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Abstract—Correlated signals of thermal acoustic radiation from heated sources extending in the transverse
direction (a pair of narrow plasticine plates and a wide plasticine strip) are measured. The measurements
are performed by multiplying together the signals that are shifted in time with respect to each other and detected
by two piezoelectric transducers. The values of the correlated signals of thermal acoustic radiation are
determined by the spatial variation of temperature in the medium under study. © 2003 MAIK “Nauka/Interpe-
riodica”.
To measure the in-depth temperature of biological
objects, it is possible to use a passive acoustic thermal
tomograph based on the detection of thermal acoustic
radiation [1]. The first experiments on measuring the
in-depth temperature distribution [2] and localizing the
thermal sources in model objects [3] with the help of
noncoherent reception of thermal acoustic radiation
were conducted earlier. The same technique was used
to measure the internal temperature profile in the
human hand [4]. The thermal acoustic emission from
heated soft tissues of a biological object was measured
in [5]. The opportunities offered by the correlation
reception of thermal acoustic radiation as the basis of
passive acoustic thermal tomography were discussed
theoretically in a series of papers [6–8]. Experimental
studies of the correlation reception of acoustic (non-
thermal) noise radiation [9] and the focused reception
of thermal acoustic radiation [10, 11] were conducted
for the same purpose. Space and space–time correlation
functions for the pressure of thermal acoustic radiation
were measured and studied experimentally [1, 12–14].
Theoretical studies of the correlation reception of thermal
acoustic radiation are currently in progress [8, 15, 16].

In our previous paper [14], we experimentally dem-
onstrated the possibility of obtaining a nonzero corre-
lated signal (a space–time correlation function of pres-
sure) of thermal acoustic radiation using a pair of piezo-
electric transducers by shifting in time the measured
signals with respect to each other. The radiation source
was a motionless narrow heated plate. The small char-
acteristic size of the source, which was smaller than the
half-period of the spatial correlation function, was
needed to obtain a nonzero correlated signal [12]. How-
ever this requirement is inadmissible in the case of ther-
mal tomography of biological objects. The purpose of
this work is to investigate experimentally the feasibility
of the correlation reception of thermal acoustic radia-
1063-7710/03/4906- $24.00 © 20615
tion from extended sources whose transverse size has
no strict limitations.

The experimental setup was analogous to that pre-
sented in [14] and included a water-filled basin 1
(Fig. 1). Two circular flat piezoelectric transducers
(PT1 and PT2) with a radius of a = 5 mm and a distance
between the centers of D = 18 mm served as the receiv-
ers of thermal acoustic radiation. The acoustic axes of
the piezoelectric transducers lay in the horizontal plane
and intersected at a distance of z = 200 mm from the
transducers on the x axis. The piezoelectric transducers,
whose average reception frequency was f = 2.2 MHz
and whose transmission band was ∆f = 0.6 MHz, were
equipped with quarter-wavelength layers and had
approximately equal sensitivities. Two sources of ther-
mal acoustic radiation were used: a pair of parallel nar-
row plasticine plates (not shown in Fig. 1) with a width
(along the x axis) of d = 4 mm (the distance between the
plates was 4 mm) and a wide plasticine strip 2. The strip
width and also the lengths (the vertical dimensions) of
the plates and the strip were greater than the transverse
dimension of the spread functions of the receivers of
thermal acoustic radiation. The thickness of the sources
was 5 mm, which implied an almost complete absorp-
tion of ultrasound in plasticine. The sources of thermal
acoustic radiation were positioned in a cell 3 with
foam-plastic walls and acoustically transparent win-
dows. The cell was also filled with water, which was
heated with respect to the basin.

The method of signal detection coincided with that
described in [14]. The sound pressures at PT1 and PT2
were transformed into electric signals, which were
transmitted through preamplifiers 4, 5 (designed by
M.A. Antonov [12]) and then through amplifiers 6, 7
(U3-29 and U3-33). Using an 8-bit card
(LA-n10MPCI, manufactured by ZAO Rudnev–Shi-
lyaev, Russia), the amplified signals were stored in a
003 MAIK “Nauka/Interperiodica”



 

616

        

ANOSOV 

 

et al

 

.

                                                                                                              
1
2

3

4 5

6 7

8

9

PT1

2a D

x

∆z

PT2

z

Fig. 1. Experimental setup: (1) basin, (2) plasticine strip,
(3) cell, (4, 5) preamplifiers, (6) U3-39 amplifier, (7) U3-33
amplifier, (8) personal computer, and (9) reflecting plate;
PT1 and PT2 are piezoelectric transducers with a radius a;
D is the distance between their centers; z is the distance
from the x axis to the piezoelectric transducers; and ∆z is the
shift of one transducer with respect to the other.
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Fig. 2. Measured correlated acoustic brightness tempera-
tures TAC of a pair of plates vs. the delay time τ of one signal
with respect to the other. The inset shows the geometry of
the experiment (the experimental curves correspond to the
plate positions).
personal computer 8. The pickup frequency was 12.5
MHz; 256 KB of the card memory were available for
two channels. The signals were time-shifted with
respect to each other in the computer, and the average
value of the products of signal readings was deter-
mined. The measurements were repeated to obtain sta-
tistically significant results (the integration time was
about 40 s).

The measurements were conducted in two modes: in
the first case (the “open” state), the signal arriving at a
piezoelectric transducer originated from the source,
and in the second case (the “closed” state), a reflecting
duralumin plate 9 was positioned between the piezo-
electric transducer and the cell; i.e., the signal arriving
at the transducer originated from the basin, the temper-
atures of the transducer and the basin coinciding. To
eliminate signal drift and possible nonacoustic sources
of correlation, the difference between the averaged
functions in the first and second modes was calculated.
To normalize the correlated signals in degrees, the
intensity of thermal acoustic radiation (the acoustic
brightness temperature) was measured by each trans-
ducer in the open and closed states from the wide strip
completely spanning the spread function of the piezo-
electric transducers. In this case, the strip is an acoustic
blackbody and the difference between the intensities of
thermal acoustic radiation in the open and closed states
is proportional to the difference in the temperatures of
the strip and the basin. We call the correlated signal in
degrees the correlated acoustic brightness temperature
TAC (as proposed in [12]).

The correlated signal for a pair of plates was mea-
sured with three positions of the source (see the inset in
Fig. 2): (1) the plates positioned vertically and symmet-
rically with respect to the acoustic axis of the system,
(2) the plates shifted to the left, and (3) the plates
shifted to the right by 4 mm. Figure 2 presents the mea-
sured correlated acoustic brightness temperatures TAC

of thermal acoustic radiation as functions of the time
shift (delay) τ of one signal relative to the other. The
experimental data for three positions of the source are
connected for illustration by broken lines (1, 2, and 3,
respectively). The standard measurement error aver-
aged over all shifts is shown in the plot in the upper left
corner. The correlated signal for a wide strip was also
measured for three positions of the source (see the inset
in Fig. 3): (1) the strip “fills” half of the spread function
of the piezoelectric transducers and also a 3-mm-wide
section to the left of the acoustic axis of the system, (2)
the strip is shifted to the right by 4 mm, and (3) the strip
completely covers the spread function. Figure 3 pre-
sents the measured correlated acoustic brightness tem-
peratures TAC (τ) for all three positions of the source,
which are connected for illustration by broken lines
(1, 2, and 3, respectively).

All measured correlated signals (except for curve 3
in Fig. 3) are oscillating functions with envelopes that
are maximal at τ ≈ 0 and decrease with increasing delay
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
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τ. Such a shape of the correlated signal is related to the
finite transmission band of the piezoelectric transducers
∆f.

The time period of the correlation function (corre-
lated acoustic brightness temperature) is determined by
the average reception frequency and is equal to T =
1/f = 0.45 µs. As confirmed by our experiments [1, 12,
13], the spatial period of the correlated signal is equal
to Λ = λz/D ≈ 8 mm, where λ is the acoustic wavelength
in water for the average reception frequency f. If we
shift the source along the horizontal x axis by half the
spatial period, the new correlated signal must be
antiphase with respect to the old one. One can see from
Figs. 2 (curves 1, 2 and 1, 3) and 3 (curves 1, 2) that the
results of measurements satisfy this condition. Note
that a pair of plates (see the inset in Fig. 2) is shifted
from position 2 to position 3 by 8 mm (a full period)
and that curves 2 and 3 (Fig. 2) vary in phase.

Figure 3 presents the correlated signal (curve 3)
measured when the wide strip with a constant tempera-
ture completely covered the spread function of the
receiving system. Note that theoretical estimates for
such a case, which were presented in [8, 12, 13], show
that the signal must be zero, and we obtained experi-
mentally a zero correlated signal for a wide strip at τ =
0 in [12, 13]. Experimental data confirm the theoretical
estimates: curve 3 (Fig. 3) oscillates near zero within
the limits of the measurement error.

The signal of thermal acoustic radiation depends on
the ultrasonic absorption in the medium and on the tem-
perature of the medium. The acoustic brightness tem-
perature TA is determined for a medium whose temper-
ature T and energy absorption coefficient γ depend on
only the depth z, according to the formula proposed in
[17] and tested experimentally in [18]:

(1)

In the experimental setup, the basin models an infinite
weakly absorbing medium with a constant temperature
T0 coinciding with the temperature of the receivers of
thermal acoustic radiation. In this case, the acoustic
brightness temperature TA is equal to the thermody-
namic temperature, TA = T0, and the correlated signal is
zero. The cell heated to the temperature ∆T with respect
to the basin creates a temperature inhomogeneity. If we
do not put plasticine into the cell, the signal of thermal
acoustic radiation will be almost undetectable, TA ≈ T0 ,
because of the small ultrasonic absorption in a water
medium with limited thickness. If we put plasticine
strips (acoustic blackbodies) into the cell, the integra-
tion of Eq. (1) over the depth in the plasticine gives the
following result:

TA = T0 + K∆T, (2)

where the coefficient is K = 1 when the wide strip cov-
ers the whole aperture of the receiving system. If the

T A γ z( )T z( ) γ z( ) zd

0

z

∫–exp z.d

0

∞

∫=
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strip does not cover the whole aperture, the energy
absorption coefficient γ depends not only on depth z but
also on transverse coordinate x. In this case, Eq. (2) is
also valid [10] and coefficient K is equal to the ratio of
angular dimension θ of the strip to angular dimension
Ω of the spread function of the piezoelectric transduc-
ers: K = θ/Ω . Thus, the utilization of acoustic blackbod-
ies in the experiment simplifies the taking of the
absorption of thermal acoustic radiation into consider-
ation.

The calculation of the acoustic brightness tempera-
ture of a plate limited along the x axis by coordinates x1

and x2 (d = x2 – x1) and infinite along the y axis can be
conducted using the results of [12, 14, 19]. If we model
the piezoelectric transducers by vertical infinite strips
with a thickness of 2a, use the Fraunhofer approxima-
tion, and assume that the transmission band of the
piezoelectric transducers ∆f is rectangular and suffi-
ciently narrow (∆f/f ! 1), the correlated acoustic
brightness temperature of the plate will be determined
by the formula

(3)
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Fig. 3. Measured correlated acoustic brightness tempera-
tures TAC of the wide strip vs. delay time τ of one signal
with respect to the other. The inset shows the geometry of
the experiment (the experimental curves correspond to the
plate positions).
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Fig. 4. Calculated functions TAC(τ) (curves 1) and experi-
mental data (dots 2) (a) for a pair of plates symmetric with
respect to the acoustic axis (in the calculations, the temper-
ature difference between the plates and the basin was
assumed to be ∆T = 8 K), (b) for a pair of plates shifted with
respect to the acoustic axis (∆T = 8 K), and (c) for a wide
strip covering more than half of the aperture of the receiving
system (∆T = 15 K).
where the factor  is determined by

equal spread functions of the piezoelectric transducers,

the factor  is

determined by equal finite transmission bands of the
piezoelectric transducers, and the factor

 determines the oscillating character

of the correlated signal. The presence of the tempera-
ture difference ∆T between the source and the ambient
medium in Eq. (3) is connected with the fact that a non-
zero correlated signal arises only in the presence of
temperature variation in space.

Let us demonstrate that Eq. (3) is valid for nonco-
herent reception at D = 0 and τ = 0. If the source width
d is greater than the transverse dimension of the spread
function of the piezoelectric transducers (θ = d/z > Ω =
λ/2a), the acoustic brightness temperature (and, more
precisely, the increment of the acoustic brightness tem-
perature, i.e., the difference between the acoustic
brightness temperatures of the source and the basin) is
equal to the thermodynamic temperature: ∆TA = ∆T. For
the source positioned at the acoustic axis of the system,
from Eq. (3) it follows that its acoustic brightness tem-
perature is determined by the way it fills the aperture:
∆TA = 2ad/λz∆T = θ/Ω∆T. Both results are consistent
with the above argumentation.

Figure 4 presents the correlated acoustic brightness
temperatures TAC (curves 1), calculated by the numeri-
cal integration of Eq. (3), as functions of delay time τ
for three cases: the cases shown in the inset in Fig. 2,
positions 1 and 2 (Figs. 4a and 4b, respectively) and the
case shown in the inset in Fig. 3, position 1 (Fig. 4c).
The corresponding experimental data are also shown in
Fig. 4 (dots 2). Note that in the process of calculation
we used the value of the temperature difference ∆T
between the cell and the basin as an adjustable param-
eter. This is connected with the fact that the scheme of
measurements did not allow us to maintain a constant
value of ∆T over a long time (a slow heat transfer
between the cell and the basin occurred through the cell
windows covered by a thin lavsan film).

One can see from Fig. 4a (4b) that the minimum
(maximum) of the correlation function is shifted to the
right by ∆τ ≈ 0.05 µs with respect to τ = 0, where it must
occur according to the geometry of experiment (see the
inset in Fig. 2, position 1 (position 2)). This is appar-
ently connected with the shift ∆z of the piezoelectric
transducers along the z axis (see Fig. 1). The shift value
∆z = 0.1 mm taken into account in the calculations is
connected with the inaccuracy of positioning the piezo-
electric transducers in the basin.

Analyzing the form of the acoustic brightness tem-
perature TAC(τ) (Fig. 4c) for a wide strip filling approx-
imately half of the spread function of the piezoelectric
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transducers (see the inset in Fig. 3), it is necessary to
note that, according to Eq. (3), the shift in the x coordi-
nate is analogous to time shift τ. If at τ = 0 the strip fills
the whole spread function of the piezoelectric transduc-
ers or exactly half of the spread function, the correlated
signal is zero (this follows from the parity of the inte-
grand in Eq. (3)). Shifting the strip along the x axis, for
example, by 3 mm, leads to the appearance of a nonzero
correlation component, which is determined by a thin
strip 3 mm in width. Further shifting leads to damped
oscillations of the correlated signal. An analogous situ-
ation occurs in the case of a shift in time. The function
TAC(τ) calculated from Eq. (3) has a positive value at
τ = 0. This can be explained by the fact that the strip
fills half of the spread function of the piezoelectric
transducers plus 3 mm.

It is necessary to note that a similar result can be
obtained using the idea of a receiving system as a filter
of spatial frequencies with its own spatial frequency
D/λz [19]. The spatial spectrum of a wide strip (a step)
is white noise, from which the filter selects the corre-
sponding frequency band.

As one can see from Figs. 4a–4c, the calculated
curves adequately approximate the experimental points
at a preset ∆T.

Thus, we experimentally obtained nonzero corre-
lated signals from sources of thermal acoustic radiation
whose transverse dimensions considerably vary. This is
a necessary first step towards a comprehensive investi-
gation of the direct problem of passive acoustic thermal
tomography based on the correlation reception of ther-
mal acoustic radiation. It should be noted that we
experimentally demonstrated the possibility of distin-
guishing the sources of thermal acoustic radiation only
in the plane perpendicular to the acoustic axis of the
system. Further investigation must take into account the
extension of the sources in depth and the absorption of
acoustic waves in the medium.
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Abstract—The problem of acoustic identity of two different rooms is formulated and solved theoretically by
using an active closed surface. The corresponding law governing the operation of active elements is based on
the matching of impedance matrices. The solution obtained is validated by a simple example. © 2003 MAIK
“Nauka/Interperiodica”.
The development of active methods of sound and
vibration control has proceeded vigorously in the last
few years. Despite their complexity (they require addi-
tional sound sources, i.e., actuators with the corre-
sponding control devices), their practical application is
often feasible and justified thanks to the progress in
microelectronics and digital data processing. The use of
active noise control methods in solving various practi-
cal problems of noise control in industry, especially in the
low-frequency range where conventional (passive) meth-
ods are ineffective, is described, for example, in [1, 2].

The main purpose of using active methods in rooms
is to reduce the noise levels, e.g., in shops, offices, air-
craft cabins, automobiles, and other vehicles. As a rule,
this problem is solved with one of three approaches.
The first of them, the conventional approach, was pro-
posed by the founder of active methods [3] and then
developed by other specialists [1]. It consists in the
superposition of the initial sound field and the second-
ary sound field, which is produced by acoustic actua-
tors and differs in sign from the initial field. The inter-
ference of the initial and secondary fields leads to their
mutual suppression in the whole room or part of it. The
second approach is based on the effect of vibration
actuators on the elastic walls. This effect changes the
conditions of sound transmission into the room from
outside, for example, the penetration of noise produced
by turboprop engines into an aircraft cabin [2, 4]. The
third approach, which is closest to that considered in
this paper, consists in changing the impedance of the
walls of the room by sound or vibration actuators with
the aim of reducing the reflections and/or increasing the
absorption of sound. This approach is called the method
of active impedance matching. Owing to its high effi-
ciency in suppressing resonance vibrations, it is often
1063-7710/03/4906- $24.00 © 20620
used for solving noise control problems in rooms of
different types and, specifically, in air duct systems
[1, 5–9].

Another problem often solved by active methods is
improvement in the quality of musical sounds in con-
cert halls and sound-recording studios. Changes in the
character of sounds produced by an orchestra or a
human voice are achieved via the amplification (or sup-
pression) of certain signal components by acoustic
actuators [10].

This paper presents the formulation and the solution
of a new, more complicated problem: to make two dif-
ferent rooms acoustically identical. In other words, it is
required that, in a given room (e.g., in an ordinary liv-
ing room), an arbitrary sound source should produce a
sound field identical to that produced by the same
source in another room or in some other acoustical con-
ditions, e.g., in the open.

In this paper, it is shown that the problem formu-
lated above has a solution in the form of an active
(“intellectual”) closed surface S, which may geometri-
cally coincide with the boundaries (walls) of a given
room or may lie inside this room. When the operation
of actuators occurs according to a certain law, the sound
field produced in the volume V inside surface S by an
arbitrary source will be identical to the field produced
by the same source in a similar volume V in another
room. In practice, such an active surface may consist of
a set of identical active thin panels positioned on sur-
face S with a sufficient density (no less than one panel
per square area of a half-wavelength on a side). Each
panel is assumed to have one vibration actuator, one
accelerometer and a microphone, as well as electronic
devices for preliminary signal processing, interfaces,
and control circuits. All panels are connected to form a
single computer-controlled network. In the literature
[7, 9, 11–13], one can find descriptions of active panels
003 MAIK “Nauka/Interperiodica”
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designed for different purposes. Many elements of
these panels can be used in the realization of the active
surface proposed in this paper.

As will be shown below, the field inside the closed
surface S and, hence, the acoustic characteristics of the
room are mainly determined by the impedances of the
exterior of S, and the effect of actuators on S is equiva-
lent to a change in these external impedances. In the
proposed method, the actuators are controlled so as to
transform the external impedance matrix of one room
to the external impedance matrix of another (given)
room. Hence, we are actually dealing with the method
of active impedance matching. However, the versions
of this method described in the literature are based on
the local impedance matching [6–9], whereas the
method proposed in this paper is based on matching the
complete impedance matrices. This difference is of a
fundamental nature: below, it will be shown that no
locally responding surface S, neither active nor passive,
can solve the problem under study.

Initially, the development of the method proposed in
this paper was aimed at the design of a low-frequency
anechoic chamber in an arbitrary room. However, the
area of practical application of this method proves to be
much wider. The ability of a closed active surface to be
acoustically transparent (nonscattering) or blocking
(totally reflecting) in a selective manner for outer and
inner sound sources offers the possibility for a radical
solution of the classical problem of noise control in a
room, as well as for solving this problem with respect
to selected sound sources. In addition, the ability of the
active surface to reproduce any acoustical environment
in a given spatial region (inside S) makes using the pro-
posed active system promising for sound-recording stu-
dios and for research purposes. The theory of the
method of global impedance matching is described
below together with an analytical example validating
this method.

Consider a spatial region V (which can also be called
a room) filled with a medium and bounded by a closed
surface S. Assume that a source of sound is placed
inside this region. Let us divide surface S into N ele-
ments and assume that the dimensions of the elements
∆Sj are small compared to the sound wavelength, so that
the complex amplitudes of both pressure pj and normal
velocity v j within these elements are constant (j = 1,
2, …, N). The positive direction of the velocity and
other vector quantities is taken to be the direction of the
outer normal to S. Let us introduce two N × N imped-
ance matrices, Zi and Z, determined with respect to
boundary S. Now, we show that these matrices, together
with the parameters of the source, completely charac-
terize the acoustic properties of spatial region V. By def-
inition, the internal impedance matrix Zi determines the
relation between the N-vector of external forces f =
[f1, …, fN]T applied to region V at surface elements ∆Sj
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
and the N-vector of the responses to these forces, i.e.,
normal velocities v  = [v 1, …, vN]T of elements ∆Sj:

(1)

The time dependence is assumed to be harmonic, and
the factor exp(–iωt) is omitted in the following calcula-
tions. Similarly, the N × N matrix of external imped-
ances Z characterizes the properties of the exterior of
surface S:

(2)

where q = [q1, …, qN]T is the vector of forces applied to
the exterior of S at surface elements ∆Sj, and u = [u1, …,
uN]T are the amplitudes of the normal velocities of ele-
ments ∆Sj moving under the effect of these forces.

Using the impedance matrices introduced by
Eqs. (1) and (2), we calculate the field produced in
region V by a source positioned inside it. According to
the theorem proved in [14], the pressure field in V can
be represented as a sum of two components:

(3)

The first component p0(x) is the field of the source oper-
ating in region V with the boundary S at rest:

(4)

The second component is the field of forced combined
vibrations of region V with the exterior of S under the
action of the external force b(s) distributed over S when
the source is turned off. In [14], it was shown that the
distributed force b(s) is equal to the pressure p0(s), i.e.,
to the force with which the first component of the field
acts on the stationary boundary S. With allowance for
the discretization of surface S, this force is in our case
described by the N-vector

(5)

where sj is the coordinate of some point on the jth ele-
ment of the surface. To calculate the second component
of solution (3), it is necessary to use the boundary con-
ditions at surface S: the normal velocities v 1 of the par-
ticles of the medium inside S and the velocities u1 of the
exterior of S should be equal, and the sum of forces f1
and q1 acting on region V and the exterior of S, respec-
tively, should be equal to force (5):

v 1 = u1, f1 + q1 = b.

Substituting Eqs. (1) and (2) into these relations, we
obtain the solution for the second field component in
the form

(6)

This solution is determined only at surface S. Although,
from this solution, it is possible to calculate unambigu-
ously the values of the second pressure component at
surface S, p1(sj) = – fj1/∆Sj, as well as at any inner point

f Ziv .=

q Zu,=

p x( ) p0 x( ) p1 x( ), x V .∈+=

v 0 s( ) 0= , s S.∈

b p0 s1( )∆S1 … p0 sN( )∆SN, ,[ ] T ,=

v 1 Zi Z+( ) 1– b, f 1 Zi Zi Z+( ) 1– b.= =
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x ∈ V, the following consideration is limited to using
this solution, because, for the proposed method of
matched impedances, it is sufficient to know only the
boundary values of the field given by Eq. (6). It should
be noted that, according to Eq. (6), the field in region V
(or, more precisely, its second component p1(x)) is
determined by the parameters of the sound source (or
by vector b), the internal impedances of the room Zi,
and the impedances Z of its exterior (its boundary).

Now, at all elements of surface S, we introduce addi-
tional (active) external forces with the amplitudes fa =
[fa1, …, faN]T and formulate the problem as follows: it is
necessary to find such forces fa that make the field given
by Eqs. (3), (6) identical to the field of the same source
in region V of a room with other external impedances
Z'. Let us show that the desired active forces should be
proportional to the difference between the external
impedance matrices:

(7)

where v are total normal velocities at all N elements of
surface S. Indeed, under the action of forces (5) and (7),
the normal velocities of the second field component at
S satisfy the vector equation

(8)

from which we obtain

(9)

Since the velocities of the first field component are
equal to zero (see Eq. (4)), velocities v of the total field
at surface S are expressed by formula (9), i.e., v  = v 1.
Comparing solutions (6) and (9) and taking into
account that the boundary values of velocity (9) unam-
biguously determine the field in the whole region V, one
can readily see that active forces (7) change the field in
V in such a way that it becomes identical to the field
arising when this region V is loaded with the external
impedances Z' instead of Z. In other words, the effect of
active forces (7) is equivalent to the replacement of
impedances Z by Z' and, hence, to the corresponding
changes in the acoustic properties of the region (room)
under consideration. Thus, an active force obeying the
control law given by Eq. (7) completely solves the
above-stated problem.

For the practical realization of active action (7), cur-
rent velocity amplitude v j should be measured and
force faj should be formed at every surface element ∆Sj

of surface S. The external impedance matrices are
assumed to be known for both the given room Z and the
desired room Z'. (The method of their measurement is
described in detail in [15]. In addition to the velocity
measurements, this method requires pressure measure-
ments at every surface element ∆Sj.) Therefore, the pro-
posed active system must consist of a set of sensors

f a Z Z'–( )v ,=

v 1 Zi Z+( ) 1– b f a+( ) Zi Z+( ) 1– b= =

+ Zi Z+( ) 1– Z Z'–( )v 1,

v 1 Zi Z'+( )= 1– b.
(accelerometers and microphones) and vibration actua-
tors positioned on boundary surface S: one device of
each kind at every element ∆Sj. In addition, the system
must contain a controller that forms the control signals
for the actuators according to Eq. (7). The stability of
the operation of this system is determined by the prop-
erties of the matrix operator

(10)

This operator appears as a result of adding the term ξ
caused by extraneous sources (noise) to Eq. (8). In this
case, the term Lξ is added to the right-hand side of solu-
tion (9). A detailed study of the stability of the proposed
system, its precision, and other aspects of its realization
will be the subject of subsequent publications. In this
paper, we consider only a simple example, which illus-
trates the performance of the method and provides the
estimates of the fields, control forces, and operator (10)
in the framework of one specific problem.

As an example, we consider the acoustic field in a
spherical room bounded by a closed spherical wall S of
radius R with a local impedance Zw. The problem is for-
mulated as follows: using a distributed active force of
type (7) acting on the wall, it is necessary to change the
acoustic field of an arbitrary source positioned inside
the room so as to make it identical to the field produced
by the same source in a free space. This problem can be
solved analytically. Therefore, instead of dividing the
boundary into elements and introducing the corre-
sponding impedance matrices, it is possible to use con-
tinuous dependences and impedances with respect to
forces and velocities continuously distributed in the
spherical harmonics. In this case, matrices (1) and (2)
are infinite-dimensional but diagonal due to the orthog-
onality of the spherical functions. This fact allows us to
reduce all matrix operations to calculations for individ-
ual spherical harmonics.

Let us first assume that the field is excited in the
room by a monopole source with a volume velocity g,
and this source is positioned at a distance l < R from the
center of the sphere. The exact solution to this radiation
problem can be obtained by the conventional method
[16] in the form of a series expansion in spherical func-
tions. Omitting the intermediate calculations, the pres-
sure amplitude at the point with the spherical coordi-
nates (r, ϕ, θ) inside the room can be represented as

(11)

Here, Q = ρck2g/4π, ρc is the characteristic impedance
of the medium; k = ω/c is the wave number; Pn(·) is an
nth-order Legendre polynomial of the first kind; jn and
hn are nth-order Bessel and Hankel spherical functions;
angle θ is measured with respect to the straight line

L Zi Z'+( )= 1– Zi Z+( ).

pex r θ,( )

=  Q Pn θ( ) jn kl( ) hn kr( )
δn

∆n

----- jn kr( )– .
n 0=

∞

∑
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connecting the monopole with the sphere center, which
serves as the origin of coordinates; and

(12)

(13)

where the prime denotes a derivative with respect to the
argument. Solution (11) consists of traveling waves (hn)
and standing waves (jn). The roots of the equations ∆n =
0 (n = 0, 1, …) determine the eigenfrequencies of the
room. At these frequencies, the field of the standing
waves is maximal. Expression (12) can be represented
in the form

(14)

where

(15)

is the local impedance (the pressure-to-velocity ratio)
of an unbounded medium with parameters ρ and c of
the exterior of the sphere of radius R when the pressure
and the velocity are distributed over S according to the
nth spherical harmonic [16]. From Eqs. (11) and (14) it
follows that, when all δn are equal to zero, the field in
the room corresponds to the conditions of a free space:

(16)

where r1 = |r – l| is the distance from the monopole to
the point of observation. The summation of series (16)
was performed using the spherical function summation
theorem [16]. From Eqs. (11) and (14) it also follows
that no passive coating with a local impedance Zw

(homogeneous or inhomogeneous in the s coordinate)
can provide the free space conditions. An exception is
the high-frequency range

(17)

where, for all n, the approximate equalities  ≈ ihn and

 ≈ ρc are valid. Choosing a passive coating with the
local impedance Zw = ρc, one can approximately solve
the above-stated problem for the frequencies deter-
mined by inequality (17), i.e., in the frequency range
where the sound wavelengths are much smaller than the
room dimensions.

Let us show that, by using an active force of type (7)
continuously distributed over the wall, it is possible to

δn hn kR( ) iZw/ρc( )hn' kR( ),+=

∆n jn kR( ) iZw/ρc( ) jn' kR( ),+=

δn

hn'

iρc
-------- Zn

∞ Zw–( ),=

Zn
∞ iρc

hn kR( )
hn' kR( )
----------------=

pex r θ,( ) Q Pn θ( ) jn kl( )hn kr( )
n 0=

∞

∑=

=  Qh0 kr1( ) p∞ r θ,( ),=

kR @ 1,

hn'

Zn
∞
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obtain the solution to the problem for all frequencies,
including the lowest ones.

First, we apply representation (3) to solution (11).
Then, the first field component satisfying boundary
condition (4) will have the form

(18)

This component can be obtained in a conventional way
as the field expansion in spherical functions [16]. Set-
ting r = R in Eq. (18), we obtain an expression for the
pressure at the wall at rest:

(19)

The second field component, according to Eq. (6), has
the form

(20)

(21)

Here, we used an equality that can be easily proved
with Eq. (13):

where

(22)

is the impedance of the medium inside the sphere under
the force acting on the boundary and distributed over it
according to the nth spherical harmonic. Combining
Eqs. (18) and (21), one can easily see that their sum
coincides with solution (11).

Now, according to Eq. (7), we introduce an active
force distributed over the boundary r = R:

(23)

p0 r θ,( )

=  Q Pn θ( ) jn kl( ) hn kr( )
hn' kR( )
jn' kR( )
---------------- jn kr( )–

n 0=

∞

∑ .

b θ( ) p0 R θ,( ) bnPn θ( ),
n 0=

∞

∑= =

bn
iQ

kR( )2
-------------

jn kl( )
jn' kR( )
----------------.–=

v 1 R θ,( ) v 1nPn θ( ),
n 0=

∞

∑=

v 1n

bn

Zw Zin+
-------------------

Q jn kl( )
ρc kR( )2∆n

--------------------------,= =

p1 r θ,( ) p1nPn θ( ) jn kr( ),
n 0=

∞

∑=

p1n

iQ jn kl( )
kl( )2∆n jn' kR( )

----------------------------------.=

∆n

jn' kR( )
iρc

---------------- Zw Zin+( ),–=

Zin iρc
jn kR( )
jn' kR( )
----------------–=

f a θ( ) f anPn θ( ), f an Zw Zn
∞–( )v an,=

n 0=

∞

∑=
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where v an are the expansion coefficients from the
expansion of the total velocity at S in the spherical har-

monics and  is the impedance of the exterior of S in
a free space (see Eq. (15)).

Since the total velocity is the response to forces (19)
and (23), the following equality is satisfied (see also
Eq. (20)):

(24)

From Eq. (24), by virtue of the orthogonality of the
Legendre polynomials, we obtain

(25)

From this velocity of the boundary, it is easy to calcu-
late the second component of the field inside the spher-
ical cavity under consideration:

The sum of this component and the first component
given by Eq. (18) yields the total pressure field with
allowance for the effect of active forces:

(26)

One can readily see that pressure field (26) coin-
cides with the field produced by the monopole in a free
space, which is given by Eq. (16). This means that
active force (23) transforms field (11) inside the region
r ≤ R to field (26): the “active” component of the field
suppresses the standing wave component of field (11)
and leaves unaffected the other component consisting
of spherical waves of all orders that travel away from
the source.

Since the result obtained above is valid for a mono-
pole source positioned at any point of the acoustic cav-
ity under consideration, it should also be valid for a set
of several monopoles by virtue of the superposition
principle. Since any source of sound can be modeled by
a set of monopoles [17, 18], the result is valid for any
arbitrary source. The difference is only in the values of
the “blocked” pressure (19) and the coefficients bn in
Eqs. (24) and (25). Thus, the active forces given by
Eqs. (7) and (23) transform the field of an arbitrary
sound source in a spherical region with an impedance

Zn
∞

v anPn θ( )
n 0=

∞

∑ Pn θ( )
bn

Zw Zin+
-------------------

n 0=

∞

∑=

+ Pn θ( )
n 0=

∞

∑ Zw Zn
∞

–
Zw Zin+
-------------------v an.

v an

bn

Zn
∞ Zin+

-------------------
Q

iρc
-------- jn kl( )hn' kR( ).= =

pa1 r θ,( ) Q Pn θ( ) jn kl( )
hn' kR( )
jn' kR( )
---------------- jn kr( ).

n 0=

∞

∑=

p r θ,( ) p0 r θ,( ) pa1 r θ,( )+=

=  Q Pn θ( ) jn kl( )hn kr( ).
n 0=

∞

∑

boundary to the field of the same source in a free space.
Since we did not impose any limitations on the fre-
quency, the solution is valid in the whole frequency
range. Hence, the problem stated at the beginning of
this paper is completely solved.

In closing, let us estimate the magnitude of the nec-
essary active force given by Eq. (23) and also consider
the behavior of the inevitable noise component under
the effect of this force, i.e., consider the stability of our
solution.

Let an additional field (noise) caused by extraneous
sources (lying outside the region of interest) be present
in the region under consideration, and let the pressure
of this field at boundary S be described as

(27)

Then, the velocity normal to S is expressed as

Adding this velocity to the right-hand side of Eq. (24)
and repeating the calculations described above, we
obtain the following expression for the pressure field
inside the region r ≤ R:

(28)

Here, p∞ is the field of the source in a free space, which
is given by Eqs. (16) and (26); the term under the sum-
mation sign is noise (27) changed by the active force
(see also Eq. (10)). The amplification coefficient an for
the nth spherical harmonic in Eq. (28) can be reduced,
using Eqs. (13), (15), and (22), to the form

(29)

Analysis of this expression shows that, at low frequen-
cies (kR ! 1), the absolute value |an| tends to zero as
[(kR)n – 1/(2n – 1)!!]; at high frequencies (kR @ 1), it
decreases as (kR)–1; and at intermediate frequencies, it
is limited. Therefore, the amplification of noise by the
active force is also limited. Hence, we can conclude
that no type of noise can increase as far as one likes
under the action of the active force.

Figure 1 presents the frequency dependence of the
resulting amplification coefficient of noise under the

pξ θ( ) pξnPn θ( ).
n 0=

∞

∑=

v ξ θ( ) Pn θ( )
jn' kR( )

iρc
---------------- pξn.

n 0=

∞

∑=

p r θ,( ) p∞ r θ,( ) Pn θ( )an pξn

jn kr( )
jn kR( )
----------------.

n 0=

∞

∑+=

an

Zin Zw+

Zin Zn
∞+

------------------- jn kR( ) ihn' kR( ) jn kR( ) kR( )2∆n.–= =
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effect of the active force. The dependence is calculated
by the formula

(30)

The curve corresponds to a spherical room with an
absorbing coating on its wall. The local impedance of
the coating is assumed to be equal to Zw/ρc = 0.3 + 3i.
The resonances of such a room are characterized by a
quality factor of about 100. The noise is assumed to
have a spatial spectrum of the type of |pξn| ~ n–1. The
amplification coefficients of individual spherical har-
monics are determined by Eq. (29). As one can see from
Fig. 1, the maximal amplification is equal to 1.8 and
occurs in the vicinity of the first antiresonance fre-
quency of the room, kR = 1.4. At all other frequencies,
the active system suppresses the noise.

Figure 2 shows the total active force (23) acting on
the wall,

divided by the pressure force (16) with which the
source under consideration acts on surface r = R in free
space conditions:

As seen from the plot, the active force distributed over
S has an amplitude on the same order of magnitude as
the sound pressure produced by the source. However, at
low frequencies, the active force increases as 1/kR,
which is a consequence of the poor choice of the source
model: a preset volume velocity of the source means

a an pξn
2/ pξn

2

n 0=

∞

∑
n 0=

∞

∑
1/2

.=

f a f a ρ θ,( ) 2

S

∫ Sd∫
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that, at low frequencies, the displacement amplitude of
the source surface tends to infinity. If the displacement
amplitude of the source is limited, the amplitude of the
active force will also be limited.

Thus, analysis of the solution to the problem shows
that an arbitrary closed room (in the case under study, a
spherical cavity with an impedance boundary) can be
transformed to a low-frequency anechoic chamber by
using accessible means without any unwanted second-
ary effects.
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Abstract—In the ultrasonic diagnostics of small-size neoplasms of biological tissues at the earliest stage of
their development, an efficient way to eliminate the distorting influence of high-contrast or large inhomogene-
ities of the biological medium is to apply the iterative technique. A simple approach is proposed, which makes
it possible with only two iteration steps to achieve an efficient focusing of the tomograph array. At the first step,
the unknown distribution of the large-scale inhomogeneities of sound velocity and absorption over the scatterer
is reconstructed, where the large-scale inhomogeneities are those whose size exceeds several wavelengths. At
the second step, the fine structure of the scatterer is reconstructed against the large-scale background, which can
be performed with a high accuracy owing to the evaluation of the background at the first step. The possibility
of simultaneous reconstruction of the large-scale and fine structures by the noniterative Grinevich–Novikov
algorithm is considered as an alternative. This algorithm reconstructs in an explicit form two-dimensional
refractive–absorbing acoustic scatterers of almost arbitrary shape and strength. Taking into account the effects
of multiple scattering, this algorithm provides resolution of the fine structure almost as good as that achieved
in reconstructing the same structure against an undistorting homogeneous background. The results of numerical
simulations of both algorithms are presented. © 2003 MAIK “Nauka/Interperiodica”.
One of the most important problems in medicine is
the diagnostics of neoplasms of biological tissues. In
many cases, for example, in the case of breast cancer, it
is very important to detect the nucleation of pathology
at the earliest stage of development. The detection of
small neoplasms requires rigorous mathematical meth-
ods of solving inverse problems. The most used intros-
copy systems include X-ray tomographs, nuclear mag-
netic resonance (NMR) tomographs, and ultrasonic
systems of the ultrasonic-scanning type. However,
these systems have certain disadvantages. For example,
X-ray tomographs cannot be considered completely
safe. At the same time, their sensitivity to pathological
structures of certain types is not always high [1]. At the
moment, NMR tomographs provide unsurpassed qual-
ity of diagnostics, but they are too expensive to be
widely used for routine prophylactic examinations. As
for acoustic introscopy systems, their development
occurs in two basic directions. On the one hand, there
is improvement in the technical characteristics of
devices. On the other hand, purely technological
upgrading sooner or later leads to a kind of saturation
after which further improvement of the device is impos-
sible. This situation calls for a more comprehensive
1063-7710/03/4906- $24.00 © 20627
analysis of the physical principles underlying the oper-
ation of various types of introscopy systems.

In fact, all active ultrasonic introscopy systems are
based on observation of disturbances in the regular
propagation of the probing acoustic radiation. In medi-
cal problems, the reconstruction of the spatial distribu-
tion of acoustic parameters is reduced to a complete or
partial solution of a particular inverse problem [2]. An
acceptable quality of the reconstruction of a scatterer
strongly distorting the incident wave is possible only
upon taking into account the wave distortions inside the
scatterer. The mathematical and physical aspects of
these processes are described in [2]. For a single large-
scale (in comparison with λ0) region with a phase
velocity other than c0, the phase shift is

(1)

Here, c0, λ0 , and k0 are the sound velocity, wavelength,
and wave number in the homogeneous background
medium without an object; L is the linear size of a large
region (in the limit, it is the full size of the object under
investigation); and |∆c|/c0 is the maximum relative vari-
ation of the phase velocity. The requirement that the

∆ψ Lω 1
c0
---- 1

c0 ∆c+
-----------------– Lk0

∆c
c0

---------.≈≅
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single scattering approximation (the first Born approx-
imation) be valid, ∆ψ ! π/2, leads to the limitation

(2)

For a region of the same size L but consisting of a mul-
titude of inhomogeneities of alternate contrast with the
characteristic linear size of fluctuations l, the quantity
∆ψ is smaller,

(3)

and, therefore, the limitation is less strict:

(4)

Relations (2) and (4) determine the admissible limits
and the possibility of using the concepts based on the
Born approximation in ultrasonic systems. They mean
that the phase shift must not lead to a defocusing of the
array.

Let us consider a linear array with a size D not
exceeding the size of the inhomogeneity L, i.e., L ≥ D.
In this case, only the difference between additional
phase shifts for signals from different sections of the
array is important in the formation of the image. This is
connected with the fact that the influence of equal addi-
tional shifts manifests itself, first of all, only in a shift
of the focusing point and image. The defocusing of the
array is caused by the difference in the phase shifts, the
value of this difference being determined by the propa-
gation difference δx of signals from the central and
peripheral parts of the linear array, δx ≈

2(  – L). For L ≥ D, this difference is δx ≈
(D/2)2/L. In this case, the quantity L in expressions (1)
and (2) is replaced by δx, and condition (2) takes on the
form

(5)

In complete tomographic systems the radiating and
receiving apertures are developed to the maximum
dimensions. Therefore, the influence of large contrast
inhomogeneities on the reconstruction quality is maxi-
mal. On account of a large inhomogeneity with the size
L ≈ 2R0 and the velocity c0 ± ∆c, the defocusing phase
shift in the case of focusing at the center of a ring array
with radius R0 is determined by relation (1) in which
L ≈ 2R0 . In this case, condition (2) takes the form

(6)

Limitation (6) is more stringent than condition (5).
The presence of transmission data on the forward

scattering in tomographic systems provides an opportu-
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nity to evaluate the inhomogeneities of all sizes. It is
also possible to considerably improve the quality of the
image. Both strict iterative algorithms and their approx-
imate realizations, which provide a positive result, can
be used for these purposes. Some novel techniques can
also be used, and this possibility will be discussed
below.

The most advanced iteration procedures form a
broad class of algorithms for solving inverse problems.
Their convergence is determined by the scatterer char-
acteristics: dimensions, contrast, and degree of com-
plexity of the spatial structure [3]. A detailed examina-
tion of these problems goes beyond the scope of this
study. Here, we describe a two-step approach, simpli-
fied but efficient for medical applications, which we use
to develop a prototype of a medical ultrasonic tomo-
graph [4]. We also describe the noniterative Grinevich–
Novikov algorithm. Both algorithms are applicable to
early quantitative diagnostics of biological tissue disor-
ders. We consider a situation typical in medical prac-
tice, namely, when it is necessary to reconstruct a scat-
terer consisting of small (with a linear size from several
tenths of a millimeter-range wavelength to several
wavelengths) characteristic details of an object, which
occur against the background of large-scale (with a size
of several wavelengths and larger) unknown inhomoge-
neities of the phase velocity, biological tissue density,
and absorption coefficient. It is assumed that, in the
absence of large inhomogeneities, these small details
cause the scattering described in the Born approxima-
tion. A complete evaluation of the whole scatterer con-
taining both large fragments and small details with the
Born contrast is performed using the aforementioned
algorithms.

TWO-STEP ALGORITHM

The idea of using the Born algorithm with allow-
ance for the inhomogeneities of the background evalu-
ated on the basis of experimental data is not new [1, 5,
6]. Here, we describe one of the algorithms of this type.
Its feasibility is confirmed by numerical simulation.
The approach is as follows. At the first step the recon-
struction of large-scale inhomogeneities, i.e., the
regions with large deviations of sound velocity c(r) or
amplitude coefficient of absorption α(r, ω) from con-
stant values c0 and α0 in the background medium, is
performed. This stage is necessary because of the wide
range of variation of sound velocity and absorption in
biological tissues, which reduces the resolution of the
ultrasonic tomographs operating in the Born or Rytov
approximations.

The measured propagation times of the pulsed sig-
nals intersecting the tomography region and their
amplitude attenuation factors are used at the first step.
In the reconstruction, we assume that signals propagate
along direct rays. The diameter of the ray tube is about

 ≅ 1 cm (at λ0 ≅  1 mm and a scatterer size L ≅  10–Lλ0
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003



RECONSTRUCTION OF THE FINE STRUCTURE 629
20 cm), which determines the resolution of the first
step. The assumption that rays are rectilinear means
ignoring the refraction processes. The reconstruction
error caused by this approximation is partially compen-
sated at the second step, which presumes the recon-
struction of the fine (small-scale) structure of a scatterer
against the background of the large-scale distribution
known from the first step. At the second step it is suffi-
cient to use one of the algorithms based on the Born
approximation taking into account the background
inhomogeneity. The reconstruction is performed by
phasing the received signals with the use of amplitude-
phase corrections taking into account the large-scale
distribution of the velocity and absorption. It is impor-
tant that such corrections are also evaluated under the
assumption of a rectilinear wave propagation. As model
studies have demonstrated, the errors of the first and
second steps do cancel each other, which provides an
opportunity to reduce the resolution loss characteristic
of the phasing techniques that do not take into account
the background inhomogeneity. As a result, the com-
plete pattern of the velocity, absorption, and tissue den-
sity distributions is reconstructed.

It is necessary to stress that, despite the two-step
character of the algorithm, the multiple forward scatter-
ing by large-scale inhomogeneities is taken into
account in it, which manifests itself in the difference
between the signal propagation times in the presence of
an object and in its absence. At the second step, this
leads to a high precision in the reconstruction of the fine
structure of a scatterer against a large-scale background
that may have a high contrast. The two-step algorithm
can be used in two- and three-dimensional tomographic
schemes. Two-step processing brings the tomographic
resolution closer to the maximum attainable one, which
is close to the quarter-wavelength at a given operating
frequency. In the two-dimensional scheme, this con-
cerns the resolution in the tomography plane. The
results of two-dimensional tomography can be repre-
sented either layerwise or in the form of a synthesized
three-dimensional image.

Analytical Description 
of the Two-Step Algorithm

The following two-dimensional tomography
scheme is used. Transmitting–receiving transducers are
positioned on an array ring of radius R0. These trans-
ducers can be arranged uniformly along the whole array
ring [1, 6] or in a specially selected irregular way. In the
latter case, when combined with a discrete rotation of
the array, 26 transmitting–receiving transducers
provide a volume of scattering data equal to that
obtained from 256 stationary transmitting–receiving
transducers [4].

The first-step procedure is close to the procedure of
X-ray tomography in diverging beams [7, 8] with an
overdetermination of the measured quantities and eval-
uated parameters, which is natural for the transition to
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
acoustic problems. The experimental data pSR are mea-
sured for different source (index S)– receiver (index R)
pairs. The geometric positions of the source and
receiver in a polar coordinate system with the origin at
the center of the array ring are given by the radius vec-
tors rS = {R0, ϕ} and rR = {R0, ϕ'}, respectively. The
reconstruction of large-scale distributions of the slow-
ness 1/ (r) and the amplitude absorption coefficient

(r, ω) occurs according to the same algorithm of
time-of-flight type on the basis of pSR. For evaluation of

the slowness, pSR = tSR – , where tSR and  are the
times of signal propagation from source S to receiver R
in the presence and absence of an object. In this case,

the function f(r) =  –  is reconstructed at each

fixed point r. For evaluation of the absorption, pSR =

−ln(ASR/ ), where ASR and  are the amplitudes of
the signals arriving at receiver R from source S in the
presence and absence of an object. Here, pSR character-
izes the degree of additional wave attenuation relative
to damping on account of the wave front divergence. In

this case, f(r) = (r, ω) – α0 . If, in the processing, a
signal cannot be expanded into monochromatic compo-
nents, the values of the absorption coefficient are taken
to be average within the operating frequency range.
Thus, according to the physical meaning, the values of
pSR are additional propagation times or absorption
introduced by an object lying on the path from S to R.
The reconstruction of f(r) from the known pSR ≡ p(ϕ, ϕ')
is performed by the expression

(7)

where

(8)
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The meaning of the quantities involved in Eqs. (7) and
(8) is shown in Fig. 1. The current positions of source S
and receiver R are considered for each fixed point of
reconstruction r = {x, y}. Then, K is the distance
between source S and point r and γ is the angle between
the directions from point S to the coordinate origin O
and point r. An exclusive angle  corresponds to
receiver position Rex at which the chord connecting
points S and Rex passes through point r. The quantities

K, γ, and  depend only on the positions of source S
and point r. In the calculation of g(r, ϕ) according to
Eq. (8), a small vicinity (not necessarily symmetric)
[  + 2δ1,  + 2δ2] of the exclusive angle is sepa-

rated, since the integrand at point ϕ' =  has a singu-

larity:  = 0. In the numerical calcula-

tion, the result of the calculation of g(r, ϕ) does not
depend on the selected small values of δ1 and δ2 due to
the presence of the additional nonintegral term in
Eq. (8). Note that in the calculation by Eqs. (7) and (8),
the transition from continuous to discrete quantities
requires a certain attention. This is connected with the
rapid change of the functions 1/K2(r, ϕ) and g(r, ϕ)
(depending on ϕ, when the source is near point r) and
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γ π
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Fig. 1. Geometry of the X-ray algorithm in divergent
beams: (OO') is the polar axis, S is the current position of
the source, R is the current position of the receiver, Rex is
the exclusive position of the receiver, and r is the point of
reconstruction.
of the integrand 1/  (depending on ϕ' in

the vicinity of special angle ).

The second-step procedure is based on the known
algorithm of reconstructing weak scatterers, but now
they are reconstructed against a known inhomogeneous

background (r) and (r), where (r) is (r, ω)
averaged over ω. This procedure is described in suffi-
cient detail in [9], and here we give only the basic
details. The structure of a scatterer is described by the
function V(r). In the case of its reconstruction within
the size of the resolution mesh (smaller than the wave-
length), cylindrical fields can be replaced by effective
plane waves, since the transducers are positioned at a
considerable distance (over 20 wavelengths) from the

object. Estimate (r) of function V(r) is constructed on
the basis of the measured scattered fields usc(rR, rS, t):

(9)

Here

(10)

(11)

where 

and 

the integration is conducted along the axis a  b of
the ray tube. In Eq. (9),  is the value of (r) averaged
over the region, and the value of ΦSR(r) is equal to the
angular distance between the directions to the source
and to the receiver from the point with coordinate r.
Time point t* involved in Eq. (9) depends (according to
Eq. (10)) on the propagation time of a signal from
source S to point r and from r to receiver R (t0 is a con-
stant that depends on the shape of the probing signals).
Such a choice of t* means phasing of the scattered sig-
nal to point r with allowance for the inhomogeneity of

(r). The functional weighting factor B(rR, rS, r) com-
pensates for the attenuation of the signal amplitude due
to absorption. In the calculation of the integrals in
Eqs. (10) and (11), the trajectories along the axes of ray
tubes were replaced by rectilinear trajectories.
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Estimate (r) gives the desired values of velocity
c(r), density ρ(r), and α(r), which is the absorption
coefficient α(r, ω) averaged over the operating fre-
quency band:

(12)

where Mc, Mρ, and Mα are the dimensional numerical
complex coefficients depending only on the frequency
spectrum of the probing signals [9]. Then, with the full
scattering data being available (at omnidirectional irra-
diation and reception), it is sufficient to have the scat-
tering data for a single frequency spectrum to extract

c(r) and α(r) from (r) without considering the inho-
mogeneity of the density ρ(r); when taking into
account ρ(r), the data for two frequency spectra are
required [9]. If the scattering data are incomplete, the
extraction of all three components of a scatterer, (c(r),
ρ(r), and α(r)) requires the data for three frequency
spectra or for the polychromatic mode of operation at
three different frequencies [10, 11].

Model Testing of the Two-Step Algorithm

The algorithm was tested using a numerical simula-
tion of the scattering data from 256 receivers with
sequential irradiation by 256 radiators. A large contrast
inhomogeneity was preset as a stepwise change in the
phase velocity by 3% (45 m/s) in half of the recon-
structed region, which was a circle with radius R0 =
0.135 m. Two halves of the circle were divided by a
chord passing through the center of the circle and
inclined with respect to the x axis at an angle of π/256.
The value of the velocity in the upper part coincides
with c0 in the medium without scatterers and is equal to
c1 = c0 = 1500 m/s; in the lower part, the velocity is c2 =
1545 m/s. The central section of this inhomogeneity
along the y axis is presented in Fig. 2b (dashed line).
The reconstruction by Eq. (7) was conducted at the
nodes of a coarse grid formed by splitting a square with
a side of 2R0 into 16 × 16 meshes with the a side of qI =
2R0/16 ≈ 18.6λ0 . The wavelength λ0 ≈ 0.91 × 10–3 m is
determined by a background velocity of c0 and a fre-
quency of ν0 = 1.65 MHz. The selected values of R0, c0,
and ν0 correspond to a specific tomographic setup [4].
Since the resolution of the first step is determined by

the width of the ray tube ≅  ≈ 0.016 m, the
selected parameter qI is acceptable for the reconstruc-
tion of the large-scale structure. The result of the recon-
struction is a “smoothed” distribution of large-scale
inhomogeneities (Figs. 2a, 2b).
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The values reconstructed at the nodes of the coarse
grid are interpolated further onto the nodes of a finer
grid. The size qII of the side of the fine grid mesh is
matched to the expected resolution of the second step;
i.e., it is equal to fractions of a millimeter. To do this in
the process of numerical simulation, each mesh of the
coarse grid was divided additionally into 16 × 16
meshes (therefore, qII = qI/16 ≈ 1.16λ0). At the first step,
it is possible to reconstruct the values of large-scale
inhomogeneities immediately at the nodes of the fine
grid, which requires more computation, however, in
this case interpolation is not needed. Finally, in a parti-

cular way, the large-scale distributions, (r) and (r),
are obtained on the fine grid, which serves as the esti-
mate of the inhomogeneous background for the second
step of reconstruction.

The most labor-consuming operation at the second
step is the calculation of the propagation time (Eq. (10))
and total absorption (Eq. (11)) along all paths connect-
ing all reconstructed points of object r with positions rd

of all transducers (a source or a receiver denoted by the
index d). Since the paths are considered to be rectilinear
and the grid is fine, the following estimates are admis-
sible:

(13)

Here,  are the numbers of the fine grid meshes, which

are intersected by a segment with a length of |r – rd|
connecting points r and rd, and  is the total number
of such meshes. Tracing (13) is reduced to the multipli-
cation of distance |r – rd| by the average value of slow-
ness or the absorption coefficient along the path. The
results of the numerical simulation confirmed the good
accuracy of the approximate calculation by Eq. (13). In
this case, the errors in the calculation of the values of
A(r  rd) responsible for the correction of the signal
amplitude are less important than the errors in the cal-
culation of the values of t(r  rd) responsible for the
correction of the signal phase. Moreover, to save calcu-
lation time, it is admissible to perform the tracing not
for all points r lying at the nodes of the fine grid but for
a smaller number of points. For example, tracing (13) is
performed for points r = rcoarse lying at the nodes of the
coarse grid and the corrections δt and δA are considered
relative to the corresponding values in a homogeneous
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Fig. 2. Result of the reconstruction of a large-scale contrast inhomogeneity at the first step of the two-step algorithm: (a) the general
form of the reconstructed inhomogeneity and (b) the central section along the y axis for the reconstructed (solid line) and true
(dashed line) inhomogeneities.
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medium:

(14)

After this, four nodes lying at the corners of the mesh
of the coarse grid, where point r = rfine of the fine grid
belongs, are determined. At a fixed position of a trans-
ducer rd, the corrections δt(rfine  rd) and
δA(rfine  rd) are obtained by linear interpolation of
the corrections δt(rcoarse  rd) and δA(rcoarse  rd),
which are known for these four nodes of the coarse
grid. Then, t(rfine  rd) ≈ δt(rfine  rd) + |rfine –
rd|/c0 and A(rfine  rd) ≈ δA(rfine  rd) + α0|rfine –
rd|. It is the interpolation of the corrections
δt(rcoarse  rd) and δA(rcoarse  rd), and not of the
full values t(rcoarse  rd) and A(rcoarse  rd), that
provides an admissibly small error of evaluation.

The numerical simulation of the second step of
reconstruction consisted in the determining the degree

of distortion of the tomograph spread function (r|r0)
because of the large inhomogeneity reconstructed
approximately at the first step. The spread function is

the response (r) ~ (r|r0) of the processing algo-
rithm (9) to the scattered signal from a “point” inhomo-
geneity V(r) ~ δ(r – r0) (see Eq. (12)) situated at point
r0 = {x0, y0}. This test inhomogeneity (in velocity, den-
sity, or absorption) must be treated as the idealization

used to construct spread function (r|r0). Function

(r|r0 = r') is the kernel of an integral equation of the
local convolution type, which describes the process of
the reproduction of arbitrary scatterer structure V(r) by

δt r rd( ) t r rd( ) r rd– /c0;–=

δA r rd( ) A r rd( ) α0 r rd– .–=

V̂δ

V̂ V̂δ

V̂δ

V̂δ
a tomograph: (r) = V(r')dr', where R is

the scattering region. The negligibility of the spread
function distortions caused by the presence of strong
inhomogeneities provides a small error in reconstruct-
ing complex-structured objects, because in this case
neither the resolution nor the capability of the algo-
rithm for qualitative evaluation of a scatterer undergoes
considerable changes. This means that the presence of
a large contrast inhomogeneity leaves a weak inhomo-
geneity that is equally noticeable in the reconstruction
as in the case of a homogeneous background.

In the numerical simulation, the test inhomogeneity

was positioned at various points and image (r|r0)
was constructed using Eq. (9). It was assumed that the
spectrum of probing signals had a Gaussian shape

~ ; ν0 = 1.65 MHz, ∆ν = 150 kHz; and

the value of the frequency ν was taken into account
within the 300-kHz band (|ν – ν0| ≤ 150 kHz).

Figure 3 presents the central sections y = y0 of the
spread functions for various positions of a point inho-
mogeneity on the Oy axis (x0 = 0). To analyze the shape
and width of the spread functions, their values are
reconstructed on the grid corresponding to a discretiza-
tion step of  = qII/15 ≈ 0.077λ0. A reference spread
function is realized in the case of the absence of inho-
mogeneities in the large-scale background (Fig. 3a,
dashed line). Such a spread function is almost real. The
reconstruction error is characterized by the ratio

(max| |)/(maxRe ) ≈ 0.09 × 10–2. The width of
the spread function at a level of 0.7 is ≈λ0/4 ≈ 0.2 mm.
In the case of high-quality manufacture of a tomograph,
its resolution may reach this value. The reference
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Fig. 3. Central sections of the spread functions  of the two-step algorithm, when normalized to the maximum value of the spread
function for a homogeneous background medium (dashed line in Fig. 3a). (a, c) A point inhomogeneity is far from the sharp bound-
ary of an inhomogeneous large-scale background medium; the spread function is obtained (a) with (solid line) and (c) without taking
into account the background inhomogeneities. (b) A point inhomogeneity is near the boundary; the spread function is obtained by
taking into account the background inhomogeneities.
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spread function is almost the same for all positions r0 of
a point inhomogeneity within the tomography region
(including the immediate vicinity of the transmitting–
receiving aperture), which is provided by the high
angular density of scattering data.

The spread function in the case of an inhomoge-
neous background medium evaluated at the first step
(Fig. 2a) almost does not differ from the spread func-
tion for a homogeneous background medium if a point
inhomogeneity is located not very close to the bound-
ary of the regions with velocities c1 and c2. The central
section y = y0 = R0/2 of the spread function for the point
of inhomogeneity localization r0 = {x0 = 0, y0 = R0/2 =
0.0675 m} is presented in Fig 3a (solid line). In the pro-
cess of reconstruction, tracing (13) was performed from
the nodes of the fine grid and the reconstruction error

was (max|Im |)/(maxRe ) ≈ 2.4 × 10–2. In the case
of tracing from the nodes of the coarse grid with further
interpolation of corrections (14), the reconstruction
error increases insignificantly (up to 4%). Small distor-
tions of the spread function in the case of an inhomoge-
neous background medium confirm a good degree of
cancellation of the reconstruction errors connected with

V̂δ V̂δ
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the approximation of rectilinear propagation. This is an
important practical result, since the stepwise change of
the background velocity that was preset in the simula-
tion is certainly stronger than possible changes in soft
biological tissues. If the presence of large-scale inho-
mogeneities is not taken into account, the same step-
wise velocity change leads to a strong distortion of the
spread function up to a change of sign. For example,
Fig. 3c gives the same section y = y0 = R0/2 of the
spread function in the case when, in the process of trac-
ing, an inhomogeneous large-scale background is
replaced by a homogeneous one with the velocity (c1 +
c2)/2. As a consequence, the spread function is com-
pletely destroyed. The inadmissible degree of distortion
is also observed in the case when an inhomogeneous
background is replaced by a homogeneous one with
velocity c1 or c2.

It is important that, taking into account the inhomo-
geneities of the background medium, the spread func-
tion almost does not change (as in the case of an ini-
tially homogeneous background medium) when the
point r0 moves within the tomography region. A notice-
able reduction (1.4 times) of the maximum value of the
real part of the spread function is observed only when a
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point inhomogeneity is located near the boundary of a
sharp velocity change (within ≅ 0.01 m ≈ 10λ0 from the
boundary). In this case, its broadening almost does not
occur. Moreover, the spread function acquires a com-
plex part, which reaches a level of ≅ 0.6 of the real part
(see Fig. 3b): r0 = {x0 = 0, y0 = 10R0/128 = 0.0105 m),

(maxIm )/(maxRe ) ≈ 0.57. Thus, the negative
influence of a sharp boundary turns out to be much
stronger for the image points near it (because, in the
process of wave transmission through the boundary, the
refraction effects are greater for the angles of incidence
close to grazing than for the angles of incidence close
to normal).

GRINEVICH–NOVIKOV ALGORITHM

As an alternative to the two-step algorithm, we con-
sider the possibility of simultaneously reconstructing
both large-scale and fine structures of a scatterer in the
framework of a single noniterative Grinevich–Novikov
algorithm, which was initially developed in connection
with the solution of inverse problems of quantum-
mechanical scattering [12–14]. Possible application of
this algorithm to inverse problems of acoustic scatter-
ing and also some results of its model studies were dis-
cussed in [15–18]. The algorithm shows considerable
promise for application in medical and ocean tomogra-
phy. It is important that it does not belong to the class
of iterative algorithms and implies an analytical solu-
tion in an explicit form in reconstructing two-dimen-
sional refractive–absorbing acoustic scatterers of
almost arbitrary shape and sufficient strength. The scat-
tering data are the values of scattered fields or the scat-
tering amplitudes for all directions of incidence of
plane (or synthesized in plane form) probing waves and
for all directions of scattering. The algorithm takes into
account the effects of multiple scattering, and, in this
sense, it is rigorous. It has a high computation effi-
ciency due to the small number of operations. The solu-
tion is determined in several stages. At each stage, a set
of equations is solved, which is linear with respect to
the unknown quantities (therefore, iteration techniques
are unnecessary) and nonlinear with respect to the scat-
tering data (in this way, it takes into account the effects
of multiple scattering). The dimension of the sets of
equations at each fixed stage is several orders of mag-
nitude smaller than in the case of iterative methods. At
the last stage, the scatterer function v (r) is directly
reconstructed. It is connected with the desired charac-
teristics of the scatterer c(r), ρ(r), and α(r, ω) as fol-
lows:

(15)

V̂δ V̂δ

v r( ) ω2 1

c0
2

---- 1

c2 r( )
------------– 

 =

+ ρ r( )∇ 2 1

ρ r( )
--------------- 

  i2ωα r ω,( )
c r( )

------------------.–
In this algorithm and in Eq. (15), a monochromatic
mode of operation, ~exp(–iωt), and a homogeneous
background medium with velocity c0 and without
absorption (α0 ≡ 0) are assumed.

Since the experimental data used for the reconstruc-
tion depend on the angles of wave incidence and scat-
tering, they naturally fit the circular scheme of tomo-
graphic data acquisition in a real experiment. The scat-
terer function can be determined at any fixed point of
space independently of its values at other points. Such
a locality of the solution is convenient for use in practi-
cal applications and, in particular, for problems of med-
ical tomography. The domain of the algorithm’s appli-
cability turned out to be much wider than was presumed
initially by the authors, although it has limitations con-
nected with the conditions of providing the necessary
accuracy of the solution [16, 17].

An opportunity to reconstruct the scatterers down to
small details by the Grinevich–Novikov algorithm is
illustrated below by an example of sufficiently strong
centrosymmetric scatterers with different values of the
contrast of small-scale details and their width (some
results of simulation are briefly described in [18]). The
condition of central symmetry of scatterers was used
only at the stage of the formation of simulated scatter-
ing data to reduce computation time. However, in the
case of scatterer reconstruction using the Grinevich–
Novikov algorithm, the condition of symmetry was not
used at all. In the numerical simulation, it was assumed
that λ0 = 16 length discretization units and the size of
the simulation area was 16λ0 × 16λ0 .

A scatterer with a fine structure in the form of a
central cavity is shown in Figs. 4a and 4b in the range
x, y ∈  [–4λ0, 4λ0]. The function Rev(r) consists of a
large-scale part of Gaussian shape with a half-width
d1 = 2λ0 at the level 1/e and with the amplitude value
corresponding to the velocity contrast ∆c1/c0 = 0.2 rel-
ative to the background value. A narrow cavity of Gaus-
sian shape, half-width d2 = λ0/8 at the level 1/e, and
amplitude value corresponding to the negative contrast
∆c2/c0 = –0.04 occurs at the center of the large-scale
inhomogeneity (Fig. 4c). The function Imv(r) is a “pla-
teau.” The scatterer is sufficiently strong: an additional
phase shift along the central section is ∆ψ ≈ 1.16π, and
the total absorption along this section leads to a
decrease in amplitude by a factor of ≈6.58.

The high strength of the scatterer is evidenced by the
result of reconstructing (r) in the approximation
of single scattering (Fig. 4f), where neither the ampli-
tude scale nor the characteristic details of the true func-
tion v(r) are reproduced correctly. At the same time,
estimate (r) obtained using the Grinevich–Novikov
algorithm (Figs. 4d, 4e) adequately reproduces the
large-scale part of the scatterer (both refraction and
absorption parts). However, the amplitude of the repro-
duced cavity turned out to be understated. The cause is
as follows. The local value of the velocity contrast for

v̂ born

v̂
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Fig. 4. Large-scale strong refractive–absorbing scatterer (the relative velocity contrast is ∆c1/c0 = 0.2, the additional phase shift is
∆ψ ≈ 1.16π, the half-width at a level of 1/e is d1 = 2λ0 , and the amplitude decrease due to absorption in the scatterer is by a factor
of 6.6) with a fine structure in the form of a central cavity (a velocity contrast of ∆c2/c0 = –0.04 and a half-width of d2 = λ0/8). The
general form of the (a) real and (b) imaginary parts of the true scatterer and (c) their central sections. The central sections of the (d)
real and (e) imaginary parts of the scatterer: the shape of the true scatterer after limiting the frequencies of its spatial spectrum by

a circle with a radius of 1.6k0 (the thin line is for ); the scatterer reconstructed in the absence of noise taking into account the

multiple scattering (the thick dashed line is for ). (f) The central section of the scatterer reconstructed in the Born approximation.
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cut
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the large-scale inhomogeneity at the site of the central
small-scale cavity is ∆c1/c0 = 0.2, which corresponds to

the local values of the velocity  = 1.2c0 and the wave

number  = k0/1.2. Therefore, to determine the recon-
struction quality of the fine structure, function (r) was

c=

k
=

v̂
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compared with function (r) of a true scatterer

with a spatial spectrum in which all components 

at the frequencies  ≥ 2  ≈ 1.6k0 are zero (Figs. 4d,
4e). It is also possible to see the scatterer, which is a

v 1.6k0

cut

ṽ x( )

x k
=
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Fig. 5. Large-scale refractive–absorbing scatterer of intermediate strength (the relative velocity contrast is ∆c1/c0 = 0.1, the addi-
tional phase shift is ∆ψ ≈ 0.62π, the half-width at the level of 1/e is d1 = 2λ0 , and the amplitude decrease due to absorption in the
scatterer is by a factor of 2.9) with a fine structure in the form of a central cavity (a velocity contrast of ∆c2/c0 = –0.02 and a half-
width of d2 = λ0/4) and an external circular wall (a velocity contrast of ∆c3/c0 = 0.03 and a half-width of d3 = λ0/2). The general
form of the (a) real and (b) imaginary parts of the true scatterer and (c) their central sections. The central sections of the (d) real and
(e) imaginary parts of the scatterer: the shape of the true scatterer after limiting the frequencies of its spatial spectrum by a circle

with a radius of 2k0 (a thin line is for ) and the scatterer reconstructed in the absence of noise taking into account the multiple

scattering (the thick dashed line is for ).

v 2k0

cut

v̂

16x/λ016x/λ0
weak scatterer against the background of the homoge-

neous medium with wave number . The result of its
reconstruction by the algorithm coincides in shape with

function (r). Then, proceeding from the compari-

son of  and , one can see that the small-scale

structure of the strong scatterer under consideration is
reconstructed against an unknown large-scale contrast
background with the resolution quality comparable
with the reconstruction quality of the same small-scale
structure in the Born approximation against a known

background with wave number .

In the case of the scatterer presented in Figs. 5a
and 5b, the fine structure is represented simultaneously

k
=

v 1.6k0

cut

v̂ v 1.6k0

cut

k
=

by a central cavity and a narrow external circular wall.
The largest contrast and half-width at level 1/e for the
large-scale inhomogeneity are equal to ∆c1/c0 = 0.1 and
d1 = 2λ0 . The same parameters for the cavity are equal
to ∆c2/c0 = −0.02 and d2 = λ0/4; therefore, the total
width of the cavity is ≈5λ0/16 at half of its depth
(Fig. 5c). The central section of the wall has a Gaussian
shape with a half-width of d3 = λ0/2 at the level 1/e and
the amplitude value corresponding to the contrast
∆c3/c0 = 0.03.

The additional phase shift is ∆ψ ≈ 0.62π, and the
attenuation of the wave amplitude is by a factor of ≈2.9.
The result of scatterer reconstruction in the single scat-
tering approximation is similar to the one given in
Fig. 4f; i.e., (r) differs greatly from the true func-v̂ born
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tion v(r). If multiple scattering is taken into account,
the reconstruction result (r) almost does not differ

from the function (r) (Figs. 5d, 5e), which in this
case is close to the initial function v(r). Thus, both the
circular wall and the central cavity are reproduced cor-
rectly.

Hence, the Grinevich–Novikov algorithm reliably
reproduces the fine structure of a scatterer (details with
a linear dimension of ≥λ0/3) in the presence of
unknown large-scale (several λ0) inhomogeneities,
which are also reconstructed by the algorithm. The use
of the single scattering approximation in the recon-
struction of such a scatterer leads to a strong distortion
of the whole structure. The application of the Grinev-
ich–Novikov algorithm provides a high quality of the
fine structure resolution, which is not inferior to the
reconstruction quality of this structure alone in the sin-
gle scattering approximation against a known homoge-
neous background. The quality of the simultaneous
reconstruction of large- and small-scale structures by
this algorithm (which does not encounter the problem
of convergence) is comparable to the reconstruction
quality achieved with the iterative procedure.

In closing, we note that the initial statement and
characteristics of the two-step iteration algorithm and
those of the Grinevich–Novikov algorithm differ sig-
nificantly. Namely, the two-step algorithm fundamen-
tally needs the pulsed mode of data acquisition at its
first step. Therefore, it uses an array of finite dimen-
sions, for which the concept of propagation time makes
sense. At the same time, the Grinevich–Novikov algo-
rithm initially uses the data on the scattering of plane
waves in the monochromatic mode, for which the con-
cept of propagation time simply does not exist. Data in
the form of the scattering amplitude can be obtained
from physically feasible schemes of measurement by
the secondary recalculation of real physical measure-
ments. The difference between the two algorithms is
the basic reason why the comparison of their efficiency
in application to the same model object encounters con-
siderable difficulties in numerical solution of direct
model problems.

Thus, the quality of scatterer reconstruction by the
two-step algorithm and the Grinevich–Novikov algo-
rithm seems comparable. The expediency of using one
of these algorithms is determined by the fundamental
technical aspects of a specific problem.

v̂

v 2k0

cut
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Abstract—The data of the experiments on long-range propagation of explosion-generated and tonal sound sig-
nals, which had been performed in different years in the central part of the Barents Sea in summertime condi-
tions, are used to analyze the space structure of the sound field intensity, to estimate the attenuation coefficient
due to the sound energy loss in the bottom sediments, and to determine the frequency dependence of this coef-
ficient. A comparison of the data on the long-range propagation of explosion-generated signals is performed
between two experiments carried out on the same 230-km-long path crossing the Central Basin of the Barents
Sea, several years in succession. The two experiments differ in the propagation conditions: in the first experi-
ment, a near-bottom sound channel extends along the entire path, and in the second experiment, the path crosses
a frontal zone characterized by fairly complex variations of the sound speed field. Calculations are carried out
to show that the specific behavior of the frequency dependence of attenuation can be explained by the power-
law frequency dependence (with an exponent of 1.4) of the sound absorption in the water-saturated upper layer
of the bottom sediments. It is also shown that the difference in the decay laws obtained for the sound field levels
in the two experiments is caused by the difference in the corresponding hydrological conditions. © 2003 MAIK
“Nauka/Interperiodica”.
The specificity of long-range sound propagation in
the Barents Sea is determined by the substantial vari-
ability of the environment. This variability is governed
not only by the seasonal changes in the vertical temper-
ature profiles but also by the time-varying fields of
water currents, the rough bottom relief, and the com-
plex structure of the upper sediment layers of the
seafloor [1–4].

On several expeditions of the research vessels of the
Acoustics Institute, studies of the specific features of
the sound field in the Barents Sea were carried out. This
paper presents the results of analyzing the data of sev-
eral experiments on long-range sound propagation,
which were carried out in summer in the region of the
Central Basin with sea depths of 250–350 m.

Before or after each experiment, the hydrological
characteristics of the path were surveyed. The vertical
profiles of temperature and salinity (electrical conduc-
tivity) in the water bulk were measured at different
points of the path. In one of the experiments, samples
of the bottom material (columns 30–60 cm in depth)
were taken at three points along the 230-km-long path.
The samples consisted of viscous gray-green silt. The
sea state was no higher than Beoufort 3–4 during the
experiment, and the wind speed was 7–8 m/s.

In the studies of the sound field intensity in the Bar-
ents Sea, both tonal and explosion-generated signals
were used. By analogy with a deep sea, the following
intensity parameters of the sound field are used to char-
acterize the propagation in a shallow sea: the attenua-
1063-7710/03/4906- $24.00 © 20638
tion coefficient, the propagation anomaly, and the tran-
sition distance. However, in view of the specificity of
sound propagation in shallow-water regions, the afore-
mentioned parameters need to be somewhat amended.

In a deep ocean, the attenuation means the range
dependence of the mean level of the sound field under
the influence of sound attenuation and scattering in the
water medium. For a shallow sea, along with the geo-
metric spread, absorption, and volume scattering, the
bottom-caused losses (the reflection and scattering of
sound from the bottom roughness and the penetration
of sound energy into the sea floor) play an important
role in sound field decay. Such losses lead to an addi-
tional level decrease, which follows an exponential law.
As a rule, the attenuation coefficient serves to describe
these losses in the experimental decay laws determined
for the sound field in a shallow sea. In contrast to the
attenuation coefficient in the water medium, we call the
aforementioned quantity effective attenuation coeffi-
cient, βeff.

In a deep sea, the propagation anomaly is defined for
water rays as the excess of the sound field level pro-
duced by some source in the sea water over the level
produced by the same source in a homogeneous bound-
less space with the absorption coefficient of the sea
medium. By analogy, the propagation anomaly in a
shallow sea means the excess of the sound field level
produced by some source in the sea water over the level
produced by the same source in a homogeneous bound-
less space with the absorption coefficient βeff that char-
003 MAIK “Nauka/Interperiodica”
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acterizes the actual features of the sound propagation in
the region at hand.

Thus, the decay law of the sound field in shallow
water can be described as

(1)

where I0 is the sound field intensity produced by the
sound source at a unit distance from it in a homoge-
neous boundless medium.

The propagation medium (the shallow sea) is repre-
sented by a water layer overlying the bottom material.
If one excludes the sound intensity loss caused by the
attenuation, the sound field decay at long ranges will
follow the cylindrical law, and the propagation anomaly
will change in proportion to the distance: A(R) = kR.
The quantity 1/k is usually called the transition distance
(R0). For distances R @ R0, by substituting the anomaly
expressed in terms of the transition distance into
Eq. (1), we obtain the expression for the sound field
decay in the layer:

In view of the aforementioned definitions of the
main intensity characteristics of the sound field, we
developed a technique to measure them in the Barents
Sea.

In experimenting with frequencies in the kilo-
hertz frequency band, we used a towed sound source
that consisted of a set of cylindrical piezoceramic trans-
ducers mounted within the towed body. The transmit-
ting vessel traveled at a speed of 3 knots away from the
receiving vessel or toward it. A continuous noise signal
(in a 1/3-octave band) was transmitted. At the receiving
vessel, the signal was continuously recorded with the
reference to the distance between the vessels (at long
ranges) or to the distance between the transmitting and
receiving systems (at short ranges). The stability of the
transmitted signal was monitored by measuring the
level of the electric signal applied to the transducer.

As raw data for estimating the attenuation, the
experimental sound field decay obtained on a path of up
to 24 km was used. The attenuation coefficient was
determined from the deviation of the range-dependent
sound field level from the cylindrical law at long dis-
tances (R @ R0, with R0 of about 300 m). In addition to
the experimental sound field decay, the data on trans-
ducer calibration performed in the deep sea were used
to estimate the transition distance and the propagation
anomaly.

Figure 1 shows the decay of the sound field level
experimentally measured at a frequency of 3.15 kHz
with source and receiver depths of 100 and 150 m,
respectively. At the time of the experiment, a near-bot-
tom sound channel was present in the sea: a negative
sound speed gradient (with different absolute values at

I
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R2
-----A R( ) 10

0.1βeffR–
,×=

I
I0

RR0
---------- 10

0.1βeffR–
.×=
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different depths) was observed within the entire sea
depth. The vertical sound speed profiles c(z) recorded
by the receiving vessel in this experiment are presented
in Fig. 2 (the profiles were measured every 8 h). The sea
depth in the region of the experiment was 280–300 m.
By analyzing the experimental decay laws of the sound
field, the following values of the attenuation coeffi-
cients βeff were obtained: 0.95, 1.4. and 1.8 dB/km at
1.6, 3.15, and 4.0 kHz, respectively. The scatter in the
values of βeff estimated from the sound level decays at
different horizons (150, 50, and 15 m) was less than
10%. The experimental estimates of the transition dis-
tance were within 200–300 m.

In one of the experiments, a vertical receiving
antenna array was used in addition to omnidirectional
receivers. With this array, the angular structure of the
sound field was measured. Figure 3 shows a fragment
of the record of the angular field structure measured at
distances of 0.9 to 4.0 km from the signal source
deployed to a depth of 150 m. The record consists of a
sequence of the angular spectra recorded at the array
output as the distance to the reception point continu-
ously varied. The center of the receiving array was at a
depth of 100 m. The vertical width of the array directiv-
ity pattern was about 2° (at the 0.7 level). Up to dis-
tances of 3.4–3.6 km, a good resolution of the signals
arriving at different angles was observed. At distances
greater than 3.6 km, the resolution failed. According to
the calculations, there are no purely water-path rays
(rays that do not touch the bottom and/or the surface) at
such distances. The experimental data show that only
water-path rays can be well resolved by the array. In the
bottom and surface reflections, the signal loses its
coherence and in-phase summation at the array
becomes impossible.
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Fig. 1. Decay of the sound field level at a frequency of
3.15 kHz. The depths of the source and the omnidirectional
receiver are 100 and 150 m, respectively: (1) experiment
and (2) cylindrical spread + exponential attenuation (βeff =
1.4 dB/km) approximating the experimental decay law.
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In experimenting with low frequencies, we used
an electromagnatic sound source that could not be
towed. At different distances (up to 125 km) from the
source, which was at a depth of 100 m, the vertical
structure of the sound field was measured. These exper-
iments were performed with tonal transmissions. Fig-
ure 4 illustrates the measured vertical structure of the
sound field at a frequency of 16 Hz.

At a distance of 125 km from the source, the maxi-
mal propagation anomaly (25 dB) corresponding to a
frequency of 16 Hz was observed at depths within 150–
200 m. The difference between the maximal and mini-
mal sound levels reached 15–20 dB. The vertical spatial
period of interference increased as the distance from
the source increased. The interference period decreased
in inverse proportion to the increasing frequency.
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Fig. 2. Vertical sound speed profiles measured in one of the
experiments in the central part of the Barents Sea.
To estimate the decay law of the low-frequency
sound field, the sound levels were averaged in energy
over the entire depth interval under study. From the
deviation of the decay laws of the average sound levels
from the cylindrical law, we found the values of βeff,
which proved to be 0.07, 0.08, 0.1, and 0.125 dB/km at
16, 32, 63, and 125 Hz, respectively. The low-fre-
quency sound source was calibrated in a deep sea six
days after the acoustic experiments. With the calibra-
tion data, we recalculated the sound field levels to the
propagation anomalies and determined the transition
distance R0 , which proved to be equal to 300 m. The
scatter in the values of R0 was no higher than 20–30%
at all frequencies.

The experiment on the long-range propagation
of the explosion-generated signals in the Barents Sea
was performed in summertime (the second half of
July), twice in different years on the same path. The
receiving vessel drifted 500 km northeast of Mur-
mansk. The transmitting vessel went a heading of 330°
off the receiving one. The total length of the path was
about 240 km. The path crossed the Central Basin from
southeast to northwest. The sea depth varied from 210–
220 to 340–350 m along the path. The bottom relief on
the path is shown in Fig. 5c, as obtained in the echo-
sounder survey carried out during the acoustic experi-
ment. Explosive charges were detonated at a depth of
100 m. The signals were received by omnidirectional
systems deployed at different depths. At the moment of
explosion, the distance between the vessels was mea-
sured from the difference in the propagation times of
the acoustic and radio signals.

The measurements of the profiles c(z) were carried
out with an ISTOK-3 instrument, before and after the
first experiment. A near-bottom sound channel was
present on the entire path in the first experiment. In the
second experiment, the hydrological survey of the path
was performed with the use of expendable TZO-2 ther-
moprobes, simultaneously with the explosions. Twelve
thermoprobes were dropped at equal intervals along the
path. At several points of the path, after the acoustic
experiments, check measurements of the salinity and
temperature were performed using bathometers. At dis-
–20

1.0 1.5 2.0 2.5 3.0 3.5 4.0
R, km

–10

0

10

20

Fig. 3. Angular structure of the sound field measured at distances of 1–4 km by a vertical antenna array with its center at a depth of
100 m. The source depth is 150 m. The transmitted signal is a 2-octave noise with a central frequency of 3 kHz.
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tances of 50–150 km from the reception point, the path
crossed a frontal zone, i.e., the boundary of the cold
polar waters. In this transition zone, the sound speed
field was rather complex; this fact was reported previ-
ously by other researchers [5, 6]. The propagation con-
ditions south and north of the frontal zone were notice-
ably different. The main difference consisted in the
position of the minimum in the sound speed profile. For
the southern waters, a near-bottom sound channel is
characteristic. In the northern waters, the axis of the
underwater sound channel was at a depth of 50–100 m.
Figures 5a and 5b illustrate the sound speed field along
the path for the experiments under discussion.

In the first experiment, the hydrological condi-
tions were characterized by a negative sound speed gra-
dient from surface to bottom, with a sound speed mini-
mum at the bottom. At distances greater than 10–15 km,
the signal propagating along the path was multiply
reflected from the bottom. The time structure of the
explosion-generated signal received at different dis-
tances from the source has the shape typical for such
propagation conditions (Fig. 6a). Separate elementary
(single-ray) signals can hardly be extracted from the
total multiray signal. The signal begins with a sharp
increase in level and then reaches its maximum, after
which a smooth decrease down to the noise level fol-
lows. Near the source, the grazing angles of the
reflected rays vary from 3°–4° to 89°–90° at the bottom.
The upper limit of the grazing angles decreases in dis-
tance due to the loss at the bottom reflections. As the
grazing angle grows, the bottom reflection coefficient
decreases and the number of reflections per unit dis-
tance increases. The first signals to arrive at the receiver
are those propagating along flat rays with small grazing
angles near the bottom and small numbers of bottom
reflections. The last signals to arrive are those propagat-
ing along steep rays with large grazing angles and large
numbers of bottom reflections. Studenichnik [7]
attempted to estimate the difference in the angular
dependences of the bottom reflection coefficient at dif-
ferent frequencies from the dependence of the signal
duration on frequency, which, in its turn, was obtained
from the spectral analysis of the explosion-generated
signal. In our experiments, no such difference was
observed.

The signal loses its coherence at the bottom reflec-
tions. However, according to the experiments with the
explosion-generated signals, the complex shape of the
signal spectrum, which is caused by the interaction of
the shock wave and the first gas-bubble oscillation,
does not vanish up to the ultimate distance (240 km in
our case). Figure 6b shows the spectrum of the signal
received 30 km from the source. For a two-pulse signal,
the complex shape of the spectrum can be seen in the
entire frequency band.

With the explosions as signal sources, the following
quantity serves as the characteristic of the sound field
that is equivalent to the signal energy within the fre-
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
quency band ∆f: Ef = (t)dt, where T is the duration

of the explosion-generated signal and pf(t) is the sound
pressure normalized to the frequency band ∆f.

In processing the energy spectrum of the explosion-
generated signals received at different distances from
the source, we obtained the experimental decay laws of
the sound field at different frequencies. Figure 7 illus-
trates the decays obtained at 100, 200, and 400 Hz, with
the receiver at a depth of 150 m. The values of βeff

obtained from the data of the first experiment are sum-
marized in Table 1.

These values were determined from the sound field
decays at the 100-m and 150-m horizons. The differ-
ence between the two resulting sets of data is insignifi-
cant: about 20% at low frequencies and less than 3–5%
at high frequencies of the band under study. When the
frequency changes from 100 to 1000 Hz, the values of
βeff change by a factor of as little as 2–2.5. The attenu-
ation coefficients βeff experimentally obtained at
125 Hz agree well with the value (0.125 dB/km) found
from studying the vertical structure of the sound field
produced by a low-frequency transmitting transducer at
the same frequency. These studies of the vertical struc-
ture were carried out in the same region.

The last column of Table 1 contains the coefficients
of sound absorption in the waters of the Barents Sea.
These values are calculated with allowance for the low-
frequency relaxation associated with boron in sea
water. The calculation is based on the formulas pro-
posed in [8] with the parameters specified as follows:
t = –0.5°C, S = 34.5‰, and pH = 7.95. As one would
expect, the experimental values of βeff are by a factor of

p f
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0 10 0 0 10 2001010
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Fig. 4. Vertical structure of the sound field produced by a
source positioned at a depth of 100 m. The distances are
(a) 2; (b) 8; (c) 42; and (d) 86 km. The frequency of the
transmitted tonal signal is 16 Hz.
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Fig. 5. Sound speed fields obtained in hydrological surveys of the path in (a) the first and (b) the second experiments and (c) the
bottom relief obtained by echo sounding on the propagation path of the explosion-generated signals.
several tens higher than the absorption coefficient. The
effective attenuation coefficient is almost fully gov-
erned by the loss of the sound energy in the bottom
reflections.
A somewhat unordinary frequency dependence of
the coefficient βeff is worth mentioning. From 300 Hz to
1 kHz, the values of βeff are nearly frequency-indepen-
dent (βeff ~ 0.3 dB/km). The decrease in frequency from
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
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Fig. 6. Time structure of (a) the explosion-generated signal received at a distance of 30 km and (b) its spectrum.
300 to 100 Hz leads to the decrease in βeff down to
0.13–0.17 dB/km (i.e., by a factor of about 2). To find
the reason for such a peculiar frequency dependence,
we performed a number of calculations with the use of
the wave-method computer code developed by Avilov
[9]. The calculations were carried out for noise signals
(in 1/3-octave frequency bands) with allowance for the
bottom relief (the data on echo sounding were used) for
six profiles c(z) (the data on hydrological surveys were
used) and a three-layer bottom model (according to the
archive data, two layers overlying a half-space) by
neglecting the shear waves. In accordance with the
aforementioned technique, we used the calculated
sound field to determine the effective attenuation coef-
ficient, whose frequency dependence was compared
with the experimental data.
OUSTICAL PHYSICS      Vol. 49      No. 6      2003
The calculations led to an interesting result. As the
frequency increased, βeff also increased, reached its
maximum, and then smoothly decreased. With the 5-m
thickness of the upper water-saturated sediment layer,
the maximum corresponded to a frequency of about
200 Hz. A decrease in the thickness of this layer shifted
the maximum towards higher frequencies. With the 3-
m thickness, the maximum occurred at a frequency of
about 300 Hz.

In the calculations, the absorption coefficient of the
sediments was assumed to be proportional to the fre-
quency. The loss coefficient was specified to be fre-
quency-independent. However, the experimental data
on the frequency dependence of the absorption in sedi-
ments lead to a power law with the exponent varying
from 0.7 to 1.3 [10]. Theoretical studies [11–13] of the
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sound absorption in water-saturated sediments and sus-
pensions allow the exponent to vary from 0.5 to 2.

By specifying a value of 1.4 for the exponent in the
power-law frequency dependence of sound absorption
in the upper water-saturated layer, we achieved a flat-
tening of the βeff curve at frequencies higher than
300 Hz, although it remained decreasing at lower fre-
quencies. Thus, agreement between the experimental
and calculated frequency dependences of βeff was
attained.

In forming the frequency dependence of attenua-
tion, the bottom relief plays an important part. This can
be verified by performing similar calculations for a flat
bottom with the same characteristics of the sediments.

10 dB

0 100

ER

(c)

(b)

(a)

200 R, km

Fig. 7. Experimental decay laws obtained for the sound field
levels of explosion-generated signals in the first experiment
at the frequencies (a) 100; (b) 200; and (c) 400 Hz. The
explosion and reception depths are 100 and 150 m, respec-
tively.
For a flat bottom with a sea depth of 300 m, the calcu-
lation yields a monotonic frequency-proportional
increase in the attenuation coefficient at frequencies
higher than 300 Hz, such a behavior being noticeably
different from the experimental frequency dependence.

In the calculations, the upper water-saturated sedi-
ment layer was characterized by range-independent
parameters: a layer thickness of h1 = 3 m, a sediment
density of ρ1 = 1.5 g/cm3, a sound speed in sediments
of c1 = 1450 m/s, and an absorption of β1 = af 1.4, where
a = 0.95 dB/km kHz1.4. For the second layer, the layer
thickness was specified to change on two initial frac-
tions of the path, from 100 to 10 m at the distances 0–
60 km and from 10 to 50 m at 110–140 km, and to be
constant on the two remaining fractions, 10 m at 60–
110 km and 50 m at 140–230 km. Other parameters
were as follows: ρ2 = 2.0 g/cm3, c2 = 1700 m/s, and a
loss coefficient of δ2 = 0.02. For the underlying half-
space, the following parameter values were specified:
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Fig. 8. Experimental decay laws obtained for the sound field
levels of explosion-generated signals in (a) the first and (b)
the second experiments at a frequency of 315 Hz. The
explosion and reception depths are 100 and 150 m, respec-
tively.
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ρ3 = 2.2 g/cm3, c3 = 2300 m/s, and δ3 = 0.006. The
parameters of the second layer and the underlying half-
space corresponded to the archive data (with small vari-
ations in the loss coefficients). With the accepted bot-
tom model, the calculated effective attenuation coeffi-
cient differed from the experimental one by 30–50%
(the calculation led to lower values than the experi-
ment). Perhaps some variations in the parameter values
could result in a better agreement. However, we did not
consider this problem in the present work, although,
nowadays, many studies [14, 15] are known to deal
with developing geoacoustic models for the bottom of
a shallow sea on the basis of acoustic measurements.

In the second experiment, the initial part of the
path, about 50 km in length, was also characterized by
a negative gradient of the sound speed from surface to
bottom, with the sound velocity minimum near the bot-
tom. However, at distances greater than 50 km from the
reception point, a weak underwater sound channel
occurred on certain fractions of the path. This channel
was formed by masses of polar water occupying depths
from 50–100 m to bottom. Deeper than 50–200 m, a
positive sound speed gradient close to hydrostatic was
observed.

The decay of the sound field and, in particular, the
values of βeff strongly depend on the vertical sound
speed profile. Thus, the difference in the experimental
values of βeff obtained on the two path fractions, north
and south of the frontal zone, can quantitatively charac-
terize the difference in the corresponding propagation
conditions. Figure 8 compares the experimental decay
laws observed in the (a) first and (b) second experi-
ments at a frequency of 315 Hz and a reception depth
of 150 m. The data of the second experiment exhibit an
increased scatter of the experimental values and an evi-
dent kink in the decay curve 60–80 km from the recep-
tion point, while no such kink occurs in the data of the
first experiment. The values of βeff determined for dis-
tances of 10–100 km (south of the frontal zone) and 60–
230 km (north of the southern zone boundary) are sum-
marized in Table 2.

The values of βeff differ by a factor of 2–2.5 for these
two path fractions. At the same time, the difference in
the values of βeff obtained in the first experiment and on
the southern path fraction of the second experiment is
no greater than 20–30%.

With the hydrological environment of the second
experiment, the calculations were carried out using the
same computer code by Avilov. The bottom model
accepted for the first experiment was also used for the
second one, because both experiments were performed
on the same path. The main objective of the calcula-
tions consisted in estimating the role of the frontal zone
in the formation of the different sound field decay laws
observed in the two experiments. As in the experiment,
the calculated sound field decays corrected for the
cylindrical spread exhibit changes in the steepness of
decay. When determined from the calculations for dis-
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
tances of 70–100 km to the end of the path, the sound
attenuation proved to be 2–4 times lower than that
determined from the calculations corresponding to the
first experiment. This difference agrees well with the
experimental data.

In conclusion, let us summarize the main results.

—For the summertime conditions of the central part
of the Barents Sea, the experimental data on the sound
attenuation associated with the loss due to the bottom

Table 1.  Experimental values of βeff obtained for the Bar-
ents Sea in the first experiment with explosive sound sources
at a depth of 100 m

Frequency, 
Hz

βeff, dB/km,
a reception 

depth of 100 m

βeff, dB/km,
a reception 

depth of 150 m

Sound
absorption, 

dB/km

80 0.160 – 0.0003

100 0.167 0.126 0.0004

125 0.179 0.135 0.0007

160 0.183 0.153 0.0011

200 0.202 0.187 0.002

250 0.268 0.215 0.003

315 0.292 0.280 0.004

400 0.307 0.326 0.007

500 0.301 0.296 0.01

630 0.277 0.306 0.015

800 0.310 0.301 0.02

1000 0.311 0.291 0.03

Table 2.  Attenuation coefficient (dB/km) obtained from the
data of the second experiment with explosive sound sources
for two path fractions, south and north of the frontal zone

Frequen-
cy, Hz

South of the frontal zone North of the frontal zone

Reception 
depth 50 m

Reception 
depth 150 m

Reception 
depth 50 m

Reception 
depth 150 m

63 0.155 0.135 0.063 0.050

80 0.135 0.155 0.074 0.048

100 0.160 0.150 0.071 0.054

125 0.145 0.175 0.078 0.060

160 0.175 0.195 0.078 0.069

200 0.180 0.200 0.088 0.075

250 0.215 0.230 0.110 0.073

315 0.240 0.240 0.125 0.079

400 0.265 0.245 0.130 0.078

500 0.290 0.260 0.150 0.084

630 0.315 0.240 – –

800 0.340 0.245 – –

1000 0.380 0.250 – –
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reflections are obtained for the frequency band of 16–
4000 Hz.

—The specific character of the frequency depen-
dence obtained for the low-frequency attenuation can
be explained by assuming a power-law frequency
dependence of the absorption coefficient in the upper
water-saturated sediment layer with an exponent equal
to 1.4. The calculations reveal the important role of the
bottom relief in the formation of the frequency depen-
dence of attenuation.

—The data of two experiments with explosive
sound sources, which were carried out on the same path
in different years, illustrate a possible year-to-year vari-
ability of the propagation conditions. In the second
experiment, the path crossed the frontal zone corre-
sponding to the transition from southern to northern
waters with the near-bottom and underwater sound
channels, respectively. The data of hydrological sur-
veys testified to the complex structure of the frontal
zone.

—The vertical structure of the sound field exhibited
an complex shape caused by interference, with the
interference period decreasing when the frequency
increases and increasing when the distance increases.

—The transition distances determined at low fre-
quencies (tens of hertz) and at high frequencies (several
kilohertz) agree well with each other.

—With the use of a vertical receiving antenna array,
the arrival direction can be determined with confidence
only for the water-path signals, which undergo no bot-
tom reflections.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research, project nos. 01-02-16636 and 01-
05-64711.
REFERENCES
1. V. F. Sukhoveœ, Seas of the Global Ocean (Gidrome-

teoizdat, Leningrad, 1986).
2. B. S. Zalogin and A. N. Kosarev, Seas (Mysl’, Moscow,

1999).
3. M. V. Klenova, in Oceanographic Encyclopedia

(Gidrometeoizdat, Leningrad, 1974).
4. M. V. Klenova, in Present-Day Sediments of Seas and

Oceans (Akad. Nauk SSSR, Moscow, 1961), pp. 419–
436.

5. N. M. Adrov and I. V. Smolyar, in Abstracts of All-Union
Seminar on Oceanological Fronts in Northern Seas:
Characteristics, Methods of Investigation, and Models
(Akad. Nauk SSSR, Moscow, 1989), p. 3.

6. J. F. Lynch, G. Jin, R. Pavlovicz, et al., J. Acoust. Soc.
Am. 99, 803 (1996).

7. N. V. Studenichnik, Akust. Zh. 42, 134 (1996) [Acoust.
Phys. 42, 119 (1996)].

8. R. A. Vadov, Akust. Zh. 46, 624 (2000) [Acoust. Phys.
46, 544 (2000)].

9. K. V. Avilov, Akust. Zh. 41, 5 (1995) [Acoust. Phys. 41,
1 (1995)].

10. E. L. Hamilton, in Physics of Sound in Marine Sedi-
ments, Ed. by L. Hampton (Plenum, New York, 1974;
Mir, Moscow, 1977).

11. M. A. Biot, J. Acoust. Soc. Am. 28, 168 (1956);
J. Acoust. Soc. Am. 28, 179 (1956).

12. R. D. Stoll, in Physics of Sound in Marine Sediments,
Ed. by L. Hampton (Plenum, New York, 1974; Mir, Mos-
cow, 1977).

13. E. M. Hovem, in Bottom-Interacting Ocean Acoustics,
Ed. by W. Kuperman and F. Jensen (Plenum, New York,
1981; Mir, Moscow, 1984).

14. A. I. Belov, in Proceedings of the VIII School–Seminar
of Academician L. M. Brekhovskikh on Acoustics of the
Ocean (GEOS, Moscow, 2000), p. 81.

15. P. Pignot and N. R. Chapman, J. Acoust. Soc. Am. 110,
1338 (2001).

Translated by E. Kopyl
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003



  

Acoustical Physics, Vol. 49, No. 6, 2003, pp. 647–652. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 49, No. 6, 2003, pp. 761–767.
Original Russian Text Copyright © 2003 by Vershubski

 

œ

 

, Parygin.

               
Diffraction of Light by an Acoustic Wave with Three Frequency 
Components

A. V. Vershubskiœ and V. N. Parygin†

Moscow State University, Vorob’evy gory, Moscow, 119992 Russia
e-mail: parygin@osc162.phys.msu.su

Received November 19, 2002

Abstract—Collinear light diffraction by three-frequency sound is investigated theoretically. The amplitude dis-
tributions of transmitted and diffracted light waves along the cell are calculated for different amplitudes of
sound signals. The dependence of the intensity of principal diffraction peaks on the frequency difference
between acoustic signal components is studied for different amplitude ratios of these components. It is shown
that the character of this dependence for a wave being in synchronism differs substantially from that for two
other waves characterized by detuning. The dependence of the amplitudes of principal and parasitic diffraction
peaks on the efficiency of acoustooptical interaction is investigated. It is demonstrated that parasitic sideband
components in diffracted light can play a considerable role if the diffraction efficiency is sufficiently high and
exceeds 80%. © 2003 MAIK “Nauka/Interperiodica”.
† INTRODUCTION
The basis for the phenomenon of acoustooptical

interaction is the photoelastic effect, i.e., the variation
of the refractive index of a medium under an elastic
stress. As a result, an acoustic wave propagating in an
optically transparent medium constitutes a phase dif-
fraction grating moving with the velocity of sound.
Being transmitted through an acoustic field, light is dif-
fracted by the inhomogeneities of the refractive index.
An important area of practical application of acous-
tooptical interaction is the design of information pro-
cessing systems, where acoustooptical devices are used
for real-time processing of microwave signals. Depend-
ing on the intended application, several types of acous-
tooptical devices have been developed: deflectors,
modulators, filters, processors, etc. [1–5].

The theory of acoustooptical interaction for mono-
chromatic waves is developed in sufficient detail. It not
only describes the diffraction of light by a plane sound
wave [6, 7] but also takes into account bounded three-
dimensional divergent beams [8, 9]. However some
acoustooptical devices (especially systems for optical
information processing) use nonmonochromatic sound
beams [10]. Since an acoustooptical cell is a nonlinear
element with respect to an acoustic signal, the spectrum
of diffracted light proves to be enriched with combina-
tion frequencies of acoustic signals. This substantially
restricts the dynamic range of acoustooptical devices.
Proklov and Chesnokov [11] theoretically studied the
diffraction of light by multifrequency sound with a pro-
nounced nonlinearity of photoelasticity. They demon-
strated that, in some cases, the presence of two different
kinds of nonlinearity provides an opportunity to sup-

† Deceased.
1063-7710/03/4906- $24.00 © 20647
press the sideband signals and, thus, to expand the
dynamic range of a device.

One of the most important acoustooptical devices
widely used for optical data processing is a spectrum
analyzer for radio signals [3]. In this device, the signal
to be analyzed is fed to a piezoelectric transducer and
propagates in the form of a sound signal in an acous-
tooptical medium. Light from a laser source is dif-
fracted by ultrasound, so that each spectral component
of the acoustic wave produces a diffracted light beam
with its own propagation direction. This provides an
opportunity to judge the spectral composition of the ini-
tial signal.

All characteristics of a spectrum analyzer are usu-
ally calculated from the conditions of light diffraction
by a harmonic acoustic wave. However, this approach
is valid only for a linear acoustooptical device. Real
acoustooptical interaction is nonlinear, even if it is pos-
sible to ignore the acoustic and optical nonlinearities of
the medium. The specific acoustooptical nonlinearity is
related to multiple light scattering by sound and is most
pronounced in the case of light diffraction by a multi-
frequency sound signal.

This paper is devoted to the characteristic features of
light diffraction by a multifrequency signal, which is
represented by a three-frequency acoustic beam as an
example. The fundamental need to consider a three-fre-
quency signal is determined by the fact that, in the case
of a two-frequency signal, it is impossible to evaluate
the real dynamic range of a device, because for any
arbitrary amplitude values of the two spectral acoustic
components, true diffraction peaks will always be
higher than parasitic ones. In the case of a three-fre-
quency signal, it is possible to reduce the amplitude of
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Diagram of light diffraction by a three-frequency acoustic signal. The lines indicate the levels of the principal and sideband
frequencies; the arrows show possible transitions due to light scattering by sound.
the third component relative to the parasitic sideband
components.

THEORY OF THREE-FREQUENCY 
ACOUSTOOPTICAL INTERACTION

Let us consider the propagation of a light beam in an
acoustooptical cell along the x axis in the presence of
sound traveling in the same direction. The electric field

vector  in a medium perturbed by sound propagation
must satisfy the wave equation [12]

(1)

where ε0 is the dielectric permeability tensor of the
medium in the absence of sound and ∆ε is the variation
of the tensor ε0 due to the sound propagation.

When a multifrequency signal is fed to the input of
an acoustooptical cell, a sound wave of the following
form is generated in the crystal by the piezoelectric
transducer:

(2)

where Am, Km, and Ωm are the amplitude, wave number,
and frequency of a partial sound wave. In this paper, we
consider the case of light diffraction by an acoustic
wave consisting of three partial waves with close fre-
quencies. In this situation, ignoring the attenuation, we
reduce Eq. (2) to the form

(3)

where Φi = Ωit – Kix.
Because of the nonlinearity of acoustooptical dif-

fraction, the interaction of sound wave (3) with light
incident upon the cell will result in the propagation of a
set of transmitted and diffracted waves with combina-
tion frequencies in the crystal. Restricting our consider-

E

curlcurlE
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-------∆εE,–=

u Am Ωmt Kmx–( ),cos
m 1=

N

∑=

u A1 Φ1cos A2 Φ2cos A3 Φ3,cos+ +=
ation to the third-order nonlinearity, we obtain seven
transmitted and twelve diffracted waves with their own
frequencies. Here, we examine the case where one of
the partial waves is in synchronism (i.e., it satisfies the
Bragg condition exactly) and two other waves are
detuned relative to this condition. The detuning param-
eters η can be determined from the expressions

(4)

where kt and kd are the wave numbers of the incident
and diffracted light waves, η1 = K2 – K1 , and η2 = K3 –
K1. Here and below, the index t belongs to the incident
component and the index d, to the diffracted compo-
nent.

The diagram in Fig. 1 illustrates the specific features
of light diffraction by a three-frequency signal. As the
result of single scattering, three diffracted light beams
with frequencies of ω + Ω1, ω + Ω2 , and ω + Ω3 are
formed, where ω is the incident light frequency. Each of
these beams can be rescattered by any of the three
acoustic components. As a result, light waves with
close frequencies of ω – Ω1 + Ω2, ω – Ω1 + Ω3, ω + Ω1 –
Ω3, ω + Ω2 – Ω3, ω + Ω3 – Ω2, and ω + Ω1 – Ω2 appear
in addition to the incident light with frequency ω. Each
of these partial waves in turn can be scattered by any of
the three sound components. This leads to the appear-
ance of nine additional diffracted beams, which lie near
the three principal peaks and can be identified by a
spectrum analyzer as additional frequency components
of the signal under analysis. The basic method of
selecting true signal components from parasitic ones
relies on the fact that the amplitudes of the parasitic
components are smaller. However, the application of
this method limits the dynamic range of the spectrum
analyzer.

The table complements the diagram of light scatter-
ing given in Fig. 1. It describes the basic characteristics

kt K1+ kd=

kt K2+ kd η1+=

kt K3+ kd η2,+=
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Basic characteristics of each of the partial light waves propagating in the cell in the case of three-frequency acoustooptical
interaction with allowance for nonlinearity no higher than the third-order one

Amplitude of the corre-
sponding light wave Wave number Frequency shift

relative to ω
Parameter of detuning

relative to kt or kd

Amplitudes of acoustic 
components

Et0 kt 0

Et1 kt + K1 – K3 Ω1 – Ω3 –η2 A1A3

Et2 kt + K2 – K3 Ω2 – Ω3 η1 – η2 A2A3

Et3 kt + K1 – K2 Ω1 – Ω2 –η1 A1A2

Et4 kt + K2 – K1 Ω2 – Ω1 η1 A1A2

Et5 kt + K3 – K2 Ω3 – Ω2 η2 – η1 A2A3

Et6 kt + K3 – K1 Ω3 – Ω1 η2 A3A1

Ed1 kt + K1 = kd Ω1 A1

Ed2 kt + K2 = kd + ∆K2 Ω2 η1 A2

Ed3 kt + K3 = kd + ∆K3 Ω3 η2 A3

Ed4 kd – ∆K3 2Ω1 – Ω3 –η2 A1A3A1

Ed5 kd + ∆K2 – ∆K3 Ω1 – Ω3 + Ω2 η1 – η2 A1A3A2

Ed6 kd – ∆K2 2Ω1 – Ω2 –η1 A1A2A1

Ed7 kd + ∆K2 – ∆K3 2Ω2 – Ω3 2η1 – η2 A2A3A2

Ed8 kd – ∆K2 + ∆K3 Ω1 – Ω2 + Ω3 η2 – η1 A1A2A3

Ed9 kd + 2∆K2 2Ω2 – Ω1 2η1 A2A1A2

Ed10 kd + ∆K2 + ∆K3 Ω2 – Ω1 + Ω3 η1 + η2 A2A1A3

Ed11 kd + 2∆K3 – ∆K2 2Ω3 – Ω2 2η2 – η1 A3A2A3

Ed12 kd + 2∆K3 2Ω3 – Ω1 2η2 A3A1A3
of each of the partial waves propagating in the acous-
tooptical cell. Each of these waves is characterized by
its own wave number, frequency shift with respect to
the incident light beam, detuning parameter, and also
amplitudes of acoustic components by which the con-
sequent scattering occurred.

As is well known, in the case of collinear diffrac-
tion, the optical field in the region of interaction of light
and sound can be represented as a sum of incident and
diffracted beams, which in the case of cubic nonlinear-
ity of interaction (i.e., in the case under study) can be
represented as

(5)

Substituting Eq. (5) into wave equation (1) and then
equating the coefficients of equal frequencies, we
obtain a set of equations that connects the amplitudes of
transmitted and diffracted waves:

E x t,( ) Eti x t,( )
i 0=

6

∑ Edj x t,( ).
j 1=

12

∑+=

dEt0

dx
----------

q1

2
-----Ed1

q2

2
-----Ed2e

jη1x q3

2
-----Ed3e

jη2x
+ +=

dEt1

dx
----------

q1

2
-----Ed1

q7

2
-----Ed4e

j– η2x q8

2
-----Ed5e

j η1 η2–( )x
+ +=
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dEt2

dx
----------

q2

2
-----Ed2e

jη1x
=

+
q8

2
-----Ed5e

j– η1 η2–( )x q10

2
-------Ed7e

j 2η1 η2–( )x
+

dEt3

dx
----------

q1

2
-----Ed1

q9

2
-----Ed6e

j– η1x q8

2
-----Ed8e

j η2 η1–( )x
+ +=

dEt4

dx
----------

q2

2
-----Ed2e

jη1x q11

2
-------Ed9e

2 jη1x q8

2
-----Ed10e

j η1 η2+( )x
+ +=

dEt5

dx
----------

q3

2
-----Ed3e

jη2x
=

+
q8

2
-----Ed8e

j η2 η1–( )x q12

2
-------Ed11e

j 2η2 η1–( )x
+

dEt6

dx
----------

q3

2
-----Ed3e

jη2x
=

+
q8

2
-----Ed10e

j η1 η2+( )x q13

2
-------Ed12e

2 jη2x
+

dEd1

dx
-----------

q1

2
-----– Et0

q4

2
-----Et1e

j– η2x q6

2
-----Et3e

j– η1x
––=

dEd2

dx
-----------

q2

2
-----– Et0

q6

2
-----Et4e

jη1x
–

q5

2
-----Et2e

j– η2 η1–( )x
–=
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dEd3

dx
-----------

q3

2
-----– Et0

q4

2
-----Et6e

j– η2x
–

q5

2
-----Et5e

j– η1 η2–( )x
–=

dEd4

dx
-----------

q4

2
-----– Et1e

j– η2x
=

dEd5

dx
-----------

q4

2
-----– Et1e

jη2x– q5

2
-----Et2e

j– η2 η1–( )x
–=

dEd6

dx
-----------

q6

2
-----– Et3e

j– η1x
=

dEd7

dx
-----------

q5

2
-----– Et2e

j– η2 η1–( )x
=

dEd8

dx
-----------

q6

2
-----– Et3e

jη1x– q5

2
-----Et5e

j– η1 η2–( )x
–=

0.05

0

EE*

0.10

0.15

0.20

0.25

0 0.5
x/l

1.0

0.1

0.2

0.3

(a)

(b)

Fig. 2. Distribution of light wave amplitudes along the cell
for different ratios between the amplitudes of sound signal
components. The thick, thin, and dot-and-dash lines corre-
spond to the wave amplitudes at principal frequencies, at
combination frequencies in transmitted light, and at combi-
nation frequencies in diffracted light, respectively. (a) A1 :
A2 : A3 = 1 : 0.95 : 0.9; (b) A1 : A2 : A3 = 1 : 0.8 : 0.6. η1l =
0.1; η2l = 0.15.
Here, q1 = EiA1, q2 = EiA2, q3 = EiA3, q4 = EiA1A3,

q5 = EiA2A3, q6 = EiA1A2, q7 = Ei A3, q8 = A1A2A3,

q9 = Ei A2, q10 = Ei A3, q11 = Ei A1, q12 = Ei A2,

and q13 = Ei A1.

DISCUSSION OF THE RESULTS

System of equations (6) was used to calculate the
amplitude distribution of light waves along the cell for
various amplitude ratios between the components of the
sound signal. The results of calculation are presented in
Fig. 2. The length of the interaction region was selected
to provide a complete energy transfer from wave Et0.
The detuning values η1 and η2 determined by Eqs. (4)
weakly influence the qualitative results obtained for the
distribution of light amplitudes and only reduce the
energy transfer to the diffraction peak. Therefore, in the
calculation at hand, they were assumed to be small.

In the case of almost equal amplitude values of the
acoustic components (Fig. 2a), the intensities of princi-
pal diffraction peaks reach approximately 20% of the
incident light intensity. The share of parasitic peaks in
the incident light is 3–7%, and in the diffracted light,
3%. Thus, the dynamic range of the spectrum analyzer
in the case of a high efficiency of diffraction is about
10 dB. If the difference in amplitude of the analyzed
signal is large (Fig. 2b), the dynamic range slightly
increases. From the character of the amplitude distribu-
tion of light waves, one can see that the parasitic ampli-
tudes in the diffraction peak grow along the interaction
length much faster than the principal ones. Therefore, it
is necessary to reduce the diffraction efficiency at least
twice to obtain a noticeable increase in the dynamic
range of the spectrum analyzer.

Figure 3 presents the intensity dependences of the
principal diffraction peaks Edi  (i = 1, …, 3) on the
quantity ηl for the case of almost equal amplitudes of
acoustic signal components A1 ≈ A2 ≈ A3 (Fig. 3a) and
for widely different amplitudes (Fig. 3b). As one can
see from Fig. 3, the character of the dependence for a
wave being in synchronism (curves 1) differs substan-
tially from that observed for two other waves character-
ized by detunings η1 and η2 (curves 2 and 3). This is
connected with the energy redistribution between

dEd9

dx
-----------

q6

2
-----– Et4e

jη1x
=

dEd10

dx
-------------

q6

2
-----– Et4e

jη1x q4

2
-----Et6e

jη2x
–=

dEd11

dx
-------------

q5

2
-----– Et5e

j– η1 η2–( )x
=

dEd12

dx
-------------

q4

2
-----– Et6e

j– η2x
.=

A1
2

A1
2 A2

2 A2
2 A3

2

A3
2

Edi*
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waves in the diffraction peak. For waves Ed2 and Ed3 ,
the curves have the shape characteristic of a common
transmission function of an acoustooptical filter, i.e.,
with a principal peak and sidelobes. Naturally, the
width of the principal transmission lobe is greater for
the wave with a smaller ∆K. For wave Ed1, the curve
displays a monotonic increase due to the energy
decrease in two components of the useful signal. Com-
paring the curves in Figs. 3a and 3b, we note that the
width and the position of the sidelobe in the transmis-
sion curves of detuned waves Ed2 and Ed3 almost do not
change. However, in the case of the wave being in syn-
chronism, the relative increment of intensity is greater
when the amplitudes of the acoustic signal components
are almost equal. It is worth noting that the total inten-
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Fig. 3. Intensity of the principal diffraction peaks Edi

(i = 1, …, 3) versus the quantity ηl for (1) the wave being in
synchronism, (2) the wave with the detuning η1 , and (3) the
wave with the detuning η2 . (a) A1 ≈ A2 ≈ A3; (b) A1 : A2 :
A3 = 1 : 0.8 : 0.6. η2 = 1.5η1 .

Edi*
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sity of the three diffracted waves of fundamental fre-
quencies decreases with increasing ηl despite the
reduction in the total intensity of parasitic sideband
components. This is connected with the general reduc-
tion in the diffraction efficiency in the case of a fixed
length of the region of acoustooptical interaction; i.e.,
more and more energy is retained in the incident light
beam. Naturally, this effect is most pronounced in
Fig. 3b, because in this case the intensities of parasitic
sideband components were initially smaller.

The dynamic range of acoustooptical spectrum ana-
lyzers is determined by the difference between the lev-
els of true and parasitic components in the diffracted
light under investigation. Therefore, it is necessary to
calculate the dependence of the amplitudes of principal
and parasitic diffraction peaks on the efficiency of
acoustooptical interaction. The results of the corre-
sponding calculation are given in Fig. 4. Curve 1 in this
figure demonstrates the intensity of the principal dif-
fraction peaks as a function of diffraction efficiency in
the case of equal amplitudes of all three spectral com-
ponents of the acoustic signal. Curves 4 and 5 deter-
mine the intensity limits of parasitic peaks. As the dif-
fraction efficiency decreases, these peaks correspond-
ing to the waves of combination frequencies decrease
much more rapidly than the principal peaks. This fact
provides an opportunity to obtain a dynamic range
greater than 60 dB at a diffraction efficiency of 20%.

Curve 2 in Fig. 4 corresponds to a 20-dB reduction
of the amplitude of the third acoustic component in
comparison with the two others. In this case, at a large
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Fig. 4. Intensity of the principal and parasitic diffraction
peaks versus the efficiency of acoustooptical interaction.
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efficiency of acoustooptical interaction, the third com-
ponent of the useful signal is smaller than some para-
sitic peaks. In this situation, it is impossible to reveal
this component in analyzing the signal under investiga-
tion. If the reduction of the amplitude of the third
acoustic component is 30 dB (curve 3 in Fig. 4), this
component can be revealed only by a further reduction
in the diffraction efficiency down to 60%. It is interest-
ing to note that the range of the values of parasitic peaks
changes only at its lower boundary, which drops with
decreasing amplitude A3 down to curve 6. The upper
boundary of the range of parasitic peaks does not
depend on the amplitude of the third acoustic compo-
nent.

CONCLUSIONS

The study described above demonstrated that para-
sitic sideband components that occur in diffracted light
can play a significant role if the diffraction efficiency is
sufficiently high and exceeds 80%. A fundamental
opportunity to considerably reduce the amplitudes of
parasitic peaks of an acoustooptical spectrum analyzer
was demonstrated in [13]. It was suggested to perform
preliminary distortion of the input signal fed to the ana-
lyzer with the aim to compensate the cubic nonlinearity
of its characteristic. In this way, the dynamic range of a
spectrum analyzer could be broadened by no less than
20 dB.

One more way to separate the true components of an
acoustic signal from parasitic ones can be proposed.
For this purpose, one can use the difference in the rates
of decrease in the amplitudes of true and parasitic com-
ponents of diffracted light with the variation of the
amplitude of the signal under analysis. If the input sig-
nal amplitude is reduced to 0.7 dB from the initial value
in the course of measurement, the intensity of the prin-
cipal peaks will drop by 3 dB and the intensity of the
peaks of combination waves, by 9 dB. Thus, the dif-
fracted light components that decrease rapidly with
decreasing input signal amplitude are parasitic and
should not be taken into account in analyzing the radio-
frequency signal fed to the input of an acoustooptical
spectrum analyzer.
In practice, it is also necessary to take into account
the presence of permanent noise due to the light scatter-
ing by inhomogeneities within and at the surface of the
crystal forming the acoustooptical cell. This noise
determines the minimum amplitude level of the input
signal. Usually, this level is –60 to –70 dB of the maxi-
mum level of the input signal. Therefore, the suppres-
sion of the sideband parasitic components below the
noise level is useless, and the optimal reduction of the
diffraction efficiency for choosing the operational
range of the analyzer corresponds to the reduction of
parasitic peaks down to the noise level in the system.
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Abstract—The results of studying the angular and energy structures of a sound field at great depths (880 and
1100 m) with the emission of pseudonoise signals (a frequency range of 1–4 kHz) in the upper layers of the
ocean below the velocline (at a depth of 200 m) are presented. The results refer to two ocean regions character-
ized by the presence of a single-axis deep-water sound channel. The sound field structure at great depths is com-
pared with that recorded at the source depth. The experimental data for the first two convergence zones are com-
pared with the calculations by the ray method. A conclusion is made that, on the whole, the basic regularities
of the field structure at great depths are adequately described by the ray theory. However, the spatial positions
of the convergence zones observed in the experiment differ from those predicted by the ray calculations. More-
over, a closer examination of the field characteristics shows that the parameters of the angular and energy struc-
tures noticeably deviate from the calculated values. © 2003 MAIK “Nauka/Interperiodica”.
It is well known that the basic features of the sound
field structure, which are observed in oceanic
waveguides, strongly depend on the hydrological con-
ditions of the region and on the relative positions of the
source and the receiver. In deep-water oceanic regions,
a sound field is more frequently formed in the condi-
tions characterized by the presence of a single-axis
underwater sound channel. For the latter, the character-
istic feature is the clearly defined zonal structure of the
sound field in the form of a sequence of shadow and
convergence zones. Precisely in these conditions typi-
cal of regions with sound velocity profiles c(z) of trop-
ical and subtropical types, most field investigations of
the angular and energy structure of the sound fields
were carried out [1–3]. The bulk of experimental data
was obtained with the source and receiver positions in
the 500-m-thick upper layer of the waveguide. How-
ever, in several regions of the ocean, the sound field
structure was also measured at much greater depths
(from 800 to 2000 m). It should be noted that all exper-
iments were carried out with the research vessels of the
Acoustics Institute by using a transmitting–receiving
system specially designed under the supervision of
A.M. Dymshchits at the Morfizpribor Central Research
Institute.

The experiments were carried out using broadband
pseudonoise signals. In the upper oceanic layers (up to
several hundreds of meters), the signal reception was
realized by both omnidirectional hydrophones and two
identical vertical 40-m-long flexible arrays with an
external diameter of 5 cm. They were lowered into the
water through trunks made along the ship diametral in
the bottom of the receiving research vessel. Each array
contained 296 hydrophones united into 74 phase cen-
1063-7710/03/4906- $24.00 © 20653
ters. Owing to the nonequidistant arrangement of the
hydrophones, it was possible to measure signal arrival
angles in the vertical plane in a wide (3-octave) fre-
quency range (0.5–4.0 kHz) with almost identical reso-
lution (2°–2.5°) owing to the difference in the length of
the array segments. After amplification in a special
bathysphere located in the immediate vicinity of the
upper part of the array, the signals from all 74 phase
centers were transmitted to the receiving ship, where
they were recorded and subjected to the necessary pro-
cessing. For studying the angular structure of the sound
field at great depths, a special deep-water vertical array
was manufactured in the form of a 10-m-long hard
girder. It was lowered not through the trunks but from
the shipboard with a specially developed high-fre-
quency single-core cable. For transmitting multichan-
nel information to shipboard, a packing system was
used. To compare the angular field structures simulta-
neously measured in the upper oceanic layers and at
great depths, the arrangement of the hydrophones on
the hard girder and their number corresponded to the
central parts of the vertical flexible arrays. In this case,
the angular resolution of the deep-water array for noise
signals with an average frequency of fav = 3.15 kHz was
also ~2.5°. The deep-water array was used for measure-
ments to a depth of 2000 m.

The experiments described below were performed
with the use of two research vessels that lay to. From
the transmitting ship, a broadband, almost omnidirec-
tional, sound source was lowered through a special
trunk to a depth of about 200 m. At the receiving ship,
the signals were received by the flexible arrays down to
a depth of 600 m, and at greater depths, by the deep-
water array. The measurements were carried out with a
003 MAIK “Nauka/Interperiodica”
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slow and continuous variation of the distance between
the corresponding points by means of the transmitting
ship motion against the drift and the free drift of the
receiving ship. The distance between the source and the
receiving arrays (but not between the ships, as is usu-
ally done in many oceanic experiments) was deter-
mined every minute with specially developed hardware
[4]. For this purpose, in the system of unique (interna-
tional) time, short pulses of high intensity were added
to the continuous pseudonoise signal. At the receiving
ship, after the determination of the signal arrival angles
in the vertical plane and propagation time of pulses
over the corresponding rays, the distance to the source
was calculated.

Studies of the angular and energy structure of the
sound field at great depths and comparison of this infor-
mation with the field structure simultaneously mea-
sured at depths close to that of the source (~200 m)
were carried out in various regions of the ocean. The
maximum distances where the measurements were car-
ried out correspond to the two first convergence zones
(~120–130 km). In the Mediterranean Sea, the deep-
water reception was realized at a depth of ~1500 m; in
the Indian Ocean: in the region of the Central Basin, at
a depth of ~1100 m, and in the West-Australian Basin,
at a depth of ~2000m; in the Atlantic Ocean: near the
Canary Islands, at a depth of ~1400 m, near the Cape
Verde Islands, at a depth of 800 m, and also in some
other regions.

The field structure at great depths was investigated
in most detail in the Quiana region of the Atlantic
Ocean (off the coast of Brasil) with the deep-water

5000
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4000

0
1520 15401480 1560
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Fig. 1. Sound velocity profiles c(z) in (1) the Quiana region
of the Atlantic Ocean (solid line) and (2) the Central Basin
of the Indian Ocean (dotted line).

1

2

receiving system positioned at a depth of 880 m, near
the axis of the underwater sound channel. For this
region, the sound velocity profile is shown by a solid
line in Fig. 1. As is seen, the velocline with a high neg-
ative gradient of the sound velocity was observed in the
test region at depths from 50 to 200 m. In a single-axis
sound channel, the sound field character is mainly
determined by the difference in the sound velocities at
the emission and reception depths. The experiment was
carried out with the emission of a noise signal in the fre-
quency range 1–4 kHz at a depth of 200 m and with the
reception at depths of 190 m (the center of one of the
flexible arrays) and 880 m (the center of the deep-water
array). As was noted above, the test track covered the
two first convergence zones. In general, the sound field
structure at both depths is quite adequately described
by a ray pattern (note that, for the frequencies consid-
ered, the sound field calculations by the ray and wave
codes give almost identical results [5–7]). So, while at
a reception depth of 190 m the sound field was mainly
formed by the signals turning in the upper oceanic lay-
ers, at a reception depth near the channel axis, i.e.,
~880 m, it was generated by the signals arriving at
steeper angles. This is confirmed by the experimental
angular structure of the water signals (arriving without
reflections from the waveguide boundaries) in the first
convergence zone (Figs. 2a, 2b) for the aforementioned
depths of reception. Distance r in kilometers is repre-
sented by the abscissa and the arrival angles α in
degrees, by the ordinate. The “+” sign corresponds to
the signals arriving at the reception point from above,
and the “–” sign, to signals arriving from below. The
dots indicate the experimental data, and the solid lines,
the calculations. As follows from Fig. 2a, the angular
structure of the field at a reception depth of 190 m has
the pattern typical of the case when the sound velocity
difference between the emission and reception depths is
small. The pattern is formed by four congruences of
rays with signal arrival angles from –12.5° to +12.5°,
including the zero angle. At a depth of 880 m, because
of the great difference in the sound velocity at the
source and reception depths (∆c ≅  16.2 m/s), these ray
congruences are shifted upwards and downwards along
the α axis, toward greater (in magnitude) arrival angles.
As a result, the signals with arrival angles close to zero
are absent in the angular spectra. According to the cal-
culated curve α(r) in Fig. 2b, the field generated by the
water signals near the axis of the sound channel is
formed by two clearly separated congruences of rays
with the arrival angles 8° ≤ |α| ≤ 15°. Note that compar-
ison of the experimental and calculated data (Figs. 2a,
2b) shows that the experimental points fit well the
curves α for both depths of reception. However, the
experimental points are present also at distances that
are nearer than the calculated head of the convergence
zone. The signals corresponding to these points are
recorded r = 4–5 km nearer than the calculated dis-
tance. It should be noted, however, that the first water
signals recorded in the experiments are very weak: their
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
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Fig. 2. Angular structure of the sound field in the first convergence zone observed in the Quiana region with an emission depth of
200 m and a reception depth of (a) 190 and (b) 880 m.
focusing factor F is close to 0.01–0.02. Therefore, Figs.
2a and 2b cannot serve for judging the degree of dis-
agreement between the experimental and calculated
head of the convergence zones.

The comparison of the field energy structure
recorded with omnidirectional reception at a depth of
190 m and at the channel axis (880 m) for pseudonoise
signals in the 1/3-octave band with the mean frequency
fav = 3.15 kHz is shown in Figs. 3a and 3b. Here, the
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
field structure at the channel axis is also presented for
the signals within the lower frequency range with fav =
1.25 kHz. In all curves, distance r in kilometers is rep-
resented by the abscissa and the signal intensity I in
decibels, by the ordinate; the level 0 dB is taken to be
the field level at r = 1 km from the source for the spher-
ical law of propagation. The solid lines correspond to
experimental data Iexp(r); the thin dashed lines, to the
calculation results Ical(r); and the thin dot-and-dash
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lines, to the spherical law with allowance for the atten-
uation equal 0.14 dB/km for f = 3.15 kHz and
0.04 dB/km for f = 1.25 kHz. From these data it follows
that the experimental energy structure of the total field
at both reception depths agrees well with the experi-
mental angular structure shown in Figs. 2a and 2b.
Indeed, for the upper reception depth, the convergence
zone is the insonified segment of the track 15–16 km in
length, where the maximum of the signal intensity is at
distances from 50 to 52 km. At a depth of 880 km, the
convergence zone 22–23 km in length consists of two
parts with enhanced signal intensity, which correspond
to separate ray congruences in the ray structure. These
parts are separated by the track segment where the sig-
nal level is noticeably lower. For both segments of the
convergence zone, the maximum value of the sound
intensity is lower than that in the upper oceanic layers.
So, while the maximum value of the transmission
anomaly at a depth of 190 m is 23 dB for a frequency
of fav = 3.15 Hz (Fig. 3a), at a depth of 880 m it does not
exceed 16 dB. Thus, the difference in the signal focus-
ing factor at a depth close to that of the source and at the
sound channel axis (∆Amax) is ~7 dB.

For the signals with a frequency of fav = 1.25 kHz,
the energy structure of sound intensity Iexp at the chan-
nel axis (Fig. 3c) retains the basic features of I for sig-
nals with fav = 3.15 kHz. However, one should notice a
lower level of focusing in the caustics (Amax = 13–14
and 15 dB for the first and second parts of the zone,
respectively). As the experimental data shows, the
quantity ∆Amax retains almost the same value (~7 dB).
Some differences are also observed in the fine structure
of the sound field. They are caused by the smoother
character of curve I due to the large period of interfer-
ence for this frequency range.

From comparison of the experimental and calcu-
lated energy characteristics (Figs. 3a–3c), it follows
that curves Iexp(r) and Ical(r) are similar to one another
but are shifted by ∆r in distance. If we determine the
head of the convergence zone from the rapid increase in
the intensity of the received signals when the signal
focusing factor exceeds unity, then the head of the zone
in the experiment is nearer to the source at both depths
by a quantity ∆r equal ~2 km for a reception depth of
190 m and 2.5–3.0 km for a reception depth of 880 m.
In the latter case, the value of the shift ∆r is almost
equal to both initial and terminal segments of the con-
vergence zone. Thus, the disagreement between the
experimental and calculated values of the head of the
zone at the channel axis is somewhat greater than in the
upper oceanic layers.

The estimates obtained for quantity ∆r are close to
the maximum values recorded in various regions of the
ocean. The difference between experimental and calcu-
lated data, ∆r, in hydrological conditions of the tropical
type c(z) usually exceeds ∆r obtained in the subtropical
conditions.
In the case of omnidirectional signal reception, the
interference effects appear in the energy structure of the
sound field, especially at the channel axis (Figs. 3b and
3c), where the number of arriving signals is somewhat
smaller than that at the upper reception depth. It is of
interest to compare these data with the energy structure
of the field measured using the directional reception in
the vertical plane. Figure 4a exhibits the intensity, Iα(r),
of individual signals of frequency fav = 3.15 kHz. They
are received near the sound channel axis and arrive at
the point of reception along the first convergence zone
from below at the angles α = –(8°–15°) and from above
at angles of α = 8°–15° (points and circles in the curve,
respectively). The level corresponding to the spherical
law of propagation is denoted by a thin dot-and-dash
line; it allows one to estimate the transmission anomaly
of the signals spanned by a lobe ~2.5° in width. The cal-
culated head of the zone for the signals arriving from
below is denoted in the curve by the vertical thick line
1, while the head of the zone and end of the zone for the
signals arriving from above, by the straight lines 2 and
3, respectively. From the data of Fig. 4a, it is clear that
the range of distances (40–69 km) in which the water
signals were received is noticeably greater than the cal-
culated range (46–64 km); i.e., the signals were
recorded not only nearer to the source but also farther
than predicted by the ray theory.

The most interesting segment in Fig. 4a corresponds
to the initial range of distances at the head of the con-
vergence zone, and this segment is presented in more
detail in Fig. 4b. Here, signal intensity Iα(r) with direc-
tional reception (curve 2) is compared with the field
intensity I with omnidirectional reception (curve 1). It
is seen that the character of the curves is almost the
same beginning from the distance ~42.6 km. The field
intensity reaches its maximum value at a distance of 44
km for both kinds of reception (Fig. 4b). With direc-
tional reception, the maximum transmission anomaly
does not differ from that obtained with omnidirectional
reception.

Consider now the results of studying the field struc-
ture in the second convergence zone. Figure 5 exhibits
the experimental and calculated data for the signal
reception at a depth of the sound channel axis (~880 m).
Figure 5a presents the range dependence of the angular
structure, α(r), of the water pseudonoise signals with
fav = 3.15 kHz (the points represent the experiment, and
the curves represent the calculation). Figures 5b and 5c
present the energy structure of the sound field with
omnidirectional reception for signals with fav = 3.15 kHz
and fav = 1.25 kHz, respectively (the solid line refers to
the experiment, and the dotted line, to the calculation).
It is seen that the angular structure of the field has the
same basic features noted in discussing the results for
the first zone. First, the signals arrive with grazing
angles that agree with the calculation, and, second, the
angular range where the signals are absent is the same.
The basic difference is that the disagreement between
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
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Fig. 3. Energy structure of the sound field in the case of omnidirectional reception in the first convergence zone (Quiana region):
the emission depth is 200 m; the reception depth is (a) 190 and (b, c) 880 m; fav = (a, b) 3.15 and (c) 1.25 kHz.
the experimental and calculated positions of the head of
the convergence zone is much greater. In the first zone,
this shift was 2.5–3.0 km, and in the second zone, it was
~3.0–3.5 km for the first part of the zone and 4.0–
4.5 km in its second part.

The calculated energy structure of the field in the
second convergence zone differs from the experimental
one much more than the field structure in the first zone
does. This fact is confirmed by the dependences I(r)
(Figs. 5b, 5c) obtained with omnidirectional reception
for both frequency ranges, as well as by the variation of
Iα(r) with distance at directional reception for f =
3.15 kHz (Fig. 5b). Here, the points denote the signals
recorded at the head of the zone (they arrived at the
point of reception from below), and the circles denote
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
the signals in the second part of the zone; they arrived
at the point of reception from above. From these depen-
dences it follows that the energy structure of the field in
the second convergence zone, as well as in the first
zone, consists of two parts separated by an interval with
a lower sound intensity. This is clearly seen in depen-
dence Iα(r) at the directional reception. In this case, the
transmission anomaly (A) reaches –(10–12) dB near the
middle of the zone at a distance of r ≅ 104 km for a fre-
quency of fav = 3.15 kHz. At the same time, with omni-
directional reception at the same distances, the trans-
mission anomaly increased up to + 5 dB (mainly due to
the bottom reflected signals), but for signals with fav =
1.25 kHz it was somewhat smaller (A ~ 0 dB). For the
total range of distances presented in the curves, the
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Fig. 4. Energy structure of the sound field near the underwater sound channel axis in the first convergence zone (Quiana region):
the emission depth is 200 m, the reception depth is 880 m, and fav = 3.15 kHz; variations of the signal intensity (a) in the case of the
directional reception within the whole length of the zone and (b) in the case of the (1) omnidirectional and (2) directional reception
at the zone head.
maximum values of the transmission anomaly (Amax)
with omnidirectional reception of the signals with fav =
3.15 kHz reach +16 dB (at the head of the zone) and
+15 dB (at the end of the zone). For signals of fre-
quency fav = 1.25 kHz, the corresponding data are
almost 16 dB and 17 dB, respectively. With directional
reception of the signals with fav = 3.15 kHz (Fig. 5b),
Amax was equal to the maximum transmission anomaly
with omnidirectional reception (the first part of the
zone) or deviated from it by no more than 1–2 dB (the
second part of the convergence zone). According to the
results of the investigations in the second convergence
zone at a depth of 190 m, which are not presented in
this paper, the difference in the signal focusing near the
depths of emission (200 m) and the channel axis (880 m)
is ∆Amax ~ 7–8 dB. Thus, for both convergence zones,
the value of ∆Amax is almost the same.

The results of studying the sound field structure at
large depths, which were obtained in the Quiana region,
can be compared with those obtained in the Central
Basin of the Indian Ocean. The experiments were car-
ried out with the same technique and the same measur-
ing system. The test region was characterized by profile
c(z) of the tropical type shown in Fig. 1 by the dotted
line. As seen from Fig. 1, profiles c(z) are almost iden-
tical in the subsurface layer (to a depth of ~200 m) of
the Quiana region and the Central Basin; in addition,
their negative gradients of the sound velocity are very
close to one another in both cases. Some differences in
the profiles appear in deeper layers directly below the
velocline. In the Indian Ocean, the sound channel axis
lies almost 200 m below that in the Quiana region. At
depths more than 2500 m, the sound velocity gradients
are almost identical, although their absolute values c(z)
are different [8].

The results of studying the sound field structure in
the first convergence zone in the Central Basin of the
Indian Ocean are presented in Fig. 6 for a source
located at a depth of 200 m, for a reception depth of
1100 m. The first of the curves (Fig. 6a) corresponds to
the angular structure of the pseudonoise signal with a
frequency of fav = 3.15 kHz, and the other two, to the
energy structure of the field with omnidirectional
reception of the signals with fav = 3.15 kHz (Fig. 6b)
and fav = 1.25 kHz (Fig. 6c). As was noted above, when
the corresponding points are at different depths, the
angular structure is mainly determined by the differ-
ence in sound velocity ∆c at the depths of the source
and receiver. For the conditions of the Indian Ocean, ∆c
was ~12.5 m/s, and it was ~16.2 m/s for the conditions
of the Quiana region. This determines some differences
in the angular structure of the sound field as well. So,
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
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Fig. 5. Sound field structure in the second convergence zone (Quiana region): the emission depth is 200 m and the reception depth
is 880 m; (a) the angular structure, fav = 3.15 kHz; (b) the energy structure at the omnidirectional (the solid line) and directional
(dots) reception, fav = 3.15 kHz; (c) the energy structure at the omnidirectional reception, fav = 1.25 kHz.
according to Fig. 6a, the congruences of rays forming
the first and second parts of the convergence zone had
minimum arriving angles of 7° (7° ≤ |α| ≤ 15°) rather
than 8°, which led to a smaller angular sector where the
signals were absent, as compared to the previous exper-
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
iment. The first convergence zone in the Indian Ocean,
as in the Quiana region consisting of two parts, was
located 2 km farther from the sound source. The second
part of the zone (formed by the signals arriving from
below) was much farther from its first part (formed by
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fav = (b) 3.15 and (c) 1.25 kHz.
the signals arriving from above) than in the previous
experiment (14 and 11 km, respectively). As is seen
from Fig. 6a, the experimental data satisfactorily agree
with the calculated dependences of the signal arrival
angles on the distance, α(r). However, in this region,
the rather weak water signals were first recorded sev-
eral kilometers before the head of the convergence zone
given by the calculation. As for the energy characteris-
tics of the field (see Figs. 6b and 6c), the experimental
range dependences I(r) of the total field intensity for
both frequency ranges have almost the same structure
as in the Quiana test region: the zone is clearly sepa-
rated into two parts by an interval of lower intensity.
However, the maximum levels of the sound field are
much higher than in the previous test region. According
to Figs. 6b and 6c, the maximum values of the transmis-
sion anomaly, Amax, reached 22 and 19 dB, respectively,
at a reception depth of 1100 m in the first and second
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
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parts of the convergence zone for the signals with fav =
3.15 kHz, and 20 and 17 dB for the signals with fav =
1.25 kHz; these values are much higher than in the Qui-
ana region. The higher signal intensity was recorded
also at a depth of 200 m, which is equal to the emission
depth. The maximum values of the transmission anom-
aly, Amax, at omnidirection reception were ~26 and
24 dB for the signals with fav =3.15 and 1.25 kHz,
respectively. In this test region, the difference in the
maximum values of the transmission anomaly at depths
of 200 and 1100 m was ∆A ≅ 7 dB (in the second part
of the zone).

The agreement between the experimental and calcu-
lated energy structure in this region was much better
than in the previous one. From Figs. 6b and 6c, one can
see that the experimental data (solid line) and the calcu-
lations (dotted line) are close in both the form of the
dependence I(r) and the total level of the received sig-
nals within almost the whole convergence zone. The
shift of the head of the zone to the source relative to the
calculated position was much smaller in the Indian
Ocean than that in the Quiana region, and it was only
~0.8 km for fav = 3.15 kHz and ~0.6 km for fav =
1.25 kHz.

Such discrepancies between the experimental and
theoretical data for the position of the first head of the
zone at great depths are smallest among all results
obtained in the test regions specified at the beginning of
the paper. Note that all calculations of the sound field
characteristics were carried out with allowance for
Earth curvature [1], which makes it possible to correct
the theoretical positions of the convergence zones rela-
tive to the sound source.

Summarizing the results described above, we make
the following conclusions.

The angular and energy structures of the sound field
in the frequency range 1–4 kHz, which were obtained
experimentally in different regions of the ocean (the
Mediterranean Sea, the central and southern regions of
the Atlantic Ocean, the Central and West-Australian
Basins of the Indian Ocean), correspond in general to
the main ray laws of sound propagation in a single-axis
sound channel when the reception occurs at great
depths (from 800 to 2000 m) and the emission of pseud-
onoise signals, in the upper oceanic layers (190–
200 m).

The signal focusing in convergence zones with the
deep-water reception is noticeably weaker (from 14 to
22 dB) than the focusing obtained with the reception
near the emission depth (22–26 dB). The difference in
the maximum values of the transmission anomaly in the
convergence zones observed at a reception depth close
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
to the emission depth, as well as at much greater depths,
is usually about 5–7 dB.

Specific characteristics of the angular and energy
structures largely depend on the difference in the sound
velocities at the source and receiver depths. This differ-
ence determines the angular sector of signal absence
(signals propagate without reflections from waveguide
boundaries) around the zero arrival angle, as well as the
length of the low-intensity interval that separates the
convergence zones in two parts.

In actual oceanic conditions, the convergence zones
are located nearer to the sound source than predicted by
calculations, even with allowance for Earth curvature
(for the first zone, by 0.6–2.5 km). Fine elements of the
sound field structure, in particular, the angular spec-
trum and the field intensity variations along the conver-
gence zone, which were observed in the experiments,
noticeably deviate from the corresponding calculated
parameters, this deviation being somewhat greater for
the deep-water reception as compared to the reception
in the upper oceanic layers.
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Abstract—The results of a computer modeling of sound propagation in the ocean with fine-structured inhomo-
geneities are presented. The modeling was performed using a wave code based on the wide-angle approxima-
tion, which allows one to estimate the effects of sound field perturbations. These effects include the insonifica-
tion of the geometric shadow zones and the abnormal attenuation of low-frequency sound in the course of its
propagation in an oceanic waveguide. Calculations clearly demonstrate that the fine-structured inhomogeneities
of the sound velocity considerably affect the sound propagation in the ocean. © 2003 MAIK “Nauka/Interpe-
riodica”.
Modern computer technologies allow one to use
wave codes for computing the energy characteristics of
the sound field of a kilohertz range in the shadow zones
of the deep ocean on the condition that the sound veloc-
ity profile is given with the discreteness corresponding
to the scales of the fine-structured inhomogeneities
along both vertical and horizontal coordinate axes. The
use of such codes allows one to estimate the intensity of
the shadow zone insonification and the additional atten-
uation of low-frequency sound in the underwater sound
channel as functions of the scales and intensity of the
fine structure of the sound velocity over a wide range of
these variable quantities.

The modeling of the fine structure of the sound
velocity field depending on only the vertical coordinate
(a plane-layered medium) was carried out on the basis
of experimental data for the fine-structured inhomoge-
neities of the sound velocity [1, 2]. The direct measure-
ments of the sound velocity in the sea medium were
carried out in various regions of the ocean with a spatial
resolution of about 1.5 m to a depth of ~3 km. A cyclic
sound velocity meter with a sensitivity of ~10–6 units of
the refractive index was used. The measured sound
velocity profile was processed by an averaging cosine-
filter with a half-width of 30 m. As a result, the profile
of the mean sound velocity was determined. The latter
was subtracted from the measured profile, and the high-
frequency components of the vertical distribution of the
sound velocity were obtained. In what follows, the slid-
ing energy spectra of the high-frequency component of
1063-7710/03/4906- $24.00 © 20662
the sound velocity profile were computed with a 200-m
long window of analysis at a step of 100 m. To increase
the stability of the estimates of the spectral density of
sound velocity fluctuations, the spectra obtained were
subjected to a sliding averaging over ten adjacent fre-
quencies.

Figure 1 exhibits an example of such processing of
the sound velocity profiles in the tropical part of the
Pacific Ocean (18°13′ S, 163°50′ W). On the left, Fig. 1
presents the depth dependence of the average sound
velocity (z) obtained as a result of filtering the sound-
ing data by a cosine filter. In the middle, the depen-
dence of the high-frequency component of the sound
velocity on depth, δc(z) = c(z) – (z), is shown. On the
right, the sliding energy spectra of the sound velocity
fluctuations, which were obtained from 200-m seg-
ments of the high-frequency component, are presented.
The spectra are plotted on double logarithmic scales.
The quantity logEc(kz) is plotted along the ordinate axis
[Ec(kz) in units of m3/c2 is the energy spectrum of the
sound velocity fluctuations]. The quantity logkz is rep-
resented by the abscissa (where kz = 2π/λz is the wave
number and λz is the wavelength of the inhomogeneity,
expressed in meters). To determine the total level of the
spectra, the horizontal line on the vertical axis should
be matched with the horizontal line near the ordinal
number of a corresponding spectrum. This line also
marks the depth (axis on the left) of the middle of the
high-frequency component segment subjected to spec-
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Fig. 1. Results of the statistical processing of the measured vertical distribution of the sound velocity.
tral processing. The straight lines show the behavior of

 and . It is easy to verify that all experimental
spectra in the range of scales 3–30 m follow (on the
average, with rare exceptions) the power law of the

decay  (where n is within 2–3); in most cases, n = 2.

To obtain quantitative estimates of the dependence
of the spectral density levels of the fine-structured fluc-
tuations on depth, readings of the values of Ec(kz) for
kz = 2π/λz = 1 m–1 (logkz = 0) were taken at each real-
ization. Thus, for each depth, the constant Cc character-
izing the intensity of the fine-structured inhomogene-

ities was found from the equation Ec(kz) = .

To model the fine-structured fluctuations of the
sound velocity, δc(z), near the average vertical distribu-
tion, a white gaussian noise x(z) is generated by a com-
puter and then subjected to filtering using a filter that
provides for decay of the spectral power of the filtered
process y(z) by the power law E ~ k–2. The resulting ran-
dom process y(z) is then multiplied by the normaliza-
tion factor σ, which is determined as the ratio of the rms
values of experimentally measured fluctuations δc(z) at

kz
2– kz

3–

kz
n–

Cc
2kz

2–
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a certain depth z and the fluctuations of y (σ = σc(z)/σy),
and by the function f(z), which takes into account the
decrease in σc(z) with depth. In field conditions, the
greatest values of σc(z) are observed at depths of the
velocline and the thermocline. Below the underwater
channel axis, the inhomogeneities of the fine structure,
as a rule, degenerate [1]. The decrease in σc(z) with
depth is adequately described by the exponential func-
tion

where z0 is the thickness of the subsurface mixed layer
and d is a constant on the order of the thermocline
thickness, which characterizes the decrease in the fluc-
tuation levels with depth.

As stated above, a code was developed for specify-
ing the sound velocity fluctuations near the average ver-
tical distribution because of fine-structured inhomoge-
neities. Figure 2 exhibits the fluctuations modeled by

f z( )
0 for z z0≤

z z0–( )/d–( ) for z z0,>exp



=
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the algorithm δc(z) = σy(z)exp(–(z – z0)/d) for d =
400 m and z0 = 70 m.

For sound field calculations, Avilov’s wave code
was used [3], which realizes the method of the wide-
angle parabolic equation. This code allows one to cal-
culate the sound fields for an almost arbitrary two-
dimensionally inhomogeneous sound velocity field, as
well as to investigate by numerical modeling the variety
of the effects of the fine-structured inhomogeneities on
the sound propagation.

Figure 3 shows the vertical sound velocity distribu-
tion at a finite number of depths (Fig. 3a), which is usu-
ally preset in such calculations, and a fragment of the
same distribution to which the fluctuation component
from Fig. 2 is added (Fig. 3b).
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Fig. 2. Computer modeling of the fine-structured fluctua-
tions of the sound velocity about the average vertical distri-
bution.
The introduction of the fine-structured component
(the medium retains its plane-layered character) leads
to a significant change in the process of sound propaga-
tion, namely, to the known effect of sound penetration
into the shadow zone [4–6]. To demonstrate this effect,
a sound field with a frequency of 600 Hz was computed
up to a distance of 105 km for the smooth vertical dis-
tribution of the sound velocity presented in Fig. 3a and
for the vertical distribution with the fine-structured
component at depths from 70 to 800 m (Fig. 3b). In
both cases, the sea bottom was assumed to be a liquid
half-space. In order to minimize the bottom reflection,
which in our case is noise, the sound velocity in the
half-space was assumed to be equal to that in the
waveguide at the maximum depth. The results of rele-
vant calculations of the sound field amplitudes are
shown in Figs. 4a and 4b in certain shades of gray. One
can see that the introduction of the fine-structured com-
ponent generates a sound field reradiated from thin
high-gradient interlayers of the sound velocity and this
field propagates into the shadow zones, where it consid-
erably increases the field level relative to that calculated
for the smooth profile. It is also seen that the conver-
gence zone gives rise to an additional sound field that is
rereflected at distances about 60 km in the range of
velocline depths where the fine-structured inhomoge-
neities are most pronounced. This additional field prop-
agates into the second shadow zone, which can lead to
an increase in the field level at distances of about 90 km
as the second convergence zone is approached. This
fact is confirmed by Fig. 4. It is significant that such a
modeling of the effect of fine-structured perturbations
of the sound velocity profile on the sound propagation
provides the possibility not only of obtaining a qualita-
tive picture but also of estimating this effect quantita-
tively. For example, in the case under consideration, the
introduction of the fine-structured perturbation into the
sound velocity profile increases the sound field level in
the shadow zone by 20 dB or even more (Fig. 5).

The effect of the fine-structured inhomogeneities on
the sound propagation also manifests itself in prerever-
beration [7], as well as in the additional attenuation of
low-frequency sound. If, for estimating the insonifica-
tion of the shadow zone, a plane-layered model of the
fine-structured inhomogeneities is applicable, then, for
estimating the additional attenuation, it is necessary to
preset uncorrelated random components of the sound
velocity profile at spatial intervals corresponding to the
horizontal correlation radius of the inhomogeneities. In
this case, the finite half-width of the scattering pattern,
as well as the leakage of the sound energy over steep
angles exceeding the trapping angle of the underwater
sound channel, are provided. To this end, the uncorre-
lated components, δc(z), were generated by the above
method in the necessary number at depths from the sur-
face to a depth of 800 m. These components were then
summarized with a constant average vertical distribu-
tion of the sound velocity. Every resulting profile was
related to a certain distance at regular intervals along
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
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Fig. 3. (a) Average vertical distribution of the sound velocity and (b) the vertical distribution of the sound velocity with allowance
for the fine-structured component.

(a) (b)
the propagation track. For a test calculation, 400 pro-
files were given at 1-km intervals along the track. The
average vertical distribution of the sound velocity in the
waveguide was chosen to be bilinear. The sound veloc-
ity at the surface and the bottom (the depth was 3.0 km)
was equal to 1524 m/s and 1500 m/s at the channel axis
(a depth of 1.0 km). The length of the propagation track
was 400 km. The correlation radius of the inhomogene-
ities along depth was about 20 m. Thus, the anisotropy
coefficient (the ratio of the horizontal scale, 1 km, to the
vertical one, 20 m) of the fine-structured inhomogene-
ities was on the order of 50. In both cases, the sea bot-
tom was assumed to be a water half-space with the
sound velocity equal to that in the waveguide at a depth
of 3000 m.

The calculations of the sound field were performed
for a harmonic source operating at a frequency of 25 Hz
at a depth of 300 m. In the first case, the calculations
were performed for a track with the smooth vertical
sound velocity distribution (a plane-layered ocean
without fine-structured inhomogeneities) and in the
second case, with fine-structured inhomogeneities
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
modeled as described above. Figure 6 exhibits the
results of calculations. The upper plot demonstrates the
sound field level in shades of gray, and the lower plot,
the decay of the total sound energy (averaged over the
vertical section at every step of calculations) in the
channel (in dB) without considering the cylindrical
divergence.

From Fig. 6 it follows that the additional attenuation
caused by the introduction of the fine-structured inho-
mogeneities has a steplike character with a periodicity
of the zonal structure of the sound field. A steep
decrease in the total sound energy in the channel takes
place at distances where the sound energy is most
amplified at near-bottom depths in the regions of its
leakage into the bottom. Sound scattering by fine-struc-
tured inhomogeneities in subsurface layers contributes
to the leakage of sound energy into the bottom, which
leads to additional attenuation of the sound field (the
difference between curves 1 and 2 in Fig. 6). At a fre-
quency of 25 Hz, the additional attenuation was found
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Fig. 5. Horizontal runs of the sound field at a depth of 300 m: the calculation for the average vertical sound distribution (1) without
the fine structure and (2) with allowance for the fine-structured component.
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plot) and with allowance for the fine-structured component (the lower plot). The source depth is 300 m.
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Fig. 6. Additional sound attenuation (2) in the case of the propagation through a waveguide with fine-structured inhomogeneities in
comparison with (1) the case of a waveguide with a smooth sound velocity profile.
to be 0.3 dB per 400 km (0.75 dB per 1000 km), which
agrees well with the experimental data.
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Abstract—An electroacoustic transducer in the form of a piezoelectric of the 6mm symmetry class with an
arbitrary orientation of the sixfold axis and with two finite-thickness metal electrodes is considered taking into
account the acoustic attenuation in the transducer layers. A system of equations is obtained to determine the
impedance of the transducer, the radiation resistances for shear and longitudinal waves, the power ratio of these
waves in the acoustic line, and the transformation factors for transverse and longitudinal waves. The effect of
attenuation on the characteristics of a specific transducer operating in the 15-GHz frequency range is numeri-
cally analyzed. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In this paper, we consider a microwave electroa-
coustic transducer in the form of a three-layer piezo-
electric element (metal–piezoelectric–metal) based on
a piezoelectric crystal of the 6mm symmetry class
(ZnO, CdS) with an arbitrary orientation of the sixfold
symmetry axis. Unlike the case considered in our pre-
vious publication [1], we now analyze the effect of
acoustic attenuation in the layers of such a transducer.
Transducers of this kind may be used, for example, in
acoustooptical devices operating in the short-wave
region of the microwave frequency range [2] or in
acoustic delay lines. To design the latter with an accept-
able attenuation of signals in the short-wave region of
the microwave frequency range requires the use of
shear elastic waves, the attenuation of which in certain
crystals (Y3Al5O12, MgAl2O4, etc.) is much weaker
than that of longitudinal waves. Shear elastic waves can
be obtained using piezoelectric films deposited in vac-
uum at an oblique incidence of molecules on the sur-
face of an acoustic line. In our previous experiments
[3], we excited shear elastic waves in MgAl2O4 at a fre-
quency of 36.5 GHz by a ZnO film with an oblique
molecular structure. A serious difficulty arising in the
development of efficient transducers for the short-wave
region of the microwave frequency range is the acoustic
attenuation in their layers.

In the literature, one can find many publications
concerned with different problems of electroacoustic
transducers exciting bulk elastic waves (see, e.g., [4–
7]). However, we did not encounter any publications
analyzing the effect of acoustic attenuation in a multi-
layer transducer.
1063-7710/03/4906- $24.00 © 20668
The model considered in this paper is shown in
Fig. 1. It consists of (4) an acoustic line extending to
infinity along the  axis, (1, 3) two metal electrodes
across which an alternating voltage of microwave fre-
quency is applied, and (2) a piezoelectric placed
between the electrodes and oriented so that the x2 axis
of the crystal coordinate system is perpendicular to the
plane of the drawing and the x3 axis makes an angle θ
with the normal  to the end of the acoustic line. The
choice of this orientation of the piezoelectric does not
lead to any loss of generality owing to the isotropy of

x3'

n

0

x1 x3

x'1

x'3

1 2 3 4

–h–(h + p) g

L

Rlos

CSH

α
θ

uS
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Fig. 1. Piezoelectric transducer under consideration.
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the elastic properties of hexagonal crystals in the plane
perpendicular to the sixfold axis. We assume that the
metal electrodes and the acoustic line are either isotro-
pic or crystalline with their longitudinal normals ori-
ented along the  axis. We also assume that the con-
ductivity of the piezoelectric and the dielectric loss in it
are equal to zero.

A piezoelectric element incorporated into a micro-
wave circuit possesses a frequency-dependent imped-
ance whose active component absorbs electromagnetic
power. The power is spent for the excitation of acoustic
waves (both longitudinal and shear) in the acoustic line,
as well as for the loss.

The efficiency of the transducer as a whole, includ-
ing the exciting system, is characterized by the elec-
troacoustic transformation coefficient η:

η = Pac/P+, (1)

where Pac is the power of the excited acoustic wave and
P+ is the power of the direct electromagnetic wave in
the line supplying the energy to the transducer. Since

Pac + Plos = P+(1 – |Γ|2), (2)

where Plos is the loss power and |Γ| is the absolute value
of the reflection coefficient in the line, we obtain

(3)

Here, Rrad is the active radiation resistance of the piezo-
electric element and Rlos is the loss resistance.

The quantity |Γ| can easily be determined if we
know the load impedance ZL in some cross section of
the line characterized by the wave impedance Z0:

(4)

Here, ZL is determined as the result of the transforma-
tion of the transducer impedance and the loss resistance
by the exciting system. In Fig. 1, the piezoelectric ele-
ment is connected to an LCR circuit, which connects
the transducer to the transmission line. The circuit con-
sists of a parasitic shunt capacitance CSH, inductance of
the connecting lead L, and its active resistance Rlos.
Thus, at the first step, it is necessary to calculate the
impedance of the piezoelectric element: Z(ω) = R(ω) +
jX(ω).

AMPLITUDES OF ELASTIC WAVES
IN THE PIEZOELECTRIC

In the general case, an alternating electric field
directed along the  axis, which coincides with the

normal , excites quasi-longitudinal and quasi-transverse
elastic waves in the piezoelectric, so that these waves are
polarized in the plane of the drawing (see Fig. 1).

x3'

η 1 Γ 2–( )
Rrad

Rrad Rlos+
-----------------------.=

Γ
ZL Z0–
ZL Z0+

---------------------.=

x3'

n

ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
Taking into account that the transverse dimensions
of real transducers are much greater than the thickness
of their layers, we set ∂/∂  = ∂/∂  = 0. Then, the
equations describing the electromechanical processes
in the piezoelectric take the form

(5)

(6)

(7)

(8)

where ui is the ith component of the displacement vec-
tor (i = 1, 3); Ti3 is a component of the elastic stress ten-
sor; E3 is the strength of the alternating electric field
directed along the  axis; c', e', and ε'  are the compo-
nents of the elastic constant, piezoelectric constant, and
dielectric constant tensors, respectively, in the , ,

 coordinate system rotated through an angle θ about
the x2 axis; ρ is the density of the piezoelectric; and D3
is the electric displacement vector component, which,
according to Eq. (8), is independent of the coordinate.

We assume that the acoustic attenuation weakly
affects the sound velocities. Then, for the quasi-longi-
tudinal and quasi-transverse waves in the piezoelectric,
we can use the dependences of the velocities and polar-
ization directions on angle θ that were obtained for the
case without attenuation [8]:

(9)

where

(10)

Here, subscripts L and S refer to quasi-longitudinal
and quasi-transverse waves, respectively, and α is the
angle characterizing the direction of the displacement
vectors (see Fig. 1). In the expressions presented above,
we used the matrix notations for the components of the
stiffness tensor and the piezoelectric constant tensor.

To take into account the acoustic attenuation in all
media forming the transducer, we introduce complex
propagation constants. For the piezoelectric, we have

(11)

where βS, L are the wave numbers for L or S waves:

βS, L = ω/vS, L (ω is the circular frequency) and  are
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the attenuation coefficients, which depend on the fre-
quency f according to the law

αS, L = AS, Lf2 (12)

(here, AS, L are the attenuation constants expressed in
1/(Hz2 m units). For other media, in which only pure
elastic modes can exist, we have

(13)

where superscript (k) indicates the number of the
medium (k = 1, 3, 4) and subscript i indicates the direc-
tion of the displacement vector of the wave: i = 1 along
the  axis (a transverse wave) and i = 3 along the 
axis (a longitudinal wave). The wave numbers and the
attenuation coefficients are expressed as

(14)

In the piezoelectric bounded on two sides, direct and
inverse elastic waves must simultaneously take place:

(15)

(16)

where , , , and  are the complex amplitudes
of direct and inverse quasi-longitudinal and quasi-
transverse waves at  = 0.

The amplitudes of the displacement vector compo-
nents, to which the L and S waves contribute, can be
represented in the form

(17)

(18)

The quantities  can be determined from the
boundary conditions of continuity for the elastic stress
and displacement components or, in the case of a free
boundary, the condition of zero elastic stress at the
boundary. To determine the electric impedance, it is
sufficient to know only the amplitudes of the waves that
occur in the piezoelectric. For this purpose, we need
four equations, which can be obtained using the defini-
tion of the acoustic impedance. For waves propagating
along the  axis with displacements along the  axis,
the acoustic impedance can be expressed as

(19)

where  is the ith component of the displacement
vector in the kth medium.
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In the piezoelectric, the quantity  is formed as
the sum of the projections of displacements in L and S
waves on the corresponding coordinate axes (see
Eqs. (17) and (18)), while in all other media, this quan-
tity directly represents the displacements of either lon-
gitudinal or shear waves. The equality of the displace-
ment components, as well as the elastic stress compo-
nents, at the boundary between two media allows us to
assume that the acoustic impedances are also equal. For
media bordering the piezoelectric, it is easy to prelimi-
narily determine these impedances for both longitudi-
nal and transverse waves. Then, the conditions set at the
boundaries of the piezoelectric take the form

(20)

(21)

To determine the impedance (–h) in layer 1 at

the piezoelectric boundary  = –h for a wave with the
displacement along the ith coordinate, one should take
into account that, at the free boundary  = –(h + p), the
total acoustic impedance is equal to zero. Thus, layer 1
represents a segment of a short-circuited acoustic
waveguide with attenuation, for which the impedance is
expressed as

(22)

Here, p is the thickness of medium 1 (the upper layer)

and  is the complex acoustic wave impedance of
medium 1 for transverse (i = 1) or longitudinal (i = 3)
waves. For the medium of number k, according to

Eqs. (13) and (19), the quantity  has the form

(23)

Here, , ρ(k), and  are the velocity of sound,
the density, and the attenuation coefficient for the kth
medium.

In a similar way, one can determine impedance

(0) in medium 3 at the other piezoelectric boundary

 = 0. For a chosen wave (i = 1 or 3), medium 3 serves
as an impedance transformer loaded with the acoustic
wave impedance of the acoustic line (for transverse or
longitudinal waves). In the presence of attenuation, the
desired quantity is expressed as

(24)

where the complex wave impedance  is determined
by Eq. (23) for k = 4.
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Now, we substitute Eqs. (22) and (24) and the stress

tensor components (0) and (–h) determined
from Eqs. (6) and (7) into Eqs. (20) and (21). Introduc-
ing the normalized complex amplitudes

(25)

and taking into account Eqs. (17) and (18), we obtain a
system of four inhomogeneous linear equations, which

determines the quantities , , , and . The ele-
ments of the matrix of this system have the form
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The constant terms b1, b2, b3 , and b4 are determined by
the formulas

The normalized amplitudes  obtained as a result
of solving this system can be used to calculate the elec-
tric impedance of the transducer and the electroacoustic
transformation factor, as well as to determine the opti-
mal angles θ, at which mainly shear or mainly longitu-
dinal waves are excited in the acoustic line.

IMPEDANCE OF THE PIEZOELECTRIC 
ELEMENT

The impedance of the piezoelectric element can be
determined in the quasi-static approximation [1]:

where S is the area of the transducer.
Dividing this expression by the capacitive resistance

of the piezoelectric element X0 = h/ω S and substitut-
ing Eqs. (15)–(18) and (25) into it, we perform the inte-
gration to obtain the normalized impedance of interest:

(26)

where eL = sinα + cosα and eS = cosα –

sinα [3].

The second term in Eq. (26) is a complex quantity
whose real part is the normalized active resistance con-
suming the microwave power. The latter, according to
its physical meaning, is the sum of the powers of the
transverse and longitudinal elastic waves excited in the
acoustic line and the power scattered in the layers of the
piezoelectric element due to the acoustic attenuation. In
relation to these powers, the active component of the
impedance can be represented as the sum of three terms,

R = Rrad, S + Rrad, L + Rlos,

where Rrad, S is the radiation resistance for transverse
waves, Rrad, L is the radiation resistance for longitudinal
waves, and Rlos is the loss resistance.
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RADIATION RESISTANCE

To determine the radiation resistances, we use the
condition of equal displacements at the boundaries of
medium 3.

At  = 0, we have

(27)

(28)

and at  = g, we have

(29)

(30)

where (g) and (g) are the reflection coefficients
for shear and longitudinal waves, respectively:

(31)

We use formula (31) for the reflection coefficient to
express the complex amplitudes of reflected waves on
the right-hand sides of Eqs. (27) and (28) through the
amplitudes of the direct waves. Then, we determine

 and  and substitute them into Eqs. (29) and
(30). Changing to normalized displacements (see
Eq. (25)), we arrive at the following expressions for the

x3'
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+ BS
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+ BL
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=  u1+
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3( ) Z01 3,
4( )

–
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3( ) Z01 3,

4( )
+

-----------------------------.=

u1+
3( ) u3+

3( )
amplitudes of elastic waves excited in the acoustic line:

(32)

(33)

These formulas allow us to determine the powers of
the transverse and longitudinal acoustic waves excited
in the acoustic line:

(34)

(35)

The same powers can be expressed via the radiation
resistances Rrad, S and Rrad, L and the displacement cur-
rent density in the piezoelectric, jdis = jωD3:

(36)

(37)

Now, by equating the right-hand sides of Eqs. (34)
and (36) and also the right-hand sides of Eqs. (35) and
(37), we obtain the formulas for calculating the radia-
tion resistances Rrad, S and Rrad, L:
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POWER RATIO PS/PL

From the formulas obtained above, we can easily
calculate the power ratio of the shear and longitudinal
waves excited in the acoustic line:

. (40)

The quantity M depends on the angle θ between the

M θ( )
PS

PL
------

Rrad S, θ( )
Rrad L, θ( )
---------------------= =
sixfold axis of the piezoelectric and the normal to the
end of the acoustic line. This allows us to determine the
optimal orientation of the piezoelectric at which either
shear or longitudinal wave excitation will predominate.

TRANSFORMATION FACTOR

Let us calculate the electroacoustic transformation
factor defined by Eq. (1). We assume that the electro-
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
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magnetic power is supplied from the generator to the
piezoelectric element through a double-wire line with a
given wave impedance Z0. The generator has an alter-
nating electromotive force E and is matched with the
line. The latter condition means that the internal resis-
tance of the generator is equal to the wave impedance
of the line. In this case, the power carried by the direct
wave is equal to the power transferred to the matched
load: P+ = PCL = |E|2/8Z0. A parasitic capacitance CSH is
connected in parallel to the piezoelectric element (see
Fig. 1), and the lead with an active resistance Rlos and
inductance L is connected to it in series.

In this configuration, the transmission line is loaded
with the load impedance

where Z is the impedance of the piezoelectric element
(see Eq. (26)).

The complex amplitude of the current flowing
through the piezoelectric element is determined as

Then, the power of the shear wave excited in the acous-
tic line is

and the transformation factor in the case of the trans-
verse wave excitation will have the form

(41)

A similar expression can be obtained for the longitudi-
nal wave excitation (ηL) by replacing Rrad, S in Eq. (41)
with the quantity Rrad, L.

DISCUSSION: RESULTS OF THE NUMERICAL 
ANALYSIS

Below, we consider the case of the transverse wave
excitation by an Al–ZnO–Al piezoelectric element
mounted on a Y3Al5O12 acoustic line with the [110] ori-
entation along the  axis (see Fig. 1). The necessary
piezoelectric and dielectric constants for ZnO are taken
from the literature [8]. The values of the density and the
velocities of longitudinal and transverse waves for Al
are taken from [9]. As tentative data for choosing the
acoustic attenuation coefficients in the layers of the
piezoelectric element, we used the experimental results
reported in [10] and also some data from [9]. The cal-
culations were performed for the frequency range from
10 to 20 GHz. The thicknesses of layers 1–3 (see Fig. 1)
were 0.032, 0.09, and 0.048 µm, respectively. These
values were chosen so as to obtain the maximal trans-
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formation factor for a shear wave at a frequency of
approximately 15 GHz.

Figure 2 presents a family of dependences of ratio M
on angle θ. The curves were obtained from calculations
by Eqs. (38)–(40), without taking into account the
attenuation, for several frequencies indicated in the fig-
ure caption. Figure 3 shows similar dependences
obtained with allowance for the attenuation. The cho-
sen values of the attenuation coefficients are specified
in the figure caption.

The behavior of the curves noticeably depends on
frequency. At a given limitation of quantity M from
below, the allowable range of angles θ strongly depends
on f. If, for the excitation of a shear wave, we preset M
≥ 20 dB, then, in the absence of attenuation, angle θ can
be varied within 28°–55° at f = 14 GHz and only within
43°–45° at f = 20 GHz. In the case of longitudinal wave
excitation, a similar situation takes place with the only
difference being that the wider range of allowable
angles θ occurs at a frequency of 20 GHz (~60°–67°)
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Fig. 2. Dependences of the quantity M = PS/PL on angle θ
without acoustic attenuation in the layers of the piezoelec-
tric element for different frequencies: (1) 11, (2) 14, (3) 17,
and (4) 20 GHz.
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Fig. 3. Same as in Fig. 2 with allowance for the acoustic
losses. The preset values of the attenuation coefficients cor-
respond to f = 10 GHz: for the ZnO piezoelectric, αS =
1.24 dB/µm{αL = 2.48 dB/µm}; for Al, α1 = 4.0 dB/µm
{α3 = 6.4 dB/µm}; and for Y3Al5O12, α1 = 5 × 10–3 dB/µm
{α3 = 10–4 dB/µm}.
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Fig. 4. Frequency dependences of the radiation resistance
Rrad, S at θ = 44.6° for different attenuations: (1) without
attenuation; (2–5) the attenuation coefficients at f = 10 GHz
are αS = (2) 0, (3) 1.24, (4) 2.48, and (5) 3.72 dB/µm; {αL =
(2) 0, (3) 2.48, (4) 4.96, and (5) 7.44 dB/µm}; for shear

waves  =  = 4 dB/µm; for longitudinal waves,

 =  = 6.4 dB/µm. The diameter of the piezoelectric

element is 0.05 mm.
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Fig. 5. Frequency dependences of the active impedance
component of the piezoelectric element, R(f), for different
acoustic attenuations in its layers: (1) the case without atten-
uation and (2–5) the cases corresponding to those specified
in Fig. 4.
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Fig. 6. Frequency dependences of the reactive impedance
component of the piezoelectric element, X(f), for different
acoustic attenuations in its layers: curves 1–4 correspond to
the attenuation coefficients specified in Fig. 4 for curves 2–
5, respectively.
rather than at 14 GHz (62°–64°). The inclusion of atten-
uation caused the most pronounced changes in curves 2
and 4 (see Fig. 3): curve 2 was shifted downwards, and
curve 4, upwards. The other two curves remained prac-
tically unchanged. As a result, the interval of allowable
angles was somewhat narrowed for the transverse wave
excitation at a frequency of 14 GHz and it somewhat
widened at a frequency of 20 GHz. In the case of the
longitudinal wave excitation, the same changes in the
curves caused corresponding changes in the intervals of
allowable angles.

The positions of the extrema of the curves on the θ
axis are practically the same for different frequencies.
In the frequency band from 11 to 14 GHz, the optimal
angle for the shear wave excitation increases from
43.85° to 44.75°, and when the frequency f increases
further to 20 GHz, the optimal angle decreases to
44.35°. The inclusion of attenuation (Fig. 3) does not
introduce any considerable changes into this behavior
of the optimal angle. The extreme values of M also dif-
fer for different frequencies f. For example, at θ ≈ 44°–
45°, the maximal values of M corresponding to the fre-
quencies specified in Fig. 2 are 51.6, 44.1, 58.5, and
56.4 dB. The inclusion of attenuation (see Fig. 3) leads
to a slight decrease in these values: 51.0, 44.0, 53.2, and
51.7. A similar situation occurs in the vicinity of θ ≈
63°, where the attenuation most strongly reduces the
depth of the valleys in the curves obtained for 17 and
20 GHz: instead of –42.6 and –59.6 dB, the depths
become equal to –39.1 and –38.3 dB.

Figure 4 shows the results of calculating the radia-
tion resistance Rrad, S(f) by Eq. (38) for the case of the
transverse wave excitation (θ = 44.6°) with allowance
for the attenuation in all media of the piezoelectric ele-
ment. Four different cases of acoustic absorption in the
piezoelectric were considered with a single set of
parameters used for the upper layer and the underlayer.
Curve 1 corresponds to the absence of attenuation in all
media. One can see that an increase in attenuation leads
to a decrease in Rrad, S. Curve 2 in Fig. 4 corresponds to
the case when the longitudinal wave attenuation in ZnO
at a frequency of 10 GHz is close to the value measured
in the experiment [5]. As for the transverse waves, no
experimental data on their attenuation in thin layers can
be found in the literature. We took this attenuation to be
two times smaller than the longitudinal wave attenua-
tion. The inclusion of such an attenuation resulted in a
considerable decrease in the maximal radiation resis-
tance: by more than 50%.

The effect of the acoustic attenuation in the layers of
a piezoelectric element on the impedance of this ele-
ment is illustrated by the curves calculated by Eq. (26).
Figure 5 presents the frequency dependences of the
active impedance component R(f) for different attenua-
tions in the piezoelectric for a single model of acoustic
losses in all other layers. Curve 1 corresponds to the
case when the attenuation is absent in all layers. The
reactive impedance component X(f) is represented by
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
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similar curves in Fig. 6. First of all, we note that, as one
would expect, curve R(f) obtained in the absence of
acoustic attenuation coincides with the corresponding
curve Rrad, S(f) at θ = 44.6° (see curves 1 in Figs. 4 and
5). An increase in attenuation leads to a decrease in R,
but the corresponding decrease in Rrad, S occurs faster,
which agrees well with physical considerations. As for
the component X(f), it is also affected by the acoustic
attenuation in the layers of the piezoelectric element.
When the frequency varies, the quantity X(f) oscillates
around the value of the capacitive resistance 1/ωC0,
where C0 is the static capacitance of the piezoelectric
element. The peak-to-peak amplitude of these oscilla-
tions decreases as the attenuation in the layers grows,
which is illustrated by the curves shown in Fig. 6.

The main characteristic of a transducer is the fre-
quency dependence of transformation factor ηS(f) or
ηL(f). To reveal the effect of acoustic attenuation on
this dependence, we assumed that the diameter of the
piezoelectric element was 0.05 mm, the absolute value
of its impedance was ~8.9 Ω, θ = 44.6°, and the wave
impedance of the transmitting line was Z0 = 8.9 Ω . The
latter value of Z0 is optimal, providing the maximal
value of ηS in the absence of any matching devices. In
this case, an almost purely shear wave should be
excited. Figures 7 and 8 show the dependences ηS(f)
calculated by Eq. (41) for different attenuations in the
layers. The values of the attenuation coefficients are
indicated in the figure captions. In Fig. 7, the attenua-
tion in only the piezoelectric layer is taken into account,
while Fig. 8 presents the curves obtained with allow-
ance for the attenuation in all other media as well. One
can see that an increase in attenuation leads to a
decrease in the transformation factor. However, for the
chosen values of the attenuation coefficients, this
decrease is relatively small: within 2–3 dB. Note that a
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Fig. 7. Frequency dependences of the electroacoustic trans-
formation factor ηS(f) in the case of the transverse wave
excitation for different attenuations in the piezoelectric and
without attenuation in all other layers. Curves 1–4 corre-
spond to the coefficients αS and αL specified in Fig. 4 for
curves 2–5, respectively. The wave impedance of the trans-
mission line is 8.9 Ω .
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decrease in ηS is observed only near the curve maxi-
mum, while the ends of the curves are practically unaf-
fected by attenuation.

CONCLUSIONS

In this paper, we obtained the formulas for calculat-
ing the characteristics of a piezoelectric transducer that
consists of a piezoelectric of the 6mm symmetry class
with an arbitrary orientation of the sixfold axis and two
metal electrodes of finite thickness. The formulas take
into account the acoustic attenuation in the layers of the
transducer. Depending on the orientation of the piezo-
electric, such a transducer can excite shear or longitudi-
nal elastic waves. The results of the numerical analysis
show that, at a frequency of ~15 GHz, the acoustic
attenuation in the layers of the transducer plays an
important role. The radiation resistance of a transducer
made on the basis of ZnO with Al electrodes and oper-
ating in the shear wave excitation mode decreases by 50
to 55% under the effect of attenuation, while the trans-
formation efficiency decreases by 2 to 3 dB. A further
increase in frequency will undoubtedly lead to a greater
decrease in the efficiency of the transducer.

The results reported in this paper may be used in the
design of efficient transducers for elastic waves in the
short-wave region of the microwave frequency range.
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Abstract—A new method is proposed for determining the characteristics of the dynamics of the vapor bubble
volume variation from the parameters of the sound pulse generated by this bubble. The accuracy of the method
is estimated, and its application is illustrated by a specific example. © 2003 MAIK “Nauka/Interperiodica”.
It is well known that the maximum (on the order of
hundreds of MW/m2) heat flow density can be obtained
in surface boiling of a subcooled liquid, which is there-
fore used in heat exchangers (at nuclear plants, in air-
craft and rocket industry, in microwave electronics, and
so on). However, the design of these systems is based
on approximate semiempirical formulas, because the
study of the physics of boiling is far from complete.
The relevant issues of fundamental importance that
remain insufficiently studied experimentally include
the dynamics of the volume variation of a vapor bubble.

Previously, experimental studies of the dynamics of
growth and collapse of vapor bubbles were carried out
with the use of high-speed filming (for example, in
[1, 2] at a rate of 15000 and 22000 frames per second).
Analysis of data obtained in this way is performed by
discrete images of a bubble in separate frames of the
film. The behavior of the bubble during the intervals
between the frames remains unclear. In addition, for a
bubble of irregular shape, the calculation of instanta-
neous volumes of the bubble is quite laborious and
leads to considerable errors (on the order of ten per-
cent).

A simpler method is the photometric method of
super-high-speed continuous recording of the variation
of the linear dimension of a vapor bubble by using a
photomultiplier tube [3–6] (in these experiments, the
sound pressure produced by a bubble was simulta-
neously recorded). The determination of the change in
the bubble volume by this method is only possible for a
spherical bubble.

In this paper, we propose a new sound-measurement
method for determining the vapor bubble characteris-
tics and studying the dynamics of its volume variation,
which is free of the aforementioned drawbacks. This
method can also be used with experimental systems,
providing a direct input of the measured data into a
computer for processing with the help of modern infor-
mation technologies.
1063-7710/03/4906- $24.00 © 20677
We begin considering the mechanism of growth and
collapse of a vapor bubble in a local boiling on a flat
surface. In this case, temperature Tl of the main body of
liquid, except for a thin layer near the surface, is lower
than saturation temperature Tsat. At the beginning, the
bubble grows inside this layer of a “hot” liquid whose
temperature is higher than Tsat. Under the action of the
growing bubble, the adjoining layer of “hot” liquid
rises. Due to the evaporation, the thickness of this layer
above the bubble and near its sides decreases and
finally becomes equal to zero. From this point on, two
processes proceed simultaneously: the evaporation near
the base of the bubble continues and the condensation
on its upper part and, later, near its sides begins. As the
bubble grows, the area of its interphase surface at the
boundary with the “cold” liquid (with a temperature
lower than Tsat) increases. This results in an increase in

the velocity  of condensation, which approaches the

velocity  of evaporation.

The growing bubble sets in motion the surrounding

liquid. After  and  become equal, its volume con-
tinues to grow due to the motion of the liquid under its
inertia. Therefore, after reaching its maximum size, the
bubble becomes mechanically (vapor pressure pv is
smaller than the pressure in liquid pl ∞) and thermally

(  > ) nonequilibrium. As a result, it begins to
degrade, entraining the surrounding liquid. After pres-
sures pv and pl ∞ become equal, the liquid moving under
its own inertia compresses the bubble. Then, pv sharply
increases, which can lead to the formation of a shock
wave [6]. The maximum height of the bubble is approx-
imately by an order of magnitude greater than the thick-
ness of the hot liquid layer. Consequently, during the
whole time of collapse, the major part of the interphase
surface of the bubble borders on the cold liquid and,
hence, the evaporation process does not play a signifi-
cant part.

V̇–

V̇+

V̇– V̇+

V̇– V̇+
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According to the above physical model, the follow-
ing formula was derived to describe the dynamics of the
radius variation of a spherical vapor bubble [7]:

(1)

where Rm and tm are the maximum radius and time of
bubble growth and constant α must satisfy the bound-
ary condition

(2)

(τ is the lifetime of the bubble).
Dependences (1) and (2) are based on the following

equations: first, the heat balance equation (the resulting
heat flow determined by the processes of evaporation
and condensation is equal to the difference of heat
flows into and out of the bubble); second, the formula
of the vapor bubble’s growth in the body of a uniformly
superheated liquid, which was obtained in [8] by solv-
ing the nonstationary heat conduction equation; and
third, the formula of the bubble’s collapse at a constant
volume of vapor condensed from a unit surface per unit
time [6].

Since in Eqs. (1) and (2) the radius and the time are
expressed on a relative scale, in their derivation the
cofactors of the initial relations involving constant
coefficients, physical constants, and similarity criteri-
ons are reduced. Consequently, Eqs. (1) and (2) should
remain valid for the boiling of a subcooled liquid under
various conditions. This conclusion is confirmed quan-
titatively in [7] by the results of experiments carried out
with the use of a high-speed filming.

Two equations of hydrodynamic sound generation
are known. The first is the Rayleigh equation

(3)

where p is the generated alternating pressure, ρ' is the
density of the liquid, R is the current radius of a spher-
ical bubble, and r is the distance from the bubble center
to the point of pressure determination. As is shown in
[9], relation (3) is a consequence of the Cauchy–
Lagrange integral and holds for all points of the region
of the potential liquid motion. The Rayleigh equation is
often used as a basic equation in nonlinear acoustics
(for instance, in [10]). The second equation ([11–13]
and others) has the form

(4)

(V is the current volume of the bubble). Both Eqs. (3)
and (4) are valid within the nonwave zone R ! r ! λ
(λ is the sound wavelength) and are mathematically
equivalent in the case of a spherical bubble. However,
these equations can also be used in other cases, because
the shape of a sound source that is small compared to r
has no effect on the sound pressure generated by it [14].
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r
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ρ'V̇̇
4πr
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In this case, in Eq. (3) R is the radius of an equivalent
(of equal volume) spherical bubble.

From Eqs. (1) and (3), we obtain the formula of
hydrodynamic sound generation under the conditions
of a boiling subcooled liquid:

(5)

where K = α2/[1 – (1 + α)c]3, a = αt/tm, b = exp(–a), and
c = exp(–α).

The calculation of the pair of curves R(t) and p(t)
performed in [7] by formulas (1), (2), and (5) showed
that these curves agree quantitatively with the results of
combined experiments [4–6] in which the variations of
the radius of a spherical bubble and the sound pressure
generated by it were simultaneously recorded by a pho-
tomultiplier tube and a hydrophone in the form of
paired oscillograms.

Formulas (1), (2), and (5) are used as the basis for
the proposed acoustical method. In this method,
according to Eq. (5), we solve the inverse problem of
determining the characteristics tm, α, and Rm of the
dynamics of the bubble radius variation (Eq. (1)) from
the parameters of the sound pulse generated by the bub-
ble.

The bubble successively generates positive, nega-
tive, and positive pressures with amplitudes of ,

, and  (Fig. 1). The change in sign and the ter-

mination of pressure generation takes place at instants
t1, t2 , and τ. The aforementioned quantities are the
amplitude and time parameters of the sound pulse that
are used in the calculations.

The specially developed technique consists in the
application of the following approximate formulas
derived from Eqs. (2) and (5) and by calculations:

(i) for calculating the time of bubble growth,

(6)

(ii) for finding constant α by a numerical method in
four ways (α∗ , α1, α2 , and α12),

(7)

(8)

(a1 = α1t1/tm*, b1 = exp(–a1), and c1 = exp(–α1)),

(9)

(a2 = α2t2/tm*, b2 = exp(–a2), and c2 = exp(–α2)) and

(10)

p = 
Kρ'Rm
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(iii) and for computing the maximum radius of the
bubble,

(11)

(c12 = exp(–α12)).
Table 1 shows the data borrowed from [15], which

allow us to corroborate the suggested technique. In
Table 1, ∆Ts = Tsat – Tl and ρ' are the subcooling and
density of the liquid; Rm, tm, and τ are the microcharac-
teristics of the bubble. The constant α is calculated
from boundary condition (2). Table 1 also contains the
times t1, t2 and the amplitude  of the negative pres-

sure generated by the bubble (r = 13 mm), which are
determined in calculating the sound pulses (Fig. 1) by
formula (5).

The results of evaluating the accuracy of formulas
(6)–(11) are given in Tables 2 and 3, which include the
values calculated by these formulas with relative errors
for each of the five bubbles and the mean absolute val-
ues of relative errors.

Rm*
3

rtm*P
m

2 1 1 α12+( )c12+[ ]

α12
2 c12ρ'

-------------------------------------------------------------–=

P
m

2

1

2

3 4 5

1 kPa
100 µs

t
p

0 tm1 t1

tm2

Pm2

t2 tm3

Pm3
Pm1

τ

Fig. 1. Sound pulses generated by vapor bubbles for various
degrees of subcooling of the liquid (Table 1).
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The analysis of errors (Tables 2 and 3) testifies that
the suggested technique is practically applicable. The
errors of formulas (6) and (11) for determining tm and
Rm are on the order of one percent and the errors of for-
mulas (7) and (10) for determining α are on the order of
three percent.

A rigorous solution of this problem requires compli-
cated calculations. In this case, in Eqs. (8) and (9), tm*

is replaced by tm, and α1 and α2 are replaced by α. By
repeatedly applying in turn the two relations obtained
in this way, it is possible to calculate the exact values of
tm and α by the method of successive approximations.

Then, by varying t in Eq. (5), the time , , or 

corresponding to the maxima of , , or ,

respectively (Fig. 1), is found with the aim of determin-
ing the exact value of Rm by this formula. Since the
errors of the simpler calculations described above are
sufficiently small, the rigorous solution, as a rule, is
unnecessary.
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R, mm

t, µs–1
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(a) (b)

(c) (d)

Fig. 2. Determination of the dynamics of the bubble radius
variation from the sound pulse generated by this vapor bub-
ble: (a–c) the sound pulse and (d) the radius variation.
Table 1

No. ∆Ts, K ρ', kg/m3 Rm, mm tm, µs τ, µs α (16) t1, µs t2, µs Pm2 , Pa

1 15.6 970 0.51 244 600 0.951 117 375 –248

2 32.2 980 0.44 190 450 0.812 94.0 289 –276

3 54.4 990 0.38 138 300 0.445 71.9 206 –379

4 70.2 996 0.32 90 180 0.015 49.7 130 –616

5 86.0 999 0.27 50 80 –2.028 33.2 66.2 –2350
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Table 2

No. tm*, µs δt , % α∗  (7) δ∗ , (7) α1 (8) δ1, %

1 246 0.82 0.919 –3.36 1.005 5.68

2 192 1.05 0.781 –3.82 0.847 4.31

3 139 0.72 0.428 –3.82 0.471 5.84

4 89.9 –0.11 0.015 0 0.015 0

5 49.7 –0.60 –1.933 4.68 –2.142 –5.62

Mean values 0.66 3.14 4.29

Table 3

No. α2 (9) δ2, % α12 (10) δ12, % Rm , mm δR , %

1 0.840 –11.7 0.923 –2.94 0.519 1.76

2 0.691 –14.9 0.769 –5.30 0.446 1.36

3 0.385 –13.5 0.428 –3.82 0.382 0.53

4 0.015 0 0.015 0 0.320 0

5 –1.826 9.96 –1.984 2.17 0.278 2.96

Mean values 10.0 2.85 1.32
Now, we illustrate the use of the proposed technique
by a specific example. First of all, we will specify the
conditions of experiments [3].

The boiling of a degassed water of temperature Tl =
(300.9 ± 2.5) K occurred on a nichrome wire of length
2.0 and diameter 0.1 mm. Before the experiment began,
the wire was raised to red heat in air (by an electric cur-
rent through the wire) and then immersed in the liquid.
When the current flowing through the wire was low,
vapor bubbles appeared on the wire one after another
(the intervals between the appearance of bubbles were
much longer than their lifetime).

The bubble generating sound was at the center of a
spherical vessel 306 mm in diameter. Under these con-
ditions, not only the direct waves but also the once-
reflected wave were spherically symmetric. A hydro-
phone was located at a distance of 6.5 mm from the cen-
ter of the vessel. The time interval of recording the
sound pressure unaffected by the reflected wave was
(204 ± 2) µs.

Figure 2a displays the oscillogram of a sound pulse
generated by a single bubble. The second beam of the
oscilloscope represents the time axis. The 25-µs time
mark generator is turned on. The distances between the
time marks increase toward the end of the oscillogram,
which indicates that the sweep is nonlinear. Beginning
from the eighth time mark, the pulse becomes distorted
because of the effect of the once-reflected wave on the
hydrophone in addition to the direct wave (the sound
reflection occurs with the loss of a half-wave). In spite
of the indicated features, this oscillogram is quite infor-
mative from the point of view of applying the proposed
acoustical method.
From the oscillogram shown in Fig. 2a, one can see
that t1 = 75 µs and t2 = 175 µs (the third and seventh time
marks, respectively). The results of calculations by
Eqs. (6), (8), and (2) (α = α1) are as follows: tm* =
125 µs, α1 = –0.752, and τ = 225 µs. For the amplitude
of negative pressure  = –1.6 kPa, from Eq. (11) it

follows that Rm* = 0.4 mm (α1 = α12 , r = 6.5 mm, and
ρ' = 1000 kg/m3).

Figure 2b shows the sound pulse calculated by
Eq. (5) with consideration for the nonlinearity of the
sweep (the distorted time in arbitrary units is t∗  = k1t +

k2t2, where k1 = 2.5 × 10–2 arb. un./µs and k2 = 6.0 ×
10−4 arb. un./µs2). This plot is presented for convenience
of comparison with the recorded pulse (Fig. 2a). The
comparison testifies to the reasonable reliability of the
results.

Figures 2c and 2d show the undistorted sound pres-
sure and the bubble radius variation with time, calcu-
lated by Eqs. (5) and (1). Thus, the three measured
parameters of the sound pulse, namely, t1, t2, and ,

allowed us to determine the characteristics tm, α, τ, and
Rm and then to reproduce the whole pulse and represent
the dynamics of the vapor bubble radius variation (both
of them on a real scale).
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Abstract—The response of a focused film transducer to wideband acoustic signals is studied both theoretically
and experimentally. The transducer has the form of a narrow PVDF strip placed on a concave cylindrical sur-
face. A software package is developed for calculating the impulse transient response functions depending on
the position of the point source of spherical waves. The experiments are performed using laser thermooptical
sources of acoustic spherical wave pulses excited by a pulsed diode-pumped Nd:YAG laser. The theoretical and
measured temporal profiles of signals recorded by the transducer are shown to be in good agreement for the
source positioned near the transducer’s focus. For this region, a transducer sensitivity map is investigated. For
the case of the source positioned at the focus of the transducer, the absolute value of the transducer sensitivity
is 8 µV/Pa. © 2003 MAIK “Nauka/Interperiodica”.
Laser optoacoustic tomography is one of the most
promising new methods for diagnoses of biological tis-
sues. The most straightforward and, as it seems now,
the most important of its applications is the early diag-
nosis of mammary gland cancer [1, 2]. In this case, it is
necessary to visualize a light-absorbing object, which is
several millimeters in size and is buried several centi-
meters deep in a light-scattering medium. A model of
such a system [2] uses a Q-switched Nd:YAG laser as a
source of the probe radiation, a fiber-optic guiding sys-
tem, and a 32-channel piezoelectric antenna con-
structed on the basis of a 110-µm-thick PVDF film.
Piezoelectric elements 3 × 12.7 mm in size were spaced
4 mm apart on an arc of a radius of 60 mm. Experiments
performed on phantoms, ex vivo and in vitro, demon-
strated a high contrast of the image and a sufficiently
high resolution (~1 mm) in the image plane [2]. How-
ever, the resolution in the direction perpendicular to the
image plane, being determined by the length of the
piezoelectric element and the depth of the object, was
15 to 20 mm, which can hardly be regarded as satisfac-
tory.

This paper addresses a focused, rather than a planar,
film transducer, which will improve the resolution in
the direction perpendicular to the image plane. The
transducer has the form of a narrow rectangular PVDF
strip fixed on a concave cylindrical surface (Fig. 1). Its
geometrical parameters (curvature radius R0, length l,
width h, and thickness d) are primarily determined by
the task to be accomplished by the tomographic study.

The purpose of this paper is to investigate, both the-
oretically and experimentally, the impulse transient
response of the wideband cylindrical transducer
1063-7710/03/4906- $24.00 © 20682
described above and to construct a sensitivity map for
the region near the focus. The solution of this problem
is necessary for determining the parameters and devel-
oping the optimal design of a wideband antenna array
for the laser optoacoustic tomography of biological
objects.

Optoacoustic tomography uses temporal profiles of
ultrasonic signals; it is therefore reasonable to study the
impulse transient response, rather than the frequency
response, of the piezoelectric transducers. Calculating
the response of a finite-size damped transducer to a
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2

Fig. 1. Schematic diagram of a piezoelectric transducer.
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short spherical-wave pulse is a complex problem which
can only be solved numerically. Therefore, it is impor-
tant to develop simplified numerical methods that
would nevertheless give results close to exact solutions.

We will study two kinds of impulse transient
response functions. The first one, which we will further
refer to as the impulse response, is the response of a pla-
nar transducer to a plane wave in the form of a δ pulse
incident normally to the surface. This response function
allows for the finite bandwidth of the transducer associ-
ated with its design. The other response function, which
we will further refer to as the point-source response, is
the response of a finite-aperture piezoelectric element
(perhaps, with a curvilinear surface) to a spherical-
wave δ pulse as a function of the source position. In this
case, we disregard the finiteness of the piezoelectric
element’s bandwidth.

To calculate the point-source response of a trans-
ducer with an arbitrary aperture, one can use the Ray-
leigh integral [3–5]:

(1)

where S is the transducer surface, r0 is the position vec-
tor of the source, and r1 is the position vector of the ele-
ment of the surface S.

Physically, formula (1) means that the response at a
certain instant is proportional to the area covered on the
transducer’s surface by the spherical wave over an
infinitesimal time interval. Integral (1) can be calcu-
lated analytically if the transducer’s surface is, for
example, a planar polygon. However, in most cases, the
point-source response can only be calculated numeri-
cally. Planar finite apertures have been studied in suffi-
cient detail (see, e.g., [3–5]). Algorithms optimized in
terms of speed have been proposed in [5].

Let us represent the surface of the piezoelectric
transducer as a combination of a finite number of small
elementary planar apertures. When calculating the Ray-
leigh integral, their area should be directly related to the
time quantization interval, so that, in this small time
interval, the acoustic wave front travels a distance on
the transducer surface that is much smaller than the dis-
tance between the source and the transducer. Therefore,
the elementary surface covered by the wave can
approximately be regarded as a planar surface. Then the
approach employed in [3–5] can be used to calculate
the point-source response of the focused transducer.
The response function was calculated for sources
located near the focus. This region is of the most inter-
est, because it must be characterized by maximum sen-
sitivity. The angle between the line that connects the
source with an element of the aperture and the normal
to this element is no wider than 12°, which is much
smaller than the critical angle for a planar longitudinal

h r t,( )
δ t

r0 r1–
c

------------------– 
 

2π r0 r1–
----------------------------------- S,d

S

∫=
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wave incident from the liquid onto the surface of an
organic glass [6] (acoustic impedances of PVDF and
organic glass are close). Thus, the wave transmission
coefficient will vary over all points considered by no
more than 3% of the maximum value. The transforma-
tion of the longitudinal wave into the shear wave on the
surface can also be neglected, because the incidence
angle is small. Although the approach proposed is
approximate, it allows us to determine the main charac-
teristics of the focused recording of acoustic pulses pro-
duced by sources located near the transducer’s focus.

To calculate the point-source response, we used the
cylindrical coordinates (the Z axis coincides with the
axis of the cylinder on which the transducer resides,
and the origin is at the transducer’s focus, i.e., the point
where the symmetry axis and the Z axis intersect)
(Fig. 1).Then, the position vectors of the point source
and of the transducer’s surface element are (r0, ϕ0, z0)
and (R0, ϕ, z), respectively. Here, R0 is the curvature
radius of the cylindrical surface, ϕ varies within the
angle  = ±(l/2R0), and Z varies within the width of

the film /2. In these notations, the Rayleigh integral
takes the form

(2)

where c is the phase velocity of sound in the medium.
The point-source response function is nonzero only on
the time interval [tmin = Rmin/c, tmax = Rmax/c], where Rmin
and Rmax are the distances from the source to the nearest
and farthest aperture elements.

Figure 2 shows the theoretical point-source
responses of a cylindrically focused piezoelectric trans-
ducer. For the source located at the focus, the response
has the form of the delta function, because we calculate
the response function assuming that the transducer
bandwidth is infinite. For a source located nearer than
the focus (curve 1 in Fig. 2 and region 1 in Fig. 1), the
spherical wave first arrives at the elementary surface
region of the transducer whose normal passes through
the source, and later, at the transducer edges. Therefore,
the point-source response has a sharp leading edge
(Fig. 2), which corresponds to the instant the wave
reaches the piezoelectric element, followed by a nega-
tive slope in accordance with the decrease in the area
covered by the plane wave on the transducer surface;
finally, the response has a sharp trailing edge, which
occurs when the spherical wave reaches the trans-
ducer’s edges. For a source located behind the focus
(curve 3 in Fig. 2 and region 3 in Fig. 1), the behavior
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is the reverse: the leading edges correspond to the
instants when the wave arrives at the transducer’s
edges, the response increases with time, and the sharp
trailing edge occurs when the wave leaves the trans-
ducer.

For a source lying outside the transducer’s coverage
angle (region 2 in Fig. 1), the point-source response
will take sufficiently long time, the wave being capable
of reaching the transducer earlier (solid line 2 in Fig. 2),
as well as later (dotted line 2 in Fig. 2), than the wave
that comes from the focus. The leading edge corre-
sponds to the instant the wave reaches the near edge of
the piezoelectric element, and the trailing edge, to the
instant the wave reaches the far edge. The relative levels
of the leading and trailing edges depend on whether the
source lies above or below the focus. Because the wave
in this case travels along the piezoelectric element, the
response will be weaker than that for sources located in
region 1 or 3. This is quite natural for a sharply focused
transducer and corresponds to high-resolution optoa-
coustic tomography.

To experimentally study the point-source response
functions, we used a setup comprising a pulsed diode-
pumped Nd:YAG laser (model LCS-DTL-324Q from
LaserCompact Co. Ltd, Russia) with a pulse length of
τL = 8 ns and a pulse repetition rate of 500 Hz. Its radi-
ation was guided through a fiber to the source of the
optoacoustic signal in the form of a 20-µm-thick black
polyethylene film placed into the immersion liquid
(distilled water). Because the acoustic impedance of
polyethylene is close to the impedance of water, the
system could be considered as acoustically homoge-
neous. The footprint of the laser beam on the film sur-
face was 1 mm in diameter, and the laser pulse energy
was 70 to 80 µJ. The electric signal was amplified by a
preamplifier and recorded by a Tektronix TDS220

Fig. 2. Impulse responses to a point source located in differ-
ent space regions (refer to curve numbers) shown in Fig. 1.
The central peak is the response to the source located at the
focus of the transducer with a coverage angle of 60°.
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oscilloscope with averaging over 128 realizations, pro-
viding a >40-dB dynamic range.

In our experiment, the strip of the piezoelectric ele-
ment was l = 60 mm long, h = 1 mm wide, and d =
110 µm thick and had a curvature radius of R0 = 60 mm.
The substrate was made of organic glass, because its
acoustic impedance is close to the impedance of PVDF.
The organic glass was 80 mm thick, which provided
measurements with a more than 60-µs-wide time win-
dow. The theoretical bandwidth of the transducer at
points 1/e was from 50 kHz to 3.5 MHz. The optoa-
coustic source was moved across the surface of the
piezoelectric transducer in two coordinates with the
help of micrometer screws (in Cartesian coordinates X
and Y (Fig. 1)).

The impulse responses considered above were
obtained under the assumption that the transducer
bandwidth was infinite and that the pulse had the form
of a delta function. In the experiments, the received
bandwidth was finite and the excitation pulse was
described by a short unipolar burst. Therefore, to com-
pare the experimental responses with those calculated
theoretically, we convolved point-source response (2)
with the optoacoustic spherical wave waveform and
with the impulse response of the planar piezoelectric
element. As we noted above, when calculating the Ray-
leigh integral, the time quantization interval ∆t was
chosen so that the front of the acoustic wave traveled a
distance on the transducer’s surface that is much shorter
than the distance between the source and the trans-
ducer. Therefore, the elementary surface covered
within time ∆t was approximately considered as a pla-
nar surface. It was thus assumed that, at each time
instant, the spherical wave from the point source is inci-
dent on the planar finite transducer surface. Since our
study refers to the region near the transducer’s focus,
the dependence of the wave transmission coefficient on
the incident angle and the mode transformation effects
were neglected.

The open-circuit relative complex spectral sensitiv-
ity of the film transducer at frequency f is proportional
to the difference between the particle displacements at
the edges of the piezoelectric element [7]:

(3)

where ξ is the particle displacement, d is the PVDF
thickness, and A is a constant that depends on the lon-
gitudinal piezoelectric modulus and permittivity of the
film.

The impulse response of the planar transducer is the
inverse Fourier transform of the function S(f). We cal-
culated it by the modified matrix method [8]. The
method relies on the pressure and particle velocity con-
tinuity conditions for individual harmonics at the inter-
faces of the multilayer structure, which yield the fre-
quency spectra of the pressure and particle velocity in

S f( ) A
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Fig. 3. Experimental (solid lines) and theoretical (dotted lines) temporal profiles of optoacoustic signals recorded by the transducer
for a spherical wave source located (a) at the focus, (b) in region 1, (c) in region 3, and (d) in region 2.
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any layer. The transducer is designed so that the PVDF
is sandwiched between water and organic glass half-
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
spaces. Its relative complex spectral sensitivity can be
expressed analytically as
(4)S f( ) A
i2z2c2/ 2πf( ) 2z2 i2z2 2πfd/c2( )sin– 2z3 2πfd/c2( )cos–( )

z1 z2+( ) z2 z3+( ) i2πfd/c2( )exp z1 z2–( ) z2 z3–( ) i2πfd/c2–( )exp+
-----------------------------------------------------------------------------------------------------------------------------------------------------------------,=
where z1, z2, and z3 are the acoustic impedances of
water, PVDF, and organic glass, respectively, and c2 is
the velocity of sound in PDVF. Because the laser pulse
is short relative to the time taken by the wave to travel
through the heat release region, the shape of the excited
optoacoustic signal depends on the geometry of the
heat release region alone [9, 10]. In our case, the shape
of the optoacoustic signal at the transducer was defined
by the energy distribution over the laser beam footprint
and could, to the first approximation, be assumed equal
to the derivative of the Gaussian pulse with the spec-
trum limited (at the 1/e points) by a frequency of fmax =
4 MHz.

In the experiment, we recorded the signals received
by the transducer versus time for various positions of
the optoacoustic source on the XY plane (Fig. 3). Figure 3a
shows the calculated and measured temporal profiles
for the source placed at the transducer’s focus. In this
case, the duration of the response function will be min-
imal (see Fig. 2), because the spherical wave front
arrives at all elements of the transducer aperture at the
same time and its effect on the recorded signal profile
will also be minimal. The theoretical and experimental
optoacoustic signals were normalized by the amplitude
of the pulse produced by the source placed at the focus.
The optoacoustic signal consists of a compression
phase and a longer rarefaction phase, this structure
being explained by the specific features of the trans-
ducer’s impulse response. The experimental temporal
profiles of signals are seen to be in good agreement
with the theoretical ones. The absolute low-frequency
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Fig. 4. Experimentally measured transducer’s sensitivity map. The thick line outlines the region where the amplitude of the integral
of the optoacoustic signal is greater than 0.5 of its maximum value.
sensitivity of the transducer measured for this particular
source position was 8 µV/Pa.

Figure 3b shows the calculated and measured pro-
files of signals received by the focused transducer from
the source located in region 1 (Fig. 1). The point-source
response function determines temporal profiles of the
signals recorded. Therefore, the signal amplitude in the
compression phase is greater than that at the rarefaction
phase. For the source located in region 3, the maximum
of the response function is observed when the wave
front arrives at the farthest aperture element whose nor-
mal passes through the source. At first, the acoustic sig-
nal arrives at the edge points of the aperture, while the
normal component appears at the last moment, which
gives a clear-cut minimum in the total resultant signal;
i.e., the amplitude in the rarefaction phase is greater
than that in the compression phase (Fig. 3c).

When the source is in region 2, the optoacoustic sig-
nal spreads over the time interval between tmin and tmax
(Fig. 3d). For sources located in regions 1 and 3, the
signal amplitude is greater than for those in region 2 at
the same X, because the wave front simultaneously
arrives at the aperture elements that are symmetric
about the normal. For a particular X coordinate, the sig-
nal is maximal when the source is at the X axis. In each
of the regions, the time taken by the wave front to travel
over the aperture increases with the displacement from
symmetry axis X, which expectedly reduced the relative
response. When the source moves along the Z axis, the
region dependences remain the same with the only dif-
ference being that the travel time over the film along the
Z axis is taken into account, which reduces the relative
level of the response.

To determine the transducer’s sensitivity region, the
following measurements were carried out. With the
help of micrometric screws, the optoacoustic source
was moved in the Y and X directions with a step of 0.4
and 0.3 mm, respectively. The acoustic signals recorded
by the transducer were integrated, and their maximum
values were determined and put on the map. This pro-
cedure was used, because it is an integral of the far-field
optoacoustic pulse that carries information about the
distribution of the heat sources in the medium, i.e.,
about the spatial distribution of absorbing inhomogene-
ities [10]. The above procedure allows us to determine
the transducer’s spatial sensitivity region and to esti-
mate the possibility of reconstructing positions and
sizes of real sources. Figure 4 shows a 4 × 24-mm
region with the transducer’s focus at the center. The
experimental results validate the preliminary theoreti-
cal estimates; i.e., the transducer’s sensitivity rapidly
varies in the Y direction and rather slowly varies in the
X direction. The region where the amplitude of the inte-
gral is greater than 0.5 of its maximum value (it is out-
lined by a thick line in Fig. 4) is confined to a pearlike
zone with its base facing the antenna.

Thus, this paper reports on the theoretical and exper-
imental studies of a wideband focused PVDF trans-
ducer. The point-source impulse response functions of
a cylindrically focused transducer are theoretically cal-
culated for various source positions in the imaging
plane. The temporal profiles of the transducer
responses to optoacoustic signals produced by a pulsed
source of spherical waves whose frequency spectrum
was limited to a band (at the 1/e points) with fmax =
4 MHz are measured. The absolute sensitivity of the
transducer for the source placed at its focus is 8 µV/Pa.
Based on the experimental data, the transducer’s sensi-
tivity map is constructed. It is shown that the trans-
ducer’s sensitivity region is confined to a 2 × 15-mm
region (at a level of 0.5). The agreement between the
calculated and measured responses of the focused
piezoelectric element testifies to the applicability of the
approximate model used for solving the problem. The
theoretical and experimental results obtained in this
work will be used in designing an antenna array for
optoacoustic tomography.
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Abstract—In this paper, the time reversal method in an anisotropic elastic solid is theoretically studied for the
first time. The transversely isotropic anisotropic medium (6mm crystal structure) is modeled as the anisotropic
elastic solid. A unidirectional glass-reinforced epoxy-fiber is chosen as the material of the 6mm anisotropic
medium. The time reversal acoustic field is numerically investigated by the ray approximation method. The
focused acoustic field has different characteristics in different directions. The focused field is also symmetrical
about the principal axes. It is found that the width of the principal lobe of the focused acoustic field reaches the
minimum in the maximum group velocity direction and reaches the maximum in the minimum group velocity
direction. The relation of the time reversal acoustic field to the parameters of the anisotropic medium is also
studied in detail. © 2003 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

Time Reversal (TR) is a novel method of self-adap-
tive focusing which does not require a priori knowledge
about the properties and structures of the media and the
transducer. The sound beams can be bent and the focus-
ing points can be defocused in the inhomogeneous
media. This phenomenon can create phase aberrance
and image distortion. The TR method can overcome
this difficulty and realize the refocusing. This has been
proved in theory and experiment [1–13].

However, the focusing beams can be also defocused
by the anisotropy. The focusing beam that is deter-
mined to be focused on some point will not be focused
on the predetermined focusing point because the prop-
agation velocity is related to the propagation direction.
Different focusing results will be obtained in different
propagation directions. The self-adaptive focusing in
the anisotropy is more difficult and more complicated
than that in isotropy. Many people have studied the TR
self-adaptive focusing in isotropy, but the TR works in
anisotropy have not yet been seen.

In this paper, the TR self-adaptive focusing in the
anisotropy is investigated. At first, the theoretical for-
mulation about the anisotropy and TR method is
reviewed. Then, the numerical simulation results are
given and analyzed.

THEORETICAL FORMULATION

A semi-infinite anisotropic medium which is a non-
piezoelectric 6mm crystal structure is considered. It is
also assumed that the angle between the crystallo-

1 This article was submitted by the authors in English.
1063-7710/03/4906- $24.00 © 20688
graphic axis of the 6mm material and the free surface is
equal to ϕ. Two Cartesian coordinate systems (x, y, z)
whose x and y axes are on the free surface and (x', y', z')
oriented along the crystallographic axis are adopted,
respectively. The y and y' axes are superposed on the
free surface. The anisotropic 6mm material is in the
range z ≥ 0 and the region z < 0 is the vacuum. Only
two-dimensional wave propagation is considered in this
paper (i.e., the acoustic field is not related to the y coor-
dinate). The transmission transducer array is on the free
surface and extends to infinity along the y direction.
The center of the transmission transducer array is on the
origins of the Cartesian coordinate systems (x, y, z) and
(x', y', z'). The configuration of the medium is shown in
Fig. 1.

A. Acoustic Wave in Anisotropy

The modulus matrix of the 6mm material in z ≥ 0 is
constant in Cartesian coordinate system (x', y', z'):

(1)

where c66 = (c11 – c12)/2. There are only five elastic
moduli in the medium.

It is convenient to use Cartesian coordinate system
(x, y, z). The modulus matrix of Eq. (1) should be trans-

C

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66 
 
 
 
 
 
 
 
 
 

,=
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formed to the system (x, y, z). It can be written in the
form

(2)

where

C'

c11' c12' c13' 0 c15' 0

c12' c22' c23' 0 c25' 0

c13' c23' c33' 0 c35' 0

0 0 0 c44' 0 c46'

c15' c25' c35' 0 c55' 0

0 0 0 c46' 0 c66' 
 
 
 
 
 
 
 
 
 
 

,=

c11'  = c11 ϕcos
4

c33 ϕsin
4

2 c13 2c44+( ) ϕsin
2 ϕ ,cos

2
+ +

c12' c12 ϕcos
2

c13 ϕ ,sin
2

+=

c13' c13 ϕcos
4

c13 ϕsin
4

+=

+ c13 c33 4c44–+( ) ϕ ϕ ,cos
2

sin
2

c15' c13 2c44 c11–+( ) ϕcos
2[=

+ c33 c13– 2c44–( ) ϕsin
2 ] ϕ ϕ , c22'cossin c11,=
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Then, the Christoffel equation can be obtained:

(3)

where

c23' c12 ϕsin
2

c13 ϕ ,cos
2

+=

c25' c13 c12–( ) ϕ ϕ ,cossin=

c33' c11 ϕsin
4

c33 ϕcos
4

+=

+ 2 c13 2c44+( ) ϕ ϕ ,cos
2

sin
2

c35' c13 2c44 c11–+( ) ϕsin
2[=

+ c33 c13– 2c44–( ) ϕcos
2 ] ϕ ϕ ,cossin

c44' c44 ϕcos
2

c66 ϕsin
2

,+=

c46' c44 c66–( ) ϕ ϕ ,cossin=

c55'  = c44 2ϕcos
2

c11 c33 2c13–+( ) ϕsin
2 ϕ ,cos

2
+

c66' c44 ϕsin
2

c66 ϕcos
2

.+=

Ω Γ ij ρV2δij– Ω1Ω2 0,= = =
(4)

(5)

Ω1 c44' θcos
2

c66' θsin
2

c46' 2θsin ρV2,–+ +=

Ω2
c55' θcos

2
c11' θsin

2
c15' 2θsin ρV2–+ + c15' θsin

2
c35' θcos

2
c13' c55'+( ) θ θcossin+ +

c15' θsin
2

c35' θcos
2

c13' c55'+( ) θ θcossin+ + c33' θcos
2

c55' θsin
2

c35' 2θsin ρV2–+ +
;=
here θ is the angle between the radius vector of the
field point and the z axis. Let ξ = θ – ϕ, the propaga-
tion phase velocities of the quasi-P and quasi-S waves
be
(6)
V p

2 1
2ρ
------ c11 ξsin

2
c33 ξcos

2
c44 c11 c44–( ) ξsin

2
c33 c44–( ) ξcos

2
–[ ]

2
c13 c44+( )2 2ξsin

2
++ + +[ ] ,=

Vs1
2 1

2ρ
------ c11 ξsin

2
c33 ξcos

2
c44 c11 c44–( ) ξsin

2
c33 c44–( ) ξcos

2
–[ ]

2
c13 c44+( )2 2ξsin

2
+–+ +[ ] ,=






and the phase velocity of the pure S wave be

(7)

It is easy to obtain the slowness surfaces, ray surfaces,
and normal surfaces of the quasi-P, quasi-S, and pure S
waves by Eqs. (4)–(7). It can be seen that the propaga-
tion velocities of the quasi-P, quasi-S, and pure S waves
are related the orientation of the radius vector relative
to the crystallographic axis.

The displacement field in the medium can be
obtained by the christoffel equation. It can be written as

Vs2
2 c44 ξcos

2
c66 ζsin

2
+( )/ρ.=
the following form in the kx wavenumber domain

(8)

where

(9)

Ux

Uy

Uz 
 
 
 
  e

ikz1z
e

ikz2z
0

0 0 e
ikz3z

a1e
ikz1z

a2e
ikz2z

0 
 
 
 
 
 

K1

K2

K3 
 
 
 
 

,=

ai

c11' kx
2 c55' kzi

2 2c15' kxkzi ρω2–+ +

c15' kx
2 c35' kzi

2 c13' c55'+( )kxkzi+ +
--------------------------------------------------------------------------, i– 1 2,,= =
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and kzi represent the wavenumbers in the (i = 1, 2, 3)
direction of quasi-P, quasi-S, and pure S waves, respec-
tively.

The stress components can be obtained:

(10)

where ∆1 = kx + kz1a1 + (kz1 + kxa1), ∆2 =

kx + kz2a2 + (kz2 + kxa2), ∆3 = kx +

kz1a1 + (kz1 + kxa1), ∆4 = kx + kz1a2 +

(kz1 + kxa2), ∆5 = kz3 + kz1kx. So, it is obtained
by Eqs. (8) and (10) that

(11)

where ∆ = ∆1∆4 – ∆2∆3. If only the stress component z = 0
is excited in the range [–l/2, l/2] at the free surface τzz,
i.e.,

(12)

τ xz

τ yz

τ zz 
 
 
 
  ∆1 ∆2 0

0 0 ∆5

∆3 ∆4 0 
 
 
 
  iK1e

ikz1z

iK2e
ikz2z

iK3e
ikz3z 

 
 
 
 
 

,=

c15' c35' c55'

c15' c35' c55' c13'

c33' c35' c13' c33'

c35' c44' c46'

Ux

Uy

Uz 
 
 
 
 

i

e
ikz1z

e
ikz3z

0

0 0 e
ikz3z

a1e
ikz1z

a2e
ikz2z

0 
 
 
 
 
 

–=

×
∆4/∆ 0 ∆2/∆–

∆3/∆– 0 ∆1/∆
03 1/∆5 0 

 
 
 
  τ xz

τ yz

τ zz 
 
 
 
 

z 0=

,

τ zz z 0=
e

ikx x–
xd

l/2–

l/2

∫ 2
kx

----
kxl
2

------.sin= =

X

X'

Z

Z'

O

ϕ

Fig. 1. The geometrical configuration of the medium.
Therefore,

(13)

The corresponding displacement components of the
compression wave are

(14)

The integrals in Eq. (14) can be given by the ray
approach method for the far field:

(15)

where gx(r, θ) = , gz(r, θ) = a1gx(r,

θ), f = , gx(r, θ) and gz(r, θ) are named as the

directional factors in x and z axes, and the saddle point
condition is determined by

(16)

It is indicated in Eqs. (15) and (16) that the compression
wave propagates as its group velocity Vg instead of the
phase velocity Vp. The signal received by the receiver is
the information about the group velocity [14].

B. Time Reversal Field

It is assumed that the transducer has M array ele-
ments. The acoustic field radiated by the nth array ele-
ment (n = 1, 2, …, M) can be written in the following
form in the time domain

(17)

Ux x z,( ) 1
2π
------ Ux kx z,( )e

ikx x
kxd

∞–

∞

∫=

=  
i

πkx∆
------------

kxl
2

------ ∆2e
ikz1z

∆1e
ikz2z

–( )e
ikx x

sin kx,d

∞–

∞

∫

Uz x z,( ) 1
2π
------ Uz kx z,( )e

ikx x
kxd

∞–

∞

∫=

=  
i

πkx∆
------------

kxl
2

------ a1∆2e
ikz1z

a2∆1e
ikz2z

–( )e
ikx x

sin kx.d

∞–

∞

∫


















Ux
p x z,( )

i∆2

πkx∆
------------

kxl
2

------e
i kx x kz1z+( )

sin kx,d

∞–

∞

∫=

Uz
p x z,( )

ia1∆2

πkx∆
-------------

kxl
2

------e
i kx x kz1z+( )

sin kx.d

∞–

∞

∫=











Ux
p x z,( ) gx r θ,( )e

i ωr/Vg π/4+( )
,=

Uz
p x z,( ) gz r θ,( )e

i ωr/Vg π/4+( )
,=




2
πrf θcos
---------------------

∆2

kx∆
--------

kxl
2

------sin

d2kz1

dkx
2

------------

dkz1

dkx

---------- θ.tan–=

Un rn t,( ) g rn( ) f t τn–( ),=
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where τn = rn/Vn represents the propagation time from
the nth element to the receiver point. g(rn) is the direc-
tional factor in the x or z axis. The total field excited by
all elements of the transducer at the receiver point is

(18)

The acoustic waves excited by different array element
arrive at the receiver point at different times. They can’t
be superposed coherently and formed a widened pulse.
If the time signal of the each element is reversed

(19)

where T is a long time. This reversal signal is normal-
ized with a maximum of 1 and is then retransmitted by
the same array element

(20)

so the total field is

(21)

If r' = r, it is easy to see that

(22)

This demonstrates that the waves radiated by the differ-
ent element arrive at the receiver synchronously and
coherently superpose. The acoustic field is refocused to
the original point.

NUMERICAL SIMULATION

In this section, the numerical results are given. The
unidirectional glass-reinforced epoxy fiber is chosen as
the material for the anisotropic medium [15]. This
material has 6mm anisotropy. The elastic constants and

U r t,( ) Un rn t,( )
n 1=

M

∑ g rn( ) f t τn–( ).
n 1=

M

∑= =

Un rn T t–,( ) g rn( ) f T t– τn–( ),=

f n
TR t( )

g rn( )
g rn( )
--------------- f T t– τn–( ),=

UTR r' t,( )
g rn( )
g rn( )
---------------g rn'( ) f T t– τn' τn–+( ).

n 1=

M

∑=

UTR r t,( ) g rn( )
n 1=

M

∑ f T t–( ).=
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the density of this material are given in Table 1. The
corresponding values of the kind of isotropic material
are also given as the comparison analyses. In the
numerical simulation, the signals received are the dis-
placement components of the quasi-P wave in the z
axis. The transmission pulse is a sine packet with a peri-
odicity of 10 [7, 8]. The frequency is 1 MHz.

The slowness surfaces, ray surfaces, and normal sur-
faces of the quasi-P, quasi-S, and pure S waves of this
material are shown in Fig. 2. Fig. 2b is important for
this paper because the information received concerns
the group velocity. It can be seen that the group velocity

reaches a maximum of  in the direction ξ = 0

(i.e., θ = ϕ) and reaches a minimum of  in the
direction ξ = 90° (i.e., θ = 90° + ϕ).

It is assumed that the length of the transducer array
is in the range [–0.5, 0.5] in the numerical simulation;
i.e., the length of the transducer is L = 0.1 m, the trans-
ducer is divided into 64 array elements. In the first step
of TR, 64 array elements of the transducer transmit a
sine packet wave, respectively. Figure 3a displays the

displacement components  of the quasi-P wave
received at point R (x = 0, z = 0.4 m) in the case that ϕ
and θ are both equal to zero. It shows that the quasi-P
waves radiated by different elements reach R at differ-
ent times. In the second step of TR, the above signals
are reversed and retransmitted simultaneously by each
element. In this time, the displacement z components
received at the same point R are shown in Fig. 3b. It is
clearly shown that the signals radiated by the different

c33/ρ

c11/ρ

Uz
p

Table 1.  The values of elastic constants and the densities of
the materials. (The units of elastic constants and densities are
1010 N/m2 and kg/m3, respectively)

Materials c11 c12 c13 c33 c44 ρ

Epoxy fiber 2.58 2.42 0.70 6.01 0.49 1900

Isotropy 6.01 5.03 5.03 6.01 0.49 1900
90
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0
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0
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(a) (b) (c)

Fig. 2. The slowness surfaces (a), ray surfaces (b), and normal surfaces (c) of the quasi-P, quasi-S, and pure S waves of the unidi-
rectional glass-reinforced epoxy fiber.
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Table 2.  The values of focusing gain in some focusing points

ϕ = 0° ϕ = 90°

(x0, y0) (0, 0.4) (0.02, 0.4) (0.04, 0.4) (0, 0.4) (0.02, 0.4) (0.04, 0.4)

Focusing gain 14.4 dB 13.4 dB 12.4 dB 11.0 dB 10.4 dB 10.8 dB
elements arrive synchronously in phase. They are
enhanced by each other and refocused. After TR, the
signals from the different elements superpose coher-
ently. Figure 3c gives the waveforms in the case that all
of the elements transmit the signals synchronously
before and after TR. It can be concluded that the coher-
ent peak of the signal after TR is more enhanced. The
good effect of self-adaptive focusing is obtained.

0
0.09

Time (ms)

–100

0.070 0.075

(c)

Time (ms)

20
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0.09
Time (ms)

0.080.07

(b)

–50

0

50

100

0.080 0.085 0.090
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Fig. 3. Displacement components Uz received at point
(0, 0.4). (a) Signals received when 64 elements are excited
respectively in the first. (b) Signals received when
64 reversed signals are retransmitted respectively after TR.
(c) Signals received when 64 elements are excited simulta-
neously before and after TR.
It is convenient to adopt the focusing gain

(23)

where Max[P(t)] and Max[PTR(t)] are the maximums of
the signals received before and after TR. Let gM be the
maximum of the time series of Eq. (18); the focusing
gain can be written in the following form by Eq. (22):

(24)

So, for Fig. 3, it is easy to see that the focusing gain is
equal to 14.4 dB.

The focusing gain is related to the distance from the
focusing point to the transducer. In general, the greater
the distance from the focusing point to the transducer,
the less the focusing gain. The focusing gain is also
related to the orientation of the focusing point. Table 2
gives the values of the focusing gains at some points of
the anisotropic medium.

The time reversal acoustic field near the focusing
point is investigated. The results are shown in Fig. 4.
Curves 1 and 2 represent the field distribution in the
cases when the focusing points are (0, 0.4) and
(0.04, 0.4), respectively. The focused acoustic field in
the corresponding isotropic medium is also depicted in
Fig. 4a (curves 3 and 4).

It is easy to see that the focusing effect in the x direc-
tion is much better than that in the z direction. It is
known that the width of the principal lobe of the TR
acoustic field along the longitudinal axis in the isotro-
pic medium is longer than that along the transverse
axis. In the anisotropic medium, there not only exist the
above results, which are the same as those in the isotro-
pic medium, but the width of the main lobe in the trans-
verse (x) axis is less than that in the longitudinal (z)
axis. This is because the propagation velocity is related
to the propagation direction. It is not difficult to see that
the displacement component Uz reaches the maximum
in the z direction. This makes the acoustic field more
effectively focused along the x axis.

Figures 4c and 4d are for ϕ = 90°. In this case, the

group velocity in the z axis is equal to , which is
less than that in the x axis. It can be found from Figs. 4c
and 4d that the width of the main lobe of the focused
acoustic field is bigger than that in ϕ = 0. That is, the
width of the main lobe of the focused acoustic field is
different in different directions in the anisotropic

G 20
Max PTR t( )[ ]
Max P t( )[ ]

-------------------------------,log=

G 20
1

gM

------ g rn( )
n 1=

M

∑ .log=

c11/ρ
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Fig. 5. Isolines of the focused acoustic field.
medium, but the width of the main lobe reaches the
minimum in the maximum group velocity direction and
reaches the maximum in the minimum group velocity
direction.

Curves 1 and 2 in Fig. 4 are for the focusing points
(0, 0.4) and (0.04, 0.4), respectively. When the focusing
point is not in the z axis, the width of the main lobe of
the focused field in the x axis is bigger than that when
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
the focusing point is in the z axis [Figs. 4a, 4c]. How-
ever, the width of the main lobe in the z axis is bigger
than that when the focusing point is in the z axis for
ϕ = 90° [Fig. 4d] and less than that when the focusing
point is in the z axis for ϕ = 0 [Fig. 4b].

To understand the distribution of the focused acous-
tic field near the focusing point, the isolines of the
focused acoustic field are given in Fig. 5. Figures 5a
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and 5b are for ϕ = 0 and 5c and 5d for ϕ = 90°, respec-
tively. The focusing points are on the z axis in Figs. 5a
and 5c and are not on the z axis in Figs. 5b and 5d. The
closed curves in Fig. 5 from the inner to external circles
represent the fart that the focusing gains are equal to
−1dB, –2dB, –3dB, –4dB, –5dB, and –6dB, respec-
tively. It is easy to see that the isolines are concentrated
in ϕ = 0; i.e., the focusing width is minimum in ϕ = 0
(i.e., the maximum group velocity direction). This is
consistent with the results in Fig. 4. It has been noted
that the difference of the distribution range of the iso-
lines between the x and y axes is more significant. The
range of isolines in the z axis is about 20 times greater
than that in the x direction. These characteristics can
also be seen in Fig. 4. It can be seen from Figs. 5b and
5d that the isolines are not symmetric about the x or z
axes when the focusing point is not on the z axis. One
reason is that the radius vector from the transducer to
the focusing point is not perpendicular to the transducer
array. A similar result can be obtained in the isotropic
medium.

Figure 6 displays the relationship of the focusing
gain to the number of array elements, which indicates
that the focusing gain increases as the number of array
elements increase when the number is less than 40. If
the number is greater than 40, the focusing gain tends
toward a given value as the number increases. Thus, the
saturated phenomena could appear in the focusing gain
when the number of transducer array elements
increases because the transmission pulse has a definite
width. These phenomena should appear in the isotropic
medium [8].

0 20 40 60 80 100

3

6

9

12

15

The number of array elements

The focusing gain/dB

Fig. 6. The relation of the focusing gain to the number of the
array elements.
CONCLUSIONS
Unidirectional glass-reinforced epoxy fiber was

chosen as the material for the 6mm anisotropic
medium. The TR method in this material was theoreti-
cally studied for the first time in this paper. The rela-
tionship of the TR acoustic field to the parameters of
anisotropic medium was analyzed in detail. It was
found that the width of the main principal lobe of the
focused acoustic field reaches the minimum in the max-
imum group velocity direction and reaches the maxi-
mum in the minimum group velocity direction.

This study on the TR method is very elementary.
There remain many problems to be addressed in our
future studies. TR self-adaptive focusing in an anisotro-
pic medium is more complicated and more interesting.
This paper lays the foundation for further study.
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Abstract—For an ideal waveguide used as an example, the possibility of suppressing the effect of multipath
propagation on the target detection by applying wave conjugation is demonstrated. © 2003 MAIK
“Nauka/Interperiodica”.
Under the conditions of multipath signal propaga-
tion, the detection of a target by acoustic location is dif-
ficult. Instead of the expected target response, a contin-
uous buzz arrives at the receiver, and one can hardly
separate the reflection from the object of interest
against the background of random variations in the sig-
nal level. Formally, multipath propagation in the form
of repetitions of the signal and noise does not change
the signal-to-noise ratio. Therefore, one may expect
that a multipath medium should not noticeably affect
the signal detection. Possibly, this is true for a number
of important situations. However, there is a wide class
of signals for which their shapes, rather than the signal-
to-noise ratio, are critical. The signals used in active
location belong to this class. Active location is efficient
at rather low ratios of the desired signal to the interfer-
ing noise if the signal and noise levels are understood
as their energies averaged over the same relatively long
time interval. If a narrow pulse reflected from the
located object is much higher in amplitude than the
standard deviation σ of the noise (i.e., the square root of
the variance minus the mean value), the pulse is quite
pronounced on the noise background in spite of the fact
that the time-average energy of the short pulse is much
smaller than the time-average energy of the continuous
interfering noise.

If pulsed signals are used in the location procedure,
the signal detection is based on the prominence of the
pulse against the noise background. However, this main
difference between signal and noise (the pulse promi-
nence) is lost in the case of pulse propagation in a mul-
tipath medium. As an illustration, let us consider the
signal propagation in an ideal waveguide. Let the
waveguide have reflecting walls, so that a single narrow
probing pulse takes the form shown in Fig. 1.

Let us imagine that, in a free medium, the result of
location appears as shown in Figs. 2a and 2b. The noise
background can be produced by both the additive ambi-
ent noise and the reflections. We consider the latter sit-
1063-7710/03/4906- $24.00 © 20695
uation. In this case, we deal with the so-called reverber-
ation noise that is characteristic of, e.g., a shallow sea
[1]. In the case illustrated in Fig. 2, the pulse reflected
from the object to be located is quite pronounced. The
ratio of the mean signal level to the mean noise level is
equal to –4 dB when averaging is performed over the
length of the realization shown in Fig. 2a. At the same
time, the maximum signal amplitude shown in the same
figure is almost 19 dB higher than σ, which makes the
pulse clearly visible. Figure 3 shows the same signals in
the case of multipath propagation. The probing signal
now has the form similar to that shown in Fig. 1. Each
individual pulse of those shown in Fig. 2a is repeated by
the extended probing signal. As seen from Fig. 3, the
excess of the target-reflected signal shown in Fig. 2a
proves to be insufficient in a multipath medium. For the
sake of comparison, two cases are illustrated by Fig. 3.
In one of these cases, the desired signal is present, and
in the other case, it is absent. According to Fig. 3, these
cases are nearly indistinguishable, and one cannot
decide where the desired signal is actually present. Fig-
ure 4 illustrates the same situation as in Fig. 3, but with
the reverberation level shown in Fig. 2b, which is by
20 dB lower. In Fig. 4, the signal-to-noise ratio
(expressed in energy levels) is now positive and equal
to almost 16 dB. Figure 4 shows that the signal mani-
fests itself in its magnitude but not in its shape, which
has become noiselike.

The purpose of this paper is to show that, in multi-
path signal propagation, the phase conjugation can be
helpful in detecting the object to be located.

Recently, much attention has been paid to using
phase conjugation in acoustics [2]. It was found that
acoustics is more suitable for applying the phase conju-
gation technique than optics [2]. To create a phase-con-
jugate wave in acoustics, it is not necessary to use ded-
icated media or a nonlinear transformation of complex
amplitudes of the signal to their complex-conjugate
values. To implement the phase conjugation in acous-
003 MAIK “Nauka/Interperiodica”
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Fig. 2. Results of location in the absence of reflections from the waveguide walls for two reverberation levels: (a) one level is 20 dB
higher than (b) the other.
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Fig. 3. Results of location in the waveguide (a) in the absence of the object that is clearly visible in Fig. 2 and (b) in the presence
of the object. The reverberation level is the same as in Fig. 2a.
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Fig. 1. Sequence of the pulses reflected from the walls of an ideal waveguide, as used in the calculations.
tics, it is sufficient to receive the ordinary real-valued
sound field (a sequence of short probing pulses, for
instance), to save it, and then to send it back to the same
medium by applying, first, a time reversal to the signal.
As a result of the inverse wave propagation, the same
field as was sent initially is formed in the medium. This
is true for propagation in a complex medium containing
scatterers that can multiply scatter the sound field, in a
multipath medium, or in other inhomogeneous media
[2]. The aforementioned opportunity was practically
implemented in a shallow-sea wave propagation [3–5].

Let us apply the phase conjugation method to recon-
struct the shape of a pulsed signal propagating through
a multipath medium. To analyze the problem, it is con-
venient to consider the following simplest example. A
sound source that can transmit broadband probing sig-
nals for active location is placed at a point A in a multi-
path medium. The same acoustic system operating as
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
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Fig. 4. Results of location in the waveguide (a) in the absence of the object and (b) in the presence of the object. The reverberation
level is the same as in Fig. 2b.
the sound source is able to receive the echo signals
arriving at point A as well. In a multipath medium, such
a system can produce the signal patterns shown in
Figs. 3 and 4. To noticeably change these patterns, we
proceed as follows. Let us emit a short pulsed signal at
some point B of the medium where the target of interest
may appear. This signal will be received at point A. The
received signal will be distorted by multipath propaga-
tion and will have the shape shown in Fig. 1. We denote
this signal as C. If the signal C is inverted in time and
then transmitted into the medium again, precisely the
same pulse as the initially emitted one will be observed
at point B [2]. The use of this pulse in the location pro-
cedure is advantageous, because the pulse is not dis-
torted by the multipath propagation. Figure 5 shows the
wave field produced in the medium as a result of the
phase conjugation. This field interacts with the objects
of location in the same way as in a free space. The
waveguide does not participate in the process at its first
stage, which is very important. At the first stage, the
phase-conjugation-produced short pulse is multiplied
by the reflection pattern shown in Fig. 2. (Further, we
use only the pattern shown in Fig. 2a.) According to
Fig. 5, the medium is nonuniformly insonified in the
phase conjugation process. The signal is focused to
yield the maximum magnitude at the distance corre-
sponding to the point from which the short pulse was
emitted.

If, at point B, the object of location is present at the
instant of the pulse’s arrival, the reflected signal will
have the shape of signal C. If no object occurs at point
B, no response will be obtained. To detect the object at
a certain place and at a certain time, one has to distin-
guish signal C from all other signals. To that end, the
method of matched filtration can be applied. A filter
must be designed whose frequency response is com-
plex-conjugate with signal C. Then, at the filter output,
at some instant, a narrow pulse is obtained whose dura-
tion is inversely proportional to the pulse frequency
band [6] and amplitude is determined by the entire sig-
nal energy. The short pulse of high amplitude, which
occurs at the output of the filter matched with signal C,
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
can replace the pulse that serves as an indicator of the
object of interest in Fig. 2.

Figure 6 shows the time response of the filter
matched with signal C for two cases: when the object is
present at point B and when it is absent.

The calculations were performed using the follow-
ing formulas. First, the signal propagation through the
waveguide was modeled. The pulse was described by
the rectangular function E(t) with an amplitude equal to
unity at one of the sampling intervals, at t = 0. This
pulse was repeated in the waveguide at certain intervals
determined by distance R between the transmission and
reception points (A and B) and by waveguide thickness
h. The distance at which the nth pulse reflected by the
waveguide walls is observed is expressed as

(1)

The sequence of the pulses shown in Fig. 1 was first
formed in the spectral domain. The spectrum of this
sequence is determined by the expression

(2)

Here, u is the spatial frequency, β is the attenuation
coefficient at the pulse reflections from the waveguide
walls, g(u) is the spectrum of a single pulse E(t) that
occupies one sampling interval in space, and L = 512 is
the size of the entire data array. The desired pulse
sequence shown in Fig. 1 is determined as the Fourier
spectrum of G(u). The values of the parameters were
chosen so as to model the propagation of a sound pulse
in a shallow sea: R = 5 and h = 0.02. The interval of
sampling in distance was so small that the values of rn

could be described by integer numbers: this interval
was by a factor of 20000 smaller than the unit of length.
In the figures, the distance is given in units of sampling
in length or time minus the number of intervals indi-
cated in the figures. The quantity n was limited by as lit-

rn R2 n2h2+ .=
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Fig. 6. Results of location with the phase conjugation (a) in the absence and (b) in the presence of the object. The reverberation level
is the same as in Fig. 2a.
tle as 20 values. An increase in n to 50 or 100 values has
little effect on the results.

The reverberation shown in Fig. 2 was modeled by
a set of random numbers Q(m), whose values were uni-
formly distributed in the interval from 0 to 0.4 (Fig. 2a)
or from 0 to 0.04 (Fig. 2b). The reverberation was uni-
formly distributed over the path with a discreteness of
two sampling intervals in distance (0.0001 units of dis-
tance), within 200 values of length m with the center at
R = 5. The object of location positioned at the center of
Figs. 2a and 2b had a unit amplitude.
The spectra shown in Figs. 3 and 4 were calculated
by the formula

(3)

Here, Q(m) is the signal shown in Fig. 2. For Fig. 3a,
this signal is the one shown in Fig. 2a without the cen-
tral peak. For Fig. 3b, it is the whole signal shown in

U u( ) Q m( )G u( )
m

∑
n

∑=

× βn–( ) i
2π
L

------urn m( ) 
  .expexp
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Fig. 2a. The quantity G(u) is given by Eq. (2). Function
rn(m) was calculated from Eq. (1) into which the fol-
lowing function R(m) was substituted:

R(m) = 5 – 0.0001(m – 100). (4)

Figure 4 was obtained in the same manner as Fig. 3,
but with the function Q(m) shown in Fig. 2b.

Figure 5 shows the field generated in the medium
when the time-inverted signal C is emitted from point
A. The field of the signal was determined from its spec-
trum. The result of the phase conjugation in the
medium is obtained by the inverse Fourier transforma-
tion of the function

(5)

where function G(u) is determined by Eq. (2). Function
GR(u) is also determined by Eq. (2) for the correspond-
ing value of R, and the overbar means complex conju-
gation. Figure 5a shows the focusing as a function of
the ordinal number of the sampling interval on an
enlarged scale. As one can see, the focusing weakly
affects the calculation results for the distances used in
modeling.

The signals shown in Fig. 6 are obtained by using
the formula

(6)

This formula differs from Eq. (3) in that it uses a dif-
ferent spectrum of the probing pulse: function g(u) is
used instead of G(u). The time response of the matched
filter is obtained by the inverse Fourier transformation
of function V(u), which is determined as

(7)

The efficiency of the proposed technique can be
estimated by comparing Figs. 3 and 6. Both figures
show the result of location. However, in Fig. 3, the
effect of multipath propagation is not suppressed, while
in Fig. 6 it is suppressed by the phase conjugation pro-
cedure.

The method described above cannot change the ratio
of the intensity of the reflected signal to that of rever-
beration. The only advantage of the method is that it
eliminates the effect of multipath propagation on the
shape of the received signal. However, this advantage is
quite significant. The ratio of the maximal signal ampli-
tude to σ in Fig. 6 differs from that in Fig. 2a by less
than 1 dB. This difference and the difference in the sig-
nal shapes shown in Figs. 6b and 2a can be explained
by the change in the distributions. In Fig. 2a, a uniform
distribution is specified within the considered interval
of values, while in Fig. 6 the distribution is closer to the
normal one.

K u( ) G u( )GR u( ),=

M u( ) Q m( )g u( )
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With the use of the proposed method, an object can
be successfully detected at a single point. There can be
more than one of such points if the shape of signal C
remains unchanged at the other point of interest. At all
points where the shape of signal C is the same, the
aforementioned procedure provides detection of the
object. If the waveguide is cylindrically symmetric and
sufficiently homogeneous, the point at which the object
produces a narrow response at the matched filter output
is transformed to a locus in the form of a circle.

Theoretically, the proposed method of eliminating
the reverberation distortions can be implemented by
calculating the expected shape of signal C on the basis
of the data on the properties of the medium. However,
the latter statement is doubtful. The point is that one
does not know exactly what should be known about the
medium and to what accuracy. That is why the
approach based on calculating the shape of the signal C
should be rejected without discussion. Then, the
remaining way is to directly measure the response of
the medium, as described above. In this case, one sig-
nificant constraint holds: the medium to be studied
must be sufficiently stable.

Here, we considered one of the possible types of
reverberation, namely, multipath propagation. Other
types of reverberation are also possible, for example,
the signal reflections from a rough bottom and a rough
surface [7]. For these types of reverberation, the pro-
posed method seems to be useless.
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Abstract—The sound field scattered by a fractal surface in the form of a Sierpinski carpet is calculated in the
framework of the perturbation method. The Sierpinski carpet has an alternating acoustic admittance preset at
its squares, which sequentially scale down. It is demonstrated that such a Sierpinski carpet scatters sound almost
uniformly in all directions. © 2003 MAIK “Nauka/Interperiodica”.
† The problem of obtaining sound scattering from
room walls with a spatial distribution of the scattered
intensity close to uniform is of interest for architectural
acoustics [1–3]. Such a situation is possible when the
scattering surface is inhomogeneous due to its rough-
ness or the inhomogeneity of its acoustic properties.
Fractal surfaces have such properties. Sound scattering
by a fractal surface was examined using the Kirchhoff
method in [4]. In this connection, it is also appropriate
to mention the papers on the sound scattering at fractal
structures in the ocean [5, 6].

The spatial spectrum of the field scattered by an
inhomogeneous surface can be sufficiently uniform if
two conditions are satisfied.

First, inhomogeneities of opposite signs, for exam-
ple, inhomogeneities of acoustic admittance of oppo-
site signs, are presented on the surface in approximately
equal quantities. In this case, the contributions of inho-
mogeneities of opposite signs into the mirror reflection
almost compensate each other.

Second, the scales of all wave dimensions of the
sound frequency band of interest must be presented in
the spatial spectrum of inhomogeneities, starting from
dimensions on the order of wavelength and down to
small wave dimensions.

The Sierpinski carpet will have the aforementioned
properties if its inhomogeneities of sequentially
decreasing scale have alternating signs.

Geometrically, the construction of the Sierpinski
carpet is as follows. An initial square is divided by two
lines parallel to one pair of its sides and by two lines
perpendicular to them into nine equal squares of
smaller size. The central square is separated from them.
Another eight squares are divided in the same way into
nine squares of smaller scale, and the central squares
are separated from them, and so on. A fractal structure
is formed in the limit. In this structure, each separated
square of a given linear dimension is surrounded by
eight separate squares of a thrice smaller linear dimen-

† Deceased.
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sion. In reality, the subdivision of squares ends at a cer-
tain step N.

The acoustic Sierpinski carpet is a set of inhomoge-
neities in the form of squares with sequentially decreas-
ing side lengths Hn, n = 0, 1, 2, …, where Hn = 3–nH and
H is the side of the central square. The number of
squares of the nth scale is equal to 8n, and the total area

of the squares of this scale is 8n  = H2(8/9)n. From
this formula, it follows that the total area of the squares
of the nth scale slowly decreases with the growth of n
and is equal to eight-ninths of the area of the preceding
scale. Hence, the first condition of uniformity of the
spatial spectrum of scattering can be considered as sat-
isfied. The slowness of changes in the total area of the
squares of subsequent scales in the presence of scales of
various wave dimensions guarantees that the second
uniformity condition of the spatial spectrum of scatter-
ing is also satisfied. Let us prove this statement by the
example of sound scattering at the Sierpinski carpet, for
the squares of which we preset an acoustic admittance
in the form (–1)nη0; i.e., the admittance of the squares
alternates as the square size decreases.

Consider the diffraction of a plane wave of sound

pressure pi = exp[i( x + y – z)], where  =

, in the plane z = 0 characterized by the
acoustic admittance η(x, y). We restrict our consider-
ation to the case |η| ! 1, where it is possible to apply
the perturbation method by assuming that the total field
is expressed as

In this case, the boundary condition

∂p/∂z = –ikηp at z = 0

can be reduced in the first approximation to the form

Hn
2

kx
0 ky

0 kz
0 kz

0

k2 kx
02

ky
02

––

p x y z, ,( ) 2 kz
0z( )cos p1 x y z, ,( ), p1  ! 1.+=

∂p1/∂z 2ikη i kx
0x ky

0y+( )[ ] at zexp– 0.= =
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Substituting here the expansions of p and η in terms of
the spatial spectra

(1)

(2)

where kz =  and kz = , and
taking into account the fact that

we obtain A(kx, ky) = – B(kx – , ky – ).

In spherical coordinates, the projections of the wave
vector in a scattered wave and the radius vector of the
observation point take the form

p1 x y z, ,( ) A kx ky,( )
∞–

∞

∫
∞–

∞

∫=

× i kxx kyy kzz+ +( )[ ] kx ky,ddexp

η x y,( ) B κ x κ y,( )
∞–

∞

∫
∞–

∞

∫=

× i κ xx κ yy κ zz+ +( )[ ] κ x κ y,ddexp

k2 kx
2 ky

2–– κ2 κ x
2 κ y

2––

η x y,( ) i kx
0x ky

0y+( )[ ]exp

=  B κ x kx
0– κ y ky

0–,( ) i κ yx κ yy+( )[ ] κ x κ y,ddexp

∞–

∞

∫
∞–

∞

∫
2k
kz

------ kx
0 ky

0

kz k χcos= , kx k χ ψ,cossin=

ky k χ ψsinsin ,=

kz
0 k θ0cos= , kx

0 k θ0 ϕ0,cossin=

ky
0 k θ0 ϕ0sinsin ,=

z R θ, xcos R θ ϕ,cossin= =

y R θ ϕ, R2sinsin x2 y2 z2.+ += =
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Proceeding from here and taking into account the
expressions dkxdky = |k2cosχsinχ|dχdψ and kxx + kyy +
kzz = kR[sinχsinθcos(ψ – ϕ) + cosχcosθ], we repre-
sent Eq. (1) in the form

(3)

where 

When kR @ 1, it is convenient to use the saddle-
point technique to estimate the double integral in
Eq. (3) [7]. In the vicinity of the saddle point χ = θ,
ψ = ϕ, it is possible to take cos(χ – θ) ≅ 1 – (1/2)(χ –
θ)2 and cos(ψ – ϕ) ≅ 1 – (1/2)(ψ – ϕ)2. Taking into

account that ds = , we determine

after integration

Thus, we have

p1 x y z, ,( )

=  2k2 ikR χ θ–( )cos[ ] χsin χdexp

π/2( )– i∞–

π/2( ) i∞+

∫–

× W χ ψ θ0 ϕ0, , ,( )
π/2( )– i∞–

π/2( ) i∞+

∫
× ikR χ θ ψ ϕ–( )cos 1–[ ]sinsin{ } ψ ,dexp

W χ ψ θ0 ϕ0, , ,( )
=  B k χ ψcossin θ0 ϕ0cossin–( ),[

k χ ψsinsin θ0 ϕ0sinsin–( ) ] .

iρs2–( )exp
∞–

∞∫ π
iρ
-----

p1 θ ϕ,( ) 4πi
ikR( )exp

R
-----------------------=

× kB k θ ϕcossin θ0 ϕ0cossin–( ),[
k θ ϕsinsin θ0 ϕ0sinsin–( ) ] .
.
p1 θ ϕ,( )

p1 θ0 ϕ0,( )
------------------------

B k θ ϕcossin θ0 ϕ0cossin–( ) k θ ϕsinsin θ0 ϕ0sinsin–( ),[ ]
B 0 0,( )

----------------------------------------------------------------------------------------------------------------------------------------------=
Coordinates {xn, yn} of the squares of the nth scale,
which surround the square of the (n – 1)th scale with the
coordinates {xn – 1, yn – 1}, are connected by the expres-
sions xn = xn – 1 + νHν – 1 and yn = yn – 1 + µHν  – 1, where
ν and µ are the integer numbers acquiring the values
{−1, 0, 1} so as not to be simultaneously equal to zero.
In total, there are eight squares of the nth scale that sur-
round the square of the (n – 1)th scale for correspond-
ing combinations of ν and µ satisfying the condition
|ν| + |µ| ≠ 0. We have

1
4
--- x i κ xx κ yy κ zz+ +( )–[ ] ydexp

yn Ln–

yn Ln+

∫d

xn Ln–

xn Ln+

∫
=  Sn i κ xxn κ yyn κ zzn+ +( )– ,exp
where Ln = Hn/2 and 

One can see that the sum of eight such quantities for
eight squares with side Hn, which surround the large
square with the center at the point (xn − 1, xn – 1), is equal to

where 

Sn

κ xLn( )sin
κ x

------------------------
κ yLn( )sin
κ y

------------------------.=

Sn i κ xxn κ yyn κ zzn+ +( )–[ ]exp
ν
∑

µ
∑ Cn,=

Cn C κ xHn 1– κ yHn 1–,( ),=

C α β,( ) 2 α βcos+cos[=

+ α β+( ) α β–( ) ] .cos+cos
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Summarizing the contributions of all squares in the
expression for the inverse with respect to Fourier trans-
formation (2)

of the preset acoustic admittance, we obtain after inte-
gration

(4)

where

(5)

B κ x κ y,( ) 1

4π2
-------- η x y,( )

∞–

∞

∫
∞–

∞
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∏
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Fig. 1. Relative intensity I(θ) of a scattered wave (in deci-
bels) in the Fraunhofer zone at θ0 = 0 and kH = 9.24 for N =
(1) 100 and (2) 6 in Eq. (4).
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Fig. 3. The same as in Fig. 1 but for an acoustic admittance
at the central square equal to iη0 .
Figure 1 presents the relative intensity of a scattered
wave I(θ) = 20  (in decibels) at
θ0 = 0 and kH = 9.24, which at H = 1 m corresponds to
a frequency of 500 Hz and a normal incidence of the
initial wave. Curve 1 corresponds to a value of N = 100
in Eq. (4), and curve 2, to N = 6, i.e., to taking into
account the squares up to the hundredth and sixth
scales, respectively. As one can see from Fig. 1, the
scattered field is rather isotropic in this case except for
the directions in the narrow angular ranges near 32° and
68°. Figure 2 shows the function I(θ) at θ0 = 0 and kH =
5.544, which corresponds to a frequency of 300 Hz for
H = 1 m. Here, the scattering isotropy is considerably
violated only in the vicinity of the angle θ = 62°.

Although the calculations are conducted for the case
|η| ! 1, one should expect that they stay qualitatively
valid also for |η| ≈ 1, when the amplitude of a mirror-
reflected wave does not predominate over the scattered
field. In a rough approximation, an alternating acoustic

p1 θ 0,( )/ p1 0 0,( )( )log
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Fig. 2. The same as in Fig. 1 but for kH = 5.544.

20

–5

–10

0

0 10 30 40 50 60 70 80 90
θ°

I(θ), dB

1
2

Fig. 4. The same as in Fig. 2 but for an acoustic admittance
at the central square equal to iη0 .
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admittance can be realized by a wall relief in the form
of alternating bulges and cavities of various scales.

By slightly changing the acoustic admittance at the
central square, it is possible to radically reduce the dips
in intensity curves I(θ) in comparison with the curves
given in Figs. 1 and 2. For example, exchanging η0 for
η0q at the central square, we obtain

instead of Eqs. (4) and (5). In this case, the curves plot-
ted in Figs. 3 and 4 correspond to a value of q = i instead
of the curves given in Figs. 1 and 2.

B κ x κ y,( )
η0

π2
-----= S0q Sm

m 1=

N
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8
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Abstract—The structural, relaxational, and stress–strain properties of rigid-rod poly(heteroarylene)s contain-
ing high-polarity functional groups in macrochains are studied. The groups are capable of forming strong inter-
molecular bonds, including those with polar low-molecular substances (residual solvent or water). The acoustic
and dielectric spectroscopy methods are used. The properties of a recently obtained poly(heteroarylene)—
poly(naphthoyleneimidobenzimidazole)—are studied in detail. It is shown that these rigid-rod polymers can
exhibit local and large-scale molecular rearrangements at temperatures considerably lower than the glass tran-
sition temperature. The frequency vs. temperature diagram of relaxation transitions is obtained, and the activa-
tion energies for these processes are determined. The possible molecular dynamics mechanisms are dis-
cussed. © 2003 MAIK “Nauka/Interperiodica”.
At present, great interest is being shown in studying
the structural and physical properties of thermally sta-
ble poly(heteroarylene)s (PHAs) because of the broad
range of their physicomechanical characteristics at both
elevated (up to 673 K) and rather low (helium) temper-
atures. Apart from the unique mechanical properties,
these materials possess limiting (for polymers) thermal,
heat, optical, radiative, and chemical stabilities. How-
ever, the hitherto existing rigid-rod polymers were
insoluble, which hampered their reprocessing. Soluble
rigid-rod PHAs have only recently been synthesized.
Nevertheless, the data on the structure, molecular
dynamics, and macroscopic properties of such poly-
mers are almost lacking in the literature [1, 2]. The cor-
relation between the measured parameters and the
chemical structure of these polymers still remains
unclear, in spite of a permanent interest in the physical
and, specifically, acoustic properties of various poly-
meric systems [3–6].

The study of unique physical properties of PHAs is
necessary primarily for determining their use in indus-
try and technology. Although the acoustic methods of
studying the structure and properties of PHAs hold
much promise, these methods have not been used so far.

An important feature of the chemical structure of
poly(naphthoyleneimide)s is that their structure con-
tains strongly polar groups that not only strengthen the
intra- and intermolecular interactions but are also capa-
ble of holding many polar low-molecular substances
(LMSs), including water and the residual solvent. Due
to the active interaction with the functional groups of a
polymer, LMSs can affect the system of intermolecular
1063-7710/03/4906- $24.00 © 20704
bonds in the polymer and, hence, its structure and its
macroscopic properties.

The main purpose of this work was to obtain exper-
imental data that are necessary for establishing the cor-
relation between the microstructure and molecular
dynamics of new polymeric materials and their stress–
strain, dielectric, and other macroscopic properties.
This program was implemented for a new soluble rigid-
rod PHA—poly(naphthoyleneimidobenzimidazole)
(PNIB)—of the general formula

The polymer was prepared by high-temperature
polycondensation in organic solvents [7]. According to
[7], the Kuhn segment equals 32 ± 1 nm and its molec-
ular weight is higher than 105.

It was expected that the combined study of the struc-
tural, relaxation, and mechanical properties would
allow one, first, to determine the conditions for the
appearance of an intense molecular motion in rigid-rod
PHAs in their glassy state (for the usual rigid-rod poly-
mers, the molecular mobility in this state is degenerate)
and, second, to obtain experimental data necessary to
analyze the molecular dynamics mechanism both in the
absence and presence of polar low-molecular sub-
stances in the polymer bulk and to analyze the mecha-
nism for the formation of an excess free volume after
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the removal of LMSs without losing the unique com-
plex of the physicomechanical properties of PHAs.

Films for study were prepared by pouring a reaction
solution on a glass substrate, followed by drying at
393–413 K for 10–12 h in vacuum (~1.33 Pa) to a resid-
ual phenol content of 15–18 wt %, according to the
TGA data.

Some of the starting films were extracted from an
acetone–methanol mixture, whereupon they were dried
in vacuum under the above conditions with a phenol
residual content of no less than 1 wt % (extracted
films).

Mechanical tests of the PNIB films were carried out
on a 2166 P-5 tensile machine in the tension mode with
a velocity of v  = 10–4 m/s.

Dielectric measurements were made using a multi-
frequency (50 Hz –100 kHz) P-5083 bridge (Tochelec-
tropribor, Kiev) over the temperature range 80–800 K
in air and vacuum (1.33 Pa) on samples with a diameter
of 25 mm and a thickness of 0.05 mm.

X-ray structural studies were carried out at temper-
atures of 193–600 K in the reflection mode on a
DRON-3 diffractometer and in the transmission mode
on a DRON-1 diffractometer. The plane orientations
were determined by photographing X-ray diffraction
patterns with a flat-cassette camera of a URS-55 setup.
In all cases, CuKα radiation was used.

The sample densities were measured by the flotation
method in a carbon tetrachloride–toluene mixture.

Acoustic measurements were made at low sound
frequencies of 100–200 Hz in air and in an inert-gas
(argon) flow in the temperature range 80–800 K for
samples 24 × 2 × 0.05 mm in size.

For these measurements, we developed a new auto-
mated acoustic test bench allowing the properties of
polymeric materials to be studied in the resonant vibra-
tion mode over a broad range of temperatures and static
and dynamic mechanical loads. The tension–compres-
sion vibrations proceeded in the presence of controlled
static loads.

The functional scheme of the acoustic test bench is
shown in Fig. 1a. The bench consisted of the following
units: a driving vibrational contour, a measuring vibra-
tional contour, a dynamometric unit, and a unit for set-
ting and controlling temperature.

The basic distinctions between our method and
other methods known domestically and abroad are as
follows:

(i) the combination of the dilatometric and vibra-
tional methods allowed the substantial improvement of
the measurement accuracy;

(ii) the variation of the static and dynamic mechani-
cal loads with simultaneous recording of the coefficient
of linear thermal expansion made it possible to identify
the nature of molecular motions and determine their
correlation with the structure and the physicomechani-
cal properties of a material more accurately; and
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
(iii) the acoustic properties were studied directly
during the course of deformation of a polymeric mate-
rial.

The acoustic part of the bench was modeled by the
simplest system with two degrees of freedom, as shown
in Fig. 1b. The equations of motion for it are written as

(1)

where m1 is the mass of all mobile parts between the
sample and the vibrator (the lower clamp, two rods with
a system of attaching them to the vibrator membranes,
and the membranes themselves); m2 is the mass of all
the mobile parts between the sample and the strain-
gage beam (the upper clamp, the rod, and the beam
itself); x1 and x2 are the displacements from the equilib-
rium positions of the masses m1 and m2, respectively;
k1, k0, and kb are the coefficients of elasticity of, respec-
tively, the vibrator, the sample, and the strain-gage
beam; and F1(t) is an external force. In what follows,
we restrict ourselves to the analysis of harmonic vibra-
tions. To include the dissipative processes, all coeffi-
cients of elasticity will be assumed to be complex and
will be marked with asterisk.

Model (1) is analyzed below to obtain the expres-
sions for the components of complex elastic modulus.

Clearly, the vibrations in the system are the sum of
natural and forced vibrations. A partial solution to
equation (1) is sought in the form

where X1 and X2 are the complex amplitudes of mass
displacements for m1 and m2, respectively. From set (1),
one obtains the pair of algebraic equations

The equation for the natural frequencies ω1 and ω2
has the form

The terms x2 and x1 in equation (1) characterize
the elastic coupling of the partial systems; one can,
therefore, introduce the dimensionless coupling coeffi-
cient

m1 ẋ̇1 k1* k0*+( )x1 k0*x2–+ F1 t( ),=

m2 ẋ̇2 kb* k0*+( )x2 k0*x1–+ 0,=

x1 X1 iωt( ), x2exp X2 iωt( ),exp= =

F1 t( ) F1 iωt( ),exp=

k1* k0* ω2m1–+( )X1 k0*X2– F1,=

k0*X1 kb* k0* ω2m2–+( )+– X2 0.=

k1* k0* ω2m1–+ k0*–

k0*– kb* k0* ω2m2–+
0.=

k0* k0*

γ
k0
*2

k1* k0*+( ) kb* k0*+( )
----------------------------------------------,=
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Fig. 1. (a) Functional scheme of the acoustic test bench: (1) sample; (2) clamps; (3) mobile beam; (4)–(6) dynamometric system
for producing harmonic vibrations; (7, 8) displacement measurement system; (9, 10) harmonic vibration detection system;
(11, 12) strain-gauge system for the control of static load; (13, 14) temperature control system; and (15) data control and processing
system. (b) Equivalent scheme of the acoustic test bench.
characterizing the ratio of the mean binding energy to
the mean energy in the partial systems. However, for a
system with bonding of only a single type (as in our
case), one can formulate conditions under which the
bonding has only little effect on the vibrations of each
of the partial systems. For the elastically coupled sys-
tems, this occurs for the γ values satisfying the condi-
tion

where n1 and n2 are the partial frequencies.
L.I. Mandelstam analyzed this problem [8] to intro-

duce the concept of associated systems and the associ-
ation coefficient

This coefficient was introduced because the character
of interaction of the systems is determined not only by
the coupling constant (γ) but also by the proximity of

n1
2 n2

2–( )2
 @ 4γn1

2n2
2,

σ γ
2n1n2

n1
2 n2

2–
-------------------.=
partial frequencies. Consequently, the vibrations can be
considered separated if the association (but not bond-
ing) is very weak, i.e., if σ  0.

By choosing the parameters of the system in such a
way that

and, correspondingly, n1 = 60 and n2 = 500 Hz, one
obtains σ < 0.65 × 10–3.

The association coefficient as small as that allows
the vibrational process for each contour to be treated as
proceeding in an isolated system with one degree of
freedom. In this case, the expression for the complex
acceleration amplitude for m2 is

(2)

k1* k0*+( ) kb* k0*+( ) @ k0
*2

a Ẋ̇2
F1ω

2–

ω2–
kb* k0*+

m2
------------------+

-----------------------------------.= =
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003



ACOUSTIC, DIELECTRIC, AND MECHANICAL PROPERTIES 707
After substituting  = kb(1 – i ) and  = k0(1 –

i ) in Eq. (2), one has

where  = (k0 + kb)/m2,  = k0/m2, and  = kb/m2 .

Taking into account that, at resonance [8] ω ≅ ω2
and

(3)

where α =  + , and, for the detuning

ares/ , one obtains, after denoting p = ω2 , the follow-
ing equation in p:

Solving this equation and denoting  –  = 2∆ωω2,

with allowance for  @ 2α2, we obtain an expression
for the mechanical loss tangent:

(4)

Since  =  – , we have:

(5)

The dynamic elastic modulus E' = k0l/S of the sam-
ple, where l is its length and S is its cross-sectional area,
is found from the relationship 

As a result, one has

and, after measuring the sample density ρ, one obtains
the expression for the longitudinal (“rod”) sound veloc-

ity c = .

The values of kb, m2 , and  were determined by
the calibration. To determine kb and m2, the relation

1/  = f(∆m) was obtained, where ∆m is an additive to
the mass m2. By choosing a low-modulus sample and,
thereby, satisfying condition kb @ k0, one finds the
desired kb and m2 values from the curve slope and the
section on the ordinate axis, respectively. For determin-
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springs with the working frequency characteristics
lying in the range 100–200 Hz were chosen.

The X-ray diffraction patterns of PNIB show ill-
defined amorphous halos with d1 ~ 0.73, d2 ~ 0.5, and
d3 ~ 0.35 nm. As the temperature was raised to 600 K,
the halos were gradually smeared. The subsequent
cooling to 193 K did not change the diffraction pattern.
The “in-front” and “in-side” X-ray diffraction analyses
of the films showed that they were isotropic with an ill-
defined planarity.

The stress–strain curves obtained for the starting
PNIB films over a broad temperature range are shown
in Fig. 2, and the temperature dependences of the
breaking strength, ultimate elongation, and Young’s
modulus are shown in Fig. 3. From these data it is seen
that, first, the films possess enhanced strength proper-
ties and, second, these properties persist over a broad
temperature range (the films retain their workability up
to temperatures on the order of 650–670 K).

Mechanical properties as high as those and the
retention of their working capacity in a broad tempera-
ture range can be due to the structure and the character
of molecular mobility in PNIB.

With the aim of revealing a correlation between the
molecular dynamics and the macroscopic properties of
the films by the acoustic and dielectric relaxation meth-
ods, the temperature dependences of the parameters
responsible for the relaxation spectrum of this polymer
were studied for various film preparation histories.

The temperature dependences of the “rod” sound
velocity c and the mechanical loss tangent  are
shown in Fig. 4 for the extracted films. One can see that,
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Fig. 2. Stress–strain curves obtained for the PNIB film at
temperatures (1) 173, (2) 223, (3) 253, (4) 293), (5) 373,
(6) 473, (7) 573, and (8) 673 K.
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as the temperature increases, the molecular mobility is
frozen out near 80 K. We call it the β-relaxation transi-
tion (note that we refer the molecular mobility associ-
ated with various backbone motional modes of a mac-
romolecule to the group of β-relaxation transitions).
The β transition is observed as an inflection in the tem-
perature curve c(T) and as a broad peak with a maxi-
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Fig. 3. Temperature dependences of the breaking strength
(σ), ultimate elongation (ε), and Young’s modulus (E) of the
PNIB film.
mum at ~193 K in the temperature curve (T). Near
273 K, the β transition is interrupted by a region of
intense mechanical energy loss. This region (we call it
the intermediate loss region) is unrelated to the relax-
ation, because the dielectric measurements (Fig. 5)
show no frequency dependence and, inasmuch as this
transition is not observed in the PNIB relaxation spec-
trum recorded in the cooling regime, it can be assigned
to the water desorption from the sample bulk. Above
~373 K, the transition loss region transforms to a broad
β' peak with a maximum at ~560 K, corresponding to a
monotonic decrease in c. The highest-temperature β''
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Fig. 4. Temperature dependences of the “rod” sound veloc-
ity c and the mechanical loss tangent  for the PNIB
films with different preparation histories: (1, 1') starting
film; (2, 2') extracted from LMS; (3, 3') extracted from LMS
followed by annealing at 573 K; (4, 4') after annealing at
623 K; (5, 5') after annealing at 773 K (heating and cooling
curves are given); (6, 6') after annealing at 623 K and hold-
ing in water for one day.
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transition is characterized by a maximum of  near
730 K.

Since the PNIB glass transition temperature (Tc)
exceeds the temperature of the onset of an intense
chemical processes in the polymer (thermooxidation
destruction), we estimated the value of Tc (at frequen-
cies on the order of 100 Hz) using the well-known Fox
equation and the experimental Tmax values correspond-
ing to the α peaks for a number of copolymers of PNIB
with poly(phenylquinoxaline) (PPQ) and for pure PPQ.
With allowance for the frequency factor, the resulting
value Tc = 775 K is in good agreement with the quasistatic
value Tc = 760 K calculated by the known method [9].

The temperature dependences of c and 
obtained for PNIB allow the conclusion to be drawn
that the rigid-rod polymers of this type can exhibit a
considerable molecular mobility in the glassy state.

The data on the temperature cycling of the starting
PNIB films (Fig. 4), in conjunction with the data on the
density and molecular packing coefficients k (table),
allow a more precise identification of the different
stages observed in the spectra of starting films upon
their heat treatment. One can see that, in the two first
cycles (Tmax = 440 and 520 K), the LMS is mainly des-
orbed, and, upon the subsequent heating, the tempera-
ture dependence of  virtually coincides with the

 curve for the extracted PNIB sample. However, in
the subsequent heat treatment cycles (Tmax = 570 and
620 K), the β' peak shifts to higher temperatures and
coalesces with the β"-loss region. An increase in Tmax to
670 K does not change the temperature position of the
β" maximum that, however, irreversibly changes upon
heating to 770 K as a result of the limitations posed on
the molecular mobility by the chemical structuring
(cross-linking) processes.

An analysis of the relaxational data and the densities
of the PNIB films studied made it possible to reveal the
important role of the polar low-molecular substances in
the mechanism of the secondary relaxational transitions
of rigid-rod poly(heteroarylene)s containing high-
polarity groups in their macrochains.

In addition, it is clear from comparison of the tem-
perature dependences of the ultimate elongation
(Fig. 3) and  (Fig. 4) of the starting sample that the
molecular processes are connected to the deformation
properties of the PNIB films. Note also that the molec-
ular mobility has a sizable effect on the character of
temperature dependence of the breaking strength and
the static elastic modulus of the films (Fig. 3).

Using the acoustic and the dielectric relaxation data
for various temperatures (Fig. 5) and the data of quasi-
static measurements of dark electrical conductivity, the
frequency vs. temperature diagram was constructed for
the relaxation transitions and the corresponding activa-
tion energies were determined (Fig. 6). One can see that
the β process is described by a nearly linear depen-
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dence, whose high-temperature extrapolation (1/T = 0)
gives a preexponential factor on the order of 1013 Hz in
the relation

(6)

where f is the frequency, T is the transition temperature,
Ea is the activation energy, and R is the universal gas
constant. This result, together with a relatively low acti-
vation energy of Ea = 50 kJ/mol, allows this transition
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Fig. 5. Temperature dependences of the dielectric loss tan-
gent  obtained at frequencies (1) 1, (2) 10, and
(3) 100 kHz after heat treatment of PNIB at 673 K.
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The density ρ and the molecular packing coefficient k for the PNIB films with different preparation history

Sample

Heat treatment conditions

410 K, 12 h 570 K, 15 min 670 K, 15 min

ρ, g/cm3 k ρ, g/cm3 k ρ, g/cm3 k

Starting 1.409 0.6868 1.432 0.6979 1.442 0.7028

Extracted from low-molecular 
substances

1.429 0.6965 1.431 0.6974 1.441 0.7023
to be assigned to the local molecular dynamics of chain
segments. However, the β' relaxation transition,
although occurring below Tc, does not obey the Arrhe-
nius equation, because the dependence (1/T) is
extrapolated at 1/T  0 to f = 1018–1020 Hz. One can
assume that, for both β' transition and the glass transi-
tion process, the activation energy is apparent, so that
the transition corresponds to the cooperative motions
and does not obey equation (6). Since the values Ea =
200 kJ/mol and f0 = 1018–1020 Hz for the β' transition
are lower than for the main relaxation transition associ-
ated with the glass transition process, one can assume
that the β' transition is associated with the less cooper-
ative motions of the macrochain segments than in the
glass transition process.

Our studies have shown that the cyclic-chain struc-
ture of rigid-rod PHAs; the high molecular weights of
PHAs obtained for the first time; and the possibility of
simultaneously realizing the dense macromolecule
packing, the strong intermolecular interactions (hydro-
gen bonds and dipole–dipole interactions), and the
macromolecule flexibility in a system with the optimal
concentration of cyclic rigid-chain fragments deter-
mine the specificity and the necessity of a new under-
standing of the structural organization, molecular
dynamics, and the unique combination of the physico-
mechanical properties of rigid-rod PHAs.

The acoustic studies complemented by the results of
dielectric, stress–strain, and other studies have been
used to propose a structural approach to the description
of the molecular dynamics and an explanation of the
unique physicomechanical properties of new polymeric
materials based on rigid-rod PHAs. The approach is
based on treating these materials as a structurally inho-
mogeneous polymer–LMS system characterized by the
presence of differently ordered (differently packed)
regions of fluctuation nature. These regions are formed
in the course of system transition from a solution to the
glassy state in the presence of an appreciable amount of
residual polar LMSs coupled via the strong intermolec-

log f
ular interactions to high-polarity PHA groups. In this
case, local and even large-scale molecular rearrange-
ments may occur at temperatures appreciably lower
than the glass transition temperature of the system. This
approach not only allows the explanation of the reasons
for a considerable molecular mobility in the glassy state
of the rigid-rod PHAs and the enhanced deformability
of their films, together with their unique stress–strain
properties, but also substantiates the formation mecha-
nism for the excess free volume upon removing LMSs
from such polymers.
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Abstract—Results of the experimental studies of sound signal propagation in the continental wedge of the
northwestern Pacific, near the eastern coast of the Kamchatka Peninsula, are presented. The signals are pro-
duced by highly stable tone sources. The experiments are carried out in winter, in the presence of a strong sur-
face sound channel and intense wind waves, at frequencies of 100, 230, and 400 Hz, on a 1000-km-long path.
The signal transmission is performed by continuously towing the sound sources at a depth of 50 ± 5 m with a
speed of 4.5–5 knots, for 115 hours. The decay of the sound field level with distance is studied as a function of
the sea state and the frequency. The results of the experiments, including the sound field decay along the path,
are compared with the calculations for different sea states. © 2003 MAIK “Nauka/Interperiodica”.
† Extensive studies of the intensity and space-time
characteristics of the sound field in the northwestern
Pacific were carried out by a number of research
groups. The studies were mainly performed in summer
and autumn, in the presence of an underwater sound
channel in the region (e.g., the studies under the VOS-
TOK-80 Research Program [1]). In addition, in the
period from March 31 to April 5, 1984, the Andreev
Acoustics Institute, in cooperation with the Institute of
Applied Physics of the USSR Academy of Sciences,
the USSR Navy Hydrographic Service, and other orga-
nizations, carried out the VOSTOK-84-1 expedition to
investigate the sound field structure in the winter-type
environment, with a strong surface sound channel and
intense wind waves. These investigations, which were
preceded by three-year-long preparations, actually con-
tinued the VOSTOK-80 Program. They were per-
formed on the same path as the experiments of 1980
[1]. The path, 1000 km in length, was oriented at a
great-circle bearing of 120°, off the eastern coastal
shelf of the Kamchatka Peninsula. The surface channel
extended from the surface to the bottom, with sea
depths from 150–200 to 5000 m. The sea state varied
from Beoufort 1–2 to 5–6 along the path.

The experiments were intended to study the fine
structure of the sound field and the sound intensity
decay with distance in a long-range propagation in the
surface channel with a wind-perturbed upper boundary.
A specific objective was to obtain the space–time and
frequency–phase characteristics of the sound field and
to investigate their stability in the presence of wind-
driven surface waves. This paper presents only the

† Deceased.
1063-7710/03/4906- $24.00 © 20711
results of studying the intensity characteristics of the
sound field.

In the experiments, the research vessels Pegas and
Gals of the USSR Navy Hydrographic Service were
used. The former served as the transmitting vessel,
while the latter performed the measurements of the
hydrological and meteorological parameters of the sea
region. The signals were received by a directional
antenna array moored at the coastal shelf. As in our pre-
vious experiments, the transmitters were continuously
towed, and the transmission occurred independently at
several frequencies controlled by a single master
manipulator. As in the experiments of 1980 [1], we used
highly stable tone sources of 100, 230, and 400 Hz. All
three sources, along with the reference hydrophone and
a depth meter, were mounted on a single frame
deployed on a cable from the stern of Pegas. At a rated
towing speed of 5 knots (2.5 m/s), the depth of the
sound sources was within 50 ± 5 m. To form the trans-
mitted signals, we used a dedicated instrument system
consisting of master quartz oscillators, a control block,
power amplifiers, acoustic transducers, and system for
monitoring the transmission parameters. The control
block, in addition to the programming unit, allowed us
to obtain different transmission regimes. We chose a
nearly continuous transmission mode: signals of 500-s
duration with 20-s pauses. Every 3 h, an additional
mode was switched on: a 100-s alternative operation of
three sound sources with a 20-s pause. The transmis-
sion level was continuously monitored and maintained
within the preset (and measured) limits over the entire
experiment. The process of towing and signal transmis-
sion continued for five days (115 h). The starting point
of signal transmission was closer to the coastline than
003 MAIK “Nauka/Interperiodica”



 

712

        

STUDENICHNIK

                                                  
the receiving array, at a distance of 5 km from it, on a
line that was an extension of the main direction (120°)
of the path. In moving along the path, the vessel passed
over the receiving system moored at a depth of 200 m,
3 km off the edge of the continental slope, and then pro-
ceeded at the chosen course towards the open ocean.
The maximal variation of the towing speed was within
one knot. Because of the Doppler shifts, the variations
of the speed resulted in a frequency instability of the
received signals. At a distance of 330–350 km, the
transducer began to malfunction, and the transmission
was interrupted for 4 h at all frequencies.

The signals were received by separate hydrophones,
by vertical hydrophone chains, and, selectively, by indi-
vidual beams of the directional receiving system. The
received signals were recorded by a 14-channel TEAC-
50C and a 4-channel type 7003 Bruel&Kjer magnetic
tape recorders. Recording was continuously performed
for all 115 h of experimentation by four adjacent hori-
zontal beams formed by the analog compensators of the
receiving system, by seven vertical hydrophone chains
uniformly distributed over the array aperture, and by a
single omnidirectional receiver of the same array. At
the frequencies used, the vertical chain had a weak ver-
tical directivity and a horizontal directivity pattern
close to cardioid. In addition, the signals received by a
single hydrophone and by the horizontally narrow array
beams were filtered in 3% bands and recorded by the
type 1621 Bruel&Kjer chart recorder and by that of the
H-100 type.

The bottom relief of the path comprised a short bank
with depths of 250–300 m, a steep continental slope of
up to 10°, a long plateau with depths of 3000–3500 m
at distances of up to 150 km, a deep-water depression
of the Kurile–Kamchanka hollow with depths of more
than 7000 m, and the abyssal plateau with depths of
5000–5500 m. At distances of 750–950 km, the path
crossed the northern branch of the Impair Mounts (the
Ten’ga Mount) where the ocean depth decreased to
3000–3500 m. Figure 1 presents samples of the sound
speed profiles in the near-surface water layers, the bot-
tom relief obtained in the echo-sounder survey per-
formed by the Pegas, and the sound speed field plotted
according the data of 26 hydrological measurements
carried out by the Gals. According to the data shown in
this figure, a strong surface sound channel existed on
the path, with the minimal sound speed at the ocean sur-
face. The near-surface sound speed varied from
1444 m/s at the reception point to 1458 m/s at distances
of 700–1000 km. However, according to [3], the near-
surface water layers are saturated with air bubbles at
high sea states, and the near-surface sound speed can be
considerably lower than that calculated from the mea-
sured temperature and salinity: it can reach a value of
1000–1300 m/s. At a transmission depth of 50 m, the
sound speed was by 6–15 m/s higher than near the sur-
face, this difference reaching 18 m/s at a reception
depth of 200 m. As a result, the angular spectrum of the
sound field changed at the end of the path, and a part of
the refracted rays with higher characteristic angles
(angles of crossing the channel axis) transformed to
those with bottom–surface reflections. Therefore, at the
end of the path, the angular range of the rays captured
by the channel decreased by ±6°–9°, as compared to
that at the coastal zone. The bottom rises (up to depths
of 3000–3500 m) additionally sharpened the angular
spectrum of the refracted components with angles
within ±14.7°–21° and reduced the range of the chan-
nel-captured rays by ±4°–5°. Naturally, the depletion of
the spectrum of the refracted rays by their transforma-
tion into bottom–surface reflections led to a decrease in
the level of the total sound field and to stronger level
decays. With a sea depth of 5000 m and a near-surface
sound speed of 1444 m/s, the full range of the captured
rays was ±21°, this value decreasing to ±14.7° for a
depth of 3000 m and a sound speed of 1458 m/s at the
channel axis. The total angular range of the surface-
reflected rays was ±5°–21°.

The sea floor strongly varied along the path in its
sediment content and geological parameters. In the
nearest zone, the bottom material was represented by
sand and other coarse-grained sediments with sound
speeds by 50–120 m/s higher than in the water and den-
sities of 1.5–2.2 g/cm3. The continental slope and the
deep-water hollow were underlaid by silstone sedi-
ments with the sound speed close to that of water near
the bottom or even by 10–15 m/s lower than that, the
sediment density being 1.30–1.50 g/cm3. The major
part of the region at hand and of the whole path had a
sea floor composed of clay and silt with the sound
speed by 10–30 m/s lower than in the water and with a
density of 1.25–1.45 g/cm3.

The meteorological situation was rather unstable
during experimentation, both in the region as a whole
and on individual parts of the path. Periods of relative
calm were intermitted with periods of high wind speed
due to periodic cyclones with varying wind speeds and
directions on different fractions of the path. The
weather was monitored from both vessels, which, at
different times, were at distances of 50 to 300 km from
each other. Northwest and north winds predominated in
the region, with speeds varying from 2–5 to 14–20 m/s
on different parts of the paths. The downwind direction
was predominant with variations of ±60° relative to the
direction of the path. In the coastal zone, near the
receiving system, the wind speed was less than 3–7 m/s
and the sea state was Beoufort 1–3 over the entire
experiment. When the signals were transmitted from
distances of 0–250 and 550–700 km, the wind speed
varied within 3–7 m/s; when these distances were 300–
550 and 700–1000 km, the wind speed was 9–14 and
15–20 m/s, respectively. By the time the path end was
reached, the sea state increased to Beoufort 5–7.

Experimental data in the form of chart records were
used mainly to study the spatial variability of the sound
intensity and to determine the decay law for the sound
level. The main objective of such studies consisted in
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
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Fig. 1. Bottom relief and sound speed field on the path. The crosses indicate the minimum in the speed of sound (the channel axis),
and the solid lines represent the isospeed curves along the path.
revealing the effect of the sea state on the frequency
dependence of the sound field. The aforementioned
data were also used to qualitatively estimate the fre-
quency–phase stability of the field components. Figure 2
shows 1700-s samples of the signal records at frequen-
cies of 230 and 400 Hz for distances from 160 to
1000 km. These signals were received by the central
beam of the array. At shorter distances (up to 200–
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
300 km), the records demonstrate a regular interference
structure of the sound field, which is caused by the mul-
tipath nature of signal arrivals and depends on the fre-
quency and the speed of the sound source, just as in the
summertime experiments of 1980 [1, 2] with an under-
water sound channel. The spatial period of interference
is about 600 m at 230 Hz and 250–400 m at 400 Hz. The
modulation depth reaches 30 dB or more for the near



 

714

        

STUDENICHNIK

   
field (up to 100–200 km) and decreases to zero at ulti-
mate distances. On the other hand, in the surface sound
channel with wind waves, a strong irregularity of the
intensity envelope caused by interference can be
noticed on the whole path, independently of the fre-
quency and the existence of regular interference struc-
ture at short distances. At 400 Hz, such an irregularity
is well pronounced starting from distances of 100–
160 km, with a difference of 10–20 dB between the
maximal and minimal levels and a frequency of 0.1–
0.2 Hz of the level variations. In the interference max-
ima, the depth of the high-frequency (0.1–0.2 Hz) mod-
ulation is 1–2 dB with a signal-to-noise ratio of 30–
40 dB. In the minima, the modulation depth reaches
20–30 dB. The irregularity of the envelope is mainly
governed by the surface waves. Other factors of the
irregularity can be the waveguide inhomogeneities, the
bottom relief in the coastal zone, and the pitch of the
towing vessel. However, the effect of the latter factors
was not determining in our experiment. At longer dis-
tances, especially with stronger winds, the regular low-
frequency maxima and minima become smoother or
fully vanish, as at 400 Hz, starting from 300–400 km.
The field structure becomes similar to that of a noise-
like chaotic process without regular phase-dependent
summation of the field components. Here, the surface
waves predominate with the associated strong prerever-
beration [4]. At 230 Hz, coherence of individual com-
ponents is retained up to distances of 600–700 km.

At stronger winds of 12–14 m/s, in addition to the
loss of regularity in the phase characteristics of the field
components, a noticeable decrease in the total sound
level takes place. The decrease is especially pro-
nounced at 400 Hz.: starting at 380 km, the signal-to-
noise ratio drops to as little as 10–15 dB. On further
continuous signal transmission for 30 hours and
increase in the distance from 380 to 650 km, the signal
level at the same frequency of 400 Hz does not decrease
(or does not remain constant as at 230 Hz): rather, it
increases by 5–10 dB. The corresponding signal-to-
noise ratio increases up to 20–22 dB. Such a behavior
can be explained by the decrease from 12–14 to 5–
7 m/s in the wind speed at the transmitting points and
by the corresponding decrease in the loss caused by
reflection. At distances of 700–1000 km, the wind
speed again increased up to 14–20 m/s. The signal level
began to rapidly decrease and, at 760 km, the level of
the 400-Hz signal reached that of noise. At 230 Hz, a
signal-to-noise ratio of 20–25 dB remained up to dis-
tances of 900–930 km; it sharply decreased to 5–7 dB
at about 1000 km (the final fragment of the record in
Fig. 2). At this distance, the experiment was terminated
due to rising wind and the risk of losing the sound
sources.

To conclude these considerations, it is worth men-
tioning that, during the experiment, other ships were
also present in the region. They caused an additional
increase in the noise level. For instance, when a ship
passed the traverse of the receiving array and crossed
the narrow horizontal beams, the noise level exceeded
the signal level by 5–20 dB. This fact can be noticed at
distances of 650 km (for the signals of both frequen-
cies) and 930 km (for the 230-Hz signals).

Figure 3 presents the relative decays of the levels of
the total sound field at 100, 230, and 400 Hz. At dis-
tances from 1 to 300–500 km, the signal levels were
measured by a single hydrophone. At longer distances,
the signals received by the central array beam were
used. The signal levels from different receivers were
matched to each other at all frequencies. The distance
(in kilometers) is plotted along the abscissa axis (on a
logarithmic scale). The ordinate represents the sound
level (in decibels). With a single hydrophone, the detec-
tion range was 500 km at 100 Hz and less than 350 km
at 230 and 400 Hz. In combining the three curves in one
plot, the signal levels at different frequencies were nor-
malized to the near field. As the plot shows, the signal
intensities on the path and the decay laws substantially
depend on frequency. The difference in the levels
reaches 10–20 dB. At 100 and 230 Hz and distances 10
to 200 km, the average decay laws are close to the cylin-
drical law with the transition distances 12 and 5 km,
respectively. At 400 Hz, after a sharp decrease of 35 dB
(curve 3) in the signal level in the near field (2 to
10 km), the level does not decrease with distance as the
latter increases by a factor of 10, from 10 to 100 km; in
contrast, it becomes higher by 5–6 dB. At the distances
from 100–200 to 300–400 km, a rather monotonic
decrease in the intensity occurs at all frequencies, such
behavior being caused by the increase (up to 15–
16 m/s) in the wind speed on the path and at the trans-
mission points. In continuous signal transmission on a
path fraction of 400 km (from the 300- to 700-km
mark), the mean signal levels at all frequencies
remained nearly unchanged for 45 h. Moreover, some
elevation of the level can be noticed at 400 and 230 Hz.
The stability observed in the signal levels can be attrib-
uted to the decrease in the wind speed from 14–16 to 4–
5 m/s and to the associated decrease in the sea state to
Beoufort 2–3. At the end of the path (700–1000 km),
the brewing storm and the increase in the wind speed,
up to 14–20 m/s, caused a sharp decrease in the signal
levels again. Such a decrease is especially pronounced
at 230 and 400 Hz. At 400 Hz, the signal amplitude
dropped down to the noise level at distances of 700–
750 km. At 230 Hz, with a somewhat slower signal
decay, the signal-to-noise ratio remained equal to 5–
7 dB at the 1000-km mark. It is worth comparing the
aforementioned experimental data with those obtained
on the same path in summer, with the underwater sound
channel and low sea state, at the same frequencies, with
the same transmission levels and the same receiving
systems. In the summer experiments, the signal-to-
noise ratio was 30–40 dB at 1000 km and 15–25 dB at
2100 km, in spite of the 10- to 15-dB decrease in the
signal level in the frontal zone produced by the warm
waters of the Kuroshio Current and the associated low-
ering of the channel axis from 150 to 1000 km at dis-
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
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Fig. 2. Fragments of the records of tone signals at the frequencies 230 and 400 Hz; the distances are 160 to 1000 km.
tances of 2000–2100 km from the coastline. At the
same time, the coherent components remained quite
pronounced in the field structure for characteristic
angles within ±9°–14° [1, 2].

The tape-recorded signals allow one to study the
spectral characteristics of the field intensity and level
decays not only for the total sound field but also for its
individual components. To do so, we processed the
COUSTICAL PHYSICS      Vol. 49      No. 6      2003
records obtained from the central array beam by visual-
izing the signals and imaging the information with nar-
row-band filtering. As an example, let us consider the
data processed at 230 Hz. The signals were processed
by V.Ya. Faizov on a PLURIMAT computer. Prior to
entering the signals into the computer, they were nar-
row-band filtered by two Type 1621 Bruel&Kjer filters
connected in series. To enter the data, an accelerated
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Fig. 3. Decays of the sound field level at the frequencies (1) 100, (2) 230, and (3) 400 Hz. The distance is plotted on a logarithmic
scale.
replay of the records was used with an acceleration
ratio of 32. The signals were digitized, encoded, and
fed to the hard-disk memory of the computer. Since the
signal spectra had narrow bands, we could use a much
lower sampling frequency than the Kotel’nikov theo-
rem dictates. To produce the desired sampling fre-
quency, the pilot signal of 500 Hz was divided by a fac-
tor of 247 with the use of a divider counter circuit. The
following sampling parameters were specified: the
length of the information block n = 2048, the number of
quantization levels N = 2048, the sampling frequency
2.02429 Hz, and the realization duration T = 1012 s
(about 17 min). The running spectrum was estimated
for time intervals of T = 1012 s, into which the total
113-h record was divided. The frequency resolution
was ∆f = 0.001 Hz. The FFT procedure was used in esti-
mating the spectrum. To obtain the average estimate,
spectral smoothing was performed by using a digital fil-
ter of low frequencies. The calculation procedure con-
sisted in an envelope being obtained for each realiza-
tion; the data were compensated and packed into a sin-
gle block. The envelope was obtained on the basis of
the Hilbert transformation. Upon a number of proce-
dures, each value obtained for the envelope corre-
sponded to a distance interval of 700 m. The values
were smoothed within a 10-point window, which corre-
sponds to a distance interval of 7 km. The processed
data are presented in Figs. 4a–4c. The abscissa repre-
sents the distance (on a linear scale), and the ordinate is
the sound level (in dB). Solid curves 1–3 correspond to
the spherical (curve 1) and cylindrical decay laws, the
latter being calculated for the transition distances r0 =
1 km (curve 2) and r0 = 10 km (curve 3). The decays of
the total sound field (including both coherent and inco-
herent components) are shown in analog (Fig. 4a) and
digital form (Fig. 4b) (the latter is presented after dis-
crete piecewise averaging over 7-km fractions of the
path). The vertical shaded area of Fig. 4b indicates the
incoherent field components. In Fig. 4c, the level of the
coherent component is shown as a function of the dis-
tance for discrete piecewise averaging over 700-m
(dots) and 7-km (broken curve) fractions of the path.
With an arbitrary processing procedure, the averaged
decay law at distances of up to 300 km can be approxi-
mated by a cylindrical dependence with a transition dis-
tance r0 of 5 to 10 km. At distances of 350–700 km, the
value of r0 becomes close to 12–13 km. At 700–
1000 km, an exponential decay takes place, with the
attenuation coefficient of the total field, which is 0.6 to
0.7 dB/km, with a value of 0.8 dB/km for the coherent
component. If one assumes that, at the moment of mea-
surements at the terminal point of the path, the sea state
is the same on the entire path and the losses caused by
reflection are uniformly distributed over the path, the
loss will be equal to 0.018–0.020 and 0.024 dB/km for
the total field and the coherent component, respectively,
with transition distance of r0 = 10 km.

The instability of the meteorological parameters
during experimentation leads to a situation when the
sound field levels and their decays can differ from each
other either on different parts of the path or on the entire
path at different times. In such situations, with insuffi-
cient information on the sea state over the path, one can
hardly expect good agreement between the experimen-
tal data and calculations at an arbitrary frequency and
on an arbitrary fraction of the path. However, it seems
to be advantageous to compare the experimental results
with calculations, at least for the simplest waveguide
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003



    

SOUND FIELD STRUCTURE PRODUCED BY TONE SOURCES 717
60

(b)

40

20

0

1

2

3

R–2

R–1, r0 = 10 km

R–1, r0 = 1 km

60

(a)

40

10

0

1

2

3

R–2

R–1, r0 = 10 km

R–1, r0 = 1 km

60

100

(c)

R, km
0 200 300 400 500 600 700 800 900

40

20

0

1

2

3

R–2

R–1, r0 = 10 km

R–1, r0 = 1 km

1000 200 300 400 500 600 700 800 900

1000 200 300 400 500 600 700 800 900

20

30

50

70

Noise level

1000

J, dB

Fig. 4. Decay of the sound field level at a frequency of 230 Hz, as obtained by computer processing of the records: (a) the total field
in analog form, (b) the total field (including the coherent and scattered components) in digital form, and (c) the coherent component.
The shaded area in Fig. 4b corresponds to the incoherent field.
model, and to estimate the extent of the model ade-
quacy. Because the waveguide at hand is the surface
sound channel and the frequencies in use are rather
high, ray considerations are appropriate as the first
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
approximation. We used the ray code of Vagin and
Maltsev [5], which takes into account the variable pro-
file of the sound speed, the rough bottom relief, and the
losses in the bottom and surface reflections. We used
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the Rayleigh form for the coherent reflection from the
surface. The spectrum of the surface waves was speci-
fied in the Pierson–Moskovitz form, which yields the
following rms elevation of the surface: h = 0.53 ×
10−2v 2, where h is expressed in meters and v  is the
wind speed in meters per second. The calculations were
carried out for the frequencies of 230 and 400 Hz, with
allowance for the measured bottom relief on the path,
for a waterlike seafloor as an infinite half-space with a
sound speed of 1550 m/s, a density of 1.6 g/cm3, two
different losses (η) of 0.1 and 0.01, and two wind
speeds (v) that were taken to be 0 and 15 m/s over the
entire path, these speeds corresponding to wave heights
of 0 and 3 m. The sound speed profiles in the upper lay-
ers of the path were specified according to Fig. 1. In
deeper layers, they corresponded to the data of other
measurements [1]. The sound sources were supposed to
be at a depth of 50 m, and the receivers were placed in
the shelf zone, at depths of 50 and 200 m, 3 km away
from the edge of the continental slope.

Figures 5a and 5b show the calculated levels of the
coherent field at a frequency of 230 Hz with the sum-
mation of the field components in their intensities.
Curves 1, 2, and 2' represent the spherical and cylindri-
cal decay laws. Curves 3, 4, and 5 are calculated with
h = 0 and η = 0.01, h = 3 m and η = 0.01, and h = 3 m
and η = 0.1, respectively. Curve 6 in Fig. 5a is obtained
for the reception at a depth of 50 m with a phase-depen-
dent summation of the components, at h = 3 m and η =
0.01. One can see that, even in the case of a smooth sur-
face, the losses caused by bottom reflections in the
wedge are 5–6 dB at 50 m and 8–10 dB at 200 m for a
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
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distance of 1000 km, assuming that the decay law is
cylindrical with the transition distance r0 = 1 km. Addi-
tional losses caused by the surface waves with h = 3 m
are as small as 10 dB, that is, less than 0.01 dB/km. The
calculated total loss caused by the bottom and surface
reflections is about 20 dB, which is close to the experi-
mental data. Figure 6 shows the results of the calcula-
tion at 400 Hz with the same input data and the same
curve designations as in Fig. 5. The losses caused by the
bottom reflections in the wedge nearly coincide for
both frequencies. However, the losses caused by the
surface are substantially higher in this case: 20 dB at
760 km (with a 30-dB value of the total loss), which is
close to the experimental data, precisely as at 230 Hz.
If one specifies the losses caused by the bottom by a
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
factor of 10 higher, the total losses will change insignif-
icantly for the propagation conditions at hand. With a
signal reception near the surface (50 m), the difference
in the sound field levels is lower than 1−2 dB; it is
within 3–4 dB at the 200-m horizon for all distances up
to 1000 km at both frequencies. The close values of the
calculated and experimental total loss can be obtained
only for certain reception points. In general, the exper-
imental and calculated levels of the sound field and its
decay laws are different.

The results obtained can be summarized as follows:

(1) The intensity and space-time structures are stud-
ied for the sound fields generated by highly stable
sound sources of 100, 230, and 400 Hz, on a 1000-km
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path in winter, in the near-Kamchatka region of the
Pacific Ocean, with a strong surface sound channel and
wind surface waves.

(2) For the sound field levels, the decay laws are
determined in the case of long-range propagation at low
frequencies, in winter, with sound sources continuously
towed for 115 hours, under varying sea states of Beou-
fort 1–2 to 5–6.

(3) The decay laws are estimated for the total
(including both coherent and scattered components)
and coherent components of the sound field at a fre-
quency of 230 Hz.

(4) The experimental decay laws obtained at 230
and 400 Hz are compared with those calculated by the
ray-theory algorithm taking into account the sound
speed profiles and bottom relief varying along the path
with various but path-constant bottom parameters and
surface roughness.

(5) The results obtained are useful for both scientific
studies of the sound field structure in natural
waveguides and practical-purpose tasks of selecting the
input data in estimating the efficiency of fixed underwa-
ter acoustic systems moored in the coastal-wedge
regions, with allowance made for the wind-generated
surface waves.
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Abstract—A new type of the so-called “angular” waves for flexural normal modes propagating in a ring-
shaped plate is studied. A dispersion equation for wave numbers, an equation for critical frequencies, and
expressions for the eigenfunctions of such a waveguide are derived. Solutions to these equations are obtained
by numerical methods for various values of parameter d, which represents the relative width of the ring. The
solutions are analyzed, and the main properties of dispersion curves are described. Individual normal modes are
identified on the basis of the calculation and further analysis of eigenfunctions. © 2003 MAIK “Nauka/Inter-
periodica”.
The propagation of elastic waves in rods, shells,
plates, etc., is considered in numerous publications.
The interest in this subject is connected, first of all, with
the necessity to determine the dynamical properties of
structures used in construction, transportation (in par-
ticular, shipbuilding and aircraft), and other areas of
application. Papers concerned with the waveguide
properties of plates or their parts represent a particular
group of studies. Among the great number of such pub-
lications, here it is appropriate to note the papers by
Konenkov [1, 2], which consider the properties of
platelike strips performing flexural vibrations, and the
papers by Bobrovnitskii [3, 4], which are devoted to the
study of the properties of “angular” platelike structures
whose waveguide properties are determined by the
interaction of flexural and shear longitudinal waves.

This paper considers the waveguide properties of a
ring-shaped flat plate, in which “angular” normal
modes of the flexural type propagate. The normal
modes of this type were studied earlier in several
papers. For example, the sound waves inherent in an
acoustic waveguide with curved walls were investi-
gated in [5, 6]. Angular waves propagating along the
surface of an elastic cylinder were considered (in the
high-frequency approximation) in [7–9]. Such waves
are taken into account, in particular, in solving the
problems of diffraction by cylindrical obstacles
[10, 11].

Since in this paper, as in the aforementioned papers,
we assume that the polar angle θ varies within the range
–∞ < θ < ∞, the solution to the problem mathematically
treated on a multisheeted Riemann surface. In this case,
the physical object under study can be treated as a coil
with a very small step (in vertical) under the assump-
tion that only the waves of the flexural type remain,
while the waves of the shear longitudinal type are
1063-7710/03/4906- $24.00 © 20721
absent. If polar angle θ varies within the limits 0 ≤ θ ≤ π,
this part of the ring may be considered as an “insert”
between two rectilinear strips performing flexural
vibrations. From this point of view, the investigation of
the waveguide properties of a ring-shaped plate is of
great practical interest.

Let us set the geometrical dimensions of such a plate
as follows: r = a is the exterior boundary, r = b is the
interior boundary, and 2L = a – b is the width of the
ring.

The equation of flexural vibrations of a plate in
cylindrical coordinates has the form

(1)

Here, W is the transverse displacement of a plate, k0 is

the wave number of flexural waves,  = , ρ is the

density, h is the plate thickness, Dm =  is the

flexural rigidity, E is Young’s modulus, and σ is Pois-
son’s ratio. The Laplacian ∆ in cylindrical coordinates

has the form ∆ =  +  + .

Equation (1) can be broken into two independent
equations

(2)

(3)

We seek their solutions in the form of flexural waves
propagating in the direction of increasing angle θ: W =
W0(r)exp(ivθ), where W0(r) is the wave amplitude and
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v  is an unknown constant playing the role of the angu-
lar wave number. Substituting this expression into
Eqs. (2) and (3), we obtain

(4)

(5)

Linear-independent solutions to Eq. (4) are the
Bessel Jv(k0r) and Neumann Yv(k0r) functions, and the
linear-independent solutions to Eq. (5) are the modified
Bessel function Iv(k0r) and the Macdonald function
Kv(k0r). The general solution for W0(r) has the form

(6)

where A, B, C, and D are unknown constants.
We use the absence of stress at the internal r = a and

external r = b boundaries of the ring as the boundary
conditions, which can be expressed by the equations
[12]

(7)

Here,

is the bending moment,

 is the shearing force, and

is the torsional moment.
To represent the expressions obtained from the

transformation of these formulas in a compact form, we
introduce the operators

(8)
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Here, the upper sign (+) corresponds to the functions
Jv(k0r) and Yv(k0r), and the lower sign (–), to the func-
tions Iv(k0r) and Kv(k0r). Using these notations, the
generalized dimensionless stress can be represented in
the form

(10)

(11)

Substituting Eqs. (10) and (11) into boundary condi-
tions (7), we obtain the following homogeneous set of
equations with respect to the unknown coefficients A,
B, C, and D:

(12)

The condition for a nontrivial solution leads to a
characteristic equation for the determination of the
unknown value of the angular wave number v :
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To calculate the derivatives of the cylindrical func-

tions involved in the operators , it is expedient in
this case to use the formulas

(13')

where the plus sign corresponds to the function Iv(k0r)
and the minus sign corresponds to the functions Jv(k0r),
Yv(k0r) and Kv(k0r), x = k0a, k0b. The solution to the
equation ∆(v ) = 0 has a set of roots v  = v n(k0a, k0b),
where index n determines different branches of the
solution to the characteristic equation. To identify them
and to check the fulfillment of boundary conditions (7),
we assume that the roots v n(k0a, k0b) are calculated and
determine the eigenfunctions (the modes) of the
waveguide under consideration. To do this we use the
first three equations of system (12) (it is evident that the
fourth equation is their linear combination). Setting A =
1 (which does not violate the generality of the solution),
we obtain an inhomogeneous set of equations for the

L1 2,
±

dZv x( )
dx

----------------- Zv 1+ x( )± v
x
----Zv x( ),+=
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
determination of the remaining coefficients depending
on both v n and n:

(14)

The solution to system (14) can be represented in
the form

(15)

where

BnL1
+ a v n,( )Yv n

k0a( ) CnL1
– a v n,( )Iv n

k0a( )+

+ DnL1
– a v n,( )Kv n

k0a( ) L1
+ a v n,( )Jv n

k0a( ),–=

BnL1
+ b v n,( )Yv n

k0b( ) CnL1
– b v n,( )Iv n

k0b( )+

+ DnL1
– b v n,( )Kv n

k0b( ) L1
+ b v n,( )Jv n

k0b( ),–=

BnL2
+ a v n,( )Yv n

k0a( ) CnL2
– a v n,( )Iv n

k0a( )+

+ DnL2
– a v n,( )Kv n

k0a( ) L2
+ a v n,( )Jv n

k0a( ).–=

Bn

∆B v n( )
∆ v n( )
-----------------, Cn

∆C v n( )
∆ v n( )
-----------------, Dn

∆D v n( )
∆ v n( )

------------------,= = =
∆ v n( )

L1
+ a v n,( )Yv n

k0a( ) L1
– a v n,( )Iv n

k0a( ) L1
– a v n,( )Kv n

k0a( )

L1
+ b v n,( )Yv n

k0b( ) L1
– b v n,( )Iv n

k0b( ) L1
– b v n,( )Kv n

k0b( )

L2
+ a v n,( )Yv n

k0a( ) L2
– a v n,( )Iv n

k0a( ) L2
– a v n,( )Kv n

k0a( )

=

∆B v n( )

L1
+ a v n,( )Jv n

k0a( ) L1
– a v n,( )Iv n

k0a( ) L1
– a v n,( )Kv n

k0a( )

L1
+ b v n,( )Jv n

k0b( ) L1
– b v n,( )Iv n

k0b( ) L1
– b v n,( )Kv n

k0b( )

L2
+ a v n,( )Jv n

k0a( ) L2
– a v n,( )Iv n

k0a( ) L2
– a v n,( )Kv n

k0a( )

–=

∆C v n( )

L1
+ a v n,( )Yv n

k0a( ) L1
+ a v n,( )Jv n

k0a( ) L1
– a v n,( )Kv n

k0a( )

L1
+ b v n,( )Yv n

k0b( ) L1
+ b v n,( )Jv n

k0b( ) L1
– b v n,( )Kv n

k0b( )

L2
+ a v n,( )Yv n

k0a( ) L2
+ a v n,( )Jv n

k0a( ) L2
– a v n,( )Kv n

k0a( )

–=

∆D v n( )

L1
+ a v n,( )Yv n

k0a( ) L1
– a v n,( )Iv n

k0a( ) L1
+ a v n,( )Jv n

k0a( )

L1
+ b v n,( )Yv n

k0b( ) L1
– b v n,( )Iv n

k0b( ) L1
+ b v n,( )Jv n

k0b( )

L2
+ a v n,( )Yv n

k0a( ) L2
– a v n,( )Iv n

k0a( ) L2
+ a v n,( )Jv n

k0a( )

.–=
The waveguide eigenfunctions corresponding to the
coefficients obtained above can be written in the form

(16)
Wn Jv n

k0r( ) BnYv n
k0r( )+=

+ CnIv n
k0r( ) DnKv n

k0r( );+
(17)

Mr

Dmk0
2

------------ L1
+ r v n,( )Jv n

k0r( ) BnL1
+ r v n,( )Yv n

k0r( )+=

+ CnL1
– r v n,( )Iv n

k0r( ) DnL1
– r v n,( )Kv n

k0r( );+
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Fig. 1. Dispersion curves for the angular normal modes of a ring. The parameter is X = k0a; the values of parameter d are (a) 0.3;
(b) 0.5; (c) 0.7; and (d) 0.9.
(18)

Before discussing the results of calculations, it is
necessary to make several remarks about their repre-
sentation.

It was indicated above that the desired quantity v
plays the role of the angular wave number involved in
the expression for the phase of a normal mode ϕ = vθ.
According to [6], we transform this expression as fol-

lows: ϕ = rθ = krS, where kr =  is the “linear” wave

number and S = rθ is the arc length traveled by the
wave. Choosing this form of representation for the
results, we set r = a for definiteness; i.e., we consider
the wave number corresponding to the exterior bound-
ary of the ring. In this case, in the given equations the
unknown quantity v can be replaced by v  = ka (here,
we omit the subscript of k). The arguments involved in
the equations given above can be selected in the form
k0a and k0b = k0a(1 – d), where d = 2L/a is the dimen-
sionless width of the ring.

The “linear” velocity c also depends on the radius.
Choosing the quantity k0a as the main argument, the
desired dimensionless velocity can be written in the

V

Dmk0
3

------------ L2
+ r v n,( )Jv n

k0r( ) BnL2
+ r v n,( )Yv n

k0r( )+=

+ CnL2
– r v n,( )Iv n

k0r( ) DnL2
– r v n,( )Kv n

k0r( ).+

v
r
---- v

r
----
form C =  =  = , where c0 is the velocity of

flexural waves in the plate.
Equation (13) was solved for the unknown quantity

v  = ka as a function of the dimensionless frequency k0a
for different values of ring width d. The solution was
performed using a special computer code. Figure 1 pre-
sents the results of calculation for different values of d.
The quantity X = k0a is plotted in the abscissa, and v  =
ka, in the ordinate.

This plot is typical of all values of the parameter 0 <
d < 1. Three groups of dispersion curves are observed:
(1) single branches (n = 0) starting at zero frequency;
(2) an infinite number of branches, which correspond
(as in any waveguide) to the normal modes of higher
orders whose number grows as d increases; and (3) sin-
gle branches in the form of half-closed loops located in
the immediate vicinity of the coordinate origin.

These branches are given in Fig. 2 for some values
of parameter d. As far as we know, such branches for
normal modes were never considered earlier in the the-
ory of elastic waveguides. In this paper, the properties
of such waves are not examined in detail.

Single branches (n = 0) have some specific proper-
ties. Since all their values of v  lie above the straight line
v  = X, the phase velocities of this type of waves are
always smaller than the velocity of flexural waves in a

c
c0
----

k0a
v

--------
k0a
ka
--------
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free plate. A characteristic property of these waves is
their identity under the variation of parameter d, at least
within the limits 0.3 < d < 1. The divergence of
branches manifests itself at smaller values of d, which
can be seen in Fig. 3a, which shows the plots for differ-
ent values of d. (This phenomenon will be explained
below.) Another peculiarity of branches with n = 0 at
low frequencies is the presence of horizontal sections,
where the dimensionless velocity C linearly increases

0.2

0 0.2

ka
1.4

0.60.4 0.8 1.0 1.2 1.4 1.6
X

1.2

1.0

0.8

0.6

0.4

1

2

3

Fig. 2. Low-frequency half-closed branches for d = (1) 0.1;
(2) 0.5; and (3) 0.9.
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
with frequency. This velocity can be represented by the
expression C ≈ 0.15k0a for values of 0.3 < d < 1. In the
case of the phase velocity of this wave, the above
expression transforms to the formula c = 0.15ωa, which
gives a linear dependence on frequency and the outer
size of the ring. This formula is valid up to values of
k0a ≈ 2 (Fig. 3b). The same figure presents data for
other values of d, which also give a linear dependence.
At higher frequencies (parameter X), the values of C for
all d tend to the asymptotic value C∞ ≈ 0.825 indicated
in Fig. 3b by the dashed line. More detailed calculations
conducted up to values of v  ≈ 100 show that, in this
case, the quantity C can be represented in the form

(19)

One can see from Fig. 1 that the normal modes of
higher orders (n ≥ 1) arise at v n = 0. In this case, the
quantities describing the field of flexural waves do not
depend on polar angle θ. At the moment of initiation of
each such wave, its wave front is a circle “coaxial” with
the waveguide boundaries r = a and r = b. In this case,
the displacement is expressed via the cylindrical func-
tions of zero order. In planar waveguides, the process of
the formation of normal modes is analogous to that con-
sidered above: the wave front is parallel to the planar
boundaries of a waveguide.

As in planar waveguides, critical frequencies exist
in the system under study (the frequencies of wave ini-
tiation). An equation for critical frequencies can be
derived readily from Eq. (13) by setting v  = v n = 0.

C
c
c0
---- C∞

1
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Fig. 3. Characteristics of normal modes with n = 0: (a) the dimensionless wave numbers and (b) the velocities; d = (1) 0.3–0.999;
(2) 0.05; and (3) 0.01.
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Then, taking into account Eq. (13'), operators 
should be represented as

and Eq. (13) takes the form

(20)

L1 2,
±

L1
± r 0,( ) 1 σ–( )

k0
2r

----------------- d
dr
----- 1; L2

± r 0,( )± d
k0dr
----------,±= =

J k0a( ) Y k0a( ) I k0a( ) K k0a( )
J k0b( ) Y k0b( ) I k0b( ) K k0b( )
J1 k0a( ) Y1 k0a( ) I1 k0a( ) K1 k0a( )
J1 k0b( ) Y1 k0b( ) I1 k0b( ) K1 k0b( )

0,=

2
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Fig. 4. Critical frequencies for normal modes with n ≥ 1 as
functions of parameter d.
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Fig. 5. Eigenfunctions for the normal mode with n =1 at d =
0.9: (1) displacement W; (2) moment Mr; and (3) force V.
where additional notations are introduced:

Figure 4 presents a solution to Eq. (20) in the form
of the dependence of Xcr on parameter d, which gives
the values of the dimensionless critical frequencies.

The calculation of eigenfunctions for displacement
W, dimensionless moment Mr, and force V was con-
ducted with the help of Eqs. (15)–(18) to identify dif-
ferent branches of the dispersion curves. The indicated
values were normalized to their corresponding maxi-
mum values, and the dimensionless radial coordinate Y

was set in the form Y =  – , so that the median

line of the ring was taken for the coordinate origin and

the value of Y varied within the limits  ≤ Y ≤ .

The results of calculation are given in the figures
below.

Let us consider the results starting from the numbers
n ≥ 1. It is most convenient to represent the eigenfunc-
tions at critical frequencies at v  = 0 and d close to unity
(the value of d = 0.9 was used). Figure 5 gives results
for n = 1. One can see that the boundary conditions are
satisfied to a good accuracy. Displacements W at the
ring boundaries have opposite signs, and, therefore, this
wave is “quasi-asymmetric”: owing to the cylindrical
divergence of the wave, the displacement at the outer
boundary is smaller than that at the internal boundary,
and it vanishes not at the ring center. In this case, the
force functions are quasi-symmetric. Figure 6 presents
the results for n = 2. They are analogous to those
described above, but the wave is “quasi-symmetric”:
displacements W at the ring boundaries have the same
signs and their maximum occurs near the median line of
the ring. Figure 7 shows that the wave with n = 3 is
quasi-asymmetric. Thus, the waves of higher orders are
waves of alternating parity. In the case of rectilinear
boundaries (a strip), they can be separated from each
other already at the stage of solving the problem [4].

Similar plots for normal modes with n = 0 are pre-
sented in Figs. 8 and 9. The data are given for the
parameter d = 0.05 at k0a = 2, v  = 9.08 (Fig. 8a) and
k0a = 15, v  = 20.7 (Fig. 8b), and also for d = 0.3 at k0a = 2,
v  = 6.72 (Fig. 9a) and k0a = 21, v  = 27 (Fig. 9b). One
can see that, in the case of a small parameter d and low
frequencies, the force functions have a strongly sym-

J x( ) 1 σ–
x

------------J1 x( )– J0 x( );+=

Y x( ) 1 σ–
x

------------Y1 x( )– Y0 x( );+=

I x( ) 1 σ–
x

------------ I1 x( ) I0 x( );+=

K x( ) 1 σ–
x

------------K1 x( ) K0 x( ).+=

r
a
--- a b+

2a
------------

d
2
---–

d
2
---
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Fig. 6. The same as in Fig. 5 but for n = 2.

1.0

0

–0.5

–1.0
–0.45 –0.30 –0.15 0 0.15 0.30 0.45

Y

2

1

3
0.5

Fig. 7. The same as in Fig. 5 but for n = 3.
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Fig. 8. Eigenfunctions for the normal mode with n = 0 at d = 0.05; X = (a) 2 and (b) 15.
metrical character and the displacement increases from
the internal boundary of the ring towards the outer
boundary with a maximum there. As frequency
increases, this symmetry is partially violated and the
displacement localization is enhanced. At d = 0.3 and
above, this localization is observed even at a very low
frequency. The maximum values of the force func-
tions are also shifted towards the outer edge of the
ring. When the frequency increases, the degree of
localization of the total field grows. In this case, the
internal boundary of the ring ceases to affect the char-
ACOUSTICAL PHYSICS      Vol. 49      No. 6      2003
acteristics of the normal modes, which can be seen in
Fig. 3.

Thus, the normal modes with n = 0 at high frequen-
cies represent the edge modes of the Rayleigh type,
which are analogous to the so-called Konenkov waves
[13].

In closing, it should be noted that, although it was
possible to obtain and describe the basic properties of
the new type of angular normal modes in this study,
there still remain some questions about their other
properties, such as the properties of the waves corre-
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Fig. 9. The same as in Fig. 8 but for d = 0.3; X = (a) 2 and (b) 21.
sponding to closed branches, the asymptotic values of
wave numbers for n ≥ 1, etc. All these questions call for
further investigation.
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The problems of piezoelectric transducer operation
in pulsed modes remain topical to this day. An example
is [1], which compares the experimental and calculated
pulses and signal spectra for combined direct transduc-
ers with qualitatively different protectors.

In our previous paper [2], we considered the possi-
bility of reducing the pulse duration for a piezoelectric
plate operating as a receiver in the fundamental mode
of thickness vibrations with an inductive–resistive elec-
tric load connected in parallel to it. The receiver was
assumed to be excited by a half-period of the particle
velocity sinusoid.

In this paper, we consider a system consisting of a
transmitting piezoelectric plate and a receiving one,
both of them being immersed in water. We assume that
the active material of the transducers is the TsTSNV-1
piezoelectric ceramics (a PZT ceramics). The band-
width of the transmitter is broadened by using (1) a
quarter-wave layer or (2) a mechanical damper. The
piezoelectric receiver is connected in parallel to an
electric load, which consists of an inductance L con-
nected in series to an active resistance R (Fig. 1). The
system under consideration is characterized by the fol-
lowing parameters: Q = ω0L/R, n = ωel/ω0, ωel =
(LC)−0.5, and α = ωrec/ω0, where ω0 is the antiresonance
frequency of the transmitting piezoelectric plate, C is
the capacitance of the mechanically clamped piezoelec-
tric receiver, and ωrec is the antiresonance frequency of
the receiving piezoelectric plate. The transmitter is
excited by a voltage pulse representing a half-period of
a sinusoid at the antiresonance frequency of the piezo-
electric plate.

The purpose of our study is to determine parameters
Q, n, and α so as to obtain the minimal duration of the
output pulse of the receiving transducer. In Figs. 2–6,
curves 1 refer to a transmitter with a matching layer,
and curves 2, to a transmitter with a mechanical
damper. The specific acoustic impedance of the match-
ing layer is assumed to be zI = 3.8 × 106 Pa s/m. This
value provides the minimal duration of the acoustic
pulse at the transmitter. In the case of a transmitter with
a damper, the specific acoustic impedance of the
damper is taken to be zd = 8 × 106 Pa s/m, which can be
realized for dampers using epoxy-based compounds
1063-7710/03/4906- $24.00 © 200729
with a finely dispersed tungsten powder as a filler. This
value provides the minimal duration of the acoustic
pulse of a damped transducer. A further increase in zd
encounters technical difficulties.

Figure 2 shows the calculated dependences of the
pulse duration on parameter α, which characterizes the
difference between the antiresonance frequencies of the
transmitter and the receiver, at n = 1 and Q = 1. From
here on, the pulse duration is expressed in terms of the
number of half-periods of frequency ω0 , within which
the amplitude decreases to one-tenth of its maximal
value. From Fig. 2, one can see that, at α ≈ 1.3, the
pulse duration reaches its minimum τp ≈ 9. As α
increases further, the value of τp does not change.

Figure 3 presents the dependences of the maximal
amplitudes of the voltage pulses at the receiver output
(in arbitrary units), Urec, on parameter α for the same
values of n and Q as in Fig. 2. One can see that, at α ≈
1.3, the pulse amplitude obtained for a system with a
matching layer is twice as great as the corresponding
amplitude for a system with a damper.

Figures 4 and 5 show the dependences of pulse dura-
tion τp and pulse amplitude Urec on parameter n at α =
1.3 and Q = 1. One can see that the optimal values of n
lie within n = 0.9–1.1. In this interval, τp is close to the
minimum, while the signal amplitudes are close to the
maximum. As in the previous case, the signal amplitude
obtained in the system with a matching layer is twice as
high as the amplitude obtained with a damper.

Figure 6 displays the pulse duration versus parame-
ter Q at α = 1.3 and n = 1. From the dependences shown
in this figure it follows that, in the interval 0.8 < Q < 1.2,
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Fig. 1. 
03 MAIK “Nauka/Interperiodica”



 

730

        

KONOVALOV, KUZ’MENKO

                                                                 
pulse duration τp is close to the minimum and is almost
independent of Q.

Thus, the results of our calculations show that the
minimal pulse duration is achieved when the parame-
ters of the system under study take the following val-
ues: α = 1.3–1.4, n = 0.9–1.1, and Q = 0.9–1.1. For the
chosen material of the water-loaded transducers, the
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corresponding minimal pulse duration is τmin ≈ 9. In the
case of a transmitting transducer with a matching layer,
the signal amplitude is approximately twice as high as
in the case of a transmitter with a damper, while the
pulse duration is practically the same.

As a result, we conclude that the use of a matching
layer or a damper for the transmitter and an inductive-
resistive load for the receiver, with the parameters spec-
ified above, can considerably reduce the pulse duration
at the output of the transmitting–receiving system.
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A Helmholtz resonator without dissipation loss is an
efficient reflector for sound propagating in an infinite
narrow pipe [1–3]. At the resonance frequency, the inci-
dent sound wave is completely reflected from the reso-
nator, so that no travelling wave is observed behind the
resonator. The Helmholtz resonator is a resonator of the
monopole type. A sound wave propagating in a narrow
pipe can also be reflected by a dipole-type resonator
[4]. The simplest version of the latter is a rigid sphere
fastened to the pipe wall via a small bar. The radius of
the sphere and the length of the bar are small compared
to the sound wavelength. Under the effect of the inci-
dent wave, the rigid sphere fixed on the bar vibrates and
generates a scattered field of dipole type. At the reso-
nance frequency, the scattered field completely sup-
presses the incident wave behind the resonator. The
friction in the resonator reduces the efficiency of its
operation as a wave reflector. Resonators with friction
absorb sound. Previous studies showed that a single
Helmholtz resonator with optimal friction absorbs no
more than half the energy of the incident wave. A com-
plete absorption of sound at the resonance frequency
can be achieved using a combination of a lossless reso-
nator and a resonator with a certain loss (the friction
resistance is equal to the radiation resistance) and with
the distance between the two resonators being equal to
an odd number of quarter-wavelengths [5].

This paper considers a single resonator of the mono-
pole–dipole type in the form of a Helmholtz resonator
fastened through a small bar to the pipe wall (see fig-
ure). In fact, this resonator is a combination of mono-
pole and dipole resonators positioned at the same point.
One can expect that, at a certain friction, such a mono-
pole–dipole-type resonator will completely absorb the
resonance-frequency sound in the narrow pipe.

In a pipe that is narrow compared to the wavelength,
the pressure and the particle velocity depend only on
the x coordinate measured along the pipe axis. Let us
consider a Helmholtz resonator (a spherical cavity with
a neck) connected via a small bar with the pipe wall at
the point x = 0. Let a harmonic sound wave with the
pressure p0(x) = exp(ikx), where k is the wave number
(the time factor exp(–iωt) is omitted), be incident on the
resonator from the left. Under the effect of the incident
wave, the Helmholtz resonator mounted on the bar is
1063-7710/03/4906- $24.00 © 20731
excited and generates fields of monopole and dipole
types:

(1)

where V is the volume velocity of the monopole (the
Helmholtz resonator), M is the dipole moment (of the
vibrating sphere), the dipole axis coincides with the x
axis, ρ is the density of the medium filling the system,
c is the velocity of sound in this medium, S is the cross-
sectional area of the pipe, and sgnx = +1 for x > 0 and
−1 for x < 0. The total field in the pipe is p = p0 + p1 + p2.
We seek the parameters of the monopole–dipole-type
resonator to obtain a complete absorption of the inci-
dent wave, i.e., p(x < 0) = exp(ikx) and p(x > 0) = 0.

The volume velocity of the monopole and the dipole
moment are obtained from the equations of motion
(volume oscillations and vibrations) of the resonator.
The equation of the forced volume oscillations has the
form

(2)

where m1 is the air mass in the resonator neck, ξ1(t) is
the displacement of this mass, r1 is the friction factor,
κ1 is the coefficient of elasticity, σ1 is the cross-sec-

tional area of the neck, p0(0) = 1, p1(0) = , and

p2(0) = 0. The volume velocity of the monopole is V =

p1 x( ) ρcV
2S

---------- ik x( ),exp=

p2 x( ) ik x
ρcM
2S

----------- ik x( ),expsgn–=

m1 ξ̇̇1 r1ξ̇1 κ1ξ1+ +

=  σ1 p0 0( ) p1 0( ) p2 0( )+ +[ ] iωt–( ),exp–

ρcV
2S

----------

0 ı

Helmholtz resonator

Bar

Monopole–dipole-type resonator in a pipe.
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σ1v 1, where v 1 = (t)exp(iωt) is the complex ampli-
tude of the particle velocity.

The equation of the forced vibrations performed by
the resonator on the small bar under the effect of the
sound field has the form

(3)

where m2 is the mass of the spherical cavity; ξ2(t) is the
displacement of this mass; r2 is the friction factor; κ2 is
the coefficient of elasticity; and F0, F1 , and F2 are the
complex amplitudes of the resultant forces that arise
due to the effect produced on the rigid sphere by the
pressure fields p0, p1 , and p2 , respectively. According to
[2], for a small (compared to the sound wavelength)
sphere, these force amplitudes are expressed as

where a is the radius of the sphere, σ2 = 4πa2 is its sur-

face area, and v 2 = (t)exp(iωt) is the complex ampli-
tude of the particle velocity. The dipole moment of the
vibrating sphere is M = 2πa3v 2.

From Eqs. (2) and (3), we obtain the complex ampli-
tudes of the particle velocities:

where

R1 =  =  is the monopole radiation resis-

tance, R2 = –Re  = (ka)2  is the dipole radiation

resistance, and m = Im  =  is the associ-

ated mass of the dipole.
The total pressure in the pipe is expressed as

(4)

The monopole and dipole scattered fields produced by
the resonator under study are orthogonal. The eigenfre-

quencies of the resonator are ω1 =  and ω2 =

ξ̇1

m2 ξ̇̇2 r2ξ̇2 κ2ξ2+ + F0 F1 F2+ +[ ] iωt–( ),exp=

F0 = i
ka
3

------σ2, F1–  = 0, F2 = ika
ρcσ2

2

12S
------------ 1 ika+( )v 2,

ξ̇2

v 1
σ1 p0 0( )

Z1
-------------------–

σ1

Z1
-----, v 2

F0

Z2
----- i

ka
3

------
σ2

Z2
-----,–= =–= =

Z1 r1 R1+( ) i
κ1

ω
----- ωm1– 

 +
 
 
 

,=

Z2 r2 R2+( ) i
κ2

ω
----- ω m2 m+( )–+

 
 
 

,=

σ1 p1 0( )
v 1

-------------------
ρcσ1

2

2S
------------

F2

v 2
------

ρcσ2
2

12S
------------

1
ω
----

F2

v 2
------ ka

ω
------

ρcσ2
2

12S
------------

p ikx( )exp
R1

Z1
-----

R2

Z2
----- xsgn+

 
 
 

ik x( ).exp–=

κ1/m1
 for the volume oscillations and vibra-
tions, respectively. Note that the acoustic coupling of
two closely spaced Helmholtz resonators in a free
medium was studied in [6].

Let us consider the structure of the sound field given
by Eq. (4) for some specific values of the resonator
parameters.

(i) Let us set Z2 = ∞ and r1 = 0. This means that the
Helmholtz resonator is rigidly fixed to the pipe wall and
the friction in the resonator is absent. Then, at fre-
quency ω1 , the incident wave is completely reflected
from the resonator:

(ii) Let Z1 = ∞ and r2 = 0. This means that the reso-
nator neck is closed by a rigid cover and the resonator
vibrates on the bar without loss. Then, at frequency ω2 ,
the incident wave is also completely reflected from the
resonator:

(iii) Let r1 = r2 = 0 and ω1 = ω2 . In this case, the vol-
ume oscillations and the vibrations occur without fric-
tion, and eigenfrequencies ω1 and ω2 coincide. Then, at
the frequency ω = ω1 = ω2, the incident wave is not
reflected from the resonator but only changes its phase:

(iv) Let r1 = R1, r2 = R2, and ω1 = ω2 . This means
that, for the volume oscillations and vibrations, the fric-
tion resistance is equal to the radiation resistance and
the natural frequencies coincide. Then, at frequency
ω = ω1 = ω2, we have the field

Hence, with these parameter values, a single resonator
of the monopole–dipole-type completely absorbs the
incident wave.
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Session of the Scientific Council on Acoustics of the Russian 
Academy of Sciences in Memory 

of Professor Leonid Mikhaœlovich Lyamshev

Professor N.A. Dubrovskiœ, Director of the Andreev Acoustics Institute, addresses the audience. The person next to him is Professor
S.V. Egerev, Chair of the Scientific Council on Acoustics.
On June 4, 2003, at the Andreev Acoustics Institute,
a Session of the Scientific Council on Acoustics of the
Russian Academy of Sciences (RAS) was held. The
session was devoted to the memory of Professor Leonid
Mikhaœlovich Lyamshev, head of a laboratory at the
Andreev Acoustics Institute, Chair of the Scientific
Council on Acoustics, and Editor-in-Chief of Acousti-
cal Physics. In addition to the members of the scientific
council, the session was attended by guest partici-
pants—specialists in acoustics from Moscow, Nizhni
Novgorod, and St. Petersburg.

The opening speech was given by Academician
F.V. Bunkin, Director of the Wave Research Center of
the General Physics Institute of the RAS. The guest
participants were greeted by Professor N.A. Dub-
rovskiœ, Director of the Andreev Acoustics Institute.
Speakers noted that the pioneering works by Lyamshev
in sound diffraction, acoustohydrodynamics, nonlinear
acoustics, radiation acoustics, fractal acoustics, and
photoacoustics laid the foundations of the fields of
research without which the development of acoustics in
1063-7710/03/4906- $24.00 © 20733
the 21st century would be unthinkable. The wide scope
of Lyamshev’s scientific interests determined the poly-
thematic character of the session. Seven scientific
reports were presented.

Yu.I. Bobrovnitskiœ (Institute of Mechanical Engi-
neering, RAS) discussed “Reciprocity in the Problem
of the Reflection and Transmission of Waves.” He noted
that the generally recognized contribution made by
Lyamshev to the study of reciprocity, which is a cor-
nerstone problem of acoustics, consists in that he gave
the first general proof of the reciprocity theorem for an
arbitrary medium; later, he extended this proof to the
case of a moving medium. Bobrovnitskiœ described the
latest achievements in this field of research, namely, the
application of the reciprocity theorem to the problems
of reflection and transmission of waves. For solving
such problems, it is necessary to apply the symmetriza-
tion procedure to the matrix of the reflection and trans-
mission coefficients of sound. As an example,
Bobrovnitskiœ considered the solution for the practi-
cally important case of a flexurally vibrating bar.
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The report entitled “Research into the Photoacoustic
(PA) Tomography of Biological Objects at the Institute
of Applied Physics, RAS” (by G.P. Volkov, A.V. Ero-
shin, A.G. Kirillov, and A.M. Reœma from the Institute
of Applied Physics, RAS) was concerned with the opti-
mal configuration problem for a photoacoustic tomo-
graph. Photoacoustic applications in tomography of
biological tissues attract the attention of researchers
from different countries. The essence of the effect is
evident: a contactless heating of tissue by optical radi-
ation with the appropriate recording of the response
provides the localization of a tumor, which is character-
ized by a thermophysical contrast. However, the practi-
cal implementation of the effect requires rather sophis-
ticated technical methods. The authors of the report dis-
cuss in detail the problems of the realization of PA
tomographs, including the parameters of the receiving
system and the algorithms of tumor localization by the
acoustic response.

I.B. Esipov (Andreev Acoustics Institute) presented
the report “Acoustic Effects in Granular Media.” The
subject of this report was the theoretical and experi-
mental modeling of viscoelastic liquid flows through
porous media. Such systems are described by hysteresis
models and, from the viewpoint of a cyclic (e.g., acous-
tic) loading, possess pronounced nonlinear properties.
A situation that requires the study of a granular medium
soaked with a viscoelastic liquid is oil leakage through
sand. The model described by Esipov shows that a
cyclic loading of such a medium leads to the formation
of a two-dimensional percolation cluster. Thus, the
acoustic field changes the properties of the medium,
and the nonlinear components of the acoustic response
may serve for the diagnostics of this medium.

V.V. Zosimov (Algodign LLC), in his report “Elas-
tic Vibrations in Complex Structures: Some Applica-
tions,” considered the application of the modern meth-
ods of vibration theory to solving some key problems of
computational chemistry and molecular biology, such
as the evaluation of the degree of similarity of macro-
molecules and the determination of the free binding
energy of molecules. As a result, the procedures of cal-
culating the eigenfrequencies of molecules were devel-
oped, so that the difference between these frequencies
can serve to evaluate the similarity. Today, the impor-
tance of solving such problems is beyond question:
there are several million synthesized preparations that
can be suggested for medical application on the condi-
tion that they are reliably identified.

The report by A.P. Brysev (Wave Research Center of
the General Physics Institute, RAS) was entitled “Para-
metric Phase Conjugation for Ultrasonic Beams.” It
described the recent achievements in studying this
interesting phenomenon. The effect of phase conjuga-
tion is known to compensate the phase distortions that
occur in ultrasonic beams propagating in an inhomoge-
neous medium. Using this property, it is possible, e.g.,
to realize the self-guidance of a beam at a particular
scattering object. Brysev presented new interesting
areas of research: the methods of the parametric phase
conjugation of ultrasonic beams beyond the threshold,
the nonlinear acoustics of phase-conjugated beams, and
the acoustic diagnostics and visualization of objects on
the basis of phase conjugation.

The problem considered by E.A. Kopyl and
Yu.P. Lysanov (Andreev Acoustics Institute) was for-
mulated as the “Scattering and Attenuation of Low-Fre-
quency Sound in the Ocean with Random Fractal Inho-
mogeneities.” The study of this problem is important
for the calculation of long-range propagation of low-
frequency sound in a deep ocean. The scattering of
sound by volume inhomogeneities is the main factor
responsible for energy leakage from the underwater
sound channel. A new approach to analyzing the sound
scattering in the ocean was put forward by Lyamshev:
he proposed performing the analysis on the basis of the
concepts of fractal acoustics and ray chaos. These ideas
were developed in the report by Kopyl and Lysanov.
The new scattering models are incorporated into the
computer programs for solving problems of underwater
acoustics. In particular, they allow one to determine the
mean decay laws governing the range dependence of
the acoustic field. It is also evident that the new models
offer considerable promise for solving inverse prob-
lems of acoustic oceanology.

The possible applications of the laser generation of
sound in matter were considered by A.A. Karabutov
(Moscow State University) in his report “Laser Photoa-
coustic Diagnostics.” Two areas of application of this
effect can be distinguished: photoacoustic tomography
(where the PA transformation depends on the thermo-
physical inhomogeneities of the sample and serves for
their localization) and photoacoustic structure metering
(where the PA transformation serves as the source of a
broadband precision probing acoustic signal). Corre-
spondingly, two examples realizing these versions are
considered: a photoacoustic tomograph for early diag-
nostics of oncological disorders of the mammary gland
and a diagnostic device for the fine analysis of media
with a complex structure (in particular, carbon–epoxy
composites).

At the session, the full scientific council approved
by the General Physics and Astronomy Division of the
RAS in 1999 for a period of five years was presented
with allowance for the corrections introduced by the
Bureau of the Physical Science Division. Today, the
council includes the following specialists in physics of
wave processes and modern fields of acoustics:

Sergeœ Viktorovich Egerev (Andreev Acoustics
Institute), Chair of the Council

Georgiœ Dmitrievich Mansfel’d (Institute of Radio
Engineering and Electronics, RAS), Deputy Chair of
the Council

Oleg Vladimirovich Abramov (Institute of Organic
and Inorganic Chemistry, RAS)
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Viktor Anatol’evich Akulichev, Member of the RAS
(Pacific Oceanological Institute, Far-East Division,
RAS)

Irina Arkad’evna Aldoshina (Bonch-Bruevich State
University of Telecommunications, St. Petersburg)

Yuriœ Ivanovich Bobrovnitskiœ (Institute of Mechan-
ical Engineering, RAS)

Leonid Maksimovich Brekhovskikh, Member of the
RAS (Shirshov Oceanology Institute, RAS)

Fedor Vasil’evich Bunkin, Member of the RAS
(Wave Research Center, General Physics Institute,
RAS)

Valentin Andreevich Burov (Moscow State Univer-
sity)

Andreœ Viktorovich Gaponov-Grekhov, Member of
the RAS (Institute of Applied Physics, RAS)

Irina Petrovna Golyamina (Andreev Acoustics Insti-
tute)

Vladimir Semenovich Gorelik (Lebedev Physics
Institute, RAS)

Éduard Petrovich Gulin (Andreev Acoustics Insti-
tute)

Yuriœ Vasil’evich Gulyaev, Member of the RAS
(Institute of Radio Engineering and Electronics, RAS)

Sergeœ Nikolaevich Gurbatov (Nizhni Novgorod
State University)

Nikolaœ Andreevich Dubrovskiœ (Andreev Acoustics
Institute)

Aleksandr Mikhaœlovich Dykhne, Member of the
RAS (Troitsk Institute of Innovative and Thermonu-
clear Research)

Vladimir Ivanovich Erofeev (Nizhni Novgorod
Branch of the Institute of Mechanical Engineering,
RAS)

Igor’ Borisovich Esipov (Andreev Acoustics Insti-
tute)

Boris Maksimovich Efimtsov (Zhukovskiœ Central
Aerohydrodynamics Institute)

Vitaliœ Anatol’evich Zverev, Corresponding Mem-
ber of the RAS (Institute of Applied Physics, RAS)

Viktor Vasil’evich Zosimov (LLC Algodign-Mos-
cow)

Nikolaœ Igorevich Ivanov (St. Petersburg Baltic
State Technical University)
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X Brekhovskikh’s Workshop on Ocean Acoustics 
and the XIV Session of the Russian Acoustical Society
The Shirshov Oceanology Institute of the Russian
Academy of Sciences and the Russian Acoustical Soci-
ety invite researchers and engineers to the X Anniver-
sary Brekhovskikh Workshop on Ocean Acoustics,
which will be held May 25–28, 2004. The workshop
will be combined with the XIV Session of the Russian
Acoustical Society.

The program of the workshop includes lectures, as
well as oral and poster presentations. The scope of the
workshop is defined as follows:

—Sound propagation in the ocean
—Acoustic tomography
—Ambient noise of the ocean
—Scattering and reflection of sound
—Signal processing
1063-7710/03/4906- $24.00 © 0739
—Acoustic methods and means for ocean studies
—Oceanological characteristics important for

underwater acoustics
—Ecological factors in solving acoustic problems.

The information necessary for future participants of
the workshop is available at

e-mail: rav@rav.sio.rssi.ru
Tel: (095) 129-1936; (095) 124-6351; (095)

126-9835
Web: http://rav.sio.rssi.ru/school10.html
Mailing address: Organizing Committee of the

Workshop on Ocean Acoustics, Shirshov Oceanology
Institute, Russian Academy of Sciences, Nakhimovskiœ
pr. 36, Moscow, 117851 Russia. 
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