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Abstract—The bandwidth of synchronous generation in one- and two-dimensional multielement Josephson
structures exhibits narrowing with increasing number of elements, but only as far as the system dimensions
remain smaller compared to the effective radius of electrodynamic coupling between the Josephson junctions.
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INTRODUCTION

The use of synchronized multielement Josephson
structures instead of a single Josephson junction is a
promising way to the creation of synchronous genera-
tors of a narrow-band electromagnetic radiation in the
submillimeter and near-IR wavelength range [1]. For
example, the bandwidth of synchronous generation
may decrease in inverse proportion to the number N of
Josephson elements in one-dimensional chains and
drop even more rapidly with increasing N in two-
dimensional structures [2, 3].

Recently, we suggested multielement structures of a
new type in which the coherent Josephson generation
regime is stable with respect to technological scatter of
the Josephson junction parameters within rather broad
limits (40–50%). This is achieved as a result of strong
interaction between all Josephson elements in the sys-
tem [4–6]. However, virtually all real electrodynamic
coupling circuits that may ensure a nonlocal character
of the interaction between the Josephson elements are
characterized by finite effective radius of interaction.

The purpose of this work was to study the effect of
the finite radius of interaction between the Josephson
elements in one- and two-dimensional systems on the
character of variation of the bandwidth of synchronous
generation depending on the number of Josephson ele-
ments in these structures.

ONE-DIMENSIONAL CHAINS
OF JOSEPHSON JUNCTIONS

The simplest model system for investigation of the
effect of the finite radius of interaction between Joseph-
son elements on the bandwidth of coherent generation
is offered by a chain of parallel elements, in which the
Josephson junctions are coupled by superconducting
inductors with the inductance L (Fig. 1a). All the
Josephson elements in this structure possess the same
1063-7850/00/2602- $20.00 © 20102
generation frequency ω = (2e/")V, where V is the con-
stant component of the voltage across the chain. In the
absence of magnetic fields, there is additional synchro-
nous oscillation of the voltage across all Josephson
junctions in the chain. The radius of effective coupling
between Josephson elements in this structure depends
on the normalized coupling inductance l = (2e/")IcL,
where Ic is the critical current along a single Josephson
junction. For simplicity, it is assumed that all the
Josephson elements are identical and can be described
by a model of resistor with capacitor (RCSJ model) [7].

Figure 2 shows a family of plots describing varia-
tion of the generation bandwidth ∆ω versus the number
N of the Josephson elements in the chains with various
normalized coupling inductances l. To simplify repre-
sentation, the curves are constructed using algorithmic
frequency scale and linear N scale, whereby the plots of
∆ω versus 1/N must be linear. As seen, the bandwidth
decreases in proportion to N in systems with small
numbers of elements. As the N value increases, the
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Fig. 1. Model one-dimensional structures of Josephson ele-
ments with electrodynamic coupling chains of various
types.
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effect of band narrowing exhibits “saturation.” This
phenomenon is related to the fact that the chain size
becomes comparable with the radius of effective inter-
action between Josephson elements in the structure.
The further increase in N does not affect the generation
bandwidth. As is known from practice, it is difficult to
reduce the parameter l markedly below unity. There-
fore, more than 100-fold decrease in the generation
bandwidth can hardly be achieved in this linear system.

Figures 1b and 1c show the model chains of serial
Josephson elements with different electrodynamic cou-
pling circuits. The dynamic properties of these systems
were recently studied in [3, 4, 6]. In the structure of
Fig. 1b, the Josephson elements are coupled in pairs,
which implies a local character of the electrodynamic
coupling. Here, the effect of the generation bandwidth
narrowing is manifested only within a single elemen-
tary unit (N = 2) and no decrease in ∆ω is observed for
N > 2. This result was reported previously [1], where
the effect was commented as “unexpected.” In the other
parallel structure (Fig. 1c), the effective radius of inter-
action between Josephson elements is formally infinite
and this system must, in principle, feature a continuous
decrease in the bandwidth of synchronous generation in
proportion to the number of Josephson elements in the
chain. However, we may suggest that a distributed char-
acter of such structures at large N values in real experi-
ments would also give rise to saturation in the effect of
bandwidth narrowing.

TWO-DIMENSIONAL
JOSEPHSON STRUCTURES

Figure 3a shows a two-dimensional structure com-
posed of unit cells representing four-contact interfer-
ometers. In this structure, a strong interaction between
Josephson elements is provided by the motion of spa-
tially-periodic system of single magnetic-flux quanta
[1, 5]. It was previously established that the synchro-
nous generation bandwidth of such a unit cell decreases

in proportion to N2, that is, drops by a factor of  = 16
as compared to the bandwidth of a single Josephson
junction [3].

The results of our investigation showed that, as far
as the structure dimensions do not exceed the effective
radius of electrodynamic coupling of the Josephson
elements, the spectral linewidth of the coherent radia-
tion measured decreases in proportion to the number of
unit cells K. Provided the optimum values of the Mac-

cumber parameter β = (2e/")Ic C ~ 1 (Rn and C are
the normal resistance and capacitance of the Josephson
junction) and the normalized inductance l ~ 10, the
effective electrodynamic coupling radius in this system
is equivalent to the size of three unit cells in each direc-
tion. Thus, the maximum possible effect of the genera-
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Rn
2
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tion bandwidth narrowing in the system studied is

approximately 8  ~ 100.

Should the size of the two-dimensional structure
exceed the effective radius of interaction between ele-
ments, the spectral line exhibits splitting into several
closely spaced components (see the spectra presented
in Fig. 3b), so that the total linewidth becomes even
greater than that before splitting (cf. data in Tables 1
and 2). The system dynamics is such that the instanta-
neous oscillation frequency exhibits a periodic switch-
ing from one to another component at a certain beat fre-
quency of ωb, as evidenced by the corresponding com-
ponent in the generation spectrum. This is probably
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Fig. 2. Plots of the Josephson generation bandwidth ∆ω vs.
number N of the Josephson elements in the parallel chain
(Fig. 1a) for various values of the normalized coupling
inductance l.

Table 1.  The bandwidth of the Josephson generation in a two-
dimensional structure (Fig. 3a) at ω/ωc = 1 for l = 1, β = 10,
and γ ≡ πsi(0) = 2 × 10–4, where si(0) is the normalized spectral
density of fluctuations of the low-frequency current i ≡ I/Ic

Single
junction

(J)
4J-cell

3 × 2 
lattice

structure

3 × 3 
lattice

structure

3 × 4 
lattice

structure

∆ω/ωc 1.3 × 10–3 7.5 × 10–5 1.7 × 10–5 2.6 × 10–5 3.4 × 10–5

Table 2.  The bandwidth of the Josephson generation in a
two-dimensional structure of one vertical cell column
(dashed contour in Fig. 3b) at ω/ωc = 1 for l = 1, β = 10, and
γ ≡ πsi(0) = 2 × 10–4

2 cells 3 cells 4 cells 5 cells

∆ω/ωc 3/7 × 10–5 1 × 10–4 
(3 lines)

7.5 × 10–5 2 × 10–4 
(5 lines)
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Fig. 3. (a) Model two-dimensional structures of Josephson elements representing four-contact superconducting interferometers and
(b) typical spectra of the Josephson radiation from a structure with dimensions exceeding the effective radius of electromagnetic
coupling: (A) a column of 5 cells (indicated by dashed contour); (B) a lattice structure of 3 × 5 unit cells (ω0 is the average Josephson
generation frequency; ωb is the beat frequency). 
related to the formation and motion of hypervortices in
these structures.

CONCLUSION
The main conclusion of this work is that the effect

of narrowing of the coherent generation bandwidth
with increasing number of elements in one- and two-
dimensional multielement Josephson structures is
observed as far as the characteristic system size does
not exceed the effective radius of electrodynamic cou-
pling between Josephson junctions in the structure
studied. Estimates indicate that a maximum degree of
the generation bandwidth narrowing achievable in real
systems cannot exceed 100. We believe that the cre-
ation of synchronous generators of a narrow-band elec-
tromagnetic radiation in the submillimeter wavelength
range should be based on multielement Josephson
structures with distributed electrodynamic coupling
parameters, which would provide for additional
decrease in the generation bandwidth as a result of res-
onance properties of these coupling circuits [8].
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The Effect of the Filler Particle Size on the Efficiency 
of Mechanoelectrical Transformations in Concretes
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Abstract—The mechanoelectrical transformations in concretes were studied using the method of physical
modeling. It is demonstrated that the filler particle size has a decisive effect on the efficiency of mechanoelec-
trical transformations in concretes. Dependence of the amplitude of electromagnetic response to shock excita-
tion on the surface area of inclusions is determined. © 2000 MAIK “Nauka/Interperiodica”.
As was demonstrated by the results of previous
investigations, a mechanical excitation of multicompo-
nent heterogeneous materials consisting of a binder and
a filler (in particular, concretes) gives rise to electro-
magnetic emission whose efficiency is determined by
the presence of filler in the material and by the quality
of the adhesion contact between filler and matrix [1–3].
It was the objective of this study to investigate the effect
of the filler particle size on the efficiency of mechano-
electrical transformations (MET) in concretes.

For solving the problem set, special experiments
were performed using the method of physical model-
ing. A series of model samples sized 5 × 5 × 10 mm
were manufactured of cement stone with various inclu-
sions (in particular, metal plates, soda-lime glass,
ceramics, rubber, and cardboard) of various dimen-
sions. The choice of inclusions was governed, on the
one hand, by the principle of different MET efficiency:
the inclusions such as glass and ceramics exhibit a
fairly high intrinsic efficiency, while metals, rubber,
and cardboard are characterized by very low efficiency.
On the other hand, these inclusions differ by their phys-
ical and mechanical characteristics. Note that, in order
to eliminate the effect of the cement matrix on the con-
ditions of acoustic wave propagation through the sam-
ple, all samples in the series were manufactured from
the same manually prepared batch of cement–sand
mixture and processed in a single mold divided by
spacers into sections.

The mechanoelectrical transformations were inves-
tigated with the aid of an EMISSION setup [4]. The
testing procedure was as follows: a special electrome-
chanical device was used to produce a single impact
(normalized in force) against the surface of the sample
being tested. An electromagnetic response in the sam-
ple was recorded by a capacitive electrical detector
located at a distance of 5 mm from the surface. A com-
1063-7850/00/2602- $20.00 © 20105
puter was used for automatic triggering, digitizing, and
recording of signals.

The results of testing model samples comprising a
cement stone with single inclusion demonstrated a
fairly high efficiency of MET in all samples. Note that,
under conditions of shock excitation of model samples
consisting of pure cement stone without inclusions,
almost no electromagnetic response is recorded. Con-
sequently, whatever the mechanical and acoustoelectri-
cal properties of the inclusions, their introduction into
a cement–sand mixture results in a considerable
increase of the efficiency of MET compared with pure
cement stone.

It has been found that the size (area) of inclusions is
decisive from the standpoint of variation of the ampli-
tude of electromagnetic response to shock excitation
(Fig. 1). The obtained dependence covers inclusions
characterized by different values of the efficiency of
MET and differing by their physical and mechanical
properties (metal, glass, ceramics, rubber, cardboard).

As seen from Fig. 1, the amplitude of electromag-
netic response increases in proportion to the size of
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A, arb. units

cm2

Fig. 1. The amplitude of electromagnetic response as a func-
tion of the area of inclusion placed into a cement sample. 
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inclusions. As revealed by mathematical treatment, this
dependence is described by the equation

where A is the amplitude of electromagnetic response
(in arbitrary units), S is the area of inclusion (mm2), and
k is the dimensionality factor (mm–2).

Proceeding from this formula, one can use the
extrapolation of the curve to zero amplitude values to
estimate the minimum area of inclusion that leads to the
appearance of a signal of electromagnetic emission
detectable by our equipment: this area is 14.4 mm2. As
a result of these investigations, it becomes clear why no
electromagnetic response is recorded in the case of
cement stone: the sand in the cement stone composition
is characterized by much smaller dimensions than
14.4 mm2.

The obtained dependence of the amplitude of elec-
tromagnetic response on the interface area proves the

A k 14.4– 9.3S0.5+( ),=

1.0

0.5

0
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–1.0
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A, arb. units

Fig. 2. Electromagnetic responses recorded during testing
of cement samples with single inclusions of gravel grains
sized (a) 35 × 35 × 20 and (b) 12 × 9 × 6 mm. 
T

fact of decisive importance of these boundaries, at least
in the case of the formation of a pulsed electromagnetic
signal. The electromagnetic emission generation may
be associated with variation of the dipole moment of
the electric double layer at the interface between matrix
and inclusion during the shock wave propagation
through the sample. The surface energy and the surface
of electric double layer are proportional to the area (S).
On the other hand, the signal energy is proportional to
the square of amplitude (A2); therefore, the dependence
A ≈ S0.5 may serve an argument in favor of the adhesion
mechanism of electromagnetic emission upon shock
excitation of multicomponent heterogeneous materials
consisting of a cement base and an inclusion.

The results obtained in model samples consisting of
a cement base and artificial inclusions were checked in
model samples of concrete in which single grains of
gravel of different size were placed. Figure 2 shows the
oscillograms of electromagnetic response recorded
during testing of cement samples with inclusions of
gravel grains of substantially different size. It is demon-
strated that an increase in the amplitude of electromag-
netic response is observed with increasing gravel grain
size. Estimates of the correlation between the surface
area of gravel grains and the amplitude of electromag-
netic response from the model samples in which these
grains are included fit the same dependence A ≈ S0.5 .

The investigation results indicate that the efficiency
of mechanoelectrical transformations in concretes
increases with the size of inclusion. It is demonstrated
that, when the area of inclusion is less than 14.4 mm2,
the efficiency of mechanoelectrical transformations in
concretes is zero, at least, for the sensitivity of the
recording equipment employed. The obtained correla-
tion between the amplitude of electromagnetic
response and the surface area of inclusion points to the
mechanism of generation of electromagnetic emission
by the electric double layer at the boundary between
cement matrix and filler.
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Abstract—Thermostimulated exoelectron emission from LiIO3 crystals in the temperature interval from 20 to
500°C was studied. Relationships between the character of emission and the composition, crystal structure, and
sample preparation features are established. © 2000 MAIK “Nauka/Interperiodica”.
Below we report on the results of investigation of
the effect of thermostimulated exoelectron emission
(TSEE) from LiIO3 crystals applied in various fields of
technology [1]. The importance of this study was
explained by significant dependence of the properties
of LiIO3 crystals on the method and conditions of sample
crystal growth and the post-growth processing [2–4].
The method of TSEE measurements was selected for
the study of LiIO3 crystals because this effect is known
to be highly sensitive to changes in the structure of
samples and showed good results when used for the
investigation of phase transitions in ferroelectrics [5]
and biocompatible materials [6].

The experiments were performed on LiIO3 crystals
grown from an aqueous solution by the evaporation
technique [2], representing a hexagonal α-LiIO3 phase
with the unit cell parameters a = 5.48 Å, b = 5.17 Å and
the space group P63. The TSEE effect was studied on
predominantly c-cut crystal plates. The measurements
were carried out in the temperature interval from 20 to
500°C using a procedure described elsewhere [5]. The
emission was activated by exposing samples to a field
of corona discharge.

Heating the samples in the course of TSEE measure-
ments was accompanied by the appearance of several
peaks in the curve of TSEE intensity versus tempera-
ture. All the samples studied in this work exhibited a
comparatively weak and broad maximum in the region
of 200°C, followed by the peaks of greater intensity at
about 250 and 300°C (see figure). It should be noted
that the shape and position of the first maximum
(200°C) exhibited rather insignificant variations, irre-
spective of the conditions of an α-LiIO3 crystal prepa-
ration and the single crystal region from which a partic-
ular sample was cut. At the same time, the positions of
maxima peaked at 250 and 290°C varied within the
temperature intervals 200–250 and 220–300°C, respec-
tively.

The behavior of the latter peaks agrees with the
results of DTA and DTG measurements [1], according
1063-7850/00/2602- $20.00 © 20107
to which the pattern of polymorphous transitions in
LiIO3 can be described by the following scheme:

Thus, the intense TSEE peaks observed in the region
of 250 and 290°C (see figure) correspond to the struc-
tural transitions of LiIO3 from α to γ and β phases,
respectively. Note that the temperature-induced transi-
tion to the β-LiIO3 phase involves a crystal reconstruc-
tion [1] resulting in breakage of the sample. The corre-
sponding TSEE peak (see figure) is typical of the emis-
sion accompanying the phenomenon of
mechanodestruction in crystals [7]. These structural
transitions are accompanied, as noted above, by anom-
alous variation of the physical characteristics such as
the dielectric permittivity, piezoelectric moduli, and
electromechanical coupling coefficients [2–4]. A lack
of reproducibility in the measured temperatures of
polymorphous transitions is probably explained, as

α γ Liquid.
285°C 435°Cβ

390°C

247°C

600

450

300

150

100 200 300 400

I, s–1

T, °C

A typical glow curve of a LiIO3 crystal, representing the
TSEE current intensity variation during heating of a sample. 
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indicated in [2], by variations in the composition and
quality of the crystals studied.

The TSEE feature observed at 200°C can be
assigned to an increase in proportion of the γ-LiIO3
phase in the bulk of the crystal [4]. The appearance of
this phase is related to the separation of a LixH1 – xIO3
solid solution in the region of inclusions of a α-LiIO3
crystal phase growing from an acid (pH 2) solution and
the melting of HIO3 phase (Tm = 110°C). Important
information on the course of these processes can prob-
ably be extracted from the character of anomalies in the
properties of LiIO3 crystals in the region of 200°C.
However, this would require additional investigations,
which will be reported in our subsequent publications.

Thus, the results of our study of the thermostimu-
lated exoelectron emission from LiIO3 crystals indicate
that the TSEE measurements offer an effective means
of monitoring properties of the crystals in the course of
their preparation and use. This method significantly
supplements the other physical techniques (including
the X-ray diffraction) used for the investigation of
T

properties and the monitoring of quality of the LiIO3
crystals.
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Detection of Nitrogen Dioxide by Amorphous Films
of Tungsten Trioxide
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Abstract—Data are given about the good “sensor” properties of amorphous tungsten trioxide with respect to
NO2 adsorption. The resistance of WO3 film varies appreciably due to the binding of semiconductor electrons
by NO2 molecules. © 2000 MAIK “Nauka/Interperiodica”.
Nitrogen oxides NOx form one of the most toxic
components of industrial emissions and exhaust gases
of transport vehicles. In solving the problem of moni-
toring the concentration of nitrogen oxides in the atmo-
sphere, metal-oxide semiconductor gas sensors present
an alternative to chemiluminescent techniques.

Amorphous films of tungsten trioxide (a-WO3) are
characterized by high porosity. The developed internal
surface of WO3 provides for the possibility of diverse
functional applications of this material and related
structures, in particular, in physical and chemical sen-
sors [1, 2]. The reversible formation of HxWO3 hydro-
gen–tungsten bronzes under conditions of dissociative
absorption of hydrogen, ammonia, and alcohols is the
basis of the bulk mechanism of sensitivity of this mate-
rial with respect to donor gases [3]. On the contrary,
acceptor gases (except for oxygen) are characterized by
the surface mechanism of interaction with WO3. In this
case, the greatest expectations are associated with
a high sensitivity of tungsten trioxide to nitrogen
1063-7850/00/2602- $20.00 © 20109
oxides [4], although this process has not been investi-
gated for amorphous films.

The amorphous films of tungsten trioxide for our
experiments were prepared by vacuum condensation of
a thermally evaporated WO3 powder onto a dielectric
substrate provided with a platinum heater and a ther-
moresistive transducer for setting and monitoring the
desired sensor temperature. The film was 50–500 nm
thick, with a characteristic microcrystallite size of
about 1 nm. Depending on the conditions of the con-
densation process, one can prepare the WO3 layers of
different degrees of structure ordering and anion defi-
ciency [5–7]. By varying these conditions (in particu-
lar, the substrate temperature), one can control the size
of the active surface of the film and, consequently, the
sensitivity of its electric conductivity with respect to
adsorbed gas molecules (NO2). The concentration of
NO2 in a flow of air was varied within 0–6 ppm, and the
sensor temperature ranged from 300 to 600 K.

The mechanism of interaction between NO2 and
a-WO3 is typical of that between acceptor gas and
VacuumVacuum

A

W

F
Ec Ec

F

L

Ev

Es
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χ

(a) (b)

qU
s

Fig. 1. The state of a-WO3 surface (a) prior to and (b) after the chemisorption of acceptor molecules of NO2: A, affinity of NO2
molecule for electron; χ, affinity of WO3 for electron; W, electron work function of WO3; F, Fermi level; Es , adsorption level; Ec ,
bottom of the conduction band; Ev , top of the valence band; Us , magnitude of the potential barrier; L, width of the depleted region.
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n-type semiconductor [8]; the n-type conductivity in
tungsten trioxide is due to the polyvalence of tungsten
cation and nonstoichiometry of the film composition.
The W5+ and W4+ ions with one or two excess electrons,
respectively, are donors in the W6+ lattice,

When electronegative molecules of NO2 (as well as
of NO [9]) reach the semiconductor surface, they cap-
ture electrons from the conduction band and, thereby,
are chemisorbed on the surface. On further adsorption,
the surface is charged negatively, and a layer with rela-
tive positive charge is formed in the semiconductor

W5+ W6+ e–, W4+ W6+ 2e–.+ +

T = 500 K

T = 480 K

T = 450 K

3.5

3.0

2.5

2.0

1.5

1.0

(a)

R/R0

T = 480 K

T = 500 K

T = 450 K

(b)

3.0

2.5

2.0

1.5

1.0

R/R0

0 2 4 6

[NO2], ppm

Fig. 2. The concentration dependence of the sensor response
to NO2 for different values of the working temperature:
(a) for a film of a-WO3 condensed on unheated substrate;
(b) for a film of a-WO3 condensed at the substrate tempera-
ture of 600 K. 
T

bulk. As a result of adsorption, the energy levels of
semiconductor bend upwards, and the surface layer is
depleted of free carriers (Fig. 1).

The thickness L of the space charge region is related
to the donor concentration N and the potential barrier

height Us by the expression L = , where ε is

the dielectric permittivity of semiconductor [8].
Because the semiconductor film has a significant resis-
tance and a small thickness, the space charge region
may involve the entire thickness of the sample, reach-
ing the substrate. This is favored by high dielectric per-
mittivity of tungsten trioxide [5] and, as a result, the
film resistance must increase considerably. Analogous
behavior is observed in SnO2—another well-known
n-type semiconductor widely studied as a nitrogen
oxide sensor [10, 11].

Solis and Lantto [12] reported an anomalous con-
ductivity buildup in tungsten trioxide in response to the
NO adsorption; however, they provided no interpreta-
tion of their observations.

The relative variation of resistance of an a-WO3 film
as function of the NO2 concentration for various sensor
temperatures is given in Fig. 2. In the case of a tungsten
trioxide film condensed at a substrate temperature of
600 K, the resistance increases by a factor of 2.5 to
reach saturation at 2 ppm NO2 in air (Fig. 2b). For more
disordered films (Fig. 2a), the resistance increases by a
factor of 3.5 showing no saturation even at 6 ppm NO2.
Note that the films of tungsten trioxide prepared (con-
densation and/or short-term annealing) at temperatures
not exceeding 600 K, remain X-ray- and electron-
amorphous [5]; however, the transition to a thermody-
namically more stable state is undoubtedly accompa-
nied with some structural ordering that is registered, in
particular, by X-ray spectroscopy [6].

The optimum temperature of the sensor is 500 K. At
lower temperatures, the sensitivity and kinetic charac-
teristics of the sensor decrease, while at higher temper-
atures an active additional oxidation of nonstoichio-
metric tungsten trioxide with atmospheric oxygen is
observed, which is accompanied by a sharp rise of the
film resistance [3].

Unlike the bulk mechanism of the dissociation sorp-
tion of hydrogen and hydrogen-containing donor gases
(NH3, C2H5OH), which leads to emergence of the
phase of hydrogen–tungsten bronze HxWO3 [3], the
sorption of acceptor gas NO2 obeys a surface mecha-
nism, which is characterized by the saturation of sensi-
tivity at a concentration of the order of 10 ppm [9]. This
is indicative of the absence, at the temperatures studied,
of mobile electrically active products of interaction
between nitrogen dioxide and a-WO3 film, which are
capable of penetrating into the bulk of tungsten tri-
oxide.

2εε0Us

qN
-----------------
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We have investigated the temperature and concen-
tration dependences of the electric conductivity of
amorphous films of tungsten trioxide under conditions
of surface chemisorption of nitrogen dioxide. A sensor
employing undoped films of a-WO3 has demonstrated
a reaction to NO2 at a concentration on a level of several
ppm and below at a temperature of 500 K. The possibil-
ity is demonstrated of controlling the sensor response
by varying the degree of structural ordering in the
a-WO3 film.
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Orientation Dependence of the Diffraction Efficiency
of Holograms in Cubic Photorefractive (111)-Cut Piezocrystals
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Abstract—The diffraction efficiency of the transmission holograms in the photorefractive (111)-cut crystals of

the classes  and 23 depends on the orientation of the lattice vector. This effect is determined by combined
manifestation of the piezoelectric and photoelastic properties of the crystal. The shape of this dependence is
determined both theoretically and experimentally for the fixed linear polarizations of the readout light waves in
a 2.1-mm-thick (111)-cut Bi12SiO20 crystal (class 23). © 2000 MAIK “Nauka/Interperiodica”.

43m
The interaction of light waves in cubic photorefrac-
tive (111)-cut crystals is extensively studied in recent
years. In particular, Ding and Eichler [1] studied four-
and two-wave interaction in (111)-cut InP and GaAs

crystals (class ). Eichler et al. [2] studied two-
wave interaction in arbitrarily cut (including (111)-cut)
crystals of the same class. Based on the results of theo-
retical and experimental studies of GaAs crystals, Sugg
et al. [3] came to a conclusion that the diffraction effi-
ciency of holograms in (111)-cut crystals of the class

 does not depend on the orientation of the holo-
graphic grating vector in the shear plane, provided that
the polarization direction of the recording waves (i.e.,
vector of the electric field strength E) is perpendicular
to the plane of incidence. The reflection holographic
gratings in (111)-cut Bi12TiO20 crystal (class 23) were
studied in [4].

In all the above mentioned works, the diffraction
processes were studied with neglect of the piezoelectric
effect. However, this effect was observed in many crys-
tals, including Bi12SiO20, Bi12TiO20, Bi12GeO20, GaAs,
etc. (see, for example, [5–7]).

In a recent paper [8], we studied the influence of the
piezoelectric effect on the orientation dependence of
the amplification of the signal light beam in cubic pho-
torefractive (111)-cut crystals in the case of two-wave
interactions.

This work is aimed at the study of the orientation
dependence of the diffraction efficiency of the trans-
mission holograms recorded in cubic photorefractive
(111)-cut crystals of the class 23 with regard to the
piezoelectric properties and optical activity of these
media. To our knowledge, this is the first attempt at the
study of this relationship.

43m

43m
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For calculations of the diffraction efficiency of holo-
grams, we use the equations of coupled waves (see for-
mulas (1), (2), and (8) in [9]) that are valid for an arbi-
trarily cut crystal. In the case of small Bragg angles
ϕ(ϕ < 5°, cosϕ ≈ 1, sinϕ ≈ tanϕ ≈ 0) in a (111)-cut
crystal the coupling constants κi (i = 1, 2, 3, 4) are given
by approximate relationships:

(1)

where θ is the orientation angle between the direction

[ ] and the lattice vector K, κ0 = πn3(12λ)–1EG , n is
the refractive index of the crystal, λ is the wavelength
of the light beams, EG is the amplitude of the electric
field strength of the holographic grating. General
expressions for the components of the inverse tensor of
the dielectric permittivity bij can be found in [10].

Neglecting self-diffraction (the preset grating
approximation) and assuming that the coupling con-
stants are small (κ0 ! α, where α is the specific optical
rotation of the crystal in rad/mm), one can obtain ana-
lytical solution for the system of coupled equations and

κ 1 κ0 3 b11 b22 2b12–+( ) θcos
2{–≈

+ b11 b22 2b12+ + 4 b33 b13– b23–( )+[ ] θsin
2

+ 3 b11 b22– 2 b23 b13–( )+[ ] 2θ( )sin } ,

κ2 κ3 κ0 b11– b22– 2 b33 2b12 b23– b13–+( )+[ ]{–≈ ≈

× 2θ( )sin 3 b11 b22– 2 b23 b13–( )+( ) 2θ( )cos+ } ,

κ4 κ0 3 b11 b22 2b12–+( ) θsin
2{–≈

+ b11 b22 2b12 4 b33 b13– b23–( )+ + +[ ] θcos
2

+ 3 b11– b22 2 b13 b23–( )+ +[ ] 2θ( )sin } ,

112
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an expression for the diffraction efficiency of the holo-
gram:

(2)

where

d is the thickness of the crystal. Here we assume that
the readout of the hologram is performed by a linearly
polarized light with the polarization azimuth Ψ0.

Based on more general expressions for the diffrac-
tion efficiency [9, 11], one can demonstrate that the for-

mula (2) is also applicable to crystals of the class 
by assuming that sin(αd)/(αd) = 1, α = 0 and taking
into account that the photoelastic parameters p2 and p3
coincide in the crystals of these classes.

An analysis of expression (2) shows that, in the case
of absence of the piezoelectric effect, a = 0, b2 + c2 =
const and, therefore, the diffraction efficiency does not
depend on the orientation angle θ for the crystals of

both classes (23 and ), which is in agreement with
the results reported in [3]. However, an allowance of
this effect in real piezocrystals of these classes leads to
dependence of the parameters a and b2 + c2 on θ. Thus,
the variation of the diffraction efficiency of holograms
in a wide range can be achieved by means of variation
of the sample orientation and the polarization of the
readout light beam.

Figure 1 shows the theoretical curves of the diffrac-
tion efficiency of hologram η versus the orientation
angle θ for various fixed polarizations of the readout
light for a 2.1-mm-thick (111)-cut Bi12SiO20 crystal.
The diffraction efficiency was calculated for the ampli-
tude of the electric field strength of the holographic
grating EG = 0.458 kV/cm. As seen (curves 1–5), the
diffraction efficiency does not depend on polarization
of the readout light only for the fixed values of the ori-
entation angle θ = 30° + k × 60°, where k is an integer.
It can be easily demonstrated that the maximum values
of the diffraction efficiency are achieved for the angles
θ = k × 60° (curve 6).

For verification of the theoretical curves we have
experimentally studied the diffraction of light waves in
a 2.1-mm-thick (111)-cut Bi12SiO20 crystal.

A light beam from a He–Ne laser with a power of
50 mW was split into two beams with the ratio of inten-
sities 1 : 2.1. These beams were incident on the crystal
at the Bragg angle in air ϕ0 ≈ 11.5° (which corresponds
to ϕ ≈ 4.5°). A semiconductor diode with current ampli-
fier was used for measurements of the diffracted light
intensity. Polarization of the laser beam was varied by

η a
2

b
2

c
2

+ +=

+ 2a b 2Ψ0 αd–( )cos c 2Ψ0 αd–( )sin+{ } ,

a κ1 κ4+( ) 2⁄{ } d ,–=

b κ1 κ4–( ) αd( )sin{ } 2α( )⁄ ,=

c κ2 αd( )sin{ } α ,⁄=

43m

43m
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Fig. 1. Theoretical curves of the diffraction efficiency η of
the holographic grating in Bi12SiO20 crystal versus the ori-
entation angle θ: (1) Ψ0 = 0; (2) Ψ0 = 30°; (3) Ψ0 = 60°;
(4) Ψ0 = 90°; (5) Ψ0 = 120°. Curve 6 shows the dependence
of the maximal values of the diffraction efficiency, achieved
due to the change of polarization of the readout light, on the
orientation angle. The calculations were performed for the
following values of parameters of the crystal (see, e.g., [11]):
n = 2.54; electrooptical coefficient r = –5 × 10–12 m/V; com-
ponents of the elasticity tensor c1 = 12.96 × 1010 N/m, c2 =

2.99 × 1010 N/m, c3 = 2.45 × 1010 N/m; photorefractive con-
stants p1 = –0.16, p2 = –0.13, p3 = –0.12, p4 = –0.015; piezo-

electric coefficient e = 1.12 C/m3, λ = 6.328 × 10–7 m. Spe-
cific optical rotation α = 0.38 rad/mm was measured for the
sample under study.
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Fig. 2. Comparison of the experimental and theoretical
curves of the diffraction efficiency for the readout light
polarized in the plane of incidence (Ψ0 = 0) and perpendic-
ularly to this plane (Ψ0 = 90°): (1, 2) experimental curves
η(θ) for (1) Ψ0 = 0 and (2) Ψ0 = 90°; (3, 4) theoretical
curves η(θ) for (3) Ψ0 = 0 and (4) Ψ0 = 90°. Here we take
into account a certain decrease of the visibility of the holo-
graphic grating and the value of EG for Ψ0 = 0 due to non-
collinearity of vectors of the electric field strength for the
incident waves that record the holograms.
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means of a quarter-wave retardation plate and a pola-
rizer.

The holographic grating was recorded during 30 s.
After that, one of the beams was cut off and the mea-
surements of the ratio of intensities of the diffracted
and readout beams were performed.

Experimental curves of η(θ) for the polarizations of
the light beams Ψ0 = 0(m) and Ψ0 = 90°(,) are pre-
sented in Fig. 2. The best agreement between theoreti-
cal and experimental curves is achieved for EG =
0.458 kV/cm.

Reasonable agreement between the experimental
and theoretical orientation dependences proves that the
above approximations and the proposed phenomeno-
logical model comply with the real diffraction process.
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Abstract—Based on the general thermodynamic principles, a stable equilibrium state of magnetization is
found in a composite consisting of a ferromagnetic matrix and a finely dispersed magnetic impurity. It is dem-
onstrated that this state is energetically less beneficial than the analogous state in a homogeneous (one-compo-
nent) substance. © 2000 MAIK “Nauka/Interperiodica”.
Prior to investigation of some nonequilibrium prop-
erties of a magnetic structure, it is usually necessary to
establish the stable ground state of the given magnetic
configuration [1, 2]. Once this state is known (which, in
the case of magnetic atoms, is equivalent to a certain
geometric orientation of the magnetization compo-
nents), one can readily solve particular physical prob-
lems, for example, (a) describe the establishment of
thermodynamic equilibrium in a given structure,
(b) reveal the features of absorption of the energy of a
radio-frequency field, and (c) find the decrement of
sound waves in these substances, etc. (see, e.g., [3–5]).

Because magnetic composites are not exempted
from the general rule, an adequate description of their
nonequilibrium properties requires preliminary deter-
mination of the ground equilibrium configuration of
spins at T = 0, when ferromagnetic particles play the
part of filler. This communication presents the results
of calculation of the ground state energy in the case
when the particles have a spherical shape, and the
external magnetic field H is absent. This case is inter-
esting in that there is nothing that could cause all mag-
netic moments to orient strictly along the field direction
and, therefore, we may analyze the natural geometric
orientation of spins in a given substance at T = 0, when
their arrangement is determined only by the spin-orbit
effects.

Let β0 and β1 be the anisotropy constants in the base
matrix (phase “0”) and in the impurity structure (phase
“1”), respectively. Because the interaction between
phases occurs according to the mechanism of dipole–
dipole coupling, a general expression for the system
Hamiltonian must be written in the following form:

(1)

H V 1 x–( )β0M0z
2– β1V 1– v 1 jM1 jz'

2

j 1=

ν

∑+=

– δV j R j⁄( ) 3M0M1 j M0d j( ) M1 jd j( ) d j
2⁄–{ }

j 1=

ν

∑

1063-7850/00/2602- $20.00 © 20115
where x = V1/V, V1 = νv1 is the average volume of par-
ticles of the finely dispersed phase, ν is the number of
particles, v1j is the volume of a single particle, V = V0 +
V1 is the composite volume, V0 is the base matrix vol-
ume, Rj is the radius of the jth particle, dj is the distance
between an atom of the matrix and an atom of the fer-
romagnetic impurity particle occurring at the interface

(Fig. 1), δVj = djSj is the interface volume, Sj = 4π ,
and the axis zj forms an angle αj with the axis z (Fig. 2).

Because the external magnetic field is absent
(H = 0), the magnetic induction in the matrix is B0 =
4πM0, where M0 is the spontaneous magnetization.
Therefore, the role of an external field for the finely dis-
persed phase will be played by B0; this means that the

– V 1– H1M1 jdV ,
j 1=

ν

∑

R j
2

z

n1

n2 n3 n4 n5

n6

n7

Fig. 1. Schematic diagram showing orientations of the axes
of anisotropy for a system of particles of a finely dispersed
ferromagnetic phase; z = n0 is the axis of anisotropy of the
ground matrix. The circles indicate the regions of contact of
the finely dispersed phase with the magnetic matrix.
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internal field in the particle is  = B0 – 4πN1M1 =

B0 – 4πN1χ1H(i), because M1 = χ1 . Consequently,

(2a)

As for the induction B1, we obtain

(2b)

where M1 is the spontaneous magnetization in a parti-
cle of the finely dispersed phase; χ0 is the magnetic sus-
ceptibility of the matrix, and χ1 is that of the impurity
structure; N1 denotes the demagnetization coefficients
for particles of the impurity phase; and µ1 is their mag-
netic permeability.

The distance dj is assumed to be constant for each
jth magnetic atom lying in the surface layer. Because

δVj = djNs , where Ns = 8πRj/  is the total number
of atoms in the surface layer (the factor 8π appears
instead of 4π because these atoms are located on both
sides of the interface), a1 is the interatomic distance in
phase “1.” Therefore, δVj = 3djv1j/Rj .

H1
i( )

H0
i( )

H1
i( ) 4πM0

1 4πN1χ1+
----------------------------.=

B1 H1
i( ) 4πM1

i( ) 4πM1+ +=

=  µ1H1
i( ) 4πM1+ 4πM1

4πµ1M1

1 4πN1χ1+
----------------------------,+=

a1
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2
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Fig. 2. Geometry of an arbitrary arrangement of magnetic
moments in the presence of a single ferromagnetic particle
(ν = 1). All of the marked angles are found from the con-
dition of minimum energy of the system phase “0” +
phase “1” + interaction between them.
TE
The substitution of expression (2a) into Hamilto-
nian (1) gives

(3)

Obviously (this is verified by calculation), the min-
imum value of Hamiltonian (3) will be attained only in
the case of a coplanar arrangement of all ν + 1 vectors.
We will refer to such plane as the G-plane. In addition,
because the vector dj coincides in direction with a vec-
tor normal to the surface of each jth ferromagnetic par-
ticle, the third term in expression (3), which is propor-
tional to the product M1jdj , gives zero as a result of inte-
gration over all angles ψ (M1jdj = M1jdjcosψ). This
means that

(4)

where

(4a)

In what follows, the asterisk in  will be omitted, but
we will keep relation (4a) in mind. We introduce the
angles θ0 and θ1 between the anisotropy axes z and z'
and the vectors M0 and M1j , respectively, to derive

(5)

where αj is the angle between the anisotropy axes n0
and n1 (Fig. 1).

H V 1 x–( )β0M0z
2– β1V 1– v 1 jM1 jz

2

j 1=

ν

∑+=

– δV j R j⁄( ) 3M0M1 j M0d j( ) M1 jd j( ) d j
2⁄–{ }

j 1=

ν

∑

– 4π
M0M1 jv j

V 1 4πN1χ1+( )
-------------------------------------.

j 1=

ν

∑

H V 1 x–( )β0M0z
2 β1V 1– v 1 jM1 jz'

2

j 1=

ν

∑+




–=

–  9 V ⁄( ) d j * v 1 j R j ⁄( ) M 0 M 1 j

j

 

1=

 

ν

 ∑  




 ,

d j* d j 4πR j 9⁄ 1 4πN1χ1+( ).+=

d j*

H V 1 x–( )β0M0
2 θ0 -cos

2





–=

+ β1V 1– v 1 jM1 j
2 θ1 j α j–( )cos

2

j 1=

ν

∑

– 3M0M1 d jv 1 j R j⁄( ) θ0 θ1 j–( )cos
j 1=

ν

∑




,
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The conditions of extremum for the derived Hamil-
tonian with respect to the angles θ0 and θ1 yield the fol-
lowing set of equations:

(6)

We will find a solution of the resultant set of equa-
tions in the case when ν = 1 (a single ferromagnetic par-
ticle).

Introducing the parameters

(7)

we obtain (for ν = 1)

where

(9)

If the volume of a particle of the disperse ferromag-
netic phase is small (x ! 1), the solution of the set of
equations (8) will be greatly simplified. Assuming that

we readily find that

(10)

Solving the set of equations (7), we obtain

(11)

(12)

Substitution of the resultant angles into initial Hamilto-
nian (5) with ν = 1 yields

1 x–( )β0M0 2θ0sin

– 3M1 V⁄( ) d jv 1 j R j⁄( ) θ0 θ1 j–( )sin
j 1=

ν

∑ 0,=

β1M1 2 θ1 j α j–( )sin

+ 3 M0d jv 1 j R⁄ j( ) θ0 θ1 j–( )sin 0.=

y θ1 θ0,cos⁄cos=

z θ1 θ0,sin⁄sin=



z y– 2bk+ 0,=

zy 2α b 2α z2 y2–( ) 1 y2–( )1/2⁄[sin+ +cos

– zy 1 y2–( )1/2 ] z2 1–( )1/2⁄ 0,=

8a( )

8b( )

b 1 x–( )β0M0
2 x⁄ β1M1

2,=

k R 3d⁄( )β1M1 M0⁄ ,=

x v 1 V .⁄=

z 2bk– δ,+=

y δ,=



δ 1 2k 2αsin+
2k 2αcos

------------------------------.=

θ0sin 4bk δ2–( )1/2
2bk,⁄–=

θ0cos 1 δ 2bk⁄–( ),=



θ0sin 1 δ2(1 δ 2bk⁄ )2––[ ]1/2
,=

θ0cos δ 1 δ 2bk⁄–( ).=



Hmin V 1 x–( )β0M0
2 1 δ 2bk⁄–( ){–=
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One can see from expression (13), in particular, that
the additional phase “spoils” the ground state and
increases (in proportion to the concentration x) the
energy of the system (phase “0” + phase “1”).

In order to take into account the ensemble of parti-
cles of the finely dispersed phase, one must integrate
the second term in expression (13) over all angles α.
This gives the following formula for the energy of the
ground state of magnetic composite:

(14)

Figure 3a demonstrates a geometry of the arrange-
ment of magnetic moments in the case when the impu-
rity phase is represented by a single particle (ν = 1). In
the case of an ensemble of particles, the arrangement of
magnetic moments is illustrated schematically in
Fig. 3b. Note once again that all spins in the equilib-
rium state are coplanar and oriented in the G-plane.

We will find a solution of the set of equations (6) in
the case when the value of ν is large. Introducing a den-
sity of the volume distribution of particles for the finely
dispersed magnetic phase f(v) having a dimensionality

+ xβ1M1
2 δ α 4bk δ2–( )1/2 αsin+cos[ ]

2

– 9xdδM0M1 R⁄ } .

Hmin〈 〉 V 1 x–( )β0M0
2 1 δ 2bk⁄–( ){–=

+ 4xβ1M1
2 3⁄ 9xdδM0M1 R〈 〉 } .⁄–

(a)

(b)
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Fig. 3. Schematic diagrams showing (a) the equilibrium ori-
entations of magnetic moments at ν = 1 (for the correspond-
ing values of parameters; see the text for comments) and
(b) an equilibrium configuration of magnetic moments in
the G-plane in the presence of an ensemble of finely dis-
persed particles. 
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of 1/cm3, one can readily derive, on the condition that
dj = d = const,

 

where 〈v1〉  is some mean volume of particles of the
impurity phase,

(16)

In order to solve the resultant equations, we will use
the approach described above. Indeed, differentiating
equation (15a), with respect to v, taking into account
equation (15b), and using parameters (16), we obtain

(17)

where u is the new function defined as

(18)

Assuming (as supported by the calculation results) that
u  1/z and z @ y, we readily find the solution

(19)

By virtue of rapid convergence of the integral, the
upper limit of integration is taken equal to infinity. Let,
for example, the normalized distribution function obey
Poisson’s law,

where Γ(m) is the gamma function, v = 4πR3/3, and v0
is the distribution parameter.

Because k = k0R = k0(3v/4π)1/3 (where k0 =
β1M1/3dM0), we obtain from (19)

(20)

where k = k0(3v/4π)1/3.
The parameter z, as expected, is z = –2bk(v0/〈v1〉)

(see (18)). If we assume that an average value 〈v1〉  of
the characteristic volume of particles of the finely dis-
persed phase coincides with the average value of 〈v〉
calculated by the distribution function f〈v〉 , then 〈v1〉  =
(m + 1)v0 . Therefore, one can see that an allowance of
the size distribution of particles affects very strongly
the geometry of arrangement of the equilibrium magne-

b 2θ0 v( )sin

– vf v( ) 2 θ0 v( ) α–[ ]sin v v 1⁄d

0

v

∫ 0,=

k 2 θ1 v( ) α–[ ]sin

+ θ0 v( ) θ1 v( )–[ ]sin 0,=

15a( )

15b( )

k k R( ) R 3d⁄( )β1M1 M0⁄ ,= =

b const 1 x–( ) x⁄[ ] β0 β1⁄( ) M0 M1⁄( )2.= =



2kb∂u ∂v⁄ v v 1〈 〉⁄( )u z y–( ) f v( )+ 0,=

u z2 1–( ) 1 y2–( )[ ]1/2
z2 y2–( ).⁄=

u vf v( ) v 2bk R( ) v 1〈 〉 .⁄d

0

∝

∫–=

f v( ) v v 0⁄( )m v v 0⁄–{ } v 1〈 〉 Γ m 1+( ),⁄exp=

u 2bk( ) 1– v 0 v 1〈 〉⁄( )2,–=
T

tization in both phases. Therefore, this factor must be
included in treating any dynamic effects in such struc-
tures (see [6]).

In the presence of P different additional impurity
phases, the minimizing equations in this case will
apparently contain one more additional index (g) char-
acterizing the new phase. For this case, we obtain the
following set instead of equations (6):

This set of equations is quite analogous to equa-
tions (8).

In conclusion, note the following most important
aspects:

1. We have determined a geometry of the orientation
of spins in a composite at T = 0 in a system where both
phases are ferromagnetic.

2. It is demonstrated that, from the energy stand-
point, this orientation is not optimum as compared to a
homogeneous (one-component) substance in which the
corresponding energy is lower (see formula (14) at
x = 0).

3. It is proved that an allowance for the scatter in the
size of particles of a finely dispersed phase is impor-
tant, because this factor may very strongly affect the
ground state of the magnetic subsystem.
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Formation of Multiple Longitudinal High-Absorption Kinks
under the Action of Collimated Gaussian Light Beams

A. V. Vysloukh and V. A. Trofimov
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Abstract—The possibility of formation of several longitudinal kinks under the action of a collimated Gaussian
light beam in a medium with absorptive cavityless optical bistability is demonstrated to be possible. The beam
is essentially affected by diffraction. The domain formation is caused by the focusing of an annular beam into
which the Gaussian beam is transformed due to nonlinear light absorption at small depths. © 2000 MAIK
“Nauka/Interperiodica”.
Cavityless optical bistability has been studied most
extensively in the case where the aperture of the light
beam is so wide that diffraction can be neglected [1, 2].
However, the miniaturization of bistable elements calls
for narrower beams, for which diffraction is consider-
able. Another reason for taking diffraction into account
is that the characteristic size of a Gaussian incident
beam is changed at the depths where a high-absorption
domain is formed, since the intensity becomes, under
certain conditions, smaller near the axis than in the
peripheral region. The beam thus acquires an annular
intensity profile, whose width must be regarded as the
characteristic size of the beam. The diffraction length
may therefore decrease several times against its input
value. In addition, the intensity of an annular beam may
rise in near-axial region. It should be pointed out that
this property may cause the formation of additional
high-absorption domains. However, this phenomenon
has not been examined as yet. This study addresses the
formation of multiple high-absorption domains in a
semiconductor element possessing optical bistability.
The bistability stems from increased absorption as a
result of energy-gap renormalization due to the genera-
tion of free electrons. Note that similar effects may be
common in optical media for data storage (three-
dimensional memory).

Written in a dimensionless form, the underlying
equations are as follows:

(1)

A∂
z∂

------ iD∆⊥ A
δ0

2
-----δ n( )A iαnA+ + + 0,=

0 z Lz,< <

n∂
t∂

----- D⊥ ∆⊥ n D||
∂2n

z2∂
-------- q A 2δ n( ) n,–++=
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with the initial and the boundary conditions

(2)

and

(3)

Here, A is the beam complex amplitude normalized to
its input value; n is the density of free electrons in the
conduction band, normalized to its maximum possible
value (under the specified conditions); Lz is the length
of the propagation path; r is the transverse coordinate
normalized to the characteristic radius of the input
beam profile; R is the maximum value of r; δ0 charac-
terizes the amount of light absorption over the diffrac-
tion length; δ(n) is the absorption coefficient as a non-
linear function of the free-electron density; α is the
ratio of the input beam power to the characteristic self-

action power; ∆⊥  =  is the transverse Laplace

operator, written in polar coordinates for an axially
symmetric beam; q characterizes the rate of free-elec-
tron generation due to light absorption by the semicon-
ductor; D⊥  and D|| respectively characterize the trans-
verse- and the longitudinal diffusion coefficients of
charged particles; and t is time normalized to the relax-
ation time. The z coordinate is normalized to the dif-
fraction length. Although D = 1 in this case, the param-
eter is left in equation (1) for the sake of convenience
when conducting numerical experiments. Also note
that we assume the excitation of the donor levels to be
so weak that the relaxation time does not depend on the
free-electron density.

n
t 0= A

t 0= r
A∂
r∂
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r 0=

A z t r R=, ,( )= = =
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000 MAIK “Nauka/Interperiodica”



 

120

        

VYSLOUKH, TROFIMOV

                                 
Let the absorption coefficient be approximated as

(4)

where α = 2.553 and γβ = 5. Recall that, in the context
of a lumped-parameter model, free-electron density as
a function of input beam intensity is bistable if γβ > 4.

δ n( ) 1 n–( ) γ 1 βn–( )–( )exp=

(a)

(b)
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Fig. 1. The free-electron density distribution on the beam
axis for (a) D = 0.3 or (b) D = 0.27 at q = 2.25, D|| = 0.001,
D⊥  = 0.001, δ0 = 5.0, α = 0, and t0 = 75.
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Fig. 2. Transverse intensity distribution at zj = 0 (solid
curve), zj = 0.44 (dashed curve), zj = 0.78 (dotted curve), or
zj = 0.89 (dot-and-dash curve). The values of parameters
correspond to Fig. 1.

1.00
T

Figure 1 shows the steady-state distribution of n on
the beam axis at two values of D. The curves are plotted
for the case where longitudinal and transverse diffusion
processes are developed only slightly (which is imple-
mented, e.g., by an appropriate setting of the longitudi-
nal size of the medium and the input beam size) and
where amplitude-only gratings are dealt with (zero self-
action). Note the existence of two domains, which
can be attributed to the profile transformation with
growing z. Figure 2 confirms the explanation by pre-
senting beam-intensity profiles at various values of z.

Looking at Fig. 2, let us trace how the profile is
transformed as z increases. At z = 0, we have a colli-
mated Gaussian beam. Then the high-absorption
domain near the beam axis produces a valley around
r = 0 (see the dashed curve) so that the profile becomes
annular. At a larger z, the Gaussian shape is recovered,
owing to diffraction. The intensity now exceeds the
switching threshold and the system goes to the upper
state, where absorption is high (see the dotted curve).
The increased absorption reduces the intensity, and the
system returns to the lower state at a certain z. The flip-
flop transition may occur again at larger z. Note that the
position and the extent of the second domain (Fig. 1)
can be controlled by varying the input radius of the
beam (specifically, the D parameter)

The presence of self-action caused by phase grat-
ings is indicated by the condition α ≠ 0. (Self-action
can be implemented by detuning the frequency of the
laser radiation from that of the transition.) The effect
transforms the multidomain structure, but does not
destroy it if the conditions are favorable. Figure 3
shows the distributions of n along the z-axis for three
values of α. The nonzero values correspond to the case
of amplitude–phase gratings (see the dashed and the
dotted curve). The distribution for α = 0 (the solid
curve) is depicted for comparison. The figure indicates
that self-focusing (represented by the dotted curve)
changes the z value at which the system switches to the
lower state, for the second domain, but does not affect
the z value at which the transition to the upper state
occurs. This testifies to the fact that intensity growth in
the bulk of the medium primarily stems from the focus-
ing governed by the annular profile of the beam. The
defocusing of the beam lowers its maximum intensity,
thus reducing the length of the domain. It also makes
the annular property less pronounced so that the second
transition to the upper state occurs at a larger z as com-
pared to the case of zero self-action. It should be
pointed out that the formation of a high-absorption
domain causes a rapid variation of n along the r-axis in
a certain region of z values. Furthermore, the lateral
size of the second domain is much smaller than the
beam radius, which leads to a strong lens effect if α is
nonzero. This consideration determined the choice of
the α values for Fig. 3.

To sum up, this study showed that diffraction funda-
mentally changes the formation of high-absorption
ECHNICAL PHYSICS LETTERS      Vol. 26      No. 2      2000
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domains under cavityless optical bistability, in line with
[3–5]. It reinforced the previously drawn conclusions
[3–5] that an inverse kink may be created, that diffrac-
tion instability may arise when crossing the nonuni-
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n(z, t = t0, 0)
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Fig. 3. Free-electron density distribution on the beam axis
for α = 0.0 (solid curve), α = –0.05 (dashed curve), or α =
0.2 (dotted curve) at q = 2.25, D|| = 0.001, D⊥  = 0.001, D =
0.3, δ0 = 5.0, and t0 = 125.
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form distributed boundary of a high-absorption
domain, etc. Additionally, it has been demonstrated that
diffraction may essentially cause the formation of mul-
tiple high-absorption domains (stationary or dynamic
ones) in the longitudinal direction.

It should be emphasized that similar effects may
occur in three-dimensional optical memory. They will
manifest themselves as interstate switchings occurring
behind the layer to which radiation is focused.
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Periodic Breakdown of a Gas Layer
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Metal Structure under Stationary Illumination Conditions
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Abstract—The size and location of the area of gas breakdown at the surface of an M(GD)SM structure based
on a bismuth silicate crystal was studied under uniform illumination conditions. The amount of energy absorbed
in the crystal that leads to breakdown of the gas layer is determined. © 2000 MAIK “Nauka/Interperiodica”.
Semiconductor dosimeters based on M(GD)SM
structures, which do not exhibit polarization under irra-
diation, were described in [1, 2]. The absence of polar-
ization under stationary irradiation in such dosimeters
is explained by periodic breakdown of a gas layer due
to formation of a polarization charge of a fixed value
inside the semiconductor crystal. The initial (dark) dis-
tribution of the electric field strength is restored inside
the structure after each breakdown, which prevents the
polarization of dosimeters with time.

In this work, we have studied the size and location
of the area of the gas breakdown at the surface of an
M(GD)SM structure and determine the amount of
energy absorbed in the crystal that leads to breakdown
of the gas layer.

Figures 1a and 1b show variation of the repetition
rate of the current pulses of the gas breakdown in the
outer circuit of an M(GD)SM structure based on insu-
lating bismuth silicate crystal (Bi12SiO20) for different
values of the illuminated area of the structure. It is seen
that the repetition rate of the gas breakdown pulses in
the structure depends linearly on the size of the illumi-
nated area. This linearity is indicative of the fact that
the breakdown of the structure takes place not over all
the illuminated area but only within certain fragments.
The size of the breakdown area at the illuminated sur-
face of the structure and the location of this area at its
surface were determined by means of the polarization–
optical method in M(GD)SM structures based on the
insulating electrooptical crystals (Bi12SiO20).

The structure was placed between crossed polariz-
ers and illuminated through pinholes of a fixed size by
a parallel beam of monochromatic light (λ = 0.63 µm)
exhibiting partial photoactive absorption inside the
crystal (Fig. 2a). A constant bias voltage of V0 = 1500 V
1063-7850/00/2602- $20.00 © 20122
applied to the structure was distributed between the gas
layer and the electrooptical crystal according to their
capacitances [2]. During irradiation of the structure, a
part of the light absorbed inside the crystal induces
polarization charge, which causes redistribution of the
electric field strength between layers of the structure
and leads to breakdown of the gas layer [1, 2]. The
unabsorbed (transmitted) part of this polarized beam is
modulated by this charge inside the structure (longitu-
dinal Pockels effect), thus carrying information on the
size of the gas discharge area and its location at the sur-
face. This information is registered by a TV camera
(Figs. 2a and 2c). At the same time, the current pulses
of the gas discharge are recorded in the outer circuit of
the structure (Fig. 2b). The appearance of the image of
the area of gas breakdown at the surface of the structure
can be explained as follows. In the absence of the exter-
nal voltage (V0 = 0), the light beam is stopped by the
second polarizer. An image of the illuminated area
appears at the TV screen immediately after application
of the voltage V0 due to the field applied to the elec-
trooptical crystal (Fig. 2c). Under the action of the
charge induced by the light beam inside the crystal, the
electric field is pushed out from the crystal into the gas
layer. Gas discharge occurs when the electric field
strength in the gas layer reaches a critical value. The
resistance of the gas layer in the breakdown area falls
down virtually to zero and all the voltage applied to this
fragment of the structure appears to be applied to the
electrooptical crystal. As a result, the brightness of the
image in this area sharply increases (Fig. 2c). The
breakdown of the gas layer is accompanied by an ava-
lanche of ionized charge carriers, representing elec-
trons and positively charged ions [3]. The charge of
these carriers diminishes the polarization electric
charge formed at the plate of the air capacitor to such a
000 MAIK “Nauka/Interperiodica”
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value that the electric field strength inside the gas layer
becomes lower than the critical level. The gas discharge
terminates and the gas layer returns to low-conducting
state. The electric field strength distribution in the
structure goes back to the initial state.

In the case of constant irradiation of the structure,
the gas breakdown becomes cyclic. The image of the
gas breakdown area appears on the TV screen simulta-
neously with the current pulse appearing in the outer
circuit of the structure (Fig. 2b, 2c). It is seen from
Fig. 2c that the spot of the gas breakdown at the illumi-
nated surface of the structure has a diameter of 6 ×
10−2 cm (the light beam diameter is 0.3 cm). The size of
this spot weakly depends on the size of the illuminated
area, intensity of light (I), and the applied voltage (V0).
In the case of stationary irradiation of the structure,
each breakdown of the gas layer occurs in a new frag-
ment of the structure surface (Fig. 2c, 1–3). The energy
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(a)
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(b)

F, puls s–1

Fig. 1. Plots of the repetition rate of the current pulses in the
outer circuit of M(GD)SM structure (F) vs. the illuminated
surface area S, F(S): (a) for a constant homogeneous illumi-
nation intensity I (incandescence lamp with green–blue
color glass and neutral attenuation filters) and different
applied voltages V0; (b) for a constant applied voltage
(V0 = 2400 V) and different light intensities I at the surface
of the structure I0 is the maximal light intensity (I0 = 2.1 ×
10–7 W cm2), I is the intensity of light at the illuminated sur-
face of the structure. 
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of radiation absorbed inside the crystal, which is suffi-
cient to induce breakdown of the gas layer (A), can be
estimated using the following relationship:

where I is the intensity of the incident light, I =
10−4 W cm–2, λ = 0.63 µm, k is the absorption coeffi-
cient, k = 10–1 cm–1, d is the thickness of the crystal, d =
1.5 × 10–1 cm (kd < 1), S is the illuminated area of the
crystal surface, S = 7.2 × 10–2 cm2, t is the time interval
between two sequential pulses of the gas discharge in
the structure (t = 4.5 s (Fig. 2b)).

During the gas breakdown, the light-induced polar-
ization charge accumulates from all surface of the
structure to the area of breakdown, where the main
change of the electric field strength takes place. An

A IkdSt 4.5 10 7– J,×= =

1 2 3 4 5

6 7

34
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Fig. 2. The size and location of the area of gas breakdown at
the surface of uniformly illuminated structure (λ = 0.63 µm,
diameter of the beam d = 0.3 cm, intensity of light at the sur-
face of the structure I = 10–4 W m–2). (a) Experimental lay-
out: (1) insulating bismuth silicate crystal (thickness d =
0.15 cm); (2) a layer of gaseous dielectric (thickness d0 =

10–2 cm); (3) optically transparent electrodes; (4) crossed
polarizers; (5, 7) TV setup; (6) oscilloscope. (b) Time pat-
tern of the current pulses in the outer circuit of the structure
(applied voltage is V0 = 1500 V). (c) Photographs of the area
of gas breakdown at the surface of the structure taken from
TV screen.
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Fig. 2. (Contd.)
increase of the illuminated surface area in the structure
results in increase only of the repetition rate of the cur-
rent pulses. The size of the breakdown area and the
energy absorbed during the time interval between two
sequential pulses of the gas breakdown remain con-
stant.
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Abstract—Influence of the angular mismatch between the hologram and the reconstructing beam in the direc-
tion perpendicular to the plane of dispersion on the efficiency of diffraction was studied. It is demonstrated that
angular detuning in this direction can lead to substantial increase of the intensity of the diffracted beam if
the Bragg conditions are met. The results of calculation of the “anomalous” behavior of the diffraction effi-
ciency are in good agreement with the experimental data for holograms recorded in the layers of a photopoly-
mer. © 2000 MAIK “Nauka/Interperiodica”.
The phenomenon of angular (and spectral) selectiv-
ity of 3D phase gratings is well known and widely used
for the construction of holographic optical elements [1],
in the systems of holographic memory [2, 3], etc. It was
demonstrated [4] that the angular mismatch δθ1
between grating and reconstructing beam in the disper-
sion plane results in a decrease of the diffracted beam
intensity ID , provided the phase shift in the grating is
not greater than π/2. It is believed that the angular
selectivity δθ2 in the direction perpendicular to the dis-
persion plane (tangential) is similar to (albeit less pro-
nounced than) δθ1, which implies that the value ID must
also decrease on tilting the grating in this direction [5, 6].

In this paper we demonstrate that, in the case of a
tangential tilt of the grating relative to the reconstruct-
ing beam, the value of ID can substantially increase
depending on the initial value of the diffraction effi-
ciency η(0) (in the absence of the tangential tilt).

Consider a 3D holographic phase grating (Fig. 1),
the wave vector of which |K | = 2π/Λ belongs to the
plane X–Z (Λ = λ/2sinθ0 is the period of the grating,
λ is the wavelength, and θ0 is the angle of the beam
convergence in the symmetric recording geometry). If
such a hologram is reconstructed by a beam with s(η⊥ )
and p(η||) polarization, the diffraction efficiency is
given by expressions [4]:

(1)

η⊥ ∆ε2

2πξ
λ

--------- 
  ∆ε2 δ2+sin

2

∆ε2 δ2+
--------------------------------------------------,=

η|| ∆ε2

2πξ θR θS+( )cos
λ

----------------------------------------- ∆ε2 δ2+ 
 sin

2

∆ε2 δ2+
---------------------------------------------------------------------------------,=
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where δ = [cosθR – cosθR] × , , θR ,
and θS are the angles of incidence of the recording,
reconstructing, and diffracted beams, respectively, ∆ε =

2nG × ∆n, ξ = d/ ; d is the thickness and
∆n is the modulation depth of the refractive index of the
recording medium, and nG is the mean refractive index.

In the case under consideration, the grating rotates
around the X axis by an angle ϕ (Fig. 1). The Bragg
condition is met if the readout angle θR meets the con-
dition:

(2)

If the refractive indices of the recording material
and the surrounding medium are equal (grating in the

θR θScoscos θR
0

θR θScoscos

θR θR
0 ϕcoscos[ ] .arccos=

x

y

z

kS0
kS

kRkR0

θR

θ0
R

ϕ

I

Fig. 1. Geometry of hologram reconstruction in the case of
angular tilt in the tangential direction (I is a 3D grating).
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immersion medium), the incidence is symmetric  =

 and the incidence angle is equal to the Bragg angle
(the grating vector is parallel to the X axis), expression (1)
can be rewritten as:

(3)

where ϕ is the angle of tangential detuning and Φ0 =
2π∆ε2ξ/λ is the “strength” of the grating.

Calculated curves of the diffraction efficiency η⊥ (ϕ)
and η||(ϕ) obtained with the use of (3) are demonstrated
in Fig. 2 (Φ0 = 0.6, curves A and B correspond to s and
p polarizations of the beams, respectively). These data
indicate that the angular detuning in the tangential
direction is accompanied by substantial growth in
intensity of the diffracted signal. A real increase of the
intensity ID for the given geometry is determined by the
polarization of the reconstructing beam and the initial
strength of the grating Φ0. The smaller Φ0, the more
pronounced is the increase.

The situation becomes more complicated in the case
of the beam diffraction on a hologram in the absence of
immersion at the interface of the recording medium. In
this case, the tilt by an angle ϕ is accompanied by a
change of the reflection coefficients for the reconstruct-
ing and diffracted beams Rs and Rp at the medium inter-
face. In addition, the increase of the angle ϕ changes
the optical path lengths of these beams in the medium.
The maximum value of this angle is limited by the
angle of the total internal reflection. The corresponding

θR
0

θS
0

η⊥ ϕ( ) Φ0 ϕcos⁄[ ] ;sin
2

=

η|| ϕ( ) Φ0 2θR( ) ϕcos⁄cos[ ] ,sin
2

=

0.25

0 30 60 90

0.50

0.75

–90 –60 –30

1.00

A
B

*****************************
*************

************
**************************************

C

η ⊥η||

ϕ, deg

Fig. 2. Calculated diffraction efficiency η⊥ , ||(ϕ) for Φ0 = 0.6
and the beams with (A) s and (B) p polarizations in an
immersion medium and (C) in the free space, nG = 1.51.
T

expressions for ηj(ϕ) become more complex. For
example, a formula for the s-polarized reconstructing
beam is as follows:

(4)

where Ts(ϕ, θ) and Tp(ϕ, θ) are the ϕ- and θ-dependent
transmission coefficients for the interface between two
substances for s and p polarizations, respectively. The
dependence ηs(ϕ) given by (4) is also shown in Fig. 2
(curve C). The comparison of two η⊥ (ϕ) curves pre-
sented in Fig. 2 shows that the absence of immersion
between hologram and surrounding medium substan-
tially lowers the intensity of the diffracted beam under
tangential detuning conditions.

Experimental studies of the above-described anom-
alous behavior of the angular selectivity of gratings
under tangential angular detuning conditions were car-
ried out for 3D phase transmission holograms recorded
in a photopolymer (DuPont HRF-150X001-38 film
with a thickness of d = 38 µm on a glass substrate with
a thickness of about 1 mm). The hologram was placed
on a rotating stage with the angular resolution of 15′ in
the dispersion plane and 1° in the perpendicular direc-
tion. The recording was performed in a symmetrical

geometry (  =  = 20°, Λ ≈ 0.8 µm) using the sec-
ond harmonic radiation (λ = 532 nm) of an ADLAS-
325II Nd:YAG laser (P = 200 mW). A He–Ne laser (λ =
633 nm) was used for readout. A half-lambda plate in
this channel made it possible to rotate the polarization
plane with an accuracy of about 2°.

In the major part of experiments, the initial value of

the diffraction efficiency  did not exceed 20% for
λ = 630 nm. The accuracy of determination of the dif-
fracted beam intensity was not worse than 0.4% within
the entire range of measurements. Measurements of the
η⊥ , ||(ϕ) curves were performed for the grating in the
immersion medium (nim = 1.475 for glycerol, nG ≈
1.49–1.51 for the photopolymer [7]) and in the free
space.

Figure 3 (dots A) presents the angular dependence of

the normalized diffraction efficiency (ϕ) =

η⊥ (ϕ)/  for an s-polarized beam. It follows from
these data that the angular detuning in the tangential
direction allows one to achieve virtually three-fold

increase of  (for  ≈ 7%) in the absence of
reflection at the interfaces (grating in the immersion

medium). The (ϕ) curve for the p-polarized beam
measured under given experimental conditions (inci-

η s ϕ( ) η⊥
0 Ts ϕ θB T p ϕsin

2
+sin

2
cos

2[ ]

θB θB ϕsin
2

+tan
2[ ]cos

2
-------------------------------------------------------------------=

× Ts

T p Ts–( ) ϕsin
2

1 ϕ θBsin
2
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2

–
--------------------------------------------+ ,
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0
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dence angle θ0 and phase shift Φ0) is virtually identical

to the (ϕ) curve.

Figure 3 (curve B) also presents the experimental
results obtained for the tangential angular selectivity of

the hologram in the free space (for  ≈ 20%) recon-
structed by the s-polarized beam. A comparison of
curves A and B shows that the hologram–surrounding
medium interface substantially limits the maximum

possible value of (ϕ). For the substances with high

refractive index (e.g., LiNbO3 crystals) the (ϕ)

η⊥
N( )

η ⊥
0( )

η ⊥
N( )

η ⊥
N( )

2

–80 20 40 60 80

1

3

0–60 –40 –20
0

η (N)
⊥ , || (ϕ )

ϕ, deg

A

B*****************************
*****

*****

Fig. 3. Experimental curves of the normalized diffraction

efficiency (ϕ) = η⊥ (ϕ)/  for the beams with s polar-

ization: (A) Φ0 = 0.22, immersion medium and (B) Φ0 = 0.6,
free space.

η⊥
N η⊥

0( )
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curve has a decaying character. This factor accounts for
the experimental behavior of η(ϕ) reported in [5, 6].

The increase of the intensity ID upon tangential tilt
of the grating is determined by the increase of the effec-
tive phase shift Φ. Indeed, detuning by an angle ϕ in the
tangential direction, provided that the Bragg conditions
are retained, does not break (according to (1)) the
matching of the wave vectors of the grating and the
reconstructing and diffracted beams (kR0 – kS0 = kR –
kS = K, see Fig. 1). At the same time, the detuning in
this direction leads to an increase of the optical path
length inside the grating, which results in the growth of
the value of Φ and, as a consequence, in the variation
of ID .

In conclusion, note that the anomalous character of
the dependence of the diffracted beam intensity on the
tangential tilt of the 3D phase grating demonstrated in
this work is typical not only of 3D gratings but of the
relief ones as well. In the case of thin gratings, this
results in redistribution of the intensity between the dif-
fraction orders.
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Autooscillation Instability of the Free Surface
of a Viscoelastic Medium
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Abstract—Oscillation instability of a layer of viscoelastic liquid is revealed on the basis of the numerical anal-
ysis of the dispersion equation. The instability is observed in the case of time-independent uniform external
force action on the free surface of the liquid and may lead to the formation of a regular wavelike relief of a finite
amplitude. © 2000 MAIK “Nauka/Interperiodica”.
Theoretical analysis of the laws of formation of a
wavelike relief on the initially flat surface of a vis-
coelastic material under the action of external forces is
one of the important problems in modern physics. This
external force action causes normal and tangential sur-
face tensions (explosion welding [1], formation of the
regular wavelike relief on a silicon surface bombarded
by a high-energy ion beam [2]). Below we will consider
this phenomenon within the framework of a simplest
hydrodynamic model.

1. Assume that a flat layer of a viscoelastic liquid
(density ρ, kinematic viscosity ν0, time of viscosity
relaxation τ, and thickness d) on a solid substrate in the
field of gravity g experiences continuous force action.
This action is provided by oblique incidence of a
momentum flux (e.g., of a material beam). The task is
to determine a spectrum of the capillary motions and to
study their stability in time.

Let Πjk = δVjVk be the tensor of the external momen-
tum flux density over the surface of the layer (Vj are the
components of the beam velocity, β is the angle of inci-
dence, and δ is the volume density) [3]. Consider a 2D
problem in the Cartesian coordinates XOZ with the ver-
tical OZ axis (nz || –g). The coordinate of the solid bot-
tom is z = –d and the equation of the disturbed free
boundary of the layer can be presented as z = ξ(x, t),
1063-7850/00/2602- $20.00 © 0128
|ξ| ! d. We neglect the phenomena related with the
inflow of substance into the liquid. Under the approxi-
mation of the waves of infinitely small amplitude, the
mathematical formulation of the problem can be pre-
sented as:

∂U
∂t
------- ∇ U×[ ] U×+

1
ρ
--- ∇ P

U2

2
------+ 

 – ν∆U g,+ +=

div U 0,=

z ξ : 
∂ξ
∂t
------ Uz Ux

∂ξ
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σ jknk* Π jknk+ Pγn j,=

Pγ γ∂2ξ
∂x2
--------, n j–

∂ξ
∂x
------–

1

,= =

n j*
∂ξ
∂x
------

1–

, Π jk
δV x
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δV xVz δVz
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∂Uz

∂z
---------–+

,=
Here Pγ is the Laplace pressure under the curved sur-
face of the liquid [3]; γ is the coefficient of the surface

z d: U– 0.= =
2

tension, nj is the column of coordinates of the external

normal to the surface of the liquid,  is the vector–
column of the internal normal, Πjk and σjk are square

n j*
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matrices composed of the components of tensors of the
momentum flux density above and below the disturbed
surface [3]. Let us assume that the disturbance of
the initially flat surface ξ(x, t) has the shape of a travel-
ing wave with the wave vector k and the complex fre-
quency s:

ξ = ξ0exp(st – ikx).

Following [3–5], we also assume that the frequency
dependence of the viscosity ν is given by the Maxwell
formula:

It can be easily demonstrated that, provided the vis-
cosity is sufficiently high, the velocity of the stationary
flow of liquid under the influence of the given force
action along the horizontal axis is of the first order of
smallness with respect to ξ (the same as the velocity
wave motions in the liquid). The corresponding condi-
tion can be presented as follows:

Using dimensionless variables for which ρ = γ =
g = 1, one can rewrite the dispersion equation of this
problem in the following way:

The laws of the behavior of different solutions of
this equation were analyzed numerically. If τ = 0, one
deals with normal viscous liquid and the dispersion
equation has a complex solution describing the proper-
ties of the capillary waves and an infinite family of real

ν
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solutions that corresponds to decrements of the aperi-
odic motions caused by reflection of the capillary
motions from the bottom [6]. The latter will be called
the (a)-solutions of the dispersion equation. Another
infinite family of aperiodic solutions, related to the
reflection of viscoelastic capillary motions from the
bottom, appears if the liquid possesses elastic proper-
ties. These will be referred to as the (b) solutions of the
dispersion equation. If the relaxation time τ is large
enough, (a) and (b) solutions interact in pairs, which is
seen in Fig. 1 presenting plots of the real and imaginary
components of the complex frequency s versus the
characteristic relaxation time of the elastic stresses τ
calculated for k = 1, W = 0, and ν = 0.5. The branches
of the viscoelastic wave motions 1, 2, and 3 formed in
the case of these pair interactions are characterized, in
the case of small τ, by rather high values of decay dec-
rements and frequencies. (Note that in Fig. 1 the branch
of capillary motions coincides with the abscissa axis.)
The values of decrements and frequencies of these
motions decrease rapidly with increasing τ. The physi-

Res
2 4 6 8 τ0
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Fig. 1. Plots of the real Res = Res(τ) and imaginary Ims =
Ims(τ) components of the complex frequency versus the
characteristic relaxation time of the elastic stresses τ calcu-
lated for k = 1, kd = 1, ν = 0.5, and W = 0.
00
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Fig. 2. Plots of the real Res = Res(W) and imaginary Ims = Ims(W) components of the complex frequency versus the dimensionless
parameter W calculated for (a) τ = 0.1 and (b) τ = 0.4. The other parameters are the same as in Fig. 1.
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cal parameters of viscoelastic and capillary waves
become comparable if τ is about several tenths.

In Fig. 2a we demonstrate the same solutions of
equation (1) as in Fig. 1, as functions of the parameter
W for τ = 0.4. Additionally we present the branch of the
capillary waves (curve 4). To avoid overload of the fig-
ure, we do not show other branches of the dispersion
solution that are not related directly to the subject of
this paper. It is seen that the real components of the cap-
illary–wave branch 4 can be positive (Res > 0). The
same holds for the branch of the viscoelastic waves 2
with large absolute values of negative W. These positive
real components determine the increments of the oscil-
lation instability of the corresponding motions in this
region. The calculations show that an increase of the
wavenumber k and the characteristic time of relaxation
of the elastic stresses τ results in the increase of the
increments of the corresponding instabilities. Figure 2b
shows the same plots as Figure 2a but calculated for
k = 10. It is seen that the increase of k by an order of
magnitude is accompanied by a comparable increase of
the value of the increment of instability, a substantial
widening of the range of instability, and a shift of the
right boundary of this range to W = 0. No oscillation
instability is observed for W ≥ 0.

Conclusion. It follows from Fig. 2 and the results of
calculations that various types of wave motions can be
T

realized in a layer of viscoelastic medium. These
motions can be unstable relative to the external force
action on the free surface. It is most probable that the
oscillation instability of the branch of the capillary
waves is detected in experiments. The capillary waves
are unstable under smaller values of W than are the vis-
coelastic motions. Increments of the unstable wave
motions grow with increasing wavenumber.
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Abstract—The simplest ferroelectric model is used to calculate the temperature dependence of heat capacity
and relaxation time for all values of temperature including the critical point. The description of a second-order
phase transition is based on a kinetic equation for the distribution function of an internal parameter suggested
by Klimontovich [1–3]. A comparison is made between the results of the heat capacity calculation by the Lan-
dau theory and that based on the Boltzmann distribution, which is an equilibrium solution of the kinetic equa-
tion. The heat capacity and relaxation time are continuous functions in the entire temperature range including the
critical point. Both analytical and numerical calculations are performed, and a comparison is made with the esti-
mates previously obtained by Klimontovich using the same approach. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Klimontovich [1–3] suggested to use the following
kinetic equation for the distribution function of an
internal parameter x to describe a second-order phase
transition in a ferroelectric:

(1)

where the following notation is introduced for the
effective potential energy of a nonlinear oscillator:

(2)

Equation (1) describes behavior of the medium of
oscillators distributed in a space (variable R) where
their positions are described by an internal parameter x,
which has, for example, the meaning of distance
between ions in a one-ion model of crystal [4]. The
dipole interaction between oscillators is described in
terms of the effective Lorentz field (parameter af in
equation (2)). The phase transition is described by a
phenomenological dependence of the parameter af on
the temperature:

(3)

An equilibrium solution of equation (1) is given by the
Boltzmann distribution

(4)
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Because the interaction between various oscillators
is described only in terms of the parameter af represent-
ing the effective Lorentz field, the calculation of ther-
modynamic quantities presents no difficulties: the total
free energy of a crystal is given as

(5)

Based on these considerations, Klimontovich [2, 3]
estimated the temperature behavior of heat capacity. In
this study, the heat capacity is calculated on the basis of
equation (5) in exact form for the entire temperature
range.

By solving kinetic equation (1), we can find the
quantities characterizing the kinetics of phase transi-
tion, in addition to analysis of the equilibrium state. We
have solved this equation numerically and obtained a
temperature dependence of the relaxation time, which
can be compared with the estimates made in [3].

2. CALCULATION 
OF THERMODYNAMIC FUNCTIONS

First, let us write the expression for heff into a more
convenient form by introducing the following para-
meters:

(6)

F Nφ.=

a 1 a f ; ξ–
x
xT

-----; xT
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----------;= = =
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Then, the expression for heff takes the form

(7)

The free energy of a system of oscillators is written as

(8)

where

(9)

Therefore, given the partition function (9), we can
find all thermodynamic functions of the system. In par-
ticular, the heat capacity is

(10)

The integral in equation (9) is expressed in terms of
the Weber functions:

(11)

We perform differentiation of (11) to derive, accord-
ing to (10), the heat capacity as a function of the tem-
perature. Without writing the relevant formula, we will
present the calculation results graphically for different
values of the nonlinearity parameter εc (Fig. 1).

One can see that the behavior of heat capacity is reg-
ular in the entire temperature range and is a combina-
tion of the classical Landau “step,” emerging upon the
transition of temperature across Tc, and a peak in this
region. The heat capacity maximum exhibits a shift
from Tc toward lower temperatures, as may be demon-
strated by direct differentiation of (11) at T = Tc .

This result is due to the fact that we took into
account fluctuations of the microscopic dipole moment
(which is the order parameter in the Landau theory),

heff kT
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ε
2
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Fig. 1. The plots of heat capacity versus temperature in the
vicinity of the critical point (T/Tc = 1).
T

because the dispersion of the introduced distribution
function is independent of the number of particles and
gives a contribution to the partition function at any tem-
perature, in contrast to the Landau theory where all cal-
culations are based on the maximum probable values of
the order parameter.

3. SOLUTION OF KINETIC EQUATION

In order to obtain all characteristics of a phase tran-
sition described by the kinetic equation, one has to
obtain a solution (i.e., a distribution function) which, in
the case of a nonequilibrium initial distribution, is a
time-dependent function. Because it is impossible to
derive an analytical solution of this equation in the gen-
eral form, the problem was solved numerically.
Attempts at constructing a stable difference scheme for
this equation were unsuccessful. It was decided to take
an unconventional step by recourse to considering a
system of points described by some Langevin’s equa-
tions. For the distribution function of these points to be
the required distribution function, it is necessary and
sufficient that the kinetic equation would be the Fok-
ker–Planck equation for a model system of points.
Therefore, the problem arises of constructing Lan-
gevin’s equations using the Fokker–Planck equation.
On writing kinetic equation (1) in a divergent form,

(12)

where

one can write Langevin’s equations corresponding
to (12),

where wx and wR are Gaussian processes,

(13)

Nor is it difficult to numerically solve the set of Lan-
gevin’s equations for two coordinates. According to
these equations, one can obtain the coordinates of all
points on the plane after a short period of time by find-
ing the respective increments of coordinates (deter-
mined at each step using Langevin’s equations). In so
doing, a random number generator was used obeying
Gaussian distribution with desired dispersion.

This method is advantageous in that the stability
problems are eliminated: the algorithm remains correct
at practically any step (i.e., is absolutely stable). A dis-
advantage of the method consists in that the motion of
a large number of points must be followed in order to

∂f
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Jx Dx
∂f
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1
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---------- f , JR– DR

∂f
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obtain a sufficiently smooth distribution function,
which is a rather labor-consuming computational pro-
cedure. The accuracy of calculation of the distribution
function is proportional to the square root of the num-
ber of points, while the calculation time is directly pro-
portional to this number, which is a serious drawback.
However, the first factor is decisive: the method enables
one to solve the equation, and insufficient smoothness
of the distribution function is not a significant factor for
the calculation of most parameters (for example, the
mean energy or dispersion).

4. CALCULATION OF RELAXATION TIME

Once it is possible to solve equation (1), we can find
a relaxation time for the system described by this equa-
tion. We will define the relaxation time as a character-
istic time during which an initial nonequilibrium distri-
bution changes to the equilibrium one (at a small initial
deviation). We select the second moment as a parame-
ter characterizing the distribution. Then, the dispersion
of distribution as a function of time is well approxi-
mated by an exponential function, with the exponent
being the inverse relaxation time.

For theoretical estimation of the relaxation time, we
will use a self-consistent approximation for the second
moment of the distribution function, suggested by Kli-
montovich in [3]. For this purpose, we will multiply (1)
by x2 and integrate with respect to dx. Integration by
parts yields the following equation for E = 〈x2〉  (in view
of the approximation 〈x4〉  ⇒  E2):

(14)

A stationary uniform solution is found from the equ-
ation

(15)

Using equation (15) with an appropriate Langevin
source δyE(k, t), we obtain, in a linear approximation,
an equation for the Fourier fluctuation components
δE(k, t),

(16)

where the relaxation time τE is determined by the for-
mula

(17)

with E given by the solution of equation (15).
The results of direct numerical calculations of the

relaxation time, performed in accordance with this
algorithm, are in good agreement with the theoretical
estimates given above. In order to derive the function
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δE(t), a uniform steady state (corresponding to k = 0
in (17)) was taken as a basis and subjected to perturba-
tion by varying the temperature T  T + δT. There-
fore, the former equilibrium state was no longer equi-
librium and evolved with time to a new steady state cor-
responding to the temperature T + δT. The calculation
results are plotted in Fig. 2. As is seen, the peak of
relaxation time is shifted from Tc toward lower temper-
atures and, away from the critical point, the relaxation
time drops by the Curie law.

5. CONCLUSION

In this study, an exact calculation of the temperature
behavior of heat capacity is performed using the
approach suggested by Klimontovich. In so doing, the
form of effective Hamiltonian (which is the reason for
the presence of phase transition in the system) remained
essentially the same as in the Landau theory [5], which
allows this model to be applied to ferroelectrics and to
be used as a basis for the general treatment of second-
order phase transitions. For example, the temperature
dependence of heat capacity, similar to that obtained
above, was observed experimentally in magnetics (for
example, in Fe72Pt28 Invar [6]) and calculated using a
different model for Cr2O3 [7].

Within the given approach, the meaning of the order
parameter varies: in our treatment, it is the distance
between maxima of the distribution function. The order
parameter still characterizes variation of the symmetry
of the system (the distribution function acquires two
maxima instead of one upon transition through the crit-
ical point); however, the system need not experience
spontaneous polarization (or magnetization for mag-
netics) – the first moment of the stationary distribution
function remains zero as before.

The use of kinetic equation (1) enables one to
describe the kinetic properties of the phase transition as
well. By numerically solving this equation, we
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Fig. 2. The relaxation time of 〈x2〉  as function of the temper-
ature (εc = 0.0005). 
0
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obtained a temperature dependence of the relaxation
time. The relaxation time in a system actually obeys the
Curie law at some distance away from the critical point
and has a finite value at T = Tc .

The obtained results point to the possibility of
describing the properties of phase transition in the
entire temperature range including the critical point.
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The Effect of Phonon Heating
on the Transverse Runaway of Hot Electrons
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Abstract—A study is made of the influence of phonon heating on the transverse runaway of hot electrons.
Under standard conditions, in which the runaway effect is realized, the equilibrium phonon distribution may be
disturbed: it is demonstrated that the phonon heating delays the transverse runaway of hot electrons. © 2000
MAIK “Nauka/Interperiodica”.
It was demonstrated in [1, 2] that, for some combi-
nation of mechanisms of scattering of energy and
momentum of hot electrons and a certain threshold
value of applied electric (magnetic) field, the Hall field
(and, consequently, the internal field) tends to infinity.
Hence the prospects are obvious for using this effect,
which came to be known as transverse runaway (TR) [1].
As was shown in [3], the TR effect is not associated
with any approximation. However, the investigation
in [1–3] was performed under conditions of an equilib-
rium phonon subsystem. It is obvious that, under stan-
dard conditions of TR experiments (or in the case of
practical utilization of this effect), the thermodynamic
equilibrium of phonons may be disturbed if no appro-
priate measures are taken. Therefore, a question natu-
rally arises as to what effect may the phonon heating
produce on the TR. We have treated this problem within
the framework of the electron temperature approxima-
tion in accordance with the procedure described in [3].

Let us consider a homogeneous semiconductor in
crossed strong electric and magnetic fields E and H,
respectively. In order to find the nonequilibrium distri-
bution functions for hot electrons and phonons, one
must solve the set of kinetic Boltzmann equations for
electrons and phonons. This rather complex problem is
simplified considerably in an approximation in which
the distribution functions for the electron and phonon
subsystems are of the Maxwell and Planck types,
respectively, with the same effective temperature equal
to the electron temperature Te. In this case, one equa-
tion is available for determining Te [4] instead of a set
of energy balance equations, i.e.,

(1)

where

(2)

is the energy transferred from long-wavelength
phonons (LWP) to a heat sink (to short-wavelength

jE( ) P θ( ),=

P θ( ) P f 1 T( )θα θ 1–( )=
1063-7850/00/2602- $20.00 © 20135
phonons, l = f and α = 2) or to the sample boundaries
(l = h and α = 3/2), and θ = Te/T. The current density is
conventionally expressed as

(3)

Therefore, we assume that the energy of hot electrons
is transferred to heated LWPs and the momentum is
scattered by lattice defects. Then, the free path of elec-
trons with respect to momentum may be written as [5]

(4)

where y = ε/k0Te and the values of the parameters t and
r for all known mechanisms of scattering are given
in [5].

In view of (4), the mobilities µ1 and µ2 may be writ-
ten as

(5)

where

(6)

η = (H/H0)2, H0 ≡ (2mk0T)1/2c/el0, c is the velocity of
light, and µ0 is the mobility in a weak electric field.

Let an electric field Ex be applied and a current Jx

flow along the X axis, and let a magnetic field be
directed along the Z axis. With the Hall field defined
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under no-load conditions (Jy = 0), the equation of
energy balance (1) takes the form

(7)

It is of interest to clarify the question whether a combi-
nation of scattering mechanisms exists for which the
solution of equation (7) goes to infinity as a function of
one of the parameters Ex and H. Note that, with θ  ∞,
the distribution function cannot be normalized; i.e.,
a runaway of hot electrons occurs.

An analytical solution of (7) is possible only in the
approximation of strong (ηytθ2r – 1 @ 1) and weak
(ηytθ2r – 1 ! 1) magnetic fields.

Calculating the integrals (1 and (2 in the foregoing
approximations and taking into account the conditions
of the runaway onset with respect to the applied electric
field (with H = const) ∂θ/∂Ex  ∞, we obtain an
equation for the asymptotic values of θ. It follows from
this equation that θ goes to infinity for some finite val-
ues of Ex . The respective scattering mechanisms are
found. We have separately treated the presence of heat
sink (α = 2) and sample boundary (α = 3/2). The result-

enµ0
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=  P f 1 T( )θα θ 1–( ).
T

ant expressions show that, in all cases with a strong
magnetic field, solutions of the asymptotic equation
exist only for nonrealistic mechanisms of scattering. As
to a weak magnetic field, no solution exists in one case.
In the other case, a solution exists; however, the run-
away conditions are not valid for real mechanisms of
scattering.

Based on the obtained results, we conclude that the
heating of phonons delays the transverse runaway of
hot electrons.

REFERENCES

1. Z. S. Kachlishvili, Zh. Éksp. Teor. Fiz. 78, 1955 (1980)
[Sov. Phys. JETP 51, 982 (1980)].

2. Z. S. Kachlishvili and F. G. Chumburidze, Zh. Éksp.
Teor. Fiz. 87, 1834 (1987) [Sov. Phys. JETP 87, 1029
(1987)].

3. Z. S. Kachlishvili and F. G. Chumburidze, Zh. Éksp.
Teor. Fiz. 113, 688 (1998) [JETP 86, 380 (1980)].

4. T. M. Gasymov and L. É. Gurevich, Fiz. Tverd. Tela
(Leningrad) 9, 106 (1967) [Sov. Phys. Solid State 9, 78
(1967)].

5. T. O. Gegechkori and Z. S. Kachlishvili, Phys. Status
Solidi A 43, 513 (1977).

Translated by H. Bronsteœn
ECHNICAL PHYSICS LETTERS      Vol. 26      No. 2      2000



  

Technical Physics Letters, Vol. 26, No. 2, 2000, pp. 137–138. Translated from Pis’ma v Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 26, No. 4, 2000, pp. 5–8.
Original Russian Text Copyright © 2000 by Shiryaeva.

                                                                                                       
Characteristic Time of Instability Development 
in a Strongly Charged Low-Viscosity Droplet
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Abstract—A nonlinear integral equation is derived and solved, which describes the time evolution of spheroi-
dal deformations of a low-viscosity droplet unstable with respect to intrinsic charge. © 2000 MAIK
“Nauka/Interperiodica”.
The question of the possibility of theoretical estima-
tion of the characteristic time of instability develop-
ment in a strongly charged droplet is of interest in view
of numerous applications of this phenomenon in vari-
ous fields of engineering physics and geophysics, as
well as in view of the complexity of direct observation
of the process of instability development under experi-
mental conditions. In numerous experiments devoted to
verification of the Rayleigh criterion of stability of a
strongly charged droplet (see the references cited
in [1]), the observers register only the initial and final
states of the droplet. Theoretical estimates of the time
of instability development in a strongly charged droplet
of the ideal liquid were made in [2–4], when the char-
acteristic time scale of the process of instability devel-
opment was defined only by the features of interaction
between the magnitude of deformation of the unstable
droplet and the degree of supercritical droplet charging
depending on the magnitude of deformation. The use of
the same calculation technique and the same physical
premises as in [2, 3], but with additional inclusion of
the decrease (due to the effect of viscous decay) of the
increment of instability of capillary motions of liquid in
spherical and spheroidal droplets according to [5, 6],
enables one to estimate the effect of viscosity as well.

1. The spectrum of capillary vibrations of an iso-
lated droplet of a conducting liquid with radius R,
charge Q, and surface tension σ is defined by the
expression [7]

(1)

where n is the number of the capillary vibration mode
and ρ is the liquid density. One can readily see from (1)
that, at W > 4, the fundamental mode (n = 2) of capillary

ω2

n
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3

-----------------,=
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vibrations becomes unstable and the vibration ampli-
tude ζ starts increasing with time as ζ ~ exp(γt), where

If the liquid is not ideal and possesses a kinematic
viscosity ν0, and the droplet radius R, the liquid density ρ,
and its surface tension σ are such that ν0(ρ−1σ−1R)1/2 ! 1
(i.e., the droplet may be considered as possessing low
viscosity), the capillary motions of the fundamental
mode of the droplet likewise decay exponentially with
the decrement

(2)

This formula, derived by approximating the results
of numerical analysis of the dispersion equation
obtained in [5], is valid at νk(W) < 1. Note that, at
W = 4, the droplet is already unstable with respect to
infinitely small surface deformations of the type ζ =
ζ0P2(cosθ), which correspond to virtual excitation of
the fundamental mode of capillary vibrations. The exci-
tation of such capillary vibrations may be due to, for
example, the thermal motion of molecules in the liquid.
In this case, the amplitude of ζ0 is defined by the
expression ζ0 = (σ/kT)1/2, where k is the Boltzmann
constant and T is the absolute temperature of the liquid.
The thermal excitation of a capillary wave ~P2(cosθ)
corresponds to virtual drawing of a droplet into a spher-
oid of eccentricity e0 = (3ζ0/R)1/2. However, for a
spheroid, the value of the parameter W that is critical
for realizing the instability of the droplet with respect
to the intrinsic charge is a decreasing function of
eccentricity [8]. In a linear (with respect to the square
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of eccentricity e2) approximation, this function has the
form [8]

(3)

Therefore, with W = 4 for a droplet that experienced
a virtual (thermal) distortion of the form ζ =
ζ0P2(cosθ), the amplitude of this perturbation will start
increasing in time by the exponential law with the
increment

But the rise of the perturbation amplitude ~P2(cosθ)
corresponds to further drawing of the droplet, an
increase in its eccentricity, and a decrease according
to (3) in the critical value of instability and, conse-
quently, leads to an increase in the instability incre-
ment.

At the same time, the presence of spheroidal defor-
mation in the droplet results in dependence of the dec-
rement of the fundamental mode decay on the magni-
tude of this deformation (on the square of eccentricity
e2), which has the following form according to the
approximation of the results of numerical calculations
performed in [6]:

where ηs is defined by relation (2).

One can write the sequence of amplitudes of grow-
ing perturbations at close moments of time to derive a
nonlinear integral equation describing the rise of
dimensionless amplitude X ≡ ζ /R in time, 

(4)

A solution to this equation has the following form in the
low viscosity approximation employed:
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The obtained function X(t), which describes the
increase in time of the amplitude of spheroidal defor-
mation of an unstable low-viscosity droplet, has quali-
tatively the same form as that for a droplet of the ideal
liquid [2]. The only difference is the presence, in the
viscous droplet case, of the factor δ(ν) < 1 for any per-
missible values of viscosity (which must be small, i.e.,
ν ! 1, because this fact was used in deriving expres-
sion (4)). For ν = 0, we derive δ(ν) = 1, and relation (5)
changes to the expression derived in [2] for the increase
in time of spheroidal deformation of a droplet of the
ideal liquid.

One can see that allowance for the viscosity leads to
an increase by a factor of δ(ν) in the characteristic time
scale of the instability development as compared to the
case of a droplet of nonviscous (ideal) liquid. Assuming
for the dimensionless viscosity that ν = 0.1 and taking
that α = 1/3 [2, 8], we obtain δ ≈ 1.3.

CONCLUSION

The obtained result is fairly obvious from the quali-
tative standpoint: it is a priori clear that the effect of
viscosity must be manifested as an increase in the char-
acteristic time of the instability development. But it is
now possible for the first time to quantitatively estimate
this phenomenon under conditions of a substantially
nonlinear process of the rise in time of a very small
thermal deformation of the shape of a droplet at the sta-
bility threshold.
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A. N. Chaœka and F. L. Vladimirov

Research and Technological Institute of Optical Materials Science, Vavilov State Optical Institute, 
All-Russia Research Center, St. Petersburg, 193171 Russia
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Abstract—Realization of an optically controlled transparency possessing a nonlinear holographic modulation
characteristic containing region with positive and negative slope is demonstrated to be feasible. The transpar-
ency filter is based on a glassy chalcogenide photoconductor–nematic liquid crystal structure. A tenfold drop
in the diffraction efficiency over the negative-slope region was obtained in the experiment. © 2000 MAIK
“Nauka/Interperiodica”.
Optically controlled transparency (OCT) based on a
photoconductor–liquid crystal (PC–LC) structure is a
key element of holographic data processing systems [1].
It is normally required that the modulation characteris-
tic of an OCT (i.e., the diffraction efficiency η as a
function of the recording light intensity I) contain a suf-
ficiently long linear segment. However, holographic
processors implementing fuzzy logic [2], which have
been attracting serious attention lately, call for a nonlin-
ear modulation characteristic. In some cases, the mod-
ulation characteristic must contain regions with posi-
tive and negative slopes.

This paper demonstrates that OCT modulation char-
acteristics with both rising and pronounced falling
regions can be realized.

We have studied the properties of a PC–LC based
OCT representing a multilayer structure sandwiched
between two glass substrates. Each substrate has a
transparent conducting coating on the inner side, and
one substrate also carries a photoconductive layer.
Bounded by alignment coatings, the liquid-crystal layer
is situated between the photoconductive layer and the
other substrate. A spatial pattern or an image is pro-
jected onto the photoconductive layer. If a voltage is
applied between the transparent conducting coatings,
the PC layer transforms the illumination-intensity dis-
tribution into a potential distribution on the LC layer,
which locally modifies the LC birefringence. This in turn
results in a phase modulation of the readout light [3].

The photoconductor is a glassy chalcogenide semi-
conductor of the As–Se type with a thickness dPC of
1 µm. The liquid crystal, which serves as a modulator,
is a nematic liquid crystal of the ZhKM-1630B type
with ∆n = 0.13, ∆ε = +4.4, ∆t = –20…+90°C, and a pla-
nar initial alignment. The thickness of the liquid-crystal
layer is dLC = 10 µm. The photoconductor had a suffi-
1063-7850/00/2602- $20.00 © 20139
ciently high specific dark resistance (ρd = 1013 Ω cm) to
match the conductances of the PC and LC layers of the
structure (in view of the difference between their thick-
nesses) upon application of a dc voltage. The maximum
phase modulation amplitude achieved is 4π.

Within the framework of the thin-phase-hologram
model [4], the diffraction efficiency of the structure as
a function of the phase modulation amplitude can be
expressed using the Bessel function of an appropriate
order:

where ∆Φ = ∆Φmax(I) – ∆Φ0 is the phase modulation
amplitude, ∆Φmax(I) is the maximum phase delay for
the recording light intensity I, and ∆Φ0 is the phase
delay at I = 0.

For a sufficiently large phase modulation amplitude
(∆Φ > 2π), the first-order diffraction efficiency, defined
as the ratio of the intensity for first-order diffracted
light to that for readout light, η1 = I1/I0, and plotted as
the function η1(∆Φ), is nonlinear and has a rising and a
falling region. The phase modulation amplitude is a
complicated function of the parameters of the PC and
LC layers, control voltage, the spatial frequency ν of
the recorded grating, and the recording light intensity.
Note that ∆Φ is a monotonic function of I; therefore,
the modulation characteristic can have a nonmonotonic
shape with rising and falling segment regions, provided
that the PC–LC structure parameters are appropriately
selected.

Holograms were recorded at a wavelength of
633 nm. Readout was performed using a semiconduc-
tor laser operated at 814 nm. The effect of recording
and optical control conditions on the first-order dif-

ηm Jm
2 ∆Φ

2
-------- 
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fracted light intensity was investigated. The diffracted
light intensity was measured with a photomultiplier
having a pinhole aperture situated in the focal plane of
an integrating objective lens. The diffraction efficiency
was determined as the ratio of the light intensity in the
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Fig. 1. Modulation characteristics of an As–Se based OCT
with nematic LC powered with a dc or a pulsed voltage at a
repetition frequency of 1 or 10 Hz. 
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Fig. 2. Resolution of an As–Se based OCT with a nematic
LC powered with a dc or a pulsed voltage. 
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first order of diffraction to that of the readout beam: η =
I1/I0.

Figure 1 shows the modulation characteristics mea-
sured for an OCT powered with a dc or a pulsed voltage
with repetition rate of 1 or 10 Hz. The spatial frequency
of the recorded grating was 45 mm–1. The curves
exhibit a rising region 1–100 µW/cm2 and a falling
region extending from 100 to 700 µW/cm2, in which
the diffraction efficiency drops by more than one order
of magnitude. The slope of the curve in both regions
depends on the control voltage and can be varied over a
wide range. This feature is important for implementa-
tion of the forward and inverse operators in the holo-
graphic processor.

Figure 2 depicts the plot of maximum diffraction
efficiency versus spatial frequency of the grating. The
measurement was carried out for the spatial frequencies
ν = 28–85 mm–1. Note that η < 16% at ν = 28 mm–1 and
η = 0.7% at ν = 85 mm–1.

The operation speed of the structure is determined by
the electrooptical response time of the liquid crystal and
the time constant of the whole PC–LC structure [1].
Since the photoconductor has a large specific resis-
tance, the time constant is as high as 200–500 ms. The
experimental operation speed was usually 2–5 Hz when
the structure was powered with a dc voltage and
10−15 Hz with a pulsed voltage.
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Relativistic Resonance Traveling-Wave Tube
with Tunable Oscillation Frequency
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Abstract—A high-power microwave oscillator is realized experimentally, employing a relativistic traveling-
wave tube with a feedback circuit closed by tunable Bragg waveguide reflectors. A gigawatt-pulse power level
is attained in the oscillator in the 3-cm wavelength range, which is maintained when the carrier frequency is
tuned in a range of about 5%. © 2000 MAIK “Nauka/Interperiodica”.
The search for the possibilities of tuning the carrier
frequency of an output signal appears to be one of the
most promising directions of investigation of micro-
wave radiation sources employing relativistic electron
beams [1–3]. Under conditions of pulsed operation of
the radiation source, one possible way of such tuning is
by varying the frequency from pulse to pulse, which
may be accomplished by mechanical adjustment of the
electrodynamic system of the oscillator. One of the ver-
sions of a device that permits mechanical tuning of the
oscillation frequency may be based on the use of a rel-
ativistic resonance traveling-wave tube (TWT). The
relativistic resonance TWT [4] is an oversize corru-
gated waveguide channeling a slow electromagnetic
wave synchronous with the electron beam, and positive
feedback is accomplished by Bragg-type resonant
reflectors [5] mounted at the ends of this waveguide.
The oversize dimension of the waveguide makes for a
lower probability of its high-frequency breakdown with
a high power of electromagnetic radiation. As to the
coherence of the radiation, it is ensured by the reflec-
tors, which are selective with respect to the wave fre-
quency and type. In the case under treatment, the rela-
tivistic TWT, which operates in the slow wave mode of
the oversize waveguide, has a sufficiently wide band;
therefore, the tuning of the oscillator frequency may be
achieved by shifting the operating frequency of the
reflectors.

For the Bragg-type reflectors employed, the shift of
the reflection band is realized when a controllable non-
uniformity, for example, a phase jump of the side wall
corrugation, is introduced in the reflector design. Note
that, if the waveguide is round and the incident and
reflected waves have different azimuth indexes (m1 and
m2), the coupling reflector has a helical corrugation
with the number of threads

(1)m m1 m2,–=
1063-7850/00/2602- $20.00 © 20141
and the phase jump in this corrugation is varied by sim-
ply turning one part of the reflector relative to another.

The operation of such a reflector may be analyzed,
as for a regular version, using the coupled wave model.
This analysis reveals that introduction of an irregularity
in the corrugation in the middle of the reflector leads to
the emergence in the reflection band of a frequency at
which the waves reflected by two parts of the reflector
fully compensate each other, so that the total reflection
coefficient becomes zero. As the phase jump varies in
the interval (0.2π), the compensation point travels from
one boundary of the reflection band to the other,
thereby deforming the band and varying the frequency
position of maximum of the reflection coefficient
(Fig. 1). For moderate values of the reflection coeffi-
cient (80–90%), the shift of the maximum is of the
order of the undisturbed working band of the reflector.
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Fig. 1. Calculated values of the reflection coefficient Kp of a
Bragg reflector as a function of the wave numbers h1 and h2
of interacting waves with δ = (2π/d – h1 – h2)/2 (where d is
the spatial period of the reflector) for different values of the
corrugation phase shift: (1) 0°, (2) 90°, (3) 180°.
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The above-described possibility of controlling the
operating frequency of a relativistic microwave oscilla-
tor was investigated experimentally. The experimental
setup was based on the use of a resonance TWT with
HE11 hybrid mode of a round corrugated waveguide
and a feedback circuit closed by a TE41 wave. The cou-
pling of waves was provided by two reflectors made in
the form of waveguide segments with a five-thread heli-
cal corrugation. The cathode reflector was divided
lengthwise into two equal parts capable of rotating rel-
ative to each other. The maximum coefficient of trans-
formation of the cathode reflector was 90%; and that of
the collector reflector, 10%. The operating modes had
rotatory polarization, with the fundamental mode and
the feedback mode having opposite directions of rota-
tion of their spatial structures. The choice of the types
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Fig. 2. The center oscillation frequency of a resonance TWT
as function of the corrugation phase jump of the cathode
reflector.
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Fig. 3. The variation of the peak power of a resonance TWT
during retuning of the carrier frequency. 
T

of modes and their polarization was defined by the need
to provide for a single-mode oscillation.

The oscillator power supply was provided by a high-
current electron accelerator with a particle energy of
1−1.2 MeV, beam current of about 7 kA, and an accel-
erating pulse duration of 150 ns at the 0.8 amplitude
level. The accelerator shaped a tubular electron beam
38 mm in diameter, which was transported by a uni-
form magnetic field of 2 T. The output radiation was
extracted by diffraction using an oversize horn antenna
via a polyethylene window 440 mm in diameter. The
output microwave radiation diagnostics involved the
use of a set of calibrated microwave sensors placed at a
distance of 4 m from the outlet window. The gain factor
of the “outlet window–receiving horn of microwave
sensor” line was determined in preliminary experi-
ments using standard measuring equipment. The radia-
tion frequency was measured by a waveguide bandpass
filter with mechanical tuning of the center frequency of
the transmission band.

In a regular version, a resonance TWT of this type
generated microwave radiation with a peak power of
about 1.5 GW, a duration of 30–40 ns, and a carrier fre-
quency of 11.1 GHz [4].

In tuning the cathode reflector by varying the rela-
tive phasing of its parts, the center frequency of oscilla-
tions shifted within 10.9–11.4 GHz (Fig. 2) when the
output power varied by a factor of not more than two
(Fig. 3).

Therefore, the proposed method enables one to per-
form mechanical tuning of the frequency of high-power
microwave oscillators to within several percent, with
the basic performance of the instrument remaining
unaffected.
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The Acoustic Properties of TiNiMoFe-Based Alloys
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Abstract—A study is made of the laws of variation of the acoustic properties of TiNi-based alloys depending
on the alloy composition and the temperature. It is demonstrated that, in the temperature range of existence of
the B2 phase and the possible strain-induced martensite formation, the vibrations of TiNiMoFe differ from
those of conventional materials. Upon excitation of spontaneous vibrations in the Mf ≤ T ≤ Md range, there
appears a region of long-term, small-amplitude low-frequency sound vibrations. It is found that free low-fre-
quency vibrations of a sample of TN-10 alloy [1] are characterized by a low level of decrement in the above-
indicated temperature range. © 2000 MAIK “Nauka/Interperiodica”.
Alloys with plastic (shape) memory find extensive
application for solving numerous problems in medicine
and engineering.

When used in medicine as materials and structures
implanted into the human organism, TiNi-based alloys
are subjected to an alternating-sign action of both the
organism and environment. The effect of the environ-
ment causes the excitation of vibrations of a wide spec-
trum of waves inside the tissues of the organism and in
the implant material [1]. Phase transitions in the TiNi-
based alloys have a considerable effect on their physi-
cal and mechanical properties in a wide temperature
range. Depending on the alloy composition and its ther-
momechanical treatment, the acoustic properties of
TiNi alloys exhibit a spectrum of unusual phenomena.
This follows from the literature describing the studies
of the acoustic properties of these alloys [2–4]. We have
investigated the laws of variation of the acoustic prop-
erties of TiNi-based alloys in the vicinity of the temper-
ature range of martensite transformations.

Investigations were performed using samples of a
TN-10 titanium nickelide-based alloy shaped like a
tuning fork. The vibrations arising in a sample after
excitation were registered by a high-sensitivity micro-
phone whose frequency range coincided with the fre-
quency range of sample oscillations defined experi-
mentally using an oscillograph. The analog signal was
applied to the input of an amplifier. After amplification,
the signal was delivered to the input of an ADC (ana-
log-to-digital converter) of a PC. The digitized signal
was processed according to a Fourier transform based
on the behavior of the entropy maximum in accordance
with the procedure of Sarychev [5]. The Origin® appli-
cation software was used to graphically treat the data.

Figure 1 shows a time variation of the amplitude of
free vibrations of a tuning fork made of the TN-10
alloy. In the initial period, the vibrations are quasi-har-
monic, with the vibration amplitude varying approxi-
mately logarithmically. From certain moment of time,
1063-7850/00/2602- $20.00 © 20143
the vibration amplitude remains almost constant, while
the period of vibrations decreases. Characteristic beats
may be observed in the entire course of the vibration
process. The vibrational system behaves as if a driving
force that sustains vibrations over a long period of time
is present.
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Fig. 1. Time diagram of free vibrations in a sample of TN-10
alloy.
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The stability of the vibration amplitude and the
presence of beats indicate that the driving force fre-
quency is in the vicinity of one of the lower harmonics
displaced in phase through a small angle.

The phenomenon may be explained in view of the
fact that this alloy occurs in a premartensite state.
A vibrational system displaced from the state of equi-
librium and allowed to move freely must return to the
state of equilibrium or to a different state if several sta-
ble states correspond to the preset conditions. The tran-
sition of the TiNi system from the pretransition state B2
to the state B19' and back makes up a complete vibra-
tional cycle. In so doing, the dissipation of vibrational
energy is defined by the entire combination of relax-
ation processes occurring during periodic deformation
of crystals of the B2 phase and martensite and, there-
fore, it does not appear possible to mathematically
describe this dissipation process in the general form
[6]. However, it is to be taken into account that heat
release is one of the determining factors of the marten-
site reaction. According to some data [1], the amount of
heat released during the B2  B19' transition exceeds
8.3 kJ/mol. The same amount of heat is absorbed by the
system during the inverse transition B19'  B2.
Under conditions of a system in which the thermal con-
ductivity of TiNi is extremely low and amounts to
1 W/(m K) [1], thermal processes play an important
part in the course of vibrations, in particular, if the
vibrations occur under adiabatic conditions (when the
heat is released upon the formation of martensite and
absorbed with the appearance of the B2 phase, so that
no excess heat is removed to the ambient medium).

The formation of martensite at a temperature above
MS under load is described [7] by the following rela-
tionship: ∆σ = ∆H∆T/T0εm, where ∆σ is the applied
stress, ∆T is the temperature variation, T0 = (MS – Md)/2
is the temperature of phase equilibrium, ∆H is the latent
heat of transition, and εm is the deformation due to the
martensite reaction.
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Fig. 2. The temperature dependence of the duration of vibra-
tions in a sample of TN-10 alloy. 
T

For the individual ith martensite plate or the micro-
domain of a high-temperature phase, the equation will
have the form [7]

, (1)

where the sign ± is taken with due regard for the release
or absorption of heat.

However, if the formation of the individual ith mar-
tensite plate is associated with the application of load
∆σ, an increase in the temperature by ∆  leads to the
emergence of stress of opposite sign,

(2)

where c is the specific heat.
Equating (2) and (1), we may derive the conditions

for a continuously vibrating system (disregarding other
relaxation processes),

With the proviso that ∆  = ∆Ti , we derive

An analysis of the latter expression reveals the con-
dition of equilibrium of the system under adiabatic con-
ditions, when the release of the latent heat of transition
due to the formation of martensite plates leads to local
heating, i.e., to the emergence of a thermal front that is
the driving force of the inverse transition. One can
expect that, upon initiation of low-frequency spontane-
ous vibrations in TiNi-based alloys (sound frequency
range) in the temperature range in which the strain-
induced martensite formation is possible (i.e., in the
Mf ≤ T ≤ Md range), the vibrations in a TiNi-based sys-
tem will be characterized by a longer decay time.

We have investigated time variation of free vibra-
tions in the alloy (Fig. 1) and obtained results support-
ing the above conclusion. An unusual behavior of alloy
samples is observed in the Mf–Md temperature range,
which consists in an anomalous increase in the time of
system vibration. On the contrary, in the martensite
state the vibrations are almost fully suppressed. A dis-
tinguishing feature of these correlations is the existence
of a region of long-term low-frequency sound vibra-
tions with small amplitude [8]. The appearance of such
a region or “plateau” in the time diagram is associated
with the alternating-sign effect of martensite reactions
in a two-phase state on the initiation of oscillations by
external stress. Figure 2 gives the temperature depen-
dence of the duration of vibrations for the TN-10 alloy
studied.

∆σi

∆Hi∆Ti

T0iεMi

-------------------±=

Ti'

∆σi

∆Ti'cεMi
∆Ti'

T0iεMi

-----------------------------,=

∆Ti'( )
2
c

T0iεMi

-------------------
∆Hi∆Ti

T0iεMi

-------------------, ∆Ti'( )
2 ∆Hi∆Ti

c
-------------------.= =

Ti'

∆Ti'
∆Hi

c
---------.±=
ECHNICAL PHYSICS LETTERS      Vol. 26      No. 2      2000



THE ACOUSTIC PROPERTIES OF TiNiMoFe-BASED ALLOYS 145
We may ascertain that a vibrational system manu-
factured from TN-10 alloy is characterized by an anom-
alously high duration of vibrations in the Mf–Md tem-
perature range, that is, in the region of initiation of a
two-phase state.

The low level of decrement in titanium nickelide-
based alloys is mainly due to a high mobility of inter-
faces (between the martensite and high-temperature
phases) and to a high value of the enthalpy of transfor-
mation providing for the presence of a thermal front at
a low specific thermal conductivity of the alloy.

It is for the first time that the effect of an
“undamped” region of low-frequency sound vibrations
of small amplitude was observed in metal systems; this
effect opens unexpected possibilities for the develop-
ment of devices with new properties.
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The Magnetic and Magnetooptical Properties of Fe/Ti, Zr, Pt 
and Fe/Ti, Zr, Pt/Fe Thin-Film Magnetic Structures

E. E. Shalygina, M. A. Karsanova, and L. V. Kozlovskiœ
Moscow State University, Moscow, 119899 Russia
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Abstract—The results of investigation of the magnetic and magnetooptical properties of two-layer Fe/Ti, Zr,
Pt and three-layer Fe/Ti, Zr, Pt/Fe thin-film magnetic structures are presented. The nonmagnetic layer exhibits
a strong effect on the magnetic properties of samples. The magnitude of the saturation field of three-layer mag-
netic structures oscillates as a function of thickness of the nonmagnetic layer; the period of this oscillation
depends on the thickness of the Fe layer. The Pt layer strongly affects the spectral dependences of the equatorial
Kerr effect in the structures investigated. © 2000 MAIK “Nauka/Interperiodica”.
Investigation of the magnetic anisotropy, processes
of magnetization reversal, and magnetooptical proper-
ties of thin-film magnetic structures is important from
both the scientific and practical standpoints. The data
obtained from investigations of the effect of the thick-
ness and composition of magnetic and nonmagnetic
layers on the magnetic and magnetooptical properties
of two- and three-layer magnetic structures may be
used in developing new thin-film systems for modern
spin microelectronics. The objective of this work was
to investigate the magnetic and magnetooptical proper-
ties of Fe/Ti, Zr, Pt and Fe/Ti, Zr, Pt/Fe thin-film struc-
tures.

The samples were prepared by magnetron sputter-
ing. After adhesion at a temperature T = 150°C, the
base pressure in the vacuum chamber was 10–9 Torr.
The pressure of the working gas (argon) was ~10–4 Torr.
In two-layer structures, the magnetic layer thickness tFe
varied from 2 to 100 nm and that of the nonmagnetic
layer (NML) applied between the magnetic film and the
substrate, t1, varied from 0 to 20 nm. In three-layer
structures, tFe and t1 varied from 2.5 to 10 nm and from
0.5 to 4 nm, respectively. In order to avoid oxidation,
the samples were coated with a 10-nm layer of carbon.

The magnetic and magnetooptical properties of the
samples were studied by measuring the equatorial Kerr
effect (EKE) δ using a magnetooptical magnetometer
and a spectral magnetooptical facility described in [1, 2].
Here, δ = (I – I0)/I0, where I and I0 denote the intensity
of light reflected from magnetized and nonmagnetized
samples, respectively. The external magnetic field was
applied in the film plane in the direction normal to the
plane of light incidence. The dispersion dependences of
EKE were measured in the region of energies of the
incident light quanta of 1.5 < "ω <4.2 eV. The angle of
light incidence on the sample was 65°. All measure-
ments were performed at room temperature.
1063-7850/00/2602- $20.00 © 20146
As revealed by preliminary measurements, all sam-
ples are characterized by planar magnetic anisotropy;
i.e., the axis of easy magnetization (AEM) lies in their
plane. The hysteresis loops along the AEM for two-
layer samples were almost rectangular in shape. The
remanent-to-saturation magnetization ratio (MR/MS)
varied from 0.95 to 0.98. The value of MR/MS increased
as the iron layer thickness decreased.

Figure 1 shows the saturation field HS of the two-
layer samples as a function of the thickness of (a) the
Fe film and (b) the nonmagnetic layer for a fixed value
of t1 and tFe, respectively. Figures 1c and 1d present
typical dependences of the saturation field HS on the
thickness of the nonmagnetic layer for Fe/NML/Fe
three-layer structures with fixed values of the thickness
of iron film.

One can see in Fig. 1a that, with a fixed value of t1,
the value of HS grows when tFe increases up to 35 nm
and then drops as tFe varies from 40 to 100 nm. With a
fixed value of tFe, the saturation field has a maximum at
tZr ≈ 3 nm and tTi, Pt ≈ 10 nm (Fig. 1b). The value of HS

for samples with a Ti layer exceeds that for samples
with Zr and Pt layers (Figs. 1a, 1b). Note that the
behavior of coercive force HC as a function of tFe and t1
in two-layer samples coincides with HS(tFe) and HS(t1).
The obtained results may be interpreted using the data
of the structure analysis of samples. X-ray diffraction
analysis reveals that the two-layer samples studied pos-
sess a polycrystalline structure with preferred {111}
texture parallel to the sample surface. The degree of
texturization of samples depended on the thickness of
the Fe film, as well as on the thickness and composition
of the NML. It is known [3] that more textured samples
are characterized by a higher saturation field and a
higher coercive force. It was this very correlation that
we observed between the magnetic and structural prop-
erties in the two-layer samples studied.
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Plots of the saturation field HS of (a, b) two-layer Fe/Ti, Pt, Zr and (c, d) three-layer Fe/Ti/Fe samples versus the thickness
of Fe film and nonmagnetic layer (for fixed values of the thickness of nonmagnetic and magnetic layers, respectively): (a) HS(tFe)
at t1 = 20 nm, (b) HS(t1) at tFe = 20 nm, (c) HS(tTi) at tFe = 2.5 nm, and (d) HS(tTi) at tFe = 5 and 10 nm (curves 1 and 2, respectively).
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Figures 1c and 1d show that the saturation field of
Fe/Ti/Fe three-layer samples oscillates as a function of
t1, and the period of this oscillation Λ depends on tFe. In
particular, Λ is equal to ~1.2 and 2 nm at tFe = 2.5 and
5 nm, respectively. Analogous measurements for other
three-layer structures demonstrated that in samples
with a Zr layer the value of Λ almost coincides with the
values given above, while for samples with a Pt layer,
Λ is equal to 0.8, 1.2, and 2 nm at tFe = 2.5, 5, and
10 nm, respectively. These results may be attributed to
the existence of exchange interaction between ferro-
magnetic layers through the nonmagnetic layer and to
its oscillatory behavior due to variation of t1 [4, 5].
Moreover, the results of calculations performed by
Nordström et al. [6] demonstrated that the value of Λ
must increase with the magnetic layer thickness. We
did observe experimentally such a variation of Λ.

Figure 2a gives a typical dispersion curve for the
EKE in two-layer samples with different values of iron
film thickness and with a fixed value of t1 measured at
H = HS . These data were used to derive the dependence
of the EKE on tFe for fixed values of "ω (Fig. 2b). One
can see in Figs. 2a and 2b that the value of EKE
TECHNICAL PHYSICS LETTERS      Vol. 26      No. 2      200
depends on the thickness of the Fe film. The EKE
increases linearly with tFe up to ~20 nm and, at tFe >
20−25 nm, the EKE has a constant value. Therefore, the
EKE is defined by magnetization of the surface layer of
some critical thickness tcr . The value of tcr , starting with
which the EKE has a constant value, is usually referred
to as the information depth of the magnetooptical sig-
nal tinf [7]. For samples with Ti and Zr layers, it was
found that tinf ≈ 21 and 23 nm for "ω = 3.4 and 1.7 eV,
respectively.

Analogous measurements were performed for two-
and three-layer magnetic structures with a Pt layer. In
this case, the correlation between δ("ω) and tPt proved
to be more complex (Figs. 2c, 2d). An analysis of these
data reveals that, as tPt increases, the peak in the region
of the energy of incident light quanta of 1.8−1.9 eV,
characteristic of the spectral dependence of the EKE of
bulk iron, decreases and a new peak emerges in the
ultraviolet region. By analogy with [8], this behavior
may be attributed to spin polarization and exchange
splitting of the 5d-levels of platinum. Because of a high
spin-orbital energy of the 5d-states of platinum, the
band structure of Fe varies: excited states arise, which
0
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are due to overlap of the 3d- and 5d-electron wave func-
tions in the neighboring Fe and Pt layers. As a result,
the dispersion curves of the EKE in these samples are
modified. Evidently, this electron interface effect must
depend on the thickness of both Fe and Pt layers. More-
over, according to the above data, the EKE may depend
on the entire sample thickness t as well, if t < tinf . Fig-
ures 2c and 2d demonstrate that, for the same thickness
of the Fe layer, the value of EKE in three-layer struc-
tures exceeds (by a factor of approximately two) that in
two-layer structures. The effect of a Pt layer on the
EKE increases with its thickness. This increase contin-
ues until tPt ≈ 4–4.5 nm. A quantitative comparison of
the EKE values in two- and three-layer structures
reveals that the effect of Pt on the EKE is higher in the
case of three-layer structures, which is due to the pres-
ence of two Fe/Pt interfaces in these samples. It is
found that the effect of Pt on the EKE in three-layer
samples with tFe = 5 and 10 nm remains almost the
same as in samples with tFe = 2.5 nm.
TE
So, the magnetic and magnetooptical properties of
Fe/Ti, Zr, Pt and Fe/Ti, Zr, Pt/Fe thin-film structures
were investigated and dependences of the magnetic
characteristics of the samples on the thickness and
composition of nonmagnetic layer were determined.
The obtained data were attributed to the structural fea-
tures of two-layer samples and to the presence of
exchange interaction between ferromagnetic layers via
NML in three-layer systems. The dependence of the
EKE on the thickness of the Fe film was found.
A strong effect of the Pt layer on the EKE spectra of
Fe/Pt and Fe/Pt/Fe thin-film structures was observed.
This fact was attributed to exchange-induced polariza-
tion of the 5d-levels of platinum.
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Abstract—A relationship is derived for the calculation of the surface temperature of a layer of liquid in the
process of combined heat and mass transfer. It is demonstrated that, in the case of similarity of the laws of heat
and mass transfer, this temperature is constant. The results of numerical and analytical calculations of the sur-
face temperature of a layer of liquid are compared, and the conditions of validity of the calculation formulas
based on the small contact time approximation are determined. © 2000 MAIK “Nauka/Interperiodica”.
Calculations of the processes of combined heat and
mass transfer are based on solving the energy and
diffusion equations in a stationary [1, 2] and nonsta-
tionary [3] formulation. In so doing, the conditions of
thermodynamic equilibrium and the balance of heat
and mass fluxes are written for the liquid–gas interface.
For definiteness, we will treat combined heat and mass
transfer in a thin layer of an aqueous lithium bromide
solution, on the surface of which the absorption of
water vapor occurs. We will use a rough approximation
of the equation of state for a solution in the form of a
linear function (provided the pressure is constant, i.e.,
p = const),

(1)

where d and b are constant coefficients.
According to (1), the equality

(2)

will be valid on the surface of the solution layer, where
Tn and Cn respectively denote the absorbent tempera-
ture and concentration on the surface.

Consider the condition of balance for the heat and
mass fluxes on the solution surface

(3)

where ra is the specific heat of absorption.
We will define the fluxes of heat q and mass gn by

the relations

(4)

and

(5)

where α and β are the coefficients of heat and mass
transfer and ρ is the density of liquid. The subscript “0”
corresponds to the initial parameters of the solution.

C dT b,+=

Cn dTn b+=

q ragn,=

q α Tn To–( )=

gn ρβ Cn Co–( ),=
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According to the equation of state (1), the initial
concentration of the solution defines the thermodynam-
ically equilibrium temperature

(6)

and, accordingly, the concentration

(7)

Substituting expressions (5) and (4) into (3) and
expressing the concentrations in accordance with the
equation of state (1), we obtain

(8)

Let us write expression (8) in the form

(9)

Here, dimensionless parameters are used: namely, Nu =

 is the Nusselt number for heat transfer; NuD = 

is the Nusselt diffusion number; Lu =  is the Lewis

number; Ka =  is an analog of the criterion of phase

transformation; a, D, λ, and cp are the coefficients of
thermal diffusivity, diffusion, thermal conductivity, and
heat capacity of the liquid, respectively; and L is the
characteristic linear dimension.

Denoting ψ = NuLu/(NuDKa) and resolving (9) rel-
ative to the surface temperature, we obtain

(10)

According to (10), the surface temperature of liquid
under conditions of combined heat and mass transfer is

Ts

Co b–
d

---------------=

Cs dTo b.+=

α Tn To–( ) raρβd Tn Ts–( ).=

Tn Ts–
Tn To–
-----------------

Nu
NuD

----------Lu
Ka

------.=

αL
λ

------- βL
D
------

a
D
----

rd
cp

-----

Tn

Ts ψTo–
1 ψ–

---------------------.=
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defined by the values of thermodynamically equilib-
rium temperature Ts determined by the initial concen-
tration co of the solution, initial temperature T0 of the
liquid, and by the ratio (Nu/NuD).

The value of the coefficient ψ is determined most
easily at small values of the contact time, when the rela-
tions

(11)

are valid for the calculation of the coefficients of heat

and mass transfer, where δt =  and δD = 
denote the “depth” of penetration of heat “wave” and
concentration “wave,” respectively, and τ is the current
time.

In this case, we obtain that ψ = /Ka and,
according to (10), the value of the surface temperature
Tn does not depend on the process time. Here, the for-
mula for the calculation of the surface temperature
coincides with that obtained previously [1, 2]. We will
treat the case of water vapor absorption by an aqueous
lithium bromide solution at a water vapor pressure of
1 kPa. The values of parameters appearing in formula
(10) are as follows: d = –5.3 × 10–3, b = 0.6431, c0 =
0.405, Ts = 44.9°C, Ka = 7.43, Lu = 72.7, and ψ = 1.148.
For T0 = 32°C, we obtain Tn = 38.0°C.

The very fact of establishing some constant value of
the surface temperature is of great interest, because it is
indicative of synchronization of the processes of heat
and mass transfer. Consequently, in calculating the cor-
responding regularities of heat and mass transfer, it is
sufficient to introduce constants that are readily derived
by substituting (10) into (4). However, under conditions
of a rapid drop of the surface temperature from the ini-
tial value corresponding to the thermodynamically
equilibrium state of the solution (44.9°C) to a steady-
state value (38°C in the treated example), this process
may affect the values of the coefficients of heat and
mass transfer. This effect was investigated in [4] during
numerical analysis of the process of nonstationary film
condensation.

In order to determine the conditions of applicability
of the model of small contact time to the calculation of
combined heat and mass transfer, a numerical calcula-
tion of the process of water vapor absorption by a layer
of aqueous lithium bromide solution was performed.
An implicit calculation scheme was employed, based
on the method of trails [5]. The numerical calculation
results were compared with those of the calculation of
the heat transfer coefficient by the first formula in (11),
which was given as

(12)

Here, Fo = ατ /L2 is the Fourier number.
As a result of substitution of the surface tempera-

ture (10) into (4) and some transformations, we derive

α λ
δt

----, β D
δD

------= =

πaτ πDτ

Lu

Nu 0.594Fo
0.5–

.=
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the law of heat transfer under conditions of combined
heat and mass transfer,

(13)

in which Nu* = α*L/λ and M1 = 1(1 – ψ). Note that the
appearance of the parameter M1 in formula (13) is
merely the result of overdetermination of the tempera-
ture head, because the heat transfer coefficient α* in
formula (13) is related to the heat transfer coefficient α
by the simple relationship

(14)

Figure 1 demonstrates the time variation of the sur-
face temperature of a solution as a function of time at
the initial stage of the absorption process. One can see
that, even at τ ≈ 0.005 s, the surface temperature
reaches a value of Tn ≈ 38.0°C, which agrees with the
estimate given above. The surface temperature is

Nu∗ 0.594M1Fo
0.5–

,=

α∗ q
Ts To–
----------------

α
1 ψ–
-------------.= =
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Fig. 1. The time variation of the surface temperature of a
layer of solution (numerical calculation).
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(2) ∆T = Ts – To); (3) calculation by formula (13). 
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constant until τ ≈ 0.14 s, after which the value begins to
decrease.

Figure 2 gives a comparison of the results of numer-
ical calculation and calculation by formula (13). Here,
points 1 were obtained in determining the temperature
head as the difference between the surface temperature
and the initial temperature of the solution. Points 2
were obtained in determining the difference between
the equilibrium temperature of the solution, determined
by its initial concentration, and the initial temperature
of the solution.

Points 3 were obtained as a result of calculation by
analytical expression (13). It is seen that the results of
numerical calculation for the values of 10–3 < Fo < 0.3
agree well with those of the calculation by the analyti-
cal formula.

As a result of analysis and numerical calculations,
time limits have been established, within which, first, it
is permissible to make use of the laws of heat and mass
transfer corresponding to small contact time and, sec-
ond, expression (10) is derived for the calculation of the
T

surface temperature of liquid layer with an arbitrary
value of the contact time.
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Numerical Modeling of Magnetron Generators 
with Allowance for the Mode Competition
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Abstract—A numerical model of the magnetron generator is developed that makes it possible to investigate
the effect of mode hopping. The performance of a magnetron in the presence of mode changing is evaluated.
© 2000 MAIK “Nauka/Interperiodica”.
In magnetron generators, mode hopping is one of
most frequently encountered and most dangerous types
of failure. The phenomenon consists in the transition
from a fundamental mode of oscillation to a different
(spurious) mode as a result of a variation in supply volt-
age or some other parameter. Mode hopping involves a
competition between oscillation modes, which ends in
the domination of a single mode, as a rule, the one meet-
ing the condition of synchronism between the electro-
magnetic wave and the electron stream.

Experimental investigation of the phenomenon of
mode hopping encounters considerable difficulties,
since the concomitant magnitudes of current and power
dissipation in the anode circuit are very large and may
cause damage to the device.

As regards the numerical modeling of mode hop-
ping, including evaluation of the dynamic parameters,
this kind of research was previously impossible to pur-
sue, although the phenomenon has long been known.
The fact is that the existing mathematical models, even
rigorous ones, were based on the concept of an interac-
tion space sector moving together with the wave, as
originally reported in [1]. It was not until the introduc-
tion of the so-called multiperiod approach [2] that the
process could be considered in the entire interaction
space at a time, whereby the excitation and competition
of multiple oscillation modes became accessible for
detailed analysis.

This paper presents the main results of a quantitative
investigation of the effect of mode hopping in terms of
the multiperiod multiwave model [3].

The input data of the model are selected to the mag-
netron dimensions, the emission characteristics of the
cathode, magnetic induction, and anode voltage. The
magnetron dimensions include the radii of cathode and
anode and the height of the anode unit. The emission
parameters are the thermionic current density j, the
maximum value σm of the secondary emission coeffi-
cient, etc. The anode voltage will be denoted as Ua .
Each oscillation mode is specified by the “cold” elec-
tromagnetic parameters: the frequency fi , the propaga-
1063-7850/00/2602- $20.00 © 20153
tion constant γi , the wave impedance zi , the loaded
quality factor Qi , and the intrinsic quality factor Q0i at
the frequency fi . Also specified are ancillary parameters
of the model: the initial number of charged particles
and the initial mode amplitudes. The latter quantities
were set equal for all of the modes, the value being an
order of magnitude smaller than that expected for a fun-
damental regime. The initial number of charged parti-
cles randomly distributed over the electron column was
5% of the steady-state Brillouin charge. As demon-
strated in [3], the values of the ancillary parameters
determine only the transient required to attain the
steady-state regime time and do not affect the final
results of the investigation.

The modeling process involves solving the excita-
tion equations for each mode. The equations of motion
allow for the effect of the RF fields for all of the modes.

The magnetron was assumed to operate in the centi-
meter waveband region. Two modes were examined: a
fundamental mode and a spurious mode due to elevated
anode voltage. The fundamental mode parameters were
f1 = 2450 MHz, γ1 = 7, z1 = 6.4 Ω, Q1 = 65, and Q01 =

-----------------
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Fig. 1. Computed (–) and measured (- - -) voltage–current
characteristic for the fundamental mode (segment 1) and the
spurious mode (segment 2).
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Fig. 2. Computed values of (a) anode current, (b) output power, (c) the ratio of RF amplitude to anode voltage, (d, 1) efficiency, and
(d, 2) the ratio of space charge to the Brillouin charge vs. anode voltage.
945. The spurious mode had f2 = 3430 MHz, γ2 = 6,
z2 = 8.3 Ω, Q2 = 100, and Q02 = 1000. The cathode
emission parameters were j = 2.3 A/cm2 and σm = 2.

Figure 1 indicates that an increase in the anode volt-
age results in quenching of the fundamental mode and
switching to the spurious mode (see the A–A and the
B−B segments for the computation and the experiment,
respectively). The anode voltage U at which mode hop-
ping occurs is about 2.875 kV.

Figure 2 depicts other computed characteristics as
functions of the anode voltage with a jump resulting
from mode hopping. Note similar trends in the behavior
of characteristics for both nominal (Ua < U) and spuri-
ous (Ua > U) modes. As the anode voltage rises, the val-
ues of anode current, thermionic current, and output
power increase, whereas the efficiency, back-bombard-
ment current, and space charge decrease.

At the point of mode hopping, the amplitude and the
output power of the fundamental mode are essentially
larger than those of the spurious mode. However, the
latter mode dominates, because it can more easily sat-
isfy the condition of synchronism between the electron
stream and RF wave in the near-cathode region (includ-
ing the electron column), where electron spokes are
formed. The spurious (high-voltage) mode is more
competitive than the nominal (low-voltage) one,
although the former mode cannot generate such power-
ful spokes, because the synchronism is violated near
the anode.
TE
Figure 3 shows the plots of dynamic parameters ver-
sus thermionic current density at the moment of the
fundamental mode quenching. Note that the anode volt-

Fig. 3. Computed limiting values of (a, 1) anode current,
(a, 2) anode voltage, and (b) secondary emission cathode
current vs. thermionic current density at the moment of the
fundamental mode hopping.
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age rises steeply as the current falls and that the limit
value of the fundamental-mode anode current exhibits
a maximum.

The anode voltage at which mode hopping occurs,
as well as the anode current and the output power, are
virtually independent of the thermionic current density
if this parameter is sufficiently large. This stems from
the fact that, when the thermionic current density
exceeds certain level, the space charge becomes con-
stant and a further increase in emission exerts little or
no influence on the interaction (increased back-bom-
bardment current being the only effect).

Figures 4 and 5 show the plots of the mode hopping
parameters vs. the wave impedance of the fundamental
(z1) and spurious (z2) modes, respectively. Note that an
increase in z1 expands the range of the fundamental
mode generation and increases the anode current Ia and
output power P above the values obtained in the nomi-
nal regime. Accordingly, the efficiency and space
charge fall. An increase in z2 favors the interaction for
the spurious mode, which results in the narrowing of
the fundamental mode operating range and lowering of
the Ia and Ua values for mode hopping.

Similar dependences were observed for the Q1 and
Q2 values of both modes studied.
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Fig. 4. Computed limiting values of (a, 1) anode current,
(a, 2) anode voltage, (b, 1) output power, and (b, 2) effi-
ciency vs. the fundamental wave impedance for the mode
hopping.
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To sum up, the numerical modeling of a magnetron
generator and the solving of test problems have demon-
strated that the proposed multiwave model makes it
possible to investigate the mode competition in magne-
trons and to predict its outcome when optimizing the
design with respect to a selected parameter. The model
enables one to determine the operating range for a fun-
damental mode and to evaluate the conditions of mode
hopping in qualitative agreement with experimental
results and established physical notions.

The model can be useful for a thorough analysis of
physical processes during mode hopping. In practical
terms, it facilitates the optimization of output charac-
teristics by providing both qualitative and quantitative
design recommendations.

REFERENCES

1. S. P. Yu, G. P. Kooyers, and O. Buneman, J. Appl. Phys.
36, 2550 (1965).

2. D. M. MacGregor, Appl. Surf. Sci. 8, 213 (1981).

3. V. B. Baœburin, A. A. Terent’ev, and S. B. Plastun,
Radiotekh. Élektron. (Moscow) 41, 236 (1996).

Translated by A. A. Sharshakov

1

2

1

2

5

4

3

2

1

0

12.0

9.6

7.2

4.8

2.4

0
4 5 6 7 8 9 10 11 12 13

3.30

3.04

2.78

2.52

2.26

2.00

100

80

60

40

20

0

η, %

Ua, kVIa, A

P, kW

(a)

(b)

z2, Ω
Fig. 5. Computed limiting values of (a, 1) anode current,
(a, 2) anode voltage, (b, 1) output power, and (b, 2) efficiency
vs. the spurious wave impedance for the mode hopping.
0



  

Technical Physics Letters, Vol. 26, No. 2, 2000, pp. 156–158. Translated from Pis’ma v Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 26, No. 4, 2000, pp. 47–52.
Original Russian Text Copyright © 2000 by Ra

 

œ

 

kher, Stolbov.

                                                                              
Magnetodeformation Effect in a Ferroelastic Material
Yu. L. Raœkher and O. V. Stolbov

Institute of Mechanics of Continua, Ural Division, Russian Academy of Sciences, Perm, 614061 Russia
Perm State Technical University, Perm, 614600 Russia

Received July 26, 1999

Abstract—The magnetodeformation effect in a uniform field of a ferroelastic material has been calculated
under some simplifying assumptions about the properties of ferromagnetic particles. The results obtained are
compared with the known experimental data. © 2000 MAIK “Nauka/Interperiodica”.
A ferroelastic material or a magnetic elastomer is a
composition of a polymer matrix and a finely dispersed
ferromagnetic substance. Hard-rubber-based ferroelas-
tic materials are well known and widely used in various
technologies [1]. Gel and plasticized rubber-based soft
systems have been synthesized relatively recently [2, 3].
It has been established [3, 4] that magnetic fields H
applied to these systems give rise to a pronounced mag-
netodeformation (magnetostriction) effect. One of the
obvious factors contributing to this phenomenon is a
ponderomotive force with the volume density (M∇ )H
arising in any nonuniform magnetic field (here M is
magnetization). The volume magnetodeformation
effect was studied in [3]. The second contribution to the
magnetodeformation effect comes from the demagne-
tizing fields induced in specimens and having a surface
nature. The magnetodeformation effect proper is
observed for an ellipsoidal specimen in a uniform mag-
netic field, where the volume magnetic force value
becomes zero. This effect was recently observed and
measured in a material comprising a siloxane rubber
oligomer matrix filled with finely dispersed iron.

Let us estimate the surface magnetodeformation
effect. Consider an isotropically elastic sphere of radius
R in a uniform magnetic field. Being magnetized, the
sphere becomes elongated in the direction of the
applied field and transforms into an ellipsoid of rotation
with the axes b < R < a and the magnetostatic energy
reduced by the value

where V is the specimen volume and ∆N is the incre-
ment in the demagnetizing factor. For a linear magneti-
zation, we have M = χH, where χ is the magnetic sus-
ceptibility. At complete magnetization, M = M0, where
M0 is the saturation magnetization of the material. For
small elongations, we have ∆N = –(4/15)(a – b)/R.

The above deformation increases the elastic energy of
the specimen. In the approximation of small deforma-

δEmagn 2πV∆NM
2
,=
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tions (Hooke’s law), this contribution has the form [5]

where µ is the shear modulus. Minimizing the sum of
the magnetic and the elastic contributions with respect
to the relative strain, we obtain

(1)

whence it is seen that the field dependence of the mag-
netodeformation effect is similar to the squared magne-
tization curve. The dielectric analog of estimate (1) in a
weak field is well known [6]. In terms of magnetism,
this estimate at M = χH was used in [4] for a qualitative
interpretation of the surface magnetodeformation
effect. Below, we consider a quantitative model taking
into account the saturation of magnetization and finite
values of strain.

Let us assume that filling the matrix with micropar-
ticles produces no qualitative changes in the deforma-
tion behavior of the matrix, so that the ferroelastic com-
position is considered as an incompressible elastic
material. The filler grains are monodisperse single-
domain particles of a magnetically soft ferromagnetic
material (iron). The particle shape is close to spherical;
therefore, the magnetooptical anisotropy is small and,
at the laboratory (room) temperature, the particles are
superparamagnetic. As a result, there is no magnetiza-
tion hysteresis and the magnetic state of the material is
described by the Langevin law

(2)

Here m = Iv is the magnetic moment of a single-domain
particle, equal to the product of its volume by the mag-
netization I of the ferromagnetic material. In turn, the
saturation magnetization of a ferroelastic material can
be written as M0 = nm, where n is the number density of
magnetic particles. The argument of the Langevin func-
tion in equation (2) has the sense of the ratio of the
characteristic orientational energy of the magnetic
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moment of the particle in the applied field to the ther-
mal energy kBT.

According to equation (2), the spherical specimen is
magnetized along the applied field, so that deformation
reduces to elongation in the direction of H and contrac-
tion in the perpendicular plane. For an incompressible
material, this is equivalent to pure shear [5]. We assume
that this operation is characterized by affinity; in other
words, the specimen retains the shape of an ellipsoid of
rotation irrespective of the elongation value. The mag-
netic field inside an ellipsoid placed in a magnetic field
is also uniform, and therefore the material deformation
is uniform as well. In this case, the free energy func-
tional is the product of the corresponding energy den-
sity and the specimen volume.

Consider an elastic energy. The measure of defor-
mation for a sphere of radius R is the ratio λ = a /R,
where a is the major semiaxis of the formed ellipsoid.
Thus, for an “unperturbed” specimen, λ = 1. Elasticity
of rubbers is well described by the Mooney–Rivlin
potential, which for the uniaxial deformation has the
form [7]

(3)

where the coefficient C1 has the sense of the rubberlike
elasticity modulus, whereas the initial shear modulus of
the material is described by the formula µ = 2(C1 + C2).

Following [6], we can write the magnetic free
energy of a body in a constant magnetic field (which is
assumed to be uniform and a given ferroelastic material
is assumed to exhibit isotropic magnetization) in the
form

(4)

where H0 is an external field and H is the field inside the
specimen.

The external and internal fields for an ellipsoid are
related as follows [6]:

(5)

For uniaxial deformations, the component of the tensor
of demagnetization coefficients along the direction of
the ellipsoid elongation is

(6)

In the magnetic equation of state (2), integral (4) can
be taken in quadratures. Summing the result of the inte-
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gration and elastic potential (3), we arrive at the function

(7)

whose arguments are the dimensionless elongation and
the applied field strength. We also introduced the nota-
tion p = m/kBT. Differentiating (7), we arrive at the
equilibrium equation

(8)

Relationships (8), (2), (5), and (6) determine the func-
tion λ(H0) characterizing the magnetodeformation
effect. For small elongations (λ – 1 ! 1), equation (8)
yields

(9)

In fact, this expression is equivalent to the estimates
given by (1). If λ > 1, the demagnetizing factor
decreases, according to (6), by the law N = (3/2λ3)lnλ,
and the equation for the magnetodeformation effect
takes the form

(10)

where the exponent α ranges from 4 (at C1 ! C2) to 5
(at C1 @ C2).

For a typical magnetization value M0 ~ 100 G, the
difference between H and H0 in fields with a strength of
several kOe becomes insignificant and the Langevin
function should exhibit saturation. Let us estimate a
characteristic range of the values of the elastic moduli
of ferroelastic materials. In a “hard” system, where the
limiting value of the magnetodeformation effect is
λ − 1 & 10–2, equation (9) yields µ * 106 dyn/cm2 ≈ 1 at.
In the “soft” system, where the elongation can reach
λ * 2, equation (10) yields µ & 5 × 103 dyn/cm2 ≈ 5 ×
10–3 at.

To compare our calculated data (see figure) with
experiment, we used the data on elongation λ(H0) of a
silicon-based ferroelastic sphere with a diameter of
6 mm in a uniform field [4]. The theoretical curve was
obtained by the numerical solution of equation (8) with
due regard for relationships (5) and (6). The material
parameters were obtained by fitting. In the first variant
of the calculation (solid line in figure), we used the
value C2 = 0 (the empirical rule for swollen rubbers [7])

and obtained /C1 = 57.6 and p = 3.5 × 10–4 Oe–1. At
M0 ≈ 100 G, the initial shear modulus was determined
as µ = 2C1 ≈ 3.5 × 10–4 at. In the second variant, both
C1 and C2 were varied; the corresponding curve of the
magnetodeformation effect is shown by the dashed
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line. The numerical values are M0 = 102 G, C1 = 68 and
C2 = 234 dyn/cm2, and p = 3.8 × 10–4 Oe–1; the shear
modulus is µ = 2(C1 + C2) ≈ 6 × 10–4 at. Thus, the values
of elastic moduli agree in the order of magnitude. It
should be emphasized that these values are lower by an
order of magnitude than the corresponding values for
poly(vinyl alcohol) ferrogels studied in [3].

Note that the calculated values of the parameter p
are consistent with experimental data. Assuming that
single-domain particles have a spherical shape, we can
use these p values to estimate the average particle diam-
eter d. By definition, p = Iv/kBT, and we obtain

d ~ ; for iron magnetization I ~ 2 × 103 G,
which yields d ~ 2.4 nm. However, it is hardly probable
that the particles can be so small. Moreover, the result
obtained is inconsistent with the value d * 10 nm indi-
cated in [4]. One of the possible explanations of this
inconsistency is the existence of the size effect typical
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The plot of λ versus H0: solid and dashed curves show the
results of calculation by equation (8), and black symbols
represent the experimental data from [4].
TE
of disperse magnetic materials, where the nonsymmet-
ric environment excludes the exchange interactions of
surface spins. As a result, the ferromagnetic part proper
(“core”) occupies only a small part of the total volume
of a solid particle.
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Effect of Ultraviolet Irradiation on the Charge State 
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Abstract—The effect of irradiation with the light from a near-ultraviolet range (NUV irradiation) on the charge
state of Si–SiO2 structures with an argon-implanted silicon dioxide layer was studied. The method of depth pro-
filing based on the measurement of high-frequency capacitance–voltage characteristics of an electrolyte–
dielectric–semiconductor system in combination with etching of the dielectric layer was used. It was estab-
lished that the NUV irradiation resulted in the recharge of positively charged amphoteric centers (formed due
to ion implantation in the silicon dioxide layer of the Si–SiO2 structures) into negatively charged ones. © 2000
MAIK “Nauka/Interperiodica”.
Various aspects of the effects caused by irradiation
of Si–SiO2 structures have been studied for many years.
In particular, the ion implantation and the UV irradia-
tion of such structures are of great interest for the study
of fundamental laws governing the formation of defects
in solids and for the use of these structures in micro-
electronics.

The purpose of this work was to study the effect of
irradiation with the light from the near-ultraviolet range
(NUV irradiation) on the state of electrically active
centers induced by ion implantation in the silicon diox-
ide layer of Si–SiO2 structures.

We studied the Si–SiO2 structures obtained by ther-
mal oxidation of KEF-5 (100) and KDB-10 (100) sili-
con wafers in wet oxygen at 950°C.1 To avoid strong
heating of the target, the 250- and 90-nm-thick SiO2
layers were cooled and implanted with low-density
argon ion beams at a dose of 1013 cm–2 and
1012−1014 cm–2, respectively, on an Eaton Nova 4206
setup. The ion energy was selected so as to provide the
maximum concentration of implanted ions in the mid-
dle of the silicon dioxide layer and was equal to 130
and 43 eV for the Si–SiO2 structures with a silicon
dioxide layer thickness of 250 and 90 nm, respectively.
The ion-implanted structures of the second type were
subjected to rapid thermal annealing at 450°C by expo-
sure for 10 s to the light of a halogen lamp in a nitrogen
atmosphere. The NUV irradiation of the specimens was
effected by the light of a DRL-250 mercury lamp (hv =
4–6 eV). The charge state of the Si–SiO2 structures was
studied by the method of depth profiling based on the
measurements of high-frequency capacitance–voltage
characteristics in the electrolyte–dielectric–semicon-
ductor system in combination with etching of the

1 The Russian trademarks for phosphorus-doped n-type and boron-
doped p-type silicon.
1063-7850/00/2602- $20.00 © 20159
dielectric layers [1]. All the measurements were made
at a temperature of 293 K.

The method of depth profiling employed allows the
flat-band potential (Vfb) to be studied as a function of
the silicon dioxide layer thickness (Figs. 1, 2). These
curves provide information on the charge distribution
in the silicon dioxide layer. The positions X of the
charge centroids in the silicon dioxide layer were deter-
mined as the thicknesses of the silicon dioxide layers
corresponding to intersection of the Vfb(dox) plots inter-
polated to zero thickness. The true values of charges
formed in the ion-implanted silicon dioxide layers were
determined from the slopes of these plots [1].

A comparison of the capacitance–voltage character-
istics measured during etching of the silicon dioxide
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Fig. 1. Flat-band potential as a function of the thickness of
a silicon dioxide layer in the (1) initial and (2) Ar-implanted
250-nm-thick Si–SiO2 structures; (2') upon 10-s-long NUV
irradiation, (2U) upon NUV irradiation in an applied electric
field (negative bias at the field electrode).
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layers of the initial and the ion-implanted Si–SiO2
structures showed that ion implantation to a dose of D =
1013 cm–2 resulted in the formation of a positive charge
with the centroid position X = (35 ± 5) nm in the vicinity
of the Si boundary in the 250-nm-thick Si−SiO2 struc-
tures [2]. In the 90-nm-thick Si–SiO2 structures, a posi-
tive charge in the vicinity of the Si boundary [with the
centroid at X = (34 ± 5) nm] appeared beginning with the
irradiation dose D = 1013 cm–2 and increased with the
implantation dose (Fig. 2).

The NUV irradiation of the initial (unimplanted)
Si−SiO2 structures produced no noticeable changes in
the charge state of the silicon dioxide layer. The NUV
irradiation of ion-implanted Si–SiO2 structures without
application of an external electric field resulted in the
formation of a considerable negative charge in SiO2 in
the vicinity of the Si–SiO2 boundary. The value of this
negative charge exceeded the value of the positive
charge induced by ion implantation and did not change
upon half-a-year’s storage of the irradiated specimens
at room temperature. For the 250-nm-thick Si–SiO2
structures, the total negative charge had a rather large
value; but it was not determined, because no such mea-
surements could be performed in the electrolyte–
dielectric–semiconductor system at a positive bias on
the field electrode. The negative-charge centroid
formed in the silicon dioxide layer of the structures
upon 10-s-long NUV irradiation coincided with the
positive-charge centroid formed due to ion implanta-
tion (Fig. 1). In the NUV-irradiated 90-nm-thick
Si−SiO2 structures subjected to rapid thermal annealing
at 450°C after ion implantation, a negative charge had
the centroid coinciding with the positive-charge cen-
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Fig. 2. Flat-band potential as a function of the thickness of the
silicon dioxide layer in the (1) initial and (2–5) Ar-implanted
90-nm-thick Si–SiO2 structures subjected to subsequent
rapid thermal annealing at 450°C. The irradiation doses
D (cm–2) are (2) 1012, (3) 1013, (4) 1014, (5) 1014 (at a low
ion beam current); (2'–5') the same upon NUV irradiation.
T

troid, with the absolute charge value being about twice
that of the positive charge (Fig. 2). The NUV irradia-
tion at a negative bias on the field electrode (preventing
the injection of electrons from Si into SiO2) did not
alter the charge state of the implanted structures.

Coincidence of the implantation-induced positive-
charge centroid in SiO2 with the negative-charge cen-
troid formed due to NUV irradiation, as well as an
approximately double value of the negative charge in
comparison with the positive one, indicate that both
charges are related to the same amphoteric centers. As
a result of the ion implantation involving the interaction
of Ar ions with the atomic subsystem of the SiO2
matrix, two nonstoichiometric SiOx regions are formed
in the bulk of the silicon dioxide layer—those with
x > 2 and x < 2 [2]. The oxygen-enriched region (x > 2)
is located closer to the silicon surface (because of a
greater displacement of oxygen atoms as compared to
that of silicon atoms upon their interaction with argon).
It is the formation of these nonstoichiometric regions
and the corresponding defects that explains the appear-
ance of electrically active centers during argon ion
implantation. For the oxygen-depleted region (in which
the positive-charge centroid is located upon ion implan-
tation [2]), the most probable defects are of the types of
a silicon atom coordinated with three oxygen atoms
and/or an oxygen vacancy. The defects of both types are
amphoteric centers and can be formed during ion
implantation either directly in the positively charged
state or in the neutral state with subsequent positive
charging as a result of trapping of holes formed due to
the interaction of Ar ions with the electron subsystem
of the SiO2 matrix. The absence of changes in the
charge state of the ion-implanted structure during the
NUV irradiation with applied electric field (with a neg-
ative bias on the field electrode) indicates that the
recharge of positive amphoteric centers into negative
ones during the NUV irradiation is related to the trap-
ping of electrons optically excited from Si to the con-
duction band of SiO2.

Thus, the NUV irradiation results in recharge of the
positive amphoteric centers (formed during or due to
implantation) into a negative state. This effect can be
used to design sensors based on ion-implanted Si–SiO2
structures for detecting the NUV radiation and determin-
ing the ion-implanted SiO2 regions in Si–SiO2 structures.
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Rotational Moment in Thermal Vibrations 
of a Bound Charged Particle in a Constant Magnetic Field
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Abstract—The effect of a constant magnetic field on thermal vibrations of a charged particle in a condensed
medium was theoretically studied. It is shown that the particle and its surroundings in the constant magnetic
field are subjected to a constant rotational moment, the direction of which is determined by the sign of the par-
ticle charge and the direction of the magnetic induction. The magnitude of mechanical stresses induced by this
moment in the medium is found to change in a stepwise manner upon a “phase transition” of the particle from
the bound to the free state. © 2000 MAIK “Nauka/Interperiodica”.
There are experimental indications of a pronounced
effect of extremely weak constant magnetic fields
(MFs) on the physical parameters of condensed media
[1, 2]. Unfortunately, the theory of sensitivity to weak
MFs is virtually undeveloped, because even a possible
mechanism of the effect of MFs on a condensed
medium is unknown.

In this work, we have theoretically studied the effect
of a constant MF on the thermal vibrations of a charged
particle. It is shown that the particle and its surround-
ings moving in the constant MF are subjected to a rota-
tional moment. The magnitude of mechanical stresses
induced by this moment in the medium is found to
change in a stepwise manner when the particle exhibits
a “phase transition” from bound to free state.

Let us consider a simplified model describing the
dynamics of a point particle in a spherical potential
well. In this model, the equation of vibrations has the
following form:

(1)

where r is the displacement from the equilibrium posi-
tion of a particle with mass m and charge q, κ is the
coefficient of elasticity, B0 is the induction of the con-
stant MF, E is the electric field (EF) strength, and τ is
the relaxation time. Experimental data presented in [1]
demonstrate that τ depends on the MF strength.

We may seek a solution to equation (1) in the form of

where α, β, and γ are constants, and e and the quantities
x are the spectral amplitudes of E and r, respectively,

m
d

2r

dt
2

-------- κr–
m
τ
----dr

dt
------– q

dr
dt
------ B0 qE,+×+=

x αe βe B0 γ e B0×( ) B0,×+×+=
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which satisfy the relations

(2)

Substituting formulas (2) into equation (1) and taking

into account that (e × B0) × B0 = B0(e · B0) – e , we
obtain the relationship

(3)

where Q0 =  – ω2 + iω/τ,  = κ /m, and Wc =
(q /m)B0 is the cyclotron frequency of the particle.

The field E appearing in formulas (1)–(3) is the
internal fluctuational (in particular, thermal) EF that
acts on the particle. Note that relationship (3) is essen-
tially an equation of the particle dynamics in the spectral
representation, which is more general than equation (1),
because the relaxation time τ depends on the frequency;
i.e., 1/τ = F(ω).

Let us find the ensemble-average value of the rota-
tional moment M0 related to the Coulomb forces acting
on the particle. To simplify the calculations, we will
assume that r and E are taken at the time instants t and
t' < t, respectively. In the final expression, we put

E e iωt( )exp⋅ ω,d
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∆t = t – t' – 0. In this case, we have

(4)

where * means the conjugation.
Substituting the value x0 from (3) into expression (4)

and assuming that the fluctuational EF is isotropic and
stationary and there is no correlation between orthogo-
nal components of the vector e, we obtain

(5)

where ge(ω) is the spectral density of EF and δ(ω) is the
delta function.

Finally, expression (4) yields

(6)

The spectral density ge(ω) of EF entering into for-
mulas (5) and (6) is determined by the microstructure
of the medium and is one of its basic characteristics.

In the case of thermodynamic equilibrium, accord-
ing to the fluctuation–dissipation theorem [3], the func-
tion ge(ω) is related to the relaxation time as

(7)

where θ(ω, T) = ("ω/2)coth("ω/2kT) is the average
energy of the quantum oscillator; k and " are the Bolt-
zmann and Planck constants, respectively; and T is the
absolute temperature. In what follows, we will use the
classical approximation θ(ω, T) = kT valid under the
condition "ω0 ! kT.

Thus, in the case of thermodynamic equilibrium, the
rotational moment has the following form:

(8)

Calculating integral in (8) by the method of resi-
dues, we obtain

(9)

In the case of ω0 = 0 (free particle), the integral
in (8) must be calculated with allowance for the inte-

M0 r t( ) qE∗ t'( )×=

=  q x0 ω( )e∗ ω'( ) iωt iω't'–( )exp ω ω',dd∫
∞–

∞
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∞–

∞
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ge ω( ) 3mθ ω T,( ) πq
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M0 2i
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π
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m
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ω iω∆t( )exp
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∞
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M0 2kTWc
1
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∂F ω( )
∂ω
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ω ω0=

.=
T

              

grand singularity at the point ω = 0. Taking this into
account, we derive

(10)

where τ(0) is the value of the relaxation time at low fre-
quencies.

Comparing expression (9) and (10), we obtain the
ratio of the rotational moments for the bound and free
particle:

This ratio is extremely small, because ω0τ(0) @ 1

and  & 1. Nevertheless, simple estima-

tions demonstrate that the value of the rotational
moment for a bound particle is comparable with the
rotational moment per atom in the conductor of an elec-
tric motor winding.

According to Newton’s third law, the rotational
moments under consideration will act on particles of
the surrounding medium to cause the corresponding
stresses and deformations in this medium.

A bound particle is subjected to (and induces in the
surroundings) considerably lower stresses than does the
free one. If the particle escapes from the potential well
owing to some physical reason (e.g., the resonance MF)
the stresses discussed above exhibit a stepwise rise.
Therefore, the rotational moment is an indicator of the
phase transition from bound to free particle. This tran-
sition caused by a resonance MF will probably lead to
changes in some other parameters as well, in particular,
in the specific conductivity of the medium. This is
likely the phenomenon that was observed in [4].
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New Buffer Sublayers for Heteroepitaxial III–V Nitride Films 
on Sapphire Substrates
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Abstract—It is suggested to deposit III–V nitride films onto sapphire substrates upon preliminary deposition
of a buffer sublayer of a crystalline material with a cubic structure. It is shown experimentally that the deposi-
tion of a heteroepitaxial niobium sublayer onto a (0001)-oriented sapphire substrate or a niobium nitride sub-

layer onto a (11 0)-oriented Al2O3 substrate eliminates a 30° rotation of the (0001)-oriented nitride film in the
substrate plane. The elimination of this rotation provides considerable reduction of the lattice mismatch
between the substrate and the nitride film, which, in turn, should increase the degree of crystal perfection of the
film. In addition, the planes of semiconductor nitride films become parallel to the natural cleavage planes of the
substrate. This fact provides for the possibility of manufacturing a heterolaser with a Fabry–Perot resonator, in
which the role of the mirrors is played by natural cleavage planes of the film. © 2000 MAIK “Nauka/Interpe-
riodica”.

2

One of the major problems encountered in the cre-
ation of semiconductor devices based on heteroepitax-
ial III–V nitride films is a high defect concentration
(10–8–10–10 cm–2) inherent in their crystal structures,
which is caused by a considerable lattice mismatch
between the surface planes of the substrate and the
deposited semiconductor film. For the substrates used
nowadays for the growth of epitaxial (0001) GaN films,
this mismatch amounts to 16% for (0001) Al2O3, 9.5%
for MgAl2O4, and 3.5% for SiC substrates. For the
growth of epitaxial films on (0001) Al2O3 substrates,
the lattice mismatch can be reduced with the aid of a
heteroepitaxial buffer sublayer between the working
surface of the substrate and the semiconductor nitride
film. Usually, these buffer sublayers are prepared from
materials with a wurtzite-type structure, such as GaN,
AlN, or ZnO [1].

The pronounced mismatch of the lattice parameters
during the heteroepitaxial growth of hexagonal materi-
als with the wurtzite-type structure on (0001) Al2O3

substrates is explained by the fact that the matching
(0001) planes of the Al2O3 substrate and the nitride film
are rotated by 30° with respect to one another, so that

the 〈 〉  directions of the Al2O3 substrate are parallel

to the 〈 〉  directions of the nitride film. The transla-

tion along the 〈 〉  Al2O3 direction equals 2.747 Å,
whereas the translation, e.g., along the 〈1120〉  GaN
direction, equals 3.189 Å.

Below we suggest a method that eliminates the 30°
rotation of the (0001) heteroepitaxial III–V nitride film

1100

1120

1100
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with respect to the (0001) or ( ) working surface
of the sapphire substrate.

We paid attention to the fact that elimination of the
30° mutual rotation between these planes considerably
reduced the lattice mismatch. Indeed, the lengths of two

translations along 〈 〉  Al2O3 equals 5.494 Å, which
almost (to within 0.5%) coincides with the translation

along 〈 〉  GaN (equal to 5.52 Å). The sum of two

translations along 〈 〉  Al2O3 (9.52 Å) almost (to
within 0.5%) coincides with the length of three transla-

tions along 〈 〉  GaN.

Earlier, we proposed to eliminate the 30° rotation
with the aid of a buffer sublayer of a cubic crystalline
material, which, for the heteroepitaxial growth on the

(0001) or ( ) Al2O3 substrates, is characterized by
the {111} orientation of the surface, with the 〈112〉
direction in this plane being parallel to the 〈 〉
directions located in the working surface of the Al2O3
substrate. The (0001) plane of a heteroepitaxial film
with the wurtzite structure grown on this buffer sub-

layer and the 〈 〉  directions in this plane are paral-
lel to the {111} planes and the 〈112〉  directions of the
buffer sublayer, respectively.

In other words, the use of a buffer sublayer of such
a cubic material provides for the following orienta-
tional relationships:

(a) (0001) Al2O3 ||{111}c ||(0001)w;

(b) ( ) Al2O3 ||{111}c ||(0001)w;

1120

1100

1100

1120

1120

1120

1100

1100

1120
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and, in both cases, 〈 〉  Al2O3 ||〈112〉c ||〈 〉w.
The buffer sublayer from such a cubic material consid-
erably reduces the mismatch between the lattice param-
eters of the planar networks of the contacting planes,
e.g., those of (0001) Al2O3 and {111} of the buffer sub-
layer, on the one hand, and the {111} of the buffer sub-
layer and (0001) of the wurtzite-type nitride film (e.g.,
GaN), on the other hand. With this aim, the lattice
parameter of the cubic unit cell of the material of the
buffer sublayer a should be chosen so as to ensure that
the translation along the 〈112〉  direction in this unit cell
will be close to a multiple value of the translation along

〈 〉  Al2O3, i.e., a  = n × 2.747 Å, where

2.747 Å is the length of the translation along 〈 〉
Al2O3 and n is an integer, whence a = 1.125n (Å). Since
the lattice parameters of hexagonal Ga, In, and Al
nitrides and related solid solutions range within
3.11−3.25 Å and the cubic materials available in prac-
tice have the lattice parameters a ranging within
2.5−13 Å, it is possible to prepare a buffer sublayer
from a material with the lattice parameter a close to
a = 1.125n (Å), where n = 3, 4, 6, or 8. For n equal to 5,
7, or 9, the translations along the 〈112〉  and 〈110〉  direc-
tions of the {111} surfaces of the buffer sublayer are

not multiples of the translations along the 〈 〉  and

〈 〉  directions of the semiconductor nitride films.
Note that, in growing a heteroepitaxial semiconductor
nitride film with a polytype structure of the zinc blende
type, the material of the buffer sublayer can also be
chosen proceeding from the conditions formulated
above.

Elimination of the 30° rotation renders the natural
cleavage planes of sapphire and semiconductor nitride
parallel to one another. This circumstance allows a
Fabry–Perot resonator for a heterolaser to be manufac-
tured using natural cleavage planes of the films.

A heteroepitaxial buffer sublayer can be prepared
from cubic materials having crystal lattices of various
types such as α–Fe, NaCl, and spinel. Buffer sublayers
can also be prepared from dielectrics (e.g., MgO,
In2CdO4), conducting materials (niobium, hafnium,
scandium, and titanium nitrides and carbides and
related solid solutions), and metals (niobium and tanta-
lum). A buffer sublayer prepared from a conducting
material can simultaneously play the role of one of the
contacts (electrodes) in a semiconductor device.

The use of several buffer sublayers may provide still
better matching of the lattice parameters and thermal
expansion coefficients of a sapphire substrate and a
semiconductor film.

We started the experimental studies with the aim of
checking this suggestion. Our experiments confirmed
that a heteroepitaxial buffer sublayer prepared, e.g.,
from {111} Nb eliminated the 30° rotation of the
(0001) AlN film with respect to the (0001)-oriented
sapphire substrate. In this case, the lattice mismatch

1100 1100

1100 2 3

1100

1100

1120
TE
along the mutually parallel directions 〈 〉
Al2O3 ||〈112〉  Nb and 〈 〉  Al2O3||〈110〉  Nb was less
than 2%. A thin {111} niobium nitride film formed sub-
sequently on the niobium layer surface, and the (0001)
AlN film deposited onto the niobium nitride had the
contact along the flat atomic planes having the same
symmetry and almost the same (to within 0.1%) trans-

lations. The 30° rotation between the 〈 〉  Al2O3 and

〈 〉  AlN directions in the ( ) plane of the
Al2O3 substrate was eliminated with the aid of a {111}
NbN buffer sublayer. In this case, the lattice mismatch

along the mutually parallel 〈 〉  Al2O3 and 〈112〉
NbN directions was less than 2% and the contacting
heteroepitaxial (111) NbN and (0001) AlN layers had
almost identical flat atomic lattices.

The heteroepitaxial Nb, NbN, and AlN films were

deposited onto the (0001) and ( ) substrates by the
method of magnetron sputtering. The orientational
relationships, determined by the method of X-ray dif-
fraction, were as follows:

(0001)〈1 00〉Al2O3||{111}〈112〉NbN||(0001)〈1 00〉 AlN

and

(11 0)[1 00]Al2O3||{111}[112]NbN||(0001)[1 00] AlN.

It should be noted that the orientational relationships
obtained for the heteroepitaxial (111) Nb film on the
(0001) Al2O3 substrate and the (111) NbN film on the

( ) Al2O3 substrate are consistent with the data
reported in [3] and [4], respectively.

Thus, it is shown that the 30° rotation of the semi-
conductor (0001) nitride film with respect to the

(0001)- or ( )-oriented sapphire substrate can be
eliminated with the aid of a buffer sublayer made from
a cubic material with the unit cell parameter close to
a  = 1.125n (Å) and with the 〈112〉  direction in the

{111} surface parallel to the 〈 〉  direction of the
substrate surface.
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Abstract—Generation of electromagnetic waves by electrons orbiting in crossed radial electrostatic and axial
magnetic fields was studied. Frequencies and increments of the generated waves were calculated. The wave
increments increase with the frequency for sufficiently large values of the radial electrostatic field strength.
Strong radial electrostatic fields may considerably magnify the frequencies of waves generated in the systems.
© 2000 MAIK “Nauka/Interperiodica”.
Previously, we theoretically studied the generation
of electromagnetic waves by electrons rotating about
the axis of a cylindrical resonator in a radial electro-
static field or in crossed radial electrostatic and axial
magnetic fields [1–3]. The consideration was restricted
to cases where electrons generate and enhance free
intrinsic oscillations that are uniform along the resona-
tor axis of the cylindrical resonator. Frequencies ω of
the generated waves were found to satisfy the condition
ω ≤ mv/r, where r is the radius of the electron layer, v
is the azimuthal velocity of electrons, and m is the har-
monic number (azimuthal wavenumber). According to
this condition, the frequencies of generated waves
increase with the wave number m. However, the incre-
ments of these waves rapidly decrease with increasing
m. The latter circumstance hinders the obtaining of
high frequencies by using large m values.

In this work, the generation of electromagnetic
waves by electrons orbiting in crossed radial electro-
static and axial magnetic fields was studied in the case
of nonzero axial wavenumbers k (i.e., there are waves
running along the resonator axis). When electrons are
absent, there are no waves with the frequency ω, axial
wavenumbers k, or azimuthal quantum numbers m sat-
isfying the above condition in the resonator (the reso-
nator is close). It is shown that, in the presence of elec-
trons, oscillations can occur with the frequencies ω .
mv/r and the increments increasing with m. This
allows us to hope that high-frequency (submillimeter)
oscillations can be obtained in the system studied under
the conditions described below.

In the cylindrical coordinates r, ϕ, z, the resonator is
represented by a cavity (a < r < b) unlimited along the
z axis and limited by metal on the surfaces r = a and
r = b. The potential difference between the central rod
or wire (r < a) and the sheath (r > b) determines the
constant radial electrostatic field E(r) (∂E/∂ϕ = 0,
∂E/∂z = 0). The magnetic field B, which is constant in
1063-7850/00/2602- $20.00 © 0165
time and space, is directed along the z axis. The elec-
tron density ne undisturbed by the electromagnetic field
depends only on the space coordinate r:

(1)

Using the nonrelativistic equations of motion with
neglect of the constant electric and magnetic fields
induced by electrons, we obtain expressions for the
electron rotation velocity

(2)

where ωc = eB/mec is the electron gyro frequency; e
and me are the charge and mass of an electron, respec-
tively; and c is the velocity of light. Assuming that
dependence of the electromagnetic fields and the elec-
tron density and velocity perturbations on the coordi-
nates ϕ, z, and time t is described by the exponential
term exp[i(mϕ + kz – ωt)], from the Maxwell equations,
linearized continuity equation, and linearized nonrela-
tivistic equation of motion of electrons we derive three
equations for the electric field components Er , Eϕ, and
Ez of a wave in the resonator cavity. An analysis of this
set of equations leads to the following relationships
under the condition that ω ~ mv/r:

(3)

Assuming these relationships to be valid, which makes
it possible to neglect the field component Ez in two
equations of the set, we introduce an error of the order
of v2/c2 that falls within the limits of accuracy deter-
mined by neglect of the relativistic effects. The equations
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for the components Er and Eϕ in the region a < r < b have
the final form

(4)

(5)

where

Equation (5) is valid under the condition

(6)

Since the axial wavenumber k will not enter into the
dispersion equation, inequality (6) can always be satis-
fied by proper choice of k (|k | . |ω/c |). Taking into
account that the electron layer is narrow, that is,

(7)

equation (5) can be solved as described in [1, 2] by the
method of successive approximations in the region r– ≤
r ≤ r+. As a result, to within the first-order terms in the
small parameter δ, we obtain the boundary conditions
relating the fields in the region r < r– to the fields in the
region r > r+:

(8)
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In deriving equations (8) and (9), we took into account
that

(10)

Since the axial component of the unperturbed electron
velocity is equal to zero (vϕ ≡ v, vz = 0), inequality (10)
means that electrons interact with the wave under condi-
tions of Cherenkov resonance. In the regions a ≤ r ≤ r–
and r+ ≤ r ≤ b, the Langmuir frequency Ω is equal to
zero and solutions to equation (5) have the form

(11)

where A± and B± are the integration constants in the
regions r > r+ and r < r–, respectively. Joining the solu-
tions in the region a ≤ r ≤ r– with those in the region
r+ ≤ r ≤ b by using boundary conditions (8), and the
solutions in these regions with those for the fields in a
metal (taking into account that the component Eϕ is
continuous; the component Er has a jump at the bound-
aries r = a, r = b; and the field in a metal decreases
exponentially), we arrive at the dispersion equation

(12)

where

(13)

η = (r–/a)2|m | > 1; ζ = (r–/b)2|m | < 1; and σa and σb are
the conductivities of the metal wire and resonator wall,
respectively. The inequality in (13) is satisfied due to
large values of the metal conductivities σa and σb . It
follows from equation (13) that the quantity ∆
decreases rapidly with increasing |m | at large |m | val-
ues. According to condition (10), the wave frequency is
determined by the relationship

(14)

that is, it increases linearly with the modulus of the
wavenumber m. The wave increment Im(ω) = Im(ωm) is
determined by equation (12), which always provides
solutions increasing with time. For F > 0, the growth of
waves is caused by dissipation effects (related to finite
∆ values). The increments of these waves are small
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and decrease with increasing modulus of the wavenum-
ber m. For F < 0, the increments are not related to the
wave dissipation and increase with |m | (Im(ω) ~ |m |1/2).
For this growth to take place, according to formula (9),
the wire must carry a positive potential E > 0 and the
quantity 2eE(r–)/mer– must be greater than the average

square  of the Langmuir frequency. Therefore, the
radial electrostatic field can considerably increase the
frequency of the generated waves independently of the
magnetic field strength.

Ω2
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REFERENCES
1. V. V. Dolgopolov, Yu. V. Kirichenko, Yu. F. Lonin, and

I. F. Kharchenko, Zh. Tekh. Fiz. 68, 91 (1998) [Tech.
Phys. 43, 959 (1998)].

2. V. V. Dolgopolov, M. V. Dolgopolov, and Yu. V. Kir-
ichenko, Izv. Vyssh. Uchebn. Zaved., Radioélektron. 40,
16 (1997).

3. V. V. Dolgopolov, Yu. V. Kirichenko, and I. F. Kharch-
enko, Izv. Vyssh. Uchebn. Zaved., Radioélektron. 42, 33
(1999).

Translated by R. Tyapaev
0



  

Technical Physics Letters, Vol. 26, No. 2, 2000, pp. 168–169. Translated from Pis’ma v Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 26, No. 4, 2000, pp. 72–76.
Original Russian Text Copyright © 2000 by Lepikh, Smyntyna.

                            
Functional Materials Based on the Complex Compounds
of Germanium

Ya. Lepikh and V. A. Smyntyna
Odessa State University, Odessa, Ukraine

Special Design Bureau, Element Company, Odessa, Ukraine
Received March 23, 1999; in final form, October 5, 1999

Abstract—A new class of functional materials based on the coordination compounds of germanium is devel-
oped and studied. The materials are capable of forming transparent films from aqueous solutions at room tem-
perature and exhibit high technological properties. Physicochemical and electrophysical characteristics of some
samples are presented. © 2000 MAIK “Nauka/Interperiodica”.
Substantial improvement of parameters and creation
of new classes of the devices of functional electronics
can be achieved by development of novel functional
materials with predetermined properties [1–3]. Germa-
nium compounds are among the substances that attract
the attention of researchers in connection with this task.
It was demonstrated, for example, that cadmium
thiogermanate Cd4GeS6 is a rather effective photocon-
ductor and piezoelectric [4]. Germanium coordination
compounds with organic molecules are much less stud-
ied in this respect, although the structure and physico-
chemical properties of materials based on these com-
pounds are substantially more versatile than those of
inorganic semiconductors.

We have studied the physicochemical and electro-
physical properties of several mono- and heteroligand
germanium coordination compounds with organic
polybasic acids.

Germanium complex compounds—germanium
complexonates (GCs)—with intramolecular hydrogen
bonds and isomerism (tautomerism), such as germa-
nium complexes with oxyethylidenediphosphonic
(Oedph) or diethylenetriaminepentaacetic (Dtpa) acids,
form transparent films with high transmittance under
certain conditions. It was demonstrated that the physic-
ochemical and optical properties of GCs can be modi-
fied by forming various salts with ions of other metals
and organic cations (tartaric acid, NH4F · HF, NaF,
ethyl alcohol, etc.).

Study of the physicochemical parameters of GC
films showed that they can be classified as supermolec-
ular systems with special properties, in which the
molecular structure determines, in particular, the opti-
cal characteristics. Thus, the properties of the films
(e.g., optical absorption) can be controlled by selecting
certain types of structures.

The GC-based materials exhibit high technological
properties. They are capable of forming transparent
1063-7850/00/2602- $20.00 © 20168
films from aqueous solutions at room temperature,
which is apparently explained by certain features of
their molecular structure (the presence of a germanium-
containing intracomplex anion capable of binding to
both protons and other cations). These molecular sys-
tems can also take part in intermolecular interactions
and in polymerization reactions. The laws of film for-
mation and the dependence of this process on the com-
position, the molar ratio of the components, and other
factors were determined. The materials are stable in air,
possess sufficient mechanical strength, and exhibit high
adhesion to the surface of substrates made from differ-
ent materials used in microelectronics.

The thickness of GC films was varied from 0.5 to
20 µm. The films with a thickness of up to 1 µm possess
a fine-grained structure and an optically smooth sur-
face. An increase in the thickness leads to changes in
the film structure, as manifested by the formation of
crystalline macrodomains with a size of several tens of
microns and the formation of domainlike areas with an
ordered structure. The existence of domains allows one
to suggest that GCs possess piezoelectric properties.

Data on the transmittance of some synthesized GC
films measured using an SF-16 spectrophotometer are
presented in Tables 1 and 2.

The thickness of the films deposited onto substrates
made of a soda glass was 5 µm. As is seen, the film trans-
mittance increases by 1–6% in the 1100–1200 nm wave-
length range. The films of a Ba–Ge–Dpta compound
exhibits a relatively uniform transmission spectrum in
the wavelength range studied, with the maximum at
λ = 1200 nm; for Ge–Oedph–NH4F · HF, the transmit-
tance has an additional maximum at λ = 1030−1040 nm,
which proves the possibility of controlling the optical
parameters of GCs by introducing various admixtures
in the course of synthesis.

If there is only a Ge–Oedph complex in the solution,
the electric resistance of the optically transparent GC
000 MAIK “Nauka/Interperiodica”
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films is higher than 1010 Ω. The introduction of com-
pounds such as NH4F · HF and NaF into the solution
decreases the resistance of GC films down to 1.5 × 108 Ω.
The introduction of other inorganic substances, such as
BaCO3, leads to a slight increase in the electric resis-
tance. The permittivity of the films varied within ε = 3–8
depending on the compositions of the GCs, which
allows one to use the material in UHF devices.

The results of the study of GC films indicate that
these materials can be used in optoelectronics and
acoustooptics, which is proved by the experimental
prototypes of new optical devices.

Table 1.  Transmission spectrum of Ba–Ge–Dtpa film

Wavelength, 
nm

Transmit-
tance, %

Wavelength, 
nm

Transmit-
tance, %

316 98.5 900 99.5

330 98.5 920 99.5

340 98.5 940 99.5

400 99.5 960 99.5

500 99.5 980 99.0

510 100.0 1000 99.0

520 100.0 1010 98.0

530 100.0 1020 98.0

540 100.0 1030 98.0

560 100.0 1040 99.0

580 99.5 1050 98.5

600 99.0 1060 97.5

620 99.0 1070 98.0

640 99.0 1080 98.0

660 99.5 1090 97.5

680 99.5 1100 100.0

700 100.0 1110 98.0

720 100.0 1120 99.0

740 100.0 1130 100.0

760 100.0 1140 101.0

780 100.0 1150 100.5

800 100.0 1160 102.5

820 100.0 1170 100.0

840 100.0 1180 101.0

860 100.0 1190 101.0

880 100.0 1200 102.0
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Table 2.  Transmission spectrum of Ge–Oedph–NH4F · HF film

Wavelength, 
nm

Transmit-
tance, %

Wavelength, 
nm

Transmit-
tance, %

316 98.5 900 99.0

330 98.5 920 99.5

340 98.5 940 99.5

400 100.0 960 99.5

500 100.0 980 99.0

510 100.0 1000 99.0

520 100.0 1010 98.0

530 100.0 1020 98.0

540 100.0 1030 107.0

560 100.0 1040 107.0

580 100.0 1050 98.0

600 99.5 1060 100.0

620 99.0 1070 98.0

640 99.0 1080 98.0

660 99.0 1090 97.5

680 99.5 1100 102.0

700 100.0 1110 98.0

720 100.0 1120 99.0

740 100.0 1130 100.0

760 100.0 1140 101.0

780 100.0 1150 102.0

800 99.5 1160 102.5

820 100.0 1170 103.0

840 100.0 1180 104.0

860 100.0 1190 104.5

880 100.0 1200 103.0
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Abstract—A model of the initial stages of electric breakdown in crystals is suggested, which is based on the
mechanisms of electron transitions in the valence band of a dielectric. © 2000 MAIK “Nauka/Interperiodica”.
The main phases of breakdown, namely, the loss of
dielectric strength and the destruction of material, have
been investigated in sufficient detail (see, for example,
[1, 2]). However, the initial stages of breakdown in solid
dielectrics involving the formation of streamer dis-
charges (glow channels of high conductance) and partial
breakdown have yet to be studied. In particular, one still
fails to distinguish the glow of streamer discharge
against the background of plasma glow in the breakdown
channel [3]. The crystallographic orientation of break-
downs in ionic crystals is not entirely clear [4–6].

It was the objective of this study to construct a
model of the initial stages of breakdown.

The main laws of partial breakdown in alkali-halide
crystals in pulsed and constant electric fields are as fol-
lows [1–9]:

1. The breakdown in the case of alkali-halide crys-
tals comes from the positively charged electrode (anode
breakdown).

2. In LiF and NaCl crystals, the breakdowns are ori-
ented in the 〈110〉  direction, while in the KCl, KBr, and
RbCl crystals, they are oriented in the 〈100〉  direction.

3. The values of bulk-average threshold field inten-
sities of partial breakdown decrease in the series
LiF > NaCl > KCl > KBr > RbCl and amount to
~105−106 V/cm. The velocity of motion of the break-
down channel reaches ~107–108 cm/s.

A model of the initial stages of breakdown may be
provided by the mechanism of formation of a channel
of electron excitation (streamer) in the crystal, based on
the notions of the band structure of dielectrics and the
Auger electron transitions. This approach may be pro-
vided by the observed correlation between data on the
orientation of breakdowns in crystals of LiF, NaCl
(〈110〉  direction), KCl, and KBr (〈100〉), and the band
structure of these crystals.

For LiF and NaCl, the 2p energy levels of cations in
the valence band of the crystal lie much lower than the
3p energy levels of anions (~40 eV lower for LiF and
~25 eV lower for NaCl). The figure gives the position
of single-electron energy levels for NaCl, KCl, and
1063-7850/00/2602- $20.00 © 0170
KBr crystals [10]. For KCl, the 3p energy level of cat-
ions is ~10 eV lower than the 3p energy level of Cl– ions
(see Fig. 1c). In a KBr crystal, the 3p energy level for
K+ ion is located ~1.5–2 eV lower than the 4p level for
Br– ion (see Fig. 1e).

An external field applied to a dielectric produces a
band bending with a maximum value in the vicinity of
the electrode inhomogeneity. One can assume that the
streamer motion begins with the appearance of two
holes on the 3p level of the Cl+ ion (see Fig. 1b). These
holes may form, for example, as a result of interatomic
Auger decay of a Na++ 2p-hole according to the scheme
[11, 12]

Na++(2p)–1  Cl+(3p)–2 + e. (1)

A further streamer motion is associated with the relax-
ation of these holes and injection of electrons into the
conduction band. In the case of LiF and NaCl crystals,
the decay of holes cannot proceed from the low-lying
2p energy levels of the cation. Most probably, hole
relaxation proceeds from the neighboring Cl– anion
arranged in the 〈110〉 direction and, possibly, along two
pathways: first, by an interatomic Auger transition with
charge transfer from the 3p level of Cl– (transition 1) and
the subsequent injection of an Auger electron into the
conduction band according to the scheme

Cl–(3p)  Cl+(3p)–2 + e; (2)

second, by a resonance transition of an electron from
the 3s level of Cl– to the 3p level of Cl+ (transition 2)
with the subsequent interatomic Auger decay of the 3s-
hole of Cl0 according to the scheme

Cl0(3s)–1  Cl+(3p)–2 + e. (3)

It is of interest to estimate the value of the field
strength necessary for transitions 1 and 2. The probabil-
ity of transition 1 becomes nonzero provided that the
minimum energy gap between 3p levels of neighboring
ions (see Fig. 1b) is ~10 eV. This energy is required to
transfer an Auger electron to the conduction band. In
order to realize the resonance transition of an electron
from the 3s level of Cl– to the 3p level of Cl+, one must
2000 MAIK “Nauka/Interperiodica”
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raise the 3s level by ~12 eV [10]. Given the average dis-
tance between neighboring atoms in the lattice of ~3 Å
(the distance between Cl– – Cl– is ~4 Å), the external
field intensity must be ~(2.5–3) × 108 V/cm. This level
of field strength (exceeding the breakdown values by
two to three orders of magnitude) may only be realized
in the vicinity of the electrode inhomogeneity or at the
end of the conducting channel. In a vacuum diode,
explosive electron emission on electrode microinho-
mogeneities proceeds at an average field value of
106 V/cm; in so doing, it is assumed that fields of
~108 V/cm are required for the effect to take place [13].

Apparently, a factor of critical importance for the
increase in the field strength on electrode inhomogene-
ities is the absence of the shunting effect of surface cur-
rents [9]. The effect of delay of surface currents is
attained for a high value of the rate of field rise
(~1012 V/cm s).

One must further take into account that two holes on
a chlorine ion form an effective Cl+ charged center. The
e+ charge at a distance of 3–4 Å produces a field
strength of ~3 × 107 V/cm, which increases to ~ 3 ×
108 V/cm for 1 Å, thus providing for additional electric
fields.

Note that electric fields as high as ~108 V/cm are
required in order to realize the suggested model. Possi-
bly, in case the energy levels of filled p-orbitals of anion
increase on the energy scale, lower values of the field
strength would be required in the field of the neighbor-
ing hole. This is apparently associated with the fact
that, out of three orbitals of the p-shell, only the orbital
oriented in the direction of the hole takes part in the
charge transfer. The effective distance over which the
hole field acts upon the electron of the given orbital is
less than the interatomic distance, and, as a result, the
necessary (10–20 eV) increase in the orbital energy
value is provided for.

In KCl and KBr crystals, the relaxation of holes on
Cl+ and Br+ ions apparently proceeds through the 3p
levels of the cation. For a resonance transfer of an elec-
tron, the 3p level of K+ in KCl must be raised by ~12 eV
and in KBr by ~2–3 eV (see Fig. 1e). The subsequent
relaxation of the hole on K++ in a KCl crystal possibly
proceeds in two ways (analogous to those considered
above in the case of NaCl), namely, by interatomic
Auger decay from the 3p level of Cl– (transition 1) or
by a resonance charge transfer from the 3s level of Cl–

with the subsequent interatomic Auger decay of the
3s-hole (transition 2; see Fig. 1d). For a KBr crystal, the
3p-hole of K++ ion relaxes by way of Auger decay from
the Br– ion.

In this case, the direction of streamer motion for
KCl and KBr crystals corresponds to the 〈100〉  crystal
orientation.

It follows from this model that the hole relaxation
may proceed only in the direction of the negative elec-
TECHNICAL PHYSICS LETTERS      Vol. 26      No. 2      200
trode. This is confirmed by the anode character of
breakdown. 

In alkali-halide crystals, the propagating streamer
channel produces free electrons and holes. The lifetime
of electrons is short, ~10–10–10–11 s. However, an elec-
tron-hole recombination is accompanied by the forma-
tion of an exciton with energy levels in the forbidden
band and a lifetime of ~10–8 s. An electron captured to
exciton states is readily transferred to the conduction
band of the dielectric; this maintains a high level of
electron number density along the streamer channel. It
appears, however, that in the presence of ~106–107 V/cm
fields, a greater part of the charge carriers are immedi-
ately accelerated to the energies of interband ioniza-
tion. This inference may be supported by the fact of low
intensity of exciton glow against the background of
glow of the discharge plasma.

Therefore, the suggested model of the initial stages
of partial breakdown based on electron transitions in
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Fig. 1. Schematic diagrams showing (a, c, e) the ion energy
levels in crystalline NaCl, KCl, and KBr and (b, d, f) the
band structure of crystals in the presence of a strong electric
field. Ec and Ev denote the energy level of the conduction
band bottom and of the valence band top, respectively;
(1, 2) possible electron transitions: (a, b) NaCl, (c, d) KCl,
(e, f) KBr. 
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the valence band of a crystal provides an adequate
explanation for the available experimental facts related
to the electrode and crystallographic orientation of
breakdowns. The high rate of field rise (~1012 V/cm s)
rules out the possibility of the shunting effect of surface
currents, as a result of which the value of field strength
at the conducting inhomogeneities may reach the nec-
essary level (~108 V/cm).
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Abstract—A nonlinear conservative Lyapunov system is analyzed, and satisfactory agreement between the
analytical solution and the results of numerical analysis is obtained. Oscillation spectra of a nonautonomous
nonlinear system that is close to the Lyapunov one are discussed. © 2000 MAIK “Nauka/Interperiodica”.
It is well known [1] that the discrete Fermi transfor-
mation is characterized by low resolution in detecting
the fine structure of a spectrum. An analysis of the
oscillation spectrum by parametric methods [2], which
require a pilot sequence of solutions, also gives no
means of separating components with close frequen-
cies from other quasiperiodic oscillations. For these
reasons, we have used a method for calculating param-
eters of the spectral components based on the approxi-
mation of the pilot sequence by a first-order trigono-
metric polynomial [3] that makes it possible to increase
the resolution.

Consider the equation of a conservative nonlinear
Lyapunov system

(1)

and go over to the new argument

, (2)

where h2, h4, … are the constants to be calculated. In
terms of this new argument, equation (1) acquires the
form

(3)

A solution to this equation is sought in the form of a
series [4]

(4)

where x3(τ), x5(τ), … are periodic functions of the
argument τ with the period 2π that satisfy the initial

d
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dt
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conditions

(5)

In this case, we have

(6)

and the periodicity condition (i.e., the condition that the
coefficient of cosτ is equal to zero) yields the value

(7)

Then, taking into account the initial conditions (5), we
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δ = 0.0491

δ = 0.0492

δ = 0.0493

Fig. 2.
obtain from equation (6) that

(8)

The function x5(τ) satisfies the equation

(9)

which provides the equality

(10)

Considering only the solutions found, we obtain the
function

(11)

where

with the period

(12)

In addition, we have solved equation (8) numeri-
cally by the fourth-order Runge–Kutta method with a
step of 0.05 for various initial conditions W. Figure 1
shows the amplitudes of the first and the third harmon-
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ics as functions of the argument W derived in an analyt-
ical form (solid lines) as compared to those obtained
numerically (dashed lines). Estimates show that the
period obtained numerically is close to that derived
analytically. Feigenbaum [5] derived the equation

(13)

with constant coefficients δ ! 1 and b < 1 (b = 0.9). Fig-
ure 2 displays the time diagrams calculated for δ =
0.0493, 0.0492, and 0.0491 (left panels) and the corre-
sponding spectra (right panels). An analysis of the time
dependence demonstrates that, in relation to instability
of the transient processes, in the nonlinear system stud-
ied an amplitude modulation arises that results in the
appearance of side components in the spectrum.
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Abstract—A study is made of the Cherenkov generation and dissipation of the energy of magnetoacoustic
vibrations in a flat metal layer located in the field of two traveling waves of current. It is demonstrated that the
temperature field in the layer is in fact nongradient, and the heating rate is much higher than that in the case of
previously studied mechanisms. © 2000 MAIK “Nauka/Interperiodica”.
A promising way of the thermal and acoustic treat-
ment of conducting materials is by resonance excitation
of sound vibrations in these materials against the back-
ground of a constant strong magnetic field [1, 2].

The purpose of this work was to investigate the
acoustic and electromagnetic fields in a homogeneous
nonmagnetic flat layer (µ = 1) with the thickness 2z1
and specific conductivity σ, which are excited in the
Cherenkov mode by traveling current-density waves
arranged symmetrically relative to the plane z = 0,

(1)

in the presence of a sufficiently strong constant and uni-
form magnetic field B = (B, 0, 0). Here, ω/k0 = v is the
phase velocity of the wave, which exceeds one of the
characteristic velocities of propagation of acoustic per-
turbations. It is assumed that the layer is located in a
“light” medium (for example, a gas) possessing the
electromagnetic properties of vacuum, under condi-
tions of convective heat exchange with this medium.

1. SOLUTION 
OF THE VISCOELASTIC PROBLEM

The initial set of equations of magnetoelasticity has
the form

(2)

Here, u is the displacement vector of a point in the
medium; c⊥  and c|| denote the rate of propagation of
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longitudinal and transverse acoustic waves, respec-
tively; ca is Alfvén’s velocity; b is the magnetic field
perturbation; A is the vector potential of the field; and
the coefficients γ⊥  and γ|| are expressed in terms of the
coefficients ξ of bulk viscosity and η of shear viscosity
by the formulas γ|| = (ξ + 4η /3)/ρ and γ⊥  = η /ρ. With
due regard for the fact that, in solids, ca ! c⊥  < c|| even
at B ~ 10 T, we introduce the “longitudinal” u|| and
“transverse” u⊥  components of the displacement vector
u = u⊥  + u|| such that divu⊥  = 0 and rotu|| = 0 to derive
the following set of equations equivalent to (2):

(3)

(4)

(5)

On the surface of a layer of a material possessing high
(metallic) conductivity, when the skin layer thickness
in the direction perpendicular to its surface becomes
negligibly small compared to the layer dimensions, the
field vector potential A = (0, A, 0) satisfies the follow-
ing boundary conditions:

(6)

Two more boundary conditions on the |z | = z1 surfaces
are derived from the requirement of continuity of the
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momentum flux density and have the form

(7)

where j0 is the surface current density to be determined.

Remark 1. In writing the boundary conditions (6)
and second boundary condition (7), it is assumed that
the quantity j0 in fact replaces the surface currents aris-
ing as a result of incidence of a high-frequency electro-
magnetic field onto a conducting medium. This, in par-
ticular, explains the discontinuity of the vector poten-
tial ∂A/∂z on the boundary z = z1 of the layer [3]. Note
further that the fourth unknown constant, which does
not appear explicitly in conditions (6)–(7), defines
characteristics of the field reflected from the layer and
enters into the expressions for A and ∂A/∂z at z = z1 +
0. The same quantities include the preset traveling wave
current density j in (1).

The solution of problem (3)–(7) reduces to the fol-
lowing stages: (i) solving the elastic problem (3)–(4) on
the propagation of a wave of the form f(z)exp[i(k0x –
ωt)]; (ii) finding from (5) (with the vector u in the right-
hand part, as obtained above) a vector potential of the
electromagnetic field appearing in the layer material;
(iii) determining a vector potential of the external mag-
netic field as the solution of Poisson’s equation with a
field source (1); and (iv) determining unique solutions
for the fields u and A by finding the involved constants
from boundary conditions (6)–(7).

Equations (3) and (4) determine the conditions for
the Cherenkov generation of waves: if the phase veloc-
ity v of the current wave exceeds c||, two branches of
vibrations (modified transverse and longitudinal) are
generated with the wave numbers κ⊥ , || = k⊥ , || +

iω3γ⊥ , ||/2k⊥ , ||  and k⊥ , || = k0[(v/c⊥ , ||)2 – 1)]1/2. Non-
zero components of the displacement vector u and vec-
tor potential A have the form

and
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T

where α1, 2 = const and β⊥ , || = iωµ0σB/(  +  –
iωµ0σ).

In case v satisfies the inequalities c⊥  < v < c||, only
one branch of vibrations is excited with the wave num-
ber κ⊥  (the second branch is a Rayleigh wave decaying
exponentially in depth of the layer).

2. SOLUTION OF THE THERMAL PROBLEM

The energy of coupled acoustic and electromagnetic
vibrations in the layer material converts into heat due to
viscous and Joule dissipation. Figure 1 shows distribu-
tions of the power density of viscous qγ and Joule qσ
heat release of the sources averaged over the period of
vibrations,

,

in dimensionless form. The graphs are plotted for an
aluminum layer and the second resonance harmonic
whose frequency was found from the condition of min-
imum of the main determinant of the set of boundary
conditions (6)–(7). As can be seen, the layer heating has
a clearly pronounced bulk character. The use of a
source of the Cherenkov type enables one to raise the
power of heat release by approximately an order of
magnitude compared to previously calculated case [2],
when only transverse vibrations of the layer are excited
under similar conditions.

Remark 2. It is known that, under conditions of
purely induction high-frequency heating, the sources of
Joule heat release are localized in a thin surface layer
with the characteristic thickness of the order of skin
depth. It is easy to show that, in the problem being
treated (Fig. 1), the density of the sources of purely
Joule surface heating at z/z1 = 1 is of the order of the
density of sources of bulk heat release due to viscosity,
with the former decreasing exponentially in depth of
the layer, (already at z/z1 = 0.95 the value is seven
orders of magnitude smaller than the boundary value).
This means that, in what follows, the effect of surface
induction heating can be ignored. (A similar result for
a one-dimensional problem was obtained by Kiselev
et al. [2].)

Time variation of the depth profile of the layer tem-
perature may be found by solving the heat conductivity
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Fig. 1. The distribution of the power density of (1) viscous
qγ/q and (2) Joule qσ × 105/q heat release of the heat sources
over the layer half-thickness: z1 = 0.25 m, B = 1 T, v = 8 ×
103 m/s, k0 = 4.85 m–1, ω = 3.88 × 104 s–1, and q =

(Bj)2/ρz1c.
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Fig. 2. The distribution of temperature Θ over the layer half-
thickness for Fo = 0.1–0.2 with a step of 0.2. 
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equation for dimensionless temperature Θ = (T –

T0)ρca/q ,

, (8)

where a is the thermal diffusivity, c is the heat capacity,
ρ is the density of the layer material, ζ = z/z1, and Fo =

at/  is the Fourier number.

We assume that the initial temperature of the layer
Θ(ζ, 0) = 0 is equal to the ambient temperature T0 and
the layer proper is in the state of convective heat
exchange with the ambient medium.

Equation (8) with the heat sources described above
may be solved analytically using the Laplace transform
in time. Figure 2 is a graphic representation of the solu-
tion Θ(ζ) found for different values of the Fourier num-
ber. The Biot criterion Bi = Hz1 (H is the heat-transfer
coefficient) was taken to be 0.1.

As seen in Fig. 2, the temperature field throughout
the entire process of layer heating proves to be actually
nongradient, which does not affect the quality of the
material being processed. At the same time, the direct
supply of energy to the bulk of the layer, which is due
to the presence of a constant magnetic field, results in a
sharp reduction of the time required to process an arti-
cle. Finally, note that the effective bulk heating of some
materials (for example, metals) has a favorable effect
on the subsequent technological operations (welding,
cutting, etc.).
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Recording High-Diffraction-Efficiency Holograms
on a Photosemiconductor–Liquid Crystal Structure

N. L. Ivanova, A. N. Chaœka, and A. P. Onokhov
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Abstract—Experimental real-time holograms were recorded on a structure comprising a liquid crystal and a
p–i–n-diode based on a hydrogenated amorphous silicon. The holograms offer unprecedented diffraction effi-
ciency at acceptable spatial frequencies. © 2000 MAIK “Nauka/Interperiodica”.
Some structures comprising a photosemiconductor
and a liquid crystal (PSC–LC) provide a spatial resolu-
tion sufficiently high to enable real-time hologram
recording for optical data processing [1]. It was demon-
strated that reversible hologram recording is possible
on a structure with a p–i–n maximum photodiode based
on hydrogenated amorphous silicon (α-Si : H) and a
nematic liquid crystal exhibiting the orientation twist
effect, the latter serving as a modulating medium [2].
However, the maximum diffraction efficiency of the
structure was comparatively low.

We have studied the possibility of creating a similar
structure possessing a diffraction efficiency close to the
theoretical limit [3]. We employed the orientation
S-effect, with which the liquid crystal features control-
lable birefringence. The standard sandwich structure
comprised a 1.2-µm-thick α-Si : H p–i–n photodiode
and a nematic liquid crystal (NIOPIK ZhK 1282) with
∆n = 0.164, ε = 9.9, and a thickness of 5 µm. The LC
orientation was provided by cerium dioxide layers
formed by oblique evaporation. The structure was stud-
ied in a transmission mode. The interference pattern of
two coherent plane-wavefront beams from a He–Ne
laser was created on the photosensitive PSC layer. The
readout was performed at a wavelength of 0.814 µm,
the modulator being aligned so that the LC director was
parallel to the polarization vector of the readout beam.

The structure was powered with unipolar rectangu-
lar pulses. If a positive pulse is applied, then the p–i–n-
diode occurs in the conducting state, the structure is
insensitive to light, and almost all of the voltage drops
across the LC layer, irrespective of the intensity of the
recording beam incident on the photosensitive layer
(the off state). If a negative pulse is applied, then the
photodiode goes to the reverse-bias state and a birefrin-
gent phase grating arises in the liquid-crystal layer
under the action of the sinusoidal interference pattern.

The diffraction efficiency was studied for a first-
order diffracted light as a function of the recording-
beam intensity and the spatial frequency of the grating,
as well as the absolute amplitude and the repetition rate
1063-7850/00/2602- $20.00 © 20091
of the power-supplying electric pulses. The diffraction
efficiency was computed as η = I1/I0, where I1 is the
intensity of a first-order diffracted light and I0 is the
intensity of the light transmitted through the modulator
in the absence of the recording beam.

Figure 1 shows the maximum diffraction efficiency
plotted against the spatial frequency of the grating
formed in the LC layer. The structure was powered with
unipolar voltage pulses at an absolute pulse amplitude
of 25 V and a pulse repetition rate of 10 Hz. The diffrac-
tion efficiency value η as high as 31.5% was obtained
in the region of low spatial frequencies (ν = 28 mm–1).
This result is close to the theoretical limit ηmax = 33.9%
computed for sinusoidally varying birefringence in a
liquid crystal layer [4]. The structure is highly sensitive
to the recording light: the diffraction efficiency attains
its maximum at an intensity of 5.2 µW/cm2 in each of
the interferometer arms. Note a high resolution of the
structure: the diffraction efficiency is reduced to 50% at
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Fig. 1. Maximum diffraction efficiency versus the spatial
frequency of the grating in the structure powered at an abso-
lute pulse amplitude of 25 V and a pulse repetition rate of
10 Hz.
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ν = 45 mm–1 and to 5% at ν = 85 mm–1. These modula-
tion parameters are achieved by means of a p–i–n-diode
using hydrogenated amorphous silicon. If a reverse bias
is applied to the diode, the voltage drops primarily
across the high-resistance i-type layer. The layer is
completely involved in the depletion region, where
electric field is distributed almost uniformly between p
and n contacts. The field is so strong that photogener-
ated carriers crossing the i-type layer have no time to
recombinate or deviate in the transverse direction.
Thus, the loss in the depth of modulation in transform-
ing an input interference pattern into a modulating elec-
tric field is less than that in the case where the entire
photosensitive layer is made of an intrinsic semicon-
ductor.

5

4

3

2

1

0 2 4 6 8 10

Um = 15 V
Um = 20 V
Um = 25 V
Um = 35 V
Um = 50 V

η, %

IW, µW/cm2

Fig. 2. Diffraction efficiency versus recording-beam inten-
sity at a spatial frequency of 85 mm–1 for various absolute
pulse amplitudes.
T

Figure 2 shows the diffraction efficiency as a func-
tion of the recording beam intensity IW (measured in
one of the interferometer arms) at various absolute
pulse amplitudes for the repetition rate 10 Hz. The spa-
tial frequency of the grating formed was 85 mm–1. The
curves have an oscillatory shape resulting from the
S-effect in the liquid crystal. They can serve as the basis
for evaluating the operating range of the modulator and
for choosing optimal conditions of reversible hologram
recording. The effect of the pulse amplitude on the
slope of the modulation characteristics and on the
dynamic range may be important to the design of para-
metric optical logic [5].
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Features in the Dielectric Properties 
and Temperature-Composition Phase Diagrams 

of NaNbO3–A0.5Bi0.5TiO3 (A = Li, Na, K, Ag) Solid Solutions
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Abstract—In the systems of solid solutions (1 – x)NaNbO3 – xA0.5Bi0.5TiO3, where A is Li (I), Na(II), K(III),
and Ag(IV), the concentration dependence of the temperature Tm, corresponding to a maximum in the dielectric
permittivity ε, is described by a curve with minimum. In systems II and IV, a “break” is observed on the Tm(x)
dependences in the region of x ≈ 0.2, and the compositions with x < 0.2 are characterized by anomalously large
temperature hysteresis of ε(T) reaching 80–100 K. Some compositions of systems I and III have very diffuse
peaks of ε(T) in the room temperature range, which is of interest from the standpoint of search for lead-free
relaxer materials. © 2000 MAIK “Nauka/Interperiodica”.
In view of increasing environmental requirements
placed on the production of ceramics, an intensive
search has been undertaken in recent years for new
lead-free ferroelectric (FE) materials for various appli-
cations [1–4]. At present, ferroelectric ceramics based
on alkali metal niobates and sodium–bismuth titanate
[1–3] are treated as the most likely alternative to lead-
containing piezoelectric and pyroelectric materials.
The search for the so-called relaxer materials character-
ized by significant smearing of the peak of dielectric
permittivity ε and by a strong frequency dependence of
ε is conducted mainly among solid solutions of barium
titanate, in particular, with alkali metal niobates [4].
However, the problem of preparing lead-free materials
with a very broad maximum of ε(T) in the room tem-
perature range remains unsolved [4], which adds
urgency to further investigations pursuing this objec-
tive. We have investigated the dielectric properties of
ceramics based on the solid solutions of antiferroelec-
tric NaNbO3 with ternary compounds A0.5Bi0.5TiO3 for
the purpose of determining the features of their proper-
ties in comparison with the well-studied solid solutions
of NaNbO3 with compounds of the ABO3 type [5–7], as
well as of assessing the possibility of using the new sys-
tems as the basis of lead-free functional materials. The
second components in the solid solutions studied are
A0.5Bi0.5TiO3 oxides, of which two (A = Na, K) are
known as ferroelectrics (FE) [5]. Na0.5Bi0.5TiO3 con-
tains also an antiferroelectric (AFE) phase [5]. The
A0.5Bi0.5TiO3 oxides in which A is Li or Ag do not crys-
tallize in the perovskite structure under normal condi-
tions. However, the perovskite modification of
Ag0.5Bi0.5TiO3 synthesized recently at a pressure of
14 GPa exhibited an ε(T) maximum in the region of
580 K, which is indicative of the presence of FE or AFE
1063-7850/00/2602- $20.00 © 20093
properties [8]. To present, Li0.5Bi0.5TiO3 was not
obtained in the perovskite structure. However, this
compound has been long used as a component increas-
ing the Curie point of PbTiO3-based piezoceramic
materials [9], which also suggests the presence of FE or
AFE properties.

Ceramic samples of the systems (1 – x)NaNbO3 –
xA0.5Bi0.5TiO3, where A is Li (I), Na (II), K (III), or
Ag (IV) with 0 < x < 0.3, were prepared by solid-phase
synthesis with subsequent hot pressing (II and III) or
annealing without pressure (I and IV). X-ray diffraction
analysis showed that all of the investigated composi-
tions were single-phase and had a structure of the per-
ovskite type. After polishing, silver electrodes were
deposited onto the samples in the form of disks 10 mm
in diameter and 1 mm thick by the method of paste fus-
ing. The measurements of ε were performed using an
R5083 capacitance bridge in the course of continuous
heating or cooling a sample at a rate of 2–5 K/min.

Figure 1 shows the concentration dependence of the
temperature Tm of the maximum of ε(T) for solid solu-
tions of the investigated systems. In all systems, the
Tm(x) curves exhibit a minimum. Therefore, the solid
solutions of NaNbO3 with ternary oxides A0.5Bi0.5TiO3,
obey a rule that was previously established for binary
systems of mixed oxides of the ABO3 type. According
to this rule, the curve Tm(x) has a minimum if the
extreme system components have no cations in com-
mon [10, 11]. In the solid solutions of other ternary per-
ovskites, for example, of the Pb  type, this rule
is not always valid because of the effects of composi-
tion ordering of B' and B'' ions [12].

Bn'Bm'' O3
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It was previously found [5] that niobate-based sys-
tems, similarly to other AFE oxides of the perovskite
family, may be divided into two groups. A high-temper-
ature FE phase may form in the solid solutions of group
I, and no such phases arise in group II. At the same time
(unlike, for example, well-studied PbZrO3-based sys-
tems), in the phase diagrams of NaNbO3-based systems
of group II exhibit a break of the line of the AFE phase
transition at a certain concentration x0 of the second
component. As seen in Fig. 1, a break in the region of
x ≈ 0.2 is observed on the Tm(x) curves of the samples
belonging to systems II and IV, while Tm in systems I
and III varies smoothly with increasing x. It was
reported [6, 7] that, in solid solutions of NaNbO3 with
oxides of the ABO3 type, a fairly reliable experimental
feature indicating that a given composition belongs to
group II is provided by the presence of an anomalously
large temperature hysteresis of the ε(T) curves in the
samples with x < x0. As is seen in Fig. 2a, the composi-
tions of systems II and IV with x = 0.10 are indeed char-
acterized by an anomalously large temperature hyster-
esis of ε(T) reaching 80–100 K. The obtained results
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Fig. 1. The concentration dependence of temperature Tm of
the maximum of dielectric permittivity ε measured at a fre-
quency of 1 kHz in the course of heating of (1 – x)NaNbO3 –
xA0.5Bi0.5TiO3 solid solutions, where A is (1) Li, (2) Na,
(3) K, and (4) Ag.
T

provide additional evidence of the fact that systems I
and III belong to group I, and systems II and IV, to
group II according to the classification of [5]. Lisitsyna
et al. [7] demonstrated that, by determining the group
to which a NaNbO3-based solid solution belongs, one
can also solve a frequently encountered inverse prob-
lem, namely, determine whether the second component
of the solid solution is FE or AFE, provided that this
component is known to possess anomalous dielectric
properties (if it is for some reason difficult to perform
direct measurements). As mentioned above, the avail-
able literature data suggest the presence of FE or AFE
properties in perovskite modifications of Ag0.5Bi0.5TiO3

and Li0.5Bi0.5TiO3 (which may be synthesized only
under high pressure conditions) [8, 9]. The results
obtained by us indicate that Ag0.5Bi0.5TiO3 is apparently
AFE, and Li0.5Bi0.5TiO3 is FE.

Figure 2b presents the ε(T) curves for the composi-
tions of the solid solution systems investigated charac-
terized by the presence of minima in the Tm(x) plots. As
seen, the curves are very diffuse, which agrees with the
data [10, 13] indicating that solid solutions from this
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Fig. 2. The ε(T) dependence of (1 – x)NaNbO3 –
xA0.5Bi0.5TiO3 solid solutions, where A is (1) Li, (2) Na,
(3) K, and (4) Ag, measured at a frequency of 1 kHz in the
course of heating (solid lines) or cooling (broken lines). The
sample compositions: (a) from the region x < x0, where x0 is
the concentration of second component, corresponding to a
“break” in the dependence Tm(x), x = 0.1 (1–4); (b) the cor-
responding regions of minimum of the Tm(x) plots, x =
0.2 (1); 0.3 (2); 0.2 (3); 0.25 (4). 
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range of compositions are characterized by maximum
smearing of the peaks of ε(T). As the frequency
increases, the peaks of ε(T) shift toward high tempera-
tures (by 5–10 K with the frequency varying from 1 to
100 kHz), i.e., these materials possess relaxer proper-
ties. Of special interest from the standpoint of possible
applications are the compositions of systems I and III,
in which the values of ε are much higher than those in
systems II and IV, while the maxima of ε(T) lie in the
room temperature range.

Therefore, the form of the temperature-composition
phase diagrams, as well as the character of variation of
the dielectric properties depending on the content of the
second component in solid solutions of NaNbO3 with
ternary oxides A0.5Bi0.5TiO3, agree with the regularities
found previously for binary systems of mixed oxides of
the ABO3 type. The presence of very diffuse maxima of
ε(T) in the room temperature range in a number of com-
positions of systems I and III is of interest from the
standpoint of search for lead-free relaxer materials.
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Abstract—Effective practical uses of HTSC/YIG film structures are demonstrated. Controlled microwave fil-
ters based on HTSC/YIG film structures may find practical application in communication and radar equipment.
© 2000 MAIK “Nauka/Interperiodica”.
Possible practical applications of the unique physi-
cal phenomena, such as spin waves (SW) [1] and high-
temperature superconductivity (HTSC), have been sub-
jected to investigation in recent years in view of inten-
sive development of radiotelephony and wireless tele-
communications [2, 3]. The band-pass filter (BPF) is an
instrument that is most generally employed in various
means of communication. The basic requirements
placed on a modern radioelectronic BPF include a
narrow bandwidth, an almost zero level of losses, a
high front steepness, and the possibility of frequency
tuning [3].

Spin waves propagate in single crystals and epitax-
ial films of yttrium iron garnet Y2Fe5O12 (YIG) with an
extremely small specific attenuation in a wide fre-
quency range. Main difficulties in developing SW
devices involving YIG films are related to their low
thermal stability and a relatively high level of signal
transformation losses. Therefore, a combination of
YBa2Cu3O7 – x (YBCO) superconductor film transduc-
ers with YIG films in which spin waves are excited
under a fixed cryogenic temperature appear a pro-
mising line of research and development in radioelec-
tronics.

It was the objective of this study to investigate the
possibility of using superconducting antennas in a tun-
able radioelectronic BPF based on the traveling wave
principle.

The experiments were performed with an epitaxial
YIG ferrite film grown on a gadolinium gallium garnet
(GGG) substrate and characterized by the following
parameters: the saturation magnetization Ms = 1200 G,
the thickness h = 62 µm, and the crystallographic ori-
entation (111). Films of this type are very suitable for
constructing a BPF based on a superconductor/ferrite
structure, functioning at a temperature of 77 K in one of
the promising microwave ranges of 1–3 GHz employed
by developers of base stations for cellular radiotele-
phony. In addition, a low magnetic field applied to the
structure produces a lower effect on the superconductor
film and its surface resistance [4].
1063-7850/00/2602- $20.00 © 20096
A spin waveguide cut from the YIG film in the form
of a 2 × 7 × 0.55 mm trapezoid (Fig. 1a) was applied
directly to the film structure of an antenna. The ends of
the ferrite waveguide structure were cut at an angle of
~30° to exclude the reflection of SW from the
waveguide edge.

The topology of radiating and receiving transducers
is shown in Fig. 1b: two microstrip segments bent at an
angle of 90° are located on a substrate sized 17 × 6 ×
0.5 mm. Two dimensions of the antenna topology were
varied, namely, the width of the microstrip in its part
joined to the YIG film (W) and the distance between the
antennas (L). Antennas with W = 15, 50, and 500 µm
were used in the experiments. The width of the con-
ducting microstrip line was 500 µm. Along with super-

(a) GGG

YIG

L W

X0 R0

Zr

Rr

B0 G0Zin

Xr

(b)

(c)

Fig. 1. Schematic diagrams of (a) waveguide structure,
(b) antenna topology, and (c) an equivalent circuit of
microstrip antenna.
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conducting microstrip antennas, we used similar struc-
tures with copper transducers.

Figure 1c illustrates a model of microstrip antenna,
where R0, X0, B0, and G0 are the long line parameters in
the absence of radiation, and Zr = Rr + iXr is the complex
radiation impedance [1]. The reduction of losses in a
device with superconducting transducers may be asso-
ciated only with variation of the primary long line
parameters, and the radiation resistance does not
depend on the transducer material. It is probable that, in
case of slot or coplanar antennas used to excite spin
waves, a difference in the levels of losses in supercon-
ductor and metal antennas will be more significant,
because these antenna structures will be characterized
by additional losses due to the spin wave propagation
along the ferromagnetic–antenna transducer interface.

The superconducting YBCO films were grown on
both sides of LaAlO3 (LAO) substrates by dc magne-
tron sputtering [5] and were subjected to photolithogra-
phy and chemical etching. The YBCO films were
0.7−1.0 µm thick. Layered compositions of contact
pads (Au/Ag), thermocompression, and brazing were
used to ensure a reliable transition from a YBCO
microstrip to coaxial lines of the breadboard. The hous-
ing structure incorporated miniature electromagnets
with cores, which were used to develop a uniform mag-
netic field with the magnetic vector parallel to the sur-
face of the YIG film and perpendicular to the direction
of SW propagation. For performing measurements
under cryogenic temperature, the housing design pro-
vided for the possibility of its immersion into a tank
with liquid nitrogen.

The experimental setup for obtaining the amplitude-
frequency characteristics (AFC) of a filter was based on
an R2-54 panoramic voltage standing wave ratio meter.
For recording the obtained characteristics and their fur-
ther processing, a computer was connected to the meter
via special interface.

As a result of measurements, we obtained the AFCs
of spin-wave BPFs for different combinations of ferrite
elements, antenna transducers, and the experimental
temperature. Of most interest are the results of compar-
ison of the characteristics of similar structures based on
different antenna materials, measured at T = 77 K. Fig-
ure 2 gives two AFCs for an antenna structure with W =
500 µm and L = 5 mm. Curve 1 corresponds to a setup
with superconducting antennas, and curve 2, to that
with copper antennas. A difference in the level of losses
in the transmission band (2 dB) is due to a lower surface
resistance in superconductor antennas.

Figure 3 gives the transmission characteristics of the
experimental setup, taken for different magnetizing
fields, from which one can see that an insignificant vari-
ation of the magnetizing field strength (70 Oe) shifts
the center frequency by 600 MHz. Such a high sensitiv-
ity to changes in the BPF parameters is very promising
for constructing controlled microwave-frequency fil-
ters. The investigated BPF design is disadvantageous in
TECHNICAL PHYSICS LETTERS      Vol. 26      No. 2      200
that the level of losses in the transmission band also
varies as a result of tuning of the center frequency.

The experiments resulted mainly in demonstrating
the possibility of construction and effective operation
of cryogenic radioelectronic devices utilizing an
HTSC/YIG film structure and their advantages over
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Fig. 2. Transmission characteristics of the experimental
setup (1) with superconducting antennas and (2) with cop-
per antennas.
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Fig. 3. Rearrangement of the characteristic of a filter with
superconducting antennas as a result of variation of the
magnetizing field. 
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similar metal/YIG structures. We used a simplest
microstrip antenna topology in this experimental inves-
tigations. The use of microstrip transducers in the form
of inphase and antiphase lattices [6], BPF designs with
limiting and switching elements in HTSC antennas,
and combined designs of bandpass and bandstop filters
are capable of improving the characteristics of con-
trolled cryogenic SW BPFs and promoting their practi-
cal use.
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Abstract—The spectrum of a Schrödinger operator with the zero-radius potential in a nanostructure of a con-
stant total curvature is considered. Positions of the coupled states in a well of zero radius and the corresponding
binding energy are determined. Their dependence on the scattering length and curvature is studied. The condi-
tion of the formation of the coupled state is determined. © 2000 MAIK “Nauka/Interperiodica”.
The recent development of a technique for manufac-
turing the curved 2D layers in nanostructures [1] makes
it necessary to study theoretically the properties of
electron systems in such layers. Interesting physical
effects determined by the influence of the curvature on
the electronic energy spectrum were studied in [1–4].
The possibility of manufacturing the fullerene-like
structures with negative surface curvature was demon-
strated in [5]. Models of the quantum Hall effect at the
surfaces of both positive and negative curvature were
considered in [6–8]. In all these systems, it is important
to take into account the influence of the short-range
impurity centers on the energy spectrum of electrons.
In connection with this, we consider the impurity-cou-
pled states in layers of a constant Gaussian curvature.
The impurity potential was represented by a zero-
radius potential (point potential) that has proved to be
effective in solving a wide variety of problems in theo-
retical physics [9–12]. Models with the zero-radius
potentials allow one to obtain both qualitative and
quantitative results suitable for practical applications
[10, 12]. This is especially true for the systems with
small binding energies. The point potentials can be
used for the study of periodic systems in the layers of
constant negative curvature [13].

Our work is aimed at obtaining explicit formulas for
the discrete levels of weakly coupled quantum systems
with the use of the zero-radius potential at the surfaces
of constant Gaussian curvature K and at studying their
dependence on K. Hamiltonian H0 of a free particle can
be presented in our case as H0 = –("2/2m)∆LB, where
∆LB is Laplace–Beltrami operator [14]. Consider a per-
turbation of the Hamiltonian H0 by a zero-radius poten-
tial centered in point q. The introduction of such a
potential is equivalent to imposing a boundary condi-
tion in point q that is determined by a real parameter α
related to the length λ of scattering at the potential by
the relationship π"2α/m = –lnλ. The Green function
1063-7850/00/2602- $20.00 © 20099
GE(x, y) of the perturbed operator H can be expressed

via the Green function (x, y) of the operator H0 with
the help of the Kreœn formula for resolvents [11, 12]:

(1)

where Q(E) is the renormalized value of (x, y) at the

diagonal Q(E) = GE(x, q) + (m/π"2)lnρ(x, q)] and

ρ is the geodesic distance at the surface. A coupled state
(if it does exist) with the energy E0 ≡ E0(K) in the zero-
radius potential lies below the energy of the ground
state ε0 of the Hamiltonian H0 (note that ε0 > 0 if K < 0
and ε0 = 0 if K ≥ 0). It follows from (1) that energy E0
satisfies the equation:

(2)

A normalized eigenfunction corresponding to the state
E0 is given by

Let us first consider the case K > 0 (a sphere with the
radius a = K–1/2). In this case, –∆LB is the operator of the
square angular momentum L2. It is well known that the
spectrum of H0 is discrete and consists of the degener-
ate levels εl = ("2/2ma2)l(l + 1) with the multiplicity

2l + 1 (l = 0, 1, …). Using an expression for  [14]:

(3)

where 3µ(x) is Legendre function,

GE
0

GE x y,( )

=  GE
0 x y,( ) Q E( ) α+[ ] 1– GE

0 x q,( )GE
0 q y,( ),–

GE
0

[
x q→
lim

Q E( ) α+ 0.=

Ψ0 x( ) Q' E0( )[ ] 1/2– GE0
x q,( ).=

GE
0

GE
0 x y,( ) m

2"
2 πζ 2⁄( )cos

------------------------------------=

× 3 1/2– ζ+ ρ x y,( ) a⁄( )cos–( ),
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, (4)

we obtain:

(5)

where ψ(x) is the logarithmic derivative of the Euler
Γ-function and γ = –ψ(1) is the Euler constant. 

It follows from (5) that  = –∞,

 = +∞, and  = –∞. Hence, for

any α equation (2) has only one solution El , l = 0, 1, …
in each of the segments (–∞, ε0), (0, ε1), …,
(εl, εl + 1), … . Therefore, the spectrum of H consists of
simple eigenvalues El , l ≥ 0 and the levels εl , l ≤ 1 (the
multiplicity of which in the spectrum of H is 2l). Con-
sider the most important extreme cases using the
asymptotics Q(E) for the case |2ma2E/"2 – (l + 1)| ! 1
and for E  –∞.

For λ ! a we have E0(K) . –2"2/e2γmλ2 and E1(K) .
"2/4ma2ln(2aλ–1). Since E0(0) = –2"2/e2γmλ2 [12], the
positive curvature does not virtually influence the value
of the ground state energy. On the other hand E1(K) –
E0(K) > ε0 – E0(0), that is, the binding energy increases
with the curvature.

In the case of λ @ a, we have E0(K) .
"2/4ma2ln(2aλ–1), E1(K) . "2/ma2 + 3"2/4ma2ln(2a/eλ),
and, hence, E1(K) – E0(K) < ε1 – ε0, that is, the well of
zero radius decreases the binding energy if the curva-
ture is large.

Finally, if a and λ are comparable (specifically, if
λ ~ 8a), then

Thus, the energy of the coupled state for moderate val-
ues of a in this case is higher by almost one order of
magnitude than the corresponding energy for K = 0.

Consider now the case of K < 0 (a pseudosphere of
the radius a = |K |–1/2). In this case, the continuous spec-
trum of H0 occupies the semiaxis E ≥ ε0(K) = "2/8ma2.
Green function of the operator H0 is given by an explicit
formula [14]:

(6)

ζ ζ E( )≡ 1
4
--- 2mE

"
2K

-----------+
1/2

=

Q E( )

=  
m

π"
2

--------- ψ 1
2
--- ζ+ 

  π
2
--- πζ( )tan– 2a( ) γ+ln– ,–

Q E( )
E ∞–→
lim

Q E( )
E εl 0–→

lim Q E( )
E εl 0+→

lim

E0 K( ) . –
"

2

8ma2
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2

ma2ψ'' 1 2⁄( )
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8a
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GE
0 x y,( ) m

2π"
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Γ 1 2ζ+( )

------------------------------ ρ x y,( )
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  1– ζ–

=

× F
1
2
--- ζ 1

2
--- ζ ; 1 2ζ ; ρ x y,( )

a
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1–
+ +,+ 

  ,
TE
where F(a, b, c; z) is a hypergeometric function and ζ
is given by the formula (4). From (6) we obtain [13]:
Q(E) = –(m/π"2)[ψ(1/2 + ζ) – ln2a + γ]. This case is
substantially different from the case when K ≥ 0: only
a well with the scattering length λ < 8a, rather than any
well of zero radius, is capable of coupling. The spec-
trum of H comprises all the points of the continuous
spectrum of the operator H0 and the level E0 (if any).
Therefore, the negative curvature can “squeeze” a level
out of the well into the continuous spectrum. A level
that just appears (λ ~ 8a) can be determined from the
formula E0 . "2/8ma2{1 – 4/π4)[ln(8a/λ)]2}.

In the extreme case of a sufficiently deep well

λ ! a, we have E0(K) . E0(0) + ("/a)
and, hence, in the case of K < 0 the curvature substan-
tially influences the position of the level in a deep well,
thus decreasing the binding energy. A simple estimate
can be given for the case λ ~ 2a: E0(K) .
(π2"2/12ma2)ln(λ/2a) and the binding energy is also
lower than that in the case K = 0.

The following conclusions can be derived from the
results presented above. In the case when K > 0, the
spectrum is discrete and the level in the zero-radius
well goes down along the E axis. However, in a deep
well the level does not change (to within the accuracy
of O(|E |–1)) and the binding energy increases with the
curvature. In this case (similarly to the case K = 0) the
level appears in a well with any scattering length.

In the case of K < 0 (in contrast to the case of K ≥ 0)
the condition λ < 8a is both necessary and sufficient for
the appearance of the level. If this condition is met, the
spectrum of H consists of the level E0 and a continuous
spectrum (semiaxis E ≥ "2 |K |/8m). The levels inside the
well go up along the E axis, as well as does the edge of
the continuous spectrum. The value of the gap ε0(K) –
E0(K) is smaller than that for the case of K = 0.
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