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Abstract—An inhomogeneous wave exponentially decaying in all directions may exist near the edge of a cir-
cular aperture if the mass and the moment of inertia are appropriately chosen (i.e., their values coincide with
the critical ones) [1]. In this case, the solution to the diffraction problem is not unique. This paper inquires into
the feasibility of the solution to the wave diffraction and radiation problem in the case of critical loading. The
solution is constructed according to the procedure suggested in [2]. It is shown that the diffraction problem
always has a solution while the radiation problem may have no solution. The effects related to the critical mass
and the critical moment of inertia do not manifest themselves in the far field. © 2003 MAIK “Nauka/Interpe-
riodica”.
1. PROBLEM FORMULATION 
AND SOLUTION

Stationary flexural vibrations of a thin elastic plate
are described by the Kirchhoff model

(1)

where k is the wave number and w is the flexural dis-
placement. We write the boundary conditions at a circu-
lar obstacle (at r = R) in the form

(2)

where F and M are the differential operators of the
force and the bending moment on the edge of the circu-
lar aperture; in polar coordinates (r, φ), they have the
form

Here, D is the flexural rigidity of the plate, ν = 1 – σ,
and σ is the Poisson ratio.

Conditions (2) describe the distributed mass load
with a density M and the distributed load of the moment
of inertia with a moment density I. As was found in [1]
and as will be clear from the following, there are some
special densities M and I that allow a nontrivial solution
to problem (1), (2), this solution exponentially decay-
ing in all directions.

We will simultaneously solve three problems with
different excitation sources. In the first case, the field
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scattered by the aperture is excited by a plane flexural
wave

(3)

In the second case, a point force is applied to the edge
of the aperture. In this case, the first boundary condition
in Eqs. (2) is replaced by the inhomogeneous condition

Finally, in the third problem, the field is excited by a
point moment of force applied to the edge of the aper-
ture. Here, the second condition in Eqs. (2) becomes
inhomogeneous:

We search the scattered or radiated field w(r, φ) in
the form

This form obeys the radiation conditions; hence, 
is the Hankel function of the first kind. The coefficients
αn and βn are determined from the boundary conditions.
Passing over the intermediate calculations, which are a
replica of those in [2], we obtain the systems of equa-
tions

(4)
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where

The dimensionless mass m and moment of inertia J are
determined by the formulas

Here, ρ is the surface density of the plate (the mass of a
unit area of the plate) and the wave number is given by
the expression

The right-hand sides of systems (4) are different for
the diffraction and radiation problems. In the diffrac-
tion problem, the incident plane wave generates the
right-hand sides in the form

(5)

where Jn(kR) are the Bessel functions. A point force
leads to the expressions

(6)

and a point moment of force, to

(7)
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Fig. 1. Coefficients (1) α0 and (2) β0 for m = m0(2) and
J = I0(2).
If the determinant of system (4)

is nonzero, the solution is given by the formulas

(8)

(9)

2. ANALYSIS OF THE SOLUTIONS

The quantities in + 1Fn(ikR) and in + 1Gn(ikR) are real-
valued, and they vanish for certain values of m and J.
Resolving equation Fn(iz) = 0 in m, we determine the
functions mn(kR) such that the quantity Fn(ikR) van-
ishes for m = mn(kR). From equations Gn(iz) = 0, we
determine the functions In(kR) such that the quantity
Gn(ikR) vanishes for J = In(kR):

In our previous paper [1], other normalizing factors
were used; in that paper, the plots of the functions
2mn(z) and 12In(z) were presented. If we specify some
index n = n* and some dimensionless frequency z* =
k*R and simultaneously set m = mn(z*) and J = In(z*),
the determinant Z will vanish at the critical frequency
k = k* ≡ z*/R. In this case, formulas (8) and (9) lose sig-
nificance in the general sense.

2.1. The Diffraction Problem

Consider first the problem of the diffraction of a
plane wave. It is not difficult to show that, for m =
mn(z*) and J = In(z*), the right-hand sides of Eqs. (5)
satisfy the identity

(10)

which can be easily verified by direct calculation. Con-
sequently, system (4) for the right-hand sides of
Eqs. (5) remains compatible at the critical frequency.
Figure 1 shows the results of a numerical analysis of
solution (8) for n* = 0 and z* = 2.

Consider now the case of parameters m and J that
are close but not equal to their critical values. We first
set m = tm0(2) and J = I0(2), where the mismatch t is
close but not equal to unity. Figure 2 shows the curves
α0(kR) for t = 0.95, 0.98, 0.99, 1, 1.01, 1.02, and 1.05.
For t ≠ 1, every curve exhibits two resonance peaks, one
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to the left and another to the right from the critical fre-
quency. As the mass tends to the critical value, the dis-
tance between these resonance peaks decreases, and, at
m = m0(2), the peaks merge and cancel each other. A
similar behavior occurs for the mismatch of the loading
moment of inertia.

The scattering pattern Ψ and the effective scattering
cross section Σ are important characteristics of the scat-
tered field; these quantities are determined by the for-
mulas

Figure 3 shows the frequency dependence of the scat-
tering cross section (in decibels) for the critical mass
and the critical moment at kR = 2 and n* = 0. The prom-
inent resonance behavior of this dependence can be
explained by the fact that parameters m and J that are
critical for n = 0 approximately coincide with the criti-
cal parameters corresponding to n ≠ 0 but to greater val-
ues of the dimensionless radius of the obstacle. For this
reason, the frequency dependences of the coefficients
αj for j > 0 exhibit a resonance behavior similar to that
shown in Fig. 2. These resonance peaks appear in
Fig. 3. It turned out that the summation of ten terms
given by formula (8) is sufficient to calculate the effi-
cient scattering cross section for the frequency range
below kR = 5. The error of such an approximation does
not exceed fractions of percent in the whole frequency
range, excluding very narrow resonance regions for the
series terms with numbers j > 10.
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Fig. 2. Coefficient α0 near the critical frequency for m =
tm0(2) and J = I0(2), where t = (1) 0.95, (2) 0.98, (3) 0.99,
(4) 1, (5) 1.01, (6) 1.02, and (7) 1.05.
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2.2. Radiation Problems

Consider now the problems of wave radiation by a
point force and a point moment of force. It is evident
that identity (10) appears invalid in this case, and no
solution to system (4) exists for a given n = n* at the
critical frequency. Again, we choose the mass and the
moment that are critical for n = 0 at kR = 2. Figures 4
and 5 show the results calculated by formulas (8) and
(9). As the driving force or moment frequency
approaches the critical value, the coefficient β0

increases without limit. The coefficient α0 remains
finite and smoothly varies. This means that the critical
frequency does not manifest itself in the frequency
dependence of the effective scattering cross section,
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Fig. 3. Effective scattering cross section for m = m0(2) and
J = I0(2).
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Fig. 4. Coefficients α0 calculated by formula (8) in the con-
text of the radiation problems for m = m0(2) and J = I0(2)
(calculations for (1) a point force and (2) a point moment).
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excluding the fact that no solution exists at the critical
frequency.
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Fig. 5. Coefficients β0 calculated by formula (8) in the con-
text of the radiation problems for m = m0(2) and J = I0(2)
(calculations for (1) a point force and (2) a point moment).
3. CONCLUSIONS

In a plate with a circular obstacle, an inhomoge-
neous flexural wave may exist near the obstacle. This
possibility is realized if the mass and the moment of
inertia distributed along the edge are specially chosen.
With such parameters, the diffraction problem has non-
unique solutions, and the radiation problems have no
solution in the general case. However, these effects do
not manifest themselves in the far field.
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Abstract—The problem of reconstructing the boundary of an arbitrarily shaped defect formed inside an elastic
body from the measured time of arrival of the reflected ultrasonic wave in the echo method is considered. The
characteristic size of the defect is assumed to be greater than the wavelength, and the defect is irradiated from
the far-field zone, which means that the incident wave can be considered as plane. An algorithm is developed
for reconstructing the convex envelope of a nonconvex defect from the arrival times of echo signals measured
at different angles with the use of circular scanning. © 2003 MAIK “Nauka/Interperiodica”.
The problem of reconstructing the shape of a defect
in ultrasonic nondestructive testing belongs to the class
of inverse problems of short-wave diffraction in contin-
uous media. For example, at operating frequencies of
2–5 MHz commonly used in ultrasonic nondestructive
testing, the wavelengths in metals are within 0.5–3 mm;
at the same time, the characteristic size of the most
harmful defects is 3–20 mm, which is an order of mag-
nitude greater than the wavelength. We will consider
the class of problems in which the distance between the
defect and the boundary of the solid containing it is
large compared to the irradiation wavelength. In addi-
tion, we assume that the sample under test can be irra-
diated in a circle (i.e., from all directions in one plane).
Such a model of ultrasonic nondestructive testing can
be realized, for example, by the immersion method
[1, 2]. In the model proposed here, we assume that the
unknown boundary of the defect is irradiated by plane
ultrasonic waves at different angles varying in a circle
(or around a sphere in the three-dimensional case, i.e.,
from all directions in space), and the measured quanti-
ties are the arrival time and the amplitude of the
reflected echo wave in the far-field zone. When the
defect is irradiated by the existing ultrasonic transduc-
ers in the echo mode of operation, one of the two wave
types (longitudinal or transverse) predominates [2]. In
the case of a normal transducer, the predominant waves
are longitudinal, and in the case of a tilted transducer,
the transverse waves prevail.

In solving the problem of reconstructing the shape
of a defect, the general approach is based on the use of
the known amplitude of the reflected wave in the far-
field zone [3–10]. For defects of convex shape, stable
algorithms already exist [4]. However, for a defect of
arbitrary shape, the problem is complicated by the pres-
1063-7710/03/4905- $24.00 © 20491
ence of multiple wave reflections from the nonconvex
parts of the defect. For the special case when the sur-
face bounding the defect has no more than two points
of mirror reflection, a numerical method of defect
reconstruction was developed in [6]. This method pro-
vides a stable reconstruction of a wide range of defect
boundaries at high frequencies. In other publications
[7–10], inverse diffraction problems were treated using
direct numerical nonlinear optimization techniques.
However, the latter are effective only in the low-fre-
quency range. In this paper, we describe a method that
reconstructs a convex envelope of a nonconvex defect
surface, i.e., the minimal convex surface enveloping the
initial surface, from the known arrival times of the
reflected sound wave. Knowledge of such a convex
envelope, which can be reconstructed in real time in the
process of scanning, provides important information on
the characteristic size and position of the defect. In
some cases, this information may be sufficient to draw
definite conclusions about the strength of the structural
element under test.

Let us assume that, in practice, the ultrasonic scan-
ning of an elastic body is performed with the help of an
ultrasonic transducer in such a way that the obstacle
located inside this body and bounded by an unknown
surface S can be irradiated from all directions (in a cir-
cle in the two-dimensional case) by ultrasonic pulses
with a high-frequency sine carrier. This situation can be
realized, for example, when a solid is insonified by the
immersion method [1, 2]. In this case, for any given
direction q, the known quantities are the travel time of
the echo pulse t(q) and the real amplitude of the
reflected wave |A(q)|. If the number of the sine carrier
periods within a single pulse is sufficiently great, the
problem can be studied using the approximation of
003 MAIK “Nauka/Interperiodica”



 

492

        

BOEV 

 

et al

 

.

                                                                                                                                                 
steady-state harmonic oscillations. We denote the con-
vex parts of the surface S by Se and the concave parts,
by Si . We restrict our consideration to the obstacles
whose simply connected surfaces have smooth convex
parts Se and smooth junctions between the parts Se and
Si .

We describe the surface S bounding the defect in a
Cartesian coordinate system OX1X2X3 whose origin of
coordinates O lies inside the surface. The irradiation
direction q and the direction of the outer normal to the
surface S are characterized by the direction cosines
cosα1, cosα2, and cosα3. When the defect is irradiated
with echo pulses along any arbitrary direction q =
{−cosα1, –cosα2, –cosα3}, where cos2α1 + cos2α2 +
cos2α3 = 1, one point of mirror reflection is always
present on Se. The diffraction pattern due to the surface
parts Si is more complicated because of possible multi-
ple reflections.

A closed surface S irradiated along the direction q
has a point of mirror reflection at which the outer nor-
mal n = {cosα1, cosα2, cosα3} to the surface is parallel
to the direction q. Therefore, it is convenient to con-
sider the reconstructed geometric characteristics of S as
functions of n.

The construction of the convex envelope S0 of the
boundary surface S of the defect is possible by knowing
only the function t(q). From this function, we deter-
mine the reference function p(n) (directly dependent on
the known arrival time t(n), where n || q) as the distance
from the center O to the plane characterized by the nor-
mal n and passing through the point of the wave reflec-
tion from the surface. The equation of this tangent plane
has the form

(1)

The convex envelope S0 is the envelope of the two-
parameter family of such tangent planes.

According to the classical theory [11], the boundary
points lying on the surface S0 are determined from the
system of equations

(2)

With allowance for the relations
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which follow from Eq. (1), system (2) takes the form

We solve this system of linear algebraic equations
for the unknown coordinates x1, x2 , and x3. For this pur-
pose, we can use, for example, Cramer’s rule. As a
result, we obtain the Cartesian coordinates of the points
of the convex envelope S0:

(3)

where  = ∂p/∂αi (i = 1, 2, 3).

In practice, the scanning is performed for a discrete
set of directions, along which the measurements are
taken with certain errors. Since the expressions for the
coordinates x1, x2, x3 of the surface S0 involve the deriv-
atives of the reference function p(α1, α2), the calcula-
tion of the coordinates presents an ill-posed problem
[12]. Hence, the direct application of Eqs. (3) in prac-
tice is impossible, first, because of the inaccuracy in the
determination of t(q) and, second, because of the pres-
ence of a finite step in the angular coordinate, which is
not always sufficiently small to provide a correct calcu-
lation of the derivatives of the reference function. Even
for convex parts of the defect surface, the resulting
function p(n) will be only piecewise smooth, and its
first derivatives  (i = 1, 2) used in constructing S0

may differ from the true values not only in magnitude
but also in sign.

With allowance for these features, we construct an
algorithm that provides the approximation of p(α1, α2)
by some smooth function, so that the values of this
function and its derivatives are close to the actual ones.
In practical measurements, when instead of the smooth
function one obtains its approximate values at nodal
points, the basic element of the algorithm is the approx-
imation of the desired function by cubic splines [12].

Assume that we know the approximate values pi of
some smooth function (in our case, the reference func-
tion p(n)) at the points n1, …, nN and the estimate ∆pi of
the rms deviation of pi from the true values of the func-
tion, p(ni). The laboratory measurements and the
numerical experiments on reconstructing the shape of
model defects (these studies are described below) show
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that the estimate ∆pi does not exceed 10%. Let us con-
struct a function f = fδ, which, for the given parameter
δ ∈ [0, 1] determined by the rms deviation, minimizes
the functional [13]

(4)

over all functions f with derivatives up to the second
order.

The minimization of è( f ) represents a compromise
between two requirements: the closest approach to the
preset values pi and the smoothness of the resulting
function. The necessary equilibrium between these
requirements is achieved by fitting δ.

The function fδ is known to be a second-order spline
with simple nodes at the points n2, …, nN – 1, and this
spline satisfies the condition (n1) = (nN) = 0. For
simplicity, we assume that the step ∆n in n is constant.
Introducing the notations ai = fδ(ni) and ci = (ni),
where i = 1, …, N, we obtain the following continuity
conditions for the first derivatives of fδ in the case of a
closed contour:

(5)

The corresponding expression for functional (4) has
the form

Applying to Eq. (5) the approximation of the second
derivatives of the function by its central differences in
the values of the function itself at three nodes, we arrive
at the condition of the minimum of functional (4) in
vectorial form:
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is the maximal error, which makes one tenth of the
characteristic size of the defect.

Now, we change to the vectorial form of Eqs. (5):

(7)

where R and Q are very sparse matrices. In terms of
structure, these matrices are three-diagonal with two
nonzero elements: one nonlinear element in the upper
right corner and one in the lower left corner. Substitut-
ing Eq. (7) into Eq. (6), we obtain a system of linear
algebraic equations for the determination of the vector
c of the second derivatives:

(8)

To investigate the solution of this system of equa-
tions, it is convenient to use the parameter M given by
the formula

With the parameter M, the search for the solution is
reduced to the determination of such a minimal value of
the parameter δ ∈ [0, 1] at which the value of M
obtained for the vector of second derivatives found
from system (8) is smaller than a certain preset value L.

After vector c is determined, from Eq. (6) we obtain
vector a of the values of the function fδ at the nodes:

and the piecewise polynomial representation of the
function f:

The number L should be chosen between  and
N [13]. Such a choice allows us to obtain (with a small
estimate of the rms deviation ∆pi) the function fδ that
yields a sufficiently close approximation of p(n)
together with its first and second derivatives at the
points ni.

It should be noted that, if the estimate of the rms
deviation is wrong or if the way of choosing the number
L is unknown, one should give up the choice and
directly vary the smoothing parameter δ.
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By substituting the resulting piecewise polynomial
approximation of p(n) into Eq. (1), we obtain the
desired surface of the convex envelope S0 of the defect
under study.

The approach proposed above was tested in applica-
tion to cylindrical defects of different cross sections,
which were made at the centers of aluminum plates
65 mm in diameter and 25 mm in height. The character-
istic size of the defect cross sections varied within 10–
15 mm. The generatrix of a defect was parallel to the
generatrix of the plate. To detect the defects, we used
the immersion method of testing: the plate with the
defect and an ultrasonic transducer were placed in a
water bath at a distance of 30 mm from each other. The
velocity of ultrasonic waves was 6100 m/s in aluminum
(the wavelength λl ~ 2.48 mm) and 1490 m/s in water
(the wavelength λ ~ 0.6 mm). The transducer was a
standard normal one with a piezoelectric element
12 mm in diameter and with an operating frequency of
2.5 MHz. The arrival time of the reflected echo signal
was measured using circular scanning with an angular
step of 5° (the generatrix of the plate was parallel to the
plane of the transducer). Figure 1 represents the mea-
sured travel time of the reflected signal between the
defect and the generatrix of the plate versus the scan-
ning angle. The plots shown in Figs. 1a and 2b were
obtained for the defects shown by the solid lines in
Figs. 2a and 2b, respectively.

With allowance made for the error in the time mea-
surements, the inaccuracy in the fabrication of the
model defects, and the relatively large step of the circu-
lar scanning, the total error ∆pi did not exceed 10% of
the characteristic size of the defect cross section.

For the case under consideration, the Cartesian
coordinates (1) of the convex envelope S0 of the defect
take the form [5]

x1 p α( ) αcos pα' α( ) α ,sin–=

x2 p α( ) αsin pα' α( ) αcos ,–=

(a) (b)X2 X2

X1 X1

Fig. 1. Front of the reflected wave for different defects.
Plots (a) and (b) correspond to the defects shaped as shown
in Figs. 2a and 2b, respectively.
where α is the angle between the normal to the defect
boundary at the reflection point (x1, x2) and the positive
direction of the OX1 axis. In the realization of the pro-
posed method of reconstructing S0, the number L is L ∈
[15, 25] at N = 360°/5° = 72, and the deviations ∆pi are
about 10% of the characteristic size of the defect cross
section. The cross sections of the convex and noncon-
vex defects made in the samples are shown by the solid
lines in Figs. 2a and 2b, respectively. The dashed lines
in the same plots represent the reconstruction of the
defects with the use of the proposed method. The con-
vex parts of the defect surfaces with weakly varying
curvature (see Fig. 2) are reconstructed with a relative
error of 0.5–2% (with respect to the characteristic size
of the defect). As the curvature of the convex parts var-
ies faster, the error increases up to 4%.

In conclusion, we summarize the results of the
reconstruction as follows: the approach proposed in this
paper provides the reconstruction of the convex enve-
lope of an arbitrarily shaped defect on the basis of the
values obtained experimentally for the time of arrival of
the reflected ultrasonic wave from testing with a circu-
lar irradiation. The error in reconstructing the convex
envelope of the defect with the use of circular scanning
depends on the step in angle and on the error in measur-
ing the arrival time of the reflected echo signal by
present-day equipment.
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Abstract—The uniqueness and stability of a discrete inverse scattering problem (functional description) is con-
sidered. The number of degrees of freedom, which determines the way of sampling for the functions of the scat-
terer and the secondary sources induced in it, may considerably vary from one problem to another, thus provid-
ing the adequacy of the discrete formulation of a specific problem. This number depends on the size of the scat-
tering region in space and on the widths of the spatial spectra of both the scatterer and the secondary sources.
Nonuniqueness of the solution occurs because of the configurations of secondary sources that exist in the scat-
tering region and are not observable in any of the experiments. It is shown that precisely the number of degrees
of freedom of the secondary sources determines the amount of discrete scattering data that is necessary to pro-
vide a unique solution. If this amount is collected in the experiments without exceeding a certain classical
limiting resolution, the solution to the inverse problem is unique and stable. © 2003 MAIK “Nauka/Interperi-
odica”.
The inverse scattering problem, which is the prob-
lem of reconstructing the internal structure of an object
sounded by wave fields, is a nonlinear ill-posed prob-
lem. This combination of properties makes analysis of
the possible stability and uniqueness of its solution par-
ticularly complex and, at the same time, topical. In fact,
the property of the problem of being ill-posed naturally
leads to the instability of its solution. However, since
the problem is nonlinear with respect to the scattering
data measured experimentally, the nature of the unique-
ness and stability of its solution may essentially change
with increasing scatterer strength.

The purpose of this paper is to draw the reader’s
attention to the importance of the connection between
the nonuniqueness and the instability of the solution of
the inverse acoustic scattering problem for scatterers of an
arbitrary strength and to the significance of the redun-
dancy of experimental data, without claiming mathemati-
cal consistency and rigor in our presentation of the solu-
tion. This issue is nontrivial and allowance for these fac-
tors in solving applied problems is important, because
the problem is nonlinear with respect to the character-
istics of the scatterer. The analysis of this problem was
started in [1], and this paper further elaborates upon it.

1. COMPARISON OF THE FUNCTIONAL 
DESCRIPTION OF THE SCATTERER 

WITH THE DESCRIPTION AS A SET OF POINT 
SCATTERERS: BROADENING OF THE SPATIAL 

SPECTRUM OF SECONDARY SOURCES

The acoustic scatterer created by irregularities of the
acoustic phase velocity and by the attenuation factor
1063-7710/03/4905- $24.00 © 20496
and density of the medium is described by a function
ε(r). To reconstruct ε(r), the scatterer is insonified by
the incident field U0(r, α) whose parameters (including
field configuration, incidence direction, and frequency)
are characterized by a single index α. The interaction of
U0 and the scatterer induces secondary sources I(r, α)
in the scattering region ℜ :

(1)

where U(r, α) is the total field, which, in the single-fre-
quency case, satisfies the Lippmann–Schwinger equa-
tion [2]

(2)

Here, G(r, k0) is the Green’s function of the lossless
infinite homogeneous medium with the wave number k0
corresponding to the given α. As follows from formulas
(1) and (2), the secondary sources produce the scattered
field usc(r, α) ≡ U(r, α) – U0(r, α). Multiplying Eq. (2)
by ε(r) and performing the Fourier transformation in
the r coordinate, we obtain the relationship that relates
the spatial spectrum of the scatterer (x) ≡

(r)exp(−ixr)dr to its secondary sources (x, α):

(3)

I r α,( ) ε r( )U r α,( ),≡

U r α,( ) U0 r α,( )=

+ G r r'– k0,( )ε r'( )U r' α,( ) r' r.∀d∫

ε̃
ε∫ Ĩ

Ĩ x α,( ) ĨBorn x α,( )=

+
1

2π( ) p
------------- ε̃ x x'–( )G̃ x' k0,( ) Ĩ x' α,( ) x',d∫
003 MAIK “Nauka/Interperiodica”
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where p is the number of dimensions of the space and

(x, k0) = (|x |, k0) is the spatial spectrum of the
Green’s function. The single-scattering approximation
(Born approximation) assumes that U(r, α) ≈ U0(r, α)

for r ∈ ℜ ; then (x, α) ≈ (x, α), where

(4)

and (x, α) is the spatial spectrum of the incident
field.

In the simplest case, a scatterer with a complicated
structure is represented as a set S of point scatterers

located at the points rs, s = :

(5)

The scattering capability εs includes all internal pro-
cesses of scattering by these infinitesimal scatterers. As
a result, εs associated with each point scatterer charac-
terizes the secondary source excited only by fields that
are external with respect to the point scatterer, i.e., by
the fields produced by primary field sources and by the
fields scattered by the remaining point scatterers. In
other words, εs is the renormalized coefficient of pro-
portionality between the amplitude of the secondary
source produced by the external field at the point rs and
the local value of this field, which excites the scatterer.
The renormalization removes the singularity in the
Lippmann–Schwinger equation (2) in the limiting case
of point sources.

As follows from representation (5), secondary
sources (1) appear only at the points rs. Therefore, the
number of degrees of freedom that describe the scat-
terer and secondary sources is the same and is indepen-
dent of the scatterer’s strength. In the general case of a
spatially distributed scatterer, it is defined by a function
ε(r), which must be reconstructed over the entire con-
tinuum of r ∈ ℜ . If the scatterer is strong enough (so
that the multiple scattering processes inside ℜ are sig-
nificant), the region in which the main portion of the

spatial spectrum (x, α) of the secondary sources is
localized proves to be broader than that for the scatterer
spectrum (x) [3–6]. The broadening effect is seen
directly when expanding (3) into the Born–Neumann
series [2, 6] in powers of (x). The process is governed
by two mechanisms. On the one hand, each new scatter-

ing event broadens the spectrum (x, α). On the other

hand, the main portion of (|x |, k0) is concentrated
near the Ewald surface (|x | = k0) and therefore exhibits
a filtering effect [3]: the convolution in Eq. (3) restrains

the broadening of the spectrum (x, α). As a result, if
(x) is sufficiently well localized in a certain domain of

G̃ G̃

Ĩ ĨBorn

ĨBorn x α,( ) 1

2π( ) p
------------- ε̃ x x'–( )Ũ0 x' α,( ) x',d∫=

Ũ0

1 S,

ε r( ) εsδ r rs–( ).
s 1=

S

∑=

Ĩ

ε̃

ε̃

Ĩ

G̃

Ĩ
ε̃
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spatial frequencies, (x, α) may also appear to be well
localized, although its support is not strictly finite. The
stronger the scatterer is, the broader the localization

region of (x, α) compared with that of (x).

For the discrete mathematical description of the
scattering process to be adequate, this circumstance
should be taken into account. For instance, it is often
convenient to represent the functions ε(r) and I(r, α) as
expansions into the basis functions {ζs(r)} and

{ (r)}:

(6)

where εs and  are the expansion coefficients. Formu-
las (6) assume that the necessary accuracy is provided
by a finite number of their terms. The basis functions

{ζs(r)} and { (r)} and their dimensions S and Nα
must be consistent with widths of the spatial spectra
and overall sizes of the scatterer and secondary sources,
respectively. These values can be estimated based on
prior information about the statistical classification of
the scatterers being reconstructed. Such an estimation
method will be addressed in a separate paper.

These basis functions may be chosen in an econom-
ical or uneconomical manner. The economical manner
takes the number of functions {ζs(r)} in Eqs. (6) equal
to the number S of the scatterer’s independent degrees

of freedom. The number of the functions { (r)} is
taken equal to the number Nα of the independent
degrees of freedom that characterize I(r, α) at a partic-
ular α. By “independent degrees of freedom” we under-
stand such a combination of parameters (in this case,
parameters that give a sufficiently full description of the
scatterer or secondary sources) that, being averaged
over a multitude of scatterers of a particular type, pro-
vide a cross-correlation coefficient that is much less
than unity; then, none of these parameters can be recon-
structed from the remaining ones. Consequently, the
secondary sources must in the general case be
described in terms of a fuller basis that is consistent
with their broadened spatial spectrum. The uneconom-
ical manner may use a common basis to describe both
ε(r) and I(r, α) at all α [7]. The spatial sampling of the
functions ε(r) and I(r, α) (or the internal fields) consis-
tent with the sampling theorem can also be performed
in two ways. The first way is to sample both functions
in accordance with the total (in α) width of the spectra

(x, α). The second way is to introduce two spatial
grids with different spacings: one of them samples ε(r);
the other (a finer one) samples I(r, α) [8]. The number
of independent spatial samples in both cases however
equals S for ε(r) and Nα for I(r, α) at each particular α.

Ĩ

Ĩ ε̃

Ψk
α

ε r( ) εsζ s r( ), I r α,( )
s 1=

S

∑ θk
αΨk

α r( ),
k 1=

Nα

∑= =

θk
α

Ψk
α

Ψk
α

Ĩ
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For the point-scatterer representation given by
Eq. (5), all bases in (6) are inherently the same, because
they are represented by linear combinations of the func-
tions {δ(r – rs)}; then, Nα = S at α.

2. THE POSSIBILITY OF A NONUNIQUE 
RECONSTRUCTION OF STRONG SCATTERERS: 
THE CONDITIONS FOR A UNIQUE AND STABLE 

RECONSTRUCTION

We say that a scatterer is weak if |usc(r, α)| ! |U0(r, α)|
for r ∈ ℜ ; then Nα = S ∀α . For a scatterer of medium
strength, at no point of the scattering region does the
scattered field exceed the incident one: |usc(r, α)| <
|U0(r, α)| ∀ r ∈ ℜ . Finally, for a strong scatterer, among
the incident fields, a field can be found for which |usc(r,
α)| > |U0(r, α)| at least at one point r ∈ ℜ . It is impor-
tant that, for a scatterer consisting of a number of point
scatterers, usc(r, α) denotes the scattered field created at
the points of their locations {rs} by all the point
sources, except for the scatterer located at the point of
interest r = rs ∈ ℜ , where ℜ ≡  .

It is known that the reconstruction of a strong scat-
terer is nonunique, which is most simple to illustrate by
the existence of invisible scatterers. Let a finite number
A of experiments be performed and each of the experi-
ments be associated with a particular incident sounding

field U0(r, α), α =  and with a finite number of dif-
ferent observations of the scattered field (scattering
data). Each experiment records (outside ℜ ) B values

usc(yb, α), where yb ∉ ℜ  and the index b = , b
describes a fixed number of the receiver’s parameters
(for instance, its location). The total number of the scat-
tering data collected in all the experiments is AB. The
invisible scatterer is the scatterer for which all of the AB
data (this number is finite) values are zero: usc(yb, α) = 0

for α =  and b = . It should be noted that, in
this paper we consider a finite number (rather than a
continuum) of zero data. Indeed, a scatterer in the form
of a set of point scatterers cannot produce any field out-
side the region ℜ  even for one particular U0(r, α) (by
definition, a scatterer is called a nonradiative scatterer
at a particular α if usc(y, α) ≡ 0 for y ∉ ℜ ). At the same
time, a spatially distributed scatterer can be a nonradia-
tive scatterer for one particular field U0(r, α) [9]. For a
continuum of incident fields, only a scatterer whose
ε(r) decreases with distance no faster than a certain
function may be a nonradiative scatterer [10].

The subsequent analysis relies on the general rela-
tionships for the observed scattered field, irrespective
of the particular technique used for solving the inverse
problem. To derive these relationships, it is convenient
to represent the functions that enter into Eq. (2) in dis-
crete form and, as in [3, 4], introduce the following
operators:  is the diagonal operator defined by the dis-

rss∪

1 A,

1 B,

1 A, 1 B,

ε̂

crete values of ε(r),  is the column vector of discrete

values of U0(r, α), and  and  are the operators

with the Green’s function as the kernel (  acts from

ℜ to the observation region outside ℜ  and  acts
inside ℜ ) defined as

The variables in the parentheses of the operators are
actually arguments of the related kernels. Equation (2)
should be satisfied at the observation points inside ℜ
and outside it as well:

(7)

(8)

Relationship (7) multiplied by  yields the function of
secondary sources [4]

(9)

where  is the unit operator (for passive media, all

eigenfunctions of the operator  –  are complex-
valued [11] and, therefore, the inverse operator always
exists). Let us substitute relationship (9) into Eq. (8):

(10)

where  is the column vector composed of discrete
values usc(yb, α). Applying the Hermitian conjugate

operator  to Eq. (10), we obtain

(11)

In the discrete representation, the operator ,
which acts on I(r', α), is a square matrix independent of
α. Therefore, the set of all eigenvectors of this operator
(matrix), which at the same time are the Schmidt fun-

damental union elements of the pair of operators 

and  [2], could be used as a basis for the secondary
sources I(r, α) for all α. However, when used to func-
tionally describe a scatterer I(r, α), this basis is not eco-
nomical for each particular α. Therefore, below we will
attempt to find an economical basis to describe the sec-

ondary sources at any . To this end, we introduce

the projection operator (r', r'')(• ) ≡ (r', r'',

α)(• )dr'', (r', r'' ∈ ℜ ), which acts in the space of sec-
ondary sources, into Eqs. (2), (10), and (11). The space
of secondary sources is the function space spanned by

U0
α

Q̂out Q̂in

Q̂out

Q̂in

Q̂out yb r',( ) •( ) G yb r'– k0,( ) •( ) r';d∫≡

Q̂in r r',( ) •( ) G r r'– k0,( ) •( ) r';d∫≡

yb ℜ ; r r' ℜ .∈,∉

U r α,( ) U0 r α,( ) Q̂inε̂U , r ℜ ;∈+=

U yb α,( ) U0 yb α,( ) Q̂outε̂U , yb ℜ .∉+=

ε̂

I r α,( ) ε̂U≡ Ê ε̂Q̂in–[ ] 1– ε̂U0
α
,=

Ê

Ê ε̂Q̂in

usc
α

Q̂out Ê ε̂Q̂in–[ ] 1– ε̂U0
α
,=

usc
α

Q̂out
+

Q̂out
+

usc
α

Q̂out
+

Q̂out Ê ε̂Q̂in–[ ] 1– ε̂U0
α
.=

Q̂out
+

Q̂out

Q̂out

Q̂out
+

U0
α

P̂
α

P∫
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functions that describe the secondary sources produced
by scatterers of a particular type in response to incident

fields with all permissible α. The operator  extracts
from all possible secondary sources only the sources

that can be produced by the given particular :

(r', r'', α)I(r'', α)dr'' = I(r', α). For example, from

the x-representation, the projector  extracts the spa-
tial frequency domain that contains components of

(x, α) for the given incident field, so that these com-
ponents remain unaffected. Then, we have

(12)

(13)

Relationships (10) and (11) are equivalent to Eqs. (12)
and (13). At the same time, the eigenvectors of the Her-

mitian operator  represented as an Nα × Nα
square matrix that acts on the discrete vectors I(rn, α)

(n = ; below, we assume for simplicity that Nα ≈ N
for α) form the desired economical basis for the sec-
ondary sources produced by a particular incident field.
This operator is a degenerate operator. Its rank is B,
because we assume that the tomographic experiment is
arranged so that a weak scatterer (N = S) can be
uniquely reconstructed from complete nonredundant
(AB = S) scattering data. Such an arrangement can
always be provided by appropriately choosing the pri-
mary fields and the characteristics of the receiving sys-
tem. The rescattering processes increase the number of
degrees of freedom that characterize the secondary
sources and, hence, cannot reduce this rank. Therefore,
among N linearly independent eigenvectors of the oper-

ator , B (B < N) eigenvectors

{ (rn)  correspond to nonzero eigenvalues and

describe the part of the secondary sources observed by
the receivers. The remaining N – B eigenvectors

{ (rn)  correspond to zero eigenvalues and

describe the part of the secondary sources not observed
by the receiving system. It is convenient to choose these
very N eigenvectors as the economical basis

{ (rn)  (see Eqs. (6)). Then, as follows from

Eqs. (9) and (13), for a particular , the secondary

P̂
α

U0
α

P∫
P̂

α

Ĩ

usc
α

Q̂outP̂
α

Ê ε̂Q̂in–[ ] 1– ε̂U0
α
;=

P̂
α
Q̂out

+
usc

α
P̂

α
Q̂out

+
Q̂outP̂

α
Ê ε̂Q̂in–[ ] 1– ε̂U0

α
.=

P̂
α
Q̂out

+
Q̂outP̂

α

1 Nα,

P̂
α
Q̂out

+
Q̂outP̂

α

ηk
α

}
n 1 N,=

k  = 1 B,

ψk
α

}
n 1 N,=

k  = 1 N B–,

Ψk
α

}
n 1 N,=

k  = 1 N,

U0
α
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sources can be represented in terms of B observable
configurations and N – B nonobservable configurations:

where { } and { } are the appropriate expansion
coefficients.

By definition, for the invisible scatterer ε(r) ≡
εinv(r), we have { } ≡ 0 for α = ; i.e.,

(14)

(15)

Because  is a diagonal operator, at an arbitrary point
r, we have

(16)

The unknown coefficients  satisfy the
relationships

(17)

which are valid for any pair (α = α1, α = α2) by virtue
of relationship (1). Since, according to Eq. (7), U =

U0 + I (r ∈ ℜ ), the substitution of Eq. (14) into
Eqs. (17), with α1 alone fixed, gives

(18)

I rn α,( ) Ê ε̂Q̂in–[ ] 1– ε̂U0
α

=

=  gk
αηk

α rn( ) ai
αψi

α rn( ),
i 1=

N B–

∑+
k 1=

B

∑
α 1 A, ,=

gk
α

ai
α

gk
α

1 A,

I rn α,( ) Ê ε̂invQ̂in–[ ] 1– ε̂invU0
α

ai
αψi

α rn( ),
i 1=

N B–

∑= =

α 1 A, , which yields=

ε̂inv U0
α

ai
αΦi

α

i 1=

N B–

∑+ ai
αψi

α

i 1=

N B–

∑ ,=

Φi
α

Q̂inψi
α
.≡

ε̂inv

εinv r( )

=  ai
αψi

α r( )
i 1=

N B–

∑ / U0 r α,( ) ai
αΦi

α r( )
i 1=

N B–

∑+ .

ai
α{ } i 1 N B–,=

α  = 1 A,

U rn α1,( )I rn α2,( ) U rn α2,( )I rn α1,( )=

or  I r α2,( ) = I r α1,( )
U r α2,( )
U r α1,( )
--------------------- r∀ 

  ,

Q̂in

Zi

α2α1 rn( )ai

α1 Z j

α1α2 rn( )a j

α2

j 1=

N B–

∑–
i 1=

N B–

∑

+ Mij

α1α2 rn( )ai

α1a j

α2

j 1=

N B–

∑
i 1=

N B–

∑ 0,=

α2 1 A, , α2 α1,≠=
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where (rn) ≡ U0(rn, α1) (rn), (rn) ≡ U0(rn,

α2) (rn), and (rn) ≡ (rn) (rn) –

(rn) (rn) are known. The number of unknowns

 in system (18) is (N – B)A, and it is nec-
essary to find the number of independent equations in
the system. (By independent equations, we mean such
equations that, if any of them is excluded from the sys-
tem, the set of admissible solutions becomes wider.)
The number of different pairs (α1, α2) at a particular α1
is (A – 1). For any other pair (α', α''), equalities (17) are
an evident consequence of the equalities considered
above for the pairs (α1; α2 = α') and pairs (α1; α2 = α''),
and, therefore, they do not produce new independent
equations like Eqs. (18). For a particular pair (α1, α2),
relationships (17) (and, hence, (18)) can be considered
at N points  where the secondary sources are

statistically independent. We mean that, at a particular
α, I(rn, α) at any point rn cannot be expressed in terms
of its values at the remaining points by a rule that is
common for all scatterers of the class considered. Thus,
the total number of independent equations in (18) is

N(A – 1). Each particular set  that is a solution
vector of system (18) is associated with a type of invis-
ible scatterer derived from Eq. (16).

Scatterers considered in [2, pp. 124–127] are indis-
tinguishable (in terms of the discrete measurement
scheme under study) from a given scatterer εf (r); i.e.,

the scattered fields usc(yb, α) (α =  and b = )
observed in the given number of experiments with
transmit–receive elements whose parameters are dis-
crete are the same for εf (r) and the corresponding
indistinguishable scatterers. System (18) for invisible
scatterers is a particular case of the system of equations
for indistinguishable scatterers at εf ≡ 0. The number of
indistinguishable scatterers (which certainly equals the
number of solutions to the inverse scattering problem
described by our discrete measurement scheme) is
determined by the number of solutions to a system of
equations analogous to Eqs. (18). This number (not
known exactly), on the one hand, depends on the total
number N(A – 1) of independent equations in a system
analogous to system (18) and the number (N – B)A of

unknowns . On the other hand, when
evaluating this number, one should impose the require-
ment that the passive scatterer be physically feasible:
the sign of the imaginary part of the refractive index
must correspond to a lossy medium. Information about
the width of the scatterer’s spatial spectrum may also
impose certain constraints.

It should be emphasized once more that system (18)
does not describe a method for solving the inverse scat-
tering problem. It is only intended for analyzing the
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possibility that invisible and indistinguishable scatter-
ers will occur; i.e., it serves to analyze the uniqueness

of the solution. A zero solution  ≡ 0 (∀ i, ∀α ) to a
system of equations analogous to system (18), which
corresponds to the absence of scatterers or to a true
scatterer εf (r), is always present. If this solution is
unique, the solution to the inverse problem is also
unique. However, in the general case, if the number of
equations in the system is equal to the number of
unknowns, its solution is not unique, because the sys-

tem is nonlinear due to the cross terms . There-
fore, the necessary condition for the solution to the
inverse scattering problem to be unique is that the
amount of scattering data be increased so as to make
system (18) overdetermined:

(N – B)A < N(A – 1), or AB > N. (19)

The true solution automatically satisfies all equations
of the overdetermined system because, being associ-
ated with the same scatterer, they have the same physi-
cal origin.

Condition (19) relates the amount AB of the experi-
mental scattering data to the number N of degrees of
freedom of the secondary sources. It is important that,
first, A and B appear symmetrically, which agrees with
the reciprocity theorem. Second, formula (19) contains
the number N of independent parameters that describe
the function I(r, α) for only one incident field, because,
if we know I(r, α1) at only one α = α1, we can find I(r, α)
for any arbitrary α. Specifically, Eq. (7) yields U(r, α1) =

U0(r, α1) + I(r', α1), r ∈ ℜ . Then, ε(r) = I(r,
α1)/U(r, α1) and I(r, α) can be found from Eq. (9) for
α. Third, when we analyzed the number of invisible
scatterers (or indistinguishable scatterers), i.e., the
number of solutions to system (18), we assumed that
the secondary sources associated with all these scatter-
ers are described by the same number N of independent
parameters and can be expanded in terms of the same
basis for any particular incident field. At the same time,
the characteristics of the scatterers (the number S of
their independent parameters and the scatterer’s basis
functions) may be different. However, if the scattering
problem is solved taking into account some prior infor-
mation about the scatterer (which will be detailed
below), condition (19) may be relaxed.

If the amount of scattering data required for the
unique scatterer reconstruction can be collected in the
set of experiments conducted and the scheme used to
collect the discrete data is not required to go beyond the
classical Rayleigh limit for the angular resolution, the
solution to the inverse problem is unique and stable.
Explicitly, to provide stability, the angular separation
between adjacent transmit–receive elements of the
antenna array (or between adjacent angles of both inci-
dent and scattered waves) must be no less than the Ray-
leigh angle ∆ϕRayl in the two-dimensional problem or

ai
α{ }

ai

α1a j

α2

Q̂in
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∆ΩRayl in the three-dimensional problem (∆ΩRayl has
the meaning of an average solid angle per one element):

(20)

where λ0 is the wavelength and L is the linear dimen-
sion of the region ℜ . Consequently, if the data collec-
tion scheme uses a circular array, the maximum number
of the array elements that satisfies the stability condi-

tion is  for the two-dimensional arrangement and

 for the three-dimensional arrangement:

(21)

Relationships (21) determine the maximum complica-
tion of the spatial structure of the secondary sources
that allows a stable numerical solution to the inverse
problem, so that small relative errors in the scattering
data produce relatively small errors in the reconstructed
scatterer function.

Thus, nonuniqueness occurs when nonobservable
configurations of secondary sources (disturbances)
exist in the region occupied by the scatterer, which pro-
duce no wave field outside this region in all the experi-
ments. If the scatterers are spatially distributed, nonu-
niqueness appears due to the following mechanism.
Multiple scattering (we consider the scattering process
that cannot be described by the first term of the Born–
Neumann series alone, the series itself even being capa-
ble of diverging) broadens the spatial spectrum of the
secondary sources. This broadening increases the num-
ber of degrees of freedom that describe the secondary
sources. In turn, this increase leads to the possibility
that a sequence of configurations that are nonobserv-
able in the entire set of the experiments will be gener-
ated.

3. RECONSTRUCTION OF A STRONG 
SCATTERER AS A SET OF POINT SCATTERERS

3.1. Nonredundant Scattering Data

In relationships (7), (8), and below, the operator 
for scatterer (5) consists of the amplitudes εs of the
point scatterers. Then, in Eq. (16), εinv(r) is replaced

with , and r, with rs:

(22)
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The number of independent parameters that describe
the scatterer is equal to that for the secondary sources
(N = S). Therefore, when the scattering data are nonre-
dundant (AB = S), the number of equations (18) is equal
to the number of unknowns: S(A – 1) = (S – B)A. The
reasoning presented below using point scatterers as an
example allows us to understand the situation that is
also generally typical of the inverse scattering problem
for spatially distributed scatterers.

If the data set is nonredundant, a strong scatterer
represented by point scatterers cannot be reconstructed
uniquely [12]. The maximum number of indistinguish-
able scatterers or invisible scatterers can be evaluated as
follows. Consider a space of parameters that describe
all possible scatterers. In this space, physically feasible
scatterers refer to the domain whose boundary is con-
ventionally shown in Fig. 1 as a circle, while parame-
ters of each invisible scatterer are indicated by a dot
(the nonscattering homogeneous background medium
is shown in Fig. 1 as state “0,” which corresponds to the
“zero” invisible scatterer with εinv ≡ 0). Each dot is sur-
rounded by a subdomain of parameters that correspond
to scatterers whose strength is medium relative to this
invisible scatterer. The boundaries of these subdomains
are shown in Fig. 1 as closed lines. The subdomains do
not overlap, because, for scatterers of medium strength,
the nonredundant problem has a unique solution. For
example, an iterative process that starts with parameters
of a particular invisible scatterer converges to a unique
solution in the class of scatterers whose strength is
medium relative to this invisible scatterer (lines with
arrows in Fig. 1) [12]. Suppose that the volumes of
these subdomains are approximately equal. Then, the
number of invisible scatterers that are candidates to be
a solution to the nonredundant inverse problem (with-
out additional constraints on the scatterer strength) can
be evaluated as the ratio of the volume of all physically
feasible scatterer domains to the volume of one
medium-strength scatterer subdomain. If the parameter
space has a high number of dimensions (104–108), this
ratio may be very large.

It should be noted once again that, in the nonredun-
dant problem, the point scatterers whose strength is
medium relative to the homogeneous nonscattering
medium (εinv ≡ 0) can be reconstructed uniquely. There-
fore, the rest of the invisible scatterers are strong scat-
terers relative to the homogeneous medium and relative
to each other. They radically distort the incident field in
the scattering region by introducing a phase shift com-
parable with or even exceeding 2π. The same conclu-
sion follows from the analysis of expression (15). Since
our experiment is designed so that weak scatterers are

reconstructed uniquely, the Born’s term  in the
secondary source representation (15) must produce a
nonzero scattered field outside the region ℜ (at least for

one ). However, for an invisible scatterer, the scat-
tered field observed is zero. Therefore, this nonzero

ε̂invU0
α

U0
α
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field component is compensated for by the scattered
field created by multiple scattering. In turn, such a com-
pensation can only occur if, inside the invisible scat-

terer, the scattered field  is comparable

with the incident field , which means that the invis-
ible scatterer is a strong scatterer.

3.2. The Effect of Redundancy. Anomalous Errors

The situation with the uniqueness of the solution can
be clearly illustrated using the notion of discrepancy

Dis =   – ), where 

are the scattering data observed in the experiment, 
are the scattering data for a given standard scatterer
with variable parameters, and Kd’d is the correlation
matrix of the scattered field estimates. Let the horizon-
tal axis symbolically represent the parameter space of
all physically feasible scatterers, state “0” correspond-
ing to a homogeneous nonscattering medium. The ver-
tical axis represents the quantity W = 1/(1 + Dis) with
W = 1 at Dis = 0. Figure 2a illustrates the behavior of
the discrepancy for a scatterer reconstructed in terms of
the point scatterer representation from nonredundant
data. For all scatterer solutions (a true solution and false
ones, which correspond to indistinguishable scatterers
that exactly satisfy the experimental data (Dis = 0), we
have W = 1. Among the scatterers whose strength is
medium relative to the homogeneous medium, there is
only one such solution (the one closest to state “0”).

For a scatterer represented in terms of point scatter-
ers, the condition AB > S for the scattering data to be
redundant is equivalent to condition (19), because N = S.
Therefore, the effect of redundancy of the scattering
data is that the solution to the inverse problem becomes
unique. However, it is very important in practice how
the nonuniqueness is removed as data redundancy
increases. In particular, adding extra measurements to
nonredundant data makes system (18) overdetermined
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Fig. 1. Determination of the number of invisible scatterers
in the nonredundant problem.
and guarantees that it will have a solution only for
εinv ≡ 0. Therefore, Dis = 0 is only guaranteed for the
true scatterer. On the contrary, false scatterers that had
Dis = 0 with the nonredundant data now acquire a non-
zero discrepancy Dis ≠ 0 (the solid line in Fig. 2b or the
dashed line for another set of redundant data). Conse-
quently, the uniqueness of the solution is formally pro-
vided. However, if the scattering data are close to non-
redundant data in their amount and nature, false peaks
in W become only a little lower than the true peak.
Therefore, even small errors in the experimental data
may easily cause the solution to skip from being true to
being false. Such a skip, which testifies to the strong
instability of the solution, leads to the so-called anom-
alous errors in the reconstructed scatterer, i.e., actually,
to nonuniqueness. A natural way to cope with nonu-
niqueness and instability is to increase the redundancy
ratio of the scattering data. If this increase is achieved
with the angular separation between the transmit–
receive elements no smaller than Rayleigh angle (20),
the false peaks in W become more and more uniformly
distributed and their amplitudes decrease (Fig. 2b).
Therefore, the true solution (W = 1) becomes increas-
ingly contrasted against this background; i.e., the sta-
bility of the solution improves. However, as soon as the
angular separation becomes smaller than the Rayleigh
angle, a further increase in the amount of data does not
improve the stability of the solution but leads to a
decrease in the errors in the estimated characteristics of
the true scatterer, if errors in the data are uncorrelated)
and there are no skips.

Let us estimate the average distance ∆x between the
adjacent point scatterers at which the uniqueness (19)
and stability (20) conditions can be satisfied simulta-
neously in a circular data-collection system. As follows
from expressions (21), in the two-dimensional prob-
lem, the maximum amount of scattering data that satis-

fies the stability condition is A = ARayl ≅  , B =

BRayl ≅  /2 (where BRayl is twice as small as ARayl

due to the reciprocity theorem). Then, the condition
ARaylBRayl > S, where S ≅ (L/∆x)2, yields the estimate

∆x > λ0/( ) ≈ λ0/4. The same estimate is obtained
in the three-dimensional problem (S ≅  (L/∆x)3), if the
amount of the scattering data is close to the nonredun-
dant amount. But if the three-dimensional problem uses
the whole redundant amount of data, we have A =

ARayl ≅ , B = BRayl ≅  /2 and the estimate is

∆x > .

It should also be noted that a scatterer represented as
a set of point scatterers (5) must comply with additional
constraints on the physical feasibility [13]. It has been
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Fig. 2. Discrepancy behavior (a) when the scattering data are nonredundant and (b) for different sets of redundant scattering data.
found that the amplitude εs of each feasible point source
must be a complex-valued number:

(23)

whose phase and magnitude are uniquely related. For
example, in the two-dimensional problem (an exp(iωt)
time convention),

(24)

and in the three-dimensional problem,

A quantum-mechanical scattering by a singular δ-like
potential was analyzed in [14] on the basis of the Schro-
dinger equation, and relationships were derived, from
which a similar formula can be obtained for the three-
dimensional problem. From Eq. (24), it follows that

(25)

because sin(φs) = Im(εs)/ |εs |. If an invisible scatterer is
addressed, the substitution of Eq. (22) into Eq. (25)

yields the following equations for :

(26)

The total number of equations (26) is AS (α and rs are
parameters); i.e., it is greater than that in system (18).

Thus, additional relationships (23)–(25) and equa-
tions (26) that follow from them are a kind of prior
information about the scatterer. Therefore, in the case
of nonredundant scattering data, solving the system of
equations (18) (at N = S) together with Eqs. (26) or
directly allowing for relationships (23)–(25) when
reconstructing the scatterer can completely change the
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situation described above, so that the uniqueness of the
reconstructed strong point scatterers will be provided
for less redundant or even nonredundant data. However,
this hypothesis must be thoroughly tested through
numerical simulations.

4. INVERSE SCATTERING PROBLEM 
FOR SPATIALLY DISTRIBUTED 

SCATTERERS

As we discussed earlier (see Section 1), the func-
tional description of the problem is not equivalent to the
description in terms of point scatterers in its physical
essence. The analysis of distributed scatterers allows us
to relate the nonuniqueness and instability to the
dimension of the problem, the scatterer’s strength, and
the complication of its spatial structure, which affects
the width of its spatial spectrum. If it is known a priori
that the spatially distributed scatterer belongs to the
class of scatterers described by S independent parame-
ters and the radius χ of localization region of its spatial
spectrum (x) is known, system of equations (18) can
be supplemented by additional equations. These equa-
tions must describe the situation where, among N inde-
pendent spatial samples {rn} that enter into system
(18), only S combinations of samples are independent
in the description of the scatterer function itself. For
example, these may be equations for (x) ( (x) ≈ 0) at
N – S independent x points that correspond to high spa-
tial frequencies |x |. Each of these equations relates
(through the Fourier transform kernel) the values of
ε(r) at different spatial points and has the form of a qua-
dratic equation for each unknown when all the remain-
ing unknowns are fixed. These equations act as addi-
tional information about the scatterer. However, the
question of how strong the influence of the additional
equations is on the possibility of providing a unique
solution to the inverse problem and on the possibility of
relaxing requirement (19) imposed on the total amount
of the scattering data still remains open (because the

ε̃

ε̃ ε̃
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equations are nonlinear), calling for numerical simula-
tions.

In the functional description, the notion of scattering
data redundancy is closely connected with the number
of dimensions of the coordinate space in which the scat-
terer to be reconstructed is localized. For instance, the
two-dimensional single-frequency problem is nonre-
dundant in the functional (dimensionality) sense; i.e.,
the numbers of dimensions of the coordinate space and
of the parameterized space of independent scattering
data are the same and equal to two. On the contrary, the
three-dimensional problem is dimensionally redundant
(the number of dimensions of the parameterized space
of the scattering data may equal four versus three for
that of the scatterer’s coordinate space). However, the
number of discrete samples must be redundant in both
the two-dimensional and three-dimensional problems.
In particular, if there is no prior information about the
scatterer, the minimum amount of independent sampled
scattering data necessary for keeping the information
about the scatterer from being lost is [6] AB ≅  N, which
agrees with condition (19). This amount is greater than
that in the nonredundant case (AB ≅  S) except for weak
scatterers, for which N = S. The samples must be redun-
dant because, when reconstructing the scatterer func-
tion, it is always necessary to reconstruct the secondary
sources or internal fields, whose spatial spectrum is
broader than the scatterer’s spectrum.

Numerical estimates of the number of independent
parameters for the scatterer and its secondary sources
depend on the areas (at p = 2) or volumes (at p = 3) Γε
and ΓI of the domains in the x space in which the com-

ponents of  and  are taken into account (for the

required accuracy): S ≅  and N ≅   (p =

2 or 3). Let l be the linear size of typical spatial features
of the scatterer ε(r) and χ be the radius of the region
where (x) is localized. If we approximately assume

that the spectrum (x, α) broadens uniformly enough
in all directions of the x space and is well localized in
the domain with the half-width mχ, we obtain

(27)

(However, the number of terms that must be taken into
account in the Born–Neumann expansions of Eqs. (2)
and (3) may be significantly greater than m [2, 6]. For
example, this situation occurs with scatterers that have
a high contrast and are smooth.) But if the estimates

allow for the filtering properties of the function (|x |,
k0), the linear dimension of the domain where the spec-

trum (x, α) is localized increases mainly along the
Ewald surface. Both approximate approaches, which
assume that the spatial spectrum of the secondary
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sources broadens uniformly in either all directions or
only along the Ewald surface, are fairly rough. A more
detailed analysis shows that the spectrum broadens in a
manner that is intermediate between these two cases.

4.1. Two-Dimensional Inverse 
Scattering Problem

A number of theorems proved for spatially distrib-
uted scatterers state that the two-dimensional single-
frequency scattering problem allows a unique solution
for weak and medium-strength scatterers [15]. For
strong scatterers, the solution to this problem is not
unique. Consequently, in the domain of medium-
strength scatterers, a zero discrepancy occurs in only
one case, and the behavior of W is similar to that with
nonredundant data in the point scatterer representation
(Fig. 2a). The similarity occurs because the two-dimen-
sional single-frequency problem is nonredundant from
the viewpoint of dimensionality.

Conditions (19) and (20) impose constraints (which
are noticeably different for the two-dimensional and
three-dimensional problems) on the admissible
strength of the scatterer and on the complication of its
spatial structure. Let us estimate the degree of broaden-
ing of the secondary source spectrum at which condi-
tions (19) and (20) can be satisfied simultaneously in
the two-dimensional problem with the circular data-

collection scheme: A = ARayl ≅ , B = BRayl ≅

/2 (see (21)), and N is estimated from formulas
(27) at p = 2; then condition ARaylBRayl > N yields

m < 2k0/χ or l > mλ0/4. (28)

Estimate (28) means that, in the single-frequency
two-dimensional inverse problem, the data sampling
redundancy is in general efficient as long as the spatial
spectrum of the secondary sources is well localized in a
circle of radius 2k0; in particular, there must be no back-
scattering. (The center of localization of the secondary
source spectrum, i.e., the center of the circle mentioned
above, depends on the direction of the incident field.)
When this requirement is violated, the solution
becomes unstable. The more the spatial spectrum goes
beyond the circle of radius 2k0, the more unstable the
scatterer reconstruction is [5]. However, for weak scat-
terers with χ > 2k0 , the stability of the solution will be
provided if we limit the problem to the reconstruction
of (x) only for |x | < 2k0 by filtering out the higher spa-
tial frequencies. It is the reconstruction of the high-fre-
quency spectrum of the scatterer that is associated with
the instability of such operations as analytical continu-
ation. If multiple scattering is taken into account, the
situation with instability becomes much more compli-
cated, because the field in this case becomes dependent
on the scatterer function. Therefore, as a result of the
interaction with the internal field, each scatterer’s spec-
tral component associated with a particular spatial fre-
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quency can produce spectral components of the second-
ary sources at spatial combination frequencies, both
higher and lower. This effect, in turn, produces a small-
scale structure of secondary sources and of the wave
field inside the scattering region. It is precisely this
small-scale structure that increases the instability of the
reconstruction of the complicated structure of second-
ary sources and the internal wave field. The higher the
order of multiple scattering that affects the process and
the more complicated the spatial structure of the scat-
terer, the more complicated the structure of the second-
ary sources and internal field, and, consequently, the
stronger the instability manifests itself. Therefore, the
two-dimensional single-frequency problem provides
stable reconstruction only for scatterers with a narrow
spatial spectrum, and the constraints on the width of its
spatial spectrum become more stringent with increas-
ing scatterer strength. In addition, since as a result of
the multiple scattering the secondary sources are
formed through the nonlinear combination products of

 at different spatial frequencies, the correct recon-
struction at the cost of the spatial resolution (i.e., by fil-
tering out the high-frequency components of (x))
becomes impossible. Now, unlike the case of weak
scatterers, to correctly reconstruct a scatterer, the spec-
trum of secondary sources must be reconstructed at all
spatial frequencies.

These conclusions may clearly be illustrated by the
simplified Grinevich–Novikov algorithm, which is
valid for medium-strength scatterers with a simple
enough spatial structure [6, 16–18] and by the exten-
sion of this algorithm to scatterers of a complicated spa-
tial structure (i.e., with a broad (x)) [19]. Both algo-
rithms allow for multiple scattering in terms of the
complex-valued k-space formulation. This situation,
like the one typical of the two-dimensional single-fre-
quency problem, can also be analyzed using the itera-
tive solution technique as an example, which simulta-
neously or sequentially refines the reconstructed func-
tions of the scatterer and its secondary sources. When
the complete system consisting of the main equations
(of the Lippmann–Schwinger type) for the scatterer
function and the constraining equations (of the same
type) for the secondary sources is solved simulta-
neously [3], the adequacy and uniqueness of the solu-
tion are only provided for a sufficiently large amount of
scattering data determined by the width of the second-
ary source spectrum. This technique requires the full
amount of the data as early as at the first iteration. If the
subsystem of main equations for the scatterer is solved
sequentially [5], which is computationally simpler, and
the secondary sources belonging to a set of auxiliary
subsystems are estimated subsequently, the first
(Born’s) iteration does not require a large amount of
scattering data. However, the subsequent allowance for
multiple scattering requires the amount of data deter-
mined by the width of the secondary source spectrum.
Unlike the first approach, this one, however, does not
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always provide convergence of the overall iteration pro-
cedure. At the same time, in any iterative scheme, the
stability is lost when the total number of equations
exceeds the number ARaylBRayl  of essentially indepen-
dent and experimentally obtained data; i.e., actually
when the spatial spectrum of secondary sources goes
beyond the circle of radius 2k0 .

Constraint (28) yields numerical estimates typical
of tomographic problems. In particular, at χ/k0 ≅  1–2,
i.e., at l ≅  (1/4–1/2)λ0, we have m ≤ 1–2, which is a tol-
erable broadening of the secondary sources’ spatial
spectrum. For scatterers with larger characteristic spa-
tial features, the tolerable broadening is greater: at
χ/k0 ≅  0.1–0.2, i.e., at l ≅  (2.5–5)λ0, we have m ≤ 10–20.

Thus, the uniqueness of the solution to the two-
dimensional single-frequency inverse problem is only
guaranteed in the class of medium-strength scatterers.
However, for both medium-strength and strong scatter-
ers, whose spatial structure is so complicated that the
secondary source spectrum goes beyond the circle of
radius 2k0, the solution is unstable. (It should be noted
that the scatterer may be strong but have a sufficiently
narrow spatial spectrum. For example, this is typical of
scatterers with a large wave dimension, whose charac-
teristics smoothly vary in the coordinate space.) There-
fore, in a two-dimensional single-frequency problem,
two classes of scatterers are the best to reconstruct. The
first class are weak scatterers, which may possess a
broad enough spatial spectrum; the second class are
medium-strength scatterers whose spectrum is predom-
inantly localized in a narrow frequency band. Attempts
to reconstruct other scatterers face nonuniqueness or
instability problems. These problems can only be
solved through the use of pulsed or multifrequency
sounding, which is the only way to collect redundant
(in terms of number of dimensions) data in the two-
dimensional geometry.

4.2. Three-Dimensional Inverse 
Scattering Problem

In both the single-frequency and pulsed modes, the
three-dimensional problem has a unique solution for
spatially distributed scatterers of any strength if the set
of parameters that specify the technique used for col-
lecting dimensionally redundant scattering data has a
nonzero measure [20–22]. The single-frequency three-
dimensional problem already has a dimensional redun-
dancy margin. In the pulsed mode, the possibility of
collecting redundant data increases due to the fre-
quency degree of freedom.

In the single-frequency three-dimensional problem,
one can limit oneself to dimensionally nonredundant
scattering data (three-dimensional parameterized data
space and also three-dimensional scatterer coordinate
space) that correspond, for example, to a two-dimen-
sional manifold of all directions of the incident sound-
ing wave combined with a one-dimensional manifold
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of data on the scattered field collected on a certain arc
or circumference. Then, the situation with the discrep-
ancy is similar to that in the two-dimensional single-
frequency problem (Fig. 2a). If the scattered field is
measured on a different arc (or at a different sounding
frequency) well separated from the first one, the new
data produce false peaks in W at different scatterer
parameters. To obtain dimensionally redundant scatter-
ing data, it is sufficient to replace the arc with a narrow
strip in the vicinity of this arc or switch from the single-
frequency mode to the pulsed mode, though with per-
haps a very narrow relative bandwidth. The behavior of
the discrepancy will be similar to that illustrated in
Fig. 2b. The uniqueness of the solution is formally
regained, although the probability of anomalous error is
high. The noise robustness of the solution improves
with increasing degree of redundancy of the indepen-
dent data.

For dimensionally nonredundant scattering data, the
same estimate (28) as for the two-dimensional problem
is valid. According to Eqs. (21), the maximum attain-
able amount of dimensionally redundant scattering data
that satisfy the solution stability condition is A = ARayl ≅

, B = BRayl ≅  /2. Then, condition ARaylBRayl > N
yields

(29)

Requirements (29) mean that, due to the dimensional
redundancy of the data, the maximum admissible
broadening of the spatial spectrum of secondary

sources may be /2 times as large as that in the
two-dimensional problem (see expressions (28)). The
larger the scatterer in terms of wavelength, the greater
the available number of scattering data that satisfy the
solution stability condition over the number of scat-
terer’s independent parameters and, therefore, the
higher the admissible broadening (29). The estimates
typical of tomographic problems depend now not only
on χ/k0, but also on k0L. In particular, for scatterers that
are small in terms of wavelength, the estimates are
close to those of the two-dimensional problem. For
example, let λ0 ≅ 1 mm and L ≅ 0.5 cm ≅  5λ0 . Then, if
χ/k0 ≅ 1–2, i.e., l ≅  (1/4–1/2)λ0, we have m ≤ 1.6–3.2; if
χ/k0 ≅  0.1–0.2, i.e., l ≅  (2.5–5)λ0 , we have m ≤ 16–32.
As the scatterer’s dimensions in terms of wavelength
increase, the estimates change. Let λ0 ≅  1 mm and L ≅
10 cm ≅  100λ0 . Then, for χ/k0 ≅ 1–2, we obtain m ≤ 4–
8; and for χ/k0 ≅ 0.1–0.2, m ≤ 40–80.

Thus, the dimensional redundancy of experimental
data removes the limitation on the strength of the spa-
tially distributed scatterer in the formulation of the
uniqueness theorem. However, in each particular case,
the values of the parameters that determine the stability
of the solution to the inverse problem are different and

MRayl
3( )

MRayl
3( )

m
2k0

χ
--------

k0L3

2
------------- or   l m

λ0

4
----- 2

k0L3
-------------.><

k0L3
should be analyzed separately. In this respect, the anal-
ysis of the role played by the additional characteriza-
tion equations [23, 25] in the noise robustness problem
is very important (though complicated). These equa-
tions relate the whole of the redundant scattering data
as originating from one and the same scatterer. When
the scattering data are complete, one can solve the
three-dimensional problem by analytical methods. For
example, in the single-frequency mode, the most prom-
ising model for studying the development of instability
of the solution with increasing size, contrast, and
degree of complicated of spatial structure of the scat-
terer may be the algorithm described in [24] and also
considered in [25].
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Abstract—A numerical simulation and a comparative analysis of the acoustic fields produced by two-dimen-
sional phased arrays intended for ultrasonic surgery are performed for the case of a multiple focus (in particular,
25 foci) generation. The calculations were conducted for arrays (with an operating frequency of 1.5 MHz) con-
sisting of 256 elements 5 mm in diameter, which were positioned on the array surface both regularly and ran-
domly. The array foci can be formed simultaneously, but, in this case, the intensity levels of the secondary peaks
in the ultrasonic field can exceed the values that guarantee the safe application of this method in surgery.
A much safer way is to synthesize many foci with the use of several configurations, each of which contains a
smaller number of foci. The number of foci in individual configurations must be approximately the same. It is
demonstrated that randomization of the element distribution over the array surface provides an opportunity
to improve the array performance, to reduce the intensity levels of secondary peaks in the acoustic field, and
to increase the array capability for multiple focus scanning off the array axis. © 2003 MAIK “Nauka/Interpe-
riodica”.
One of the major advantages of ultrasonic phased
arrays is their ability to synthesize several foci [1–8],
which is important for surgical applications of such
arrays, especially when the object intended for destruc-
tion is a deep-seated tissue of relatively large volume.
The use of several foci provides an opportunity to sub-
stantially reduce the time needed for such a procedure
in comparison with the case of scanning by a single
focus [4]. In this case, the gain in time may exceed the
number of synthesized foci.

A numerical simulation and a comparative analysis
of the acoustic fields formed by two-dimensional
phased arrays were conducted in [9–11] for the cases of
the generation of and scanning by a single focus and
several foci (specifically, nine foci). The calculation
was performed for arrays with elements positioned on
the surface both regularly (in square, annular, and hex-
agonal patterns) and randomly. The criteria for evaluat-
ing the quality of the intensity distributions in the field
formed by an array were proposed for the case of scan-
ning by several foci [9, 11]. The quality of intensity dis-
tributions for the arrays consisting of 255 and 256 ele-
ments 5 mm in diameter, which were positioned on the
array surface regularly (in square, annular, or hexago-
nal patterns), was substantially lower than that for the
arrays consisting of 256 randomly positioned elements.

Essentially, the approach proposed for designing
two-dimensional arrays for surgical applications is
based on the use of arrays with sparse elements ran-
domly distributed over the array surface. The origin of
such an approach is the fact that the level of side lobes
in the field produced by the array depends on the regu-
1063-7710/03/4905- $24.00 © 20508
larity of the array structure. We demonstrated that, in
the case of a random distribution of elements over the
surface of a two-dimensional array and a certain ratio of
the element diameter to the sound wavelength, it is pos-
sible to obtain a much higher quality of ultrasonic
intensity distribution in the field produced by the array,
as compared to regular arrays [9–11]. A similar
approach is known, for example, in radar [12], but the
effect of randomization of the element distribution does
not manifest itself as noticeably as in the case of high-
power ultrasonic arrays. Since the velocity of light is
greater than that of sound, it is much simpler to manu-
facture electromagnetic arrays in which the distance
between the element centers is smaller than the electro-
magnetic half-wavelength and thereby eliminate the
side lobes associated with the array structure. More-
over, in radar, the common practice was to consider reg-
ular multielement arrays of which some active elements
were chosen in a random way [12]. In our previous pub-
lications [9–11], we demonstrated that, with the help of
randomization of the element distribution in a high-
power two-dimensional array, it is possible to increase
the element size up to five sound wavelengths while
retaining an admissible level of side lobes and, thus,
reduce severalfold the number of elements while retain-
ing the same distribution quality.

It is of interest to clarify how much the utilization of
phased arrays with a random distribution of elements
over the surface can be useful in a situation where the
array is used for the generation of a large number of
foci. This paper presents a numerical simulation and a
comparative analysis of the quality of the acoustic
003 MAIK “Nauka/Interperiodica”
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Localization and relative phase values for 25 foci lying in one plane
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fields produced by the arrays with random and regular
distributions of elements over the surface shaped as part
of a sphere for the case of generation and scanning by
25 foci. As in [9, 11], the acoustic fields produced by
two-dimensional phased arrays are calculated using the
“pseudoinverse” approach proposed in [1, 2].

The values of the complex particle velocity un at the
nth of N elements are connected with the complex
sound pressure pm at each of the M test points by an
equation in matrix form [1, 2]:

u = H*t(HH*t)–1p.

Here, u = [u1, u2, …, un, …uN]t; p = [p1, p2, …, pm,
…pM]t; H is an M × N matrix; the matrix elements have

the form hmn = , where rmn is the distance

from the mth test point to the center of the nth element
of the array; and H*t is the matrix conjugate to H,
where t means the matrix transposition. The M test
points (corresponding to the focus localization) are
positioned in the same focal plane, and their number is
either 25 (for the case of a simultaneous generation of
foci) or 4–5 (when several sequentially activated sets of
foci are used; see below). To determine un (n = 1, 2, …
N), it is necessary to select the phases and amplitudes
of the sound pressure at the test points pm (m = 1, 2, …
M). To simplify the calculation, the amplitudes at the
foci were assumed to be equal. The relative phase val-
ues at the test points and other characteristics of the foci
are given in the table. The focus coordinates are given
in millimeters (upper numbers) with respect to the cen-
tral focus position (x, y, z). The relative phase values of
the complex pressure at the foci are given by the lower

jkrmn–( )exp
rmn

------------------------------
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numbers. As one can see, the phases uniformly rotate in
a clockwise direction with respect to the axis of this set
of foci.

The spatial distribution of acoustic fields was calcu-
lated in a region with the dimensions from 50 to
160 mm in the direction of the acoustic axis of the array
and from 0 to ±30 mm in two other orthogonal direc-
tions. The grid step was 0.1 mm (1/10 of the wave-
length), and in the case of qualitative estimations, no
worse than 0.2 mm. A further increase in the grid step
leads to substantial distortion of the field pattern.

Thus, as the result of calculation, we obtain a certain
initial distribution of amplitudes and phases over all
elements, at which the indicated M foci are formed. It
is clear that many such combinations are possible with
both large and small amplitudes at the elements. Since
our aim is not only to produce a preset number of foci
in a given place but also to provide the maximum power
of the array, it is necessary to determine a phase distri-
bution over the elements such that the desired M foci
are formed at equal amplitudes at the elements. There-
fore, in calculating the multiple focus ultrasonic fields,
one has to use optimization techniques that provide an
opportunity to obtain the preset number of foci at equal
amplitudes at all elements and thereby attain the maxi-
mum acoustic power of the array. In our case, we use
the optimization technique proposed in [1]. After a
series of iterations, the number of which can reach sev-
eral dozens for a large number of foci, a certain new
phase distribution, at which the array efficiency (the
ratio of the real power to the maximum possible power)
is not less than 99%, is obtained. For a small number of
foci (four to five), only one or several iterations are usu-
ally required. The technique that provides the summa-
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Fig. 1. Schematic representation of arrays consisting of 256 elements 5 mm in diameter that are positioned (a) in a square pattern
and (b) randomly.
tion of acoustic fields from separate array elements
with allowance for the phases obtained is described in
[9, 11].

The calculation of the spatial distributions of acous-
tic fields was conducted for arrays whose surface was
shaped as part of a spherical shell with a curvature
radius of 120 mm. The array diameters were identical
and equal to 130 mm. The arrays consisted of flat ele-
ments shaped like disks 5 mm in diameter. The inten-
sity distributions in the field produced by arrays of the
two following types were compared:

(1) an array of 256 elements positioned on the sur-
face in a regular manner so as to form a square pattern;
the minimum distance between the element centers was
6 mm;

(2) an array of 256 elements positioned on the sur-
face randomly; in this case, the maximum distance
between the element centers was 120 mm. The coordi-
nates of the element centers (or more precisely, of their
projections onto the horizontal plane) were randomly
selected from a set of random numbers corresponding
to the coordinates of tens of thousands of points within
a circle with a diameter of 60 mm. The only limitation
was that the minimum distance between the element
centers should be no smaller than 5.5 mm.

The array types are schematically represented in
Fig. 1. In both cases, the active area of an array (the
total area of all elements) was 50.2 cm2. The ultrasonic
frequency was 1.5 MHz in all cases. The ultrasound
was assumed to propagate through a biological tissue
with a density of 1000 kg m–3, a sound velocity of
1500 m s–1, and an attenuation coefficient of
0.75 dB/cm (at this frequency). Since the design of real
arrays includes a water-filled bole for establishing an
acoustic contact with the object (see, e.g., [8]), it was
assumed that, in the interval of z from 0 to 40 mm (z is
the coordinate along the array axis), ultrasound propa-
gates through water, and in the region z > 40 mm, it
propagates through the tissue. Thus, the average atten-
uation at the given frequency along the whole path of
ultrasound propagation was somewhat smaller than the
value indicated above: for example, at z = 120 mm, it
was equal to 0.5 dB/cm.

The computational means used for the calculation
are described in [9, 10]. It is only necessary to add that
the computer codes developed by us for calculating the
spatial distributions of the acoustic fields produced by
the arrays additionally provided an opportunity to cal-
culate the maximum intensity at the foci and the posi-
tion of the focus with the maximum intensity, to esti-
mate the acoustic power of the array in the focal plane
and in the vicinities of the foci, to determine the inten-
sity gain factor, etc. The energy estimates were
obtained on the assumption that the particle velocity is
the same at all elements and distributed uniformly over
their area, its value being 0.365 m/s. The latter corre-
sponds to an intensity of 10 W/cm2 at the elements.
Thus, it was assumed that the maximum acoustic power
obtained from the array surface was 502 W.

The quantitative analysis of the intensity distribu-
tions was performed using two-dimensional contour
distributions in the focal plane (the XY plane) and in the
plane perpendicular to it and passing through the acous-
tic axis of the array (the XZ plane). This approach
proved to be more accurate in estimating the quality of
the intensity distributions, as compared to the use of
three-dimensional plots. Nine contours corresponding
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
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Fig. 2. Ultrasonic intensity distributions corresponding to a simultaneous generation of 25 foci in the XY plane (the upper plots) and
in the XZ plane (the lower plots) for arrays with (a) regular and (b) random distributions of elements. The distance between the focus
centers is 2.5 mm.
to the intensity values from 10 to 90% of Imax with a step
of 10% of Imax are given in the following figures.

Figure 2 shows the distributions of ultrasonic inten-
sity, which correspond to the simultaneous generation
of 25 foci, for the arrays with a regular (Fig. 2a) and
random (Fig. 2b) distribution of elements. The intensity
distributions in the XY plane are given in the upper part
of the plot, and the intensity distributions in the XZ
plane, in the lower part. The distance between the cen-
ters of foci is 2.5 mm. The focal plane is at the distance
z = 120 mm from the coordinate origin, which coin-
cides with the deepest point on the array surface.

One can see that, for the regular array, clearly pro-
nounced secondary peaks related to the array structure
are observed in the focal plane. There are no such peaks
for the randomized array: they seem to be spread in the
focal plane. However, in both cases, the intensity values
in the secondary peaks before the focal plane reach 0.4–
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
0.8 of the maximum value Imax, which is unacceptable
for using this technique in surgery according to the dis-
tribution quality criteria proposed earlier for the multi-
ple focus case [9, 11]. The appearance of the points
with elevated intensity is especially dangerous, because
the radiation affects the tissue during the whole time of
ultrasonic action on tissues. It is necessary to note that
the distributions presented were obtained without using
the iteration procedures described above, i.e., with a
relatively low power and efficiency of arrays (approxi-
mately 25% for regular arrays and 30% for the random-
ized ones). In this case, the acoustic power summed
over the XY plane for regular and randomized arrays is
approximately 30 and 37.4 W, respectively, and the
intensity at the foci is 75 and 85 W/cm2. The use of the
iteration procedures leads to an increase in the array
efficiency up to 99%, but, at the same time, it also leads
to a noticeable reduction of the quality of the intensity
distributions, especially in the XY plane. A shift of the
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Fig. 3. Intensity distributions in the XY plane for six configurations of foci (5 + 4 + 4 + 4 + 4 + 4 foci), for (a) regular and (b) ran-
domized arrays.
set of foci by 20–30 mm with respect to the axis
towards the radiator, i.e., to z = 90–100 mm, leads to the
same result (the corresponding distributions are not
presented here to save space). It should be noted that
such a shift of the foci along the z axis was not difficult
in the case of the set of nine foci [9, 11]. Apparently,
this method can be used in high-temperature hyperther-
mia, if the overheating in the hot points along the ultra-
sound propagation path does not yet cause necrotic
changes in tissues.

From the data obtained, it follows that, in the case of
using a large number of simultaneously produced foci
in surgery (i.e., for the destruction of a preset tissue vol-
ume), it is necessary to find ways to reduce the levels of
the secondary intensity peaks in the acoustic field
before the focal plane. One such method was proposed
for the first time in [3] and then developed by another
team of researchers [6–8]. The basic idea is as follows:
instead of a static field with a certain set of secondary
peaks (“hot points”), one can use the fields of several
configurations with a smaller number of foci, which are
switched electrically with a frequency of 10–20 Hz. For
example, the authors of [6–8] proposed using six such
configurations consisting of 1 + 4 + 4 + 4 + 8 + 4 foci,
respectively, to synthesize 25 foci. However, keeping in
mind that one of the major requirements for high-power
therapeutic arrays is sufficiently high intensity at the
foci, the choice of the configurations cannot be
approved. In one case, the acoustic power must be dis-
tributed among eight foci, and in the other, it must be
released in only one of them. Since the intensities at all
25 foci must be approximately equal, the maximum
intensity in the set of foci is finally determined by the
intensity for the set of eight foci. Thus, the use of arrays
with such a set of foci is inefficient.

It seems that, to raise the intensity at the foci, it is
expedient to select the configurations consisting of
approximately equal numbers of foci. For example, one
can use a combination of 5 + 4 + 4 + 4 + 4 + 4 foci to
generate a set of 25 foci. Figure 3 shows the intensity
distributions in the XZ plane (z = 100 mm) for this con-
figuration of foci for the cases of regular (Fig. 3a) and
randomized (Fig. 3b) arrays. One can see that, in the
case of a regular array (Fig. 3a), multiple secondary
peaks with the intensity level up to 0.3 Imax are observed
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
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Fig. 4. Intensity distributions in the focal plane (the XY plane, z = 100 mm) and along the path of the ultrasonic beam (the XZ plane)
for (a) regular and (b) randomized arrays in the case of 25 foci generated using six configurations of foci (Fig. 3). The distance
between the focus centers is 2.5 mm. The central focus lies on the array axis.
in the focal plane, while in the case of a randomized
array, no such peaks are present. The intensity values
vary from 1100 W/cm2 (a configuration of five foci) to
1500 W/cm2 (a configuration of four foci) for a regular
array and from 1070 W/cm2 (five foci) to 1400 W/cm2

(four foci) for a randomized array (the optimization of
the array power was performed in both cases). The scat-
ter of the intensity values can be minimized by hard-
ware methods in such a way that the time-average
intensity at the foci does not exceed 1100 W/cm2.

Figure 4 shows how it is possible to generate a set of
25 foci with a distance between their centers of 2.5 mm
with the help of the six configurations of foci shown in
Fig. 3. The central focus is located on the array axis at
the distance z = 100 mm. The time-average intensity at
all foci is approximately equal to 180 W/cm2, and the
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
peak intensity, to 1100 W/cm2. The power released in
the XY plane with the generation of each set of foci is
155–160 W (taking into account the attenuation). One
can see from Fig. 4 that, in the case of using several
configurations of foci, the quality of the time-average
intensity distributions along the path of the ultrasonic
beam (in the XZ plane) is considerably improved in
comparison with the distribution for 25 foci generated
simultaneously (Fig. 2). One can also see that, in the
field of a regular array, there are regions where the
intensity of the secondary peaks reaches 0.5Imax. There
are no such potentially dangerous regions in the field of
a randomized array.

In the case of the destruction of large-size tissue
pieces (e.g., tumors), when it is necessary to affect the
whole volume of tissue uniformly without any gaps,
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shifted 7 mm off the array axis in both cases.
one has to move the focusing system with a step of 1–
2 mm. This can be accomplished either mechanically
with the help of positioning systems or (which is more
logical when using phased arrays) electronically.
Therefore, it is of practical interest to evaluate the pos-
sibility of electronic scanning by a set of 25 foci with
the help of regular and randomized arrays.

The comparison of intensity distributions in the
focal plane (the XY plane, z = 100 mm) and along the
path of the ultrasonic beam (the XZ plane) for regular
(Fig. 5a) and randomized (Fig. 5b) arrays is given in
Fig. 5 for the focus shifted by 7 mm off the axis in the
case of 25 foci generated using six configurations of
foci (Fig. 3). The array power was optimized. One can
see that, with a regular array, a secondary set of foci is
observed together with the main set, and this secondary
set has almost the same intensity values (up to 0.8Imax)
as the main set. This may lead to unpredictable results
of surgical or therapeutic action. In the case of a ran-
domized array, there are only several points or regions
with an intensity of 0.2Imax in the acoustic field, which
is quite acceptable for practical purposes. Thus, the use
of randomized arrays provides an opportunity to scan
by the indicated set of foci in the plane through a dis-
tance of at least 15 mm. Such scanning is practically
impossible using regular arrays.

Thus, in the case of using the above techniques, the
randomized two-dimensional phased arrays allow one
to generate a considerable number of foci in a preset
volume and thereby considerably reduce the duration of
the necessary surgical or therapeutic procedure. The
capability of such arrays to move the set of foci in the
focal plane (at least within the limits of ±7 mm) without
the formation of potentially dangerous secondary inten-
sity peaks is also useful from the practical point of
view.
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
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In conclusion, it should be noted that the results
obtained from this study demonstrate that arrays with a
random distribution of elements over the surface pro-
vide a better quality of intensity distributions in the case
of multiple focus generation and scanning (for exam-
ple, for 25 foci) compared to arrays with a regular dis-
tribution of elements (a square pattern). The advantages
of randomized arrays were demonstrated in our previ-
ous papers [9–11] for the case of a single focus or a set
of nine foci.

The major purpose of this study was to show that the
utilization of randomized arrays instead of regular ones
in many cases provides better spatial distributions of
intensity in the field generated by an array. Apart from
the paper by Goss et al. [13], we found nothing in the
literature on phased arrays for surgical applications that
discusses the possibility and expediency of using ran-
domized arrays for these purposes. Furthermore, regu-
lar arrays with the elements positioned in square pat-
terns were, and still are, the most popular designs dis-
cussed in the literature [2, 5–8, 14].
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Abstract—The excitation and propagation of the guided waves in a stratified half-space and a Rayleigh wave
exploration method in shallow engineering seismic exploration are studied in this paper. All the modes of the
guided waves are calculated by the bisection method in the case where the low velocity layers are contained in
a stratified half-space. Cases when the formation shear wave velocity gradually decreases from the top to the
bottom layers are also studied. The dispersion curves obtained in actual Rayleigh wave exploration are usually
noncontinual zigzag curves, but the dispersion curves given by the elastic theory for given modes of the guided
waves are smooth and continual curves. In this paper, the mechanism of zigzag dispersion curves in Rayleigh
wave exploration is investigated and analyzed thoroughly. The zigzag dispersion curves can give not only the
possible positions of the low-velocity layers but also the other information on the formation structure (fractures,
oil, gas, etc.). It is found that the zigzag dispersion curves of the Rayleigh wave are the result of the leap of the
modes and the existence of low velocity layers in a stratified half-space. The effects of the compressional wave
velocity, shear wave velocity, and density of each layer on zigzag dispersion curves and the relationship of the
low velocity layers to zigzag dispersion curves are also investigated in detail. Finally, the exploration depth of
the Rayleigh wave is discussed. The exploration depth of the Rayleigh wave is equal to the wavelength multi-
plied by a coefficient that is variable and usually given by the work experience and the formation properties of
the local work area. © 2003 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

Rayleigh Wave Exploration (RWE) is a shallow
seismic exploration method that can be used to interpret
geological information below the free surface. The
Rayleigh wave is a guided wave propagated along a
stratified half-space. It is characterized by low velocity,
small attenuation, and strong interference immunity.
The RWE method has high resolution, simple opera-
tion, and other characteristics. The Rayleigh wave with
enriched frequencies can be excited by the source in
practical exploration. The different wavelengths corre-
spond to the different exploration depths. Rayleigh
wave signals with different frequencies can give forma-
tion information on different depths. So, more and
more researchers have focused on this topic [1–8].

The Rayleigh wave was discovered by Rayleigh in
an elastic half-space [9]. The energy of the Rayleigh
wave concentrates below the free surface and decays
with distance from the free surface. In the homoge-
neous half-space, there is only one guided wave propa-
gated along the surface. This guided wave is just the
Rayleigh wave and is nondispersive. However, in a
stratified half-space there are usually infinite dispersion
guided waves that can propagate along the stratified
direction. Which guided waves correspond to the
received packet in practical RWE? It is difficult to find
this corresponding relationship. However, the Rayleigh

1 This article was submitted by the authors in English.
1063-7710/03/4905- $24.00 © 20516
wave in a stratified half-space as a term usually means
the received signal packet (no compressional and shear
waves) in a practical situation and does not explain
which modes of guided waves are corresponded to.

The guided waves in a stratified half-space can be
classified into two categories [10, 11]: surface and
trapped waves. The energy of the surface wave concen-
trates in a narrow range below the free surface. How-
ever, the trapped wave is fundamentally related to the
interfaces under the free surface. The maximum of the
energy flux density of a trapped wave is not at the free
surface but at a certain depth. There is no strict border-
line between the surface and trapped waves. Sometimes
the energy density of a mode decays with distance from
the free surface in one frequency. It looks like the sur-
face wave. However, at another frequency, this mode
concentrates its energy at a certain place instead of at
the free surface. It looks like a trapped mode in this
case. Surface and trapped waves are important for
RWE. This should be studied thoroughly. In some fre-
quency range for a special stratified half-space contain-
ing low-velocity layers, the surface waves cannot be
excited by the source. However, the trapped waves can
be excited. In this situation, the received guided waves
may be the trapped waves, although the intensities of
the trapped waves are not maximums at the free sur-
face.

In RWE, the velocity–wavelength (V–λ) profile that
is transformed by the velocity–frequency (V–f) disper-
003 MAIK “Nauka/Interperiodica”
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sion curve is usually adopted and used to analyze the
formation structure below the free surface. It is known
that the effective exploration depth of the Rayleigh
wave is related to its wavelength. So the V–λ curve is
usually known as the velocity–depth (V–z) profile,
which indicates the formation information along the
depth direction. Generally speaking, the V–z profiles of
the Rayleigh wave obtained in actual exploration are
noncontinual zigzag curves for a stratified half-space
containing low-velocity layers [7, 8, 12, 13]. The zig-
zag shapes can give the possible positions of the low-
velocity structures. However, for a given mode of the
guided wave, the dispersion curve given by the elastic
theory is a smooth and continual curve without zigzag
shapes. Why are the dispersion curves obtained in
actual exploration noncontinual zigzag curves? Few
authors have studied this problem. Figure 1 gives a typ-
ical example. It is an actual result of RWE in some
place. It has been proved that the two zigzag shapes in
Fig. 1 can display roughly the real structure of the for-
mation. This figure will be analyzed in the following
parts.

Guided waves in a stratified half-space have been
studied by many authors. Some methods were pre-
sented. The propagator matrix technique [14–16] is
heuristic in many applications. However, the original
propagator matrix [14] has the problem of loss of pre-
cision in the high frequency range. Abo-Zena [17] and
Menke [18] presented a novel method to avoid the
numerical problem that occurs in the high frequency
range and this method perfected the elastic theory in
multilayered media. In numerical simulation, the dis-
persion and excitation curves of the guided waves in the
case where the compressional and shear wave veloci-
ties increase from the top to the bottom layers are stud-
ied by many researchers. However, when the low veloc-
ity layers are contained, especially when the shear wave
velocity decreases from the top to the bottom layers, the
guided waves in a stratified half-space have been
numerically studied and analyzed by few authors.

Rayleigh wave exploration has also been focused
on. McMechan et al. [4] demonstrated a wave field
transformation method for analysis of dispersion wave
trains. Yan [7, 8] analyzed the principle of RWE. Mala-
gnini et al. [5] obtained the shear wave velocity and
attenuation structure of the soft sediments by the Ray-
leigh wave for application in seismic engineering
design in risky areas. Park et al. [6] developed a wave-
field transformation method that provides images of
dispersion curves directly from the recorded wavefields
of multi-channels. H. Zhang et al. [19] proposed a
coherent method to measure the dispersive curves of an
elastic waveguide. B. Zhang et al. [10, 11, 20] investi-
gated the propagation and energy distribution of the
guided waves in multilayered media and presented two
physical quantities of the Rayleigh wave that are sensi-
tive to the material property of the medium and layered
geometry. These works focused on the phase and group
velocities, the characteristics, and the propagation
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
mechanism. Few authors have studied the forming
mechanism of the zigzag dispersion curves in RWE.
Guan et al. [12, 13] analyzed the structure of the zigzag
dispersion curves using a multilayered liquid model.
B. Zhang et al. [21] analyzed all the modes of propaga-
tion along the multilayered media and studied the zig-
zag dispersion curves. However, some problems (such
as the mechanism of the zigzag dispersion curves, rela-
tion of the zigzag dispersion curves to the formation
parameters, and relation of the position of zigzag dis-
persion curves to the exploration depth) should be
investigated further. These problems are very important
to geophysics and engineering seismic explorations.

In this paper, the guided waves are studied in the B,
P, C coordinate system [22] on the base of the propaga-
tor matrix developed by Thomson [23], Haskell [14],
Abo-Zena [17], and Menke [18]. All the roots corre-
sponding to the guided waves are obtained by the bisec-
tion method. At first, some mathematical formulations
of the propagator matrix are reviewed. The excitation
and propagation of the guided waves in a stratified half-
space are analyzed. Then, the mechanism of the zigzag
dispersion curves is studied and explained. The relation
of the zigzag dispersion curves to the medium parame-
ters of each layer is also studied. Finally, the dispersion
curves with more than one zigzag shape are investi-
gated and the relation of the position of zigzag disper-
sion curves to the exploration depth of the Rayleigh
wave is analyzed.
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Fig. 1. An example of a zigzag dispersion curve obtained in
RWE in some place.
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FORMULATION

A semi-infinite medium made up of N parallel,
homogeneous, isotropic layers are considered. All lay-
ers will be assumed to be elastic solid. The cylindrical
coordinate system (r, θ, z) is adopted (Fig. 2). Z = 0 is
the free surface of the first layer medium. It can be
selected as the horizontal direction. The last layer
medium extends to infinity along the z axis. The posi-
tive z axis is taken as the direction into the medium. The
various layers and interfaces are numbered away from
the free surface. For the jth layer, its properties are
denoted by Vpj (P-wave velocity), Vsj (S-wave velocity),
ρj (density), and hj (thickness). The argument (j) will be
omitted whenever it is possible without causing confu-
sion.

It is convenient to introduce the B, P, C coordinate
system [10, 21]

(1)

Only the P–SV wave is considered in this paper. The
displacement components in the B, P, C coordinate sys-
tem and cylindrical coordinate system (r, θ, z) satisfy
[10]

(2)

Define the following vectors of S (motion stress) and φ
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Fig. 2. Configuration of a stratified half-space.
(displacement potentials) [10, 17, 18, 20]

(3)

Then, the vectors S and φ satisfy [17, 18, 20]

(4)

The superscript T in Eq. (3) represents the transposed-

matrix, c = ω/k, P = , Q = , γ = 2( /c2), γp =

–(1 – c2/ )1/2, γs = –(1 – c2/ )1/2, ia = kγp, and ib =
kγs. An implicit time dependence e–iωt of the field is
assumed. ϕ = ϕ+ + ϕ– = Aeiaz + Be–iaz and ψ = ψ+ + ψ– =
Aeibz + Be–ibz are the displacement potentials of the P
and SV waves in frequency wavenumber domain,
respectively. ϕ+ and ψ+ represent waves propagating
along the positive z axis, while ϕ– and ψ– represent
waves propagating along the negative z axis. So the real
parts of γp and γs should be smaller than (or equal to)
zero.

By the boundary conditions of every interface, the
vanishing of two stress components at the free surface
and the potential at infinity, the dispersion equation can
be obtained [18–20]:

(5)

It means that the sixth component of vector E at the free
surface is vanishing, and it can be obtained by a propa-
gator matrix using the relation [20]:

(6)

where matrix F is a propagator matrix that can be
decomposed into the following form [20]

(7)

The representations of matrices λ*, U, and V can be ref-
erenced in the related literature [10, 17, 18, 20].

It is assumed that the source is located at z = zs, r = 0
in the first layer medium. The components S1 and S2 of
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the vector S at the free surface can be written as [20, 21]

(8)
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where Asn, Bsn, and matrix T are the quantities related to
the source [20].

The modes of the guided waves propagating in a
stratified half-space are all given by the dispersion
equation (5). It can be proved that the dispersion func-
tion is real for the real horizontal wavenumber. Only the
modes of real horizontal wavenumber are considered in
this paper. These modes can be obtained easily by the
bisection method in numerical simulation, and their
excitation amplitudes can be obtained by residues of
the poles that are determined by Eq. (5). The displace-
ment components of the guided waves can be written as

(9)

The waveforms of time domain can be obtained by
the Fourier transformation of Eq. (9).

GUIDED WAVES IN A STRATIFIED 
HALF-SPACE

It is indicated by numerical simulation that there
exist many modes that correspond to guided waves
propagated along the stratified direction in a stratified
half-space. They are named as the first, second, third,
etc., modes from the low frequency to high frequency.
If the velocities of compressional and shear waves
increase gradually from the first to the last media, the
excitation intensity of the first mode is much greater
than that of the other modes [24]. So the other modes
are too small to be seen. Only the first mode can be
received in practical RWE. This mode just corresponds
to the Rayleigh wave. In this case, the dispersion curve
obtained in RWE is a smooth curve. In fact, the zigzag
dispersion curves of the Rayleigh wave obtained in
RWE are the result of many modes generated by the
low-velocity layers in a stratified half-space. So in what
follows, we will pay more attention to the case where a
low-velocity layer is contained in a stratified half-
space. This formation model is important not only for
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natural resources exploration but also for the detection
of fractures and faults.

At first, a three-layer model is chosen (model 1).
The parameters of this model are shown in Table 1. In
this model, the parameters of the third layer are the
same as those of the first layer (similar results can be
obtained if they are different).

Figure 3 gives the dispersion and excitation inten-
sity curves of guided waves in model 1. It can be seen
that there exist infinite guided waves. The first mode
has no cutoff frequency (Fig. 3a), and the phase veloc-
ity when the frequency f = 0 is the Rayleigh wave veloc-
ity in the case where there is only the last layer. The
other modes have cutoff frequencies at which the phase
velocities are all equal to the velocity of the shear wave
of the third layer. It can be found that the phase velocity
of mode 4 is almost not related to frequency in the high
frequency range, and it is equal to the velocity of the
Rayleigh wave in the case where there is only the first
layer. But the phase velocities of the other modes tend
toward the shear wave velocity of the second layer as
the frequency tends towards infinity.

It can be seen from Fig. 3b that the excitation inten-
sities (displacement components uz) of each mode are
different and have different distribution ranges. In the
low-frequency range the dominant guided wave is the
first mode while in the high frequency range mode 4 is
dominant. So in different frequency ranges, the modes
which can be excited by the source are different. If the
source frequency varies gradually, the received mode of
guided waves will be skipped. Therefore, the received
dispersion curves will be a noncontinual curve. It will
be discussed in detail in the next section.

Then, another three-layer medium (model 2) is con-
sidered. Their parameters are also given in Table 1. In
this model, the velocity of the compressional wave of
the second layer is the minimum, and the velocity of the
shear wave decreases gradually from the first to the
third layers. It is easy to find that the velocity of the
Rayleigh wave in the case where there is only the first
layer is equal to 2884 m/s. We denote this velocity by
V1∞ , i.e., V1∞ = 2884 m/s. It is easy to see that V1∞ is less
than the shear wave velocity Vs3 of the third layer. So
the Rayleigh mode certainly exists at any value of the
frequency. The dispersion curve in this model is
depicted in Fig. 4. There is only one mode in this case.
The phase velocity of this mode is less than the group
velocity in the low frequency range, while it is greater
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than the group velocity in the high frequency range. If
the formation parameters are similar to those in this
case in RWE, the dispersion curves will be a continual
and smooth curve.
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Fig. 3. The dispersion (a) and displacement intensities Uz
(b) curves of modes in model 1.

Table 1.  The values of the medium parameters in a stratified
half-space

Model
P-wave
velocity 

(m/s)

S-wave
velocity 

(m/s)

Density 
(kg/m3)

Thickness 
(m)

Model 1 6000 3500 3000 5

3500 2000 2370 2

6000 3500 3000 ∞
Model 2 6000 3100 2200 5

5000 3000 2800 2

5990 2960 4540 ∞
Model 3 6000 3500 3000 5

5000 3000 2800 2

4000 2500 2500 ∞
Finally, model 3 is considered. The parameters are
also given in Table 1. In this case, the velocities of the
compressional and shear waves decrease gradually
from the first to the third layers. It is easy to find V1∞ =
3213 m/s > Vs3 = 2500 m/s. The dispersion curve in
model 3 is displayed in Fig. 5. There is only one mode
that can be excited when f < 200 Hz, and the phase
velocity increases as the frequency increases. When the
phase velocity is greater than the shear wave velocity
Vs3 (=2500 m/s) of the third layer, there is not any mode
that can be excited by the source. This is because of the
fact that the phase velocity of guided waves must be
less than the shear wave velocity of the last layer in a
stratified half-space. Otherwise, the energy of this
guided wave will be infinite when the depth z tends
towards infinity.

It should be pointed out that the first layer is a dom-
inated layer when the frequency tends towards infinity.
In this situation, a stratified half-space is equivalent to
a homogeneous half-space that is composed of first
layer medium. Therefore, the limit of the phase velocity
of the guided waves is equal to V1∞ as the frequency
tends towards infinity. In model 3, V1∞ = 3213 m/s is
greater than Vs3 = 2500 m/s. Although there is not any
mode whose phase velocity is greater than 2500 m/s
(Vs3) in the models, it should still be thought that the
limit of the velocity of the guided wave is V1∞ =
3213 m/s in the high frequency.

ZIGZAG DISPERSION CURVES

In RWE, the velocity–wavelength (V–λ) curves of
the Rayleigh wave that are transformed by the velocity–
frequency (V–f) curves are usually adopted. The effec-
tive penetration depth (or exploration depth) of the
Rayleigh wave is related to its wavelength. That is, the
Rayleigh wave with the wavelength λ can reflect the
formation information in the depth λ. So the V–λ curve
is also named the velocity–depth (V–z) profile. In actual
exploration, the V–z profile obtained is usually a non-
continual zigzag curve. However, for a given mode of
the guided wave, the dispersion curve is a continual
curve. Why is it? Is the zigzag V–z curve obtained in the
transformation course from V–f curve to V–λ curve? We
found this idea to be wrong.

It is supposed the V–f curve of a mode is continual
(Fig. 6). At a point B on the curve, λ = V/f = . It is
easy to find that the points B, C, and D on the curve
have the same value of wavelength λ. This is why it is
thought that the zigzag dispersion curve is possibly
obtained in the transformation course. Now that point C
is considered, it is easy to find that

(10)

And therefore, it can be proved at point C that the group

αtan

dV
df
------- V

f
---.>
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003



RAYLEIGH WAVE AND DETECTION OF LOW-VELOCITY LAYERS 521
velocity satisfies

(11)

This result is inconsistent with the actual case. The
group velocity is the propagation velocity of the energy
of the guided wave. The value of the group velocity
must be greater than zero. So Eq. (11) is a wrong result,
and point C, which satisfies Eq. (10), is nonexistent.
This means that the tangent of any point on the disper-
sion curves does not pass through the origin of the coor-
dinate system. That is, any straight line through the
coordinate origin can intersect only once with the
smooth V–f curve of a given mode. Hence, only one
value of velocity for a given wavelength λ (or α) exists.
The zigzag dispersion curve cannot be obtained in the
transformation course for a given mode of guided wave.

1
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Fig. 4. Dispersion curve of the guided wave in model 2.
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Fig. 5. Dispersion curve of the guided wave in model 3.
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
Therefore, it can be thought that the zigzag disper-
sion curve in RWE is the result of many modes corre-
sponding to the guided waves in a stratified half-space.
As a typical example, model 1 is reconsidered. There
exists more than one mode at a given frequency. The
mode whose velocity is the highest will reach the
receiver first. However, the mode with the highest
velocity is not certainly received by the receiver. If the
displacement intensity (or energy) of this mode is too
small to be seen, this mode cannot be received by the
receiver, although it has a higher velocity. On the con-
trary, if a mode has a slower velocity but a bigger inten-
sity, this mode will be dominated and received. So it is
important to consider the velocities and the excitation
intensities of the guided waves. Not only the propaga-
tion velocities but also the intensities of the guided
waves in RWE must be considered.

Figure 3a shows that there are many modes of
guided waves, and Fig. 3b displays their excitation
intensities in model 1. Mode 2 and the modes whose
order are higher than 4 are relatively small. When the
source frequency increases gradually, the received
modes of the guided waves will be skipped from one
mode to the higher mode. So the received guided waves
may be skipped from mode 1 to mode 3, and to mode 4
when the source frequency increases from zero to infin-
ity. The skip course can be represented by the thick
lines in Fig. 3b. We connect the corresponding phase
velocities and obtain Fig. 7a, which is composed piece-
wise of some modes of guided waves. Then, if this V–f
curve is transformed further into the V–λ curve, the zig-
zag dispersion curve will be obtained. It is depicted in
Fig. 7b. This structure of zigzag dispersion curves of
the Rayleigh wave is very similar to that obtained in
RWE.

In the case where the compressional and shear wave
velocities increase gradually from top to bottom layers,
only the first mode of the guided wave has the dominant
intensity, and the other modes are too small to be seen.
This is explained in the above section. If the velocity of
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Fig. 6. Graph of dispersion curve.
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the shear wave decreases from top to bottom layers, the
number of modes that can be excited is not greater than
one. This characteristic can be also seen in Figs. 4 and
5. In these cases, the dispersion curves of the Rayleigh
wave are smooth and continual curves. So the zigzag
dispersion curve of the Rayleigh wave exists in the case
where the low-velocity layers are contained in a strati-
fied half-space. It is also indicated that there is an
important relationship between the zigzag dispersion
curve and the low-velocity layers.

Figure 8 gives another example of zigzag dispersion
curves in model 1, but the thickness h2 of the second
layer is 0.5 m. All guided waves move to the high fre-
quency range (Fig. 8a). It can be seen from Fig. 8b that
the dominant mode is the first mode and the other
modes are too small to be seen in this case. Figure 8c
displays the corresponding V–z profile. It shows that the
zigzag shape in the curve is very small. If the thickness
h2 of the second layer is less than 0.5 m, the zigzag
structure cannot be seen. This also shows that a thinner
low-velocity layer cannot produce a significant zigzag
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Fig. 7. (a) Velocity–frequency curve composed paragraphi-
cally by the modes in model 1. (b) Velocity–wavelength
curve corresponding to (a).
structure of the Rayleigh wave dispersion curves. This
may be one of the reasons why it is difficult to detect the
thinner low-velocity layers in RWE.

The above zigzag dispersion curves are obtained by
the intensities, which are given by the residues of the
poles, and phase velocity of the guided waves. We can
also obtain the zigzag dispersion curves using the full-
waveforms by the cross correlation method. In this
method, at first, the total full-waveforms of the pure
guided waves are obtained by eliminating the compres-
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Fig. 8. Dispersion and excitation curves in model 1 with a
thickness of the second layer of 0.5 m.
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sional and shear waves. Then, the dispersion curves can
be given by the cross correlation method using these
full-waveforms of some channels. The dispersion
curves obtained by the cross correlation method are
almost equivalent to that by the above method in theory.
In fact, it has been proved that the two methods are
equivalent in our works by lot of numerical simulation.

Now, we can explain the zigzag shapes in Fig. 1. It
is an actual exploration result in some place. It has been
proved that two zigzag shapes can display the real
structure of the formation. In fact, there basically exist
six layers in the formation. Their shear wave velocities
are 112.5, 195, 50, 542, 85, and 435 m/s, respectively.
The thicknesses of each layer are 1.8, 2.4, 0.7, 3.6,
2.1 m, and infinity, respectively. The third and fifth lay-
ers are low-velocity layers. The theoretical simulation
is conducted according to this model. The other param-
eters are known. But the compressional wave velocity
of each layer can be concluded by the field soil and the
Poisson’s ratio of the rock, and the density of each layer
can be concluded by the shear wave velocity and expe-
rience. The theoretical result of this model is depicted
in Fig. 9. It is obtained by the cross correlation method
from the time domain waveforms with no compres-
sional and shear waves. It can be seen that the theoreti-
cal curve is very close to that of real data. There exist
the inflection points of zigzag shapes near the two low
velocity layers. It can also be found that there exists a
definite difference between Fig. 1 and Fig. 9. This is
because the model of the media is not the standard strat-
ified media in an actual situation. And the compres-
sional wave velocities and the densities of each layer
are unknown and are given by the Poisson’s ratio and
experience. However, this difference is small; it basi-
cally shows that the method of this paper is reasonable.

THE EFFECTS OF MEDIA PARAMETERS 
ON THE ZIGZAG DISPERSION CURVES

In this section, we analyze the effects of the medium
parameters of each layer on the zigzag dispersion
curves. The dispersion equation is a function of four
parameters for each layer: S-wave velocity, P-wave
velocity, density, and thickness. In this paper, the
effects of S-wave velocities, P-wave velocities, and the
densities of each layer on zigzag dispersion curves are
studied in detail.

The Effects of S-Wave Velocities of Each Layer 
on Dispersion Curves

Model 1 is still considered in this section. The
effects of S-wave velocities on zigzag dispersion curve
are considered by changing the S-wave velocities of
each layer while the other parameters are invariable. As
a comparison, the dispersion curve of model 1 is given
by the dashed line in Fig. 10.

Figure 10a gives the zigzag dispersion curves in
model 1 by changing the S-wave velocity Vs1 of the first
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
layer from 3500 to 3000 m/s. It can be seen that the dis-
persion curve has a great change when Vs1 is changed.
The phase velocity of the Rayleigh wave is smaller
when Vs1 = 3000 than when Vs1 = 3500 m/s. This shows
that the effect of the shear wave velocity of the first
layer on the Rayleigh wave is significant, especially in
the range of short Rayleigh wave wavelength. However,
the shift of the position of the zigzag shape in the depth
direction is very small. This also shows that the position
of the zigzag shape in the dispersion curves can really
reflect the location of the low-velocity layer.

The dispersion curves in model 1 with the S-wave
velocity 1500 m/s (Vs2) of the low-velocity (second)
layer are shown in Fig. 10b. When the wavelength is
greater than the thickness of the first layer, the Rayleigh
wave velocity decreases as Vs2 decreases. However, this
change is small when the wavelength is less than the
thickness of the first layer. The shift of the position of
the zigzag shape in the depth direction is also small.
The properties of zigzag dispersion curves near the free
surface are determined by the parameters of the first
layer. The effect of the velocity Vs2 of the second layer
on the Rayleigh wave velocity appears significantly in
the range of wavelength that is more or less greater than
the thickness of the first layer.

The solid line in Fig. 10c gives the zigzag dispersion
curve obtained in model 1 with the S-wave velocity
4000 m/s (Vs3) of the third layer. As the shear wave
velocity of the third layer increases, the zigzag shape in
the dispersion curve has a slight shift towards the depth
direction (wavelength). The zigzag shape can still
reflect the location of the low-velocity layer. It can also
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be seen that the phase velocity in the long wavelength
range increases slightly due to the increase in V3∞ (the
Rayleigh wave velocity in the case where there is only
the third layer).

From Figs. 10a–10c it can be found that the velocity
of the Rayleigh wave increases (or decreases) as the
shear wave velocities of each layer increases (or
decreases). And the shift of the position of the zigzag
shape in the depth direction is small. The change of the
shear wave velocity of a layer mainly affects the veloc-
ity of the Rayleigh wave in the range of wavelength that
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Fig. 10. Velocity–wavelength curves of the model with dif-
ferent shear wave velocity of the first (a), second (b), and
third (c) layers.
is just about the depth of this layer, and the effect on the
other wavelength range is relatively small.

The Effects of P-Wave Velocities of Each Layer 
on Dispersion Curves

Figure 11a is the dispersion curve in model 1 with
the compressional wave velocity 5200 m/s (Vp1) of the
first layer. Similar to Fig. 10a, the phase velocity
becomes smaller when Vp1 is decreased, but this change
is apparent less than that in Fig. 10a. Not only the
velocity of the Rayleigh wave but also the position of
the zigzag shape is almost not changed when Vp1 is
changed.

Figure 11b gives the dispersion curve in model 1
with the compressional wave velocity 3000 m/s (Vp2) of
the second layer, and Fig. 11c gives the dispersion
curves in model 1 with the compressional wave veloc-
ity 5200 m/s (Vp3) of the third layer. In these cases, the
velocity of the Rayleigh wave and the position of the
zigzag shape are almost not changed.

It is indicated by Figs. 11a–11c that the Rayleigh
wave velocity and the position of the zigzag shape in
the depth direction are not sensitive to the compres-
sional wave velocity of each layer. So, we do not con-
sider the effect of the compressional wave velocity of
the formation especially in the inversion study.

The Effects of Densities of Each Layer 
on Dispersion Curves

Figures 12a–12c give the dispersion curves in model 1
with the densities 2500 kg/m3 (ρ1) of the first layer,
1500 kg/m3 (ρ2) of the second layer, and 2500 kg/m3

(ρ3) of the third layer, respectively. It can be seen that
the position of the zigzag shape has no changes,
although the densities of each layer are changed. But
phase velocity of the Rayleigh wave in the range of
long wavelength has a definite change.

On the basis of the above analyses, it can be con-
cluded that the effect of S-wave velocity on the disper-
sion curve of the Rayleigh wave is significant. The
changes of the S-wave velocities of each layer affect not
only the phase velocity of the Rayleigh wave but also
the position of the zigzag shapes. However, the effect of
the shear wave velocities of each layer on the position
of zigzag shape in the depth direction is very small. The
effects of P-wave velocities and the densities of each
layer are relatively small. When the P-wave velocities
and the densities of each layer are changed, the position
of the zigzag shape in the depth direction is almost not
changed.

It is also easy to see that when the parameters (com-
pressional wave velocity, shear wave velocity, density)
of each layer are changed, the value of the Rayleigh
wave velocity is changed but the position of the zigzag
shape of dispersion curve in the depth (wavelength)
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direction is almost not changed. The change of the
parameters of a layer mainly affects the velocity of the
Rayleigh wave in the range of wavelength of the Ray-
leigh wave that is just about the depth of this layer, and
the effect on the other wavelength range is relatively
small.

ZIGZAG DISPERSION CURVES 
IN MORE THAN ONE LOW-VELOCITY LAYER

Only one low-velocity layer is considered in the
above discussions. In this situation, the dispersion
curve has only one zigzag shape whose location can
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Fig. 11. Velocity–wavelength curves of the model with
different compressional wave velocity of the first (a), second
(b), and third (c) layers.
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indicate the position of the low-velocity layer. In this
section, the formation models that contain more than
one low-velocity layer are considered.

Firstly, a five-layer model (model 4) that contains
two low-velocity layers is considered. The parameters
of each layer are shown in Table 2. In this model, the
second and fourth layers are low-velocity layers, and
their top positions are at depths z = 5 and z = 8.8 m,
respectively. The solid line in Fig. 13a gives the disper-
sion curves for this model. It can be seen that there are
apparently two zigzag shapes that correspond to the
two low-velocity layers, respectively. The position of
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the first zigzag shape is at about λ = 5 m. If we take the
wavelength of the Rayleigh wave as the exploration
depth. It can be seen that a good result can be obtained
for the first low velocity layer. However, the position of
the second zigzag shape is at about λ = 12 m, which is
deeper than the real position (8.8–10.8 m) of the second
low-velocity layer. This means that greater errors will
be obtained in the location of the second low-velocity
layer than in the first low-velocity layer if the wave-
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layer.
length of the Rayleigh wave is taken as the exploration
depth.

Then, a seven-layer model (model 5) containing
three low-velocity layers is considered. The parameters
of each layer can be seen in Table 2. In this model, the
first, second, third, fourth, and fifth layers are the same
as that in model 4. The second, fourth, and sixth layers
are low-velocity layers. The dashed line in Fig. 13a is
the dispersion curve for this model. It is found that three
zigzag shapes exist in dispersion curves. The first and
second zigzag shapes near the free surface are coinci-
dent with that in the five-layer model (model 4), while
the third zigzag shape is near 20 m. Similar to the sec-
ond zigzag shape, the location of the third zigzag shape
is deeper than the actual position.

The dispersion curves of the seven-layer model
(model 5) with a different thickness h6 of the third low-
velocity layer are given in Fig. 13b. As we might
expect, the locations of the first and second zigzag
shapes when h6 = 0.8 are coincident with that when h6 =
1 m. The third zigzag shapes for two cases (h6 = 0.8 and
1 m) have the same depth, but the zigzag shape when
h6 = 0.8 is smoother and vaguer than that when h6 = 1 m.
In practice, the third zigzag shape will vanish when the
thickness of the third low-velocity layer decreases to a
small value. This is the reason why thin low-velocity
layers are difficult to find in Rayleigh wave exploration.

Figure 13c gives the dispersion curves in the seven-
layer model (model 5) with different thickness h5 of the
fifth layer. It can be found that the position of the third
zigzag shape when h5 = 4 is deeper than that when h5 =
3 m. It can be seen that only the third zigzag shape in
the dispersion curve is changed when h5 is changed. For
a stratified half-space containing more than one low-
velocity layer, it is more difficult to obtain information
on the low velocity in a deeper place than that in a shal-
low place.

The penetration depth (or exploration depth) of the
Rayleigh wave is a complicated problem. It can be seen
that the exploration depth in the method of this paper is
all about the wavelength for the first low-velocity layer
(the top of the first low-velocity layer is at z = 5 m in all
models in this paper). However, the exploration depth
should be multiplied by a proper weight coefficient for
the low velocity layer in the high depth. Generally
speaking, this coefficient is less than 1 and is different
for different depths. The deeper the low velocity is, the
less the coefficient is. The compressional and shear
wave velocities of the formation are relatively small in
engineering seismic exploration, so the coefficient of
the exploration depth is generally about 0.5. Hence, this
method is usually known as the half wavelength
method in engineering seismic exploration. However,
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
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this coefficient is variable, and it is usually given by
work experience and the local area. This coefficient is
higher in the formations with higher velocities of com-
pressional and shear waves.

CONCLUSIONS AND DISCUSSION

The mechanism of the zigzag dispersion curves that
appear in RWE is studied on the basis of analyzing the
guided waves in a stratified half-space. The characteris-
tics of the zigzag dispersion curves and the effects of
the formation parameters are analyzed. The relation of
the shape and position of the zigzag dispersion curves
to the exploration depth of the Rayleigh wave is also
investigated.

There exist many modes in a stratified half-space.
Different modes exist in different frequency ranges. If
the source frequency increases (or decreases) gradually,
the received modes of the guided waves should be
skipped from one mode to another mode and the zigzag
velocity–wavelength dispersion curves observed in
RWE are formed. However, in the case where the com-
pressional and shear wave velocities increase gradually
from the top to the bottom layers, only the first mode of
the guided wave has the dominant intensity, and the
other modes are too small to be seen. So only one mode
can be observed, and there is no zigzag shape in the dis-
persion curves in this case. Similarly, if the velocity of
shear wave decreases from the top to the bottom layers,
the number of modes that can be excited is not greater
than one. This also shows that there is no zigzag shape
in the dispersion curves. The zigzag dispersion curves
of the Rayleigh wave exist certainly in the case where
the low-velocity layers are contained in a stratified half-
space.

If the parameters of each layer are changed, the
value of the Rayleigh wave velocity should be changed
significantly, but the position of the zigzag shape of the
dispersion curve in the depth (wavelength) direction
should be almost not changed. The change of the
parameters of a layer mainly affects the velocity of the
Rayleigh wave in the range of wavelength of the Ray-
leigh wave that is just about the depth of this layer, and
the effect on the other wavelength range is relatively
small.

The exploration depth of the Rayleigh wave is the
wavelength multiplied by a proper weight coefficient.
Generally speaking, this coefficient is less than 1 and is
different for different depth. The deeper the low veloc-
ity layer is, the less the coefficient is. This coefficient is
variable, and it is usually given by work experience and
the soil properties of the local work area. The coeffi-
cient is generally about 0.5 in engineering seismic
exploration, because the compressional and shear wave
velocities are relatively small, while it is higher in the
formation with higher velocities of compressional and
shear waves.
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
There exists an important relationship between the
zigzag dispersion curves and the low velocity layers. It
is necessary to study this relationship and explain the
basis for RWE. This paper presents a trial investigation,
although it is not perfect in some aspects. We hope that
this paper will play an important role in a thorough
study of the Rayleigh wave.
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Abstract—The procedure is given for calculating the total power of low-frequency sound and seismic waves
produced by a Helmholtz resonator in the form of an air-filled spherical cavity buried in the ground and supplied
with a hole through which it is connected with the atmosphere. The sound is generated by air oscillations in the
resonator’s neck section that is open to the atmosphere, while the compression and shear elastic waves are gen-
erated in the bulk of the ground by cyclic pressure fluctuations that act on the spherical walls of the cavity. Cal-
culations show that the coincidence of the resonance frequencies (within approximately ten to hundred hertz),
at which both the sound radiation to the atmosphere and the elastic seismic radiation in the form of longitudinal
and transverse bulk waves are maximum, can occur only when the resonator is placed in a loose ground char-
acterized by reduced elastic characteristics. In these conditions, the power of transverse waves exceeds the
sound power by a factor of two and the power of longitudinal waves is smaller than the sound power by a factor
of several tens. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The development of new principles of constructing
nonexplosive sources of acoustic waves in the atmo-
sphere and seismic waves is rather topical, because it
provides the basis for monitoring the atmosphere and
for sounding the earth’s depth by vibroseismic meth-
ods. For the air medium, high-quality acoustic sources
have already been designed, including those operating
in the low-frequency range. As for the seismic sources
available on the market and even their new models
under design, these sources are characterized by very
low efficiency of elastic wave generation, which ham-
pers the solution of multiple problems of seismic
sounding. In this connection, some researchers have
already proposed and discussed methods of generating
seismic waves with the use of hydroacoustic sources
[1–3]. This paper considers a source of vibrations that
provides a combined generation of acoustic waves in
the atmosphere and seismic waves with the use of a sys-
tem that is well known in acoustics, namely, a Helm-
holtz resonator. An attractive feature of this source is
that it requires no heavy (multiton) structures for pro-
viding a force action on the earth’s surface, because it
uses an air-driven source of pressure or airflow fluctua-
tions: such a source can be realized using a routine
compressor. The analysis presented in this paper deals
with the quantitative estimates of the power of both
seismic radiation and low-frequency sound in the atmo-
sphere (in the range approximately from 20 to 100 Hz),
which are excited by the oscillations of both air and the
walls of the Helmholtz resonator completely buried in
1063-7710/03/4905- $24.00 © 20529
the ground. The object under consideration is an ideal-
ized system in which the resonator neck has a zero
height; i.e., the resonator neck is simply a hole in the
spherical cavity, and this hole opens flush with the
ground surface, as shown in Fig. 1. In this configura-
tion, the depth of the spherical cavity center coincides
with the radius of the sphere. The calculation is aimed
at evaluating the comparative energy characteristics of
elastic seismic waves and sound waves in the atmo-
sphere, both of which are generated by the same source:
the sound in the atmosphere is generated by the acous-
tic oscillations of air in the neck section, and the elastic
(or vibroseismic) waves are excited by the oscillating
pressure which acts on the spherical walls of the reso-
nator buried in the ground. The cavity in the surround-
ing medium represents one of the two coupled oscilla-
tors of the whole oscillating system, and it is necessary
to determine the conditions at which these oscillators
will have close resonance frequencies. The cavity is
assumed to have no additional envelope, because such
an envelope makes it necessary to introduce an addi-
tional stiffness, which complicates the problem. Since
the Rayleigh surface waves are of little use in sounding
and monitoring problems, the contribution of the sur-
face waves excluded from the consideration and only
the total energy of compression and shear bulk waves is
evaluated, despite the fact that the contribution of sur-
face waves is known to predominate at lower frequen-
cies. It is obvious from general considerations that, in a
resonator placed in a perfectly rigid medium, only
acoustic oscillations that produce atmospheric sound
003 MAIK “Nauka/Interperiodica”
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will be excited. As the stiffness of the surrounding elas-
tic medium is reduced to certain acceptable values,
another oscillating system is formed: a spherical cavity
in an elastic medium whose resonance frequency may
be close or even coincident with the resonance fre-
quency of the air oscillations in the Helmholtz resona-
tor.

The presence of a free boundary and the hole con-
necting the cavity with the atmosphere violate the
spherical symmetry, which is usually implied in calcu-
lating the resonance vibrations of a cavity. However,
below, this factor is ignored in the calculations proceed-
ing from the assumption that the resonance conditions
vary only slightly when the hole radius is much smaller
than the cavity radius. The problem under consider-
ation includes the determination of the conditions
under which the resonance frequency of the elastic cav-
ity coincides with the resonance frequency of air oscil-
lations in the Helmholtz resonator, as well as the evalu-
ation of the sound power and the power of elastic waves
in the ground under the aforementioned conditions. The
comparison of these powers will show whether the
source should be considered as a predominantly atmo-
spheric or seismic source. It should be noted that the
sound energy emitted into the atmosphere by a seismic
vibrator located on the ground’s surface was already
considered in [4]. The calculation and the estimates
showed that the sound power was negligible in compar-
ison with the power of seismic radiation. The present
paper considers another mechanism of sound genera-
tion in the atmosphere. The question arises as to
whether the energy of acoustic oscillations predomi-
nates in this case. The answer requires some calcula-
tions. The analysis given below assumes the use of the
solution that was obtained and analyzed in [5] for the

Rayleigh
waves

r0

Atmospheric
sound

‡
Rayleigh
waves

Shear
waves

Compression
waves

Shear
waves

Fig. 1. Schematic diagram of seismic fields and atmo-
spheric sound generated by the buried Helmholtz resonator.
elastic fields generated in the half-space by an oscillat-
ing sphere (a source of hydrostatic pressure) located at
some depth below the free surface. This solution is
appropriate for describing the seismic radiation from
the oscillating walls of an almost spherical cavity. Thus,
the desired comparative estimates can be obtained on
the basis of the aforementioned information and the
theory of sound radiation by a Helmholtz resonator [6].

THEORETICAL CALCULATION 
AND ESTIMATES

Let us assume that the Helmholtz resonator is
excited by an external action producing oscillations of
the air mass with a volume velocity amplitude V0 and a
frequency ω. In this case, one can easily calculate the
power of the acoustic radiation generated in the atmo-
sphere by the air oscillations in the section of the reso-
nator’s neck. It is known [6] that the generalized dis-
placement of the air column in the resonator’s neck u
and the acoustic pressure p in the cavity satisfy the
equations

(1)

where α =  is the attenuation factor,  =

 is the squared frequency of natural oscillations

without taking the attenuation into consideration, ρ is
the air density, c is the sound velocity in air, a is the
neck radius, and r0 is the radius of the spherical cavity.
The above expressions for the attenuation factor and the
frequency are valid for a resonator whose neck has a
zero height and whose geometric parameters satisfy the
condition a ! r0 .

It is not difficult to derive formulas describing the
forced solutions of Eq. (1) in the coordinate u and the
acoustic pressure p:

(2)

The total acoustic power emitted in a solid angle of
2π (the upper hemisphere, because we consider only
the sound field in the atmosphere) can be calculated
using Eq. (2) for the displacement u with consideration
for the relationships between this displacement and the
volume velocity amplitudes V0 , as well as the air oscil-
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lations on the external side of the neck, which is the
actual source of sound. This procedure gives the fol-
lowing result:

(3)

It turns out that the quantity  is a common fac-

tor, which appears not only in expression (3) for the
sound energy, but also in the expressions derived below
for the powers of elastic waves of both types.

We estimate the power of the seismic radiation gen-
erated by a spherical source using the results obtained
in [5, 6]. We start from the expression for wave dis-
placements in the far field of the pressure wave gener-
ated by a harmonic monopole in the form of a spherical
cavity of radius r0 oscillating at a depth H = r0 below the
free boundary and producing the acoustic pressure
amplitude p given by the second of Eqs. (2) at the cavity
wall:

(4)

where Kll is the reflection coefficient (in the displace-
ment amplitude) of the longitudinal wave in the case of
its reflection from the free boundary with the transfor-
mation into a wave of the same type, r is the distance to
the observation point, θl is the angle between the verti-
cal and the beam propagating from the center of the res-
onator neck to the observation point,  is the density of
the elastic medium, kl, t = ω/cl, t are the wave vectors of
compression and shear waves, and cl, t are the velocities
of these waves.

The field of elastic displacements in the shear wave
formed a result of the transformation of the longitudinal
wave incident on the plane boundary is given by the
relationship

(5)

where θt is the angle of departure (measured from the
vertical), at which the shear wave propagates from the
boundary toward the bulk of medium, and Klt is the
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coefficient of the longitudinal-to-transverse wave trans-
formation (with respect to the displacement amplitude).

In the above formulas, the pressure p is given by
Eq. (2), where the volume velocity amplitude V0 takes
a fixed value. However, this does not allow one to rig-
orously take into account the backpressure, which is of
especial importance at resonance, and the effect of the
added air mass that accompanies the motion of the rigid
cavity walls. Consequently, our consideration of the
mutual influence of two oscillatory processes is not
exhaustive, and, hence, the above expressions cannot be
considered as self-consistent, although they are quite
appropriate for obtaining the amplitude relationships
and energy estimates in the far zone. In particular, con-
sidering the denominators in Eqs. (4) and (5), one can
easily see that the main resonance condition for the
elastic cavity oscillation is formulated as the approxi-
mate equality r0 ≈ 2, which yields an approximate
expression for the resonance frequency:

(6)

The resonance frequency of forced acoustic oscilla-
tions of a Helmholtz resonator with a neck of zero
height and with the losses and wall vibrations being
neglected coincides with the frequency of natural oscil-
lations and is determined by the formula

(7)

Equating the resonance frequencies of the air cavity
and the elastic medium, we obtain the condition that
relates the cavity radius and the hole radius to the sound
velocity in air and the shear wave velocity in the
ground:

(8)

From formula (8) it follows that the resonance fre-
quencies of the two oscillatory systems can coincide
only when the velocity of shear waves is sufficiently
low. This is possible in loose grounds that can be mod-
eled as waterlike media with a shear modulus that is
small in comparison with the compression modulus:
µ ! λ. In particular, for peaty grounds, where the
velocity ct ~ 70–80 m/s, we find that the neck-to-cavity
radius ratio is a/r0 ≈ 0.3–0.4. The Q factor of the Helm-
holtz resonator and the resonant oscillation of the elas-
tic cavity remain sufficiently high in this case. For
example, the Q factor of acoustic oscillations can be
estimated as Qac ≈ 1.633(πr0/a)3/2, so that Qac ~ 35–55.
Additional dissipation mechanisms, such as turbulent
phenomena in the region of the moving air column,
may reduce the Q factor. Since the levels of sound and
seismic waves depend on the particular value of the Q
factor, the sound and seismic powers were calculated
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for several values of the Q factor (Qac ~ 10, 25, and
37.5) and several resonance frequencies (f0 ~ 25, 50,
and 100 Hz).

In the table, the upper numbers in every cell repre-
sent the calculated estimates of the acoustic power Wac

emitted by the source at frequencies coinciding with all
the above resonance frequencies for all the above val-
ues of the Q factor. The estimates were obtained with
the use of Eq. (3) at the oscillating volume velocity
amplitude V0 = 0.1 m3/s. Here, it was assumed that the
resonance frequencies of acoustic and elastic vibrations
coincide, and this assumption will be used below in
estimating the power of pressure and shear waves.

The Q factor of the elastic cavity that is related to the
radiation loss is determined by the relationship QSeis =
cl/2ct. With the inclusion of the viscous loss, the values
of the Q factor fall approximately within 3–5. The Q
factor of the acoustic resonance appears to be much
higher in comparison with this value. For this reason,
the Q factor of air oscillations in the cavity will govern
the common operating bandwidth of the seismic source
under consideration. Remember that the resonance fre-
quencies of two systems can be equalized with the use
of coupling layers on the resonator walls. However, as
was mentioned in the introduction to this paper, such an
equalization makes the problem under consideration
more complicated because of the inclusion of addi-
tional envelopes characterized by a different stiffness.

Now, let us consider the power characteristics of
compression and shear waves in the elastic medium
under the condition that the acoustic and elastic reso-
nance frequencies of the source coincide. Using formu-
las (6) and (7), one can easily calculate the power of the
emitted elastic waves. Omitting the intermediate rear-
rangements described in [5], we represent the power of

Powers of the acoustic and seismic waves produced by the
source

Wac (W)
WP (W)
WS (W)

f0 (Hz)
Qac 25 50 100

10 0.5 2 7.5

0.012 0.045 0.18

1 4 15

25 3 12 48

0.07 0.3 1.2

7 24 95

37.5 7 27 110

0.18 0.7 2.5

14 60 220
the pressure waves produced in the ground by the for-
mula

(9)

where

,

Using Eq. (9), we obtained the estimates of the power
of compression (pressure) waves WP. The table shows
these estimates in the middle row of every cell. As
before, these estimates were obtained for the source
operating at frequencies coincident with the above res-
onance frequencies and for all three values of the Q fac-
tor. The calculations were performed using the follow-
ing parameters: γ = 6, c/ct = 5, r0 = 1 m, a = 0.3 m, and
other parameters mentioned earlier. As can be seen, the
power of seismic compression waves is always below
2.5% of the acoustic power emitted to the atmosphere.

A similar procedure is used for determining the
power of transverse waves excited in the ground by
equivalent surface force sources originating from the
oscillation of the buried monopole and producing an
alternating effect on the boundary between the solid
medium and the atmosphere. According to [5], we have
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where

(10)
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Using Eq. (10), we obtained the estimates of the power
of transverse seismic waves in the ground WS. These
estimates are shown as the lower numbers in every cell
of the table. They exceed the power of sound produced
in the atmosphere by a factor of about 2. Such an appre-
ciable power excess of the shear waves over the longi-
tudinal waves is obviously a consequence of their lower
velocity of propagation, which is characteristic of geo-
logic materials of the type of loose grounds.

Figure 2 shows the sound power and powers of lon-
gitudinal and shear elastic waves, Wac, WP, and WS, nor-

malized by the factor  as functions of the rela-

tive frequency deviation ω/ω0. The curves are given on
a logarithmic scale and calculated for the acoustic Q
factor Qac = 37.5 and the resonance frequency f0 =
100 Hz.

The table summarizes all the calculated data repre-
senting the maximum powers produced by the Helm-
holtz resonator in the form of sound and seismic com-
pression and shear waves for each of the three afore-
mentioned values of the Q factor and each of the three
resonance frequencies. With reference to the results

ρV0
2ω0

2

2cπ5
----------------

23.24

1.87

–19.50

–40.86

–62.23
0.50 0.75 1.00 1.25 1.50

dB

Wac

WS

WP

ω/ω0

Fig. 2. Power of sound produced in the atmosphere and the
powers of seismic waves as functions of the relative fre-
quency deviation for Qac = 37.5 and f0 = 100 Hz.
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obtained in [5], one can additionally infer that the
power removed from the system by the Rayleigh sur-
face waves can hardly exceed the total power of the two
kinds of bulk waves even for the lowest frequency
under consideration.

The data shown in the table suggest that such a
source is relatively high frequency, because it generates
seismic waves with power levels characteristic of seis-
mic prospecting (100 W or more) only at frequencies
exceeding 50 Hz. In order to produce these power lev-
els, the Q factor of the acoustic component should be no
lower than ~ 30. The fact that the power of transverse
waves exceeds the power of longitudinal waves by two
orders of magnitude and the coincidence of the power
of transverse waves with the power of sound emitted to
the atmosphere within an order of magnitude allow one
to expect that such a source will efficiently generate
both atmospheric acoustic waves and seismic shear
waves under the condition that the source is located in
a waterlike geologic medium and under the assumption
that the value V0 = 0.1 m3/s used in the above calcula-
tions for the volume velocity amplitude is technically
realizable.

CONCLUSIONS

From the results of the calculations described above,
one can draw the following conclusions:

(1) An acoustic seismic resonator simultaneously
operating as a source of shear seismic waves in an elas-
tic medium and a source of acoustic radiation in the
atmosphere can be implemented only in very soft or
loose grounds. Narrowband atmospheric sound and
mainly transverse seismic waves in the ground are gen-
erated as a result of the harmonic excitation of the
Helmholtz resonator by an external source of fluctuat-
ing pressure or fluctuating airflow.

(2) The generation of shear seismic waves with an
efficiency acceptable for practical applications is real-
ized at frequencies above 50 Hz under the condition
that the acoustic Q factor of the resonator is sufficiently
high, Qac ≥ 30.

(3) In the case of operation at a resonance frequency
that is the same for both oscillating systems, the Helm-
holtz resonator considered in this paper cannot be
unambiguously qualified as a predominantly acoustic
or predominantly seismic source of vibration.
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Presumably, such a source can be used in both seis-
mic prospecting and low-frequency acoustic monitor-
ing of the atmosphere, especially if a group of several
in-phase sources is used. Since the resonator is located
in the so-called low-velocity zone, where the velocity
of wave propagation monotonically and rapidly
increases with depth, a certain small portion of the seis-
mic energy will be localized near the boundary. How-
ever, one should expect that most of the oscillation
energy produced by the source will propagate into the
bulk of the earth with the shear seismic waves, which
are widely used for sounding the structure of the earth’s
interior.
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Abstract—The mechanism of the vertical sound field structure formation in the underwater sound channel is
considered. The calculations are performed by the ray method for the rays that have upper turning points at the
ocean surface. It is shown that the vertical field structure is formed by the ray pairs producing opposing waves
in the vertical. The rays belonging to one pair have the same sign of their departure angles at the source. The
pairs are formed because of the presence of a minimum in the ray cycle length as a function of the departure
angle. The resulting ray pairs are analogs of Brillouin waves. © 2003 MAIK “Nauka/Interperiodica”.
In an ideal waveguide, the features of the sound field
can be well interpreted in terms of Brillouin waves.
Brillouin waves are defined as a pair of plane mono-
chromatic waves that have the same absolute values of
the wave vector and opposite signs of the wave vector
projections on the plane normal to the waveguide axis x
[1–3]. In the plane x = const, a pair of such waves pro-
duces an interference structure whose period is gov-
erned by the wavelength λ and the absolute value of the
angle at which both plane waves propagate in the
waveguide. With certain boundary conditions, Bril-
louin waves compose a so-called normal wave, which is
a traveling wave in the x direction and a standing wave
in the perpendicular direction [4]. Brillouin waves are a
useful instrument for the physical interpretation of the
sound field in a waveguide [3].

In ocean acoustics, in addition to the waves reflected
by the waveguide boundaries, the waves refracted in the
course of their propagation in the waveguide are con-
sidered. In ocean acoustics, a typical sound speed pro-
file has a minimum at a certain depth, which leads to the
formation of the so-called underwater sound channel
(USC). An important feature of wave propagation in an
ideal waveguide is that the rays are naturally separated
into pairs. That is why the method of Brillouin waves is
so efficient for the ideal waveguide. In the USC, such
pairs have not yet been observed.

The objective of our paper is to demonstrate that, by
analogy with the ideal waveguide, a natural separation
of rays into pairs similar to Brillouin waves occurs in
the USC, the rays in a pair producing opposing waves
in the vertical. This fact makes it possible to universally
describe the sound fields in both an ideal waveguide
and the USC with the use of the generalized interpreta-
tion of Brillouin waves.
1063-7710/03/4905- $24.00 © 20535
Let us illustrate the behavior of waves in the USC by
considering a particular case with parameters taken
from the hydrological data of the experiment performed
in the Atlantic Ocean in 1989. These parameters are as
follows: the ocean depth is 5000 m, the sound speed
profile c(z) has a near-surface maximum at a depth of
60 m and a minimum at the depth z = 1600 m, and the
sound speed near the bottom is higher than in the near-
surface maximum. Here, z is the vertical coordinate
measured from the ocean surface and x is the horizontal
coordinate at the depth of the sound source. An omnidi-
rectional monochromatic transmitter is at the depth of
the near-surface maximum in c(z). We consider the
water rays whose upper turning points lie at the ocean
surface. Let us specify the distance to be x = 240 km,
the frequency of the source to be 233.6 Hz, and the sur-
face reflection coefficient to be –1.

Above all, note that, in contrast to an ideal
waveguide, now the rays leaving the source at angles
symmetric with respect to the x axis (i.e., towards the
bottom and towards the surface) arrive at the reception
plane x = 240 km only from below (from the bottom
towards the surface). Even if the source is on the USC
axis, where the shift of the symmetric ray trajectories is
maximal, the major part of the rays are directed to the
surface at x = 240 km (Fig. 1).

According to the calculations, the rays leaving the
source at symmetric angles do not form Brillouin
waves, as in an ideal waveguide. It is difficult to find a
mechanism of wave separation into pairs and detect
Brillouin-like waves by considering ray trajectories like
those shown in Fig. 1. We suggest another way to solve
this problem.

The procedure consists in calculating the coordi-
nates of ray arrivals at the plane x = const as a function
of the angle of departure from the source. In Fig. 2, the
003 MAIK “Nauka/Interperiodica”
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functions z(θ) are presented, where θ is the departure
angle measured from the z axis. The absolute value of
the angle θ is represented by the horizontal axis, and the
waveguide depth measured from the surface, by the
vertical axis. The solid curve indicates the coordinates
of arrivals at the z axis for the rays leaving the source
towards the surface (θ < 0), and the dashed curve,
towards the bottom (θ > 0). Let us consider the specific
features of the curves. One of these features consists in
the fact that, at each point in depth, two rays arrive from
a group of rays with the same signs of the departure
angle. Another feature is that, as the departure angle
changes, the depth z(θ) of ray arrivals first decreases
and then increases for both positive and negative signs
of the departure angle. In other words, the rays with
departure angles of the same sign arrive at the same
depths as the rays with previous values of the departure
angles. From four rays arriving at a point z, two pairs
can be formed that are analogous to Brillouin waves.
Evidently, the pairs should be formed from the rays cor-
responding to a single curve, because it is precisely

0

1

2

3

4

5

z, km

0 100 200 x, km

Fig. 1. Trajectories of rays leaving the source at symmetric
angles. The source is at the USC axis, z = 1600 m.

z(θ), km
0

2

4
80 84 88 |θ|, deg

Fig. 2. Depth z(θ) of the ray arrivals at the distance x =
240 km with the source depth z = 60 m. The rays leave the
source towards the surface (the solid curve) and towards the
bottom (the dashed curve).
these rays that have an inverse change in the vertical
coordinate, which is characteristic of Brillouin rays.
Thus, the quartets of water rays are naturally separated
into two pairs similar to Brillouin waves of the ideal
waveguide. We can assume that, at the given distance x,
the ray pairs are the plane waves that form a normal
wave [4].

In addition to establishing the fact of the natural sep-
aration of waves into pairs in the USC, it is advanta-
geous to reveal the mechanism of this phenomenon:
what underlies the formation of the two opposing
waves? The determination of this mechanism will allow
us to generalize the result obtained by studying a par-
ticular case.

It was found that the reason for the opposite change
in the ray depth of a pair (i.e., for the arrival of the rays
with the same sign of the departure angle at a single
point) consists in the presence of a minimum in the ray
cycle length as a function of the departure angle θ. Fig-
ure 3 shows the dependence D(θ) of the ray cycle length
on the absolute value of the departure angle. Although
at first glance the existence of the minimum in the cycle
length seems to be somewhat surprising, it can be easily
explained. In fact, in an ideal waveguide, the cycle
length (the distance between two reflections from the
same surface) decreases as the angle between the z axis
and the ray decreases and increases as the waveguide
depth increases. These two statements hold for the USC
in view of the fact that, for each ray, the waveguide
depth is determined by the position of its turning point
near the bottom. As a result, the following phenomenon
takes place. A decrease in the departure angle (relative
to its maximal value) has a stronger effect on the cycle
length than that of the increase in the depth of the turn-
ing point (the waveguide depth). The cycle length
decreases. After that, the effect of the second factor
becomes stronger: the cycle length ceases decreasing,
then becomes constant, and then begins to increase in
spite of the decrease in the departure angle. Such min-
ima in the cycle length were observed experimentally
[5]. Note that the minima can exist only in waveguides
with the USC. In channels with a monotonically chang-
ing speed of sound, no minima occur in the cycle
length.

The formation of the opposing waves can be related
to the change in the cycle length in the following way.
As the cycle length decreases, the ray trajectories
shrink, and the rays become displaced along the vertical
at the chosen distance from the source. As the cycle
length increases, the rays are displaced in the opposite
direction, and they practically return to the previous
positions. As a result of such a reciprocating motion of
the trajectories, two opposite displacements of the ray
occur, and opposing waves are formed along the z axis.
In this counter motion of the rays, the sign of the wave
vector does not change. The change in the sign occurs
only at the surface reflections and at the turning points
near the bottom. Returning to Fig. 2, one may notice
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
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two features of the opposing waves. First, the formation
of the opposing waves occurs with an arbitrary sign of
the departure angle. This feature is confirmed by the
existence of two curves produced by rays with depar-
ture angles of opposite signs. Second, the caustic forms
at a point of extreme ray depth. The information on the
coordinates of the caustic is a matter of practical signif-
icance. The curves shown in Fig. 2 are important in
themselves, regardless of the problem at hand. These
curves show the region of the sound field convergence
in depth at the given distance, including the positions of
caustics. To obtain these curves, it is sufficient to know
the vertical distribution of the sound speed. The calcu-
lation of the function z(θ) for the channeled rays is
described in [6].

Thus, we have shown that, in the natural waveguide
with the USC, rays arriving at a single point at the plane
x = const can form pairs similar to the Brillouin waves
that exist in an ideal waveguide. Now let us consider the
difference between the ray pairs in the USC and Bril-
louin waves.

The Brillouin waves in an ideal waveguide differ
from their analog in the USC in that the spatial frequen-
cies of Brillouin waves have different signs but do not
change throughout the whole waveguide depth, while a
similar pair in the USC has different frequencies,
which, in addition, depend on the depth of their cross-
ing the plane x = const. To reveal the consequences of
this difference, let us consider the spatial frequency of
the sound field throughout the waveguide depth.

Prior to proceeding with our particular case, let us
obtain the dependence of the spatial frequency of the
sound field produced by the rays along the z axis,
regardless of the distance to the source. The vertical
structure of the sound field is governed by the projec-
tion of the wave vector on the z axis. Let us denote this
projection as γ(z). Figure 4 shows the dependence |γ(z)|
for different absolute values of the ray departure angles
with a step of 2°. The angle is measured from the z axis.
In this and subsequent figures, the function γ(z) is
expressed in the 2π/m units. The lower curve corre-
sponds to the largest departure angle, 89.95°. It is
essential that Fig. 4 presents the full set of the spatial
waveguide frequencies in the vertical. One can see that
rays with different values of |γ(z)| arrive at a single point
in depth. Note an interesting feature of the curves: all of
them exhibit maxima at the depth of the minimal sound
speed.

Let us now consider the spatial structure of the
sound speed along the z axis at the fixed distance x =
240 km. Figure 5 shows the function γ(z) for the same
rays as in Fig. 2., with the same notations. In Fig. 2, all
the curves corresponding to the rays leaving the source
upwards and downwards are rather distant from each
other. In contrast, the curves γ(z) nearly coincide,
except for the region of caustics (the inflection points of
the curves). In the case under consideration, the vertical
field structures produced by rays with departure angles
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
of opposite signs little differ from each other. The
essential feature consists in the fact that, on different
sides of the caustic, the rays forming the Brillouin-like
pair have different spatial frequencies. The lower parts
of the curves correspond to greater angles θ and the
upper parts, to smaller angles. Therefore, in contrast to
an ideal waveguide, the ray pair of the USC does not
form a standing wave in the vertical but rather leads to
beating with the frequency equal to the difference in
γ(z) for the rays forming the pair. Note that the curves
γ(z) in Fig. 5 have maxima at the depth of the USC axis,
as in Fig. 4.

Until now, we considered the vertical distribution of
the sound field in the ray trajectory region where the
rays can be approximated by plane waves. Let us now
undertake the same consideration for the center of the
convergence zone, x = 190 km, where such an approxi-
mation fails. In Figs. 6a–6c, the functions z(θ) and γ(z)
and the sound field spectrum along the z axis are shown.
Similarly to Figs. 2 and 5, the sign of the ray departure
angles does not matter. The difference is noticeable
only in the region of caustics. The main group of rays,

D(θ), km
66

80 84 88 |θ|, deg

64

62

60

Fig. 3. Length D(θ) of ray cycles with the source depth z =
60 m.

|γ(z)|, 2π/m

0.2

0.1

0 2 4 z, km

Fig. 4. Absolute value |γ(z)| of the projection of the ray wave
vector on the z axis. The step in departure angle is 2°. The
lower curve corresponds to a departure angle of 89.95° with
respect to the z axis.
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between the points of surface reflection, propagates
downwards, γ(z) < 0, and the rays reflected from the
surface are added, γ(z) > 0. As a result, one to four rays
arrive at each point with the same signs of the departure
angle. Thus, at the chosen distance from the source,
rays that are very close to the Brillouin waves of the
ideal waveguide are present: the quantities γ(z) are
close in their values and opposite in signs. However, the
number of rays with γ(z) > 0 is small, this feature being
quite pronounced in the sound field spectrum along the
z axis (Fig. 6c). According to the plots, most rays con-
centrate in the region of the caustic; it is precisely these
rays that make the main contribution to the formation of
the frequency structure of the sound field in depth. The
calculation of the sound field in the vicinity of the near-
bottom turning points shows that here, as in the two
previous cases, the rays form pairs similar to Brillouin
waves. The rays in the pairs have different spatial fre-
quencies but the same sign.

Let us consider other situations. First of all, note that
a change in the source depth leads to no significant con-
sequences. A significantly new phenomenon arises at
long distances x when the convergence zones overlap
[7, 8]. Figures 7a and 7b show the functions z(θ) and
γ(z) calculated for an arbitrarily chosen distance x =
1500 km. The curves corresponding to rays with differ-
ent signs of the departure angle are very close to each
other. The spatial frequencies differ nowhere but at the
caustic. Due to the overlapping of cycles, pairs of rays
arriving at the reception plane from both above and
below are formed, and these pairs fully correspond to
the Brillouin waves of the ideal waveguide [9, 10].
According to Fig. 7a, the relative number of such rays
is about 40% at the given distance. Hence, the contribu-
tion of the main weakly divergent beam decreases to
60%. Let us now consider the region of caustics in more
detail.

In recent years, much attention has been paid to con-
sidering super-long-range sound propagation in a fluc-

γ(z), 2π/m

0.2

0.1

0 2 4
z, km

1 3

Fig. 5. Spatial frequency γ(z) of the sound field along the
vertical at the distance x = 240 km. Notations are the same
as in Fig. 2.
tuating ocean. In [11], a possible explanation is pro-
posed for the conservation of the sound wave front at
long distances from the source. The ray calculations
described above offers the following explanation of this
phenomenon. The conservation of an undistorted wave
front in a fluctuating ocean can be observed when the
signals are received in the vicinities of caustics. The
rays producing the caustic have close departure angles
and, hence, close ray trajectories. For x = 1500 km
(Fig. 7), the total width of the beam is about 0.5° for
these rays. The trajectories of other rays are more dis-
tant from each other, especially those of rays that
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Fig. 6. Vertical structure of the sound field at the center of
the convergence zone, x = 190 km: (a) the depth of ray arriv-
als z(θ); (b) the spatial frequency γ(z) of the sound field
along the vertical; and (c) the amplitude of the spatial spec-
trum of the sound field along the vertical.
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appear due to the overlapping of convergence zones and
form classical Brillouin waves. These rays travel
through different ocean regions and undergo different
distortions. The rays forming the caustic are distorted in
the same way, and, therefore, the initial coherence of
these rays is conserved. The latter fact explains the
super-long-range propagation of such rays.

One more conclusion can be drawn from the calcu-
lations described above. Since the vertically opposing
waves are obtained from the ray method, there is no
need to use the mode technique to calculate the sound
field in the waveguide with the USC, and all the more
so because the main concept of the mode theory, i.e.,
the independence of the vertical field structure on dis-
tance, is not valid.

To conclude, the following remark should be made.
For the chosen group of water rays, there exists a mech-
anism of pair formation from the rays arriving at a sin-
gle point that allows one to draw an analogy between
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Fig. 7. Vertical structure of the sound field at the distance
x = 1500 km: (a) the depth z(θ) of ray arrivals and (b) the
spatial frequency γ(z) of the sound field along the vertical.
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these pairs and the Brillouin waves of an ideal
waveguide. The revealed mechanism of pair formation
explains the rather weak divergence of the sound beam
at long distances. Because of the presence of the mini-
mal-length ray cycle in the USC, two rays of different
spatial frequencies arrive at each point to form the main
ray beam along the propagation axis. The amplitude
dependence of the sound field along the waveguide is
determined by the trajectory region that is intersected
by the plane x = const. This phenomenon governs the
width of the main beam, the caustic depth, and the spa-
tial frequency in the caustic region.

A preliminary calculation of the sound field of chan-
neled rays shows that part of the rays obey the afore-
mentioned mechanism of pair formation, while the
other part follows the classical description in terms of
Brillouin waves.
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Abstract—A method of solving the problem of sound radiation from a plate with elements of different thick-
ness in its plane is proposed, and the results obtained with this method are presented. It is shown that the main
sources of sound radiation are the inhomogeneous flexural fields formed in the elements on both sides of their
joint. © 2003 MAIK “Nauka/Interperiodica”.
In some cases, vehicle bodies consist of plates of
different thickness that are joined together. The prob-
lem of sound radiation from this kind of structure was
considered in [1]. The solution obtained in the cited
paper by the factorization method turned out to be
rather cumbersome and of little use for practical imple-
mentation.

In the present paper, we propose a simpler approach
to solving such problems. We determine the levels of
sound radiation for the case of a joint of two and three
plates of different thickness, whose outer surfaces lie in
the same plane. We assume that, when a flexural wave
propagates along the normal to the line of junction, the
presence of the acoustic medium does not affect flex-
ural vibrations and, therefore, the results obtained by us
are applicable to plates located in low-density (gas-
eous) media. We consider thin plates satisfying the con-
dition h/λu < 6 [2].

We consider the frequencies below the limiting fre-
quency at which the sound wavelength in the medium
is equal to the flexural wavelength in the structure. If
the plate has a rib-type inhomogeneity, the sound radi-
ation at these frequencies results from the effect of a
shear force and a bending moment acting on the plate at
the joint of the rib and the plate and determined as
jumps of forces and bending moments in the plate cross
sections before and after the rib [3]. In the case of a
joint of plates of different thickness lying in one plane,
the equalities of displacements, rotation angles, bend-
ing moments, and shear forces should be satisfied at the
joint. There are no jumps of dynamic forces, unlike the
case of a rib. The sound radiation occurs due to the lack
of compensation of the contributions to the radiation
from the flexural waves transmitted through the line of
the plate junction and reflected from it.

Consider the sound radiation from two flexurally
vibrating plates of different thickness when a rigid baf-
fle is placed near the plates (the specific acoustic
impedance of the baffle is much greater than the wave
1063-7710/03/4905- $24.00 © 20540
impedance of the medium); the baffle has an opening in
the form of a strip of width 2a (Fig. 1). A flexural wave
exp(ik1x) (k1 is the wave number of flexural waves in
the plate in the region x < 0) propagates in the left part
of the plate in the direction toward the line of junction.

The solution of this problem is determined by the
Huygens integral [3], the integration being performed
between –a and a over the strip width:

(1)

where ω is the sound frequency, ρ is the density of the
medium, k is the sound wave number in the medium,
r(x0, z0) is the distance from plate to the point of obser-

vation, and (x) is the particle velocity of flexural
vibrations of the plate.

In calculating the Huygens integral, we use the
asymptotic representation of the Hankel function for
kr > 1:

(2)

Flexural waves in the plate are characterized by the

P
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Fig. 1. Coordinate system for describing propagation of a
flexural wave along the normal to the line of junction of two
plates of different thickness; M(x0, z0) is the point at which
the level of sound radiation is calculated.
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Fig. 2. Coordinate system for describing the propagation of a flexural wave along the normal to the line of junction of three plates
of different thickness.
transverse displacement ξexp(–iωt), where t is time.
(The time factor exp(–iωt) is omitted below.)

In the regions x < 0 and x > 0, we have the following
components:

(3)

(4)

The terms exp(ik1x), A1exp(–ik1x), and C1exp(ik2x)
describe the traveling flexural waves propagating along
the coordinate x, and the terms A2exp(k1x) and
C2exp(−k2x) describe the inhomogeneous flexural
waves that cause no energy transfer along the plate;
here, k2 is the wave number of flexural vibrations of the
plate in the region x > 0.

To determine the four unknown quantities A1, A2,
C1, and C2, we use the following boundary conditions
at the plate joint (the continuity of displacements, rota-
tion angles, bending moments, and shear forces) [1, 2]:

(5)

(6)

(7)

(8)

In the designation of the flexural rigidity B, the
index 1 corresponds to the plate in the region x < 0, and
the index 2, to the plate in the region x > 0.

For the case of three plates (Fig. 2), we have the fol-
lowing pattern of flexural waves:
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in the region x ≤ –l,

(9)

within l ≥ x ≥ –l,

(10)

and for x ≥ l,

(11)

We have eight unknown coefficients. To determine
them, we use four boundary conditions at every line of
plate junction (the continuity of displacements, rotation
angles, bending moments, and shear forces), which are
similar to conditions (5)–(8).

Using Eqs. (5)–(8) and relations (3), (4) to deter-
mine the unknown coefficients A1, A2, C1, and C2, we
substitute them into Eqs. (3), (4). As a result, we obtain
the solution to the problem of determining the flexural
displacements of the elements of a two-plate structure.
This solution allows one, by using Eqs. (1) and (2), to
calculate the acoustic radiation from a plane structure
consisting of two plates of different thickness. By using
relations (9)–(11) as the boundary conditions, it is pos-
sible to obtain a similar solution for the case of a struc-
ture consisting of three plates of different thickness.

As seen from Fig. 3, for a joint of plates (a = 2 m) of
the same thickness, the maxima of acoustic radiation
occur near the edges of the baffle, where compensation
of flexural waves propagating along the structure is
lacking.

If the plates are of different thickness, an additional
maximum of acoustic radiation arises against their
joint, and the level of this maximum is almost equal to
that of the maxima formed near the edges of the baffle.

In Fig. 4, on the exact solution for the case of the
joint of the aforementioned plates of different thick-
ness, an approximate solution is superimposed in which
only the parameters of inhomogeneous flexural waves

ξ1 x( ) ik1x( )exp=

+ A1 ik1 x l–( )–( )exp A2 k1 x l+( )( ),exp+

ξ2 x( ) A3 ik2 x l+( )( )exp A4 k– 2 x l+( )( )exp+=

+ C1 ik2 x l–( )–( )exp C2 k2 x l–( )( ),exp+

ξ3 x( ) C3 ik3 x l–( )( )exp C4 k4 x l–( )–( ).exp+=
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Fig. 3. Spatial distribution of the acoustic pressure levels for the case of a junction of two flexurally vibrating plates of the same
thickness and of different thickness.
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Fig. 4. Comparison of the exact (·, +, –) and approximate (*) solutions to the problem of sound radiation from two jointed plates of
different thickness.
are substituted into the Huygens integral. In most cases,
the solutions agree satisfactorily. (The disagreement
observed against the thicker plate at a frequency of
10 000 Hz is related to its closeness to the limiting fre-
quency of the plate at which sound is generated by the
whole plate surface.)

This result testifies that the inhomogeneous flexural
fields on each side of the plate joint play the main part
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
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Fig. 5. Spatial distribution of the acoustic pressure levels with consideration for only inhomogeneous flexural fields and without the
acoustic baffle.
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Fig. 6. Frequency dependences of the levels of sound radiation from a three-plate structure for various values of the loss factor.
in the formation of the acoustic field of a different-
thickness structure. The indicated sources of the acous-
tic field can be replaced by piston radiators with equiv-
alent particle velocities.
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
Thus, in solving the problem of sound radiation by
a system of two plates of different thickness, one can
determine the values of the displacements in inhomoge-
neous flexural fields on both sides of the plate joint, find
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Fig. 7. Frequency dependences of the levels of sound radiation from a three-plate structure for various values of the loss factor.
the equivalent volume velocity of the sources by inte-
grating these displacements with respect to the x coor-
dinate, and use the known expressions for sound radia-
tion by a linear source in a rigid baffle. This approach is
also valid for determining the levels of sound radiation
from a plate with a rib, along which a flexural wave is
propagating. In this case, the main contribution to the
formation of the acoustic field is also made by the inho-
mogeneous flexural fields arising on both sides of the
rib [4].

Since the sources of acoustic radiation that were
determined above proved to be concentrated near the
joint of the plates of different thickness, the acoustic
baffle can be eliminated by assuming that the plate
itself plays its role. (When considering the sound radi-
ation from plates in air, this assumption is valid for
almost any plate thickness.)

Figure 5 shows the spatial distribution of the levels
of acoustic pressure produced by a three-plate structure
in an acoustic baffle opening (l = 1 m, a = 2 m).

When two plates of the same thickness (H1 = H3 =
0.01 m) are joined together by a thicker central insert
(H2 = 0.02 m), the sources of acoustic radiation (x0 =
±1 m) also appear at the places of joints. Figure 5 dis-
plays the results of the exact (–) and approximate (+)
calculations, which coincide accurate to 3 dB.

Figure 6 represents the frequency dependence of
sound radiation from a structure consisting of periph-
eral plates of thickness H1 = H3 = 0.005 m and a central
plate of thickness H2 = 0.02 m for various values of the
loss factor in the central plate (NT = 0, 0.005, and 0.01).
As is seen from the figure, the levels of acoustic pres-
sure strongly oscillate with frequency, and the ampli-
tude of oscillations decreases with increasing loss fac-
tor of the central plate material because of the decrease
in the levels of resonance vibrations of this plate. The
oscillation amplitude also decreases with a decrease in
the thickness difference between the elements of the
structure, because in this case the energy flux from the
central plate to peripheral ones increases, which, in its
turn, suppresses the effect of the loss factor on the
sound radiation (Fig. 7).

The proposed solution of the problem can be used
for determining the acoustic pressure levels produced
by flexurally vibrating different-thickness structures.
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Abstract—It is shown that, in hydrodynamic noise measurements in the presence of acoustic noise acting upon
the pressure fluctuation receiver, spatial filtering methods should provide the best results. Active methods are
developed for suppressing the acoustic noise that affects a miniature receiver in the course of turbulent pressure
fluctuation measurements. The methods are based on complicating the structure of the measuring transducer by
introducing an extra compensating sensing element whose characteristics are identical with those of the main
sensing element. The spatial filtering of small-scale turbulent pressure fluctuations by a finite-size electroacous-
tic transducer is used as the basis for the development of noise-compensated measuring systems, as well as
methods of measuring the turbulent pressure fluctuations by receivers with noise compensation. A numerical
study of the wave-number filtering of acoustic noise in wall pressure measurements by a noise-compensated
receiver is performed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The studies of hydrodynamic flow noise that were
performed by L.M. Lyamshev at the boundary between
acoustics and physical hydrodynamics received wide
recognition in Russia and abroad. One of the most
important fundamental results of these studies was the
development of the theory of hydrodynamic flow noise.
Lyamshev clarified the role of wall pressure fluctua-
tions and viscous tangential stresses, which arise in a
turbulent boundary layer, in flow noise formation. The
studies concerned with the physics of hydrodynamic
flow noise resulted in the appearance of a new area of
research in acoustics: hydrodynamic acoustics.

The problem of reducing hydrodynamic flow noise
attracted the attention of Lyamshev, and, in this connec-
tion, he performed a series of theoretical and experi-
mental studies concerned with the methods of control-
ling the characteristics of turbulent pressure fluctua-
tions. The problem of reducing the acoustic noise in the
measurements of turbulent pressure fluctuations is
closely related to these studies. The urgency of the
problem is determined by the need to measure turbulent
pressure fluctuations by miniature pressure receivers
with the minimum possible receiving surface. How-
ever, this way of increasing the resolution in measuring
the turbulent pressure field leads to an inevitable loss in
the receiver sensitivity and, hence, to low signal levels
generated by the measuring pressure transducers. In
this case, the results of measurements are strongly
affected by various external physical factors that
accompany the experiment in actual conditions.
1063-7710/03/4905- $24.00 © 20545
Among the sources of interference in acoustic
hydrodynamic experimental studies, one should first
consider noise and vibration [1–3, 5, 6]. It is well
known that acoustic noise can be generated by both the
flow and the equipment. Considerable interference is
caused by acoustic noise originating from the experi-
mental system or test bench. The effect of wall temper-
ature fluctuations in a turbulent flow is also consider-
able [4, 6]. One should also take into account the vibra-
tions of the sensing element of the pressure receiver due
to the wall pressure fluctuations.

Present-day measurements of wall pressure fluctua-
tions are performed not only in laboratory conditions
but also in full-scale conditions, where the effect of
interfering factors is greater. Over the last few years, in
connection with the growing interest in the nonstation-
ary aerodynamic processes that occur in power plants,
it has often been necessary to perform measurements of
wall pressure fluctuations near objects of complex
shape in conditions close to full-scale ones. The inter-
fering factors affect the experimental results to a certain
extent, and the effect of interference often leads to dis-
crepancies between the results obtained on different
test benches or with different experimental systems.

This paper considers the problems of noise suppres-
sion in the measurements of wall pressure fluctuations
when the possibilities of conventional methods of noise
reduction are limited. In the experiments on an aerody-
namic test bench, the signals from a turbulent pressure
receiver also contain noise components associated with
the compressor, the exhaust, and the pipeline elements.
003 MAIK “Nauka/Interperiodica”
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It is also necessary to take into account the vibration of
the test bench and the deformation of the sensing ele-
ment of the receiver because of the nonstationary load-
ing of its inactive surfaces, which do not directly per-
ceive the pressure fluctuations. In this situation, the most
promising methods of noise suppression are active meth-
ods based on the complication of the structure of the
measuring transducer through the introduction of an
extra compensating sensing element with characteris-
tics identical to those of the main sensing element.

The essence of the general method is as follows. The
compensating sensing element only responds to the
field of the physical parameter interfering with the mea-
surements and produces an electric signal proportional
to the instantaneous value of this physical parameter.
The function of the extra sensing element is to measure
the noise field without distortions. Then, at any instant
of time, the output signal of the compensating sensing
element is identical with the noise component of the
signal generated by the main sensing element. When
the main and compensating elements are connected in
opposition to each other, the noise component is elec-
trically subtracted from the total signal.

When using active compensation methods in prac-
tice, one encounters a number of problems. They
include the choice of the type and position of the com-
pensating element with respect to the main element, the
determination of the limits of applicability of the
noiseproof measuring system, and the estimate of the
efficiency of the active noise suppression method. Spe-
cific solutions to these problems largely depend on the
characteristics of the noise field, as well as on the type of
the receivers (sensing elements) used in the experiment
and the properties of the pressure field under study.

Below, the problem of active noise suppression is
considered in application to the measurements of wall

1

6

5

4

3 2

Fig. 1. Turbulent pressure receiver with acoustic noise com-
pensation: (1) current leads, (2) compensating sensing ele-
ment, (3) sealing element, (4) case of the receiver,
(5) working sensing element, and (6) bushing.
pressure fluctuations in a turbulent boundary layer by
miniature piezoelectric receivers.

2. A NOISE-COMPENSATED RECEIVER 
FOR TURBULENT PRESSURE FLUCTUATIONS

The spatial filtering of small-scale turbulent pres-
sure fluctuations by a finite-size electroacoustic trans-
ducer lies at the basis of the development of noise-com-
pensated measuring systems, as well as methods of
measuring turbulent pressure fluctuations against the
noise background.

The method of measuring the wall pressures in the
presence of acoustic noise is based on the fact that the
wall pressure fluctuations and the sound waves have
noticeably different correlation scales (Fig. 3).

The active sensing element of a noise-compensated
transducer is made of a miniature piezoelectric cylin-
der. The compensating sensing element is an electroa-
coustic transducer with an extended receiving surface;
i.e., it is a pressure receiver with a much greater sensing
area compared to the working sensing piezoelectric ele-
ment. When the signal of the compensating sensing ele-
ment is subtracted from the signal of the working
(active) element, the resulting output signal is propor-
tional to the turbulent pressure fluctuations alone.

Consider the structure of a noise-compensated
receiver [2, 3] shown in Fig. 1.

The receiver has the form of two coaxial sensing
elements, 2 and 5, fixed in a case 4. A sealing gasket 3
provides the leakproofness of the structure. The work-
ing sensing element 5 is a miniature piezoceramic cyl-
inder 1.3 mm in diameter, which perceives the pressure
fluctuations by a diaphragm mounted at the cylinder
end. The compensating sensing element 2 is a bimorph
piezoceramic transducer consisting of 30-mm-diameter
disks cemented together. The piezoceramic cylinder 5
is mounted on a bushing 6 fixed inside the case by an
epoxy compound. The electric signals are taken from
the leads 1, which are connected with the input of the
subtracting device.

Figure 2 presents the noise-compensated transduc-
ers that were tested in the experimental measurements
of wall pressure fluctuations [2].

A turbulent pressure fluctuation receiver with acous-
tic noise compensation is intended for operation in a
turbulent pressure field formed by the models in aero-
and hydrodynamic tunnels, as well as by structural ele-
ments in a turbulent flow, in the conditions close to the
full-scale ones at low subsonic velocities.

The main principle of operation of a noise-compen-
sated receiver is based on the fact that, owing to its con-
siderable dimensions, the finite-size compensating
sensing element is almost insensitive to the small-scale
structure of turbulent pressure fluctuations because of
the incoherent summation over the receiving surface.
Therefore, this element perceives only the acoustic
component of the turbulent pressure field (see Fig. 3).
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
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As a result, the compensating sensing element pro-
duces an electric signal that is proportional or, in the
case of an appropriate tuning, equal to the signal pro-
duced by the main working sensing element in response
to the noise component of the field.

3. FILTERING PROPERTIES 
OF A NOISE-COMPENSATED RECEIVER

Specific estimates of the size ratio between the main
and compensating sensing elements for the suppression
of acoustic noise and the determination of the efficiency
limits of the noise compensation method are based on
spatial filtering methods.

By analogy with a signal on the background of
vibration noise [1], the signal produced by a noise-
compensated receiver can be represented in the form

(1)

Here, K1 and K2 are the amplitude distributions of the
sensitivity to pressure fluctuations over the receiving
surfaces of the main working sensing element and the
compensating element of the transducer, respectively.

If the main working sensing element is made in the
form of a miniature piezoceramic cylinder, the simplest
model of the amplitude distribution over the aperture
can be a uniform sensitivity distribution. The compen-
sating sensing element is an extended receiver in the
form of a bimorph piezoceramic transducer made of
circular plates. It is well known that the spatial distribu-
tion of the sensitivity of a circular plate is proportional
to the sag of the plate under a point force. The sag of a
supported plate decreases when the distance from its
center to the point of the force application increases.
Hence, the sensitivity function of a bimorph receiver
smoothly decreases from its center to the periphery.
This statement is confirmed by the measurement [9] of
the spatial distribution of the function K(x) over the
receiving surface of a bimorph flow noise receiver.

The simplest example of the amplitude distribution
of sensitivity over the aperture corresponds to K1 and K2
in the form of step functions. After considering this
model of the sensitivity function, it is possible to pass
to related but more complicated descriptions.

For circular sensing elements of the receivers, we
represent the distribution functions of their sensitivity
to pressure, K1(x) and K2(x), in the form

(2)

(3)

where γ is the receiver sensitivity under a coherent
action.
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The following analysis of the method of measuring
pressure fluctuations against acoustic noise is per-
formed on the assumption that the vibration noise is
insignificant.

For a noise-compensated receiver, the Fourier trans-
form K(κ) of the amplitude distribution of the sensitivity
to pressure fluctuations is determined by the formulas

(4)

where J1(κR) is the Bessel function of the first kind.
Since the amplitude distribution of sensitivity has a

center of symmetry, the wave-number characteristic of
the noise-compensated receiver is determined by the
equality S(κ) = |K(κ)2|.

After some transformations, we obtain the expres-
sion for the wave-number characteristic that determines
the spatial filtering of acoustic noise by the noise-com-
pensated receiver for turbulent wall pressure measure-
ments:

(5)

where  = κ/R, κ = , and α = R1/R2 is the ratio of the
diameters of the main and compensating sensing ele-
ments of the noise-compensated receiver.

K k( ) K1 k( ) K2 k( )– γ
J1 κ R1( )
κ R1/2

--------------------
J1 κ R1( )
κ R2/2

--------------------– ,= =

S κ( ) γ2 2J1 κ( )
κ

----------------- 
 

2

1
α J1 κ /α( )

J1 κ( )
------------------------–

2

,=

κ κ

1

2

Fig. 2. Noise-compensated transducers of wall pressure
fluctuations: (1) working sensing element and (2) compen-
sating sensing element.

1 2
Turbulence

Noise

Fig. 3. Noise–signal situation in the measurements of wall
pressure fluctuations: (1) working sensing element and
(2) compensating sensing element.
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Figure 6 presents the results of the numerical exper-
iment that was carried out to study the filtering proper-
ties of turbulent pressure fluctuation transducers pro-
viding the compensation of acoustic noise. The model-
ing of noise-compensated receivers was performed
with the following size ratios of the main and compen-
sating sensing elements of the transducer: 1:10, 1:20,
and 1:50.

E

E‡κ

ET

k‡κ kT

lT ~1/kT
l‡κ ~1/k‡κ

k

Fig. 4. Energy distributions of the turbulent pressure and the
acoustic noise field.

S

1

2

~1/d1

~1/d2

κ

Fig. 5. Wave-number characteristics of the (1) main and
(2) compensating sensing elements of a noise-compensated
transducer.
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Fig. 6. Wave-number filtering of acoustic noise by a noise-
compensated wall pressure receiver: (1–3) wave-number
characteristics of the receiver for difference values of the
diameter ratio of the main and compensating sensing ele-
ments α = 0.1, 0.05, and 0.02 (respectively); (4, 5) wave-
number spectra of turbulent pressure fluctuations and
acoustic noise; and (6) wave-number characteristic of an
uncompensated receiver.
If the wave-number characteristics of noise-com-
pensated receivers are known, the general expression
for spatial filtering

can be used to determine the spectral densities of the
signal measured by the turbulent pressure transducer
under intense acoustic noise and to estimate the effect
of noise suppression.

According to Fig. 4, we assume that the spatial spec-
trum of wall pressure fluctuations is a sum of the turbu-

lent component  and the acoustic noise (k, ω).
Then, in the wall pressure fluctuation measurements,
the frequency–wave-number spectrum Epp(k, ω) has
the form

(6)

In analyzing the compensation of acoustic noise, it is
important to take into account that the energy-carrying
components of the turbulent pressure field are localized
on the scales for which xξU/ω ≈ 1 [7], where U is the
average flow velocity, while the acoustic waves repre-
senting the noise manifest themselves only when
κxcs /ω ≤ 1, where cs is the velocity of sound. Hence, as

one can see from Fig. 4, the components  and 
are separated in the κ space. The peak of the turbulent
component of the frequency–wave-number spectrum of
pressure fluctuations corresponds to the values of the
spatial frequencies kT, while the upper bound of the
acoustic noise region corresponds to the values k‡κ.

The wave-number characteristics determining the
filtering properties of the receiver for the main sensing
element 1 and the extra compensating sensing element 2
are shown in Fig. 5.

4. WAVE-NUMBER FILTERING 
OF ACOUSTIC NOISE

In application to the noise-compensated transducers
of wall pressure fluctuations tested in acoustic hydrody-
namic experiments [12], a numerical experiment was
performed with the aim of studying the efficiency of the
wave-number filtering of acoustic noise in the wall
pressure measurements by a noise-compensated
receiver of turbulent pressures.

The results of modeling a noise-compensated
receiver as a wave-number filter are presented in Fig. 6.
Curve 4 in Fig. 6 shows the distribution of the energy

 of turbulent pressures in the flow direction accord-
ing to the model field [8]. Curve 5 shows the wave-

number component (k, ω) corresponding to the
noise field for the Mach number M = 0.1.

The effect of the spatial filtering of acoustic noise is
demonstrated by curves 1–3, which represent the wave-
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number characteristics of the noise-compensated
receiver for α = 0.1, 0.05, and 0.02, respectively.

The best suppression of acoustic noise with the min-
imum distortion of the pressure fluctuation spectrum is
evidently achieved when the wave-number characteris-
tic of the noise-compensated transducer S(k) has the
form of a step function: S(κ) is equal to zero in the noise
region  ≤  and to a nonzero constant in the whole

remaining region of spatial frequencies  > . In this
case, the efficiency of noise suppression increases with
decreasing Mach number M.

The analysis of the curves shown in Fig. 6 and the
estimate of the wave-number filtering show that the
proposed noiseproof receiver of turbulent pressure fluc-
tuations provides an efficient suppression of acoustic
noise when the diameter ratio of the main operating and
extra compensating sensing elements is 1 : 20 and the
Mach number is M ≤ 0.1.

This result is obtained in the frequency range corre-

sponding to the Strouhal numbers within 0.2 ≤  ≤

0.8, which, for standard conditions of an aerodynamic
experiment, is approximately within 750–3000 Hz.

5. SUMMARY

The studies described above show that the methods
of spatial filtering prove to be promising in analyzing
the measurements of turbulent pressure fluctuations in
the presence of acoustic noise.

Active methods are developed for suppressing the
acoustic noise that affects a miniature receiver of turbu-
lent pressure fluctuations. The methods are based on the
complication of the structure of the measuring trans-
ducer, namely, on the introduction of an extra compen-
sating sensing element whose characteristics are identi-
cal to those of the main sensing element. The spatial fil-
tering of small-scale turbulent pressure fluctuations by
a finite-size electroacoustic transducer is used as the
basis for the development of noise-compensated mea-
suring systems and methods for measuring turbulent
pressure fluctuations in the presence of acoustic noise.
The theory of a noise-compensated receiver as a wave-
number filter of acoustic noise is developed.

It is important to note that the efficiency of the
method of measuring the spectral components of turbu-
lent pressure fields by suppressing the acoustic noise is
limited. The limitation is related to the possibility of
determining the actual wave-number characteristic of a
turbulent pressure fluctuation receiver with the com-
pensation of acoustic noise.

However, from the literature it follows that, as a
rule, the wave properties K(k) of pressure fluctuation
receivers are obtained by numerical integral transfor-
mations of the distribution of the local sensitivity to
pressure fluctuations [7].

κ κaκ

κ κaκ

ωR1

ν
----------
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Within the framework of this approach, the field of
the spatial distribution K(x) over the aperture, in its
turn, is determined experimentally: the existing meth-
ods use a mechanical excitation of individual points of
the sensing surface of the turbulent pressure fluctuation
receiver [9, 10].

It should be stressed that, for the determination of
the filtering properties of a compensated receiver sup-
pressing the acoustic noise, experimental methods of
studying the wave-number characteristic S(k) are quite
promising.

The author of this paper proposed a method that
allows a direct measurement of the wave-number char-
acteristic S(k) of an electroacoustic transducer [11]. As
a result of calibration, the quantity S(k) proves to be
directly related to the signal of the turbulent pressure
fluctuation transducer.
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Abstract—Optical piezoelectric generation of shear bulk acoustic waves by volume-distributed electric fields
in the vicinity of a hard planar interface between a piezoelectric semiconductor and a dielectric is described
theoretically. Nonstationary and nonuniform electric fields are formed as a result of the spatial separation of
electrons and holes photoexcited in the piezoelectric semiconductor due to the interband absorption of laser
radiation. Frequency regions where the efficiency of the optical piezoelectric excitation of shear waves
increases when the surface of the piezoelectric semiconductor is loaded by another piezoelectric with a high
acoustic impedance are found. Numerical estimates of the applicability of the immobile hole model are pre-
sented. © 2003 MAIK “Nauka/Interperiodica”.
One of the methods of enhancing the amplitude of
acoustic pulses generated in a solid by a thermoelastic
mechanism consists in the modification of the bound-
ary. For this purpose, the solid (usually, a metal) is cov-
ered by a layer of a liquid or an optically transparent
dielectric, which is in acoustically hard contact with the
solid. In this case, not only the longitudinal waves gen-
erated in the absorbing material are amplified [1], but
also the directivity pattern is strongly modified [2].
Theoretical analysis of the thermooptical sound gener-
ation in such a layered system, which, in the simplest
case, consists of two semi-infinite rigidly bound solids
[3, 4], showed that the aforementioned changes depend
not only on the ratio of the acoustic impedances of
adjoining media, but also on the relation between the
thermoelastic parameters of these media. In addition, if
the elastic properties of one of the media forming the
layer structure are anisotropic, a mode conversion of an
acoustic pulse thermoexcited in the isotropic medium is
possible at the reflection from the boundary of the
anisotropic medium. This effect offers good possibili-
ties for determining the elastic constants [5].

Recent experimental [6] and theoretical [7] studies
revealed a much more efficient method of generating
bulk and surface sound pulses in piezoelectric semicon-
ductors by using the inverse piezoelectric effect. How-
ever, the studies were mainly concerned with the case
of a free boundary of a piezoelectric semiconductor. At
the same time, the case of an acoustically hard bound-
ary of two materials, one of which (or both) has the
properties of a piezoelectric semiconductor, is of great
interest. In principle, such a system allows one to gen-
erate acoustic waves in the material adjoining the
piezoelectric semiconductor. If one of the crystals
1063-7710/03/4905- $24.00 © 20550
forming the layered structure is a photoconductor and
the other is a piezoelectric, the layered structure allows
a piezogeneration of acoustic waves by the electric
fields penetrating from the adjoining photoconductor
and initiated as a result of the drift and diffusion of pho-
toexcited nonequilibrium electrons and holes. Such a
structure was used in the experimental study [8] of the
piezogeneration of a surface acoustic wave (SAW)
propagating along a piezoelectric crystal surface
adjoining a photoconductor. On the other hand, one
would expect that the sound generated in the piezoelec-
tric semiconductor will be amplified owing to the mod-
ification of its boundary. This paper presents the first
attempt to analyze the generation of bulk acoustic
waves near a hard planar interface between a piezoelec-
tric semiconductor and piezoelectric.

Let us consider the laser-induced excitation of bulk
acoustic waves in a layered structure at the expense of
only the inverse piezoelectric effect, i.e., neglecting the
thermoelastic and deformation mechanisms, which act
along with the piezoelectric mechanism in the process
of optical generation of free carriers and partial ther-
malization of the absorbed energy. The piezoelectric
excitation of sound generally prevails over the defor-
mational and thermoelastic mechanisms, if the laser-
induced electric fields are not strongly screened [9–11].
Moreover, as was shown in [10, 12, 13], the inverse
piezoelectric effect can become the dominant mecha-
nism of sound generation, even in the case of an ambi-
polar diffusion of the photoexcited quasi-neutral
plasma (the sound generation by the Dember field).

In the analysis of the optical generation of bulk
acoustic waves in a layered structure, we take into
account only the anisotropy of the piezoelectric proper-
003 MAIK “Nauka/Interperiodica”
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ties of adjoining crystals. The importance of piezoelec-
tric anisotropy is caused by the fact that, in some piezo-
active directions and high-symmetry crystal planes,
only certain types of acoustic waves can be excited (for
example, Rayleigh waves [7] or Gulyaev–Bleustein
waves [14, 15]). We consider the physical situation
when bulk acoustic waves of a purely shear type are
excited in a piezoelectric–photoconductor structure. To
simplify the problem, we neglect the anisotropy of elas-
tic and dielectric properties of adjoining crystals; i.e.,
we use the model of an elastically isotropic solid. We
also neglect the processes of bulk and surface recombi-
nation of nonequilibrium photoexcited charge carriers.
This means that the analysis of piezoelectric generation
of shear waves is performed for the frequencies at
which the process of recombination of nonequilibrium

carriers is too slow (ω ≥ , where τR is the character-
istic lifetime of electrons and holes).

Let us consider the excitation of acoustic waves in
the layered structures that consist of a wide-band and a
narrow-band piezoelectric crystal. In this case, the non-
equilibrium charge carriers are generated in the narrow-
band crystal as a result of interband absorption of light
incident from the side of the wide-band crystal, while
the wide-band piezoelectric crystal is transparent for
laser radiation. The electric field that results from the
spatial separation of nonequilibrium electrons and
holes gives rise to acoustic waves in both crystals of the
layered structure because of the inverse piezoelectric
effect.

For definiteness, we consider the layered structures
that consist of crystals of the 6mm class with an acous-
tic contact between them. An example of such struc-
tures is the ZnO–CdS system. Let the sixfold symmetry
axes C6 of both crystals be parallel and lie in the bound-
ary plane between the crystals. Assume that the Z axis
of the Cartesian coordinate system coincides with this
direction and the X axis, with the normal to the bound-
ary, so that it is directed towards the narrow-band
piezoelectric crystal.

Consider the excitation of well-collimated acoustic
beams, i.e., beams with plane phase fronts. Experimen-
tally, this is achieved by focusing the laser beam into a
strip whose length L is much greater than the width l
(L @ l). To simulate this situation, we assume that the
laser radiation is focused into a strip parallel to the Z
axis, and all physical quantities are independent of the
z coordinate.

In the case of a wide laser beam, the consideration
can be restricted to the one-dimensional problem. In the
physical situation under study (Z || C6), only the trans-
verse bulk acoustic waves can be excited through the
inverse piezoelectric effect. The wave equation that
describes the displacement Uz ≡ U in the shear traveling
wave in each of the two crystals of the layered structure

τR
1–
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has the form

(1)

where e denotes the nonzero piezoelectric moduli e131 =
e113 = e232 that are active in the chosen crystal configu-
ration, ν is the velocity of transverse bulk acoustic
waves, and ρ is the equilibrium density. The index i =
1, 2 characterizes the physical quantities for the first
and second crystals, respectively.

The boundary conditions of equal displacements
and mechanical stresses in two adjoining crystals at x = 0
define the system of equations relating U1 and U2:

(2)

In describing the induced electric fields, we neglect the
direct piezoelectric effect, because the inverse effect of
acoustic waves on the electric fields is of the second
order of smallness. The potentials ϕi of quasistatic elec-
tric fields in each crystal of the layered structure are
defined by the Poisson equations:

(3)

where ε0 is the dielectric constant of vacuum, ε is the
relative permittivity of the medium, and Q(ν) is the vol-
ume charge density. In what follows, we assume that

 = 0, because the charge carriers photoexcited in
the narrow-band photoconductor do not diffuse into the
wide-band crystal. The potentials in both crystals of the
layered structure are related to each other by the bound-
ary conditions at the surface x = 0:

(4)

The volume electric charge  in the narrow-band
conductor arises as a result of the spatial separation of
photoexcited electrons and holes. For a quasi-neutral
crystal, we have

(5)

where nm (m = e, h) is the nonequilibrium concentration
of electrons and holes and Q0 is the elementary charge.
The dynamics of free carriers is described by the conti-
nuity equation

(6)

where the electron and hole flux densities are deter-
mined by the drift and diffusion of the corresponding

∂2Ui

∂t2
----------- ν i

2∂2Ui

∂x2
-----------–

ei

ρi

----
∂2ϕ i

∂t2
----------,=

U1 U2,=

ρ1ν1
2∂U1

∂x
--------- e1

∂ϕ1

∂x
---------+ ρ2ν2

2∂U2

∂x
--------- e2

∂ϕ2

∂x
---------.+=

εiε0

∂2ϕ i

∂x2
---------- Qi

ν( )
, i 1 2,,= =

Q2
ν( )

ε1

∂ϕ1

∂x
--------- ε2

∂ϕ2

∂x
---------, ϕ1 ϕ2.= =

Q1
ν( )

Q1
ν( ) Q0 ne nh–( ),–=

∂nm/∂t divJm+ G,=



552 MAKAROVA
carriers:

(7)

Here, µm, Dm, and  are the mobility, diffusion coeffi-
cient, and equilibrium concentration of carriers. The
function G ≡ G(x, y, t) describes the space–time distri-
bution of the optical source of electrons and holes.
Their fluxes (7) at the surface x = 0 should satisfy the

condition  = 0. According to expression (7), the spa-
tial separation of electrons and holes is caused by the
difference in the mobilities of charge carriers of differ-
ent sign (µe ≠ µh and, consequently, De ≠ Dh) at their dif-
fusion and drift in the induced electric field.

At the first stage, we linearize the equations for the
carrier fluxes by neglecting the terms nm∇ϕ  compared

to ∇ϕ . The system of equations (1)–(7) fully
describes the optical piezoelectric excitation of shear
acoustic waves in the piezoelectric semiconductor–
piezoelectric structure. Since it is a system of linear
partial differential equations, it is natural to solve it by
the method of integral transformations. We apply the
Fourier transformation in time t and the Laplace trans-
formation in the x coordinate [11, 13]:

(8)

where F is any of the physical variables of the problem
under study. We also introduce the notation F(0) = F(t, 0)
for the function values at the boundary between the two
crystals.

Using expressions (8) to transform the wave equa-
tion (1) with boundary condition (2) and using the radi-
ation condition, we eliminate from Eq. (1) the spectral

components of displacements (0) and their deriva-
tives at the surface x = 0:

(9)

(10)

Jm µm n0
m nm+( )∇ϕ± Dm∇ nm.–=

n0
m

Jx
m

n0
m

F̃ ω x,( ) iωt( )F t x,( )exp t,d
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F̂ ω p,( ) p x–( )F̃ ω x,( )exp x,d

0

∞

∫≡

Ũi

ρ1ν1
2 p1

2 p2+( )Û1 ω p,( ) e1 p2ϕ̂1 ω p,( )+
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2 p1 ρ2ν2

2 p2+( ) 1–

× e1 p1
2 iρ1ν1
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2 p2–( )ϕ̂1 ω i p1,( ){

+ e1ρ2ν2
2 p2 p i p1–( )ϕ̃1 0( )

– e2ρ1ν1
2 p2 p i p1–( ) ϕ̃2 0( ) i p2ϕ̂2 ω i p2–,( )+[ ] } ,

ρ2ν2
2 p2

2 p2+( )Û2 ω p,( ) e2 p2ϕ̂2 ω p,( )+
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2 p2+( ) 1–

× e2 p2
2 iρ2ν2

2 p ρ1ν1
2 p1–( )ϕ̂2 ω i– p2,( ){
Here, p1, 2 = ω/ν1, 2 is the wave number of transverse
bulk waves in the first and the second mediums. Trans-
forming in a similar way Eqs. (3)–(7) for the potentials
of electric field and nonequilibrium carriers, we deter-
mine the spectral components of the potentials of elec-
tric fields. Since the hole mobility is much smaller than
that of electrons (µh ! µe), we assume that holes are
immobile (Dh ~ µh  0). Then, for the piezodielectric

(  =  = 0), we obtain

(11)

Here, pe ≡ , Re{pe} > 0, and (p) ≡ (ω, p). The

optical sources of nonequilibrium carriers generated as
a result of the interband absorption of laser radiation are
described by the following simple model:

(12)

where α and R are the light absorption and reflection
coefficients, hνL is energy of the optical quantum, and
Iin is the intensity of incident radiation. The function f(t)
describes the time distribution of intensity of the excit-
ing radiation. Then, the spectrum of photoexcited
sources has the form

(13)

Using this spectrum and expressions (9)–(12), one can

find the amplitudes of spectral components (ω, p)
of the optically excited shear bulk waves in both crys-
tals.

Let us consider the laser-induced generation of
shear waves in the narrow-band piezoelectric semicon-

ductor 1. The spectrum (ω, p) can be written as

(14)

where î(ω, p) is a function without poles, whose
explicit form is too cumbersome to be presented here.
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Performing the inverse Laplace transformation in p, we
obtain the frequency spectrum of shear waves:

(15)

Expression (15) can be represented as

(16)

Analysis of the optical piezoelectric generation of shear
waves in the piezoelectric semiconductor is performed
with the help of the spectral transfer function H(ω)
[10], which describes the efficiency of the excitation of
acoustic waves at a given frequency. In the physical sit-
uation under study, the optical piezoelectric generation
of shear waves in a piezoelectric semiconductor with-

out equilibrium electrons and holes (  =  = 0) is
determined by the transfer function

(17)

Here, N ≡  is the ratio of acoustic impedances of

the absorbing and transparent crystals. In addition, we

introduced two characteristic frequencies: ωD1 = /De,
at which the phase velocity of the diffusion wave νDif ≡

 equals the phase velocity of the sound wave
ν1, and the frequency ωα1 = αν1 equal to the inverse
travel time of sound through the region of light absorp-
tion, α–1. The dimensionless parameter H0 is character-
ized by the physical parameters of piezoelectric semi-
conductor 1 and laser radiation.

Let us consider the case of a strong absorption of
laser radiation, when ωα1/ωD1 = mD ≡ αDe/ν1 @ 1. We
analyze the result of loading the absorbing piezoelec-
tric crystal with another transparent piezoelectric crys-
tal in this simplified physical situation. Then, we con-
sider two limiting cases. If the acoustic impedance of
the medium used to load the piezoelectric semiconduc-
tor is much higher than that of the piezoelectric semi-
conductor, the boundary is an acoustically hard one
(N  0). Otherwise, the boundary is free (N  ∞).
The transfer functions for the hard Hh and free Hs

boundaries have the form

(18)
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The frequency ωn1 = α2De introduced in these expres-
sions has a physical meaning of the inverse diffusion
time of carriers within the region of photoexcitation.

At the frequencies ω < ωD1, when the diffusion of
photoexcited carriers is subsonic, the loading of the
piezoelectric crystal surface with another piezoelectric
with a higher acoustic impedance allows one to
increase the efficiency of shear wave generation:

(20)

In the case of a subsonic diffusion of photoexcited elec-
trons, the sound has enough time to follow their redis-
tribution due to the diffusion, and, hence, the genera-
tion of shear waves occurs at the electric field gradients
caused by the electron motion. Since the piezoelectri-
cally excited sound pulse is reflected from the transpar-
ent medium in phase with the incident pulse in the case
of an acoustically hard boundary and in antiphase in the
case of an acoustically soft boundary, the efficiency of
the piezogeneration of sound in the absorbing crystal
increases in the case of a hard boundary, as compared
to the case of a free boundary.

At the frequencies ωD1 < ω < ωα1, the diffusion of
electrons becomes supersonic, but the light absorption
region is still acoustically thin. The redistribution of
electrons at these frequencies occurs faster than the
sound propagation through their diffusion region.
Therefore, the sound generation takes place at higher
electric field gradients, which are caused by photoge-
nerated immobile holes. As one can see from Eqs. (18)
and (19), the increase in the elasticity modulus of the
absorbing crystal leads to a decrease in the efficiency of
transverse wave excitation:

(21)

This results from the fact that, in the case of the super-
sonic diffusion of electrons and the acoustically thin
region of light absorption, the source of sound genera-
tion is a surface one, because the photoexcited holes are
concentrated in the acoustically thin surface layer and
their gradient is maximum near the boundary. Accord-
ing to the boundary conditions between the media, at
the free boundary of the absorbing piezoelectric crystal,
the mechanical deformation created by the electric field
of photogenerated holes is compensated by the elastic
stress of the crystal lattice:

(22)

while at the hard boundary, by the difference in the
elastic stresses in the transparent and absorbing crys-
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tals, because the electric field on the side of the trans-
parent crystal does not cause any mechanical deforma-
tion at the boundary owing to its equipotential nature:

(23)

Since at the hard boundary the acoustic impedance of
the transparent medium ρ2ν2 is considerably greater
than that of the absorbing medium ρ1ν1 , the stress cre-
ated by the electric field at the boundary is compensated
mainly by the elastic stress produced in the transparent
crystal. Therefore, at the frequencies ωD1 < ω < ωα1, the
sound excitation is more efficient in the piezoelectric
crystal with a free boundary than in the hard-boundary
loaded piezoelectric crystal.

At the frequencies ω > ωα1, when the carrier photo-
excitation region is acoustically thick, the loading of
the surface of the absorbing piezoelectric crystal with a
more acoustically hard medium again leads to the
higher efficiency of transverse sound generation com-
pared to the free boundary case:

(24)

At the frequencies under consideration, the diffusion of
photoexcited electrons is supersonic, and, hence, as in
the frequency region ωD1 < ω < ωα1, the sound genera-
tion occurs at the instantaneous turn-on of the electric
field of immobile holes. However, with such small
times their photoexcitation region becomes acousti-
cally thick. Then, contrary to the case of an acoustically
thin absorption region, the sound source is not a surface
one, and it is necessary to take into account the piezo-
electrically excited acoustic pulses reflected from the
impedance boundary of the absorbing crystal. Due to
their inphase nature, these pulses increase the efficiency
of the piezoelectric generation at the hard boundary.

In conclusion, we assess the applicability limits of
the model of immobile holes. The electrons formed in
the process of interband absorption of laser radiation
separate from the immobile holes and move indepen-
dently within times less than the Maxwell electron

relaxation time . After this time elapses, one has to
take into account the slower motion of holes and the
combined ambipolar diffusion of carriers with different
signs. Therefore, the model of immobile holes, as well
as the approximation of the independent motion of
electrons and holes, is valid at frequencies ω > ωM.

Since in the present work the case of strong absorp-
tion of laser radiation is analyzed, the minimum char-

e1

∂ϕ1

∂x
---------
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∂x
--------- ρ1ν1

2∂U1

∂x
---------– 

 
x 0=

.=

Hh

Hs

------
ω

ωα1
-------- 1.>∼

ωM
1–
acteristic frequency ωD1 should fall in the frequency
region ω > ωM, where the model of immobile holes is
valid. The condition ωD1 > ωM allows one to obtain the
critical value of the absorbed energy of laser radiation,
below which the acoustic wave separates from the dif-
fusion wave faster than the ambipolar diffusion begins.
If the light radiation with the quantum energy hνL ≅ 3eV
is used, the absorbed energy should not exceed
3 nJ/cm2.
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Abstract—A new analytical representation is obtained for the fundamental solution (Green’s function) to the
problem of the propagation of a short pulse in an arbitrary medium with a single resonance relaxation process.
The analytical representation is based on the generalized function of the local response of a linear medium [1]
and includes the well-known Debye and Lorentz relaxation models as particular cases. The representation is
used to determine the complete set of possible types of behavior for a short pulse propagating in the medium.
© 2003 MAIK “Nauka/Interperiodica”.
Much recent theoretical and experimental research
has dealt with analyzing the propagation, dispersion,
and attenuation of short acoustic and electromagnetic
pulses in relaxing media [2–11]. The interest in this
problem is caused by the additional possibilities that
arise when problems of the media diagnostics are
solved using pulse methods. These possibilities include
the remote investigation of fast processes in a medium
and the much looser requirements imposed on the
experimental conditions. Previous research [5] showed
that the diagnostics of the relaxation properties of a
medium with low-amplitude short acoustic pulses may
substantially complement the acoustic spectroscopy
methods that are commonly used in such applications
and even outperform them in some cases.

In the context of pulse diagnostics, the principal dif-
ficulty of the inverse problem lies in the choice of the
physical model whose generality should provide an
adequate description of the properties of many actual
media. Such a general model can be obtained within the
limits of the thermodynamic approach by Mandelshtam
and Leontovich [9], who used the spectrum of relax-
ation times (SRT) as the fundamental parameter gov-
erning the diversity of the dissipation-dispersion prop-
erties of actual media. However, in media such as liq-
uids with gas bubbles, resonance properties are
inherent along with the relaxation properties. There-
fore, these media are usually analyzed in the framework
of independent models.

In our previous paper [1], we showed that the Man-
delshtam–Leontovich thermodynamic approach com-
plemented with the alternative formulation of the sym-
metry principle for the Onsager kinetic coefficients
offers a unified description of an arbitrary linear
medium with a local response. In such an approach, the
models by Lorentz [13] and Debye [14, 15] are partic-
ular cases of the more general model, in which an addi-
1063-7710/03/4905- $24.00 © 20555
tional parameter, namely, the sluggishness angle, is
introduced. This additional parameter diversifies the
dispersion behavior of a short pulse in comparison with
the cases of purely relaxation (the Debye model) and
purely resonance (the Lorentz model) responses of the
medium.

The equation of state describing the local response
of an arbitrary linear medium with a single process of
resonance relaxation can be written in the form [1]

(1)

where σ is the stress, ε is the strain, ρ0 is the density,
and c0 and c∞ are the low- and high-frequency limits of
the phase velocity in the medium. The fundamental
parameters that govern the dispersion properties of the
medium are the relaxation time τ, the resonance fre-
quency Ω , and the sluggishness angle ϕ. Furthermore,
we introduced special notations for the normalization
factor ρ = (1 + Ω2τ2)/(cosϕ + Ωτ sinϕ) and the disper-

sion jump of the phase velocity ∆ = 1 – .

At Ω = 0 and ϕ = π/2, equation of state (1) corre-
sponds to the particular cases of purely exponential
relaxation (the Debye model) and purely resonance
relaxation (the Lorentz model).

Consider the wave dispersion and absorption fea-
tures that follow from the equation of state (1).

In the linear approximation, the propagation of
plane acoustic waves is described by the equation of
motion
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where u is the displacement; the strain is defined as the
derivative ε = ∂u/∂x.

In terms of the equation of state (1), the equation of
motion is reduced to an equation of hereditary type:

In the frequency domain (t  ω), this equation is
equivalent to the Helmholtz equation

where the wave number K(ω) is given by the formula

(2)

1
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.=
The fundamental solution (Green’s function) of the
problem on the propagation of a plane pulse in an infi-
nite medium can be represented in the form of the
Laplace integral

(3)

with the wave number given by Eq. (2).

In the case of a small velocity dispersion (∆ρ ! 1),
the wave number K(p) can be expanded in a series to the
term linear in ∆ρ ! 1:

(4)

From representation (4), one can obtain the follow-
ing expressions for the absorption coefficient α(ω) =
ReK(iω) and the phase velocity c(ω): c–1(ω) =
ImK(iω)/ω:
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.=
The requirement that the medium be stable or dissi-
pative, which is equivalent to the requirement that the
absorption coefficient be positive, restricts the admissi-
ble values of the parameters Ωτ and ϕ:

(5)

The frequency-dependent phase velocity c(ω) and
absorption coefficient α(ω) of the medium can exhibit
different features depending on the parameters Ωτ and
ϕ. Figures 1 and 2 show all the types of features that
may appear in the phase velocity c(ω) and absorption
coefficient α(ω) in stable dissipative media with admis-
sible parameters Ωτ and ϕ from region (5).

As can be seen from these figures, the absorption
coefficient α(ω) can either monotonically increase with
frequency or have a peak. The phase velocity c(ω) can
also show a monotone behavior; however, it can have
either a peak or a dip and even both a peak and a dip
simultaneously.

The peak in the absorption coefficient α(ω) exists if
the following condition is satisfied:

(6)

In the phase velocity, the peak exists under the condi-
tion

(7)

Ωτ ϕ( )tan 1/ ϕ( ) for π/2 ϕ π/2.< <–cos+<

Ωτ ϕ( )tan– 1/ ϕ( ) for π/2 ϕ π/2.< <–cos+>

Ωτ ϕ( )cot for 0 ϕ π/2,< <>
and the dip exists under the condition

(8)

Figure 3 uses the Ωτ–ϕ plane to show the regions in
which the absorption coefficient and the phase velocity
exhibit the aforementioned features. As will be shown
below, a short pulse behaves differently in these
regions.

Studying the pulse behavior using the representation
in the form of the Laplace integral (3) is difficult. Such
investigations commonly use either the asymptotic
analysis based on the saddle-point technique [3, 4, 7–9]
or computer simulations [10].

Below, we derive a new integral representation that
is more convenient for investigating the propagation of
short pulses in media with resonance relaxation.

By changing the integration variable pτ + 1  p,
we reduce expression (3) with wave number (4) to the
form

(9)

where β = ∆ρx/2τc∞, t ' = (t – x/c∞)/τ, and the coeffi-

Ωτ ϕ π/2+( )/3( )tan for π/2 ϕ π/2.< <–>

I x t,( ) = 
e t'– β ϕcos–

τ
--------------------- 1

2πi
-------- p pt' β Ap B+

p2 Ωτ( )2+
--------------------------+ 

  ,expd

γ
∫
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cients A and B are determined by the formulas

(10)

Note that the coefficient A can take on both positive and
negative values.

The integrand in Eq. (9) can be represented in the
form

(11)

Then, one can use the Efros generalized convolution
theorem [16] to rearrange the Laplace integral (9) into
the form

(12)

where the functions F(ξ, β) and Q(t ', ξ) are, in turn, the
Laplace integrals

(13)

(14)

Changing the integration variable p  p + B/A in

A ϕcos Ωτ ϕsin–( ),=

B Ωτ ϕsin Ωτ ϕcos+( ).=

F q p( )( ) β A
q p( )
----------- 

  , where qexp
p2 Ωτ( )2+

p B/A+
--------------------------.= =

I x t,( )
e t'– β ϕcos–

τ
--------------------- ξF ξ β,( )Q t' ξ,( ),d

0

∞

∫=

F ξ β,( ) 1
2πi
-------- pepξ βA

p
------- 

  ,expd

γ
∫=

Q t' ξ,( ) 1
2πi
-------- pept' ξ p2 Ωτ( )2+

p B/A+
--------------------------– 

  .expd

γ
∫=

0.2

0 4

α(ω)/αω → ∞

ωτ

1.0

8 12 16 20

0.8

0.6

0.4

ϕ = 0

Fig. 1. Absorption coefficient versus the dimensionless fre-
quency for different Ωτ and ϕ.
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Eq. (14), we easily reduce it to the form

(15)

where C is the positive parameter:

(16)

Thus, the integrals in Eqs. (13) and (15) coincide in
their structure. To calculate these integrals, one can, for
example, expand the exponent exp(βA/p) in series and
then perform the integration term by term:

(17)

For A > 0, the sum in braces is the first-order modified

Bessel function I1(2 ) (see [17]); for A < 0, it is

the common Bessel function J1(2 ) multiplied
by the imaginary unit. As a result, we obtain the follow-
ing representations for the functions F(ξ, β) and

Q t' ξ,( )

=  

B
A
--- t' 2ξ–( )– 

 exp

2πi
------------------------------------------ p p t' ξ–( ) ξC

p
----– 

  ,expd

γ
∫

C B/A( )2 Ωτ( )2.+=

F ξ β,( ) δ ξ( ) βA( )k

k!
-------------- ξk 1–

k 1–( )!
------------------θ ξ( )

k 1=

∞

∑+=

=  δ ξ( ) βA
ξ

------- βAξ 2 βAξ( )2
/4( )

k

k!Γ 1 k 1+( )+( )!
------------------------------------------

k 0=

∞

∑
 
 
 

θ ξ( ).+

βAξ

β A ξ

0.98

0.96
2

c(ω)/c∞

ωτ

1.02

4 6 8 10

1.00

0

Fig. 2. Phase velocity versus the dimensionless frequency
for different Ωτ and ϕ.
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Q(t ', ξ):

(18)

F ξ β,( ) δ ξ( ) βA
ξ

------- I1 2 βAξ( )θ ξ( ) for A 0,>+=

F ξ β,( ) δ ξ( ) β A
ξ

----------J1 2 β A ξ( )θ ξ( )–=

for  A 0,<
(19)

Substituting Eqs. (18) and (19) in Eq. (12), we
obtain the fundamental solution for the case of A > 0 in
the form

Q t' ξ,( ) e
B
A
--- t' 2ξ–( )–

=

× δ t' ξ–( ) Cξ
t' ξ–
-----------J1 2 Cξ t' ξ–( )( )θ t' ξ–( )– 

  .
(20‡)

In the case of A < 0, we obtain in a similar way

(21‡)

I x t,( ) e
β ϕcos– 1 B

A
---– 

  t'–

τ
---------------------------------=

× δ t'( ) βA
t'

------- I1 2 βAt'( )θ t'( ) ξ 2
B
A
---ξ– 

  βCA
ξ

----------- I1 2 βA t' ξ–( )( )J1 2 Cξ t' ξ–( )( )expd

0

t'

∫–+
 
 
 

.

I x t,( ) e
β ϕcos– 1 B

A
------+ 

  t'–

τ
-----------------------------------=

× δ t'( ) β A
t'

----------J1 2 β A t'( )θ t'( ) ξe
2

B
A

------ξ– βC A
ξ

--------------J1 2 Cξ t' ξ–( )( )J1 2 β A t' ξ–( )( )d

0

t'

∫+ +
 
 
 

.

The first terms in Eqs. (20a) and (21a) describe the
elastic forerunner, which exponentially decays with
distance according to the law exp(–βcosϕ). We note
that, in the case of the Lorentz medium (ϕ = π/2), the
elastic forerunner representing the contribution of the
highest frequencies does not decay, which completely
agrees with the high-frequency behavior of the absorp-
tion coefficient, which in this case tends to zero.

The two other terms in parentheses, i.e., the local
and integral terms, determine (after multiplication by
the factor before the parentheses) the body of the pulse.
In the case of A < 0, the local term corresponds to the
Sommerfeld forerunner and the integral term describes
the Brillouin forerunner [4, 7–9, 18–20].

To obtain the asymptotic behavior of the pulse near
the front, we note that integrals in Eqs. (20a) and (21a)
have the order of magnitude ~t '2 when t '  0; hence,
the local terms govern the behavior of the pulse profile
near the front. Expanding them in series in t ' to the lin-
ear terms, we obtain for both A > 0 and A < 0:

(22)

One could obtain this near-front expansion immedi-
ately from representation (2) by expanding exponent
exp(–xK(p)) with wave number K(p) given by Eq. (3) in
series for p  ∞, thus taking into account the high-
frequency pulse component that describes the front.

I x t,( ) β ϕcos–( )δ t'( )exp≈

+
β β ϕcos–( )Aexp

τ
----------------------------------------- 1 βA 1 B

A
---– 

 – 
  t' …+ + 

  .
From Eq. (22) it follows in particular that a step of mag-
nitude (Aβ/τ)exp(–βcosϕ) appears at the pulse front
even in the general case of resonance relaxation. For
dissipative media, this step is negative if the phase
velocity has a dip (i.e., in the region where condition (8)
is satisfied) and positive if the phase velocity has no
dip; this step vanishes for points belonging to line (8)
separating these regions: Ωτ = . In addition, the
near-front formula (22) shows the feature that allows
one to distinguish between the media with and without
the peak in the absorption coefficient from the behavior
of the pulse front during the initial stage of propagation.

As follows from Eq. (22), the factor –  govern-

ing the slope angle of the pulse profile for β ! |A – B|/A2

is positive in the regions where the absorption coeffi-
cient has a peak and negative in the regions where the
absorption coefficient has no peak. The slope angle of
the pulse profile at the initial stage of propagation van-
ishes for points belonging to line (6) Ωτ = –  +
1/cos(ϕ) separating these regions.

The analytical description of the Sommerfeld fore-
runner in the form of the local term of Eq. (21a) shows
that this forerunner behaves as a packet of high-fre-
quency oscillations that exponentially decay with time
and travel together with the front of the pulse. The
oscillation frequency increases proportionally to the
root of distance traveled, and the oscillation amplitude
varies according to the law Aβexp(–βcosϕ). Note that,

ϕ( )cot

1 B
A
---– 

 

ϕ( )tan
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in the particular case of the Lorentz medium (ϕ = π/2),
for an extremely short initial pulse, such a behavior
leads to a linear increase in the amplitude of the Som-
merfeld forerunner with distance traveled by the pulse.

As regards the case A > 0 (Eq. (20a)), one can easily
see that the integral term vanishes for Ωτ = 0 (because
C = 0 in accordance with Eq. (16)), while other terms
form the result corresponding to the pulse propagation
in the medium with the Kneser (Debye) relaxation
[1, 2, 5, 6]. However, for Ωτ ≠ 0 and greater distances
and times, the asymptotic behavior of the local term
exhibits a peak at the point t* = βA/(1 – B/A)2 with the
amplitude varying according to the law

Thus, the local term exponentially increases under the
condition A > B, which is equivalent, in accordance
with Eq. (6), to the absence of a peak in the absorption
coefficient. The only possibility of obtaining a physi-
cally meaningful result that will describe the energy
dissipation in the course of the pulse propagation con-
sists in the compensation of this increasing term by a
similar contribution of the integral term for Ωτ ≠ 0. For
this purpose, one can combine these two terms, i.e., the
local and integral terms, in Eq. (20a) into one; then,
Eq. (20a) for A > 0 can be rewritten in the form (after
changing the integration variable ξ  (1 – ξ)t ')

1
τ
--- 1 B/A–( )3/2

4πβA
----------------------------- β Ωτ( )2

A B–
------------------ 

  .exp
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6

Fig. 3. Separation of the parameter plane Ωτ, ϕ into regions
corresponding to different features in the absorption coeffi-
cient and phase velocity (the angle ϕ is measured in frac-
tions of π): region 1 corresponds to monotone phase veloc-
ity and absorption coefficient; region 2 corresponds to a dip
in the phase velocity and a monotone absorption coefficient;
region 3 corresponds to a monotone phase velocity and a
peak in the absorption coefficient; region 4 corresponds to a
dip in the phase velocity and a peak in the absorption coef-
ficient; region 5 corresponds to a peak in the phase velocity
and a peak in the absorption coefficient; and region 6 corre-
sponds to a dip and a peak in the phase velocity and a peak
in the absorption coefficient. In regions 1, 2, 3, and 4, A > 0;
in regions 5 and 6, A < 0.
(20b)I x t,( )
β ϕcos– 1 B

A
---+ 

  t'–exp

τ
--------------------------------------------------------------- δ t'( ) θ t'( ) ∂

∂t'
------ ξe

2
B
A
--- t'ξ βAt'

ξ
---------- I1 2 βAt'ξ( )J0 2 Ct '2ξ 1 ξ–( )( )d

0

1

∫+
 
 
 

.=
An analysis shows that the vicinity of the upper limit
gives the main contribution to the integral in Eq. (20b).
We can use the mean value theorem to obtain an analyt-
ical estimator for this integral by factoring out of the

integral the monotone function I1(2 ) at

some point ξ∗  in the vicinity of unity. Using the change

of the integration variable ζ = 1 – 2ξ, we rearrange the
remaining integral into the form

(23)

βAt'
ξ

---------- βAt'ξ

ξe
2

B
A
--- t'ξ

J0 2 Ct '2ξ 1 ξ–( )( )d

0

1

∫

=  e
B
A
--- t'

ζ B
A
---t'ζ 

  J0 Ct' 1 ζ2–( )( ).coshd

0

1

∫

The integral in Eq. (23) allows an exact analytical
calculation [21]:

(24)

As a result, with the use of the explicit relationships for
the coefficients A, B, and C, we obtain the following
analytical estimator for expression (20b):

(25)

At small distances  ! 1, one can find the
asymptotic estimator of the Green’s function by

x λx( )J0 µ 1 x2–( )coshd

0

1

∫
λ2 µ2–( )sin

λ2 µ2–
---------------------------------.=

I x t,( ) β ϕcos–( )exp
τ

--------------------------------- δ t'( ) ---
=

+ e t'– θ t'( ) B
A
--- ∂

∂t'
------+ 

  βAt'
ξ*

---------- I1 2 βAt'ξ*( ) Ωτ t'( )sin
Ωτ t'

----------------------- 
 .

β A t'
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expanding the modified Bessel function in this parame-
ter:

(26‡)

With expressions (10) for the coefficients A and B, this
estimator can be rewritten in the form

(26b)

From Eqs. (25) and (26) it follows that the profile of the
pulse body is modulated by oscillations of frequency ω
if Ωτ ≠ 0.

I x t,( ) 1
τ
--- β ϕcos–( )exp δ t'( ) ---≈

+ 2βe t'– B
Ωτ
------- Ωτ t'( )sin A Ωτ t'( )cos+ 

  .

I x t,( ) 1
τ
--- β ϕcos–( )exp δ t'( ){≈

+ βe t'– Ωτ t' ϕ–( )cos Ωτ Ωτ t' ϕ–( )sin+[ ] } .
Returning to estimator (25), we can easily see that,

for large times and distances  @ 1, the amplitude
of the pulse body is governed by the exponential factor

which reaches the maximum value exp[–β(cosϕ –
Aξ∗ )] at the point t ' = βAξ∗ . The exponent index in this
expression is always negative under the condition ξ∗  <

cosϕ/A ≡ 1/(1 – Ωτ ), which is always satisfied for
ξ∗  from the interval [0, 1] where the value of ξ∗  lies in
accordance with the mean value theorem. Conse-
quently, for large distances, analytical estimator (25)
predicts an exponential decay of the amplitude of the
pulse body.

For the case A < 0, representation (21a) can also be
rewritten with the use of the same change of the integra-
tion variable ξ  (1 – ξ)t ':

β A t'

β ϕcos– 2 βAt'ξ* t'–+( ),exp

φtan
(21b)
I x t,( )

β ϕcos– t' 1 B
A

------– 
 –exp

τ
------------------------------------------------------------------=

× δ t'( ) β A
t'

----------e
2

B
A

------ t'–

J1 2 β A t'( )θ t'( )– θ t'( ) ξe
2

B
A

------ t'ξ– β A Ct'
1 ξ–

-----------------J1 2 β A t'ξ( )J1 2 Ct '2ξ 1 ξ–( )( )d

0

1

∫+ .
For short times or small distances, in which case we

have  ! 1, we can expand the Bessel functions
appearing in the integral and local terms in this param-
eter and again obtain the same asymptotic expressions
(26), which are now valid for the parameters from the
region A < 0 (7).

The saddle point method allows a more accurate
asymptotic estimator for the integrals in Eqs. (20b) and
(21b) for greater times and distances; however, this
investigation is beyond the scope of this work and will
be described in a separate paper.

Expressions (20) and (21) form the principal result
of this paper. As distinct from representation (3) in the
form of the contour integral in the complex variable
plane, representations (20) and (21) are real and allow
one to calculate the pulse profiles for arbitrary parame-
ters by a relatively simple integration. Another impor-
tant feature of exact expressions (20) and (21) consists
in the representation of the high-frequency contribu-
tions of the elastic (delta-functional) forerunner and the
Sommerfeld forerunner (for A < 0) as separate terms.

Thus, the expressions obtained allow us to analyze
the propagation of a short pulse in the whole propaga-
tion region in an arbitrary medium whose dissipation-
dispersion properties can be described by a single pro-
cess of resonance relaxation. In this case, two parame-

β A t'
ters, Ωτ and ϕ, govern the behavior of the traveling
pulse.

The asymptotic analysis of Eqs. (20) and (21) and
direct simulations by these formulas provide a com-
plete pattern of the propagation behavior of a pulse for
different values of the parameters Ωτ and ϕ. It appears
that the features of the pulse shape variation correlate
with the features of the phase velocity and absorption
coefficient behavior in the regions shown in Fig. 3.

We first consider the media characterized by a posi-
tive parameter A. We will call such media the relaxation
media, because the behavior of a short pulse in such a
medium is similar to its behavior in the Debye model
with exponential relaxation. In this case, the parameters
Ωτ and ϕ fall in regions 1, 2, 3, and 4 (see Fig. 3).

In region 1, both phase velocity and absorption coef-
ficient are monotone. For this type of media, the limit
for Ω  0 corresponds to the media with exponential
relaxation [14] (which corresponds to the Debye model
in electrodynamics). If Ωτ > 0, the behavior of the tem-
poral pulse profile only slightly differs from a perfect
relaxation behavior. In this more general case, the pulse
body behaves, for small distances from the source, as
an exponentially decaying tail, as in media with expo-
nential relaxation. For greater distances, the pulse body
is transformed into a Gaussian pulse formed by lower
frequencies. However, in contrast to media with per-
fectly exponential relaxation, small oscillations decay-
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
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ing with the distance traveled appear on the tail of the
pulse body in media with Ωτ > 0. Figures 4a and 4b
show the behavior of the pulse body in the medium with
parameters from region 1 (Ωτ = 0.1, ϕ = 0) for different
dimensionless distances from the interval β = 1–7. In
these figures, the small oscillations appearing on the
pulse tail are indiscernible.

In region 3, the phase velocity is monotone, while
the absorption coefficient exhibits a peak. On the
whole, the pulse behavior in the course of the propaga-
tion is similar to the above case excluding the fact that
the pulse body appears to be dome-shaped even at the
initial stage. This fact follows from the analysis of the
asymptotic behavior of Eq. (22) near the front (t'  0)
for β  0. In this case, the expansion coefficient in the
term linear in t' is positive for Ωτ and ϕ from region 3, and,
consequently, the tangent to the pulse body profile has
a positive slope near the front. Figures 5a and 5b show
the behavior of a short pulse in the medium with param-
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Ωτ = 0.1, ϕ = 0

Fig. 4. Behavior of the pulse body in the medium with
parameters from region 1 (Ωτ = 0.1, ϕ = 0) for different
dimensionless distances from the interval β = 0.5–10.
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eters from region 3 (Ωτ = 0.5, ϕ = 0.3π) for different
dimensionless distances from the interval β = 0.25–25.

In region 2, the phase velocity shows a dip, while the
absorption coefficient is a monotonically increasing
function. The dip in the phase velocity results in an
increase in the oscillations of the pulse body as the
pulse travels. Qualitatively, this fact can be explained as
follows. In accordance with the saddle point method,
the vicinity of the dip in the phase velocity forms a sta-
ble wave packet composed of waves with frequencies
corresponding to the dip, whereas only waves with fre-
quencies close to zero are retained in the case of a
monotone behavior of the frequency-dependent absorp-
tion. Thus, two concurrent processes govern the shape
of the pulse body at large distances from the source: a
faster decay of higher frequencies (and, hence, the sur-
vival of the low-frequency component) and the forma-
tion of the stable group of waves with frequencies cor-
responding to the vicinity of the dip. The asymptotic
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Fig. 5. Behavior of the pulse body in the medium with
parameters from region 3 (Ωτ = 0.5, ϕ = 0.3π) for different
dimensionless distances from the interval β = 0.25–10.
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analysis shows that, at short distances from the source,
the pulse body profile behaves as an exponentially
decaying tail modulated by the cosine with the positive
initial phase (smaller that π/2). Figures 6a and 6b show
the corresponding behavior of a short pulse in the
medium with parameters from region 2 (Ωτ = 0.75, ϕ =
–0.1π) for different dimensionless distances from the
interval β = 0.25–105.

In region 4, the phase velocity exhibits a dip, while
the absorption coefficient has a peak. As in the case of
media from region 2, oscillations of the pulse body
increase as the pulse travels. The difference between
the media from regions 4 and 2 is similar to the differ-
ence between the media from regions 1 and 3: the slope
of the tangent of the pulse body profile is positive near
the front for small β. When β is small, the profile of the
pulse body behaves as a decaying exponent modulated
by the sine with a positive initial phase smaller than
π/2. Figures 7a and 7b show the corresponding behav-
ior of a pulse in the medium with parameters from
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Fig. 6. Behavior of the pulse body in the medium with
parameters from region 2 (Ωτ = 0.75, ϕ = –0.1π) for differ-
ent dimensionless distances from the interval β = 0.25–16.
region 4 (Ωτ = 1.6, ϕ = 0.15π) for different dimension-
less distances from the interval β = 0.25–16.

Now, we consider the media for which the parame-
ter A is negative. We will call such media the resonance
media, because a short pulse behaves in such a medium
as in the Lorentz model. In this case, the parameters Ωτ
and ϕ fall into regions 5 and 6 (see Fig. 3).

In these regions, the phase velocity shows a peak
exceeding the high-frequency limit c∞. In this case, near
the front, the frequencies corresponding to the phase
velocity exceeding the propagation velocity of the
pulse front c∞ form the pulse body portion called in
electrodynamics the Sommerfeld forerunner [4, 18–
20]. This portion of the pulse body is described by the
second term in representation (20). Lower-frequency
harmonics propagating with phase velocities smaller
than c∞ form the slowly decaying low-frequency por-
tion of the pulse body, which is called the Brillouin
forerunner [4, 18–20]. The peak in the absorption coef-

β = 16

Ωτ = 1.6, ϕ = 0.15π

β = 8

β = 4

β = 1

β = 0.25

I
0.4

0

0.4

0

0.4

0 40
(t – x/c∞)/τ

0.4

0

0.4

0

Fig. 7. Behavior of the pulse body in the medium with
parameters from region 4 (Ωτ = 1.6, ϕ = 0.15π) for different
dimensionless distances from the interval β = 0.25–16.
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ficient causes an enhanced absorption of intermediate
frequencies and results in a separate formation of the
above forerunners.

In region 5, both the absorption coefficient and the
phase velocity have peaks. In the region of lower fre-
quencies responsible for the formation of the Brillouin
forerunner, the absorption coefficient and the phase
velocity are monotonically increasing functions, which
is similar to their behavior in regions 1 and 3 and
asymptotically forms the Brillouin forerunner in the
form of a Gaussian pulse. For higher frequencies
responsible for the Sommerfeld forerunner, an analysis
of the asymptotic behavior of the pulse body near the
front (t'  0) shows that the pulse body begins with
the negative phase. As follows from Eq. (20), the ampli-
tude of the Sommerfeld forerunner decays according to
the exponential law exp(–βcosϕ) for large distances;
for media close to the Lorentz model (ϕ  π/2), this
absorption can be small in accordance with the behav-
ior of the absorption coefficient for higher frequencies.
The Sommerfeld forerunner behaves as an oscillation
train with an exponential envelope. The oscillation
frequency is determined by the argument of the Bessel
function in the second term in Eq. (20) and increases
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Fig. 8. Behavior of the pulse body in the medium with
parameters from region 5 (Ωτ = 1.7, ϕ = 0.49π) for different
dimensionless distances from the interval β = 1–16.
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with distance, and the total duration of the Sommerfeld
forerunner is determined by the exponential function
exp{−t '(1 + B/|A|)}. Figures 8a and 8b show the corre-
sponding behavior of a pulse in the medium with
parameters from region 5 (Ωτ = 1.7, ϕ = 0.49π) for
different dimensionless distances from the interval β =
1–10.

In region 6, the absorption coefficient sows a peak,
while the phase velocity shows both a peak and a low-
frequency dip. In this case, the Sommerfeld forerunner
behaves as in region 5. On the contrary, the Brillouin
forerunner behaves as in region 2, where two factors
affect the forerunner formation: the progressive absorp-
tion of higher-frequency components and the formation
of the stable wave group near the minimum of the phase
velocity. These two factors cause the Brillouin forerun-
ner to be formed as a group of low-frequency oscilla-
tions that decay with the distance traveled by the pulse
according to the power law. Figures 9a and 9b show the
corresponding behavior of the pulse body in the
medium with parameters from region 6 (Ωτ = 8, ϕ =
0.49π) for different dimensionless distances from the
interval β = 1–10.

(t – x/c∞)/τ

I
1

0

1

0

1

0

1

0

1

0 20

β = 10

β = 7

β = 5

β = 2

β = 1

Ωτ = 8, ϕ = 0.485π

Fig. 9. Behavior of the pulse body in the medium with
parameters from region 6 (Ωτ = 8, ϕ = 0.49π) for different
dimensionless distances from the interval β = 1–10.
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Thus, on the basis of the generalized equation of
state of an arbitrary linear medium with a local
response [1], we derived the new integral representa-
tion of the Green’s function for the problem of short
plane pulse propagation in a medium with a single
relaxation process. The types of pulse behavior charac-
teristic of the Debye and Lorentz media appear to be
particular cases of the solution obtained. The represen-
tation derived above was used to analyze all possible
types of the behavior of the short pulse profile in the
course of the propagation in linear dissipative media
with a local response. A correlation was revealed
between the features that appear in the frequency-
dependent phase velocity and the absorption coefficient
of dissipative media in the plane of parameters Ωτ, ϕ
and the behavior of the short pulse profile propagating
in the medium.
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Abstract—A nonlinear (in the cubic approximation) relaxation equation of state is derived for a rod containing
cracks partially filled with an incompressible viscous liquid. The nonlinear effects of the self-action and inter-
action of low- and high-frequency longitudinal elastic waves propagating in such a rod are studied for the cases
of identical and size-varied cracks. Linear and nonlinear acoustic parameters characterizing the self-action and
interaction of elastic waves in a cracked rod are determined. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Studies of nonlinear acoustic effects in microinho-
mogeneous media are important for developing both
the general theory of nonlinear wave processes and the
methods of nonlinear diagnostics of such media [1–3].
To solve these problems, it is necessary to know the
equation of state of the medium, i.e., the generalized
stress–strain dependence. For a particular sample of a
rigid body, this dependence can be found or recon-
structed (at least, in general terms) phenomenologically
from detailed experimental studies of various nonlinear
effects, or it can be derived theoretically from a physi-
cal model of the medium based on knowledge of its
microstructure, i.e., the structural defects responsible
for the acoustic nonlinearity of the medium. Naturally,
knowledge of the microstructural defects of the
medium implies that the equation of state of a single
defect is also known, because it determines the equa-
tion of state of the medium containing a great number
of such defects. The equation of state (in the cubic
approximation of the perturbation theory) for a nonlin-
ear defect of a perfect rigid body (cracks partially filled
with an incompressible Newtonian liquid) was
obtained in [4]. This equation has the form

(1)

where σ is the normal stress on the surface of the crack,
K0 = K + (9αµ0R0/4H3)F1(θ) > 0, K = 3πE/8(1 – ν2)R, E
and ν are the Young modulus and Poisson ratio of the rigid
body, R and R0 are the radius of the crack and the radius of
a circle that bounds the liquid on the crack surface, µ0 =
(R0/R)2 is the equilibrium concentration of the liquid in

the crack, β = 3µ0η /H3, g = 324αµ0 F2(θ)/35H5,

γ   = 18µ0η /H4, q = –81αµ0 F3(θ)/8H7, δ =

72µ0η /H5, H and 2d are the equilibrium (at σ = 0)
distance between the crack surfaces and the change in

σ d( ) K0d βḋ gd2– γdḋ– qd3– δd2ḋ ,+ +=

R0
2 R0

2

R0
2 R0

3

R0
2

1063-7710/03/4905- $24.00 © 20565
this distance under the action of stress σ ≠ 0 (H @ 2d),
α and η are the surface tension coefficient and the
dynamic viscosity of the liquid, θ is the equilibrium
wetting (or contact) angle, and F1, 2, 3(θ) are functions of
the contact angle.

Equation (1) was derived under the assumption that
the crack surfaces outside the liquid are dry and the line
of three-phase (rigid body, liquid, and gas) contact does
not slide along these surfaces when the crack deforma-
tion is relatively small (due to adhesion, i.e., attachment
of the viscous liquid to the rigid body). However,
another situation is possible and more likely to occur in
the system under consideration: the crack surfaces may
be covered with a thin film of the same liquid wetting
these surfaces. In this case, the line of the three-phase
contact may slide over this film. In such a crack, a
meniscus of the viscous liquid will behave like a menis-
cus of a perfect liquid (in the sense that the contact
angle will be constant); however, the viscous liquid will
resist the dynamic deformation of the crack. If R0 @ H
everywhere except for the region near the meniscus, the
flow of the liquid in the crack will be close to the Poi-
seuille flow. Therefore, such a crack will exhibit a dis-
sipation nonlinearity similar to the one described
above, but its elastic nonlinearity will correspond to
elasticity of a crack partially filled with a perfect liquid.
Thus, the crack with the liquid film will also be
described by equation of state (1), in which the elastic
coefficients K0 , g, and q are defined as those for the per-
fect liquid [4] and the inelastic coefficients β, γ, and δ
correspond to the viscous liquid:

K0 K 8αµ0 θ/H2,cos–=

g 24αµ0 θ/H3, qcos– 64αµ0 θ/H4,cos= =

β 3µ0η R0
2/H3,=

γ 30µ0η R0
2/H4, δ 180µ0η R0

2/H5,= =
003 MAIK “Nauka/Interperiodica”
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where K0 > 0 when 18αµ0cosθ/KD2 < 1, R0 is the radius
of a circle that bounds the liquid on the crack surface at
σ = 0, and D is the distance between surfaces of the
crack without the liquid.

As follows from Eq. (1), the acoustic nonlinearity of
such cracks contains two components: elastic (or reac-
tive) and inelastic (or dissipative), each of these compo-
nents containing terms that are quadratic and cubic in d.
Elastic nonlinearity is associated with the capillary
pressure in the liquid; inelastic nonlinearity, with vis-
cous pressure. It is quite natural that the rigid body with
such cracks will also exhibit reactive and dissipative
quadratic and cubic nonlinearity. The propagation and
interaction of acoustic waves in such a medium will be

–5
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Fig. 1. (a) Linear damping decrement A1 and (b) the relative
velocity C/C0 = 1 – B1 of the pumping wave versus fre-
quency. The numbers near the curves indicate the values of
the power n in distribution function (21).
accompanied by a variety of nonlinear effects. In par-
ticular, quadratic nonlinearity will produce waves at
combination frequencies (the second harmonic and
sum and difference frequencies) and self-rectification
of the high-frequency pulses. Cubic nonlinearity will
produce the third harmonic, self-action, attenuation or
amplification of sound by sound, etc. In general, the lat-
ter effects may be caused not only by cubic but also by
quadratic nonlinearity, because, qualitatively, third-
order processes on quadratic nonlinearity may yield the
same result as second-order processes on cubic nonlin-
earity [5, 6]. In both these processes, the amplitude
behavior of the nonlinear effects is the same, but their
dependences on the distance x are different. For exam-
ple, the amplitude of the third harmonic generated in
the medium due to cubic nonlinearity is proportional to
x, while that due to quadratic nonlinearity is propor-
tional to x2 (because it occurs through the second har-
monic) [5, 6]. It is clear that, at relatively small dis-
tances, the third harmonic will be caused mainly by
cubic nonlinearity rather than by quadratic nonlinear-
ity. Similar effects will also be observed in other non-
linear processes. The consideration of the combined
effect of the quadratic and cubic nonlinearity of the
medium on acoustic wave interaction and self-action
processes is not so much a complex as a laborious prob-
lem; therefore, in this paper, we will limit our study to
processes that are associated with cubic (reactive and
dissipative) nonlinearity alone and manifest themselves
at relatively short distances, where the effect of qua-
dratic nonlinearity can be neglected. We will address
the self-action of a harmonic wave, the generation of its
third harmonic, and the effect of an intense low-fre-
quency pumping wave on the propagation of a weak
high-frequency wave in a medium with cracks partially
filled with an incompressible viscous liquid. But, first,
we will derive the equation of state for a rigid body con-
taining a great number of such cracks.

2. EQUATION OF STATE FOR A ROD 
WITH A GREAT NUMBER OF CRACKS

The simplest equation of state to derive is the one for
a rod with cracks oriented parallel to the rod axis and
uniformly distributed throughout its volume. We
assume that the concentration of cracks is sufficiently
low, i.e., the distance between the cracks is much longer
than their radii, so that interaction between the cracks
can be ignored [7]. (We also assume that the radii of the
cracks are much smaller than the cross-sectional size of
the rod.) Of course, to describe the cracks in real rigid
bodies, one should allow for their orientation in space
and the distribution in various parameters (radii R and
R0, surface concentration µ0 of the liquid, etc.). To sim-
plify our calculations when deriving qualitative results,
it is sufficient to address the simplest case of a rod with
cracks that are uniformly distributed in it, oriented par-
allel to its axis, and have an identical volume liquid
content. The longitudinal strain ε of such a rod under
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
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the action of the longitudinal stress σ is described by
the equations

(2)

(3)

where ε0 = σ/E is the strain of a crack-free rod, N =
N(R) is the crack distribution in radius, b =

N(R)dR is the volume crack concentration, V0 =

πR2H is the equilibrium (at σ = 0) volume of a crack,
and V(σ) = 2πR2d is the crack volume as a function of
stress σ ≠ 0.

We solve Eq. (3) by the perturbation method, i.e., by
assuming that V(t) = V1(t) + V2(t), where |V2(t)| !
|V1(t)|. As a result, we obtain

(4)

(5)

where Ω = K0/β is the crack’s relaxation frequency. By
substituting these expressions for V1(t) and V2(t) into
Eq. (2), we obtain (in the linear approximation in N(R),
i.e., at a low crack concentration, when b ! 1,

(R)V(σ)dR ! 1, and 2πE dR ! 1) the

nonlinear equation of state for a rod with cracks par-
tially filled with a viscous liquid:

(6)

where D[ε(t)] = (t ')exp[–Ω(t – t ')]dt '.

ε σ( ) 1 b–( )ε0 V σ( )N R( ) R,d

0

∞

∫+=

σ V( )
K0

2πR2
------------V

β
2πR2
------------V̇+=

–
q

2πR2( )3
-------------------V3 δ

2πR2( )3
-------------------V2V̇ ,+

V00
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V1 t( ) 2πR2

β
------------ σ t'( ) Ω t t'–( )–[ ]exp t',d

∞–

t

∫=

V̇1 t( ) 2πR2

β
------------ σ t( ) Ω σ t'( ) Ω t t'–( )–[ ]exp t'd
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t
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V2 t( ) 1

β 2πR2( )2
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× qV1
3 t'( ) δV̇1 t'( )V1
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N
0

∞∫ R2N R( )
β

-------------------
0
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σ ε( ) E ε 2πE
R2N R( )

β
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0

∞

∫–=

– 2πE4 R2N R( )
β4

------------------- q δΩ+( )D3 ε t'( )[ ][
∞–

t

∫
0

∞
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ε
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This is a relaxation equation. It contains one linear and
two nonlinear (cubic with respect to the strain) relax-
ation terms. The linear and nonlinear relaxation of such
a cracked medium is caused by the viscosity of the liq-
uid in the cracks, the nonlinear relaxation manifesting
itself twice: first, due to the linear relaxation, because
nonlinear correction term (5) is determined by linear
response (4) and, second, through the relaxation of non-
linear correction term (5) itself. A similar relaxation
equation of state was obtained in [8] in terms of a one-
dimensional rheological model of a microinhomoge-
neous medium consisting of a chain of linear elastic and
inelastic (quadratic with respect to the strain) viscoelas-
tic elements. In the low-frequency approximation, i.e.,
when ω ! Ω (ω is the frequency of the acoustic wave),
Eq. (6) is reduced to the simpler form

As can be seen from this equation, a microinhomoge-
neous medium that contains not only the cracks consid-
ered here, but also any other defects characterized by
linear absorption (or relaxation) and cubic (or other
odd) reactive nonlinearity must also exhibit dissipative
nonlinearity; i.e., an odd reactive nonlinearity of relax-
ation defects causes the medium to exhibit dissipation
nonlinearity. (This statement does not refer to media
with defects that possess an even reactive nonlinearity
alone).

Equation of state (6) with the equation of motion
ρUtt = σx(ε, ) (ρ is the density of the medium, U is the
longitudinal displacement, and ε = Ux) and the bound-
ary conditions define the nonlinear wave processes that
occur when longitudinal elastic waves propagate and
interact in such a rod. Investigations of these processes
may be used in the diagnostics of the medium, i.e., to
determine its parameters (concentration of the cracks,
their radii, volume concentration of the liquid in the
cracks, etc.). When describing the wave processes in
this rod, we will assume that the nonlinearity of equa-
tion of state (6) is stronger than the geometric nonlin-
earity of the equation of motion and, also, that the
approximation of microinhomogeneous medium [9]
holds; i.e., there are many cracks per wavelength, their
width H is much smaller than the wavelength, and they
are uniformly distributed throughout the rod.

σ ε( ) E 1 2πE
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3. NONLINEAR PROPAGATION 
AND INTERACTION OF ELASTIC WAVES 

IN A CRACKED ROD

In this section, we study the effects of self-action
and interaction of an intense low-frequency pumping
wave of frequency ω1, 0 and a weak high-frequency
wave of frequency ω0, 1 in the rod described by equation
of state (6). We impose the boundary condition

(7)

where e0 @ ε0, ω1, 0/ω0, 1 ≠ m/n, and m and n are inte-
gers. When these conditions are satisfied, frequencies
of higher order harmonics of the intense wave do not
coincide with the frequency of the weak wave and the
weak wave will not affect the intense wave, but the
propagation velocity and attenuation of the weak wave
depend on the amplitude of the intense wave. The sub-
stitution of Eq. (6) into the equation of motion yields
the nonlinear wave equation for the strain:

(8)

where  = E/ρ. We search for a solution to this equa-
tion by the perturbation method assuming that

(9)
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∑

where ωn, m = |nΩ ± mω|, kn, m = ωn, m/C0,

 ! , and εn, m(x) and
ϕn, m(x) are slowly varying functions of the x coordinate.
Substituting Eq. (9) into Eq. (8) and collecting respec-
tive harmonic components on its right side, we obtain
equations that describe the propagation of the intense
pumping wave, the generation of its third harmonic,
and the propagation of the weak wave in the presence
of the intense wave:

(10)

(11)

(12)

(13)

where the linear and nonlinear coefficients A1, B1, C1,
D1, A3, B3 , An, m, and Bn, m are defined by the expressions
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Solutions to Eqs. (10)–(13) under boundary condi-
tions (7) with (A3 – A1)k3, 0 x ! 1 and B3k3, 0x ! 1 have
the form

(15)

(16)

(17)

4. ANALYSIS OF THE WAVE PROCESSES
IN A ROD WITH IDENTICAL CRACKS

Let us analyze the solutions obtained above and
underline the characteristic distinctions between the
propagation of the intense and weak waves in the rod
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with cracks of the same radius R = Rm: N(R) = N0δ(R –

Rm), where N0 = b/πH . From expressions (15), we
obtain the linear δlin and nonlinear δnon(ε1, 0) damping
decrements, the relative velocity change ∆C(ε1, 0)/C0
for the low-frequency wave, and the ratio of the nonlin-
ear damping decrement to the relative velocity change:

(18)

where ∆C(ε1, 0) = C0 – C1, 0(ε1, 0) and C1, 0(ε1, 0) is the
propagation velocity of the pumping wave.

As can be seen from these equations, when the
pumping wave amplitude increases, the parameters
δnon(ε1, 0) and ∆C(ε1, 0)/C0 grow, their ratio r1, 0 remain-
ing constant independently of ε1, 0. It is of interest to
consider more closely the amplitude ε1, 0 (or of the non-
linear damping decrement) and propagation velocity of
the intense pumping wave as functions of its initial
amplitude e0. The effects of the elastic and inelastic
nonlinearities should be studied separately, because the
mechanisms of these nonlinearities are different. As
follows from expressions (15), when q ≠ 0 and δ = 0,
the sign of the nonlinear damping decrement is deter-
mined by the sign of the coefficient A1, 0, which in turn
coincides with the sign of the parameter q. Thus, when
A1, 0 > 0, a nonlinear limitation of the wave amplitude
will take place, while when A1, 0 < 0, a self-clarification
of the medium will be observed. In this case, the prop-
agation velocity will also change, decreasing with an
increase in the wave amplitude in the low-frequency
range and increasing while tending to C0 in the high-
frequency range, as follows from expressions (14) for

Rm
2

δlin A1, δnon ε1 0,( ) A1 0, ε1 0,
2 ,= =

∆C ε1 0,( )
C0

--------------------- B1 0, ε1 0,
2 , r1 0,

A1 0,

B1 0,
---------,= =
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B1, 0. In another limiting case (at q = 0 and δ > 0), a lim-
itation of the amplitude will take place at low frequen-
cies (ω1, 0 < Ωm = Ω(Rm)), and a self-clarification of the
medium, at high frequencies (ω1, 0 > Ωm).

At small distances from the source, the third har-
monic is synchronous with the pumping wave and is
therefore generated as in a cubic dispersion-free

medium: its amplitude grows in proportion with  and
the distance x, the effective parameter of the cubic non-
linearity being determined by the expression

(19)

This expression gives the following low-frequency and

high-frequency asymptotics:  ≅   =

const and  ≅   ~ .

Expressions (17) yield the damping decrement
δ0, 1(ε1, 0) and the relative velocity change ∆C(ε1, 0)/C0
for the weak wave in the presence of the intense pump-
ing wave and also their ratio r0, 1:

(20)

Here, as in Eq. (18), when the pumping wave amplitude
increases, the parameters δ0, 1(ε1, 0) and ∆C(ε0, 1)/C0
vary in such a manner that their ratio r0, 1 remains con-
stant but different from r0, 1. As follows from expres-
sions (17), depending on the signs of the coefficients
A1, 0 and A0, 1, either attenuation or amplification of
sound by sound can be observed. When A1, 0 > 0 and
A0, 1 > 1 or A1, 0 < 0 and A0, 1 > 0, the attenuation of
sound by sound takes place, while when A1, 0 < 0 and
A0, 1 < 0 or A1, 0 > 0 and A0, 1 < 0, an amplification of
sound by sound takes place.

5. ANALYSIS OF THE WAVE PROCESSES 
IN A ROD WITH CRACKS DISTRIBUTED 

IN RADIUS

Let us now analyze the nonlinear wave processes in
a rod with cracks distributed in radius. We describe this
distribution by a power function with various integer
powers n (1 ≤ n ≤ 7):

(21)

where N0 = b/πH dR.

e0
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N R( ) N0R n– , R1 R R2,≤ ≤=

R2 n–

R1

R2∫
Figures 1a and 1b show examples of the behavior of
the linear damping decrement A1 and the relative veloc-
ity C/C0 = 1 – B1 of the pumping wave versus ω1, 0,
which were plotted for the above distribution function
for 1 ≤ n ≤ 7 with the following parameters of the
cracks: b = 10–4, R1 = 5.5 × 10–2 cm, R2 = 5.5 × 10–1 cm,
Ω1(R1) ≅ 105 s–1, Ω2(R2) ≅ 102 s–1, H = 10–4 cm, µ0 = 1/2,
E = 1011 g/cm s2, and ν = 1/4. All calculations presented
here refer to cracks partially filled with water and the
cracks' surfaces covered with a thin film. For such
cracks, R ! 3πEH2/64(1 – ν2)αµ0cosθ and their relax-
ation frequencies are determined by the expression

(22)

As can be seen from Fig. 1a, in the class of power func-
tions (21), it is only at n = 4 that the damping decrement
is almost independent of frequency in the range
Ω2(R2) ≤ ω1, 0 ≤ Ω1(R1). Many rocks and metals feature
this property [10, 11]. At other values of the power n,
the damping decrement at first goes up with frequency
and then goes down, so that, at n ≠ 4, there is no fre-
quency range in which the damping decrement is inde-
pendent of frequency. It can be seen from Fig. 1b that,
when the crack distribution in radius is described by the
power functions with 1 ≤ n ≤ 7, the behavior of the
velocity of the low-frequency wave is qualitatively the
same; i.e., it monotonically increases with frequency
ω1, 0 tending to C0 . Formula (14) yields the expressions
for the coefficients A1 and B1 at n = 4:

(23)

(Similar expressions also determine the coefficients C1,
D1, A3 , and B3.) Note that, in the frequency range Ω2 ≤
ω1, 0 ≤ Ω1 , the linear damping decrement A1 is indepen-
dent of ω1, 0 and of viscosity of the liquid in the crack,
being only determined by the concentration b and the
dimensions H, R1, and R2 of the cracks:

(24)

The viscosity of the liquid determines the frequency
range in which the linear damping decrement is given
by expression (24) [12].

Expressions for the nonlinear coefficients An, m and
Bn, m are much more complex. Therefore, we only pro-
vide here examples of their behavior with frequency
ω1, 0 or ω0, 1 (at ω1, 0 = 103 s–1) with particular values of n
(Fig. 2) with the same parameters of the crack distribu-
tion in radius and give their low-frequency asymptotics
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Fig. 2. Coefficients (a) A1, 0, (b) B1, 0, (c) , (d) A0, 1, and (e) B0, 1 versus frequency. The numbers near the curves indi-

cate the values of the power n in distribution function (21).
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(for ω1, 0 ! Ω2, ω0, 1 ! Ω2, and ω1, 0 ! |q/δ|) at n = 4:

(25)

As follows from these expressions, in the low-fre-
quency range, the effects associated with the variation
of the propagation velocity due to the reactive nonlin-
earity of the cracks manifest themselves more strongly
than the effects associated with the variation of the
damping decrement due to the cracks’ dissipation non-
linearity. This, however, is natural, because the dissipa-

tion nonlinearity depends on , while the reactive non-
linearity does not.

As can be seen from Fig. 2, at different n, pairs of
coefficients A1, 0, A0, 1 and B1, 0, B0, 1 show a similar
behavior with increasing frequency. At first, the coeffi-
cients A1, 0, A0, 1 are positive, increase, and reach maxi-
mal values; subsequently, they decrease, change their
sign, reach minimal values, and then tend to zero. The
coefficients B1, 0, B0, 1 are initially positive, then they
decrease, change their sign, reach minimal values, and
finally tend to zero. The effective parameter of cubic

nonlinearity, , at first grows with fre-
quency and then also goes down by asymptotically
tending to zero. The linear and nonlinear coefficients
A1, B1, C1, D1, A3, B3 , An, m, and Bn, m decrease in the
high-frequency range (ωn, m > Ω1) because of the relax-
ation of cracks, which increases their rigidity at high
frequencies.
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6. CONCLUSION

In this paper, we derived a nonlinear (in the cubic
approximation) relaxation equation of state for a rod
containing a great number of cracks partially filled with
a viscous liquid. This equation is solved by the pertur-
bation method with the aim of theoretically studying
the nonlinear wave processes that occur when an
intense low-frequency longitudinal wave and a weak
high-frequency one propagate and interact in this rod.
The linear damping decrement and the velocity of the
acoustic wave are determined along with the nonlinear-
ity parameters for the effects of self-action and interac-
tion of these waves and for the generation of the third
harmonic of the low-frequency pumping wave. It is
shown that, when the crack distribution in radius is
described by the power function (with the power n = –
4), rather a wide frequency range exists in which the
damping decrement is actually independent of fre-
quency. It is also shown that, unlike a medium with the
same (reactive or dissipative) nonlinearity but without
relaxation, in which the amplitude and phase nonlinear
effects are determined by the dissipative and reactive
nonlinearities separately, in a nonlinear relaxation
medium the amplitude and phase effects are determined
by the combined effect of the dissipative and reactive
nonlinearities. Although the paper addresses the sim-
plest example of a cracked medium, namely, a rod con-
taining cracks oriented parallel to its axis, the nonlinear
wave processes in such media are sufficiently general
and should be qualitatively much the same for an infi-
nite rigid body with cracks oriented isotropically and
distributed in their width and other parameters. In these
cases, the equations of state will also exhibit relaxation
and contain reactive and dissipative nonlinearities. The
results of the study allow us to expect that a detailed and
comprehensive experimental investigation (i.e., the
determination of the amplitude–frequency depen-
dences) of various nonlinear effects observed in the
course of the propagation and interaction of elastic
waves in such a medium will provide the necessary
information for determining its equation of state, which
in its turn will provide the parameters of the cracks. The
nonlinear effects described above (the self-clarification
of the medium or the nonlinear limitation of the wave
amplitude, the attenuation or amplification of sound by
sound, and the changes in the propagation velocities of
the intense and weak waves) may be observed in natural
cracked and granular rocks, which is confirmed, in par-
ticular, by the results of field experiments on the self-
action of seismoacoustic waves in a water-saturated
ground [13].
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Abstract—A theoretical analysis of the surface structure of a photorefractive grating is carried out. The effect
of the trap saturation on the electric and elastic fields that are formed near the crystal boundary by the diffusion
mechanism of charge separation is taken into account. The perturbations of the crystal permittivity tensor at the
light wave frequency are analyzed. The possibility of a diffraction of light with a change of polarization in the
near-boundary region is revealed. © 2003 MAIK “Nauka/Interperiodica”.
The electric and elastic fields characterizing a pho-
torefractive grating in an electro-optical crystal may
have a complex structure near the crystal boundary [1–
9]. In particular, at certain conditions, a periodic sur-
face relief can be formed at a crystal boundary. This
effect has been observed in experiments [1, 6]. The sur-
face structure of the grating may considerably affect the
interaction of light waves in a planar photorefractive
waveguide and, specifically, the holographic recording
process, when light strongly absorbed in the crystal is
used. In photorefractive crystals, one may also observe
acoustoelectric phenomena, such as the acoustic wave
reflection from a holographic grating [10] and the
acoustic wave generation due to the interaction of mod-
ulated light with the grating [11–13]. The near-bound-
ary structure of elastic and electric fields of a photore-
fractive hologram can play an important part in the
acoustoelectric phenomena involving surface acoustic
waves.

Barium titanate (BaTiO3) and strontium barium nio-
bate (SBN) crystals, which are widely used in photore-
fractive studies, are ferroelectric crystals of the 4mm
symmetry class. The surface structure of the photore-
fractive grating formed in a barium titanate crystal at
steady-state conditions in the absence of trap saturation
is theoretically analyzed in [9]. In the present paper, we
consider the effect of the trap saturation on the electric
and elastic fields of a photorefractive grating that is
characterized by a vector Kg parallel to the z axis and
formed by the diffusion mechanism in a Y-cut crystal of
the 4mm symmetry class. Note that the elastic, piezo-
electric, and dielectric properties of 6mm crystals have
the same symmetry and, hence, the model under con-
sideration is applicable to these crystals as well.

Consider a crystal with a mechanically free bound-
ary at y = 0 (Fig. 1). In this crystal, a photorefractive
1063-7710/03/4905- $24.00 © 20574
grating is formed as a result of a symmetric two-beam
interaction of light waves with intensities IR and IS. The
spatial period of the grating is Λ = 2π/ |Kg |. Neglecting
the self-diffraction effects, we represent the distribution
of the light intensity over the crystal in the form

(1)

where I0 = IR + IS is the average intensity, m =

 is the interference contrast, and Kg = |Kg |.
The photoexcitation of charge carriers and their diffu-
sion transport through the crystal with a subsequent
recombination give rise to a space charge field Esc. To
analyze these processes, we use the single-level model
of zone transfer [14] for steady-state conditions under
continuous irradiation with a relatively low intensity. In
this case, the concentration of charge carriers satisfies
the inequality n ! NA (where NA is the concentration of
compensating acceptor centers) and, in the adiabatic
approximation, has the form

(2)

where S and ND are the photoionization cross section

I z( ) I0 1 m Kgz( )cos+[ ] ,=

2 IRIS/I0

n SI ND NA–( )τR/ 1
1

eNA

----------div D+ 
  ,=

Y

Z

[010]

Λ

Kg

[001]

Fig. 1. Orientations of the crystal axes and the grating vec-
tor. The crystal occupies the half-space y ≤ 0.
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and the concentration of donor centers in the crystal, τR

is the recombination time of nonequilibrium charge
carriers, and e is the elementary electric charge. The
electric induction field D in a crystal without a symme-
try center is determined by the sum of the electric and
piezoelectric components of the polarization of the
medium. To determine the two-dimensional distribu-
tion of the interrelated stationary distributions of the
electric and elastic fields of the photorefractive grating,
we use the continuity equation

(3)

and the elastostatic equation

(4)

where  is the mobility tensor of charge carriers, ϕ is
the electric potential, kB is the Boltzmann constant, T is
the absolute temperature, and Tij are the components of
the elastic stress tensor. The relation between the elec-
tric and elastic fields in a piezoelectric crystal is deter-
mined by the equations of state [15]

(5)

(6)

where  and  are the components of the elastic
modulus tensor and the dielectric permittivity tensor
measured at a constant electric field and for a mechan-
ically compressed crystal, respectively, and emij are the
components of the piezoelectric constant tensor. The
elastic strain tensor Skl can be expressed through the
components of the elastic displacement vector Uk:

(7)

The set of equations (2)–(7) determines the electric
and elastic fields induced in a photorefractive crystal by
its illumination. This set of equations is nonlinear. In
the linear approximation with respect to the interfer-
ence contrast m ! 1, we can limit our consideration to
analyzing only the first spatial harmonic of the photore-
fractive grating. Then, expression (2) for the charge car-
rier distribution can be represented in the form

(8)

where n0 = SI0(ND – NA)τR is the average concentration
of nonequilibrium charge carriers.

With allowance for the crystal symmetry and the
grating vector orientation, the equations for the electric
potential and the components of the elastic displace-
ment vector Uy and Uz can be derived from the set of
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equations (3)–(8):

(9)

(10)

(11)

where Lsz =  is the Debye screening
length along the polar axis of the crystal and matrix
notation is used for the material tensor components.

From Eq. (9), it follows that, in the absence of trap
saturation, we have Ls = 0, and the elastic displace-
ments do not affect the potential distribution. For this
case, the analysis of the surface structure of the photo-
refractive grating formed in a BaTiO3 crystal was per-
formed in [9]. To determine the distributions of the
potential and the elastic displacements in the photore-
fractive grating for the case LS ≠ 0, we represent the
solution to the set of equations in the form

(12)
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where ϕ0, Uy0, and Uz0 correspond to the bulk fields of
the grating and ϕj , Uyj, and Uzj are the amplitudes of the
partial components whose attenuation along the y axis
is determined by the attenuation constants γj. Using a
standard procedure, it is easy to find all four roots with
positive real parts that can represent the attenuation
constants. One of these roots does not depend on the
external conditions of the grating formation. This root
has the form

(14)

and characterizes the proper solution of the electro-
static boundary-value problem in the absence of trap
saturation. Two other complex-conjugate roots, γ2 and
γ3 , depend on both the material parameters of the crys-
tal and the spatial period of the photorefractive grating.
They determine the proper solution of the elastostatic
boundary-value problem at Lsz = 0 (see Eqs. (10) and
(11)). The fourth root is physically meaningless and
should be rejected.

The bulk components of the grating fields are
expressed as

(15)
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period of the photorefractive grating.

γ3
*

where Ed = KgkBT/e is the diffusion field and Eq3 =

eNA/Kg  is the trap saturation field.

For the crystal under consideration with a metal-
lized and mechanically free boundary y = 0, the electric
and elastic fields should satisfy the boundary condi-
tions

ϕ = 0 at y = 0, (17)

(18)

(19)

Applying these boundary conditions to field distri-
butions (12) and (13) and taking into account
Eqs. (14)–(16) and the roots γ2 and γ3 determined
numerically, we determine the amplitudes of the partial
components of the elastic (Uyj and Uzj) and electric (ϕj)
fields of the photorefractive grating.
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Fig. 3. Amplitude distributions Ey(y) and Ez(y) of the elec-
tric field components near the crystal boundary y = 0 for dif-
ferent values of the spatial period of the photorefractive
grating: Λ = (1) 0.1, (2) 1, (3) 10, and (4) 0.4 µm. Curves 5
correspond to Λ = 0.4 µm in the absence of the piezoelectric
effect.
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Because of the photoelastic and electro-optical
effects, the electric and elastic fields of the photorefrac-
tive grating change the permittivity tensor [15]:

(20)

where  are the components of the relative permittiv-
ity tensor of the unperturbed medium at the light wave

frequency,  are the electro-optical coefficients of the

mechanically compressed crystal, and  are the pho-
toelastic constants of the electrically shortened crystal.
The changes in the optical properties of the crystal near
its boundary, which are fairly complicated in the case
under study, may affect the interaction of light waves at
the photorefractive holographic grating.

The analysis of the electric and elastic fields of the
photorefractive grating and the corresponding varia-
tions of the tensor components ∆εij at the light wave fre-
quency was performed using Eqs. (9)–(20) by numeri-
cal methods for a barium titanate crystal. In the calcu-
lations, we used the following material parameters of
the BaTiO3 crystal: µ3/µ2 = 1/9.2 [16], NA = 2 × 1022 m–3

[17],  = 22.2 × 1010 N/m2,  = 11.1 × 1010 N/m2,
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 = 6.1 × 1010 N/m2, e15 = 34.2 C/m2, e31 = –0.7 C/m2,

e33 = 6.7 C/m2,  = 10.2 × 10–12 m/V,  = 40.6 ×

10−12 m/V,  = 730 × 10–12 m/V, ε2 = 194.8 ×

10−10 F/m, ε3 = 4.958 × 10–10 F/m,  = 0.50,  =

0.106,  = 0.20,  = 0.07,  = 0.77, n0 = 2.412,
ne = 2.360 [18]. The interference contrast was taken to
be m = 0.001.

The effect of trap saturation on the attenuation con-
stants γ2 and γ3 is illustrated in Fig. 2. For a crystal with
the compensating acceptor concentration NA = 2 ×
1022 m–3, the Debye screening length along the polar
axis is Lsz = 0.06 µm. Then, for Λ > 10 µm, the effect of
trap saturation on the field of the spatial charge of the
grating, which is determined by the ratio (Lsz/Λ)2 , is
negligibly small. Noticeable changes in the attenuation
constants γ2 and γ3 occur only for Λ < 5 µm.

The dependences of the amplitudes of the space
charge field components Ey and Ez on the normalized
transverse coordinate y/Λ are shown in Fig. 3 for grat-
ings with different periods. For all periods, both field
components vary monotonically in the surface layer.
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Fig. 5. Amplitude distributions of the perturbations of the permittivity tensor components, ∆εij(y), in the near-boundary region of
the crystal for different periods of the photorefractive grating: Λ = (1) 0.1, (2) 0.4, (3) 1, and (4) 10 µm.
The component Ez increases with distance from the
boundary and reaches its bulk value at y > 2Λ. The com-
ponent Ey that is normal to the boundary noticeably dif-
fers from zero in the surface layer of thickness y ~ Λ.
Both components have maximal amplitudes when the
grating period is Λ ≈ 0.4 µm and the condition KgLsz ≈ 1
is satisfied (curves 4). Curves 5 in Fig. 3 correspond to
the amplitudes of the components Ez and Ey calculated
for Λ = 0.4 µm in the absence of the piezoelectric effect
(e31 = e33 = e15 = 0), when the dependence of the poten-
tial on the transverse coordinate is only determined by
the attenuation constant γ1 . The inverse effect of the
field of elastic displacements on the distribution of the
inducing space charge field is most pronounced for the
component Ey: at y = 0, the difference in amplitudes in
the presence and absence of the piezoelectric effect
(Fig. 3b, curves 4 and 5, respectively) reaches ~10%.
Note that when the spatial period of the grating is Λ <
0.2 µm or Λ > 1 µm, this difference can be neglected.

The distributions of the elastic displacement ampli-
tudes near the crystal boundary are shown in Fig. 4. The
component Uz directed along the grating vector is max-
imal at the crystal boundary and changes sign at y ~
0.1Λ; this component reaches its bulk value in the
region y > 2Λ. The component Uy is normal to the
boundary; at the boundary, it reaches its maximal value
comparable with Uz and then monotonically decays in
the direction from the boundary into the crystal depth.
Curve 4 corresponding to the spatial period Λ = 2 µm
little differs from curve 5 for Λ = 10 µm. For gratings
with periods Λ < 10 µm, the trap saturation leads to a
decrease in the elastic displacement amplitudes Uy and
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
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Uz with decreasing Λ. This effect is most pronounced
for Λ < 1 µm. At Λ = 0.1 µm, the elastic displacement
amplitudes become an order of magnitude smaller than
the maximal values, which occur for gratings with spa-
tial periods exceeding 10 µm.

The distribution of the perturbation amplitudes of
the permittivity tensor components ∆εij near the crystal
boundary are shown in Fig. 5 for gratings with different
spatial periods. At Λ = 0.4 µm, when the condition
KgLsz ≈ 1 is satisfied (curves 2), all components have
maximal amplitudes. From this figure, one can see that
all the diagonal components strongly depend on y near
the crystal boundary and take values equal to the bulk
values at the depth y > 2Λ. The diagonal components
∆ε11 and ∆ε33 have identical distributions: they change
sign at a depth of about 0.1Λ, and their values at the
boundary are approximately half their values in the
crystal bulk. The diagonal component ∆ε22 exhibits a
smoother dependence on y and takes its minimal value
at y = 0. The nondiagonal component ∆ε23 exceeds all
diagonal components in amplitude by an order of mag-
nitude at the boundary, but it exists only near the
boundary, in the region y < 2Λ. Note that, owing to the
perturbations ∆ε23 near the boundary of the Y-cut bar-
ium titanate crystal, the diffraction of light by the holo-
graphic grating with a change in polarization (e.g.,
from an extraordinary wave to an ordinary one) is pos-
sible, while in the crystal bulk, this effect is absent.

Thus, in this paper we obtained the relations that
allow one to analyze the space charge field and the
structure of the elastic fields of a photorefractive grat-
ing near the boundary of a 4mm or 6mm crystal in the
linear approximation with respect to the interference
contrast with allowance for the trap saturation. We cal-
culated the structure of the elastic and electric fields for
a grating with the vector Kg directed along the polar
axis in a Y-cut barium titanate crystal with an electri-
cally shortened and mechanically free boundary. The
analysis of the behavior of the perturbation amplitudes
of the permittivity tensor components near the crystal
boundary reveals their strong dependence on the trans-
verse coordinate in the surface layer. We found that,
near the boundary, a perturbation grating of the nondi-
agonal component of the permittivity tensor, ∆ε23, is
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
present, while in the crystal bulk, this component is
equal to zero.
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Abstract—The space–time correlation function of thermal acoustic radiation pressure is measured for a sta-
tionary heated source (a narrow plasticine plate). The correlation dependence is obtained by the multiplication
of two signals shifted in time with respect to each other and measured by two receivers. The dependence exhib-
its an oscillating behavior and changes sign when the source is displaced by half the spatial period of the cor-
relation function. © 2003 MAIK “Nauka/Interperiodica”.
† Correlation measurements of thermal acoustic radi-
ation are much discussed in the literature in connection
with the possibilities they offer for measuring the in-
depth temperature distribution in biological objects [1–
12]. The proposed passive noninvasive (and therefore
safe and painless) method of measuring in-depth tem-
perature is important for medical diagnostics.

Studies of the correlation properties of thermal
acoustic radiation were started in our laboratory by
V.I. Passechnik [2–4, 10]. We were the first to measure
the space–time correlation function of thermal acoustic
radiation [7, 8] and to investigate its characteristics
[12]. This work was also started together with Passech-
nik.

In our previous studies, we measured the spatial cor-
relation function of thermal acoustic radiation using a
pair of piezoelectric transducers with a source moving
in space [7, 8, 12]. The purpose of this work is to mea-
sure the space–time correlation function of thermal
acoustic radiation in the case of a stationary heated
source, i.e., to change in time the signals under mea-
surement with respect to each other using two receiv-
ers.

The experimental setup (Fig. 1) included a basin
with the immersion liquid (water). The source of ther-
mal acoustic radiation was a long narrow vertical plate
with the width d = 3.5 mm, a length of about 100 mm,
and a thickness of 5 mm, which was made of plasticine
with a large (with respect to water) coefficient of ultra-
sonic absorption. The plate was positioned in a cell with
acoustically transparent windows, which was also filled
with water. The water in the cell (and therefore, the
plate) was heated to 17 K above the basin temperature.

† Deceased.
1063-7710/03/4905- $24.00 © 20580
The receivers were two circular flat piezoelectric
transducers (PT1 and PT2) with the radius a = 5 mm,
and the distance between their centers was D = 18 mm.
The acoustic axes of the piezoelectric transducers lay in
the horizontal plane and intersected near the plate at the
distance l = 200 mm from the transducers. The piezo-
electric transducers (the average reception frequency
was f0 = 2.2 MHz) with a quarter-wave layer had
approximately equal sensitivities. The sound pressures
at PT1 and PT2 were transformed into electric signals,
which were transmitted through preamplifiers
(designed by M.A. Antonov [8]) and amplifiers (U3-29
and U3-33). The amplified signals were stored in a per-
sonal computer using an LA-n10M7PCI eight-bit card
(manufactured by ZAO Rudnev–Shilyaev, Russia). The
pickup frequency was 12.5 MHz. Two channels with a
256 kbyte card memory were used. The correlation
function for a given signal realization was calculated
according to the data obtained: the signals were shifted
in time with respect to each other, and the average value
of the products of signal readings was determined (note
that the average values of the signals were equal to
zero). The result was stored, and the measurements
were repeated automatically 1000 times. Thus, we
obtained a correlation function averaged over 1000
realizations.

The measurements were conducted in two modes: in
the first case (the “open” state), the signal arriving at a
piezoelectric transducer originated from the plate, and
in the second case (the “closed” state), a duralumin
reflecting plate was positioned between the piezoelec-
tric transducer and the cell, so that the signal arriving at
the transducer originated from the basin (the tempera-
tures of the piezoelectric transducer and the basin coin-
cided). To exclude the signal drift and possible nona-
coustic correlation sources, we calculated the differ-
003 MAIK “Nauka/Interperiodica”
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ence between the averaged functions in the first and
second modes.

Figure 2a shows the measured space–time correla-
tion function R(τ) of thermal acoustic radiation, which
was obtained by averaging the results of n = 7 measure-
ments. The experimental points are connected by a bro-
ken line 1 for illustration. The horizontal axis repre-
sents the delay time τ of one signal with respect to the

other. The standard errors ( , where s is the rms
deviation) for each delay value are shown in the plot.

As one can see from Fig. 2a, the maximum ampli-
tude of the correlated signal, which is measured in units
of the low-order digit (LOD), is about 3 LOD2. Note
that the average total intensity of measured signals (the
average value of the squared voltage) for the piezoelec-
tric transducers is equal to ~2000 LOD2, and the aver-
age difference in signal intensities in the open and
closed states is ~13 LOD2. Therefore, the maximum
value of the correlation coefficient (the share of the cor-
related signal in the total measured noise signal) is
~0.15%, and the share of the correlation component in
the signal associated only with the thermal acoustic
radiation from the plate is ~23%. These values are
lower than those obtained in our previous measure-
ments of the spatial correlation function (60–80%)
[12], which is probably connected with the increase in
the transmission band ∆f of the piezoelectric transduc-
ers used in our experiments, from 0.2 [8, 12] to 0.6
MHz, and with a certain increase in the plate width.

From the experimental data, one can find that the
average frequency of the correlated signal approxi-
mately coincides with the average reception frequency
f0, and the bandwidth of the correlated signal coincides
with the transmission bandwidth of the piezoelectric
transducer ∆f. Knowing f0, the distance l from the trans-
ducer to the source, and the distance D between the
piezoelectric transducers, it is possible to determine the
spatial period of the correlation function: Λ = cl/Df0 ≈
8 mm, where c = 1500 m/s is the velocity of sound in
water. If we shift the plate along the horizontal axis x
(see Fig. 1) perpendicularly to the acoustic axis of the
system by half the spatial period of the correlation func-
tion, the space–time correlation function must change
its phase by π. The measured space–time correlation
function of the source shifted by 4 mm is shown in
Fig. 2b. Comparing Figs. 2a and 2b, one can see that the
measured functions are in antiphase, which confirms
the assumption. One can notice the decrease in the
maximum amplitude and a somewhat greater measure-
ment error for the second signal, which is mainly con-
nected with the shift of the source from the center of the
spread functions of the piezoelectric transducers. The
analysis of the measurement errors shows that we reli-
ably obtain 3–4 periods of the correlation function vari-
ation in the range of time delays approximately from –
1.2 to 1.2 µs.

s/ n
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
The space–time correlation function R(τ) measured
in our experiment can be evaluated using the following
model. Let the piezoelectric transducers be infinite ver-
tical strips with the width a and with the distance
between their centers D. We assume that the transmis-
sion band of the transducers f0 ± ∆f/2 has a rectangular
form. Then, taking into account the fact that the plate
size is small ∆θ = d/l ! 1, we find that the correlation
function is proportional to the expression [13]

R τ( )
πaθ0/λ0( )sin

2

πaθ0/λ0( )2
----------------------------------

πD∆θ/λ0( )sin
πD∆θ/λ0( )

------------------------------------

×
π∆f Dθ0/λ0 f 0τ–( )/ f 0[ ]sin

π∆f Dθ0/λ0 f 0τ–( )/ f 0[ ]
--------------------------------------------------------------------

× 2π Dθ0/λ0 f 0τ–( )[ ] ,cos
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D
2a

d
1
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3
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l
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Fig. 1. Experimental setup: (1) a basin, (2) a plasticine plate
with the width d, (3) a cell, (4, 5) preamplifiers, (6, 7) U3-29
and U3-33 amplifiers (respectively), (8) a personal com-
puter, and (9) a reflecting plate; PT1 and PT2 are piezoelec-
tric transducers with the radius a, D is the distance between
their centers, and l is the distance from the x axis to the
piezoelectric transducers.
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Fig. 2. (a, curve 1 and b) Measured space–time correlation functions R(τ) of thermal acoustic radiation for two positions of the plate
and (a, curve 2) the calculated dependence R(τ).
where θ0 = x/l is the angular coordinate of the plate cen-
ter. Figure 2a presents the correlation function calcu-
lated for the first position of the plate (curve 2). In the
calculation, we used the value θ0 = –0.004, which cor-
responds to a plate shift of 0.8 mm along the x axis from
the acoustic axis of the system. This value specifies the
plate position with respect to the intersection point of
the acoustic axes of the piezoelectric transducers. As
one can see, the results of calculation agree well (within
the experimental error) with the results of measure-
ments in the range of time delays from –1.2 to 1.2 µs.

Thus, we measured the space–time correlation func-
tion of thermal acoustic radiation for a stationary
source by using the time delay between the signals. It
should be noted that this procedure provides an oppor-
tunity to scan the region under investigation with the
aim of measuring its in-depth temperature without
moving the piezoelectric transducers mechanically. As
a result, the scanning time is reduced, which is impor-
tant for future biomedical applications of the method.
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Abstract—The resonance structure of the frequency response is used for the determination of sea bottom prop-
erties. The behavior of the resonance characteristics is investigated in the plane of two different bottom param-
eters for a fixed angle of incidence. The features of the behavior of the resonance structure characteristics are
used to develop the procedure for evaluating the parameters of a layered sea bottom. With the proposed proce-
dure, the parameters of a layered sea bottom are determined from model data in which an error is artificially
introduced. The efficiency of the bottom parameter determination is shown to increase when several character-
istics of the resonance structure are used simultaneously. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Fundamental characteristics of the sea bottom are
parameters such as the velocities of compressional and
shear waves and the densities of the sedimentary layers
and underlying half-space. Knowing these characteris-
tics is of great importance, in particular, for geophysical
applications and underwater acoustics. By now, many
methods for determining the sea bottom properties have
been developed [1]. These methods differ in the proce-
dure and the characteristics of the acoustic signals used
to reconstruct the properties of the bottom. Pulse meth-
ods based on measuring the characteristics of acoustic
pulses [2] and matched-field processing [3, 4] are used
most often. For example, the method of determining the
parameters of an elastic layer lying on an elastic half-
space [2] is based on measuring the amplitudes and
delays of a pulse signal. The parameters of the bottom
are determined with the use of analytically derived
expressions that allow one to sequentially determine all
the parameters of an elastic layered medium from the
measured quantities. Originally, the matched-field pro-
cessing was used for determining the coordinates of a
sound source in a waveguide. Later, it was shown that
they are also appropriate for determining the parame-
ters of the waveguide and, in particular, the bottom
characteristics. Matched-field inversions are now
widely used for determining the parameters of the lay-
ered bottom [3–5]. In these procedures, the determina-
tion of the bottom parameters is performed by search-
ing for the parameters of the medium that provide the
minimum of the weighting function determining the
difference between the calculated and measured quan-
tities. Different procedures exist for finding the global
minimum of the weighting function. The genetic algo-
rithm and the simulating annealing algorithm, as well
1063-7710/03/4905- $24.00 © 20584
as their combinations with the methods for local min-
ima search, are used most frequently. These methods
appear in many modifications and showed a high effi-
ciency with the use of both model data and full-scale
data obtained in the sea. A repeated launch of the pro-
cedure for determining the bottom parameters with dif-
ferent initial conditions is often used to improve the
reliability of the reconstruction. The determination of
bottom parameters with the use of broadband acoustic
signals may also improve the reliability of the results
[6]. The utmost precision of the values of bottom
parameters obtained with matched-field inversions cre-
ates an illusion of a precise reconstruction, which is not
necessarily the case. Errors in experimental data may
give rise to a local minimum of the weighting function
and cause biased estimates of the bottom parameters.
The solution obtained is seldom analyzed for stability
and accuracy under a small perturbation of the initial
data. The situation is additionally aggravated by the fact
that high-performance methods for searching the global
minimum of the weighting function, which underlie the
matched-field inversions, follow from formal mathe-
matical algorithms, and this causes difficulties in the
physical interpretation of the solution.

Different characteristics of acoustic signals used for
determining the properties of the bottom have different
sensitivities to the parameters of the sea bottom. If the
acoustic characteristics used in the reconstruction show
a low sensitivity to certain parameters of the sea bot-
tom, a precise determination is hardly possible for these
parameters. In this context, there is a need to search for
characteristics that are sensitive to small variations of
the bottom parameters and to test the corresponding
methods of the bottom parameter estimation for effi-
ciency. The characteristics of the resonance peaks of
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Sound reflection coefficient obtained for a layered elastic bottom in the frequency–angle of incidence plane.
the sound reflection coefficient from the layered bottom
can be regarded as being among these characteristics.
The resonance techniques are based on measuring the
characteristics of the resonance structure (the reso-
nance frequency Fr, the resonance peak half-width É/2,
and the peak amplitude A) and using them to recon-
struct the geoacoustic parameters of the bottom [7].
Resonance phenomena experimentally observed in
sound reflections from the sea bottom were described in
[8]. Now, the resonance approach gains increasing pop-
ularity, which is related to the development of computer
methods and progress in the theory of sound propaga-
tion [9]. In this paper, we investigate the resonance
characteristics of the reflection coefficient for a two-
layer model of the bottom and use these characteristics
to reconstruct the bottom parameters from simulated
data supplemented with an artificially introduced error.
We show that the efficiency of the bottom parameter
estimation is enhanced when several characteristics of
the resonance structure are used simultaneously.

2. RESONANCE TECHNIQUE

Consider the resonance technique for reconstructing
the bottom parameters. In the angle–frequency plane,
the reflection coefficient behaves as a regular sequence
of peaks and valleys that are almost parallel to the angle
axis for small grazing angles 0°–21°; for grazing angles
exceeding 21° (this is the critical angle for the compres-
sional wave propagating in the lower half-space), the
sequence of peaks and valleys gradually move away
from the angle axis (Fig. 1). Such a behavior is evi-
dence in favor of the description of the reflection coef-
OUSTICAL PHYSICS      Vol. 49      No. 5      2003
ficient in the vicinity of resonances as a resonance pro-
cess, which makes it possible to interpret the reflection
coefficient as a sequence of resonances and use the res-
onance formalism to determine the relationships
between the resonance characteristics and the material
parameters of the medium. The main feature of the res-
onance formalism consists in the assumption that the
amplitude of the process can be described near the res-
onance by the Breit–Wigner curve lying on a slowly
varying background. By virtue of this assumption, the
reflection coefficient can be expanded in a series near
the minima and then rewritten as a sum of resonance
terms [7]. The sum over the resonances in this represen-
tation has only symbolic sense, because the resulting
expression is valid only in the immediate vicinity of
each resonance. Such types of expressions were
obtained for a fluid layer between two liquids [10] and
an elastic plate in liquid [11]. In papers [12, 13], we
obtained the resonance expansion of the reflection coef-
ficient expressed in terms of material parameters in the
case of an elastic layer lying on an elastic half-space.
The expression obtained for the reflection coefficient
can be represented in the general case as a sum of reso-
nance terms written in the Breit–Wigner variables [14]:

(1)

where Én/2 is the resonance half-width measured near
the local minimum of the reflection coefficient at the
points where the process amplitude reaches half of its
maximum value A/2; the index n means that this sum
must be evaluated for the nth root of the characteristic

V
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equation; δn and ηn specify the positions of the fre-
quency and angular resonances relative to the compres-
sional and shear waves; δ = 2πfdcos(Θl)/cl and η =
2πfdcos(Θt)/ct are the phase terms; f is the frequency; d
is the layer thickness; cl and ct are the velocities of the
compressional and shear waves in the layer; Θl and Θt

are the angles of refraction of compressional and shear
waves in the layer (they are generally obtained from
Snell’s law for a wave incident on the layer–half-space
system from the upper half-space at a fixed angle); and
F1, F2, F3, F4 , P, Q, and G are the coefficients depen-
dent on the parameters of the medium interacting with
the sound wave. If δ and δn coincide, the real part of the
denominator in Eq. (1) vanishes, because δ = δn is the
root of the characteristic equation obtained from the
condition of a zero real part of the denominator in the
expression for the reflection coefficient:

(2)

Similarly, the expression

(3)

is equal to zero if η = ηn. The equality δ = δn or η = ηn

can be satisfied by varying both frequency and angle of
incidence of the plane wave. This fact offers the possi-
bility of using this formula for considering both fre-
quency and angular resonances of the reflection coeffi-
cient for compressional and shear waves in the layer.
From Eq. (1), one can easily obtain analytical expres-
sions for the resonance half-width Én/2 in terms of the
material parameters of the medium and the process
amplitude A at resonance conditions δ = δn and η = ηn:

(4)

In the case of an elastic layer lying on an elastic half-
space, the analytical expression for the resonance half-
width written in terms of the material parameters of the
medium is extremely cumbersome and is not given
here. Using the relationship between the resonance
characteristics and the material parameters of the
medium, one can solve the inverse problem, which
reduces to the solution of the system of equations relat-
ing the measured characteristics of resonances to the
material parameters of the medium. However, the solu-
tion of such a system in analytical form and the investi-
gation of the expected errors of reconstruction appear
very difficult because of the cumbersome nature of the
expressions obtained. Since all material parameters of
the medium have an effect on every resonance charac-
teristic, it is of great interest to investigate numerically
how much separate characteristics of resonances are
appropriate for reconstructing the parameters of the
medium and what are the resonance characteristics that
offer the possibility of reconstructing the particular
parameters of the layered bottom with the highest pre-
cision. It is also of interest to determine in which cases

Q F4 η η n–( )+ 0.=

Q F3 δ δn–( )+ 0=

A 2
P i Én/2( ) G F–( )+

Én/2 i Én/2( )–
-----------------------------------------------.=
the measurement of a single resonance characteristic is
sufficient and when some combination of resonance
characteristics is required for reconstructing the bottom
parameters with the highest efficiency. We carried out
such an investigation using our procedure of bottom
parameter determination from the measured values of
the reflection coefficient [15, 16].

We used the following notation for the parameters of
the layered bottom: the index ∞ corresponds to the
parameters characterizing the elastic half-space, and
the index 0 corresponds to the water layer. For example,
cl and ct are the longitudinal and transverse velocities of
sound in the layer, ρ and d are the density and the thick-
ness of the layer, while cl∞, ct∞, νl∞, νt∞, and ρ∞ are the
longitudinal and transverse velocities of sound, the
attenuation coefficients, and the density characterizing
the half-space. With the goal of investigating the sensi-
tivity of separate resonance characteristics to the
parameters of the layered bottom, we analyzed the
behavior of the resonance characteristics of the reflec-
tion coefficient (location, half-width, and amplitude) in
the plane of bottom parameters for a fixed angle of inci-
dence. The analysis was carried out with the use of the
expressions relating the resonance amplitude, location,
and half-width to the material parameters of the
medium.

To obtain the resonance characteristics as functions
of an arbitrary set of parameters of the layered sea bot-
tom and the angle of plane wave incidence, we traced
the same resonance minimum in the reflection coeffi-
cient. Any variation of the bottom parameters or angle
of incidence changes the quantities Fr, É/2, and A cor-
responding to the selected resonance minimum. For
example, Fig. 2 shows the resonance characteristics Fr,
É/2, and A for different parameters of the elastic layered
bottom at a fixed angle of incidence; curve 1 corre-
sponds to the following parameters of the layer and the
half-space: cl = 2344 m/s, ρ = 2.2 g/cm3, d = 10 cm,
cl∞ = 3495 m/s, ct∞ = 980 m/s, and ρ∞ = 2.6 g/cm3, while
curve 2 corresponds to the bottom with higher longitu-
dinal velocities in the layer and the half-space: cl =
2544 m/s, ρ = 2.2 g/cm3, d = 10 cm, cl∞ = 5495 m/s,
ct∞ = 980 m/s, and ρ∞ = 2.6 g/cm3. Thus, an arbitrary
combination of bottom parameters can be correlated
with certain resonance characteristics. We investigated
the behavior of resonances in the domain of parameters
of the layered sea bottom for different planes of bottom
parameters. In this paper, we used isolines to represent
resonance characteristics as functions of the parameters
of the layered bottom, the black and white colors corre-
sponding to maximum and minimum values of the
function under consideration, respectively. To extend
the dynamic range, we presented the graphs with a gray
shading scale in which each shade corresponds to two
different levels of the function.
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
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Our investigation showed that the shape of isolines
for Fr, É/2, and A depends on both the bottom parame-
ters and the angle of plane wave incidence on the bot-
tom Θ0. This fact allows one to use separate resonance
characteristics for estimating the parameters of elastic
media. The shapes of isolines for different resonance
characteristics (Fr, É/2, and A) in the planes of the same
parameters appear different for Θ0 = const. This fact
allows one to increase the accuracy of reconstruction of
the bottom parameters using several resonance charac-
teristics simultaneously. The features revealed in the
behavior of the characteristics of the resonance struc-
ture enabled us to suggest a technique for determining
the parameters of the elastic layered bottom.

Consider the essence of the suggested technique
using a particular resonance characteristic (e.g., A) as
an example. The bottom parameters of an arbitrary
model of a layered bottom uniquely determine the res-
onance amplitude A. However, some specified value of
amplitude A can correspond to different sets of layered
bottom parameters. We will call the space whose differ-
ent coordinates correspond to different bottom parame-
ters the space of bottom parameters. In this space, many
points correspond to the specified amplitude A. The
coordinates of every such point form the set of bottom
parameters whose combination ensures that the speci-
fied amplitude A is obtained in the calculations. The
error in the measured resonance amplitude extends
every point in space to a region of finite dimension.
This extension follows from the fact that the points
close to the initial point must be included in the region,
if the difference between the measured and calculated
amplitudes A for these points is smaller that the mea-
surement error. If only a single measurement is avail-
able, all regions yielding the specified amplitude A are
equivalent in the space of bottom parameters. Every
measurement can be correlated with its own set of such
regions in the space of bottom parameters. These sets
coincide only partially. The greater the measurement
error, the greater the number of common regions in
these sets. If the number of independent measurements
is great enough, only one common region satisfying all
measurements will exist in the space of bottom param-
eters. This region is used for evaluating the parameters
of the layered bottom. Prior information on the bottom
structure can essentially reduce the range of possible
combinations of bottom parameters. Similar arguments
are also applicable to other resonance characteristics.

In the calculations, we described the reflection coef-
ficient by the analytical expressions [12, 13], which
were obtained by the matrix method developed in
[17, 18], and the reflection coefficient of an elastic layer
lying on an elastic half-space by the analytical expres-
sions (1)–(4) written in terms of the Breit–Wigner vari-
ables. Figure 3 shows the calculated resonance ampli-
tude A as a function of both the velocity of compres-
sional waves in the sedimentary layer and the half-
space density for two angles of incidence Θ1 = 50° and
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
Θ2 = 70°. Other parameters of the elastic layered bot-
tom (ct, νt, ρ, cl∞, νl∞, ct∞, and ν∞t) are assumed to be
fixed. The combined effect of two bottom parameters
on the resonance structure characteristics and the reso-
nance structure sensitivity to different characteristics of
the layered bottom can be estimated by analyzing the
resonance characteristics as functions of the layered
bottom parameters. For a fixed angle of incidence, the
variation of acoustic characteristics of the layer and the
half-space results in the variation of the parameters Fr,
É/2, and A within certain limits. Conversely, assuming
the values of resonance characteristics to be fixed, we
can determine, in the plane of bottom parameters, the
region in which the calculated characteristics of the res-
onance structure can coincide with the specified values
of resonance characteristics (in Fig. 3, each shade of
gray color corresponds to a certain interval of variation
of the amplitude A). The narrower the interval of the
possible variations of parameters Fr, É/2, and A because
of the measurement error, the narrower the parameter
region corresponding to the specified values of Fr, É/2,
and A. Figure 3 shows that, under the assumption that
the resonance amplitude A is known for two angles of
incidence, which corresponds to a certain level of gray
color in each graph, the bottom parameters cl and ρ∞
can be determined as the coordinates of the region in
which isolines corresponding to the amplitudes A mea-
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sured for different angles of incidence intersect. To find
this region, one must specify some definite value of the
amplitude, which corresponds to a certain shade of gray
in each graph, and superimpose the resulting regions.
The intersection of these regions will qualify the quan-
tities cl and ρ∞. Assume that only two parameters of the
layered bottom are unknown (other parameters of the
sedimentary layer are assumed to be known). For a
fixed angle of incidence and definite measured parame-
ters Fr, É/2, and A, one can obtain a region in the plane
of bottom parameters for every characteristic of reso-
nances. The resonance structure in these regions coin-
cides with calculations performed under variation of
the unknown parameters. Below, we describe the pro-
cedure for evaluating the bottom parameters using only
one parameter of the resonance structure (A, for exam-
ple). The procedure includes the following steps:

(i) the calculation of the parameter A in the selected
plane of bottom parameters for a set of angles of inci-
dence Θ1 , …, Θn;

(ii) the determination of the region in the plane of
bottom parameters, in which A varies from (A1 – ε) to
(A1 + ε) for the angle of incidence Θ1, where ε is the
measurement error. Repeating this procedure for the
angles of incidence Θ2 , …, Θn provides n different
regions of parameters;

(iii) the determination of the points belonging to all
regions obtained at step (ii) by superimposing all the
regions in the plane of bottom parameters.

Thus, the range of bottom parameters satisfying all
measurements is determined. In this range, the differ-
ence between the measured and calculated characteris-
tics of resonances is smaller than ε. Because of the dif-
ferences in the shapes of regions corresponding to dif-
ferent resonance characteristics, these regions will only
partially intersect in the plane of bottom parameters.
The parameters Fr, É/2, and A considered as functions
of the angle of incidence testify that the regions
obtained in the plane of bottom parameters for different
angles of incidence will also intersect only partially.
Consequently, in conditions of measurements dealing
only with a single resonance characteristic, the bottom
parameters can be reconstructed by superimposing the
regions corresponding to different measurements and
determining the region common to all measurements. If
the measurements additionally deal with the half-
widths and positions of resonances, the results obtained
can be refined by a similar superimposition of the
results obtained for Fr and É/2.

Because experimental data always involve measure-
ment errors and, in addition, depend on natural noise,
we consider the effect of respective errors ε1, ε2, and ε3
in the quantities Fr, É/2, and A measured for different
angles of incidence. The errors ε1, ε2 , and ε3 determine
the range of possible variations of the calculated reso-
nance characteristics Fr, É/2, and A relative to the mea-
sured quantities Frm, Ém/2, and Am and, consequently,
the sizes of the regions in which the calculated quanti-
ties coincide with the experimental data to a desired
accuracy. To formalize the reconstruction procedure,
we introduce the function φ defined in the plane of the
parameters of the medium to be reconstructed:

(5)

where 

(6)

φ ϑk p1 p2 p3 … pn, , , ,( ),
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p1, p2, p3, …, pn are the parameters of the layered bot-
tom; k is the number of measured characteristics of the
resonance structure; i is the number of angles of inci-
dence used in the measurements; ε is the measurement
error; and Bm and Bc are the measured and calculated
values of the characteristics of the resonance structure.
The parameters of the medium are determined by
searching for the maximum of the function φ. In calcu-
lating ϑk, the unknown parameters of the medium are
varied. To minimize the calculations required for deter-
mining several characteristics of the medium, we
assume that the coordinates of the intersection region
only slightly depend on the bottom characteristics,
whose variation only slightly affects the reflection coef-
ficient. With this assumption, the calculations can be
performed without varying these characteristics in the
process of evaluating the bottom parameters, whose
variations significantly affect the reflection coefficient.

3. RESULTS

Thus, we tested the procedure proposed for recon-
structing the parameters of the layered elastic bottom
by using data simulated for 16 different angles of inci-
dence and supplemented with an artificially introduced
error. We consider the layer thickness d and longitudi-
nal velocity cl reconstructed with the use of each indi-
vidual resonance characteristic (Fr, É/2, or A) of the
reflection coefficient. The use of individual resonance
characteristics for reconstructing other parameters of
the layered medium is not considered here. Then, we
consider the parameters d and cl reconstructed with the
simultaneous use of all three resonance characteristics
and present the results of evaluating other bottom
parameters with the use of all three resonance charac-
teristics.

Figure 4 shows the results of determining the
parameters d and cl with the use of each characteristic
(Fr, É/2, or A) of the resonance structure separately.
Figure 4a shows the parameters d and cl evaluated from
the resonance amplitude A, Fig. 4b shows the parame-
ters d and cl evaluated from the resonance half-width
É/2, and Fig. 4c shows the parameters d and cl evaluated
from the resonance frequency Fr. The bottom parame-
ters are determined as coordinates of the maximum of
the function φ. Analyzing Fig. 4a, one can infer that the
thickness of the sedimentary layer only slightly affects
the resonance amplitude in the (d, cl) plane. For this
reason, the peak of the function φ appears spread in the
coordinate d. At the same time, the resonance ampli-
tude appears highly sensitive to the sound velocity cl in
the sedimentary layer and offers a possibility for high-
precision determination of the parameter cl from the
measured resonance amplitudes A for different angles
of incidence. The situation drastically changes when
the resonance half-width É/2 is used for evaluating the
parameters of the sedimentary layer (Fig. 4b). The res-
onance half-width only slightly depends on the sound
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
velocity in the layer, which makes the determination of
the parameter cl from this characteristic hardly possi-
ble. At the same time, Fig. 4b shows that evaluating the
bottom parameters with the use of the resonance half-
width allows one to determine the thickness of the sed-
imentary layer with an appropriate accuracy. It should
be noted that the peak of the function φ in Figs. 4a and
4b is localized in one coordinate and spread in the other.
In the case of evaluating the bottom parameters with the
use of only the resonance frequencies Fr (Fig. 4c), the
function φ has many narrow peaks slightly spread along
the axis of the sound velocity cl. Among the peaks of
the function φ, there is a main peak; however, it exceeds
the side peaks only slightly. This fact makes the selec-
tion of the main peak impracticable and indicates that
the reconstruction of the desired parameters from reso-
nance frequencies is ambiguous. Additional informa-
tion on the variation range of the bottom parameters
offers the possibility of high-precision determination of
both thickness and sound velocity in the sedimentary
layer from resonance frequencies. Analyzing the pro-
cess of peak formation in the function φ, one may
notice that each peak is a result of combining broader
peaks that correspond to the functions ϑk and appear
when the unknown bottom parameters are varied in
accordance with Eq. (5). As can be seen from Fig. 4, the
use of a single resonance characteristic (Fr, É/2, or A) is
insufficient for evaluating cl and d with appropriate
accuracy in the case under consideration. However, it is
quite possible that other parameters can be successfully
estimated from the measurement data on a single reso-
nance characteristic. The size and shape of peaks in the
function φ determined from the data obtained for a sin-
gle resonance characteristic depend on the coordinate
plane chosen for the analysis. The coordinates that
ensure the narrowest peaks of the function φ for the
measured resonance characteristic in the plane of the
bottom parameters are the most efficient choice. From
Figs. 4a and 4b, one can infer that these coordinates
depend on the resonance characteristic. The optimum
choice of coordinates will essentially enhance the pre-
cision of the reconstruction of the bottom parameters
with the simultaneous use of different resonance char-
acteristics.

Figure 5 shows the result of evaluating the remain-
ing parameters of the sea bottom from three resonance
characteristics used simultaneously. Figure 5a shows
the parameters cl and d determined from the three reso-
nance characteristics Fr, É/2, and A. Figure 5a was
obtained by the summation of the functions φ shown in
Figs. 4a–4c. The sum of functions shown in Figs. 4a
and 4b forms a broad peak in the (cl, d) plane at the
intersection of mutually perpendicular peaks. This peak
noticeably reduces the range of variation for the param-
eters of the medium and allows one to determine both
cl and d. When the function given in Fig. 4c is added to
the above result, only one of the multiple peaks
obtained in reconstructing the bottom parameters from
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the resonance frequencies falls within this relatively
broad peak. This fact eliminates the ambiguity in the
reconstruction of the bottom parameters with the use of
the function φ given in Fig. 4c and thus ensures a high-
precision determination of the bottom parameters. Fig-
ures 5a–5c clearly illustrate the advantages of the
simultaneous use of several resonance characteristics
for reconstructing the parameters of the bottom.

The shape of the peak of the function φ in Fig. 5b
indicates that the effect of the half-space density on the
resonance characteristics is less prominent than the
effect of the density of the sedimentary layer. The size
of the peak of the function φ along the ρ∞ axis is several
times greater than along the ρ axis. In a similar manner,
one can infer from Fig. 5c that the longitudinal and
transverse velocities of sound in the underlying half-
space are comparable in terms of their effects on the
resonance characteristics. The coordinates of the peaks
of the function φ in Figs. 5b and 5c determine the values
of the parameters of the medium. The results obtained
with the proposed technique agree well with the initial
data. Simulations showed that this technique is appro-
priate for determining the material parameters of the
layer and half-space within the limits of the model
used. We performed the simulations using the data typ-
ical of geoacoustic characteristics of the sea bottom.
A detailed investigation of the analytical expressions
for the reflection coefficient in terms of the Breit–
Wigner variables and further development of the
related resonance techniques for evaluating the param-
eters of layered elastic media is the subject of future
research.

Thus, in this paper we studied the resonance charac-
teristics of the reflection coefficient of a plane wave
reflected from a layered elastic bottom. We proposed a
procedure for evaluating the parameters of the layered
elastic bottom from the resonance characteristics. The
procedure was used to evaluate the parameters of the
layered elastic bottom from the resonance characteris-
tics of the reflection coefficient with the use of simu-
lated data with artificially introduced errors. It was
shown that individual resonance characteristics can be
successfully used for evaluating the bottom characteris-
tics. However, a simultaneous use of several resonance
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
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characteristics considerably improves the precision of
the reconstruction.
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Abstract—The effect of an external polarizing electric field on the shear wave propagation in a centrosymmet-
ric crystal with electrostriction, whose body is penetrated with parallel cylindrical cavities (pores), is consid-
ered. The cavities are distributed throughout the crystal at random and with a low density. The waves are
assumed to be polarized along the cavity generatrices, and the wave propagation occurs in the elastic isotropy
plane, which is orthogonal to the cavity axes. The external field is assumed to be axial. Possibility of controlling
the propagation of shear waves by the polarizing field is demonstrated for the case of metallized cavity surfaces.
© 2003 MAIK “Nauka/Interperiodica”.
The well-known method of controlling the acoustic
channels of solid-state acoustoelectronic devices is
based on the use of electrostriction. Specifically, with a
static polarizing field one can noticeably change the
propagation velocity of bulk [1] and surface [2] acous-
tic waves in centrosymmetric crystals with a high
dielectric permittivity. Using microwave radiation, one
can cause the generation of surface acoustic waves
(SAW) [3, 4] or parametrically excite acoustic vibra-
tions of dielectric resonators [5]. It was also shown [6]
that, owing to the “piezoelectric effect” induced and,
hence, controlled by the external field [7, 8], electros-
triction allows one to affect the scattering of acoustic
waves by single inhomogeneities in BaTiO3-type cen-
trosymmetric crystals. The possibility of controlling
the sound scattering in this way seems to be promising
for the development of artificial (composite) media,
whose effective acoustic properties can be predeter-
mined by controlling the scattering of acoustic waves
from the inhomogeneities of the material with the use
of the external polarizing field.

In recent years, the effective properties of het-
erophase piezoelectric media attracted much attention
[9, 10]. However, it still remains unclear how efficient
and in what way the acoustic scattering controlled
through the induced piezoelectric effect affects the
characteristics of an artificial material with electrostric-
tion. In this paper, the scalar theory of multiple scatter-
ing [11] and the results of the previous study [6] are
used to describe the properties of an artificial medium
in the form of a dielectric crystal containing parallel
cavities of a single radius R. As in the cited paper [6],
the cavity axes are assumed to coincide with the direc-
tion of one of the crystallographic symmetry axes of the
paraelectric under study, which is assumed to belong to
1063-7710/03/4905- $24.00 © 20592
the cubic system. An external polarizing field E0 is
applied along the cavity axes. The propagation of a
shear wave with an axial particle displacement u || E0
occurs in the plane in which the elastic properties of the
crystal are isotropic, this plane being orthogonal to the
cavity axes.

The propagation geometry described above retains
the type of the wave after its scattering from each cav-
ity. This property is a necessary condition for the appli-
cation of the scalar theory of multiple scattering [11].
Another requirement, which implies the relative weak-
ness of the rescattering of acoustic waves from the cav-
ities and the possibility of using the approximation of
scattering with low multiplicity, is the limitation
kd @ 1, where k is the shear wave number in the homo-
geneous dielectric and d is the average distance
between the cavities. The same condition allows one, in
considering the scattering, to neglect the mutual induc-
tion effect of piezoelectric polarization charges arising
at the cavity boundaries.1 Specifically, from the asymp-
totics of a single-scattered field in the far wave zone [6],

it follows that this field decreases as 1/ , while the
electric field potential of the piezoelectric polarization
charges decreases as 1/kr (even for the dipole term
characterized by the slowest decrease), where kr @ 1
according to the aforementioned condition and r is the
distance from the cavity axis.

From the point of view of controlling the character-
istics of the medium through the scattering, the adopted
random distribution of the cavities most widely differs
from the optimal one because of the absence of the

1 The case of k  ~ 1, when the mutual effect of piezoelectric polar-
ization charges is considerable, qualitatively corresponds to the
weak localization of the wave by random inhomogeneities in
nonconducting piezoelectrics [12].
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coherent component in the phases of the combined
oscillations of the rescattered fields. Hence, the loss
introduced by the scattering, which reduces the quality
of the material, is highest in this case. This means that
the corresponding estimate is the estimate “from
below,” and the loss should be reduced if the distribu-
tion of cavities is ordered to a certain extent.

When the scattering of a shear wave by the cavities
is characterized by a low multiplicity, the effective
wave number K of this wave propagating in the artifi-
cial medium is expressed as [11]

(1)

where ξ = kR is the wave size of a cavity, q = πR2n0 is
the specific volume of cavities, and n0 is the concentra-
tion of cavities. Formula (1) also contains the values of
the scattering function

(2)

for the polar angles θ = 0 and π, which correspond to
the forward and backward scattering, respectively. The
amplitude coefficients am of the partial scattered waves
are determined by the expression [6]

(3)

Here, standard notations are used for cylindrical func-

tions and their derivatives; _2 = a2 /16πε2µ* is the
square of the electromechanical coupling coefficient,

where µ* = µ + a2 /16πε2; µ is the shear modulus of

the dielectric; a ≈ /3 is the electrostriction coefficient
[7, 8]; and ε2 and ε1 are the permittivities of the dielec-
tric and the gaseous medium filling the cavities, respec-
tively.

Along with the relation ξ = ξ0(1 – _2)1/2 (ξ0 is the
wave size of a cavity in the absence of the polarizing
field), expressions (1)–(3) allow one to determine the
effective acoustic parameters of the artificial medium:
the phase velocity of shear waves V = ω/Re(K), where
ω is the cyclic frequency, and the absorption coefficient
for these waves α = Im(K). At fixed q and ξ0 and with a
given permittivity ratio ε2/ε1, it is possible to obtain the
dependences V = V(E0) and α = α(E0) and to estimate
the efficiency of the control effect of the polarizing
field. The calculations were performed for BaTiO3 with
the following parameters: µ = 2 × 1011 dyn/cm2, ε2 =
5000, and ct = 2 × 105 cm/s (ct is the shear wave velocity
in the absence of the polarizing field); q ! 1 was set
according to the condition kd @ 1. In combination with
the limitation ξ0 < 1, this condition provided the
required smallness of the single scattering of a shear
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q
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wave from the cavities located (on average) in the
Fresnel zones with respect to each other.

Figure 1 shows the typical dependences of the shear
wave phase velocity in the medium with cavities on the
applied polarizing field below the breakdown field
strength for the material. The density and radius of the
cavities were chosen so as to retain the value ξ0 = 0.25.
The solid curves correspond to the case of metallized
(ε1  ∞) cavities; the dashed curves, to cavities with
vacuum or strongly rarefied gas (ε1 = 1).

The difference in the behavior of the dependences
V(E0) (Fig. 1) for media with metallized and nonmetal-
lized cavities reflects the duality of the polarizing field
manifestation in the scattering events, which was men-
tioned in [6]. First, the polarizing field causes an
increase in the shear modulus up to the value µ* and,
hence, leads to a decrease in the wave size ξ of the cav-
ities. Second, the possible response to the near-bound-
ary electric oscillations excited at E0 ≠ 0 leads to quali-
tative changes in the wave scattering by the cavities.
These changes are described by the second terms in the
numerator and denominator of formula (3) and are con-
siderable for metallized cavities and minor for nonmet-
allized cavities because of the very small value of the
quantity _2(1 + ε2/ε1)–1.

When the quantity q is very small, the role of the
scattering is insignificant and the difference between
the properties of media with metallized and nonmetal-
lized cavities vanishes. Therefore, curves 1 in Fig. 1
almost completely reproduce the parabolic dependence
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Fig. 1. Phase velocity of shear waves in a medium with cav-
ities versus the polarizing field: q = (1) 0.01, (2) 0.05, and
(3) 0.1.
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V(E0) characteristic of waves propagating in a homoge-
neous electrostrictive material [7, 8]. From the total
shift of curves 2 and 3 in Fig. 1 in the downward direc-
tion, it follows that the role of the porosity of the
paraelectric without metallization of the cavity surfaces
consists in the “softening” of the medium due to the
perforation. In this sense, a dielectric with an induced
piezoelectric effect does not differ from a common non-
piezoelectric material. This result agrees well with the
notion that the manifestation of the piezoelectric effect
in the wave scattering from a nonmetallized cavity is
rather weak. The fact that the growth of V with increas-
ing E0 is retained can be explained in this case by the
seeming decrease in the porosity of the material
because of the renormalization of ξ.

In the case of metallized cavities, the effect of the
near-boundary electric oscillations on the scattering is
noticeable and manifests itself as an increase in the
scattering cross section of the cavities [13]. Therefore,
the behavior of the solid curves in Fig. 1 represents the
result of the combined action of opposite factors: the
growth of V with increasing E0 because of the decrease
in scattering due to the renormalization of ξ and the
decrease in V in stronger polarizing fields because of
the enhancement of scattering under the effect of the
near-boundary electric oscillations. If q is very small,
the effect of the second factor, which reduces the value
of V, manifests itself only in strong polarizing fields as
a slight decrease in the rate of growth of the dependence
V(E0): the solid curve 1 lies somewhat below the dashed
curve 1 in the region of strong polarizing fields. When
the concentration of metallized cavities is relatively

20 4 6 8 10

αR

E0, kV/cm

10–1

10–2

1

2

3

Fig. 2. Attenuation coefficient for shear waves in a medium
with cavities versus the polarizing field: q = (1) 0.01,
(2) 0.05, and (3) 0.1.
high, such a decrease in the growth rate of the depen-
dence V(E0) with its subsequent drop is possible even in
moderate (curve 2) or weak (curve 3) fields E0. In the
latter case, it is precisely the effect of the qualitative
change in the wave scattering by the cavities that gov-
erns the formation of the effective properties of the arti-
ficial microinhomogeneous medium.

Figure 2 presents the dependences of the absorption
coefficient on the polarizing field for shear waves prop-
agating in a medium with cavities (the curves in Fig. 2
correspond to those in Fig. 1). One can see that, in the
cases under consideration, the attenuation due to the
wave scattering proves to be fairly weak: αR < 0.1. A
characteristic feature of the curves α(E0) is their sepa-
ration according to the factors that govern the scatter-
ing. Namely, for metallized cavities, because of the
enhancement of their scattering properties due to the
excitation of near-boundary electric oscillations, the
dependences α(E0) represented by the solid lines
exhibit a steady growth. The dashed curves α(E0),
which correspond to nonmetallized cavities, decrease
because of the predominance of the renormalization of
ξ under the effect of the polarizing field, which reduces
the scattering and, hence, reduces the scattering loss.
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Abstract—The ultrasonic attenuation in intermetallic praseodymium monochalcogenides are evaluated in the
temperature interval 100–500 K along the crystallographic directions 〈100〉 , 〈110〉 , and 〈111〉  for longitudinal
and shear waves. A comparison has been made with lanthanum monochalcogenides and other similar materials.
Ultrasonic attenuation at different temperatures is mainly affected by the lattice thermal conductivity values of
the materials at these temperatures. Thermoelastic loss is very small in comparison to the attenuation due to
phonon–phonon interaction mechanism at higher temperatures. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Anomalous physical properties in rare-earth
monochalcogenides RX (R = La, Ce, Pr, Sm, …; X = S,
Se, and Te) were given considerable attention during
the 1960s–1970s [1–3] because they are typical low
carrier, strongly correlated systems with a simple NaCl-
type structure. Intermetallic praseodymium monochal-
cogenides are widely used as a core material for carbon
arcs used by the motion picture industry for studio
lighting projection [3, 4]. Ultrasonics offers the possi-
bility to detect and characterize microstructural proper-
ties, as well as flaws in materials, controlling material
behavior on the basis of a physical mechanism that pre-
dicts future performance of the materials. Structural
inhomogenities, elastic parameters, precipitates, dislo-
cations, grain, phase transformation, porosity, cracks,
electrical resistivity, thermal conductivity, etc., are well
connected with the frequency or temperature depen-
dence of ultrasonic attenuation and evaluations of
velocity. In the present paper, some characteristic
microstructural thermophysical parameters that make a
considerable contribution to the temperature depen-
dence of ultrasonic attenuation in PrS, PrSe, and PrTe
along the 〈100〉 , 〈110〉 , and 〈111〉  orientations are dis-
cussed. For this analysis, we have evaluated ultrasonic
attenuation with other associated parameters, as well as
second- and third-order elastic constants (SOEC and
TOEC), as a function of higher temperatures.

THEORY OF PRESENT EVALUATION

In evaluating ultrasonic absorption, second- and
third-order elastic constants (SOEC and TOEC) play an
important role. We calculated SOEC and TOEC follow-
ing Brugger’s definition of elastic constants at absolute

zero (  and ) [5, 6]. The SOEC and TOEC atCIJ
0

CIJK
0

1063-7710/03/4905- $24.00 © 20595
various higher temperatures are obtained by the method
developed by Leibfried and Haln, Ludwig, and Hiki
and Ghate [7–11] for NaCl-type crystals, since
praseodymium monochalcogenides have well-devel-
oped crystal structures of the NaCl type. Our lattice
parameters were very close to others in the literature
[3, 12–14]. The praseodymium monochalcogenides are
compounds with ionic-metallic type bonding [3]. Here,
it is assumed that φµν(r) is the interaction potential
equal to the sum of the Coulomb potential and the
Born–Mayer short-range repulsive potential, i.e.,

Here, e is the electronic charge, r is the nearest neighbor
distance, the ± signs apply to like and unlike charges,
and A and b are the parameters. We further assume that
A and b are the same for interactions between like (pos-
itive or negative) and unlike ions [9–11]. All the formu-
lations used in the calculation of SOEC and TOEC of
PrS, PrSe, and PrTe are the same as those in our previ-
ous paper [15].

The second part of our present investigation was to
establish a theory for the evaluation of ultrasonic atten-
uation in PrS, PrSe, and PrTe describing some charac-
teristic features of these materials. The Mason and
Bateman theory [16, 17] is still being widely used to
study ultrasonic attenuation at higher temperatures
(≅ 300 K) in praseodymium monochalcogenides. It is a
more reliable theory for studying the anharmonicity of
crystals as it directly involves elastic constants through
the nonlinearity parameter D in the evaluation of ultra-
sonic absorption coefficient (α).

φµν r( ) e
2
/r( )± A r/b–( ).exp+=
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The thermal relaxation time [16, 17] for a longitudi-
nal wave is twice that of a shear wave,

(1)

where K is thermal conductivity, CV is the specific heat

per unit volume, and  is the Debye average velocity
of ultrasonic wave as

(2)

τ th τ sh
1
2
---τ long

3K

CVV
2

-------------,= = =

V

3

V
3

------ 1

V1
3

------
2

VS
2

------.+=

Table 2.  Second- and third-order elastic constants
(SOEC & TOEC) [1011 dyn/cm2] of PrSe in the temperature
range of 100–500 K

Temp 
(K) 100 200 300 400 500

C11 4.550 4.651 4.741 4.945 5.104

C12 1.142 1.074 1.001 0.931 0.859

C44 1.224 1.228 1.231 1.237 1.242

C111 –73.102 –73.331 –73.375 –74.639 –75.418

C112 –4.639 –4.396 –4.118 –3.848 –3.572

C123 1.609 1.185 0.758 0.332 0.095

C144 2.056 2.071 2.087 2.103 2.119

C166 –4.990 –5.002 –5.013 –5.042 –5.064

C456 2.039 2.039 2.039 2.039 2.039

Table 1.  Second and third-order elastic constants
(SOEC & TOEC) [1011 dyn/cm2] of PrS in the temperature
range of 100–500 K

Temp 
(K) 100 200 300 400 500

C11 4.757 4.905 5.069 5.237 5.409

C12 1.352 1.279 1.205 1.132 1.058

C44 1.432 1.438 1.433 1.450 1.456

C111 –75.576 –76.191 –76.972 –77.800 –78.686

C112 –5.543 –5.272 –4.999 –4.726 –4.453

C123 1.936 1.515 1.095 0.675 0.255

C144 2.374 2.392 2.411 2.429 2.447

C166 –5.849 –5.871 –5.896 –5.922 –5.949

C456 2.355 2.355 2.355 2.355 2.355
Thermoelastic loss [16, 17] is obtained by

(3)

where  is the average Gruneisen numbers, j is the
direction of propagation, and i is the mode of propaga-

tion.  is related to SOEC and TOEC [16]. ρ is the
density of the material, and T is the temperature in
Kelvins.

The ultrasonic absorption coefficient over frequency
squared (α/ f 2)Akh (Akhieser type loss) is given by
(ωτ ≤ 1) [15–17]

(4)

where

(5)

Here, D is the nonlinearity parameters for a longitudi-
nal and shear wave, and E0 is the thermal energy density
evaluated from values of CV from physical constant
tables.

RESULTS AND DISCUSSIONS

The first parts of SOEC and TOEC (CIJ and CIJK) at
different temperatures are evaluated from the nearest
neighbor distance (short-range parameter) [3–12] r0 =
2.855 Å, 2.96 Å, and 3.14 Å, for PrS, PrSe, and PrTe,
respectively, and the Born parameter (hardness param-
eter) b = 0.315 Å in all three. The Born parameter was
determined as in a previous paper [15].

All the computed values of SOEC and TOEC of PrS,
PrSe, and PrTe at 100–500 K are presented in Tables 1,
2, and 3, respectively.

SOEC and TOEC of PrS, PrSe, and PrTe are slightly
higher than those of like compounds LaS, LaSe, and
LaTe, respectively, at all temperatures [15]. Thus, the
theory for the calculation of SOEC and TOEC at differ-
ent temperatures is well established, this is also dis-
cussed in our previous paper [15]. There are no experi-
mental values for elastic constants; therefore, compari-
son with experimental data was not possible.

However, taking full account of many interactions,
including van der Waals interactions between ions, as
well as considering the nonlinearity of the materials up
to a certain point, may further improve the calculated
results of TOEC [18].

The values of ultrasonic velocities (Vl and VS) eval-
uated with the values of second-order elastic constants,
the Debye average velocity ( ), the thermal relaxation
time (τth) and thermal conductivity (K), the specific heat

α / f
2( )th

4π2 γi
j〈 〉

2
KT

2ρV long
5

------------------------------,=

γi
j〈 〉

γi
j〈 〉

α / f
2( )Akh

E0 D/3( )4π2τ

2ρV
3

--------------------------------,=

D 9 γi
j( )

2
〈 〉 3 γi
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2
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per unit volume (CV), and thermal energy density (E0)
are presented in Tables 4, 5, and 6.

All the calculated values of the average Gruneisen

number , average square Gruneisen number

, and nonlinearity parameter (D) along 〈100〉 ,
〈110〉 , and 〈111〉 directions are presented in Tables 7, 8,
and 9. All of the calculated values of the temperature
dependence of (α/f 2)th, (α/f 2)Akh.long, and (α/f 2)Akh.shear

are presented in Tables 10, 11, and 12. The evaluated
values (α) at 900 MHz and room temperature in dB/µs
of PrS, PrSe, and PrTe compared with those of LaS,
LaSe, and LaTe, as well as with the experimental of
LiF, are shown in Table 13.

γi
j〈 〉

γi
j( )

2
〈 〉

Table 3.  Second- and third-order elastic constants
(SOEC & TOEC) [1011 dyn/cm2] of PrTe in the temperature
range of 100–500 K

Temp 
(K) 100 200 300 400 500

C11 4.002 4.120 4.263 4.413 4.567

C12 0.870 0.803 0.734 0.666 0.597

C44 0.944 0.947 0.951 0.955 0.959

C111 –66.779 –67.205 –67.897 –68.67 –69.484

C112 3.499 –3.232 –2.954 –2.674 –2.395

C123 1.173 0.737 0.300 0.136 –0.573

C144 1.623 1.635 1.648 1.661 1.673

C166 –3.816 –3.829 –3.846 –3.863 –3.880

C456 1.610 1.610 1.610 1.610 1.610

Table 5.  Density (ρ) in g/cm3, thermal conductivity (K) in
105 erg/cm s K, specific heat (CV) in 108 erg/cm3 deg, inter-
nal energy (E0) in 108 erg/cm3, longitudinal and shear veloc-

ities (Vl and VS) in 105 cm/s, Debye average velocity ( ) in
105 cm/s, and thermal relaxation time (τth)in 10–11 s of PrSe
at the temperature range 100–500 K

Temp 
(K) 100 200 300 400 500

ρ 7.205 7.102 7.042 6.932 6.812

K 5.413 7.280 8.960 9.520 9.927

CV 7.010 7.760 7.871 7.812 7.573

E0 3.942 11.357 19.055 26.546 33.799

Vl 2.513 2.559 2.595 2.671 2.737

VS 1.303 1.315 1.322 1.336 1.350

1.442 1.455 1.464 1.481 1.498

τth 1.115 1.329 1.594 1.668 1.753

V

V
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The temperature dependence of nonlinearity param-
eters (D) is shown in Figs. 1–7. The temperature depen-
dences of the ultrasonic attenuation coefficient over the
frequency squared (α/f 2) for PrS, PrSe, and PrTe along
all three crystallographic orientations are shown in
Figs. 8–17.

Second-order elastic constants, thermal relaxation
time, nonlinearity parameters, and thermal conductivity
make considerable contributions to the ultrasonic
absorption in PrS, PrSe and PrTe.

Because all second- and third-order elastic constants
(SOEC and TOEC) of PrS, PrSe, and PrTe at 100–
500 K are slightly larger than those of LaS, LaSe, and
LaTe at 100–500 K [15]. Therefore, the values of ultra-
sonic velocities (Vl, VS, and ) will be larger than thoseV

Table 4.  Density (ρ) in g/cm3, thermal conductivity (K) in
105 erg/cm s K, specific heat (CV) in 108 erg/cm3 deg, inter-
nal energy (E0) in 108 erg/cm3, longitudinal and shear veloc-

ities (Vl and VS) in 105 cm/s, Debye average velocity ( ) in
105 cm/s, and thermal relaxation time (τth)in 10–11 s of PrS in
the temperature range of 100–500 K

Temp. 
(K) 100 200 300 400 500

ρ 6.225 6.201 6.173 6.160 6.154

K 8.400 11.574 13.813 15.400 15.464

CV 7.300 8.430 8.710 8.770 8.670

E0 3.800 11.850 20.397 29.101 37.888

Vl 2.764 2.813 2.866 2.916 2.965

VS 1.517 1.523 1.529 1.534 1.538

1.671 1.769 1.689 1.695 1.701

τth 1.237 1.444 1.671 1.834 1.849

V

Table 6.  Density (ρ) in g/cm3, thermal conductivity (K) in
105 erg/cm s K, specific heat (CV) in 108 erg/cm3 deg, inter-
nal energy (E0) in 108 erg/cm3, longitudinal and shear veloc-
ities (Vl and VS) in 105 cm/s, Debye average velocity ( ) in
105 cm/s, and thermal relaxation time (τth) in 10–11 s of PrTe
in the temperature range of 100–500 K

Temp 
(K) 100 200 300 400 500

ρ 7.40 7.305 7.204 7.101 7.015

K 4.667 6.347 7.653 8.400 8.973

CV 6.191 6.624 6.631 6.583 6.500

E0 3.777 10.162 16.608 22.925 29.199

Vl 2.324 2.375 2.433 2.493 2.552

VS 1.129 1.139 1.152 1.160 1.169

1.254 1.265 1.280 1.291 1.302

τth 1.440 1.800 2.113 2.299 2.443

V

V
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Table 7.  Average of ultrasonic Gruneisen parameters (
for longitudinal wave), average of square ultrasonic Gruneisen

parameters (  for longitudinal wave and 
for shear wave) and acoustic coupling constants (Dl for longitu-
dinal wave and DS for shear wave) of PrS, PrSe, and PrTe in
the temperature range of 100–500 K along the 〈100〉  crystal-
lographic direction

Mate-
rial

Temp 
(K) Dl DS

PrS 100 0.519 2.064 0.142 17.024 1.278

200 0.501 1.942 0.140 16.394 1.260

300 0.483 1.833 0.138 15.600 1.242

400 0.462 1.740 0.137 14.888 1.233

500 0.452 1.648 0.134 14.131 1.206

PrSe 100 0.511 2.094 0.136 17.453 1.224

200 0.496 1.992 0.135 16.919 1.215

300 0.482 1.900 0.134 16.236 1.206

400 0.464 1.790 0.132 15.349 1.188

500 0.448 1.703 0.131 14.650 1.178

PrTe 100 0.514 2.260 0.133 19.041 1.197

200 0.496 2.135 0.132 18.253 1.188

300 0.478 2.014 0.130 17.305 1.170

400 0.461 1.909 0.129 16.449 1.161

500 0.446 1.815 0.128 15.674 1.152

γi
j〈 〉 l

γi
j( )

2
〈 〉 long γi

j( )
2

〈 〉 Shear

γi
j( )

2
〈 〉 γi

j( )
2

〈 〉 l γi
j( )

2
〈 〉 S
of lanthanum monochalcogenides, and the values of
(α/f 2) will be smaller in comparison to the values of
(α/f 2) in lanthanum monochalcogenides.

The thermal relaxation time (τth) for praseodymium
monochalcogenides is smaller than that for lanthanum
monochalcogenides.

Now, if we compare the values of the nonlinearity
constant D between praseodymium and lanthanum
monochalcogenides, the following features are seen:

(i) If we consider D1, DS1, and DS2; the nonlinearity
parameters along the 〈110〉 direction for a longitudinal
wave, along 〈110〉  shear wave polarized along 〈001〉
and along 〈110〉  shear wave polarized along 〈 〉 .

(ii) The values of D1 for praseodymium monochal-
cogenides are smaller than those for lanthanum
monochalcogenides.

(iii) The values of DS1 for praseodymium monochal-
cogenides are larger than those for lanthanum monoch-
alcogenides.

(iv) The values of DS2 for praseodymium monochal-
cogenides are smaller than those for lanthanum
monochalcogenides.

It is obvious from Tables 4, 5, and 6 and [15] that the
values of thermal conductivity of PrS, PrSe, and PrTe
are smaller than those of LaS, LaSe, and LaTe.

Thus, all of the parameters for PrS, PrSe, and PrTe
at different temperatures contribute less towards the

110
Table 8.  Average of ultrasonic Gruneisen parameters (  for longitudinal wave), average of square ultrasonic Gru-

neisen parameters (  for longitudinal wave,  for shear wave polarized along the 〈001〉  direction, and

 for shear wave polarized along the 〈1 0〉  direction), and acoustic coupling constants (Dl for longitudinal wave,

DS1 for shear wave polarized along the 〈001〉  direction, and DS2 for shear wave polarized along the 〈1 0〉  direction) for PrS,
PrSe, and PrTe in the temperature range of 100–500 K range along the 〈110〉  crystallographic direction

Material Temp (K) Dl DS1 DS2

PrS 100 –0.788 2.262 0.319 3.081 17.367 4.365 26.757
200 –0.755 2.082 0.286 2.970 16.575 3.699 25.578
300 –0.725 1.921 0.260 2.870 15.252 3.168 24.471
400 –0.686 1.721 0.225 2.737 14.104 2.961 23.886
500 –0.655 1.604 0.203 2.633 12.963 2.421 22.158

PrSe 100 –0.788 2.262 0.319 3.018 17.045 2.871 27.729
200 –0.755 2.082 0.286 2.970 16.401 2.574 26.730
300 –0.725 1.921 0.260 2.870 15.335 2.340 25.830
400 –0.686 1.742 0.225 2.737 14.017 2.025 24.633
500 –0.655 1.604 0.203 2.633 13.438 1.287 26.001

PrTe 100 –0.783 2.338 0.215 3.403 18.028 1.935 30.627
200 –0.744 2.134 0.193 3.264 17.043 1.737 29.376
300 –0.706 1.944 0.173 3.124 15.705 1.577 28.116
400 –0.670 1.783 0.156 3.001 14.501 1.404 27.009
500 –0.638 1.645 0.143 2.889 13.446 1.289 26.011

γi
j( )

2
〈 〉 l

γi
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2
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ultrasonic absorption coefficients—(α/f 2)th, (α/f 2)L,
and (α/f 2)S—in comparison with the case of LaS, LaSe,
and LaTe, except for the nonlinearity parameter DS1.

Therefore, as a result, it can be seen from Table 11
and [15] that the ultrasonic absorption coefficients in
PrS, PrSe, and PrTe at 100–500 K along the 〈110〉  direc-
tion for a longitudinal wave and the 〈110〉  direction for

a shear wave polarized along the 〈 〉 are smaller than
those values in LaS, LaSe, and LaTe, except along the

110
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Fig. 1. Dl vs. temperature along the 〈100〉  direction.
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Fig. 3. Dl vs. temperature along the 〈110〉  direction.
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〈110〉  direction for a shear wave polarized along the
〈001〉  direction, where the values are larger.

It is also obvious from Fig. 4 in the present paper
and Fig. 2 in [15] that DS1 is almost constant with tem-
perature in the case of lanthanum monochalcogenides,
while, in the case of praseodymium monochalco-
genides, DS1 decreases with temperature and affects the
temperature dependence of ultrasonic absorption along
the 〈110〉  direction for a shear wave polarized along the
〈001〉 direction.
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Fig. 2. DS vs. temperature along the 〈100〉 direction.
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Fig. 4. DS1 vs. temperature along the 〈110〉 direction; shear
wave polarized along the 〈001〉 direction.
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Table 9.  Average of ultrasonic Gruneisen parameters (
for longitudinal wave), average of square ultrasonic Gru-

neisen parameters (  for longitudinal wave and

 for shear wave), and acoustic coupling constants
(Dl for longitudinal wave and DS for shear wave) PrS, PrSe,
and PrTe in the temperature range of 100–500 K along the
〈111〉  crystallographic direction. (* shear wave polarized

along 〈 10〉)

Mate-
rial

Temp 
(K) Dl DS

PrS 100 –0.630 1.883 2.005 14.659 18.045
200 –0.603 1.723 1.918 13.955 17.262
300 –0.578 1.581 1.837 12.945 16.533
400 –0.549 1.463 1.796 12.077 16.164
500 –0.533 1.348 1.695 11.157 15.255

PrSe 100 –0.625 1.848 2.080 14.548 18.720
200 –0.602 1.713 2.007 13.931 18.063
300 –0.581 1.592 1.942 13.073 17.478
400 –0.555 1.455 1.855 12.008 16.695
500 –0.533 1.348 1.787 11.174 16.083

PrTe 100 –0.639 2.452 2.300 20.061 20.700
200 –0.612 1.768 2.210 14.448 19.890
300 –0.585 1.616 2.118 13.314 19.062
400 –0.560 1.486 2.038 12.264 18.342
500 –0.538 1.372 1.965 11.382 17.685

γi
j( )

2
〈 〉 l
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2
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2
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1
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2
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2
〈 〉 S
Table 10.  Ultrasonic attenuation due to phonon–phonon in-
teraction [(α/f 2)Akh.long for longitudinal wave and (α/f 2)Akh.shear
for shear wave] and due to thermoelastic loss (α/f 2)th for PrS,
PrSe, and PrTe in the temperature range of 100–500 K along
〈100〉  in 10–18 Np s2/cm

Crystal Temp (K) (α/f 2)th (α/f 2)Akh.long (α/f2)Akh.shear

PrS 100 0.035 7.301 1.659

200 0.096 24.400 5.907

300 0.146 43.917 11.510

400 0.186 62.411 17.744

500 0.202 74.095 22.640

PrSe 100 0.035 8.048 2.023

200 0.083 25.747 6.814

300 0.136 48.096 13.501

400 0.157 61.742 19.097

500 0.172 74.562 24.996

PrTe 100 0.044 13.360 3.665

200 0.102 40.873 12.069

300 0.154 70.256 22.399

400 0.188 94.565 33.150

500 0.211 115.151 44.006
Table 11.  Ultrasonic attenuation due to phonon–phonon interaction [(α/f 2)Akh.long for longitudinal wave and (α/f 2)Akh.shear for
shear wave] and due to thermoelastic loss (α/f 2)th PrS, PrSe, and PrTe in the temperature range of 100–500 K along 〈110〉  in
10–18 Np s2/cm

Crystal Temp (K) (α/f 2)th (α/f2)Akh.long

PrS 100 0.0100 7.448 5.667 34.736

200 0.228 24.961 17.547 121.335

300 0.339 42.937 29.359 226.738

400 0.408 59.125 42.611 343.738

500 0.443 68.049 45.451 442.725

PrSe 100 0.084 7.860 4.744 45.820

200 0.192 24.959 14.436 149.912

300 0.307 45.426 26.195 289.965

400 0.342 56.379 32.551 395.965

500 0.347 68.394 27.285 551.239

PrTe 100 0.103 12.646 5.925 93.787

200 0.229 38.161 17.647 298.451

300 0.336 64.015 30.116 543.829

400 0.397 83.647 40.089 771.194

500 0.433 98.783 49.163 993.222

Note: * Shear wave polarized along the 〈001〉  direction.
# Shear wave polarized along the 〈1 0〉  direction.

α / f 2( )Akh.shear1
* α / f 2( )Akh.shear2

#

1

ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003



EFFECT OF THERMAL CONDUCTIVITY ON ULTRASONIC ATTENUATION 601
35

100

30

25

20

15
200 300 400 5000

Temperature (K)

DS2 PrS
PrSe
PrTe

Fig. 5. DS2 vs. temperature along 〈110〉 the direction; shear

wave polarized along the 〈1 0〉 direction.1
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Fig. 7. DS vs. temperature along the 〈100〉 direction.
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Fig. 9. (α/f 2)Akh.long vs. temperature along the 〈100〉  direc-
tion.

Also a comparison of α in dB/µs of PrS, PrSe, and
PrTe with LiF (experimental) and LaS, LaSe, and LaTe
for other orientations at room temperature at 900 MHz
[19–21] is shown in Table 13.

In general, it is obvious from Tables 8–17 that the
effect of higher temperature on the ultrasonic attenua-
tion in PrS, PrSe, and PrTe is greater than that of LaS,
LaSe, and LaTe.

It is obvious from Tables 5–7 that nonlinearity
parameters D for all three substances decrease by very
small values with temperature along all orientations.
Therefore it contributes much less to the temperature
dependence of absorption in PrS, PrSe, and PrTe.
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Fig. 6. Dl vs. temperature along the 〈111〉  direction.
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Fig. 8. (α/f 2)th temperature along the 〈100〉 direction.
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Fig. 10. (α/f 2)Akh.shear vs. temperature along the 〈100〉
direction.

Although experimental data of ultrasonic attenua-
tion in PrS, PrSe, and PrTe are not available in the liter-
ature for comparison, comparison has been made with
those values for LaS, LaSe, and LaTe, and can be made
with other like substance with an NaCl structure. The
experimental value [22] for ultrasonic attenuation in
NaCl at room temperature and 100 MHz for a longitu-
dinal wave is 0.2 dB/µs. In our calculations for the
materials the ultrasonic attenuation values at 300 K
become 0.10 dB/µs. Similarly, for a longitudinal wave
along the 〈110〉  crystallographic direction, our calcu-
lated values for PrS, PrSe, and PrTe become 0.06 dB/µs
at 100 MHz, and the experimental value for NaCl at
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Fig. 11. (α/ f 2)th vs. temperature along the 〈110〉  direction.
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Fig. 13. (α/f 2)Akh.shear1 vs. temperature along the 〈110〉
direction polarized along 〈001〉  direction.

100 MHz is 0.1 dB/µs. However, due to the lack of
experimental values for the entire temperature region,
comparison is not possible for different temperatures.
None the less, the variation of attenuation clearly sup-
ports the present approach for ultrasonic attenuation,
which is directly connected to our evaluations of SOEC
and TOEC based on only two basic parameters.
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Fig. 12. (α/f 2)Akh.long vs. temperature along the 〈110〉
direction.
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Fig. 14. (α/f 2)Akh.shear2 vs. temperature along the 〈110〉
direction and polarized along 〈1 0〉 .1

As discussed, the nonlinearity parameter D (acous-
tic coupling constant) does not contribute greatly to the
temperature dependence of the attenuation in Praseody-
mium monochalcogenides. The quantization behavior
of the temperature dependence of (α/f 2)Akh and (α/f 2)th

is the same as the variation in the total thermal conduc-
tivity of these compounds from 100 to 500 K [3]. A dis-
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
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tinctive peculiarity of rare-earth metallic compounds is
their lower electronic thermal conductivity with an
anomalous temperature dependence. The electronic
thermal conductivity of these compounds decreases
with temperature from 100 to 500 K [3]. Therefore, the
attenuation in those compounds is mainly due to the lat-
tice part of the thermal conductivity and it directly
affects the temperature dependence of the attenuation.
As expected, thermoelastic loss is negligible due to low
values of thermal conductivity.

It was confirmed by measurements that, for temper-
atures below 500 K, the attenuation is independent of
the dislocation count and, thus, it is not considered here

5004003002001000
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Fig. 15. (α/ f 2)th vs. temperature along the 〈111〉  direction.

Table 12.  Ultrasonic attenuation due to phonon–phonon in-
teraction [(α/f 2)Akh.long for longitudinal wave and
(α/f 2)Akh.shear for shear wave] and due to thermoelastic loss
(α/f 2)th PrS, PrSe, and PrTe in the temperature range of 100–
500 K along 〈111〉  in 10–17 Np s2/cm

Crystal Temp. (K) (α/f 2)th (α/f2)Akh.long

PrS 100 0.060 6.287 23.427

200 0.139 21.016 81.886

300 0.209 36.442 153.216

400 0.257 50.627 232.612

500 0.281 58.502 286.378

PrSe 100 0.053 6.708 30.933

200 0.112 21.200 101.304

300 0.197 38.726 195.658

400 0.224 48.298 268.365

500 0.243 56.873 340.971

PrTe 100 0.068 14.075 63.388

200 0.155 32.352 202.076

300 0.231 54.270 368.703

400 0.277 70.677 523.722

500 0.308 83.617 675.556

Notes: * Shear wave polarized along the 〈 10〉  direction.

α / f 2( )Akh.shear
*

1
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[23]. It has been well established by many experimental
and theoretical studies that phonon–phonon interaction
is the dominating cause for attenuation in solids at
higher temperatures (room temperature) and electron–
phonon interaction is the main cause where free elec-
trons are available. In the theory employing phonon–
phonon interactions, several approximations are made
that are valid at higher temperatures [24].

Thus, on the basis of the above analysis which com-
pares the values of attenuation with other like sub-
stances at 100–500 K along different crystallographic
directions, our theoretical approach to the temperature
dependence of ultrasonic attenuation, which allows one
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Fig. 16. (α/f 2)Akh.long vs. temperature along the 〈111〉
direction.

Table 13.  Comparison of ultasonic absorption coefficient
(α) in dB/µsec of intermetallics with LiF at room tempera-
ture and 900 MHz

Mate-
rial 〈100〉1 〈100〉S 〈110〉1 〈110〉S1 〈110〉S2 〈111〉1 〈111〉S3

LiF 
(exp.)

3.5 0.8 1.3 0.8 10.0 0.8 5.0

LaS 1.3 0.2 1.5 0.2 4.5 0.1 0.3

LaSe 1.5 0.3 2.0 0.1 6.0 0.1 0.4

LaTe 2.6 0.4 3.3 0.1 10.0 0.2 0.8

PrS 0.9 0.1 0.9 0.3 2.5 0.7 1.7

PrSe 0.9 0.1 0.8 0.3 2.7 0.7 1.8

PrTe 1.2 0.2 1.0 0.3 4.4 1.5 3.0

Subscripts have the following meaning:
l stands for longitudinal wave,
S stands for shear wave,
S1 stands for shear wave polarized along the 〈001〉 direction,

S2 stands for shear wave polarized along the 〈1 0〉 direction,

S3 stands for shear wave polarized along the 〈 10〉 direction.

1

1
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to observe the effect of lattice thermal conductivity and
some important characteristic features closely con-
nected to ultrasonic parameters, is justified.
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Abstract—The dependence of the shape of an ultrasonic pulse transmitted through a magnetized magnetic col-
loid on the angle between the wave vector and the magnetic induction vector is investigated. © 2003 MAIK
“Nauka/Interperiodica”.
In the literature, a certain interest has been
expressed in studying elastic systems with active ele-
ments consisting of magnetorheological fluids [1–6].

In this paper, we investigate the relative amplitude
and shape of an ultrasonic pulse transmitted through an
acoustic cell filled with a magnetic fluid (MF) under a
prolonged exposure to magnetic field.

The carrier frequency and pulse repetition fre-
quency were 6 MHz and 4 kHz, respectively. Video
pulses taken from the receiver output were fed to an
oscilloscope. For subsequent computer processing, the
resulting oscillograms were photographed by a digital
video camera. A permanent magnet mounted on a rotat-
ing platform served as a source of magnetic field. The
acoustic cell had the form of a parallelepiped with a
base of 2 × 2 cm and height of 7 cm.

To avoid the penetration of air bubbles into the MF
at the stage of sample preparation for measurements,
the following provisions were made: the cell was filled
with MF several hours prior to placing it in magnetic
field; to prevent the penetration of air cavities into the
projected zone because of the instability of the open
surface of MF in magnetic field, the cell was filled with
the fluid practically up to the brim and then was placed
in the magnet gap by moving the cell in a downward
direction.

The samples under investigation were magnetic col-
loids prepared on the basis of kerosene. The disperse
phase was Fe3O4 magnetite, and the stabilizer was oleic
acid. The table shows the main physical parameters of
the MF samples used in the experiment.

The experiment was carried out at a temperature of
290  ± 1 K. The magnetic field strength in the magnet
gap was 122 kA/m, and the initial angle between the

magnetic vector  and the wave vector  was ϑ = 90°.H k
1063-7710/03/4905- $24.00 © 20605
The increment of the absorption coefficient was cal-
culated by the formula

where l is the path length of ultrasound in the magnetic
fluid, Umax is the maximum amplitude, and Ui is the sig-
nal amplitude at the instant ti.

The results of the first part of the experiment (prior
to the change of the video pulse shape) are given in
Fig. 1. The triangles represent the results of measuring
the relative amplitude of the video pulse U/Umax, and
the squares show the increment of the absorption coef-
ficient ∆α. In the experiment, a considerable decrease
in the amplitude of the ultrasonic pulse was observed
within t ≈ 30–35 h for MF-1 and 70–75 h for MF-2. The

∆α i
1
l
---

Umax

Ui

-----------,ln=

U/Umax
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Fig. 1. Dependences of the relative amplitude of the video
pulse U/Umax and the increment of the absorption coeffi-
cient ∆α on time t.
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Fig. 2. Oscillograms of the ultrasonic pulse transmitted through MF-2 for different values of the angle ϑ (indicated in the plots).
nonmonotone character of the angular dependence of
∆α observed in the experiment mainly agrees with the
data reported in [3].

The additional absorption of ultrasound is con-
nected with the change in the structure of the MF [1, 2].
Under the effect of magnetic field, chain aggregates are
formed from ferroparticles. The sound wave transmit-
ted through the disperse system is partially absorbed
and scattered by the aggregates. The fact that ∆α
approaches its equilibrium value within several days
testifies that the process of structure formation is rela-
tively slow.

A change in the shape of the video pulse is distinctly
visible at certain angles ϑ after a time interval t ≈ 50 h
for MF-1 and 150 h for MF-2 measured from the begin-
ning of the experiment, when additional signal amplifi-
cation in the receiver is applied by means of the input
attenuator adjustment. In other papers concerned with
the same subject (e.g., [1–6]), such an effect was never
mentioned.

Figure 2 shows the oscillograms of an ultrasonic
pulse transmitted through MF-2 for the indicated values
of ϑ . The value of the scale division along the y axis is
0.5 V/div, and along the x axis, it is 5 µs/div. The oscil-
lograms obtained for MF-1 are of a similar character.

With the rotation of magnetic field, the shape of the
video pulse changes; i.e., a controlled modulation of
the ultrasonic pulse takes place. At angles of 130°–
160°, a dip appears in the middle part of the video
pulse. The dip is observed again at angles of 210°–
240°. However, in the first case the dip moves from
right to left, while in the second case it moves in the
opposite direction.
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003



        

MODULATION OF ULTRASONIC PULSES 607

                                           
We note some features of the effect reveled in our
experiment: if the amplitude of the transmitted pulse is
reduced several times, the amplitude of the received
video pulse also decreases while its shape is retained.
The amplification of the signal in the receiver is accom-
panied by the appearance of a probing pulse (a stray
signal) at the beginning of the sweep and by an increase
in the received video pulse. However, the video pulse
begins to change its shape as it reaches beyond the
dynamic range. When the cell is removed from the
magnetic field, the dip disappears and the pulse ampli-
tude rises, although it does not reach the initial level. A
multiple (20–30 times) rotation of the magnetic field
leads to the recovery of the pulse shape close to the ini-
tial one and to a certain increase in the pulse amplitude.
However, within several days, the dip reappears. The
recovery of the initial shape and amplitude of the ultra-
sonic pulse is achieved by a careful mechanical stirring
of the MF.

These facts allow us to reject the possible “instru-
mental” origin of the signal modulation observed in our
experiment.

One may assume that the change in the shape of the
ultrasonic pulse observed in the experiment is a conse-
quence of the self-modulation of the wave in the course
of its propagation through a medium with nonlinearity
and dispersion [7]. In this case, the dispersion could be

Table

Sample ρ, kg/m3 ϕ, % Ms, kA/m

MF-1 1350 12.8 54 ± 1

MF-2 1300 11.7 50 ± 1

Here: ρ is the density of the magnetic colloid, ϕ is the volume con-
centration of the solid phase, and Ms is the saturation magnetiza-
tion.
ACOUSTICAL PHYSICS      Vol. 49      No. 5      2003
related to the appearance of aggregates consisting of
fine ferroparticles in the magnetic colloid, which
exhibit resonance properties in magnetic field in the
megahertz frequency band. The processes of structure
formation due to the dipole–dipole interaction proceed
in a certain sequence: the structures consisting of the
largest particles with great magnetic moments are
formed first, and the particles with small magnetic
moments form aggregates later on. Aggregates consist-
ing of small particles are less stable and are easily
destroyed in a rotating magnetic field [8, 9].
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Physics, Russian Academy of Sciences, Moscow.

BIOLOGY AND MEDICAL SCIENCE, 2002
1. L. M. Kotelenko, Reflection of the Speed of Sound

in the Auditory Cortex, Institute of Physiology, Russian
Academy of Sciences, St. Petersburg.

2. D. N. Lapshin, Frequency Tuning of the Auditory
System of Moths (Lepidoptera, Noctuidae), Institute of
Information Transfer Problems, Russian Academy of
Sciences, Moscow.

3. A. Ya. Supin, Effect of Noise on the Spectral Res-
olution of Hearing, Institute of Ecology and Evolution
Problems, Russian Academy of Sciences, Moscow.

EARTH SCIENCE, 2002
1. V. V. Bakhanov, Theoretical and Experimental

Study of the Transformation of Nonlinear Surface
Waves to a Field of Three-Dimensional Inhomogeneous
Streaming, Institute of Applied Physics, Russian Acad-
emy of Sciences, Nizhni Novgorod.

2. A. N. Gavrilov, Acoustic Monitoring of Large-
Scale Variations in the Water Temperature and Salinity
in the Arctic Ocean, Oceanology Institute, Russian
Academy of Sciences, Moscow.

3. S. A. Ermakov, Experimental and Theoretical
Study of the Nonlinear Dynamics of Small-Scale Wind
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Waves in Slicks in Application to the Development of
the Principles of Remote Diagnostics of Organic Films
on the Sea Surface, Institute of Applied Physics, Rus-
sian Academy of Sciences, Nizhni Novgorod.

4. B. F. Kur’yanov, Theoretical and Experimental
Studies of Digital Acoustic Methods for Controlling
Oceanographical Instruments and Communicating
with Them in Shallow and Deep Seas, Oceanology
Institute, Russian Academy of Sciences, Moscow.

5. A. G. Luchinin, Statistical Problems of the The-
ory of Image Transfer through a Wavy Surface, Institute
of Applied Physics, Russian Academy of Sciences,
Nizhni Novgorod.

6. A. V. Nikolaev, Changes in the Fine Structure of
Seismic Emission as an Indicator of Slow Deformations
of the Earth Crust and the Processes Preceding Earth-
quakes, Institute of Earth Physics, Russian Academy of
Sciences, Moscow.

7. E. N. Pelinovskiœ, Killer Waves: Physical Mecha-
nisms and Modeling, Institute of Applied Physics, Rus-
sian Academy of Sciences, Nizhni Novgorod.

8. V. F. Pisarenko, New Parametrization Scheme for
the Seismic Regime and the Problem of Evaluating
Seismic Danger, International Institute of the Theory of
Earthquake Prediction and Mathematical Geophysics,
Russian Academy of Sciences, Moscow.

9. M. V. Rodkin, Modeling of the Seismic Process in
the Framework of the Fluidometamorphogenic Model
of Earthquake Genesis, Geophysics Center of the Rus-
sian Academy of Sciences, Moscow.

10. A. A. Rozhnoi, Study of the Characteristic Fea-
tures of Super-Long-Wave Signal Propagation with a
View to Predicting Intense Earthquakes, Institute of
Earth Physics, Russian Academy of Sciences, Moscow.

11. V. B. Smirnov, Physical Parameters of the Seis-
mic Regime, Faculty of Physics, Moscow State Univer-
sity.

12. B. K. Tkachenko, Dynamics of Wave Processes
and the Formation of Hydraulic Jumps in the Coastal
Zone, Moscow Institute of Physics and Technology.

13. V. N. Troyan, Study of Wave Processes in Com-
plex-Structured Media by Solving Direct and Inverse
Geophysical Problems, Physics Research Institute of
St. Petersburg State University.

14. P. A. Chernous, Theoretical and Experimental
Modeling of the Effect of Seismicity on the Mechanical
Stability of Snow on a Slope, Apatity Branch of the
Murmansk State Technical University, Apatity.

15. R. F. Shvachko, Computer Simulation of the
Sound Propagation in the Ocean with a Fine-Structure
Stratification in Terms of the Wave Approach, Acoustics
Institute, Moscow.

N.I. Drobysheva

Translated by E. Golyamina
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CHRONICLE
Information on the Activities of the St. Petersburg Seminar 
on Computational and Theoretical Acoustics of the Scientific 

Council on Acoustics of the Russian Academy of Sciences in 2002
In 2002, the St. Petersburg Seminar on Computa-
tional and Theoretical Acoustics proceeded with its reg-
ular activities. Seventeen meetings were held. Several
papers were devoted to acoustic processes in media,
and some of them also considered wave processes of
different physical nature.

B.P. Sharfarets examined acoustic fields of direc-
tional sources in oceanic waveguides. He used an
approach based on representing the solution in the form
of a geometric-optics expansion. With this approach, he
managed to solve the direct problem of directional radi-
ation for volumetric and surface sources in regular and
irregular waveguides on a unified basis.

S.P. Kshevetskiœ’s paper was devoted to the theory
of the propagation of long acoustic-gravity waves in the
atmosphere. The author concentrated on the propaga-
tion of weakly-nonlinear internal gravity waves, which
were described by a system of linked Korteweg–de
Vries equations. The paper presented analytical and
numerical results of studying the soliton-type decay of
internal waves and the formation of turbulence.

V.A. Pavlov described the role of acoustic processes
in wave propagation in plasma. He studied both analyt-
ically and numerically the structure of a plasma forma-
tion (a precursor) before the front of a shock wave. It
was noted that, when the velocity of a shock wave
exceeded the velocity of ionic sound, a specific nonlin-
ear phenomenon arose that was analogous to the hydro-
dynamic effect in narrow channels, the latter being
known as “the effect of Houston’s horse.”

The transmission of acoustic waves through elastic
barriers in regular waveguides with rigid walls was
studied on the basis of exact analytical representations
in a joint paper by O.A. Al-Arji (Jordan), Yu.A. Lavrov,
and V.D. Luk’yanov. They considered two models. In
the first of them, the waveguide cross section was
assumed to be rectangular. Two opposite sides of the
barrier (a thin elastic plate) were assumed to be rigidly
fixed, while a sliding contact occurred on two other
sides. The second model consisted of a cylindrical
waveguide with a channel that was baffled by two trans-
verse plates. The dependence of sound insulation on the
mechanical and geometric parameters of the system
was investigated.

A.P. Tanchenko used the Wiener–Hopf method to
obtain an exact analytical solution to a specific bound-
ary-value problem of the diffraction theory for an infi-
1063-7710/03/4905- $24.00 © 20612
nite circular helix positioned on an infinite-sheeted Rie-
mann surface. At the helix, a generalized impedance
boundary condition was set with a discontinuity at a
certain point. At this point, contact boundary conditions
were set. The source of the field was a cylindrical wave.
The final objective of the consideration was the deter-
mination of the form of an asymptotic ray expansion
(initial object) for the problem of the field diffraction by
an arbitrary convex curvilinear contour at which a dis-
continuity in the generalized impedance boundary con-
dition takes place.

A.I. Makarov considered resonance acoustic oscil-
lations for various rigid structures located in channels
with rectangular and circular cross sections. These
oscillations were excited by a gas flow in a channel, the
resonance being determined by the coincidence of the
frequency of the vortex separation in a gas flow with the
fundamental frequency of the acoustic mode of the cell.
The fundamental frequencies and natural modes of
cells were calculated, and the characteristic fields of
velocities and pressures were studied for individual
modes.

A series of papers was devoted to structural acous-
tics, i.e., to elastic wave processes in solids.

Vertical vibrations of a circular stamp moving with
a sub-Rayleigh speed along the surface of an elastic
half-space were investigated by S.N. Gavrilov. He con-
sidered the problem in three dimensions under the
assumption that the stamp movement is slow (the char-
acteristic time scale of the oscillation process was
assumed to be greater than the travel time of elastic
waves from the stamp center to the edge). It was dem-
onstrated that the vertical movement of a stamp can be
described in the first approximation by the equation of
the dynamics of a system with one degree of freedom
with viscous friction.

E.A. Ivanova presented the derivation (according to
P.A. Zhilin) of the basic equations of the theory of
plates and shells that take into account rotary inertia
and the shear deformation. This derivation was per-
formed by a direct method on the basis of the funda-
mental laws of mechanics. In another paper,
E.A. Ivanova considered the oscillations of a ring-
shaped plate rigidly fixed along the outer rim. A rapidly
rotating solid (a fast centrifuge) rested on the inner edge
of the rim.
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S.A. Nazarov’s paper was devoted to the relations
between a three-dimensional model and a conventional
two-dimensional (Kirchhof) description of the pro-
cesses in an elastic plate. He demonstrated that, con-
trary to traditional concepts, the first eigenfrequency of
oscillations of a three-dimensional plate can exceed the
first eigenfrequency of the plate considered on the basis
of a two-dimensional model.

In K.M. Ovsyannikov’s paper, a thin elastic plate
bounded a layer of an acoustic medium while its other
surface was assumed to be rigid. The wave motion of
the plate was caused by a force uniformly distributed
along a circle. The effect of a ring-shaped inclusion
concentric with the source, which had a preset mass,
rigidity, and damping coefficient, on the wave pro-
cesses in the system was studied.

I.V. Andronov demonstrated that the problem of the
diffraction of a flexural wave propagating in a thin plate
by a circular impedance barrier can also be solved in the
case when in the barrier vicinity an intrinsic process is
possible that does not produce any radiation into the
plate (a so-called trap form). The possibility of the
existence of such a process was proved earlier (Acous-
tical Physics, 47, 3 (2001)).

E.V. Shishkina compared the frequencies and forms
of vibrations of a coil rod of finite length, whose behav-
ior is described by a set of Kirchhof–Klebsch equa-
tions, with the rod equations for a spring, which are
conventionally used in engineering, to specify the lim-
its of applicability of the latter.
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The papers by A.V. Porubov and A.V. Karpenko
were devoted to nonlinear wave processes in solids.

A.V. Porubov considered the propagation of long
nonlinear waves in rods and elastic media. He focused
mainly on waves that retain their shape in the process
of propagation, primarily, bell-shaped solitary waves.
Possible practical applications of solitary strain waves
in nondestructive testing and in testing the strength of
structural materials were discussed.

Two papers by A.V. Karpenko described the meth-
ods and results of numerical calculations with the help
of finite-difference schemes of deformation develop-
ment (including the case of plastic deformation) in
heavily loaded layered shell structures. Collisions of a
structure with plane rigid barriers and explosions were
considered as the sources of such deformations.

More detailed author’s abstracts of papers and other
information on the seminar can be obtained on the web
site of our seminar:

http://mph.phys.spbu.ru/~george/seminar.html
Applications for papers can be forwarded by e-mail

(kouzov@alfa.ipme.ru or george@GF4663.spb.edu) or
by phone to the seminar head D.P. Kouzov (812) 312-
3530 or the seminar secretary G.V. Filippenko (812)
143-2323.

D.P. Kouzov

Translated by M. Lyamshev
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