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Abstract—It is shown that in a constant-velocity waveguide, the periodic diffraction focusing of an acoustic field gives
rise to a “beam” interference structure in the corresponding spatial regions. © 2000 MAIK “Nauka/Interperiodica”.
It is well known that the sound propagation along an
oceanic waveguide is accompanied by a rearrangement
of the interference structure of the acoustic field [1, 2].
This rearrangement is characterized by the minimum
Rmin and maximum Rmax spatial periods and manifests
itself as a partial repetition of the characteristic features
observed at the distances 0 ≤ r < Rmin in the spatial dis-
tribution of the field intensity. This effect, in its turn,
leads to the diffraction focusing of the field within the
corresponding intervals of distances [1, 2]: 

(1)

In relation (1), the characteristic spatial periods are
determined by the expressions [1–3] 

(2)

where the quantity 

(3)

represents the period of the rearrangement of the inter-
ference structure formed by the neighboring pairs of
modes with the corresponding interference periods 

(4)

the frequency dependence of the horizontal wave num-
ber kl of mode number l in (4) is determined from the
dispersion equation for a given waveguide. 

We note that here (as in [1, 2]), by analogy with the
diffraction images of periodic structures in optics [4],
the diffraction focusing of acoustic field in waveguides
means the formation of the corresponding zones of
intense acoustic illumination. The spatial period of
such a focusing fundamentally depends on the wave-
length [1, 2, 4], which makes it different from the

mRmin r mRmax m 1 2 …, ,=( ).≤ ≤

Rmin min Rg l l 1; l 1 l 2+,+ +,( )[ ] ,=

Rmax max Rg l l 1; l 1 l 2+,+ +,( )[ ] ,=

Rg l l 1; l 1 l 2+,+ +,( )
=  Rl l 1+, Rl 1 l 2+,+ Rl l 1+, Rl 1 l 2+,+–⁄

Rl l 1+, 2π kl kl 1+–( ),⁄=

Rl 1 l 2+,+ 2π kl 1+ kl 2+–( );⁄=
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refraction focusing [5]: for the latter, the dependence of
the spatial period on the wavelength is determined by
only a small diffraction correction to the ray approxi-
mation [6–9]. 

In deep-water oceanic waveguides with the under-
water sound channel opened to the surface (near which
the sound velocity is less than at the bottom), the dif-
fraction focusing of the acoustic field leads to a peri-
odic spatial rearrangement of the far zones of acoustic
illumination and a corresponding diffraction focusing
of the mode beams at characteristic distances (1) [1, 2,
10]. These phenomena are best observed in the case of
the excitation of only one mode beam (see [10]) giving
rise to a single maximum in the dependence of the
product of the amplitudes of neighboring modes on
their number at the source depth [1–3]. 

From expressions (1)–(4) it is evident that similar
phenomena [1, 10] should also be observed in con-
stant-velocity waveguides [11–15]. In some cases (see
[5, 11–14]), such waveguides can model the condi-
tions of sound propagation in shallow-water oceanic
waveguides. Hence, it is possible to use them for
describing the specific features of the spatial interfer-
ence structure of acoustic field in shallow sea. 

The purpose of this paper is the theoretical study of
the effect of the diffraction focusing of an acoustic field
on the formation of its spatial interference structure in
a constant-velocity waveguide. The latter is modeled by
a homogeneous liquid layer overlying a homogeneous
liquid halfspace. The layer is characterized by the
thickness H, the sound velocity c, and the density ρ, and
the halfspace is characterized by the sound velocity cb
and the density ρb. 

To obtain the approximate analytical dependences
for Rl, l + 1, Rg(l, l + 1; l + 1, l + 2), Rmin, and Rmax in the
form that is convenient for estimating the correspond-
ing values and generalizing the results of numerical
simulation, we first consider a constant-velocity
waveguide with an absolutely hard bottom at z ≥ H. In
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this case, restricting our consideration to the modes of
interest with small grazing angles, we expand the
known expression (see [5]) for the horizontal wave
numbers of such a waveguide in the series 

(5)

correct to the term of the fourth order of the small quan-
tity xl ! 1, where 

k = ω/c, ω = 2πf, and f is the frequency of the CW
acoustic signal. 

Then, from expressions (3)–(5), we obtain the
approximate dependences 

(6)

where 

D = 4H2/λ (7)
and λ = 2π/k is the sound wavelength. Substituting
dependence (6) in expressions (2), we determine the

kl k 1 xl
2– k 1
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Fig. 1. Dependences of the spatial periods of (a) the inter-
ference of neighboring modes Rl, l + 1 and (b) the rear-
rangement of the interference structure of the field of
neighboring pairs of modes Rg = Rg(l, l + 1; l + 1, l + 2) on
the mode number l. The solid line corresponds to approxi-
mate dependence (6). 
 

values of the characteristic spatial periods of the dif-
fraction focusing of acoustic field in the waveguide
under study: 

 

(8)

 

Here, 
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 is the limiting number of modes with small
grazing angles. This number satisfies the natural condi-
tion 
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number of excited modes. 

Because the diffraction focusing of the field is most
pronounced in the case of a multimode propagation of
acoustic waves [1, 2, 14], we assume that 
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, and
using expression (8), we obtain a relation coincident
with that presented in [14]: 
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Expressions (8) and (9) allow one only to estimate
the dimensions of the spatial regions (1) where the dif-
fraction focusing of the acoustic field strongly affects
the formation of its spatial interference structure in a
constant-velocity waveguide. However, to study the
specific features of the interference structure that are
caused by the diffraction focusing, it is necessary to
numerically calculate the distribution of the intensity of
acoustic field 

 

J

 

(
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)

 

 both along the horizontal distance
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 and with the depth 
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 on the basis of the mode theory
[5], for the given conditions of sound propagation. 

Therefore, to illustrate the characteristic features
of the dependences 

 

R

 

l

 

, 

 

l

 

 + 1

 

, 

 

R

 

g

 

(

 

l

 

, 

 

l

 

 + 1; 

 

l

 

 + 1, 

 

l

 

 + 2)

 

, and

 

J

 

0

 

(

 

r

 

, 

 

z

 

) = 

 

rJ

 

(

 

r

 

, 

 

z

 

),

 

 we present the results of the corre-
sponding numerical calculations in Figs. 1 and 2. The
results were obtained for the following conditions of
sound propagation: 

 

H

 

 = 300 m, 

 

c

 

 = 1.45 

 

×

 

 

 

10

 

3

 

 m/s, ρ =
103 kg/m3, cb = 1.7 × 103 m/s, and ρb = 1.6 × 103 kg/m3,
and for the frequency f = 300 Hz of sound generated by
a point source located at the depth zs = 4.5 and 9 m. The
spatial distribution of the acoustic field intensity J0(r, z)
normalized with allowance for the geometric diver-
gence is shown by shading, with the dynamical range
15 dB (see Fig. 2). 

The analysis of the results of numerical simulation
(see Figs. 1–3) offers the following conclusions: 

First, the quantities Rmin and Rmax (2), the values of
which are calculated by approximate expressions (8)
with sufficient accuracy (see Fig. 1), truly determine
the boundaries of the spatial regions (1) of the diffrac-
tion focusing of acoustic field in the oceanic waveguide
under study. Here, we have Rmax > max[Rl, l + 1] = R1, 2
(see Fig. 1), in contrast to the waveguide with an abso-
lutely hard bottom where an inverse relation is valid. 

Second, in the spatial regions (1) corresponding to
the manifestation of the effect of diffraction focusing,
specific interference “spots” form a characteristic
structure of lines of higher field intensity. This structure

Rmin D 1
λ

8D
------- 12L0

2 12L0 5+ +( )+ 
 ⁄ ,≈

Rmax D 1
29
8
------ λ

D
----+ 

 ⁄ .≈
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Fig. 2. Distribution of the normalized intensity of acoustic field J0(r, z) along the horizontal distance r and with the depth z. The d
range is 15 dB, the frequency is f = 300 Hz, and the source depth is zs = (a) 4.5 and (b) 9 m. 
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SPECIFIC FEATURES OF THE SPATIAL INTERFERENCE STRUCTURE OF ACOUSTIC FIELD 5
corresponds to a “beam” multiply reflected from the
boundaries of the water layer so that the angle of the
beam incidence increases with every reflection. As the
number m of the spatial region of the diffraction focus-
ing of acoustic field increases, the number of clearly
defined reflections of such a “beam” also increases (see
Fig. 2). 

Third, with increasing source depth, the spatial
region corresponding to a clearly defined “beam” struc-
ture of the acoustic field considerably decreases in
every interval of horizontal distances (1) (see Fig. 2).
The latter fact is explained by the increase in the num-
ber of the excited mode beams [3] corresponding to the
maxima in the dependence of the product of the neigh-
boring mode amplitudes Bl, l + 1 on their number at the
source depth z = zs (see Fig. 3). Therefore, as in [10], the
most clearly defined “beam” structure of the interfer-
ence lines is observed in the case of the excitation of a
single beam of maximum width (see Figs. 2, 3). 

Naturally, with decreasing sound frequency, the spa-
tial regions corresponding to the manifestation of the
aforementioned specific features of the interference
structure of the field J(r, z) will be narrowed, because
the quantities Rmax, Rmin, and ∆R = Rmax – Rmin decrease
(see (7), (8), and [1, 2, 10]). In addition, as a result of a
decrease in the total number of excited modes L, the
effects of the diffraction focusing will be less pro-
nounced in the spatial interference structure on the
background of the energy sum of modes in J(r, z).
However, with a simultaneous increase in the source
depth under the conditions that the quantity kzs remains
constant and only one mode beam is excited [3], the
interference structure of acoustic field in a constant-
velocity waveguide will, on the whole, reproduce its
characteristic features, but on a correspondingly
decreased scale in r. This inference is confirmed by
the numerical calculations of the dependence J0(r, z)
at f = 150 Hz and zs = 9 m (Fig. 4). The dependence
exhibits the same characteristic features as those
observed at f = 300 Hz and zs = 4.5 m (see Fig. 2a), but
now they occur at two times smaller horizontal dis-
tances. 

Thus, the described theoretical studies show that in
a constant-velocity waveguide, as in the case of the
underwater sound channel [1, 10], the effect of periodic
spatial rearrangement of far zones of acoustic illumina-
tion is possible. It is found that the appearance of such
zones is caused by the diffraction focusing of the field,
and this focusing leads to the formation of a “beam”
interference structure of the acoustic field in the corre-
sponding spatial regions. 

In closing, we dwell on the qualitative estimate of
the effect of the absorption of acoustic energy in a con-
stant-velocity waveguide on the diffraction focusing of
sound field. 

Evidently, the inclusion of this effect will lead to an
exponential decrease in the mode amplitudes with dis-
tance, hence, to an additional decrease in the total
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
intensity of acoustic field compared with the decrease
caused by the geometric divergence of the wavefront
[16–18]. The latter fact will hinder the observation of
the effects of diffraction focusing of acoustic field at
long distances, i.e., at m @ 1 (see (1)). However,
because of the dissipation loss, the attenuation with dis-
tance will be maximum for the modes of relatively high
numbers l > L1 (L1 < L0) [16–18], i.e., the modes that
make practically no contribution to the diffraction
focusing of acoustic field at the distances r ≈ mRmax (see
(6)–(8)) and form only the background for its manifes-
tation. Since, at these distances, the main contribution
to the diffraction focusing of acoustic field is made by
the modes of relatively low numbers l ≤ L1, one can
expect that at some conditions, the presence of the dis-
sipation loss will even lead to a relative enhancement of
the effect of diffraction focusing in the corresponding
intervals of distances: 

(10)

For the multimode propagation L @ 1 (which is the
case of interest), we can obtain the limitation on the
maximum value of kH for the distances satisfying con-
dition (10). We use the fact that for the modes of rela-
tively low numbers (with small grazing angles), the fol-
lowing expression for the exponential factor E charac-
terizing the attenuation of these modes with distance is
valid [16–18]: 

(11)

mRg L1 L1 1; L1 1 L1 2+,+ +,( ) r mRmax.≤ ≤

E α l
2σr H⁄–( ).exp=
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Fig. 3. Normalized dependences of the product of neighbor-
ing mode amplitudes Al = Bl, l + 1/B on their number l at the
source depth z = zs, at f = 300 Hz; zs = (a) 4.5 and (b) 9 m;
B = max[Bl, l + 1]. 
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SPECIFIC FEATURES OF THE SPATIAL INTERFERENCE STRUCTURE OF ACOUSTIC FIELD 7
Here: 

For a noticeable manifestation of the diffraction
focusing of acoustic field in a constant-velocity
waveguide at distances (10), it is necessary that a suf-
ficiently great number of low-number modes (l ≤ L1)
interfere. The limiting number of such modes L1 =
L /N @ 1 makes up some integral part of their total
number L; here, N ≥ 2 is an integer, even or odd,
depending on the corresponding value of L. Hence, for
all these modes at the corresponding distances r ≈
mRmax, it is necessary that the absolute value of the
exponent in (11) be small compared with unity: 

(12)

This condition corresponds to the inequality 1/e < E < 1.

Then, at L @ 1, we use the estimate L ≈ kH /π
[5] and expression (9) and obtain the condition

(13)

Thus, in constant-velocity waveguides with dissipa-
tion losses, the effects of the diffraction focusing of
acoustic fields will clearly manifest themselves in the
corresponding spatial regions (10) only for the values
of kH that satisfy condition (13). 

It should be noted that in modeling the formation of
the spatial interference structure of acoustic fields in
shallow sea, it is necessary to take into account not only
the absorption but also other factors such as the stratifi-
cation of sound velocity in water and sediment layers
[19]. A strict description of the effects of these factors
on the diffraction focusing of acoustic fields in shallow
sea is of particular interest and will be the subject of a
special study. 

α l
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The basic idea of the methods of nonlinear wave
dynamics lies in the passage from the initial mathemat-
ical model to the known evolutionary equations (or sys-
tems of equations) that allow analytical studies. Usu-
ally, such a passage is achieved with the help of asymp-
totic methods [1]. Attempts to obtain more adequate
descriptions of wave processes lead to nonintegrable
equations the exact solutions of which are in most cases
unknown.

The variety of wave phenomena that occur in a con-
tinuous medium is determined by the interaction of the
effects of nonlinearity, dispersion, and dissipation.
Therefore, thin-walled spatial structures are convenient
objects for studying strain waves in nonlinear dissipa-
tive dispersive media.

Let us consider the evolutionary equation modeling
the propagation of a quasi-plane beam of longitudinal
waves in a geometrically and physically nonlinear vis-
coelastic cylindrical shell [2]:

(1)

Here, ψ is the component of the longitudinal strain, and
the coefficients bi characterize the geometric nonlinear-
ity, the physical nonlinearity, the dissipation, the dis-
persion, and the diffraction divergence, respectively.

Equation (1) generalizes the Kadomtsev–Petviash-
vili equation, and it is the most general spatially two-
dimensional equation of the third order that takes into
account the combined effect of the quadratic and cubic
nonlinearities and the dissipation.

Exact particular solutions of nonintegrable equations
of mathematical physics can be obtained in only a few
special cases. Among spatially one-dimensional equa-
tions of the third order, only the Korteweg–de Vries–
Burgers equation (a particular case of equation (1)) was
solved exactly [3]. Hence, a qualitative analysis of
equation (1) is important from both mechanical and
mathematical points of view.

We seek the solution to equation (1) by using the
method proposed by Weiss et al. [4] and developed by

∂
∂ξ
------ ψτ b1ψψξ b2ψ

2ψξ–+(

+ b3ψξξ b4ψξξξ+ ) b5ψηη .=
1063-7710/00/4601- $20.00 © 20100
Kudryashov and Zargaryan [3, 5]. We represent the
sought-for solution in the form of a series

(2)

where ψj and F are unknown functions of independent
variables. Substituting formula (2) in equation (1) and
equating the expressions multiplying equal powers of F
to zero, we obtain a chain of equalities:

(3)

(4)

According to expression (2), ψ1 satisfies the initial
equation

From equalities (3) and (4), it follows that b2 and b4
should be of the same sign.

Setting Uj = 0 for j ≥ 2, we obtain the following form
of the transformation for the solutions of equation (1):

(5)

where ψ1 is determined from equality (4).
The latter expression allows one to determine the

exact solutions of equation (1). This transformation is
the one of the Backlund type if F satisfies the system of
equations, the simplest of which has the form

(6)

where {F, ξ} ≡  –  is the Schwartz derivative

of the function F.
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TWO-DIMENSIONAL SOLITARY WAVES 101
Setting F = 1 + exp(k0ξ + k1η – ω0τ), we obtain that
equation (6) (as well as other equations of the system)
is identically satisfied when the dependence of ω0 on k0
and k1 (the dispersion relation) has the form

(7)

Substituting F = 1 + exp(k0ξ + k1η – ω0τ) in transfor-
mation (5) with allowance for relation (7), we obtain
the exact solution to equation (1):

(8)

From relation (7), it follows that solution (8) propa-
gates with the velocity equal to that of linear waves
described by the linearized Kadomtsev–Petviashvili
equation corresponding to relation (7) in the absence of
dissipation:

In the spatially one-dimensional case (k1 = 0), for-
mula (8) describes the class of solutions of equation (1)
in the form of travelling profiles. For example, at k0 =

 + , a shockwave structure is formed

with ψ = 0 before the shock front and ψ =  +

 behind the shock front (this solution corresponds to

the lower signs in expression (8)).

If we select  =  – , then, instead of

formula (7), we obtain a dispersion relation for the

ω0
1
4
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2

b2
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6
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b3
2

b4
-----– 
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2
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linearized problem without dissipation:

With the substitution F = 1 – exp(k0ξ + k1η – ω0τ),
from transformation (5) of the Backlund type, we obtain
a class of exact singular solutions of equation (1):

However, these solutions have no physical meaning.
Equation (1) has no soliton-like solutions.

The analysis described above shows that evolution-
ary equation (1) modeling a wave process in a strained
nonlinear viscoelastic medium allows a Backlund-type
transformation of the solutions. This transformation
makes it possible to construct the classes of exact solu-
tions of equation (1). Among them, the shockwave
structures are of particular interest. Thus, the results
obtained in this paper provide the necessary basis for
further analytical and numerical analysis of non-one-
dimensional wave processes in nonlinear dissipative
and dispersive media.
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Different aspects of the effect of wave localization
were considered in a number of publications [1–4]. For
a one-dimensional case of wave incidence on a layer of
discrete random inhomogeneities in a medium without
absorption, it was found that the region of wave local-
ization tends to half of the layer with an increasing
number of inhomogeneities, the amplitude of every
inhomogeneity being fixed [5, 6]. It was also found that
resonance structures (within which the field far exceeds
the incident field) play a crucial role in the formation of
the localization region [7, 8]. In this paper, by the
method of numerical modeling, it is shown that the
localization scale is determined by an extremely small
number of realizations with high intensity peaks. In the
case described below, this number makes only a frac-
tion of percent of the total number of realizations over
which the averaging is performed.

The problem under consideration is the determina-
tion of the field in a one-dimensional structure with ran-
dom inhomogeneities. A harmonic wave exp(ikx) is
incident from the left on a system of discrete inhomo-
geneities. Each of the latter can be uniformly and inde-
pendently positioned within an interval equal to the
half-wavelength; intervals for different inhomogene-
ities do not overlap; the average distance between the
neighboring inhomogeneities is a. The resulting field
formed in a medium with discrete inhomogeneities sat-
isfies the differential equation

(1)

where µ is the amplitude of the discrete inhomogene-
ities, n is their number, k = q(1 + iβ) is the wave vector,
β characterizes the absorption (at the beginning, we
assume that β = 0), and xj are the coordinates of the
inhomogeneities (j = 1, 2, …, n).

To solve the problem numerically, different methods
can be used. A method that requires minimum machine
time (the necessary time of computation grows only
linearly with n) and provides an exact result is the field
calculation by the transition matrices. The method is as

ϕ'' x( ) k
2

1 µ δ x x j–( )
j 1=

n

∑+
 
 
 

ϕ x( )+ 0,=
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follows: knowing the field ϕ(x) = Amexp(ikx) +
Bmexp(– ikx) between xm and xm + 1, we can determine
the field ϕ(x) = Am − 1exp(ikx) + Bm – 1exp(– ikx)
between xm – 1 and xm from the condition of the field
continuity at the point xm and the drop in its first deriv-
ative at xm according to equation (1):

As a result, we obtain the transition matrix

(2)

where ε = kµ/2.
The field transmitted through the system of n inho-

mogeneities has the form ϕ(x > xn) = Aeikx, where A ≠ 0
is some complex number.

The quantity ϕnew(x) = ϕ(x)/A also satisfies equation
(1). To determine ϕnew(x), we apply the following
method: using matrix (2), we determine ϕnew(x)
between xn – 1 and xn (assuming that at x > xn, the field is
determined by eikx, i.e., An = 1 and Bn = 0); then, from
ϕnew(x) determined at this interval, we obtain ϕnew(x) at
x ∈  (xn – 2, xn – 1), and so on, down to the interval x < x1,
where ϕnew(x < x1) = A0eikx + B0e–ikx, i.e., A = 1/A0.

Having determined A and ϕnew(x), we obtain the
desired field, i.e., the solution to equation (1). This field
has the form exp(ikx) to the left of the layer, i.e., at x < x1,
we have ϕ(x) = A ϕnew(x) = ϕnew(x)/A0. We also obtain
the average square of the field magnitude after the aver-
aging over the number of possible realizations:

The result of numerical modeling is coincident
with the analytical dependence obtained by Gazaryan
and Gel’fgat [5, 6]. According to this dependence,
with nε2  ∞, the localization region tends to half of
the layer, and the distribution of the field intensity in the
layer tends to a “step” (see Figs. 1, 2, curves 1).

ϕ' xm 0+( ) ϕ' xm 0–( )– k
2µϕ xm( )+ 0.=

Am 1– Am 1 iε–( )= iεBm 2ikxm 1+–( ),exp–

Bm 1– Bm 1 iε+( )= iεAm 2ikxm 1+( ),exp+

ϕ x( )2
1/n( ) Re

2 ϕ i x( )( ) Im
2 ϕ i x( )( )+[ ] .
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At first glance, the fact that the localization region
does not depend on the dimensions of the inhomogene-
ities forming the layer seems quite unexpected. For the
vast majority of configurations, the localization length
decreases with increasing ε. However, according to the
results of our theoretical studies [9], there always exist
some configurations of inhomogeneities for which the
square of the field magnitude inside the layer may far
exceed the intensity of the incident wave (the maxi-
mum value of this ratio is estimated in [9]). These “res-
onance” configurations are fairly unstable: they are
highly sensitive to the least variations in the coordinates
of the inhomogeneities. A numerical analysis was per-
formed for the resonances characterized by the square
of the field magnitude inside the layer reaching the val-
ues that exceed the incident field intensity by a factor of
~107; the analysis was performed for the case n = 100,
ε = 1. It was found that when the coordinate of some
inhomogeneity varies by a fraction of percent near the
resonance, the maximum ratio of the square of the field
magnitude inside the layer to the incident field intensity
decreases by a factor of ~103.

Thus, with increasing nε2, the statistical weight of
the resonance configurations sharply decreases, while
the field amplification in these structures sharply
increases. As a result, the role of a very small number
of realizations becomes crucial, so that, in the process
of statistical averaging, their contribution to the forma-
tion of a “step” becomes decisive.

Let us consider the case n = 60, ε = 0.9. The distri-
bution of the square of the field magnitude inside the
layer is shown in Fig. 1 (curve 1). Here, the averaging
is performed over 5 × 108 realizations. If we perform
the averaging after eliminating 5000 strongest reso-
nances which constitute one thousandth of percent of
the total number of realizations, the distribution of the
square of the field magnitude inside the layer will be
similar to that shown in Fig. 2 (curve 2), i.e., the local-
ization length will decrease by a factor of two. If we
eliminate one percent of the realizations with maxi-
mum field amplification inside the layer, the localiza-
tion length will be equal to 1/10 of the layer length.

The introduction of a weak absorption β has practi-
cally no effect on the nonresonance structures, while
for sufficiently large numbers n, the wave interference
that leads to the resonance in the absence of absorption
is destroyed, i.e., the energy rather than amplitude sum-
mation takes place. According to our results [9], no
matter what configuration, the field amplification can-
not exceed some quantity depending on ε and β. Sup-
pose that this quantity corresponds to the maximum
field amplification in the medium without absorption
for a layer containing n0 inhomogeneities. Then, evi-
dently, in the presence of absorption, the region of wave
localization will never contain more than ~n0 inhomo-
geneities, no matter how great the number n. Thus, at
large numbers n, the wave localization length sharply
decreases with increasing β because of the fast decrease
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
in n0. Figure 2 shows the results of the numerical calcu-
lation for n = 300, ε = 0.9. The average distance
between neighboring inhomogeneities is a = 10/q.
Curve 1 displays the spatial distribution of the square of
the field magnitude inside a layer without absorption.
In the presence of a weak absorption β = 10–5, this
dependence takes the form of curve 2 (Fig. 2), i.e., the
localization region becomes ten times smaller. Note
that in a homogeneous medium with such an absorp-
tion, the intensity of a wave transmitted through a dis-
tance equal to the length of the layer under consider-
ation, 3000/q, decreases only by 6%.

In closing, we formulate the main results:
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Fig. 1. Distribution of the field intensity along the inhomo-
geneity structure in a medium without absorption: (1) the
result of averaging over 5 × 108 realizations (this result is
coincident with the analytical dependence (24) from [5]);
(2) the result of the elimination of 5000 strongest reso-
nances from the previous averaging. The average distance
between the inhomogeneities is a = 10/q; n = 60 and ε = 0.9.
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Fig. 2. Distribution of the field intensity along the inhomo-
geneity structure in a randomly inhomogeneous medium:
(1) in the absence of absorption and (2) in the presence of a
weak absorption β = 10–5. The average distance between the
inhomogeneities is a = 10/q; n = 300 and ε = 0.9.
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(1) in the absence of absorption in a randomly inho-
mogeneous medium with a large value of nε2, the for-
mation of the wave localization region is governed by
the resonance structures; if these structures are elimi-
nated from the process of averaging over possible real-
izations, the localization length sharply decreases;

(2) with the introduction of a weak absorption, the
wave localization length at large n becomes much less
than the length of half of the layer.
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Nikolaœ Vladimirovich Studenichnik
(On His 70th Birthday)
On May 20, 1999, Nikolaœ Vladimirovich Stude-
nichnik—candidate of physics and mathematics, senior
researcher, and one of the eldest staff members of the
Andreev Acoustics Institute—turned seventy.

Studenichnik was born in Byten’, a small town in
the Brest region of Belorussia. After he graduated from
the Physicomathematical faculty of the Belorussian
State University in 1953, he began working at the
Acoustical laboratory of the Lebedev Physical Institute
of the Academy of Sciences of the USSR. In 1954, this
laboratory was reorganized into the Acoustics Institute
of the Academy of Sciences of the USSR.

The first research project carried out by Studenichnik
dates back to 1952–1953; at that time he was a fifth-year
university student. At the Acoustics Institute, he began to
study multielement broadband resonance absorbers. The
main scientific activity of Studenichnik is related to the
studies of sound fields in underwater waveguides.

The first experiments on the propagation in the
underwater sound channel were performed in 1950s in
the Black Sea, at the Sukhumi Sea Research Station of
the Acoustics Institute of the Academy of Sciences of
1063-7710/00/4601- $20.00 © 20105
the USSR. From 1960 onwards, experimental and the-
oretical studies were carried out by Studenichnik in dif-
ferent water areas of oceans all over the world. He
obtained fundamental results on the characteristics of
sound fields in underwater waveguides; he also devel-
oped new methods for analyzing and processing the
experimental data. The main object of his studies was
the fine structure of sound fields in waveguides in deter-
ministic conditions in the presence of statistical inho-
mogeneities. This includes the multiray propagation,
the near-surface channel, the nature and identification
of the diffraction field and the field of bottom reflec-
tions in the open and internal shadow zones in the deep
sea and in the wedge-shaped regions of the coastal
zone, the geometric dispersion of sound velocity in the
underwater sound channel and in shallow sea, the
refraction frequency-angular filling of the channel, etc.
Studenichnik developed the ray method of the determi-
nation of the sound source coordinates in the ocean, as
well as the physical foundations and principles of the
design of digital multichannel instruments for studying
the angular spectra of sound fields in the ocean. He sub-
stantially contributed to the classification and generali-
zation of the hydrological-acoustical characteristics of
shallow-water and shelf zones of the internal and exter-
nal seas of the Soviet Union, as well as of a number of
shelf zones and the continental slope of the ocean.

The results obtained by Studenichnik by the mid-60s
were generalized in his candidate dissertation. In 1966, he
received the degree of candidate of physics and mathemat-
ics. In 1971, he received the title of senior researcher.

Studenichnik was also involved in scientific–organi-
zational activities. In 1966–1994, he supervised nine
comprehensive research projects that were carried out in
cooperation with large research groups from different
institutions including the academic ones, as well as from
universities and industrial organizations. He organized
the All-Union Interdepartmental Scientific Seminar on
Acoustics of the Shallow Sea and Coastal Shelf of the
Ocean. This seminar was a regular event in the 1970s–
1980s. Studenichnik is the author of more than 170 scien-
tific reports and papers and the author of six inventions.

Studenichnik took part in the organization of many
oceanic expeditions on the research ships belonging to
the Acoustics Institute and the Navy.

Today, Nikolaœ Vladimirovich Studenichnik contin-
ues his active work in science. We wish him good
health and new scientific achievements.

Translated by E.M. Golyamina
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L. M. Brekhovskikh Elected Honorary Member
of the Acoustical Society of America
Academician Leonid Maksimo-
vich Brekhovskikh was elected
Honorary Member of the Acoustical
Society of America. He received this
title for his pioneering contributions
1063-7710/00/4601- $20.00 © 20106
to wave propagation and scattering. The presentation of
the diploma and the celebration of Brekhovskikh’s new
title took place at the Joint Convent of the Acoustical
Society of America and the European Acoustical Associ-
ation in March 1999, in Berlin (Germany).
L. M. Lyamshev Elected Honorary Member of the International 
Institute of Acoustics and Vibration
Professor Leonid Mikhaœlovich
Lyamshev was elected Honorary
Member of the International Insti-
tute of Acoustics and Vibration,
which unites acousticians from
many countries all over the world.
Lyamshev was given this title for his outstanding con-
tributions to scientific knowledge in acoustics and
vibration. Officially, the new Honorary Member of
the International Institute of Acoustics and Vibration
was presented to the public at the Sixth International
Congress on Sound and Vibration in July 1999, in
Copenhagen (Denmark).
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The 15th International Symposium
on Nonlinear Acoustics
The 15th International Symposium on Nonlinear
Acoustics was held in Goettingen, Germany, on Sep-
tember 1–4, 1999. Professor W. Lauterborn was the
chairman of the Organizing Committee of the Sympo-
sium. Over 130 papers were presented. The papers cov-
ered the following fields: propagation of waves of finite
amplitude in liquids and solids, wave propagation in
media with essential nonlinearity, interaction of waves
of finite amplitude with boundaries and particles, cavi-
tation and luminescence, thermoacoustics, acoustic
streaming and Bjerknes forces, industrial and medical
applications of nonlinear acoustics, focused high-inten-
sity ultrasound and lithotripsy, and sonochemistry. The
invited papers reflect the modern state of nonlinear
acoustics relatively fully.

The results of the experiments conducted at the Cav-
endish Laboratory and the Third Physical Institute of
Goettingen University were discussed in the paper by
J. Blake and G. Keen (Great Britain) entitled “Single
Cavitation Bubble Luminescence.” It was established
that a strong light emission occurred in the process of
an asymmetric collapse of a bubble when a strong high-
velocity jet emerged near a solid boundary. An attempt
to explain the observed phenomena was made. A calcu-
lation of the collapse of a bubble with toroidal geome-
try was performed on the basis of the modified bound-
ary integral method. It was noted that the considered
model can explain some experimental results, includ-
ing those obtained at Goettingen University.

L. Crum (USA) delivered a paper entitled “Acoustic
Hemostasis.” Results of multiple purposeful experi-
ments conducted within the framework of a special pro-
gram were described in detail. This program provided
for the investigation of the application of focused ultra-
sound to the detection and treatment of strong internal
hemorrhage, which often leads to a lethal outcome. A
real opportunity to apply ultrasound to these purposes
was demonstrated. Encouraging results were obtained,
which can increase the chances of a patient’s ability to
survive under extreme conditions of intensive therapy.

A review of the development and the current status
of ultrasonic lithotripsy was given in the paper by
M. Delius (Germany), “The History of Extracorporeal
Shock Wave Lithotripsy.” It was noted that the first
studies had been performed in the 1950s. Intensive
shock waves were produced with the help of electric
discharge in a fluid. Quite encouraging results of the
application of ultrasonic lithotripsy refer to the early
1970s. Now, ultrasonic lithotripsy is successfully used
1063-7710/00/4601- $20.00 © 20107
for treating illnesses connected with the formation of
stones in various organs of the human body. It was
reported that a new kind of therapy utilizing lithotripsy
for affecting “unhealthy tumors” was developed in Ger-
many. Results of its application are as yet unknown.

In the paper entitled “Nonlinear Acoustics and
Industrial Applications,” J. Gallego-Suares (Spain)
considered the effects arising in the process of action of
acoustic waves on substances and structures such as
radiation pressure, cavitation, acoustic streaming,
Bjerknes forces, etc. Utilization of these effects lies in
the basis of the development of devices and equipment
used in industry. It was noted that in many cases these
effects occur simultaneously. Some of them are useful,
while other ones interfere. The problem of optimal
application of useful effects and suppression of inter-
fering factors must be solved in the process of the
development of devices and equipment. Specific exam-
ples of devices used in industry were given.

The paper “Acoustic Phase Conjugation” by M. Fink
(France) was devoted to reviewing the opportunities to
observe the effect of phase conjugation in acoustics and
its utilization in practice. Its application to lithotripsy
and other fields of medicine, where it is necessary to
solve the problem of “targeting” to an object, was dis-
cussed. Its application to underwater acoustics and
investigating processes of multiple scattering of waves
and turbulence was considered.

M. Hamilton, Yu. Il’inskii, and E. Zabolotskaya
(USA) presented a paper entitled “Nonlinear Surface
Acoustic Waves.” The theory of nonlinear surface
acoustic waves grounded on the formalism of Hamilto-
nian mechanics was developed during the last decade,
largely due to the efforts of the authors. A review of this
theory and its further development was given. A theory
of nonlinear Rayleigh waves in isotropic solids was dis-
cussed. A system of evolutionary equations in three
alternative forms was obtained for the description of
these waves. One of these forms is a set of coupled
spectral equations, and another one is an integral equa-
tion, the solution of which allows one to separate the
contributions of the local and nonlocal nonlinearities.
The third form is a differential equation involving the
Hilbert transforms. Analytical and numerical solutions
to these equations provided an opportunity to study the
formation of shock waves, the beam diffraction, pulsed
transient processes, and the attenuation of nonlinear
Rayleigh waves. Specific features of the propagation of
nonlinear Stoneley and Scholte waves were considered
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recently. The application of evolutionary equations to
the investigation of the propagation of nonlinear sur-
face waves in crystals and piezoelectrics was discussed.

The paper by Y. Matsumoto (Japan), “Bubble and
Bubble Cloud Dynamics,” was devoted to analyzing
the processes of the formation and propagation of
shock waves in a bubble cloud. The behavior of a single
bubble was considered from the point of view of a non-
linear oscillator. Many basic physical processes taking
place within the bubble volume and at its boundaries
(surfaces) such as diffusion, heat transfer, mass trans-
fer, etc. were taken into account. These effects were
considered in the analysis of nonlinear collective oscil-
lations of multiple bubbles in a cloud. Numeric solu-
tions of a set of equations describing these oscillations
provided an opportunity to consider the specific fea-
tures of the formation and propagation of shock waves
in a cloud. It was stressed that the amplitude of a shock
wave at the center of a cloud may be several hundred
times higher than in the case of a collapse of a single
bubble due to the collective interaction of bubbles.

The paper by F. Melo (Chile), “Granular Materials
and Sound,” described the sound propagation in a gran-
ular medium. The medium was treated as a set of rigid
spheres of equal radius. The contact nonlinearity
caused by forces at the contacting boundaries of
spheres (Hertz contacts) was considered.

L. Ostrovsky, P. Johnson, and T. Shankland (USA)
presented a paper on “The Mechanism of Nonlinear
Response in Highly Nonlinear Solids.” It is well known
that many materials, such as rock, concretions, polymer
materials, etc., possess a pronouced elastic nonlinear-
ity, which is many orders of magnitude higher than that
of homogeneous gases, liquids, and crystals. Moreover,
these materials frequently exhibit hysteretic properties
in the process of their deformation. The mechanism of
this nonlinearity is extremely complex and can be
caused by structural inhomogeneities and defects, i.e.,
granules, cracks, dislocations, etc. The inhomogene-
ities may exist as compliant inclusions in a relatively
rigid matrix. The authors call this nonlinearity “struc-
tural nonlinearity” and materials by the name “mesos-
copic nonlinear materials.” The paper treated some
models of such media and materials and some model
equations that allow one to study the propagation of
nonlinear waves in these materials.

The paper “Nonlinear Phenomena in Structures
with Movable Boundaries” by O. Rudenko (Russia)
formulated and discussed some nonlinear problems of
wave dynamics, which took into account finite dis-
placements of oscillating boundaries. Such problems
are the formation of a sonic boom in the process of
supersonic motion of an airfoil with a nonzero cross-
section, a high-amplitude vibration of a body in a
strongly compressible medium, vibrations of resonance
structures, and some problems of the nonlinear wave
propagation. The specific features of the propagation of
waves and vibrations in considered dynamical struc-
tures were discussed. It was demonstrated, for example,
that spectral distortions may be caused not only by non-
linear physical properties of a medium, but also by non-
linear interaction of waves with the boundary (radiating
surface) performing vibrations of finite amplitude. Part
of the paper was devoted to the analysis of the equa-
tions of nonlinear acoustics obtained by various authors
and at different times for describing the propagation
and evolution of nonlinear acoustic waves.

K. Suslick (USA) delivered a paper entitled
“Sonochemistry.” He noted that chemistry is the inter-
action of energy and matter. There are many ways of
transferring energy to molecules. The application of
high-intensity ultrasound opened up new possibilities
of controlling chemical reactions. For example, a local
pressure of 1000 atmospheres and a temperature
increase up to 5000 K may occur during the time of sev-
eral nanoseconds in the process of a cavitation bubble
collapse. Chemical reactions, which normally take
place only under extreme conditions, are possible under
the effect of ultrasound. Many examples of ultrasound
applications in chemical technology were given and
discussed.

The paper by G. Swift (USA), “Streaming in Ther-
moacoustic Engines and Refrigerators” was devoted to
an important and rapidly developing field of nonlinear
acoustics. Without going into the details of this paper,
we note that the efficiency of acoustic refrigerators may
reach 40%. Thermoacoustic refrigerators are in opera-
tion now.

From the given brief and quite incomplete descrip-
tion of the invited papers, one can see that nonlinear
acoustics is developing rapidly. In the 1950s, it was the
focus of “curious theoreticians,” but now research
teams from many countries work on the problems of
nonlinear acoustics, and the results of these studies are
finding ever more applications.

The 16th International Symposium on Nonlinear
Acoustics is planned to be held in Moscow, Russia, in
2002.

L. M. Lyamshev

Translated by M.L. Lyamshev
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BOOK REVIEW:
Acoustics of Layered Media.

I. Plane and Quasi-Plane Waves (1998);
II. Point Sources and Bounded Beams (1999)

by L. M. Brekhovskikh and O. A. Godin.
Published by Springer Verlag, Berlin
All natural media, including the atmosphere, ocean,
and the earth’s crust, as well as various technical equip-
ment (ultrasonic filters, lenses, delay lines on surface
waves, etc.), are layered structures. As a consequence,
an environmental layered model occupies a quite prom-
inent place in the propagation theory of atmospheric
and underwater sound, and internal, seismic, and radio-
waves. The model itself is continuously refined and
complicated; more and more new analytical and
numerical methods are developed for the investigation
of wave fields in layered media; the number of applied
problems solved on the basis of the layered model rap-
idly increases, and the circle of researchers involved in
these studies is expanded. The publication of the sec-
ond updated edition of the two-volume book Acoustics
of Layered Media is quite timely. This book sums up
the development of the wave propagation theory in lay-
ered media within the last 8–10 years that elapsed since
the time of its first publication (1990–1992).

The first volume that treats plane and quasi-plane
waves underwent only insignificant modifications com-
pared to the first edition: some polishing of the language
with the help of Canadian colleques, corrections of mis-
prints in the text and equations, and additional references
predominantly to papers and books published in or after
1990 (more than 90 new references). The latter is proba-
bly the most important improvement. A few textual
changes are also introduced to make the treatment
clearer and to connect it closely to recent publications.
The structure of the first volume of the second edition (as
in the first edition) is the same as the first ten sections of
Akustika sloistykh sred published in Russian (Nauka,
Moscow, 1989) by the same authors with each section of
the Russian version becoming a chapter.

Because the review of the first edition of this mono-
graph was not published, it is expedient to give a short
description of the content of the second edition. The first
volume consists of ten chapters. The first chapter is
devoted to the propagation theory of waves with a har-
monic dependence on horizontal coordinates and time.
The wave equations, boundary and initial conditions, as
well as the conditions at infinity, are derived for sound
1063-7710/00/4601- $20.00 © 20109
and elastic waves in solids. Of special interest is the der-
ivation of modified wave equations containing no deriv-
atives of the environmental parameters. A wave equation
for a moving layered medium is also presented.

Chapter 2 deals with the plane-wave reflection from
an interface between two homogeneous media, a plane
layer, and an arbitrary number of layers. On the basis of
the generalization of the sound wave impedance for
moving layered media, the plane-wave reflection from
a discretely layered medium of a general type was con-
sidered.

Chapter 3 is devoted to the plane-wave reflection
from the boundaries of continuously layered media.
The cases that allow exact solutions of the one-dimen-
sional wave equation in liquid with continuously strat-
ified density and velocities of sound and current are
analyzed. From these solutions, all previously known
solutions can be obtained as limiting cases.

In Chapter 4, the plane-wave reflection from the
boundaries of discretely layered solids is considered.
The expressions for the reflection coefficients charac-
terizing the reflection from elastic halfspace boundaries
and a system of solid layers are obtained. It is worth
noting the efficient use of the matrix formalism in
describing waves in solids, which allows one to avoid
the awkwardness of the resulting formulas and make
the results more clear and easily representable in an
algorithm form.

Chapter 5 is devoted to the reflection of sound
pulses. The integral representation of a sound field is
obtained, the law of conservation of an integrated pulse
is determined, the change of the pulse shape upon a
total internal reflection from an interface between two
homogeneous media is investigated, and the total
reflection of a pulse in continuously layered media is
studied.

In Chapter 6, the universal properties of the reflec-
tion and transmission coefficients of plane monochro-
matic waves are determined and analyzed. These prop-
erties do not depend on the type of the medium stratifi-
cation. Relations of symmetry of the reflection
coefficients with respect to the inversion of the direc-
000 MAIK “Nauka/Interperiodica”
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tion of wave propagation in liquid are obtained. Some
symmetry relations are also proved for solids. Much
attention is given to analyzing the singularities (poles
and branch points) of the reflection and transmission
coefficients, which is very important in the investiga-
tion of the field of a point source in a layered medium
by decomposing the field into plane waves. A class of
layered media is described, for which the reflection
coefficient equals unity for a fixed frequency and angle
of incidence. This result is of practical significance.

Chapter 7 deals with waves in absorbing anisotropic
media. The influence of absorption and dispersion on
the wave propagation in liquid and solid media is ana-
lyzed. The effects of anisotropy are most significant in
solids, in particular, in acoustics of crystals, as well as
in seismology. Two cases are considered in detail: the
wave propagation in piezoelectrics (including the
Gulyaev–Bleustein waves) and elastic waves in trans-
versally isotropic solids (fine-layered media).

Chapter 8 is devoted to geometric acoustics and
approximate (mainly, asymptotic) methods of wave
field investigations. The central place is given to the
WKB method. The necessary and sufficient conditions
of the validity of the WKB method are formulated;
these conditions are also considered near the turning
points and the resonance interaction depths. The differ-
ence in the ray patterns in moving and motionless
media are analyzed.

In Chapter 9, the sound field in the case of turning
horizons and resonance interaction with a flow is stud-
ied. Using the reference equation, the authors construct
the high-frequency asymptotics of the sound field in the
vicinity of turning depths, consider the sound reflection
from a “potential barrier,” and estimate the accuracy of
the asymptotic solutions and their relation to the WKB
approximation. The theory of the resonance amplifica-
tion of sound because of its interaction with a flow is
developed in detail for arbitrary separated depths of
resonance interaction and turning points. Unfortu-
nately, this interesting effect can be realized neither in
the ocean nor in the atmosphere, since the speeds of
currents are too small in these media. Possibly, it will
be of interest for aeroacoustics, in the studies of sound
reflection from a stratified jet.

Chapter 10 deals with the sound reflection from a
medium with arbitrarily varying density and speeds of
sound and current along the vertical coordinate. The
Riccati equation is obtained for the reflection coeffi-
cient, and different approximate methods are consid-
ered for its solution. A new approach is proposed to the
analysis of the plane-wave reflection from a thin (com-
pared to wavelength) inhomogeneous layer. This
approach allows the description of some degenerate
cases that cannot be treated by the previous methods.

The second volume was subjected to more substan-
tial changes in the second edition as compared to the
first volume. This occurred because the second volume
deals with more advanced problems, many of which
remain at the forefront of recent research. Currently, the
interest of researchers is more and more shifted toward
two-and three-dimensional inhomogeneous media. The
new edition further develops the theory of wave propa-
gation in such complicated environments. As a result, a
new large chapter (Chapter 8) and two extended appen-
dices (Appendix B and Appendix C) were added to the
second edition, which increased the volume of the book
by more than 25%. These additions are based on recent
original publications by one of the authors (Godin). It
was necessary to add about 360 new references to an
already extensive list of the first edition to keep the list
of references up to date and to provide the reader with
a link to the latest developments.

The second volume consists of eight chapters. In the
first chapter, on the basis of the sound field representa-
tion as a superposition of plane waves, the authors
investigate the reflection and refraction of a spherical
wave from a plane interface of media. An integral rep-
resentation of the reflected field and its uniform asymp-
totics, which are also valid with allowance for the
absorption and relative motion of the bordering media,
are derived. The reflection of sound from an impedance
surface and a boundary of media with different densi-
ties are considered. The reflection from weak bound-
aries, which is the most complicated case from a theo-
retical point of view, is investigated in detail.

Chapter 2 is devoted to the reflection of bounded
wave beams. Much attention is given to the effect of the
beam displacement along the reflecting surface. The
authors have developed the exact theory of this phe-
nomenon and analyzed its dependence on various
parameters of the problem. Some nonspecular effects
accompanying the beam reflection are considered.

Chapter 3 presents the theory of lateral waves. A
technique for calculating the lateral waves in layered
inhomogeneous media is developed for both a point
(omnidirectional) source and a directional source. The
physical interpretation of the lateral wave is given, and
the regions of its observation are analyzed. The influ-
ence of the absorption and medium motion on the lat-
eral wave characteristics is investigated. In the approx-
imation of the small perturbation method, the scattering
of lateral waves by a small-scale random roughness of
the interface between media is considered. It is shown
that for certain conditions, the presence of roughness
leads to an increase in the lateral wave intensity.

In Chapter 4, the theory of the sound field of a point
source in horizontally stratified liquid media, both
moving and motionless, is developed. The wave equa-
tion for a nonstationary moving medium is derived.
Exact wave equations are obtained for some particular
cases: a steady motion, a medium with slow currents,
and a motionless medium. The reciprocity relations for
sound fields are discussed, and the flow reversal theo-
rem is proved for a moving layered medium. Some
exact solutions of the wave equations are obtained for a
motionless medium with various vertical sound veloc-
ity profiles. The modes generated in a moving medium
by a line or a point source are obtained and analyzed.
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
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In Chapters 5 and 6, high-frequency sound fields are
considered. The fundamentals of the geometric acous-
tics method are presented for monochromatic waves in
a steady-state three-dimensional inhomogeneous mov-
ing medium. The eikonal equation and the radiation
transport equation are obtained. Using the reference
integrals and reference functions, the uniform and local
asymptotics near a simple caustic and a cusp of a caus-
tic are obtained. Some more complicated peculiarities
of ray structures are also considered.

Chapter 7 covers the theory of wave propagation in
irregular, range-dependent waveguides, which is a
much more complicated problem than the wave propa-
gation in an ideal layered medium. The main difficulty
is related to the mode interactions in such irregular
waveguides and the appearance of modes that propa-
gate in the opposite direction. The authors have signif-
icantly developed the theory of coupled modes. The
cross-section method based on the concept of the refer-
ence waveguide was further developed. The equation of
the coupled modes is obtained and its solution by the
method of successive approximations is described.
Much attention is given to the wave propagation in
three-dimensional irregular waveguides. For solving
such problems, the method of two-scaled expansions
(in ocean acoustics, this approximation is usually
called “horizontal rays and vertical modes”) is widely
used. The method is generalized to the case of a three-
dimensional inhomogeneous moving medium. The ray
adiabatic invariants are determined, and the flow rever-
sal theorem for modes is proved. The sound field pecu-
liarities in the vicinity of the critical section of a
waveguide are analyzed. The ray theory of a sound field
in an irregular waveguide with allowance for the
medium motion is developed. A new generation of par-
abolic equations is investigated. The use of these equa-
tions allows one to considerably improve the accuracy
of the amplitude calculations without sacrificing the
phase accuracy. A new class of the parabolic equations
generalized to the case of a moving medium provides
the fulfilment of the conservation law and the reciproc-
ity principle for the acoustic field in the case of the
waveguide propagation

The new Chapter 8 is devoted to the problems of
wave reciprocity and wave energy conservation in
three-dimensional inhomogeneous moving media.
Recently, a remarkable progress in treating this rather
difficult problem was achieved. By applying non-typi-
cal variables for describing the wave field, the equa-
tions of linear acoustics of a moving medium and the
boundary conditions were dramatically simplified. As a
result, it became possible to derive the reciprocity rela-
tions and the wave energy conservation law under
rather general assumptions. This approach appears to
be suitable for a simultaneous treatment of acoustic and
acoustic-gravity waves, as well as waves in incom-
pressible fluids.

Appendix A describes the basis of the method of the
reference integrals which are encountered in studying
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
the field of a point source in layered media, pulse prop-
agation in dispersive media, wave diffraction from var-
ious bodies, quantum theory of collisions, and other
physical problems. Various methods of calculating the
reference integral are considered: the method of steep-
est descent, the saddle point method, and the method of
stationary phase. The asymptotics of various reference
integrals is investigated.

Appendix B covers the differential equations for
coupled-modes in the waveguides with sloping bound-
aries and medium interfaces. In this case, the derivation
of the coupled-mode equations relies on the reciprocity
principle rather than the wave equation, which allows
one to overcome some mathematical difficulties
encountered with the use of a conventional approach.
An important result is the evidence that the acoustic
field representation as a sum of coupled modes in the
waveguide with sloping boundaries is well justified.
Thus, a definite answer is obtained to the prolonged
discussion (mostly, among English-speaking acousti-
cians) concerned with this problem.

Appendix C is devoted to the analysis of the wave
propagation in irregular waveguides on the basis of a
new class of parabolic equations. This Appendix is
essentially a continuation of Chapter 7. Much attention
is given to the problems of the wave reciprocity and the
law of wave energy conservation in various physical
situations.

On the whole, we should note first of all the funda-
mental character of this monograph. It provides the
most comprehensive and systematic description of the
recent theory of wave propagation in layered media.
Starting from the first principles, the authors lead the
reader to the latest results and the most powerful theo-
retical techniques currently available in the field of
wave propagation in inhomogeneous media. The rigor-
ous manner of the theory description is aptly combined
with an analysis of possible applications. From compli-
cated mathematical formulas, the authors try to get
physically meaningful effects; mathematical transfor-
mations, as a rule, are accompanied by qualitative con-
siderations. The volume of the represented material is
vast (above 760 pages). Therefore, it is natural that
some sections of the book are represented relatively
briefly, and their reading requires certain efforts.

Several sections of the book can be used as the basis
for the lecture courses for students and postgraduates on
the theory of the propagation of waves of various physical
nature in inhomogeneous media. For researchers working
in different branches of acoustics, as well as in seismics
and electromagnetic wave propagation, the monograph
will be a valuable textbook. For the future development of
the studies of wave propagation in Russia and some other
countries of the former Soviet Union, it would be benefi-
cial to publish this monograph in Russian.

Yu. P. Lysanov

Translated by Yu. P. Lysanov
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I. B. Andreeva, N. N. Galybin, L. L. Tarasov, and V. Ya. Tolkachev

Andreev Acoustics Institute, Russian Academy of Sciences,
ul. Shvernika 4, Moscow, 117036 Russia

e-mail: bvp@akin.ru 
Received December 27, 1998

Abstract—A computer database is developed for the purposes of quantitatively describing the spatial variabil-
ity of acoustic inhomogeneities formed in the ocean by deep scattering layers (DSL). The database is now being
completed with the results of full-scale measurements carried out during the last few decades. At the moment,
the database is completed for the Atlantic Ocean. Using the Central Atlantic as an example, two methods of
describing the spatial distribution of the DSL total column strength (intensity) M are tested for the daylight
hours and frequencies between 3 and 20 kHz. The first method consists of plotting the isolines of the quantity
M on the map of the ocean. Such plots are obtained for six frequencies of the above frequency range; several
maps are presented in the paper. The second method is based on the selection of hydrologically homogeneous
regions with the subsequent statistical processing of all column strengths M existing in the database for every
particular region. The estimates of the mean values and variances of the quantity M for individual regions
show that some of these regions can be combined. As a result, the Central Atlantic is divided into four acous-
tically homogeneous (in the considered parameter) regions that widely differ in the statistical estimates of
the column strength and their variances. The corresponding maps and tables with quantitative characteristics
are presented. The comparison of the results obtained with the two methods demonstrates their good agree-
ment. © 2000 MAIK “Nauka/Interperiodica”.
In the last few decades, much attention was given to
the acoustics of deep scattering layers (DSL). These
layers are of biological nature and intensively scatter
acoustic waves in the frequency range from several
units to several tens kilohertz. The peak of scientific
publications on these problems falls on 1960–1970th.
Now, the number of papers dealing with these topics is
considerably reduced; however, the interest to the prob-
lem remains intact (see, e.g., [1, 2]). Almost all publi-
cations on the acoustics of DSL give only fragmentary
geographic data providing no general pattern over the
whole body of the ocean. Even the excellent paper by
Chapman et al. [3] presenting the results of measure-
ments over all oceans of the Earth (excluding the Arctic
Ocean) gives only sampled data corresponding to sev-
eral sections. 

We studied the sound scattering by ocean inhomo-
geneities of biological nature for years, and now we set
ourselves the task to quantitatively describe the funda-
mental acoustic characteristics of DSL—the column
strength and depths—and to represent these data on the
maps over the entire World Ocean for relatively wide
ranges of frequencies. To accomplish this task, we col-
lected the maximum body of experimental data on the
acoustics of DSL. In addition to published materials,
we were able to use archive records from scientific
reports of several Russian institutions that carried out
full-scale measurements of the DSL characteristics.
Among these records, there are the results of our inves-
tigations that form nearly half of the collected materi-
1063-7710/00/4601- $20.00 © 20015
als. As a result, we obtained a sufficiently large body of
experimental data, which, after some additional pro-
cessing, can be considered as an integral data bank. 

We created a computer database that contains the
DSL characteristics together with the corresponding
references, geographic coordinates, years, months, and
hours, as well as depths of the source/receiver and some
information on the measurement techniques. In the
database, the fundamental DSL characteristics are the
column strength M and the depths of the upper and
lower boundaries of every selected layer. The column
strength is defined as an integral of the volume back-
scattering coefficient over the depth. The integration
interval either coincides with the interval of depths
between the upper and lower boundaries of every layer,
or covers all depths where the DSL occur. In the latter
case, the obtained quantity is called the total column
strength for a given point of the ocean. The column
strength M is a dimensionless quantity and is usually
measured in decibels relative to unity. The experimental
values given in most sources are obtained as a result of
averaging over several successive measurements carried
out in the same conditions. Our estimates show that their
scatter is characterized by a variance of about 1.0–1.5 dB. 

The results collected in the database correspond
mainly to six frequencies: 3, 5, 7, 10, 15, and 20 kHz.
For lower frequencies, the level of scattering from DSL
is low (especially, during daylight hours), and the scat-
tered signal does not exceed the noise level. For higher
frequencies, the propagation of sounding and scattered
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Map of the hydrological regions of the Central Atlantic and the sites of measurements of the acoustic characteristics of DSL.
signals through absorbing sea water result in large
losses, and a possible error in the determination of the
absorption coefficient may result in a significant error
in the column strength evaluated from the experimental
data. 

This paper considers the Central Atlantic, for which
the database already contains a sufficient body of data
on the total DSL strength. All data considered in this
paper correspond to daylight hours during which DSL
lie at large depths. 

We divided the Central Atlantic into seven regions
nearly homogeneous in their hydrological characteris-
tics (Fig. 1). Below, we briefly describe these regions. 

Region 1 corresponds mainly to the Sargasso Sea; it
is characterized by a thick and warm surface layer with
uniform temperature and a low biological productivity.
Regions 2 and 7 are hydrologically similar; they form
a transition region to mid latitudes and are relatively
stable both in dynamics of currents and in water mass
structures. They are characterized by a well-developed
warm surface layer, a large depth of the discontinuity
layer, and a low biological productivity of the upper
waters. Regions 3 and 6 are located in the eastern parts
of northern and southern tropics, respectively; they are
also similar in their properties. They are characterized
by complex hydrodynamic conditions resulting in mul-
tiple local frontal zones that are unstable in time and
space. Region 4 extends along the equator; in this
region, the Northern and Southern Trade-Wind Cur-
rents interact, as well as the Equatorial Current and the
countercurrent. This interaction forms a temperature-
homogeneous surface layer and forces the discontinu-
ity layer to go downwards. The region is biologically
productive, because the Equatorial Current carries a
large body of organic matter ascending from ocean
depths near the coast of Africa. Region 5 is the zone
where intermediate waters ascend near the coast of
Africa, which causes its high biological productivity.
The boundaries shown for these regions in Fig. 1 are
not strictly fixed and may vary by several degrees
depending on many natural factors. In Fig. 1, the aster-
isks show the points where acoustical measurements
used in this paper were carried out. 

The averaged distribution of the total column
strength M in some considered area of ocean allows at
least two representations: (1) in the form of a set of iso-
lines of the quantity M over the area and (2) in the form
of confidence intervals for actual average values and
variances obtained for this quantity in different parts of
the area under consideration. The confidence intervals
are evaluated assuming that the DSL characteristics are
statistically homogeneous for every region with homo-
geneous hydrology. Both representations are to be eval-
uated for each frequency separately. It should be noted
that although acoustical measurements in the ocean are
numerous, they cover the ocean in a very nonuniform
manner; as a result, the estimates of the DSL intensity
given below cannot be considered as quite reliable esti-
mates. However, this approach seems to be one of the
few approaches that can result in approximate, but nev-
ertheless statistically substantiated quantitative esti-
mates of the distribution of the acoustical properties of
DSL over the ocean area. 
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000



 

ACOUSTICA

       

ACOUSTIC INTENSITY OF DEEP SCATTERING LAYERS IN CENTRAL ATLANTIC 17

               
–60–60–60 –50–50–50

–40–40–40

–40–40–40

–60–60–60

–50–50–50

–60–60–60

–50–50–50

–40–40–40

–50–50–50

–60–60–60

–60–60–60

–40–40–40

–50–50–50

–50–50–50

30° N

20° N

10° N

0° N

10° S

20° S

(a)

(b)

(c)

–30

–40

–50

–60

–70
M, dB

30° N

20° N

10° N

0° N

10° S

20° S

30° N

20° N

10° N

0° N

10° S

20° S

–30

–40

–50

–60

–70
M, dB

–30

–40

–50

–60

–70
M, dB

60° W 40° W 20° W 0° E

Fig. 2. Maps of isolines of the total column strength for the frequencies (a) 5, (b) 10, and (c) 20 kHz.
Figure 2 shows the total column strength measured
for the frequencies 5, 10, and 20 kHz in the form of iso-
lines drawn with the step 10 dB. They were obtained by
using the triangular method and linear interpolation
between the points. The dashed lines show the bound-
aries of the regions with homogeneous hydrology (the
L PHYSICS      Vol. 46      No. 1      2000
regions shown in Fig. 1). For each frequency, the iso-
lines are characterized by their own configuration;
however, all patterns of the DSL intensity distribution
are similar in their general features. 

Here, we note some specific features of the column
strength distribution shown in Fig. 2. The white spot at
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Fig. 3. Central Atlantic regions statistically homogeneous in the total column strength for the frequencies (a) 5, (b) 10, and (c) 20 kHz.
The shading intensity qualitatively corresponds to the DSL intensity. The quantitative data are resented in the table.
the southeast correspond to the region for which only
scarce data exist in the database. On the map, one can
clearly see a zone near the equator, which is relatively
rich in scattering layers (especially, for lower frequen-
cies), and relatively poor zones corresponding to the
Sargasso Sea in the Northern hemisphere and to the
cyclonic circular motion in the Southern hemisphere. In
general, the isoline pattern corresponds to the bound-
aries of the regions with homogeneous hydrology, which
is evidence in favor of the hypothesis that hydrological,
acoustical, and biological characteristics of the ocean are
closely related. The local differences observed for differ-
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
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ent frequencies—in particular, the positions of the
“spots” with M > –40 dB and M < –60 dB—are presum-
ably caused by the differences in the fauna composition
of the DSL [4]. 

The spatial pattern shown in Fig. 2 is very descrip-
tive; however, it gives no way of estimating the proba-
bility confidence of measured column strengths. Such
estimates can be obtained using the second approach to
the problem. Suppose that the values of the total col-
umn strength obtained within every selected region
(samples in the database) belong to a single general set.
In simultaneous processing of these results, we will
assume that errors of all measurements coincide and all
measurements have equal statistical weight. Addition-
ally, we checked the hypothesis that the total column
strength M is distributed according to the Gaussian law
in all regions under consideration. This was done for
every frequency using the W-criterion, which is opti-
mum for small samples [5]. For the majority of cases, it
was found that there is no reason to reject this hypoth-
esis. 

At the first step of the simultaneous processing of
data relating to every region and every frequency, we
calculated sampling arithmetic means of the column
strength (in dB) and the variances of the differences
between particular measurements and this mean. In
every considered sample, abnormal values (outliers) of
M were rejected using a standard procedure of the sta-
tistical processing of experimental data. Then, for every
pair of regions, we checked the hypothesis that their
sampling means and variances of the column strength
coincide. If they coincided with a confidence level of
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
5%, we decided that these samples belong to a single
general population; the data corresponding to these
regions were combined, and the processing was
repeated. For the regions of the Sargasso Sea (region 1)
and the southern cyclonic circular motion (region 7), at
frequency 20 kHz, the sampling means coincided; but
the corresponding variances differed widely. For this
reason, regions 1 and 7 could not be combined. Below,
we will use the term “acoustically homogeneous
regions” for the regions with equal mean values and
variances of M at a given frequency. 

At every frequency, we selected four acoustically
homogeneous regions. The boundaries of these regions
(numbers of combined hydrologically homogeneous
regions) generally depend on frequency. As an exam-
ple, Fig. 3 shows the maps with these regions for fre-
quencies 5, 10, and 20 kHz. The table lists the quantita-
tive estimates relating to the column strength for the
regions shown in Fig. 3. The upper part of the table pre-

sents the estimates of the mean values of , the vari-

ances , and the variation coefficients  obtained for
every sample of length n. The lower part of the table
presents the approximate 95% confidence intervals of
true mean values of the column strength , the vari-

ances , and the corresponding intervals for the vari-
ation coefficient . 

For all frequencies, the lowest column strengths
occur in regions I and I' (the Sargasso Sea and the
southern cyclonic circular motion, respectively). The
most intense scattering occurs in the zone of coastal
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upwelling and in the equatorial region (regions III and
IV). In region II (northern mid latitudes), the scattering
level is intermediate for all frequencies under consider-
ation. This spatial distribution of the DSL intensity is in
qualitative agreement with the isoline maps shown in
Fig. 2, the hydrological features described above for the
corresponding water areas, and does not contradict the
map of pelagic regions of the Atlantic Ocean [6]. 

In Fig. 4, the shaded zones corresponding to 95%
confidence intervals represent the frequency character-
istics of the column strength  for two acoustically
homogeneous regions (I and IV) radically different in
the total DSL intensity. In plotting these graphs, we
used the data on the confidence intervals of  for all
frequencies used in our processing, including the data
for the frequencies 3, 7, and 15 kHz that were not pre-
sented in the table. In both cases, the minimum col-
umn strength corresponds to the frequency 3 kHz, and
the minimum value is below –70 dB for region I. In
region IV, this minimum value is higher and approaches
–50 dB. The maximum column strength also corre-
sponds to region IV; it occurs at the frequencies 5 and

M

M

–70

3 5

M, dB

f, kHz
7 10 15 20

–60

–50

–40

–30

–80

–

Fig. 4. Interval estimates of the frequency characteristics of
the column strength in homogeneous regions I and IV.

IV

I

10 kHz and approaches the level –40 dB. With further
increase in frequency, the column strength varies only
slightly. In region I, poor in scatterers, this maximum
decreases to –55 dB, and in region IV, rich in scatterers,
it increases to almost –45 dB. The specific feature of
most curves M(f) measured during daylight hours is a
radical increase in the column strength observed as the
frequency increases from 3 to 5 kHz; this increase is
clearly seen in Fig. 4. For other regions shown in Fig. 3,
i.e., for the regions with moderate column strengths, the
frequency characteristics M(f) lie between the shaded
zones shown in Fig. 4. 

We hope to continue the studies of the variability of
the properties of deep scattering layers in the ocean in
two directions: first, we will extend our database to the
entire ocean, and, second, we will take fuller advantage
of the experimental data contained in the database at
the moment. As a result, we will be able to give the
most reliable statistical description not only for the
scattering intensity of DSL, but also for the DSL depths
and their diurnal migration in different regions of the
ocean.
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Abstract—The space correlation function of sound pressures produced by a source of thermal acoustic radia-
tion in the megahertz frequency range is measured by a system of two plane piezoelectric transducers. The
source of radiation is an acoustic blackbody radiator represented by a heated strip of material with a large
absorption coefficient. The strip is moved along the coordinate x perpendicular to the acoustic axis of the sys-
tem. The correlated signal periodically varies in the course of the strip motion, and its magnitude is proportional
to the difference between the temperatures of the source and the surrounding medium. The space correlation
function R(x) is calculated, and the results of the calculation agree well with the experimental data. The problem
of the development of a device for correlated signal measurements in passive thermoacoustic tomography is
discussed. © 2000 MAIK “Nauka/Interperiodica”.
The information carried by thermal acoustic radia-
tion can be used for measuring the temperature within
biological objects [1]. The corresponding technique,
namely, the acoustic thermography based on the mea-
surements of the intensity of this radiation by single
piezoelectric transducers, provides an opportunity to
measure in-depth temperatures with the precision of
0.1 K [1, 2]. At the same time, it was suggested to use
a correlation reception of thermal radiation by several
piezoelectric transducers operating simultaneously.
Such measurements were expected to increase the sen-
sitivity and the resolution of the method [3, 4]. It was
demonstrated that such a technique provided an oppor-
tunity to determine not only the distribution of the in-
depth temperature of objects but also the distribution of
the absorption coefficient in them. In its turn, this offers
a possibility to develop a passive thermoacoustic tomo-
graph that requires no a priori information on the
absorption coefficient [5]. The major difficulty is the
selection of the corresponding geometry of a pair of
detecting transducers and the determination of their
characteristic parameters. The first approaches were
proposed by Barabanenkov and Pasechnik [6].

At the same time, it is necessary to note that the sit-
uation realized in the studies of the correlation proper-
ties of thermal acoustic radiation from heated objects is
normally absent in the measurements of thermal elec-
tromagnetic radiation. In the case of thermal acoustic
radiation, the temperature of the source only slightly
exceeds the background temperature, while in the sec-
1063-7710/00/4601- $20.00 © 0021
ond case the difference is essential. Therefore, a special
study of this problem is necessary.

We note that experimental correlation measure-
ments of thermal acoustic radiation have not been per-
formed up to now, and theoretical formulas for the sim-
plest experimental situations have not been obtained.
This paper is devoted to the experimental determination
of the spatial correlation function of the sound pres-
sures produced at two piezoelectric transducers by a
source of thermal acoustic radiation, and to the compar-
ison of the experimental results with the theoretical
estimates.

The measurements were performed in a basin (1)
(Fig. 1) with the dimensions 40 × 28 × 30 cm3. The
source of acoustic radiation was a narrow strip (2) of
width ∆ = 2 mm made of a material strongly absorbing
ultrasound (plasticine). The strip was heated up to the
temperature T by placing it in a dish (3) with acousti-
cally transparent windows. The dish was filled with
water and equipped with a heater (4). Two plane circular
piezoelectric transducers (PT1 and PT2) were used as the
receivers. The radius of the transducers was a = 5 mm,
and the distance between their centers was D = 16 mm.
Their temperatures coincided with the temperature T0
of the basin. The acoustic axes of the piezoelectric
transducers were lying in the xz plane and intersected at
a distance of ~140 mm from the straight line connect-
ing the centers of both transducers (Fig. 1). Thus, the
angle between the acoustic axes was about 6.5°. The
strip was positioned in the plane L along the y axis
2000 MAIK “Nauka/Interperiodica”
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inside the dish at the distance z0 = 200 mm from the
piezoelectric transducers. The strip was moved hori-
zontally (along the x axis) with the step 2 mm, perpen-
dicularly to the acoustic axis of the system (the z axis),
i.e., the straight line passing through the point of inter-
section of the acoustic axes of the piezoelectric trans-
ducers and the middle of the line segment connecting
the two piezotransducers. The origin of coordinates
was located at the point of intersection of the acoustic
axis of the system and the plane L. Using a pulsed ultra-
sonic source, we found that the point lying on the x axis
in the plane L at x = 8 mm is equidistant from both
piezoelectric transducers.

The piezoelectric transducers were equipped with
two quarter-wave layers, loaded to matching transform-
ers, and tuned to the frequency 2.2 MHz (the bandwidth
of the amplifiers (5) and (6) was 200 kHz). The piezo-
electric transducers had approximately equal sensitivi-
ties. The sound pressures at PT1 and PT2—p1 and p2,
respectively—were transformed into electric signals,
which were amplified and fed to the inputs of three
multipliers (MLT04 Analog Devices). Two multipliers,
(7) and (8), were used for the determination of the mean
squares of pressures measured by each of the piezo-

electric transducers—〈 〉  and 〈 〉 , respectively. The
third multiplier (9) was used to determine the mean

p1
2

p2
2

1
2

3 4
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PT1

D

PT2

11

∆
x
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Fig. 1. Schematic diagram of the experiment: (1) a basin;
(2) a plasticine strip of width ∆; (3) a dish; (4) a heater;
(5), (6) high-frequency amplifiers; (7), (8), (9) multipliers;
(10) a computer; and (11) a chopper. PT1 and PT2 are the
radiation receivers represented by piezoelectric transducers
of radius a with the distance between their centers D; the
distance to the source is z0.
value of the product of pressures measured by different
piezoelectric transducers, namely, 〈p1p2〉 . The resulting
signals were stored in an IBM-386 personal computer
(10) via amplifiers with the bandwidth 1–15 Hz (the
time of recording 40 s) and an L-154 interface card
(L-card SoftWare Lab Limited, Russia). A modulation
reception was used to avoid the signal drift: the radia-
tion of the heated plate was periodically interrupted by
a chopper (11) with the frequency 4 Hz. Thus, the sig-
nals from the strip heated with respect to the basin to
the temperature ∆T and from the whole basin were
recorded (∆T = T – T0 = 9.5 K, where T and T0 are the
temperatures of the source and the surrounding
medium). A signal reflecting the chopper position was
also stored in the computer and used as a reference sig-
nal. The process of synchronous detection was per-
formed with the help of the computer. The difference
(increment) of the mean intensity values of the corre-
lated signal from the strip and the signal from the whole
basin, as well as the increments of the signals from the
strip and the whole basin detected by PT1 and PT2, were
determined. The measurements were repeated four
times for each position of the plate.

In order to calibrate the setup in Kelvin degrees, a
“blackbody” was placed into the dish. The blackbody
was sufficiently large to overlap the apertures of both
piezoelectric transducers. The measured signal magni-
tudes expressed in Kelvin degrees were the increments
of the acoustic brightness temperature; e.g., for PT1, the
corresponding increment is ∆Tb = Tb – T0. The acoustic
brightness temperature Tb is the temperature of the
blackbody that produces the same radiation flux as the
object under investigation [2]. In the case of a black-
body filling the whole aperture of the piezoelectric
transducers, we have ∆Tb = ∆T = T – T0. In the case of a
narrow strip, the acoustic brightness temperature is pro-
portional to its width.

A common modulated high-frequency signal was
fed to the input amplifiers instead of the signals from
the two piezoelectric transducers in order to calibrate
the channel measuring the correlated signal. We also
took into account the fact that the mechanical chopper
blocked the apertures of both piezoelectric transducers
not simultaneously but with a certain shift, which
caused a reduction of the correlated signal by 10%. For
the sake of uniformity, the correlated signal expressed
in Kelvun degrees will be called the increment of the
correlated acoustic brightness temperature, ∆TbC .

Figure 2 presents the measurement-averaged depen-
dences of the increment of the correlated acoustic
brightness temperature ∆TbC (x) on the x coordinate
(curve 1) and the dependences of the increments of the
acoustic brightness temperature measured by PT1 and
PT2, ∆Tb1(x) and ∆Tb2(x) (curves 2 and 3, respectively).
One can see that, within the limits of the directivity pat-
tern, the correlated signal varies periodically with the
spatial period Λ about 8.5 mm. The signal ∆TbC(x) is
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
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less in magnitude than the average values of ∆Tb1(x)
and ∆Tb2(x).

Let us consider the following model in order to cal-
culate the parameters of the correlated signal and cor-
relation function

. (1)

The source of thermal radiation is a heated long strip 1
lying in the plane L and oriented along the y axis (Fig. 3).
The plane L lies at the distance z0 from the piezoelectric
transducers. A strip of the width ∆ can move along the
x axis. The transducers PT1 and PT2 are positioned
symmetrically with respect to the acoustic axis of the
system, at the distance ±D/2 from it, and rotated rela-
tive to each other in such way that the acoustic axis of
PT1 intersects the x axis at the point x01, while the
acoustic axis of PT2 intersects the x axis at the point x02.
In the process of measurement in the far wave field, we
use the Fraunhofer approximation for a circular piezo-
electric transducer [7]. The complex amplitudes of the
velocity potentials φ1 and φ2 measured by each piezo-
electric transducer are connected with the velocity
potential u0 of a point source located at the distances r1
and r2 from the centers of the corresponding piezoelec-
tric transducers:

(2)

where k = 2π/λ is the wave number, λ = c/f is the wave-
length, f is the frequency, c is the sound velocity, θ1 and
θ2 are the angles between the directions from the cen-
ters of the piezoelectric transducers PT1 and PT2,
respectively, to the radiation source and their acoustic
axes, and J1 is the Bessel function of the first order.

In the case of a source in the form of a strip oriented
along the y axis and with the center at the point x and
width ∆, the complex amplitudes of the velocity poten-
tials at both piezoelectric transducers can be obtained
by integrating expressions of the type of formula (2)
with respect to the x and y axes. For example, we have
for the first of them

(3)

Infinite limits of integration with respect to the variable
y are determined taking into account the fact that the
plate length along this axis exceeds the transverse
dimensions of the characteristic functions of piezoelec-
tric transducers.

We assume that thermal noise is delta-correlated,
the thermodynamic temperature of the plate T does not
depend on the x and y coordinates, and r1 ≈ z0 in the
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denominator of the integrand in expression (3). Taking
into account the fact that the signal reception is per-
formed by a device with a certain frequency response
S(f), we obtain that the quantity ∆Tb1(x) corresponding
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Fig. 2. Increment of the correlated acoustic brightness tem-
perature TbC(x) (curve 1) and increments of the acoustic
brightness temperature measured by PT1, Tb1(x) (curve 2),
and PT2, Tb2(x) (curve 3), versus the x coordinate; the
curves are obtained by averaging over four measurements
each.
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Fig. 3. A scheme for the calculation of the correlation func-
tion of thermal acoustic radiation received by two piezo-
electric transducers, PT1 and PT2, with the radius a and the
distance between their centers D. The radiator (1) is a strip
of width ∆ lying in the xy plane; z0 is the distance from the
xy plane to the transducers; r1 and r2 are the distances to the
point source from the centers of the piezoelectric transduc-
ers; θ1 and θ2 are the corresponding angles between the axes
of the transducers and the rays r1 and r2; l is the distance of
the displacement of PT2 along its acoustic axis; x01 and x02
are the coordinates of intersection of the x axis with the
acoustic axes of PT1 and PT2; and (2, 3) the lightly shaded
areas represent the sections of the planes of characteristic
functions by the plane L. 
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to the signal measured by, e.g., PT1, has the form

(4)

It is convenient to approximate the frequency response
of the receiver S(f) normalized to unity by an expression
with the maximum at the frequency f0 and a transmis-
sion bandwidth at the level 3 dB, δf,

(5)

In this case, df = 1. For small angles θ, we

replace sinθ by its argument, and, in order to calculate
integrals of the type of expression (4), we approximate
the integrand function by the expression

(6)

In the Cartesian coordinates, the angle θ1 is determined

according to the formula θ1 ≈ /z0,
where x and y are the coordinates of a point in the plane
L. From expression (4) after the integration over the y
axis, it follows that the increment of the acoustic bright-
ness temperature has the form

(7)

In the process of measurement, the increments of
the acoustic brightness temperature are calibrated with
respect to the radiation of the blackbody filling the
whole aperture of the piezoelectric transducers. The
radiation of a plate of very large width (∆  ∞) cor-
responds to this case in expression (7), and, as it fol-
lows from this expression, the increment ∆Tb1 of the
acoustic brightness temperature is equal to the incre-
ment ∆T of the thermodynamic temperature.

Since the relative transmission bandwidth is small,
i.e., δf/f0 ! 1, we can change the wave number k for its
average value k0. Moreover, if the strip width ∆ is far
less than the characteristic width of the characteristic
function at the distance z0, i.e., ∆ ! z0/k0a, we may

∆Tb1 x( ) ∆T
1

πz0
2

--------=

× S f( ) f dy ka( )2 J1 ka θ1sin( )
ka θ1sin

----------------------------- 
 

2

ξ .d

x ∆/2–

x ∆/2+

∫
–∞

∞

∫d

0

∞

∫

S f( ) δf /2π( ) 1/ f f 0–( )2 δf /2( )2
+( )( ).=

S f( )
0

∞∫

J1 ka θ1sin( )
ka θ1sin

----------------------------- 1/2( )e
kaθ1( )2

/8–
.=

x x01–( )2
y

2
+

∆Tb1 x( ) 1

2 πz0

---------------∆T=

× S f( ) f ka ka/2z0( )2 ξ x01–( )2
–( ) ξ .dexp

x ∆/2–

x ∆/2+

∫d

0

∞

∫

change the exponent for its value at the point x. Then,
we obtain

(8)

where the quantity (k0, x) ≈ exp(–(k0a/2z0)2(x –

x01)2) depending on the coordinate and the average
value of the wave number is the square of the character-
istic function of PT1.

An analogous expression can be obtained for PT2:

(8a)

where 

(k0, x) ≈ exp(–(k0a/2z0)2(x – x02)2) 

is the square of the characteristic function of PT2.
In calculating the correlated acoustic brightness

temperature for the sound pressures measured by both
piezoelectric transducers, it is necessary to take into
account the dependence on a coordinate only in the
phase factors in the expressions of the type of for-
mula (3) for both piezoelectric transducers. We con-
sider a more general case with one of the piezoelectric
transducers (let it be PT2 for definiteness) is shifted
from the point of intersection of the acoustic axes along
its own acoustic axis by the distance l (Fig. 3). This case
provides an opportunity to take into account the addi-
tional propagation difference between the piezoelectric
transducers. As a result, the total propagation differ-
ence for the point (x, 0) will be r1 – r2 = Dx/z0 – l. Tak-
ing the characteristic functions from under the integral,
we obtain the following expression for the increment of
the correlated acoustic brightness temperature:

(9)

Calculating this double integral, we first integrate the
fast-variable oscillating function with respect to fre-
quency. After some transformations, we obtain the fol-
lowing formula from expression (9):

(10)

where A12(k0, x) = A1(k0, x)A2(k0, x) is the characteristic
function for the correlated signal.

It follows from expression (10) that the envelope of
the correlated signal is determined by the product of
the characteristic functions of both piezoelectric
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transducers. The factor  ≤ 1 takes into

account the loss of correlation with increasing strip
width. The exponential factor depending on the rela-
tive transmission bandwidth δf/f0 takes into account
the correlation loss due to the nonmonochromatic
structure of the received signal. The quantity ∆TbC

depends on the x coordinate almost periodically with
the spatial period Λ = λ0z0/D.

As it follows from expressions (8), (8a), and (10),
the correlation function R(x) has the form

(11)

The amplitude of R(x) is maximum at x = lz0/D, this
value being determined by the additional propagation
difference between the piezoelectric transducers and
the intersection point of their acoustic axes.

Figure 4 shows the calculated increment of the cor-
related acoustic brightness temperature (curve 1) and
the experimental curve (curve 2) smoothed out using
the cubic interpolation technique. Experimental errors
are indicated at the experimental points. In the process
of calculation, we used a characteristic function
obtained by multiplying our experimental curves
(curves 2 and 3 in Fig. 2) for both piezoelectric trans-
ducers (the curves were smoothed out by parabolas
using the least-square method) and the exponential and
periodic factors from expression (10). We selected the
value of l in such way that the exponential factor had
the maximum value at x = 8 mm to comply with the
experimental data.

The correlation function R(x) obtained by the divi-
sion of two noisy signals is determined with a greater
error than the value of ∆TbC . Figure 5 presents the the-
oretical dependence R(x) calculated according to for-
mula (11) for the conditions of our experiment (curve 1).
The experimental points in Fig. 5 are obtained by for-
mula (1) directly from the corresponding experimental
data (Fig. 2). Curve 2 is obtained by formula (1) with
∆Tb1(x) and ∆Tb2(x) approximated by second-order
polynomials and ∆TbC(x) approximated using the cubic
interpolation technique. A characteristic exponential
drop at the distance ∆x = z0λ0/π(δf/f)D can be seen in
the theoretical dependence. The calculated spatial
period in Figs. 4 and 5 is Λ = 8.5 mm, which almost
coincides with the period measured experimentally.
The amplitudes of the correlated signal and the correla-
tion function calculated theoretically coincide on the
whole with those measured experimentally.

At the same time, a systematic excess of theoretical
values over the experimental data is observed. Let us
consider possible reasons for this discrepancy. The first
of them can be experimental errors. They are especially
large at the edges of the range of the values of x, since,

k0∆D/2z0( )sin
k0∆D/2z0

------------------------------------

R x( )
k0∆D/2z0( )sin

k0∆D/2z0
------------------------------------=

× e
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in reality, the correlation function can be measured only
within the limits of overlapping of the directivity pat-
terns of both piezoelectric transducers, the width of
each of them at the level e–1 at the distance z0 being
2z0λ0/πa ≈ 18 mm. The second reason may originate
from the specific features of the utilized experimental
setup. We used not an isolated heated source, but a dish
with heated water containing a body heated by this
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Fig. 4. Dependence of the calculated (curve 1) and experi-
mental (curve 2) increments of the correlated acoustic
brightness temperature TbC(x) on the x coordinate. The
interpolated data of Fig. 2 are used as experimental data.
The measurement errors are indicated at the experimental
points. The calculation was performed with the following
parameters: the width of the heated strip ∆ = 2 mm; the dis-
tance from the piezoelectric transducers to the strip z0 =
200 mm; f0 = 2.2 MHz; λ0 = 0.68 mm; a = 5 mm; D =
16 mm; δf = 0.2 MHz; and l = 0.64 mm.
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Fig. 5. Calculated (curve 1) and experimental (curve 2) val-
ues of the correlation function R(x) versus the x coordinate.
The points correspond to the calculation by the data given in
Fig. 2. For the parameters used in the calculation, see Fig. 4.
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water and having a large absorption coefficient; the
body was represented by a thin plasticine strip oriented
in the direction of both piezoelectric transducers and
covered by a metal housing. In this case, thermal acous-
tic radiation exists inside the dish. The radiation is dif-
fracted by the source. As it is well known from optics
[9], the effective cross-section of the radiating strip
increases due to this effect. This hypothesis is con-
firmed by the fact that the acoustic brightness tempera-
tures measured by both piezoelectric transducers are
slightly higher than the values calculated by formula (7).
By virtue of the design of the utilized blackbody, addi-
tional diffraction contribution measured by both piezo-
electric transducers apparently cannot be totally corre-
lated. Therefore, the measured correlated signal and the
correlation function are less in magnitude than the cor-
responding theoretical values.

One can see also from Fig. 5, that the correlation
coefficient does not reach the values ±1. First, this is
connected with the finite width of the strip: as it follows
from expression (11), the maximum value of R(x)
decreases as the strip expands. And second, this is
caused by the diffraction effects discussed above. Thus,
the correlation properties of thermal acoustic radiation
on the whole can be adequately described by the pro-
posed theory.

Two important conclusions follow from the data
obtained in our experiments. The correlated thermal
acoustic radiation can be measured experimentally, and
the experimental errors can be estimated rationally; this
provides an opportunity to develop a passive thermoa-
coustic tomograph, which does not utilize any a priori
information on the absorption properties of the medium
[5]. At the same time as it follows from the described
theory (expressions (10) and (11)), the utilized tech-
nique of measuring the thermal acoustic radiation with
the help of two piezoelectric transducers positioned at
some distance from each other provides an opportunity
to separate the correlated part of radiation only from
small sources with dimensions comparable to the wave-
length. If the source is a relatively large, uniformly
heated body with dimensions greater than the aperture
of piezoelectric transducers, the total correlated signal
obtained by averaging over the whole xy plane van-
ishes. Thus, under the given experimental geometry, the
simple device used in our study cannot serve as a sensor
for a passive thermoacoustic tomograph utilizing the
correlation properties of radiation [5], and special
investigation is needed to develop such a sensor.

We note that, as our experiment shows, the magni-
tude of the correlated signal, as well as the magnitudes
of signals detected by single sensors, was determined
by the difference ∆T = T – T0 of the source temperature
T and the receiver temperature T0. Apparently, this
result is caused by the fact that the utilized sensor of the
correlated signal, which consists of two separate piezo-
electric transducers, gives a zero value in the case of a
source with the width exceeding that of the characteris-
tic function. Therefore, the signal source we used can
be considered as a source consisting of two parts: a
plane with the temperature T0 and a narrow strip with
the temperature ∆T = T – T0, only the second source
producing detectable correlated radiation. This conclu-
sion agrees well with the results obtained for the recep-
tion of an uncorrelated signal [8].

In closing, we note that the possibility of using pas-
sive measurements of the absorption coefficient in
objects seems to be especially promising for biomedi-
cal applications, since the methods currently used for
these purposes are active ultrasonic ones [10–12].
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Abstract—A pulsed interference acoustooptic technique for measuring the phase velocity of sound in solids is
described. The technique is an outgrowth of the known long-pulse interference technique. The interference
acoustooptic technique retains all advantages of the initial method, and, due to the usage of acoustooptics, it is
more precise and provides an opportunity to conduct the measurements of velocities of both longitudinal and
transverse waves, in both isotropic and crystalline materials. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The sound velocity is one of the most important
characteristics of a material. It is necessary to know it
for both the interpretation of physical effects and the
calculation of parameters of various systems and
devices. The phase velocity of sound in a crystal is the
initial quantity for the determination of its elastic [1]
and piezoelectric [2, 3] constants. The severe require-
ments imposed upon the precision of their determina-
tion make it necessary to determine the absolute value
of sound velocity with a high precision. For example, it
is necessary to measure the sound velocity with a rela-
tive precision no less than 10–4, which corresponds to
the precision of several meters per second, in order to
determine the piezoelectric constants of weak piezo-
electric materials, which have the electromechanical
coupling coefficient K2 ≤ 0.01, with the precision 10%.

There are many various techniques for measuring
the phase velocity of sound. In the majority of cases,
they are grounded on either the measurement of the
propagation time of an ultrasonic signal over a sample
of known dimensions or the determination of the sound
wavelength at a known frequency. In the first group of
methods, it is necessary to measure the time intervals
with high accuracy, while in the second group, preci-
sion measurements of frequency are needed. Modern
devices for measuring time and frequency provide suf-
ficiently high precision, and they do not restrict the pre-
cision of the techniques. (However, it is preferable to
use frequency meters.) At the same time, both groups of
methods require precise measurements of the sample
length, which is rather difficult to perform in practice.
It is just the inaccuracy in the determination of the sam-
ple length that is the main source of errors. Possibly, the
only methods, which do not require the measurements
1063-7710/00/4601- $20.00 © 20027
of the sample length, are the acoustooptic methods
using light diffraction by ultrasound [4, 5]. Unfortu-
nately, they are suitable only for optically transparent
media. These techniques need high-precision measure-
ments of the diffraction angle, which is usually quite
small (ϕ ~ 0.5°–1.0°). The difficulty of high-precision
measurements of small angles restricts the capability of
the acoustooptic methods in the sound velocity measure-
ments. We should note that an original acoustooptic tech-
nique for high-precision measurements of the velocity of
elastic surface waves was proposed recently [6, 7].

Both continuous and pulsed modes of sound radia-
tion are used in the sound velocity measurements. For
example, the continuous mode is used as a rule in the
resonance methods, which are especially efficient for
high-precision measurements of small changes of
sound velocity [8]. However, currently, the pulsed
mode is more widely used, because it has several
advantages [9, 10]. According to Truell et al. [11],
pulsed methods of the sound velocity measurement can
be divided into several groups utilizing detected pulses
with a discrete delay, radio-frequency pulses with a dis-
crete delay, techniques of pulse autocirculation, and
methods of pulsed interference with the interference of
high-frequency signals of the filling of reflected sound
pulses. From our point of view, methods of pulsed
interference and, in particular, the long-pulse method
are very precise and at the same time, simple enough
[12, 13]. The method we suggest is its outgrowth. In our
case, the long-pulse technique is combined with an
acoustooptic detection of the interference of ultrasonic
waves. This technique retains all advantages of the
long-pulse method (a large bandwidth, the absence of
errors connected with both diffraction and the necessity
to take into account the phase shift in the case of reflec-
tion from a transducer, and relatively thin samples) and
000 MAIK “Nauka/Interperiodica”
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has several additional ones originating from the utiliza-
tion of acoustooptics. First of all, this is the applicabil-
ity of this method to the measurement of sound velocity
in anisotropic media. Acoustooptics provides an oppor-
tunity to observe directly the signals propagating in a
sample and to separate the useful signal from additional
ones, thus, determining the resonance frequency and
visualizing the whole pattern of propagation of the
sound pulse over the sample [14].

INTERFERENCE ACOUSTOOPTIC TECHNIQUE

The suggested method is grounded on the observa-
tion of the interference of two or several sound waves,
i.e., a wave reflected from the sample surface and
another wave that is transmitted through the sample,
reflected from its rear surface, and then coming out of
the sample. A medium where interfering waves propa-
gate is a solid isotropic buffer. Optically transparent
glass is used as such a buffer. A narrow laser beam is
transmitted through the buffer across the direction of
sound propagation in order to observe the interference
of acoustic waves. Light diffraction by sound waves in
the buffer is observed. If the sound frequency is
changed, the phase shift between interfering waves also
changes, and the interference maxima and minima of
the resulting wave amplitude are observed. They are
detected by the corresponding maxima and minima of
the intensity of diffracted light. The character of light
diffraction is unimportant for the detection of beating
(usually, this is a transient regime from the Raman–
Nath diffraction to the Bragg diffraction), and there is
no need in fine tuning of the angles of incidence and
observation to the changes of sound frequency (the
optical system is tuned to the presumed average fre-
quency of the range only once before the beginning of
measurements). If the sound frequency changes, only a
decrease in the intensity of diffracted light occurs.

The measuring cell for the interference acoustooptic
technique is schematically depicted in Fig. 1. Elastic

Light

1
2

3

4

5

τ

mτ

nτ

l

L

Fig. 1. Measuring cell: (1) load, (2) transducer, (3) buffer,
(4) sample, and (5) base (holder).
waves are excited by a transducer positioned on a
buffer. The polarization of the excited wave is deter-
mined by the utilized transducer. It is possible that the
transducer is positioned not on the buffer but on the
sample. In this case, a buffer is necessary only in the
process of investigation of opaque samples. However,
in the case of such positioning of the transducer, a pre-
cise determination of sound velocity is much more dif-
ficult, since the phase shift that appears as a result of
reflection from the transducer depends on sound fre-
quency. In this case, it is necessary to take into account
not only the finite thickness of the transducer [15] but
also the conversion of part of the elastic energy into the
electric one. Therefore, this version of the technique
will not be considered in this paper.

In the case of normal incidence of an elastic wave on
a boundary between two media, the wave vectors of the
incident, reflected, and transmitted waves lie in a single
straight line normal to the boundary. If both media are
isotropic (the buffer and the sample are isotropic),
waves of different polarization do not arise. However,
if a sample is crystalline and the wave vector of the
incident wave is oriented arbitrarily with respect to its
crystallographic axes, the pattern of the waves excited
in the sample will be much more complex. Three waves
(a longitudinal wave and two transverse waves) propa-
gate in the sample in the general case. Each of them has
its own velocity. The amplitudes of these waves are pro-
portional to the force exciting them. For example, if the
incident wave is longitudinal, a quasi-longitudinal
wave is dominant in the sample. Since the angle
between the displacement direction and the wave vec-
tor in a longitudinal wave is small (usually, it does not
exceed 5°–10°), the amplitudes of transverse waves
correspondingly do not exceed 10–15% of the ampli-
tude of the longitudinal wave, and these waves may be
ignored. A longitudinal wave is reflected from the sam-
ple–load boundary, arrives at the buffer, and excites
longitudinal and transverse waves in it. However, the
amplitude of the transverse wave in the buffer again
does not exceed 10–15% of the amplitude of the longi-
tudinal wave.

If a transverse wave arrives from the transducer, in
the general case it also excites all three waves in a crys-
talline sample. However, the quasi-longitudinal wave is
small. It does not exceed the aforementioned 10–15%
of the transverse wave. The ratio of the amplitudes of
transverse waves does not depend on the closeness of
the polarization of the incident wave to the polarization
of the corresponding transverse wave in the sample. In
each specific case, we can select such a polarization of
the incident shear wave that would coincide or be close
enough to the polarization of the transverse wave of
interest in the sample. Just this wave is dominant in this
case. It is reflected from the sample–base boundary and
returns to the buffer. In the buffer, it excites two waves:
a dominant transverse wave with the polarization coin-
cident with the polarization of the transverse wave in
the sample and a weak longitudinal wave. Thus, when
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
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the polarization of the shear wave incident from the
side of the transducer does not exactly coincide with
the polarization of the transverse wave in the sample,
the polarization of the wave returning to the buffer after
reflection and the polarization of the wave reflected
from the buffer–sample boundary differ to some extent.
However, this difference does not prevent their interfer-
ence. We note that the presence of waves with different
polarizations in the buffer does not restrict the observa-
tion of the interference of the waves of interest, since
the waves of different polarization also have different
velocities and, therefore, different diffraction angles.
This provides an opportunity to direct the light dif-
fracted only by the waves of interest to a photodetector.
In the pulsed mode, all mentioned waves can be distin-
guished by the arrival times of their fronts at the line of
optical observation.

TECHNIQUE SUBSTANTIATION

Let us consider the wave propagation in the measur-
ing cell assuming for simplicity that the sample is iso-
tropic.

We introduce the notation: L is the sample length, l
is the buffer length, V0 is the sound velocity in the sam-
ple, k0 = ω/V0 is the wave number in the sample, V is the
sound velocity in the buffer, and k = ω/V is the wave
number in the buffer.

For the phase shift caused by the reflection from the
boundary, we introduce the notation: a1 for the buffer–
sample boundary, a2 for the sample–base boundary, a3
for the sample–buffer boundary, and a4 for the buffer–
transducer boundary.

We assume that the phase shifts a1, 2, 3 do not depend
on frequency. The phase shift a4 depends on frequency,
but it is not involved in the described technique.

If we feed a single high-frequency electric pulse of
length S to the transducer, a train of ultrasonic pulses of
the same length and frequency is excited in the trans-
ducer–buffer–sample system because of the sequential
reflections from the boundaries. The following pulses are
observed in the buffer at the distance x from the trans-
ducer (Fig. 1): a pulse U1 incident from the transducer; a
pulse U2 reflected from the buffer–sample boundary; a
pulse U3 transmitted through the sample twice (a pulse,
which penetrated the sample, was reflected from the
sample–base boundary, and came out to the buffer); a
pulse U4, which penetrated the sample, passed through
the sample four times, and returned to the buffer as a
result of sequential reflections from the sample–base and
sample–buffer boundaries; and a pulse U5, which
entered the sample, passed through it six times, and
returned to the buffer. It is necessary to note that the
intensity of acoustic waves substantially decreases in the
process of sequential reflections. Therefore, we may
ignore the pulse U5 and all further pulses of the train.

Signals filling all considered pulses have the same
frequency, wavelength, and polarization. If pulses over-
lap, they interfere.
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Let us consider the interference of the high-fre-
quency signal filling the pulse U3 (since this pulse has
the largest amplitude of the pulses carrying information
on the sample) with the pulse U2. It is easy to show that
their phase difference ∆Φ23 = Φ2 – Φ3 at the observation
line – x is as follows:

(1a)

(1b)

(2a)

(2b)

We note that the position of the light beam and its
diameter do not affect the precision of the measure-
ments, since ∆Φ23 does not depend on x.

The phase difference consecutively acquires the val-
ues ∆Φ23 = 2nπ and (2n + 1)π as the frequency varies.
In this case, the high-frequency signals filling the
pulses U1 and U2 are either in phase, their amplitudes
being added, or in antiphase, their amplitudes being
subtracted. Thus, as the frequency varies, changes
(beating) of the amplitude of the total pulse U23 from
minimum A23 = A2 – A3 to maximum A23 = A2 + A3 take
place. Correspondingly, beating of the intensity of dif-
fracted light is observed.

Let the nth maximum of the intensity of diffracted
light be observed at the frequency f1,

(3)

and some mth, m = n + N, maximum be observed at the
frequency f2,

(4)

Thus, if the frequency changes by ∆f = f2 – f1, N = (m – n)
maxima are observed, these maxima being independent
on the phase shift caused by the reflection:

(5)

(6)

Knowing the frequency variation ∆f and the number of
“transmitted” maxima N, it is easy to determine the
sound velocity in the sample

(7)

An analogous expression can be obtained when we
detect not the maxima of the intensity of diffracted light
but the minima.

Now let us consider the interference of high-fre-
quency signals filling the pulses U2 and U4. It is easy to
show that in this case we have

(8)

Φ2 2k1l k1x–( )– a1,+=

Φ3 2k1l k1x– 2k0L+( )– a2,+=

∆Φ23 2k0L a1 a2,–+=

∆Φ23 2πf 2L/V( ) a1 a2.–+=

2πf 1 2L/V0( ) a1 a2–+ 2πn,=

2πf 2 2L/V0( ) a1 a2–+ 2πm.=

N 1/2π( ) 2πf 2 2L/V0( )[–

+ a1 a2–( ) 2πf 1 2L/V0( )– a1 a2–( ) ] ,–

N ∆f 2L/V0( ).=

V0 2L∆f /N .=

∆Φ24 4k0L a1 2a2– a3–+=

=  2∆Φ23 a1 a3+( ).–
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Thus, when ∆Φ23 = 2πn and U1 and U2 are in phase, the
phase of the high-frequency signal filling the pulse U4
relative U2 is determined only by the phase shift caused
by reflections (a1 + a3). This sum is always equal to π
independently of the character of adjoining media,
since it is a phase shift between two waves reflected
from the same boundary but incident at it from different
sides.

Thus, U2 and U4 are in antiphase at the frequency at
which U2 and U3 are in phase. We note that the combi-
nations of U3 and U4 and U4 and U5 are also in
antiphase in this case.

If the length of pulses is small enough, all of them
arrive at the line of observation at different times, and
the intensity of diffracted light will represent a set of
single pulses. However, if the length of pulses is
increased, some of them overlap for some time and

Table 1.  Arrival time of the pulse fronts at the observation
line (tn) and the interval between them (∆tn)

tn ∆tn = tn – tn – 1 In/Il

U1 0 – 1.000

U2 2nτ 2nτ 0.380

U3 2nτ + 2τ 2τ 0.380

U4 2nτ + 4τ 2τ 0.146

U5 2nτ + 6τ 2τ 0.056

U6 2nτ + 2mτ 2τ (m – 3) 0.190
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Fig. 2. Schematic diagram of the pulses of diffracted light:
(a) at S = 0.5 t, n = 3, and m = 6; (b) at V = 2πN, S = 4t, n = 3,
and m = 6.
interfere. If the frequency changes, the beating
described above is observed in the range of overlapping
of these pulses. If it is possible to perform overlapping
of only the pulses U2 and U3, the beating U23 may be
observed in its pure form.

Let us consider the pulsed mode in more detail. We
assume that the time interval between two successive
pulses from the transducer is large enough and the next
train of reflected pulses repeats the previous one.
Therefore, it is sufficient to consider only one of them.

Let us denote the pulse travel time (Fig. 1) within
the sample, from its one boundary to another, by τ, the
travel time between the transducer and the observation
line by mτ, and the travel time between the observation
line and the sample by nτ.

The values of τ and τ1 = (m + n)τ depend on the
dimensions of the buffer and the sample, and on the
sound velocity. They do not depend on the position of
the light beam (the observation line). However, by
changing the position of the light beam, we can change
the values of m and n.

Let us monitor the time of arrival of the front of the
considered pulses at the observation line τ and the inter-
val ∆t between the pulses. We take the instant of arrival
of the front of the pulse U1 from the transducer to the
observation line as the zero time. The times of interest
are given in Table 1. The relative intensities In/I1 of
light diffracted by a given pulse are presented in the last
column. These intensities are proportional not to the
sound amplitude, but to its intensity. The table gives the
values of In/I0 for the coefficients of sound reflection (in
intensity) from the buffer–sample, sample–base, and
buffer–transducer boundaries Rbs = 1.0, Rsb = 0.38, and
Rbt = 0.5, respectively.

Assuming for definiteness that the pulse length S =
0.5τ, n = 3, and m = 6, we present the intensity of pulses
of interest graphically (Fig. 2a).

One can see from Fig. 2a that the length of the inci-
dent pulse S must exceed 2τ for the pulses U2 and U3 to
overlap. In this case, we cannot avoid overlapping of
the pulses U3, U4, and U5. Noticeable overlapping of
the pulses U2 and U3 is observed at S = 3τ. It is neces-
sary that n ≥ 2 for the pulse U1 not to overlap with the
pulse U2, and m ≥ 4.5 for the pulse U5 not to overlap
with the pulse U6. However, the pulse U5 is small (as
was mentioned earlier), and its coincidence with the
pulse U6 is quite acceptable. Moreover, the presence of
the pulse U6 between the pulses U4 and U5, i.e., at m =
(2–3), is acceptable for the detection of beating in the
range of overlapping of the pulses U2 and U3. Thus, the
minimum time of sound propagation over the sample is
minτ1 = (4–5)τ, and the optimum time is τ ≥ (7–10)τ.
These conditions restrict the minimum size of the
buffer. Therefore, it is necessary to select a buffer made
of material with a small sound velocity. Moreover, it is
desirable to have a buffer with a high enough acous-
tooptic quality factor in order to detect diffracted light
with high contrast.
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ACOUSTICAL

INTERFERENCE ACOUSTOOPTIC TECHNIQUE FOR SOUND VELOCITY MEASUREMENTS 31
High-frequency
oscillator

Buffer

Frequency

Laser

Oscilloscope

PiezoelectricPulse
generator transducer

Photomultiplier

Sample
meter

Fig. 3. Experimental setup.
Figure 2b presents a pattern of inphase interfering
pulses U2 and U3 at S = 4τ, n = 3, and m = 6. Let us
remind ourselves that, under these conditions, the
pulses U3 and U4, as well as U4 and U5, are in antiphase.

REALIZATION OF THE TECHNIQUE

The setup is schematically represented in Fig. 3.
Rectangular pulses with the frequency of the filling sig-
nal from 25 to 400 MHz and the length 0.5–1000 µs
from a G4-143 generator were fed to a transducer. The
modulation of the G4-143 generator was performed by
a G5-54 generator. The frequency of sinusoidal signals
was measured by a Ch3-34A frequency meter with
accuracy no worse than 10 Hz. Ultrasonic vibrations
excited in the studied sample were detected by the dif-
fraction of light with the wavelength 0.6328 µm from
an LG-79/1 helium-neon laser. Diffracted light was
detected by an FEU-28 photomultiplier.

The measuring unit consisted of a metal holder with
the measuring cell consisting of a transducer with a
load, a buffer, and a sample (Fig. 1). A buffer of length
l = 30 mm was made of F-4 optical glass with the veloc-
ity of longitudinal acoustic waves V = 4100 m/s, den-
sity ρ = 3.67 × 103 kg/m3, and acoustooptic coupling
five times higher than that of fused quartz. Transducers
made of single-crystal lithium niobate (LiNbO3) of two
types (36°Y cut for longitudinal waves and 163°Y cut
for transverse waves) were fixed each at its own buffer
with the help of an acoustic coupling substance (salol).
The acoustic coupling substance was also introduced
between the buffer and the sample. Salol was used for
transverse waves, and vacuum oil, for longitudinal
waves.

The liquid coupling provided an opportunity to
change to some extent the coefficient of reflection from
the buffer–sample boundary by changing the force of
their pressing to each other. The acoustic coupling was
not introduced between the transducer and the load, and
between the sample and the base. Moreover, a layer of
cotton cloth was placed between the sample and the
base to provide an almost total reflection of sound from
the rear surface of the sample.
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The electric contact was established between the
metal-coated surfaces of the transducer and the metal-
coated surfaces of the buffer and the base where the
voltage from a high-frequency oscillator was supplied.

Preliminary visualization of sound in the system
provided an opportunity to assemble the measuring cell
in such a way that the sound beam did not touch the lat-
eral faces of the sample, and the polarization of the
transverse wave in the buffer was close to the polariza-
tion of the transverse wave in the sample.

The phase velocity of a plane sound wave in an
unbounded space is usually of interest for the determi-
nation of the sound velocity in a medium. Therefore,
measurement conditions must allow one to determine
just this velocity, i.e., it is necessary that a plane
acoustic wave propagates in the sample with the
sound beam divergence being small (the near Fresnel
zone) and the sound beam not touching the lateral
faces of the sample.

Thus, the following conditions must be satisfied:

(9a)

(9b)

where D is the smallest dimension of the transducer, λ1
is the wavelength of the longitudinal wave in the buffer,
and a is the smallest dimension of the sample.

These conditions, in their turn, restrict the dimen-
sions of the buffer and the sample, as well as the value of
the operating frequency. For example, at D = 5 mm, a =
7–8 mm, L = 5–10 mm, l = 30 mm, and x = 15–20 mm,
the operating frequency must be no less than f0 ≥ 50 MHz.

According to formula (7), the error in the determi-
nation of the sound velocity V0 consists of the error of
the determination of the sample length L and the error
of the determination of the frequency range ∆f = f2 – f1,
since N is a an integer number:

(10)

The error in the determination of ∆f consists, in its
turn, of the error of determination of the frequencies of
the first and last maxima of the diffracted light intensity

 a D @ λ1,>

D2
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 @ 2L 2l x–+[ ]λ1,

δV0/V0 δL/L δ ∆f( )/∆f .+=



32 BOGDANOV et al.
δ(∆f) = δf1 + δf2. The error δf is determined by the pre-
cision of utilized frequency meter δf0 and the precision
of measurement of the frequency of the maximum δfm:
δf = δf0 + δfm. As was already mentioned, δf0 is of the
order of 10 Hz, and we may ignore it within the whole
frequency range. The main error in the determination of
∆f is governed by the precision of measurement of the
frequencies corresponding to the first and last maxima.
With the use of the equipment listed above, δfm was
3–5 kHz for both f1 and f2. Then, δ(∆f) = 2δfm < 10 kHz,
and δ(∆f)/∆f is determined by the realized frequency
range ∆f. As a rule, common transducers provide an
opportunity to observe beating of diffracted light inten-
sity within the frequency range ∆f = 30–50 MHz.

Thus, δ(∆f)/∆f ≤ 3 × 10–4. Since δf0 ! δfm, by repeat-
ing the measurements of f1 and f2 p times and averaging
the results, it is possible to reduce the measurement
error; e.g., at p = 10, we obtain δ(∆f)/∆f ≤ 10–4.

The error in the determination of the sample length
L is governed by the precision of the utilized measuring
instrument and the quality of the sample fabrication
(the deviations from the planar and plane-parallel
shape). An IZV-3 optical comparator capable of mea-
suring the length up to 100 mm with the precision not
worse than 10–3 mm was used. The plane-parallell
shape was maintained with the same precision, which
constituted ≈10–2λ. The sample thickness was mea-
sured at five points (at four corners and in the middle
of the sample). The measurements of L were repeated
10 times at each point, and the average value was
accepted as L.

The sample length was selected proceeding from the
preset precision of the sound velocity measurement. At
δV0/V0 = 3 × 10–4 and δ(∆f)/∆f = 10–4 (p = 10), the sam-
ple length L must be no less than 5 mm.

Table 2.  Measured values of the phase velocity of longitudi-
nal VL and transverse VT sound waves in fused quartz

Frequency 
band,
∆f, Hz

Number 
of read-
ings, p

Number 
of beat-
ing, N

Longitudi-
nal veloci-
ty, VL, m/s

Transverse 
velocity,
VT, m/s

1 42246450 25 137 5961 –

2 42245910 25 137 5961 –

3 40096550 25 130 5962 –

4 41949300 25 136 5962 –

5 40091370 25 130 5961 –

6 9761700 10 50 – 3767

7 9758000 10 50 – 3766

Average values 5961.4 ± 0.5 3766.5 ± 0.7

Tabular values [1] 5960 3760
The best achievable accuracy of measurement of the
sound velocity by the suggested method with the uti-
lized equipment was δV0/V0 ≈ 10–4.

The results of measurements of the phase velocity
of longitudinal (VL) and transverse (VT) waves in a sam-
ple of length L = 9.649 mm made of fused quartz are
given in Table 2. We conducted five independent mea-
surements of VL and two measurements of VT . These
results demonstrate that the experimental scatter of data
on ∆VL corresponds to the expected accuracy of mea-
surements δVL/VL ≈ 10–4.
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Abstract—By the example of lithium niobate, the main features of the propagation of antisymmetric (A0) and
symmetric (S0) Lamb waves and the waves with transverse horizontal polarization (SH0) in thin piezoelectric
plates are theoretically analyzed. The obtained results may be used in the development of signal processing
devices, various types of sensors, and chemical and biological instruments on the basis of acoustic waves prop-
agating in lithium niobate plates. © 2000 MAIK “Nauka/Interperiodica”.
Currently, growing interest is being shown in acous-
tic waves propagating in thin piezoelectric plates [1–7].
This is connected with the possibility of developing a
variety of sensors and devices for signal processing
with unique features [1–4]. As is known, one of the
materials most widely used in acoustoelectronics is
lithium niobate, which exhibits a strong piezoelectric
effect. The properties of bulk and surface acoustic
waves in this material have been much studied. As for
the characteristics of acoustic waves in a plate consid-
ered as a one-dimensional waveguide, there are only
fragmentary data on certain types of waves for particu-
lar orientations and directions of propagation [5–9].
The data presented in these papers reveal good pros-
pects for the application of these waves but do not give
a full picture of the phenomenon that would allow one
to draw definite conclusions regarding the general fea-
tures of their propagation. Besides, the available infor-
mation is insufficient for developing specific acousto-
electronic devices. For instance, it is established and
experimentally confirmed that the square of the electro-
mechanical coupling coefficient (K2) for a wave with
transverse horizontal polarization (SH0) in Y–X lithium
niobate plates may be as high as 36% [8, 9]. But, at the
same time, the data on the characteristics of other fun-
damental modes—the antisymmetric A0 and symmetric
S0 Lamb waves—are lacking. These modes also have
no cut-off frequency, i.e., they can exist at any fre-
quency and plate thickness and may be a source of
interference. Therefore, the information on all afore-
mentioned types of waves would allow one to make a
justified choice of the plate orientation for obtaining
maximum excitation of only the needed type of wave.
This paper is devoted to the theoretical study of the
main features of the propagation of A0, SH0, and S0
waves in piezoelectric plates by the example of lithium
niobate.
1063-7710/00/4601- $20.00 © 20033
This problem was solved by a conventional method
[5] based on the use of standard equations and bound-
ary conditions. The material constants of lithium nio-
bate used in this study are presented in [10]. We deter-
mined the velocity and the electromechanical coupling
coefficient for the A0, SH0, and S0 waves as functions of
the direction of propagation for the main crystallo-
graphic cuts, X, Y, and Z. The square of the electrome-
chanical coupling coefficient was determined for
every mode in a regular way, namely, from the equa-
tion K2 = 2(V – Vm)/V, where V and Vm are the wave
velocities in a nonmetallized plate and in a plate metal-
lized on one side, respectively. With the understanding
that the appearance of higher types of waves is undesir-
able, the thickness h of the investigated plates was
selected not to exceed half of the wavelength λ of the
considered mode; i.e., the condition h/λ ≤ 0.5 was met.

Some specific features of the performed theoretical
analysis should be pointed out:

(1) For the first time, the difference that occurs
between the values of h/λ in metallized and nonmetal-
lized plates because of the change in the wave velocity
is taken into account. Obviously, this correction
becomes more significant with an increase in the wave
dispersion. For example, for an antisymmetric mode,
the correction to the value of the square of the electro-
mechanical coupling coefficient reaches 40%.

(2) For a number of directions in the range of values
0.25 ≤ h/λ ≤ 0.5, the presence of higher types of waves
with close values of velocities considerably compli-
cates the determination of the values of V and Vm corre-
sponding to the same fundamental mode. In this case,
the structure of the wave cannot be a reliable criterion
for the selection of the investigated mode and for pre-
vention of jumping from one dispersion branch to
another. This is associated with the fact that, in some
cases, the metallization of the plate leads to essential
changes in the wave structure. In such situations, we
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Dependences of the velocity (upper row) and the square of the electromechanical coupling coefficient (lower row) on the direc-
tion of propagation for the A0 antisymmetric mode in lithium niobate. h/λ = (1) 0.01, (2) 0.025, (3) 0.05, (4) 0.1, (5) 0.25, and (6) 0.5.
analyzed a piezoelectric plate with an ideally conduct-
ing electrode located at some distance from it. Chang-
ing the plate-to-electrode distance in the range (0–10)λ,
we performed a smooth transition from the metallized
to nonmetallized state. As a result, it was possible to
follow the evolution of the analyzed mode and prevent
the unwanted jumps.

The obtained dependences of the velocity and the
square of the electromechanical coupling coefficient on
the direction of propagation for the A0, SH0, and S0
waves are shown in Figs. 1, 2, and 3, respectively. The
analysis of these dependences reveals the following
features of the investigated waves.

For the A0 wave (Fig. 1), the velocity of the antisym-
metric mode practically does not depend on the direc-
tion of propagation and the crystallographic cut and is
mainly determined by the normalized thickness h/λ,
i.e., this wave is characterized by a strong dispersion.
This fact is related to the preferential orientation of
mechanical displacements along the normal to the plate
surface and to the absence of an elastic reaction of vac-
uum. On the other hand, the piezoelectric activity of this
wave is characterized by a strong anisotropy, and the
quantity K2, represented as a function of the plate thick-
ness, has an optimum lying in the range h/λ = 0.2–0.8.
The maximum values of the square of the electrome-
chanical coupling coefficient for the antisymmetric
mode (~4%) and for a surface Rayleigh wave (~5%) in
lithium niobate are commensurable. It is easily seen
that the piezoactivity of the wave slightly increases the
degree of dispersion.

For the SH0 wave (Fig. 2), both the velocity and the
electromechanical coupling coefficient exhibit a strong
anisotropy. It is seen that the dispersion of this wave is
determined by the level of its piezoelectric activity; i.e.,
the maximum dispersion corresponds to the maximum
electromechanical coupling coefficient. For nonpiezo-
active directions, the dispersion is totally absent. This
conclusion is supported by the fact that, for the SH0
wave, the electric boundary conditions are more signif-
icant than the mechanical ones [8, 9]. The nonpiezoac-
tive directions of propagation of the SH0 wave corre-
spond to the directions of the peculiar bulk waves [11]
for which mechanical stresses in the plane determined
by the polarization vector and the wave vector always
equal zero. Therefore, the presence of boundaries par-
allel to this plane does not affect the velocity and the
structure of the propagating wave. In all cases, as the
plate thickness grows, the electromechanical coupling
coefficient of the SH0 wave increases, reaches its max-
imum at h/λ = 0.05–0.15, and then decreases. For cer-
tain cuts and directions of propagation, the value of the
square of the electromechanical coupling coefficient
exceeds 30%, which is almost an order of magnitude
greater than for the A0 antisymmetric mode and the sur-
face wave in lithium niobate.
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
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For the S0 wave (Fig. 3), the velocity and the electro-
mechanical coupling coefficient also strongly depend
on the direction of propagation and the crystallographic
cut. Similar to the SH0 wave, the dispersion of the sym-
metric mode is determined by the level of its piezoac-
tivity, and it is maximum where the electromechanical
coupling coefficient is maximum. However, unlike the
SH0 wave, the dispersion does not disappear for nonpi-
ezoactive directions of propagation, i.e., the electric
and mechanical boundary conditions for the symmetric
wave make commensurable contributions. As for the
dependence of the electromechanical coupling coeffi-
cient on the plate thickness, it is similar to that for the A0

and SH0 waves, and the maximum of K2 lies in the range
h/λ = 0.05–0.25. For the X-cut and the direction of prop-
agation Y + 35°, the square of the electromechanical cou-
pling coefficient reaches a value as high as 30%.

Thus, the performed study revealed the main fea-
tures of the propagation of fundamental waves of the
types A0, SH0, and S0 in thin piezoelectric plates. The
data reported in the literature for specific cuts and
directions of propagation of certain types of waves are
in good agreement with the results of our study. These
results may be useful in the development of devices for
signal processing and sensors for different physical
quantities, as well as for the development of chemical
and biological instruments, on the basis of acoustic
waves propagating in lithium niobate plates.
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Abstract—Experimental data on the long-range sound propagation in the Greenland Sea, in the presence of a
well-defined underwater sound channel, are analyzed. A strong spatial variability of the propagation conditions
is observed for the 350-km propagation path. This variability manifests itself in the reduced t/N–R /N diagram
as noticeable deviations of the time structure of signals received at distances longer than 100 km from the time
structure formed at the 100-km part of the path next to the reception point. At the distance about 100 km from
the reception point, a local drop (by 3–5 dB) in the sound field level is observed along with changes in the shape
of the terminal part of the received signals. The changes are related to the polar hydrological front, which
crosses the propagation path at this distance. The experimental data are used to estimate the sound attenuation
coefficient and its frequency dependence. © 2000 MAIK “Nauka/Interperiodica”.
In the late 1970s, a number of experiments were car-
ried out in the deep-water part of the Greenland Sea
with the aim to study the structure of the sound field
and to determine the sound attenuation in the underwa-
ter sound channel. The experiments were carried out
during the summer season. Here we report some results
obtained by analyzing the data of the experiment in
which explosive charges with pressure-sensitive deto-
nators were used as the sound sources. With such deto-
nators, the charges could be dropped from a vessel sail-
ing at full speed, and the explosions occurred at prede-
termined depths.

The experiment was carried out in the southern
region of the Greenland Hollow. Two research vessels
were used. The receiving one drifted 170 n.m. north-
east of the Yan Mayen Island. The transmitting vessel
sailed West, a heading of 270°, away from the receiv-
ing one. The length of the propagation path was about
350 km. The echo sounding data obtained from the
transmitting vessel provided sufficiently detailed infor-
mation on the bottom relief along the propagation path.
The depth of the sea varied within 2200–3200 m along
the path, and it was about 2800 m near the receiving
vessel. At a distance of 100–120 km from the reception
point, a sharp bottom rise was detected: within an area
20 to 30 km in length, the sea depth decreased from
2800 to 2150–2250 m, then increased to 2650 m, and
then increased up to 2750 m. At the 100-km part of the
path measured from the receiving vessel, the depth dif-
ferences reached 300–400 m with a mean periodicity of
25–30 km. The rest of the path exhibited smoother
changes in the bottom relief. The path ran north of the
North Yan Mayen Ridge and crossed its spurs.
1063-7710/00/4601- $20.00 © 20037
In the Greenland Sea, the underwater environment
is formed by the interaction of two currents: the cold
East-Greenland current that carries arctic waters having
a negative temperature and salinity of about 33‰, and
the warm current that carries the Atlantic waters with a
temperature higher than 8°C and salinity of about
34.7‰. These currents are separated by the polar
hydrological front [1]. The propagation path was influ-
enced by the Yan Mayen Current whose waters are
formed as a result of the intermixture of the arctic and
Atlantic waters. This current is a part of the cyclonic
circulation that encompasses the water bulk of the
Greenland Hollow.

Figure 1 shows the vertical sound speed profiles
measured at different points along the path, immedi-
ately before and after the experiment. By the end of
July, the underwater sound channel was fully devel-
oped with its axis lying at the depths 40 to 60 m. The
sound speed difference was 18–20 m/s between the axis
and the surface, and it was 40–50 m/s between the axis
and bottom. The depth of the temperature discontinuity
layer (with the sound speed gradient 2–3 1/s) varied
from 25 to 50 m. In the middle of the path, the channel
axis became slightly shallower (the axis depth
decreased from 50–60 to 35–45 m), and the near-axis
temperature increased from –1.5 to 0°C.

Down to the depth 25–30 m, a well-mixed sub-sur-
face isothermic layer existed along the entire path (with
the temperatures 4.2°C on the East and 3.3°C on the West
of the region). At horizons deeper than 800–900 m, the
water temperature remained constant (–1.0 to –1.1°C) all
along the path.

At the depths 50 to 150 m, an interlayered water
structure was observed at some parts of the path. The
000 MAIK “Nauka/Interperiodica”
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interlayers differed in temperature and salinity. Such
structure implies that, in addition to the main minimum
of the sound speed, smaller ones exist in the profile
C(z). These sublayers were no thicker than 20–30 m,
and the sound speed difference reached 4–5 m/s for the
adjacent layers.

According to the published data [2], the bottom sed-
iments of the Greenland Hollow mainly consist of ter-
rigenic deposits; globygerinic and diatomic silts also
occur.

During the experiment, north and east winds up to
Beaufort 4 and seas of the same directions up to
Beaufort 3 predominated. The air temperature varied
from 5.5°C on the East to 3.5°C on the West of the
region. Low clouds and fog restricted the visual range
to 0.6–1.0 km. Individual ice-floes occured on the
West. The receiving vessel drifted South, with a speed
of 1.0–1.5 kn.

About 60 explosive charges were dropped from the
transmitting vessel; they exploded at the depth 50 m. The
distance between the vessels was determined by measur-
ing the travel time of the sound signal. The explosion-
generated sound signals were received by omnidirec-
tional receiving systems at the depths 50 and 70 m.
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Fig. 1. Vertical sound speed profiles measured before and
after the experiment at the distances (a) 0, (b) 100, (c) 180,
and (d) 340 km from the receiving vessel.
The received sound signals were tape-recorded by a
magnitograph. Then, in a laboratory, the recorded signals
were reproduced, low-pass filtered with the 2.5-kHz cut-
off frequency, and analog-to-digit converted with a sam-
pling frequency of 10 kHz. For this purpose, a 12-digit
analog-to-digit converter was used. The digitized
received signals were stored in a computer memory.
The stored data serve as a part of the data bank called
Ocean Sound Propagation, which is now under devel-
opment at the Acoustics Institute.

In the presence of a fully developed underwater
sound channel, the most reliable information on sound
attenuation can be obtained by positioning the source
and receiver at the channel axis or near it. The same is
true for the features of the sound field time structure.

Figure 2 shows the time structure of the signals
received at the distances 1.6 to 15 km from the source
(with steps varying with distance). All signals are nor-
malized to their maximum levels. Up to the distance
20 km, the received signals exhibit a pronounced two-
component structure which is a consequence of the
two-pulse nature of the explosion-generated signals:
the first pulse is caused by the shock wave, and the sec-
ond one is caused by the gas-bubble fluctuation. These
two components of the signal are time-separated by the
fluctuation period T0 that depends on the charge mass
and the detonation depth; in our case, T0 = 100 ms. The
third pulse—the pulse of the second bubble fluctua-
tion—is nearly undetectable. For this part of the path,
the signal broadening due to the multiray propagation
is less than 20–25 ms.

Figure 3 presents the signals that were received at
ranges longer than 20–30 km. In the signals received
from distances exceeding 95–100 km (Fig. 3a), the
two-component structure of their tail parts is well pro-
nounced, this structure being caused by the separation
of the shock-wave pulse and the first bubble fluctuation.
The near-axis signals are protracted only slightly. At
these distances, the “classic” signal quartets which
arrive ahead of the main signals are also visible. The
quartets that are separately formed by the shock-wave
pulse and the gas-bubble fluctuation are evident. On
individual branches corresponding to the “classic”
quartets, in addition to the “water” signals (traveling
along the rays that do not touch the surface), the signals
reflected from the sea surface manifest themselves.
These signals are somewhat delayed with respect to the
water ones. They are protracted in a reverberation man-
ner. All the received multiray signals begin with the ele-
mentary ones that do not touch the surface in the course
of their propagation.

The explosion-generated signals received at the dis-
tances 95–100 km and above (Fig. 3b) significantly dif-
fer in their shapes from those received at shorter ranges.
Rather sharp terminations of the signals recorded at
shorter distances are now replaced by smoothly
decaying tails. (This change in the signal shape was
observed in successive explosions at the distances
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
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94.2 and 100.5 km from the source.) As the distance
increases, the “classic” quartets are transformed into
groups of unresolved signals—just as one can expect
by analogy with other ocean regions (see, e.g., [3]).
However, up to the longest distances, the signal groups
corresponding to the shock-wave pulses and groups
corresponding to the pulses of the first gas-bubble fluc-
tuation remain separated.

When sound propagates in the underwater sound
channel, the signal is protracted because of the multiray
structure of the arrivals. Figure 4 shows the total dura-
tion of the received signals as a function of distance. To
obtain the signal duration from the experimental data,
we excluded the constant time duration of the elemen-
tary signal, i.e., the duration determined by the two-
pulse (shock wave plus first bubble fluctuation) form
of the signal. The rate of the monotonic (on average)
increase in the signal duration was estimated for a
200-km part of the path and proved to be 0.0048 s/km.
On the background of the smooth increase in the signal
duration with distance, stepwise changes in this dura-
tion occur at the distances 43, 80, 120, 160, 200 km,
and so on. These changes are caused by periodic fad-
ings of the elementary-signal groups because of the
surface cut-off of the rays that most widely deviate
from the channel axis.

To describe the time structure of the sound field in
the underwater sound channel, Ewing and Worzel [4]
proposed the t–R diagram, where t is the travel-time
advance for a signal propagating over an individual ray
with respect to the signal that propagates along the
channel axis, at the distance R. If the source and
receiver are at the same depth, the t−R diagram is rep-
resented by a set of triplets of curves. The central curve
of each triplet characterizes the t–R relation for the rays
that produced an integer number of full cycles. The side
curves characterize the rays that produced an integer
number of cycles plus or minus a half-cycle. The neigh-
boring triplets of curves differ by one full ray cycle
from each other.

To compare the sound field structures for different
ocean regions, we proposed a more compact, reduced
t–R diagram that consists of a single curve describing a
single full ray cycle [3, 5]. Such a curve does not allow
one to estimate the time relations between the signals in
the quartet. However, if appropriate scales (t/N, R/N)
are chosen, this curve characterizes any ray producing
an arbitrary number N of full cycles. It also determines
the travel times for any “classic” signal quartet and the
relative time delays between the adjacent quartets arriv-
ing at the receiver.

Based on the experimental data, we plotted a
reduced t /N–R/N diagram that is characteristic for the
Greenland Sea. For this purpose, we used five initial
branches (N = 1, …, 5) corresponding to individual
quartets. Figure 5 shows the values of t/N obtained for
individual explosion-generated signals. For the two ini-
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
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Fig. 2. Time structure of the explosion-generated signals
received at short distances (< 20 km) from the source.
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Fig. 3. Time structure of the explosion-generated signals received at long distances from the source: (a) 26–95 km; (b) > 100 km.
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propagation path. Note that, for the two initial
branches, the values of t/N were determined for the
explosion-generated signals received at ranges less
than 80 km, while for N = 3, 4, 5, the distances no less
than 87 km were used. The t/N–R/N diagram was com-
puted with the Tebyakin’s [6] computer code which
implies a horizontally stratified sea medium. The pro-
file C(z) measured at the reception point before the
experiment was used in the computation. The com-
puted values agree well with those experimentally esti-
mated for the two initial branches (N = 1, 2) of the sig-
nal time structure. Thus, considerable changes in the
propagation conditions most likely occurred at ranges
longer than 80–100 km, while within the initial part of
the path, i.e., within distances 80 to 100 km, the propa-
gation conditions were fairly stable. Hence, one can
consider the t/N–R/N relation obtained for the initial

0 50 100 150 200

1.0

0.5

∆t, s

R, km

Fig. 4. Total duration of a multiray explosion-generated
signal versus the distance from the source. The dashed line
corresponds to the linear dependence with the slope
0.0048 s/km.
“unperturbed” 80-km path portion as a typical one for
the eastern region of the Greenland Sea.

For the sake of comparison, Table 1 presents the val-
ues of the parameters a and n (see relation (1)), experi-
mentally estimated for a number of ocean regions.

The Greenland Sea is not an exception to the rule
established earlier [7]: the values of a are within the
limits of the weak variations typical for other ocean
regions. In its values of the exponent n, the Greenland
Sea is closest to the Sea of Okhotsk and to the north-
western region of the Pacific Ocean.

The dispersion characteristics of the sound channel
were analyzed on the basis of the experimental data.
The signals received at different distances were filtered
within 1/3-octave bands covering the frequency range
63–250 Hz. For the distances that are shorter and longer
than 100 km, the dispersion relations are essentially
different.

For instance, at the distance 79 km (Fig. 6a), the first
mode is quite detectable in the filtered signal. As the
frequency increases from 63 to 160–200 Hz, a slight
decrease (by 1.5–2.0 m/s) in the group velocity of this
mode is observed. With Galaktionov’s computer code,
which is an extension of the computation procedure
described by Avilov et al. [8], the group velocities of
the modes were calculated. The same profile C(z) as for
the reduced t/N–R/N diagram was used in the compu-
tation. The calculated group velocities of the first mode
agree well with the experimental ones: the computed
decrease about 2 m/s in the group velocity corresponds
to the increase from 63 to 160 Hz in the frequency.

For the signals received at distances longer than
100 km, upon 1/3-octave filtering, no pulses or pulse
groups could be attributed to individual modes (an
example is shown in Fig. 6b for the distance 159.7 km).
0.3

0.2

0.1

0 10 20 30 40

t/N, s

(a)

10 20 30 40
R/N, km

(b)

Fig. 5. Reduced t/N–R/N diagram for the explosion-generated signals received at the depths 50 m (empty circles) and 70 m (solid
circles): (a) for N = (n) 1 and (s) 2 and (b) for N = (h) 3, (,) 4, and (e) 5. The dashed curve corresponds to formula (1).
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For the 100–1000-Hz frequency band, the attenua-
tion coefficients were estimated from the experimental
data. It is common to determine the attenuation coeffi-
cient in the ocean by measuring the deviation of the
experimental decay curve from the geometric cylindri-
cal law of the sound field spread (strictly speaking, the
latter law is valid for sound propagation in a horizon-
tally stratified medium). With the explosion-generated
signals, the following quantity is considered to be a
characteristic of the sound field energy within the fre-
quency band ∆f:

where T is the duration of the explosion-generated sig-
nal and pf(t) is the sound pressure normalized to the fre-
quency band ∆f. In the computer signal processing, the
equivalent quantity may be obtained from the power
spectrum of the signal. To proceed with the power-
spectrum analysis of the experimental data, a set of
computer codes was developed. With these codes, it
was possible to plot the experimental decay curves and
to estimate the attenuation coefficients at individual fre-
quencies. Upon processing the signals received at the
depths 50 and 70 m, we obtained the range depen-
dences of the sound field levels, and by estimating the
deviation from the cylindrical law, we obtained the
attenuation coefficients at different frequencies.

Figure 7 shows the experimental decays of the
sound field levels, which are normalized to the cylindri-
cal spread law, for the frequencies 100, 200, 400, and
630 Hz, and the receiver depth 50 m. At a distance of
about 100 km, a noticeable drop (3 to 5 dB) in the
sound field level occurs. At this distance, there is no
such drop at high frequencies.

Table 2 shows the attenuation coefficients estimated
from the deviations of the sound level decays from the
cylindrical law. These estimates are obtained for the
reception depths 50 and 70 m, at the distances 43–343
and 100–343 km, the latter part of the path being free
of the aforementioned sound level drop.

For the sake of comparison, the right column of
Table 2 shows the attenuation coefficients calculated
according to the formula [9]

(2)

where f is the sound frequency (kHz), K = 1.42 ×
10[–8 + (1240 / T)] (dB/km × kHz2),  = 1.125 ×
10[9 – (2038/T)] (kHz),  = 62.5ST × 10–6 (Db/km ×
kHz), frB = 37.9S0.8 × 10(–780/T) (kHz), AB = 16.5S ×
10[4 + 0.78pH – (3696/T)] (dB/km × kHz), S is the salinity

E f p f
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(parts per thousand), T is the temperature (K), and pH
is the pH value (more strictly, its effective value).

The first term in expression (2) characterizes the
relaxation absorption associated with boron, the second
term corresponds to the relaxation absorption associ-
ated with magnesium sulphate, and the third term deter-
mines the absorption in fresh water. The absorption
coefficients calculated with the use of formula (2) for
the Black and Mediterranean Seas and the Sea of Japan,
whose waters widely differ in temperature and salinity,
and for the northwestern region of the Pacific Ocean
agree well with the experimental data obtained by the
author.

For the Greenland Sea, the following water param-
eters were specified in the calculations: T = 272.5 ä,
S = 33.5‰, pH = 8.2. Within the entire frequency range
at hand (100–1000 Hz), the attenuation coefficients
estimated by the deviation of the experimental sound
level decay from the cylindrical law far exceed the pre-
dicted values.

Note that in Table 2, the data on attenuation are
roughly the same for the two reception depths 50 and
70 m: the difference of 20 m in the hozizons has nearly
no effect on the slope of the sound field decay curve.
The difference in the attenuation coefficients (0.01–
0.005 dB/km) estimated for the path portions 43–343
and 100–343 km is also nearly constant and indepen-
dent of both the reception depth and the frequency. This
frequency independent difference is obviously gov-
erned by the relatively sharp drop in the sound field
level at 100 km, this drop being distributed over the
entire 43–343 km portion of the path in the estimation
of the attenuation. This drop was visually undetectable
in the decay curves at high frequencies but manifested
itself in the estimates of the attenuation.

Presumably, in spite of the channel character of
sound propagation, one can only tentatively speak of
the cylindrical spread of the sound field, because the
departure of the medium from the horizontally strati-
fied one is quite substantial.

When the parameters of the medium vary along the
propagation path, and one cannot accurately determine
the law of the geometric spread, the “differential

Table 1

Region a n

Black Sea 0.0147 1.7

Greenland Sea 0.0141 2.28

Sea of Okhotsk 0.0152 2.34

Northwestern Pacific 0.0141 2.48

Mediterranean Sea 0.0150 3.0

Sea of Japan 0.0156 3.6

Philippine Sea 0.0134 6.3
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method” [10] proposed in the mid-1950s should be
used to estimate the attenuation coefficient. This
method is based on two assumptions. The first one is
that the geometric spread law is unknown, though the
same for all the frequencies at hand. The second one is
that the frequency dependence of the attenuation coef-
ficient is described by an exponential function with a
zero constant component. The decay of the sound field
at an individual frequency is normalized to that at one
selected frequency serving as a reference one. Thus, the
unknown geometrical spread is excluded. From the
normalized decay at each frequency, one determines
the differential attenuation coefficient that is equal to
the difference between the total attenuation coefficients
at two frequencies—the frequency of interest and the
reference one. By approximating the frequency depen-
0.5 s

BB

R = 79 km

63 Hz

80 Hz

100 Hz

125 Hz

160 Hz

200 Hz

250 Hz

(a)

Fig. 6. Signals filtered within 1/3-octave bands with the central frequencies 63, 80, 100, 125, 160, 200, and 250 Hz and within the
broad band (BB). The signals were received at the distances (a) 79 and (b) 159.7 km from the source; both the source and the receiver
were at the depth 50 m.
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Fig. 6. (Contd.)
dence of the differential attenuation coefficient by an
exponential function and omitting the free term, we
obtain an explicit expression for the total attenuation
coefficient:

β = afn. (3)

This method was implemented in the computer pro-
cessing of the experimental data. The reference fre-
quency was specified to be 250 Hz. The entire frequency
COUSTICAL PHYSICS      Vol. 46      No. 1      2000
band 100–800 Hz was analyzed. With the differential
method, the differential attenuation coefficients were
determined. The results are shown in Fig. 8 (Figs. 8a
and 8b are for the reception depths 50 and 70 m, respec-
tively). The exponential curves approximating the fre-
quency dependences of the obtained attenuation coeffi-
cients are also shown in this figure. The method of least
squares was used to estimate the parameters of these
curves. It is easily seen how the differential attenuation
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coefficients can be converted to the common ones by
simply shifting the scale. With the frequency depen-
dence of the attenuation coefficient described by expres-
sion (3) (frequency is in kHz and the attenuation is in

100 Hz

200 Hz

400 Hz

800 Hz

10
 d

B
10

 d
B

R, km3002001000

10log(Ef × R)

Fig. 7. Experimental sound field decay normalized to the
cylindrical geometric spread at the frequencies 100, 200, 400,
and 800 Hz. The source and receiver depths are both equal to
50 m. The solid curve is the regression line plotted for the sig-
nals received from the distances exceeding 100 km.
dB/km), the following values of the parameters were
obtained: a = 0.092, n = 1.58 and a = 0.080, n = 1.59 for
the reception depths 50 and 70 m, respectively. The
obtained expressions lead to close values of the attenu-
ation coefficients which, nevertheless, are by a factor of
3–3.5 higher than the mean values typical for the world
ocean [11].

The high attenuation coefficients are probably
caused by sound scattering from inhomogeneities of
thermic nature—maybe, the fine-structure ones. By
analyzing a large body of experimental data on the
water parameters of the northwestern region of the
Pacific Ocean, Rostov [12] arrived at the conclusion
that these inhomogeneities can be generated in the
regions of sea currents. For such areas, the following
values of the mean squared refractive index are typical:
µ2 ≈ 10–5–10–7. The author of this paper has no informa-
tion on such generalizations for the Greenland Sea (or
for the region of the Yan Mayen current). On the other
hand, according to the calculations performed by
Lysanov and Sazonov [13], the attenuation coefficients
obtained by us at 800 Hz can be explained by specify-
ing µ2 = 1.4 × 10–7. Currently, the fractal nature of the
ocean fine-structure inhomogeneities is discussed [14].
The scattering from these inhomogeneities leads to an
exponential dependence of the low-frequency attenua-
tion. With certain fractal parameters, the values 1.58–1.59
of the exponent may be obtained, which is in good
agreement with the experiment.

Thus, from the analysis of the experimental data, we
can conclude that relatively sharp changes in the prop-
agation conditions occurred at the distances 90–110 km
from the reception point. A noticeable deformation of
the signal was detected at these distances: a sharp ter-
mination of the signal was replaced by a smooth decay.
Starting from 90–110 km, the t/N–R/N relations
obtained for the path part nearest to the reception point
began changing—the curve of the sound field decay
with distance exhibited a sharp drop (by 3 to 5 dB).
These changes can be associated with a relatively sharp
bottom rise detected by echo sounding. This coinci-
dence may be regarded as occasional, but one should
remember that oceanologists [15, 16] have repeatedly
emphasized the relation between the positions of the
ocean fronts and the bottom relief. According to ocean-
ographic data [1], at the distances 100–200 km from the
receiver, the propagation path crossed the arctic front at
an angle of 40°–60°. Unfortunately, our experiments
had rather weak hydrological support, and the collected
data were insufficient for the determination of the posi-
tion and parameters of the front zone during the exper-
iment.

Earlier, we reported on a hydrological survey car-
ried out in summer, 80–100 n. miles north of our path,
along the parallel 74°30′ [17]. The following parame-
ters of the arctic front were obtained: the width of the
front zone is 100 km and the depth of the lower bound-
ary of the front waters is 850 m. According to the pro-
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
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Table 2

f, Hz

Attenuation coefficient (dB/km),
the receiver depth is 50 m

Attenuation coefficient (dB/km),
the receiver depth is 70 m

Absorption coeffi-
cient (dB/km) calcu-
lated by formula (1)43–443 km 100–443 km 43–443 km 100–443 km

100 0.0236 0.0107 0.0300 0.0161 0.0006

125 0.0243 0.0135 0.0327 0.0215 0.0009

160 0.0284 0.0175 0.0308 0.0184 0.0015

200 0.0289 0.0177 0.0331 0.0195 0.0023

250 0.0281 0.0223 0.0338 0.0264 0.0035

315 0.0337 0.0320 0.0377 0.0332 0.0053

400 0.0441 0.0371 0.0471 0.0372 0.0082

500 0.0528 0.0436 0.0552 0.0493 0.0120

630 0.0663 0.0611 0.0670 0.0606 0.0175

800 0.0853 0.0761 0.0823 0.0789 0.0250

1000 0.0947 0.0868 0.0949 0.0885 0.0343
files C(z) measured along our propagation path, the
main changes took place at the depths 300–400 m. In
the middle of the path, the depth of the sound channel
axis somewhat decreased (from 50–60 to 30–40 m), the
profile C(z) changed, and water interlayers of different
temperatures appeared at the depths 50–150 m.

Such sharp changes in the parameters of the water
column may be entirely responsible of the sound field
features detected in the experiment. From the observed
stability in the time structure and shape of the explo-
sion-generated signals received at distances shorter
than 100 km, a conclusion can be drawn that there were
no significant changes in the propagation conditions
within this part of the path. At ranges 100 km and
longer, the decrease in the depth of the sound channel
axis and the deviation of this depth from the reception
horizon led to a decrease in the total duration of the
multi-ray signal at the expense of the near-axis rays.
The sharp drop in the axis depth caused a change in the
sound field level at the distance 95–110 km from the
reception point. The water interlayers, which are
detected in the middle of the path and produced by mix-
ing of the water masses of different nature in the front
zone, give rise to a more complex ray structure of the
sound field. This complexity manifests itself in the ray
tracing with the use of the measured sound speed pro-
files.

All aforementioned features were considered theo-
retically in relation to the influence of the front zones
on the sound field formation in the ocean (see, e.g.
[18]). We observed these features in the experiment.

To conclude with, we emphasize that the obtained
experimental data on the propagation of explosion-gen-
erated sound signals in the underwater sound channel
of the Greenland Sea may serve to illustrate the main
features of the sound field formation in this ocean
region.
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ation coefficient β for the signals received at the depth (a) 50
and (b) 70 m.
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The t/N–R/N relation obtained at the initial “unper-
turbed” 80-km portion of the path complements the
data available on the regional variability of the time
structure of the sound field in the underwater sound
channel. The changes in this relation, which were
observed at longer distances (in the zone of water mix-
ing), characterize the extent to which the polar front
affects the sound field formation.

The analysis of the low-frequency sound attenuation
in the Greenland Sea reveals the significant effect of
sound scattering by the thermic inhomogeneities of the
medium, which are produced by mixing of waters of
different origin. In contrast to the Black and Mediterra-
nean Seas, this effect is by a factor of 1.5–2.5 greater
than that of sound absorption in the sea water (includ-
ing the low-frequency relaxation processes associated
with boron).

It is also worth mentioning that, in spite of the poor
hydrological support of the acoustic measurements, a
number of experimentally established features can be
attributed to the zone of water mixing, which is typical
for the polar front of the Greenland Sea. These features
include the changes in the decay law and time structure
of the sound field and the deformation of the shape of
the explosion-generated signal received at the distance
80–90 km from the receiver.
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Abstract—Measurements of the amplitude and phase of a beam of transverse ultrasonic waves propagating
in tungsten and molybdenum crystals in the presence of magnetic field are performed. Under the conditions
of the Doppler-shifted acoustic cyclotron resonance, a magnetically induced contribution to the phase of
oscillations is observed, this contribution being even with respect to the magnetic field. Such a result testifies
to the presence of the internal conical refraction that is caused by the magnetic field in the crystals under
study. © 2000 MAIK “Nauka/Interperiodica”.
This paper is devoted to the study of magnetoacous-
tic phenomena that accompany the propagation of
ultrasound along the threefold symmetry axis of a cubic
crystal magnetized along this axis and in an elastically
isotropic magnetized crystal. In these two cases, the
natural modes of the crystals correspond to circularly
polarized waves. However, the plane perpendicular to
the threefold axis is no mirror plane. This fact gives rise
to the existence of the internal conical refraction of
ultrasound (ICR), which manifests itself in the deflec-
tion of the energy flux from the wave normal toward the
wavefront. One can expect that the internal conical
refraction should also occur at the expense of the reduc-
tion in the crystal symmetry under magnetic field.

The aim of our studies was to obtain experimental
evidence for the existence of the ICR induced by mag-
netic field. Since the expected deflection of the energy
flux under the magnetic field was small, the best way to
detect the presence of this type of conical refraction
was to use an indirect method and to perform the mea-
surements in resonance conditions. For this purpose,
we observed the Doppler-shifted acoustic cyclotron
resonance which occurs in ultrasonic beams with non-
planar wavefronts.

The ICR was observed earlier in the absence of
magnetic field [1]. The effect of magnetic field on the
direction of the energy flux was studied theoretically
[2] for the case of wave propagation along the fourfold
axis under a magnetic field directed normally to this
axis. The specific features of the Doppler-shifted
acoustic cyclotron resonance under the conditions of
conical refraction were briefly reviewed in our earlier
paper [3]. If we assume that an elastic wave is a plane
harmonic one, the ICR will have little effect on the
Doppler-shifted acoustic cyclotron resonance. There-
fore, in the earlier experimental studies of the Doppler-
shifted acoustic cyclotron resonance for the case of
1063-7710/00/4601- $20.00 © 200049
ultrasonic wave propagation along the [111] axis, the
effect of the ICR was not observed [4–6]. The only
researchers who mentioned the effect of the ICR were
Jericho and Simpson [7]. They presented the results of
the experiments on the ultrasonic wave propagation in
a copper single crystal the length of which far exceeded
its diameter. Because of the large angle of deflection of
the energy flux (31° for copper), the beam emerged at
the lateral surface of the crystal.

Our experiments were performed under the condi-
tions of the ICR, but the beam did not touch the lateral
surface of the crystal. The material under study was
molybdenum. In molybdenum crystals, the angle of
deflection of the energy flux is relatively small, and a
considerable effect of magnetic field can be expected.
The second object of our study was an elastically iso-
tropic tungsten crystal. In such crystals, the ICR is vir-
tually absent in the absence of magnetic field.

Specimens of approximately cylindrical shape with
diameter 8–9 mm and length about 5 mm were cut out
of molybdenum single crystals with the electric resis-
tance ratio β ≡ ρ273/ρ4.2 = 29000 and of tungsten single
crystals with β = 50000. The normal to the plane sur-
faces was parallel to the [111] axis with an error not
exceeding 1°. The error in the orientation of a specimen
in magnetic field did not exceed 0.8°.

The acoustic measurements were performed at the
frequencies f = 40–180 MHz. Using the technique pro-
posed earlier [8], we determined the magnetically
induced real Re∆q± and imaginary Im∆q± additions to
the wave vector q for the natural waves of circular
polarization (q is the wave vector in the absence of
magnetic field). We also measured the rotation angle of
the polarization plane ϕ. In an inclined magnetic field,
the measurements were performed by the method
described by Rinkevich [9].
00 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Schematic diagram of the experiment with transducers of different dimensions and (b) the interference of the signals 

and  from two parts of the receiving transducer (top) in the absence and (bottom) in the presence of magnetic field. (a) The sche-
matic diagram shows (1) the receiving transducer; (2) the transmitting transducer; (3) the beam; and (4) the wavefront.

A1

A2
For a beam with a nonplanar wavefront, the mea-
sured values were the insertion loss L± = Im(∆q±)z and
the phase δ± = Re(∆q±)z of elastic displacements, both
quantities being averaged over the cross-section of the
receiving transducer (here, z is the acoustic path
length). The transducers were made of lithium niobate
plates. Some of the experiments were performed with
the transmitting and receiving transducers of different
dimensions: one of them, transducer 1, had the diameter
2.2 mm, and the second one, transducer 2, was rectangu-
lar in shape with the dimensions 3 × 4 mm (Fig. 1a).

If the receiving transducer is smaller than the trans-
mitting one (the upper figure), it receives the central
part of the beam. As the distance of ultrasound propa-
gation increases, the shape of the wavefront progres-
sively deviates from a plane. The peripheral part of the
beam becomes more distorted than its central part.

The experimental dependence of the insertion loss
L = L+ ≈ L– in molybdenum on the magnetic induction
B exhibited some resonance peaks that were approxi-
mately identical in amplitude, shape, and positions for
the clockwise and counterclockwise polarized waves.
In similar experiments carried out for tungsten [6], the
A and B resonances were observed; these resonances
were interpreted as the manifestation of a doppleron-
phonon resonance. We restricted our studies to weaker
magnetic fields in which the changes in the parameters
of elastic waves are caused mainly by the C resonances.
To verify the assumption that this resonance is a
Doppler-shifted one rather than a doppleron-phonon
resonance, we measured the dependences of the inser-
tion loss on the magnetic induction at several frequen-
cies (Fig. 2a). With increasing frequency, the positions
of the resonance peaks on the magnetic field axis
moved linearly toward higher magnetic fields (Fig. 2b).
The dependence of the quantity αmax/f (αmax is the loss
coefficient for the highest peak) on the parameter (fβ)1/2

proportional to (ql)1/2 (l is the free path of electrons) is
shown in Fig. 2c. For both molybdenum and tungsten,
this dependence is a linear one. Such properties are
characteristic of a Doppler-shifted acoustic cyclotron
resonance, and the presence of a peak at L± indicates
that the dominant mechanism of the interaction
between the conduction electrons and ultrasound is
related to the deformation of the material. The presence
of almost identical peaks at L+ and L– and the linear fre-
quency dependence of the positions of the resonance
peaks testify to the absence (or weakness) of the dop-
pleron-phonon interaction component in the C reso-
nances.

Having obtained the experimental data on the nature
of the C resonances in molybdenum and tungsten, we
consider the results of our measurements of the signal
phase. Figure 3 presents the dependence of the phase δ±

of clockwise and counterclockwise polarized elastic
displacements on the magnetic induction B near the C
resonance of number n = 1 for different distances of
propagation. One can notice the presence of the reso-
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
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nance contributions of the same sign to the phases of
both circular polarizations near the magnetic fields cor-
responding to the maximum absorption. Since a rever-
sal of B is equivalent to the change of sign of the polar-
ization of natural waves, + and –, it is reasonable to
interpret this effect as an even contribution to the phase,
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2

Fig. 2. (a) Doppler-shifted acoustic resonance in molybde-
num at q//B//[111]; (b) magnetic induction corresponding to
the C resonance as a function of the wave frequency; and (c)
dependence of the ratio of the maximum absorption value to
frequency αmax/f at the C resonance conditions on the

parameter (fβ)1/2: (1) molybdenum and (2) tungsten.
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i.e., a contribution that is even with respect to magnetic
field.

For plane waves, the contribution to the phase δ± =
(Req± – Req)z is proportional to the variation of the real
part of the mode wave number. According to the theory
of the Doppler-shifted acoustic cyclotron resonance
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Fig. 3. Phase variations at the receiving transducer near the
C resonance: solid curves correspond to δ+ and dashed
curves correspond to δ–. The frequency is f = 59.7 MHz and
the distance of ultrasound propagation is z = (a) 0.48,
(b) 1.44, and (c) 2.4 cm.
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Fig. 4. Maximum value of the insertion loss under the C res-
onance conditions as a function of the angle ψ between the
magnetic field direction and the [111] axis.



52

ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000

VLASOV, RINKEVICH

[10, 11], the behavior of the real part of the wave vector
should differ from that shown in Fig. 3; namely, the the-
ory predicts the relation Re(q+ – q) ≈ –Re(q– – q). In the
vicinity of the Doppler-shifted acoustic cyclotron reso-
nance, this relation is satisfied in both tungsten and
molybdenum [12] at q//B//[100] in similar experimen-
tal conditions but in the absence of the ICR.

The presence of the even contribution to the phase
δ± of the circular polarizations in the vicinity of the
Doppler-shifted acoustic cyclotron resonance cannot
be explained by the errors in the setting of the experi-
ment, e.g., nonparallel or nonplanar end surfaces of the
samples. Deviations of the vectors q and B from the
[111] axis may in principle lead to the propagation of
linearly polarized waves instead of the circularly polar-
ized ones. However, the results presented in Fig. 3 can-
not be interpreted as changes in the phase velocities of
normal waves. The curves in Figs. 3a, 3b, and 3c were
obtained for the distances of ultrasound propagation z =
0.48, 1.44, and 2.4 cm. If we assume that the contribu-
tion to the phase is caused by the variations in the wave
velocities, we should expect the aforementioned curves
to be similar in shape with the only difference being in
the scale along the ordinate axis. However, this is not
the case. The even contribution to the phase sharply
increases with increasing distance of propagation. This
fact suggests the conclusion that the wavefront arriving
at the receiving transducer is not a plane one. The fac-
tors that may be responsible for the curvature of the
wavefront are the diffraction phenomena and the ICR.

Our experiments showed that the dependence of the
maximum value of the insertion loss on the angle ψ
lying between q and B is substantial in the vicinity of
the C resonance (Fig. 4). The measurements of the rota-
tion angle of the polarization plane ϕ at q//B//[111]
(Fig. 5) showed that the extremum values of this angle
are much less than at q//B//[111] [12, 13] in similar

conditions. This difference was also observed in the
earlier measurements of the rotation angle of the polar-
ization plane in tungsten and aluminum single crystals
[4, 5].

Similar measurements were performed on tungsten
specimens. Their shape and dimensions were close to
those of the molybdenum specimens, and the same
transducers were used. Since tungsten is an elastically
isotropic material, the ICR should be absent in it at B = 0
(because the elastic modulus is c14 ≈ 0), while the dif-
fraction phenomena should be approximately the same
as in molybdenum. For tungsten, the results of mea-
surements are shown in Figs. 6 and 7, where f = 56 and
172 MHz, respectively. One can see that at the lower
frequency 56 MHz, the experimental dependences
L±(B) and δ±(B) obtained for tungsten (in contrast to
molybdenum) agree well with the dependences pre-
dicted by the theory for the case of a small magnetically
induced contribution to the ICR. This case corresponds
to the relation δ+ ≈ –δ–, and in these conditions, a nearly
plane wavefront propagates in tungsten. With increas-
ing frequency, the even contribution to δ± becomes
more evident (see Fig. 7).

The described experiments reveal the resonance
dependence of the wavefront shape of a transverse
wave on the magnetic field strength at q//B//[111]. The
factors that may be responsible for the deviation of the
wavefront from a plane are the diffraction phenomena
and the ICR.

The measurements carried out with tungsten speci-
mens show that, as the frequency increases, the even
contribution to δ± begins to manifest itself and grow.
This does not correlate with the diffraction mechanism
of the wavefront distortion: with increasing frequency,
the angle of the diffraction divergence of the beam
decreases. The estimated value of the angle of the dif-
fraction divergence of the beam is γ ≅ λ /2a, where λ is
the wavelength and a is the transmitter radius. For the
conditions of our experiment, this formula yields the
value that is too small (γ ~ 0.5°) to noticeably affect the
insertion loss. Judging from the data of Fig. 4, consid-
erable changes of the insertion loss can be observed
when the aforementioned angle exceeds 4°. Therefore,
below, we analyze the possible effect of the ICR on the
characteristics of the ultrasonic beam.

The effect of magnetic field can be described on the
basis of some qualitative inferences. In the case of a
nonplanar wavefront, the rays at the center of the beam
are directed along the magnetic field B and the [111]
axis of the crystal; the rays at the beam periphery are
deflected from B. Let the central rays produce the signal
A1 at the receiving transducer, and the peripheral rays
produce the signal A2. A phase shift exists between
these groups of rays (see top of Fig. 1b). If these rays
are absorbed in the magnetic field in different ways,
their interference at the receiving transducer will form
an even contribution δ(B) to δ± (see bottom of Fig. 1b),

4

0

–4

0.5 1.0 1.5 2.0 Ç, T

ϕ, deg

Fig. 5. Angle of rotation of the polarization plane near the C
resonance in molybdenum: f = 59.7 MHz and z = 1.4 cm.
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Fig. 6. Dependences of the (a, b) insertion loss coefficient L± and (c, d) phase δ± of oscillations on the magnetic field near the C
resonance in tungsten: f = 56 MHz; the transmitter and the receiver are transducers (a, c) 2 and 1, respectively, and (b, d) 1 and 2,
respectively.
because the absorption under the conditions of the
Doppler-shifted acoustic cyclotron resonance is an
even function of the magnetic field at ωτ ! 1 (ω is the
circular frequency of the wave and τ is the relaxation
time of electrons). From the above, it follows that an
even contribution to the phase may arise only near the
absorption peaks.

Waterman and Khatkevich [14, 15] mentioned a
phenomenon that necessarily accompanies the ICR in
an ultrasonic beam of finite dimensions. The polariza-
tion of oscillations is different in different points of the
beam cross-section, while, in a given point, it is fixed.
Therefore, one should expect that the rotation angle of
the polarization plane under the magnetic field will be
less in the presence of the ICR in the ultrasonic beam,
as compared to the case without the ICR. This fact was
confirmed in our experiments. Let us estimate the angle
of the ICR under the conditions of the Doppler-shifted
acoustic cyclotron resonance. The theory of ICR for
plane waves at q//B is described in our previous paper
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
[16]. In a cubic crystal under a magnetic field, the com-

ponents of the energy flux vector  are as follows:

(1)

where cij =  + i  represents the complex elastic
modulus, ρ is the density of the metal, and u± is the
amplitude of elastic displacements. The phase angle

φ = qz – ωt is measured with respect to the [11 ] axis.
Formulas (1) mean that with time the vectors of the
instant energy flux P± describe conic surfaces. The
bases of the cones are ellipses which differ for the
waves of the “+” and “–” polarizations. If the magnetic
field is zero, the imaginary components of the moduli

Pi
±
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± ω2c14'

ρ
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Fig. 7. Same as in Fig. 6 for f = 172 MHz.
 and  are zero. The cones of the ICR become cir-
cular and identical for both circular polarizations.

If  is zero, which occurs in an elastically isotro-

pic crystal, we obtain  = 0, and the cone of the ICR
degenerates into a plane sector. Within the half-cycle of
oscillations, a full cycle of the oscillations of the vector
of the energy flux is completed.

To obtain the estimates, we need to know the values
of the additions to the elastic moduli that appear under
the conditions of the Doppler-shifted acoustic cyclo-
tron resonance. The relative variation of the circularly
polarized elastic moduli ∆c±/c44 is coincident in order
of magnitude with Im∆q±/q = L±/zq. From the data pre-
sented in Figs. 2, 6, and 7, we obtain the estimate
|∆c±/c44| ~ 10–4, and this value increases with increasing
frequency of the ultrasonic wave. According to formu-
las (1), the magnetically induced addition to the angle
of deflection ∆θ is equal to ∆θ = ∆c14/c44 when the
angle of the ICR in the absence of magnetic field θ is
small, θ ! 1. If the additions to the moduli ∆c± and c14
are of the same order of magnitude, we obtain the addi-
tion for tungsten ∆θ ~ 0.3°. This estimate corresponds

c25'' c45''

c14'

P1
±

to the case of plane ultrasonic waves. Since the experi-
ments are performed with a beam of finite dimensions,
one should expect that a combined effect of diffraction
and ICR will give rise to rays with greater angles of
departure from the acoustic axis. The data reported in
the literature on the distribution of the elastic field in
the presence of ICR confirm this assumption. For
example, in the studies of the ICR in a germanium crys-
tal with the ICR angle θ = 14° [17], the angle of the dif-
fraction divergence was estimated as γ ≅ λ /2a 1°. How-
ever, the experiments revealed elastic oscillations with
the angles of deflection up to 20°, which far exceeds the
quantity θ + γ.

Now, we estimate the effect of the factors accompa-
nying the divergence of the beam on the results of the
experiments in magnetic field. For this purpose, we use
the theory developed for the beams of electromagnetic
waves of circular polarization [18, 19]. In our case, the
increase in the beam radius is insignificant. Its relative
increase S/S0 with distance z is S/S0 = (1 + D2)1/2, where
D = 2z/qa2, which at z = 2 cm, q = 103 cm–1, and a =
0.1 cm makes several percent. The results of our mea-
surements of the insertion loss in molybdenum are
more strongly affected by the curvature of the wave-
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
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front. The shape of the equiphase surface varies from
a plane at z  0 to a part of an ellipsoid of revolution
at z @ zm, where zm is the size of the near zone of radi-
ation, zm = a2/λ. At a = 0.1 cm and λ = 6 × 10–3 cm, the
distance zm is approximately 2 cm. The phase differ-
ence ∆ϕ between the areas r = 0 and r = a at the receiv-
ing transducer is determined by the expression

(2)

where R is the wavefront curvature radius, R =

a . Substituting the values of a, λ, and R, we

obtain ∆φ ~ 30°. Such a phase difference is sufficient
for the interference of signals, which leads to an even
contribution to the phase with respect to magnetic field
(see Fig. 1b).

Thus, on the basis of the analysis of experimental
data on the insertion loss and the phase of circularly
polarized elastic waves for different frequencies, differ-
ent distances of acoustic propagation, and different
dimensions of the transmitting and receiving transduc-
ers, as well as on the basis of theoretical estimates, it
was found that in cubic crystals a magnetically induced
contribution to the ICR is observed in compliance with
the theoretical predictions [16]. This contribution exists
in the case of the magnetization of the crystal along the
[111] threefold axis and the propagation of transverse
ultrasonic waves in the same direction.

The magnetically induced contribution to the ICR
was observed in an elastically isotropic tungsten crystal
(in which the ICR is absent because of the crystallo-
graphic anisotropy) and in an anisotropically elastic
molybdenum crystal. The effect of magnetic field on
the ICR was observed under the conditions of the Dop-
pler-shifted acoustic cyclotron resonance, and this
effect manifested itself in the resonance distortion of
the wavefront of the ultrasonic beam.
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Abstract—The effect of the water stratification on the sound field reflected from the ocean bottom at nor-
mal incidence is considered in view of the new method of acoustic bottom mapping and its practical-pur-
pose applications. The amplitude and phase distortions of the bottom-reflected signals received by a mul-
tielement planar array positioned horizontally near the ocean surface are estimated. Experimental data
obtained on the fine (interference) spatial structure of the reflected sound field in deep ocean are presented.
© 2000 MAIK “Nauka/Interperiodica”.
Recently, the new methods of sea-floor mapping
based on the use of the horizontal variability of the
sound field reflected by the ocean bottom at normal
incidence were proposed. The practical-purpose appli-
cations of these mapping methods in acoustics, naviga-
tion, and oceanology were also considered [1–6].

In general, depending on the specific situation, the
maps may be either variable (synoptic ones) or stable
(bathymetric ones) in time. The applications of the pro-
posed methods (navigation, sea-floor surveying,
searching for mineral resources) imply the stability of
the obtained data, at least within the time interval
required for solving the specific problem (comparison
of two versions or portions of the maps). The parame-
ters of the reflected signals, which serve as the starting
data for acoustic mapping, are governed by the insoni-
fied bottom area (roughness of the micro- and mesore-
lief, sea-floor inhomogeneities), and this area is stable
on the geological time scale. Hence, the acoustic
parameters must be stable as well, their variability
being solely caused by disturbing factors that act in the
real ocean environment. The effects of these factors
determine the feasibility and the quality of the acoustic
sea-floor mapping. Therefore, it is advantageous to
consider some of the aforementioned factors, namely,
the parameters of the water column, that influence the
most sensitive fine (interference) structure of the
reflected sound signals. To obtain approximate esti-
mates, we use a simplified model of the water column,
which includes isotropic small-scale turbulent inhomo-
geneities of the sound speed, fine-structural inhomoge-
neities, mesoscale lenses, and general changes in the
sound speed profile [7–9].

The turbulent small-scale inhomogeneities of the
sound speed, or the microstructure of the water column,
1063-7710/00/4601- $20.00 © 200056
have scales less than 1 m. The field of the sound speed
(or that of the refractive index) is nearly isotropic on
these scales. The microstructural inhomogeneities are
mainly located in the upper mixed layer of the ocean,
50–100 m in thickness, where they are represented in
the form of clouds produced by breaking of the surface
and internal waves [10, 11]. The sound speed fluctua-
tions caused by the microstructure are characterized by

the rms deviations of the refractive index, , up to
5 × 10–5–10–4 in the subsurface water layer, and, on
average, they are by an order of magnitude less at
deeper horizons [7].

The fine-structural inhomogeneities are strongly
elongated in the horizontal direction and highly aniso-
tropic, with vertical scales of several meters or several
tens of meters and with the anisotropy coefficients (i.e.,
horizontal-to-vertical scale ratios) of 102–104. Their life
times are several hours to several days: the larger the
scale the longer the time. The fine-structural inhomoge-
neities are mainly located within the discontinuity layer
and the main termocline, at depths of ~100 to ~1000 m.

The maximum values of the parameter , up to
5 × 10–4–10–3, correspond to the maximum sound
speed gradient (the discontinuity layer). At deeper
horizons, particularly, deeper than the axis of the
underwater sound channel, the fine structure usually
degenerates [7, 9].

The general changes in the sound speed profile are
different for different ocean regions, because they
depend on the seasonal variability of the water bulk and
probable intrusions of foreign waters with different
parameters, particularly, in the form of lenses that are
caused by the synoptic eddies and meandering global
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1/2
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Fig. 1. Seasonal standard deviation of the surface sound speed (m/s) for the North Atlantic.
water currents. According to the generalized data [7,
12], the seasonal variability of the sound speed profile
is mainly characteristic for moderate latitudes and sub-
tropical regions. The highest seasonal changes, up to
15–20 m/s on average, naturally occur at the sea sur-
face. This fact is illustrated by Fig. 1, which presents
the standard deviation of the sound speed (in m/s) for
the North Atlantic [12]. The maximum deviations cor-
respond to the region where the Labrador Current and
Gulf Stream converge. At the same time, the deviations
are low for the near-equatorial zone. As the depth
increases, the seasonal deviation monotonically
decreases, by an order of magnitude, or more at the
depths 300–500 m.

The variability of the sound speed profile, which is
caused by the lenses in the Atlantic Ocean, is most pro-
nounced in its north-western region where these varia-
tions are comparable with the seasonal ones. The sound
speed disturbances caused by passages of the lenses,
several tens of kilometers in size and several hundreds
of meters in thickness, reach a value of 15–20 m/s. For
TICAL PHYSICS      Vol. 46      No. 1      2000
instance, a lens observed in the region where the Med-
iterranean waters intrude into the Atlantic Ocean had
a horizontal size of about 70 km and a thickness of
~600 m; the maximum disturbance of the sound speed,
up to 18 m/s, corresponded to a depth of 950 m [13].

With the specified model of the water column, we
may conclude that distortions of the sound signal
reflected by the bottom and received near the ocean sur-
face may have the following three forms: amplitude
fluctuations caused by sound propagation within the
water column; phase fluctuations of the elementary sig-
nals scattered by individual bottom areas under the
influence of the column inhomogeneities, including the
fine-structural ones and lenses; and changes in the
phases of the elementary scattered signals because of
the distortions of the sound speed profiles.

To consider the first mentioned factor, we compare
the variation coefficient η of the signal amplitude
received upon the bottom reflection and propagation
through the water column with the variation coefficient
η1 caused solely by the reflection process. Earlier [3], it
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was found that, under some realistic assumptions, these
values may be specified as

(1)

where η2 is the amplitude variation coefficient gov-
erned by the signal propagation through the inhomoge-
neous water column.

The estimations show that the propagation-caused
amplitude fluctuations may be neglected, if the total
variation coefficient is by a factor of 2.5–3 higher than
the value η2 caused by the propagation, and in this case
η ≈ η1. According to the generalized experimental data
[3], in the deep ocean, the amplitude variation coeffi-
cient of the bottom-reflected signal depends on the
transmitted frequency and on the geomorphological
zone of the ocean. For example, at the frequencies 2
and 10 kHz, the variation coefficient is 0.44–0.54 and
0.46–0.85, respectively, for highly rugged sea-floor
areas; 0.32–0.46 and 0.49–0.58 for moderately rugged
ones; and 0.13–0.34 and 0.31–0.47 for weakly rugged
areas.

Let us estimate the amplitude variation coefficient
η2. If sound propagates in a randomly inhomogeneous

medium over a distance L, and L @  (the usual
case), the amplitude fluctuations of the reflected signal
are known [8] to obey the following formula:

, (2)

where k is the wave number, L0 is the spatial correlation
length of the inhomogeneities, and λ is the wavelength.

By specifying  = 10–4, λ = 15 cm, L0 ~ 1 m,
and L ~ 100 m, in view of the two-way sound transmis-
sion through the water layer, we obtain η2 = 0.04,
which is much less than the aforementioned value—the
fact that has been experimentally confirmed. In partic-
ular, we [3] presented the experimental estimates for
the depth of the amplitude fluctuations of the direct sig-
nal received in the subsurface layer of the deep ocean,
for the vertical distance 250 m between the source and
receiver, at a frequency of 12 kHz (λ = 12.5 cm). The
amplitude variation coefficient proved to be less than
0.15, this value being overestimated because of the
influence of other factors (roll and pitch of the transmit-
ter and receiver, instabilities in the electronic circuits,
etc.—see [3] for details). At the same time, the ampli-
tude variation coefficient of the bottom-reflected signal
was higher than 0.50. Similar data were obtained by us
for the 4000-m reception depth.

Thus, the experimental data on the amplitude vari-
ability of the sound signals agree well with the theoret-
ical estimates, the condition of the insignificance of the
changes in the water-column parameters (this condition
is determined by equations (1) and (2)) is satisfied, and,
hence, the amplitude fluctuations of the reflected signal
can be attributed to nothing but the reflection process

η η1
2 η1η2 η2

2
+ +( )

1/2
,≅

L0
2λ 1–

η2 µ2( )k
2
L0L[ ]

1/2
=

µ2( )
1/2
[3]. Note that the above estimation does not imply a
specific mechanism for the amplitude-phase interfer-
ence forming the signal reflected by the real ocean bot-
tom. The obtained estimates only show that the ampli-
tude of the propagating signal remains stable with
respect to the water inhomogeneities. The effect of
other types of inhomogeneities on the amplitudes of
individual components of the resultant signal can obvi-
ously be treated as small for the plane-layered ocean
(we assume that such is the structure of the ocean under
study), because no reflections by the water-layer
boundaries arrive at the receiver in this case.

To proceed with considering the effect of water
stratification on the bottom-reflected signal received
near the ocean surface, we traditionally suppose that it
is formed as a superposition of elementary signals scat-
tered by the bottom roughness (irregularities). The sit-
uation is schematically illustrated in Fig. 2 for a case of
two scattering bottom features [3]. The resultant
received signal is evidently determined by the ampli-
tudes of the two reflections and by their phase differ-
ence ∆ϕ = ϕ1 – ϕ2, which is determined by the differ-
ence in the lengths of the paths S1R and S2R, as well as
by the fluctuations of the refractive index on these
paths. It is also evident that, even if the amplitudes of
individual components remain unchanged (as above),
the resultant reflected signal will change if the variation
of the phase difference δ(∆ϕ) is considerable.

To consider the effect of the small-scale turbulent
inhomogeneities on the sound field, we assume that the
difference in the path lengths is constant. Let us esti-
mate the fluctuations of the phase difference δ(∆ϕ),
which are caused by random fluctuations of the refrac-
tive index. Such fluctuations manifest themselves in the
random time variations of the phases of all elementary
signals arriving at the receiver.

The phase fluctuations of each received signal are

characterized by the rms value  deter-
mined in the same way as the variation coefficient in (2)
[8]. In the worst case of fully uncorrelated phase fluctu-
ations of all arrivals, the rms phase difference is as fol-
lows:

(3)

and the fluctuations of the travel time along each ray are
determined by the formula

, (4)

where f is the transmitted frequency.
By using these formulas with the aforementioned

parameters, we obtain δ(∆ϕ) ≈ (6–7) × 10–2 rad ≈ 4.0°

and  ≈ 1 µs. Thus, the effect of the small-
scale turbulence on the phase structure of the reflected
signal may be treated as weak, if one can neglect the
phase difference up to 20° in the arrived signals, this

∆ϕ1 2,( )2[ ]
1/2

δ ∆ϕ( ) 2 µ2( )k
2
L0L[ ]

1/2
,=

∆t1 2,( )2[ ]
1/2

∆ϕ1 2,( )2[ ]
1/2

/2πf=
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threshold value being primarily governed by the speci-
fications of the experimental device and the phase sta-
bility of the channel circuits [14].

The fine-structural inhomogeneities may lead to an
additional change in the phase difference of the individ-
ual signals that arrive at the receiver along different
paths, because the change in the acoustic path length
depends on the angle θ. To simplify our considerations,
we assume that the fine-structural inhomogeneities are
presented by plain-parallel layers with constant sound
speed increments. Again, we consider the signal-form-
ing mechanism of Fig. 2, and the phase difference
δ(∆ϕ) is now governed by the difference in the acoustic
paths of individual components of the resultant signal.
As we will see later, the used estimation technique is
also applicable to the lenses and the general changes in
the sound speed profile.

With this approach, the travel time along the ray
with the departure angle θ (Fig. 2), from the on-surface
source to the ocean bottom located at depth H, is given
by the formula [15],

(5)

where c0 is the sound speed at the surface and n is the
refractive index depending on the depth z.

As usual, we represent the squared refractive index
in the form n2(z) = 1 + ε(z), where

(6)

and ∆c(z) = c(z) – c0.

In accordance with the aforementioned generalized
data, the value ∆c/c0 is approximately equal to 2 × 10–2.
Neglecting the value (∆c/c0)2 leads to the estimate

and

(7)

Because the sea floor is surveyed with vertically ori-
ented acoustic systems, and the reflecting bottom area
has the angular half-width θ0 less than 10° for most
ocean regions (a broad directivity pattern [3]), we have
ε(z)/cos2θ ! 1. Hence, we obtain

(8)
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At normal incidence (cosθ = 1), the travel time to
the bottom is

(9)

The travel time difference between the vertical ray
and the ray with the departure angle θ is maximal and
is determined by the expression

(10)

where 

.

Let us estimate the variability of the quantity ∆t
depending on the change in the sound speed profile
ε(z). Let ∆t1 correspond to ε1(z) and ∆t2 correspond to
ε2(z). Then, in the general case,

(11)

In estimating the influence of the fine-structural inho-
mogeneities and lenses, the sound speed is c01 = c02 = c0
at the surface, and the angle is θ1 = θ2 = θ. Then, at
small angles θ ≤ 10°, in view of (6), formula (11) yields

(12)
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Fig. 2. Formation of the received signal reflected by two
bottom features: (S) sound source; (R) receiver; (1) the first
feature; and (2) the second feature.

1

2

3

4

5

H, km
1 2

H

θ

θ

S R ë



60

ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000

VOLOVOV et al.

where δ[∆c(z)] = c0[ε1(z) – ε2(z)]/2 and

Here, HT is the maximum depth of the fine-structural
inhomogeneities (HT ≈ 103 m), LT is their characteris-
tic scale (LT ≈ 102 m), and σcT is the rms fluctuation of
the sound speed in the fine-structural inhomogeneities
(σT ≈ 0.7 m/s) [9]. In this case, for θ = 10°, we obtain

[  = 2.8–3 µs, and we have δ(∆ϕ) ≈ 10°
at f = 10 kHz.

The obtained estimates show that neither small-
scale nor fine-structural inhomogeneities of the water
column can significantly distort the fine spatial struc-
ture of the reflected sound field. Hence, this structure
must remain constant for a long time. This fact has been
confirmed by successful operation of the correlation
logs and arrays with synthesized apertures, i.e., the
devices that make use of the stability of the sound field
structure [3, 16–18]. In experiments, the stability of
acoustic maps was observed at least on the time scales
of several units to several tens of seconds. In particular,
such time intervals are sufficient to implement the new
high-sensitive method of measuring the displacement
and speed of a vessel relative to the sea bottom [3, 4].

However, sometimes long-term acoustic mapping
that is stable on large time scales, e.g., the seasonal
ones, is required. This may be necessary for solving the
problem of high-precision return of a vessel to the ini-
tial point, or for other purposes. In these cases, one
should additionally consider the effect of the lenses and
changes in the general sound speed profile.

To estimate the effect of a lens, formula (12) can be
used. According to the aforementioned parameters of
the lens, we can represent it as a linear deviation of the
sound speed from its mean profile. We specify this
deviation as a linear increase from δ[∆c(z)] = 0 at the
depth 650 m to δ[∆c(z)] = 18 m/s at 950 m and as a lin-
ear decrease from the latter value to δ[∆c(z)] = 0 at

∆t1 ∆t2–( )2[ ]
1/2

HT LT( )1/2σcTθ2
/c0

2
.=

∆t1 ∆t2–( )2[ ]
1/2

1250 m. In this case, we have dz = 5.4 ×
103 m2/s and δ(∆t) = 2.4 × 10–3θ2 s.

To consider the seasonal variability of the sound
speed profile, we fix a point at the bottom. Then, in
view of the change in the departure angle ∆θ, which is
caused by the deformation of the sound speed profile,
we derive the approximation from formula (11):

. (13)

Here, ∆c = c02 – c01 is the difference between the sound

speeds at the surface and ∆θ ≅ dz ≈

 (H is the maximum depth reached by the seasonal

variability, H ≈ 300 m). Then, the first term of (13) may

be neglected, and δ(∆t) = dz. For the

maximum seasonal deviation ∆c = 30 m/s at the surface
and δ[∆c(z)] uniformly decreasing down to zero at the
depth 300 m, we have δ(∆t) ≈ 2 × 10–3θ2 s.

To estimate the quantity I = dz, we

used the actual sound speed profiles measured in sum-
mer and winter (Fig. 3), at 42° N, 34.5° W [9]. The cal-
culation yields I ≈ 3.5 × 10–4 s. With the use of the mod-
ified Vagin’s computer code to compute the travel time
along the ray down to the bottom, the difference between
∆t1 and ∆t2 was found to be about 9 µs for θ = 10°. For-
mula (3) yields 10 µs, which means that both
approaches lead to equivalent results.

For a limiting case, when the maximum value of
δ[∆c(z)] is equal to 30 m/s at the surface and zero at the
depth 300 m (the seasonal variability usually never pen-
etrates to deeper horizons), we have I ≈ 2 × 10–3 s and
δ(∆t) ≈ 5.8 × 10–5 s at θ = 10°; these values correspond
to δ(∆ϕ) ≈ 200° for f = 10 kHz.

Figure 4 presents the angular dependences of the
quantity δ(∆ϕ) = 360δ(∆t)f (deg) for the frequencies
f = 1, 3, and 10 kHz. The plots show that the calculated
effect of the seasonal variability may be significant. In
particular, at the frequency 10 kHz, the change in the
phase difference is 100° or more, if the angular half-
width of the reflecting bottom area exceeds 10°.

In the above estimations, a simplified situation was
considered: the bottom was assumed to be flat and uni-
form. In such a situation, only the sea depth and the
sound speed profile determine the difference in the
arrival times ∆t1 and ∆t2, as well as the phase differ-
ence, for the signals that return to the receiver along dif-
ferent paths. However, one should take into account the
bottom-surface roughness with heights that have the
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Fig. 3. Measured sound speed profiles for winter and sum-
mer seasons; moderate latitudes.
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same order of magnitude as the transmitted wavelength
or higher (actually, it is the roughness that returns the
reflected signal back to the receiver at θ ≠ 0). There is
also an additional phase lag caused by scattering, and
this quantity may differ for different rays. In view of
these facts, another term should be added to the phase
difference obtained from the quantities ∆t1 and ∆t2, this
term being irregular in the general case. Nevertheless,
the additional term does not violate the validity of the
obtained results, because it has equal values for ∆t1 and
∆t2, and, in subtracting one of those from another
according to (11), the effect vanishes.

The obtained estimates show that the effects of
lenses and seasonal variability of the sound speed pro-
file on the phase relations in the individual arrivals are
of similar orders of magnitude and may be quite signif-
icant. However, for most ocean areas, the bottom is
smooth or hilly (with θ0 < 3°–4° [3]), the lenses are rare
events, and the seasonal variability of the sound speed
profile is nearly absent. Hence, the specified value of I
is highly overestimated relative to the actual one, and
we can conclude that the value of δ(∆ϕ) is in most cases
lower than 10° for the frequencies at hand and can be
neglected. Nevertheless, the proposed technique should
be used to obtain the estimates for a specific situation.

Thus, the fine spatial (interference) structure of the
bottom-reflected sound field, which manifests itself as
the amplitude distribution over a horizontal plane near
the ocean surface and, in particular, over the array aper-
ture (the acoustic map of the bottom [3–5]), is actually
rather stable to the effects of water stratification. This
conclusion is important, because it testifies to the high
stability of the acoustic bottom maps and confirms their
applicability to navigation tasks. This is most true for
the problems of measuring the displacements [3, 4]
when the fine structure of the reflected sound field

101

0 2

δ(∆ϕ), deg

θ, deg
4 6 10 128

102

100
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Fig. 4. Maximum difference that occurs in the phase
advances of individual arrivals because of the seasonal vari-
ability of the sound speed profile (see Fig. 3) for the fre-
quencies 1, 3, and 10 kHz.
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should remain unchanged for the time interval between
successive measurements of the amplitude distribu-
tions. Because, in practice, this interval is less than sev-
eral seconds, the effects of water stratification can be
neglected.
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Abstract—An acoustic dark field method is proposed. The method allows one to observe the signals scattered
by moving inhomogeneities of the medium in the direction close to that of the illuminating field. The results of
a full-scale experiment demonstrating the efficiency of the proposed method under reverberation conditions are
presented. For the first time, the spatial distribution of the wave scattering from a rough water surface is
observed individually for each side frequency of its spectrum. © 2000 MAIK “Nauka/Interperiodica”.
In optics, devices that allow one to observe small
inhomogeneities in transmitted light are well known. In
such devices, the direct light from the source does not
reach the field of vision [1]. If the medium is homoge-
neous (without scatterers), the field of vision remains
dark. This fact gave rise to the name of the correspond-
ing method of observation—the dark field method.
Once an inhomogeneity affecting the refractive index
or the transparency of the medium occurs in the zone
illuminated by an intense light source, this inhomoge-
neity is displayed as a shining object on the screen of
the device. This method is used for the observation of
perturbations introduced in the medium by acoustic
waves and other inhomogeneities that cannot be distin-
guished against the light source.

Similar devices are badly needed in acoustics. They
would allow one to observe ocean inhomogeneities,
currents, and other objects. For such purposes, acoustic
tomographic methods are developed [2, 3]. With tomo-
graphic methods, one can determine the location and
the size of an inhomogeneity by measuring the fluctua-
tions of the ray propagation times between many points
of transmission and reception [2]. These methods
require the solution of inverse problems. Such solutions
are unstable. Moreover, under the conditions of a shal-
low sea, it is often impossible to resolve individual
rays, and the acoustic tomography cannot be used [3].

The optical dark field method can be transferred to
acoustics, for which purpose large-size acoustic anten-
nas—the so-called focusable antennas—are necessary
[4]. At low frequencies used for studying the oceanic
inhomogeneities, a focusable antenna is a huge “Cyclo-
pean” structure. Despite the fact that the success in
building such a structure is guaranteed and verified in
optics, the construction of such antennas (judging from
the literature) is planned nowhere.
1063-7710/00/4601- $20.00 © 20062
Earlier, we proposed an acoustic dark field method
that allows one to darken the field of a source of intense
radiation and to observe small perturbations of the
medium against the signal of this source [5]. For the
realization of this method, no large-size focusable
antennas are necessary. It is sufficient to use any kind of
antenna providing the required angular resolution of
the observed inhomogeneities. However, this method is
efficient only for small-angle spatial perturbations of
the field [6, 7]. A special experiment carried out in shal-
low sea [6] showed that, along with the perturbations
of interest, a noise halo covering the entire range of
angles is present in the medium, the level of noise
being 15–20 dB relative to the source level [8–10].
Under such conditions, the previously proposed dark
field method [5] is inefficient.

In the cited method, the field of the source of intense
radiation was suppressed by using the difference
between the signals of complex amplitudes in neigh-
boring elements of the antenna, which is practically
equivalent to the subtraction of the appropriately
phased values of the complex amplitudes of signals in
neighboring elements of an antenna array [6]. In this
paper, we propose a modified acoustic dark field
method which is based on the subtraction of the values
of the logarithms of the complex amplitudes at neigh-
boring discrete instants of time. The subtraction of the
values of signals at the neighboring instants of time is
equivalent to filtering. A linear filtering is performed
after taking the logarithms in the cepstral method of
signal selection [11]. The frequency characteristic of a
filter which produces the effect equivalent to the sub-
traction of signals within short time intervals linearly
decreases with decreasing frequency. Such a frequency
characteristic of the filter leads to the suppression of the
constant component and attenuation of the low-fre-
quency component of the field. As a result, the signals
000 MAIK “Nauka/Interperiodica”
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scattered by moving inhomogeneities become promi-
nent in proportion to their Doppler frequency.

The proposed method is studied by mathematical
simulation and in full-scale experiments under the con-
ditions of intense reverberation. In the experiment, the
field of the direct fluctuating signal and the accompany-
ing noise were suppressed by 60 dB relative to the
direct field generated by the source and arriving at the
array. We note that the best adaptive methods, including
the aforementioned one [5], provide the suppression of
the acoustic field of a source under intense reverbera-
tion by no more than 30 dB [6].

The essence of the method can be illustrated by a
specific example. In an acoustic waveguide, we place a
source of an intense monochromatic signal which illu-
minates the inhomogeneities of the medium. For the
observation of these inhomogeneities, we place an
acoustic array at some distance from the source. We
consider a horizontal line array consisting of a set of
equidistant receiving elements.

Let the complex field amplitude (a complex number
whose magnitude and argument are respectively equal
to the amplitude and phase of oscillation in the acoustic
field [12, 13]) that occurs at the array element of num-
ber k at the instant of number n be Ak, n . The algorithm
of the formation of an acoustic dark field includes the
following operations on the complex field amplitudes
received by individual receiving elements of the array:

. (1)

We first consider the effect of transformation (1) by
using a mathematical model. As the simplest model, we
select the observation of a single scatterer moving
along a straight line and illuminated by a plane wave,
as shown in Fig. 1. This model allows us not only to
demonstrate the effect of transformation (1) but also to
obtain the calibration signal necessary for the evalua-
tion of the observed inhomogeneities. Consider a scat-
terer 4 moving with a constant velocity v along the path
3–3 between the source 1 and the receiving array 2–2
(see Fig. 1). Let us determine the complex amplitude of
the scattered field produced by the moving scatterer at
every element of the receiving array. We introduce the
geometric parameters: the distance R(x, t) from the
scatterer to the point of reception (x is the coordinate of
the receiving element of the array), the distance vt trav-
eled by the scatterer along the path 3–3, and the dis-
tance D from the scatterer trajectory to the array. Using
the above notation and assumptions, we obtain the
expression

, (2)

where t is time.

Sk n,
Ak n 1+,

Ak n,
------------------ 

  i Ak n 1+,( )arg Ak n,( )arg–( )+ln=

R x t,( ) D2 vt x–( )2+=
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Because of the variation of the distance R(x, t), the
phase of the signal arriving from the scatterer to every
point of reception will depend on time according to the
formula

, (3)

where λ is the wavelength.

We assume that the source is sufficiently far from
the array, so that, for the direct field, the phase differ-
ence between the neighboring array elements does not
depend on the number of the array element (a conse-
quence of the fact that the array is nonfocusable). Let
this phase be time independent (the source and the
array are fixed) and equal to zero for definiteness. The

ϕ x t,( ) 2π
λ

------R x t,( )=

1

2

3

4

2

3

v
t

x

D

R(x, t)

Fig. 1. Schematic diagram of the model experiment:
(1) source; (2–2) receiving array; (3–3) path of the simu-
lated moving scatterer; (4) scatterer; (D) distance from the
path of the scatterer to the receiving array; and (R(x, t)) dis-
tance from the scatterer to every receiving element of the array.

Fig. 2. Numerical model of the absolute value of the array
response to the signal of the moving scatterer without dark-
ening of the direct signal. The vertical axis shows the time,
and the horizontal axis shows the spatial frequency (the
angular spectrum (5)).
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sought-for amplitude is obtained (accurate to a constant
phase shift) in the form

, (4)

where A0 is the direct field of the source at the array.
Expression (4) was used in our studies for the math-

ematical simulation of a single scatterer moving in the
zone of observation of the acoustic dark field.

Figure 2 shows the result of the observation of a
moving scatterer by means of an array without using
the acoustic dark field. In the case under consideration,
this is possible because of the absence of reverberation.
The signal processing consists of the determination of
the spatial spectrum A(x, t) specified by formula (4), the
spectrum being determined along the array (as a func-
tion of the x coordinate only) as a function of time t
[12, 13]. The relation between the spatial frequency U
serving as the argument in the graphic representation
and the scan angle θ of the array scanning over the zone
of observation is as follows [13]:

, (5)

where Umax is the maximum value of the spatial fre-
quency (this value is equal to half of the total number
of the points of the spectral Fourier expansion) and d is
the distance between the receiving elements of the
array. The simulation was performed for 2d = λ. The
interval of spatial frequencies shown in the graphs lies
within ±Umax. In Fig. 2, the vertical line at the center,
i.e., at θ = 0, represents the source. The simulated scat-
terer is represented by the sloping line, because,
according to formula (4), the direction toward the scat-
terer varies approximately in proportion to time.

Figure 3 shows the result of a similar signal process-
ing with the use of an acoustic dark field. Here, the pro-
cedure is the same as in the case of Fig. 2, but it is per-

A x t,( ) iϕ x t,( )( ) A0+exp=

U Umax
λ

2d
------ θ( )sin=

Fig. 3. Numerical model of the absolute value of the array
response to the signal of the moving scatterer with the dark-
ening of the direct signal. The axes are the same as in Fig. 2.
formed for the signal S(x, t) subjected to additional pro-
cessing by formula (1) rather than for the signal A(x, t).
As a result, the signal of the source is invisible (the field
is darkened), and the signal of the scatterer is observed
at the same angles as in Fig. 2 with the intensity
depending on the Doppler shift of its frequency at the
corresponding instant of time.

The proposed algorithm of signal processing con-
tains a nonlinear operation, namely, taking the loga-
rithm. This is the only mathematical transformation
that allows one to reduce the multiplicative noise to an
additive one and to subject it to filtering in the latter
form. The set of successive operations including taking
of logarithm and filtering can be called nonlinear filter-
ing. The efficiency of nonlinear filtering is demon-
strated in the modern methods used for processing mul-
tiplicatively related signal spectra—the cepstral analy-
sis [11]. The predominant effect of multiplicative noise
is the specific feature of the propagation of acoustic
monochromatic signals. An intense monochromatic
sound radiation can be received in such a narrow fre-
quency band that the effect of additive noise can be
neglected. In this case, the noise is represented by the
fluctuations of the level and phase of the illuminating
acoustic signal. These fluctuations are multiplicatively
related to the received signal.

Figure 4 shows an example of nonlinear filtering
from the previous publication [14]. The initial signal
whose spectrum is shown in Fig. 4a is phase modulated
by an intense low-frequency signal. As a result, the
spectrum of this signal takes the form shown in Fig. 4b.
Figures 4c and 4d present the results of applying the
nonlinear filtering to the initial signal and to the signal
subjected to distortion. The procedure of nonlinear fil-
tering is especially efficient in the situation described in
our previous paper [15].

The full-scale experiment was carried out at the
Sankhar lake—a picturesque lake of the Vladimir
oblast. Schematically, the experiment corresponded to
Fig. 1. The acoustic field was received by individual
hydrophones of an array and processed; the processed
data were stored.

The processing of the received signals included the
following operations. First, the signals received by
every microphone were filtered in the frequency band
±3 Hz near every discrete frequency generated by the
source. Second, the filtered signals were mixed with the
signal of the generated frequency and formed signals of
the difference frequency in two quadrature channels
[12, 13]. In one quadrature channel, the signal had the
form Acos(ϕ), and in the other channel it had the form
Asin(ϕ), where A is the amplitude of the received signal
and ϕ is its phase. The signals obtained from the two
quadrature channels were recorded in digital form by a
computer. The described preliminary signal processing
provided the signal record in the form equivalent to the
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
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Fig. 4. Results of the numerical simulation of the application of nonlinear filtering to the signals received by the array [14]. The
vertical axes show the level in dB. The horizontal axis represents the spatial frequency proportional to the sine of the arrival angle
of the wave (see formula (5)). (a) Spectrum of the initial signal; (b) spatial spectrum of the initial signal distorted by phase modula-
tion; and the results of the application of nonlinear filtering (c) to the initial signal and (d) to the distorted signal.
complex amplitudes considered before in [12, 13].
Such a record, i.e., a record of the total field or a holo-
gram of the received acoustic signal, allows one, after
subsequent processing, to obtain the same results as
those provided by the corresponding processing of the
directly received acoustic field.

In the experiment, the square of the lake depth (15–
20 m) divided by the wavelength (~1 m) was approxi-
mately equal to the length of the acoustic path (~300 m).
Such conditions are not exactly those of a shallow sea
[15]. However, in these conditions, the number of
reflections from the surface, banks, and bottom of the
lake was sufficiently great to provide an intense rever-
beration of the signal. The aim of the experiment was to
reveal the possibilities for the observation of natural
factors that cause the scattering of the acoustic field. In
our experiment, no objects were moving in the field of
vision of the array, and only the source and the receiv-
ing array were in operation. Therefore, for the determi-
nation of the target strength of the scattered signals, a
signal simulating the field of a scatterer was added to
the signal received from the array in the course of its
processing.
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
The simulation of the signal of a moving scatterer
was performed by combining the signal received by the
array with the same signal subjected to some modifica-
tion; namely, the signal was attenuated (e.g., by 40 dB)
and multiplied by a function of type (4) without its con-
stant component. This operation is equivalent to the
introduction of a Doppler shift proportional to the spa-
tial frequency (angular displacement) into the signal in
which the direct field of the source is dominant. As a
result, in the additional attenuated signal, the direct
field of the source with the introduced Doppler shift
and angular displacement plays the role of a moving
scatterer. Its level relative to the source is known. The
method used in our experiments for the simulation of a
moving scatterer allowed us to obtain the mathematical
model of the scatterer with the known parameters and
with the level and phase fluctuations that are identical
to those of the direct field of the source under the con-
ditions of our experiment.

We specify the aim of our experiment by using
Fig. 5. This figure shows the time spectrum of acoustic
signals received by individual hydrophones of the
array. These spectra have the form similar to that of the
spectra presented in the monograph [3, p. 214]. The
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Fig. 5. Spectrum of the signal received by the hydrophones of the array.
spectrum exhibits a peak at zero frequency. By this fre-
quency, the field of the source was shifted. In the graph,
the frequencies higher than the source frequency are
positive, and the frequencies that are lower than the
source frequency are negative. The spectrum also has
peaks at frequencies about ±2 Hz. For signals propagat-
ing in the sea, such peaks in their spectrum are
explained by the wave scattering from the wind waves
which modulate the signal and shift its spectrum [3]. In
the cited monograph [3], a method of the diagnostics of
the state of the sea surface on the basis of such spectra
is considered. The specific aim of our experiment was
as follows: with the help of the array, to observe the sur-
face waves that modulate the signal of the source.

The results of the experiment are presented in the
figures.

Figures 6 and 7 show the results of the signal pro-
cessing for a signal received by the array. The black
field corresponds to the maximum signal, and the white
field corresponds to the minimum one. The processing
consisted of the determination of the spatial spectra
along the line passing through the receiving hydro-
phones of the array. The signals shown in Fig. 6 were
subjected to additional processing. The darkening of
the array field was performed by formula (1), and the
signals were additionally filtered in time.

The experiment was performed at the frequency at
which the condition 2d < λ was satisfied (see relation
(5)). In this case, by virtue of relation (5), in the deter-
mination of the spectrum of spatial frequencies along
the array, the whole range of real angles θ occupies
only part of the full spatial spectrum shown in Figs. 6
and 7. In the region of imaginary angles, the acoustic
waves are strongly attenuated [12, 13]. This region is
displayed in the figures in the form of a white vertical
band on each side of the plots. The fact that signals
lying in the region of real angles θ prevail testifies to the
absence of any noticeable noise of nonacoustic origin.
In Fig. 6a, the signal received by the array was pro-
cessed in the entire band of temporal frequencies
shown in Fig. 5. Figure 6b shows the result obtained by
processing a filtered signal with the elimination of the
two side frequencies exceeding (in magnitude) 1 Hz.
By doing so, we suppressed to a considerable extent
the signals caused by the scattering from wind waves
[10, 13]. Thus, correlating Figs. 6a and 6b, we can
reveal the contribution made by the scattering from the
lake surface to the total scattered signal. For example,
in Fig. 6a, the source is displayed in the form of an
intense line, while in Fig. 6b it is barely visible. This
means that the array can “see” the reflection of the
source at the lake surface in the same way as we can see
the “lunar” or “solar” track on a rough water surface. In
Fig. 6a, one can see the angular distribution of the level
of the signal scattered by the surface. Waves scattered
by the rough lake surface are observed with confidence
by the acoustic dark field method. In this case, the scat-
tering from the surface forms a considerable part of the
scattered signal. This is evident from the difference in
the distinctness of the sloping line representing the
result of adding the signal simulating the scatterer. In
Figs. 6a and 6b, the distinctness of the simulated signal
is noticeably different, although its level is the same.

Figures 6c and 6d show the results obtained with the
elimination of only one side frequency—the lower one
(Fig. 6c) or the upper one (Fig. 6d). In these figures, one
can see the waves scattered by the surface either with an
increase in the Doppler frequency or with a decrease in
it. In this paper, the analysis of the spatial distribution
of the acoustic signal scattering from wind waves with
allowance for the sign of the Doppler effect is described
for the first time.

Figure 7 shows the result obtained by processing the
same signal as in Fig. 6 in the way we processed the sig-
nal shown in Fig. 2 (i.e., without using formula (1) pro-
ducing the dark field). In the signal shown in Fig. 7, the
simulation of a scatterer also takes place with its level
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
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being 10 dB higher than that of the source. However,
the scatterer cannot be distinguished in the figure. To
make the simulated signal noticeable in this figure, it is
necessary to increase its level by another 10 dB. The fil-
tering of the Doppler components has also no effect on
the pattern of Fig. 7. Thus, in the presence of reverber-
ation, the localization of the centers of scattering from
wind waves cannot be achieved without darkening the
field of the array.

Figures 6 and 7 allow only qualitative estimates.
They present distinct temporal variations of signals.
However, they cannot be used for obtaining some quan-
titative data. For the latter purpose, Fig. 8 is more suit-
able. This figure presents the absolute values of the
array response, i.e., the values shown in Figs. 6 and 7,
for the same instant of time. From Fig. 8, one can see

that the dark field method without additional filtering
allows one to obtain the efficiency about 60 dB, and the
subsequent temporal filtering provides about 10 dB
extra.

In Fig. 8, we can see the response of the array to the
signal simulating the scatterer: it is the maximum
response in the thick line (the time section of Fig. 6b) at
an angle slightly exceeding 20°. Its level is about –55 dB
relative to the source signal, while it was set at –40 dB
relative to this level. The difference is explained by the
fact that the simulated signal moves too slowly, and,
hence, even at the maximum angle, its Doppler shift is
considerably reduced by the filter which darkens the
field of vision of the array. From the time section of
Fig. 7 that is shown in Fig. 8, one can see that the effect
of reverberation on the shape of the array response is
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Fig. 6. Absolute value of the array response in the full-scale experiment with the darkening of the direct signal. A signal simulating
the field of a moving scatterer (as in Fig. 1) is added with the level of the scattered signal being by 40 dB lower than the source field
at the array. The vertical axis shows the time in minutes, and the horizontal axis corresponds to the spatial (angular) spectrum.
(a) Array response in the entire frequency band shown in Fig. 5; (b) array response with the elimination of two side frequencies
(exceeding 1 Hz in magnitude); and the field of vision of the array with the elimination of (c) only the lower side frequency and
(d) only the upper one.
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more substantial in the lake than in similar experiments
in the sea [6]. This occurs because, the sea bottom is
smoother and the reflections from the banks are absent.
In Fig. 8, the reflections from the banks are well defined
at angles close to 90°.

The efficiency of the acoustic dark field can also be
demonstrated using the time spectra of signals shown in
Figs. 9 and 10. Figure 9 presents the time spectrum of
a signal at a single spatial frequency without an acous-
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Fig. 7. Absolute value of the array response in the full-scale
experiment. The direct field is not darkened, and the level of
the signal simulating a moving scatterer is by 30 dB lower
than the field of the source.
tic dark field. The spatial frequency (the angle of obser-
vation) is selected in such a way that the simulated sig-
nal at its maximum Doppler frequency fits into this
spatial frequency. The level of the simulated signal is
by 20 dB lower than the level of the source signal. In
Fig. 9, the level of the simulated signal is by 30 dB
lower than the source signal level, although, at this spa-
tial frequency (this angle), the source signal is not max-
imum. The difference in the levels is related to the fact
that, at this spatial frequency, the simulated signal is
present in only a few realizations, while the source sig-
nal is accumulated in all 2048 temporal realizations in
a coherent way and is enhanced by 66 dB.

Figure 10 shows the signal spectrum at the same
spatial frequency as in Fig. 9 but with the use of the
acoustic dark field. In this figure, the source signal is
darkened despite its additional 66 dB. The comparison
of Figs. 9 and 10 allows one to judge the efficiency of
the proposed acoustic dark field method in full-scale
conditions.

Thus, the results of the experiment show that, with
the acoustic dark field method, the observation of the
structure of the water surface and its variations is pos-
sible. One can localize the areas of intense surface
waves and determine the wave velocities, the wind
direction, and other parameters; it is also possible, by
eliminating the Doppler frequencies related to the wind
waves, to filter them out. In this case, one can observe
the internal moving inhomogeneities and currents and
see them in such a way as is possible with the array in
use. A possibility arises to carry out an experiment that
–70

–100 –80 –60 –40 –20 0 20 40 50 80 100

–60

–50

–40

–30

–20

–10

0

–80

Fig. 8. Absolute values of the array response. The values are those shown in Figs. 6 and 7, and they correspond to the instant of time 15 s
after the beginning of the experiment. The line with circles represents the array response without the darkening of the field (Fig. 7); the
thick line shows the array response with the darkening of the field and the filtering of the signal (Fig. 6b); the dashed line shows the
response with the darkening of the field within the entire frequency band (Fig. 6a); the thin line shows the response corresponding
to one side frequency (Fig. 6c); crosses represent the response corresponding to the other side frequency (Fig. 6d). The horizontal
axis represents the scan angle in degrees relative to the normal to the line of hydrophones, and the vertical axis shows the signal level
in dB relative to the maximum response of the array without darkening.
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Fig. 9. Spectrum of the array response at a single spatial frequency (angular coordinate) corresponding to the maximum angular shift
of the simulated scatterer (Fig. 6b). The direct field is not darkened.

Fig. 10. Spectrum of the signal at a single spatial frequency with the darkening of the direct signal. Other parameters are the same
as in Fig. 9.
would verify the calculations performed for the scatter-
ing from a rough ocean surface (e.g., [8, 17]). In con-
nection with the proposed measuring technique, not
only the solution of inverse scattering problems [18],
but also the calculation of the direct forward scattering,
which may be much stronger, becomes topical.
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Abstract—The general principles of the construction of planar active noise control systems are discussed. A flow
chart of such a system based on the decomposition of sound fields into spatial harmonics is presented. An exper-
imental noise control system suppressing the first two (n = 0 and n = 1) horizontal harmonics of a sound field is
designed. Experiments performed in a hydroacoustic basin with this system are described. The soundproofing
properties of the system are studied by comparing the sound levels measured behind the system with the latter
being turned on and off. The frequency characteristics of the system efficiency are presented for different angles
of incidence of plane sound waves in the frequency range 1–5 kHz. © 2000 MAIK “Nauka/Interperiodica”.
The problem of reducing the levels of noise fields or
reflected sound fields is usually solved by applying
sound-insulating, sound-absorbing, and other types of
materials and structures. However, these methods are
quite efficient at high frequencies, while at low fre-
quencies (hundreds of hertz to several kilohertz), the
necessary thicknesses of the aforementioned materials
are too large. In the low-frequency range, better results
can be achieved with the active methods of noise con-
trol, as evidenced by numerous publications (including
the recent ones) concerned with this problem [1–7].

The most simple active noise control system that
provides the suppression of sound fields in a given spa-
tial region is the planar system described by Tyutekin
[1]. For this system, a mathematical simulation was
carried out with a relatively simple model of data pro-
cessing: each receiver of the planar receiving array was
connected through a controlled delay line with only
one, opposite, radiator of the planar radiating array (the
latter was parallel to the receiving one). The disadvan-
tage of such a system is the presence of an amplification
(rather than attenuation) of the arriving sound wave at
the angles of incidence above 60°–65°.

Another approach to constructing active noise con-
trol systems including planar ones is the expansion of
the primary and secondary sound fields in orthogonal
spatial harmonics [8, 9]. This method uses the assump-
tion that there exist some unidirectional receiving and
radiating Huygens surfaces forming a coordinate sur-
face in the orthogonal coordinate system (e.g., a plane,
a cylinder, or a sphere). In the general case, the con-
struction of an active noise control system with the use
of orthogonal spatial harmonics was described by
Boœko and Tyutekin [2]. By analyzing the primary
1063-7710/00/4601- $20.00 © 20071
fields with the help of receivers to which certain weight
coefficients are supplied, one can determine the com-
plex amplitude for every harmonic. Supplying similar
coefficients to the radiators, one can synthesize and
radiate individual harmonics with given amplitudes and
phases. Every “received” harmonic is related to the
identical radiated harmonic by its middle block provid-
ing the suppression of this harmonic. The acoustic
feedback between the receiving and radiating surfaces
is absent, because the surfaces are unidirectional, and
the coupling of harmonics is absent, because they are
orthogonal to each other. The structure of such an active
system is quite convenient for practical realization,
because this system can be divided into independent
“one-dimensional” channels. Approximate calculations
show that the necessary number of harmonics is
roughly equal to the number of receivers (radiators).

On the basis of the general concepts of constructing
active systems using radiating and receiving Huygens
surfaces with the decomposition of fields into orthogo-
nal harmonics, a planar active noise control system was
developed by Korotaev and Mazanikov [10]. This sys-
tem is the most simple one in terms of the simplicity of
the coordinate system in which the acoustic field is
expanded in spatial harmonics. Some difficulties are
caused by the fact that such a system can only be finite
and hence cannot form a closed surface. The arrange-
ment of the system in a screen presents a complicated
technical problem; therefore, we did not use this
method in our studies. The active system described
below was developed in application to a water medium.
In this case, the construction of radiating and receiving
Huygens surfaces is best consistent with the theory,
because the individual receiving and radiating elements
can be represented by spherical piezoelectric transduc-
000 MAIK “Nauka/Interperiodica”
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ers of size much less than the sound wavelength. We
note that in contrast to this case, in aeroacoustics it is
possible to use only microphones (receiving elements)
and electrodynamic transducers (radiating elements)
that do not fully comply with the theoretical model, at
least because of the appearance of directivity with
increasing frequency. In addition, the wavelength in
water is approximately five times that in air; therefore,
at equal frequencies, the necessary number of receiving
and radiating elements in water is less than in air.

This paper is devoted to the development of active
noise control systems on the basis of plane-parallel
receiving and radiating arrays and to the study of their
abilities to suppress the sound fields in a given spatial
region, in a wide frequency range and a wide range of
angles of incidence of external waves. Special attention
is paid to the development of noise control systems that
on the one hand are highly efficient and stable, and on
the other hand have a practically reasonable number of
radiators, receivers, and connections between them as
well as sufficiently simple frequency characteristics of
the electronic circuits and simple requirements on their
tuning.

On the basis of the results obtained by Korotaev and
Mazanikov [10], we designed an experimental model
of an active noise control system. The model was tested
in a hydroacoustic basin. In the experiment, we used
two subsystems providing the suppression of the hori-
zontal harmonics n = 0 and n = 1 in the presence of a
plane vertical harmonic. We note that one can design a
system of sound suppression for an arbitrary incidence
of a plane wave on the array surface; in this case, it is
necessary to expand the sound field in two-dimensional
harmonics.

The structures of each of the subsystems suppress-
ing the spatial harmonics of given numbers are also
developed on the basis of the aforementioned paper
[10]. These structures take into account the finite num-
ber of receivers and radiators of the “tripole” type
(monopole + dipole) and their discrete arrangement in
the planes of the receiving and radiating arrays.

Q–
n

y = yj

Vd

Vn

pm

y = yj

pd

Vm

Q+
n Wn

Wn

B+
n

B–
n

Fig. 1. Flow chart of a planar active noise control system
(notations are given in the main body of text).
Figure 1 shows the flow chart of the system. This
flow chart illustrates the algorithm of the data process-
ing. In the figure, pm(yj) and pd(yj) denote the sound
pressures received by the monopole and dipole, respec-
tively, at the point y = yj (j = 1 … N). Other notations
are as follows:

(1)

where 2l is the dipole size, D is the array width, L is the
distance between the radiating and receiving surfaces,
M is the number of harmonics, and qn = {1 for the
monopole radiator and (ikcosϕa)–1 for the dipole radia-
tor}. Here, Vm(yj) and Vd(yj) are quantities proportional
to the voltages supplied to the monopole and dipole
radiators, respectively.

The experimental results showed that the radiating
and receiving arrays constructed according to the algo-
rithm described above are unidirectional in a wide fre-
quency band at a level no lower than –20 dB. The
receiving and radiating surfaces were oriented so that
the minima of their directional characteristics were
directed toward each other for every harmonic. There-
fore, the acoustic coupling of the arrays was no worse
than –40 dB, which ruled out a self-excitation of the
system. Structurally, each array consisted of vertical
linear arrays containing six “tripole” elements each. In
each plane, the elements were positioned at the points
of a hexagonal lattice. The spherical transducers of
diameter 3 cm were made of barium titanate. The cen-
tral elements of “tripoles” were used as the monopole
elements, and the two peripheral elements formed the
dipole ones. The distances between the monopole ele-
ments satisfy the condition of a “dense” array, d < λ/2.
The parameters have the following values: d = 16 cm,
and λb = 37.5 cm is the wavelength at the upper fre-
quency of the operating range 2–4 kHz. The linear
dimensions of the system are as follows: 2D = 80 cm,
and the distance between the planes of the arrays is
L = 30 cm. The measurements were performed using a
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Fig. 2. Spectrum functions of the pulses transmitted through the system: the system is turned (a) off and (b) on.
pulse method in order to separate (in time) the signal
transmitted through the system from the signals
reflected (although attenuated) from the basin walls. A
spherical source of the primary (incident) sound field
was positioned before the receiving array at a distance
r > (2D)2/λb, which made it possible to consider the
incident wave as a plane one.

The system was tuned to the mode of suppression of
the incident waves by the readings of the control hydro-
phone placed behind the radiating array (in the shadow
zone). The tuning was accomplished by varying the
amplification coefficients (which were frequency inde-
pendent) and controlling the phase-frequency charac-
teristics of the delay lines W0 and W1. In this manner, it
was possible to form a sufficiently dark shadow (effi-
cient sound suppression) behind the radiating array.

Figure 2 presents the spectrograms of pulses trans-
mitted through the system when the latter was turned
off (a) and on (b), for the carrier frequency 3 kHz. The
efficiency of the system at the “central” frequency was
estimated by the difference in the corresponding sound
levels at this very frequency. The efficiency values
observed at the “side” frequencies were used for
USTICAL PHYSICS      Vol. 46      No. 1      2000
comparison or for illustration.
The experimental data characterizing the efficiency

of the suppression of the zeroth and first harmonics as
a function of frequency are presented in Fig. 3 (the
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Fig. 3. Frequency dependences of the efficiency of the planar
active system for the harmonics with (s) n = 0 and (*) n = 1.
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curves are obtained by averaging over the experimental
points). The control hydrophone was positioned at the
center of the plane of the system, and the primary wave
was incident on the system either normally (n = 0) or at
the angle ϕ ≈ 38° (n = 1). From Fig. 3, we can draw
the following inferences. The maximum efficiency in
terms of sound insulation is achieved at the frequen-
cies 3–3.5 kHz and reaches 24–28 dB for both harmon-
ics. The frequency dependence is typical for this kind
of system (the efficiency decreases with the frequency
approaching the boundaries of the operating range)
[11]. The whole frequency band is 1.5–5 kHz, the neg-
ative efficiency values are absent, and the system is
resistant to self-excitation.

Figure 4 shows the experimental data on the effi-
ciency of the system in the case of the simultaneous
“operation” of the harmonics with n = 0 and n = 1 ver-
sus the angle of incidence of the primary field, for some
frequencies of the operating frequency range. The solid
lines connect the experimental points corresponding to
the same frequency. Each of these curves has two effi-
ciency maxima, which are caused by the fact that the
conditions of total suppression are fulfilled for n = 0 at
normal incidence, and for n = 1 at the angles of inci-
dence determined by formula (1). For intermediate
angles of incidence, these conditions are fulfilled only
approximately, because, in the system under study, the
complex coefficients Wn are independent of the angle of
incidence.

For a real active system, the average efficiency
over an angular interval increases with increasing
number of harmonics (i.e., with increasing wave
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Fig. 4. Angular dependence of the efficiency of the planar
active system (θ0 is the angle of incidence of a plane wave)
for the frequencies (+) 2.3, (*) 3, and (s) 4 kHz.
dimensions of the receiving and radiating arrays). In
fact, the total number of harmonics N can be deter-
mined from the condition

Hence, we have N ≤ . Since the maximum effi-

ciency is achieved at the angles ϕ = ±ϕn (0 ≤ n ≤ N), the
number of such efficiency “peaks” increases with
increasing N. At the intermediate angles, the efficiency
of the system also increases.

In closing, we note that the “control” part of the sys-
tem described above was based exclusively on analog
methods. Judging from the numerous publications con-
cerned with active noise control methods, one can
expect that the employment of a computer control (spe-
cifically, in the tuning process) will lead to an increase
in the efficiency of the system.

Thus, the data on the efficiency of the experimental
model of a planar noise control system suggest the fol-
lowing conclusions:

1. The theoretical foundations of the development of
active noise control systems based on the method of
orthogonal spatial harmonics are justified by the exper-
imental data on the efficiency of the model of a planar
active noise control system.

2. The structure of the planar active noise control
system considered above can be (with some modifica-
tions) extended to other forms of orthogonal spatial
harmonics.
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Abstract—A model of an active sound absorber whose efficiency is higher than the efficiency of a passive
absorber of the same size is considered. Examples are provided in which the energy is predominantly absorbed
on the rear (with respect to the incident acoustic wave) of the absorber. © 2000 MAIK “Nauka/Interperiodica”.
In essence, passive volume sound absorbers imitate
black bodies, which completely absorb the energy of
incident acoustic waves. It is well known [1] that com-
plete absorption is only possible for bodies of infinite
dimensions compared with the wavelength. There are
several models of black bodies of finite wave dimen-
sions [1] with different boundary conditions at the body
surface. One of the possible versions is a body with an
impedance surface (when a plane wave is normally
incident on a plane surface with such properties, com-
plete absorption occurs). This passive absorber can be
implemented with a certain accuracy. The requirement
that the absorber be passive imposes some constraints
on the absorber characteristics. An active system (cur-
rently, active methods are being intensively developed
[2–6]) is free from many of these constraints, which
improves its efficiency and endows it with certain spe-
cific properties. We perform a comparative analysis of
passive and active absorbers by the example of spheri-
cal absorbers subject to an incident monochromatic
acoustic wave.

Consider a spherical absorber of radius R (Fig. 1) in
the three-dimensional space (we use the spherical coor-
dinates, the factor exp(–iωt) is omitted). For simplicity,
we assume that the field is cylindrically symmetric, i.e.,
independent of the angle ϕ. Near the absorber, in the
region free from other bodies and acoustic sources, the
field can be represented in the form

(1)

where jn(z) = Jn + 1/2(z) and hn(z) = Hn + 1/2(z)

are the Bessel and Hankel spherical functions and Pn(z)
are the Legendre polynomials. The fields p0 and p1 are
created by the external sources and the absorber,
respectively.

p p0 p1+=

=  An jn kr( ) Bnhn
1( ) kr( )+( )Pn ϑcos( ),

n 0=

∞

∑

π
2z
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2z
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Representation (1) can be used to calculate the total
energy flux through the absorber surface. Since the sur-
face is absorbing, the flux is negative. As a criterion of
the absorber efficiency, we use the ratio of this flux to
the energy flux through the absorber geometric section
S = πR2.

The energy flux through a unit spherical surface of
radius r = R is [7]

(2)

where the radial velocity vr is expressed by the formula

(3)

where ρ is the medium density, and here and below, the
derivatives of the Bessel functions are calculated with

W p∗ v r pv r*+( ) 4,⁄=
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1
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---------∂p
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Fig. 1. Problem geometry.
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respect to the argument kr. Then, the energy flux
through the surface of the sphere r = R is

(4)

Using the orthogonality relation for the Legendre
polynomials

(δij is the Kronecker delta) and formula for the Bessel

function Wronskian jn(z) (z) – (z) (z) = i /z2,
after some algebra, we obtain

(5)

This expression shows that the maximum absorber
efficiency (minimum negative energy flux through the
absorber surface) is achieved at Bn = –An /2 (some
results on the optimization of spherical active systems

have been obtained in [8, 9]). Since jn(z) = [ (z) +

(z)]/2, this absorber must produce the field that
completely cancels the diverging waves of the external
field so that the residual field in the space consists of
only converging waves.

Compare the behavior of the passive and active
absorbers by the example of absorption of the plane
wave

(6)

We will model the passive absorber by an imped-
ance sphere on whose surface the boundary condition
p/vr = –ρc is satisfied. Since the boundary condition
must be fulfilled for any incident field, it must be met
for all numbers of harmonics in expressions (1) and (3).
Then, the coefficients Bn in (1) can be expressed as

. (7)

At n ! kR, we use the short-wave asymptotics of the
Bessel functions to obtain Bn ≈ –An/2, i.e., the converg-
ing low-index harmonics are almost completely
absorbed. At n @ kR, the Hankel functions rapidly
increase in absolute value, while the Bessel functions
decrease; therefore, Bn  0 so that the impedance
sphere exerts almost no effect on the high-index har-
monics. This behavior is typical of not only the imped-
ance absorber, but also any other passive scatterer that
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imitates the black body [1]. The absorbed energy can be
determined by substituting coefficients (7) into (5) and
taking into account that for a plane wave, An = in(2n + 1).

As a model of the active absorber, we consider an
active system similar to the one described in [10],
which contains acoustically transparent surfaces com-
posed of monopole and dipole receivers and radiators.
The outer surfaces r = R3 and r = R4 are occupied by the
radiators, and the inner surfaces r = R1 and r = R2 carry
the receivers (we assume that R1 < R2 < R3 < R4 = R).
The active system must use the results of measurements
to find the amplitudes An of the external field harmonics
and radiate diverging waves with the harmonic ampli-
tudes Bn = –An/2 into the external space in such a man-
ner that the field is not radiated inside the sphere r = R3
(in this case, the active system does not affect its own
receivers). The radiation problem has been solved in
[10]: if we denote the input actions applied to the radi-
ators (for example, electric voltages) by U(Rj , ϑ), j = 3,
4, and assume that the electroacoustic conversion fac-
tors are equal to unity, we obtain

(8)

where

(9)

The reception problem can be solved similarly to
[10]: the coefficients An are calculated from the data
obtained by the receivers U(Rj, ϑ), j = 1, 2, (at unity
conversion factors) by the formula

(10)

One of the problems that arises in developing active
systems is to refer the data obtained on the receiving
surfaces to the radiating surfaces. Omitting the related
formulas, note that the phase characteristics of the
obtained transfer functions monotonically increase
with frequency, which basically allows one to imple-
ment such an active absorber in an arbitrarily wide fre-
quency range.

The active absorber can be implemented only for a
finite number of harmonics not only because a proces-
sor for an infinitely large body of information cannot be
created, but also due to the specific behavior of the
Bessel functions with increasing order at a fixed argu-
ment: the absolute value of the Hankel function rapidly
increases, while that of the Bessel function rapidly
decreases. As a result, when implementing the active
system according to formulas (8)–(10), one has to deal
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with very small (when receiving) and very large
(when radiating) quantities. Even in computer simula-
tions of an active absorber (the results are discussed
below), serious problems arise with the word length
when n – kR > 25.

Below, we assume that the active system absorbs
the harmonics of the external field with indices up to
n = N – 1 (the number of absorbed harmonics is N). In
this case, the absorbed energy of the incident plane
wave can be exactly calculated from formula (5):

(11)
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Fig. 2. Absorbed energy distribution over the surface of the
active absorber.

Fig. 3. Field distribution in a plane behind the absorber, out-
side its effective volume.

60–60

|p|

ky

Fig. 4. Field distribution in a plane behind the absorber,
inside its effective volume.
All results of simulations provided below are given
for the normalized (by the energy flux of the plane
wave through the absorber cross-section) quantity

 = E/(πR2/2ρc). At N = kR, this normalized quantity
is exactly equal to –1.

In addition to the total absorbed energy, we calcu-
lated the absorbed energy density as a function of the

angle ϑ  and the energies  and  absorbed by the
left and right hemispheres (Fig. 1). When a plane wave
is incident on a perfect black body of infinite wave
dimensions (kR  ∞) from the left, all its energy is
absorbed by the left hemisphere, while the right one is
in the shadow zone, where the field and consequently
the energy flux are zero.

Figure 2 shows the absorbed energy density ε as a
function of the angle ϑ  for the active system with the
wave dimension kR = 20 and suppressing the harmon-
ics with indices up to N = 30. The angle ϑ  is represented
by the abscissa (for convenience, the plot is reversed so
that its extreme left point corresponds to the extreme
left point of the sphere in Fig. 1). The plot shows that
unlike the perfect black body of infinite wave dimen-
sions, the energy is absorbed mostly by the right hemi-
sphere rather than by the left one that radiates energy.
The energy radiation and absorption per unit surface
are maximum at the extreme left and extreme right
points of the sphere (in Fig. 2, the energy density is
multiplied by sinϑ ; the plot of the energy density has
only two narrow peaks at the extreme points). Calcula-
tions performed for other values of N show that when N
is slightly greater than kR, the absorption and radiation
regions exist on the left and right hemispheres. As N
increases, the absorption regions on the left hemisphere
shrink and disappear; on the right hemisphere, an oppo-
site process evolves.

At a distance kr > N from such an active absorber,
the field is almost the same as the field of a passive
absorber of the dimension kR = N. Figure 3 shows the
field amplitude in the cross-section perpendicular to the
plane wave propagation direction and located at the dis-
tance kx = 60 behind the sphere for N = 30. The central
region represents the shadow zone whose width corre-
sponds to the cross-section of a sphere with kR = 30
(the actual absorber dimension is kR = 20). At the cen-
ter of the shadow zone, one can see a peak known as the
Poisson spot. At the distances kR < kr < N from the
active absorber, the field looks quite different. Figure 4
shows a plot similar to the previous one for kx = 25. The
central part of the plot corresponds to the near-field
region of the active absorber, where the field is much
stronger than the unit incident field. The effect of the
active absorber on the total field actually manifests
itself in the shadow-lobe radiation, its width corre-
sponding to an antenna with the wave radius N, rather
than to the actual dimension of the radiator kR. In
antenna theory, this phenomenon is called the super-
gain.
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Figure 5 shows the total absorbed energy  and the

energies  and  absorbed by the left and right
hemispheres, respectively, calculated at kR = 20 as a
function of the number of absorbed harmonics N. At
small N, the left hemisphere absorbs the incident
energy almost completely, but the right one reradiates
almost the same amount, so that the plane wave does
not notice such an absorber with a small effective
dimension. As N increases up to kR, the absorption on
the left remains almost unchanged, while the radiation
on the right significantly decreases, so that the total
absorbed energy increases. As N increases further, the
absorption behavior becomes reversed: the left hemi-
sphere starts radiating and the right one starts absorbing;
the total absorbed energy corresponds to formula (11).

Figure 6 shows a plot similar to the one in Fig. 2 for
an impedance sphere with kR = 20; the plot is obtained
using formula (7). As could be expected, the major part
of the energy is absorbed by the left hemisphere,
though a low absorption exists on the right due to the
energy diffracted into the shadow zone. Note that this
plot hardly differs from the similar plot for the active
absorber with N = kR = 20.

Thus, the active absorber allows one to increase the
effective absorption cross-section. Theoretically, this
increase can be made arbitrarily large, though, in prac-
tice, it is limited by the difficulties associated with near
fields. The distribution of absorption and radiation
regions on the absorber surface is also of interest. In
view of the above note that it is possible to design a
wideband absorber whose operation does not contra-
dict the causality principle, the increase in the effective
cross-section and absorbtion by the rear surface of the
sphere mean that if a wave packet passes by the
absorber so that the major part of its energy crosses the
effective absorber cross-section, but does not cross its
physical cross-section, this packet will be captured by
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Fig. 5. Absorbed energy against the absorber effective
dimension.
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the absorber and absorbed by the right hemisphere.
This behavior is somewhat similar to the astrophysical
black hole.
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Abstract—How is an auditory contour pattern perceived? What additional attributes must be adjusted to stabi-
lize the perception of the boundaries of a virtual sound pattern in order to form an auditory perception isomor-
phous to the visual one? A possibility to correct the perception of subjective patterns through controlling the
parameters (the frequency deviation and the duration at the critical points) of virtual sound patterns created by
the illusion of the apparent motion of acoustic sources is discussed. © 2000 MAIK “Nauka/Interperiodica”.
Unlike the voluntarily fixable visual attention, for a
sound pattern created by the apparent motion of virtual
sound sources, it is necessary to efficiently control the
parameters that can be used to keep attention of the
auditory system continuously focused on the sound
sequence developing in time. The attention-control pro-
cess is quite complicated and insufficiently studied
until now.

How is a sound contour pattern perceived? What
additional attributes must be adjusted to stabilize the
perception of the boundaries of the virtual auditory pat-
tern in order to form an auditory perception isomor-
phous to the visual one?

We create virtual sound patterns with the help of a
vector audio display [1–3]. The device consists of a sin-
gle-piece acoustic module controlled via a special-pur-
pose interface, which operates four electrodynamical
acoustic sources supplied with settings that limit the
insonified sector to 90°. The sources are placed at the
corners of a square with sides 0.46 m in length and at a
0.6-m distance from the auditory channels of the sub-
ject, whose head is free (no limitations are placed on
the motion) and eyes are closed. The 0.46-m distance
was accepted as the base and height of the acoustic
plane. The programmable interface creates graphic
objects on a monitor screen and then makes a sound pat-
tern of them by moving one or more sound cursors (vir-
tual acoustic sources) formed by controlling the space
position of an interference maximum of the sound signal
created by these four acoustic sources by the rule

(1)

or

(2)

where A is the signal amplitude, X and Y are the current
coordinates in the interval [0, 1] with the origin at the
lower left point of the image plane, and B is the subjec-
tively perceived volume of the acoustic source. There-

A1 A2 A3 A4+ + + B const= =

AX 1 Y–( ) A 1 X–( ) 1 Y–( )+

+ AXY A 1 X–( )Y+ B,=
1063-7710/00/4601- $20.00 © 20008
fore, a subjective sound pattern described by the subject
can be compared to the real image on the monitor
screen. The virtual acoustic plane was additionally sim-
ulated by a sheet of paper, on which the tested person
reproduced one’s subjective impression with a soft-tip
pen immediately after observing the presented sound
objects while keeping one’s eyes closed.

The general view of the part of the interface con-
cerned with creating graphic objects is shown in Fig. 1a.
It consists of Windows 95 software modules written
in Visual Basic 4.0. The module that creates the
graphic objects uses a fixed workspace of M × M =
128 × 128 points. In a sense, it is similar to the matrix
of virtual sound sources [4–6], but has an eight times
higher spatial resolution and provides the necessary
continuous insonification without applying special
interpolation methods to the sound signal between the
points. Interpolation is used only for drawing the
image.

The toolbar serves to create standard graphic
objects, namely, straight lines (a segment or polygonal
line), arc, circle, ellipse, rectangle, and arbitrary curve,
and to copy and arbitrarily move them within the work-
space. The control panel can be used for editing the
sound attributes of the graphic objects. An additional
panel provides the pointwise editing of the image frag-
ments. This function includes marking the critical
points (end points or intermediate ones) that are neces-
sary to control the perception process and adjust an
arbitrary number of silent points.

The general view of the sound-control part of the
programmable interface is shown in Fig. 1b. The sound
frequency can be changed within 100–5000 Hz, though,
in our experiments, it was no higher than 800 Hz. The
built-in oscillators and attenuators of the acoustic mod-
ule are controlled with 8-bit analog-to-digital convert-
ers to provide a wide choice of sound frequencies and
volumes. A relatively wide band of the sound signal
was provided by its almost rectangular envelope. The
frequency deviation (Dx and Dy) was controlled as a
000 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Creation of graphic objects and (b) sound parameter control.
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ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
position of the virtual plane, while the highest fre-
quency is at its upper right point.

Additionally adjustable parameters are the sound
duration and the frequency step at the critical points
(end or intermediate ones) of each fragment of the
sound pattern.
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The time parameters are adjusted individually for
each cursor with a 1-ms quantum. One should distin-
guish between the parameter indicated as the duration,
which determines the rate of changing the current coor-
dinates of the given cursor (which is equivalent to the
sound duration at the current point of the array), and the
parameter marked as the delay, which controls different
time parameters depending on the mode of creating the
sound pattern. When the sound cursors are presented
sequentially, the delay function introduces a lag in acti-
vating the first point of the next fragment with respect
to the last point of the previous one. When the sound
cursors are activated simultaneously, the delay param-
eter shifts the beginning of activating the first point of
the presented sound pattern with respect to the
moment of pushing the sound button by a given inter-
val. The sound duration at the critical points is deter-
mined as a multiple of the sound duration at the cur-
rent point plus 4 ms.

Virtual sound source trajectory

Apparent auditory pattern trajectory

Regions of perception errors

Fig. 2. Virtual sound pattern perception with no critical
point marking.
Fragments of the sound pattern created by the
related sound cursor can be presented sequentially or in
parallel with synchronized start moments, or asynchro-
nously for each cursor: in a single run with possible
reversal or in cycles.

The software interface provides a standard set of
functions for managing the created files.

Let us study the perception of a fragment of a sound
pattern. For better visualization, we use closed con-
tours, in particular, a circumference and a rectangle.
Figure 2 shows original graphic objects and their sub-
jective auditory images from graphic reports of the
tested persons after a single presentation, without spe-
cial attributes used to indicate the initial point of the
pattern. For the circumference, a sector can be shown
around the start point, in which an uncertainty in local-
izing the trajectory causes significant errors in the per-
ception of the presented sound pattern. The extent of
this sector depends on the velocity of the virtual source,
radius of the circumference, and signal spectral param-
eters. Distortions in the perception of the rectangular
pattern are minimum near the points where the motion
changes its direction, i.e., whose parameters require an
additional processing time from the sensor system.

If at a certain time moment, the first (or any other
critical) point of the sound pattern appears in the virtual
acoustic plane, the new stimulus activates the orienta-
tion reaction, which is functionally characterized as the
selective attention [8]. The orientation reaction has an
excitation threshold and a latent period, which depend
on the gradient of the physical parameters of the stim-
ulus and on the initial activation level of the sensor sys-
tem at the moment when the stimulus is presented.
Therefore, the moment of subjective indication of the
beginning of the sound pattern not necessarily coin-
cides with the first sound point. The further develop-
ment of the reaction and perception of the sound
sequence substantially depends on the dynamics of the
sound stimulus parameters and on such specific param-
eters of the auditory system as the minimum audible
movement angle of the sound source [9]. When the
stimulus parameters come to a steady state and stop
changing, the attention dissipates. Any change in the
stimulus keeps the indicated point in focus and concen-
trates the attention.

Let us use one sound cursor to represent a trajectory
equivalent to a horizontal straight line of 100 points
(0.36 m) placed in the central region of the virtual
acoustic plane symmetrically relative to its side bor-
ders. Set the fundamental frequency on the sound con-
trol panel at 305 Hz. Set the frequency deviation along
the Ox and Oy axes and the parameters of the additional
critical point markers to the inactive state. Then, the
subjective perception of the length of the given segment
in a single run depends on the time interval within
which the sound is emitted by 100 points (sequentially
excited virtual sources).
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
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Set the amplitude of the sound cursor at 50 dB. At a
4-ms sound duration at each point, the power of the vir-
tual source (at 305 Hz) may appear to be insufficient to
reliably locate the beginning of the segment, which
may require the activation of several points. The same
effect can be observed when insonifying the whole seg-
ment, in particular, at its end point. Therefore, the
length estimation of the presented sound segment in the
experiment stated in this manner is inefficient. The
variance of the trajectory length in subjects' reports can
be comparable with the length of the segment at any
recording technique, and the number of points within
the segment, as well as the fundamental frequency, is of
small significance.

Note that the quantization of the virtual trajectory
(stepwise changes in amplitudes of the four sources
each 4 ms) can cause the vibrato sensation. However,
this effect can be observed only with tone signals and
the number of points M < 64 [3], and when the ampli-
tudes of the tone and modulation are comparable. The
stepwise changes in the level of the rectangular signal
(at a rate of 250 Hz) that accompany the motion of the
sound cursor (305 Hz) are less than 0.5 dB (at M = 128).
Interference of these signals is insignificant, because
the difference frequency is at the edge of both the audi-
tory perception and the frequency band of the used
acoustic systems. Therefore, no special measures are
needed to provide a continuous shape of the sound sig-
nal at M ≥ 128.

Experiments on recognizing alphanumeric symbols
have also shown that it is necessary to highlight the first
point of each sound pattern [6]. In this case, the exper-
iment provided 60–90% of correct answers. It is even
more significant to highlight the critical points when
several sound cursors interact within a single sound
pattern (Fig. 6). An increase in the duration of sounding
a point from 5 to 16 ms changes the subjective percep-
tion of the segment length (100 points) by a factor of
two. Increasing the duration leads to a diffuse percep-
tion of the edge points; decreasing, to the degeneration
of the impression of an extended object to a diffuse pat-
tern.

In the first experiments, we marked the critical
points by the sound duration using the repetitive sound-
ing (at a fixed space position) a given number of times.
However, this particular solution proved to have a low
efficiency for more complex and faster presented sound
patterns. The sound duration at critical points that is
sufficient for stabilizing the attention was from 40 to
200 ms. For a 100-point segment, the edge points
sounded up to 50% of the total time.

Since, in future experiments, we planned to study a
possibility to form quasistatic virtual patterns (cursor,
scale rules, window borders, and other attributes of the
graphic interface), the mode of cyclic presentation of
the sound pattern with an opportunity of the reverse
presentation was introduced to the sound part of the
software interface. The optimum values of certain fre-
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
quency and time parameters that stabilize the percep-
tion of a sound pattern were determined in the cyclic
mode using the direct and reverse runs, the result being
tested in a single run. For example, at the given fre-
quency and a 4-ms point sounding, when the critical
points were not specially highlighted, the cyclic presen-
tation of a straight segment caused a sensation of
acoustic beats; however, the effect of horizontal motion
was experienced by only a part of subjects (8 persons).
When the sound duration at the end points increased to
40 ms, two diffuse regions could be clearly resolved
between which the sound motion was perceived. At a
60-ms duration of the edge points, the impression of the
motion of the virtual source became more clear, but the
variance in perceiving the edge positions increased (it
decreased as the sound duration at each point increased
to 8 ms).

Therefore, we decided to study a possibility of
marking the critical points by simultaneously changing
their sounding time and applying a deviation to the fun-
damental frequency (a stepwise frequency change at
the critical point).

Under the same conditions (100 points, 305 Hz), the
edge positions of the straight horizontal segment, the
minimum sound duration at the critical points was
adjusted at 8 ms, while the sound frequency was
changed for this time from 305 to 725 Hz in a stepwise
manner. This value was much higher than the one nec-

8 ms

12 ms

16 ms

20 ms

Virtual sound source trajectory

Regions of perception errors

Fig. 3. Subjective images of a straight segment at different
critical point durations.
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Fig. 4. Frequency step necessary for the efficient (P > 90%)
critical point localization in space against the fundamental
frequency F0 of the horizontally moving cursor (averaged
over 8 subjects).
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Fig. 5. Frequency step that is necessary to occur at a critical
point for its efficient (P > 90%) localization against the Ox
frequency deviation with the fundamental frequency F0 as
the curve parameter for a horizontally moving cursor (aver-
aged for one subject).
essary for the perception and efficient localization of
the critical point in space at the chosen sound duration
and produces a stable and almost identical sensation in
all subjects.

It was found that, when the sound duration at the
end point of the segment increased (from 8 to 20 ms
and longer) and the frequency simultaneously changed,
a significant deviation of the segment shape from the
linear one was observed. Figure 3 schematically shows
a subjectively perceived sound model of a straight seg-
ment for different sound durations at the critical points
for the frequency deviation Dy = 1.3.

Since a 8-ms duration of the frequency step was suf-
ficient to satisfactorily localize the point (with the
detection probability P > 90%), we decided to study the
necessary frequency step at the end point versus the fre-
quency of the fundamental tone of the moving horizon-
tal cursor in the absence of the fundamental frequency
deviation in both axes: Dy = 1.0 and Dx = 1.0. This prob-
lem was solved by measuring the subjective threshold
of perceiving a short-time change in the frequency of
the moving virtual source of the rectangular signal at
the given frequency, velocity, and also duration and
localization of the change at the given point of the tra-
jectory in the virtual acoustic plane. In essence, it was
necessary to determine a set of parameters of the virtual
sound source in the vicinity of the critical points that
facilitate the sensory fixation of the respective position
and simultaneously do not mask the neighboring
points. These requirements were fulfilled with the
source parameters increased by a factor of two with
respect to their threshold values. These settings reduced
the variance in the test results associated with subjects'
individual auditory properties. Our results had much
greater magnitudes than those obtained in [7] and in
audiometric studies of the differential thresholds in
resolving the frequency of overlapping tones and
impulse sources cited in [10]. The frequency step nec-
essary for the efficient localization of the critical points
in space as a function of the fundamental frequency of
the horizontally moving sound cursor averaged over
tests in 8 subjects is plotted in Fig. 4. Three regions of the
fundamental frequency are clearly seen: below 200 Hz,
from 200 to 500 Hz, and above 500 Hz. Respectively,
in the first region, the effective frequency step is higher
than 1.2; in the third one, no higher than 1.02; and, in
the intermediate one, it changes within 1.02–1.2. How-
ever, these conditions were acceptable when no fre-
quency deviation was applied to the sound cursor in the
Ox and Oy directions. For arbitrary sound patterns,
these parameters are higher and vary from 1.05 to 1.6.
Consequently, it was no less important to determine the
relationship between the necessary frequency step at
the critical point and the frequency deviation of the
sound cursor within the virtual acoustic plane relative
to the fundamental tone. The experiments used seven
fundamental frequencies (F0): 188, 195, 211, 242, 281,
334, and 585 Hz, and a frequency deviation along the
Ox axis from 1.1 to 1.7 for the moving sound cursor.
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
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Fig. 6. Perception of a virtual sound pattern formed by the simultaneous motion of several sound sources: apparent trajectory of the
sound pattern with the critical points.

(1) unmarked,
(2) sounded for 40 ms,
(3) sounded for 40 ms with a subsequent 
8-ms-long fixed frequency step;

Sound markers of the (S) start, (E) end, and (I) 
intermediate points;

Virtual sound source trajectory;
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Apparent trajectory of the sound pattern with the critical points: 
The test results for one of the subjects are given in Fig.
5. The practically significant Dx is within 1.05–1.6 and
depends on the fundamental frequency. The Ox-axis
frequency deviation shifts the right end points upwards
with respect to the left end point proportional to Dx, the
frequency step with respect to F0 × Dx for the right end
point remaining unchanged.

Of course, a more thorough study of the perception
process at the critical points of a linear segment, in par-
ticular, when the sounding procedure is cyclically
reversed, can reveal the differences associated with
changing the sign of the frequency step and the Ox axis
fundamental tone deviation. However, this effect is of
no practical importance because the frequency varia-
tion at the critical point is substantially greater than the
threshold in perceiving the frequencies at two adjacent
points. The sign of the frequency deviation at the criti-
cal point is much more important, and this sign should
be associated with the ordinate of the virtual acoustic
plane, because the fundamental frequency deviation is
also dependent on this parameter [11, 12]. As a result of
the analysis of the experimental data and the refining
tests, the critical point parameters for the fundamental
tone above 200 Hz (see Figs. 4, 5) were defined by the
following conditions:

(1) The virtual acoustic plane is divided into two
segments at a point with the ordinate K.

(2) If the critical point ordinate is equal to or less
than K, the deviation increases the given point fre-
quency by a factor of H.

(3) If the critical point ordinate is greater than K, the
deviation decreases the given point frequency by a fac-
tor of L.

The empirical values of these quantities for the fun-
damental tone no higher than 550 Hz were found to be
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
H = 1.2, L = 1.2, and K = 43/128 with the lower left
point of the virtual acoustic plane taken as an origin.
These rules, which control the parameters of the
straight horizontal virtual segment were tested in simi-
lar experiments with the segment placed vertically in
the acoustic plane. No additional correction or substan-
tial change in the control parameters of the acoustic
cursors were necessary.

The frequency deviation (stepwise change) at the
critical points of the virtual sound pattern proved to be
an efficient control parameter. In the case of a defi-
ciency of time, this parameter is convenient for mark-
ing the points necessary for switching the attention of
the audio display user.

Figure 6 plots the apparent trajectories of a sound
pattern formed by the simultaneous motion of two
sound sources when the critical points are (1) not
marked, (2) sounded for 40 ms, and (3) sounded for
40 ms and experience a fixed 8-ms-long frequency
step. The contraction of the region of uncertain space
localization of the perceived virtual sound source tra-
jectory is clearly seen. Unlike the familiar model of
interaction between two sound fluxes [13], in which the
time factor is the main one for merging and splitting,
our model introduces the frequency marking of the crit-
ical points to control the subject’s attention.

By dividing the functions switching the attention to
a region that requires the space localization into the
stepwise frequency change and fixing the attention
through a longer sounding of the critical point at the ini-
tial frequency, we substantially decreased the sound
duration at the critical points and stabilized the percep-
tion of the virtual sound pattern borders. The proposed
technique provides new means for controlling the space
parameters of patterns in virtual acoustic media.
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Abstract—Theoretical foundations of the use of complex matched filtering in the processing of the diffraction-
shadow sound signals received by a multielement vertical array are discussed. The theoretical predictions are
compared with the experimental data obtained in a natural water basin. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In our previous publications [1, 2], we developed a
theory for describing the acoustic diffraction signals
observed in a shallow-sea sound channel and carried
out a computer simulation of the received sound field
on the background of interfering fluctuations. For the
diffraction-shadow method of observing ocean objects,
high inhomogeneity and nonstationary state of the ver-
tical sound field structure are characteristic, these fea-
tures being caused by the multimode sound propaga-
tion. That is why using a vertical receiving array is
advantageous: it allows one to significantly depress the
effect of unpredictable amplitude-phase variations of
the signals received by individual array elements when
multichannel processing is implemented.

An important stage of successive signal processing
is the filtering matched to the expected Fresnel-zone
structure of the diffraction signal. Mathematically, such
a signal transformation is identical to the procedure of
the source reconstruction from its holographic image in
coherent optics. The analogy is so full that our com-
puter procedures used for the detection of the “sharp-
ened” diffraction response are accompanied by difficul-
ties that are typical of optical holography.

In practice, the amplitude algorithm of the matched
filtering is the simplest to be implemented. Such filter-
ing uses envelopes of the received signals and is insen-
sitive to variations in the current phase. Our simulations
[2] showed that this algorithm increases the signal-to-
noise ratio by 10–14 dB, depending on the parameters
of the screen, which causes the signal diffraction, and
on the characteristics of its motion. We [3] applied the
amplitude matched filtering to the records of the acous-
tic diffraction observed in a fresh-water basin. The phe-
nomenon was observed with the signal-to-noise ratio
20 dB. In these measurements, by full analogy with the
optical case, the sharpened peak of the signal was
observed on a background of a broad “basement” of
relatively high level. Similarly, in amplitude optical
holography, the reconstructed image of a point source
1063-7710/00/4601- $20.00 © 20080
is inevitably surrounded by an aberration spot that can
be eliminated by nothing but phase holography [4].

The objective of this paper is to test the efficiency of
the complex amplitude-phase matched filtering of the
diffraction signals received in full-scale experiments. For
processing, we used the experimental records obtained
in a natural water basin. The comparison with the full-
scale observations in the sea [5] showed that in our
experiments, the interfering noise was rather close to that
typical of a shallow sea in its space and time features.

FORMATION OF THE DIFFRACTED SIGNALS

Consider an acoustic path, L in length, in a shallow-
water channel of depth H ! L (H is the thickness of the
water layer). The vertical receiving array consists of N
equidistant hydrophones and covers the entire channel,
from its surface to bottom. At the other path end, at
depth zs, a sound source is located that emits a cw sig-
nal of frequency f. By analogy with our previous papers
[2, 3], all lengths and distances here are expressed in a
dimensionless form, i.e., normalized to the sound
wavelength λ = c/f (c is the mean sound speed in the
channel).

In the absence of shadowing and variations of the
medium parameters, the kth single hydrophone located
at the depth zk receives a time-independent signal
whose amplitude and phase (apart from the electroa-
coustic convertion factor) are determined by the dimen-
sionless transfer coefficient

(1)

Here, the mode eigenfunctions Un(z) and the mode wave
numbers χn are conventionally [6] found by solving the
wave equation with the given sound speed profile c(z)
and appropriate boundary conditions at the surface and
the bottom. Computer algorithms and codes that imple-
ment such calculations are well known (see, e.g., [7]).

Kk zk zs,( ) χnL( )
1
2
---–

Un zk( )Un zs( )e
iχnL

.
n

∑=
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In experiments, the channel parameters are nonsta-
tionary; hence, the amplitude and phase of the received
signal significantly fluctuate in time. The analysis of the
experimental data shows that, in the informative fre-
quency range, the governing mechanism of signal fluctu-
ations is the long-wavelength oscillations of the water
surface (the so called seiches). The characteristic scale of
these oscillations is of the same order of magnitude as
our test path, or higher. To the first approximation, the
effect of this phenomenon can be estimated by simply
considering the variations of the channel depth H that is
a parameter of formula (1). In coherent multimode inter-
ference summation (1), the changes in the wave numbers
χn due to the changes in H lead to a high sensitivity of the
received signals to the mentioned variations [8]. As a
result, these variations prove to be the main source of
interfering noise in diffraction observations.

In addition, there are other factors that lead to vari-
ations of the signals received in the channel. Particu-
larly, rapid amplitude and phase fluctuations can be
caused by sound reflection from the rough water sur-
face. The analysis of experimental records obtained on
lake paths and the comparison of those with the data of
sea experiments [9] show that fluctuations caused by
the wind-generated surface waves are relatively high-
frequency ones and may be filtered out by signal pro-
cessing with reasonable parameters of the screen and
its motion. Additional amplitude-phase distortions of
the sound field can be caused by sound reflections from
the bottom roughness and from the lake banks. Such
distortions are slowly time-dependent and nearly do not
influence the result of our processing.

Let us consider the resultant time changes in the
received signals influenced by both the mentioned
interference fluctuations and the diffraction shadowing
caused by the moving screen. Represent the current
complex amplitude xk(t) of the signal received by the
kth hydrophone as the sum

(2)

where (t) is the fluctuating direct signal from the
source and δxk(t) is the effect of the diffraction shadow-
ing of the array by the moving screen.

We assume the following kinematic scheme of the
screen motion [1]. Let the screen move at a constant
speed v, at a constant depth, perpendicularly to the
acoustic path (i.e., to the source–receiver line) and
cross the path at the instant t0, at a distance R from the
receiving array. Then, according to [1, 2], we have

(3)

where h is the reduced distance of the screen, which is
determined by the formula

(4)

xk t( ) xk
s( )

t( ) δxk t( ),+=

xk
s( )

δxk t( ) = δx maxD t( ) iπv 2
t t0–( )2

/h– δϕk+[ ] ,exp

1
h
--- 1

R
---

1
L R–
-------------.+=
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The factor D(t) is the aperture envelope that depends
on the screen shape. Particularly, for a rectangular
screen, it has a canonic form: sina(t – t0)/a(t – t0). To
construct the algorithm for the screen of unknown
shape, we assume the Gaussian form for the quantity
D(t) [2]:

(5)

where l is the horizontal screen size.
Computer simulations and full-scale experiments

showed that the initial phase of the diffraction distur-
bance, ϕk in formula (3), significantly depends on the
depth, and its values may noticeably differ even for the
adjacent array elements. Therefore, possible patterns of
the diffraction-shadowing envelopes may considerably
vary [1, 10]. In particular, the “inverse” diffraction had
been repeatedly observed in experiments: at some of
the hydrophones, the signal envelope exhibited a typi-
cal rise instead of the expected diffraction shadowing.

Strictly speaking, the factor |δx |max in (3) should also
have a subscript—the hydrophone number k. Similarly
to the initial phase, the disturbance amplitude signifi-
cantly depends on the depth and is governed by many
factors: the sound speed profile, the bottom relief, and
the depth of the screen towing. However, for subse-
quent estimations, it is convenient to use the value of
the factor |δx |max averaged over the array elements and
depths of the screen motion. One should also note that
the multimode sound propagation in the shallow-water
waveguide somewhat increases the disturbance ampli-
tude as compared to the “refined” two-dimensional
(cylindrical) diffraction scheme. In view of these con-
siderations, we use the model semi-empirical estimate
(see [1]) for the amplitude of the shadowing distur-
bance (relative to the mean amplitude of the direct sig-
nal):

(6)

where µ > 1 is the gain of the shadow due to the multi-
mode propagation and σ is the screen area. The com-
puter simulation for the conditions close to those of the
experiments described below yields the value µ g 1.4.

PROCESSING ALGORITHMS

Let us represent the current received complex sig-
nals xk(t) in the form

(7)

As the first stage of the preliminary processing, we
form the normalized amplitude and phase variables:

(8)

(9)
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where (t) and (t) are the moving-smoothed vari-
ables Xk(t) and ϕk(t) is obtained by linear window-filter-
ing with the transfer function

(10)

The time τ of smoothing is chosen from the a priori
considerations to be somewhat greater than the
expected time of passing the diffraction obstacle. This
time is estimated from the angular width of the diffrac-
tion lobe and the expected speed of the screen.

Note that the procedure of amplitude normalization
(8) is nonlinear. Its repeated utilization showed that this
procedure is also efficient for nonstationary sound
propagation when the theory of linear filtering, which is
developed for stationary and ergodic random processes,
is inadequate and cannot lead to useful conclusions.

The next step of signal processing consists of using
the matched filtering. The simplest amplitude algo-
rithm of the matched filtering [2, 3] includes the trans-

formation of the variable (t) according to the for-
mula

(11)

where

(12)

is the transfer function of the filter matched with the
aforementioned model for the diffraction disturbance.
The normalization factor C will be discussed below.

The algorithm for detecting the sharpened diffrac-
tion peak is similarly constructed by the matched filter-
ing of the phase variable:

(13)

with the same transfer function Φ(t) as in (12). The
computer simulation and processing of the experimen-
tal records show that the diffraction peaks extracted by
procedures (11) and (13) from the amplitude and phase
components of the received signal are nearly identical.
In both cases, the signal peak overlies a broad base-
ment, which is well known from amplitude optical
holography. The aforementioned identity of the peaks
is a consequence of the fact that, for a small diffraction
disturbance (relative to the direct signal), the variables

(t) and (t) are simply the quadrature compo-
nents of a complex disturbance of type (3). The latter
statement can be confirmed by substituting the signal
representation (2), in view of (3), into expressions (8)
and (9). Neglecting the fluctuations of the direct signal
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ϕ( )
and specifying  = , we obtain the following
form in the linear approximation with respect to |δxk |:

(14)

(15)

Note that the quantity |δx |max/  is equal to several
percent for the experiments described below.

In spite of the mentioned similarity in the purely
amplitude and purely phase algorithms, it is much more
difficult to deal with the phase variable. One should use
auxiliary algorithms to resolve an ambiguity in the
phase within its domain of definition, to compensate for
the phase drops in the domains of abnormally low
amplitude, etc. In addition, even after all possible com-
puter processing, the resultant phase fluctuations sub-
jected to the appropriate normalization may exceed the
amplitude ones.

Similar difficulties, in their optical-mechanical ver-
sion, were known in early optic holography. Then, the
amplitude holograms were obtained by relatively sim-
ple means, with rather imperfect and unstable sources
of radiation. To obtain the amplitude-phase holograms,
considerable and specific efforts were required: the use
of independent basements for the optical systems, the
experiments during the most quiet night hours, etc.

The complex matched filtering of the brightness-
shadow sound signals is carried out as follows. Let us

form the linear combinations Yk(t) = (t) + i (t)
of the amplitude and phase variables. Then we apply
the transform to them:

, (16)

where Φ(t) is the transfer function given by expression
(12). Note that, with the diffraction disturbance (14),
(15), the complex procedure (16) increases the ampli-

tude by a factor of . Therefore, the normalization
constant C of (12) should be chosen from the condi-
tions

(17)

The analysis shows that, with the chosen normaliza-
tion, formula (6) can be used to estimate the diffraction
cross-section σ from the experimental data in all three
cases at hand. Note that, just at this stage of matched fil-
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tering (16), the fluctuations governed by the surface
waves are mainly eliminated.

The next step of the multichannel processing of the
transformed diffraction responses consists of their
incoherent accumulation over the vertical array:

(18)

where N is the number of array elements to be summed.
In addition, for the experiments discussed below, the
summation over several emitted frequencies was also
used. Denote these frequencies as fj (j = 1, 2, …, M; M
is the number of operating frequencies), and label the
functions (11), (13), (16), and (18) with the frequency

subscript j: (t), (t), Fkj(t), and Fj(t), respec-
tively. We do not renormalize the filter parameters (12)
to the varying wavelength λj, because the difference
between the adjacent frequencies is about several per-
cent in our case. With these notations, we write down
the result of the complex matched filtering in the form

(19)

The experimental equipment allowed us to use up to
five frequencies simultaneously. The minimum fre-
quency separation was chosen in such a manner that the
signals of the adjacent frequencies could be treated as
statistically independent, up to a practical-purpose
accuracy. Particularly, additional tests showed that a
frequency separation of several percent was sufficient
for the amplitude fluctuations of the received cw sig-
nals to have a correlation coefficient of about 0.1.

The signal fluctuations were also weakly correlated
at different array elements. According to the measure-
ments, the amplitude and phase fluctuations of the sin-
gle-frequency signals received by individual hydro-
phones separated by λ/2 in the vertical can be treated as
nearly independent (the actual hydrophone separation
was slightly less than λ/2 in the array used in the exper-
iment).

The aforementioned considerations show that the
efficiency of the incoherent accumulation (18) over the
array elements and the frequency accumulation (19) is
fairly high, which is confirmed by the experimental data.

EXPERIMENTAL DATA

The experiment was carried out in a natural fresh-
water basin (lake), with a depth of about 14 m and a rel-
atively smooth bottom. The length of the propagation
path was about 480 m. The sound source was located
near the bottom. The receiving vertical array consisted
of 64 elements and covered nearly the entire channel
depth. The sound field was excited by a monopole-type
ceramic transducer, simultaneously at five frequencies
around 3 kHz, with a separation of 40 Hz between the

F t( ) 1
N
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adjacent frequencies. The vertical temperature profile
of the channel was characterized by a near-surface
warm layer, with a temperature of about 20°ë and
thickness up to 4 m. At lower horizons, the water tem-
perature sharply decreased and reached 6–7°C near the
bottom. The temperature profiles, the surface state (at
wind speeds of 3–5 m/s), and the relative fluctuations
(about 0.1–0.2) of the received direct signal were com-
pared with the corresponding parameters of the shal-
low-sea experiment [9]. The comparison showed that
these two experiments were qualitatively and order-of-
magnitude quantitatively similar.

The diffraction screen with a cross-section of 0.5 ×
2.5 m was towed at different speeds across the propaga-
tion path in the vicinity of its midpoint. The depth of
towing was constant. For the subsequent analysis, the
experimental record that was obtained at the towing
speed v g 0.3 m/s was used.

We start with discussing the sequence of the numer-
ical procedures used in the signal processing based on
the purely amplitude algorithm of the matched filtering.
The complex signals received by each array channel at
each frequency of the five ones were numerically fil-
tered within a narrow band of about 1 Hz to eliminate
local acoustic and electric noise. At all frequencies, the
envelope samples Xk(t) are detected and then subjected
to normalization (8) with a characteristic time τ = 60 s
by the rectangular filter (10), to amplitude matched fil-
tering (11), and to incoherent accumulation (18). After
that, frequency averaging (19) is performed over the
five frequencies. The result of the amplitude filtering is
presented in Fig. 1.

The aforementioned aberration basement is clearly
visible in the plot, this basement serving as a back-
ground for the diffraction-shadow peak sharpened by
procedure (11) (compare with [2]). The numbers that
are shown in the upper left corner of the figure have the
following meaning:

max = 0.0377—height of the highest peak;
snr = 15.4360—signal-to-noise ratio;
ave = 0.0153—mean interference-noise basement;
rms = 0.0015—standard deviation of the remaining

noise fluctuations.
The above values are presented for the linear ampli-

tude scale. Note that, after procedure (8), all quantities
are normalized to the amplitude of the direct signal: the
corresponding dimensionless data are plotted along the
ordinate axes of all four figures. The statistical parame-
ters of the remaining noise (ave and rms) are calculated
for the signal segments that are free from the peak, the
aberration basement, and the boundary effects of the
level decrease, which are characteristic of this process-
ing technique.

A simple analysis shows that, for the experimental
estimate of the diffraction cross-section σ by formula (6),

the quantity |δx |max/  should be specified to be
equal to the difference (max) – (ave). For the data of

x
s( )
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Fig. 1. Amplitude filtering.
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rms = 0.0015

Fig. 2. Phase filtering.
Fig. 1, we have (max) – (ave) g 0.022. Compare this
value with the estimate yielded by formula (6). By sub-
stituting σ = 5, H = 30, h = 240, and µ = 1.4, we obtain
(max) – (ave) g0.014, i.e., we obtain a good agreement
in the order of magnitude.

Comparison with a large number of similar experi-
ments shows that, on average, formula (6) leads to
somewhat underestimated values. The most probable
reason for this discrepancy is the existence of a consid-
erable temperature inhomogeneity (temperature dis-
continuity) in the subsurface water layer. We [1]
neglected this phenomenon in estimating the factor µ
by the computer simulations. Physically, it is evident
that the heated subsurface water layer (6–8 sound
wavelengths in thickness for the experiment at hand)
decreases the efficient depth H of the channel in which
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
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Fig. 3. Complex filtering for five frequency channels.
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Fig. 4. Frequency averaging.
the main sound energy is concentrated. The tests
showed that the appropriate empirical correction nearly
eliminates this systematic error in estimating the height
of the diffraction peak.

Figure 2 shows the similarly processed phase com-

ponents (t), upon performing all aforementioned
accumulation procedures. The comparison confirms

Yk
ϕ( )
ICAL PHYSICS      Vol. 46      No. 1      2000
the nearly complete similarity of the resultant curves
for purely amplitude and purely phase processing. As
above, the aberration basement is well pronounced, its
shape being somewhat masked by the remaining inter-
fering noise.

The next step of the analysis consists in the complex
matched filtering (16). Figure 3 shows the processed
data after accumulation (18) over the array elements for
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all five frequencies (for illustrative sake, the curves are
shifted along the vertical axis; hence the ordinates are
true only for the lower curve). By the visual study of the
curves, one can guess that the noise overshoots are
uncorrelated with each other. It is this uncorrelation
that yields the considerable noise suppression in the
procedure of frequency accumulation. On the other
hand, the diffraction peaks sharpened by matched filter-
ing look quite similar at different frequencies.

Figure 4 is obtained by averaging (19) the curves
shown in Fig. 3. In accordance with the theory [2] and
with the optical-holography analogy, the aberration
basement of the diffraction peak proves to be elimi-
nated by the complex matched filtering. The compari-
son with Figs. 1 and 2 shows a considerable gain in the
signal-to-noise ratio with respect to the purely ampli-
tude and purely phase procedures of matched filtering.

Thus, the complex matched filtering of the diffrac-
tion-shadow signals, along with other processing pro-
cedures typical of a vertical receiving array, proves to
be an efficient method for the observation of moving
inhomogeneities in a shallow-water channel.
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Abstract—Results obtained by processing the data of an experiment on the propagation of explosion-generated
sound signals from the deep ocean to the coastal wedge are presented. The propagation path, 275 km in length,
passes areas with inhomogeneities of the sound speed field, including the front zone. The effects of these inho-
mogeneities on the sound field formation are analyzed for different parts of the path. The frequency band of the
analysis covers 25–400 Hz. It is shown that after the path crosses the boundary of the front zone, the dispersion
curves of the first and second modes nearly coincide. The signals of these modes are not resolved in time, and
as the distance increases, they cause pronounced modulation of the level in the signal tail at low frequencies
(25–50 Hz). Therefore, to separate the effect of sound interaction with the inclined bottom, i.e., the effect that
determines the increase in the sound level over the coastal slope, it is necessary to perform a detailed analysis
of the mode content of the received signals. © 2000 MAIK “Nauka/Interperiodica”.
To solve various problems of applied and general
underwater acoustics, a detailed knowledge of the spe-
cific features of sound propagation from deep-water
ocean areas to shallow-water coastal ones is required.
One of such features is the repeatedly observed
increase in the sound field level, which occurs over the
continental slope.

This increase is caused by the interaction of the
sound field, which propagates in the deep-water sound
channel, with the rising bottom of the continental slope.
That is why investigators closely study the relief fea-
tures and geophysical parameters of the sea floor in the
continental slope areas [1, 2]. On the other hand, the
sound speed field is commonly discussed with relation
to the depth of the underwater sound channel, because
the interaction of the channeled sound energy with the
inclined bottom begins to manifest itself exactly in the
vicinity of this depth. Of course, the source and receiver
positions relative to the channel axis are also important.

In the numerical modeling of the sound propagation
over the continental slope, the sound speed profile C(z)
in water is usually assumed to be constant all along the
path [2, 3]. Such approximation is fully justified for
most ocean regions where the depth of the channel axis
is within 800–1200 m. However, in a number of regions
with shallower axis depths (50–400 m), sub-surface
currents exist that produce front zones separating warm
waters of the open ocean and cooler over-slope waters
and rings. In such regions, the effect of the horizontal
inhomogeneity of the sound speed field on the sound
field formation becomes substantial and should be stud-
ied in detail.
1063-7710/00/4601- $20.00 © 20087
With the use of experimental data, we will show that
the interaction of sound waves, which propagate from
the deep ocean to coastal areas, with disturbances of the
sound speed field can almost completely mask the
effect of the relief and geoacoustic parameters of the
bottom. Without thorough and detailed analysis of all
mechanisms participating in the sound field formation
over the continental slope, one can easily arrive at the
wrong conclusions.

The experiment was carried out in the northwestern
part of the Pacific Ocean, near the coast of the Kam-
chatka Peninsula. The Kuril-Kamchatka Current
crossed the path of sound propagation from the ocean
to the coastal shelf, this current being cold and highly
unstable in both space and time.

The sound signals propagated along a path 275 km
in length. The path began in the deep ocean and ended
at an edge of the coastal shelf where the sea depth was
270 m. At the continental slope, the path was nearly
normal to the isobaths. The receiving vessel with a
hydrophone submerged to a depth of 130 m drifted at
the starting point of the path, in the deep ocean region.
The transmitting vessel sailed along the path, from its
terminal point at the coastal shelf toward the receiving
vessel. As the sound sources, pressure-sensitive detona-
tors (0.38 kg in mass) were used. They were dropped
from the transmitting vessel sailing at full speed and
exploded at the depth 270 m. The explosions were sep-
arated by different time intervals, depending on the
changes in the bottom relief. The initial nine charges
were dropped with 0.6–0.7-km separations in distance,
in an area with the depth varying from 270 to 1150 m.
The next nine charges had 1.6–1.7-km separations,
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Sound speed field and bottom relief along the propagation path.
with the depth varying from 1180 to 2800 m. The
remaining twenty explosions were spaced at 10-km
intervals. The last charge exploded at 55 km from the
receiving vessel, eleven hours after the beginning of the
experiment. Such a distribution of the explosions was
expected to yield reliable estimates for the determina-
tion of both the sound field decay law characterizing
the propagation in the deep ocean and the deviation
from this law over the rising bottom of the continental
slope [1].

In Fig. 1, the sound speed field reconstructed from
the measured profiles and the data of echo-sounding
along the path are shown. One can see that the sound
speed field is inhomogeneous in distance. Note that the
depth of the channel axis smoothly increases within the
first part of the path, while pronounced changes in the
sound speed field occur within the second path portion.
At the distance 180 km from the starting point, a front
zone governed by the boundary of the cold current is
observed. At the 225-km distance, the cold water core
occurs with a minimum sound speed of 1446.0 m/s at
the depth as shallow as 50 m. By the end of the path, the
sound channel is nearly smeared out, and the minimum
in C(z) is fairly weak. The acoustic energy that was
concentrated within the narrow sound channel in the
deep ocean is now spread over a much thicker water
layer. As a consequence, this energy begins to interact
with the rising bottom at greater depths and longer dis-
tances from the shelf edge as compared to the case of a
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
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Fig. 2. Calculated (top) and experimental sound levels versus the range. Bandwidth of the filter is 10 Hz for all frequencies. Solid
curves and their dashed extensions present the cylindrical decay law estimated for the first half (50–185 km) of the path.
constant C(z) along the path. Note that all changes in
the sound speed field occur solely in the upper sub-
surface water layer, 20 to 300 m, while the sound
speed remains nearly range independent in deeper
water layers.
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Figure 2 shows the range dependence of the sound
level for a number of frequencies. In the signal process-
ing, a bandwidth of 10 Hz (at the –3-dB level) was
obtained by using a filter with the output pulse response
in the form of a squared Hanning window. The estimate
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obtained with the geometric-acoustics approximation
is also shown in Fig. 2. It is known that the ray param-
eters are most sensitive to changes in the sound speed
in the vicinities of their turning points. In our case,
these points correspond to depths shallower than 30 m
and deeper than 270 m, while the main transformations
of the sound speed field occur at intermediate depths.
Therefore, the calculation results shown in the upper
part of the figure exhibit only a weak effect of the C(z)
disturbances on the sound field decay law. The cylindri-
cal spread law was plotted by using the least-squares
approximation for calculating the sound level up to the
front zone, for the first part of the path (the solid curve
in Fig. 2). This law was extended up to the end of the
path (the dashed curve). The plotted curves approxi-
mate well the experimental decay of the sound level all
over the path. According to the calculation for a perfectly
reflecting bottom, the slope-caused increase in the sound
level should begin at the distance 265–270 km where the
sea is deeper than 1500 m. In this slope area, up to the
shelf edge, the bottom inclination is about 7°.

The experimental data are somewhat more sensitive
to the features of the sound speed field than one can
expect according to the ray calculations. A pronounced
rise in the sound level occurs when the path crosses the
boundary of the front zone. At longer distances, the
sound level is somewhat higher with respect to the
cylindrical law corresponding to the experimental
parameters of the first half of the path. At the same
time, at frequencies higher than 75 Hz, a sharp rise in
the sound level takes place starting from nearly the
same distances as in the ray calculations.

The change in the range dependence of the sound
level at frequencies lower than 50 Hz, which occurs
after the path crosses the front boundary, is somewhat
unexpected at first glance. At these frequencies, after a
pronounced increase in the sound level at the boundary
of the front zone, the sound level continuously rises
starting from the distance 215 km up to the path end.
The rate of this rise increases as the frequency
decreases; it reaches its maximum value at frequencies
of 35–45 Hz. After that, the sound level decreases.
Owing to small separations of the explosions at the last
30 km of the path, one can see that at this part of the
path, the range dependence of the sound level exhibits
an interference behavior with a characteristic period of
about 8 km. At frequencies lower than 50 Hz, this
behavior complicates the evaluation of the distance
after which the sound level should increase because of
the sound propagation over the inclined bottom.

To understand the origin of the observed phenome-
non, one should separate the effects of the sound speed
field and the sea bottom. For this purpose, we consider
the time structure of the received explosion-generated
signals. In Fig. 3, the circles show the transformation of
the signal time structure as a function of distance along
the path. These data were calculated in the geometric-
acoustics approximation with the use of all information
available on the sound speed field, bottom relief, and
sea-floor parameters. The abscissa axis represents the
quantity ∆T = T – r/1.45, where T is the total travel time
along the ray up to the receiver, which is at the distance
r from the source. The inset in Fig. 3 presents the record
of the signal received at the distance 105 km, in a broad
frequency band. Lower in the inset, the signal time
structure that was computed in the ray approximation
for the same distance is shown. Both signal representa-
tions shown in the inset are synchronized relative to the
arrival time of the initial four “water” rays which leave
the source at highest angles. For these rays, the travel
times are most stable—both in space and in time [4].
By synchronizing the beginning of the experimental
signal with the corresponding calculated arrival time of
the most steep water rays, one can reliably predict the
difference in the times of individual arrivals in the ini-
tial part of the signal. All other received signals were
also synchronized in the same manner. In Fig. 3, the
solid circles show the arrival times for the time-separa-
ble individual arrivals in the initial part of the signal.

The duration of the experimental signals is higher
than that calculated in the ray approximation. As was
mentioned in a number of papers, when the source and
receiver are offset from the channel axis in the vertical
direction, the geometric-acoustics approximation often
fails to explain the fact that, in the tail part of the signal,
acoustic energy exists that arrives with group velocities
close to the sound speed near the channel axis. Never-
theless, if the signal is received at a horizon lying below
the channel axis, the experimental signal duration may
be nearly equal to that obtained with the source and
receiver positioned at the channel axis (this effect is
governed by the frequency and sound speed gradients
above and below the axis). The observed difference in
the durations of the experimental and ray-calculated
signals is caused by several effects. For example, Spies-
berger and Tappert [5] used the data of the experiments
carried out in eastern and northeastern regions of the
Pacific Ocean to obtain the following quantitative esti-
mate for the frequency 250 Hz: if the receiver is posi-
tioned 100–200 m below the axis, the difference in the
experimental and calculated durations may be attrib-
uted to the diffraction effects at caustics and turning
points; if the receiver lies 300 m below the axis, the
effects of internal waves may predominate; if the
receiver is 800–1000 m below the axis, sound scatter-
ing by large meso-scale inhomogeneities should be
taken into account.

In our previous paper [6], we explained the observed
phenomenon by considering the diffraction effects for
a specific signal. Hence, we do not discuss the details
below. The only important fact we mention here is that
the geometric-acoustics approximation yields a reliable
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
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Fig. 3. Changes in the duration of the calculated (circles) and measured (dots) signals versus the distance. The dashed curve shows
the terminal part of the signal calculated for the source and receiver positioned at the channel axis. The inset shows the signal
recorded at the distance 105 km and its ray-calculated durations.
time estimate for the initial part of the signal, thereby
allowing us to obtain absolute travel times from the
experimental signal.

According to the real-time spectral analysis of our
signals, the minimum group velocity of the tail arrivals
corresponds to a frequency of 40 Hz, all over the path.
Thus, by measuring the total signal duration, from the
signal beginning that is reliably detected in a broad fre-
quency band to the tail filtered within a narrow band
around the central frequency 40 Hz, we can estimate
the change in the group velocity of the tail arrivals (i.e.,
of the first mode) for the frequency at hand. This proce-
dure can be performed for all distances, up to the path
end, and the resulting values can be compared with the
calculated ones.

As Fig. 3 shows, the group velocity of the first mode
at a frequency of 40 Hz remains nearly constant up to the
boundary of the front zone: it is equal to 1.4540 km/s
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
(the calculated value is 1.4545 km/s for the profile C(z)
measured at the beginning of the path). Beyond the
front zone and up to the path end, the group velocity of
the first mode becomes slightly lower at this frequency:
it reaches 1.4514 km/s (1.4505 km/s is the velocity cal-
culated with the profile C(z) corresponding to the ter-
minal point of the path). A similar behavior is observed
for the range dependence of the signal duration calcu-
lated in the ray approximation with the source and
receiver depths both equal to 90 m, i.e., the depth of the
channel axis at the starting point of the path (the dashed
curve in Fig. 3).

Figure 4 shows the records of the signals received at
the distances 55–185 km (before the front zone) and fil-
tered within a band of 10 Hz around the central fre-
quency 40 Hz. These records are presented in a succes-
sive manner, from top to bottom. The inset shows the
dispersion curves. According to these curves, the group
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Fig. 4. Records of the signals received within the first half of the path. The filter bandwidth is 10 Hz, and the central frequency
is 40 Hz. The solid lines show the arrival times of the three initial modes, the dashed lines show the arrival times of the initial local
modes. The inset presents the dispersion curves and the frequency dependences of the amplitudes of the three initial modes at the
reception horizon for the profile C(z) of the path origin.
velocities Vgr of the initial three modes are significantly
different: 1.4545, 1.4654, and 1.4676 km/s, respec-
tively. Hence, the time structure of the signal tail can be
reliably analyzed, because the arrivals of individual
modes are fully resolved in time. Within the path por-
tion at hand, the degree of excitation of these modes at
40 Hz is not high because of the 270-m explosion depth
chosen in the experiment. The lower part of the inset
shows the calculated frequency dependences for the
initial three modes |ψ| at the reception point. Higher
frequency cannot be chosen for the analysis because of
the lesser difference in the group velocities of the initial
two modes. In addition, one cannot observe the actual
termination of the signal, because the amplitude of the
first mode sharply decreases with increasing frequency
(see inset in Fig. 4). Even with the frequency 40 Hz
selected for the analysis, the existence of the initial
three modes can be rather guessed than established.
Nevertheless, we [6] have shown that the measured and
calculated group velocities of these modes are nearly
equal for this part of the path, which significantly sim-
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
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plifies the identification of the mode arrival times in the
experimental records (Fig. 4).

For the reasons explained below, the records were
time-synchronized relative to the arrival time of the
second mode. Between the pulses of the first and sec-
ond modes (solid curves in Fig. 4), a number of addi-
tional pulses can be seen. Some of them have ampli-
tudes higher than those of the identified modes. These
arrivals are most lively to be a consequence of the mode
interaction caused by internal waves and meso-scale
inhomogeneities of the sound speed. Unfortunately,
with the 50-km interval used for measuring C(z) in this
part of the path, one can estimate neither the parameters
of internal waves nor the positions of the boundaries of
large sound speed inhomogeneities. Within the interval
between the arrivals of the first and second modes, the
arrival times of the most pronounced pulses were
closely studied at the frequency 40 Hz and the nearest
frequencies. The time separations of these pulses from
the pulse of the second mode (vertical dashed lines in
Fig. 4) proved to be nearly range independent at all fre-
quencies. This independence shows that (at least during
the experiment) the inhomogeneities of the sound
velocity field had time-invariable boundaries that
caused mode interactions when they were crossed by
the sound waves. The constancy of the time intervals
relative to the arrival time of the second-mode pulse
implies that the mode interaction at the boundaries of
these inhomogeneities leads mainly to the energy trans-
fer from the second mode to the first one that has a
lower group velocity.

We estimated the boundaries of the sound speed
inhomogeneities to be at about 60, 80, 145, and 175 km
from the path origin. The fact that the energy is trans-
ferred from higher modes to lower ones is not unex-
pected. Colosi and Flatte [7] described such a mecha-
nism for the case of the mode interaction caused by
internal waves. The signals produced by the energy
transfer from the first mode to higher ones is not quite
pronounced in the records, which can be explained by
a weak excitation of the first mode.

At this part of the path, the main energy is associ-
ated with the initial part of the signal, i.e., it is carried
by higher modes. According to computations, with the
profile C(z) being constant along the path, we should
observe a pronounced rise in the 40-Hz signal level
near the continental slope, at the same distances as at
higher frequencies. However, the front zone existing in
the second half of the path radically changes the condi-
tions of the formation of the low-frequency sound field
at these distances.

Computations performed with the profile C(z) of the
path end point show that at low frequencies (20–50 Hz),
only the first and second modes are strongly excited
because of the increase in the depth of the weakly pro-
nounced minimum in the sound speed. At frequencies
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
higher than 30 Hz, the group velocities of these modes
prove to be quite close to each other: the difference is
4 m/s at 40 Hz (Fig. 5). The small difference in the
group velocities makes it impossible to resolve in time
the two initial modes at the path portion at hand. As a
result, at these distances, the signal records exhibit
strong modulation of the signal level in the signal tail,
this effect being accompanied by an extremely weak
generation of the pulses corresponding to higher
modes. The interference period estimated for the first
and second modes at 40 Hz is 7.6 km, which agrees
well with the observed modulation period of the signal
tail at the terminal 30-km portion of the path. For this
part of the path, Fig. 6 shows the range dependences of
the total signal energy (the solid curve), the energy of
the signal tail (the dashed curve), and the energy of the
signal without the tail (the dotted curve) for the signals
narrow-band-filtered at 40 Hz. The records are also
shown for the signals received at the distances corre-
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Fig. 5. Dispersion curves and frequency dependences of the
amplitudes of the three initial modes at the reception hori-
zon for the profile C(z) of the path end.



 

94

        

MIKRYUKOV, POPOV

                           
–1.0
Ò0.5

Prel

250 255 r, km260 265 270

1.0 1.5 2.0 2.5 3.0

–0.5

0

0.5
10

 d
B

0

0 0.5

Prel

–0.5

1.0 1.5 2.0 2.5 3.0 3.5

1
2

3

Fig. 6. Changes in the energy of (1) the total signal, (2) the signal tail, and (3) the tail-free signal versus the distance for the terminal
part of the path. The filter bandwidth is 10 Hz, and the central frequency is 40 Hz.
sponding to the maximum and minimum in the sound
interference pattern. It is seen that the modulation of the
total sound field is completely produced by the interfer-
ence between the pulses of the first and second modes
that arrive at the end of the signal and are not resolved
in time. At the same time, the range dependence of the
tail-free signal level proves to be similar to that at
higher frequencies. A noticeable rise in the signal level
begins from the distance where, according to the ray
theory, the interaction of the channeled sound with the
inclined bottom begins, i.e., in the area of the continen-
tal slope.

The presented data of the experiment on the sound
propagation from the deep-water region of the north-
western Pacific to coastal areas show the importance of
the inclusion of all environmental parameters in the
analysis of the received signals. Among these parame-
ters, the sound speed field of the actual ocean is crucial.
The same is true for the sound propagation in a deep
ocean where changes in sound speed are usually
weaker, and, at first glance, it is sufficient to measure
the profiles C(z) at points separated by longer distances
(50 km in our case). The experimental signal records
exhibit pronounced pulses of local modes whose nature
may be studied only indirectly because of the large
spacings between the measured profiles C(z). At the
same time, the knowledge of the formation mecha-
nisms and arrival times of these local modes—the so-
called signal interfering noise—is very important for
the correlation processing the received signals. The
detailed information on the sound speed field becomes
even more important for the continental slope region, if
there exists a coastal current that forms a clearly
defined boundary between the cold over-slope waters
and warmer waters of the deep ocean. Significant
changes in the mechanism of sound propagation may
occur after the propagation path crosses the boundary
of the front zone. If no detailed analysis of these
changes is performed, incorrect conclusions may be
drawn. For example, in our case, wrong estimates may
be obtained for the distance at which the sound level
begins to increase due to the bottom inclination, and
one can get a false impression that this distance
strongly depends on the frequency.
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Abstract—Photoacoustic phenomena arising in the case of a pulsed optical excitation of transverse waves of
horizontal polarization in a Bi12GeO20 photorefractive crystal plate under an external transverse electric field
are studied. © 2000 MAIK “Nauka/Interperiodica”.
Many photosensitive dielectrics and high-resistance
semiconductors belong to photorefractive crystals.
These crystals have a set of optical and electroacoustic
properties that provide an opportunity to observe many
optoacoustic effects in them [1–5]. One of these effects
is the photoacoustic effect with memory, which was
first observed by Deev and Pyatakov [3]. Several ver-
sions of this effect are known. The excitation of surface
waves of the Rayleigh type [3] and purely bulk trans-
verse waves [6] were observed.

This paper studies the photoacoustic effect with
memory in a Bi12GeO20 photorefractive crystal plate
with the crystallographic orientation and the boundary
conditions that allow the existence of a purely trans-
verse surface wave of the Gulyaev–Bleustein type. The
photorefractive effect with memory has not yet been
observed under conditions where a transverse surface
wave can substantially contribute to the radiation field.
As compared to our previous paper [6], a new experi-
mental detail is the orientation of the external electric
field; namely, the field is transverse with respect to the
propagation direction of the excited transverse waves.
As is demonstrated below, with such a geometry, the
acoustic signal is observed at any polarity of the exter-
nal electric field. It is interesting that, in the case of a
reversal of the electric field, the region of the generation
of acoustic signal is shifted from one surface of the
plate to another.

The purpose of this paper is to describe the experi-
mental observations of the photoacoustic effect with
memory in a photorefractive piezoelectric crystal plate
under an external transverse electric field and to discuss
the specific features of the optical excitation and prop-
agation of transverse waves near the surface.

The optoacoustic cell used for the experiments
(Fig. 1) was made of a bismuth germanate crystal
(Bi12GeO20) cut in the shape of a plate with dimen-
sions 60 × 20 × 1.5 mm3. The large face of the plate
1063-7710/00/4601- $20.00 © 20096
was parallel to the (110) crystallographic plane, and the

long rib coincided with the [ 10] crystallographic axis.
A purely transverse piezo-active bulk wave can propa-
gate along this direction in the bulk of a bismuth ger-
manate crystal with the displacement vector of this
wave being parallel to the (110) plane. An aluminum
film was deposited on one of the large faces of the plate.
This electrode was grounded. Another electrode of the
cell, i.e., the electrode to which the voltage was deliv-
ered, was made in the form of a transparent conducting
film of SnO2 on a glass substrate. The glass plate with
the transparent electrode was pressed to the crystal
through a liquid layer (a solution of glycerol in water).
The thickness of the liquid layer was ~10 µm. A trans-
verse-wave laminated transducer made of LiNbO3 was
positioned at the end of the bismuth germanate plate (see
Fig. 1), at its upper face. The resonance frequency of the
transducer was ~90 MHz, and its sensitivity range was
20–160 MHz. The transducer dimensions were 0.5 mm
in depth and 8 mm in width.

The bismuth germanate crystal was illuminated
through the transparent electrode with laser pulses of
length 20 ns with the wavelength λ = 0.53 µm. The

1

2 3
1

4

Fig. 1. Schematic diagram of the experiment: (1) a
Bi12GeO20 crystal, (2) a transparent SnO2 electrode on a
glass substrate, (3) an aluminum film, and (4) an end trans-
ducer.
000 MAIK “Nauka/Interperiodica”
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intensity distribution in the light spot represented either
an interference pattern with the period equal to the
acoustic wavelength (in this case, the pattern was
formed by the interference of two light beams of equal
amplitudes) or a spot homogeneous in space. In the lat-
ter case, one of the interfering beams was shut by a
shutter.

Photoacoustic effects of two types were observed:
an instantaneous photoacoustic response and a photoa-
coustic response with memory. The carrier frequency
of acoustic pulses was f ≈ 30 MHz. In the case of an
instantaneous response, the acoustic signal was excited
by a periodically inhomogeneous illumination. In the
case of a photoacoustic response with memory, the
acoustic signal was a response to a homogeneous illu-
mination under the condition of preliminary recording,
i.e., a preliminary exposure to an inhomogeneous illu-
mination. The experimental results are given in the
form of plots in Figs. 2–4. Let us indicate the main
characteristic properties of the observed effects.

As one can see from Fig. 2, the first instantaneous
response for all exposures to illumination is relatively
small. The subsequent signals noticeably exceed the
first one and reach their maximum values when the
total exposure from the first illumination to the one
corresponding to the maximum acoustic signal is

 ~ 0.1 mJ/cm2.

The acoustic signal is observed in the cases of an
instantaneous response and a photoacoustic response
with memory (Fig. 3) for both negative and positive
polarities of the external acoustic field. In the case of
the negative polarity of the external field, the amplitude
of the acoustic signal is considerably greater than in the
case of the positive polarity.

The dependence of the photoacoustic response on
the exposure to illumination (Fig. 4) obeys the same
rule for different polarities of the external electric field:
first, an increase according to the law ~W0.5 and, then,
saturation and decrease.

We note that, under a transverse electric field, the
time of memory is much longer than in the case of a
longitudinal field: τm = 103–104 s and τm = 10–102 s,
respectively.

The indicated features of the effects may be
explained qualitatively on the grounds of the following
physical model. We assume that the electrodes at the
upper and lower faces of the photorefractive crystal
form blocking contacts, i.e., they do not conduct elec-
tric current at least in one direction. Let a negative
potential of the electrical field be fed to the upper face
of the plate. Then, in the case of periodically inhomo-
geneous illumination of the crystal, a periodic charge
structure will be formed at the upper electrode, because
the photoinduced carriers in bismuth germanate are
electrons.

In the case of a positive potential of the upper elec-
trode, the blocking properties of the lower electrode

Wi( )∑
ACOUSTICAL PHYSICS      Vol. 46      No. 1      2000
are essential, and, correspondingly, the space-charge
region is formed close to the lower electrode.

Two time scales should be distinguished in the evo-
lution of the charge structure.

At the first stage of relatively short duration about
the half-period of the acoustic wave (~16 ns), a rela-
tively small increase in the amplitude of the periodic
charge structure occurs. However, just this charge
increase is responsible for the excitation of the acoustic
wave the source of which is the mechanical stress aris-
ing due to the piezoelectric effect. The overall forma-
tion of the charge structure induced by a single laser
pulse occurs within the time in the order of the life time
of conduction electrons (in the case of bismuth ger-
manate, τ = 10–4–10–6 s). A positive charge region is
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Fig. 2. Instantaneous photoacoustic response as a function of
the order number of laser pulse. The voltage is U = –600 V.
The exposure in the pulse is (1) 70, (2) 20, and (3) 10 µJ/cm2.

Fig. 3. Photoacoustic response with memory (curve 1) and
the second-in-order instantaneous photoacoustic response
(curve 2) as functions of the external electric field. The
recording exposure is Wm = 70 µJ/cm2. The reading expo-
sure is Wr = 200 µJ/cm2. The exposure in the case of the sec-
ond instantaneous response is W = 70 µJ/cm2.
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already formed at the surface of the blocking electrode
by the moment of the action of the second laser pulse.
The effective thickness of the sample layer where volt-
age drop occurs decreases down to the thickness of the
charge layer, and, therefore, the electric field strength
increases in the space-charge region. The generation of
the second pulse, as well as of the subsequent pulses,
takes place at a higher electric field strength than the
generation of the first pulse, and, therefore, their ampli-
tudes are higher. An increase in the total exposure
above a certain optimum value leads to no further
increase in the amplitude of the photoacoustic
response, since it causes a compression of the spatial
charge to a thickness less than the corresponding
dimension of the receiving transducer.

A photoacoustic signal with memory is the reaction
of the recorded charge structure to a homogeneous
erasing illumination. The change in the internal electric
field in the process of erasing produces an acoustic
wave pulse. An acoustic memory signal, as well as an
instantaneous response, is radiated either from the
upper surface region of the crystal in the case of the
negative polarity of the external field or from the lower
surface region in the case of the positive polarity.

It is easy to explain the difference in the signal
amplitudes corresponding to different polarities of the
external electric field, if one notices that the receiving
transducer is positioned asymmetrically with respect to
the upper and lower faces of the plate. In fact, the trans-
ducer is shifted toward the upper face. It is useful to
estimate the ratio of the amplitudes of two signals
numerically. We note that photoacoustic signals are
short pulses of transverse waves excited along the
boundaries. The pulse length is ∆t = d/vt ≈ 1 µs, where
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Fig. 4. Photoacoustic response with memory as a function
of the recording exposure. U = –800 V. Curve 1 corresponds
to the negative potential of the upper electrode, and curve 2
corresponds to the positive potential.
d ≈ 2 mm is the length of the illuminated area and
vt ≈ 1.7 mm/µs is the velocity of acoustic waves. The
pulse length is so small that we can ignore the second
boundary while treating the diffraction field and con-
sider the field in the halfspace, since the signals directly
transmitted and reflected from the boundary are sepa-
rated in time.

The conditions at the boundaries and the short-cir-
cuiting of electric fields through the electrodes leads to
the appearance of surface waves in the spatial spectrum
of the radiation field. These waves penetrate to the
depth 10–20Λ, where Λ is the wavelength. Surface
waves localize the energy at the surface, which causes
a decrease in the diffraction spreading of energy away
from the boundary. After the waves come out from
under the electrodes, the spectrum of the free halfspace
is restored, and the total field is diffracted in a regular
way. Therefore, in order to estimate the ratio of the sig-
nal amplitudes, we assume that the field has such a
form as it would have in the case of purely transverse
waves under a free boundary, and we take into account
the effect of transverse waves under the electrodes by
introducing the effective track length l < l0, where l0 is
the true distance from the receiver to the place of gen-
eration. The numeric estimation of the diffraction inte-
gral is conducted using the approximation of preset
force sources. We assume that the function of the
source distribution in depth has the form

F(y) = F0(1 – |y1|/h), if –h ≤ y1 ≤ h

and F(y1) = 0, if –h ≥ y1 ≥ h,

i.e., real sources are set in the layer 0 ≤ y1 ≤ h, while
imaginary sources are set in the layer –h ≤ y1 ≤ 0. The
ratio of the signal amplitudes m is calculated as the ratio
of two integrals I1/I2, where

r = , x1 and y1 are the coor-
dinates in the plane of sources, y2 is the coordinate in
the plane of the receiver, H = 0.5 mm is the receiver size
in depth, a = 1 mm is the half-thickness of the illumi-
nated area, l is the distance from the sources to the
receiver, b1 = 0, b2 = 1 mm, and k is the wave number
of the acoustic wave.

The ratio m is presented in Fig. 5 as a function of
thickness of the source layer h for three values of l.
The comparison of the plots with the experimental
data (m ≈ 1.5–2.5 in Fig. 3) yields the estimate of the
layer thickness h ≈ 0.6 mm. The estimated value of h
seems reasonable. It is close to the receiver size in
depth, which corresponds to the condition of the obser-
vation of the maximum photoacoustic response.

We note that, for a smaller receiver size in depth,
one should expect a smaller thickness of the photoa-
coustic source layer corresponding to the best condi-

I1 2, y2d x1 F y1( )e
ikr

/r y1,d
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tions of excitation. However, in this case, the necessary
value of the preliminary exposure providing the opti-
mum operation mode of the cell increases.

Thus, an experimental study of pulsed optical gen-
eration of transverse waves of horizontal polarization in
a photorefractive piezoelectric under a transverse elec-
tric field is conducted. Signals of photoacoustic
responses were observed for both polarities of the
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1.4 1.61.00.80.60.40.2
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3.5
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0
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Fig. 5. Dependence of the ratio m on the thickness of the
layer of the spatial charge h. Curve 1 corresponds to the dis-
tance l = l0 = 40 mm, curve 2 corresponds to l = 30 mm equal
to the distance from the receiver to the electrode, and curve 3
corresponds to l = 35 mm.

1

2

3
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external electric field. The specific features of the
effects are explained with the help of the assumptions
on the blocking properties of the electric contacts and
the displacement of the region of the photoacoustic
sources under a change of polarity of the external field.
The localization depth of the spatial charge providing
the maximum photoacoustic response is estimated.
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