9–11]. As we noted above,
this leads to a certain smoothing of the reconstructed
distribution, as compared to the true one. A similar lim-
itation is also inherent in the method considered in this
paper. However, it should be noted that, unlike the
angular spectrum method, the approach proposed
below calculates a two-dimensional integral only once
(the angular spectrum method performs the two-dimen-
sional integration twice). In addition, in the phase
reversal method, the surface over which the wave
parameters are measured can be nonplanar. This advan-
tage may be very useful in the studies of transducers
that generate strongly divergent acoustic beams.

THEORY

Consider an acoustic transducer built into a planar
screen. Let the surface of the transducer with the screen
be Σ1 (Fig. 1), and let the acoustic pressure p2(r, t) be
measured on a plane surface Σ2 that is parallel to the
screen. The question arises of whether it is possible to
reconstruct the acoustic field p1(r, t) over the surface Σ1
from the known distribution p2(r, t). An affirmative
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
answer to this question follows from the time revers-
ibility of the wave process. In fact, the wave equation in
a lossless medium, ∆p – c–2∂2p/∂t2 = 0, does not change
under the substitution t  –t. If the transducer is
enclosed in a surface that is a perfect time-reversing (or,
to put it differently, wave-front-reversing) mirror, the
wave propagating to the transducer after the reflection
from such a mirror completely reproduces its original
parameters. As such a closed surface, we may take the
surface consisting of Σ1, Σ2, and a side surface ∆Σ
removed to infinity (see Fig. 1). However, the contribu-
tion due to ∆Σ vanishes, because the solid angle sub-
tended by this surface tends to zero. The contribution of
the surface Σ1 can also be neglected, because the radia-
tion in this direction is small. Hence, we can assume
that, if the acoustic pressure on the plane Σ2 is known,
this data is sufficient to reconstruct the field on the
transducer surface. The accuracy of the method is lim-
ited to about a wavelength; i.e., finer features are
smoothed out. Indeed, the field reconstruction at a cer-
tain point on the transducer surface can be thought of as
focusing of the phase-reversed field, so that the well-
known diffraction limitation on the size of the focal
spot necessarily manifests itself.

We restrict our analysis to a monochromatic source.
In this case, the acoustic pressure can be represented as
p(r, t) = |A|cos(ωt – ϕ) = (Ae–iωt + A*eiωt)/2, where |A|
and ϕ are the wave amplitude and phase and ω is the
circular frequency, so that A(r) = |A|eiϕ is the complex
wave amplitude. We assume that the acoustic pressure
on the reference plane Σ2 is known from the measure-
ments. If we mentally place a time-reversing mirror on
Σ2, the acoustic pressure in the reflected wave will have

S
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x

z

Σ1 Σ2

∆Σ

θ
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r'

dS'
n2

z0
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Fig. 1. Geometry of the problem.
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the form p(r, –t) = (Aeiωt + A*e–iωt)/2 = (Areve–iωt +
eiωt)/2; i.e., the amplitude of the time-reversed

wave will be a complex conjugate of that of the incident
wave: Arev = A*. To calculate the reflected wave on the
left of Σ2, we can use the Kirchhoff–Helmholtz integral,
which represents the amplitude of the acoustic field
emitted by a surface in terms of the normal velocity and
acoustic pressure distributions over this surface. As is
known, if the emitting surface is planar, the Kirchhoff–
Helmholtz integral can be reduced to integrals that con-
tain the distribution of either normal velocity or acous-
tic pressure alone [12]. In particular, if we use the
acoustic pressure distribution, the Kirchhoff–Helm-
holtz integral has the form

(1)

where G(r, r') = eik|r – r'|/4π|r – r'| is the Green’s function
of free space, k is the wave number, n2(r') is the unit
outer normal to the surface Σ2, and dS ' is the element of
this surface (Fig. 1). Since Arev = A*, we arrive at the
expression for the original wave on the left of the plane
Σ2 in terms of the known wave amplitude distribution
on Σ2:

(2)

With the position vector r placed on the surface Σ1, this
formula yields the unknown amplitude of the acoustic
pressure on the transducer and the screen. To find the
normal velocity component, we use the equation of
motion. Let Vn(r) be the complex amplitude of the nor-
mal component of the particle velocity v. The equation of
motion ρ0∂v/∂t = –∇ p yields Vn(r) = –(i/ωρ0)∂A/∂n1,
where ρ0 is the density of the medium and n1 is the unit
normal to the surface Σ1. With Eq. (2), we have

(3)

Expressions (2) and (3) constitute the theoretical basis
of the method. As we can see, the acoustic pressure and
the normal velocity component on the emitting surface
can rather easily be reconstructed from the measured
amplitude and phase distributions of the acoustic pres-
sure over a certain reference surface Σ2. Theoretically,
the distance between the plane Σ2 and the transducer
can be arbitrary.

Note that formula (3) is derived under the assump-
tion that the transducer is planar. For nonplanar trans-
ducers, an error associated with multiple reflections
from the curved emitting surface takes place. However,
for transducers with a small curvature and large wave

Arev*

Arev r( ) 2 Arev r'( )∂G r r',( )
∂n2 r'( )

---------------------- S ',d

Σ2

∫=

A r( ) 2 A r'( )∂G* r r',( )
∂n2 r'( )

------------------------- S '.d

Σ2

∫=

Vn r( ) 2i
ωρ0
--------- A r'( ) ∂2G* r r',( )

∂n1 r( )∂n2 r'( )
---------------------------------- S '.d

Σ2

∫–=
dimensions of their surfaces, which are of interest in
most applications, the error should be insignificant.

NUMERICAL MODELING OF A FOCUSED 
TRANSDUCER

In view of the experiment described in the following
section, we consider an acoustic transducer in the form
of a spherical bowl (surface S in Fig. 1). Such concave
piezoelectric plates are widely used to produce focused
ultrasonic beams in medical applications and in nonde-
structive testing. Due to the axial symmetry of the
transducer, there is no need in measuring the amplitude
and phase over the entire plane Σ2. It is sufficient to per-
form one-dimensional measurements along the radius.

We consider only the normal velocity component on
the transducer surface. Introducing the notation

(4)

we represent Eq. (3) in the form

(5)

Here, A is the measured complex amplitude of the sinu-
soidal wave in the plane Σ2. Let us make use of the axial
symmetry of the problem. We characterize the position
of the observation point on the spherical surface of the
transducer by the angle θ between the symmetry axis
and the straight line that passes through the observation
point and the center of curvature of the transducer sur-
face. To calculate integral (5), we introduce the polar coor-
dinates (ξ, ψ) on the Σ2 plane: r' = (ξcosψ, ξsinψ, z0). Cal-
culating the derivatives that enter into Eq. (4) along the
normals by taking into account their directions (Fig. 1),
we arrive at the following expression for kernel (4):

(6)

where

 

is the distance between the observation point r and the
point r' on the surface and γ = [F(1 – cosθ) – z0][F –
ξ sinθcosψ – (F – z0)cosθ]/R2. The reference plane Σ2
is at the distance z0 from the center of the transducer,
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and the center of curvature of the emitting surface, at
the distance F (Fig. 1). Integral (5) takes the form

(5‡)

where Vn(θ) is the amplitude of the normal velocity on
the transducer surface at the points corresponding to the
angle θ, A(ξ) is the pressure amplitude on the reference
plane at the distance ξ from the symmetry axis, and ξmax
is the radius of the measurement region. The functions
Vn and A depend on one variable each because of the
axial symmetry. Integral (5a) can be calculated approx-
imately as a sum over small surface elements of nearly
the same area into which the circular measurement
region of radius ξmax is divided.

When implementing this method in practice, a num-
ber of questions arise, in particular, the questions of
where is the best place for the reference plane; how
wide the limits should be, where the field is measured
on the reference plane, and what the step size should be;
how does the error in the sound velocity affect the
reconstruction accuracy; etc. To answer these ques-
tions, we used mathematical simulations. We studied a
focused monochromatic transducer. Using the Rayleigh
integral [13]

(7)

we numerically calculated the acoustic pressure ampli-
tude A(r') at different points of the reference plane. The
initial normal velocity distribution was taken to be uni-
form: Vn(r) = 1. Assuming that the calculated data A(r')
represent some experiment, we used formula (5) to
reconstruct the normal velocity distribution on the
transducer surface. The result was compared with the
initial (uniform) distribution Vn(r).

Figure 2 shows the amplitude and phase of the
velocity Vn(r) on the transducer surface that were
reconstructed for different positions of the reference
plane. The horizontal axis represents the angle θ at
which the points on the transducer surface are seen (θ =
0° corresponds to the center of the transducer, and θ =
14°, to its edge). The calculations were performed
with the same parameters as the experiment described
in the next section: the ultrasonic frequency was f =
1.1 MHz, the velocity of sound was c0 = 1476 m/s, the
radius of the measurement region was ξmax = 6 cm, the
transducer diameter was 10 cm, the transducer surface
curvature radius was F = 22 cm, and the measurement
step was 0.3 mm. As we see from this figure, the posi-
tion of the reference plane, in which the acoustic pres-
sure is measured, actually does not affect the recon-
structed normal velocity.

Vn θ( ) ψ K̃ ξ ψ θ, ,( )A ξ( )ξ ξ ,d
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∫d

0

2π
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A r'( ) i
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2π
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ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
Another source of error in the reconstructed distri-
bution Vn(r) may be an error in the value of the sound
velocity. We estimated this effect on the accuracy of the
method through the appropriate numerical modeling.
As we described above, we calculated the field distribu-
tion in the reference plane from the Rayleigh integral
under the assumption that the particle velocity distribu-
tion over the transducer surface is uniform. This “mea-
sured” distribution of the complex pressure amplitude
was used to reconstruct the velocity at the transducer
surface from formula (5) with another, perturbed,
sound velocity value. Figure 3 presents the normal
velocity reconstructed with the error ∆Ò = 25 m/s intro-
duced into the velocity of sound, which corresponds to
a 10°C variation in the water temperature. For the sake

1.0

0 θ, deg

|Vn|/V0

105

0.5

0.2

0
θ, deg105

0.1

z = 5 cm
10
15
23
30

–0.1

–0.2

ϕV

θ z

Fig. 2. Reconstruction of the normalized amplitude |Vn|/V0
and phase ϕV (in radians) of the normal velocity on the
transducer surface for different distances between the refer-
ence plane and the transducer: z0 = 5, 10, 15, 23, and 30 cm;
the horizontal axis represents the angle at which the points
of the transducer surface are seen from the focal point: θ =
0° corresponds to the center of the transducer, and θ = 14°,
to its edge.
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of comparison, the dotted line shows the result of
reconstruction for the unperturbed velocity of sound
c0 = 1476 m/s. Since the velocity of sound has changed,
the phase acquires a certain shift. However, the initial
uniform velocity amplitude distribution proves to be
almost insensitive to the variation in the velocity of
sound and is reconstructed with a sufficiently high
accuracy.

EXPERIMENT

A concave piezoceramic transducer with a curvature
radius F = 22 cm, a diameter of 10 cm, and a resonance
frequency of 1.1 MHz was placed into a 60 × 24 × 30-cm
dish filled with settled tap water. The acoustic pressure
was measured with a PVDFZ44-0400 SEA needle
hydrophone with a sensitive region of 0.4 mm in diam-
eter. After a preamplification, the hydrophone signal
was recorded with a 520A Textronix digital oscillo-
scope. The hydrophone could be moved in three
orthogonal directions with an accuracy of 0.01 mm by
a Velmex-Unislide micropositioning system. A com-
puter, which ran programs from the National Instru-
ments (Austin, Tex.) in LabView language, was used to
control the micropositioner and to read the signals from
the oscilloscope. To avoid the effect of reverberation,
the measurements used the pulsed operating mode. A

0.5

0

|Vn|/V0

ϕV

5 10 θ, deg

0.5

0
5 10

1.0

1.0

θ, deg

Fig. 3. Effect of the error ∆Ò = 25 m/s introduced into the
velocity of sound Ò0 = 1476 m/s (which corresponds to a
10°ë variation in the water temperature) on the normalized
amplitude |Vn|/V0 and phase ϕV (in radians) distributions of
the normal velocity over the transducer surface.
rectangular high-frequency electric pulse was supplied
to the transducer from an HP 33120A signal source. To
model the operation in the CW mode, the pulse dura-
tion and the measurement time window were chosen so
that the transient processes in the transducer and the
hydrophone would be terminated while the signals
reflected from the hydrophone body, the walls of the
dish, etc. would not yet be received.

The experiment was conducted as follows. At first,
we found the position of the symmetry axis (the 0z axis
in Fig. 1), whose direction generally coincided with
none of the micropositioner axes. To this end, the
acoustic pressure amplitude distribution was measured
at a certain distance from the transducer in a plane that
was approximately orthogonal to the transducer axis.
Based on these measurements, the program plotted the
equiamplitude lines on the computer screen. They had
the form of concentric circles with the center assum-
ably lying on the symmetry axis of the transducer.
Then, the hydrophone was placed at this point (center),
and the time delay in the signal arrival was measured.
After that, the hydrophone was moved a certain dis-
tance away from the transducer and the measurement
procedure was repeated to determine the second point
lying on the axis and to measure the delay in the signal
arrival. The coordinates of the two points uniquely
determined the symmetry axis, while the velocity of
sound in water was calculated from the two delays and
the distance between the points. Subsequently, special
programs were used to measure the field in the plane
orthogonal to the symmetry axis determined above.
One of the resulting amplitude and phase distributions
of acoustic pressure is shown in Fig. 4. The two-dimen-
sional (upper) images illustrate the amplitude (on the
left) and phase (on the right) distributions of acoustic
pressure. The phase was measured relative to the signal
fed to the transducer from the oscillator. As we see from
these distributions, the axial symmetry of the acoustic
field is quite pronounced. This means that the time
taken to perform the experiment can be considerably
reduced using the one-dimensional scan in any direc-
tion orthogonal to the symmetry axis instead of the two-
dimensional scan. The corresponding one-dimensional
amplitude and phase distributions are presented in the
lower part of Fig. 4.

After the transverse amplitude and phase distribu-
tions of acoustic pressure were measured, the corre-
sponding complex amplitude distribution of the field in
the reference plane was calculated. Following the
method proposed above, we used Eqs. (5a) and (6) to
numerically reconstruct the distribution of the complex
amplitude of the velocity over the transducer surface.
Figure 5 shows the result of the reconstruction in the
form of the dependences of the amplitude and phase of
the normal particle velocity component on the angle θ.
The acoustic pressure was measured at a distance z0 =
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003



RECONSTRUCTION OF THE NORMAL VELOCITY DISTRIBUTION 359
0.5

–10 –5

|A|

0 5 x, mm

1.0

0

~
–5 0 5–10

–10

–5

0

5

x, mm

y, mm

0

–10 –5

ϕ

0 5 x, mm

π

–π

–5 0 5–10
–10

–5

0

5

x, mm

y, mm

Fig. 4. Measured distributions of the normalized amplitude  = |A|/A0 and phase ϕ of the acoustic pressure in the focal plane z =
220 mm. The upper panels show the two-dimensional distributions in the (x, y) coordinates represented as shades of gray with higher
values corresponding to lighter shades. The point (x, y) = (0, 0) corresponds to the hydrophone position on the transducer axis. The
lower panels show the one-dimensional amplitude and phase (in radians) distributions along the transverse x axis.

Ã

214 mm from the transducer. One can see that the
reconstructed amplitude and phase distributions of the
particle velocity are nonuniform. They exhibit pro-
nounced maxima and minima associated with the Lamb
waves in the piezoceramic plate [2]. In particular, the
velocity amplitude maximum at the center of the trans-
ducer (θ = 0°) is almost twice as high as the average
amplitude of the particle velocity. For comparison, the
thin line illustrates the numerical simulation under the
assumption that the initial velocity distribution is uni-
form (see the previous section).

Note that the velocity reconstruction from the
acoustic pressure measured at different distances from
the transducer gives the same results. Figure 6 shows
the normal velocity distributions reconstructed from
the pressure measured at z0 = 136, 165, and 214 mm.
The plots demonstrate a qualitatively similar behavior;
in particular, the positions and amplitudes of their max-
ima and minima almost coincide. Minor differences
occur, because real transducers are not exactly axially
symmetric and, in the general case, the reconstruction
procedure should use the acoustic pressure measured
over the entire plane rather than along a single line.

Using Rayleigh integral (7) and the reconstructed
normal velocity on the transducer surface, one can cal-
culate the acoustic field at any point of space. The com-
parison of this field with the field measured experimen-
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Fig. 5. Reconstruction of the normalized amplitude |Vn|/V0
and phase ϕV distributions of the particle velocity over the
transducer surface from the acoustic pressure measured
along the transverse x axis at the distance z0 = 214 mm from
the transducer (curves a). The thin lines (curves b) show the
distributions reconstructed from the theoretical pressure
distributions created by a piston transducer at this distance.
The angle θ = 0° corresponds to the center of the transducer,
and the angle θ = 14°, to its edge.
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tally can serve as an implicit validity test for the curves
in Fig. 5. To this end, we performed additional mea-
surements of the wave amplitude. The upper panel in
Fig. 7 shows the acoustic pressure distribution mea-
sured along the transducer axis, and the lower panel, the
pressure distribution measured along the normal to the

1

0 5

|Vn|/V0

10 θ, deg

z0 = 136 mm

165 mm
214 mm

Fig. 6. Reconstruction of the velocity distributions over the
transducer surface from the pressure measured along the
normal to the acoustic axis at the distances z0 = 136, 165,
and 214 mm from the transducer.
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Fig. 7. Measured and calculated acoustic pressure. The

upper panel shows the normalized pressure amplitude  =
|A|/AF along the transducer axis. The lower panel shows the

normalized pressure amplitude  = |A|/A∗  versus x coor-
dinate for z = z∗  = 165 mm. Here, AF = A(z = F) and A∗  =
A(z = z∗ ) are the acoustic pressure amplitudes at the focus
and on the axis of the transducer at z = z∗ , respectively. The
measured values are indicated by oblique crosses. The solid
lines are calculated using the normal particle velocity distri-
bution over the transducer surface that was reconstructed
from the pressure measurements at z0 = 214 mm. The dotted
line represents the calculations for a piston transducer.

Ã

Ã
˜

axis at the distance z0 = 165 mm from the transducer.
The thick solid lines are calculated from the recon-
structed particle velocity, and the oblique crosses show
the experimental results. Note that these calculations
used the distribution reconstructed from the pressure
measured at a different distance (z0 = 214 mm) from the
transducer. For the sake of comparison, the dotted lines
show the pressure reconstructed from the uniform dis-
tribution of the normal particle velocity over the trans-
ducer. One can see that the calculation based on the
reconstructed velocity distribution describes the true
field structure much better. Minor differences between
the calculations and the experiment can be attributed to
the violation of the axial symmetry of the field gener-
ated by the transducer (Fig. 4). As was noted above, this
effect was ignored in our calculations.

The proposed method of reconstructing the velocity
field was also applied to other transducers. The results
were similar, which allows us to conclude that the
method can be used to reconstruct the normal particle
velocity on the surfaces of different transducers.
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The problem on the oscillation of a small (less than
the sound wavelength in size) foreign particle in a
medium in which an acoustic wave propagates has been
known since Rayleigh [1]. Usually, when the interac-
tion of an acoustic field with particles suspended in a
liquid is considered, only monopole and dipole oscilla-
tions are taken into account [2, 3]. As we know, dipole
oscillations of particles occur along the direction of
propagation of the acoustic wave. However, in certain
situations, the center of mass of a particle may not coin-
cide with the point of application of the buoyancy force.
In this case, the particle in an acoustic field experiences
a turning moment alternating with the sound wave fre-
quency. Evidently, the angular oscillations of the parti-
cle will be accompanied by a viscous friction in the liq-
uid and by the corresponding acoustic energy loss.

One might expect that this mechanism of the inter-
action between the acoustic field and the solid particles
suspended in liquid is widespread, because the coinci-
dence of the center of mass and the point of application
of the buoyancy force is hardly probable in the general
case. The angular oscillations of a particle are notice-
able when the density is distributed nonuniformly
inside it. This situation may take place when the parti-
cle is formed by several particles of different density
that are stuck together. This may be, in particular, the
materials subjected to any kind of ultrasonic machining
or biological objects in the ocean, such as phyto- and
zooplankton. We are not aware of any publications con-
cerned with studying this effect in acoustics. In this
paper, we describe the solution of the problem on the
angular oscillations of a spherical particle with a biased
center of mass in an acoustic field and we derive the
relationship and present the estimates of the additional
sound attenuation in an suspension of such particles.

Figure 1 schematically represents the model under
consideration. A spherical particle with a point mass at
its periphery is in the field of a plane acoustic wave. The
point mass may be either positive or negative. The latter
case corresponds to a spherical particle with a small gas
bubble stuck to it. The orientation of the particle in
terms of the angle α between the radius vector that is
directed from the center of the particle to the point mass
1063-7710/03/4903- $24.00 © 20361
and the direction of incidence of the acoustic wave is
assumed to be random. We also assume that the condi-
tion of neutral buoyancy is satisfied, i.e., the mean den-
sity of the particle is equal to the density of the sur-
rounding liquid, and the point mass ∆m is much smaller
than the total mass m of the particle: |∆m| ! m.

Under these assumptions, the equation of rotational
oscillatory motion of such a particle under the action of
the acoustic field has the form

where

(1)

Here, Min is the moment of inertial forces that acts on a
spherical particle of mass m and moment of inertia J =
(2/5)mR3 in the acoustic field because of the presence of
a point mass (∆m) at its periphery, p(t) is the pressure
amplitude of the sound wave, k is the wave number, ρ
is the density of the liquid, δ(ω) =  is the thick-
ness of the oscillating boundary layer (OBL), ν is the
kinematic viscosity of the liquid, and Mfr is the moment
of the viscous friction forces in the rotational oscilla-
tions of the sphere [3].

Solving Eq. (1) for a harmonic field of frequency ω,
we obtain the expression for the viscous power loss in

J α̇̇ Min M fr,+=

M fr
8
3
---νρR3α̇3 6b 6b2 2b3 2ib2 1 b+( )–+ + +

1 2b 2b2+ +
-------------------------------------------------------------------------------,–=

Min i
k ∆m–( )R αp t( )sin

ρ
----------------------------------------------, b–

R
δ ω( )
------------.= =

2ν/ω

k
α

Fig. 1. Schematic representation of the problem.
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rotational oscillations of the particle in the acoustic
field:

(2)

where

V = (4/3)πR3 is the particle volume, ∆ρ is the excess of
density of the particle material over its mean density,
and C is the speed of sound.

We consider now the additional attenuation of sound
in a medium containing a great number of such parti-
cles. If the concentration of particles in the medium is
n, the total power loss is related to the plane wave field
intensity I and the sound attenuation coefficient by the
formula

Assuming that the orientations of the particles are
uniformly distributed in all directions, we derive the
expression for the loss factor

(3)
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Fig. 2. Parameter G as a function of the ratio of the particle
radius to the thickness of the viscous boundary layer.
where

The parameter G(R, ω) describes the efficiency of the
development of such rotational motions of particles in
the acoustic field of frequency ω. The dependence of
the parameter G on the dimensionless ratio R/δ(ω) is
shown in Fig. 2. This dependence exhibits a maximum
at R/δ = 2.5.

Thus, in this paper we proposed a mechanism of
rotational oscillatory motion of solid particles that have
biased centers of mass and are suspended in liquid in an
acoustic field. A simple model of these particles in the
form of spheres with added point masses is considered.
For this model, the additional attenuation of the sound
wave through the viscous loss in the angular oscilla-
tions of particles is calculated.

Let us estimate the possible magnitude of this
effect. For a suspension of particles in water with the
parameters R = 25 µm, nV = 0.01, ∆ρ/ρ = 0.15, and
ν = 10–6 m2/s, the sound attenuation due to the mecha-
nism under discussion is estimated as ε ≈ 6 dB/km at a
frequency of 2.8 kHz and ε ≈ 10 dB/km at a frequency
of 8 kHz. A further study of this effect may be useful for
interpreting the experimental data on the sound propa-
gation in various suspensions.
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The lossless Helmholtz resonator is known to be an
efficient sound reflector in an infinite narrow tube [1–
3]. At the resonance frequency, the incident sound wave
is totally reflected from the resonator, and no traveling
wave occurs behind the resonator. Before the resonator,
the total sound field is equal to the sum of the incident
wave and the reflected wave and has the form of a
standing wave. Assume that we insert the second, dissi-
pative Helmholtz resonator, whose resonance fre-
quency coincides with that of the first (lossless) resona-
tor, at an antinode of this standing wave. One can
expect that, at a certain dissipation in the second reso-
nator, the latter will efficiently absorb the sound [1],
and, in the region before this (second) resonator, the
reflected traveling wave will disappear. Below, it is
shown that, combining a lossless resonator with a cer-
tain dissipative resonator (its friction resistance is equal
to the radiation resistance), one can totally absorb the
sound at the resonance frequency in an infinite narrow
tube. Note that a single resonator with optimal friction
absorbs at most half of the incident wave energy. The
acoustic coupling of two closely positioned Helmholtz
resonators in free space was investigated in [4].

In a narrow (in comparison with the wavelength)
tube, the pressure and the particle velocity depend only
on the x coordinate measured along the tube axis. Let
two Helmholtz resonators be connected to the tube at
the points x = x1 > 0 and x = x2 < x1 and let a harmonic
sound wave with the pressure p0(x) = exp(ikx), where k
is the wave number and the temporal factor exp(–iωt) is
omitted, be incident on the resonators from the left. The
incident wave excites the resonators, and they generate
the fields

(1)

where V1 and V2 are the volume velocities of the first
and second resonators, respectively; ρ is the density of
the medium in the tube; c is the sound velocity in this
medium; and S is the area of the tube cross section. The
total filed in the tube is p = p0 + p1 + p2. We desire to

p1 x( )
ρcV1

2S
------------ ik x x1–( ),exp=

p2 x( )
ρcV2

2S
------------ ik x x2–( ),exp=
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find the resonators’ parameters that ensure the total
absorption of the incident wave:

We obtain the volume velocities V1 and V2 from the
equations of motion of the resonators:

(2)

(3)

where ξ(t), m, r, κ, and σ are the displacement, the
mass, the friction resistance, the elasticity coefficient,
and the cross-sectional area of the resonator throat,
respectively, and the indices 1 and 2 indicate the num-
ber of the resonator characterized by the corresponding
quantity.

The volume velocities V1 and V2 are equal to σ1v 1

and σ2v 2, respectively, where v 1 = (t)exp(iωt) and

v 2 = (t)exp(iωt) are the complex amplitudes of the
particle velocities. We transform Eqs. (2) and (3) to the
form

(4)

(5)

where
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------------,= =

Z12
σ2 p1 x2( )

v 1
--------------------- Z21= =

=  
σ1 p2 x1( )

v 2
--------------------- ρc

σ1σ2

2S
----------- ik x1 x2–( )[ ] .exp=
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Determining the complex amplitudes of the velocities
v 1 = V1/σ1 and v 2 = V2/σ2 from Eqs. (4) and (5) and sub-
stituting them into Eqs. (1), we obtain the scattered
fields p1 and p2. The total field in the tube is

where 

We use this general formula to obtain the fields
behind the resonators (for x > x1) and before the resona-
tors (for x < x2):

In the two latter formulas, we set

where n is an arbitrary integer. Such settings mean that
both resonators are characterized by identical reso-
nance frequencies, the first resonator is lossless, and the
resonators are spaced by an odd number of quarter-
wavelength. With these parameters, we obtain

For r2 = 2Z22 = ρc /S (the second resonator is charac-
terized by the friction resistance coincident with the
radiation resistance), the reflected wave disappears
before the resonators. This means that the resonators
totally absorb the incident wave at the frequency equal
to the resonance frequency of the resonators. We note
that a total absorption is impossible when r1 ≠ 0. For
r1 ! Z11, the amplitudes of the transmitted and reflected

p x( ) ikx( )exp
ρcσ1

2S∆
------------ Z20 Z22+( )σ1 ikx1( )exp[–=

– Z21σ2 ikx2( )exp ] ik x x1–( )exp

–
ρcσ2

2S∆
------------ Z10 Z11+( )σ2 ikx2( )exp[

– Z12σ1 ikx1( )exp ] ik x x2–( ),exp

∆ Z10 Z11+( ) Z20 Z22+( ) Z12Z21.–=

p x x1>( )
Z10Z20

∆
--------------- ikx( ),exp=

p x x2<( ) ikx( )exp
1
∆
--- Z22 Z10 Z11+( ){–=

+ Z11 Z20 Z22–( ) i2k x1 x2–( )[ ]exp } ik x 2x2–( )–[ ] .exp

ImZ10 ImZ20 0,= =

r1 0, k x1 x2–( ) 2n 1+( )π/2,= =

p x x1>( ) 0,=

p x x2<( )

=  ikx( )exp
Z11

∆
------- r2 2Z22–( ) ik x 2x2–( )–[ ] .exp+

σ2
2

waves are approximately equal to r1/2Z11 and r1/4Z11,
respectively.

One can construct a similar resonance absorber for
flexural waves in a thin infinite rod. The simplest reso-
nator is a spring loaded with a weight [5, 6]. Being
located perpendicularly to the rod and attached to the
rod by the spring, such a resonator strongly dissipates
flexural waves. At the resonance frequency, the incident
flexural wave is totally reflected from the lossless reso-
nator. The total field before the resonator has the form
of a standing wave. Assume that we insert the dissipa-
tive resonator, whose resonance frequency coincides
with that of the first resonator, at a displacement antin-
ode of this standing wave. At a certain value of the dis-
sipation coefficient, the reflected wave disappears
before the resonators, and no traveling wave is present
behind the resonators. Calculations show that the total
absorption of the incident flexural wave occurs when
the following relationships take place:

where Y is the compliance of the infinite road under a
point force, Y1 and Y2 are the compliances of the first
and second resonators, and the spacing between the res-
onators must measure an odd number of quarter-wave-
lengths.

Note that the absorption of flexural waves by dissipa-
tive resonators was experimentally investigated in [7, 8].
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Irina Borisovna Andreeva
(January 20, 1918–December 5, 2002)
On December 5, 2002, Irina Borisovna Andreeva—
one of the founders of Soviet and Russian ocean acous-
tics, Doctor of Science (Phys.–Math.), Leading
Researcher of the Andreev Acoustics Institute, and a
winner of the USSR State Award—passed away.

Andreeva was born and educated in St. Petersburg.
In 1939, she graduated from the Polytechnical Insti-
tute and started working as an engineer. In 1940, she
moved to Moscow and began her career in science at
the Institute of Theoretical Geophysics of the Acad-
emy of Sciences of the USSR. During World War II,
Andreeva worked at one of the design offices, where
she continued her research in radio engineering. Her
outstanding scientific and organizational abilities
allowed her to progress from engineer to head of a lab-
oratory within the period from 1943 to 1956. The
results of her studies performed during the war and
postwar years served as a basis for her candidate dis-
sertation. In 1953, Andreeva got her candidate of sci-
ence degree in engineering.
1063-7710/03/4903- $24.00 © 20365
In 1956, already being recognized as an excellent
specialist in her area of research, Andreeva started
working at the Acoustics Institute, which remained
her main place of work to the last day of her life. She
organized a sector (a special research group) for
investigating the sound scattering by oceanic inho-
mogeneities of different origins. Andreeva headed
this sector for more than 30 years. During this period,
she displayed her talent for both experimental studies
and organization of research. She took active part in
the design of the unique research vessels Sergeœ
Vavilov and Petr Lebedev and then participated in
many expeditions on board these ships. The experi-
mental data obtained by Andreeva herself and by
other researchers under her supervision formed the
basis of her doctoral dissertation. In 1971, she
received the degree of doctor of science in physics
and mathematics. Owing to these studies, Andreeva
gained world-wide recognition as a prominent spe-
cialist in sound scattering from biological objects and
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deep scattering layers in the ocean. To this day, every
scientific publication concerned with this subject
contains references to her pioneering works. How-
ever, the scope of Andreeva’s scientific interests was
not restricted to this area of research. She was also
widely known as the author of fundamental publica-
tions on sound scattering from the ocean surface and
on long-range reverberation. Andreeva’s list of publi-
cations contains several hundred scientific papers and
reports and three monographs. One of the mono-
graphs, Ocean Acoustics, earned her the USSR State
Award in 1976.

Andreeva was deeply involved in pedagogical
activities. She supervised many graduate and post-
graduate projects carried out by the students and post-
graduates of Moscow State University; Moscow
Institute of Radio Engineering, Electronics, and
Automation; and Moscow Institute of Physics and
Technology. Today, many of her former students are
excellent scientists—candidates and doctors of sci-
ence. The scientific-organizational activities of
Andreeva are well known. She has chaired the orga-
nizing committees of different symposia, seminars,
and conferences on ocean acoustics. She has also
been the scientific editor of a number of books and
collections of papers.

For her services rendered to the progress of science,
Andreeva received several state awards.

In the last few years, Andreeva continued her active
work in science. She supervised the projects supported
by the Russian Foundation for Basic Research and
aimed at the development of a unique database general-
izing the results of the long-term studies of deep scat-
tering layers in the ocean. Unfortunately, Andreeva had
not enough time to complete this important work.

The shining memory of Irina Borisovna Andre-
eva will forever remain in the hearts of her numer-
ous students, colleagues, friends, and all those who
knew her.

Translated by E. Golyamina
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
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Mikhail Kuz’mich Rumyantsev
(On His 80th Birthday)
Mikhail Kuz’mich Rumyantsev—Distinguished
Professor of Moscow State University, a well-known
Russian linguist, and the founder of the oriental school
of experimental phonetics—is now 80 years old.

Rumyantsev was born on November 17, 1922, near
the city of Gzhatsk (Smolensk region) to a peasant fam-
ily. Before World War II, Rumyantsev took a great
interest in theatrical art and studied for more than two
years at a dramatic studio that followed the ideas of
Meierhol’d. With the outbreak of war on Russian terri-
tory, Rumyantsev became a soldier of the Soviet Army.
After completing a short course at an antitank artillery
college, he took part in military operations and moved
with the Soviet Army from Ukraine to Prague, first, as
the commander of a gunnery platoon and, then, as the
commander of an artillery battery. The evidence of this
period of Rumyantsev’s life are many orders, medals,
and wounds.
1063-7710/03/4903- $24.00 © 20367
After the war, Rumyantsev was demobilized from
the Soviet Army and started studying at the Chinese
Division of the Moscow Institute of Oriental Studies,
where, under the guidance of Professor N.N. Dragunov,
his research interests in the field of phonetics of oriental
languages were formed. In 1962, Rumyantsev orga-
nized the Laboratory of Experimental Phonetics (LEP)
at the Institute of Asian and African States of Moscow
State University. The laboratory was intended for
studying vocal speech of oriental languages on the
basis of the experience gained by Rumyantsev from the
work at the Laboratory of Experimental Phonetics and
Speech Psychology of the Moscow State Pedagogical
Institute of Foreign Languages, which was headed by
professor V.A. Artemov.

The foundation and formation of the LEP became
the main goal of Rumyantsev’s activities for almost
40 years. For a long time, the laboratory was probably
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the only place in the Soviet Union where phonetic–pho-
nological problems of linguistics were studied using
acoustic methods. These methods helped to reveal the
mechanism of a linguistic phenomenon of vocal
speech. The LEP met the requirements of that time and
realized Rumyantsev’s ideas about the role of the major
research center for experimental phonetics of Oriental
and African languages. Postgraduates and lecturers
from many linguistic departments of the institute, as
well as foreign postgraduates, worked and successfully
completed their candidate theses at this laboratory.
During his work at the Institute of Oriental Languages
and, starting from 1956, at the Institute of Asian and
African States of Moscow State University, Rumyant-
sev educated many disciples working now at universi-
ties and institutes of the Academies of Sciences of Rus-
sia and other CIS countries. During these years,
Rumyantsev developed and delivered the most impor-
tant linguistic theoretical courses on phonetics, phonol-
ogy, and grammar of the Chinese language. He also
worked hard on his doctoral thesis. In 1972, Rumyant-
sev’s book Tone and Intonation in the Chinese Lan-
guage was published. Many generations of experts in
phonetics and philology, who majored in the field of
speech prosody, were trained using the materials and
ideas of this book. It is necessary to note that numerous
experiments conducted at the LEP were performed
using the electroacoustic equipment specially devel-
oped there.

In the mid-1970s, in addition to the research in the
acoustic analysis of sounds, studies of the synthesis of
vocal speech were begun at the laboratory. Special
attention was given to the simulation of prosodic units.
Syllables, syllable tones, word rhythmics, and commu-
nicative, modal, and stylistic intonations were simu-
lated using the Chinese, Hindi, Persian, Singhalese,
Russian, and Yoruba languages. Rumyantsev’s
astounding intuition in research manifested itself in this
change from analysis to synthesis. He was one of the
first researchers who could see the potentialities of this
method for the theoretical comprehension of many pho-
netic and phonological processes, as well as for the
practical applications, e.g., in designing a human–
machine dialog system. Rumyantsev has set a global
task for the researchers working at his laboratory: to
develop acoustic alphabets for tonal (isolating) lan-
guages of the Far East, South-Eastern Asia, and West-
ern Africa. He generalized the tremendous amount of
data obtained as the result of experiments and research
conducted in the laboratory in the book Computer Sim-
ulation of Speech Units (By the Example of the Chinese
Language), which was published in 1990.

The scientific works by Rumyantsev are widely
used in Russian and foreign linguistics. They deal with
the hottest problems of the modern science of language.
Rumyantsev’s 80th birthday coincides with the
40th anniversary of the Laboratory of Experimental
Phonetics founded by him at the Institute of Asian and
African States of Moscow State University. Rumyant-
sev continues heading this laboratory to this day.

Colleagues and numerous disciples of Mikhail
Kuz’mich Rumyantsev wish him further success in his
creative scientific and pedagogical activities.

Translated by M. Lyamshev
ACOUSTICAL PHYSICS      Vol. 49      No. 3      2003
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