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Abstract—A theory of microlensing by nonbaryonic bodiesis developed. The characteristic features of lensing
by noncompact transparent objects with a singular density distribution are investigated. The conditions under
which additional peaks appear in the brilliance curve and the characteristics of these peaks are determined. The
effect of acompact baryonic nucleus on the brilliance curveis studied. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Gravitational lensing, i.e., the deflection of light
rays by a massive body, was first observed during a
solar eclipse in 1919 when the sun occulted the stars.
Gravitational lensing was subsequently observed dur-
ing observations of quasars. In this case the lensing
objects were galaxies. For microlensing, i.e., when the
gravitational lensisan object with stellar mass, individ-
ual images cannot be resolved. However, the focusing
action of the lens appreciably and even substantially
increases the point brilliance of the light source. If the
relative velocities of the lensing object and the source
are sufficiently high, for example, if they are located in
the halo of our galaxy, then the temporal variation of
point brilliance can be seen in the observations.

Observations of gravitational microlensing of stars
in the Large and Small Magellanic Clouds by objects
located in the galactic hal o were proposed by Paczynski
in 1986 [1]. Such observations have been conducted
since 1993 [2—6]. They have become a new step in the
study of dark matter. These observationsreveaedinthe
hal o of our galaxy the existence of a substantial number
of invisible abjects with masses (0.05-1)M,. Accord-
ing to the observational statistics, they comprise a sub-
stantial fraction (possibly greater than 50%) of the total
mass of the halo.

Since the probability of lensing of a given star at a
given moment in time is very smal (~107), a large
number of stars must be followed simultaneously for a
long time in order to perform observations. The candi-
dates in a microlensing event are extracted from the
data by a variety of criteria, including achromaticity
and absence of recurrence.

Aside from observations of the Magellanic Clouds,
observations of microlensing in the direction of the
galactic center are also being conducted [7-9]. The
probability of microlensing is an order of magnitude
higher in this region, and more than 300 events have
already been discovered. Aside from investigations of
the galactic center, this direction is used to test new

technology and methods, including for studying
“exotic” cases of microlensing in which the observed
brilliance curve is strongly different from the “ standard”
curve corresponding to a point lens and source. Such
deviations arise (see the detailed description in [ 10, 11]),
for example, for abinary lens[12, 13], abinary source,
or a source whose angular size is comparable to the
characteristic microlensing parameter [14].

Initially it was assumed [1, 4] that objectswhich are
seen during observations of microlensing in the halo
are brown, red, and white dwarfs, neutron stars, or Jupi-
ter-type planets, consisting of ordinary baryonic matter.
However, a large humber of observed abjects could
lead in this case to a contradiction with the hypothesis
of the nonbaryonic nature of dark matter, which, in
turn, raises substantial difficulties from the standpoint
of cosmological theories. It is unclear how to explain
the origin of these stars or planets on the basis of the
theory of evolution of galaxies. The theory of nucleo-
synthesis must explain a very high initial fraction of
metal nuclei. In addition, these observations [15, 16]
attest that the masses of most lensing objects are quite
large (0.5-1)M,,, and the hypotheses of “Jupiters’ and
brown dwarfs become unsatisfactory. In this case,
microlenses must be dim stars, and such an interpreta-
tion makes it difficult to match the microlensing data
with the direct optical observations using the Hubble
telescope [17].

In this connection, it has been hypothesized [18]
that for microlensing in the halo it is not Jupiter-type
and cold stars that are observed, but rather objects of a
small-scale hierarchical structure of dark matter which
consist of nonbaryonic matter. The question of the
masses, sizes, structure, and lifetimes of such objects
and their distribution inthe galactic halo isexamined in
detail in [19]. It is shown that under certain conditions
on the spectrum of the initial fluctuations their masses
lieinthe range

M, 0(0.01-1)M,, 1)
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corresponding to the objects observed in microlensing.
However, the sizes of these objects with the masses (1)
are found to be of the order of

R, 0(10"°-10") cm. 2

Thisisseveral ordersof magnitude larger than the sizes
of baryonic bodies of the same mass (though, on the
other hand, it is much smaller than the sizes of cold gas
clouds). For this reason, such nonbaryonic objects are
also said to be noncompact [19, 20].

This fact is important, specifically, because the
guantity (2) is of the same order of magnitude as the
Einstein radius, which is a characteristic parameter of
microlensing. For this reason, noncompact objects can-
not be treated as point microlenses. The finiteness of
their size and density distribution must be taken into
account. The metric of a gravitational lens is, in this
case, different from the Schwarzschild metric. A theory
of gravitational microlensing by noncompact objects
has been constructed in[19, 20]. Comparing this theory
with the observational results [19, 21, 22] shows that
noncompact objects which are candidates for micro-
lenses are, at least in some lenses, preferable to com-
pact objects. However, it is impossible to draw an
unequivocal conclusion on the basis of the observa
tional data discussed. Thus, the question of the bary-
onic or nonbaryonic hature of the objects observed dur-
ing microlensing is closely related with the question of
whether microlenses are compact or noncompact
objects and requires further investigation. It is aso of
great interest to develop a theory for determining new
possibilities for manifestations of noncompact objects.

Specifically, in [23] it is indicated that so-called
three-ray microlensing is possible when the lensing
object istransparent. The caustic surfacesarising in this
case lead to the appearance of additional peaks in the
brilliance curve. This raises the following questions:
Can these data be used to reveal noncompact objects?
Can the presence or absence of peaks be interpreted as
indicating a nonbaryonic nature of a lensing body? To
answer these questions it is necessary to analyze the
conditions under which additional peaks appear, and in
so doing the properties of nonbaryonic objects must be
taken into account realistically. Such an analysisis the
subject of the present paper.

The form of the brilliance curve, like the position of
the caustic surfaces, depends on the mass distribution
inthe gravitational lens. In[23], an object with constant
density isstudied. Thisisimpossible for abody of non-
baryonic dark matter bound by gravitational forces.
Indeed, as shown in [19, 24, 25], the density distribu-
tion possesses asingul arity at the center and followsthe
scaling law

p(r)Or™, a=18. (3)

The presence of asmall fraction of baryonic matter ina
nonbaryonic object can also play an important role.
This matter emits energy and gradually settles at the
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center as the object is formed, thereby forming a com-
pact baryonic nucleus[19].

In the present paper the conditions for the appear-
ance and form of additional peaks on the brilliance
curve in the case of a noncompact transparent lensing
object with the singular density distribution (3) are
studied. The influence of the compact nucleus on the
lensing curve is analyzed.

The general principles of gravitational lensing are
presented in Section 2. A point lensis studied in detail
in Section 3. A theory of microlensing for an extended
(noncompact) spherically symmetric gravitational lens
with a prescribed density distribution is constructed in
Section 4. In Section 5, the brilliance curves produced by
point and noncompact lenses are compared, a method for
making such a comparison is devel oped, and the regions
where the differences between the brilliance curves are
greatest are determined. The effect of a compact bary-
onic nucleus on the lensing curve of a noncompact
object isinvestigated in Section 6.

2. TRAJECTORY OF A LIGHT RAY
IN A SPHERICALLY SYMMETRIC
GRAVITATIONAL FIELD

The metric in a spherically symmetric gravitational
field can be written as

ds’ = e'“"c’dt’ - " dr? —r¥(de* + sin’edg?), (4)

wherev(t, r) and A(t, r) are arbitrary functions[26, 27].
The energy—momentum tensor for “dust-like” matter
with zero pressure has the form

™ = p(x)u"u
where Ut is the 4-velocity and p(X) is the density. We
shall assume the gravitational field to be weak, so that
ATGp = A®D, where d(r) is the gravitational potential,
and we shall neglect the motion of the matter, u* = (1, 0).
Then, from the condition that the tensor T* (and hence

the Einstein tensor) is diagonal follows A =0. Thecon-
dition v =0, i.e., astationary metric, can be attained by
a change of the variable t. The remaining components
of Einstein’s equations give three equations for the
functionsv and A:

1 —ADl_)lD BHGTO—eVEACD,
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Solving these equations to first order in v and A, and
taking account of the fact that

2

A = "+ 20,
we obtain
v=20(), A=Zro(n. )
C C

We note that the metric can be put into an isotropic
form by a change of the variabler,

s’ = e'c2dt?— & (dF? + F2d6? + PPsinfad¢d),
where

-2
= -\ = Zo(r)
C

follows from equation (5) to first order in v and A

The equation for the trajectory of alight ray in a
space with the metric (4) has the form [28, 27]

[ﬂ_ll[h_ 2. h 1 _voa
Qi(pD ue Rze

Here, R is the impact parameter of the ray, and the
angle @ is measured in the plane of the ray.*

The solution of the of equation (6) to zero order inv
and A isthe straight line

=0, u=r". (6

g =1

R COS(@— ). )
Thefirst correction gives
@_ 1
" TR
+A )\cos O
D[ v (@-®5i5 4,0 ©
BN (@-@) SN (¢-@) O O
x sin(@— @),

wheretheintegra is calculated along the straight line (7).

Cdlculation of the angle between the asymptotes
(u =0) givesthetotal deflection of the ray

2

O(R) = I(A(f)+rv'(f))d(ﬁ, ©)
0

r(¢) = R/cosq.

1 Strictly speaking, the parameter Rin equation (6) differs from the

distance of closest approach Ry by an amount of the order of v:
V(Ry)/2

Ry = Re .

2\We note that the deflection of the ray can also be calculated
directly from equation (6), integrating the equation and taking the
first approximation in @. In so doing, indicating the limits of inte-
gration, the Footnote 1 must be taken into account.
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Fig. 1. Geometry of a gravitational lens. the relative
arrangement of the observer O, lens D, and source S

Using equation (5), this expression can be written in
terms of the potential ® as

2

O(R) = %Irqn'(r)dcp', r(¢) = Ricos@. (10)
C
0

Thus, we have found the angle of deflection ©(R) of
aray as a function of the impact parameter in a pre-
scribed potential.

We shall now consider the relative arrangement of
the observer, lens, and light source (Fig. 1).

Let 8 be the angle between the directions from the
observer O to the lens D and the light source (star) S
and Ly and Lg the distances to the lens and to the star,
respectively, where Lgy = Lg— Lp. On account of the
curving of the light rays, the observer will see in the
ODSplane two images |, and |, instead of a point star.
We denote by 6 the angle between the directionsto the
lens D and the image. Then, from geometric consider-
ations (see Fig. 1 and, for example, [10Q]), taking account
of the smallness of theangles 8, 6;, and ©, we obtain the
formula

9,+0 = LSDG)(R) R = 8,Lp, (11)
which relatesthe angles 6 and 6,. The symbol + is used
so that all angles would be positive.

3. MICROLENSING BY COMPACT BODIES

Let us consider gravitational lensing when the lens-
ing object is compact, i.e., when the size of the object
isnegligibly small. The potential produced by an object
of mass M in this case can be written in the form

o r) = 20,

Substituting into equation (10) the potential (12) and
integrating, we arrive at the Schwarzschild value © =
O4(R):

(12)

4GM
R

O4(R) = (13)
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Fig. 2. Position of the images 64(0) for a point lens. The
angles were normalized to the Einstein angle 6, (14).

Substituting the Schwarzschild function (13) into
equation (11) gives adimensionless quantity, the angle 6,,

_ 4GM Lg
9, = =~ 14
0 CZ I—SI—D ( )
or the Einstein radius
Lol
RE = (LoBy)? = 2CM hr (15)
C S

Therelation (11) itself becomesin this case a quadratic
equation

0,(0,+8) = 65,

which always possesses two solutions 6,(8).

The Einstein radius gives the characteristic size of
the lens. The lensing object is compact, if itssizer, is
much lessthan Rc. This condition always holds well for
planets or stars in the galactic halo.

(16)

The dependence of 6] ontheangle®isdisplayedin

Fig. 2. It reflects the change in the angular position 63

of the images as a function of the angle 6 between
the directions from the observer to the lens and to the
source. As® — 0, theimages merge. AS6@ — o, one
image approaches the star and the other approaches
the lens. (As will be seen below, the point brilliance
of the second image in this case approaches zero.)

Under the real conditions of microlensing experi-
ments the characteristic distance to a lensing object in
the galactic halo is Ly ~ 10 kpc. For an object of mass
M ~ 1M, the angle between the imagesis 6, ~ 0.001".
Such small angles make it impossibleto resolve images
using currently available means. However, the exist-
ence of gravitational focusing can be established
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according to the change in the point brilliance of the
star being lensed.

The coefficient of increase in the point brilliance Q
is equal to the ratio of the total angular area of the
images to the area of the source. It can be expressed in
terms of the position of the source and the images as
follows:

_ < 98
Q= 5|taeq

Here, the sum extends over both branches of 6,(6).
Hence we obtain, substituting the expression (16),

8’ +20;

0,/6% + 46;

We now take account of the fact that the picture of
the increase in the point brilliance of a star is not sta-
tionary: the observer, the lens D, and the star S possess
certainviria velocities. Asaresult, the angle 6 changes
with time. Since only the relative vel ocity is relevant, it
can be assumed that the observer and star are at rest and
the lensing object moves with velocity v in a plane
perpendicular to the line of sight. Then, the angle 6
between the directions to the source Sand thelensD is

e:/\/eiun D/D(t mln)EF
Lo

wheret,,,, isthe moment of closest approach and 6,,,,is
the angular distance attained at this moment between D
and S(the impact parameter).

Finally, using the expression (18), we obtain the
time dependence of the coefficient of increase in the
point brilliance of the star [4]:

(17)

Q = (18)

u’+2
uJu? + 4

U(t) - |: ﬁmln D (t_’ftmin)girjz

A1) = Afu(t)] =

(19)

Here, u(t) = 6(t)/8g, Unin = 611in/60, and 1 is the charac-
teristic lensing time, which isrelated with v as

t = 2R/v = 2Lp0,/ V. (20)

The relative motion of the lens and source corre-
spondsto the motion of apoint in the plot of Q(x) from
X —= +00 t0 X, and back. Therefore, A(t) isa sym-
metric “bell-shaped” function with a maximum value

Asmax = Qs(emin)i
independent of the light frequency. It is the function

A(t) that is measured in observations.

Thus, for a compact lens the form of the curve A(t)
is determined completely by two parameters. the
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impact parameter u,,, (or the value of A at the maxi-
mum) and the duration T of the event.

4. MICROLENSING BY NONCOMPACT OBJECTS

The theory expounded above concerns compact
bodies whose size ry, is much smaller than the Einstein
radius:

r, < Re.

For noncompact objects of dark matter the reverse con-
dition usualy holds:

R, =R (21)

Indeed, according to equation (2) the size R, of an
object with massM ~ (0.1-1)M, is of the order of 10%—
10'® cm. This is 3-10 times greater than the Einstein
radius for bodies of the same mass|ocated at a distance
Lp ~ 10 kpc characterigtic for lensing in the halo. Thus,
the microlensing theory needs to be extended to the case
of noncompact objectswith characteristic sizes (21). We
underscore that such an extension of the microlensing
theory is of interest only for nonbaryonic objects. bary-
onic objects of such size and mass cannot exist inthe gal-
axy. We dso note that a feature of nonbaryonic objects
that is important for microlensing is their optical trans-
parency: alight ray is not absorbed, evenif it passesvery
closeto the center of thelens. This property, incidentally,
does not hold for objects with a baryonic nucleus. Such
objects will be considered in Section 6.

Thus, we shall study gravitational lensing for the
case where the lens size R, cannot be neglected. We
shall use the density distribution (3) for r < R,. The
density distribution

3- G)ML
o=0 4 RO’

Ep, r>R,

corresponds to the potential
GM,r3—a 1 prrf
®(r) Ry [Z—cx—z_aERxD } rSRX(zs)
r =
GM,
r )

o =18, r<R,

(22)

r>R,.

Once again, the curvature of thetrajectory of alight ray
for a spherically symmetric potential &(r) can be
described by equations (6)—(10). Now, instead of equa-
tion (13) we obtain for the total deflection of the ray
between the asymptotes

4GM
o(R) = 2SN

f(R/R), (24)

X
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(1-1-8 &f1-¢
3 a-1
f(&) =< ____Ez o e X0dX (29)
J-A/l X
/¢, &>1.

For R > R, the expression for @ is identical to the
Schwarzschild expression. We note that the integral in
equation (25) can be expressed in terms of a hypergeo-
metric function:

xMdx  _ _s2p0(a=1) 13, <o
I/—l " 1-¢Fg 2 ’2’2’1 s

The angle 8, between the direction to the lens D
and the direction to the image is once again related
with the position 6 of the source Srelative to the lens
by equation (11):

L
0,+0 = SDO(Rl) R, = 6,Lp.
However, the quantity ©(R) is now determined by the
expression (24) instead of (13). Sincethe function O(R)
iscomplicated, it is more convenient to switch from the
variables 8 and 6, to the variables x = 6L/R, and x; =

8,Lp/R, and to introduce, instead of the Einstein angle
8,, the constant

2
— 4GMXiLSDLD — [BED (26)
¢ Ri Ls (RO
Then, equation (11) assumes the form
X1 £ x = Qf(xy), (27)

where the function f (x;) is given by equation (25).

We shall now estimate Q. If the lensed star S is
located in the Large Magellanic Cloud (LMC) (Lg =
5 kpc) and the lens parameters correspond to the aver-
age values M, = 0.5M, and R, = 4 x 10* cm indicated
in the Introduction, then the largest possible value of Q
(forLp =L42)isQ=0.08,i.e, R/R- = 3.5.

An example of the function x;(x) for various values
of Qispresented in Fig. 3a.

It is evident that, in contrast to the case of a point

lens, the plot possesses three branches, i.e., for impact
parameter x < x(Q) there are three and not two images.

The quantities x{" ¥ (0) are the ordinates of the “first”

and “second” branches at x = 0, corresponding to the
Einstein angle in the case of a point lens, and it
increases monotonicaly with Q. For Q = 1 we have

%,(0) = Re/R..
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Fig. 3. (a) Positions of images x;(x) and (b) coefficient of increase Q(x) for a noncompact lens for various values of the parameter

Q=0.1(1) and 0.5 (2).

The quantity y, = X2 ¥ (x), which gives the value
of x, for which the second and third images merge, is
determined by the egquation

(dx/dxl)|yc =0,

whence follows

1_Qfl(yc) 0.
For large Q it is limited by the value §: f'y = 0 and
¥ = 0.39. The value of x. = Qf(y,) — Y., however, grows

without bound as Q increases. Thus, as Q increases, the
third branch of the plot “hugs’ the x axis.

The increase in the point brilliance Q of a star, as
determined by the expression (17), also depends now
on the parameter Q. Using equation (27), we obtain for

our case
X1
Qo = Zx|l

—_— 28
—Qf'(xy)] (8)
Just asin the case of apoint lens, Qg — w0 asx — 0.
However, there arises another point where the coeffi-
cient of increase becomes infinite,® specifically, the
point x. of the caustic. Thus, anarrow “one-sided” peak
appearsin the plot of Qq(X) (Fig. 3b) at the point X = X,.
The existence of athird ray and the appearance of a
caudtic in the case of atransparent noncompact lens were
firstindicated in [23] We note, however, that the singular

3In reality, the height of the peak is bounded because of the finite
angular size of the light source. In addition, the presence of anon-
transparent baryonic body at the center of the lensing object plays
an important role (see Section 6).

4| thank G.V. Chibisov for a detailed discussion of the questions
concerning microlensing and for pointing out the possibility of
three-ray microlensing.
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density distribution (22) gives amuch narrower pesk than
the smooth distribution. The peak itself corresponds to a
much larger impact parameter X, and thequantity y,. isless
than for a smooth distribution. (In [23] the density is
assumed to be congtant inside the lensing object.) Con-
versdly, increasing the exponent in equation (22) toa = 2,
corresponding to alogarithmic potentia at the center ® [J
Inr, changesf(&) in equation (25) to

F(g) = Earccos&+(l—A/l—Ez)/E, <1
/e, &>1.

Neither acaustic nor athird image arisesfor such adis-
tribution, and the second image vanishesfor x = (172)Q.

It is easy to estimate the width of the peak. Let the
total point brilliance of the second and third branches
be Q, at the boundary of the peak (theimpact parameter
isx. —&x). Of course, for x > % the total point brilliance
is zero. Then, using the definition of y. we obtain from
equations (17) and (28) near X

Xg dxl

_ Ye 1
Qo = X | dx

X—Q " (yo)[dxy|’
A E i T CA
Since 8x = (1/2)(d>/dx’) |yc (0x%,)?, we obtain
1 1
Ox = ZD’ICEF -

The estimate (29) shows that the width of the peak for
fixed Qg ismaximum for Q ~ 0.6 (the value of dx isthen

of the order of 5 x 103Q;”) and vanisheswhen Q —» 0
and Q — . We denote by dx the width of the peak,

(29)
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Parameters of Qq(x) for various values of Q

Q 1 0.8 0.5 0.1 0.05 0.01
Xe 0.997 0.776 0.445 0.064 0.027 0.0037
X 7x107? 55x 1072 25x 107 35x10°8 15x 107 25x 107
x//Q 7x107? 6.2 x 1072 35x107? 1.1x107? 7x10°3 25x1073
OX/Xq 34 0.07 0.07 0.05 0.01 0.008 0.007
xJ JQ 1.00 0.87 0.63 0.20 0.12 0.04
A(X; — OX) 1.63 1.78 2.39 4.36 4.68 497
A(x.+0) 117 1.23 1.58 3.05 3.28 3.47

measured from the local minimum of the function
Qq(X) up to the caustic point. In order for the estimate

(29) to be close to 0x, the quantity Q, must be chosen
as~0.5. This correspondence, however, break down for
large values Q = 1, where the minimum becomes
increasingly less pronounced and corresponds to an
increasingly smaller difference of the point brilliance Q.

The quantities characterizing the curve Qq(x) for
variousvaluesof Q are presented in thetable. Thevalue

dx/JQ = Bx/(Re/R) characterizes the ratio of the

width of the peak dx and the width of the“main” max-

imum. Indeed, if the characteristic lensing timeist =
2R:/v (see equation (20)), and &t is the characteristic

passage time of the “secondary” peak, then 5x/./Q =

25t/1. 1t is evident that this quantity is small (4-5% for
Q ~ 0.5-0.8) and decreases with Q.

Since for a noncompact lens the value x = /Q =
R:/R, corresponds to different coefficients of increase
with different values of Q, a row giving the values of

OX X4 34, Where X; 54 iS the value of the parameter x for
which the increase is 1.34, which in the compact-lens
model correspondsto the Einstein radius, isincluded in
the table for comparison. For Q ~ 1, we have X; 34, ~ X..

The quantity x././Q characterizes the position of the
“additional” peak on the lensing curve with respect to
the point Re/R,. It is evident that for Q < 1 the caustic
point lies inside Re, and it approaches the center as Q
decreases, so that for small Q the “additional” peak
merges with the “main” peak. For Q > 1 the caustic lies
outside R/R, on the wings of the curve, and it recedes
as Q increases.

Thevalues of A(x. + 0) and A(X; — dx) show the dif-
ference of the coefficient of increase of Qg on different
sides of the peak. Asone can seefrom Fig. 3b, the sharp
change in point brilliance beyond the caustic is an
important feature of the brilliance curve. Since the
absolute magnitude of the differential increases as Q
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decreases, it can be observed in observations of events
with Q < 1 even if the narrow peak itself remained
undetected.

We underscore that for Q > 1 the third image and
caustic do not vanish even though the lensing object is
smaller than the Einstein radius. However, for large Q

the caustic point x, = Qf (o) — Y, = Qf (§¥) — o0, and

the quantity x././Q also increases. The quantity x (as
is evident from the table) increases. However, this hap-
pens because the curve becomes “flatter” near a local
minimum. However, if the width of the peak (29), cal-
culated according to afixed difference of the intensity
Q,, is considered, then

sx=20 9 o 1
2RI HOTQFE)

decreasesrapidly as Q increases. The absol ute val ues of
the point brilliance on different sides of the peak aso
decrease, and the position and point brilliance of the
first image as a function of x approach the “ Schwarzs-
child” values corresponding to a point lens. For this
reason, for large Q the difference between noncompact
and compact lenses becomes increasingly less notice-
able.

The temporal variation of the parameter x dueto the
relative motion of the lensing object is described by the

formula
_ |2, ovotef
X = Xm‘”+DRXD’

where X, = 6ninkp/R, and 6,,, is, once again, the
impact parameter. As the lens moves, the point bril-
liance of the star varies

A(t) = Qq(x(1)).

Examples of plots of A(t) (only for t > 0) are dis-
played in Fig. 4 for various values of the constant Q.
The time scale corresponds to T = R/vy. For v =
200 km/sand R, = 4 x 10** cm, we have 1 =2 x 10’ s.
For comparison, plots of A(t) are presented for a point

[ o3
g-e
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0.6
Ht

Fig. 4. Brilliance curve A(t) for variousvalues of Q = 0.05 (1),
0.1 (2), and 0.5 (3) (dashed lines for point lens). Time in
units of T = R,/vg, Xpin = 0.05.

lens with the same values of the lens mass M, distance
Lp to the lens, and impact angles 6,,,,. It is important
that for a noncompact body the form of the brilliance
curve is determined not by two but rather by three
parameters. These parameters can be the point bril-
liance A5 at the maximum, the duration of lensing T =

2R:/vp, and Q = (Re/R)>

The “secondary” maximum in the dependence
Qq(X) appears on the lensing curve in the form of two
additional symmetrically arranged one-sided peaks. As

Q decreases, the width x of the range of parameters
corresponding to the “additional” intensity peak

decreases (in the units R, and Re — x/./Q). This cir-
cumstance can make it more difficult to see additional
peaks in the observations. Thus, for R, = 4 x 10 cm,

Vg = 200 kmi/s, and Q = 0.08, we have dx ~ 3 x 1073,
and the time interval in which the point brilliance will

increaserapidly isot = R, 0x/v = 17 h. If the observa
tions of each star are performed once per day (as done
at the MACHO experiment), this increase can become
unnoticeable or it could be perceived as a random
excursion. At the same time, as noted above, a sharp
“stepped” jump in point brilliance beyond the caustic
could be seen in the observations.

On the other hand, for small Q the peaks occur for
large amplitudes and can strongly distort the “main”
maximum of the brilliance curve. If X, is somewhat
smaller than x;, the width of the additional peaks can
increase substantially, and they can become even wider
than the central peak of finite height. However, if X,
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liesin the region of growth of the curve Q(X), X, — 0x <
Xmin < X, the central maximum vanishes completely.
Thus, quite exotic lensing curves are possible for cer-
tain values of the parameters. However, in contrast to
binary lens or binary light sources [10], the lensing
curves produced by a centrally symmetric noncompact
lens are always symmetric.

We aso note that for small amplitudes A5, When
the impact parameter X, > X, no additional peaks
occur in thelensing curve, and the curveis bell-shaped,
just asin the case of apoint lens.

5. COMPARISON OF THE BRILLIANCE CURVES
PRODUCED BY NONCOMPACT
AND COMPACT LENSES

The exact form of the brilliance curve of a compact
object is determined by the following parameters: the
mass M, of the lensing body, the distance L, to the
body, the relative velocity v, the impact parameter
8, and the distance L to the lensed star. For a non-
compact object there is an additional parameter, the
size R, of the body. The brilliance curves corresponding
to compact and honcompact lenses with the same val-
ues of the parameters M,, Ly, Vg, B @nd Lg are pre-
sented in Fig. 4.

The difficulty of a real problem is that we do not
know these parameters. The theoretical brilliance curve
is adjusted so as to obtain the best agreement between
theory and observations. Therefore, to determine
whether or not alensing object is compact or noncom-
pact we must compare the lensing curves which are
closest to one another and not curves which correspond
to the same values of the parameters. We shall now
determine how the difference between these curves can
be characterized.

The problem is formulated as follows. A brilliance
curve A((t) of acompact body with aprescribed amplitude
A, and characterigtic duration . is given. The brilliance
curve for a noncompact lens is characterized by three
parameters. theamplitude Ao, theduration t,, , and thesize
R/R: of the lensing body (or the parameter Q (26)).

The problem is to find the amplitude A, and with

width , for which the difference between the compact
A.(t) and noncompact A,(t) brilliance curvesisamini-
mum for fixed value of theratio R,/Rg. For this, we con-
struct the functional

2dt

J = I(Anc(t)_Ac(t)) T (30)

This is a dimensionless quantity, which can character-
ize the difference between the noncompact and com-
pact brilliance curves. Now, varying the amplitude A,
and the characteristic time f, of a noncompact bril-
liance curve arbitrarily, we find a minimum of J for

No. 2 2000



CHARACTERISTIC FEATURES OF MICROLENSING BY NONCOMPACT OBJECTS

235

(b)

40 1 2 3 4
t

Fig. 5. (a) Examples of “noncompact” curves closest to a given “compact” curve (dashed line): noncompact lens with no nucleus
(J =0.112); (b) noncompact lens with a baryonic nucleus, A =0.01 (J = 0.05). Q = 0.1, amplitude of a“compact” curve A.q = 10,

timeis normalized to {.

fixed A; and Q. This minimum then describesthe differ-
ence between the closest brilliance curves for noncom-
pact and compact lenses.

An example of the corresponding closest brilliance
curvewith Q = 0.1 isdisplayed in Fig. 5a. Theintegral
Jfor 0.01< Q< 1variesfrom 0.02 to 0.4; it increases
with the amplitude A, and increases as Q decreases
for Q< 0.1. Asonecan seefrom Fig. 5a, the largest dis-
crepancy between the curvesis produced by the “ addi-
tional” peaks and the sharp drop following these peaks
in the curve corresponding to a noncompact object. In
addition, a substantial difference is observed on the
wings of the brilliance curvesin the region |t —t,;| > 1.,
and for small Q the curve corresponding to a noncom-
pact lens passes above the compact curve. To under-
stand the reason for thiswe shall examine the asymptotic
behavior of the brilliance curvesin this region. The con-
dition |t —t.,,| > 1. isequivaent to u(t) = 6(t)/6, > 1 or
R > R.. Then, for a point (compact) lens we obtain
from equation (19)

2 _ R |t=tyy
AN -1=5, u() = g =38

e L2 (31)

R> Rg.
For anoncompact lens, aregion of intermediate asymp-

totic behavior appears on the wings of the brilliance
curve:

Re<R<R,. (32)
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The brilliance curve in this region can be calculated
assuming

X==<1,

X

Q= %g <1 (33)

Since the function (&) is bounded, we find from equa-
tion (27) the position of the image as

X; = x+Qf(x) +0(Q),
whichisthe only image in the range under study (since,
according to the table, for Q < 1 we have x/x, > X/ ./Q =
R/R: > 1).
We obtain from equation (28), taking account the
asymptotic behavior of the function () in the limit

1

3-a Q ,3-a 2
-1= + +
Ane(t) =1 = F70C5 + 57 Q+ O(Qx)
(34)
Qe _ga-113.7
0 = C=Fg—7 5513708

Thus, for a noncompact lens, in the “transitional”
region (32) we have instead of the behavior A O u™ the
behavior A O u'~-2. This difference produces substan-
tially more slowly decaying wings of the brilliance
curve, which are seenin Fig. 5.

In what follows, however, the relation between the
brilliance curves for the cases of compact and noncom-
pact lenses changes. For R> R, and Q < 1, for a non-
compact lens, as is evident from equations (25) and
(27), one image coincides with the image from a point
lens and the second image is absent. As follows from
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Q
12

Fig. 6. Curvesof () the position of theimages x;(X) and (b) coefficient of increase Q(x) for anoncompact lenswith abaryonic nucleus
of mass My, > A(Q)M,; Q = 0.5, A = 0.01. Dashed line displays coefficient of increase for a point lens with the same parameters.

equation (28), the difference of the coefficient of increase
from unity hereis haf that obtained for acompact lens.

4Q0° 1 R
Ac-1=2 =Ly = >,
X u E
(35)
- R
X = RX>1.

Therefore, ast —» o the brilliance curve correspond-
ing to a noncompact lens passes below the compact
curve.

Asthe parameter Q increases, the region of interme-
diate asymptotic behavior (32) and (33) becomes nar-
rower, and for Q > 1/2 the brilliance curve behind the
caustic immediately enters the region where the posi-
tion and point brilliance of the image are described by
the formulas for a point lens, i.e., in the region of the
“far” asymptotic behavior (35).

6. EFFECT OF A BARYONIC NUCLEUS
ON THE LENSING CURVE
OF A NONCOMPACT OBJECT

In the preceding discussion we studied the simplest
model of adensity distribution of a noncompact object
characterized by a single parameter—the radius R, of
the body. However, a substantial amount of baryonic
matter could be trapped in a nonbaryonic object during
the period when the object is formed. This matter can
then emit energy and settle to the center, forming a
baryonic nucleus. The fraction of baryonic matter with
respect to the total mass of a noncompact object should
be, on the average, of the order of the fraction of bary-
onic matter in the universe, i.e., ~5%. The existence of
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such a baryonic nucleus could have a substantial effect
on microlensing.

Let us consider a gravitational lens with the density
distribution of nonbaryonic matter (22) and a baryonic
nucleus of mass M, = AM, at the center. We shall
assume the baryonic nucleus to be point-like (the justi-
fication for this approximation is discussed below). The
potentials produced by the baryonic and nonbaryonic
components add together, and instead of equation (25)
we have

fa(€) = T(&) + /L.

As& — 0, thefunctionf,, in contrast to f, grows with-
out bound. For this reason, the second image, just asin
the case of a point-like (“Schwarzschild’) lens, is
always present, i.e., equation (11) hasfor any x at least
two solutions. However, depending on the ratio of the
parameters Q and A, two variants of a plot of x;(X) are
possible (and, correspondingly, Q(x)). For nuclear
mass greater than the critical value A(Q)M,, neither a
third image nor a caustic arises (see Fig. 6), and the plot
is qualitatively the same as in the case of a point lens
(Fig. 2). However, if A < A(Q), then there exist two
caustics at the points X, and x.,, between which there
are four images (see Fig. 7). AsA — 0, one caustic
point X.; approaches x., and the other approaches zero.
As A\ increases, both caustics move away from the cen-
ter and merge at A = A(Q).

(36)

The first variant (no caustic) occurs if the function
X(X,), given by equation (27) together with (36), does
not have an extremum:

f'(x) =A/X: <1/Q.

OX,: (37)
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Xl Q
0.12 7
I (b)
6,
0.08 i
5,
4,
0.04 .
1 1 1 J 2 1 1 1 1 1 1 1 1 1 J
0 002 004 006 008 0.10 0 002 004 006 008 0.10
X X

Fig. 7. Same asin Fig. 6 but for a baryonic nucleus of mass M, <A(Q)M,; Q=0.1, A =2 x 107

Thus, the critical value A, is determined by the expres-
sion

A(Q) = max(x;F'(x1) ~ X/ Q).

The point at which a maximum is realized gives the
value x; a the caustic point. The function A, (Q)
increases with Q from zero to afinite value

o = A () = m§1>((xff‘(xl))=0.023.
For Q < 1it isdescribed very well by an approximate

expression which is obtained by expanding f(§) in a
seriesin powers of &:

2. £ a(2-0) ~r3-a
Ef(z)—a == Ct

3
—EQ(G 0‘1) Q% +0(g%.

Here, C=F(H{a —1)/2, 1/2, 3/2, 1) = 0.8 cm (see equa-
tion (34)). The maximum is reached at the point

1

_ [G(Z—O()C/Eé((g D, 15}“ 1.

Hence, we obtain for the critical value A,

_3-a
20 —-1)po-t
(3-a)Qd -
Itisevident that the critical fraction of baryonic massis
very small. For Q = 1, we have A (1) = 6.6 x 1073, and

for Q =0.01 we have A(0.01) = 1.5 x 107°. Thus, more
than two images can occur only if the amount of bary-

2
M(Q) = 5(a(2-0)C) "R+
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onic matter is very small, and caustics do not arise for
the average fraction of baryonic mass A ~ 5%.

For A < A(Q), as shown in Fig. 7, the coefficient of
increase of Q(X) becomes infinite on each caustic.
However, the second (“inner”) peak is very narrow (in
Fig. 7, because of computational inaccuracy near the
caustic, the peak is shown to be wider than it actually is).
Thewidth of this“inner” peak dx., can be estimated by
taking account of the fact that A and the value X;(X.) = Yo
at the point of the caustic X, is much less than unity. It
follows from the vanishing of the derivative dx/dx, that
at the point of the caustic we have

2

, 1
A = yof (Yeo) = ez

Retaining only terms which are of first order iny,, and
taking account of equations (27) and (29), we obtain

2-a
XCZ Dch ’
30-2

Dyz(a D+a D)\ﬁ D)\s.

A Dy S,

(yCZ/XCZ)
—F"(Ye2)

Apparently, it would be extremely difficult to observe
such a narrow peak. For this reason, the observed bril-
liance curve for such small values of A would appear to
be virtualy the same as in the absence of a point
nucleus.

Conversely, for A > A, a nucleus even for compara-
tively small mass can substantially change the bril-
liance curve, “smoothing” the maximum init. The bril-
liance curve becomes more like the “Schwarzschild”
curve. Figure 5b shows the brilliance curve produced by
alenswith Q = 0.1 and A = 0.01, which is closest to a
given brilliance curve corresponding to the point lens.
Comparing with Fig. 5a shows that the additional peak

OXep 047+
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vanishes, and the behavior of the curve in the wings
remains the same.

Opaqueness of the nucleus. Thus, we have deter-
mined the effect of the presence of a point baryonic
nucleus on lensing. The cutoff of the power-law density
distribution can also have an effect, but it is easy to
show that it does not change qualitatively either the
position or the number of images or the form of the
coefficient of increase in point brilliance.

On the other hand, a baryonic body is opague, and
light rays passing closer than the radius R, to the center
of the lens are absorbed. Thus, the position of the
images, which is shown in Figs. 3a 6a and 7a,
becomes distorted: all points lying below x; = R,/R,
vanish. Correspondingly, the coefficient of increase in
point brilliance should also change. However, assum-
ing a baryonic nucleus mass M, ~ 0.05M,, the density
in the nucleus p ~ 1 g/cm?, for M, = 0.5M, we obtain
R, ~ 35x 10 cm (which is approximately five times
greater than theradius of Jupiter), and for R, =4 x 10 cm
(Q = 1) wehaveR/R,~ 10 Itisevident from Figs. 3a
and 6a that this value is very small compared with the
characteristic values of x;, and theimage corresponding
to the bottom branch of the graph vanishes in the cases
where this contribution to the total point brilliance is
essentially zero. For this reason, the absorption caused
by the baryonic nucleus can be neglected. However, the
effect of its potential is much larger.

7. CONCLUSIONS

The question of whether or not the invisible objects
observed during microlensing in the galactic halo are
compact is of fundamental importance for determining
the nature of these objects and of the dark matter as a
whole. From this standpoint it is important to develop
the aspects of microlensing theory that could provide
criteriaand methods for answering this question exper-
imentally.

As shown above, the main differences between the
brilliance curves produced by noncompact lenses from
the curves produced by compact (point) lenseslieinthe
possibility of the appearance of additional maxima in
the brilliance curve and in the behavior of the curvein
the wings.

The additional “one-sided” peaks arranged symmet-
rically relative to the central maximum are quite narrow
(with widths up to several hours), which could make
them difficult to observe. At the same time the point
brilliance difference on different sides of the peak
increases as the width of the peak decreases, and it can
be observed even if the narrow peak itself became
unobservable.

We note that secondary maxima can also arise in
microlensing by baryonic objects. This happenswhen a
binary lensor abinary star asthelight source. However,
the brilliance curve is then, generally speaking, asym-
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metric. The gquestion of why additional peaks appear
can be solved in each specific case by analyzing the
shape and position of the peaks.

In the presence of a compact baryonic nucleus of
mass equal to several percent of the total mass of the
object, the additional maxima vanish and the point bril-
liance differences become strongly smoothed. The bril-
liance curve, just asin the case of apoint lens, is*bell-
shaped.” The largest differences from a curve corre-
sponding to a compact lens should be expected in this
case on the wings of the brilliance curve.

Analysis of the observations of one of the micro-
lensing events [29] gives for a point lens a value of the
parameter normalized to the number of degrees of free-
dom x? = 1.75; the assumption that the object is non-
compact and has no baryonic nucleus gives an optimal
normalized valuex?=1.77 for Q=3.6 + 0.1, which sig-
nifies a somewhat worse agreement of this hypothesis
with observations. However, for a noncompact body
with a point nucleus (relative mass M/M, = 5%) the
minimum normalized value of x? is obtained for Q =
0.235 + 0.001 and is x? = 1.71. Thus, the model of a
noncompact lens with a nucleus is in this case some-
what preferable to the point-lens model.

The mass of alensing object in all three models is
M, = 0.02M, (with the distance to the abject 10 kpc
and velocity 200 km/s). The Einstein radiusis Rz = 3 x
10% cmiin thefirst two models and 2.7 x 10'3 cmin the
last model. The size of the nonbaryonic object is R, =
1.6 x 103 cm in the model without a nucleus (Q = 3.6)
and R, = 5.7 x 10*® cm in a model with a baryonic
nucleus (Q = 0.235). These quantities al agree with
theoretical estimates (1) and (2).

In summary, the question of whether or not the objects
of dark matter which are observed during microlensing
are compact is closdly related with the question of their
nature and requires further investigation. First it is nec-
essary to obtain more complete and accurate observa-
tional data.
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Abstract—The scalar problem of the propagation of a plane-wave pulse behind adiaphragmissolved. Thecal-
culation is performed on the basis of the nonstationary Kirchhoff-Sommerfeld integral and decomposition of
the pulse in terms of wavelets. Two types of diaphragms, circular and square, are studied. The propagation of a
pulse under focusing conditions is calculated. The Green’s function of the diffraction problem for a circular
opening with and without aberration-free focusing is constructed. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

More and more new experimental results are now
being obtained in laser physics using pulses which are
focused in space and compressed in time. Thisfield is
now an independent direction in the optics of femtosec-
ond laser pulses [1]. The experimental observation of
focusing of short laser pulses and nonlinear Thompson
scattering [2, 3] aswell asthe generation of hard X-rays
by focusing pulsed radiation on ametallic target [4] are
very impressive. Various theoretical models, used to
described pulses [5—7], as well as new proposed exper-
iments on the interaction of pulses with electrons [8—
11] are based on a description of laser radiation in the
form of Gaussian beams [12, 13]. Estimates show that
the series of laser types is approaching, with respect to
their parameters, the physical limit in terms of energy
extracted in one pulse. The natural reserve for further
increasing the peak intensity of laser pulses liesin not
only spatial focusing but also in maximum temporal
compression of the pulses. A scheme has aready been
realized for one of the most promising titanium-sapphire
lasers where the pulse duration is decreased to 5 fsec
[14]. The pulse length becomes comparable to the
wavelength, and the theory of quasistationary Gaussian
wave beams [12, 13] is no longer applicable. The new
experimental possibilities make it necessary to develop
an adequate theory of diffraction and focusing of
ultrashort pulses. A step in thisdirection has been made
in [15] for the problem of the diffraction by an opening
in an infinite flat screen on the basis of the nonstation-
ary Kirchhoff-Sommerfeld diffraction approximation.
In [15] it is shown that the theory of diffraction of
monochromatic fields can be effectively extended to
the strongly nonstationary case and the diffraction of a
half-period of an electromagnetic pulseis studied.

At the same time these questions have attracted spe-
cialists on the pulse generation and propagation in the
radio and microwave ranges. In [16] the author arrived,

simultaneously with and independently of [15], at a
nonstationary formulation of the Kirchhoff method and
used this formulation to calculate the diffraction of a
square pulse with infinite duration by a circular dia-
phragm. This formulation of the problem could be of
interest in acoustics and other applications where linear
diffraction of ultrashort pulses occurs under weak dis-
persion conditions. We note that while making definite
progress in the correct formulation of the problem, the
works [15, 16] do not completely resolve the problem
of diffraction and focusing of ultrashort pulses. Thus, in
[15] the question of constructing unified methods for
calculating the diffraction of ultrashort pulses of arbi-
trary shape remains open. The solution contained in
[16] for a step pulse makes it possible in principle to
elaborate the theory further for pulses of arbitrary
shape on the basis of the Duhamel integral, but this
extension is not made. For the problem of focusing of
ultrashort pulses, it is touched upon only in passing in
[15], and the problem is not posed at al in [16]. The
present paper is devoted to the development of a sys-
tematic approach to the construction of atheory of dif-
fraction and focusing of ultrashort pulses on the basis
of the application of wavelets and the construction of
the nonstationary Green’s functions as the response to
a delta-function pulse. The scalar approximation is
used in this paper.

The classical stationary Kirchhoff method for solv-
ing diffraction problems consists of using an integral
theorem according to which the value of a function y,
which isasolution of the scalar Helmholtz equation, at
an arbitrary point M(x, y, 2) inside a closed volume is
expressed in terms of the value of the function Y and its
first derivative on the surface bounding this volume
[17]. The Kirchhoff method is an adequate mathemati-
ca expression of the Huygens—Fresnel principle,
according to which the disturbance at a point in space
M is aresult of the interference of waves emitted by
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secondary sources. These sources lie on a surface
located between the point M and the real source of the
waves. A nonstationary expression relating the value of
the field Y on the boundary and inside a closed region
of space, can also be obtained [18]. If there are no field
sources inside the volume, Kirchhoff’s theorem holds:

T

P = J’dt' J‘ POG(R, t—t') —=G(R, t—t)OYdS

2o SV) (D)
L _i 9 _
4nI - DR DR%IJ "
S(V) t=t-Rl/c
where
R =T _r"
and
0, t<t
CRI-1) =1 _cd(R-ct-1))
41T R '

isthe Green’sfunction of the nonstationary scalar wave
equation, which describes the propagation of a wave
from a point with radius vector r' at time t' to a point
with radius vector r at timet.

We shall use this formulato determine the field of a
wave transmitted through a screen with an opening.
The value of the field at the point of interest is deter-
mined only by the values of the field and its derivative
on thefirst surface of the shadow side of the screen and
the opening. The approximate Kirchhoff boundary con-
ditions correspond to the following assumptions: { and
I vanish everywhere except at the openings; in the
openingsthevaluesof Y and iy arethe sameasin the
absence of a screen. For quasistationary fields these
approximations are, as arule, quite accurate.

Sommerfeld’s method [18] for choosing the Green's
function eliminates the need to give simultaneously the
boundary conditions for the field and its derivative
along the normal when studying diffraction by a screen.
The corresponding nonstationary Green's functions

__cd(r—rf—clt—t]
G = I Ir —r|
_ ¢ d(|r—ry —c(t-t))
+_ L}
41 Ir—ry

wherer = (X, Y, 2) are the coordinates of the observation
point, r' = (&, n, —) are the coordinates of the field

source, and r; = (&, n, {) are the coordinates of the

image field source symmetric to the real source about
the surface of aflat screen.
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We shall employ the substitution of G, intheKirch-
hoff integral (1). This procedure is more convenient in
nonstationary calculations. The result is

G, = 0,
c 9 d(R—c(t—t))
0G, = 24n6Z—R 2

P = J’dt'J’ YOG,dS
- S0 €)
lMEnZt) ds

(=0t =t-Rl/c
where the fact that 0/0¢ = —0/0z has been taken into
account.

If ¢ on the right-hand side of equation (3) is
replaced by the unperturbed value of the field, then we
obtain a method for calculating nonstationary diffrac-
tion problems on the basis of the nonstationary Kirch-
hoff-Sommerfeld integral.

- 21'[62,[

2. TRANSMISSION OF A PULSE
THROUGH A SQUARE OPENING

We shall now consider the transmission of an elec-
tromagnetic plane-wave pulse through a square open-
ing. We shall consider awavel et asthe profile of aplane
wave[19, 20].

The wavelets consist of a complete orthonormal set
of functions that is different from the Fourier set. This
set makes it possible to represent a function as a series
expansion with respect to such a set. The entire z axis
can be covered using appropriate transformations of a
localized function which rapidly approaches zero.
Obvious operations are trandation along the axis and
scaling of the argument in order to reproduce the scale
of the nonuniformities.

If scaling in powers of two is used for definiteness,

then the generated set of functionsis Y(2z— k), where
j and k are integers

A basic wavelet from which the entire set of wavelet
functions is obtained by trandlations and dilatations is
taken as the basis. We introduce the scalar product

Cp, g0= j P(2)g* (2)dz

and the norm |[p|| = p, p¥2. If the generating function
W is normalized, then the normalized wavelets of the
family {y;} have the form

Wi(2) = 2" p(2'z-k).

The family {4 forms an orthonormalized basis, so
that

Wi Y= 6jI6kmv
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Fig. 1. Shape of the basic wavelet witha=1and b = 0.

and each function f O L?(R) can be represented as a uni-
formly converging series
f(2) = Z cikdik(2).
k==

For example, afunction of the form [19]

Wn(2) = (-1)"0; exp(—2°/2) 4)
with fixed m can be taken as the basic wavel et. We shall
take the basic wavelet (4) withm=1(Fig. 1), i.e,

pD(Z b)’
a O 0g2 U

P,(2) =

This wavelet resembles a characteristic ultrashort
pulse. Let such an initial pulse distribution along the
zaxis be given. Then, it corresponds to a plane wave
propagating along this axis

Y(r,t) = Py(z—ct) = w
x exp- (z=ct=b)m ®
N

A pulse of arbitrary shape can be expanded in terms of
wavelets, the diffraction of each of which is described
by equation (3) with the unperturbed field substituted
on the right-hand side. Since the problem is linear, the
result of diffraction will be a superposition of the cor-
responding solutions for individual wavelets with the
weights of the initial expansion.

Let us substitute the basic wavelet into the nonsta-
tionary Kirchhoff-Sommerfeld integral. Then

g(r,t) = Z‘ra_zj— R
S(V) (6)
19 lP(R ct)
B 21'[62,[ ds
S(V)
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wherethe variables &, n, 0 are the coordinates of points
in the diaphragm plane, over which the integration
extends, dS= d&dn. Using equation (5) we obtain

W(r. 1) = 2na

(7)
(R=1)exp(— (R 1) /2a)dS

az_[

S(V)
wheret =ct+h.

To caculate the integral we shall differentiate the
integral with respect to a parameter and represent the
formula (7) inthe form

add ,exp(—(R-1)%2a%) is. (®

210201 I R
S(V)

W(r,r) =

Let the distance from the point under study to the dia-
phragm be much greater than the dimensions of the dia-

phragmand let R=r1 = /X* +y* + 7.

We now represent the vector R as a difference of
vectorsR =r —pe, wherer = (X, Y, 2) istheradius vector
drawn from the center of the diaphragm to the point of
observation of thefield and eisaunit vector in the polar
direction to the running integration point. Then

2
R = r2+p2_2pe|j:r+%r(e|j),
)
(R_1)? = A2+Ap2—2rpcose+(pz—prcose)2
r 4r? ’
where A=r—tandp = & +n°. Theevent A = 0

means that the central part of a wave pulse from the
point (O, 0, 0) on the diaphragm surface has arrived at
the point of observation (X, y, 2). In the expression (9),
8 isthe angle between the vectorsr and e. Thelast term
complicates the calculation of the integral (8). In gen-
eral it cannot be neglected, sinceitisnot small. For this
reason, to perform calculationsin all space the integral
must be calculated numerically. Analytical results can
be obtained near the axis. Thisis often of greatest inter-
est. Inthisregion the parameter p/r < 1. In this approx-
imation we have

(R=1)° = [8°+2(p7-20< +yn))

L (PP =2(xE+yn))°
4r? ’
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; Y
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0.04 0.04
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Fig. 2. Thefield W at the point (0, 0, 10A) in the cross-section (a) as afunction of the distance /A and (b) as a function of thetime
parameter T/A: 1—the result of an approximate calculation using equation (14), 2—the result of a direct numerical integration; and
3—the result of the calculation by the method of quasistationary Gaussian beams [1].

and the integral in equation (8) can be rewritten as

exp(-A’/2a%)

J.exp(—(R—T)Z/Zaz) ds =
) (10

XIexpE—%{ p”—2(xE +yn)} e dn.

When integrating over a square aperture of size 2A x
2A the auxiliary integral factorizes:

A A

[ IeXp[—O((Ez+ n?—2(x& +yn))]d&dn

-A-A
A

= J'exp(—cx(Ez—ZXE))dE (11)

A

X _[exp(—a(nz—Zyn))dn = 1(X)1(y).

The integrals containing the parameters x and y sepa-
rated. They are identical and can be calculated sepa-
rately:

A 2

109 = [ exp(-a(E - 26k = fz’%

x [erf(Ja(A—x)) —erf(=/a(A+x))],

where the error function is[21]

(12)

erf(x) = %{ [ep(-)d.
0
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Then

exp(— (R 1) /2a)

fee o

-A A

2 2
= SRERT28) g1 (y),

where [(X) is determined by equation (12), and a =
A/22%r. Therefore the scalar potential is

919 N’
> &P (1Y),

2mdzr o1
Since the entire dependence of I(x) and I(y) on zand T
is contained in the parameter a, the derivatives of the
integral | can be represented in the form

W(r, 1) = (13)

3100 < 20030 _ . 130
6z|(x) © 0a 0z I“(X)az
After calculating the derivatives, we abtain
N® A zZA’[
w(r, t)— expD—— ——
Uog? Eézrz a’r? a*r’s
1 Az Atz Z 0O
X))+ F5m* == o *
Da2r® 2a%% 2a%t* 283U
(14)

x (1 ()1 (y) + 1)1 (x) + ~=
ar

* (laa (1Y) + 21 (X)L (y) + |(X)|Z;a(Y))]

Figures 2a and 2b display the results of the calcula-
tions of the diffraction for asquare diaphragm with side
A at the point (0, 0, 10A). The radiation pulse had the
form of awavelet (5) with the parametersa=Aand b =0.
A comparison shows that the numerical integration
using the formula (8) agrees well with calculations

No. 2 2000



244
VA
15+ 4 3
O_
x/A
15
15 0

Fig. 3. Transverse distribution of the field W(x, y) of a dif-
fracted pulse in the plane z = 10A at different momentsin
timeT/A=8(1), 10 (2), 12 (3), 14 (4).

z

M(x, 0,2

\"

%

0

Fig. 4. System of coordinates for calculating the Kirchhoff
integral in the case of a circular diaphragm (1): M(x, O, 2)
point of observation of the field, oc—angle between the vector
r and the z axis, p—polar angle of the vector (&, n, 0) in the
planeof thediaphragm, 6—angle between thevectorsr and pe.

N

using the approximate formula (14). The discrepancy
between the numerical and analytic calculations does
not exceed 3%. It isinteresting to note that the form of
the pulse found by direct numerical integration is more
asymmetric relative to the center of the pulse, in con-
trast to the form cal culating using the approximate for-
mula. A calculation by the method of quasistationary
Gaussian beams was performed for thetimet =0, since
this method assumes simultaneous modulation of the
entire pulse along the z axis. A comparison shows that
the method of quasistationary Gaussian beams repro-
duces satisfactorily the longitudinal structure of the
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pulse after the diaphragm but agrees poorly with the
more accurate calculations for the transverse distribu-
tion of the field. This is because the phase relations
between the plane-wave components of the pulse are
not adequately taken into account in the method of qua
sistationary Gaussian beams.

Figure 3 displays the transverse distribution of the
field of a wave in the z = 10A plane at different
momentsintime. It isevident that before the maximum
value of the scalar potential of thewavethereisaregion
with the opposite value of the potential, which does not
occur intheinitia pulse (5). In time, the maxima of the
field shift away from the z axis and decrease in ampli-
tude.

3. TRANSMISSION OF A PULSE
THROUGH A CIRCULAR OPENING

We shall now consider the transmission of an elec-
tromagnetic plane wave through a circular opening.
Once again we take awavel et as the profile of the plane
wave.

We shall calculate the integral in eguation (8) in
cylindrical coordinates. We choose a coordinate system
in which the polar axisis oriented along the z axis. We
place the r vector in the xz plane, as shown in Fig. 4.
Assuming the function /R to be slowly varying, we
remove L/r from the integrand and write

Q(r,t) = ST9z9Tr’ (15)
where

21 A
| = qu)-[expg—(—lz\iz-_;})—zg)dp,
0 0

¢ isthe polar angle, and A is the radius of the opening.
Let the point of interest lie at a distance from the dia-
phragm that is large compared with the dimensions of
the diaphragm, r > A. Then

(16)

p’ +2pcosh

R = Jr?+p’—2pcosB=r + Taat

RoT=A+ p’ —2pcosh
2r '

On the basis of Fig. 4 we obtain
tan® = cosdtana,

where a is the angle between the z axis and the vector

r. Hence
cot0 cos tana

J1—cot’e ) J1+ coszq)tanza'

cosO = (17)

We introduce the parameter B = tana = /x° +y°/z.
It follows from equation (17) that, up to the second
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order in 3,
Bcoso
N1+ B%cos’d
Using the symmetry of the problem and the approx-
imations made above, we can obtain an analytic answer
on the radiation axis. In this case, integrating in the
plane of the diaphragm, cos6 is always zero. For this

reason, the integral over ¢ is 2mand we have instead of
equation (16)

| = 2m exp 1%3+p—2%3dp
I 2r
(19)

[W2(A”+ 24r) +2AF)D nAa
= ZH[ar [ [prf Tar fDa ﬁDD

Substituting the expression obtained into equation (15)
for ), we obtain

cosO =

= [3cosé. (18)

_ Az 08O _Z
.t = pD 2a2D+ 2ar?
[(A +2Ar)%+éﬂ—i(A +2Ar)} (20)

DA+2APD
x ex
O ga?2 8a’r? 0

We now consider the field in the region near the

axis. For this, we expand the integrand in equation (16)
in powers of cosB:

R—1 O (A +p?/2r D
0 ( )E_ expE-l-( 02 )
2a 0 2a D

g
+a%%3+ %exp (A+p/2r)EmSe+

expH T
(21)

We now take account of the fact that cos@ in our
approximation is determined by equation (18) and that

21

cospdd = 0.
|

Up to second order in the parameter 3, the integrand in
the expression of equation (16) is determined by the
first termin equation (21). Therefore, in the region near
the axis, to second order in the parameter 3, the sca-
lar potential | is once again determined by the for-
mula (20).

Figure 5 shows the temporal form of the diffracted
pulse on the radiation axis as a function of the charac-
teristic length a/A of the initia pulse. It is evident that
for asufficiently short pulse, for a < A%2z, theresult has
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Fig. 5. Behavior of the diffracted pulse W as a function of
time t/Afor various values of the ratio of the pulse length a
to the radius A of the aperture of the diaphragm.

the form of two wavelets separated in time by At =
A?/2zc. This agrees with the results of [15] for the dif-
fraction of a half-wave pulse.

4. ABERRATION-FREE FOCUSING
OF A PULSE

The nonstationary Kirchhoff-Sommerfeld method
also makes it possible to study focusing of a pulse. To
describe the diffraction of a plane wave on the basis of
equation (8), we used the fact that the value of theinci-
dent wave is constant on the aperture of the diaphragm.
The corresponding flat surface isdescribed by the equa-
tion ¢ = 0. The action of the focusing apparatus, lying
in the diaphragm plane, reduces to distortion of the flat
wavefront and transformation of the wavefront into a
spherical front. Depending on the convexity of the
spherical front, the transmitted wave will be focused or
defocused. The equation of a sphere centered at the
focal point of the optical system with radius vector F is

F,=Ir —F|= J(z+ F)?+ 2 + . Here, the minus sign
corresponds to focusing and the plus sign corresponds

to defocusing. Introducing the equation of a sphere,
instead of the equation of a plane, and making the

No. 2 2000



246

g
]k
I I
4
2 2
[ I R L0 L TN 1
10 10.06
L T/A
_4F

Fig. 6. Comparison of the time dependence of thefield W of
focused (1) and unfocused (2) pulses near the focal point.

substitution z—ct — I, + ct — F in the phase of the
diffracting wave in equation (6), we obtain

10
|

Let thefocal length be F > A, where A are the char-
acteristic dimensions of the diaphragm. Then the dis-
tance from the focal point (imaginary focus) to a point
in the diaphragm plane can be approximately described
as

M‘ s (22)

Z=0t=t-Ric

2, 2
2 g2, 2. &+n° _ p
P =R = o

and equation (22) can be rewritten in the form

1.0 W(pYI2F £ (ct=R))
b= 2naz R ds.

(23)

In the limit F — oo, the expression (23) becomes the
formula (6) for a plane wave.

Let us now consider the diffraction of awavelet (5)
by acircular opening in the presence of focusing (defo-
cusing). The auxiliary integral (16) now assumes the
form

¢ = Idd)fexpma? T+2FD/2aEPdp (24)

In the near-axis approximation, just asin the case with-
out focusing, we have

2
B p LYP —2pcose
R-T£p=4 or
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wherey =1z r/F isthefocusing parameter. Once again,
we expand the integrand in equation (24) in a seriesin
the small parameter cos6:

in
(R T+p/2F) 0= eXpD(yA+yp2/2r)
2a° O 2a D

(25)

expD

+ £ (A +vyp /2r) exp[-}—wmcose +.
2a° 0

Similarly to the planar case, the integral of the second
term in equation (25) vanishes. As aresullt,

I = 2m
ar [mtd 2(y A +2AF)D A DD (26)
[prf erf
y 2D 4ar Daﬁ
Performing the differentiation we obtain the answer
_1251__
L 8Z[(YA® + 24r) 2A_§g
Vf[ 4a’r % r rFd @0

[(yA + 2Ar)[
} "P0 g O
The expression obtained describes the focusing of a
pulse for anegative sign of F and defocusing for a pos-
itive sign. Figure 6 displays the results of the calcula-
tion of the time dependence of the focused and unfo-
cused pulse near the focal point. It is evident that the
unfocused pulse has separated into two wavelets, while
the focused pulse consists of asingle pulse. The focus-
ing apparatus gives, in accordance with Fermat’s prin-
ciple, the same optical path differencefor different rays
arising at the focal point. For this reason, the temporal
form of the pulse is not distorted. Away from the focal
point such compensation is lost and the form of the
pulse becomes distorted, just as in the case without
focusing.

5. GREEN'S FUNCTION FOR THE PROBLEM
OF NONSTATIONARY DIFFRACTION
OF A PLANE WAVE

A convenient and universal method for solving lin-
ear problems in which it is necessary to find the
response of a system to an arbitrary disturbance is to
construct the response to a o-function pulse, i.e., the
Green'sfunction g(r, t).

We shall now consider the transmission of a é-func-
tion pulse through a circular opening. Substituting a
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o-function pulse into the nonstationary Kirchhoff—
Sommerfeld integral (6), we abtain

_ 10 H(R-1)
g(r,t) 21‘[02_[ R ds. (28)
S

We now choose a new coordinate system K' whose
origin coincides with the projection of the point (X, y, 2)
on the diaphragm plane. The O'Z axisis parallel to the
Oz axis and the O'X' axis passes through the center of
the diaphragm, as shown in Fig. 7. In this coordinate

systemz=7,y=y, and R= /p’+Z isthe distance
from the point near the diaphragm to the point under

study, and p' = A/x? +y?,

_ 2p'dp’
dR = R
Switching in the integral appearing in equation (28) to

integration in polar coordinates p' and ¢' and using
eguation (29) we obtain

(29)

g(r. 1) = 4—1nai [3(R-T)dpR = 41_1110%“" (30)

Here, @ is the angle which rests on the arc cut by the
diaphragm from a circle centered at the origin of the
coordinate system K'. Thisarc consists of the geometric
locus of the points located at a distance T = ct to which
the light propagated from the points in the opening of
the diaphragm in the time t from the point of observa-
tion of the field (x, y, 2). The expression (30) must be
interpreted in the sense that

ER =1
% = o1).

We shall now find an analytical expression for the
quantity ¢. It is evident from Fig. 7 that the O'X’ axisis
the symmetry axis. For this reason

XI
COS(—p =

2 /X.z + yz'
The system of equations for determining the coordi-

nates of the intersection of two circles, one of whichis
centered at the origin of the coordinate system K' and

has radius /x> +y? while the other is centered at the
origin of the coordinate system K and hasradius A, is

(31)

|:|x,2+y.2 — _[2_22
4
Q= ayh) +y? = A

Expanding the brackets and subtracting the first equa-
tion from the second equation, we obtain

2 2 ' 2 2 2 2 2
T —Z =-2XJYX"+y +xX +y = A",
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Fig. 7. Coordinate systems K and K' of the Green’sfunction
ginthe problem of the transmission of apulsethrough acir-
cular diaphragm: M(X, y, 2—point of observation of the
field, 1—aperture of the diaphragm, ¢—angle of observa-
tion of the arc of acirclefrom the center O' of the coordinate
system K'.

whence

l 2_22+X2+ Z_AZD
=Lz
0 ety 0

y = + T2 =7 = X7,
The condition for the existence of a solution is that the
radicand in the equation for y' is positive. Physically,
this means that a solution exists if light from the dia-
phragm has arrived, otherwise @ = 0. Thus,

Xl

(32)

50, x2<1?_7
¢= E,lZarccos; x?>12 -7, (33)

0 e

If the observation point lies on the axis of the dia-
phragm, then at any moment in time, when there is
enough time for the light to arrive from the diaphragm,
the angle pisaways 2m, i.e.,

50, 1°-7<0
Q= %QT[, x2>12 -7 (34)
(D, x2<1? -7

To obtain an expression for the Green’s function the
formula (34) must be differentiated with respect to z
We shall take account of the fact that the derivative of a
unit jJump is a d-function. Then the scalar potentia of
the field on the radiation axis acquires the character of
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Fig. 8. Spatial distribution of the Green’s function along the
x axisin the problem of the passage of aplane wave through
adiaphragm at the time t/A = 10.5 and zZ/A = 10.

two o-function pulses which are separated in time by

At = (/7 + A —Z)/c and have opposite signs, as shown
inFig. 8. A similar situation is noted in [15], where dif-
fraction of a haf-wave pulse of finite width by a circular
diaphragmisstudied. In[15] it is shown that the energy
density of the transmitted wave in the region At > 1,
(to isthe duration of theincident pulse) isdoubled. The
form of the scalar potential changes as the observation
point movesin aplane perpendicular to the propagation
axis of the wave. The front delta-shaped pulseis broad-
ened, and this broadening becomes maximum for
points lying above the boundary of the diaphragm. The
second pulse does not undergo strong changes.

We shall now construct the Green's function g; in
the problem of focusing of a pulse, for which once
again we use theinitial &-function pulse and the minus
sign in equation (22), corresponding to focusing. To
calculate the corresponding integral it is necessary to
determine the conditions under which the argument of
the delta function vanishes. We switch from integration
over the surface to integration over the volume. Then

_ 10 3(r—R+ct—
gf(rlt) - 2.,.[62 R

\%

F)3(Q) e dn iz . (35)

The two &-functions give in space a curve in the form

[(R-r+1-F =0

&= o (36)
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Fig. 9. Coordinate system for calculating the Green's func-
tion g; in the problem of focusing of a pulse: M(X, y, 2—
point of observation of thefield, ¢—angle of observation of
the arc of a circle from the point O'(xF/(F —r), yF/(F —r),
0), F—coordinate of the focus.

where R is the distance from a point in the diaphragm
to the point of observation, and r is the distance from
the focusto apoint on the diaphragm. The first equation
in egquation (36) gives a hyperboloid of revolution with
foci at the observation point and at the focal point of the
optical system. The second equation gives the plane of
the diaphragm. The system of equations (36) describes
the line of intersection of a hyperboloid of revolution
and aplane, i.e., an ellipse.

Let us now consider the long focal-length approxi-
mation, where the diaphragm is small compared with
the focal distance and the distance to the observation
point, i.e., A< F and A < r. Then the argument of the
o-function can be expanded in the small parameter

g2 +n’:
- O-ROe2, 12y, 1
r—R+T-F=—A— & +n?) + (& +ny),

where A = —T. Using the properties of the delta func-
tion
1

5(—x) = 3(x), =

o(ax) = =9o(x),

we obtain

r-F

O A_
65 A 2rF

(8% n%) + (<€ +yn)J

2rFAQ
+
r—FO

_ 2rF 2, 2 2F
= =837+ 0" - S + yn)
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2
- 2rF sy X O _FyDo
=l r—FD+%] r —FO
20FA F° o o[
t—=- (X" +y")
r-F (r—F)? |

Setting the argument of the &-function equal to zero
gives the equation of aline on which the integrand will
be different from zero. Under the assumptions made
thisisan equation of acirclethat iscentered at the point
O' and has the coordinates (2xF/(r —F), 2yF/(r — F)). If
the origin of the coordinate system is transferred to the
center and the coordinates are transformed to polar
coordinates, then the Green’s function can be writtenin
the form

Fo o

g:(r,t) = T~

where @isthe angle cut by acircle of radius p' (Fig. 9)
from the diaphragm.

(37)

CONCLUSIONS

The analysis of the diffraction of extremely short
pulses on the basis of the nonstationary Kirchhoff—
Sommerfeld integral demonstrates that the Huygens—
Fresnel principle needs to be modified. We shall formu-
late it in the nonstationary form as follows. The field
produced as aresult of diffraction can be found by sum-
ming the contributions from regions of the wavefront
that arelocated at afixed distance, corresponding to the
propagation time of the pulse, from the observation
point. The contribution of equidistant regions of the
front is taken with the same sign for a positive time
derivative of the amplitude and with opposite sign for a
negative derivative. In application to stationary prob-
lems this condition means a phase shift of the interfer-
ing waves by 12. This eliminates the well-known
phase inaccuracy of the stationary formulation [22].
For transmission of short pulses through a narrow dia-
phragm, the number of oscillationsin a pulse increases
by one.

Wavelets are a suitable complete basis for describ-
ing ultrashort pulses. We found the solution for the dif-
fraction of a wavelet by square and circular openings.
For the diffraction of a pulse by a narrow opening, a
pulse undergoes conical spreading asit propagates after
the diaphragm. Focusing partially compensates this
phenomena within the focal distance.

The Green's function for the propagation of a plane
wave initially in the form of a Dirac delta function was
constructed to describe the propagation of a pulse of
arbitrary form through an opening. This function is
equal to the derivative of the angular size of an arc, cut
by the radius of propagation from the diaphragm, with
respect to the direction of propagation. The Green's
function for diffraction and focusing provide an alter-
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native to wavelets for calculating pulse propagation.
The results obtained can be transferred to a complete
vector description of el ectromagnetic fields on the basis
of the Hertz vectors.
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Abstract—The spectroscopy of metastable states is used to make the first experimental measurement of the
total differential elastic-scattering cross sections of metastable helium atoms in 23S and 21S states by sodium
atomsinthe ground state at interaction energy 68 meV in the center-of-mass system. To analyze the experimen-
tal data, the partial scattering phases are calculated using the method of phase functionsin the optical potential
approximation. The analysis makes it possible to give a more detailed interpretation of the structure of the dif-
ferential cross section. The computed integral cross sections, specifically, Penning ionization, diffusion, viscos-
ity, and spin exchange are discussed. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The problem of determining the complex interac-
tion potential in asystem consisting of an excited atom
and an atom in the ground state and the characteristics
of the accompanying processes has by now been ade-
guately solved for the interaction of two inert gas
atoms. For an interatomic interaction in which one part-
ner is a metal atom, this problem has not been ade-
guately studied. At the same time, data of thiskind are
very important for analyzing the processes occurring in
the active media of metal-vapor lasers, specifically, ion
lasers, in different types of plasma, the chemistry of
gases, liquids, solids, and so on [1].

The study of elastic collisions of atomic particlesis
a part of the general investigation of the properties of
interatomic interactions and the characteristics of scat-
tering processes. Precise experimental measurements
of the differential scattering cross sections and their
energy dependences, together with theoretical calcula
tions, can be of help in solving the important problem
of determining the optical potential (see, for example,
[2]). For this reason, our objective in the present work
wasto determine the differential elastic scattering cross
section (DSC) and to describe theoretically its features
and the collisional characteristics for the system of
strongly interacting particles He(2% 3S) + Na(3°S).

2. THEORETICAL COMPUTATIONAL SCHEME

It iswell known that the relative motion of atomsis
described in the Born—Oppenheimer adiabatic approx-
imation by the Schrédinger equation (the center-of-
mass system and atomic units are used)

[_imé+vopt(R)—E}W(R) =0, ©)

where V,;; = VR(R) +iV|(R) isthe optical potential for
the interaction of the atoms, E is the kinetic energy of
the collision, p isthe reduced mass of the atoms, and R
is the distance between the nuclei.

Theoretical methods are now available for obtaining
abinitio the optical potential describing theinteratomic
interaction in asystem consisting of an excited metasta-
ble inert-gas atom (Rg*) and a metal atom (M) [3-6].
In these methods this system is treated as a collisional
autoionization complex Rg*M. The optical potentials
obtained, which are characterized by very large depths
(severad hundred meV) of the potential well, can be
used for obtaining a detailed description of elastic scat-
tering in the system Rg* + M. In [2] the optical poten-
tial for He(21S) + Na(3?9) scattering was determined by
ax? fit of the differential scattering cross sections cal-
culated in the semiclassical approximation to the exper-
imentally measured cross sections at collision energies
52, 92, 132, 188, and 207 meV in the range of labora-
tory scattering angles 6, = 5°-105°. In [3] the optical
potentials for the processes He(2'S), He(23S) + Na(3%9)
were obtained by an ab initio calculation in terms of the
electron resonance energy and the autoionization
width and were used to calculate the DSC in the semi-
classical approximation and to determine the Penning
ionization cross section in a quite wide energy range:
10-1000 meV. In [4] ab initio optical potentials of the
systems He(23S) + H, Li, Na, and He(2'S) + Na, which
are used for experimental and theoretical analysis of the
characteristics of the electron spectraof the Penning ion-
ization process, were obtained from the same assump-
tions. A similar method was used in [5] for He(2-3S) +
Mg, Ca, S, Ba systems. The values obtained for the
potential well of the real part of the optical potential of
the systems Rg*M (Rg = He, Ne, Ar, Kr, Xe, M = Li,
Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Yb, Hg) on the basis of
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the high-resolution electron spectra in Penning ioniza-
tion are generalized in [6]. In our work [7], the optical
potential from [2] was used for quantum-mechanical
calculation of the DSC and other characteristics of scat-
tering of He(2'S) by Na(3%?S) at 68 meV. The DSC
obtained in this manner was used for the interpretation
of the measured total cross section of He(2b39) +
Na(3?S) processes. In [8, 9] atheoretical phase analy-
sis of these processes at 52, 80, and 92 meV was per-
formed on the basis of the optical potential from [2].
In [10] the optical potential for scattering of He(23S)
by Na(3?S) was used for asemiclassical calculation of
the Penning ionization cross section and the exchange
cross section for scattering of triplet helium in awide
energy range.

Let usconsider in greater detail the basic features of
the collision of a metastable helium atom with alkali-
metal atoms. Theinteraction in the systems He(2% 3S) +
Na(3?S) (U = 6214 a.u.) is characterized by two values
of the total spin of the quasimolecular terms. A helium
atomin the singlet state is scattered on a single doubl et
quasimolecular term 2X*, while for the triplet state the
interaction occurs on two terms—the doublet 2X* (sta-
tistica weight 2/6) and the quartet 4+ (statistical
weight 4/6). We note that the interaction on the doubl et
terms is characterized by a complex optical potential,
while the interaction on the quartet term is character-
ized by areal potential. For calculations on the doublet
terms we employed the computed potentials from [3],
and for the quartet term we used the potential obtained
in[10]. Therea part of the optical potential in [3] was
obtained in the approximation of interacting configura-
tions for NaHe* molecules using a fit to the correct
asymptotic dependence—the van-der-Waals potential.
The imaginary parts of these optica potentials
(autoionization widths) were obtained using the
method of Stieltjes moments with a discrete represen-
tation of the continuum of the system e + NaHe"
in (L?). The quartet potential “~* was determined on
the basis of the rule of averages using the potentials of
the systems He(239-He(22S) and Na(329-Na(329)
(see[10]).

Therea part of the doublet optical potentialsin [3]
is characterized by the following parameters for the
helium 21S(239) state: strong repulsion at distances R<
0.2a,, zero value at R, = 5.75a, (4.45a,); minimum
value Vg, = 300 meV a R, = 7.35a; (Vgy, = 740 meV,
R, = 5.85a); and, asymptotic behavior [0 -C4/R¢, Cg =
3660 a.u. (2220 a.u.), which “starts’ approximately at
R, = 8.22a, (6.27a,). The imaginary part of the optical
potentials in [3] are characterized by almost exponen-
tial behavior for R = 5a, with a deviation from this
behavior in the region R < 5a,. At 6a, the imaginary
part decreases for the state 2'S more rapidly than for
23S[3] (for example, for R= 11a, thetriplet part isfive
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times greater than the singlet part). In [10] the quartet
potential hasthe form of avan-der-Waals potential with
a positive correction: —C4/R°® + ARBexp(-CR), C; =
1970 a.u. (comparewith Cg = 2220 a.u. for 2S[3]), A=

0.0205 a.u., B=4.81, and C = 1.206a, .

The smallness of the collision energy compared
with the depth of the potential well requires, in our
opinion, that the theoretical method be mainly quan-
tum-mechanical, while ordinarily various modifica-
tions of the semiclassical approximation are used. For
this reason, we used the method of phase functions
[11, 12] with acomplex optical potential to perform the
theoretical calculation of the scattering phases.

The system of equations for the complex phase
function §,(E, R) = g(E, R) +in, (E, R) can be obtained
from equation (1) and has the form

de 1 . .
R - —M{VR[(Hn.mcose.—n.sne.)z
—(1-n))%(jising, + nycosg)’] + 2V, (1-n7)

x (j,cosg,—n,sing))(j,sing, + n,cosg,)) },

d 1 : . 2
S = Z{VI[(+n)"(j cose —nysine;)’
—(1-n)’(jrsing, + nycose))’] —2Ve(1-ny)
x (j,cosg, —n,sing))(j,sing, + n,cosg,) }
with the initial conditions
&(E0) =0, n(EO0) =1, ©)

where n,(E, R) = exp[-2N, (E, R)], k* = 2uE, and j, =
Ji(kR) and n, = n|(kR) are Riccati—Bessel functions. The
rea g,(E) and imaginary 1, (E) parts of the partial scat-
tering phase ¢,(E) are obtained from the corresponding
phase functions:

g = limg(E,R), N(E) = —%Inlimm(E, R) (4)

inthelimit R — oo,

It isvery difficult to integrate the system (2) numer-
ically, where the integration must start at a finite dis-
tancer > 0, because of the strong repulsive interaction
at short distances and the singular behavior of n(kR) for
| > 0. In[11], the solution of this problem is examined
for three types of behavior of the interaction potential
V(R) in the limit R — 0: nonsingular (or weakly sin-
gular), RV(R) — 0; strongly singular, R?V(R) — o;
and, intermediate between these two behaviors,
R?V(R) = const. The interaction potential in our prob-
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lem is of the first type. For this reason, the initia
expression for §,(E, r) will be

6\(E.1) = [ARI7(KRIV(R). -

n(E, r)=1.

Here, we use the fact that for sufficiently small r only
the first term remains in the equation for g (E, R), in
which the second and third terms can be neglected after
squaring. Neglecting these terms means that for small |
(in our case <30) and using an expansion for j,(kR)

(kr)zl +1
21+ )=

le(E, )| < (6)

and thenforr — 0

;
21+1
K

- 2l +2
s|(E,r)~——[(2l+1)”]2‘([dRVR(R)R : (7)

We note that in [7] analytic expressions were
obtained for g (E, r) and n,(E, r) at small distances (kr <
0.05), using the optical potential from[2]. Thereal part
of this potential has the form of a modified double
Morse potential without the correct van-der-Waals
asymptotic behavior. The imaginary part has a smple
exponentia dependence: V, (R) = 40exp(—1.85R) (ina.u.).
The expressions obtained in [7] show that the desired
parts of the phase function &,(E, r) depend strongly on
the orbital angular momentum I, the wave number k,
and the parameters of the given optical potential.

We integrated the system of equations (2) with the
initial conditions (3) numerically using a fourth-order
“prediction—correction” method with automatic moni-
toring of the magnitude of the step. Here Adams—Bash-
forth prediction with Adams-Moulton correction and
the modification in [13] were used. Using these meth-
ods, the partial phases were calculated with accuracy
10 rad.

The phases for scattering on the doublet terms for
orbital angular momenta | = 150, starting with which
therea part of the phasese, islessthan 0.08 rad and the
imaginary part N, isessentialy zero (<107 rad), were
calculated in the semiclassical approximation. For the
guartet term, the phases were calculated only in the
semiclassical approximation. For the collision energy
68 meV, which we used, the phases were calculated up
to | o = 660 (for two ?X* terms) and up to |, = 300
(for one 4Z* term). It should be noted that the val ues of
the phases in solving equations (2)—(4), starting with | >
145, approached the semiclassical value and for g <
0.09 rad follow the dependence C1-5[14] dueto scatter-
ing by the van-der-Waals potential. The finite number
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of partial waves taken into account was dictated by the
magnitude of the phases g < 10 rad. Summarizing
everything we have said above about the computational
algorithm and the use of the semiclassical approxima-
tion, we can state that we definitely obtained three sig-
nificant figuresin the differential and integral cross sec-
tions.

We neglected transitions between the terms 2Z* and
43+ (for He(28S) + Na(329) scattering) due to the spin—
orbit interaction. The phases for each term were calcu-
lated independently. This approximation is satisfactory
because the interaction between the atoms in the quasi-
molecule correspondsto a 2 term, where the spin—orbit
interaction in the first approximation (with respect to
the projection of thetotal spin) iszero andisvery small
in the second and first approximations in the spin—spin
interaction [15]. Thus, our computational procedure
contains both quantum and semiclassical descriptions.

The partial scattering phases ¢,(E) found were used

to find the differential elastic scattering cross sections
dog/dQ, [14, 15]:

2

g
4_k2 IZ(ZI +1)(S-1)P,(cosb,)| , ®

dGeI(E1 ec) —
aQ,

S = exp[2i%(E)],

where the statistical weights are g = 1 for He(2'S), g =
1/3 for He(23S) for the doublet terms and g = 2/3 for the
quartet term.

The dependence (on I) of thereal parts of the partial
phases for 'S (3S) scattering on the2Z* terms has amax-
imum at | = 37 (28). This means that scattering is char-
acterized by aglory at small angles.

The differential elastic-scattering cross section of
the singlet and triplet metastable states of the helium
atoms scattered by a sodium atom at 68 meV, which we
calculated in the center-of-mass system in the entire
range of angles, are presented in Fig. 1, and the com-
puted cross sections in the laboratory system, taking
account of the experimental range of scattering angles,
are presented in Fig. 2. As expected, the angular depen-
dence of the cross sections possesses a strong interfer-
ence structure. Comparing the doublet DSC for
He(2'S) and He(289) (Fig. 1, curves 1, 2) shows that
they possess low-frequency structure (which is more
pronounced for the singlet state) and high-frequency
structure. The quartet DSC (curve 3) possesses only a
high-frequency structure (we recall that the quartet
scattering phases were calculated semiclassically). The
guartet DSC in the range of angles (~0.5°-150°) is
somewhat greater than the doublet cross section for the
triplet state (compare curves 3 and 2) and is comparable
to the DSC for the singlet state (curve 1). For this rea
son, the total DSC over both terms for the triplet state
(curve 4) possesses primarily the features of the quartet
DSC, except for the range of angles 6, = 150°-180°.
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Fig. 1. Computed differential elastic scattering cross sec-

tions for metastable He(21 39) atoms scattered by Na(329)
atoms, in the center-of-mass system for energy E = 68 meV:

1—singlet 21Sstate, doublet term; 2—triplet 23S state, dou-
blet term; 3—triplet 23S state, quartet term; 4—triplet 23S
state, total over both terms; and 5—sum over two states.

Thus, it is evident that the theoretical differentia
elastic-scattering cross sections for individua terms
(curves 1, 2, 3) and the total cross sections (curves 4
and 5) presented in Fig. 1 are characterized by a com-
plicated angul ar dependence. We al so note that the scat-
tering cross section for the singlet and triplet states of
helium for the doublet terms (curves 1, 2) possess fea-
tures in common as well as distinguishing features.
Specifically, the absolute value of the triplet DSC
(curve 2) is somewhat smaller than the singlet cross
section (curve 1), and their angular dependences in the
ranges 5°—40° and 110°-180° are substantially different.

3. EXPERIMENT

The experiment was performed using the overlap-
ping-beams technique and the spectroscopy of metasta-
ble states [16]. The beam of metastable atoms was pro-
duced using an ultrasonic nozzle-type source with lon-
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Fig. 2. Sameasin Fig 1 but in the |aboratory system without
summation over the two states of helium.

gitudinal electron excitation, and the beam of sodium
atoms was formed by a dlit-type effusion source.
A channel electronic multiplier, making it possible to
measure the DSC in a range of scattering angles 6, =
0.5°-20.5° with angular resolution A8, = 0.5°, served
as a detector of the scattered metastable atoms. The
scanning step of the DSC curve was 0.5°. As aresult of
the specific nature of the experiment, selection of meta-
stable atoms with respect to individual states was not
performed, so that the measured DSC isa sum for both
metastable states (singlet and triplet). The DSC curve
obtained (see Fig. 3) is the result of repeated many
times scanning of the range of scattering angles, and the
relative statistical spread at each point of the experi-
menta curve did not exceed 5%. The “nonidedlity” of the
experimental instrumental function made it necessary to
perform additional averaging of the computed DSC taking
account of the real parameters of the experiment (A8, =
0.5°, AV, = +545 misec, AV, = £140 m/sec). In addi-
tion, we note that the uncertainty of the scattering angle
(on the average =5% for the entire range of angles), the
uncertainty of the particle velocity (=10%), and the
uncertainty in detection of the useful signal (=5%) con-
tribute to the measurement error in the experimental
curves. Thus, the total error of the relative measure-
ments taking account of averaging of the experimental
curves should not exceed 25%. The confidenceinterval,
determined taking account of what we have said above,
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Fig. 3. Differential elastic scattering cross section for meta-
stable He(21 3S) atoms scattered by Na(32S) atoms in the
|aboratory system at E = 68 meV (sum over two states): 1—
calculation (atz) /sr) without averaging (dotted curve) and

with averaging over 1.5° (solid line) and 2—experimental
cross section (arb. units).

is indicated in Fig. 3 and, as we shall see, does not
exceed the amplitude of the irregularities of the cross
section.

The experimental DSC curve presented in Fig. 3
drops sharply at small scattering angles, which is fol-
lowed by low-frequency (3°-5°) irregularities of the
cross sections on the flat section. To explain this behav-
ior of the total differential cross section we used the
theoretical scheme proposed above to calculate the
DSC in the laboratory system.

4. DISCUSSION

The total computed DSCs in the laboratory system
are presented in Fig. 3 (curve 1) in comparison with
experiment (curve 2). It is evident that the behavior
of the experimental DSCs on the whole agrees with the
behavior of the theoretical cross section: a diffraction
maximum (B8, < 5°), followed by interference behavior,
which is manifested in the theoretical curves in the
form of high-frequency (6, < 1°) and low-frequency
(6, = 3°-5°) structures. As one can see in Fig. 3, our
averaging over the instrumental function smooth the
high-frequency structure. The low-frequency structure
of thetotal DSC isdetermined primarily by the structure
of the scattering of 2'S helium atoms (see aso Fig. 2).
The structure of the DSC is due to the interference of
the scattering waves corresponding to the three
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branches of the impact parameter as functions of the scat-
tering angles [17]. These three branches of the impact
parameter correspond to the three parts of the optica
potentials which were used: attraction at the periphery
(van-der-Waals potential), central attraction (potential
well), and central repulsion at short distances. The kink
inthe DSC at 5° isprobably dueto the behavior of these
parts of the optical potentials, which influence the for-
mation of the partial phases. Moreover, because of the
large depth Vg, of the well in the optical potential and
the low collision energy E, the ratio E/Vg, (equal to
0.23 and 0.1 for *Sand 3S states) is very small, which
makes it possible to assume that the behavior of the DSC
for both helium states reflects orbiting phenomenon (peri-
odic oscillations of the nonaveraged DSCs with a step of
about 2° in Fig. 3). For orbital angular momenta from
| =37 to| = 76, the partial phase shifts regularly take
values which are approximately multiples of 1t The
experimental minimum at 6, = 14° and the theoretical
minimum at 6, = 15° could be due to orbiting phenom-
enafor the2Z* term, more for scattering of the 2'Sstate
of helium and less for the 2°S state.

In [7] we calculated the DSC, using the optical
potential from [2], for He(21S) scattering. The real part
of this potential decreases slowly by a factor of two in
the range R = 0.1-0.5a,, while the real part of the opti-
cal potential in [3] decreases by a factor of approxi-
mately 33 in the same range. The imaginary part of the
optical potential in [2] is much greater than the imagi-
nary part of the optical potential from [3]: by morethan
afactor of 10* for R = 0.1a; and afactor of ten for R=
6a,. At large distances, however, it rapidly drops below
the imaginary part of the potential from [3], for exam-
ple, for R = 15a, by afactor of 1500. In thiscase, R, =
5.53a,, R, = 6.33;, and Vg, = 300 meV (compare with
the corresponding parameters, presented above, for the
optical potential in [3]). The DSC calculated in [7] in
the laboratory system did not have low-frequency
structure and it was characterized by monotonic behav-
ior, while gqualitative agreement with the results of our
experiment was observed only on the section up to=5°.
This behavior agrees with the result of [3], where the
DSC for He(2'S) and E = 52 meV shows smooth behav-
ior for the optical potential from [2] and akink at 5° for
the potential from [3]. Moreover, the DSCs calculated
in [7] assuming V, (R) = O for angles from 30° to 120°
lie above the DSCs obtained for V,(R) # 0, which
agrees with the behavior of the DSC, described in [1],
for He(2'S) + Ar scattering. Therefore it can be con-
cluded that on the whole the optical potentials from [3]
correctly reflect the nature of the interatomic interac-
tion of the system of particles under study.

The scattering phases which we calculated made it
possible to give a more complete description of scatter-
ing and to obtain ultimately the following integral-type
cross sections: diffusion, oy, viscosity, o,,; elastic scat-
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Integral-type cross sections for the scattering processes He(2% 35) + Na(32S) at 68 meV (in units of a2)

Cross section He(21dS)0l4J-bll\leat\(3ZS), He'9 + N9 Total
doublet quartet subtotal

Og 2070 605 1550 2155 4225

o] 115 58.0 - 58.0 173

c 2185 663 1550 2213 4398

Op 424 143 132 275 699

g, 335 65.9 243 309 644

tering, o4; absorption (Penning ionization), o;; and
total, o [14, 15]:

: dog
op(E) = ZnJ’decsnec(l—cosec)a—e—',

c

. 3 dO'e
o,(R) = ZHJ’dBCsm eca-e—c',

04(E) = ch(E), 0,(E) = I1_T2(2|+1)|3—1|2,(9)
|

/(E) = %TIZ(Z' +1)(1-|8),

o(E) = i—?lz(m +1)(1-ReS) = 04(E) +0,(E)

(see table). The contribution of the cross sections for
the quartet term “* for the process He(22S) + Na(329)
is very large compared with the contribution of the
cross sections corresponding to the 2z* term: it is
comparable to the latter for op, is 3.5 times greater
than it for o,), and is 2.5 and 2.3 times greater for oy
and o. In [7], we noted that the inelastic processes
have a large effect on the diffusion cross section cal-
culated with the optical potential from [2] for He(2'S) +
Na(3?S) scattering, which decreases approximately by
afactor of two.

The theoretical values of the Penning ionization
Cross sections g; obtained from the computed curve in

[3] for 68 meV are approximately 257a5 and 114a; for
He(2'S) and He(23S), respectively (compare with our
values of g; from the table).

The curve of the dependence o;(E) calculated in [2]
using the optical potential obtained in the same work
for He(21S) scattering lies systematically above the cor-
responding curve obtained in [3]. The ionization cross
section which we calculated with the optical potential
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from [2] o; = 2474 is less than that obtained in the

samework g; = 332a(2J (see[7]). Wenote herethat in[3]
(and, apparently, in [2]) the scattering phases were cal-
culated on the basis of only the semiclassical approxi-
mation. The experimental value of the cross section g;

for50meV is 214a§ (x100%) [18]. Thus, the cross sec-
tion o,(E) calculated in [7] falls between the values pre-

sented in [2] and [18], and our value (68 meV) is sub-
stantially less than the theoretical valuein [3].

A similar pictureis aso observed for the ionization
cross section for He(23S) scattering. There are two

experimental values. o; = 114a’ (+5%, —10%) for

about 40 meV [19] and o; = 86a§ (£100%) for 50 meV

[18]. The computed data in [3] lie above these values,
and our computed value (for 68 meV) ismuch lessthan
the value of o; in [3]. We note that the value obtained
for o, for 68 meV in the semiclassical approximationin

[10] is about 12232 (taking account of the statistical

weight 1/3), which is much greater than (by a factor of
two) the vaues which we obtained and is somewhat
greater than o; in[3]. We note that the real part of the opti-
ca potentia in[10] isthe*12—6" Lennard-Jones potential
with Ry = 5.35a,, R,,= 6.0a,, and V,,= 735 meV, and the
imaginary part has the form V|(R) = 0.6exp(-R) [a.u.].
Comparing this potential with the analogous potentials
in [3] showsthat they coincide near the minimum of the
potential and in the asymptotic range, but the potential
in [10] has stronger repulsion for R < R,. In [10], the
imaginary part of the potential is 50 times greater than
the imaginary part of the potential from[3] at short dis-
tances and approximately 1.2 times greater at R= 15a,,

Theratio of the ionization cross sections in the pro-
cesses He(21S), He(239) + Nawhich is determined both
experimentally and theoretically, is discussed in [4]. It
is asserted that it depends weakly on the collision
energy. For 70 meV, according to the experimental
datain [4], thisratio is 2.8 (+30%), while according to
the experimental datain [20] the ratio is 3.1 (+30%).
It follows from the experiment in [18] that for 50 meV
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the ratio is 2.5. The theoretical values of thisratio are
systematically lessthan three, which correspondsto the
ratio of the statistical weights of the spin-allowed colli-
sions for these processes. Thus, the ratio obtained
according to our computed values of the ionization
Ccross sections (see table) is 2.0. The value of the same
ratio according to the results of [3] is 2.2 for 50 meV
and 2.3 for 68 meV. In [4] the value 2.18 is obtained
using the optical potential from [3], while the value is
2.15 with the real part of the optical potential obtained
in [4] ab initio and the imaginary part from [3]. As one
can see, our values agree well with all of these data.

A spin-exchange process, which is possible for scat-
tering of He(22S) by Na(3%9), isindicated in [10]. The
amplitude of such aprocessisf(m, m,; m;, m,; E, 6,) =

(2¥213)[f(E, 8,) —f«(E, 8.)], where m;, my; m;, m, are
the projections of the spins of the Naand He atoms before
and after acollision, respectively (my + m, = m; + m),
and f, and f4 are the scattering amplitudesfor the quartet
(partia phase n;(E)) and doublet (partid phase 94(E) =
€4(E) +in,4(E)) terms. The corresponding total spin-
exchange cross section has the form

(10)
x{1+ mzd(E) —2n4(E)cos(2[£,4(E) —€,4(E)])},

where n4(E) is related with the imaginary part of the
phase 1,4 (E). Our computed value of the cross section

tr 2Tr°°
= = [
o (E) k2|2:0(2 +1)

iso"(68 peVv) = 300a§ . The main part of the cross sec-

tion (298a§ ) was obtained for waves with | ranging
from O to 149, where g4 and n,4 were found from the
guantum-mechanical calculation using the optica
potential from [3]. As we have noted above, the phase
€4 Was caculated in the semiclassical approximation
with the potential from [10]. According to the datafrom

thiswork, the cross section 6'(68 meV) was 200a§ .As
indicated above, the Penning ionization cross section for

He(2°S) in [10] is greater than our value. This attests to
small values of 4 (the partia ionization cross sectionis

proportional to 1— 17 ). A consequence of this (see (10))

is that the exchange cross section in [10] is small. Thus,
the spin-exchange cross section is very sensitive to the
imaginary part of the partiadl waves and hence to the
imaginary part of the optical potential employed.

5. CONCLUSIONS

The experimental and theoretical investigations of
the elastic scattering of He(2L3S) atoms by Na(3%9)
atoms at 68 meV performed in thiswork made it possi-
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ble to interpret for the first time the structure observed
in the DSCs at small scattering angles. Thus, we found
that the low-frequency structure of the angular depen-
dence of the differential cross sections is due to the
interference of the amplitudes from different parts of
the interaction potential together with the phenomenon
of orbiting. This structure is determined primarily by
the characteristic features of scattering of metastable
helium atomsin the singlet state.

The quantum-mechanical and semiclassical repre-
sentations, which we employed for the calculations, for
asystem of strongly interacting atomic particles Rg*M
in the approximation of an optical potential, to find
which this system is treated as an autoionization com-
plex, correctly describe the characteristics of elastic
scattering at this energy.

The Penning ionization cross sections which we cal -
culated with such optical potentials arein good quanti-
tative agreement with the existing experimental data.

The tota spin-exchange cross section for scattering
of metastable helium atoms in the triplet state is very
sensitive to the magnitude of the imaginary part of the
optical potential, and the quantum-mechanical descrip-
tionin this case is decisive.
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Abstract—A physical model, based on the solution of the quasi-optics equation for the transverse correlation
function (TCF) of the field amplitude, is developed for investigating the brightness, angular divergence, and
spatial coherence of the amplified spontaneous emission in alaboratory X-ray laser. The model takes account
of the spontaneous source of radiation, diffraction, regular refraction, regular amplification taking account of
saturation, nonresonance absorption, scattering by small-scale fluctuations of the electron density and the gain,
and scattering by random hose-like deviations of the extended plasma medium of the X-ray laser. It is estab-
lished that the TCF method makesit possibleto obtain thefinal result much more quickly than the basic Monte Carlo
method for the parabolic equation for the field amplitude. Asaresult of the statisticd linearization of the equation for
the transverse correlation function in the presence of gain saturation, this method overestimates the absolute values
of the average intensity of the amplified spontaneous radiation, but the maximum overestimation does not exceed
10%. It isfound that fluctuations of the optical parameters of the medium of the X-ray laser degrade the quality
of the amplified spontaneous radiation beam, and they are the analog of the nonresonance absorption from the
standpoint of the effect on the brightness of the laser and therefore decrease the observed gain. For the charac-
teristic conditions of an X-ray laser with a quasistationary generation scheme, the contribution of small-scale
gain fluctuations and random hose-like deviations of the plasma filament of the laser to the scattering of the
amplified spontaneous radiation is much smaller than the contribution of small-scale density fluctuations. Cal-
culations of the amplified spontaneous radiation in an X-ray laser, which is produced by unilateral irradiation
of acurved target and possesses an asymmetric plasmae ectron density profilein the gain zone, are performed.
It isshown that in the gain saturation regime the coherence length and the coherent power of the amplified spon-
taneous radiation can be substantially increased, realizing in the gain zone a convex electron density profile
instead of atypical concave profile. It isfound that this improvement of the coherence occurs only under con-
ditions such that the characteristic depth of the small-scale density fluctuations does not exceed several percent

of the typical regular values of the density in the gain zone. © 2000 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

One of the most important problems of laser physics
isto decrease the wavelength of the laser radiation and
to develop alaser in the far-UV and soft X-ray ranges
A =0.2-100 nm. An X-ray laser will make possible
substantial progress in many areas of science, technol-
ogy, and medicine [1]. One of the most striking exam-
ples of this potential application is time- and space-
resolved holography of live cells.

The working medium of an X-ray laser is a plasma,
which is ordinarily obtained by focusing the radiation
from an optical laser into aline on asolid target or in a
capillary electric discharge. In the plasma column
formed, the X-ray laser radiation developsin aregime
of amplified spontaneous radiation. The most promis-
ing schemes are those with laser transitions in Ne- or
Ni-like ions. Powerful lasers with nanosecond pulses
and an energy of hundreds of Joules were first used for
pumping [2]. This makesit possible to obtain quasista-

tionary generation. However, there are only afew pow-
erful laser setups in the world, and experiments are
quite expensive to perform using them. For this reason,
an interesting result was the devel opment of atable-top
X-ray laser operating on acapillary discharge, where qua-
Sstationary generation of far-UV radiation was obtained
without using laser pumping [3]. In addition, lasing was
subsequently obtained by irradiating the target with an
optical laser with picosecond [4] and femtosecond [5]
pulses with ~10-1000 mJ per pulse. The nonstationary
transitional amplification regime makes it possible to
obtain a gain of tens and hundreds of inverse centime-
ters. The result of all thisisthat the X-ray laser is grad-
ually becoming a compact device, accessibleto alarge
number of laboratories as an object of and tool for
research [6, 7].

From the mid-1980s to the present lasing has been
obtained on more than 100 lines in the range of wave-
lengths A with the lower limit lying inside the “water
window” (2.33-4.36) nm, whichis convenient for holo-
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graphic measurements in biology. The brightness and
monochromaticity of X-ray lasers are now much higher
than those of alternative X-ray sources, which has made
it possible to begin the use of X-ray lasers in plasma
diagnostics [6, 7]. However, many applications of the
X-ray laser cannot be implemented, including holo-
graphic applications, because at present the spatial
coherence and divergence of X-ray laser radiation is
low and much higher than the diffraction limit. Obtain-
ing from an X-ray laser a beam of radiation with angu-
lar divergence of the order of the diffraction divergence
and a high degree of spatial coherenceisat present one
of the key problems in this complicated and multilevel
problem [8].

The poor quality of an X-ray laser beam isdueto at
least three factors. In the first place, the spontaneous
radiation that must be amplified has awide divergence.
Even if the gain zone is optically uniform, to obtain a
single-mode regime with a gain zone of transverse
size athelength of the X-ray laser must be z~ a?/A. For
a~100 umand A = 0.2-100 nm, zistens of centimeters
and meters. Since for a promising picosecond pumping
regime the characteristic length of an X-ray laser isless
than 1 cm, it is obvious that the amplified spontaneous
radiation is multimode. This problem could be solved by
using a master oscillator for such radiation and an ampli-
fier separated from one another by at some distance. B,
inthe second place, the plasmaactive medium of an X-ray
laser is characterized by large-scale transverse nonunifor-
mity, since during generation the plasma isin a state of
expansion. The refraction of the amplified spontaneous
radiation causestheradiation to leavethe gain zone, which
additionally degrades the angular, the energy, and, as a
rule, the coherence properties of the radiation. In the
third place, one reason for the low quality of the ampli-
fied spontaneous radiation beam could be the presence
of small-scale random optical irregularitiesin the X-ray
laser. For alaser plasma, they are related with the non-
uniformity of the target and its surface, the nonunifor-
mity of irradiation of the target, the filamentation of the
pump beam in the plasma, induced scattering of the
pump, turbulence, and so on.

It should be noted that work to improve the quality
of the amplified spontaneous radiation beam has been
conducted in parallel with the search for new active
media for an X-ray laser and attempts to decrease the
wavelength. The methods for improving the quality of
the amplified spontaneous radiation beam in an X-ray
laser are described in the review [8]. Striking progress
has been achieved by using apreliminary pump pulse[9]
and by curving the target [10]. This make it possible to
decrease the divergence and increase substantially (by
an order of magnitude) the brightness of the X-ray laser
operating on transitions in Ne- and Ni-like ions [11].
Nonetheless, the divergence and spatial coherence of
amplified spontaneous radiation are far from ideal.

Computational-theoretical investigations play a large
rolein solving the problem of the quality of an X-ray laser
beam. The dynamics of the amplified spontaneous radia-
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tion is an integral part of the theoretical description of
an X-ray laser, together with the hydrodynamic plasma
in the kinetics of the level populations of ions. One
method for describing the dynamics of amplified spon-
taneous radiation is the conventional geometric optics
method, which has been used in the approximation of a
regularly-nonuniform active media of an X-ray laser (see,
for example, [12-16]). However, for characteristic sizes of
optical irregularities ~1-10 pm, diffraction can play an
appreciable role. Wave effects must also be taken into
account when the transverse coherence length of the
amplified spontaneous radiation becomes comparable
to the beam width. In addition, it is difficult to investi-
gate coherence, which is a purely wave property of
amplified spontaneous radiation, by the methods of
geometric optics.

Wave effects can be taken into account on the basis
of the method of the parabolic equation for the complex
amplitude of the radiation field. This method has been
used to calculate the amplified spontaneous radiation in
a reqularly-nonuniform active medium of an X-ray
laser (see, for example, [17—23]). The parabolic equa
tion was either smplified usng a mode expansion for
specid profiles of the optical parameters[20-23] or it was
solved numerically for arbitrary distributions of the optical
parameters[17-19]. But, for arandom source of radiation
the parabolic equation method requires multiple calcula
tions of the equation (statistical tests) and averaging of the
results over an ensemble. This approach requires long
computer caculations. The parabolic equation method
becomes especidly complicated when additional random
parameters of the medium are included in the andysis.
Switching from a parabolic equation to an equation for the
transverse correlation function (TCF) for the amplitude of
the field has made it possible to circumvent the problem
of averaging over an ensemble of realizations [24-26].
When the transverse coherence length is much less than
the beam width, the TCF method makes it possible to
obtain a numerical result much more quickly than the
parabolic equation method. The TCF method has been
used to investigate the formation of amplified spontane-
ous radiation in an X-ray laser in regularly nonuniform
[27-30] and randomly nonuniform [31—-34] mediawith
an arbitrary digtribution of the optica parameters. In a
smplified approach with special profiles of the optical
parameters, the TCF method has aso been used to inves-
tigate the amplified spontaneous radiation in a randomly
nonuniform medium of an X-ray laser [35, 36].

The present paper is devoted to three aspects associ-
ated with the TCF method and its application for calcula
tion of the dynamics of amplified spontaneous radiation.
Firg, the TCF method with gain saturation is improved.
The two-level medium approximation is used to take
account of gain saturation in calculations of the amplified
spontaneous radiation with the aid of the parabolic equa
tion [17-19]. The equation for the TCF was obtained
from the parabolic equation in [24—26] taking account
of gain saturation in an approximate form, using statis-
tical linearization of the nonlinear terms of the equation
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which take account of the amplification. The result is
that the parameters of the amplified spontaneous radia-
tion that are obtained from the equation for the TCF are
somewhat different from the average parameters found
by the Monte Carlo method for theinitial parabolic equa
tion [37, 38]. In the present paper a correction is intro-
duced to the dtatistical linearization of the equation for
the TCF. The improvement of the TCF method permits
obtaining data closer to the average-statistical data.

Second, the TCF method is used to study the effect
of random irregularities of the parameters of the medium
of varioustypes of X-ray lasers on the amplification of the
spontaneous radiation. The ordinary fluctuations of the
permittivity and gain, analogous to turbulent fluctuations
in the atmaosphere, as well as hose-like fluctuations (cha
otic transverse displacements) of the plasma filament of
the X-ray laser are taken into account at the same time
[39]. The results of calculations of amplified spontane-
ousradiation in athree-dimensional randomly inhomo-
geneous medium are presented. These are the first
results published in the literature on X-ray lasers. The
effect of gain fluctuations, which are observed in an
X-ray laser based on Ne-like yttrium, on the amplified
spontaneous radiation is estimated.

Finally, a method for improving the coherent prop-
erties of the amplified spontaneous radiation beam in
an X-ray laser whose active medium is produced by irra-
diating athick target with laser radiation and is character-
ized by an asymmetric dengity profile of the expanding
plasmain the gain zone is examined. One reason for the
remaining low degree of coherence when using a pre-
liminary pump pulse and curving the target is residual
refraction, which for the typica concave transverse den-
sty profileis of afocusing character. As shown in [30], a
convex instead of a concave transverse densty profile
would substantialy improve the coherence of the ampli-
fied spontaneous radiation with a curved target because of
the residua defocusing effect. In [30] the case of linear
gain was examined, whereas in the present paper the
behavior of amplified spontaneous radiation with gain
saturation, which is achieved in experiments, isinvesti-
gated. The degree of the possible negative influence of
permittivity fluctuations on the improvement of the
coherence is determined.

2. THE PARABOLIC EQUATION METHOD

The dynamics of amplified spontaneous radiation in
the plasma of an X-ray laser in the quasigtationary caseis
described by a parabolic equation for the dowly varying
complex amplitude E of theradiation field [8]:

K(r, 2)

+i-2l—([s(r, z)-1]+—>—

[i + 10
aZ 2kar2 2

__a(r,z)/2
1+ J(r, 2)/ ey

)
}E(r, 2) = 4(r, 2),
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wherer =ix + iy isthe transverse radius vector, zis the
longitudinal coordinate, k is the wave number, K is the
nonresonant absorption coefficient, a is the weak-sig-
nal gain, J = |EP? isthe radiation flux density, and Jg; is
the saturation flux density. The equation (1) describes
amplified spontaneous radiation propagating in one
direction along the zaxis. This correspondsto the“trav-
eling wave” pumping regime of the active medium. The
guantity € in equation (1) is the plasma permittivity
determined by the contribution of free electrons [40]:

£ =n°=1=-NJN,, )

where N, is the free-electron density and N is the crit-
ical density. For soft X-ray and far-UV ranges (A = 0.2—
100 nm) N, > N, in the plasma of an X-ray laser [1],
ie,e=1

The source S on the right-hand side of eguation (1)
is delta-correl ated:

[8(r 3, ) S (r5 2)0= ANQ(r)32(r, —1,)8(z, - 2),

where Q is the average specific power of the spontane-
ous noise, measured in W/cm?® &1 In equation (1) the
influence of saturation on the source power is neglected,
but it isobviousthat in the saturation regimetheintensity
of the amplified spontaneous radiation is quite high and
the role of the source becomes negligible.

It is impossible to solve equation (1) in a genera
form analytically. Expanding the field amplitude E in
terms of transverse modes makesit possibleto simplify
theinitial problem for linear gain (J < Jg,;) and for cer-
tain model profiles a and €, where the transverse modes
are determined anayticaly [20-23]. The mode
approach is not realized for the saturation regime. The
direct numerical solution of equation (1) is of greater
practical utility. The transverse grid step is Ax ~ A/6,,
where 6; is the divergence angle of the radiation from
the noise source. As aresult of the large divergence of
the noise and the smallness of A, the humber of grid
pointsisusually large, and the integration step along z,
Az ~ k(AX)?, issmall. For this reason, present-day com-
puters make it possible to study only the case of apla
nar medium (with one transverse coordinate) [18, 38].
In addition, a single solution of the parabolic equation
with arandom source gives the result of asingle statisti-
cal test (aredlization of arandom process). To obtain the
average characteristics, the solutions obtained for the
parabolic equation must be averaged over an ensemble
of redlizations [38] or over time [18, 19], and this
requires long computer calculations. It is worth noting
that the difficulties increase when the randomness of the
parameters of the medium is taken into account.

In the numerical calculations below, the finite-dif-
ference algorithm described in [41] is used to solve the
parabolic equation (1) numerically. The accuracy of the
algorithm is much higher than that of spectral methods
[18, 19]. The amplitude error of the harmonic solution
of the homogeneous equation is zero, and the phase error
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is substantially reduced (~(Ax)®). Splitting according to
physical processes is used to take into account the non-
uniform termsin the equation.

3. THE METHOD OF THE EQUATION
FOR THE TRANSVERSE
CORRELATION FUNCTION

3.1. The Equation
for the Transverse Correlation Function

To avoid the problem of averaging over an ensemble
of realizations, an equation for the second moment of
the field amplitude can be obtained from the stochastic
equation (1) 3/4 the transverse correlation function B =
E(r 4, 2E*(r,, 2Jwhere the brackets denote statistical
averaging.

In performing the averaging we take account of the
fact that two types of random optical irregularities are
present in the plasma. The first type corresponds to
ordinary permittivity and gain fluctuations, which are
characterized by a definite spatial spectrum, dispersion,
and correlation lengths, i.e., according to the method
used for the description, they are similar to, for exam-
ple, fluctuations of a turbulent atmosphere [42]. These
fluctuations can arise as a consequence of various
plasma instabilities of the X-ray laser (see [8]). The
fluctuations of the second type are due to chaotic devi-
ations of the plasmafilament asawhole from arectilin-
ear form. They can be called axial fluctuations (the term
hose-like fluctuations is used in the English-language
literature [39]. Hose-like fluctuations could be due to
the nonuniformity of the irradiation of the target by
radiation from the optical laser. We shall simulate the
hose-like fluctuations by a chaotic displacement of the
regular gain and refractive index profiles. For this rea
son, we represent € and a in the form

g(r,z2) = (r +1,2) +£(r,2)
=&(r,2) +r(2)0E(r, 2) + £(r, 2),

a(r,z) = a(r+r1,2)+af(r, 2)
=a(r,2z)+r(2)050(r,2) +a(r, 2),

where &€ and @ are the regular components, € and o
are the fluctuation components, T is the random trans-
verse displacement of theregular profiles € and @ , and
0 is the transverse gradient. The fluctuations €, a,

and 1 are statistically independent and possess zero
means. We neglect the fluctuations of k, since Kk < a.
The general prescription for obtaining the equation for
the TCF in arandomly inhomogeneous medium in the
Markov approximation can be found, for example, in
[42]. In [24, 25] it is extended to the case of an active
medium with refraction.

However, the derivation from equation (1) of the
eguation for the TCF presents a difficulty because of
the existence of the flux density J(r, 2) in the denomi-
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nator of the nonlinear term (1), responsible for amplifi-
cation with saturation. This problem can be solved by
using the method of statistical linearization [43], which
reduces to replacing certain fluctuating quantities in the
stochagtic equation by averages. In the present case, it will
consist of replacing J(r, 2) by BB(r, O; 2), where B(r, 0; 2)
is the average radiation flux density in the TCF method
and B is a parameter that depends on the ratio B(r, O;
2/Jy, i.e., ontheloca degree of saturation.
Finally, the equation for the TCF becomes
o i 9 k.. _
[az+ karar T (M 2812 2)]

. . 2
DD Wy

a(rqy; 2)/2 ®)

T 1+BB(ry, 0; 2)/Ieu(ry; 2)

a(ry; 2)/2 .
T 1+ BB(ry, 0; 2)/J(r o Z)}B(r,r 2)
= N°Q(r; 23(r"),
wherer =(r; +r,)/2andr' =r, —r,. Scattering by the
fluctuations of the parameters of the medium is deter-
mined by the function H(r, r'; 2) = H + H, + Hy, where
He(r,r'; 2)

AL 0,2 +A(r,0;2) —2A(r, 1) (4

B 2T ’

H,(r,r"; 2)
Au(ry, 0;2) + Ay(r,, 0; 2) + 2A,(r, 1", 2)  (5)
21K3[1 + BB(r, 0; 7)1, ]? ’

H(r,r'; 2)

. i dga(r, 2)
[r 05E(r, 2) +'|'<'[1+ BDB(r,O; 7)]

_ A2
T 2m

2 ()
]

are responsible for, respectively, theinfluenceof €, a,
and r . For Gaussian correlations of the quasi-uniform
fluctuationsof €, a,and r we have

A(r,r;z) = (2n)”2082(r,z)lsu(r,z)

x exp[-11215(r, 2)], (7)
Au(r, 1 2) = (21)05 (1, 2)lgy(r, 2) ©
x exp[-17/254(r, 2)],
An(2) = 2" *LE@)L(2), ©)
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2 2 . ~ ~
where o, and o, arethevariancesof € and o ; I, and
lgy are the transverse and longitudinal correlation
lengths of € I, and |l are the transverse and longitu-

dina correlation lengths of a; and, Lé and L are,
respectively, the dispersion and the longitudinal corre-
lation length of t . The relations (4)~(6) hold when the
average flux density of the amplified spontaneous radia
tion changeslittle over adistance of the order of the trans-
verse correation length of the parameters of the medium
and the transverse coherence length of the medium.

The general criteriafor applicability of the Markov
approximation [42] are usually satisfied in the case of
an X-ray laser [25]. The restriction on the propagation
path length, which occursin aninfinite randomly inhomo-
geneous medium [42], is absent in the case of a trans-
versaly bounded plasma filament of an X-ray laser [33].

3.2. Determination of the Parameter 3

In the presence of gain saturation, the parameter (3
should be such that the parameters of the amplified
spontaneous radiation, which are determined from
equation (3) for the TCF, would be as close as possible
to the truly average quantities. The truly average quan-
tities are found by solving numerically the parabolic
equation (1), which isthe initial equation for the equa-
tion for the TCF. The equation (1) must be solved
repeatedly by the Monte Carlo method, averaging the
required results over an ensemble of noise realizations.

In previous TCF investigations of the dynamics of
the amplified spontaneous radiation it was assumed that
B = 1 in the saturation regime [24-33]. The error in
determining the average energy characteristics of the
amplified spontaneous radiation which is associated
with the statistical linearization of the equation for the
TCF with fixed 3 has been discussed in [37, 38] in the
absence of fluctuations of the parameters of the
medium. It was shown that B = 1 makes it possible to
describe best the case of deep saturation. In the present
paper we introduce a correction into equation (3), using
amore complicated dependence of 3 on B(r, 0; 2)/Jy;,
in order to make the results of integrating the equation
as close as possible to the true averages.

Let us consider the dynamics of the amplified sponta-
neous radiation, neglecting diffraction, refraction, nonres-
onant losses, and fluctuations of the optica parameters.
Such an approximate approach makes it possible to
determine analytically the statistical characteristics of
the radiation and to perform statistical linearization of
the equation for the TCF more accurately. For conve-
nience in performing the analysis, the spontaneous
noise in the volume of the medium can be neglected
(S=0), replacing this noise by a source in the section
z=0. Thisisjustified for sufficiently large gain, when

expG > 1,
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where

z

G = Jo’a(z)dz,

which isrequired for gain saturation. Then, equations (1)
and (3) assume the forms, respectively,

0J(2) aJ(z) B L )
9z 1+3(2) 3w 0, J(0) = Js = |E{", (10)

0B(z) dB(2)
0z 1+BB/Jy

=0, B(0) =0 (1)

where Egand J are the field amplitude and the flux den-
sity of theradiation from the source. The dependence of
[3 on [JOs determined from the condition B = [JCI Then,
we obtain from equation (10) with equation (11)

B = g/1+jOt-go,

wherej = J/Jg,. From equation (12) we can estimate the
range of variation of 3. We shall assume that the inde-
pendent components of E; are distributed according to
a Gaussian law with zero mean. When the influence of
saturation is weak, [jJ< 1, the statistics of the field
amplitude remains Gaussian. Then, expanding the
right-hand side of equation (12) in apower seriesin the
small parameter [j[]it follows that 3 = 2. In the other
extreme case, where saturation is deep, i.e.,, > 1, it
is evident from equation (12) that (3 approaches 1.

(12)

The solution of equation (10) can be written in the
implicit form
In(j/j)+j-js = G, (13)
where j = J4J. Amplification lengths for which J > J,
are interesting, and since j << 1, the term j on the left-
hand side of equation (3) can be neglected, i.e,, j, =
jexp(j — G). Since E, is a Gaussian quantity, j, has an
exponential distribution law

W(Js) = exp[_Js/Equ/EjsD

Using this fact, we obtain the probability distribution
function for j:

. 1+ O L. .. O
w(j) = =L exprL explj = imad + i — imx D (14)
Jo 0 Jo 0

wherejo = jmax + (1 + e, @nd j s COrrespondsto the
maximum of w(j) and satisfies the equation

|:js|:|= joexp(jmax_G)-
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The quantity j,..x can also be negative, formally,
jmax > —1, but w(j) is meaningful only for j > 0. For
fixed j .o We have, using equation (14),

N .. .0,
EID=J’expD—-lexp[J—Jmax] 07,
2O Jo O

(rh) = (P expl - joul -0

1+]j { 0 Jo ™ H1+ )
After the integrals have been calculated numerically,
the function (00 can be determined from equation (12).
The result is shown in Fig. 1. The quantity B, as
assumed above, varies from 2 in the absence of satura-
tion down to 1 with deep saturation. The transitional
region corresponds to the range 102 < [j< 10. The
analytic function

B(E) = 1+0.286exp(~0.7281¢) -
+0.242exp(~15.86%) + 0.471exp(~3.13F),

which is used below to solve equation (3) numerically
for the TCF with & = B(r, 0; 2)/Jy;, fits the numerical
data in Fig. 1 well. The principles of the numerical
method for integrating the equation for the TCF are pre-
sented in [24]. In a subsequent work [44] the method is
improved and the phase error of the numerical solution
is substantially decreased.

4. COMPARISON OF THE TCF METHOD
WITH THE PARABOLIC EQUATION METHOD

As a check, equation (10) was integrated numeri-
cally with a = const by the Monte Carlo method with
10* numerical realizations. The values of [jlaveraged
over an ensemble were compared with b = B/Jg
obtained by a single numerical solution of equation (11)
with B = 1 (i.e., without correcting the TCF equation)
and [3(b) determined in equation (15) (with a correc-
tion). Figure 2 shows plots of the relative difference of
b from [jlCBs afunction of [jfor different values of [j[J
For [j (= 102 < 1, the maximum difference of b from
[jOis about 20% without correction [37], and with a
correction it is essentially zero. As the noise level
increases with [J= 10 and 1, when equation (14)
holds increasingly more approximately, the introduc-
tion of the correction (15) does not eliminate the error,
but it does make it possible to decrease the error to
<5%. The introduction of a correction does not change
theresult only for ahigh noiselevel L 10, but in this
case the error issmall.

In comparing the results of the TCF and Monte
Carlo methods, the effect of fluctuations of the phase of
the source radiation in the transverse section of the
medium, which are due to the wide angular divergence
of the spontaneous radiation, was neglected. The sim-
plified approach does not answer the question of the
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Fig. 1. Numerical dependence of 3 on [(squares) and an
analytic fit (solid curve).
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Fig. 2. Plot of b/(J~1 versus [jOwithout correction (solid
curves) and with correction (dashed curves) by statistical
linearization with [jg= 1075,

accuracy of eguation (3) in determining the angular dis-
tribution of the brightness of the amplified spontaneous
radiation. The brightness of the radiation emitted at an
angle 6 = k/k with respect to the optic axisis one of the
most important experimentally measured parameters.
In the TCF method and in the parabolic equation
method the brightness is determined as

0s(6, 2) = )\_ZH'B(r, r': Z)exp(ikor')drdr',

(8, 2)0= )\_2<U'E(r,z)exp(ikDr')dr‘2>.

In what follows we shall compare the average bright-
ness of the amplified spontaneous radiation obtained by
solving equations (1) and (3) numerically, retaining the
transverse differential operators.
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Fig. 3. Average angular brightness distribution of the source
radiation with N, = 1 (fine curve) and 900 (heavy curve).

The active medium is assumed to be planar with
only the transverse coordinate x. It is difficult to per-
form three-dimensional calculations of the amplified
spontaneous radiation by the parabolic equation
method because of the limited present-day computa:
tional possibilities [18, 38]. The parameters of the
medium and the value A = 21 nm are characteristic for
an X-ray laser operating on 3p—3stransitionsin Ne-like
ions with a nuclear charge of about 30 [1]. The half-
width of the active medium is a = 150 um, and the
length of the laser isz=5 cm. Therefore the geometric
divergence angle is 6, = 2a/z= 6 mrad. Inside the gain
zone of the medium (for |x| < a) the gain isuniform and
isequal to @ =4 cm . The symmetric defocusing pro-

file € hastheform
£ =1-Ne+Xz,

where z. = a/(Ag)Y2 istherefraction length. This profile
has been widely used in the numerical simulation of the
dynamics of the radiation in the active medium of an
x-ray laser produced by irradiating athin exploding foil
[13, 14, 21-26]. Outside the active medium (for [x; ,| = a)
we set o = 0 and € = 1. We neglect the nonresonant
losses and the fluctuations of the optical parameters.

4.1. Smulation of a Random Realization
of the Radiation Field

Under the conditions of strong gain, we shal
replace the delta-correl ated radiation source distributed
in the volume of the medium by a source in the plane
z= 0. In the numerical calculations we consider a par-
tially coherent radiation source with abounded angular
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spectrum of half-width 8,. We write the boundary con-
dition for equation (3) as

B(x, x; 0) = [E(Xy, 0)E* (x4, 0)O
_ O0(PBsinc(kx'8y),

. |Xe o >a

X1, < a, (16)

The angular distribution of the average brightness of
the source with the TCF (16) has the form

OdJf2a, |6 <6,
0, 16>,

For an appropriate choice of 8, such a source accu-
rately simulates a delta-correlated source [24]. In the
calculations it was assumed that 6, = 10 mrad, and
increasing this quantity had no effect on the final result.

The boundary condition for equation (1) E(x, 0) = E{(X)
in each redlization is random. We represent E(x) in the
form

05(6) = (17)

Es(X) = ¢.(x) +i¢i(x),
where ¢, and ¢, are rea statistically independent func-
tions. We write each function ¢, and ¢; on agrid as a
linear combination of random numbers Y,,:

m=co

¢(Xn) = Z Cqum+nl

m = —oo

where I \P,0= & Cy = [21 AXA]Y26Sinc(kmAX6,)
(see[45]), and Axisthe step in the grid along x with the
condition Ax < 1Yk, It should also be noted that in
equation (18) afinite number of terms can be summed,
since C,,, decreases as the index increases. The summa-
tion is of a moving character in space, which saves
computer time [45].

The results of the numerical simulation of the radi-
ation source are shown in Fig. 3. The angular distribu-
tions of the source brightness, which are averaged over
an ensemble with N, = 1 and 900 terms, are given. We
note that one realization of the Monte Carlo method
gives a good representation only of the width of the
region of localization of the average angular spectra
(g [Tof the radiation source. The brightness fluctuations
are deep because of the Gaussian statistics; modulation
from O up to values 6 to 8 times greater than the average
occur. The angular radiation spectrum of the source
closely approachesthe distribution (17) only for aquite
large number of realizations N, = 900.

(18)

4.2. Computational Results
for the Amplified Spontaneous Radiation

The results obtained by both methods can differ not
only because of the approximate nature of the TCF
equation but also because of possible numerical errors
in each method. For this reason, such a comparison
must first be made for linear amplification (Jg = ),
when the results should agree in the ideal situation.
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Fig. 4. Plots of the brightness of the amplified spontaneous
radiation [g(8) [{fine curve) and gg(6) (heavy curve) with linear
amplification with no refraction for N, = (a) 1 and (b) 300.

Figure 4 shows the angular distributions of the
brightness of the amplified spontaneous radiation for
linear amplification and in the absence of refraction for
N, = 1 and 300. The divergence of the radiation is of a
geometric character [24]. Once again, asingle realiza-
tion of the Monte Carlo method gives a distorted repre-
sentation of the profile of the average brightness of the
amplified spontaneous radiation. The fluctuations of
the brightness remain deep because the Gaussian statis-
ticsremainsinforce. Increasing N, resultsin smoothing
of the profile [gLJFor N, = 300 the Monte Carlo method
gives a distribution [gOwhich weakly fluctuates around
the profile gg obtained by the TCF method. The results
obtained show that the numerical errors are negligible
in both methods.

Calculations with gain saturation in the absence of
refraction (Ae = 0) were performed for I = 1 arb. units
and J; = 7.5 x 10° arb. units. For these parameters the
average flux density of the amplified spontaneous radi-
ation at the exit of the X-ray laser iscloseto Jg;. Thus,
the approximate character of equation (3) should be
more strongly manifested here. Figure 5 shows the
angular distributions of the brightness of the amplified
spontaneous radiation which were abtained by the TCF
method and by the Monte Carlo method with the para-
bolic equation for N, = 1, 10, and 300. The character of
the divergence remains geometric, just as with linear
amplification (Fig. 4). Radiation exiting through the
end face of the X-ray laser plays the main role. The
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Fig. 5. Plots of the brightness of the amplified spontaneous
radiation [g(6)fine curve) and gg(B) with no correction
B = 1 (dashed curve) and with correction (heavy curve) by
statistical linearization of the equation for the transverse
correlation function with gain saturation and with no refrac-
tionfor N, = (a) 1, (b) 10, and (c) 300.

deep modulation of the angular spectrum of the ampli-
fied spontaneous radiation which occurs for linear
amplification remains in a single Monte Carlo rediza-
tion. The period of the modulation of the brightness at
the periphery of the beam is greater than near the axis,
i.e., according to [29] the coherence at the periphery of
the beam is higher than at the center. It follows from
Fig. 5 that the TCF method does not distort the form of
the profile of the angular distribution of the average
brightness of the radiation. But the fluctuations of the
phase of the field increase the error in determining the
absolute values of the average brightness by the TCF
equation method, without correction, up to ~30%. Itis
evident from Fig. 5 that correcting the TCF equation
makesit possibleto decrease the diff erence between [
and gz from 30% to ~10%. The impossibility of obtain-
ing complete agreement between the distributions [
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Fig. 6. Plots of the brightness of the amplified spontaneous
radiation [g(0)(fine curve) and gg(B) without correction
(dashed line) and with correction (heavy line) by statistical
linearization of the equation for the transverse correlation
function with gain saturation and with refraction for N, = 1
(a) and 300 (b).

and gg using the correction (15) is explained by the
approximate nature of the distribution function (14).

The results of similar calculations by the TCF
method and the Monte Carlo method with N, = 1 and
300 in the presence of refraction with Ae = 10 aredis-
played in Fig. 6. Here refraction plays a substantia
role, since z, = 1.5 cm is much smaller than the length
of the X-ray laser. The divergenceis of atypical refrac-
tion character [26, 28]. In the presence of gain satura-
tion, the spontaneous radiation exiting through the lat-
eral surface of the gain zone forms off-axis peaks at
0 = 0, in the angular brightness distribution, where
6, = Ae¥2 =10 mrad istherefraction angle. However, at
locations where the average brightness reachesits max-
imum value, the spatial coherence of the amplified
spontaneous radiation is relatively low. The degree of
coherence is higher in the region of the beam near the
axis, where the amplified spontaneous radiation which
has exited through the end face of the active medium
dominates [29]. In one Monte Carlo realization the
degree of modulation of the angular spectrum of the
amplified spontaneous radiation is high, and the spec-
trum is smoothed as the number of realizations
increases. It is evident that for B = 1, i.e., without cor-
rection of equation (3), the TCF method overestimates
the absolute values of [Gby ~20-30%. At the same
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time, the TCF method does not distort the profile gLl
When the correcting function (15) is used, the differ-
ence between [gand gz decreases substantialy.

Thus, correcting a statistical realization makes it
possible to increase substantialy the accuracy of the
TCF equation. As the degree of saturation decreases
and increases, the error in determining [gby the TCF
method will decrease even more.

We note that in the absence of refraction, the calcu-
lation by the TCF method requires ten times less time
than a single realization of the parabolic equation, and
in the presence of refraction these times are compara-
ble. This is especialy remarkable: after al, the equa
tion for the TCF is three-dimensional in the planar-
medium approximation, while the parabolic equationis
two-dimensional. The point is that in the parabolic
equation method the transverse grid step is Ax ~ A/@,,
and for the TCF method AX' ~ A/, AX ~ h, where his
the characteristic transverse nonuniformity of the aver-
age flux density, which is of the order of a and much
greater than AX. For this reason, in the first place, the
step along zin the parabolic equation method Az ~ k(Ax)?
[41] is much less than the step in the TCF method Az ~
kAXAX' [24, 52]. In the second place, because of the low
degree of coherence of the amplified spontaneous radi-
ation the size of the grid region along X' in the TCF
method is much less than 2a, and the number of grid
points in the transverse section is smaller than in the
parabolic equation method. In the third place, as noted
above, the TCF method does not require averaging over
an ensemble. To obtain reliable results by the parabolic
equation method, as one can see from Figs. 5 and 6, it
is necessary to average over tens and hundreds of real-
izations. For thisreason, thetimeto obtain afinite aver-
age result by the TCF method is less than by the para-
bolic equation method by a factor of ~10°~10° in the
absence of refraction and by a factor of 1010 in the
presence of refraction. Hence it follows that the TCF
method is much more effective than the parabolic equa
tion method for this class of problems. Characteristi-
cally, the literature contains no calculations of the
amplified spontaneous radiation in an X-ray laser by
the parabolic equation method for a real three-dimen-
sional medium, since such calculationsrequire an unre-
alistic number of grid points [18], while for the TCF
method such calculations have been performed for a
regularly nonuniform [24] and randomly-nonuniform
media (see below). It isalso important to note that when
random parameters of the medium are additionally
included in the analysis, the TCF method becomes rel-
atively even more effective.

5. ANALY SIS OF THE EFFECT
OF FLUCTUATIONS OF THE PARAMETERS
OF A MEDIUM ON THE AMPLIFIED
SPONTANEOUS RADIATION

We shall assume below that at distances of the order
of the correlation lengths the quantities o, and g, vary
little in the transverse plane. For a qualitative analysis
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of the role of the fluctuations r , we shall assume, as

done in [39], that the € and O profiles can be repre-
sented in the same quadratic form:

g = 1-Ae+X/z,

a = ag[1-r?/a%.

Then, using equations (7)—9), we obtain from equa-
tions (4)—6)

O 20
H.(r,r'; 2) = foslgll 1- exp[-l——D (29
02120

ed

2 2 2
TCK[1+BB(r, 0; 2)/Jgy]
2
Hy(r,r'; 2) = fl—A/Il'-IZ%
2
TiZ, (21)
2% 1 y
x % _IkAsr[1+ BB(r, 0; 2)/Jge]U”

It follows from equation (3) that the terms (21) are pro-
portional to r'?, r2, and irr'. They lead, respectively, to
narrowing of the TCF with respect to r', broadening
with respect to r, and phase modulation of the TCF.
Thus, the term with r 2 leads to scattering of the ampli-
fied spontaneous radiation, similar to scattering by fluc-
tuations € and a . The term with r2 leads to broadening
of the beam as aresult of the effective broadening of the
regular gain profile. The term with irr' leads to addi-
tiona regular refraction of the amplified spontaneous
radiation.

We shall rewrite equation (3), using equations (19)—
(21) and neglecting the nonresonant absorption and
gain saturation:

d i ad Ik L”LDG D
[az+k6rar‘ Z0 Jon=——10
%r i ° ZD+ L(k?z + —O%Er'z
027 4a0
, @
kal8 g O 200 _(kal,
( D) - E)—r—DD— ( 35)
z 0 02200 2

O O 2 07
x L+ expEl—r—ZDD B(r,r'";
O 2|00

ald

2) = N°Q(r, 2)8(r"),
where
2 = [6(2/m)*(al,0) %62, "

z, = [6(2/m)**(kalyp) /ol
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z, = [6(2/m)**(az)’ /(4L L7)] "

is the characteristic scattering length of the amplified
spontaneous radiation scattered by the fluctuations €,
a,and r, respectively.

The scattering of the amplified spontaneous radia-
tion by the fluctuations £ in the transversely-bounded
medium of an X-ray laser differs substantially from
scattering in an infinite medium such as a turbulent
atmosphere. It has been studied quite well using the
TCF method for a planar medium [31-34]. We present
below the computational results obtained for equation
(3) for a three-dimensional medium with an axisym-
metric distribution of its average parameters. We note
that when this situation is simulated by the parabolic
equation method, the axial-symmetry approximation
cannot be used, because there is no axial symmetry in
each realization.

Figure 7 shows the curves of the axia brightness
q(0, 2 = qy(2), normalized to the brightness g¢ (17) of a
spontaneous source, with uniform linear amplification
in an axisymmetric medium for A = 21 nm, Ag = O,
a =4cmt, a=50um, l,; =1y =1, =1um, and differ-
ent values of o,. Outside the active medium a = 0 and
€ =1.Asonecan seefrom Fig. 7, in the absence of fluc-
tuations € the on-axis brightness increases exponen-
tially with increasing length of the X-ray laser, i.e.,
0o(2) = gexp(az). It iswell known that obtaining such
adependencein an experiment serves asthe main proof
for the presence of lasing [1]. However, in many exper-
imental situations the gain determined according to the
dependence of the brightness of an X-ray laser on the

QO/qseuz

100k

107! 3

102 3

1073 3
4l | | | !
10 0 2 4 6 8
z cm

Fig. 7. Plots of the on-axis brightness of the amplified spon-
taneous radiation qo(2) in the three-dimensional casefor a=

50 um, a =4cm, Ae =0, Iy = lgy =1 um, and o, = 0 (w),
2x107°(0), 4x 107° (@), 6 x 107 (0).
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Fig. 8. Numerical dependences of K inthetwo-dimensional
(0) and three-dimensional (x) cases and analytical depen-
dences 3d2/zs (dotted line), 1/z; (dashed curve), and 2/z
(solid curve) on oy.

length of the laser is much less than the value obtained
from kinetic calculations. It is evident from Fig. 7 that
in the presence of € the curves on alogarithmic scale
withz = z arecloseto straight lines, i.e.,

Qo(2) O exp(az—K,2).

Thus, the scattering of amplified spontaneous radiation
by the fluctuations € and its “expulsion” through the
side surface of an X-ray laser issimilar to linear absorp-
tion of the amplified spontaneous radiation with a
intensity coefficient k.. Therefore the presence of €

decreases the observed gain and can be one of the rea-
sonsfor the discrepancy between its experimental value
and the value determined in calculations of the popula-
tion kinetics.

Plots of the quantity K.(o,) determined from the
slope of the linear section of the curves qy(2) are shown
in Fig. 8 for two-dimensional planar and three-dimen-
sional axisymmetric media. The character of the func-
tion K.(0) is determined by the parameter d = kal,/z.

For weak fluctuations € , where o < 1, we obtain k, =
30P/z. ~ o [34], and K, isindependent of |, a, and the

geometry of the medium. For strong fluctuations €,
when d® > 1, we havek, = 1/z, for aplanar medium, i.e.,

Ke O 0?3. For a three-dimensional axisymmetric
medium kK, = 2/z,, i.e., thelosses become twice as great.
The effect of € on the amplified spontaneous radiation is
appreciable for comparatively small values of o, = 10-°,
where o, < Ag and the nonuniformity of the electron

density of the plasma is severa percent of the maxi-
mum regular value in the gain zone.
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As one can see from equation (22), the character of
the effect of the fluctuations o on the amplified spon-

taneous radiation is similar to the effect of € . Instead of
le» leo» O, @nd z, we must use in the formulas | o, |op,
o,/k, and z,, respectively. In addition to scattering, the

fluctuations o lead to an additional regular amplifica-
tion against the background @, sinceH, #0atr' = 0.

The correction for @ is (TT/2)1/20§ | For the same

scale and depth of thefluctuations € and a , the effect of

a on the amplified spontaneous radiation is weake,
sincethey do not directly influence the phase of the radi-
ation. Even if we set g, ~ a,, for A ~ 20 nm, we have
o./k ~ 105, This level of fluctuations does not lead to
an appreciable influence on the radiation.

In the experiments of [46], intended to measure the
guasistationary gain in an X-ray laser on the transition
3p-3sin Ne-like yttrium (A = 15.5 nm), the amplifica-
tion of the input radiation in a 2-mm long laser was
studied, so that the influence of refraction was ruled
out. An X-ray laser plasma was obtained by unilateral
irradiation of aflat target without a preliminary pulse.
The measured average gain was 10-15 cmr™. A small-
scal e structure was found in the distribution of the time-
integrated intensity of the amplified radiation with
transverse spot size ~10 pm. Evidently, it is related
with the presence of the fluctuations @ , whose param-
eters are difficult to measure directly. On the basis of
the spot size, |, ~ 10 pm. It isquite difficult to draw an
unequivocal conclusion about |. It can only be stated
that | isappreciably greater than |, and iscomparable
to the length of the amplifier (2 mm), since substantial
amplification, leading to a spotty intensity distribution,
should build up in a distance |y. In the two-dimen-
siona calculations below, we take |, = 2 mm, in order
to estimate the maximum possible &f&t. The average
profile a (x) taken in the calculationsis shown in Fig. 9.
If we take 6, = 0.50 (X), then the characteristic maxi-
mum value of a reaches ~15 cmL. This value and the
profile @ (x) agree with the results obtained in the cal-
culations performed in [47] using the XRASER pro-

gram. The average electron density profile N, used,
which is shown in Fig. 9, is close to the distribution
obtained in [47] using the LASNEX computer code.
We recall that the relation between N, and € can be
found from equation (2).

Figure 10 showed the brightness distribution q of
the amplified spontaneous radiation and the transverse
coherence length L in the far zone with athree-dimen-
sional spontaneous source, z = 2.5 cm, and different
values of o,. The transverse coherence length L. near

the point x is determined according to the drop of the
modulus of the coherence coefficient

WX, X; 2) = B(x, X; 2)/[I(Xs; 2)I(Xz; 2)]™?
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along x' to the value u = 0.88. The coherence length in
Fig. 10 is presented in units of AZ/4R, where Z is the
distance from the X-ray laser to the far-zone plane, R =
200 pum. In the absence of a (for o, = 0) the intensity
distribution of the amplified spontaneous radiation is
shifted in angle as aresult of regular diffraction. In the
presence of fluctuations o,(x) = 0.5a (x) with anonuni-

form profile @, the divergence and coherence of the
amplified spontaneous radiation improve somewnhat.
However, analysis shows that this is a consequence not
of the scattering of radiation by a , but rather a nonuni-
form correction to the regular amplification. The regu-
lar gain profile is peaked and acquires the form

a1+ (w32)%aly,).

The narrowing of the zone of maximum regular ampli-
fication results in a small improvement of the beam
quality. The contribution of & to the average additional
gain is appreciable, and its contribution to scattering is
not. To check this, calculations were performed for a
stronger but uniform field of fluctuations with o, =

0.50,,, =5 cm™, so that the correction to the regular

profile a is aso uniform and does not change shape.
This calculation gave a result that is identical, as one
can see from Fig. 10, to the case of no fluctuations a .
It isworth noting that for pico- and femtosecond pump-
ing regimes, when the average gain is an order of mag-
nitude greater than that in the quasistationary regime,
the consequences of fluctuations with a, ~ @ will be
more serious for the amplified spontaneous radiation.

Asfar astheeffect of hose-like fluctuations t on the
amplified spontaneous radiation is concerned, for a
small gain on length L, and weak deflectionsL < awe
have in equation (22)

(81)"*L ao(Lo/a)® < 1.

For example, for the conditions considered in [39] with
a=100 pm, Ly =1 um, L;= 10 pm, and o, = 4 cm™,
we have 2 x 105, For this reason, the relative contribu-
tion of the fluctuations r to the regular refraction and
broadening of the beam is negligible. It is evident from
equation (22) that the contribution of fluctuations r to

scattering of the amplified spontaneous radiation is of a
similar form as the contribution of the relatively large-

scale fluctuations € and a, where the exponential
functionsin equation (22) can be expanded in a series.
Thequantitiesly, l¢r, ¢, and z in the case of fluctuations
€ aresimilar to, respectively, Ly, L, 0, = 2(L/Z)? and
z, in the case of the fluctuations r . For L = 1 pm,
L= 10 pm, and Ae ~ 10~ we obtain o, ~ 108, which
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Fig. 9. Regular electron density profiles NZ (dashed curve)

and gain O (solid curve) in an x-ray laser operating on
Ne-like yttrium.
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Fig. 10. Brightness distribution of the amplified spontane-
ous radiation q (bell-shaped curves) and coherence length
L¢ (inclined curves) in the far zone with g5 = 10 pm, I =

0.2 cm, and o, = O (solid curves), o, = 0.5 (x) (dashed
curves), and o4 = 0.50,,,,, (dotted curves).

isavery small quantity, and z, ~ 2.3 m, which is much
greater than the length of the X-ray laser. For this rea-
son, the hose-like fluctuations r have no effect on the
amplified spontaneous radiation for the X-ray laser
parameters considered, but they could have a destruc-
tive effect when the input coherent radiation is ampli-
fied, as was demonstrated in [39].
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Fig. 11. Diagram of an x-ray laser with (a) aflat and (b) curved target.

6. IMPROVEMENT OF THE SPATIAL
COHERENCE OF AN X-RAY LASER

The expanding plasmacolumn of the active medium
of a laboratory X-ray laser, produced by unilateral
focusing of the radiation from an optical laser into a
line on athick solid target, is characterized by a sharp
nonuniformity and asymmetry of the regular transverse
profile of the electron density. The gain zone liesin the
region where the electron density gradient in the
plasma is quite large (Fig. 9). Refraction displaces the
amplified spontaneous radiation beam out of the gain
zoneinthe direction away from thetarget (see Fig. 11a)
and causes angular displacement of the beam as a
wholein the far zone; thisis demonstrated in Fig. 10.

For an X-ray laser operating on Ne-like ions with
small nuclear charges of the order of 20-25, the refrac-
tion losses are so large that lasing disappears. Irradia-
tion of the target with pump radiation containing a
prepulse or several pulses is widely used to decrease
refraction [9]. The role of the prepulse is to produce a
preliminary plasma, which has enough time to expand,
cool down, and acquire a low density gradient before
the arrival of the main pulse. The use of a preliminary
pump pulse made it possible to detect the laser lines
which had not been previously observed because of
refraction losses.

But the use of aprepul se does not eliminate but only
decreases the refraction by the density. Additional
improvement of beam quality is achieved with partial
compensation of the refraction distortions using a tar-
get curved with a constant radius of curvature in alon-
gitudinal direction [10]. When the target is curved, the
propagating radiation is deflected because of refraction,
but the plasma medium is also displaced in the direction
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of defocusing. For this reason the beam passes through
the plasmawithout leaving the gain zone (Fig. 11b). This
approach, combined with the preliminary pump pulse,
was first implemented in [11]. Since refraction com-
pensation occurs in only one direction x, the two-
dimensional caseis studied in the calculations.

In the calculations the radiation wavel ength istaken
to be A = 21.2 nm, which is characteristic for a 3p-3s
transition in Ne-like zinc. In the presence of pumping
with apreliminary pulse, the expanding plasmais char-
acterized by a regular concave exponential electron
density profile:

-, conc

Ne(x) = Ne " (X) = Neoexp(—x/d), (23)

where Ny = 5.6 x 10%° cm3 and d = 70 um. The distri-
bution can be approximated by amodel quadratic func-
tion

a(x) = ap[1—(x—xp)/a’], (24)
where a =50 um, X, = 100 pm, ay=4cm?,anda =0
for x—Xy|>a The N, and @ profiles are shown in
Fig. 12. The source intensity is proportional to @ . In
the case of acurved target (Fig. 11b) we assumethat the
regular plasma parameters are determined by the func-
tions (23) and (24), but they depend on x + CZ%/2, where
C isthe curvature of the target (Cz < 1).

The basic laws of the dynamics of the power and
beam quality of the amplified spontaneous radiation in
an X-ray laser with linear amplification were obtained
in [30] for flat and curved targets. The experimental
facts [48] that the coherence length L. is on the whole

No. 2 2000



INVESTIGATION OF AMPLIFIED SPONTANEOUS X-RAY LASER RADIATION

very small and, moreover, in the presence of strong
refraction it is much shorter at the center than at the
periphery of the beam (see curves 1 in Fig. 13) were
confirmed for aflat target. Choosing the optimal target
curvature

Copt = ON(Xo)/2N,,

where [N, (%) is the density gradient at the point of
maximum amplification, substantially increases the
power and brightness of the amplified spontaneous
radiation, appreciably increases L. in the far zone, and
givesamore uniform distribution of L. in thetransverse
section of the radiation beam (see curves 2 in Fig. 13).
However, analysis showsthat the coherencelength L. is
even less than would be the case for aflat target in the
absence of refraction. The reason is that the compensa-
tion of refraction as a result of target curvature is
incomplete. Theresidual refraction is a conseguence of

the nonuniformity of CON, in the gain zone, and for a
concave density profile (23) it is of afocusing charac-
ter. It has been shown in [30] that L. can be substan-
tially increased, if curving the target gives a residual
defocusing effect. This requires a convex density pro-
filein the gain zone.

A convex profile N, = N, (x) is shown in Fig. 12.
Near the point of maximum gain x = X, it is described
by the function

5 _conv —,_conc

No(x) = N (x) = N,

;. conc

+ 0N,

(Xo) (25)
(Xo) (X—%0)°/2,

;. conc

(o) (X— %) — O°N,

where the derivatives of the function N, (23) are
taken at the point X = X,. The relation (25) is different

from the series expansion of the function N, (X) near
the point x = X, by the sign in front of the last term with

<, conc ;. _conv

the second derivative. Thus, N, (x) and N, (X
have the same curvature at the center of the gain zone
but opposite signs. The value of C,, is the same for
both density profiles.

The curves 3 in Fig. 13 correspond to the computa-
tional results obtained with C = C,; and a convex pro-

;. conv

file N, = N (x). The distribution of L. across the
beam is obtained to be uniform, and L. additionally
increases by approximately afactor of 6 compared with

thecase N, = N, (x). Thisis achieved at the cost of
adecrease in the power density by afactor =6 and the
maximum brightness q,,, by afactor of =12 as a result
of doubling of the divergence. For this reason, the
coherent power P, which isan important characteristic
of the amplified spontaneous radiation and influences
the possibility of holographic applications of the X-ray
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Fig. 12. Regular profiles of the parameters of the active
medium of an x-ray laser: exponential concave (solid curve)
and convex (dashed curve) electron density profilesand gain
profile (dotted curve).
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Fig. 13. Brightness distribution of the amplified spontaneous
radiation q (solid curves) and coherence length L. (dashed
curves) inthefar zonefor z=5 cmin the absence of gain satu-

ration for N, =N, " with C=0 (1), C= Copy (2), N, =

con

Ne ' andinthe case C = Copy (3) With g = AZ/4a.

e

laser, decreases by afactor =2. We define P, for aplanar
medium as P, = q,,L.. Therefore, for linear amplifica-
tion the proposed method for improving the coherence
concerns only the coherence length and is not justified
energetically from the standpoint of either the bright-
ness or the coherent power.
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Fig. 14. Distributions of (a) brightness of amplified spontaneous radiation ¢ and (b) coherence length L. in the far zone with Nie =

—conv —conc

Ne (D) and N, = Ng

However, a positive consequence of curving the tar-
get is the possibility of attaining gain saturation, as
demonstrated in the experiments of [6, 7]. Figure 14
shows the computational results for the angular distri-
bution of the brightness and the coherence length of
amplified spontaneous radiation in the far zone, which

were obtained for N, and N, and various satu-
ration levels, i.e., by varying Jg;. The saturation flux
density Jo; in Fig. 14 is normalized to the value J, =
100j8/0, i.e., a 100-fold noise radiation flux density.
For Jg,; = 107J, thereis no saturation; for Jg, = 108J, sat-
uration starts to have aweak effect; and, for Jo, = 10%J,

the flux density of the amplified spontaneous radiation
is of the order of Jg; at the exit of the X-ray laser.

It is evident from Fig. 14athat gain saturation sub-
stantialy retards the growth of the brightness of the X-
ray laser. Obviously, the higher the brightness achieved
in the absence of saturation, the greater the decreasein
brightnessin the presence of saturation. For thisreason,

on switching from the profile N, to the profile

con

N, ’inthe presence of gain saturation the brightness

of the amplified spontaneous radiation decreases not by
afactor =12, as happened with linear amplification, but
only by a factor =3. The divergence of the amplified
spontaneous radiation increases with the degree of sat-

-, conv

uration, and on switching from Weconc to N, it
increases by afactor of 2. The effect of gain saturation

on L. is much smaller, and for Weconc the coherence
length decreases somewhat with increasing saturation,
while for N.”" it increases somewhat (Fig. 14b). For

<, conc ;. conv

this reason, on switching from N, to N, the
guantity L. increases with gain saturation not by a fac-
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(2) for Jey/Jp = o (solid curves), 5 x 10% (dashed curves), and 2 x 10° (dotted curves).
sat’ Y0

tor =6, asin thelinear amplification, but rather by afac-
tor of =9. Ultimately, for linear amplification the coher-

ent power with N, was two times lower than the

level obtained with N, but in the presence of gain
saturation it was three times higher. Therefore gain sat-
uration makes the proposed method of improving
coherence energetically more justified. The drawback
is that the divergence increases and the absolute values
of the brightness of the amplified spontaneous radiation
decrease, but the latter is not as great a problem for
holographic applications of X-rays asis the coherence.
A graphic argument in support of the proposed method
for improving the coherence is that in the presence of

gain saturation, for N, and N, , the width of the
beam of amplified spontaneous radiation is 3040 and
6—7 times greater, respectively, than L. From the prac-
tical standpoint, in the first the radiation is incoherent,
and in the second case there is partial coherence.

The improvement of coherence obtained on switch-
ing to a convex density profile can be suppressed as a
result of scattering by fluctuations of the optical param-
eters of the medium. Calculations of the amplified
spontaneous radiation in the presence of fluctuations €
with l;n =1y =1 pmand o, = 10° and 2 x 10~° showed
that the effect of scattering by € on the brightness and
divergence of the radiation is negligible for concave as

7 conc

well as convex density profiles. For N, , the influ-
ence of € on the coherence length L, issmall, whilefor

Weconv the coherence length decreases substantially as
O, increases. A similar “hidden” effect of the fluctua-
tions € on theamplified spontaneous radiation has been

observed in calculations with a symmetric defocusing
density profile [33]. In consequence, the effectiveness
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Fig. 15. Ratio of the coherent powers in the far zone with
—conc

Ne = Ng
Jeat = 1040,

and N, = N, " as a function of aj for

of switching from a concave to aconvex density profile
decreases. For g, = 10 the coherent power increases

on switching from N, to N, not by afactor of 3

by rather by afactor of 2 (see Fig. 15). Thisvalue of o,
corresponds to the standard deviation of the electron
density 2.5 x 10'° cm3 and is relatively small against
the background of the regular values of the density in
the gain zonein Fig. 12. For g, = 2 x 10~ the increase
in coherent power is replaced by adrop.

7. CONCLUSIONS

A physical model of the dynamics of amplified
spontaneous radiation in an X-ray laser was devel oped
on the basis of a numerical solution of the quasi-optics
equation for the transverse correlation function of the
complex amplitude of the field in two- and three-
dimensional axisymmetric media. The model includes
a spontaneous radiation source, diffraction, regular
refraction, regular amplification taking account of satu-
ration, nonresonant absorption, scattering by ordinary
permittivity and gain fluctuations, and scattering by
random hose-like deflections of the extended plasma
medium of the X-ray laser. In the derivation of the
equation for the TCF, statistical linearization of the
nonlinear terms of the equation that are responsible for
gain with saturation was performed. It reducesto intro-
ducing into these terms of the equation a universa
function that depends on the local degree of saturation.

The dynamics of the amplified spontaneous radia-
tioninan X-ray laser with regular refraction was inves-
tigated numerically in the approximation of a two-
dimensional medium using the TCF method and the
Monte Carlo method for the parabolic equation for the
amplitude of the field. The parabolic equation method
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is basic for the TCF method and is accurate when the
number of statistical tests is large. The TCF method
does not require averaging over an ensemble, but in the
presence of saturating gain it is approximate because
statistical linearization of the nonlinear termsis used to
derive the TCF equation. It was found that the TCF
method makes it possible to obtain the final result one
to three orders of magnitude more quickly than the par-
abolic equation method. The statistical linearization of
the equation for the TCF does not distort the profile of
the average angular distribution of the intensity of the
amplified spontaneous radiation, but it somewhat over-
estimates the absol ute values of theintensity. The max-
ima overestimation, equal to ~10%, is observed when
the average radiation intensity is close to the saturation
value.

Computational results were presented for the ampli-
fied spontaneous radiation computed by the TCF
method in a three-dimensional randomly-inhomoge-
neous axisymmetric medium of an X-ray laser. It was
found that the ordinary permittivity fluctuations are the
analog of honresonance absorption from the standpoint
of the effect on the brightness of an X-ray laser and
therefore decrease the observed gain. The loss factor
due to scattering by strong fluctuations in a three-
dimensional medium is two times greater than value
determined in the planar-medium approximation. The
effect of gain fluctuations on the formation of the
amplified spontaneous radiation in a laboratory X-ray
laser, operating on Ne-like yttrium and obtained by irra-
diating athick target with an optical laser, was investi-
gated. It was found that the contribution of fluctuations
to the average additional gain is appreciable, and the
scattering of the amplified spontaneous radiation by
them has essentially no effect. It was shown that hose-
like fluctuations of the plasma filament of an X-ray
laser result in additional regular amplification and
refraction as well as scattering of the amplified sponta-
neous radiation. However, for characteristic plasma
parameters of an X-ray laser with aquasistationary las-
ing scheme, the influence of hose-like fluctuations on
the amplified spontaneous radiation is unnoticeable
compared with ordinary fluctuations with the same spa-
tial scale.

A computational-theoretical investigation of the
amplified spontaneous radiation in an X-ray laser, which
was obtained by irradiating athick target and containsan
asymmetric concave electron density profile in the gain
zone, was performed by solving the equation for the
TCF. For aflat target the transverse coherence length of
the amplified spontaneousradiation issmall and itsdis-
tribution is nonuniform in the transverse section of the
radiation beam in the far zone. Curving the target with
a constant optimal curvature for partial compensation of
refraction appreciably increases the coherence length
and gives auniform distribution of the coherence length
in the transverse section of the beam, but from the prac-
tica standpoint the amplified spontaneous radiation
remains incoherent. For a curved target the coherence
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can be additionally increased substantially and the
coherence length can be made to approach the width of
the amplified spontaneous radiation beam as aresult of
residual defocusing, realizing aconvex electron density
profile in the gain zone. It was shown that in the gain
saturation regime the degree to which the coherence
length increases on switching from a concave to acon-
vex density profile is higher than the degree to which
the brightness decreases and the divergence increases.
Thus, an increase in the coherence length is accompa-
nied by an increase in the coherent power of the ampli-
fied spontaneous radiation; this is important for poten-
tial holographic applications of X-ray lasersin biology.
It was found that the improvement of the coherence on
switching from a concave to a convex density profile
may not occur in the presence of appreciable small-
scale fluctuations of the plasma density.
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Abstract—The sums of products of Coulomb wave function over degenerate states are expressed in terms of qua
dratic forms that depend on the wave function of only one state with zero orbital angular momentum | =m=0.
These sumsare encountered in many fieldsin the physics of atoms and molecules, for example, ininvestigations
of the perturbation of degenerate atomic energy levels of asmall potential well, addt&functlon potentia. The
sumswere found in an investigation of the limit of the Coulomb Green’ sfunct|on G(r, r', E), where the energy
parameter E approaches an atomic energy level: E — E,, E, = —Z%2n?. The Green's function found by
L. Hostler and R. Pratt in 1963 was used. The result obtal ned is a consequence of the degeneracy of the
Coulomb energy levels, which in turn is due to the four-dimensional symmetry of the Coulomb problem.

© 2000 MAIK “ Nauka/Interperiodica” .

1. In the problem of the energy levels of a system
consisting of negative and positive ions A~ + B* it is
necessary to calculate the sums [1-4]

QV(R) = S Win(R)Wnn(R), (1)
l,m

dwnlm(R)

QV(R) = zwn.m(R) e

of the Coulomb wave function Y, and their deriva-
tives dyJ,;./dR over states belonging to the same value
of the principal quantum number n (R is the distance
from the Coulomb center). The energy levels of the
hydrogen atom and hydrogen-likeionsH, He*, Li*", ...
are degenerate with respect to the angular momentum
guantum numbers | and m, so that the summation in
equations (1) and (2) extends over bound states with the
same energy. The sums (1) and (2) are fundamental,
since they belong to the simplest quantum objects.

2.In[14] the energy levelsof the system A~ + B* were
investigated in the approximation of a deta-function
potential, in which theselevelsare determined by the Cou-
lomb Green’sfunction G(r, R, E). An exact expression for
this function has been found by Hostler and Pratt [5, 6]:

M1-Zn)g o 0 [

G(r,r',E) = 21r —r'| D?(X/n_) _a(y/n—)D

X
X Wz, 1/2%1 EMZn 1/2%3]/%, 3)

X=r+r+|r=r|, y=r+r-—[r-r,

n_ = (-2E) %

where M and W are the Whittaker functions, which are
solutions of the equation [7]

n0l,4n
Wi 12(T) + B + —gWan. 12(T) = 0,

(39)
and an identical equation for the function M. The func-
tion Wisregular at infinity, T — oo, and the function
M isregular at the origin, T = 0. The expansion of the
Green's function in terms of the eigenfunctions Y,
has the form [8]

lI-J;’;Im(r)u*'nlm(r')

G(r.r\E) = ) =, (4)

nlm

where the summation symbol represents a summation
over discrete states with negative energies and integra-
tion over the states of the continuum.

The sums (1) and (2) can be calculated in a general
form for an arbitrary value of n, by analyzing the
expression (3) for the Green's function in the limit
E — E,. The Whittaker function M isalinear combi-
nation of W,z 1,5(T) and W, 1,»(—T) Whittaker func-
tions[7]:

M(1=Zn)Mgzy, (1) = (1)
r(1-zn) zn. ©)
x mwzm, wa(1) + (1) "Wz 1p(-1).
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The function W_,, (—T) increases exponentialy as

T — oo, If the energy E iscloseto an eigenvalue E, =
—Z?/2r?, then theindex of the functions Wiscloseto an
integer Zn_ = n. Inthislimit, the first term in equation
(5) predominates, and the leading term in the expansion
(4) isthe resonant term, proportional to (E—E,)™. Then
the Green’s function is close to the following expres-
sion:

zllJ?ﬁm(r)llJmm(R)
G(r,R,E —FE,) = Lm ==
1 z° 1 no nd ©6)
T E-E)mr nt(n— 1)1 (x=y)t0(Zy) 920
X Wn JJZD [\/Vn ]JZE‘?;]yD

where an expansion of the resonant gamma function in
the limit under study was used:

r(1-zn) = T
M(Zn)sin(mZn.)|z, - n

L (=)'Z? 2
n’r(n) E-
From equation (6) we obtain

* = ZZ 1
ZLIJnlm(r)q»'nlm(R) - m°n! (n— 1)1 (X=Y) )
|:| no no DZX DZyD

m(zy) a(ZX)D n, ]JZDn O n,]J2|:|_n_|]

The limit of the Green’s function (3) asE — E, was
used in [9-11] to calculate the Born amplitudes of the
transitions between highly excited states of atoms in
collisions with electrons. On summing and averaging
over degenerate states these amplitudes depend inte-
grally onthe sums (7). In[12] V.A. Fok examined sums
similar to the sums (1) and (7), but for wave function in
the momentum representation.

TheWhittaker function W, 1,, with an integral value
of thefirst index n can be expressed in terms of the nor-
malized Coulomb function o With zero angular
momentum quantum numbers| = m= 0. The Coulomb
functions of hydrogen-likeions are[13]

lIJnIm(r) = fnl(r)YIm(evq)),
@(r) = const [t f(r),
223/2

_ [+ pzey  (®)
@+ (n=1-1)10n 0

Fa(r)
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><expD—H:D n+l+1; 2l +2; ZZrD

oh(n) + 20, + £, = 0,

__Z
Eﬂ - —'2_n—2
Switching to the variable 1, the equation (9) for | =0
becomes

(9)

27r

Gho() + 3+ Mo = 0, 1= 22 ()

which isidentical to the equation (3a) for the function
W, 1. Comparing the asymptotic expressions of the
functions W and @, in thelimit r — oo, we abtain the
relation

+ 41N
Wi, 12(1) = (=1)""'nl == 0no(T),
where the function ¢, is normalized on a three-dimen-
sional volume (the division of the corresponding radial

function by ./4m), and its variabler is replaced by T.
Substituting the expression (11) into equation (7)
we obtain

Q' R)= 3 Yun(Win(R)

(11)

(12)
— 4_Zf(p;10(-[y)(pn0(-[x) _(pnO(Ty)(p;w(Tx)
- n Tx_Ty ’

T = r+ R+l =R,

z

T, = ﬁ[r+R—|r—R|].

The expression (12) hasamore general form than the

sums (1) and (2): Qﬁo) (r, R) depends on two vectors, r
and R, and the sums (1) and (2) can be expressed in

terms of the particular value of Qf]o) ar =R (seebeow).
Differentiating the expression (12) with respect to
the absolute value of R and using equation (10) for the

second derivative @,,, we obtain the more general
expression for the second sum

Q.= S W ryHan(R)

2Z(R—r cosa
Q(%o(
nir —R|®
L4z (R—rcosa)
n’lr —R|?

1) o0 ~ Gro1,)Gha(1,)
13
| (TGl
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1 ’(R—
¥ E_Z ¥ ZZR?(Ig—rcr:gsa)%ﬂ’O(TX)(p”O(Ty)}

where a isthe angle between the vectorsr and R.
In the model with a delta-function potential [4] the

sum Qﬁo) (r, R), determined by the formula (12), is pro-
portional to the E — E, limit of the wave function of
the system A~ + B* for the case where the angular
momentum of the electron of theisolated ion A-is zero,

L =0. Thesum O (r, R), determined by the formula
(13), isproportional to asimilar limit for thecaseL = 1.

To calculate the sum (1), we shall investigate the
limit of equation (12) asr — R. Inthislimity — X,
T,— T, and the numerator in equation (12)
approaches zero. The first term in the Taylor series
expansion of the numerator in equation (12) is

(pan(Ty) (pnO(Tx) - (pnO(Ty) (phO(Tx) = (Tx - Ty)
O
[%T Ol:?r D 4 nO(Tx)i|

Substituting this expansion into equation (12), we
obtain the first sum (1):

QV(R)= zwmm(R»

Z300(R).

We can see that the sum of the squared moduli of the
wave function for states with fixed energy and fixed
principal quantum number n is, according to equa-
tion (14), a quadratic form of a function of only one
state (the function @,,(R)) with zero orbital angular
momentum | = 0 and the same value of n. The existence
of therelation (14) is dueto the degeneracy of the Cou-
lomb energy levels: for values of the angular momen-
tum quantum numbersl < n—l1and- < m < | these
energies depend only on n and they do not depend on |
and m. In the presence of degeneracy, the Green's func-
tion at each pole, i.e, in the limit E — E,, is deter-
mined by asum of the products of the wave function of
degenerate states; see the spectral expansion (4). In the
absence of degeneracy the function G(r, r', E) depends
at the pole on the wave function of only one state.

Using the theorem for the addition of spherical har-
monics Y,(6, ¢) [13, 14], which makes it possible to
sum over the magnetic quantum number m, we can
transform the double sums (12) and (1), (2) into single
sums:

(14
gj(pnO(R)[l N ZEE

Q' R)= 3 Y Win(R)
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= 4_1HZ(2| +1)P,(cosa) f,(r) f(R), (15)
|
(o)(R) = Z(zl +1)|fn|(R)|
4Tt
QYR = LA (R _ (21 + 1) f (R) 2. (16)
- 2 dR 4 z nl

In the limit r — R the angle a = 0, cosa = 1 and
P,(1) =1, so that the sums (15), (16) and (1), (2) do not
depend on the spherical angles of the vector R. How-
ever, a concrete expression for the right-hand side of
equation (14) cannot be obtained from these general
formulas: afurther summation over | in equations (15)
and (16) cannot be performed in a general form. This
summation can be done only by using the expression
(3), found by Hostler and Pratt [5, 6] by solving exactly
the differential equation for the Coulomb Green’s func-
tion. The specific form of the right-hand side of equa-
tion (14) is apparently determined only by the specific
nature of the Coulomb field.

3. In the one-dimensional case for a system with a
real Hamiltonian it is possible to write down on the
basis of the Schrddinger wave equation alinear second-
order integrodifferential equation for the squared mod-
ulus of the wave function of this system. Multiplying

equation (9) by ¢, and integrating once we obtain
(cp'n.(r))2+2(E —UO) ()
dU
2; (T

and multiplying equation (9) by ¢, and using (17) we
obtain an equation for the probability density

Pi(r) + 8(En = Ui(r))pwi(r)
dU ( Dy

(17

(18)

_4I nl( )

NIESY
2r?

We recall that the radial functions of the bound states
(E < 0) areredl. Thefollowing boundary condition was
used to derive these equations: @, (r) approaches zero
exponentially in the limit r — . The equality (17)
and equation (18) were used in [15] to investigate the
potential on the surface of a metal. Differentiating
equation (18) with respect to r, we obtain the equation
discussed by Solov’'ev [16]:

p"+8(E-U)p' —4pU' = 0.

P (1) =@ (r)]* U(r)—__
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Substituting for | = 0 the equality (17) into equation
(14), we transform the first sum into

2 e oy
QURI= S [WunlR* = 2o T
I,m R

dr. (19)

It is easy to see that the integral in equations (17) and
(19) is the force (in dimensionless atomic units
employed in the present paper) exerted by the nucleus
on a portion of the electron charge density located in

the range r, o. The first sum, Qﬁo), is proportional to
twice the value of thisforce.

Using dUy/dr = Z/r?, equation (19) can be written in
the form

OV (R)= Y [Wnm(R)|" = 2Z[Wio(r)r.  (198)
I, m R

Sincetheright-hand sides of therelation (17) and equa-
tion (18) differ only by a numerical factor, the sum (1)
can also be written in the form

(0) — 2
n (R)= MJnIm(R)'
I,Zm (19b)

= 203(R) + 4(E,~ Uy(R))pro(R).

It is interesting to note that in the semiclassical
approximation for the function @, the right-hand side
in equation (14) vanishes. Indeed, in the semiclassical
approximation we have

®o(R) = exp(S(R)),
expS((S)* + p*(R) = 0— (S)*+ p’(R) = O;

" (21)
P(R) = J2(E,—U(R)).

Substituting equations (20) and (21) into the right-hand
side of equation (14), we obtain

QC(R) = exp(29)((S)*+ p°(R) = 0. (22

4. The second sum (2) is obtained by differentiating
equation (14) with respect to the absolute value of the vec-
tor R or (which is more difficult) studying the expression
(13) inthelimitr — R:

W, _ 1dQP(R) _
Qn (R) - 2 dR -

(20)

. dynm(R)
%wnlm(R)'———leq——_

= —ZYZy(R) = —Récpﬁo(R).

(23)

This relation can also by easily obtained by differenti-
ating equation (19a).

Figures 1 and 2 display the sums (1) and (2) calcu-
lated as functions of the distance R from the nucleus for
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loglQ{(R)|
-3

140
R, au

100 120

0 20 40 60 80

Fig. 1. Sum (1) for the hydrogen atom (Z = 1) asafunction
of the distance Rfrom the nucleusfor five values of the prin-
cipal quantum number n = 4-8.

loglQ PRI
-3

0 20 40 60 80

100 120 140
R, au
Fig. 2. Sum (2) for the hydrogen atom (Z = 1) asafunction

of the distance R from the nucleusfor the principal quantum
numbersn =4 and 8.

the hydrogen atom (Z = 1): for the excited statesn = 4,
5,6, 7, and 8inthe case Q¥ (R) (Fig. 1) andn=4and 8
in the case Q™ (R) (Fig. 2). Both sums were calcul ated
by direct summation over | of equations (15) and (16)
and using the equations (14), (19) and (19a), (19b)
which we obtained for fo’) (R) and using the formula

(23) for Q" (R). For each sum and fixed value of n, the
computational results obtained using all formulas fell
on the same curve, i.e., the results obtained by all com-
putational methods were identical. It is evident from
Figs. 1 and 2 that the sum Qflo) (R) hasno zerosfor finite
valuesof R. Inthelimit R —» oo, this sum decreases to
zero in steps at the center of which the derivative of this
sumiszero. In accordance with equation (23) the deriv-
ative of the function Qﬁo) (R) is proportional to the
square of the function P,,(R), which hasn — 1 zeros.
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The existence of therelations (14) and (23) isdueto
the degeneracy of the Coulomb energy levels, whichisa
consequence of the four-dimensiona symmetry of the
problem of a hydrogen atom and hydrogen-like ions. In
[12] V.A. Fok investigated the Schrédinger equation for
the hydrogen atom in the momentum representation
and he found that the group of transformations admit-
ted by these equations is identical to the four-dimen-
sional rotation group. The sum of products of wave func-
tion in the momentum representation, similar to the sum
(2) in the coordinate representation, was aso studied in
[12]. In [12] an analytical expression depending on the
four-dimensional momentawas found for thissum. The
guestion of the relation between the sums in the
momentum and coordinate representations is quite
complicated and requires an additional investigation.

Works devoted to the properties of the Coulomb
Green's function and the four-dimensional symmetry of
the hydrogen atom are discussed in the recently published
reviews[17, 18]. Our expressionsfor the sums (1) and (2)
can be added to the list of properties of hydrogen-like
ions discussed in these reviews.
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Abstract—The scattering of a photon by an electron in an external magnetic field under resonant conditions,
when the photon energy is close to the splittings between the Landau levels, is investigated. Formulas are
obtained for the cross section of the processtaking account of the polarization of the el ectron. For external fields
~10"? G the resonant Compton cross section is several orders of magnitude greater than the Thompson cross
section, and the width of the resonance is tens of electron volts. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

There is an extensive literature on quantum electro-
dynamic processes with photons, electrons, and
positrons in an external magnetic field, but this subject
continues to remain topical on the experimental and
theoretical levels. First-order processes in a magnetic
field (magnetobremsstrahlung, electron-positron pair
production by a photon, and others) have been investi-
gated in detail in the last ten years (see, for example,
[1-5]). Less attention has been devoted to the Compton
scattering of a photon by an electron [6, 7], sincein the
general case the probability of such a processisrela
tively low because it contains an additional power of
the fine structure constant.

We wish to show here that in Compton scattering in
a magnetic field a resonant increase of the probability
is possible when the energy of the incident particlesis
close to a Landau level of the intermediate particle,
which makes such processes physically interesting and
observable in practice if the magnetic fields are suffi-
ciently strong. Fields of this magnitude occur, for
example, in strongly magnetized neutron stars.

We a'so note that a similar resonant increase of the
cross section can also occur for pair production by
equivalent photons [8] in a collision of two fast nuclei
with large Z (heavy ions), and the strong magnetic field
produced by the nuclei in the region between them at
the moment of closest approach can play the role of an
external magnetic field. In this region the Coulomb
fields of the nuclei mutually compensate one another,
and the magnetic fields add. Such a process could be
relevant for observable anomalies in the yield of reso-
nant pairs in heavy-ion callisions[9, 10].

In contrast to [7], in the present paper a general rel-
aivistic analysis of the process, where the relativistic

wavefunction and the Green’'s function of the electron
are used, is made.

In Section 2, using the Green’s function of an elec-
tron in amagnetic field, an expression for the Coulomb
scattering amplitude is obtained in aform convenient for
investigating resonance effects. In Section 3 the condi-
tionsfor the appearance of resonances are analyzed. The
general formulas simplify in the approximation where
the frequencies of the initial and final photons are low
compared with mc?/4. In Section 4 the widths of the
resonances are calculated. In the last section the cross
section for the resonance Compton effect is calculated
for various polarizations of the final electron.

2. AMPLITUDE OF THE PROCESS

The scattering of a photon by an electron in a mag-
netic field is described by the following Feynman dia-
grams shown in the figure. The wavy linesin the figure
correspond to photons with 4-momenta k = (w, k) and
k' = (', K) that do not interact with the external field.
Theexternal solid lines correspond to exact sol utions of
the Dirac equation for an electron in a uniform mag-
netic field with the 4-momentap = (g, 0, py, p,) and p' =

(&,0, py, p;) (with zero component along the x axis),

and the intermediate solid lines denote an electron
Green’'sfunction in a uniform external magnetic field.

It is convenient to take the wavefunction W of an
electron in a uniform constant external magnetic field
intheform[11]

_ exp(=ipt)
W(x) T W, "

W(Q) = Aliv2leHU Q) + (m+um)U; _4(Q)y4l u,
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Feynman diagrams of the process where a photon is scat-
tered by an electron in amagnetic field.

wherer =(t,0,Y,2),p -r =gt—py—p,z € istheenergy
of an electron in the given magnetic field, Sis the nor-

malization areain the (yz) plane, £ = /eH (x + p,/eH),
U,(¢) isaHermite function of order I, p isthe polariza-
tion of an electron which assumesthevalues+1 and —1,
y: is a Dirac matrix in the standard representation,

m> = m? + 2leH, the bispinor u; has the form

0
um-—g
0
P,

u =

)

I o
I o

A isanormalization factor

/\/ JeH (g, + pn) >0
AI - pzzmzjs-l(m+ “m) (3)
«/@250(50 + m)’

The constant magnetic field H is directed along the

z axis. The wavefunction (1) corresponds to a gauge of

the external field in which the 4-vector potential is
defined as

A=A =A,=0, A =Hx 4

The energy spectrum, is

| =0, u=-1

g = Jmepl+2leH = i +pl.  (5)

The wavefunction (1) is an eigenfunction for opera-
tors of the generalized momentum P and the operator
corresponding to the polarization of the electron R:

PiWi = Vik(py—eA )W, = mw], (6)
R Wy = W, 7
We write out the explicit form of these operators:
P = yp +i./eHy,0/07 — J/eHy,{, )
R = PF,0" +F,0"P = ysy'S,, ©)
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where
6 = (€|,0, 0’ pz)’ va = auAv_avAuv
o = (v -y'v)2, S, = (-p,0,0,—¢)/m.

It should be noted that the expression for the general-
ized operator (8) contains only one differentiation oper-
ator with respect to the variable x (¢ = {(x)). The oper-

ators Py, Py, and p, arereplaced by the eigenvaluese,
py, and p,, since the dependence of the wavefunction (1)
on the variablest, y, z has the form of a plane wave.
For the causal Green's function of the operator (8)
we employ the expression
-1
3

(2m) (10)
XIdsgeXp(—ig ri=r2))Gu(9; P1, P2),

Gu(Xy, Xp) =

- 1
Gu(G: pu Po) = JeH Y ——5——
0% —€,—1 10
X [U (P Un(P2) (YT + m)a + (1 —80,)U,_1(P1)
x U,_1(p2) (G + M)B + (1= 3y,)i~/2neH
X (Un_1(p)Un(p)y1a —U(p) U, _s(pray,)],
where d®g = dgodg,dg,, YO = YoGo — Y30, and p; , =
JJeH (x, , + g,/eH) for the first diagram. In the second
diagramg — f, sothat p; , —n;, = '\/e_H(Xl,Z +
f/eH). The matrices a and 3 have the form
a = (1+iy,y)/2 B = (1-iy,y,)/2.

We shall construct the amplitude of the process on the
basis of the diagrams presented in the figure. Substitut-
ing into it the expressions (1) and (10) and using asthe
quantum photon fields A(x, ,) the well-known expres-
sionsfor the fields of noninteracting photons, we obtain

Sr = iezjdxldleTJ(xl)[A(xl)Gmxl, X2) Al(X)
+ A'(X) GGH(X1, X2) A(X) W(Xo),

(11)

(12)

where W(x,) isthe Dirac conjugate of the expression (1),

where { — & = JeH (x + p; /eH). Integrating over
dt; 5, dy; 5, dzy ,, dg, and d*f yields

—ie’(2m) e e 3
= 2 Bp+k—p -k
St VS o (p+k-p'—k’) (13)
xIdxldleTJ(El)quJ(ZQ’
No.2 2000
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Q" = exp(ikx; — kX)) Gu(g; p1, P2)Y"

+ exp(ikxy — kX)) Gu(f; Nu Y

where e, and e, are the polarization vectors of the ini-

tial and final photons and V is the volume under study.
The delta-function corresponds to the conservation
laws for the energy and the projections of the momen-
tum on the axes y and z The following constraints are
imposed on the 4-momenta of the intermediate parti-

cles (with the exception of their x components):
g=ptk=p+k, (14)
f=p-k=p-k. (25)

3. CONDITIONS FOR RESONANCE
SCATTERING

From the conservation laws (14) it is not difficult to
obtain, taking account of the dispersion lawsfor theini-

tial and final particles
& = «/Fnz"‘ P,

m=Jm’+2leH, m = Jm?+2l'eH,

the frequency of the final photon expressed in terms of
the Landau level numbers| and I', the frequency of the
initial photon, and the direction of the incident and
emitted photons:

, 1

w = m[s' +w(l-vu)—((g+w(l- VU))2

2 >2 > 2

w =k, w =k, (16)

where

(17)
—(@?+ 25,0+ 2(1=1)hm?)(1=u?) 1.

where v = cos® and u = cos6' are the cosines of the
angles between the direction along the magnetic fild and
the directions of motion of the initia and fina photons,
respectively, and h=H/H, (H, = n?/e~ 4.4 x 108 G). For
simplicity, the z component of the momentum of the
initial electron is assumed to be zero, p, = 0.

For fields that are weak compared with H,, small

values of the Landau level numbersl| and|’, and low fre-
guencies,

(I+"Nh<1 and w<m, (28
the expression (17) simplifies
w=w+(-1"hm. (19

The conditions for a resonance process require that
the poles of the Green's function (10) vanish. In the
expression for the Green’s function (10) only one term
remainsin the sum. This correspondsto thefact that the
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intermediate electron is in a definite Landau level. For
the first diagram in the figure the resonance condition
has the form

Oo—€m = Go— (M +2n,hm’+g) = 0. (20)
The condition (20) imposes a restriction on the fre-
guency of the initia photon, and taking account of
equation (14) we obtain

w = (e —2(n, —hm(1 - v?) —g)/(1-v?). (21)
In the approximation (18)

w = (n=1)hm, and @ = (n;—1"Y)hm. (22
The meaning of the expression (22) is obvious: The
energy of the initia photon is equal to the splitting
between the levels of the intermediate and initial elec-
trons, and the energy of the final photon is equal to the
splitting between the levels of the intermediate and
final electrons. In this approximation the resonance val-
ues of w and w' do not depend on the angles of inci-
dence and emission of the photons.

It is evident from equation (22) that w' is propor-
tional to w, and the coefficient of proportionality is
(ny =11/ (ny=1) > 1, if the Landau level number | of the
initial electron is greater than the Landau level number
of thefinal electron|', and w' < w in the opposite case,
wherel' <. Thus, forl =1,n, =2, and ' =0, doubling
of the photon frequency will be observed as aresult of
the resonance scattering of a photon by an electron. The
casel' =1 corresponds to elastic scattering.

The resonance condition also occurs for the second
diagram in the figure:

fo—g2, = fo—(m +2n,hm’+ f2) = 0.  (29)
It can berealized in two different cases:
E—-w=w-¢, €e>w and w>¢,
8n2 = D o ' . ' (24)
[W—€ =& —-w e<w and w<e'.

Thefirst equality in equation (24) correspondsto apro-
cess where the initial eectron, emitting the final pho-
ton, passes into the intermediate electron, which,
absorbing the initial photon, passes into the final elec-
tron. In this case the condition (24) imposes the follow-
ing restriction on the frequency of the final photon:

W = (& —4e2—2(1 —ny)hmi(1—u?))/(1-u?), (25)
and in the expression (18)
w = (I-ny,)hm, and w = (I'=n,)hm. (26)

It should be noted that in the case at hand, at reso-
nance, the two conditions for the approximation (18)
areidentical for the first and second diagrams.
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The second equality in equation (24) correspondsto
the possibility of resonance Compton scattering via
e e*-pair production by the initial photon followed by
annihilation of theintermediate positron with theinitial
electron. In this case, however, in the approximation
(18) the cross section is exponentially small because of
the factor exp(—w?/2hn¥), where «¥? = 4n¥. In the pre-
ceding cases this factor was of the order of 1.

4. RESONANCE WIDTHS

In what follows, for simplicity, we shall consider
processes where the initial electron is in the ground
state (I = 0). In this case, as one can see from Eq. (25),
the resonance in the second diagram does not occur
(with the exception of the process where a photon is
scattered by an electron via the creation and annihila
tion of an ee*-pair).

Thewidth of aresonanceis determined by the prob-
ability of decay of the intermediate state, in this case
the probability of emission of a photon with frequency
w' by an intermediate electron with 4-momentum g =
(&n 0, 9y, 9, satisfying the condition (14). Thisis the
wellknown process of magnetobremsstrahlung of an
electron. However, the expression for the probability
must be doubled, since in our casetheinitial particleis
an electron in an intermediate state (see figure), in
which summation is performed over the polarization, in
contrast to a rea electron for which averaging is per-
formedintheinitial states. For the differential probabil-
ity of photon emission per unit time at an angle 6' with
respect to the direction of the magnetic field accompa:
nying atransition fromthelevel ntothelevel I' we have

d ' 2 .2 ~ o~ 2
S I, ) + (§ - )
x (I n=1) + °('= 1, n)) —4m’h/'n (27)

aw

xJ(I'= 1, n—1)J(I', n)—m*J*(I' - 1, n—l)]m,
o\Yo —

wherea = €¥/ic, g - P' = g — 9, P,, and J(H', n) isa
specia function of the form

J(l‘, n) - e—n'/2n(n—l‘)/2

1 . . '
x«/%—(n—l')!':(_l’n_l +1,n"),

F(H', n—=1"+ 1, n) is the confluent hypergeometric
function, and n' = w'?(1 — u?)/2hm?. For asmall param-
eter n' < 1, which for small Landau level numbers is
equivalent to the condition (18), the expression (27) can
be put into the form

deI'
du

(28)

2.n=I"-1

= amAh" " N1+ uD)(1-1) . (29
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where A isanumerical factor

= (n°=1?)(n=1)! (n=1")>""?
2n_ll|'!(n—|')!2 :

Integrating over u we obtain the total probability of the
process.

A

Wnl‘ — amhn—l'+1

L 2(n=DI(n=1)*"F(n+1)(n-1'+1)
'(n=1(2n-=-2I"+ )" '

(30)

According to what we have said above, the width I is
equal to the sum of the probabilities (30) over |I' from O
to n— 1. But, in the approximation (18) the term with
I'=n—21will bedominant, i.e.,

r=w, , = g(Zn—l)amhz. 31)
The expression for 2/IT with n = 1 is identical to the

emission time of an electron in a magnetic field [12].
For magnetic fieldsH ~ 0.1H, the width isT™ ~ 50 eV.

Thewidth at the pole of the Green’s function (10) is
introduced in the standard manner by adding to the
energy €, of the intermediate particle a negative imagi-
nary correction

&, — g,—il/2. (32)

5. CROSS SECTION
FOR THE RESONANCE COMPTON EFFECT

The differentia probability of the process is deter-
mined as the product of the squared modulus of the
amplitude (13) by the number dN of final states, whichis

_ Svd’pdk

dN :
(2m

(33)

Averaging over the polarizations of the initial photon,
summing over the polarizations of the final photon, and

integrating over dp, and dpy, the differential probabil-
ity can be put into the form

e'd(m+w—¢ —w)TdK

AWon: = 00,0, v

(34)

x fdxldxadxzdx;SpEp(zl, £)Q" (s zam;:@

where Q™ is only the first term in equation (13), Q,,
depends on the primed coordinates x; ,, and p({y, {5)
and p(&;, &) are the polarization density matrices
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of theinitial and final electrons, which are defined as
P2 C3) = W)WY,

PEL &) = WEDW(EY.

Substituting the expressions (1), (10), and (35) into the
expression for the differential probability (34), dividing
the latter by the flux density j = ¢/V of the initial pho-
tons and by thetime T, and integrating over dw' givesa
general expression for the differential cross section of
the process of interest. The explicit form of this expres-
sion is given in the Appendix. The expression depends
on the product of two special functions (28) J;(I', n) and
J,(0, n), the first one depending on the parameter n' =
wW?(1 — ud)/2hn? and the second on the parameter n =
w?(1 - v3)/2hn?. In the approximation of small param-
gtersn ~ n' < 1, the differential cross section for the
Compton effect near resonance with the final electron
polarized in a direction opposite to the field (u' = —-1)
can be put into the form

(35)

dO-anl'
du
O V20 1 o 0 M € i 1 i B
(w-03)°+T?/4

= B m’h™"

(36)

where once again v = cos6, u = cos@', h=eH/n?, ryis
the classical radius of the electron, wy is the frequency
of the initial photon at resonance (22), and B is the
following numerical factor

B_ _ I,]2n—1(h_|.)2n—2|'+1 (37)
2" (n-1?

It isworth noting that the dependence (36) of the differ-
ential cross section on the cosine u of the angle of the
final photonisidentical to the dependence of the differ-
ential probability of magnetobremsstrahlung on u. This
shows that at resonance the process where a photon is
scattered by an electron in amagnetic field dividesinto
two independent processes. absorption of the photon by
the electron and magnetobremsstrahlung.

Integrating the expression (36) over u, taking
account of Eq. (31), we obtain thetotal cross section for
the Compton effect at resonance

05y = 9Tl
2n=-2I' _2n-1 " i 2 2”-1(38)
><(n—I') N~ (n=1"+1)(1+v)(1-Vv")
a?h** M Y on— 1) (n=1")1(2n = 2I' + )N
For n=1, I' = O after integrating over v, the cross sec-
tion becomes

- 3 1
Oo10 = émg%ﬂ‘]g =

3 Ij_r|2 C4D2

a0
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where o; = 8Ttr§/3 is the Thompson cross section. In

thiscase w=w' and € = €', which correspondsto elastic
scattering. We note that the expression (39) can be writ-

tenintheform oy, = 2mx?, where X is the wavelength

of theinitia photon. As the magnetic field decreases, X
increases, which correspondsto an increase in the cross
section. But the width of the resonance decreases. For
magnetic fields H ~ 0.1H, the resonance cross section
for Compton scattering is six orders of magnitude
greater than the Thompson cross section.

Similarly to equation (36), we can obtain an expres-
sion for the differential cross section for Compton scat-
tering with the final electron polarized in the direction
of thefield (u' = +1):

.
dagy

T B m’h
. o1 (40)
L@V (A"
(w—w,)’+ /4 ’
where
2n-1 n2n-2I"+1
g = D (n=1 (41)

22— ) (n =11

To compare the cross sections (40) and (36) we divide
one by the other:

dog,/du _ I'h

—. 42
dog,/du 2 ¢
Since the ratio (42) does not depend on the variable u,
it will also hold for the total cross sections
Oonr = 'O/ 2. (43)

Finaly, we note that since for an electron in the
ground state (I = O, i = —1) the cross section (38) (scat-
tering without reorientation of the electron spin) is
2H,/I'H > 1 times greater than the cross section (43)
(scattering with reorientation of the electron spin), the
expression (38) actually also describes resonance cross
section of the Compton effect summed over the polar-
izations of thefinal electron. In addition, we underscore
that the expressions (36)—(40) were abtained in a coor-
dinate system where theinitial electron does not have a

momentum component in the direction of the magnetic
field: p,=0.
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APPENDIX restrictions imposed by the conditions (19). This

An expression for the differential cross section for ~ expression could be helpful for analyzing situationsin
resonance Compton scattering is presented below for  supercritical fields (H > Hy) or with ultrarelativistic
arbitrary polarization (' of the final electron with no  particles:

9

2 U
T oW z A
do-OnI' — i=1

du Amei(m+ (1 - vu) —w(1—u))(go—€,)" + [/4) ’

Where )\|r = 1—60|', A' = Ilhm60|'-
2||hm2u|r’h|(62 + m2)
A, = I n)J5 d
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Abstract—Yukawa systems serve as models for plasmas and colloidal suspensions of charged particles. The
state of these systemsis determined by two dimensionless parameters: k = a/Ap, which isthe ratio of the mean

interparticle distance to the Debye length Ap, and I = Zs €?laTg, which is the ratio of the Coulomb potential
energy to the particle temperature T, (Z, is the charge of each particle). We propose an empirical scaling law
for the critical coupling parameter I, needed for crystallization in Yukawa systems. The dependence of I' . on k
isin good agreement with recent molecular dynamics simulations. © 2000 MAIK “ Nauka/Interperiodica” .

Systems of small solid particles (dust particles)
immersed in plasmas have recently attracted much
attention. They arise in awide variety of plasma envi-
ronments ranging from the interstellar medium to labo-
ratory plasma devices. A dust particle in a plasma usu-
ally acquires an electric charge and interacts with other
particles. The interaction potential between macro-
scopic dust particles depends on their own physical
parameters and those of the ambient plasma. The ques-
tion of the correct potential of interaction between dust
particles is not purely fundamental and still remains
open. Such effects as the plasma flow anisotropies,
dipole effects, and long-range attractive interactions
due to shadow effects may play arole when considering
different plasma conditions. In order to understand the
behavior of dusty plasmas in complicated situations,
however, the results for simple and basic cases are
indispensable. As one of those cases, an isotropic
screened Coulomb potential (or a'Yukawa-type poten-
tia) is frequently assumed:

i’ l rD
(pr —____exp , ]

where Z, is the particle change and A, is the screening
length. For an isotopic and homogeneous plasma,

Ao = Apat+ Ao =g

(if asusua T, > T,), where

T..
Aoey = %
4Te Ng(jy

isthe electron (ion) Debye length.

L This article was submitted by the authorsin English.

It was suggested by Ikezi [1] that, when theinterpar-
ticle potential energy exceeds the kinetic energy, parti-
clesin a plasma can form crystalline structures. Labo-
ratory experiments under various plasma conditions
have recently demonstrated this possibility [2-8]. Such
crystal structures have been also observed in colloidal
suspensions of charged particles, where the interaction
potential (1) can be also adopted.

The conditions of such crystallization in a system of
particles interacting via a screened Coulomb potential
are under investigation. For example, molecular
dynamics simulations were recently used to study
phase diagrams of the Yukawa systems [9-12].
Although some of the assumptions in the simulations
(interaction potential, cubic simulation box with peri-
odic boundary conditions) may be not completely
suited to some experiments on Coulomb crystallization
in dusty plasmas, the results were obtained. In these
simulations the state of a system is determined by only
two dimensionless parameters,

k=al\, and T = Zie’/aTy, 2

which enter into the equations of motion. Herea= ;"
is the mean interparticle distance and ny is the particle
number density. The coupling parameter " is roughly
the ratio of the unscreened Coulomb potential energy to
the kinetic energy per particle (T, being the particle
temperature). Some studies [10, 12] have used normal-
ization that differs dlightly from (2). Specifically the
Wigner—Seitz radius p = (3/4my)Y® was used as the
length unit instead of a. Note that k and I" will then be
K =k(4mw3) 3 and " =T (41v3)¥3 = 1.612r .

In thelimit k — 0, the Yukawa potential devolves
into the long-range Coulomb potential describing the
one-component plasma (OCP) system. In this limit,
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T exp(-k)/197
1.0

0.1

8
k=a/)\d

Filled circles are the values of I" cexp(—K)/ FCOCP for various

vauesof k, calculated from the solid-fluid phasetransition data
of Hamagushi et al. [12]. Theerror bar at k=4.84 (k = 3.0) rep-
resents the simulation uncertainties. The solid curve is the

function (1 + k + k&2)~L,

only one parameter I' describes the fluid-solid phase
transition. It is well known [13, 14] that for the OCP
system, I' must exceed the critical valuel', =106 (I', =
170) to from a Coulomb lattice. For a system with a
Yukawa interaction potential, the transition between
fluid and solid phases takes place at some critical value
I that depends on the screening parameter k. By anal-
ogy with the OCP system, it wasfirst proposed to intro-
duce a coupling parameter that takes screening into
account [1],

e _
M= T exp(—a/Ap) =T exp(—K), 3
d

and use the condition 'y > 106 to describe Coulomb
solidification, so that ', = 106expk. However, recent
numerical simulations show that I, is a more compli-
cated function of k [12].

We have constructed a function ', = ' (k) that fits
the fluid-solid phase transition data of Hamaguchi,
Farouki, and Dubin [12] well over awide range of k (in
[12], three different polynomial fits (equations (17)—
(19)) were used to fit data over different ranges of k).
We assume that the critical value of the coupling
parameter depends on k as

Mo = FO%(1+k+K/2) expk, (4)

where 2" = 106.6 as found in [12].

In table, the values of I, found via numerical simu-
lation [12] and normalized by the right-hand side of
equation (4) for various values of k are summarized. It
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can be seen that for k < 1.61 (k' < 1), the deviation
between simulations and equation (4) is less than 1%.
Thisrange of kis very often applied to dust crystalsin
laboratory experiments. For all values of k except the
last point k = 8.06, equation (4) fit smulation results to
within 10%.

In figure, the values of I .exp(—k)/T " calculated
from the solid-fluid phase transition data of [12] are plot-
ted versus k. In addition, the function (1 + k + k%/2)* is
plotted. The error bar at k = 4.84 (k' = 3.0) represents
the simulation uncertainties estimated in [12]. It seems
that for all values of k (except k = 8.06). Equation (4)
holds to within the simulations errors. Figure aso
shows that I introduced by

Kk —s&s XP(—K)(1 + k + K3/2)
l—C
0 1.00
0.32 1.01
0.65 1.01
0.97 1.01
1.29 1.00
1.61 0.99
1.93 0.98
2.26 0.95
3.22 0.96
4.19 0.93
4.84 0.96
5.80 0.99
6.45 1.00
7.42 1.08
8.06 1.15

Equation (3) is not an appropriate measure to describe
the fluid-solid phase transition.

The form of the melting curve (4) can be obtained
using a very simple approach. We consider a one-
dimensional lattice of dust particles interacting via a
screened Coulomb potential. Moreover, we assumethat
it issufficient to include only interactions between nearest
neighbor particles. Then the characteristic oscillation fre-
quency of a given particle about its equilibrium position
with dl other particlesheld fixed is[15]

2 _ 4Zg€ K
W = Sk k),

where my is the dust particle mass. The mean squared
displacement of particles around their equilibrium

positions is [Bu~ lemdwg. According to Linden-

mann’s rule for the melting transition [dua® = const,
we have

Z€ K2
a—_l_d%]. +k+ EE@(p(—k) = const (5)
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at the melting curve. Extrapolating (5) to the limit
k —= Owefinally arrive at (4).

Surely this crude model cannot serve as a physical
basis for (4). It considers a one-dimensiona lattice
(athough simulations were performed in 3D) and
includes only interactions with nearest neighbors (this
assumption is valid only when k > 1). At the present
time, (4) must therefore be considered as an empirical
relation.

To conclude, we propose a scaling law for the criti-
cal coupling parameter I . needed for crystallization in
Yukawa systems. The dependence of I, on k is deter-
mined by (4). This dependence is consistent with the
recent fluid-solid phase transition simulation data
obtained by Hamaguchi et al. [12] to within the simu-
lation errors over awide range of k. The empirical con-
dition for crystallization,

Z5e K2
a—_rd%. +k+ -Z-Bexp(—k) > 106,

can be very useful in avariety of experimental contexts
ranging from dusty plasmas to colloidal suspensions.
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Abstract—Theinelastic coherent Mdssbauer scattering (ICMS) of synchrotron radiation at an isotopic bound-
ary—aflat interface between two regions of matter which have different concentrations of the Mdssbauer iso-
tope—is investigated theoretically. Attention is focused primarily on the ICMS component for which the
absorption of a synchrotron radiation photon by a nucleus occurs with recoil, i.e., with the creation or annihi-
lation of lattice phonons, and the subsequent process of reemission of a photon by the Mdssbauer nucleus
occurswithout recoil, asaresult of which radiation is pumped from the wide synchrotron radiation lineinto the
narrow Mossbauer line. Formulas similar to the Fresnel formulas, well known in optics, for the transmission
and reflection of light at a dielectric boundary are obtained for ICM S at an isotopic boundary. Specifically, itis
shown that the angle of reflection for ICM S at an isotopic boundary is different from the angle of mirror reflec-
tion of a synchrotron radiation beam, and the direction of the ICM S transmitted through the isotopic boundary
depends on the deviation of its frequency from the exact value of the M 6ssbauer resonance frequency and in
genera is different from the direction of propagation of the synchrotron radiation beam. The suppression of
ICMS at grazing angles of incidence of the synchrotron radiation beam isanalyzed. A similar problemis solved
for a plate-shaped sample containing a M dssbauer isotope. It is shown that the specific nature of the ICMS at
an isotopic boundary could be helpful in the problem of M&ssbauer filtering of synchrotron radiation. © 2000

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Recent progress in Mdssbauer spectroscopy using
synchrotron radiation in theinvestigation of the phonon
spectra of condensed media [1-3] (see also the recent
review publications[4, 5]) make detailed investigations
of the Mdsshauer optics of synchrotron radiation topi-
cal. Inelastic coherent M 6sshauer scattering (ICMS) of
synchrotron radiation, specifically, forward scattering,
studied theoretically in [6], is of special interest. In [6]
it was shown that ICM S is of specia interest for Mdss-
bauer optics of synchrotron radiation. At the first stage
of this process, resonance nuclear absorption of a syn-
chrotron radiation photon, the absorption process is
accompanied by the emission or absorption of alattice
phonon, while the second stage of scattering, the ree-
mission of a photon, occurs without recoil, i.e., without
phonon absorption or emission. This channel of ICMS
resultsin pumping of radiation out of the wide synchro-
tron radiation line into a narrow Mdssbauer radiation
line. It is of interest to study the optics of ICMS by an
isotopic boundary—a flat interface between regions
with different concentrations of the Mdssbauer iso-
tope—in connection with, specifically, the problem of
M 6sshauer filtering of synchrotron radiation.

The isotopic boundary separating the regions of
matter with no Méssbauer isotope and the same sub-

stance with 100% content of the M 6ssbauer isotope or
with a quite high degree of enrichment of the material
with a Mdssbauer isotope is a convenient object for
investigating M dssbauer scattering of synchrotron radi-
ation. The point is that for radiation which has not
undergone a resonance interaction with M d&ssbauer
nuclei this boundary issimply not manifested in optical
properties, since the optical characteristics of matter
determined by theinteraction of the radiation with elec-
trons are identical on both sides of an isotopic bound-
ary. An isotopic boundary separates spatial regions of
matter with different optical characteristics only for a
narrow spectral band of the synchrotron radiation near
the frequency of the Mdssbauer transition, where the
resonance interaction of radiation with the M éssbauer
nuclei is strong. All optical phenomena well known in
optics for a dielectric boundary appear in this spectra
range: reflection, refraction of radiation at the bound-
ary, and, specifically, total internal (or external) reflec-
tion (TIR). For ICMS, as will be shown below, these
phenomena all exhibit qualitative characteristic fea
tures as compared with the optics of elastic scattering
of synchrotron radiation. For this reason, the optics of
an isotopic boundary is of interest for experiments
studying the interaction of synchrotron radiation with
Mosshauer nuclei [7], specifically, experiments on
M 0ssbauer filtering of synchrotron radiation, since the
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background due to the interaction of the synchrotron
radiation with the electrons in the matter can be elimi-
nated. Indeed, reflection of synchrotron radiation in the
spectral ranges for which nuclear resonance scattering
of synchrotron radiation is not observed simply does
not occur at an isotopic boundary, and for this reason
the nonresonance background is completey sup-
pressed in the scattering.

The present paper is devoted to a systematic analy-
sisof the optical characteristics of ICM S at an isotopic
boundary (including in the region of TIR) and by a
plane-parallel layer of matter enriched with the Mdss-
bauer isotope and submerged in the same material with-
out the Mdssbauer isotope. In this paper elastic Méss-
bauer scattering is completely omitted, since this ques-
tion has already been exhaustively studied and the
corresponding results can be found in a number of
monographs (see, for example, [7-9]). Attention is
focused on the ICM S component corresponding to reso-
nance nuclear scattering of synchrotron radiation pho-
tons, where the creation or annihilation of lattice
phonons occurs at the stage of absorption of the primary
photon, while the stage of reemission of a photon by the
nucleus occurs without the participation of phonons, i.e.,
without recoil, and therefore the energy of the scattered
photon corresponds exactly to the energy of the Moss-
bauer transition. Formulas similar to the Fresnel formu-
las, well known in optics, are obtained, and the corre-
sponding formulas are also presented for ICMS in a
plate-shaped sample. ICMS at a boundary with a vac-
uum as well as for a plate-shaped sample in a vacuum
is described by the formulas obtained after a simple
limit is taken in them. The possibility of experimental
observation of the effects in ICMS optics and the
advantages of using ICMS at an isotopic boundary for
M0ssbauer filtering of synchrotron radiation are dis-
cussed.

2. BASIC EQUATIONS

Let us consider the ICM S process for a synchrotron
radiation pulse propagating in a sample containing
nuclei of a Mossbauer isotope, i.e., nuclear resonance
scattering processes accompanied by the creation or
annihilation of lattice phonons. The generation of
ICMS is described by the inhomogeneous Maxwell’s
equation [6, 10]

1 0°E,
—rotrotE; = S5(g;+¢€y)
1 C2 0 1 atz

)
+X"Eo(wy 2)3(z— v 4t),

where g, is the permittivity in the absence of a nuclear
interaction, €, is the correction to the permittivity
resulting from the nuclear interaction, XN is the analog
of the nonlinear susceptibility well-known from nonlin-
ear optics[7, 10], wsisthefrequency of the synchrotron
radiation, v, is the group velocity of the synchrotron
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Fig. 1. lllustration for the geometry of ICMS at an isotopic
boundary and alayer of matter (SR is synchrotron radiation
beam).

radiation pulse, z is the coordinate in the direction of
propagation of the pulse, and the electromagnetic field
in the sample is represented as a sum of two compo-
nents: E = E, + E,, where E isthe unperturbed field of
the synchrotron radiation and E, isthe perturbation due
to the interaction of the radiation with Mdssbauer
nuclei. In what follows, to solve equation (1) we shall
first assume that only absorption of the primary photon
of synchrotron radiation occurswith recoil, and the ree-
mission of the secondary photons by the nuclei occurs
without recoil. Under these assumptions, €, corre-
sponds to elastic resonance scattering of photons.
Therefore[7, 10]

I N,

+ = = 4
CoT & T Ew T Bt ETE LD

@)
where 2 is the Lamb—-Mdssbauer factor, I'; and I are
the radiation and total widths of the Mdssbauer level,
the factor N, depends on the characteristics of the crys-
tal and the nuclear transition, E; = A, and Ey is the
resonance energy.

To describe ICMS by an isotopic boundary or a
plate bounded by two isotopic boundaries, the solutions
of equation (1) must satisfy the boundary conditions at
the isotopic boundary or at two boundaries in the case
of aplate (Fig. 1). Assuming for simplicity that the den-
sity of the M6ssbauer isotope is zero outside the plate,
we shall seek the solution for the ICMS field in the
form

E,exp(ik,r) forz>0ande; = O,
E.exp(ik,r) forz<-L and g, = 0, 3
Epexp(ikyr) + Erexp(ikr) + Ey exp(ikyr)
for0>z>-L and g, 20,

where k, and k; are the wave vectors of the ICM S pho-
tonsreflected from and transmitted through the plate, k
and k., are the wave vectors of the transmitted beam in
the plate and the beam reflected from the second isoto-
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pic boundary, Kk, is the wave vector in the particular
solution of equation (1), and E,, E;, E¢, Ey, E,, arethe
amplitudes of the corresponding plane waves.

Torefinethewave vectors gppearing intherelation (3),
it is necessary to satisfy the boundary conditions for the
tangential components of the wave vectors. To find the
amplitudes introduced above in the relations (3), it is
necessary to satisfy the boundary conditions for the tan-
gential components of the electric and magnetic fields.
The moduli of the wave vectors are determined by the
frequency of the ICM S photons and the permittivities of
the plate and the external medium [6, 7]:

k =k = 2t k= ke = DiEw,

w1l

k = X —
p 1
C [y
where g, and €, are the permittivities on the side of the

isotopic boundary containing the Mossbauer isotope
(see equation (2)) and on the side of the boundary that
does not contain the M dssbauer isotope.

(4)

3. BOUNDARY CONDITIONS

As aresult of the boundary conditions for the wave
vectors, the tangential components of all wave vectors
areidentical and can be expressed in terms of the angle
of incidence of the synchrotron radiation beam as
k,cosd, (seeFig. 1).

The boundary conditions for the electric and mag-
netic fields for waves polarized linearly in a direction
orthogonal to the scattering plane lead to the following
system of equations for the amplitudes of the waves:

E,+E{+E, = E,.
kszp+szf +k2rzE2r = krzEr!

Epexp(ikp,L) + Erexp(ik,L)

. _ . )
+E2rexp(|k2rz|—) - Etexp(lktzl—)-

Ko Epexp(ikp,L) +k,E¢exp(ik,L)
+k2rzE2reXp(ik2rzL) = ktzEteXp(iktzL)’

where the index z marks the wave vector components
normal to the isotopic boundary. The system (5)
describesthe optics of an isotopic boundary and aplate,
i.e, a plane-paralel layer containing nuclel of the
M Gssbauer isotope.

4. |ISOTOPIC BOUNDARY

To describe ICMS at an isotopic boundary it is suf-
ficient to usethefirst pair of equationsinthe system (5),
setting the amplitude E, equal to zero. From the
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boundary conditions for the wave vectors follows an
expression for the “reflection” angle for ICMS:

cosh,
cosd,

—&,. (6)

Since the difference between the angles of incidence
and reflection is small, we can write ¢, = ¢, + Ad, and
obtain for A,

1-¢
Ap, = — c <

cotd,,. (7)
e

Since g, < 1, the correction Ad, is negative, i.e., the
reflected ICMS ray hugs the isotopic boundary, and
A, is essentially independent of the ICM S frequency.

The same boundary conditions for the wave vectors
give for the angle of refraction ¢,

cosp, 1
cosh, JeEm ®)

Setting ¢, = ¢y + Ad,, we obtain
29, = B - —Heotg,. ©)

EeEm

In contrast to the angle of reflection, the correction
to the angle of refraction and its sign depend on the
ICM Sfreguency and its difference from the exact value
of the M&sshauer resonance frequency, since €y, depends
on the frequency and near the resonance frequency it can
be greater or lessthan 1. For the frequency satisfying the
phase matching conditions[6], i.e.,

k=k, (10)

we have ¢, = ¢, i.e., the “refracted” ICM S beam prop-
agates strictly in the direction of the primary synchro-
tron radiation beam.

Just asfor X-rays at avacuum-crystal boundary, for
ICMS a*“characteristic feature of reflection” appears at
an isotopic boundary in the TIR region. However, the
manifestation of this feature is completely different
from the total internal reflection of X-rays (below). The
TIR condition for ICMS is ky > k, where k,, is the tan-
gential component of the vector k,. Hence follows an
expression for the critical angle (¢, = ¢.) or TIR in
transmission

COSP. = /€cE\-

It isevident from equation (11) that because of the fre-
guency dependence of gy, the condition for TIR in
transmission holds for al ICMS frequencies above the
resonant Mossbauer frequency, i.e., for them ¢. > 0,
and the condition may not hold in a frequency range
immediately below the resonance frequency, i.e., for
the corresponding frequencies ¢. = 0. In any case, the

(11)
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critical angle is very small, since from equation (11)
follows the expression

—J2(1— JeEnm)-

The ICMS frequencies for which total internal
reflection is absent for transmission are determined by
the inequality

(12)

L1 (23
We note that, strictly speaking, the relations (8), (9),
and (11)—(13) contain not €, but rather Reg,,.

Figure 2 displaysthe computed spectral dependence
of the critical angle ¢ for refraction. The parameters
used in the calculations here and below approximately
correspond to the case where synchrotron radiation at
the isotopic boundary interacts with an iron sample
strongly enriched with >’Fe and are presented in Sec-
tion 9. Thefigure showsthat for ICM Sfrequency below
the resonance value there exists a range of frequencies
where the critical angle for transmission is zero, and
directly above the resonance frequency there exists
approximately the same frequency range where the
critical angle for transmission is appreciably greater
than the critical angle for reflection. The difference of
the corresponding angles reaches of the order of
3 mrad, i.e, it can be easily observed experimentally.

Figure 3 displays the computed spectral dependence
of the refraction angle A¢, for ICMS at an isotopic
boundary for several grazing angles of synchrotron
radiation.

From thefirst pair of equations of the system (5) we
have for the amplitudes E; and E, at the i sotopic bound-

ary
£0Shof . sin
E; = —Ep[ /l—D . OD + ej)o}

_gosbo? «/S_M_[&%DZT
Ueg, U ’

g, Ueg U

x[ 1
- -]

The expressions (14), together with the expression for
E, 6],
P

(14)

Eposq) ODZ

E, = X"E , (15)

[wmz[ (ee+Ey) [wmz}

determine the amplitudes of the ICM S waves reflected
from and transmitted through the isotopic boundary.
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Fig. 2. Computed spectral dependences of the critical angle
¢ for transmission in the case of an isotopic boundary. The

horizontal line gives the critical value of the angle ¢4 for
reflection.
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Fig. 3. Computed spectral dependences of the refraction
angle A, for ICMS at an isotopic boundary for several

grazing angles of the synchrotron radiation beam: ¢q =
0.003 (1); 0.01 (2); and 0.05 (3).

For norma incidence of a synchrotron radiation
beam the expressions (14) assume the form

E = _E 1+1/¢,
f p1+A/£M/£e’ (16)
16
E-E Jeml€e—1/E,

P 1+, /eyle, '

Figure 4 shows the spectral dependence of the ampli-
tude of the ICMS wave reflected from the isotopic
boundary with normal incidence of the synchrotron
radiation beam.

For a fixed frequency of the synchrotron radiation
photons, the expressions (14) and (16) give a very low
intensity of the reflected ICM S within the energy width
of the Mdssbauer line. For the ICMS intensity inte-
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Fig. 4. Computed frequency dependence of the ICMS
amplitudefor reflection at an isotopic boundary with normal
incidence of the beam.

grated over the frequency of the primary synchrotron radi-
ation beam, we obtain from equation (16) the estimate

2 (1-1)F°|EJ°
e+l 16" (17)

where a is the coefficient of internal conversion and
|Eqf? is the spectral density of radiation in the synchro-
tron radiation beam. This expression shows that the
fraction of the resonance component of ICM S reflected
at the isotopic boundary is comparable to the intensity
of resonance elastic Mdssbauer reflection of synchro-
tron radiation photons [7-9], within the width of the
Mosshauer line in the region of the resonance fre-
quency under TIR conditions, i.e., for grazing angles of
incidence of the beam. The estimate (17) refersto large
angles of incidence (formally for normal incidence of
synchrotron radiation on the isotopic boundary), for
which the resonance M 6ssbauer reflection coefficient is
very small (~|1 — gy|). For this reason, for large angles
of incidence most of the reflected resonance photons
are associated with ICMS.

|E|

) 5. INELASTIC COHERENT
MOSSBAUER SCATTERING BY A PLATE

We shal now solve the system (5) for a plate
bounded by two isotopic boundaries. For an arbitrary
angle of incidence of a synchrotron radiation beam on
aplate we obtain

E, = —Ep[%%:_%kzrz—kz)exp(iksz)
+ 5%2— l%kpz— Karz) €xp(ik,L)
Ek?fz — 1k, — kpz)exp(lkm'-)}

x [(erz—krz)Ek - 1Hexp(ik,L)
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* (k- k- (i) |

k,— K, (18)
E.exp(ik,L) = E ﬁ k. Pexp(ik,L)
e
ekl - el S
x [E‘(i:z_ 18exp(ik,L)
s (sz—(:;)(_kk . < exp( kZ,ZL)T,

where

. 2
K o= WS cos ¢,
pz_E_i z__2rz_E SM_E_i
NG e
2
_w[ _codh
k, = L g 2220
C €e

The equations (18) together with the expression (15)
for E, make it possible to calculate the absolute ICMS
intensities for beams reflected and emanating from a
plate.

The expressions (18) simplify for normal incidence
of synchrotron radiation on a plate:

£ 2A/eM/s (1—¢p)
' e(1— . Jeulel)

+Dl [Hexp(kL)— ——J;MD

ktz =

exp(ikpyL)

1+ 1+ Jeyle, .
—ikL
10 1 Jee. exp(—i )}
x[a/i—'\:—lgexp(iku
2 -1
_(AF Jewlee) exp(—ikL)}
Enl€e—

(19)

E.exp(ikL) = Epﬁa/f—“—elgexp(iku
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" Etl +J;ME'11——— Lol e o ik
e €e JEM/Se

x exp(ik,L) + Ot + ﬁﬂl+— Ew/Ee
P u:e 8eD./8M/Se—1

1 [ € .
+ E? - A/;EQDD [8—“" —~ 1Eexp(| kL)
(a4 A/eM/se)z B
Jeml€e—1

It is easy to obtain from the expressions (18) and (19)
expressionsfor ICMSin aplate placed in avacuum. In
this case, however, the synchrotron radiation photons
that do not participate in Mdssbauer resonance scatter-
ing and that produce a nonresonance background,
which is not described by equations (18) and (19), also
undergo reflection at the boundary of the plate. To sup-
press this background, time-delayed photon detection
isordinarily used in experiments [4, 5].

Asan example, we shall present expressions for the
amplitudes of ICMS generated by synchrotron radia-
tion in aplate placed in a vacuum for normal incidence
of the beam:

exp(—i kL)} .

E =E,
N 2i(ey—1)sinkL
(1-.few) exp(ikL) — (1 + Jeu) exp(-ikL)
E.exp(ik.L)

= E{4./en + [(1- Jew) exp(ikL)
—(1+ Jeu) exp(—ikL) ] exp(ik,L)}
X [(1— Jen) exp(ikL)
—(1+ Jew) exp(-ikL)] .

For an arbitrary angle of incidence the expression (18)
gives aresult for aplatein vacuum if we set g, = 1.

The formulas presented above assume that the angle
of incidence of the synchrotron radiation beam lies out-
sidethe TIR range. ICMSinthe TIR range merits aspe-
cial anaysis.

(20)

B 6. INELASTIC COHERENT
MOSSBAUER SCATTERING IN THE RANGE
OF TOTAL INTERNAL REFLECTION

We shall now examine the generation of ICMSat an
isotopic boundary for extremely small grazing angles
of a synchrotron radiation beam, i.e., in the region
which for optics ordinarily corresponds to TIR. How-
ever, as will be shown below, for ICMS at an isotopic
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boundary the situation is radically different in this
range of angles: ICMS reflection is completely sup-
pressed, so that the corresponding range of angles for
ICM S corresponds not to TIR but rather to the complete
suppression of reflection.

The condition that the tangential components of the
wave vectors match at the isotopic boundary requires

(21)

which, because k, > k. for small angles ¢, less than a
certain critical angle ¢, immediately leads to an imag-
inary value for the normal component of the wave vec-
tor k,, since the norma components of this vector is

kpt = kpCOS(I)O = krti

determined by the expression .JkP —k?,. In turn, this
means that the ICM S wave reflected from the isotopic
boundary decaysfor b, < ¢, i.e., itsreflection is absent.
Using the expressionsfor the moduli of these wave vec-
tors, we obtain for the critical angle ¢, for reflection
(seeFig. 1)

(22)

where wy, is the plasma frequency.

The characteristic features of an ICMS beam trans-
mitted through an isotopic boundary also appear in the
range of complete suppression of reflection.

We call attention to the fact that the critical angle ¢
given by the relation (22) determines the range where
there is no ICMS beam reflected from the isotopic
boundary and is frequency-independent. The critical
angle ¢, for transmission, which is given by the rela-
tion (12), determines the angular range where there is
not ICMS beam crossing the isotopic boundary, and it
is frequency-dependent.

The character of the propagation of an ICM S beam
crossing the boundary depends on the offset of its fre-
guency from the exact Mosshauer resonance. For
ICMS frequencies above exact resonance, it follows
from the condition for the tangential components of the
wave vectors that the normal component of the wave
vector k of the ICMS beam crossing the boundary is
imaginary for grazing angles ¢, of the synchrotron
radiation beam less than the critical angle ¢ for reflec-
tion, i.e., inthisrange of anglesthereisno ICMS beam
propagating beyond the isotopic boundary. For fre-
guencies below the resonance frequency, in this range
of angles of incidence there is a range of frequencies
where an ICM S beam propagating beyond the isotopic
boundary exists. The lower frequency limit of this
range is determined by the condition k >k, = k,coso,,
whence follows the relation

05> 2(1—EyEe).- (23)

In the range of grazing angles ¢, greater than the criti-
cal angle ¢, for reflection, where the reflected ICMS
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Fig. 5. Computed angular dependences of the amplitude of
ICMS reflected from an isotopic boundary for ICSM fre-
quencies Aw/T =-2 (1), -5 (2), 0(3), and 10 (4).

beam aways exists, there may not be an ICM S beam
propagating beyond the isotopic boundary in a certain
frequency range because of the above-mentioned con-
ditions for the tangential components of the wave vec-
tors for frequency above the resonance value. The
upper frequency limit of thisrangeis determined by the
relation

1-¢;

€e

&y < (24)

Thus, very unusual characteristics of transmission and
reflection of ICMS beams are realized in the range of
complete suppression of reflection at the isotopic
boundary. Thus, there exist angular ranges of incidence
of a synchrotron radiation beam and frequency ranges
of ICMS for which there are no ICM S waves propagat-
ing on both sides of the isotopic boundary, and there
also exist ranges where there is only one propagating
ICMS wave—either transmitted or reflected. These
properties have a direct bearing on experiments on
M Ossbauer filtering of synchrotron radiation. However,
it should be noted that the suppression of reflection and
transmission of ICMS beams through an isotopic
boundary, discussed above, can be interpreted in an
absolute sense of these concepts only for real permittiv-
itiesgy, and €. Sincein reality these quantities are com-
plex, the boundaries of the regions where the phenom-
enadiscussed appear are“ smeared” asafunction of the
values of the parameters (angles, ICM Sfrequencies) on
which they depend. Figure 5 gives an idea of the behav-
ior of the amplitude of the reflected ICMS wave near
the critical angle ¢, for reflection.

7. THICK PLATE

The limiting case of a thick plate enriched with a
Mosshauer isotope is of practical interest. Here the
term thick is understood to be a sample thickness for
which the characteristic Mossbauer solutions are
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damped in the samples because of strong resonance
nuclear absorption, but because electronic absorptionis
much wesaker the intensity of the synchrotron radiation
beam does not yet decrease strongly. Inthiscase ICMS
beams at the entrance surface of the plate are described by
the formulas presented above for an isotopic boundary.

For the exit surface of a plate the ICMS beams are
likewise described by simplified formulas. Thus, from
the system (5) and equation (18) we have for the ampli-
tude of the ICMS beam transmitted and reflected at the
exit surface

krz K pz
Ecexp(ik,l) = Ey(L)i ="
2rz tz
0 ? ind.[]
= £ e, - 0o, SN
€e Jeo O
0 2 2600
x%/m__coyu =y
e e [ (25)
k
L
2r p( )k2rz k
U cos” sin
- Ep(L) _ ¢0 ¢0

€e [D

-1

4 cos” cos’ 0
XQJSM_ 8¢0+J£e_ s¢°D-
e e [

In the normal-incidence limit these formul as become

E.exp(ikL) = Ep(L)Jj_g—fff,
1/
E2r = Ep(L /\/_/\/— /\/LF

where Ej(L) = E,exp(iky,L) is the amplitude E, at the
exit surface, taking account of the propagation (includ-
ing damping) of the synchrotron radiation beam in the
layer. Figure 6 presented below illustrates the angular
dependence of the ICMS amplitude in the transmitted
beam in the range of grazing angles of incidence of the
synchrotron radiation beam.

(26)

8. ABSOLUTE INTENSITY OF ICMS BEAMS

In al formulas presented above the ICMS ampli-
tudes were expressed in terms of the amplitude E, of
the solution of the inhomogeneous Maxwell’s equa-
tion (1). The absolute value of the intensity of the beams
is important in experiments. For this reason, we present
below the formulas using the relation (15) between the
amplitude E, and the amplitude of the field E; in the

No. 2 2000



MOSSBAUER OPTICS OF SYNCHROTRON RADIATION AT AN ISOTOPIC BOUNDARY

synchrotron radiation beam [6] and thereby relating the
intensity of ICMS beams with the spectral density of
the beam intensity.

We present first the corresponding expressions for
the simplest cases, specifically, for reflection from a
thick plate and for transmission of ICM Sthrough athick
plate under normal incidence of a synchrotron radiation
beam on it. For athick plate the expressions (19) sim-

plify:

E, = —EoXN[(1+ JewmlEe) (1 + /\/SMSG)]_l'
E,expli(k —k;)L]

= EoX"[(1— Jene) (1 + Jenled]

It is evident from the expressions (27) that the spectral
distribution of the reflected ICMS does not have the
character of resonant gamma radiation with parameters
close to the spectral distribution of the M Gssbauer line,
but rather it is strongly broadened compared with ™ (for
a thick sample). The spectral range of the reflected
ICMS beam is determined by the extinction length |,
due to the electronic absorption mechanism and can be
estimated from the relation klIm[ey(Aw)] = 1. The
spectral distribution in the ICMS beam transmitted
through the plate has a maximum at the phase matching
frequency [6] (the denominator of the expression for E;
contains a factor whose modulus is minimum at the
phase-matching frequency). The estimate (17) pre-
sented above for the integral intensity of the reflected
ICMS beam follows from the expression (27).

Another interesting limiting case, as already men-
tioned above, isthe range of small grazing angles, next
tolargecritical angles ¢ for reflection, wheretheinten-
sities of the reflected and transmitted ICMS beams
reach amaximum [11] (see Figs. 5 and 6). Thus, in this
range the amplitude of the ICMS wave transmitted
through and reflected from athick plate is given by the
expressions

(27)

B = EoL)

X Ee(NEME =1+ Dol/2 + D)
(JewEa—1+ 022+ JE2—1+022)(1—£yes) o9
E, = EoL)
X "ee(/EmEe—1 + $o/2~ §o)

(JemEa—1+ 022+ JE2—1+022)(1—Enes)

where the meaning of Ey(L) isthe same asin equations
(25) and (26).

X

9. COMPUTATIONAL RESULTS

We shadll illustrate the qualitative analysis of the
phenomena of the optics of ICMS by an isotopic
boundary, performed above, with the results of numer-
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Fig. 6. Computed angular dependences of the amplitude of
an ICM S transmitted through a thick plate enriched with a
M Ossbauer isotope for ICM S frequencies Aw/T” = -2 (1),
-5 (2),-10(3), and O (4).

| |
0.6 1.0 1.4

I, arb. units

30
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Fig. 7. Spectral distributions of the intensity of the resonant
component of |CM Stransmitted through asample asafunc-
tion of the dimensionless thickness of the layer t =
L(w/c)Re(Aey): t = 1 (1); 5 (2), 15 (3), 25 (4), for normal
incidence of the synchrotron radiation beam.

ical calculations (Figs. 2-9). As aready mentioned
above, the parameters used in the cal cul ations approxi-
mately correspond to the case of the interaction of syn-
chrotron radiation on an isotopic boundary with aniron
sample highly enriched with >Fe. The corresponding
energy of the M éssbauer transitionis 14.4 keV. Thefol-
lowing values for the parameters were used in the cal-
culations:

Re(l-g.) = 10°, Im(l-¢g,) = 2x107,
maxRe(gy, —1) = 10Re(1-¢,).

The values of Aw/T', where Aw is the offset of the fre-
guency from the resonance value, I is the width of the
M Osshauer level, and t = L(w/C)Re(Agy), where Agy is
the difference of the permittivity for synchrotron radia-
tion from 1, were taken in the figures as the dimension-
less frequency and thickness.

No. 2 2000



298

E,, arb. units

(a)
0.255
0.250
0.245 -
l 1 1 1
-10 -5 0 5 10
AwyT
(b)
1 1
-10 5 10
Aw/T
0.4 B (C)
03F
|
02F
1 1 1
-10 -5 0 5 10
Aw/T

Fig. 8. Computed frequency dependences of the ICMS
amplitude for reflection from a plate with finite thickness,
enriched with a Méssbauer isotope, for several values of
the dimensionless thickness of the plate t = L(w/C)Re(Agy):

t = (a) 100; (b) 25; (c) 1.

The calculations showed that the ICMS lineis fre-
guency-broaden compared with I and that for a thick
sampl e resonance effects are manifested only as aweak
modulation of reflection near the resonance M éssbauer
frequency (see Fig. 4).

Figures 5 and 6 show the computed angular depen-
dences of the amplitudes of the transmitted and
reflected ICMS waves (for a thick sample) for several
values of the ICMS frequency. The curves presented
demonstrate that the intensity maxima in the transmit-
ted and reflected | CM S beams are reached for angles of
incidence of the synchrotron radiation beam near the
critical angle ¢, for reflection (compare with the mea-
surements in [12, 13], which give a sharp scattering
maximum for a grazing angle different from zero). The
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value of the maximum itself depends strongly on the
frequency, and the spectral density of the ICMS inten-
sity in the direct beam is higher than in the reflected
beam only near the phase-matching frequency (see[11]
also).

Figures 7 and 8 display, respectively, the computed
frequency dependences of the intensity of the transmit-
ted and the amplitude of the reflected ICM S waves for
severa values of the thickness. The curves presented
demonstrate broadening of the frequency range of the
scattered radiation and the concentration of the spectral
density of theintensity of the transmitted beam near the
phase-matching frequency with an increase in the
thickness of the layer.

Figure 9 shows the thickness dependences of the
ICMS amplitude for reflection from a plate of finite
thickness for several values of the ICM S frequency and
normal incidence of the synchrotron radiation beam.
These dependences are characterized by very shallow
beats (with period A/2, see Fig. 9a), which are averaged
in real experiments, and smooth amplitude variations
which decay with thickness.

10. INELASTIC-INELASTIC
AND ELASTIC-INELASTIC
ICMS COMPONENTS

We shall now briefly discuss the optics of an isoto-
pic boundary for other ICM S components, specifically,
theinelastic-inelastic scattering (i.e., with recoil at both
stages of scattering) and elastic-inelastic scattering
(i.e., with recoil at the photon reemission stage).
Although the frequency-integrated ICMS intensity for
these components can be comparabl e to the intensity of
the ICMS component examined above, their spectral
intensity is much lower than in the initial synchrotron
radiation beam. For thisreason, their observation, espe-
cialy in the first beam, isamore difficult problem than
for the inelastic-elastic ICMS component already
examined.

For the inelastic-inelastic ICMS component, the
critical grazing angles for reflection and transmission
are the same, they do not depend on the frequency, and
they are determined by the relation (22). The synchro-
nization condition (10) [6], which can be presented as
kp =k, assumes theform g, = 1. Sincein reality e, < 1,
the synchronization condition for this ICMS compo-
nent cannot be satisfied, and its intensity in the trans-
mitted beam undergoes beats as a function of the sam-
ple thickness and does not exceed the value corre-
sponding to a sample thickness equal to the coherence
length. This means that this ICMS component is more
pronounced in the reflected beam, for which the syn-
chronization condition is not as critical.

In the elastic-inelastic ICMS channel, the group
velocity v, of the synchrotron radiation beam near the
M 6sshauer resonance frequency is strongly frequency-

No. 2 2000



MOSSBAUER OPTICS OF SYNCHROTRON RADIATION AT AN ISOTOPIC BOUNDARY

(@)

E,, arb. units

04}

10 ¢

E., arb. units

e

0.25002

0.25000

0.24998

0.24996 + . |
9 10 ¢

oo

299

(b)

E,, arb. units

0.25002

0.25001

0.25000

8 9 10 ¢
(d)

E,, arb. units
0.25010

0.25000

0.24990

VA

1.0 1.2 1.4 1.6 1.8 2.0t

Fig. 9. Computed thickness dependences of the |ICM S amplitude for reflection from aplate of finite thickness, enriched with aM 6ss-
bauer isotope, for several values of the ICMS frequency: (&) beats near zero thicknesses, the unit of dimensionless thickness tis

reduced by afactor of 10° compared with its definition; Aw/l" = (b) 1, (c) —1, (d) 0. The synchrotron radiation beamisincident in a

direction along the normal.

dependent and can be found as the product dw/dk. Asa
result, we have

_ __ Cew -
Vo = 1+ Agy, + wEe'/2 (29)
where € = de/dw, and Agy, is the contribution of the
nuclear resonance interaction of synchrotron radiation
quantato the permittivity (see equation (2)).

The synchronization condition (10) [6] now
becomes

few

1
1+A0e, +0e12 g

%

and can be satisfied for a definite frequency of the
absorbed synchrotron radiation photon. This means
that the amplitude of the ICM S component under study
increases linearly with sample thickness only for
absorption of photonswith adefinite, synchronous, fre-
guency by the nuclei. As in the preceding case exam-
ined above, this means that this ICMS component is
suppressed in the transmitted beam and it can be
detected more efficiently in the reflected beam.

(30)
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Using the expression (29), we find that for the elas-
ticinelastic ICMS components the critical angles for
reflection and transmission are the same, they depend
on the frequency of the absorbed synchrotron radiation
photon, and they are determined by the relation

[€e€Mm

1+Ag, +we'/2°

It should be noted that the investigation of the elastic-
inelastic ICM S component in the reflected beam isalso
preferable because the generation of this component in
the sample as a result of strong absorption of synchro-
tron radiation photons with frequencies near the Mdss-
bauer resonance occurs at small thicknesses, deter-
mined by the Mosshauer absorption length, and its
investigation in the transmitted beam on thick samples
isineffective.

cosd, = cosb, = (31

11. CONCLUSIONS

The above analysis of ICMS by an isotopic bound-
ary demonstratesthat most of the featuresfound for this
optics as compared with conventional, specifically, the
difference of the critical angles for transmission and
reflection ICM S, can be observed experimentally, since

No. 2 2000



300

the corresponding angular and energy ranges of the
effects are experimentally resolvable. Moreover, the
ICMS maxima found in reflection and transition could
be of interest for Mdssbauer filtration of synchrotron
radiation. However, it isvery important that in ICMSin
transmission, i.e., forward, the spectral range of ICMS
is strongly limited by phase matching requirements,
which results in suppression of this scattering channel
and a serious limitation of the frequency-integrated for-
ward-scattering intensity. This limitation does not
occur for ICMS at alarge angle, i.e., in reflection.

We note that for a plate-shaped sample and grazing
angles ¢, for asynchrotron radiation beam less than the
critical angle for reflection, i.e, for ¢, < ¢, thereisno
transmitted ICMS beam. However, if the sample has
the form of a wedge whose angle ¢, is large compared
with the critical angle ¢, for reflection, then for certain
ICMS freguencies (see Fig. 2) there exists an ICMS
beam from the sample, right up to a zero grazing angle
¢, of the synchrotron radiation beam. As noted above,
this opens up additional possibilities for M dssbauer fil-
tration of synchrotron radiation in the transmission
geometry.

The entire analysis performed above concerned a
layer of matter containing a Mdssbauer isotope and
bounded by an isotopic boundary. However, the phe-
nomenon studied also occurs for a sample placed in a
vacuum. The difference arising here is that now there
exists a nonresonant reflection of the synchrotron radi-
ation beam at the boundaries for all frequencies repre-
sented in the beam. It is a source of the background
(whichin an experiment can be eliminated by using the
time-delay technique [4, 5]). In addition, the form of
the expression for the critical anglefor ICM Sreflection

changes (for a plate in vacuum cosds = ./g., s =

J1-.Je. = wjw). This angle is now identical to the
critical angle for total internal reflection of a synchro-
tron radiation beam at the boundary of the sample with
the vacuum. This latter angle is not related with M éss-
bauer scattering. We aso note that phenomena similar
to those studied above aso occur in other ICMS com-
ponents, specifically, in inelastic coherence scattering,
where reemission of a photon isaccompanied by recoil
processes. As noted above, however, the spectral den-
sity of the corresponding scattering channels is much
lower, and for thisreason they were not studied in detail
here. On the whole, the results obtained support the
view which has formed in the last few years that M 6ss-
bauer optics investigations of surface phenomena (see,
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for example, [13-17]) are an important direction of
investigations using synchrotron radiation.
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Phase Transitions and L ow-Frequency Dielectric Dispersion
in Ferroelectric Langmuir—Blodgett Films
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Abstract—The dielectric properties of multilayer ferroelectric Langmuir—Blodgett films based on the copoly-
mer vinylidene fluoride with trifluoroethylene with 70/30 composition are investigated. Good agreement with
theoretical models on the basis of the phenomenological Landau-Ginzburg approach is demonstrated for the
first time for ultrathin films. Expressions describing the temperature variation of the permittivity in the temper-
aturerange of hysteresis and giving quantitative agreement with experimental dataare obtained. It isshown that
the Langmuir—Blodgett films are conducting. This conductivity does not depend on the frequency of the field.
The results are explained by the fact that the motion of charge in the filmsis not bounded by domain walls. The
jumps observed in the frequency dispersion at volume and low-temperature (surface) phase transitions are
explained by a sharp increase in the relaxation times at the transition into the ferroelectric state. © 2000 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

The question of two-dimensional ferroelectricity in
films of the copolymer vinylidene fluoride with trifluo-
roethylene (PVDF/TrFE), prepared by the Langmuir-
Blodgett (LB) method, is now being widely discussed
[1]. There are severa reasons for the interest in these
systems. In the first place, the question of proper two-
dimensional ferroelectricity is now being discussed for
thefirst time[2]. Thusfar, theferroelectric propertiesin
several monomolecular layers have been investigated in
detail only infree-standing films of smectic liquid crys-
tals [3]. In the latter case, ferroelectricity is due to the
smectic chiral C* phase and therefore it is not proper
ferroelectricity, but rather it arises as a result of the
inclination of the chiral moleculesinindividual smectic
layers. For PVDF/TrFE the order parameter of the fer-
roelectric phase transition is the electric polarization
[4]. Its contribution to the free energy isdecisivefor the
appearance of aferroelectric state. It isobviousthat the
contribution of spontaneous polarization to the free
energy can change strongly when one of the spatial
directions is eliminated (transition to a two-dimen-
sional monomolecular layer). Asaresult of thiscircum-
stance, there arose the question of whether or not
proper ferroelectricity can actually exist in two-dimen-
sional systems. The preparation of ferroelectric LB
films and their first investigations made it possible to
answer the latter question affirmatively [2]. The exper-
imental results prove the existence of a ferroelectric

state right up to thicknesses of tens of angstroms. Inthe
second place, a surface phase transition is observed in
PVDF/TrFE (70/30) LB films. In contrast to the volume
phase transition observed at T = 115°C, this transition
occurs at room temperature near 20°C. Its most inter-
esting features, which have been studied by direct and
inverse photoemission, are that it is accompanied by
pronounced changesin the crystal and electronic struc-
ture of the films, specifically, a change of “metallicity”
and uniaxia doubling of the surface Brillouin zone are
observed [5-7]. Finally, the possibility of practica
applications of ultrathin ferroelectric filmsin electronic
devicesis significant in itself. On account of the small
thickness of the films, the switching voltages can be
lowered by a factor of 100 (from hundreds and thou-
sands of volts, characteristic for bulk samples, to sev-
eral volts).

Despite intense investigations of the properties of
ferroelectric LB films by the most diverse methods,
including IR- range Fourier spectroscopy [8], aquantita-
tive analysis of the data according to their dielectric
properties has still not been published. The present paper
is the first attempt in this direction. We shall investigate
phase transitions and the low-frequency dielectric prop-
erties of LB films with a thickness of 20 and 30 mono-
layers (100-150 A). It is demonstrated quantitatively for
the first time that Landau’s phenomenological approach
for describing phase transitions is applicable for such
thin films,
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Fig. 1. Temperature dependences of the capacitance on heating
and subsequent cooling of thesampleof aPVDF/TrFELB film
with 70/30 composition. The dependences were measured at
1000 Hz. The film thickness is 100 A (20 monolayers). The
coverage of the electrodes is S= 1 + 0.03 mm?. The arrows
indicate the direction of temperature variation. The lower
curve corresponds to the onset of the temperature cycle.

2. EXPERIMENTAL PROCEDURE

The PVDF/TrFE films investigated, which con-
sisted of 20 and 30 monolayers, were obtained by the
LB method by successively transferring monomol ecu-
lar layers from the surface of water to the surface of a
hard substrate. We employed glass substrates with a
300-500 A thick previously deposited aluminum elec-
trode. The monomolecular layersweretransferred from
the water surface at room temperature (20-22°C) and
surface pressure 3 mN/m. At room temperature this
pressure corresponds to a 5 A thick close-packed
monolayer, where the probability of local collapse (for-
mation of a10 A thick bimolecular layer on individual
locations on the surface of the water) is small. In the
present work, instead of the horizontal lift method,
which was used in [1], where the substrate surface is
paralel to the water surface when the monolayer is
transferred, we employed the classical LB method.
Transfer occurred when the substrate was pulled out of
the water (Z-type transfer), so that the normal to the
substrate surface was oriented approximately parallel

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

PALTO et al.

to the water surface [9]. A second aluminum electrode
was deposited on the polymer film. Depending on the
series of samples, the total area covering the electrodes
ranged from 0.01 to 0.023 cm?. The thickness of the
polymer films calculated on the basis of the number of
transfers and the thickness of the monomolecular layer
was 100 and 150 A for 20 and 30 monomolecular lay-
ers, respectively.

The measurements of the dielectric properties were
performed using standard methods, implemented at
Moscow State University (MSU) and at the Institute of
Crystallography (IC RAN). At MSU the sample was
placed in a thermostat, and the temperature and fre-
guency dependences of the capacitance and the tangent
of the dielectric loss angle were measured using an ac
R-551 bridge. A measuring voltage not exceeding 0.1V
was applied to the sample. A static method for varying
the temperature is used in the apparatus. The tempera-
ture was stabilized to within =0.005°. The sample
could be held at a stable temperature for 30 min. The
measurements of the real and imaginary parts of the
permittivity were performed in the frequency range
100-20000 Hz and temperature range —25...+120°C,
including both the volume and surface phase transi-
tions. A similar method, based on the computer system
PhysLab 4.5, making it possible to record temperature
dependences in an automatic mode, was used at the IC
RAN. Temperature scanning at the rate 0.05°C/s from
—25°C up to +120°C was achieved by using Peltier ele-
ments.

3. MEASUREMENT RESULTS AND DISCUSSION

We were not able to observe a clear difference
between the dielectric spectra of the samples contain-
ing 20 and 30 monolayers. For this reason, in discuss-
ing the results we omit a comparative analysis of the
thickness dependences of the experimental LB films.

3.1. Characteristic Features in the Temperature
Variation of the Real Part of the Complex Permittivity
(Phase Transitions)

Figure 1 shows the temperature dependence of the
capacitance. This dependence is characteristic for ferro-
electric LB films based on PVDF/TrFE with 70/30 com-
position[1, 2]. On account of the small thickness of the
LB films, the standard procedure cannot be used to
determine the values of thereal part €' of the permittiv-
ity using the dependence obtained. Indeed, if direct cal-
culations of the permittivity are made at temperature
T = 20°C, starting from the values of the film thickness
and capacitance of the sample, thenthevaluee'=2.5is
obtained. This value is approximately five times
smaller than the value measured for bulk PVDF/TrFE
samples [10]. Moreover, the value obtained is approxi-
mately 1.5 times smaller than the instantaneous value
€'(e0), which, according to the data of [10], is 34. The
reason for the discrepancy should be sought, first and
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foremost, in the influence of the aluminum oxide film.
This influence cannot be neglected, especidly for
ultrathin LB polymer films. In the general case, any
ultrathin nonferroelectric film at the interface between
the ferroelectric and the electrode can act as a parasitic
capacitance. An additional contribution to the parasitic
capacitance can also be due to the presence of a non-
crystalline (amorphous) phasein the volume of the film
aswell as the near-el ectrode regions, where the sponta-
neous polarization is screened by chargesinjected from
the electrodes. Thus, the values of the capacitance C
measured in the experiment must be referred to two
serially connected capacitances C, and C,, referring,
respectively, to the ferroelectric LB film and another
parasitic capacitance. Despite the fact that the value of
the parasitic capacitance C, cannot be measured, there
till exists a correct method for taking account of the
capacitance C,. Let us consider the proposed procedure
in greater detail. We are interested in the dependence
C,(T), for which in the model where the capacitances
are connected in seriesit is easy to obtain the relation

_r1 g1 1 ?
CM = |5k amn ¢ @

where C(T,) and C,(T,) are the capacitances of the sam-
ple and the polymer film at fixed temperature. In equa-
tion (1) we neglect the temperature dependence of the
parasitic capacitance, using its value at a fixed temper-
atureT,. Inour casethisisjustified, since, for example,
for oxide films the temperature variations of the dielec-
tric constants are small compared with the correspond-
ing temperature variationsin theferroelectrics. Interms
of the permittivity, the relation (1) can be written in the
form

1 — 1 _l
£ = | gy YT T @
where
&S 1 1

€0 S and d are the permittivity of free space, the area
of the intersection of the electrodes, and the thickness
of the LB polymer film, respectively. We underscore
that only measurable quantities appear in equation (3).
Thus, to reconstruct the dependence €'(T) from equa-
tion (2) it is necessary to know the permittivity at only
one point: €'(T,). It is significant that in the procedure
of finding of thispoint y(T) isin general asign-alternat-
ing function, while €'(T) should be positive and not less
than g(c0) = 3. Keeping the latter in mind, we obtain
from equation (2) the condition for the admissible
interval for €'(T,):

11
Yimax < r_l_x) < ‘m =0.3, (4)

where Y corresponds to the maximum value of y in
the entire temperature range.
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Fig. 2. Temperature dependences of the parameter y (see
text) on heating and subsequent cooling of the sample of a
PVDF/TrFE LB film with 70/30 composition. The depen-
denceswere messured at 1000 Hz. Thefilm thicknessis 100 A
(20 monolayers). The arrows indicate the direction of tem-
perature variation. The hatched region corresponds to the
admissible range of values of 1/¢(T,) (see text).

Since the measured capacitance decreases with tem-
perature, as the temperature T, decreases, the value of
Vmax INCreases, and the admissible range (4) for 1/€'(T,)
decreases. The upper limit of the admissible range can
be determined more accurately by using datafrom low-
temperature measurements performed for the copoly-
mer PVDF/TrFEIn[10]. Accordingto[10Q], at T=-150°C
and frequency 1000 Hz €' = 3.0. Figure 2 shows the exper-
imental temperature dependence y(T) for T, =—15°C. The
hatched horizontal region corresponds to the admissi-
ble values 1/¢'(T, = —15°C) = 0.316-0.333. Using the
relation (4) and an approximately three-percent error in
the absolute measurements of the coverage of the elec-
trodes in the samples, we arrive at the conclusion that,
to within the error limits, any value from the indicated
range is correct. For definiteness, we choose the aver-
agevalue 1/¢'(T,) = 0.325, which isused for calculating
the dependence €'(T) using equation (2).

The reconstructed temperature dependence €'(T) is
displayed in Fig. 3. The data on the ordinate are pre-
sented on a logarithmic scale. The high-temperature
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Fig. 3. Temperature dependences of the permittivity on
heating and subsequent cooling of a PVDF/TrFE LB film
with 70/30 composition. The dependences were measured at
1000 Hz. The film thicknessis 100 A (20 monolayers). The
solid lines in the region of hysteresis (Tg = 77.1°C, T, =
112°C) of the high-temperature phase transition correspond
to the theoretical curves. The arrows indicate the direction
of temperature variation. Inset: data on the temperature
dependence of the reciprocal of the permittivity on cooling
from the paragl ectric phase.

phasetransition isvery pronounced. On cooling, the per-
mittivity growsrapidly, reaching values greater than 100,
which exceeds the values ~80, observed by Furukawa
[10] for bulk PVDF/TrFE samples. It should be noted
that the maximum value at temperature 77°C depends
on our choice of the value of 1/¢'(T,) in the admissible
range 0.316-0.333. In choosing 1/€'(T,) = Yy = 0.316,
according to Eq. (2), we naturally obtain infinity, which
would correspond to the fact that the measured capaci-
tance at T = 77°C is exclusively the parasitic capaci-
tance. It isimportant to note that, even though the arbi-
trariness in the choice of the value of 1/g'(T,) strongly
influences the maximum value of €' at 77°C, thisinflu-
ence on the fundamental characteristics of atransition,
such as the Curie temperature and the Curie-Weiss
constant, is weak and results in an additional error of
only several percent.

Just asin bulk samples, hysteresis corresponding to
a first-order phase transition is observed [4, 11]. The

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

PALTO et al.

fact that the high-temperature phase trangition is sharply
pronounced makesit desirableto compare the behavior of
the real part of the low-frequency permittivity to the
prediction of the Landau—Ginzburg theory, which has
been developed quite well for ferroelectrics [11].

Near the point of the phase transition the free-
energy density F of the polymer filmin an electric field
E can be represented in the form of an expansion in
powers of a small order parameter, which for proper
ferroelectrics is the macroscopic polarization P,

F = 2A(T=To)P?+2BP +1iCP°—EP,  (5)
2 4 6
where A,, B, and C are temperature-independent Lan-
dau coefficients, and T, is the Curie temperature. For a
first-order phase transition A>0,B<0,and C > 0.
Minimizing the free energy (5), it iseasy to find the
equation of statein an electric field:

E = P[A(T—=T,) + BP*+CPY. (6)

For E = 0 the solutions of equation (6) that corre-
spond to minima of the free energy determine the val-
ues of the spontaneous polarization P.. Together with
the trivia solution Ps = 0, equation (6) possesses non-
zero solutions determined by the relation

o_ B, |B . A
= — + | —+-—2T-T,).

Sincefor afirg-order phasetransitionB<0and C >0,
even for T > T, there exists, besides the trivial solution
Ps = 0, a nonzero solution Pg (7). The solution P; = 0
becomes unique and determines a unique minimum of
the free energy only at temperatures above T, such that

BZ

Thus, paradectric (P, = 0) and ferrodl ectric phases can
coexist in thetemperatureinterval { T, T,}. A characteris-
tic feature of the ferroelectric polymer PVDF/TrPE isthat
the range of temperature hysteresis is extremely wide
(AT =T, -T,=35°C); see Fig. 3. Thus, we can infer that
the formation of a new phase (paraglectric on heating
and ferroelectric on cooling) is a slow process on a
large fraction of the temperature range AT, with the
exception of a small neighborhood T, — 8T (8T > 0,
0T < AT) on heating and T, + 8T on cooling. In the
ideal case of “fast” variation of the temperature, when
the formation of a new phase can be completely
neglected, we have the following temperature behavior
of the spontaneous polarization:

1 =

(i) on heating:
AAT T-T
< 2: 0 - o[
T o o R e s S
T>T,, Ps=0;
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(i) on cooling:
T>T, P,=0,

- (10)
T<T, Pi= /%M%L+ /1‘TATTOEr

Differentiating the equation of dtate (6), using equa
tions(9) and (10), it is easy to obtain the corresponding
behavior of the permittivity:

on heating:
T<T,,
e(T) =&,
0 T-T o D
+ e ATH + 1-—= 8- (T-To) T |
0 ? AT U ils
on cooling:
1
T=2T,, ¢€&(T) =¢g+—————, 12
0 ( ) b EOAO(T_TO) ( )

where g, is the temperature-independent background
contribution far from a phase transition.

The experimental temperature dependence of the
reciprocal of the permittivity on cooling from the
paraglectric phase is shown in the inset in Fig. 3. Asone
can seg, a T > 80°C there is a linear dependence corre-
sponding to the expression (12) and reflecting satisfaction
of the Curie-Weiss law with Ay = 1.4 x 108 Jm C? K,
To = 74°C. The same theoretica curve is superposed on
the experimental points in the main figure. The experi-
mental curve deviates from the theoretical curve near T,
in a comparatively narrow temperature range (6T =
6°C), where the coexistence of two phases cannot be
neglected, and the value of the permittivity is aways
finite. The data obtained in the temperature hysteresis
range on heating from the ferroelectric phase likewise
are described well by the dependence (11) (the lower
solid curve in Fig. 3), where we used the value of A,
found above and T, = 108°C, corresponding to the
maximum value of € in the experiment. We note that no
adjustable parameters are required, with the exception
of g, = 4.3, which corresponds to the experimental
value of € far from aphasetransitionat T = 6°C. Just as
in the case of cooling, substantial discrepancies from the
theory occur only near the temperature T,. Thus, in most
of the temperature range AT there is very good quantita
tive agreement with the Landau—Ginzburg phenomeno-
logical model. Using the value of the spontaneous polar-
ization P, = 0.08 C m~, measured at the temperature T =
20°C [12], it is easy to determine from equations (9) and
(8) the remaining coefficients C = 7.9 x 10 JC° m®,
B = -3.9 x 102 JC* m?®, and from equation (5), setting
F =0, we obtain thetransition temperature T* = 107°C.

A characterigtic feature in the temperature dependence
€' is aso observed in the temperature range 0-30°C. It
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should be noted that a similar feature but less pro-
nounced was observed in [10] and in bulk PVDF/TrFE
samples. It was attributed to microbrownian motions of
noncrystalline polymer segments. Detailed investiga-
tions of LB films by electron spectroscopy show that a
surface phase transition, characterized by doubling of
the Brillouin zone, and changes in the eectronic struc-
ture of crystaline LB films occur in this temperature
range [6]. Thefact that in thistemperature range the per-
mittivity does not undergo the sharp increase observed in
the high-temperature range can be explained by the sur-
face nature of this phase transition. Indeed, since this
transition refers primarily to the boundary monolayers
(an appreciable contribution from surface microcavi-
ties, which can exist in the bulk, should be expected
only for thick films), the possible rapid growth of the
permittivity in these surface layers is strongly masked
by a stable volume contribution (once again arguments
about the parasitic capacitance, to which the volume of
the LB filmitself will now contribute, can be used). The
fact that this transition is accompanied by structural
changes (for example, doubling of the Brillouin zone)
casts doubt on the applicability of the phenomenologi-
cal description in which the polarization is the only
order parameter. We hope that a further detailed study
of the surface transition will elucidate this problem.

According to our data, for LB films the values of ¢’
even at room temperature are closeto €(). An estimate
of g(0) from our data, taking account of the low-tem-
perature region, gives a value somewhat less than that
obtained for bulk samplesin [10] € = 3. Thus, LB films
possess amore pronounced crystallinity than bulk films
obtained by conventional methods, for example, using
acentrifuge.

3.2. Freguency Dispersion

LB films cannot be treated as ideal dielectrics.
According to [5-7], an increase in the density of states
near the Fermi level and a corresponding increase in
conductivity are observed at a surface phase transition.
For conducting materials, the frequency dependence of
the complex permittivity

e*(w) = g'(w)—ig"(w) (13)
contains a contribution associated with the conductiv-
ity, which likewise is a complex quantity:

0*(w) = o'(w) +ic"(w). 14

In turn, it follows from the Kramers—Kronig rela-
tions that the real and imaginary parts of the complex
conductivity are related with the permittivity by the
relations [13]

g"(m) = 0;5)8) =gyt E(Z—((i)’ (15)
£'(w) = 0;58) +£(0) (16)
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Fig. 4. Frequency dependences of theimaginary part €" of the
complex permittivity of a sample of a PVDF/TrFE LB film
with 70/30 composition on heating: (1) 23.2°C, (2) 45.9°C,
(3) 72.4°C, (4) 102.5°C. The film thickness is 150 A
(30 monolayers). The values of €" correspond to the sam-
ple as a whole, including the parasitic capacitance (see
text).

The right-hand sidein Eq. (15) is represented in the
form of two contributions referring to the dipole relax-
ation and the conductivity o, at zero frequency (dc cur-
rent). This separation makes it possible to understand
easily the experimental dependencese”(w) presentedin
Fig. 4 for various temperatures below the temperature
T, of the volume phase transition. The contribution of
the dc conductivity predominates at the lowest frequen-
cies (up to 10 kHz). Indeed, the dependences presented
on alogarithmic scalein Fig. 4 in the lowest frequency
range are close to straight lines with slope —45°, which
corresponds to the second term in the relation (15) (for
T=23.2°C, 0,=8x 10° Q1 m™). Thelatter indicates
a weak frequency dependence of the real part of the
complex conductivity at low frequencies, where the
contribution of the dipole relaxation is small. This
result isnot trivial. Thetypical situation for conducting
polymer materialsisthat the real part of the conductiv-
ity increases strongly with increasing frequency of the
field. For example, for the hopping mechanism of con-
ductivity, the modelsand experimental resultsgive qua-
dratic growth of the rea part of the conductivity at the
lowest frequencies [13], which corresponds to linear
growth of €" with increasing frequency. The increase in
thered part of the conductivity with increasing frequency
isexplained, for example, in [13] qualitatively asfollows.
In disordered polymer systems, where the hopping mech-
anism predominates, the conductivity should increase,
since asthe frequency of thefield increases, acontribution
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Fig. 5. Frequency dependences of the imaginary part €" of
the complex permittivity of a PVDF/TrFE LB film with
70/30 composition on cooling from the paraglectric phase
after heating the sample above 120°C at temperatures 82.8 (1)
and 109.8°C (2). The film thicknessis 150 A (30 monolay-
ers). The values of €" correspond to the sample as awhole,
including the parasitic capacitance (see text).

arises from charge carriers moving in increasingly
smaller regions (conducting clusters). In our case, on
the whol e, the frequency dependence of €" up to 10 kHz
has the opposite sign and corresponds to a constant
conductivity. This attests to a high degree of crystallin-
ity of the LB films consisting of quite large ordered clus-
ters. In other words, over aperiod of variation of the elec-
tric field the motion of chargesinside a cluster isnot lim-
ited by its “walls” The negligible spikesin the frequency
dependence near 2 and 10 kHz, which are especialy pro-
nounced with decreasing temperature, can indeed be
attributed to smaller clusters.

We shall now discuss the dependences at frequen-
cies above 10 kHz (Fig. 4). Here the contribution that
should be attributed to the dipolar relaxation of aferro-
electric polymer predominates [10]. In our case, we
note the sharpness of the low-temperature phase transi-
tion. As the temperature decreases from 100 to 45°C
(curves 2-4), the frequency dispersion (slope of the
curves) decreases, while at 23.2°C ajump in the oppo-
site direction occurs. Similar behavior is also observed
near the high-temperature phasetransition (Fig. 5). The
curve 2 in Fig. 5 corresponds to the paraelectric state
(T = 110°C, after heating up to 120°C), and the curve 1
corresponds to the onset of the transition into the ferro-
electric state. Just as in the case of the surface phase
transition, it is easy to see that the frequency dispersion
increases near the volume phase trandtion on cooling
from the paragl ectric phase. Thus, an analogy is observed
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between surface and volume phase transitions. On the
hole, the jump in the frequency dispersion can be
explained by ashift of the maximum of the curve £"(w)
to lower frequencies at atransition into the ferroelectric
state. This corresponds to an increase of the relaxation
times (according [10], the maximum shifts from tens of
megahertz to hundreds of kilohertz at a transition into
the ferroelectric state). More detailed investigations
require the use of a high-frequency measurement tech-
nigue and are a subject of a separate work.

4. CONCLUSIONS

Our investigations of the dielectric properties of
multilayer ferroelectric LB films demonstrate for the
first time good agreement with theoretical models
based on the Landau—Ginzburg phenomenological
approach. We obtained expressions describing the tem-
perature variation of the permittivity near hysteresis,
and we found quantitative agreement with experiment.
We have also confirmed the presence of conductivity in
LB films. The frequency dispersion data show that this
conductivity does not depend on the frequency of the
field. Thisresult is explained by the fact that the motion
of charge in LB films is not bounded by the walls of
crystalline domains. We observed a jump in the fre-
guency dispersion both at volume and low-temperature
(surface) phase transitions. Thisjump isexplained by a
sharp increase in the relaxation times accompanying a
transition into the ferroel ectric state.
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Abstract—The problem of weak localization of acoustic phonon modesin anonideal chain-type crystal lattice
is studied. An expression is obtained for the diffusion coefficient tensor D. The role of the back coherent scat-
tering processesisinvestigated. It is established that on account of such processes a substantial renormalization
of the diffusion coefficient D can occur in the relatively low-frequency range, where the dispersion laws for
phonon modes exhibit quasi-one-dimensional properties. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Definite attention isnow being devoted in the literature
to the problem of localization of phonon modesaswell as
sound and light wavesin disordered systems under condi-
tions where coherent multiple scattering processes are
substantial. Here phenomena associated with coherent
backscattering are of great interest. A number of questions
have been investigated for weakly anisotropic three-
dimensiona lattices, including systems with resonantly
scattering impurity centers (see, for example, [1-7]).

Localization phenomena should be more pro-
nounced in low-dimensiona systems than in conven-
tional three-dimensional compounds. It issignificant that
under the conditions of diagonal disorder well-defined
quasi-local modes do not arise in such lattices [8, 9]. As
a result, when impurities are present, effects associated
with weak localization could become important. For this
reason, it is of interest to perform theoretical investiga-
tions of the localization of vibrational modes in layered
and quasi-one-dimensional compounds. The possibility
of localization of vibrational excitations in weakly
anisotropic layered lattices has been discussed in [10].
Our objective in the present paper is to analyze the sit-
uation for nonideal chain-type crystals.

The problem of the localization of acoustic modes
with displacement vectors parallel and perpendicular to
the weakly coupled chains is studied. The vibrational
modes of the first type are longitudinally polarized
excitations (I modes). Modes of the second type are so-
caled bending excitations (b modes) [11]. In a quite
wide low-frequency range, a strongly anisotropic chain-
type crystal can manifest quasi-one-dimensional dynam-
ical properties. Specifically, the frequency of the | mode
is essentially independent of the transverse component
of the quasi-momentum, and the frequency of the
b mode is approximately proportional to the squared
longitudinal component of the quasi-momentum. Asfar

asthe model of disorder is concerned, we shall confine
our attention to diagonal disorder and we shall analyze
the behavior of the diffusion coefficient tensor. It is
assumed that the vibrational excitations are elastically
scattered by point-like defects. The two-particle lattice
Green's function, averaged over the impurity configu-
rations, is determined taking account of the back coher-
ent scattering processes.

We note that we use the phenomenological Born—
Karman theory, in which the symmetry properties of
the lattice are taken into account when determining the
dynamical force parameters, to describe the dispersion
laws of | and b modes. The force parametersin thisthe-
ory are given as second-order derivatives of the real
structure-dependent part E of the energy with respect
to specific components of the atomic displacements.
(The energy Eq is the sum of the energies of theionic
lattice and the configurational part of the electronic
energy.) The force parameters determined in this man-
ner contain contributions from pair and multiparticle
interatomic interactions, and they also depend on the
electron density distribution. The number of coordina-
tion spheres to which the interaction extends can be
large. Confining ourselves to the qualitative aspect of
the phenomenon, we take into account in the low-fre-
guency representation for the | and b modes only the
interaction between atoms|ocated in the nearest chains.
In principle, if the dispersion laws of specific harmonic
modes (in a chain lattice) are known, then they can be
approximated by the formulas presented in the next
section.

In this connection, we call attention to the theoreti-
cal works on the problem of hydrogen in the metallic
state [12-15]. In these works it was assumed that in
metallic hydrogen the electrons are completely collec-
tivized, so that the protons are stripped of orbital elec-
trons. The form factor of the electron-ion interaction is
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known exactly. In [12-15] the properties of the metallic
state, both at zero pressure p = 0 [12] and under finite
pressures [13-15], have been investigated in a micro-
scopic approach. The authors employed perturbation
theory with respect to the el ectron-ion interaction. They
took account of the second-, third-, and fourth-order
contributions. Thus, a situation where the interactionin
the system is not only a pair interaction but also a non-
pair (covaent type) interaction was studied. It was
established that a metallic phase exists and that the sys-
tem is dynamicaly stable. It is very interesting that
structures with pronounced anisotropy are realized at
P = 0. Specificaly, filamentary structures (with proton
chains) arise, and the minimum distance between the
atoms along the chains is much shorter than the dis-
tance between the chains.

Physically, the appearance of a chain-like structure
in hydrogen is due to compensation in the structure-
dependent energy Eg of the contributionsfrom theionic
|attice and from the second-order terms with respect to
the form factor to the electron energy. The third-order
terms strongly affect the structural properties. The
effect of the fourth-order terms, including the terms
associated with the renormalization of the chemical
potential and Fermi energy, is comparatively small.

We underscore that the analysis of the phonon spec-
trum, which was studied in the entire Brillouin zone,
reveal ed specific low-frequency modes of | and b types
(see detailsin [12]).

One circumstance stimulating investigation of
chain-type structuresis a recently discovered new phase
of carbon—carbolite [16]. Although the crystal structure
of this phase has not been investigated in detail, there are
grounds for believing that it consists of carbon chains
which are coupled with one ancther by aweak van-der-
Waals interaction. The anomalous behavior of the spe-
cific heat of carbolite at low temperatures can serve as
an indirect confirmation of the quasi-one-dimensional
structure of this material [17].

2. DYNAMICAL MODEL OF A CHAIN CRYSTAL

Dispersion laws. We shall assume that the effective
force interaction between atoms in the crystal lattice
along the z axis is much stronger than the interaction in
the xy plane. Then one can talk about atomic chainsin
which the coupling is stronger than between individual
chains. For simplicity, it is also assumed that the matri-
ces of the force parameters are diagonal with respect to
the Cartesian indices. Vibrations along the z axis and
with displacement vector u in the xy plane are indepen-
dent.

The lattice is assumed to be tetragona with cell
parameters {a, b}. Here the parameter b characterizes
the distance between the atoms in a chain and the
parameter a determines the distance between chains.
Under the conditions of strong anisotropy of the inter-
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atomic interaction, the lattice parameters can be of dif-
ferent orders of magnitude.

We shall study vibrationa modes with relatively
low frequencies. It is assumed that bk, < 1. The quan-
tities ak, and ak, need not be small.

In the general case, the frequencies of the vibra-
tional modes are eigenvalues of the Fourier compo-
nents of the matrix of the second-order dynamical force
components. This matrix is defined by arelation of the

type

®oa(k) = Y @gylcos(k [Ry) -1]. (2.2)

Onthisbasis, we shall determine the dispersion law
for an acoustic vibrational mode describing the dis-
placements of atoms with mass M, parallel to the
weakly coupled chains, i.e., dong the z axis. We have

Moo (k) =—3 z ‘D R RS
(2.2)
chp o[ cos(k, R,)-1].

S

We note that the force parameters <1>stE and dDSZS” char-

acterize the interaction along the z axis and in the xy
plane, and

Osy

|02 < |3 2.3)

We shall take account of the dynamical interaction only

between the nearest-neighbor atoms. Then, instead of
equation (2.2), we obtain

”%szk xa

The frequencies w; and w, can be expressed in terms of

kaD
ZD

(2.4)

the parameters ®.:” and .. It is important that,

according to equation (2.3), 0 < wg.

We now consider bending modes. For vibrational
modes of this type the displacement vectors are ori-
ented perpendicular to the weakly coupled chains.
Using the definition (2.1) and the condition bk, < 1 we
can write

Mo() =3 5 Bui(RE)K:

JZ R -1y oent
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Itiswell known that in the absence of stressesin the
crystal the force parameters satisfy a condition of the
type (see, for example, [18, 19])

Z ¢OS||R%|R5|| Z q)OSJ Rs.Rs

S

(2.6)

Hence it follows that three characteristic force parame-
ters should appear in the dispersion law for the bending
modes (since the first term in equation (2.5) is rede-

fined). Specifically, together with the parameters dyy’

and CD(X))S(” , there also arises a parameter CD(Z):” , Where in
the model adopted

Os Osy Os,

o2 < |03 <|oi]. 2.7)

Thus, using equation (2.6), we obtain instead of equa-
tion (2.5) [11]

2 2
Wik) = (@) + 20
k 2.9)
+w2%m2_+ it

The three characteristic frequencies appearing here
correspond to three force parameters (2.7). The condi-

tions w: < w5 < w5 are imposed on these frequen-
cies. We note that ;= o and w, = Wy,

We shall now discuss the expressions for the anisotro-
pic dispersion laws for the | and b modes, equations (2.4)
and (2.8). Examination of these expressions shows that at
the lowest frequencies, w < w,, the quantities vy and w,
depend, generally speaking, on the quasi momentum
componentsk,, k,, and k,. If the frequency of the longi-
tudinal mode liesin the range

200 < @ < 05, (2.9)

then the second term in equation (2.4) is comparatively

small. Thereforethe quantity wlz isessentially indepen-
dent of the transverse components of the quasi momen-
tum, k; and k,, and the dispersion law for the | modes
corresponds to the case of a quasi-one-dimensional lat-
tice. At the same time, for a bending mode in the fre-
guency range such that

205 < Wh < W5, (2.10)
the first and third terms in the expression (2.8) can be
neglected. It is found that the frequency w, does not
depend on the quas momentum components k, and k.

It is proportional to kf . Therefore the dispersion law

for the b mode also exhibits quasi-one-dimensional
behavior.
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As noted in the introduction, bending modes were
introduced into the analysis by .M. Lifshits. However,
he investigated their effect on the low-temperature
behavior of the specific heat and the thermal expansion
coefficient (see, for example, [11]).

Vibrational densities of states. We shall present
concrete expressions for the densities of states of the |
and b modes. They appear explicitly inthe relations for
the partial diffusion coefficients (see Section 3).

We start with the | mode. It can be shown that the
squared density of phonon statesin the frequency range

0<sw< Zwﬁ is determined by an expression of the
form

&@e-8Y),

b
g(w?) =
W

(2.11)
EZ - wz_v(ljl)zkz

‘*’u

Here K isthe complete dliptic integral of the first kind,

and v = bw././2 is the group velocity. In the limit

w — 0, when the dispersion law corresponds to the
three-dimensional case, we have from equation (2.11)

2 4 |:|
2 0 O P AP

(2.12)

9|((*)) =

In the quasi-one-dimensional range (2.9), as shown in
Appendix A, the density of states can be expressed in
terms of eliptic integrals.

Jé 1
T+, fo’ - — o

ke o] o 2ui0 (213)

O w+m O '
K%L/wz—wﬁ—A/wZ—Zmﬁ%
O me O

K'(K) = KK), K = J1-K (2.14)

Here k is the elliptic modulus, and k' is an additional
dliptic modulus. If & < W, then

9|(0~)) =

O
() =1+ 2, SO,
4

J2rwpwd 4w’ 16w

[l

0 (213)
0

Thus, in the frequency range (2.9) the density of states
of longitudinal modes g,(w) = 2wq(w?) depends weskly
on the frequency.
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The squared partial density of phonon states of
b modes for 0 < w; < 2w5 is

&@e-8Y),

1
g(w?) = S
(2.15)
£ - W’ = (0,)°K;
0, '
In the limit w — 0 (more accurately, in the long-
wavelength limit for 0 < w? < 2(alb)*wy/ w?) it fol-
lows from the expression (2.15) that

1, 10,

0 3w 6

bw

g(@?) = ———
° (2m)*aw, w5

O
+..0 (2.15)
O

i.e., the dependenceisof aquasi-three-dimensional char-
acter. Finally, the frequency range 265 < w? < w3 = W5
we have according to the results of Appendix A:

1

g(00?) = W, (2.16)

817 ./ I, W°

2 2 . .
For wy, > w; this expression assumes the form

9u(0?) = 1 Dl 43 30)2 24 S5 657 002
We call attention to the fact that the density of states
Op(w) = 2wg,(«?) determined by equation (2.16) is a
decreasing function of frequency.

We also note that the functions g, and g, are deter-
mined, respectively, by the relations (2.12)—<2.14) and
(2.15), (2.16) in the entire range of low and intermedi-
ate frequencies.

Group velocities. The group velocities of the vibra-
tional modes also enter in the expressions for the partial
diffusion coefficients. A summary of theformulasisgiven
below. In thefirst place, in the case of thel mode we have

0
+...0 (2.16)
0

(|)2
Wy = 9wk) _ vk,
where v = b/ /2 and
dwy(k aw . ,
viyk) = 'X((y)) 5 (k”)sn(kx(y)a). (2.17)
The average velocitiesare given by expressionsof thetype
[,02 = V(xl()y),max
Dt = 5
' (2.17")
v0= o0 o 0n= 2
4w (k)
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For the b modes we have
dwp(k) _ 2kb'w’
®)y = 9% 0
vip'(k) = = «/ (K)o, (2.18)
O akz b(k)T[2 /\/— b O
aw (k) _ aws
y® b 2 :
k = sin(k 2.18
X(y)( ) x(y) (A)b(k) ( X(Y) ) ( )
The corresponding average velocities are
(b
v
Jofn= Dt
2 2_2 (2.18")
w, u)za

0= w0y vP’0=

4oi(k) 4

On the single-site scattering matrix and mass
oper ator. We shall now examine the characteristic fea-
tures of the single-site t scattering matrix and mass
operator P(w) that are due to the elastic scattering of
phonon modes by impurity atoms. We assumed that the
disorder is diagonal and the impurity differ from the
matrix atoms only with respect to mass. Here M and M,
are the masses of the defect atoms and the atoms of the
regular matrix, and c is the defect concentration. The
value of the parameter ce?, where e = 1 — M/M,, is a
measure of the disorder. We note that defect concentra-
tion cisassumed to be low (c < 1). Inthissituation the
total perturbation is a sum of contributions from indi-
vidual defects. To determine the mass operator, in prac-
tice it is sufficient to consider only terms of second
order in the parameter c. The effect of the interaction of
phonons with groups of more than two impurities
should be weak because of lattice anharmonicity.

For vibrational modes with displacement vectors
oriented parallel and perpendicular to the weakly cou-
pled chains(j =1, b), the operator P;(w) isgiven by rela-
tions of the form

Pi(w) = ctj(w)[1+A(w)], (2.19)
where ; is the single-site scattering matrix, and the form
factor 4 describes the pair dynamical interaction of the
impurities:

0G;

Aj(w) = ct’ (oo)[—— G°2(w)}
dw’

22 G] Os((*))t ((*))

s#£0

{__li_e.k_i_} (2.20)
1—tJ-((o)Cj'0S

c 02 .2 l—eik[s
+3 Grati) ———a—+ ...
j,0slj
2L 1+1,(W)G; o
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Here Gf, « 1Sthe Green’s function of the ideal lattice,
and it is constructed from the operators of the compo-

nents ug of the dynamical atomic displacements (a =

z X(y)), and G| isthe Green's function with equal site
indices.
The matrix t; is determined by the expression

thw) = V[1-VGA()]", V = e (221
The series for P;(w) (2.19) converges if
0G)(w,
c tf(w)%‘ <1 (2.22)

We now consider the behavior of the single-site

. . . 2
t scattering matrix (2.21) at frequencies w?* > 2wy,

where the vibrational spectrum exhibits quasi-one-
dimensional properties. For such frequencies

0, 2 _ 2 1
ImG(w") = mg,(w) ﬁwmw
1 (2.23)
IMGy(w") = mgy(w’) =
(V&)

Using the relations (2.23) and the Kramers—Kronig
relations, we obtain for the corresponding real parts of
the Green’s functions

ReG(oo)—I———P ImG(oo‘)~—“/—é—
(A)
(2.24)
ReGU(w?) = I—P — SImGy(w?) = JS’_TL
0;0°

Thus, the total Green’s functions are approximately

ﬁ 1

Gl(w) =25 + uﬁwmw,

W,
Gﬁ(w)~ﬁ‘ S (1+1).
0050

(2.25)

We call attention to the fact that for the | modes
ReG(w’) < IMG)(w’) in awide frequency range. At
the same time, for the b modes the real and imaginary

parts of the function G_(w’) are of the same order of
magnitude.

Using the explicit form of the Green's functions
Gy y(w?) (2.25) and the diagonal perturbation operator
V = —w?, wefind that the denominators R, ,, of the sin-
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gle-site t scattering matrix can be represented in the
form

. |e|(0

ﬁwm (2.26)

R(®) = 1-VG(w) =1~ o ||

—%d&(m),

whence it is evident that the real parts of the t matrices
in the case of strong disorder vanish for frequencies w,
which are roots of the equations

Ry(w?) =

ReR (w)) = 0. (2.27)

The frequencies themselves are given by the relations
wz

w2 = E_D, wﬁb) ~
J2 el

The broadening of a level with characteristic fre-
guency ., by definition, is of the order of

640

e (2.28)

2
ro - IMRe(@) (2.29)

d
%[ReRl(b)(wz)] o=

=,

Using the expressions presented for I, we obtain

rO="g = r®=20®. (230

4 2T[|E|wl'l

Let us now compare the expressions (2.29) and

(2.30). It turns out that for frequencies «? > 2w the
condition I /w, < 1 does not hold, as aresult of which
it makes no sense to talk about quasi-local levels exist-
ing in a narrow frequency range or about a resonant
type scattering by such levels. (Quasi-local modes arise
in quasi-one-dimensional crystals in the case of off-
diagonal disorder and weakly coupled impurities[8, 9].
The case of one-dimensional crystals is examined in
Appendix B.)

Using equations (2.19) and (2.20), we obtained
specific estimates of the mass operator for the case of
strong diagonal disorder, when ¢ < 1 and at the same
time e2c < 1. This was done in order to determine the

approximate form of G(') (w) , the spatial Fourier com-
ponent of the single-particle Green’s function of the |
phonon mode with quasi momentum k, averaged over
the impurity configurations. The frequency range
where the dispersion laws for the | and b modes exhibit
guasi-one-dimensional behavior was examined. It turns
out that the renormalization of the frequencies of the
vibrational modes can be neglected. Asfar as damping
is concerned, it is sufficient to retain the term linear in
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the concentration ¢ in the expression for the imaginary
part of the mass operator. On this basis, we have
—(i)+ . -1
GV (w) = [wz—wz(k) —I%} . (23D
T (w)
Here w/T;(w) istheimaginary part of the mass operator,
and (see, for example, [19])

9 = Teeelg(w).

T "2 (2.32)

3. DIFFUSION COEFFICIENT
AND WEAK LOCALIZATION

Diffusion coefficient and the two-particle Green's
function. We base our definition of the diffusion coeffi-
cient tensor for phonons of aharmonic lattice on astrict
Kubo-type expression for the lattice thermal conductiv-
ity. On this basis, we shall determine the thermal con-
ductivity tensor k for low temperatures, where the elas-
tic scattering of phonons by defects determines the
mean-free path length. The case of alayered crystal has
been discussed in detail in [10]. Here we consider a
chain crystal.

For a chain crystal the lattice possesses axial sym-
metry and the tensor K possesses two principal values,
which we denote as k; and K. The corresponding
expression for K, isasum of the contributions of | and
b modes. Similarly, asdonein [10] it can be shown that

-1
NT?

KG(X

2 - 31
« S W@ k) ) + 1D ), P
Kj

j =1b.
In equation (3.1) D denotes the diffusion coefficient;

n(w) is the equilibrium Planck phonon distribution
function; and, a is the Cartesian index. We have

4

() (e =
Daa'(w) (,L)g]((x))

(3.2)
x S v v wik)e (k)G (k; K'; ).
kk'

We recall that in the expressions (3.1) and (3.2) the
quantities wy(k) and v = dw(k)/ok are the dispersion
law and the group velocity of a phonon mode with
quasi momentumk; g;(w) isthe partial density of vibra-
tional states. The spatial Fourier component of the two-
frequency Green's function G, can be expressed in
terms of the single-particle Green’s functions by means
of the equation

Gk, k' . Q) = lim GG (w- Q)L (33)
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where [..[J denotes averaging over different impurity
configurations. In our case, in the momentum represen-
tation the equation for the two-particle Green’s func-
tion can be represented in the form of a Bethe-Sal peter
type equation

Gk K, Q) = lim [G(e) Gy k(e Q)

L)+, =0)-
= lim W) Gk’ (W—-Q
lin Ogﬁk (W) Gk~ ( ) (3.4)

- O
x [6 +3 Uk ki 0, Q)G (ky, K'; o Q)} 0
0

kl

We are studying the role of the back coherent scatter-
ing processes (certain specific interference processes
arising with scattering of phonons by fluctuations of the
phonon density of states near defects). Asiswell known,
they determine the weak-localization regime which
arises when

¥ <1, otV(w) <1, (3.5)
where |9 = viD1P () isthe mean-free path of aj-type
phonon, bounded by elastic scattering by impurities. In
the case of interest to us, the vertex part U appearing in
equation (3.4) is determined by “fan” type diagrams. It
turns out that

Uik, K 0, Q) = I[1-J,(a, w, Q)]

I —=(j)+ —=(j)- (36)
3000 = JY B (@Ew+ Q).
ky

whereq =k +k'. For theinitial vertex I'; we found (see
aso [10])

e = §Ye s @ 6

k
At relatively low frequencies (2.9) and (2.10), i.e, in
the range where the lattice exhibits quasi-one-dimen-
siona properties,

I(w)

(&)
= e (3.7)
it (00) gy (o)

Diffusion vertices. We shall consider only the fre-
guency ranges where the phonon dispersion laws
exhibit quasi-one-dimensional properties. We note that
the calculation of the complete vertices U(k, k'; w, Q)
in the diffusion limit is comparatively difficult. As an
illustration, the corresponding calculations are per-
formed in Appendix C for the casej =|. Theresults are
summarized below.

Inthefirst place, for longitudinal | modesfor thefre-
guency range (2.9) we have, using equations (3.6)—
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(3.7) and dso equations (A.3) and (C.2) from the
Appendix,

0
2(*)”qJ O ) V022

I(q (A) Q)~—(|—)|:_IQ D]'_ (_0 LIJ(I)D qD
0wy, H2=0 4(38)
AW, =W ) OV O L ,0@ |, L 0pan
+ R e Ve
wg) a2 % 2 2 [
Here
0 — wOMo
W = WY Tl
nu Wy, (W Wy (3.9)
I dusir? = f%; §< f%;, i
n=24.

To simplify the equations, we have set

fBJ’ WO _ 1

O : ’
© Jl—(wﬁ/wz)snzu

When w > wy, the quantities ‘Pﬁ,') (3.9) are approx-
imately

LSO GO i

(0 -
Yo 4’ 8’ 32

(3.9)

Then the expression for U, (3.8) simplifies. It has the
form

r
U(g; w, Q)= T—(ll)
_1(3.10)

Eﬁnqu +S|n2qyam} :

(|)o 2
x| —iQ+Dyp 50

where

DY° = vP%P, D = ooz

For the case of the bending b modesthe vertex Uy in
the frequency range (2.10) is given by

_ 49
Up(g; w, Q) = W{ i0+= LP(b)T(b)V(Db)zqu

(3.11)

-1

o [v(b)z[t(b) 08 . 0,
=i Yye]
+ Elﬁn +sn’ =g

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

ZHERNOV, CHULKIN

Here

V21/2

WP = wPEED - f J’dudtP(u 1),

w2

WP = f f dudtP™(u, 1),
0

w2

WP = II dudtsin®(2u)P(u, t),
0

) -3/4

P(U, 1) = {1—9—;(sin2u+sin2t)}
w

When w > w,, the quantities Wﬁb)

19

4 1

1§

16°

Asaresult, instead of equation (3.11) we obtain

are approximately

L|J(b) LIJ(b)

(3.11)
Yo =

-
Uy(g; w, Q)=;%

i (3.12)
DO g,a g,ar -
(b)o || ‘2 ")
| ot Bt iy
where
D(Db)O - V(Db)z_l_l(b), D|(|b)0 - (b)ZIj_(b)/z

We call attention to the fact that the partial densities
of vibrational states can be expressed in terms of the

functions ‘Pg) and LPE,'“):

2.2
gl = 2240,
W,
(3.13)
2 1 WP

Partial diffusion coefficients. We shall now deter-
mine the partial diffusion coefficients in the weak-
localization regime. We shall determine the principal
values of the tensor D) in the situation where the con-
ditions (3.5) are satisfied. Using the relations (3.2) and
(3.4) we have

{pj", DY} ={D|""", DY} ~{D|'?, D}, (3.14)
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where
p{Y DMy = 1
Mwi(k) dw:(k) O (315
x lim (gk( ) (;k( ) 6% (wE (@ + Q).
'~ oK O
p{"? pU?} = —L _jim U(q; o, Q
{ D } T[gj((k))Q—.O %(D) j(q )
q<q;”, qj
(Daw’(k) dwi(k) O (3.16)
XZDD ak, ok, o

x GV ()G (00 + Q)BY 4 () Bl (0 + Q).

The first term in equation (3.14) determines the stan-
dard values of the diffusion coefficient. The second
term in equation (3.16) determines the effect of the
interference scattering processes near defects. In the
case of alattice with a strongly-anisotropic interatomic
force interaction, which we are studying, the summa-

tion over g is bounded above by small quantities g =

W1{%(w) . If a= b, then 1§}, = v, 1(w) . However,
|f the unit cell parameters a and b are strongly different,
i.e, a< b, then asituation where g~ = b can occur.

We shall confine ourselves to the static case, where
Q — 0. Using therelations (3.14)—(3.16) and the rep-
resentation (2.31) for the Green’s functions and (3.10)
and (3.12) for the vertex parts, the partial diffusion
coefficients can be calculated in the frequency range
where the vibrational spectrum of the modes exhibits
quasi-one-dimensional properties.

Asan example, we shall determinethe diffusion coef-
ficient DO for the frequency range (2.9). We consider
first the contribution given by equation (3.15) to D®. In
equation (3.15) we switch from summation to integra
tion. Theintegration over dk, must be performed through
apole and then over dk, and dk, directly. We find

LIJ(l)
{DYY(w), D M(w)} = 4bt(w)—
g (W)Vvy 217
0,0 202990 2w 4w —wiy o (347
x V20 - W *2 I 2 E
00 oWWoaw® v g

(the functions lPﬂ) were determined by the relation

(3.9)). Next, we switch to the interference term (3.16).
Calculations similar to those described above yield

{D5 (e, Q), D) (@, Q)} = {DF Y(w), D ()}

3 Ti(l)zz U Q) (3.18)
> iq; 0, £2).
2w ;.
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Using equations (3.17) and (3.18) we have
(0] Q)
{ Do (w, Q), Dy(w, Q)} (3.19)
= {D{Y(w, Q), Dff ”(w, Q) Fw, Q),
where
(|)2( )
FOw, Q) = 1- ZU q; w Q). (320

(Thediffusion vertex U, is glven by the expression (3.8).)

For the frequency range w? > wﬁ, using equations
(3.9) and (2.13"), the expression (3.17) assumes the
form

{Df Y(w), Df ()}
%(l)vz aw”T I)E Er("vz D/"”Et(')g (3.21)
| Oy i O
80 O 0O 2 g

For the factor F" (3.20), in the static limit Q — 0 and
using equation (3.10) together with equation (3.21), we
obtain arepresentation in the form

FO) =1-aF",

cow G

2 1
n w'jwu A/l—ooﬁ/wz

AF(I) - (321')

where

C. = K(J2-DK'(J/2-1) = J2K*(/2-1) = 3.83.
It can be shown similarly that for the bending b
modes for w? > w5 we have

{D?, D}
3.22)
4 > ® a2 2 (b) £® O (
= =b w,wT; 7, (W) [F (W) DO
an Ti 16 0
where
F(w) = 1-aF?,

(3.22)

C
AF® = Jmce?e F e

W Wa1 — 305/ 40

We underscore that the deviation of the factor F(:
from 1 isdueto the back coherent scattering processes.
It follows directly from the expressions (3.21") and
(3.22) that under the conditions of diagonal disorder,
when ce? ~ 0.1, in certain intermediate frequency ranges
(2.9) and (2.10) interference processes can strongly alter
the partial diffusion coefficients. In principle, a gap
appears in the spectrum D(w), i.e., as the interaction
between chains becomes weaker (when the frequencies
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wy and w, decrease), the renormalization of the partial
ditfusion factors intensifies.

As already noted, w; = G, Wy = W), and w; < W,.
Therefore, since
AFY (39 ﬂﬂzﬁﬁi/@q (3.23)
AF® 0, wNw '

the bending modes, as compared with longitudinal
modes, start to localize at high values of the param-
eter ce?.

4. CONCLUSIONS

In this paper, the possibility of weak localization of
acoudtic vibrational modes in an nonideal strongly aniso-
tropic harmonic chain-type crystal lattice was analyzed. It
was assumed that the coupling between atoms in the
chainsismuch stronger than between atoms of individual
chains and that the | attice exhibits quasi-one-dimensional
properties. Longitudinally polarized excitations and exci-
tations resembling bending waves in noninteracting
chains were studied.

Analytic expressions for the diffusion coefficient
tensors D of the modes were obtained for temperatures
where the phonon free paths are determined by elastic
scattering by point defects. It was shown that in certain
frequency ranges, where the dispersion laws of the
modes exhibit quasi-one-dimensional properties, for
values of the disorder parameter near several tens sub-
stantial renormalization of the diffusion coefficient is
possible on account of the back coherent scattering pro-
cesses. In principle, a range of forbidden frequencies
arises in the spectrum D(w).

Let us compare the results for a chain crystal with
the results for three-dimensional and layered crystals.
For athree-dimensional crystal and diagonal disorder,
guasi-local modes exist in the Debye low-temperature
part of the spectrum. In other words, a system of reso-
nantly scattering impurity centersarises. If theimpurity
concentration ¢ exceeds a critical value ¢, and a low-
frequency gap appears in the spectrum, then in regions
where modes become localized arise at the edges of the
gap. If c < c, (no gap), localization processes are weak
compared with the retardation effect [6]. The case of a
layered crystal has been examined in[10]. If disorder is
diagonal, then there are no quasi-local-type impurity
modes in the region where the lattice exhibits quasi-
two-dimensional (or quasi-one-dimensional) proper-
ties. According to [10], on account of the specific inter-
ference scattering processes, the gap in the spectrum
D(w) appears only with strong disorder, when ce? > 1.
Thus, as expected, the back coherent scattering pro-
cesses should be most strongly manifested for chain
compounds.

Unfortunately, we know of no experimental data on
the thermal conductivity of strongly disordered quasi-
one-dimensional crystals. The search for the renormal-
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ization of the D tensor predicted in this paper requires
specia experiments on carbolite type compounds.
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APPENDIX A

We shall determine the density of states of longitu-
dinal and bending modes in regions where the lattice
exhibits quasi-one-dimensional properties. In the first
place, by definition

6(0H) = &3 86’ - (k). (A1)
k

We switch in equation (A.1) from summation over k to
integration over dk. In doing so,

NZ

For non-bending modes, if the frequency liesin the

range Zwﬁ SwP< wé , taking account of equation (A.2)
the density of statesis given by the relations

wa

(A.2)

(27T)

i, dlk,

2 wa

ab

g(w?) = ——
(2r S

K, a
— Wi = %%
wa (A3)

2./2a°
“/_ J‘I dxdy(w’ oo”sm x)
-1/2
O W ]
XA -——d—snyg] = 242 ‘“g)mzjlgr
0  —wsinx O nm w
w2
WO 0
Wo'(w) = Idx(l w’sin x) KD ———0
1-w"sin“xd
2
W
w2

We now make a change of variables in equation (A.3).
We set

2

;= Al-w (A.4)
J1-w?sin’x
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Asaresult, instead of equation (A.3) we obtain

0 wz
0 D

1 dzK

Ww(w?) = (A.5)

ﬁ{ﬁJu—wl—w)ul—ff

The integral in equation (A.5) can be expressed in
terms of elliptic functions. According to [20]

g/ vv2[1+ /1—————
1 vszI]
+ 1w

Wo(w) =
1+A/1—w2 D 1 D
O O
O |
(A.6)
O 0 w’ [
V1-wl- [T
S =
X
O 1+ /1= E
O O
For b modes, in the frequency range 2w’ < o? < w5,
we have
a2b wa
2 2 2
w) = dk, dk, [dk,0(w” — wy(k
(W) (Zn)gﬂ yI ( b(K)“)
d(K2 wDb )
dxdy
211 oonH I
x 3 D/w —w5(sin’x + sin’y) — wDbD
2 y _—
x Jo? —wi(sin’+ sin® )+k22"°DIOZD (A7)
2 y — .
)
21, [T w®
2 —3/4
0O o ,0
w® = J‘dx[ll—%sinzxﬂ
w 0
w2 3/4
O 8% o, 0
x [dyd—————-sny0 .
) "0 w-wpsn’x O
APPENDIX B

We now consider a one-dimensional chain with the
dispersion law

kb

Gi(k) = 20585

(B.1)
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and heavy impurities. In this case exact analytica

expressions can be obtained for the Green's function

G_(w’) and for the parameters of aquasi-local level.
First, we have, using equation (B.1),

#ma@6=g@6=ﬁga&—ﬁ®)

b 1 .dcos(kb) O Wl — w0
dpos(k,b) - ———0 (B.2
" 2mwib) =sin(kb) g osieb) - w, O (-2
1 1

NP

Second, by definition
~0, 2 _ ocd(}n)'z 1
ReGi(w) —I - P—

0

Izlmé?(wz). (B.3)

The integral appearing in equation (B.3) can be calcu-
lated using the substitution

? = 2wisin’u. (B.4)
We obtain
ReGw?) = >t (B.5)
M0 202 — o0

Using the relations (2.27) and (2.29) and equations
(B.2) and (B.5), we can determine the characteristic
frequency and width of aquasi-local level:

~ - TT (A)D
J2lel JI+ /2]
- 2 D

= Zw %L 2co g
O

(B.6)

Let us now compare &, and Fr(l) . According to the
relations (B.6), the condition for the existence of an

impurity level, Fr(l) /®, <1, holdsonly near the upper
limit of the spectrum, where &, < 2.

APPENDIX C

We now consider the case of | modes, and we obtain
a concrete expression for the factor J,(q; w, Q) which
appears in equation (3.6) for the vertex part in the
Bethe-Salpeter equation for the two-particle Green's
function. To this end, we switch in the expression for J,
from summation over k to integration over dk, for
which we employ the relation (A.2). We calculate the
integral over dk, using the representation for the
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Green’'sfunction in the form (2.31), using residues. We
obtain

J2mat)
(@ w, Q) = ———
21T W Wy
va
dk,ak,
X
2
-va g _ 904288 2 B30
A/1—(02%m > + sin 50
0, T W ||
X%ﬂ.+IQT +| 2(.0 (C.y
[s zq; sin(k, a)+sm2q£ sin(k a)}

72 -1

2
0) (A)” . o0ya . -0 a|:| 0
—i(vodo)Ti [ E%n2%+sm2%m} E :

In the situation where the back coherent scattering pro-
cesses occur, the conditions g-l; < 1 and Qt(w) < 1

should be satisfied (here|; = v 1 is the elastic mean
free path length). We shall also consider frequency
ranges such that (wﬁ Ti(')/w) < 1 (werecdl that w,isa
parameter characterizing the “entanglement” of the
chains). On this basis, we represent the expression in the
bracesin equation (C.1) in the form of ageometric pro-

gression. The integrals of the odd functions vanish. As
aresult, we have

2./2t"
3@ © Q)= T{f —{(L+ion) v i h)wy
2 2
OIT0) 10 [ 29 |, 2980
—4(W5 -y )DZQD%‘n > + sin >0 (C.2)
20 O
+ W2 g
w O

The functions ¥

part of the text.

were determined above in the main
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Structure

Vibrational Spectra of the Ammonia HalidesNH,l and NH,F
at High Pressures
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Abstract—The vibrational spectra of ammonium iodide NH,4l at pressures up to 4.1 GPa and ammonium flu-
oride NH,4F at pressuresup to 4.7 GPawereinvestigated by inelastic incoherent neutron scattering. The pressure
dependences of the transverse optical trandational and librational modes were obtained. The behavior of the
rotational potential barrier for the ammonium ion as a function of the lattice parameter for disordered and
ordered cubic phases of ammonium halides with CsCl type structure were cal culated. The results obtained con-
firm that the transition from an orientationally disordered cubic phase into an ordered cubic phasein anmonium
halides occurs at close critical values of the positional parameter of hydrogen (deuterium). © 2000 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

The study of the effect of high pressures on ammo-
nium halidesis of interest for clarifying the changesin
the structure and excitation spectra in order to deter-
mine the characteristics of the interaction potentials
and the nature of phase transitions occurring with a
changein volume[1].

One of the most important questions concerning the
dynamics of ammonium halides is the behavior of the
librational mode of the ammonium ion accompanying
orientational phase transitions arising with a changein
the external conditions (temperature and pressure).
This question is best studied by neutron spectroscopy,
which makes it possible to determine the position of the
libration pesk directly from the experimental data. In con-
trast to this, the optical infrared and Raman spectroscopy
methods are insengitive to the librational mode, and it is
determined only from the overtones and Raman modes,
which can result in computationa errors. However, the
possibility of performing indastic neutron scattering
experiments at sufficiently high pressures appeared only
very recently, because of the development of the anvil
technique. Thus, in [2] the vibrational spectrum of
NH,Cl was studied at pressures up to 4 GPa. The pres-
sure dependences of the librational and transverse opti-
cal trandational modes were obtained, and it was shown
that their intersection together with the appearance of a
phase transition at higher temperatures is possible. Sim-
ilar results were recently obtained for NH,Br [3]. This
made it interesting to study the behavior of these modes
under pressure for the entire class of ammonium halides,
specifically, for NH,I and NH,F.

Our early neutron diffraction investigations of ND,Cl,
ND,Br, ND,4l, and ND,F at pressures up to 4-5 GPa
[4, 5] showed that the structural behavior of ammonium
halides at high pressures is characterized by the pres-
ence of asingle critical value of the positional parame-
ter of deuterium (hydrogen) u,,, determining the point
of the orientational phase transition and tentatively
attributed to the change in the relief of the potential as
volume decreases [5]. The presence of an orientation-
ally disordered cubic phase I with CsCl-type structure,
which, as pressure increases to a certain value trans-
forms into an orientationally ordered cubic phase IV
(CsCl-type structure with ferromagnetic type order-
ing) in the case of NH,Cl (P = 0.6 GPa [4]) and
NH,Br (P = 2.5 GPa[4]) or atetragonal phaseV (anti-
ferromagnetic-type ordering) in the case of NH,I (P =
8.3 GPa[6]) with approximately the same critical value
of the positional parameter, is characteristic for all
ammonium halides except NH,F.

In contrast to other ammonium halides, NH,F is
characterized by the presence of several phases with
hexagonal symmetry with a different type of ordering
of the ammonium ions [5]. In NH,F the value of the
positional parameter initially is greater than the critical
value, and for it there exists only an ordered cubic
phaselll, whichisisostructural to the phaselV of other
ammonium halides.

Our objectivein the present work was to investigate
the vibrational spectra of the cubic phases of NH,I and
NH,4F at high pressures by inelastic neutron scattering
in order to obtain information about the characteristics
of the rotational potential and the change in this poten-
tial at orientational phase transitions.

1063-7761/00/9002-0319%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Generdlized density of vibrational statesfor NHyl at
various pressures.

2. DESCRIPTION OF THE EXPERIMENT

The experiments were performed at room tempera-
ture using a DN-12 spectrometer [7] in a pulsed high-
flux IBR-2 reactor in the Laboratory of Neutron Phys-
ics at the Joint Institute of Nuclear Research (Dubna),
using a high-pressure chamber with sapphire anvils[8].
The sample volumewasV = 2 mm?. The pressurein the
chamber was measured according to the shift of the
ruby luminescence line to within 0.05 GPa. A cooled
beryllium filter positioned at the scattering angle 26 = 90°
was used to anayze the neutron energy transfer [3]. The
final energy of the detected neutrons was E = 4 meV, and
the characteristic measurement time for one spectrum
was 40 h.

3. BASIC RESULTS

The spectra of the generalized density of vibrational
states G(E) of the cubic phases of NH, and NH,F
(Figs. 1 and 2) contain two peaks corresponding to the
transverse optical trandational mode (TO) and the
librational mode (L). For NH,I the frequencies of these
modes are close, and the corresponding peaks partially
overlap. For NH,F the peak of the L mode was shifted
substantially to higher energies compared with NH,I and
no overlapping of the peaks of the TO and L modes is
observed. The pressure dependences obtained for thefre-
guencies of the TO and L modes for NH,I and NH,F are
shown in Figs. 3 and 4. The experimental values of v;,
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Fig. 2. Generalized density of vibrational statesfor NH4F at
various pressures.

obtained at different pressures from the datain thisand
other works, are presented in Table 1.

The NH,4I sample does not undergo phase transfor-
mations in the pressure range 0.05 < P < 8.3 GPa, and
thefreguencies of the TO and L modesincrease linearly
with increasing pressure (Fig. 3), just asin NH,CI [2].
The dependence v,o(P) obtained agrees with the
Raman spectroscopy data [10], and the dependence
v, (P) differs somewhat from the dependence computed

E, meV
NH,I
40 -

30F o e

T0
O
20 M/./././.

10

P, GPa

Fig. 3. Pressure dependences of the frequencies of the TO
and L modesfor NH,l. (m) Datafrom thiswork; (<) neutron
spectroscopy data[9]; (0) Raman spectroscopy data[10].
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from the data of [10]. Extrapolation of both depen-
dences to P = 0 gives values of v and v, close to the
values obtained in [9], which were measured for the
NH4I(1l) phaseat T=-25°C and P = 0 (Fig. 3).

The Grlineisen parameters of the TO and L modes
Vi = —(dInv,/dInV), presented in Table 2 together with
the values of the derivatives dv,/dP, were calculated for
the cubic phases NH,I(11) at P = 0.5 GPaand NH,F(l11)
at P = 1.9 GPa. The following values of the bulk mod-
ulus B = B, + B,P were used in the calculations:
B(P= 0.5 GPa) = 16.8(7) GPa for NH,l [11] and
B(P = 1.9 GPa) = 93.4(7) GPafor NH,F [4]. The value
obtained yi(v1o) = 1.7(2) for NH,I that is smaller than
the value determined in [10] from the Raman spectra:

Yi(Vro) = 2.4(3).

At room temperature NH,F possesses the wurtzite
structure (NH,F(1) phase, space group P6;mc), which
at P = 0.45 GPatransformsinto a complicated rhombo-
hedral structure containing 24 molecules in a hexago-
nal unit cell (NH,F(I1) phase, space group R3c) [5]. The
transition into an ordered cubic phase of NH,F(II1)
occurs at pressure P = 1.15 GPa [5].

The spectrum G(E) of the rhombohedral phase of
NH,F(I1) measured at P = 0.7 GPahasthree peaks, cor-
responding to a transverse acoustic mode (TA) and TO
and L modes. A characteristic feature of the spectrumis
the very strong TA peak, whose intensity is higher than
that of the other peaks.

For NH,F a small increase of the frequency v of
the transverse optica mode from 28.6 to 30.8 meV is
observed at the |1 transition, after which it decreases
to 27.2 meV at a ll-Il transition (Fig. 4). The libra-
tionad mode behaves in the opposite manner: v,
decreases from 68.9 to 65.2 meV at the -1 transition
and increasesto 74.7 meV at the ll1-11 trangition (Fig. 4).
Thevauesof vigand v, at P =0 aretaken from[9]. In
thelll cubic phase, asthe pressureincreasesfurther, the
frequencies of both modes increase, and v, remains
essentially pressure-independent. The value of v, for
NH,F(I11), v, (P = 1.9 GPa) = 74.7 meV, is much
greater than the similar values for other ammonium
halides (v, = 40 meV) in phases with similar structure.
This could be due to the presence of strong hydrogen
bondsin NH,F [12].

The lower value of v, for the NH,F(I1) phase seems
to be explained by the fact that this structure has stron-
ger hydrogen bonds N-H-F than the NH,F() and
NH,F(I11) phases. The results of the neutron diffraction
investigation of deuterated ammonium fluoride ND JF(11)
[12] have shown that the distance between D and F in
this structure is approximately 5% greater than in
ND,F(1), and the N-D—F angles are distorted by approx-
imately 10° compared with the corresponding value
180° for ND4F(1) and ND4F(111).
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Fig. 4. Pressure dependences of the frequencies of the TO
and L modesfor NH4F. (o) Datafrom thiswork; (e) neutron
spectroscopy data [9]; (») value of the TA mode for the
rhombohedral phase of NH4F(I1).

4. DISCUSSION

There exist several models[13—15] that makeit pos-
sible to establish a relation between the frequency of
the librational mode and the rotational potential barrier
for theammonium ionin acubic lattice. In[13] thevibra:
tions of an anharmonic anisotropic oscillator in thefield of

Table 1. Values of the frequencies of the TO and L modesin
NH,4l and NH4F at various pressures

P, GPa | Vi, meV | V1o, MeV
NH,l, Il phase

0(T=-25°C) [9] 34.1(7) 17.1(7)
05 33.3(9) 18.6(9)

16 34.3(9) 20.8(9)

22 34.9(9) 22.0(9)

33 35.9(9) 24.0(9)

41 36.2(9) 25.4(9)

NH,F

0 (I phase) [9] 68.9+22 28.6(7)
0.7 (Il phase) 65.2(9) 30.8(9)
1.9 (111 phase) 74.7(9) 27.2(9)
3.4 75.6(9) 30.3(9)

4.7 76.1(9) 315(9)

Table 2. Griineisen parameters of the TO and L modes for
NH,4l at P=0.5 GPaand NH,Fat P=1.9 GPa

Mode dv;/dP, meV/GPa Vi

NH,4l

V1o = 18.6 meV 1.89 1.7(2)

v, =333 meV 0.82 0.4(1)
NH,4F

V1o = 27.2 meV 152 5.2(2)

v = 74.7 meV 0.5 0.63(1)
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V, k¥mole
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Ordered phase
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Fig. 5. Rotational potential barrier V versus the lattice
parameter for the orientationally disordered and ordered
phases of ammonium halides. (A) NHyl, (O0) NH4Br [3],
(8) NH4CI [2], (©) NH4F, (+) values of the activation energy
for NH4CI, NH,4Br, and NH,I obtained by the NMR method
[13].

a phenomenologicd electrodtatic potential [16], corre-
sponding to cubic symmetry of the crystal and tetragonal
symmetry of the ammonium ion, were studied:

Voo O +yi +2' 30
> 7 -=z0 ()
S0 Iy S0

=1

V =

wherely_y, isthelength of the N-H bond, and x;, y;, and
z are the coordinates of the hydrogen atoms in the
ammonium ion.

The height of the rotational potential barrier V, is
determined by the length of the N—-H bond and the unit-
cell parameter:

2.4
- eg Inu
V, = 46'8D_1D ?. 2
In this model the relation between V, and v, has the
form

2
1 (v_+5h%21)
Vo = et ©
h™/2I
where h is Planck’s constant, | isthe moment of inertia
of the ammonium ion, and v, is expressed in energy
units.

Table 3. Values of the parameters B and C for the potential (3)

Parameter Disordered phase | Ordered phase
B, kJmole 5.087 x 10° 74.098 x 10°
C 4.2(2) 6.2(2)
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If the dependence v, (P) and the lattice parameter
dependences a(P) are known, the dependence Vy(a),
which characterizes V, as a function of the interionic
distance in the crystal, can be calculated. It is known
that the behavior of the librational mode changes at a
[I-1V orientational phase transition, which occurs in
ammonium halides under pressure [2]. Figure 5 shows
the dependences Vy(a) for the disordered and ordered
cubic phases of ammonium halides, calculated from the
neutron spectroscopy data for v (P) [2] (NH,CI), [8]
(NH,4Br), and the results of the present work for NH,|
and NH,F. The a(T) data and the values of the [I-1V
transition pressures for NH,Cl and NH,Br are taken
from [3, 4]. The values of V, for P = 0 agree with the

values obtained for the activation energy of the NH,
ion in ammonium halides by the nuclear magnetic res-
onance (NMR) method [13].

Both potentials intersect at the lattice parameter a;, =
3.88(6) A (Fig. 5). Thisisequivalent (for the same value of
the N—H bond length) to approximately the same value

of the positional parameter (Uy, = Iy_1/ay +/3), character-
izing the 11V orientational phase transition, which
occurs for values of the lattice parameter close to a,,
a=3.83A inNH,Cl and a=3.89 A in NH,Br [4].

Interpolation of the dependences Vy(a) for thell and
IV phases by afunction of the type

V,(a) = Bla® (4)

(Fig. 5) givesthe valuesfor the parameters B and C pre-
sented in Table 3.

The value of the exponent for the disordered phase
is close to C = 5. This shows that the relation (3) is a
good approximation for determining V,. At the same
time, the value of C for the ordered phase is closer to
C =7, whichis probably dueto the fact that in this case
the contribution of the octupole-octupole interaction of
the ammonium ions to the energy of the system

increases [17, 18], Voo ~ 15/a7, where 15 is the octu-

pole moment of the NH; ions. The magnitude of this
contribution depends on the relative orientation of the

NH; ionsandissmall for an orientationally disordered

phase [18]. The fact that the exponents differ from C =5
(for the disordered phase) and C = 7 (for ordered phase)
shows that higher-order terms must be taken into
account (anharmonicity, multipoles, and so on).

Thus, the results show that the dependence of the
rotational potential of the barrier ontheinteratomic dis-
tance changes at an orientational phase transition. It is
possible that a situation similar to that in ammonium
halides also occurs for orientational transitionsin other
systems with molecular cations, where the compress-
ibility isdetermined primarily by the anionic sublattice.
In this case, assuming that

aO - (da/dP) Ptr = acrl
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we obtain a simple estimate for the transition pressure
Ptr = (acr - aO)/B,

where g, is the lattice parameter at atmospheric pres-

sure and 3 = da/dP is the linear compressibility.

Interpolation of the pressure dependencesv, (P) and
v1o(P) for NH,I to higher pressures indicates that they
can intersect, v, = Vo @ P = 14 GPa. Since the ammo-
nium ion participates in librational and trandational
motions, resonance between TO and L modes is possi-
ble and could result in structural instability and a phase
transition at high pressures. Raman spectroscopy [10]
at high pressures showed strong changesin the spectra,
on the basis of which it was inferred that a phase tran-
sition into a new, previously unknown, high-pressure
phase NH,(V) occurs at P, = 5.4(5) GPa. A neutron dif-
fraction investigation of deuterated ammonium iodide
ND,l [5] showed that areal structural phase transition
occurs only at a much higher pressure P = 8.3 GPa.
Since at this pressure the difference of the frequencies
of the TO and L modes should not exceed 5 meV, this
could indicate the existence of an interaction between
the TO and L modes, which changes the high-pressure
dynamics of NH,l and in consequence leads to a struc-
tural phase transition.

5. CONCLUSIONS

The results of this work, which were obtained by
inelastic neutron scattering at high pressures, show that
orientational phase transitions in ammonium halides
can be described, using previously proposed theoretical
models, on the basis of achangein therotational poten-
tial asafunction of the distance. Theintersection of the
potentials of the ordered and disordered phases at close
values of the lattice parameter or positional parameter
for different compounds explains the previously estab-
lished characteristics of the structural behavior of
ammonium halides and makesit possible to predict the
behavior of other smilar systems.
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Abstract—The birefringence of light in freely suspended samples of porous silicon is observed and investi-
gated. The effect is interpreted as “shape birefringence,” i.e., the effect caused by the structure of a material
consisting of anisotropic formations with sizes less than the wavelength of the light and with a predominant
orientation. It is checked experimentally that the samples do not possess optical activity or optical anisotropy
in the plane of the porous-silicon film. It is determined that the effect is observed for polarization of incident
light that rules out the possibility of observing birefringence in auniform optical medium, and it isnot observed
in the conventional experimental geometry. Qualitative explanations are given for the anomalous character of
the observed defect. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Increasingly more complicated objects are being
studied in modern condensed-state physics. An exam-
ple of such an object is porous silicon, which has been
actively investigated in the last ten years in connection
with the possibilities of producing a new generation of
optoelectronic devices based on it [1]. We recall that
according to current ideas porous silicon is a self-orga-
nizing formation consisting of silicon “guantum wires’
with transverse dimensions of up to tens of angstroms.
Sincethe cross sections of thewiresare small, the prop-
erties of the wires (and the properties of the material as
awhole) are largely determined by quantum confine-
ment in the electronic and phonon subsystems [2, 3].
The character of the structure of a material consisting
of individua filaments al so influences the properties of
the material and is a source of additional effects (see,
for example, [4]).

Just as for other complicated objects, besides the
“logical” and potentially helpful properties, porous sili-
con demonstrates unexpected effects, whose nature
remains puzzling. Specifically, manifestations of ferro-
magnetism in porous silicon were reported in [5]. In [6],
it was observed in an investigation of the magnetooptic
Faraday effect in porous silicon that the magetooptic
rotation decreases as light passes through the sample at
an angle to the direction normal to the sample surface.
It was inferred that the effect is due to detection of the
magneti zation component lying in the plane of the sam-
ple. However, subsequent investigations showed that
when the sample is inclined, the polarization of the
transmitted light changesirrespective of the presence of
amagnetic field. Thus, the observed changein polariza-

tion of the transmitted light was found to be a result of
the birefringence of light in porous silicon.

We know of ho works on birefringencein poroussil-
icon. The relative simplicity of the structural units (sil-
icon atoms) and the cubic crystal lattice, just as in the
initial crystalline silicon (see [1]), rule out the basic
conventional reasons for the appearance of birefrin-
gence in crystals. At the same time, the mesoscopic
structural elements—quantum wires—can easily be
responsible for birefringence because of shape anisot-
ropy, even if the material composing the wires is com-
pletely isotropic. There also exist specific mechanisms
that can lead to birefringence in low-dimensional
objects (see, for example, [7]).

In the present paper we describe the experimental
results obtained from investigations of the basic manifes-
tations of the birefringence observed in porous silicon.

2. EXPERIMENTAL TECHNIQUE
AND SAMPLE PREPARATION

The samplesfor the investigations were obtained by
anodic etching of standard silicon plateswith resistivity
0.015-0.025 Q/cm and (100) orientationinal : 1 mix-
ture of 40% HF with ethanol with no additional illumi-
nation of the samples. The anodization current was
maintained at 70 mA/cm?. After the layer was allowed
to form under the indicated conditions for 616 min, the
etch current density increased by an order of magnitude,
which resulted in separation of the layer formed from the
substrate. The samples obtained were 15-50 um thick
and possessed a porosity of about 65%. The samples
were separated from the substrate (initial silicon crys-
tal) by sharply increasing the anodization current.
Under optical monitoring the samples demonstrated the
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ert] [
= 17

2 3 4

Fig. 1. Diagram of the experimental apparatus: (1) He-Ne
laser; (2) additional polarizer; (3) sample; (4) anayzer;
(5) photodetector. The lettersindicate the following angles:
(a) between the normal to the sample plane and the direc-
tion of incidence of thelight; (B)angular position of the ana-
lyzer relative to the rotation axis of the sample; (y) angular
position of the polarizer relative to the same axis.

luminescence typical for porous silicon in the orange
range of the spectrum and a shift of the Raman scattering
band in the direction of lower energiesby 8-10 cm— as
aresult of confinement in the phonon subsystem.

The intensity of the light transmitted successively
through alinear polarizer, afilm sample of porous sili-
con, and an analyzer was recorded in the main body of
the experiments as a function of the angular position of
the analyzer. This method for describing the polariza-
tion of light, according to [8], is called the projection
picture. The arrangement of the experiment and the
notations for the angles used in this paper are presented
in Fig. 1. In turn, the projection pictures were recorded
for various angles between the normal to the sample
surface and the direction of propagation of the light.
Linearly polarized light, oriented in a different manner
(y=0°, 45°, 90°) relative to the rotation axis of the sam-
ple, was used in the experiments. In the typical casethe
direction of the probe beam, the direction of the electric
oscillations of the light wave, and the rotation axiswere

I, arb. units
125
100
75
50

25

325

oriented along the Cartesian axes of the coordinate sys-
tem. The experiments were performed with low-power
radiation (2—4 mwW) from an unfocused helium-neon
laser at awavelength of 6328 A at room temperature.

Since the porous-silicon samples are not as perfect
as conventional materials used for optical polarization
investigations, the experiment showed avariance in the
data and irregular deviations of the recorded depen-
dences from the dependences dictated by the symmetry
laws. Such deviations are very likely to be due to non-
uniformities in the material and were not were not
investigated. This article includes the regularly observ-
able dependences, which are typical for a variety of
samples.

3. EXPERIMENTAL RESULTS

1. It was observed in the experiments that rotation of
the sample (see Fig. 1) changes the polarization of the
light transmitted through it. The largest effect was
observed in the cases where the vector E of the linearly
polarized light incident on the sample was oriented in
the direction of or perpendicular to the rotation axis of
the sample, which lies in the plane of the sample. The
difference in the results for these two cases was sub-
stantialy smaller than the effect itself.

Figure 2 gives an idea of the character of the data
directly recorded in the experiment. When the angle
between the polarization plane of the incident light and
the rotation axis of the samplewasy = 45°, virtually no
change in polarization was observed. The correspond-
ing dependenceis presented in Fig. 2a. When the vector
E of the light oscillations was oriented parallel or per-
pendicular to the rotation axis of the sample, the depen-
dences were substantialy different. The projection pat-
terns obtained for severa angles of inclination of the

I, arb. units

(b)

Fig. 2. Projection curvesfor the polarization of the light transmitted through afilm sample of poroussiliconfor y=45° (a), y=90° (b), and
for different anglesa of rotation of thesample: m, o =0°; 0, a =10° A, a =20°% v, a =30°% ©,a =35°; 0,0 =40°; ¢, 0 =45°; @, 0 = 50°.
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Fig. 3. Ratios of the intensities of the components with ini-

tial polarization I, and the polarization component I
orthogonal to it asafunction of therotation anglea for three
samples of porous silicon with thickness 15 (m), 30 (0), and
50 (a) pm. The plot demonstrates the effect of the sample
thickness on the frequency of the change in polarization
caused by rotation of the sample.

1, arb. units

1.0}

0.8
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Fig. 4. Intensity of the light transmitted through the polar-
izer and analyzer asafunction of theangle f —y between the
axes of maximum transmission with a sample of porous sil-
icon between them (circles) and without the sample, i.e.,
Malus' law (solid curve). The plot demonstrates the absence
of depolarization and optical activity in the sample in a
direction normal to the surface.

sample (0° < a < 50°) relative to the direction of light
propagation are collected in Fig. 2b. The angle B of
rotation of the analyzer relative to the position of cross-
ing with the analyzer is plotted along the abscissa axis
for al curves of the family y = 90°, and the light inten-
sity transmitted through the analyzer is plotted along
the ordinate. The different curves in a family corre-
spond to different angles of rotation of the sample. Itis
evident from the figure that as the sample rotates, the
projection pattern characterizing the light polarization
changes. It is important to note that as the sample
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rotates, the maxima and minima of the projection pat-
terns change places, and for certain samples repeatedly,
while there is almost no shift in the points of intersec-
tions of the curves.

The experiments showed that the character of the
observed curves, specifically, the period of aternation
of the maximaand minima, depends on the thickness of
the sample. Thisis evident from the plots presented in
Fig. 3: The period of the oscillations (as a function of
the rotation angle of the sample) is smaller for thick
samples.

To determine the nature of the observed effect the
same series of experiments was repeated on one of the
samples, after which the sample was impregnated with
paraffin oil (the immersion medium for microscopes).
Such treatment of the sample decreased the observed
birefringence effect by approximately afactor of 2.

2. A seriesof additional experimentswas performed
in search of other manifestations of optical anisotropy.
These experiments showed that the polarization of the
light transmitted through the sample does not change if
the light passes through the sample in a direction nor-
mal to the surface. It is evident in Fig. 4 that the light
transmitted through the sample along this direction is
completely extinguished by the linear analyzer. The
position of the analyzer is, in this case, exactly the same
as the position in which the probe beam in the absence
of the sample is extinguished in the setup. The genera
behavior of the dependence quite accurately follows
Malus law (solid line), attesting to the fact that the
light remained linearly polarized with the same direc-
tion of polarization which it had before passing through
the sample.

When the polarizer and the analyzer are mutually
oriented so as to achieve the maximum transmission
and the sample lies between them so that the normal to
the sample surface is directed along the light beam,
rotation of the sample relative to the normal to its sur-
facedid not result in aperiodic variation of theintensity
of the light transmitted by the analyzer. In these exper-
iments variations of intensity up to 3040% were
observed for some samples, but a characteristic angular
dependence with the period 174 was never observed
(Fig. 5). It can be assumed on the basis of the latter cir-
cumstance that in the cases where a variation of the
intensity was observed, it was simply caused by the
inadequate optical quality of the samples and not by the
presence of optical anisotropy in the plane of the sam-
ple.

We interpret the experimental results described in
Section 2 as attesting unequivocally to the absence in
our samples (free standing films of porous silicon) of
(i) appreciable depolarization of the linearly polarized
light, (ii) rotation of the polarization plane (nonmag-
netic), and (iii) optical anisotropy (optic axis or its pro-
jection) lying in the plane of the films investigated.
Since the samples were obtained from isotropic mate-
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rial (siliconwith its cubic lattice) using etching, the lat-
ter result is entirely natural.

4. DISCUSSION

The interpretation of the observed facts and the der-
ivations can be uniquely divided into two groups.

1. Interms of itsoverall features, the observed effect
is understandable, almost trivial. In a film material the
directions along and perpendicular to the film can be
nonequivalent. Characteristic oscillatory modes, which
ordinarily have a different polarization, exist in aniso-
tropic materials. These modes, usually called ordinary
and extraordinary rays, propagate in the crystal without
achangeinthetypeof oscillation, but their propagation
velocities are different, which corresponds to different
refractive indices for these modes. When the angle of
incidence of the light on the sample changes, the effec-
tive refractive indices and the optical path lengths for
the ordinary and extraordinary rays change.

As a result, when the light leaves the sample, the
superposition of modes can lead to light of a different
polarization than the polarization at the entrance into
the sample. Since the change in polarization arose
because of the difference of the optical paths of the two
components of the light in the sample, this change
should increase as the sample thickness increases and
as the angle between the normal to the sample and the
direction of incidence of the light increases. Both these
tendencies were clearly observed in the experiment,
and the effects responsible for them can be easily
described by the well-known formulas [9].

The phase shift between the components propagat-
ing with different velocity can be written in the form

8 = 2d(n,—n,).

Here An = n,—n, isthe difference of therefractiveindi-
ces between the components of the light with different
polarization, d is the geometric path length of the light
in the sample (d = t/cosB for light passing through a
sample of thicknesst at angle 0). In turn, the angle 6
can be found from the known angle of incidence and
the refractive index. On the basis of previousy
obtained data [10], the average refractive index can be
assumed to be known (n = 1.75 for porosity P = 65%).
Hence, having determined the rotation angle of the
sample giving a rotation of the projection pattern by
90° (which corresponds to a transition from a maxi-
mum to aminimum in the projection pattern of the type
presented in Fig. 2 or a phase shift of 172 between com-
ponents with different polarization), we obtain adiffer-
ence of the coefficientsfor the two types of waves An =
0.10 that is much greater than, for example, in ZnGeP,
[11] or (Al)GalnP [12]. The variance in the values of
An obtained for different samples does not exceed
20—-25%.
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180°

Fig. 5. Intensity of the light transmitted successively
through a polarizer, the sample, and an analyzer as a func-
tion of the rotation angle of the sample with the sample
rotated relative to the normal to its surface. The sample is
oriented normally to the light beam, the analyzer and polar-
izer are initially placed in the position of maximum trans-
mission. The curvesrepresented by different symbolscorre-
spond to different samples. The solid curve shows the form
of the dependence cos4¢ that would indicate the presence of
an optic axisin the plane of the sample.

The experiment with a sample impregnated with
paraffin oil indicates unequivocally the reason for the
optical anisotropy. As indicated above, optical anisot-
ropy in porous silicon could be due to the fact that the
anisotropic elementsforming the material of poroussil-
icon have a predominant orientation. The presence of
interior surfaces oriented in a definite manner in the
material, taking account of the need to satisfy the
boundary conditions for the light vector E, will cause
the permittivity to be different in different directions,
i.e., birefringence. The corresponding formulas and ter-
minology are given in the well-known monograph by
Born and Wolf [9]. It can be assumed that the sizes of
the structural elements of porous silicon are compara-
ble to or greater than the size of the oil molecules, so
that the oil can penetrate into the porous material,
equalizing the difference of the refractive indices
between individual elements and the medium between
them. (We note in addition that these anisotropic ele-
ments must nonethel ess be smaller than the wavelength
of the probing light; otherwise, the experiment would
show scattering and depolarization but not birefrin-
gence.) Thefilling of the space between the anisotropic
elementswith amedium with refractiveindex (n,;) fall-
ing between the refractive indices of the “quantum
wire” material (ng) and the vacuum will obviously
decrease the optical anisotropy and the birefringence
which are due to the presence of anisotropic structural
elements. For this reason, the result of the experiment
with the impregnated sample proved that the observed
anisotropy isdueto the fact that the material consists of
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anisotropic elements with a predominant orientation
(so-called shape birefringence[9]). This result, without
guestion, agrees with the existing ideas about the struc-
ture of porous silicon.

2. However, an attempt to give amore detailed inter-
pretation of the results is dismayingly unproductive.

It must be kept in mind, first and foremost, that the
effect is also observed for the directions of oscillations
of the light vector E aong the rotation axis of the sam-
ple. This fact renders meaningless the formal interpre-
tation presented above, at least for the case of an opti-
cally uniform medium. Indeed, for the vector E of the
electric oscillations of the light directed along the rota-
tion axis of the sample (y =0, see Fig. 1), the direction
of the vector E does not change either at the entrance of
the light into or at the exit from the sample; E will lie
in the plane of the sample. The vector will also have no
components directed along the normal to the surface of
the sample. In other words, there are no components
with adifferent polarization and the same experimental
arrangement. Under these conditions, changing the
angle of incidence will change the optical path length
and the phase of the outgoing light relative to the phase
of the light that exited the sample in adirection normal
to the surface. But since two components with different
polarization for which an inclination of the sample
would change the phase difference are not present, the
polarization of the outgoing light also cannot change.

Such components could arise if the sample con-
tained an optic axis making a nonzero angle with the
rotation axis. However, the experiments described in
Section 3.2 show unequivocaly that there is no such
axis.

One other possibility can be presented a priori:
Birefringence coexists with rotation of the polarization
plane in the material. In this case the direction of the
oscillations of the vector E could be changed asaresult
of arotation of the polarization plane. Thiswould actu-
ally signify the appearance of alight oscillation with a
different polarization, and a phase difference could
appear between the two basic types of waves in accor-
dance with the formulas presented above. However,
this possibility is not confirmed experimentally—the
datain Fig. 4 clearly show that there is no rotation of
the polarization plane in the sample.

3. An interpretation of the observed effects can be
proposed only at a qualitative level with a substantial
complication of the model. One possibility isto assume
that the sample is nonuniform, so that the light trans-
mitted through it passes successively, for example,
through regions with different directions of rotation of
the polarization plane. In this case, the light transmitted
through the sample normally can maintain the same
polarization plane asfor theincident light, just asin the
experiment described above. At the same time, the
polarization inside the sample makes an angle to the
main directions, so that the rotation of the sample will
result in the appearance of a phase shift between the
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components and, in this case, to a change in polariza-
tion.

The conjecture made above presumes, first and fore-
mogt, that porous silicon has a complex (hierarchical)
structure. In itself, this conjecture does not contain any
unusual hypotheses. In works on this material, experi-
mental evidenceis presented, for example, for alayered
structure. Each layer in turnisformed by acollection of
oriented “quantum wires’ [13-15]. Such a structure
could give, for example, rotation of the polarization
plane at the entrance to the layer and areverse rotation
at the exit from the layer; the total rotation for light
passing through a layer in a direction normal to the
layer could be closeto zero. But, even with oblique pas-
sage a layer with such properties could also demon-
strate dichroism with dependences similar to those
observed in our experiments.

This conjecture of a compensated rotation of the
polarization plane makes it possible to relate the data
from al experiments in a single model. However, in
this case, the exact compensation of the contributions
of separate regionsis nontrivial. It is sufficient to recall
that the demagnetization (on the average) of an ordi-
nary piece of iron is due to a quite complicated system
of phenomena that minimize the volume energy of the
magnetic field. In principle, the complex hierarchical
structure of porous silicon consisting of nano- and
microobjects of different scale leaves another possibil-
ity—balanced combination of right- and left-hand rota-
tions. The question iswhy nature chooses precisely this
variant from the enormous number of possibilities.

With respect to porous silicon, this question is con-
sistent and relevant, since the formation of porous sili-
con itself is a self-organization of a mass of nanosize
elements, which at present is not fully understood (see,
for example, [16]). However, up to now, attempts to
analyze the situation have been made only for the pro-
cess leading to the formation of the quantum wires
themselves. The observation of birefringence of lightin
the present work shows that the organization of the
guantum-size elements into a single material—porous
silicon—is nontrivial and not accidental, and this ques-
tion requires a special investigation.

5. CONCLUSIONS

Thus, in the present work birefringence of light in
porous silicon was observed and investigated for the
first time. The collection of results of observations can
be easily interpreted formally as a manifestation of the
birefringence of the experimental material. An experi-
ment with an impregnated sampl e unequivocally shows
that the observed hirefringence is the socalled shape
birefringence and is due to the structure of the material
consisting of anisotropic objects which have apredom-
inant orientation.

Nonetheless, a correct description of part of the
experimental data using well-known formulas for bire-
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fringence does not exhaust the questions concerning
the nature of the observed defects. The results of differ-
ent experiments can be explained as whole only quali-
tatively using quite complicated assumptions about the
structure of the material.
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Abstract—The effect of high pressures P on the Néel temperature Ty, the crystal lattice parameters, and the
magnitude of the hyperfine magnetic field HS" at a nucleus of a diamagnetic tin atom was studied in pure and
tin-doped orthoferrites RFeO; (R = Nd, Lu). The dependence of these quantities on the geometry of the
exchange bonds, specifically, the angle and length of the chemical bond Fe-O—Fe(Sn), was analyzed. It was
established that under pressure the angular contribution decreases and the radial contribution increases Ty and
HS", the radial contribution being greater than the angular contribution in absolute magnitude. Numerical esti-
mates were obtained for the angular and radial contributionsto Ty and H™". In lutecium orthoferrite, at P> 30 GPa
anomaliesindicating a possible phase transition were observed in the behavior of the lattice parameters and the

value of HS", © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In the orthoferrites RFeO; (R is a rare-earth ele-
ment) doped with diamagnetic tin ions Sn**, M dssbauer
spectroscopy has revedled strong magnetic fields at
1195n nuclei, reaching 250 kOe [1]. Thesefields arise as
aresult of the transfer of spin density from the 3d shell
of the Fe3* ion into the ns shell of the Sn** ion, whichis
what produces the hyperfine magnetic field at a Sn
nucleus via the Fermi contact interaction. Spin-density
transfer occurs by the mechanism of indirect exchange
with the participation of an intermediate oxygen ion
along the chain Fe-O-Sn [2]. For this reason, the field
produced by such a mechanism is called an indirect
hyperfine interaction field or a supertransferred hyper-

fine magnetic field (H?HF) [2]. Investigations have

shown that the field H§$HF (which in what follows we
denote by HY") is very sensitive to the local magnetic
and crystal structure and to the geometry of the
exchange bonds [2—4]. In the series of orthoferrites
RFeO;(Sn*"), as R changes from Lato Lu the value of
the field HS" decreases approximately by 100 kOe [1].
This decrease is due to the decrease in the angle of the
exchange bond Fe-O—Fe (or Fe-O-Sn), which in turn
is caused by the decrease in theionic radius of therare-
earth element. This effect also explains the decrease in

the Néel temperature Ty, [4] and the field Hore at the
S"Fe nuclei.

The theoretical approach to this problem on the
basis of the method of molecular orbitals (ligand field
theory) was initialy formulated in [5, 6] and later
developed in [7—10]. Comparing the theoretical values
of thefield Hgpyr With the experimental values makesit
possible to estimate the transfer and overlap integrals
and thereby obtain information about the covalency and
exchange interaction parameters in a specific crystal
structure. However, investigations performed for the
perovskite, garnet, and spinel structures[2, 4, 7, 10, 11]
have shown that the theory does not always explain and
can explain only qualitatively the experimental results
obtained under normal pressure.

High-pressure experiments can serve as a good test
for checking and improving theoretical models. Lister
and Benedek [12] have investigated the pressure depen-
dence of the hyperfine magnetic field H™ at >’Fe nuclei
in octa- and tetrahedral sites of yttrium iron garnet and
found that H™® is virtually independent of the lattice
parameter. In [13] four orthoferrites and the ferrites-
spinels NiFe,O, and Fe;O, were investigated. For the
orthoferrites, it was found that H™ (296 K) increases
with pressure, which the authors attributed to the
increase in Ty with constant H™ (0 K). For the spinels
NiFe, O, and Fe;0,, it wasfound that H™ (0 K) decreases
with increasing pressure. In [14], it was observed that in
the spinel MnFe,O, (Sn**) the field HS at the tin nuclei
increased substantially under pressure P. It was found
that dH>" (296 K)/dP = +3 kOe/GPa.

1063-7761/00/9002-0330$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. (@) Schematic view of atypical high-pressure chamber with diamond anvils for Mdssbauer and optical measurements:
P, C, piston-cylinder, S, Mdsshauer source or focusing lens, DA, diamond anvils, H, positioning hemisphere; Src, nut for fixing the
load. (b) Enlarged view of the central part of the chamber: G, gasket, Ab, sample (absorber), R, ruby grain.

High-pressure investigations are very difficult, but
they can yield information about the change occurring
in the exchange interactions and the covalency param-
etersasaresult of deformations of the crystal lattice. In
the present work we used the high-pressure technique
to investigate HS" and T\, accompanying achangein the
interionic distances and angles of the exchange bond in
the orthoferrites NdFeO; and LuFeO,, pure and doped
with Sn** ions.

2. EXPERIMENTAL PROCEDURE

2.1. High-Pressure Chamber with Diamond Anvils
for Mdssbauer, Optical, and X-ray Investigations

We conducted a series of investigations of the M dss-
bauer spectra, the optical absorption spectra, the
Raman spectra, and the X-ray diffraction spectra using
high-pressure chambers with diamond anvils. A sche-
matic view of such a chamber is displayed in Fig. 1.
Depending on the type of experiment and required
maximum pressure, the diameter of the working area of
the anvilsvaried in the range 300—800 pm. In the M 6ss-
bauer experiments, the diameter of the anvils was about
600 um. The pressure in the chamber was measured
according to the shift of aruby fluorescence line using a
specid optica apparatus equipped with a He-Cd laser.
A rhenium interlayer (gasket) was clamped between
the diamond anvils. Theinitial thickness of the rhenium
foil was 200 um, and the final thickness of the indenta-
tion was about 50 um. An opening with a diameter of
~200 um was produced at the center of the gasket by
means of a spark discharge. The opening was filled
with powder of the experimental sample and ~10 pm
ruby crystal grains were placed on top. Pressures
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exceeding 40 GPa can be generated using such a dia-
mond chamber. The maximum pressure difference
along the sample was 0.1 GPa.

The Mossbauer absorption spectra of the 1°Sn
nuclei were measured on a standard spectrometer with
a multichannel analyzer in the regime where gamma
rays are transmitted through a sample. A small, spe-
cially produced, source based on Ca''®*"SnO; with a
~3 mm in diameter active spot and a high specific activ-
ity served as the gamma-ray source. During the experi-
ment the source was at room temperature. The acquisi-
tion time of each spectrum ranged from 1 to 4 weeks.
Computer analysis of the Mdsshauer spectra was per-
formed using a program developed at the Institute of
Crystallography of the Russian Academy of Sciences.

Diamond anvils with a diameter of about 300 um
were used in the optical absorption experiments. The
opening at the center of the rhenium gasket was~100 um
in diameter. A thin plate was prepared from the experi-
mental sample by compressing powder between the
anvils. A particle of this plate together with aruby grain
were placed on the surface of one of the anvils. Polyethyl-
sloxane liquid (PES-5) served as the pressure-tranamit-
ting medium. Pressures up to 100 GPacan be obtained in
such a chamber. The optical setup for investigating the
absorption spectra at high pressure makesit possible to
perform measurements in the visible and near-IR
ranges (from 0.2 up to 5 um). We expect that interesting
evolution of the optical absorption edge in rare-earth
orthoferrites should be observed in the pressure range
30-100 GPa.

In the X-ray diffraction experiments, the diameter
of the diamond anvils was about 400 um. The experi-
ment was performed using an energy-dispersion
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Fig. 2. (a) Overall view of the central part of the “Toroid” chamber with ateflon high-pressure cell. (b) Diagram of the assembly for
measuring the magnetic susceptibility; 1, interlayer (catlinite), 2, teflon ampul, 3, covers, 4, thermal insulator, 5, heater, 6, sample,
7, thermocouples, 8, mica, 9, strain gauge, 10, manganin pressure gauge, 11, electric leads.

scheme in the synchrotron source in Hamburg, Ger-
many (HASY LAB/DESY, Hamburg) [15]. Mineral oil
was used asthe pressure-tranamitting medium. Thistech-
nique was used to investigate the compressibility and lat-
tice parameters of orthoferrites up to 42 GPa pressure.

2.2.“Toroid” High-Pressure Chamber
for Measurements by the Method
of Differential-Thermal Analysis
and Mdssbauer Spectra

Measurements by the differential-thermal analysis
(DTA) method were performed in a“ Toroid” type high-
pressure chamber [16, 17]. Hydrostatic pressures up to
10 GPainside a liquid-filled teflon ampul can be pro-
duced in this chamber, and measurements of the com-
pressibility (using resistance strain gauges) and mag-
netic susceptibility can be performed. Up to 10 electric
leads can be introduced into the chamber, and various
measurements can be performed at high temperatures
up to 900 K. A generd view of the central part of such a
chamber with a high-pressure cell is displayed in Fig. 2a,
and the assembly for the DTA measurements is shown
in Fig. 2b. In measurements performed by this method,
two 0.05 mm in diameter chromel-alumel thermocou-
ples are placed inside the heater. One of themisinindi-
rect contact with the experimental sample, and the
other is separated from the sample by amicainterlayer.
The sample with the thermocouples and the mica is
placed in an additional copper thermal screen. In this
setup the surrounding medium (aliquid) servesasaref-
erence samplein the DTA measurements. The pressure
inside the cell is measured continuously with amanga-
nin probe. The pressure coefficient of the manganin
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wire was calibrated according to the phase transition in
Bi at 2.55 and 7.7 GPa. The probe is placed in the cold
zone of the ampul (Fig. 2a), and its temperature
remains almost constant as the sample is heated up to
700 K. The pressure dependence of the Néd tempera-
ture (Ty) in orthoferrites was investigated by the DTA
method in such a chamber, and part of the M éssbauer
spectraat T = 77 and 296 K was investigated.

The DTA method is widely used for detecting first-
order phase trangitions accompanied by ajump in volume
and release of latent heat. However, second-order transi-
tions (for example, magnetic) can also be observed by this
method, since the specific heat possesses a feature at the
transition point (A anomaly). The temperature depen-
dence AT(T) obtained in aDTA experiment also has an
anomaly, whose magnitude depends on the rate of heat-
ing or cooling of the sample. For high rates of heating
(cooling) the anomaly is greater, but its position shifts
by several degrees to higher (lower) temperatures. For
this reason, the Néel temperature was measured during
heating and cooling and its average value was deter-
mined. In our DTA investigations, for a2 x 2 x 0.8 mm?3
orthoferrite sample, the typical value of the anoma-
lous part in the temperature dependence AT(T) was
1-2 pV, which correspondsto 0.05 K with heating rates
2-4 K/s. The indications of the thermocouples and the
pressure sensor were measured with adigital voltmeter
with 0.01 pV resolution. The data were accumulated
and processed with a computer. The typical curves of
the DTA signal AT(T) for NdFeO; for different pres-
sures are shown in Fig. 3. The peak in AT(T) corre-
sponds to the Néel point. The method of thermal mea-
surements of magnetic transitions under pressure is
described in greater detail in [18].
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Fig. 3. Temperature dependences of the DTA signal for a
single crystal of the orthoferrite NdFeO3 at various pres-
sures. The peak in AT(T) corresponds to the Néel point.

2.3. Sample Preparation

A ceramic technology was used to prepare pure and
tin-doped orthoferrites NdFeO; and LuFeO;. Some of
the investigations were also performed on single crys-
tals of pure NdFeO; and LuFeO,, grown at the Institute
of Crystallography of the Russian Academy of Sci-
ences by a hydrothermal method and by a fluxed solu-
tion method. Some iron ions Fe** in doped samples
(R, _Ca)[Fe; _,Sn]O; (x=0.05 and 0.1) were replaced
by tinions Sn**, and the R3* ionswere replaced with Ca?*
to compensate the charge. To increasethe accuracy of the
M0sshauer investigations, tin enriched with the isotope
1195n to 93% was used to prepare the samples. An
AFV-201-Toshiba X-ray diffractometer was used to
make sure that the samples consisted of a single phase.
All compounds possessed perovskite structure (space
group Pbnm) and were isostructural to the orthoferrite
GdFeO; [19]. The lattice parameters and Néel temper-
atures for pure and substituted orthoferrites at normal
pressure are presented in the table.

3. EXPERIMENTAL RESULTS
3.1. Effect of Pressure on the Néel Temperature

Figure 4 displays the pressure dependence of the
Néel temperature for single crystals of the pure orthof-
errites NdFeO; and LuFeO;. The values of Ty were
measured by the DTA method in a “Toroid” chamber.
A hydrostatic pressure of up to 7 GPa was attained
inside a capsule filled with a mixture of pentane and
petroleum ether. The pressure dependences Ty, = f(P)
are identical with increasing and decreasing pressure
and arefit well by alinear law at least upto P =7 GPa
(Fig. 4). The experimental values of the pressure coef-
ficientsdTy/dP are 11.2 + 0.12 and 8.45 + 0.27 K/GPa,
respectively, for NdFeO; and LuFeO;. The value of Ty
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Fig. 4. Pressure dependence of the Néel temperaturefor sin-
gle crystals of the orthoferrites NdFeO3 and LuFeOs. The
filled and open circles refer to regimes with increasing and
decreasing pressures, respectively.

measured in this chamber at atmospheric pressure
agrees to within 0.5 K with the values from the table.

3.2. Effect of Pressure
on the Crystal Lattice Parameters

Figure 5 showsthetypical X-ray spectraof the ortho-
ferrite LUFeO;, measured at room temperature by the
energy-dispersion method, using a synchrotron source,
in achamber with diamond anvils. Together with the dif-
fraction pesks of orthoferrite, whose positions and inten-
sity agree well with known tabulated data, peaks due to
gold, whose powder was present in the chamber together
with the orthoferrite sample, are also seen in the spectra
The pressure in the chamber was determined according
to the position of these peaks, using the well-known
equation of state for gold [20]. As pressure increases,
the diffraction peaks broaden as a result of the appear-
ance of pressure gradientsin the chamber and the close-
lying peaks start to overlap strongly. In addition, at high
pressures, some of the peaks corresponding to the ortho-
ferrite start to overlap with the peaks corresponding to
gold. For this reason, the values of the unit-cell parame-
tersa, b, and ¢ of LuFeO; were calculated according to
the position of the 002, 111, 211, 202, and 301 peaks,
whose overlapping with other peaksis smaller.

Lattice parameters and Néel temperature Ty for pure and
substituted orthoferrites under normal pressure

Compound aA | bA | cA |T,K
NdFeO; 5441 | 5573 | 7.753 | 687
(Ndg oCag 1)[FeosSne 1105 | 5.476 | 5.608 | 7.788 | 615
LuFeO, 5213 | 5547 | 7.565 | 623
(LugoCag1)[FenoSn1]0s | 5.262 | 5580 | 7.620 | 555
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Fig. 5. Typical X-ray spectra of the orthoferrite LuFeO5 at
various pressures. Thefilled circlesmark peaksused for cal-
culating the unit-cell parameters.
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Fig. 6. Pressure dependence of the unit cell parameters and
the relative volume of the unit cell for asingle crystal of the
orthoferrite LuFeOs.

Figure 6 shows the pressure dependence of the unit-
cell parametersin the orthoferrite LuFeO,. As expected,
the parameters a, b, and ¢ decrease with increasing pres-
sure. Despite the large experimental error, it isevident in
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Fig. 6 that the parameter b decreases more rapidly than
the parameter a, and they become equa to one another
at P > 30 GPa. This could signify a transition of the
orthorhombic structure of the orthoferrite into atetrago-
nal structure. Such a transformation can be observed
qualitatively in Fig. 5, where two of the three close-lying
peaks 020, 112, and 021 (021 and 112) of the orthorhom-
bic lattice completely merge at high pressure.

Figure 6 aso showsthe pressure dependence of therel-
aive unit cell volume V/V, for LuFeO,;, measured up to
41 GPa. The values of the bulk modulus K = -\,(0V/oP)™*
were calculated from the experimental data. The
parameters of the equation of state in the polynomial
representation of the form V/V, = 1 — P/IK + 8P? were
found to be K = (220 £ 10) GPaand 6 = (3.3+ 0.4) x
10-° GPa™. The parameters for the equation of state
in Murnagan’'s form P = (K/K)[(Vy/V)X — 1] are K =
(212 + 16) GPaand K'=4.6 + 0.8.

3.3. Mosshauer Spectra of 11°Sn Nucle
under Normal Pressure

At temperatures T < Ty a magnetic hyperfine split-
ting is observed in the M 6ssbauer spectra of *1°Sn (see
Fig. 7) asaresult of the Zeeman interaction of 10 nuclei
with the effective magnetic field HS". The typical spec-
trum consists of six resonance lines, corresponding to
transitions from an excited state of a*'°Sn nucleus (spin
| = 3/2) into the ground state (I = 1/2). A calculation of
the hyperfine interaction parameters showed that, for
all compositions, to within the error limits there are no
guadrupole shifts. Theisomeric chemical shiftsrelative
to the source are zero (for identical temperatures of
the source and absorber). As the tin concentration X
increases, additional components associated with the
nearest-neighbor effects arise in the spectra of the
(R, _LCa)[Fe, _,Sn,]O; samples (Fig. 7).

In the structure of orthoferriteall tinionsarelocated
in oxygen octahedra, and their nearest cationic environ-
ment can berepresented intheform k,, = [(6—n)Fe+ nSn].
For small x al Snions occupy equivalent positionswith a
configuration of the nearest neighbors k, = (6Fe + 0Sn).
Asxincreases, together with kg, the statistical weight of
the local sites with the configuration k; = (5Fe + 1Sn)
increases, which resultsin the appearance of anew sub-
spectrum in the M ésshauer spectrum (Fig. 7). For large
values of x, new satellites corresponding to configura-
tionswithn=2, 3, ..., 6 appear, and asinglet (with zero
magnetic field at the *°Sn nucleus), due to Sn ions
which do not have magnetic neighbors in the nearest-
neighbor environment (for kg), can appear at the center
of the spectrum. This phenomenon has been investi-
gated in detail in [11].

We found that for atin ion in the coordination k; =
(6Fe + 0Sn) the fields HS" (0 K) are (222 + 1) and
(160 + 1) kOe, respectively, for neodymium and lutecium
orthoferrites. Since under normal pressure the interionic
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Fig. 7. Mésshauer spectraof 119Sn nuclei at normal pressure
in the orthoferrites (Nd, _,Ca,)[Fe; _,Sn,]O3 for x = 0.05
and 0.1 a T = 4.2 K. The arrows show the positions of the
resonance lines corresponding to Sn** ions in local sites
with the coordination kg = (6Fe + 0Sn) (down arrows) and
k1 = (5Fe + 1Sn) (up arrows).

distances Fe-O in the series RFeO; remain essentialy
unchanged as R varies from La to Lu, the observed
decrease of the field HS" is due to the change in the angle
¢ of theexchange bond Fe-O—e (or Fe-O-Sn) [2], which
decreases by 10.5° from NdFeO; to LuFeO,. It was adso
found that for the configuration k; = (5Fe + 1Sn) the field
HS" (0 K) in the orthoferrite (Ndy ¢Cay 1)[F€y9SN1]O5 is
193 kOe. This means that the removal of oneiron atom
(out of six) from the nearest neighbor environment of
tin decreases the field HS" by 29 kOe. Such a strong
dependence of H> on R and k,, shows that the 1°Sn
nuclei are extremely sensitiveto thelocal structural and
magnetic environment.

3.4. Effect of Pressure on the Mdssbauer Spectra
of 1% Nuclei

Figure 8 shows the evolution of the Mdsshauer
spectra for neodymium orthoferrite as a function of
pressure in a “Toroid” chamber. For measurements at
the center of the chamber, the opening in the catlinite
interlayer was filled with powder of the experimental
sample (instead of the teflon ampul in Fig. 2). Bismuth
and barium wires were placed at the center of the sam-
ple between the top and bottom die. The wireswerein
electrical contact with the dies. An oil pump was used
to regulate the load on the dies. The pressure-transmit-
ting apparatus made it possible to cover completely
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Fig. 8. Mossbauer spectra of 19n nuclei in NdFeO;
(5% Sn) at various pressures, measured in a “Toroid”
chamber at T=77K.

with liquid helium the dies with the interlayer and the
experimental sample. In the Mdssbauer experiment, the
gamma-ray source was located outside the high-pres-
sure chamber. The direction of the radiation was in the
plane of the catlinite interlayer and passed through the
sample. The load on the dies was increased until the next
phase transition in bismuth or barium was reached.
Thesetransitions were detected according to ajump inthe
resistance of the Bi or Bawire. In the process of accumu-
lating the Mdsshauer spectrum, the pressure was main-
tained constant using an oil pump and a specid control
scheme. The spectraof (Ndy ¢Cay 1)[F€y9Sny1]O5 @ room
and nitrogen temperatures under pressures up to 7.7 GPa
were measured in such a chamber.

All spectra were analyzed assuming two magnetic
sextets and one singlet. We discovered that the mag-
netic field HS" on atin nucleus increases with pressure.
Figure 9 shows the pressure dependences of the field
HS" for ak, configuration in neodymium and lutecium
orthoferrites at T = 296 K. These dependences are fit
well by alinear function

oH
oP
where H, is the field HS" at normal pressure and room
temperature. For k, coordination, the following values

of the parameters were found in the orthoferrite
(NdyoCay1)[FeygSng 1105 Hp = (196 + 2) kOe and

H(P) = Ho+ 2= P, (1)
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Fig. 9. Pressure dependence of the field H"in the orthofer-
rites NdFeOz and LuFeOz at T = 296 K. Solid lines are lin-
ear fit, dashed lines are interpolation of the data using

Eq. (2 toT=0K.
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Fig. 10. Temperature dependences of the fields HS" in
NdFeO3 (10% Sn) and LuFeO3 (10% Sn) in reduced coor-
dinates. The solid and dashed lines show the fit of the
expression (2) to the experimental data for neodymium and
lutecium orthoferrites, respectively (seetext). Inset: Exper-

imental dependences H

(T) at normal pressure, from [1].

OH/0P = (1.98 + 0.16) kOe/GPa; for k; coordination:
Hy=(170.8 = 1.5) kOe and 0H/0P = (1.66 + 0.14) kOe/GPg;
orthoferrite (LuygCay1)[FeneSng1]Os, the following val-
ueswere obtained for ky coordination: Hy = (132 + 2) kOe
and 0H/0P = (1.68 + 0.10) kOe/GPa.

3.5. Extrapolation of the Field H"to T= 0 K

Both the change of the Néel pressure with tempera-
ture and the change in the magnitude of the field H>
with pressure at T = 0 K affect the pressure dependence
of thefield HS"at T = 296 K. To analyze the experimental
resultstheoretically, itisnecessary to know thefields HS
at absolute zero temperature. Knowing the dependence
HS"=f (T) for normal pressure and the dependences H>"
(296 K) =f(P) and Ty, =f (P), the pressure dependence
of thefield HS"at T=0K, i.e., HS" (0 K) =f(P), can
be estimated. For this, we shall employ a scaling model
and we shall represent the temperature dependence of
thefield H" in aform that does not depend on the pres-
sure:

h = exp(—at)(1-t)". )
Here h = HS(T)/HS(0) and t = T/T},, and the parameters
o and 3 are determined by fitting the function (2) to the
experimental temperature dependence H(T) at normal

pressure. The pressure dependence HS'(P) at zero tem-
perature Hy(P) is found from the expression

H(P) = H(Ter, Phexp i o500 - TTN?;)E - ®

Knowing Hy(P), it isaso easy to calcul ate the val ues of
HS" for any pressure and temperature:

H(T,P) = Ho(P)expga= (p)m%l TN(P)D @

The magnitude of the field HS" in the entire admissible
(T, P) range can aso be determined from its pressure
dependence at room temperature:

_ Tar =T Ta(P) =T (5
(T, P)= H(Ter, PYep 8 3 oy [ 3y 7

We check the proposed extrapolation procedure for
the orthoferrite NdFeO; (5% Sn) datafirst. Th extrapo-
lation of the pressure dependence of HS" at T = 296 K
to the pressure dependenceat T =77 K agreed well with
the experimental values of the field at this temperature.

In a previous work [1], we measured in detail the
temperature dependences of H in the orthoferrites
NdFeO; (10% Sn) and LuFeO; (10% Sn) under normal
pressure (see Fig. 10). Analyzing these data using the
proposed extrapol ation scheme, we found that the exper-
imental values can befit well by theempirical function (2)
with the following vaues of the adjustable parameters:
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Fig. 11. Schematic view of the crystal structure of perovskite. The dashed lines show the changes in the parameters of the structure

after application of pressure.

o= -0261 £ 0.008, 3=0452 + 0.007 for NdFeO;
(10% Sn) and a =-0.207 £ 0.008, 3 = 0.418 £ 0.007 for
LuFeO; (10% Sn). As one can seein Fig. 10, the tem-
perature dependences of H for the two different ortho-
ferritesare very close. This confirmsthe universality of
the form of the function h = f(t).

The pressure dependences of HS" calculated using
the proposed zero-temperature scheme for the orthofer-
rites NdFeO; (10% Sn) and L uFeO; (10% Sn) are shown
in Fig. 9. For the neodymium orthoferrite the depen-
dence H(f" (P) isapproximately linear up to P = 30 GPa
with slope dHS'(0 K)/dP = 1.56 + 0.03 kOe/GPa. For
the lutecium orthoferrite the linearity with coefficient
dHS(0K)/dP = 1.41 £+ 0.03 kOe/GParemainsup to P =

27 GPa, after which akink appears. This probably indi-
cates a phase transition.

4. DISCUSSION

4.1. Radial and Angular Pressure Dependences
of the Field HS

If the field HS" arises because of spin-density trans-
fer from the 3d shell of the Fe** ion to the ns shell of the
Sn** ion by the indirect exchange mechanism, then the
field HS" should depend on the geometry of the Fe-O-Sn
exchange bonds [2]. At high pressure, the length d of
the chemical bond Fe-O (Sn—O) should decrease, and
the angle between the lines of the Fe-O-Sn bond
should also change. The angle ¢ should change because
the bulk modulus K, of the lattice is different from the
bulk modulus K of the polyhedra (in this case octahe-
dra) comprising thislattice. The bulk modulusfor the oxy-
gen octahedra can be estimated from published data [21]:
Ko ~ 280 GPa. The value of K, measured in the present
work for lutecium orthoferrite LeFeO; is ~220 GPa.
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We shall represent the change in the field H'(0 K)
under pressure as a sum of the radial and angular com-
ponents:

OH _ 9Hod , 9H ©
oP 0ddoP d¢aP

and we shall estimate the magnitude of each compo-
nent.

Figure 11 shows the schematic form of the crystal
structure of the perovskite, where d,, d, ¢, ¢, Iy, and |
are parameters of the structure before and after the
application of pressure, respectively. To afirst approxi-
mation, the change in the lattice parameters under pres-
sureisgiven by

doP
3Koet'

Ad = 3K (7)

We shall expressthe differential of the sine of the angle
$/2 in two ways: in terms of the increase in the angle

Asin %)E = %cosg%’%ﬁq) (8)

and as a differential of a function of two variables d
and |, using the fact that sin(¢/2) =1,/ 2d,,

0207 2d,
©)
_ gneml 1P
D2[Eklat KoctD‘?’
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Equating the right-hand sides of Egs. (8) and (9), we
obtain an expression for estimating the pressure deriv-
ative of theangle ¢:

00 _ 2 Pl 10
P~ 3 V20K,  KyJ

The value of the derivative of the field with respect
to the angle can be calculated from the experimental
dependence HS" (0 K) =f (¢), which we obtained previ-
ously for normal pressure for a series of orthoferrites
RFeO;(Sn*) [4]. Such an estimate gives 0H/0p =5.9 +
0.5 kOe/deg. Using Egs. (7) and (10), we transform

Eq. (6) into theform
LE@E} (11)

oH _ 3Koct[d_H_2t ol
ad ~ d KoL00

ap 3k,

where dH/dP is an experimental quantity measured in
this work. Substituting the numerical values of the
parameters, we aobtain estimates for the angular and
radial contributions to the field H>" under the action of
pressure. For neodymium orthoferrite

(10)

Sn
OH_ 09 _ 86 kOe/GPa,
0p oP
(12)
aH ad
5d 3p = +2.42 kOe/ GPa.
For lutecium orthoferrite
Sn
9 qu) g—‘g ~_0.65 kOe/GPa,
(13)
oH° ad
34 3P = +2.06 kOe/ GPa.

Thus the radial and angular contributions have dif-
ferent signs, and the radial contribution is greater in
absolute magnitude than the angular contribution. In
consequence, the resulting field HS" increases with
pressure. For example, for neodymium orthoferrite esti-
mates show that under 30 GPa pressure the angular con-
tribution decreasesthe field HS" (0 K) by 26 kOe, and the
radial contribution increasesthe field by 73 kOe.

4.2. Radial and Angular Dependences
of the Néel Temperature under Pressure

The change in the geometry of the exchange bonds
under pressure can also affect the Néel temperature. By
analogy with the expression (6), we shall represent the
pressure dependence of Ty as a sum of the radial and
angular components:

% = ai\l@ -+ %a_d)
dpP od 0P  0¢ 0P’
The dependence of T, on the exchange-bond angle at
normal pressure has been investigated for a series of

(14)
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orthoferrites RFeQ;, both pure and tin-doped [4]. An
estimate of the angle derivative of Ty gives dT\/0¢ =
+6.0 + 0.3 K/deg. Using the derivatives d¢/0P and
0d/0P computed above, we can find the angular and
radial contributions to the pressure dependence of Ty.
For neodymium orthoferrite

aTNa¢

=—-0.87 K/GPa,
Jop OP
6T¢ od (15)
N
3d 9P =+12.1 K/GPa.
For lutecium orthoferrite
QIE@ =—-0.66 K/GPa,
0¢ 0P
0T\od (16)
N
5d 3p =+9.1 K/GPa.

Thus, just as for the behavior of the field HS" under
pressure, the angular contribution decreases and the
radial contribution increases Ty, and the resulting value
of Ty increases with pressure. An estimate shows that
the magnitudes of the relative changes occurring in Ty
and H" (0 K) as aresult of adecreasein the interionic
distances are close.

For neodymium orthoferrite

aTNad
TN 0d aP
10Haod

Hadap [10.011 GPa ™

For lutecium orthoferrite

1 0Tyod
TN 3d aPDOOlG GPa*

10Hod
H6d6PD0013 GPa ™

Hence it follows that in orthoferrites superexchange
and thefield HS" are of the same nature and depend sim-

ilarly not only on the bond angle [4] but also on the
interionic distance.

00.019 GPa ",
(17)

(18)

4.3. Pressure Dependence of the Field HS
in the LCAO Mode
Inthe model of alinear combination of atomic orbit-
as, the field HS" and the Néel temperature Ty can be
expressed in terms of the covalency parameters for an
Fe-O-Sn chain [4, 7-10]. According to [4], we can
write

2

H¥(0 K) DAi,T{—z SisPd(0) + a55¢55(0)} . (19
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Where Ao,Tr = [SIT[ + BG,TL]; Sb = mzld322_r2m S‘[ =
p,Jd.Jand S = p,| D [are overlap integrals, B, B,
and as; are transfer parameters of the type pz —

d,> 2Py = Ogy, andp, — Pgg P (0) isthens

3z —r
function of the Sn** ion near the nucleus; p, is the 2p
function of theO% ion; and, d_, . , isthe 3d func-

3z —r", xz,y
tion of the Fe* ion. Analysis of various contributionsin
thefield HS" (0 K) performed on the basis of the exper-
imental datain [2] shows that the greatest contribution
to thisfield is due to the covalent transfer of the polar-
ized 2p electrons of the O% ion into the outer 5s shells
of the Sn** ion. Then
H'(0 K) DAG ras:®e5(0). (20)
The angular dependence of the field HS" has been ana-
lyzed in detail in [4] using the model of linear combina-
tion of atomic orbitals. Using the experimental results
on the dependence of HS" on the interatomic distance
under pressure, it is possible to estimate the change in
the covalency parameter as afunction of pressure. Dif-
ferentiating the expression (20) with respect to pres-
sure, we obtain

1035, 1 0Hod

as, 0P  2H0doP’
Using Egs. (17) and (18), we obtain for neodymium
orthoferrite

(21)

1 0asg
ass 0P

and for lutecium orthoferrite

~0.005 GPa "

1 0asg
ass 0P

It is also possible to compare the results of numeri-
cal caculations performed on the basis of the above-
discussed model for the pair In®*—02 with our calcula-
tionsfor tin, taking account of the fact that the In®* and
Sn** ions are isoelectronic. In [22] it was found on the
basis of NMR data that in the spinel structure the
parameter characterizing the transfer of an electron
from a 2p orbital of the O~ ion into a 5s orbital of the
In3* ion increases by 30% when the interatomic dis-
tance decreases by 10%. Hence

1 9as_30d

as, 0P  doP’
The decrease of interionic distances under pressure is
due to the compression of the oxygen octahedra and
can be calculated using the formula (7). Assuming that
the datafor indium are also applicable for isoelectronic
tin, and using the relations (7), (20), and (22), we can
write an expression for the change in the field HS'(0 K)

= 0.006 GPa .

(22)
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as aresult of the decrease in the interatomic distances
under pressure:

dHod _2Hdas,  6Had

9doP  ag, 0P

Hence we obtain an estimate for the pressure derivative
of thefield at tin:

loHod 6Hod _ 2 _ ;057 opat

(23)

(24)

This is approximately 1.5-2 times less than the esti-
mates obtained on the basis of our experimental data
(see Egs. (17) and (18)). Severa reasons can be given
for thisdiscrepancy, the main one being, apparently, the
difference of the ionic radii of In®* and Sn**. Nonethe-
less, the LCAO model can qualitatively explain the
behavior of HS" at high pressure. From thismodel it fol-
lowed that a decrease in the length of the exchange
bond resultsin an increase of the transfer parameter ag,

and to an increase in the field H3".

5. CONCLUSIONS

Under the action of pressure on the crystal lattice of
orthoferrite the geometry of the exchange bonds
changes in a manner so that the exchange interaction
Fe-O—Fe intensifies with increasing pressure. The
radial contribution increases and the angular contribu-
tion decreases the superexchange. In the experimental

pressure range the dependences Ty(P) and Hg'" P
were found to be linear to a first approximation. For

neodymium orthoferrite the dependence Hf "(P) islinear

up to the maximum pressure in the present measurements
P = 30 GPa In lutecium orthoferrite, where the measure-
ments were performed up to 35 GPa, for P > 30 GPa

anomalies were observed in the behavior of HS”(P),
indicating a possible phase transition. An anomaly in
the behavior of the lattice parameters was observed in
the same pressure range (see Fig. 4). In addition, an
electronic transition accompanied by a change in the
optical absorption edge has been observed in previous
work in LuFeO; in the same pressure range [15].
Recently, Hearne et al. [23] observed in lanthanum
orthoferrite LaFeO; approximately for the same pres-
sures a spin-crossover transition of iron ions from a
magnetic into a nonmagnetic state.

Probe nuclel of diamagnetic tin atoms demonstrate
a higher sensitivity to the geometry of exchange bonds
than the matrix nuclel (°>’Fe). Feions have am intrinsic
magnetic moment, which usually induces a strong field
at the nucleus of this ion. For this reason, the subtle
effects of supertransfer are “screened”’ by the strong
magnetic field from the intrinsic electronic shell. For
diamagnetic ions this difficulty does not occur, sincein
the ground state their electronic shells are spin-com-
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pensated and the hyperfine magnetic field at the
nucleusis completely determined by the covalent effect
of delocalization and transfer of spin density to agiven
ion from paramagnetic neighbors.
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Abstract—Results are presented of studies of the dynamic magnetic susceptibility of CuO, Cu, _,Zn0 (X =
1.5%), and Cu, _,Li,O (x = 1%) single crystals. The orientational dependence of the ESR spectra was investi-
gated at room temperature. The results for CuO are analyzed using amodel of a quasi-one-dimensional antifer-
romagnet (S= 1/2) with anisotropic exchange interaction between Cu?* spinsin the chains and exchange cou-
pling between the chains allowing for one-dimensional spin diffusion and spinon excitations. The estimated line
width is of the same order of magnitude as the experimental data. Substituting Cu with Zn scarcely altersthe

spin dynamics of the Cu?* ions, as in weakly diluted magnets. Lithium doping substantially increases the
ESR line width and thisis attributed to excess holes forming rapidly relaxing spin complexes with copper ions.

© 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Studies of CuO are attracting interest because the
electronic and magnetic properties of this compound
are similar to the properties of known undoped oxocu-
prates such as La,CuQ,. The similarity of the properties

isaconsequence of the electronic state of Cu?* (S=1/2)
and the equivalent oxygen coordination of copper (four
oxygen atoms forming a dlightly distorted square).
Copper oxideisan insulator (semiconductor) with charge
transfer [1]. Of its various transport properties, particular
mention ismade of thelow carrier mobility and the activa-
tion nature of the p-type conductivity [2, 3].

The antiferromagnetic semiconductor CuO has a
monoclinic crystal lattice. In the range between Ty, =
230K and Ty, = 212 K we observe helicoidal magnetic
ordering which for T < Ty, is replaced by a collinear
antiferromagnetic structure with the spins oriented
along the b axis of the crystal [4, 5]. A characteristic
feature of the magnetic interactionsin CuO isthe presence

of chainsinthe[ 101] direction with the (Cu—O—Cu) bond
angle ¢ = 146°, which ensures strong antiferromag-
netic exchange J = 800 K. The bond anglesin the other
directions are close to 100° which leads to significantly
weaker ferromagnetic exchange V = J/20 between the
chains[6]. Asaresult for T > T,; CuO exhibits behav-
ior characteristic of low-dimensional magnets. a broad
X(T) a T =540 K [7, 8] and dominant antiferromag-
netic fluctuations in the direction of the chains[9].

The magnetic resonance of the dominant CuO phase
has been investigated in one study using a powder sam-
ple [10]. It was found that the line half-width AH,;, =
8 kOe depended weakly on temperature for Ty; < T <
430 K. The deviation of the line profile from Lorentz-
ian at thewing H —H; = 2AH,, (f =45 GHz) wasinter-
preted as the manifestation of one-dimensional effects.
However, as we shall see, this conclusion cannot be
considered to be definitive.

It should be stressed that no ESR signal is observed
in the parent high-temperature superconducting com-
pounds (i.e., undoped cuprates) [11]. The reasons for
thisare not completely clear since estimates of the rates
of relaxation of the homogeneous magnetization, for
example in La,CuQ,, based on known values of the
anisotropic and isotropic exchange interactions yield
fully observable widths [12]. A possible additional
relaxation channel may be observed, involving phonon
modulation of Dzyaloshinskii-Morya interaction,
which can substantially broaden the ESR line at high
temperatures [13]. In this respect, the accessihility of
resonance studies of CuO makes this a fairly unique
compound in the copper oxide class.

Lithium doping of CuO to 4% (“charge’ doping)
offers interesting possibilities. In Cu, _,Li,O, the Li*
ions replacing Cu?* introduce additional holes into the
CuO matrix which leads to increased conductivity
without changing the semiconducting character [3].
The doping causes some drop in Ty to Ty = 183 K for

1063-7761/00/9002-0341$20.00 © 2000 MAIK “Nauka/Interperiodica’
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x= 3.7% [14, 15]. According to nuclear quadrupole
resonance and NMR data, this substitution has no influ-
ence on the spin dynamics of Cu?* in the paramagnetic
phase. Substantial changes take place in the antiferro-
magnetic region where, for doped samples, a strong
maximum is observed in the temperature dependence
of the nuclear spin relaxation rate caused by the local-
ization of excess holes [14]. Note that similar qualita-
tive characteristics are observed in the behavior of the
lithium-doped cuprate La,CuQO, [16]. In CuO it isaso

possiblefor Cu to be substituted by Zn atoms. The Zn?*
ion has S= 0 so that this“spin” doping is equivalent to
the appearance of a vacancy in the antiferromagnetic
matrix. In the antiferromagnet La,CuQ, this substitu-
tion yielded effects characteristic of the behavior of a
dilute magnet. An exception was the low-temperature
range T < 100 K where the nuclear quadrupole reso-
nance spectrareveaed characteristicsinterpreted asthe
cooperative freezing of loca magnetic moments
induced by zinc at Cu orbitals [17]. In CuO, only the
influence of zinc doping on the static magnetic suscep-
tibility has been studied [15].

In the present study we report resonance investiga-
tions of CuO, Cu, _,Zn,0O (x = 1.5%), and Cu, _,Li,O
(x=1%) single crystals at room temperature. We stud-
ied the orientational dependences of the spectra which
were accurately described by the Lorentz formula in
CuO, dlightly less accurately for zinc-doped copper
oxide and satisfactorily for the lithium-doped oxide. It
is shown that a characteristic feature of CuO which
yields a Lorentzian line, despite the quasi-one-dimen-
siona nature of the magnetic substance, is the fairly
strong interchain bond. The rates of spin relaxation and
the g-factors were determined. Theseresultsare used as
the basis to study the influence of doping on the spin
dynamics of CuO.

2. EXPERIMENTAL METHOD AND RESULTS

We investigated a CuO single crystal taken from a
batch studied previously in [8]. According to the X-ray
data, the crysta was single-phase with a monoclinic
C2/c structure. The lattice parameters and the static
susceptibility of the crystal corresponded to those given
in [8]. The crystal mass was 35.7 mg and the dimen-
sions were gpproximately 1 x 2 x 4.2 mmg. The lattice
parameters and the static susceptibility of the other two
samples Cu, _,Li,O (x=1%, m=6.4mg, 1 x 1 x 2 mm?)
and Cu; _,ZnO (x = 1.5-2%, m=48 mg, 1 x 1.2 x
1.5 mm?) agree with the data given in [15]. All the sin-
gle crystals were prism-shaped with a parallelogram
cross section and the ¢ axis directed aong the long
edge.

The dynamic magnetic susceptibility of the samples
was studied using ESR. The orientational dependence
of the susceptibility was obtained at room temperature.
For the experiments we used an X-range spectrometer
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(f = 8.37 GHz) developed to record broad dipole mag-
netic transitions and the Hall conductivity at a given
frequency [18]. The main features of the spectrometer
which can be used to observe broad ESR lines can be
summarized as follows.

(1) The spectrometer uses a cylindrical two-mode
balance resonator using the TE,;; oscillation mode
[19]. A static magnetic field H isdirected along the axis
of the cylinder (z axis). The sampleis placed at the end
of the resonator and is exposed to a linearly polarized
alternating field h(t) (x axis) perpendicular to H. The
receiving plane (y axis) is perpendicular to the plane of
excitation and the signal received M, = x,,h(t) is pro-
portional to X, which is the off-diagonal element of
the magnetic susceptibility tensor, i.e., the rotation of
the plane of polarization of the microwave oscillations
in the resonator is recorded. Provided that this resona-
tor isfrequency-degenerate (the frequency of its natural
oscillations does not depend on the rotation of their
plane of polarization), deep frequency-independent
decoupling (=40 dB) of the receiving mode from the
excitation mode can be achieved. This means that a
high-power (P = 1 W) microwave generator can be used
without its frequency and amplitude noise being
observed at the detector input, and thus the sensitivity
of the spectrometer (under conditions far from satura-
tion Xmin O PY2[20, 21]) is enhanced compared with a
traditional one (klystron power <50 mW).

(2) The spectrometer uses periodic sweeping of the
static magnetic field and synchronous signal acquisi-
tion. The large sweep amplitude ensures that the ESR
line passes through the region of the maximum and
ensures that the largest possible signal is recorded on
each sweep of thefield.

Notethat in aconventional spectrometer using mod-
ulation of a static magnetic field, either the first deriva
tive of the ESR line or its second derivative (using dou-
ble modulation) are recorded. The optimum signal-to-
noise ratio (the maximum of the derivative) is achieved
under conditions where the modulation amplitude is
approximately equal to the half-width of the ESR line
[20, 21]. For broad lines this condition is not satisfied
which leads to aloss of sensitivity.

Another important factor should also be discussed.
In the existing field geometry in acylindrical resonator
using the TE,;; oscillation mode where the exciting and
receiving modes are shifted by 90°, the Kerr effect at
the conducting bases of the resonator also leadsto some
rotation of the plane of polarization of the reflected
electromagnetic wave [18, 22]. Since the field H
directed along the resonator axisis perpendicular to the
microwave currents of the exciting mode flowing
between its ends, a Hall microwave current appears at
the ends turned through 90° relative to the exciting-
mode currents and giving a signal which depends lin-
early on H. Thissignal hasin fact been observed exper-
imentally, and its magnitude agreed with the theoretical
estimate [18]. Thus, in order to determine the response
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Fig. 1. Experimental (solid curves) and theoretical (dashed curves) ESR spectra of a CuO single crystal (T = 300 K, H || b):
a, h || & b, h||c. The approximation is described in the text. The following parameters of the spectrawere obtained: g = 1.85 + 0.16;

1 =4.83%1.50kOe; I', = 5.05 + 1.50 kOe. The phase shifts are determined from the signals from i sol ated Cu?* centers (peaksin
thefigures): ¢, = —6° £ 10°; ¢, = 30° + 11°. The angular coefficients of the line representing the contribution of the Hall effect to

Hall Hall

thesigna are: k; ~ = -0.87+0.03; k,~ =-0.28+0.01.
ESR signal, arb. units b
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Fig. 2. AsFig. Lfor H ||c: a h || a; b, h || b. The parameters are: g = 2.20 + 0.15; ' = 7.20 £ 1.45 kOe; ', = 7.15 * 1.45 kOg;

Hall Hall

=0.00+0.01.

$=23°+10° ¢,=19.2°+9.4° k; = =0.00%0.01; k,

of the sample, we need to subtract the signal from the
resonator material. In order to calculate the weighting
factor required for the subtraction we used a control
sample, a polycrystalline nitroxyl radical (g = 2.0055,
AH = 40 Oe) containing a known quantity of spins. The
accuracy of subtracting the signal from the resonator
correlates with the accuracy of subtracting the control
signal. This is aimost absent in the difference spectra
shownin Figs. 1-4, which indicates that the subtraction
accuracy is good. If the sample is conducting and
microwave currents are present, the Hall effect in the
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sample also gives rise to a signal which depends lin-
early on the gtatic field.

An important characteristic of these compounds is
their high permittivity at the frequency used; for exam-
ple, € = 10 in CuO for f = 9 GHz [2]. In this case, the
wavelength of the field inside the sampleis close to its
dimensions. In addition, asaresult of the electrical con-
ductivity of the sample the value of € is commensurate
with 4rta/w. These two factors may lead to an apprecia-
ble difference between the phase of the alternating
magnetic field inside the sample and the phase of the
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Fig. 3. AsFig. 1 for aCu; _4Li,O single crystal. The parametersare: g =2.20+ 0.15; ' = 13.7 £ 1.5kOe; ', = 15.24 + 1.80 kOe¢;

Hall

Hall

$;=12.7°+9.4° ¢,=13.6°£9.1°, k; ~ =-0.033+0.030; k,  =-2.85%0.06.
ESR signal, arb. units
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Fig. 4. AsFig. 1for aCu, _,ZnO single crystal. The parametersare: g = 2.20 £ 0.15; N1 = 5.27 + 1.50 kOe; ', = 5.24 = 1.50 kOeg;

K = 0,00+ 0.02; K5

46.4° £ 6.5° ¢, = 21° = 10°.

field outside the sample, which must be taken into
account in aquantitative analysis. This factor is partic-
ularly important for broad nonresonant lines (the spin
relaxationrateisl > 21 ), when it isalmost impossible
to tune in to one of the components of the spectrum
using the signal profile because of the small difference
between the H-dependences Rex,(w, H) and Imi,(w, H),
and the control signal must be used for tuning. We shall
consider thisin greater detail.

The wave vector in the medium is

NG

1+i4ﬂj.

k =
EW
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—1.66 * 0.06. The phase shifts were determined together with the other parameters by fitting: ¢, =

For € =10 and 0 = 102 Q' cm™, which correspond to
CuOat T=300K [2], for f = 8.34 GHz we have

1

: —1
+ 0. .
018 1+ 0.22i cm

k =

We assumed that the magnetic permeability ispu = 1
since the susceptibility of CuO is low, 41ty ~ 102 [8].
Inasample with | > |k[™ =2 mm (thisscaleis close to
the dimensions of the crystal being studied | = 2—4 mm)
the magnetic field is distributed uniformly and acquires
aphase shift relative to the external field because of the
complex nature of k. Knowing the field distribution
h(r), we can find the magnetization induced by this
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field which, because of the low susceptihility, is given
in the first order with respect to x;; by

my(r, w) = X;j(w)h;(r, w).

Here we use ahomogeneous limit for x;; which does not
depend on r since the size of the magnetic inhomoge-
neities in the system, which is related for example to
the correlation length of the spin fluctuations, is negli-
gible compared with the macroscopic scale [k of vari-
ation of thefield. From acomparison with the result for
a uniform field it is clear that the effective field h*
determining the magnetization of the sample has the
form

h*(@) = 5 h(r, @)Vo',

where V, is the sample volume.

For quantitative estimates we determine h* for a
sphere of radius a in an alternating external magnetic
field under conditionswhen A > aabut |kjJa~ 1. Inthis
case, the field distribution is known [23] and for h* || h
(an obvious consequence of the symmetry) we find

3

h*(ka) = [1-(ka)cot(ka)]h.

2

In the homogeneous limit |kla < 1 we have h* = h
whereas for |k|a = 1 the dependence h*(kia) exhibits
resonant singularities attributable to diffraction at the
sphere. Using the wave vector determined above k; =

ki +ik' (ki =5.6cm, ki'/k; =0.1) for thefirst reso-

nance ki a = 172, which is possible for a > 0.28 cm, we

obtain Imh*/Reh* = 0.25. This estimate determinesthe
order of magnitude of the phase shift of the interna

field which can be predicted for asample with ki | ~ 1.

In the experiments, the phase of the reference volt-
age was set to record the component of the control sig-
nal proportional to Re,,(w, H). In order to calculate
the true phase of the magnetic field inside the sample
we used as an internal control the weak signal from iso-
lated Cu?* centers, which was present in the spectra of
CuO and Cu, _,Li,0O ascan be seen from Figs. 1-3. | so-
lated centersin CuO single crystals which contribute to
the static susceptibility at low temperatures were inves-
tigated by ESRin an earlier study [24]. The phase of the
aternating field inside the sample thus calculated dif-
fered from the value ¢ = 0 corresponding to the signal
proportional to Rexy,. As aresult, the response was a
mixture of Rex,, and Imy,, with the weightings cos¢
and sin¢, respectively. This effect resulted in a substan-
tially greater difference between the line profile and a
Lorentzian one for H < w, compared with the region
H > w, recorded in [10] and assigned to the influence of
the anisotropy of the g-factor. An analysis shows that
weak dispersion can be used to describe the spectrum
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observed in this study to be described over the entire
range of variation of the static field, within the limits of
alLorentzian profile.

In the experiments one axis of the sample crystal
was oriented in the direction of the static field H and the
other two axeswere oriented alternately in the direction
of the alternating field h(t). Thus, two spectra were
recorded when each of the crystal axes was oriented
paralel to the static field (six spectrain total). In order
to eliminate any additions to the signal of the symmet-
ric component of the susceptibility tensor x,, 0 H?, we
used the odd parity of x,.(w, H) with respect to H: the
spectra of these samples were also recorded for the
inverse orientation of the static field H and were then
subtracted from the spectra obtained for the “direct”
orientation of H. The sensitivity of the spectrometer is
sufficient to observe the signal from the oxygen gasin
the air contained in the resonator [18] so that all the
spectrawere obtained under conditions where argon or
nitrogen was blown through the resonator.

Figures 14 show the spectra of the samples
obtained by subtracting the signal attributable to the
Hall effect in the resonator material. Figure 1 showsthe
signals from a CuO single crystal whose b axisis ori-
ented parallel to the static field H in the cases a || h(t)
and c || h(t). Also plotted are the theoretical spectra
obtained as a result of fitting to the experimental ones
(the procedure will be described below). Figure 2 gives
the spectrafor CuO and the result of an approximation
for a different orientation of the crystal relative to the
gatic field ¢ || H. Figures 3 and 4 show experimental and
theoretical spectra for Cu, _,Li,O and Cu,_,Zn O single
crystals, respectively. The orientation of the crystalsisthe
same asthat for CuO in Fig. 1. Similar spectrawere also
obtained for different orientations of the samples. The
parameters of the spectra determined as aresult of the fit-
ting are given in the captions to the figures.

3. DISCUSSION

We shall analyze the dynamic susceptibility of an
anisotropic magnet. An expression for its transverse
dynamic susceptibility with respect to H, valid in the
range of H between H = 0 and guH > I, can be
obtained using the results of [25]. The fields are conve-
niently directed along the principal axes(a, b, ¢) of the
tensor X . The eguations for the magnetization m(t)
induced by alinearly polarized aternating field h(t) in
thecase H ||a and h || b (with the indices obviously
transposed for the different orientations) have the form

omy(t) _

30 = 1 eMe(t) =T p[mMy(t) —Xph(D], (1)
a————rgct(t) = iwcbmb(t)_rcmc(t)_Mauggfch(t)’ (2)

Wep = —THGIMa(GaXp) s e = —WepXpXe - (3)
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Here M, and ¥, are the static magnetization and suscep-
tibility, I, and I, are the spin relaxation rates, g; arethe

g factors, and the indices correspond to the ¥ axes. The
“relaxation” term in equation (1) strongly influences
the dependence of X (w) on H for broad lines (w ~ ;).

Its form is dictated by the known expression for X (w H)
for an isotropic magnet and the formula for the aniso-
tropic situation where H = 0. From equations (1) and
(2) we find an expression for X.,(w, H) which deter-
mines m(t) for h(t) O exp(—wt):

ch(wv H) = _ch((*)v _H) = _leau—g—S—g—c

a4
x [0’ = Q2(H) +iw(Iy+ ) =Ml ™,

2

gbgcl:F Ma
Q% = W, = o=l A
B e Ja U XbXe

In CuO the weak anisotropy of x at room temperature
ismost likely attributabl e to the anisotropy of the g-fac-

tor [26, 27] sothat X =x;/gf will not depend on the ori-
entation. Under the experimental conditionsM [ H and
formula (5) is simplified: M, = x,H, Q, = g,uH. This
last relationship makes it significantly easier to deter-
mine the values of the g-factors. The expressions
obtained were used to approximate the experimental
spectra.

The formulas given for the response when H || a
show that the components of the magnetization along b
and c are involved in the precession. Thus, an approxi-
mation was made simultaneously for two spectra
obtained for afixed orientation of H and the alternating
field directed alternately along the other two axes. In
this case, as we have aready noted we alowed for a
shift of the phase ¢ of the alternating field inside the
samplerelative to the phase of thefield outside the sam-
ple which leadsto the appearance of an additional com-
ponent Imx,, with the weighting sing in the signal
Rex,x with the weighting cos¢. For CuO and Cu, _,Li,
crystals this phase shift was determined using the signal
from isolated Cu?* centers present in the spectra and was
taken into account as a fixed parameter. For Cu, _,Zn,O
where this signal was not observed, as can be seen from
Fig. 4, the phase shift was the fitting parameter. The
values of the phase shift ¢ depended on the orientation
of the crystal and thetwo values $, and ¢, respectively,
were determined to approximate the two spectra.

A linear contribution with respect to thefield H, rep-
resenting the Hall effect in the sample, was added to the
theoretical spectrum during fitting, and for each of the
two spectra being analyzed this was written in the form

Ki'™" H/H e Where j = 1, 2 and Hy,, is the maximum

dtatic field achieved experimentally. The spin relax-
ation rates obtained for each pair of spectraareindistin-

©®)
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guishable since they appear symmetrically in expres-
sion (4) (we denote them by I'; and I,). In addition,
their values were almost the same when the orientation
of H was fixed. These two factors made it difficult to
determine [; (i = a, b, ¢) from a simple comparison of
the rates for different orientations of the field. Under
these conditions it was effective to use the values I, =
(I + TY/2 for each orientation of the external field,
from which the values of I'; could be determined for
CuC:

N.=40+£15k0e, I, = 6.0+15KOe,
I, = 85+ 1.5kOe,
for Cu, _,Zn0O:
M. =35x16k0e I, =7.0x15kOe,
N, = 8.0+ 1.5KkOe,
and for Cu, _,Li,O:
M. =175+3.0k0e, T, = 11.0+3.0KkOe,
N, = 5.0+ 3.0 kOe.

It can be seen from these results that the relationship
M,=r.<r,issaisfied for CuO. We aso give the val-
ues of the g-factors obtained as a result of fitting for
Cu0C:

g, = 226+0.14, g, = 2.20+0.15,
g, = 1.85+0.16,
for Cu, _,Zn,0 and Cu, _,Li,0:
0.=0,=0, = 220+ 0.15.

Notethat the average values of the g-factor and the spin
relaxation rate calculated from the data obtained for
CuO agree with those obtained in [10].

When analyzing the spin dynamics of CuO in the
homogeneous limit, we need to alow for the quasi-one-
dimensional nature of this antiferromagnet a T = 300 K.
Three-dimensional critical behavior caused by inter-
chainisotropic exchangeV = J/20= 40K isobservedin
the paramagnetic phase at lower temperatures in the
range Ty = 230 K < T < 250 K [14]. The relaxation of
the homogeneous magnetization in CuO is determined
by the fairly strong anisotropy of the exchange interac-
tion in the chains J* = 10 K [5]. Despite the fact that
Jon < J, thisinteraction generally cannot be analyzed in
terms of perturbation theory in one-dimensional mag-
nets. However, in CuO the fairly strong coupling
between the chains V > J@" limits the region of purely
one-dimensional behavior. After making adequate
allowance for this interaction, perturbation theory with
respect to J® can be used to determine the low-fre-
guency dynamics. We stress that we need to determine
the influence of V on the fluctuation dynamics, whichis
important for T > J, and not on the static behavior. This
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can be accomplished in the first approximation in the
limits of mean field theory [28].

Before analyzing this aspect, we shall discuss the
dynamics of a one-dimensional isotropic antiferromag-
net of spin S= 1/2. When T < J, this magnet exhibits
two regions of different dynamic behavior: a hydrody-
namic region where the momentum in the direction of
the chain is q@, < 1 (q, is the distance between the
spins in the chain) and a region of antiferromagnetic
fluctuations near the momentum Q = 13 [29, 30].
From the theoretical point of view, the question of the
type of hydrodynamic excitations for T # O remains
unanswered. For T < J, amethod using afermion rep-
resentation for the spinon operators with a linearized
spectrum followed by bosonization yields a propagat-
ing hydrodynamic mode with a linear spectrum which
does not depend on T [30, 31]. This conclusion is
clearly inconsistent with the conventional assumption
that spin diffusion exists. However, the result of an
analysis based on the Bethe ansatz is compatible with
this hypothesis [32]. Recent studies using numerical
methods also yield contradictory results. The calcula-
tions[33, 34] support the existence of adiffusion mode
whereas in [35] the authors conclude that the behavior
is more complex. At the same time the NMR and ESR
data reliably confirm that spin diffusion exists in one-
dimensional antiferromagnets having half-integer spin
such asin Sr,CuO; (S= 1/2) [36] and ((CH3),NMnNCl,
(S=5/2) [37]. Itisinteresting to note that the diffusion
mode is also present in the one-dimensional antiferro-
magnet AgVP,S; with S = 1 [38] where, unlike one-
dimensional antiferromagnets with half-integer spin,
the ground state has a gap. The antiferromagnetic fluc-
tuations are described by spinon excitations for which
an explicit form of the pair correlation function is
knownfor T < J[39] whichisconfirmed by the neutron
scattering data in the one-dimensional antiferromagnet
KCuF; with S = 1/2 [40] and NMR data in Sr,CuO,
[36].

Thus, when analyzing I', we need to take into
account the existence of spin diffusion, spinon excita-
tions, and chain interaction. In order to determinel” we
shall use the theory of interacting modes which
includes decoupling the four-spin correlation function
to give products of pair correlation functions[37]. This
approach allows for the simplest processes which con-
tributeto I". Although the possibilities of this method as
applied to a quasi-one-dimensional magnet have not
yet been fully clarified, it can yield expressions for
I"which are consistent with the experimentsfor T> Jin
a one-dimensional antiferromagnet possessing anisot-
ropy caused by dipole forces and the diffusion hydro-
dynamics under conditions when exchange coupling
between the chains is negligible [37]. Since the accu-
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racy of this approach improves as the dimensions
increase, we predict that this approach can be used to
reliably determine at |east the order of magnitude of I
when the chain interaction is significant. The result of
perturbation theory interms of J,, for I'; (i = a, b, ¢) has
theform [41]

M= %;GBIZ[J?n(q”)] ".[ %rr?riggz.)l(.))gdx (6)
q

Herewe have (J7" (ay). = [Jy(q)) — J«(q)]?for i = aand
so on, Ji(q) isthe exchange interaction along the j axis
inthe chain, G(q, x) isthe Green pair spin function, and
G, isthe Green static function for g = 0. The values of
I; contain contributions from the hydrodynamic region

(') and the spinon excitations (I"*):
ri = rID+r|Sp (7)

We shall first consider FiD assuming that spin diffu-
sion exists. In the one-dimensional case, the contribu-
tion to I'; from the diffusion mode is singular in the
region of low momentum [37]. This singularity is
related to the scale of truncation determined by the
interaction which limits the one-dimensional diffusion
behavior in the limit g, — O. In our case thisisinter-
chain coupling. In order to allow for three-dimensional
effects, we shall use the relaxation expression for the
dynamic form factor G:

G(q, w) = iF(a)[w+il(9)] "Gy, (8)

r(q) = Dgj+ (). )

Herel ;(gp) describes the damping caused by the chain
interaction and qp is the momentum in the plane
orthogonal to the chains. Using this expression from (6)
provided that /T < 1 wefind

n 2 =1/2

> = (O)'6Ty BREr @ . ()
an

where in accordance with the hydrodynamic approxi-

mation J? (q”) istaken for g, = 0. For gpay < 1 (agis

the interchain spacing) we predict that I'5(qp) = DDqD

where D is the coefficient of spin diffusion in the
plane orthogonal to the chains. Asaresult, the expres-

sion for FiD isfinite. In order to estimate this we need
to find ' 3(gp). Using a procedure similar to the deri-

vation of expression (6), where 6$ /ot is determined
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by theinteraction V and formulas (8) and (9) for G, we
find

Fo(dn) = TGoy [V(dn=Po) = V(P)]’
Po (11)
1/2
x B Iro(@o-po) +Top)IH
[

Here, asin formulas (8) and (10), Gy(0) is used as the
static Green function Gy(q) since for ga < 1 thisfunc-
tionisnot critical intheregion T = Ty. From this equa-
tion which only alows for the diffusion contribution
from the longitudina mode, we can determine the

value of I'y(qm) which we denote by I'B (ap). As we
shall show below, the influence of spinons on I'5(qp)

does not alter the estimate for ' which uses ' (q.).
Expressing 0 (q) intheform ' (q) = TS f2(qp),
where fP(qp) is a dimensionless function, from equa-
tion (11) we determine the scale ' :
3
ro = vl g2

[b/aﬁD

This result allows us to obtain the following estimate
from (10)

M2 O[I(0)]*(TGe) (V¥ (DIal) ™).

(12)

(13)

We notethat 0 /2 ~[J2"(0)/V]2 = 6 x 102 The

valueof IS determines the boundary between the one-
dimensional and three-dimensional dynamic behavior.
In the homogeneous limit the Green function for w <
FB has a Lorentzian form with the damping I; typical
of three-dimensiona dynamics. By anayzing the

dependence of FB (q) on w, we can show that this func-

tion decays with frequency when w > FB. In this

regime the dynamic form factor will be determined by
the one-dimensional dynamics. As aresult, in thisregion
of frequencies and magnetic fields the ESR spectrum may
show some deviation from the Lorentzian line profile typ-
ical of aone-dimensional magnet [37].

The values of D and ' depend on the diffusion

coefficient D whose value is not generally determined.
For estimates we use the classical result for achain:

D _ ., [2
3__2 =J éTl'S(S+ 1),
I

which evidently gives the lower limit of D [36]. Bear-
ingin mind that Gy = (Jr®)* at T=300K [42], we have

° ~0.1K and I ~ 1.7 K. The comparative small-
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ness of these valuesis to a considerable extent attribut-
ableto the small factor (TG,)?3= 0.1. Notethat therela-
tionship M5 < T < J ensuresthat theregion Dgjf > 7
exists and that the inequality /T < 1 is satisfied (for
w~T B ). Both these conditions were used to determine
ro.

We now analyze the contribution to ' made by
spinon excitations which appear when T < J. Judging
by the neutron scattering data [40], the Green spinon
function obtained in the region T < J comparatively
accurately describes these modesin our case T/J = 3/8.

To determine ' to within a numerical factor we can
use the scaling representation for this function [34]:

. A q
G(q”7 w) = fq)d:‘gll ol

where au =, — g, C = Jv2q, is the spinon velocity,
A =0.33 to within alogarithmic factor, and ®(0, 0) = 1.
Substituting this expression into formula (6) and taking

J;"(q) for q = ay, using a dimensional estimate we
find I O T Thisresult holds if theintegral in (6) is
not singular for small g, and x and does not diverge
when Cq;> T, x > T. Using the explicit form of the

function G [39], we can confirm that these conditions
are satisfied and find the numerical factor. Bearing in

mind that |J;" (T7ay)| = |J;" (0)|, we obtain

P =[3"(0)]°/T. (15)
Here the numerica factor is exactly unity since (Am)? = 1

where @ isthefactor from G, = Jr2 and the remaining
integral is close to unity.
Perturbation theory can definitely be applied in this

case since I’ is determined by the thermal spinons
withw~T, Cg, ~T,and [*/T < 1.

We shall now consider the influence of spinons on
the transverse modes which as we have seen areimpor-

tant for determining I'iD Applying perturbation theory
in terms of V, by analogy with the calculations of "
and 'C, wefind

@)=y [V(do=po) ~V(po)l T

Po

Theinequality 'Y (q)/T < (VIT)? < 1justifies the per-
turbation theory approach at T = 300 K. Estimating the
value of ¥ (qp) for goay ~ 1 which determines 'Y in

expression (10), wefind 'Y ~V4/T=5K at T=300K.

(16)
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Since ' ~ 2 the spinon contribution does not

change the order of magnitude of this estimate for I'iD :

Note that the procedure for decoupling the four-spin
correlation function into two spinon modes used to

determine ¥ and 'Y exhausts the spinon contribu-
tion to these quantities since the spinons are free. Bear-

ing in mind that I'* ~0.33 K, wefinally have

ro=ro+r®n03s5koe. (17)

Here an order-of-magnitude estimate is obtained
mainly as aresult of the diffusion contribution, which
was determined allowing only for the simplest diffu-
sion process. Provided that (V/T)? < 1, only this term
depends explicitly on the chain interaction which was
not specified above. In the compound CuO which is a
monoclinic system these interactions are more complex
[5] compared with the interaction in asimpletetragonal
magnetic lattice. Since we are not claiming to make an
exact quantitative estimate of I'°, it is merely important
that the interactions between the chains do not differ
substantially in magnitude. This condition is satisfied
for CuO since, according to the neutron data for the
magnon spectrum, the chain interactions in two mutu-
aly perpendicular directions in the plane orthogonal to
the chains are 5 and 3 meV [6]. Finally we neglected
the influence of interchain coupling on the static sublat-
tice Green function, which leads to three-dimensional
critical behavior of CuO. As has been noted, the corre-
sponding three-dimensional effects begin to have an
influence below T = 250 K.

The estimate obtained, ' ~ 3.5 kOg, is close to the
experimental valuel” = 5—7 kOe. In addition to the fac-
tor noted above, this difference may also be attributed
to some indeterminacy of the exchange anisotropy,
whose exact value along the different axesis unknown.
We shall discuss this aspect in greater detail. Knowing

I; and using the proportionality I'; O (37" (0))2, we can
determine the rel ationships between J;(0) which, how-
ever, do not agree with the inequality J,(0) > J, (0)
obtained because the b axisin CuO is the easy axisin

the collinear phase [4]. This disparity may be attributed
to the fact that the a and ¢ crystallographic axes do not

coincide with the principal axes of the tensor J and

therefore X (w). Inthiscase, the expression for the mea-
surable responsein the field H directed along the a and
c axes includes all three I'; and is more complex than
the result (4), which cannot be used to determine I'; in
this geometry. At the same time, the b axis as the sec-
ond-order axis in the monoclinic system must coincide
with one of the principal axes of the tensor ¥ (w) [23].
Thus, when H || b, formula (4) holds for the response.
The formulated assumption is supported by the ori-
entation of the helicoid plane in the incommensurate
phase, which passes through the b axis and forms an
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angle of 28° with the a axis [5]. Since the exchange
anisotropy is responsible for this orientation, we can

conclude that although the two axes of the tensor J lie
in the plane (a, c), they do not coincide with the a and
¢ axes. Thus, the exact values of the spin relaxation
rates and the g-factors in CuO obtained from the ESR
spectraH || b are

(F,+r)/2=5+15k0e, g, = 1.85+0.16.

We shall now consider the resultsfor sasmpleswhere
Cuisreplaced by Zn and Li. The incorporation of zinc
influences the spectra comparatively weakly. For
instance, thevalueof (I', + I )/2 =5 kOe simply agrees
with the result for CuO. Thisis naturally interpreted in
terms of ordinary magnetic dilution. The stronger influ-
ence of the magnetic dilution on the line width is attrib-
uted to the one-dimensional diffusion length being lim-
ited to a value of the order of the average spacing
between the impurities in the chain. However, as is
readily established, in our case the zinc concentration
(1.5%) istoo low for this constraint to influence I'° for
the selected value of D.

The appreciable broadening of the spectra in the
lithium-doped crystal is attributed to the appearance of
excess holes which strongly perturb the magnetic sub-
system. Strong coupling between the holes and the spin
systemisindicated by the fact that the activation energy
in the temperature dependence of the conductivity
changes by approximately afactor of two on transition
to the magnetically ordered state in pure CuO and in
lithium-doped CuO [3]. Note that the increase in the
conductivity by approximately two orders of magni-
tude in the Li-containing samples at T = 300 K com-
pared with CuO does not change its character. The con-
ductivity of CuO is satisfactorily described by small-
radius polaron theory with incoherent hopping at T =
300K [2]. Inthis case, the holelifetimein thelocalized
statet, =10 sat T= 300K isapproximately the same
as the reciprocal resonance frequency f—1. Assuming
that holes localized in a CuQ, cluster form a Zhang—
Rice singlet and thereby remove the matrix spin from

resonance, hole hopping at the frequency T;l = f could

lead to line broadening by avalue of the order of itself.
However, this ssmple broadening mechanism with
strongly localized holes can occur when the hole con-
centration is comparabl e to the number of copper atoms
inthe matrix. By thisreasoning, we can evidently elim-
inate this influence of hole mobility on the line width.

It should be stressed that the hole mobility is three-
dimensional asis evidenced by the weak anisotropy of
the CuO conductivity [2]. Hence, in lithium-doped
CuO there is no reason to predict that the quasi-one-
dimensional spin excitations will be strongly modified
by mobile holes which could occur if the hole transport
took place mainly along the chains.
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Bearing in mind the comparatively long time spent
by the holes in the bound state, a scenario where the
motion of the holes is not a determining factor in the
broadening seems more redlistic. It may be predicted
that the holes form an exchange-bound complex with
several copper spins, for example with four copper ions
in the unit cell. The rich spin spectrum of the complex
and the strong phonon coupling can ensure afairly high
rate of spin-attice relaxation considerably higher than
the rate of spin-attice relaxation of the matrix. Assum-
ing that the complex is weakly bound to the matrix
spins and has a susceptibility xp. substantially higher
than the susceptibility of the matrix x O (Jre)~2, we can
obtain line broadening in doped CuO commensurate
with AH,,, in CuO. Let us assume, for example, that the
distance between the two lower levels of the complex is
AE = 300 K = J/3. Then, X ~ 3(gu)?J and xx,J/X ~
3mx = 1/3, where x = 102 is the relative lithium con-
centration (excess holes). If the rate of spin relaxation
of the complexesis T, ~ (3-5)I, their contribution to
the width will be close to AH,, for the matrix. Quite
clearly, in this case doping should increase the static
susceptibility of the system below the hole localization
temperature T = 70 K [14]. Unfortunately, dataon x for
lithium-doped copper oxide [15] cannot be used to
determine whether this 30% increase is caused by the
fairly large diamagnetic contribution to the susceptibil-
ity of the ion cores. The hole mobility in this model
simply limits the lifetime of the complexesto 1, and is

not fundamental if % = e

The influence of doping on the magnetic system
does not merely involve the effect described. We know
that in lightly doped two-dimensional cuprates the
incorporation of holes limits the two-dimensional cor-
relation length of the spin fluctuations above Ty. This
effect has been studied most comprehensively in
La,CuQ, for various dopants including Li [16]. A cer-
tain universality of its dependence on the dopant con-
centration observed near Ty, can be attributed to the for-
mation of acollective hole structure. Quite clearly, lith-
ium doping in CuO aso limits the growth of one-
dimensional spin fluctuations which should influence
the critical increase in the spin relaxation rate near Ty
Inview of this, it is suggested that experiments should be
carried out to make acomparative analysisof the ESR line
widthsin pure and lithium-doped CuO near T

The results relating to the Hall effect in these crys-
tals were not analyzed in the present study. We merely
note that the “hole” sign of the Hall signal corresponds
to the polarity of the carriers (for electron conductionin
the resonator material thisis positive).
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Abstract—An experimental and theoretical study is made of theinfluence of atransverse electric field on ther-
mogravitational flow in avertica capacitor filled with abarely conducting liquid. The boundaries of the capac-
itor are maintained at different temperatures. In the calculationsit is assumed that the main contribution to ion-
ization of the liquid, which is electrically neutral in the absence of the field, is made by the buildup of uncom-
pensated charge accompanying the flow of electric current through aliquid having a nonuniform conductivity
distribution. Thelatter isinduced by the temperature gradient. This systemissimulated experimentally by using
a suitable working liquid—electrode material system. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The influence of an electric field on the equilibrium
stability of a barely conducting liquid has recently
formed the subject of numerous experimental and the-
oretical studieswhich arereviewedin[1, 2]. This prob-
lem has attracted interest because of the wide range of
technical applicationsinwhich strong electric fieldsare
used. One example is an electrohydrodynamic energy
converter, in which electric field energy is converted
directly into the kinetic energy of aliquid flow. Another
important technical application isthe possible of inten-
sifying and, in some cases, controlling dynamicaly [3, 4]
the heat and mass transfer in high-voltage devices. The
problem of electroconvectiveinstability isalso interest-
ing from the general theoretical point of view since it
opens up possibilitiesfor studying and using anew type
of flow excitation, and also introduces a new type of
interaction between electric and hydrodynamic fields.
The main difficulty encountered in the description of
electroconvective instability isthat in the absence of an
electric field, barely conducting liquids are electrically
neutral and charge formation in these liquids is a com-
plex physicochemical process whose description has
not yet been completely clarified. The charge formation
mechanismsare usualy classified into several types[2, 5].
One of these is the formation of uncompensated bound
charge as aresult of nonuniform polarization of thelig-
uid which can be induced, for example, by nonuniform
heating of the barely conducting liquid. Many experi-
mental investigations indicate that because of its small-
ness this mechanism negligibly influences the electro-
convectiveinstability in ordinary barely conducting lig-
uids. The most hazardous mechanism for instability is
electrification as a result of alocal loss of equilibrium
in the dissociation—recombination reaction of liquid

molecules in the regions adjacent to the electrodes
(physical injection). In this case, like electric charge
forms around the electrode, and this can either relax as
aresult of Ohmic current and interaction with opposite
liquid ions formed in the bulk, or it can induce electro-
convective motion of the liquid. When the liquid is
heated nonuniformly, uncompensated space charge
may aso form as a result of the temperature depen-
dence of the ion mobilities (electroconductive mecha-
nism). Theinfluence of these types of charge formation
on electroconvective instability has now been studiedin
fairly great detail with reference to problems involving
the mechanical equilibrium instability of a nonuni-
formly heated, barely conducting liquid [2, 5]. How-
ever, amore complex and interesting problem from the
theoretical point of view and in terms of technical
applications is the study of flow stability in an electric
field. Unlike problems of electroconvective equilibrium
instability, the flow, which takes place even in the
absence of the electric field, influences the equilibrium
distribution of the electric charge. Few theoretical stud-
ies have examined this problem. Takashima and Hama-
bata [6] investigated the equilibrium of thermogravita-
tiona flow in a vertical capacitor with nonuniformly
heated boundaries allowing for nonuniform polariza-
tion of theliquid dielectric. This study is merely of the-
oretical value because, as we have already noted, the
influence of the ponderomotive force on el ectroconvec-
tive instability is doubtful. The problem of equilibrium
stability of the thermogravitational flow in a vertical
capacitor was solved most systematically by one of the
present authors [7] for the electroconductive mecha
nism of charge formation. In this study, Makarikhin
examined the electroconvective instability of the domi-
nant steady-state plane-parallel flow in a vertical gap
with ideal heat-conducting and electrically conducting
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boundaries [7]. It is known [8] that the dominant flow
appears in the absence of an electric field for an arbi-
trarily small temperature difference at the boundaries
of the gap. The flow can be unstable for a certain value
of the dimensionless Grashof number. Depending on
the liquid parameters either a monotonic “cat’s eye’
instability mode or an oscillation mode, i.e., thermal
waves, can occur. In [7] Makarikhin constructed stabil-
ity maps in dimensionless coordinates by plotting
Grashof number against Rayleigh electric number for
limiting cases of small Prandtl numbers and an infi-
nitely short electric charge relaxation time. Disregard-
ing various qualitative experiments [9] in which the
possibility of electroconvective instability was demon-
strated, no experimental investigations have yet been
made of flow instability.

The present paper is devoted to an experimental
investigation of electroconvection in a vertical capaci-
tor with nonuniformly heated boundaries under condi-
tions where the electroconductive mechanism of elec-
trification predominates. One of the aims of this study
was to identify the ranges of experimental parameters
where the electroconductive mechanism makes the
main contribution to charge formation. Numerical
investigations are made of electroconvection in a verti-
cal capacitor for finite electric relaxation times and
other physicochemical parameters similar to the real
physical situation which was obtained experimentally.

2. EXPERIMENTAL

Aswas noted in the Introduction, several electrifica-
tion mechanismsusually take placein abarely conduct-
ing liquid, the most hazardous generally being the
injection mechanism. Thus, in order to isolate the elec-
troconductive mechanism, we needed to use an elec-
trode—iquid system in which the threshold potential for
physical injection and the rate of charge relaxation in
the electrode regions were as high as possible [5]. That
is to say, the electrode material should have a fairly
high electron work function from the metal, which
must not oxidize in an electric field. The barely con-
ducting liquid for its part should have a sufficiently
high intrinsic conductivity so that the charge relaxation
timeis as short as possible but not so high that it influ-
ences the Joule heating of the liquid. After many pre-
liminary experiments we selected a system using steel
electrodes and Mazola corn oil from the US.

2.1. Physicochemical Parameters

Since the physicochemical parameters of thisliquid
are not described in the literature, we carried out pre-
liminary experiments to measure these and the results
are presented in table. The density p and coefficient 3
of the temperature dependence of the density were
determined using densitometers which were lowered
into a measuring cylinder containing thermostatically
controlled working liquid. The temperature was main-
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Table
p,g/emd® | B x10% 1/°C n, P k x 103, cm?/s
0.9182 6.2+£04 11.5 x T-08 1.7+0.1

tained to within 0.05°C. The dynamic viscosity n as a
function of temperature was determined by the Stokes
method, which involved measuring the dropping time
for small spheres of Wood's aloy in the thermostati-
cally controlled measuring cylinder.

The thermal diffusivity of the corn oil K was deter-
mined by solving the standard convective problem of
the equilibrium stability of a horizontal layer of liquid
heated from below. We know [8] that the critical Ray-
leigh parameter for which stability is lost is Ra* =
1708. The Rayleigh number is then determined by the
conventional procedure: Ra* = pgR6*h’/nk, where 6*
is the critical temperature difference between the
boundaries of the liquid layer, and g is the free-fal
acceleration. Having measured 6* and knowing the
other liquid parameters, we can determine the thermal
diffusivity. In order to measure the critical temperature
difference, we constructed an experimental cell com-
prising a plane horizontal layer of liquid whose bound-
aries were maintained at different temperatures. This
setup was used to compare the effective thermal con-
ductivity of theliquid layer (molecular and convective)
with the thermal conductivity of athin Piexiglas plate
through which we passed the same heat flux as in the
liquid layer. When convective motion occurred, the
ratio of these thermal conductivities changed and this
allowed usto determine the corresponding critical tem-
perature difference at the liquid layer.

2.2. Electroconvective Cell

The experimental cell was a vertical gap measuring
14 x 8.0 x 0.80 cm® (Fig. 1). The cell wasformed by a
transparent Plexiglas frame and its sides were bounded
by steel electrodes measuring 43 x 10 x 0.3 cm?®. The
temperature gradient in the layer was produced by heat
exchangers 3 comprising solid aluminum blocks mea-
suring 45 x 14 x 5,5 cm3, each containing 15 cylindrical
channels 4. Water from two thermostats was circul ated
through the channels. This solid structure alowed us to
maintain the temperature of each heat exchanger to
within 0.1°C and the temperature nonuniformity along
its surface was less than 0.02°C. Thin electricaly insu-
lating plates 5 and 6 made of 0.10 cm thick Getinaks
and 0.38 cm thick Plexiglas, respectively, were inserted
between the heat exchangers and the electrodes. The
experimental apparatus was fitted with a UPU-10 stabi-
lized dc voltage source which could deliver avoltagein
the range 200-10000 V. The voltage was monitored
using an S-56 electrostatic voltmeter to within 50 V.
The Plexiglas spacer 6 was used as the congtant thermal
conductivity reference in the Schmidt—Milverton method
of studying the equilibrium stability of aliquid [10]. This
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Fig. 1. Schematic of convective cel: 1, plexiglas frame;
2, steel electrodes; 3, heat exchangers; 4, channelsfor circu-
lating water from thermostats;, 5, Getinaks insulating plate;
6, Plexiglas insulating plate used as heat flux detector;
7, tubes for filling with working liquid; 8, 9, channels for
thermocouples.

method involves comparing the thermal resistance of
the liquid layer and the insulating spacer 6 by measur-
ing the temperature gradients at the liquid layer T, and
at the insulating spacer T,,. If the electric field does not
influence the dominant thermogravitational flow and
the heat transport is only determined by the molecular
thermal conductivity (as was shown in [8], the domi-
nant flow does not create any additional heat flux across
the layer), the ratio of the temperature gradient at the
liquid layer T, to the temperature gradient at the sample
T, will be constant for various temperature gradients
between the heat exchangers. When electroconvective
instability occurs, the effective thermal conductivity of
theliquid increases and theratio of thetemperature gra-
dients decreases. The constructed dependence of T, on
T, was used to determine the critical temperature diﬁ‘er-
ence at the liquid layer T* at which electroconvective
instability occurs. Several copper—Constantan thermo-
couples were installed in the cell to measure the tem-
peratures (two to monitor the temperature uniformity
along the heat exchangers, two to measure the temper-
ature gradient at the spacer and at the liquid layer, and
one to measure the temperature gradient between the
heat exchangers).

2.3. Investigation of Electrophysical Parameters

We know [11] that the electrophysical properties of
aliguid—electrode system depend strongly on the quan-
tity and qualitative composition of the impuritiesin the
liquid, the time of interaction between the liquid and
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Fig. 2. Current—voltage characteristics of industrial corn oil (1)
and heat-treated oil (2).

the charged metal electrode, and also on the interelec-
trode gap. As aresult, the conductivity and the temper-
ature dependence of the conductivity were measured
directly using the model described above before the
convective experiment. In addition, measurements of
the current—voltage characteristics were carried out to
show that the electroconductive mechanism of charge
formation predominates in the experiments and injec-
tion ionization does not influence the el ectroconvective
instability. In order to measure the current—voltage
characteristics, a12.4 kQ reference resistance was con-
nected in seriesin the low-voltage capacitor supply cir-
cuit and the voltage drop as a function of the voltage
across the capacitor plates was measured experimen-
tally at thisresistance. The current—voltage characteris-
tics were measured at a fixed temperature, which was
the same for both heat exchangers.

Thefirst series of experimentswas devoted to study-
ing the conductivity of the oil. Figure 2 (curve 1) gives
the current—voltage characteristic of oil which had not
received any additional treatment. It can be seen that
the dependence is essentially nonlinear and a kink is
clearly visible. This nonlinearity can easily be attrib-
uted to the existence of injection conductivity, whichis
characterized by a quadratic dependence of current on
voltage unlike the eectroconductive mechanism for
which Ohm'slaw issatisfied [11]. In Fig. 2 these depen-
dences are clearly superposed. The relatively clear kink
on the current—voltage characteristic indicates that iso-
thermal electroconvective ingtability occurs. The
increase in the current transport is evidently caused by
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Fig. 3. Current—voltage characteristics of purified corn oil at
various temperatures.
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the convective current transport. In order to suppressthe
level of injection, the oil was subjected to heat treat-
ment. For this purpose the oil was kept at a pressure of
1-10 Torr and atemperature of 70-80°C for two days.
The current—voltage characteristics obtained after heat
treatment are also plotted in Fig. 2 (curve 2). It can be
seen that despite the qualitative similarity between the
characteristics of the treated and untreated qils, thereis
a substantial quantitative difference. First, the critica
voltage at which electroconvective instability occurs
increased to 2 kV. Second, the low-voltage conductivity
decreased substantially. Third, the relative contribution
of the isothermal electroconvective instability to the
current transport decreased. Subsequently, we only
used electrode voltages lower than 3 kV to identify the
el ectroconductive convection mechanism.

The next step in the experiments was to measure the
coefficient of the temperature dependence of the con-
ductivity, for which we measured the current—voltage
characteristics at various temperatures in the liquid
layer. Figure 3 shows the current—voltage characteris-
tics plotted at various temperatures of an isothermal
layer of corn oil. It can be seen that these characteristics
are linear which indicates that instability caused by the
isothermal injection mechanism of charge formation is
not observed in this electrode-liquid system for the
given temperatures and voltages up to 3 kV.

The conductivities of the liquid were calculated
from the dlopes of the current—voltage characteristics
for various temperatures using the formula o = h(k; —
k.)/S where h and Sare the layer thickness and the area
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Fig. 4. Conductivity of corn oil versus temperature.

of the capacitor plate, respectively, and k: and k, are the
slopes of the current—voltage characteristic when the
cell isfilled with corn oil and when it is empty, respec-
tively. As a result, we obtain the temperature depen-
dence of the conductivity (Fig. 4). It can be seen that the
conductivity increases nonlinearly with temperature,
whereas the theoretical investigations [ 7] assume alin-
ear dependence. However, in experiments to study the
electroconvective instability with relatively small tem-
perature gradients, for example, between 15 and 25°C,
the difference of the dependence from linear does not
exceed 1%, which suggeststhat the theoretical assump-
tions are adequate. The coefficient of the linear temper-
ature dependence of the conductivity was determined
as the slope of the tangent drawn to the experimental
curve at the point T = 23°C and was found to be 3, =
0.058 1/°C.

2.4. Experimental Results

The experimental procedure was as follows. Ther-
mostats were used to establish a specific temperature
gradient between the heat exchangers in the cell with
no applied voltage. Voltage was then applied to the
electrodes and after a steady-state heat transfer regime
had been established, which could be determined from
the fact that the thermocoupl e readings were constant,
measurements were made of the thermo-emf at the heat
flux detector T, and at the liquid layer T, The tempera-
ture gradient between the heat exchangers was then
altered and the measurements repeated. The results
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Fig. 5. Temperature gradient T, at heat flux detector as a
function of T for various voltages across the electrodes.

were used to construct dependences of the temperature
gradient at the layer on the temperature gradient at the
spacer. Similar measurements were made for other
fixed potential differences between the electrodes
between zero and 4.0 kV. Typical dependencesfor sev-
eral voltages across the electrodes are plotted in Fig. 5.
It can be seen that for zero voltage, the dependenceisa
straight line passing through the origin. This behavior
istypical of the molecular heat transfer regime because
the dominant thermogravitational flow does not trans-
fer any heat acrossthelayer. For small temperature gra-
dients at the liquid layer, the dependence T,(Ty) in the
presence of afield isthe same asthat for U = 0, which
corresponds to the absence of any electroconvective
instability. However, as the temperature gradient
increases further, the dependence acquires a kink and
the temperature gradient at the spacer increases more
rapidly than that at the liquid layer. This indicates that
electroconvective instability occurs in the model,
which increases the thermal flux and therefore reduces
the temperature gradient at the liquid layer. It can be
seen that as the voltage increases, the critical tempera-
ture difference decreases. Moreover, most of the depen-
dences for different voltages are parallel. This means
that during electroconvective instability, only one type
of supercritical motion is established in the liquid. The
post-crisisline only hasasignificantly different slope at
relatively low voltages. Thus, for afixed voltage across
the electrodes we determined the critical gradients at
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(c)

Fig. 6. Photographs of grating obtained for the same tem-
perature difference at the layer boundary Tg= 7.5°C and dif-
ferent voltages across the electrodes (a, U = 0, b, U = 1600,
¢, U=2000V).

the liquid layer T* which correspond to the point of
inflection on the curves Ty(Ty).

During the experiments we also made visual obser-
vations of the flow structure using a penumbral grating
method. Thisinvolved making observations of abright,
uniformly illuminated grating of parallel equidistant
fringes through the transparent side walls of the capac-
itor. When the flow exhibited electroconvective insta-
bility, the uniform distribution of the temperature gra-
dient was perturbed and “stria’ appeared, bending the
ray path in the capacitor and distorting the grating lines.
Figure 6 shows a photograph of agrating for the gradi-
ent T,=7.5°C at various voltages. At zero potentia dif-
ference between the electrode the fringes remain paral -
lel (Fig. 6a). When the voltage dightly exceedsthe crit-
ical value (for agiven temperature), the fringes begin to
bend (Fig. 6b). At high voltages the electroconvectionis so
strong that the bending becomes appreciable (Fig. 6b).
It should be noted that the observed pattern for agiven
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voltage and temperature gradient at the layer is steady-
state under these conditions, which suggests that the
convective structures are steady-state.

Using the measured parameters of the working lig-
uid and these critical temperature gradients we con-
structed a thermogravitational flow stability diagram
(Fig. 7) using dimensionless coordinates. the electric
number B, which has the meaning of the ratio of the
Coulomb forces to the Archimedes forces, and the
Grashof number G. The dimensionless parameters
were cal culated using the formulas G = p?g36h%n2 and
B = eU?B,/pgBhs. The stability diagram also gives the
results of atheoretical analysis which will be discussed
below.

3. THEORETICAL ANALYSIS

The problem of the stability of thermogravitational
flow is formulated assuming that a barely conducting
liquid fills a vertical capacitor whose boundaries are
heated to different temperatures. We write a system of
electroconvection equations consisting of the Navier—
Stokes and heat transfer equations, the electric charge
conservation law, the Gauss law, and the electric field
potentiality condition:

v%—‘t' +(vO)vE = —Op+ YAV —yBTg + pE,

%-_tr+vDT = XAT, 0Ov =0,
)
%$+D(0E+pv) =0, 0=0,1+B,T),
g(0E) = p, E =-00¢,

Herey, v, €, and o are the density, kinetic viscosity,
dielectric constant, and average conductivity of thelig-
uid, 3 and 3, are the temperature dependences of the den-
sty and conductivity, and E and ¢ are the dectric field
strength and potentid. Assuming that the boundaries of
the capacitor are solid and ideally conduct both hest and
electric current, we obtain the boundary conditions:

v=0 T=1418, ¢ =FU, )

where histhe half-width of theliquid layer, 8 and U are
half the temperature difference and potential difference
at the boundaries of the liquid layer, respectively, and x
is the coordinate axis having its origin at the center of
thelayer and perpendicular to the boundaries. The solu-
tion of the system (1) for the steady state in which all
the time derivatives are zero gives the velocity field of
the dominant thermogravitational flow and the corre-
sponding distributions for all the parameters of the
problem:

X = Fh,

To=-08, ¢ = Vo = Vo(0,0, vy),

X
h!
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Fig. 7. Diagram of thermogravitational flow stability. The
solid curve corresponds to the theoretical calculations.

2
vo = BB g(ez ),

o 20,6 . 3
Eo = Eo(Ey, 0,0), E, = hlnoA (1-B,68)’
Po = 2B:0%U 1 = ini=Bd
" hnA (1-B408)" LB

It was found that steady-state flow does not depend
on the coordinate in the direction of the liquid layer,
and that the electrical and hydrodynamic characteris-
tics do not depend on one another. In particular, the
velocity profile is the same as that in the absence of an
electric field. We shall subsequently assume that the
inhomogeneities of the density and conductivity are
small and we write the system of equations (1) linear-
ized about the steady state (3) for perturbations of all
three parameters of the problem. We shall assume that,
in accordance with [8], planar perturbations are the
most hazardous from the point of view of equilibrium
instability in the absence of afield. Thus, we shall only
analyze those perturbations which depend on the x and
y coordinates. The dimensionless linearized system of
equations for the perturbations has the following form:

0 2 O
DY B 0aw Tvevd_ 00
ot 0 0z 32 9z X
0°F O
_,A0%F, g ode
Daz oX aZD
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The units of measurement were selected as follows:
h for length, h?/v for time, Bgbh?/v for velocity, 6 for
temperature, yfg6h for pressure, and U for potential; G
and P are the Grashof and Prandtl numbers, G, is the
Grashof electric number which gives the ratio of the
Coulomb force and the viscous dissipative forces, and
may be obtained from the electric number B used
experimentally by multiplying this number by the Ray-
leigh number, and P, is the Prandtl electric number
which gives the ratio of the relaxation times of the
velocity and charge perturbations. The velocity field
and the electric field are written conventionally interms
of the current function and the electric potential. We
considered planar normal perturbations periodic along
the z axis and having the wave number k which was
selected as follows. We first solved the standard prob-
lem of the stability of thermogravitational flow [8] in
the absence of an électric field for the liquid parameters
described in the experimental section (see Table 1). We
determined the critical wave number k* corresponding
to the most hazardous perturbation mode. We then
solved the problem in the presence of an electric field
(4) with k = k* and determined the dependence of the
critical parameter G, for which electroconvective insta-
bility occursfor each selected value of G. For the phys-
icochemical parameters corresponding to the experi-
mental conditions (P = 600 and P, = 3.0) the system (4)
has a small parameter at one of the leading derivatives.
Thus, adifferentiad sweeping method was selected for the
calculations. The results of the calculationsfor the param-
eters given above are plotted together with the experi-
mental datain Fig. 7. It can be seen that the agreement
between the experimental results and the theoretical
analysisis more than satisfactory.
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4. CONCLUSIONS

The good agreement between the experimentally
and theoretically determined patterns of electroconvec-
tive instability of the thermogravitational flow in aver-
tical capacitor showsfirst that in the selected electrode—
liquid system the el ectroconvective instability is caused
by an electroconductive type of charge formation as a
result of the temperature dependence of the conductiv-
ity and second indicates that the constructed theoretical
model is adequate. However, steady-state convective
structures are observed in the capacitor within the error
limits of the penumbral flow visualization method. The
theoretical analysis also predicts the presence of ther-
mal waves along the layer. However, a more detailed
analysis predicts that two thermal waves having the
same wave number but propagating in opposite direc-
tions will be present ssimultaneously. In the range of
small numbers B when the influence of the electric field
is till insufficiently strong, the critical numbers B* and
B~ for the generation of thermal waves propagating
upward and downward differ substantially. For rela
tively large B and small G the critical numbers B* and
B~ become equal and a superposition of these waves
occursintheliquid. Theresult of this superposition will
evidently be a standing wave or steady-state convective
structure. At this point, it should also be stressed that
the visual observations of the convective structures
were made at voltages dightly higher than the critical
values, i.e,, in the range of parameters where a linear
stability analysis may be inadequate to describe con-
vective structures.

As we noted in the Introduction, €lectroconductive
electrification is only one of the possible mechanisms
for the excitation of electroconvective instability. For
the most commonly used electrode-liquid systems,
injection ionization in the electrode regions is an
important factor for the analysis of stability. Problems
involving the influence of injection on the stability of
thermogravitational flows and the contribution of all
the mechanisms described for the electrification of a
barely conducting liquid to electroconvective instabil-
ity will form the subject of a separate publication.
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Abstract—The theory of the Shubnikov—de Haas effect is generalized to the case of two-dimensiona systems
with several occupied size-quantization subbands. Possible interlevel scattering is taken into account. It is shown
that the relative amplitudes of the Shubnikov—de Haas oscillations are determined not only by the occupancy of
the subbands but also by the intensity of intersubband transitions. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Aswe are well aware, in structures with a degener-
ate electron gas, oscillations of theresistance occurina
magnetic field and this is known as the Shubnikov—de
Haas effect. These oscillations are caused by the sys-
tematic crossing of the Fermi level by the Landau levels
in aquantizing magnetic field. However, the regions of
the fieldsin which these oscillations are observed in the
two-dimensional (2D) and three-dimensional (3D)
cases differ appreciably. In bulk materials, oscillations
occur in “classically strong” magnetic fields when
w.T > 1. Herew, isthe cyclotron frequency and T isthe
carrier relaxation time. In 2D structures on the other
hand, the effect occursin moderate fieldswhen wt < 1
[1]. Asthe magnetic field increases further, the relative
amplitude of the oscillations increases and when sev-
era Landau levels are situated below the Fermi level, the
guantum Hall effect is observed. Consequently, in the
region of the Shubnikov—de Haas effect in 3D materials
it is possible to observe oscillations at severa frequen-
cieswhich are multiples of thefundamental harmonic. In
ultraguantum 2D systems however, a rigorous theoreti-
cal analysisonly yields conductivity oscillationsat asin-
gle frequency.

A qualitatively new situation is encountered in
guasi-two-dimensional structuresin which two or more
Size-quantization levels are occupied. In this case, each
subband can give conductivity oscillations with its own
period. The amplitudes of the oscillations will be deter-
mined by the scattering probability, including that
accompanied by transitions to other levels. This effect
was observed experimentally in [2, 3]. However, the
guantitative analysis of the experimental datawas made
incorrectly since the oscillation terms were taken into
account inconsistently. In bulk materials oscillations
with several periods have been observed in multivalley
semiconductors under intensive intervalley scattering
[4] and a theory was developed in [5]. However, these
results cannot be applied to quasi-two-dimensional sys-
tems because, unlike the 3D case, the parameter w.T is
not large.

The aim of the present study is to make systematic
calculations of the quasi-two-dimensional Shubnikov—
de Haas effect when two size-quantization levels are
occupied. For simplicity, we consider the case of zero
temperature and we neglect spin—-magnetic field inter-
action. It is shown that even when the occupancy of the
second level isrelatively small, the resistance can oscil-
late with two periods which are determined by the
occupancies of each subband. Since measurement of
the Shubnikov—de Haas oscillations is one of the main
methods of characterizing conducting 2D systems, the
results can be used to determine not only the carrier
concentrations but also their intra- and interlevel scat-
tering times.

2. THEORY

In order to calculate the conductivity tensor at fre-
guency w in a static magnetic field B, we shall use the
relationship [6]

.2
_ ine
GGB(O‘)’ B) - mw

2

€
8qp * 5[ Map(®, B) = Mep(@)]. ()
where INg(w, B) isthe polarization operator of the sys-

tem, I'If,OB) (w) is the polarization operator calculated

neglecting scattering in a zero magnetic field, n is the
carrier concentration, e and m are the charge and effec-
tive mass of the particles, a, B are Cartesian coordi-
nates. The polarization operator Mg(w, B) is expressed
in terms of the exact Green's function in the magnetic
field which is obtained from the Dyson equation [6].

We shall calculate the conductivity of a quasi-two-
dimensional structurein amagnetic field perpendicular
to the plane of the quantum well when two size-quanti-
zation levelsare occupied. We shall assumethat scatter-
ing takes place at the short-range potential, each sub-
band contains many Landau levels,

Ee, Er—A > i, ()
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and the “good conductor” condition is satisfied for both
subbands:

E-?, (B -A)TP > ©)

Here Er is the Fermi energy, A is the energy gap
between the size-quantization levels, w. isthe cyclotron

frequency, and ¥ and 1 are the carrier relaxation

times in the subbands in the magnetic field. The
Green's function of the noninteracting particles in the
Landau gauge may be written in the form

G ) =S Y anoukOwir), @

nkyi,j=1

where il are the wave functions of the particles in

the magnetlc field allowing for size quantization, i, j =
1, 2isthe subband number, and n and k;, are the number

of the Landau level and the wave vector in the plane of
the well.

The coefficients a;; are determined from the Dyson
equationwhichisa4 x 4 system. An analysis[7] shows
that in the approximation of a large distance between

the subbands (T(B) A > #) the coefficients a;, and ay;

are much smaller than the diagonal ones. Thus, the
Green's function may be written in the form

(1)
(DWn (1)
(1,1 = zs E, +EF+[|i’L/2T(B)]Signs

(D*

®)
. AAQLIEA )
n,zkf —E,+E.—A+ [.ﬁ/ZT‘B’]signs’

where E, = fiwo,(n + 1/2) is the energy of the Landau
(B)

level, but thetimes t;~’ and T(B) for intra- and intersub-

band scattering at the short-range potential are deter-
mined from a system of two algebraic equations. For

w,1{¥ < 1 the solution has the form

T1[1+%l Tlﬁﬁ :11262}
r2[1+%1 Bﬁ +T12 }

wheret,, 1,, and 1,, arethe total relaxation timesin the
subbands and the intersubband relaxation time in the
absence of a magnetic field, d, and &, are oscillating
guantities,

_ Er 0. T
0, = 2COS%T[mEeXpD—wchD
-An..0 T QO

HEXF’D ol

®

(6)

®

(7)

0, = 2COS%T[
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For the calculations we assumed that the Fermi level is

fixed. Note that the time 1{® was calculated in [8] for
the case where only one subband was occupied.

When calculating the conductivity tensor using for-
mula (1), the difference between the polarization oper-
ators must be calculated jointly to eliminate any dis-
crepancies. For the dissipative component we then
obtain

ne'n/m O (0T)°
Clt(ea)’d 1+ (o)’
L W.T 0
L i—1 (8,-5) 1]
1+ (0, Tl) 0
, (8)
L, o€ TZ/mZD (0, T2) 3,
1+ (wT,) 0 1 + (W, Tz)

2
N La{z__(_&zcz_z)__z_l}(az_él)g
To| 1+ (wTy) 0
where n; and n, are the carrier concentrations in the
subbandsin zero magnetic field. The off-diagonal com-
ponents of the conductivity tensor are given by the
expression

1+ 3(0,1y)*
(@T)[1+ (@17

n,e°15w,/m0
1+ (wcT1)2 g

4

n,e°15w,/mQ N
1+ (0T,)" 0

zf_[

The formulas (5)—9) were obtained assuming |3,
|5,| < 1 sothat they arevalidin fieldsexp(—TWwT;) < 1
and in this case the parameter w.T; may be of the order
of unity.

Oy

(0 Tl)

O
_1((8,-3
1+ (0,1s)° 1}( 2

9)
1+3(01,)°

(0T 1+ (@127

(0, Tz)

[l
-1{(6,-9,
1+ (o, T2) 1}( )E

3. DISCUSSION OF RESULTS

In accordance with formulas (7) and (8), a charac-
teristic feature of the quasi-two-dimensional effect is
the existence of oscillations at frequency (Er — A)/A
even when the second subband has a relatively low
occupancy. The reason for this effect is that the proba
bility of scattering of a particle from the main subband
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Fig. 1. Dependences of the dissipative component of the
resistance p, on the magnetic field under conditions of the
Shubnikov—de Haas effect for various intersubband scatter-
ing intensities: (a) T1/T12 =0.5, (b) T1/T12 =0.05.

oscillates with two periods (7) even when n, < n,. Fig-

ure 1 gives dependences of p,, = 0, /(0 + 0%, ) Onthe
magnetic field for the following parameters: E-1,/4 = 50,
(Er — A)1,/h =5, 14 = 1,. Figure l1a corresponds to the
case of intensive intersubband transitions (t,/1,, = 0.5)
and a low-frequency harmonic can be seen clearly
against the background of high-frequency oscillations.
If the intersubband transitions are suppressed (Fig. 1b),
the low-frequency oscillations have a relatively small
amplitude and only exist because the second subband is
occupied (n,/n, = 0.1).

The Shubnikov—de Haas effect at low temperatures
was studied experimentally in [2, 3, 9] in
GaAgAlGaAs heterostructures under conditions when
inequalities (2) and (3) were satisfied. The results of a
Fourier analysis of the dependences of theresistance on
the magnetic field madein [2, 3] and [9] differ qualita-
tively. In [2, 3] peaks were obtained at frequencies
Er/fiw, and A/, whereasin [9] they were obtained at
Er/fiw, and (Er — A)/fiw.. According to the theory put
forward these experi ments may differ in terms of the
parameters 8, ,: in[2, 3] 8, ,= landin[9] §, , < 1.
However in the experiments [2, 3] the parameters ;2
could also be lessthan one since the dependences of the
resistance on the magnetic field given in these studies
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are similar to the curves plotted in Fig. 1. Specifically,
in[2, 3] oscillationswere observed experimentally with
two periods whose ratio was close to n, /n,. It should be
noted that the parameters d, , are extremely sensitiveto
the values of T, and T, [see (7)] and a detailed analysis
of the specific scattering mechanisms is required to
determine these times exactly.

With increasing magnetic field when o, and &, are
no longer small but the conditions (2) and (3) still hold,

the system for 1{° must be solve more exactly, i.e., the
appropriate number of terms must be taken in the series
exp(-l/w), | = 1, 2, .... Qualitatively, this has the
result that the combination frequencies Q = |,Eg/Aiw, +
[,(Eg — A)/hw, appear in the oscillations, wherel, and |,
are arbitrary integers. This behavior of the Shubnikov—
de Haas effect was observed in quasi-two-dimensional
Telayersin [10].

In the present study we have considered the case of
zero temperature. When the temperature increases, the
amplitudes of the harmonics at the combination fre-
guency Q = A/fw, may increase relative to the others
[7]. The temperature behavior of Shubnikov—de Haas
oscillations was studied experimentally in [11].
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Abstr act—Systematic measurements are made of ESR spectrawith g = 4.2in Y Ba,Cu;0g ;. , compounds with
various doping indicesy. Temperature dependences of the spectrum intensity show that the ground states of the
centers are singlet and the energies of the excited states Mg = +1 correspond to 8-11 K. In genera, the intensity
of the ESR spectravarieswith time and depends on the sampl e preparation technol ogy. The most probable mod-
elsfor the paramagnetic centers studied are considered to be chain fragments of copper ions of variable valence.
General laws governing the energy structure of these centers are described. © 2000 MAIK “ Nauka/| nterperi-

odica’ .

1. INTRODUCTION AND REVIEW
OF PREVIOUS WORKS

Compounds having the composition Y Ba,Cu;Og.,
are superconductors when y > 0.35 and have thus been
investigated intensively by various methods including
ESR. The ESR spectrum usually consists of a single
line with g = 2.0-2.4 [1-5]. Depending on the sample
preparation technology, the ESR spectrum is either
observed at high temperatures [1-3] (we call this the
high-temperature spectrum) or only when T < 40 K
[1,4,5] (low-temperature spectrum). The nature of
ESR centers with g = 2 has been repeatedly discussed
in the literature although it has not yet been definitively
clarified. In most studies, for want of a better model,
this signal is arbitrarily attributed to isolated Cu?* ions
in the chains. Eremina et al. [5] assume that the low-
temperature spectrum is attributabl e to copper—oxygen
clusters with S= 2. The assumption that copper—oxy-
gen centers with spins S= 1/2 and S= 2 are present in
Y Ba,Cu30s ., planes provides a good explanation of
the temperature and field dependences of the specific
heat in'Y Ba,Cu;0g ., [6] at low temperatures.

Various publications have reported the observation
of asignal at g = 4.2 in the ESR spectrum of Y BaCuO
compounds. It was naturally assumed and discussed
that the ESR line at g = 4.2 is attributed to the presence
of paramagnetic centerswith S# 1/2, such as Cu®* ions
(S= 1), Cu*—-Cu?* (S= 1) pairs, or random Fe** ion
impurities.

The observation of asingle g = 22 line in the ESR
spectrum allows various viewpoints to be advanced as
to the structure of the center. In view of this, a study of
the ESR spectrum of thelineinthe*half” field (g = 4.2)
is more informative to determine the nature of the para-
magnetic centers. We note various publications which
either reported the observation of ESR at g = 4.2 or
assumed that the ESR signal is attributed to ions with
S# 12 [7-24].

The authors of [7-10, 15] assumed that in the sam-
ples studied, there are copper ions not only with the
valence Cu?* but also Cu®* (S= 1). However, an ESR
spectrum with g = 4.2 was not observed in these stud-
ies.

Likodimos et al. [11] studied the electron spin reso-
nance of PrysY (sBa,CusO, and observed several ESR
lines including a low-intensity line with g = 4.19(1).
These authors [11] assume that the ESR spectrum is
attributable to pairs of Cu?* ions with weak exchange
interaction and the g = 4.19 line corresponds to the
AM = *2 transition. They postulate that the Cu?* pairs
are located in Cu(1)O planes and are somehow magneti-
caly isolated from the antiferromagnetically bound cop-
per ions in the Cu(2)O, planes. As a rather improbable
assumption the authors [11] assigned theg = 4.19 lineto
random Fe** ion impurities. It was also noted in [11]
that the intensity of the g = 4.19 line was reduced sub-
stantially one month after preparation of the sample.

Guskos et al. [12] studied the electron spin reso-
nance of RBaCuFeO; compounds (R = Eu, Y, Yb). Var-
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ious lines were observed including the g = 4.21(1) line
of width AH = 3.1(1) x 103 T. The authors [12] ascribe
the ESR spectrum to two types of Fe** ion centers (one
giving asigna at g = 4.21).

In [13] Guskos et al. studied the electron spin reso-
nance of LaBaSrCu;Og ,  inthetetragonal phase. Apart

from the ESR signa from the Cu?* ions, these authors
also observed a broad line with g = 2.1 and AB,, =
0.19(1) T. In addition, at T < 20 K they aso observe a
narrow line with g = 4.2 and AB,, =5 x 1023 T The
authors ascribe this signal to theAM = +2 transition in
exchange-coupled Cu?* pairs[13].

In the tetragonal phase of Y 55Sm, sBa,Cu;04 ., , the
same authors observed ESR with g = 4.22(1) and AH =
0.012(2) T [14]. The nature of thissignal, asin [13] was
ascribed to exchange-coupled pairs of Cu?* ions. The
specific pair model was not indicated since no reason-
able model of this pair could be put forward. This is
because the superexchange coupling parameter between
the nearest copper ions should be approximately 1500 K
[as in the Cu(2)O planes] and not 0.22 cmt as is
required to explain the ESR spectrum in [11]. Assum-
ing that thisis a pair of second or third neighbors, it is
unclear how the spins of thispair in the Cu(1) positions
were isolated from those in the Cu(2) positions.
According to the Goodenough—Kanamori rules, the
coupling of the Cu(1)—Cu(2) spins via apical oxygen
should be of the order of 100 K!

Misraand Misiak [16] investigated the electron spin
resonance of YBa, K,,Cus0, and observed an ESR
linewithg=4.5a T< 40 K. The nature of thissignal was
not discussed. Lyfar’ et al. [17] observed awesk ESR sig-
nal with g = 4.5 at room temperature in Y BaCuO com-
pounds. Electron spin resonance was only observed in
samples having outgrowths of “black” and “ green” par-
ticles. The authors [17] attribute these signals to the
Cu® ion (at D > hv, where D is the initial splitting
parameter).

InLay g55rg15Cu0,, ESR with g = 4.18 was observed
in [18]. Citing [19], where authors are inclined to
assume that the g = 4 line characterized the S= 1 triplet
statesformed by pairs of holes when these are in excess
under strontium doping. This explanation is based on
the observation that the intensity of the ESR signal
increases as the quantity of strontium increases. How-
ever, anincreasein the intensity of theg = 4 signal was
also observed in [18] as a result of iron ion doping.
Since the incorporation of iron reduces the concentra-
tion of holes, the explanation put forward in [19] is
somewhat doubtful.

Kataev et al. [20] investigated La,CuO,_5 and
observed a weak ESR signal with g = 4. The signa
intensity obeys the Curie law. The authors [20] postu-
late that the g = 4 line is either assigned to ferromag-
netic Cu?* pairs or to Cu®* (S=1).

The compound BaBiO; has also been investigated [21]
both without any additional impurities and with added
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Mg, Al, Co, Fe, and Mn. The compounds Ba, _,K,BiO;
withx=0.1and 0.1% Co or 1% Al impurities have also
been studied. In al the samples ESR was observed with
g = 4-4.5. The very high-intensity ESR linein samples
with added cobalt is undoubtedly attributable to the
Co?* ion. In other samples the intensity of the g = 4.2
signal was substantially weaker and the reason for this
was not discussed.

In[22-24] an important characteristic of ESRwithg=
4.2 wasobservedin Ba, _,K,BiO; and BaPhBi, . ,O; sys-
tems. On analyzing the temperature dependence of this
ESR signal intensity, the authors [22—24] found that the
ESR signal with g = 4.2 isobserved from excited triplet
states. These triplet states are presumably assigned to
pairs of oxygen holeslocalized at apical oxygens.

We shall now turn our attention to [25] in which
YBa,Cu;0, was investigated by ESR and where at
T < T, the authors observed a high-intensity signal in a
weak magnetic field (<100 Oe). The authors[25] attrib-
uted this signal to the formation of Cu?*—Cu** pairs.
Thisis an erroneous conclusion because the signal ina
“zero” magnetic field is not ESR but nonresonant
microwave absorption, characteristic of superconduc-
tors. However, their reasoning on the fluctuations (at
the rate <10 s?) of the copper valence of the type
2Cu>* — Cu* + Cu?** and 2Cu* — Cu** + CW0 is
interesting in the context of the models of variable-
valence centers discussed below.

To conclude our review of the literature, we can con-
cludethat athough numerous publications have reported
the observations of ESR linesin a half field, the experi-
mental results are till contradictory and thusthe conclu-
sions and assumptions made by the authors on the nature
of thissignal, at least inY Ba,Cu;Os .., are ambiguous. In
many cases, this signal is attributed to the presence of
external or specially introduced impurities (Fe**, Co?).
However, this is evidently not the only reason for the
appearance of ESR in ahdf field in Y Ba,CuyOg., .

In the present paper we report an investigation of
Y BaCuO compounds with different oxygen contents
and different sample preparation technologies in order
to observe an ESR signal with g = 4. Measurements were
made using nonoriented Y BaCuO samples and samples
oriented using an externa magnetic field (quasi-single
crystals). The temperature dependence of theg= 4.2 ESR
sgnd intensity showed that ESR is observed from
excited states with S= 1. The experimental results are
most logically attributed to chain copper clusters of
variable valence.

2. EXPERIMENT

In the present study, ESR was used to investigate
compounds having the composition' Y Ba,Cu;0s ., gener-
aly containing rare-earth ion impurities (Yb, Er). The
investigations were carried out using an IRES-1003 ESR
spectrometer (X-range, frequency 9.25-9.48 GHz) in the
temperature range 4-100 K.
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Three series of YBaCuO samples having different
oxygen contents and prepared by different methods
were studied.

Series A

The samplesin this series were prepared by normal
ceramic technology using the componentsY ,0;, R,O3
(1% relative to Y,05, R = Er or Yb), BaCO;, and CuO.
Superconducting samplesA 1 (without R®* impurities), A2
(withY b* impurities), and A3 (with Er3* impurities) were
first prepared (the component mixture was ground for 1 h,
slowly heated to 850°C, held for 15 h, rapidly cooled,
reground, slowly heated to 900°C, held for 6 h, and
slowly cooled). The entire procedure was carried out in
air. The samples obtained, A1, A2, and A3, had T,= 85K
and x = 6.85. Then nonsuperconducting samples, A4,
A5, and A6, were prepared from portions of samples
A1-A3 (samplesA1-A3 were annealed in air at 900°C
for 2.5 h, then quenched in nitrogen, and dried in a
helium atmosphere). Samples A4-A6 were not super-
conducting (at T = 10 K) and the oxygen content esti-
mated from measurements of the lattice parameter ¢
was X = 6.35. We investigated the ESR of rare-earth
ions (Er®* and Yb*) in series A samplesin [26]. These
samples were prepared by R.Yu. Abdulsabirov and
S.L. Korableva

SeriesB

The samples in this series (Y yg9Erg 0 BaCus0,),
like the series A samples, were prepared by solid-phase
synthesis using the components Y ,O3, Er,O5, BaCOg,
and CuO. However, a different temperature and atmo-
spheric regime was used compared with series A. We
first obtained compounds having an oxygen content X = 7
(the samples were first heated slowly in air and thenin
a nitrogen atmosphere to 940°C, held in nitrogen and
then in oxygen for around 10 h, followed by slow three-
stage cooling in oxygen to room temperature). The
entire cycle continued for 110 h. Samplesin this series
having an oxygen index x < 7 were obtained from the
X = 7 samples by annealing in a nitrogen atmosphere.
The quantity of oxygen in the sample depends on the
annealing temperature (T,,). The higher T, the lower
the oxygen content. For example, at T,,,, we obtained a
samplewith x=6.12 and at T,,, = 320°C x = 6.96. The
annealing time was around 30 h. Ten samples were
obtained with different oxygen contents. Series B was
grown by R.Sh. Zhdanov and M.B. Mityagin.

SeriesC
The preparation technology for samples in this
series (YBa,Cu;0 ., containing 1% Er®* ion impuri-
ties) differs substantially from that for samplesin seriesA
and B, and isdescribed in detail in[27, 28]. At this point,
we merely note that series C was prepared by sol gel tech-
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Fig. 1. Electron spin resonance spectrum of sample A5
(YBa&yCu30g 35) in the magnetic field range 4004000 Oe,

T = 14 K. The inset shows a fragment of the spectrum in
the range 1300-1700 Oe, T = 4 K. The arrow indicates the
g=42line.

nology and the initial materials are metal nitrates. The
samples in this series had various oxygen indices
between 6 and 7.

All the samplesin series A, B, and C were investi-
gated by ESR to determine whether theg = 4.2 linewas
present. This line was observed in some samples and
not in others. For instance, in the series A samples this
signal was observed in the nonsuperconducting sample
containing Yb*" impurities (A5) and in the nonsuper-
conducting sample without impurities R (A4) and
was not observed in the superconductors Al, A2, A3,
and in the Er*-doped nonsuperconducting sample
(A6). Figure 1 shows the ESR spectrum of sample A5.
The series A samples comprised powder in paraffin and
were not oriented.

In the series B and series C samplesno g = 4 signal
was observed for any oxygen index between 6 and 7.

The ESR linewith g= 4.2 was studied in the greatest
detail for sample AS5. This signal has a low intensity
(see Fig. 1) and is only observed at T < 100 K. The
value of g = 4.24(2) does not depend on temperature.
Thelinewidth dependsweakly on temperature (in sam-
pleA5 AH,, =40 Oeat T=5K and AH,,, = 50 Oe at
T = 30 K). An important factor was that the integrated
intengity of this line exhibited an anomal ous temperature
dependence (not obeying the Curie law) (see Fig. 2).
From thisit followsthat the ESR line with g = 4.24 can
be ascribed to the excited states of the paramagnetic
centers, not to the ground state (estimates of the excita-
tion energy will be made below). In order to confirm
that this anomalous temperature dependence of the
integrated line intensity was not caused by the charac-
teristics of the device or the properties of the sample,
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Fig. 2. Relative intensity of the ESR signal withg=4.2in
sampleA5. The solid curve gives the calculations using for-
mula (2), the parameter isA = 9.5 + 1.5 K, and the dashed
curve gives the Curie law.

we measured the intensity of the ESR line with g = 2.
At T< 15K the Curielaw isaccurately satisfied for the
g=2ESRIine. It should also be noted that samplesA4
and A5 for which ESR with g = 4.2 is observed are not
superconductors. Finally we note another interesting
circumstance. When the samplesare stored for alongtime
a room temperature, changes occur in the ESR spectra.
For samples A4 and A5 the intensity of the g = 4.2 lines
decreases and disappears after a few years whereas the
ESR signal with g = 2 conserves its high intensity, but
the line profile changes. Particularly marked changes
areobserved inthe series B and C sampleshaving alow
oxygen content, where the g = 2 line intensity increases
catastrophically. No changes are observed for the R%*
ion linesin any of the samples. From thisitislogical to
conclude that the g = 2 and g = 4 ESR lines belong to
different paramagnetic centers.

Summarizing the experimental facts, we can draw
the following conclusions.

(1) Electron spin resonance with g = 4.2 was
observed in quenched Y Ba,Cu;0g ., samples prepared
by solid-phase synthesis and having y = 0.35. No ESR
with g = 4.2 was observed in annealed Y BaCuO sam-
ples obtained by solid-phase synthesis or in Y BaCuO
samples obtained by the sol gel method for any oxygen
content.

(2) Electron spin resonance with g = 4.2 and ESR
with g = 2 can be ascribed to different types of centers.

(3) Electron spin resonance with g = 4.2 has an
anomalous temperature dependence (which corre-
sponds to the recording of ESR at excited energy levels
asin [22-24]).
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3. ANALY SIS OF PARAMAGNETIC
CENTER MODELSWITH g = 4.2

Atfirst glance, following [22], the ESR linewith g =
4.2 could be logically assigned to a pair of localized
holes (O) at apicd oxygen positions. In our case, how-
ever, it isincomprehens ble that such apair could be*“iso-
lated”. We know that in YBa,CuyOs.,y the O (S= 1/2)
states are strongly coupled with the copper spins. Cop-
per—oxygen singlet states are formed which for sim-
plicity we shall subsequently denote by “Cu®* (S=0)".
It is impossible for triplet states to form only from
these. Thus, we shall analyze copper—oxygen centers
involving chain spins of copper Cu?* (S= 1/2). Models
for the formation of copper chain fragments with con-
stant valence were discussed in [29]. Subsequently, for
completeness of the following analysis we shall also
briefly discuss chain fragments of variable-valence
ions. Since the filling of O(4) positions with oxygen
ions leads to a change in the valence of the copper ions
in the chains and ultimately these chains are conduct-
ing, it is quite natural to assume that fragments of the
following type form in the Y Ba,Cu;0 .., chains:

(1) Cu**—Cu*—Cu?* or Cu?*— Cud*"—Cu?,
(2) Cu?*—Cu*—Cu?*—Cu?* or
Cu?*—*Cu**"—Cu?*—Cu?*, and so on.

The excess “Cu*” (hole) or Cu* (electron) charges can
evidently migrate between various oxygen positions so
that the states of fragments from two chains are triply
degenerate in terms of the method of distributing Cu*
(or “Cu®") and the states of fragments from three
chains are quadruply degenerate. The possible forma-
tion of impurity centers with effective spin S= 1/2 in
YBa,Cu30q.,, chains was first noted in [30] using
NMR of these compounds at |ow temperatures.

We shall first consider avariant where the singlet state
isthe“Cu?* (S=0)" ground state, asin theY Ba,Cu,Og ..y
planes. According to the calculations [31-33], thistype of
singlet dtate corresponds to the superposition of the
Zhang-Rice singlet states, trivalent copper Cu®* (S= 0),
and neutral oxygen. The energy levels of the hole and
electron fragments can be calculated by diagonalizing
the Hamiltonian

H = ztijait:aio"'ZJij[(SSJ)_gf—j}’ (D

where J; is the superexchange coupling parameter of
Cu?* spins, t; isthetransport integral of the Cu or “ Cu*”
states between the copper nearest neighbors, and n; are
the occupation numbers. In the first case, an eectron
migrates so that J/t < 0 and in the second case, a hole
migrates and therefore J/t > 0. We can take J = 1500 K
to be the same as that for the copper states in the
Y Ba,Cu;30;.,  planes [34] and t = 330 K, as was mea-
sured for Cr3*—Cr?* statesin KZnF; [35]. Note that both
the parameters of our model are greater than the
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Fig. 3. Energy diagrams of the energy levels of variable-valence copper clusters for various values of the parameterst and J:

(a) Cu?*—CuP—Cu?* cluster, the solid curves correspond to S= 0 states, the dashed curvesto S= 1 states; (b) Cu?*—Cu?*—Cu®—Cu?*
cluster, the solid curves correspond to S= 1/2 states, the dashed curvesto S= 3/2 states.

exchange coupling integral of the Cu(1)—Cu(2) spins
and thus the latter is not discussed at this point.

The Hamiltonian was diagonalized by a numerical
technique and the results of the calculations are plotted
in Fig. 3. Aswas predicted, the energy diagrams of the
energy levels do not depend on whether a hole or an
electron migrates. Only the absolute value of the
parameter t is important. For a two-membered frag-
ment, for arbitrary ratios between the parameterst and
J, theground state isasinglet whereasfor athree-mem-
bered fragment the ground state is adoubl et with effec-
tive spin S= 1/2. For convenience of representing the
results, the dimensionless parameter x = |J/t|/(1 + |J/t])
is plotted on the ordinate. Variation of the parameter x
between zero and unity gives all possible values of the
ratio J/t. Possible energy levels of the centers are plot-

ted on the abscissain units of A/t° + J°. This reasoni ng
can easily be generalized to the case of chain fragments
with an arbitrary number of members. The ground state
of afragment having an even number of members with
one hole will be asinglet and that for an odd number of
members will be a doublet with S= 1/2. Thus, we can
conclude that in YBa,Cu;0g.,, chains various centers
with S= 1/2 can generally be formed. However, since
the formation of the centers given above is most likely
for low values of the doping index y in Y Ba,Cu;0. y,
we shall confine our analysis to these models.

It can be seen from Figs. 3a and 3b that there are a
fairly large number of low excited states, whose pres-
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ence is required to explain the difference between the
temperature dependences of the ESR signal intensities
and the Curie law. In linear fragments of constant-
valenceionsthe excited states are much higher, and the
differences from the Curie law will be negligible. In
thisrespect our models differ fundamentally from those
considered in [29].

Thus, we shall assume that copper clusters of vari-
able valence with the S= 0 ground state and S=1
excited state are responsible for the ESR signalswith
g = 4.2 observed inY Ba,Cu;05 ., and we shall analyze
the temperature dependences of the ESR signals. Tem-
perature dependences of the relative ESR signa intensi-
tiesmeasured in the present study in afield of 1590 Oe are
plotted in Fig. 2. If theg = 4.2 ESR line is attributed to
the excited state of a paramagnetic center S= 1 (transi-
tion between the Mg = +1 and Mg = —1 states), itsinten-
sity should be given by

| = const

exp(—gBH/KT) — exp(gBH/KT) ()
1+ exp(—gBH/KT) + exp(gBH/KT) + exp(A/KT)’

where A is the absolute value of the energy interval
between the ground singlet and the excited triplet.
Using the least squares method we find that A =9 K for
Y Ba,Cu;0; 55 USiNg the experimental data plotted in
Fig. 2. It can be seen from Fig. 3athat these intervas are
considerably larger for values of the parameter t around
330K. Inview of this, themode of a Cu?*—Cu*—Cu?* cen-
ter is not suitable to explain our experiments. The

X
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Fig. 4. Energy level diagrams of a Cu?*— Cu®""—Cu?* clus-
ter assuming Gy = —0.25 eV. The solid curves correspond
to S= 0 states and the dashed curvesto S= 1 states.

Cu?*—“Cu®"—Cu?* model can be completely recon-
ciled with the observed temperature dependence of the
ESR signal with g = 4.2 if we take into account the non-
equivaence of the position of the“ Cu**” state at the center
of the cluster and at its ends. Figure 4 shows the cluster
energy levels when the difference between the polaron
binding energy of “Cu®” at the center of the cluster and
atitsendsis G,, =—0.25¢eV. Thisisclearly anontrivial
important characteristic of the model. The S= 1 excited
state is positioned near the ground singlet state although
al three parameterst, J, and G, are considerably larger
than this energy scale. In these models of paramagnetic
centersthree sources of anisotropic spin-spin interaction

of the type DSf + E(§ - ﬁ) + ... may be noted:

dipole-dipole and pseudo-dipole interactions of Cu?*
spins as for pairs of isolated ions [36] and anisotropic
exchange interaction of ahole spin at oxygen with copper
spins. In our case, the latter evidently predominates.
According to estimates [37] for copper—oxygen clusters
where the ground singlet state liesin the CuO, planes, the
anisotropy of the spin—spin interaction of oxygen holes
and copper may lead to D = 0.05-0.2 meV. This conclu-
sion aso appliesto our case and can explain the absence
of any ESR signal from these clusterswith g = 2.

We shall now discusswhy ESR in a*half” magnetic
field was only observed in quenched nonsuperconduct-
ingY Ba,Cu;04 35 Samples prepared by solid-phase syn-
thesis. In our model ESR with g = 4.2 corresponds to
the transition |[+1[0—— |-10and is forbidden when
these states contain no small component of the |0Cstate.
Thisisthesituation for anideally ordered crystal lattice
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or for anisolated Cu?*— Cu®""—Cu?* cluster and so ESR
isnot observed in a“half” field. However, the situation
changes when we are dealing with samples having a
nonuniform oxygen distribution at the interface
between the tetragonal and the orthorhombic phase
such as quenched Y Ba,Cu;0g 35. These “poor” nonsu-
perconducting samples have the largest distortions of
thelocal crystal fields which explainswhy the AM = £2
transition is partially allowed.

Note that the excited-state energies of paramagnetic
centers with Mg = £1 obtained by us from the tempera-
ture dependence do not contradict the data obtained
from the specific heat [6], since the centers described
“freeze out” at superconducting temperatures and make
no contribution to the specific heat.

Generaly, a linear chain fragment Cu®* (S = 1)-
Cu* (S= U2)-Cu** (S= V2)-Cu** (S= 1) hasasimilar
structure of lower spin dtates, as our caculations have
shown. In order to describe the energy spectrum of this
fragment we naturally need to go beyond the t—J model.
Asfor the Cu?* (S=1/2)—“Cu’ (S=0)"-Cu?* (S=1/2)
fragment, its ground state (for x > 0.5) issinglet and the
excited triplet is comparatively close. When they are
formed during the oxygen doping of the samples, nei-
ther type of fragment leads to the appearance of holes
in CuO, planes and consequently they do not destroy
the antiferromagnetic correlations of the Cu(2) spins.
Both center models can explain the following experi-
mental observation made by us: in samples A4 and A5
the intensity of the g = 4.2 ESR line decreases with
time. A few years after preparation of the samples this
line disappears, whereas the g = 2 ESR signal persists
but its line profile changes. All these observations are a
natural result of the diffusion and ordering of oxygen.
Cu?*—*Cu*"—Cu?* chain fragments are the most prob-
able and interesting for the physics of charge ordering of
transition-metal oxides. Recently they were proposed
independently to explain the specific heat, NMR/NQR,
and spin susceptibility of quasi- onedl mensional copper
chainsin Sr,sCayy sCUx,04y[39. 40]. 2

4. CONCLUDING REMARKS

From the reasoning put forward above, it therefore
follows that the most natural model of an ESR center
with g=4.2inYBa,Cu;0; 55 iSthat of chain copper—oxy-
gen clusters of variable valence. Theisolated fragments of
variable-valence ions Cu/>*—Cu** (S = 0)"-Cu?* in
YBa,Cu;Og 45 and Sr,sCay; :Cu,,0,4, [39, 40] have ana-
logs in other transition-metal oxides, as has recently
become apparent. It has been found that the variable-
valence fragments Ni?* (S= 1/2)-Ni* (S= 1)-Ni** (S=
1/2) formthe structural unit of the stripe structurein the

1An analysis of the force of the crystal field at triply coordinated
copper showed that its ground state is more likely to be Cu 3+ (S=1)
 than” cult (S=0)".

2 This paper was submitted in May 1999 and was presented at the
Ampere Colloquium in Pisain June 1999 [38].
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La,NiO,,; nickelates [41, 42]. Zigzag structures of
Mn3*-Mn*-Mn** triplets are found in manganites
(La; _,Sr,MnOy) (see the review [43]). A tendency to
form structural fragments of variable valenceis clearly
acommon property of doped Mott—Hubbard insulators.
In this respect, the importance of the conclusions
reached in the present study goes far beyond the prob-
lem of ESR in ahalf field.
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Abstract—A microscopic approach is used to study the formation of an electric field near the trgjectories of
fast heavy charged particles propagating in various materials. The andysis is based on determining the space-time
digtribution function of the fast d-electrons generated when heavy ions are stopped in materias and the electric cur-
rent produced by them. The spatial dependence of the electric field strength is determined at various times. The
results are used to analyze the process of electric field energy transfer to the ionic subsystem. The spatial dis-
tribution of the energy acquired by the ionic subsystem from the electric field is determined over its character-
istic lifetime. A mechanism is proposed to explain the formation of track regions both as aresult of the higher
local heating of the ionic subsystem and as aresult of the possible irreversible displacement of the atoms from

nodal points. © 2000 MAIK “ Nauka/Interperiodica” .

1. When fast heavy charged particles having ener-
gies E = 1 MeV/nucleus are stopped in materias, as a
result of direct interaction with atomic nuclel and elec-
trons their kinetic energy is predominantly transferred
to the electronic subsystem and only asmall fraction is
transferred to the ionic subsystem. Subsequent pro-
cesses associ ated with electron and ion heat conduction
and also electron—phonon interaction [1] lead to relax-
ation of the eectron and ion temperatures near the heavy
particletrgjectory [2]. Inmetds, for example, asaresult of
the higher electron heat conduction the energy transferred
to the eectronic subsystem over the characteristic elec-
tron—phonon interaction times (tg, ~ 1073 s) can propa-
gate over fairly large distances. Further heating of the
ionic subsystem may occur as a result of electron—
phonon interaction and is caused by energy being trans-
ferred from the electronic to the ionic subsystem over
distances substantialy greater than the lattice period.

The theory of track formation has been considered
in numerous studies [2—7]. These may be divided into
two groups, one based on the thermal T-spike model
[2—4] and the other based on the “ion explosion” model
[5-7]. In the therma spike moddl the heating of the track
region and the ionic subsystem near the heavy particletra
jectory is considered to be the result of energy transfer
from the electronic to the ionic subsystem. Theion explo-
son modd consders the eectrostatic repulsion of
stripped ions over the characteridtic lifetimes of the elec-

tron-depleted regionst ~ oo;,1 ~ 1010 s (wy, isthe
plasma frequency). However, no accurate calculations

of the effective electric fields formed over these times
have been reported in the literature.

Recent experimental investigations of stopping pro-
cesses of fast heavy charged particles by various mate-
rials have yielded various new results. These results
particularly relate to the formation of point defects near
the heavy particle trgjectory: the number of these
defects is substantially greater than the corresponding
values obtained as a result of calculations based on
elastic scattering of stopped ions at theionic subsystem
[8, 9]. A similar process of primary point defect forma-
tion is determined by the electron stopping losses and
depends strongly on them. Another phenomenon is the
anisotropic growth of amorphous aloys under heavy ion
irradiation [ 10-13]. This process a so depends strongly on
the electron stopping losses of the moving ion.

Numerical results [3, 4] obtained recently using the
T-spike model and based on solving a system of nonlin-
ear egquations describing the changein the temperatures
of the electronic and ionic subsystems allowing for
electron—phonon interaction cannot explain these
experiments. The temperatures of the ionic subsystem
obtained on this basis are comparatively low. Existing
ion explosion models [5, 7] are predominantly qualita:
tive and contain no accurate calculations of the result-
ing electric fields.

However, we know that near the trgjectory of amov-
ing ion, fast &-electrons form whaose directions of propa
gation are predominantly perpendicular to the trgectory
of the moving ion [7]. The ensuing cascade of eectron
collisions becomes isotropic over fairly large distances,
which leads to the appearance of radial electric currents
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and the formation of a radia electric field. In the
present study, a kinetic approach is employed to ana
lyze electron current formation processes and the for-
mation of an effective electric field near the tragjectory
of amoving heavy ion. Theresults are used asthe basis
to propose a model to estimate typical values of the
energy obtained by the material ions from the electric
field and to explain the appreciable increase in the tem-
perature of theionic subsystem near themovingiontra-
jectory.

2. We shall determine the current generated by fast
o-electrons formed as a result of the interaction
between a moving ion and target atoms near its trajec-
tory. The current generated by the secondary electrons
will be neglected because of their low velocity. To sim-
plify the following calculations we shall assume that
when they interact with target electrons, the d-electrons
lose energy (on average A(g) for an isolated collision)
but their direction of motion does not change. In this
case, in the continuous slowing approximation the
Green function for the electron flux has the following
form (see[14]):

Pe,r, Q& Q1) = A(s)lz(s)
; de' D
"5D t- I VAE)ZE) @)
|:| S
x8 - QIA( BHG )[5(Q ®

where € isthe kinetic energy of the electrons, v istheir
velocity, 2(€) is the cross section for interaction of
o-electrons with target electrons, and A(g) is the aver-
age loss of d-electron energy as a result of an isolated
collision.

Expression (1) describes the unsteady-state spatial—
angular and energy distribution of the flux of electrons
at timet and point r after these wereinitialy generated
at timet' and point r' having the energy €, and the direc-
tion of motion .

We shall further assume that the &-electrons are gen-
erated instantaneously over the entire path of the prop-
agating heavy charged particle. The direction of motion
of the knock-on electrons is related to the direction of
motion of a heavy charged particle by the well-known
expression [15]:

cosO = J? 2

where 0 is the angle between the directions of motion
of the knock-on electron and the moving charged parti-
cle, g, = 4mE,/M is the maximum energy which can be
acquired by a knock-on d-electron, m is the electron
mass, and M and E; are the mass and energy of the
heavy charged particle.
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Taking this reasoning into account, the Green func-
tion for aflux of electrons generated instantaneously on
astraight line parallel to the z axis and passing through
the point having the coordinates X', y' is given by

1

Pife T QL8 T) = FS

0" g 01 E
S [ £

><6§M(x—x‘)z+(y—yf—ﬁ—9§

©)

€

IA( GL

For the following calculations we convert to coordi-
nateswherethe Z axisisparall€l to the zaxis and passes
through the point having the coordinates X', y'. In these
coordinates the function ®; possesses axial symmetry
and hastheform

T2 x—x)+ (y -y

€

de'
A(S)Z(s) d f VAE) )T

@
€
i ﬁ%m V- QfA(e)Z(s)%p

where p isthe distance between the Z axis and the point
of observation (cylindrical geometry).

We shall neglect the component of the &-electron
current along the Z axis because the average cosine of
the angl e between the direction of motion of the knock-
on &-electrons and the direction of motion of the heavy
charged particle is small. Using (4) we obtain the fol-
lowing expression for the radial component of the
o-electron current:

D€, p, 2, t, &) =

PN = = K
o (E,p.tg) =€ A(€)=(€) D IV '‘NE) (¢! )D
®)

xéga— 1_&°—d£- L
Pt e et
Then, using well-known relationships we derive an

expression for the Green function of the radial compo-
nent of the &-electron current in the initial coordinates:

= iPx=x,y-y)

y (X—X)X+(y—y)y , (6)
Jx=x)2 + (y—y) e +y
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where the function jp)(X X,y —Y") is determined
by formula (5) in which we need to set p =

Jx=x)*+ (y-y)°.
In cylindrical coordinates, the Green function (6)
has the following form:

[1—(go/Em)

il 0. 8.1, 0, 9" &) = eTyers

)

der U
m REGHGE

(7)

. 3(/0” + p* — 20p"cos( — §) ~ (e, €0)

2111 (€, €p)

L P°—Pp'cos(d — o)
r(e, €))p
where the function r (g, &) is described by

€
5 = J1- OI o ©

3. The energy distribution of the number of elec-
trons n knocked on from target atoms by a moving ion
per unit length of itstrajectory isgiven by thefollowing
semi-empirical relationship [16, 17]:

*24

d’n 41N Z; "€
= 9
dedz Zs(e+|-) ©
jom ]
where the subscript j refers the jth electron shell of the

atom, N, is the electron density at the jth shell, I; isthe

corresponding ionization energy, Z; is the effective
charge of amoving ion, which is given by

%4
Zi = 2,[1- P 2,35}

Here v, is the Bohr velocity, v is the ion velocity, and
Z, isits atomic number.

After integrating expression (9) over energy
between zero and €., — |;, we obtain (assuming €, > 1;)

dn _ 41’ 22N< |1>

(10)

dz €m (11)

where N and Z, are the density and atomic number of
the target atoms, and the value of [1/1[0s determined by
the equality

(12)

Zl_

/\
le

Rig
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Note that estimates made using formula (12) in [7] for
iron yielded [I/IC= (1/8) eV
In order to simplify the following calculations, we
shall assume that the number of eectrons knocked on
from target atoms by a moving ion per unit length of its
trgjectory is described by the energy distribution [see (9)]
o’n 4nZZZI2 )
dEdZ sme '

(13)

whose lower energy limit is determined by the effective
ionization potentia |:

-

For iron (see above) we clearly have | = 8 eV.

This approach appreciably ssimplifies the following
calculations and gives a tota number of electrons
knocked on from target atoms by a moving ion per unit
path length which agrees with expression (11). Thisis
readily established after integrating expression (13)
over energy between | and g,

Estimates made using formula (11) for ions having
energies of 10 MeV/nucleus propagating in iron
yielded the result

dn -1

e =3.27x10" Z1 [A7],
which shows that as the atomic number of the moving
ion increases from Z; = 8 (oxygen) to Z; = 92 (ura-
nium), the number of knock-on electrons increases
from 2.1 A to 1.1 x 102 A-%. From this it follows that
the region of ionization produced by direction interac-
tion between a fast ion and target atoms should have a
finite transverse dimension.

We shall estimate the characteristic transverse
dimension of this region. The impact parameter p is
related to the energy ¢ transferred to an electron by a
heavy ion by [15]

(14)

(15)

2g
= Az

(16)

m

Quite clearly, the maximum transverse dimension
(Pmad) Will be determined by the minimum imparted
energy sufficient for ionization (&, ~ 1):

Pmax = ZZI ezsi 0

N T

(17)

Estimates made using formula (17) for ions having
energies of 10 MeV/nucleus propageating in iron showed
that as the atomic number of the moving ion increases
from Z;, = 8 to Z; = 92, the dimension p,,,increases
from0.62 A to4.5A

Taking thisinto account, the spatial energy distribu-
tion of electrons knocked on from target atoms by a
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moving ion will be described by the following expres-
sion [see (13) and (16)]:

. ATNZ,Z}%
Seo p) = s—el
m©0 (18)
0
><5ED 2Zle €m 1

en 50

4. Contracting the Green function (7) with the source
function (18) and integrating the resulting expression
over energy, we determine the space-time distribution of
the current generated by the &-electrons knocked by a
moving charged particle from the target atoms:

€m €m 21

Jo(p, 1) = IdsIdeO{d¢‘
[ (19)

[

x J’ do'p'jp(p. 9.t €, P, ', £0) SEo, P).

Integrating over the angle ¢' and the coordinate p' in
Eq. (19), wefind

dso 1- 80/8

Bolp ) = I AD2E)

J’d

X8 gL
D f vA(e>z(e)cr(s )

p—[p?+r¥eg) — (e, £91/2p
Jr (& £0) [P =o€ 1P + o€~ 1 (e, &)
xN(r(e, &) ~ [P~ To(Ex)]?) (20)

xN([p + ro(€0)]” — (e, £0)),
where r(g, ;) is described by expression (8), § =
4TINZ,Z¥* e¥le,.,; n(X) is the Heaviside function, and
ro(€o) = 2(Z7 eZ/Em)m-

5. In order to determine the strength of the electric
field generated by the heavy ion mation, we use the
Maxwell equation:

oE
—f+4n(J, +oE,) = 0,

P (22)

where ¢ is the conductivity of the target material.
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For times shorter than the relaxation time the solu-
tion of equation (21) has the form
t

E(p, ) = ~4m[dty(p.t). (22)

Substituting (20) into (22), we find the space-time dis-
tribution of the electric field:

- |

elt €g)

J1-¢€len 1

") (e €0

p—[p*+r¥eq) — (e, £9)1/2p
Jr (& £0) — [P =To(E0) 1P + Io(Ex)]?
x (1€, ) — [P~ o(€0)]%)

—r(g, 80)(23)

xN([p —ro€x)]* — (€, €)),

where e isthe absol ute val ue of the electron charge, and
the function g4(t, &) is the solution of the equation

i de' _
~JvaeEe - ° (24

In order to simplify the calculations, we convert to
the new variable in expression (23)

— _ € de
u=r(¢g), du=-— ll—;nm.

Asaresult, we obtain

(25)

r1(€o t)

__SOI .r u

P[P’ +roe) —u]/2p 26)

JU = [p—roen]? [P + rofe)]* -

x N (U =[P —ro(e)])N ([P + ro(er)]’ —u?),
where the function r,(g,, t) is described by

2

_ € de
Eo ) = 12 [ e

&4(t, €g)

(27)

6. In order to perform numerical calculations using
formula (26), we need to determine the form of the
functions contained in the expressions in the integrand
in (24) and (27). The product of the functions A(g) and
2(g) evidently gives the energy lost by a moving elec-
tron per unit length. Then, using the differential cross
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E, V/A

Fig. 1. Spatial dependences of the electric field formed as
aresult of the propagation of oxygen ionsin iron at vari-
oustimes: 1—t/t, = 0.01, 2—t/t, = 0.05, 3—t/t, = 0.1, and
4—t/t, = 1.

E, V/A
200

150

100

50

0 1 2 3 4 5 6
g
Fig. 2. Spatial dependences of the electric field formed asa

result of the propagation of variousionsiniron at timest,:
1—Z, =8,2—Z7, = 36,3—Z, = 54, and 4—Z7; = 92.

section for scattering of a d-electron by material elec-
tronsin the form [15]
T[ZzNe dT

dz(e' —¢) = = T2

(28)
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(where T is the energy imparted by a moving electron
to electrons of the target atoms), we find

nz,Ne* ¢
£

||"IT .
Substituting (29) into (24), we obtain the follow-
ing equation to determine the dimensionless function

g (t, €) =&//1:

2
M de;(

A(€)2(e) = (29)

(30)
nZ,e'v, t-[ Inx
where €, = &4/, v, = J/21/m.
Similarly for the function r(g,, t) we find
€0 xdx
€t 31
o t) = ZzNe/ smI = @

&4t €o)

Making the distance dimensionless by dividing by
Prmax [S€€ (17)] and the energy dimensionless by divid-
ing by the effectiveionization potential I, we obtain the
following definitive result for the space—time distribu-
tion of the electric field:

HERY

dx  1- (p*+To—x)/2p
D X (=T (B + o) —x
xn(x—(p—Fo)Zm((é+fo)2—x),

where Ty = r/Pmac To = Mo/Pmax = 1/€0—1/€,,, and
E, = 2eNZ,p,,, isthe characteristic eectric field strength.

7. Formula (32) was used to make numerical calcula
tions of the dectric field formed near the track of heavy
charged particles having energies of 10 MeV/nucleus
stopped iniron.

Figure 1 gives spatial dependences of the electric
field formed as a result of the propagation of oxygen
ions (Z, = 8) at timest/t, =0.01, 0.05, 0.1, 1 (t, = 1016
s is the characteristic relaxation time). It can be seen
that with increasing time t = t, the size of the region
occupied by the electric field and its strength increase,
reaching a maximum of ~47 V/A.

Figure 2 gives spatia dependences of the electric
field formed when oxygen (Z, = 8), krypton (Z, = 36),
xenon (Z; = 54), and uranium (Z; = 92) irons are
stopped iniron at timet = t,. It can be seen that as the
atomic number of the moving ion increases, the electric
field increases, reaching a maximum of ~198 /A for
uranium ions. Moreover, the maximum electric field is
achieved at points which lie within the maximum
dimension of the electron source p. [see (17)]. Figure 3

(32)
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shows the same dependences as a function of the dis-
tance in angstrom. It can be seen that the electric field
can reach high values at considerable distances from
the track of amoving charged particle.

The energy lost by a heavy charged particle per unit
length of itstrajectory can be determined using expres-
sion (13)

dEl d’n 4Tre NZzz1 In €m

Id dedz €m 0

(33)

We comparethisvalue with the energy of the electric field
formed at time t = t, as a result of the motion of heavy
charged particles having energies of 10 MeV/nucleus. The
electricfield energy W per unit length of the moving par-
ticle trgjectory can be obtained using expression (32)

dWe _

s WoJ’dppEp(p, t), (34

where W, = E0 pm/4, Ep = E/E,.

Results of calculations made using formulas (33)
and (34) for moving particles having atomic numbers
Z, = 8, 36, 54, and 92 are given in Table. These results
show that as the atomic number of the moving particle
increases, the fraction of its energy converted into electric
field energy increases (26% for uranium ions). This is
because the electric field energy increases more rapidly as
the charge of the moving ion increases. For example, we

find (dE,/d2) ~ (Z* )2 and (dWi/d2) ~ W, ~ (Z )*.

Since an appreciable fraction of the heavy charged
particle energy can be converted into electric field
energy, leading to the formation of large electric fields,
thisfactor must be bornein mind when determining the
distribution function of the electrons knocked by a
heavy particle from the target atoms, i.e., the influence
of the generated electric field on the motion of the
knock-on electrons must be taken into account self-
consistently in the calculations.

We shall analyze the reason for the formation of
large electric fields in greater detail. For this purpose
we find the density of the electrons knocked on by a
heavy charged particle:

€m

S = [eeoSten o), (@)

where the function S(g,, p) is described by expression
(18) and isthe number of electrons of energy g, formed
by a heavy particle per unit volume per unit energy
range. Substituting (18) into (35), we obtain
dn
dv

where p.. 1S given by formula (17).

= NZ,n(Pmax—P), (36)
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Fig. 3. Spatial dependences of the electric field formed as a
result of the propagation of variousionsiniron at timest, :
1—27,=8,2—7Z; =36, 3—Z; =54, and 4—Z; = 92.

It follows from this last result that as it moves, a
heavy charged particle in fact completely “strips’ the
target atoms in the region p < P, AS aresult of the
drift of knock-on atoms from this region, the nuclei of
the target atoms are “exposed,” which leads to the for-
mation of a large positive charge and consequently to
large dectric fidds. If al the knock-on eectrons could
leave the region of action of the source by thetimet =t,,
the positive charge density in this region would evi-
dently be eNZ,. In this case, in accordance with the
Gauss theorem, the electric field strength in thisregion
would increase linearly

EY = 2meNZ,p, (37)
reaching a maximum at its boundary:
ES o = 2TeNZ,0pa- (38)

Estimates made using formula (38) for variousions
with Z, = 8, 36, 54, 92 and energies of 10 MeV/nucleus
propagating in iron yielded the following results:

ES e = 108, 411, 553, and 782 V/A, respectively.

Results of calculations using formulas (33) and (34)

Value 2,=8 | 2,=36| z,=54 | ;=92
dE/dz, keV/A | 0130 | 190 | 344 | 688
dWidz keV/A | 0004 | 026 | 063 | 1.80
dw/dz
dE./dz 0.03 014 | 018 | 0.26
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Fig. 4. Spatial dependences of Z; formed as aresult of the
propagation of variousionsin iron at timest,: 1—Z; = 8,
2—21 =36, 3—21 =54, and 4—21 =02.
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Fig. 5. Spatial distribution of the energy acquired by thelat-
tice ions from the electric field during the propagation of
variousionsiniron: 1—Z, =8, 2—Z; = 36, 3—Z; = 54, and
4—74 =92

These estimates are higher than the maximum val ues of
the electric field obtained in the numerical calculations
(seeFigs. 2 and 3).Thisdifference arises because not all
the knock-on electrons can |eave the region of action of
the source (p < P by thetimet =t,.
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We shall assess the situation having determined the
electric charge density using the well-known relation-
ship:

1. -
o= 4nd|vE(p,t—tr). (39)

Figure 4 gives dependences of Z’; = og/eN on distance
calculated using formulas (32) and (39) for ions having
atomic numbers Z; = 8, 36, 54, and 92 and energies of

10 MeV/nucleus. The value of Z, is the effective ion
charge (in units of €) at the lattice points. If all the elec-
trons were to leave the region p < P the relationship

Z, =26 would be satisfied. However, we can see (see

Fig. 4) that thevalue of Z, islower and decreaseswith
increasing distance, changing sign. Negative values of

Z7 clearly correspond to an excessive number of elec-
trons around the lattice atoms formed as aresult of dis-
placement from the central region. These results aso
explain the differences between the maximum val ues of
the electric field discussed above.

8. The short-lived action of high-power eectric fields
on positive target ions having the charge eZ, in the
region p < Pma CaUSeEs considerable momentum and
therefore considerable energy to be transferred to these
ions. We shall give arough estimate of this energy.

It can be seen from Fig. 1 that over the timeinterval
between 0.1t, and t, intheregion p < 1theelectricfield
varied very dlightly. In this case, we shall assume that
an electric field Ey(p, t = t,) acts on the target ions dur-
ing thetimet, = 1016 s. Theforce acting on alatticeion
from the electric field is given by

F = eZ,E,. (40)

Asaresult of theaction of thisforce, over thetimet, the
lattice ion receives the momentum

Ap = Ft, = eZ,E,t, (41)
and the energy
2 252,2
Z
pe = LBL - S22 (42

2M,  2M,

where M, is the mass of alatticeion.

Figure 5 shows the distribution of the energy
acquired by lattice ions in the region p < p,. plotted
using formula (42) and the results obtained above (see
Figs. 2 and 3). The caculations were made for heavy ions
(Z, = 8, 36, 54, 92) having energies of 10 MeV/nucleus
propagating in iron. It can be seen from the figure that
the lattice ions receive appreciable energy from the
electric field. As the atomic humber of the moving ion
(Zy) increases, the imparted energy increases substan-
tialy and may reach the binding energies of the atoms
inthe lattice sites (see the curve for Z, = 92). Thisleads
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to substantial heating of the lattice ions in the region
P = Prmax-

9. Thus, asfast heavy charged particles propagatein
matter, they knock electrons from atoms. The electric
current generated by the knock-on &-€lectrons leads to
the formation of an electric field which increases with
time near the heavy particle trgjectory. Quite clearly,
the field will increase over times shorter than the char-
acteristic relaxation timet, .

Calculations made above for fast charged particles
having energies of 10 MeV/nucleus propagating iniron
showed that these el ectric fields may reach ahigh inten-
sity, which increases as the atomic number (Z;) of the
moving particle increases. For example, when Z;
increases from 8 (oxygen) to 92 (uranium), the maxi-
mum electric field increases from 47 V/A to 200 V/A.
Moreover, as Z; increases the fraction of the energy
concentrated in the electric field increases compared
with the energy lost by the moving particle as a result
of electron stopping, reaching 26% for uranium ions.
This factor indicates that the influence of this electric
field on the motion of the knock-on electrons must be
taken into account self-consistently.

The action of high-power electric fields on positive
target ions, even for ashort timeinterval (t =t,), causes
an appreciable transfer of energy to these ions which
may reach the binding energy of the atoms in lattice
sites. This leads to stronger heating of the lattice ions
and also creates conditionsfor theirreversible displace-
ment of atoms from lattice sites and the formation of
point defects near the moving particle trajectory.
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Abstract—An analysis is made of mechanisms for Auger recombination of nonequilibrium carriersin cylin-
drical quantum wires. It is shown that two different Auger recombination mechanismstake placein these wires:
aquasi-threshold and a nonthreshold mechanism. Both mechanisms are associated with the presence of hetero-
barriers but are of adifferent nature. The quasi-threshold mechanism is attributed to the spatial confinement of
the carrier wave functions to the region of the quantum wire and in this case the quasi-momentum conservation
law isviolated and the Auger recombination processisintensified. Astheradius of the wireincreases, the quasi-
threshold Auger recombination process goes over to a threshold process. The nonthreshold mechanism is
caused by the scattering of an electron (hole) at the heterojunction; the rate of this nonthreshold Auger recom-
bination tends to zero in the limit of an infinite-radius wire. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In narrow-gap homogeneous | 11—V semiconductors
two main Auger recombination processes predominate.
The first involves the recombination of an electron and
a heavy hole and the excitation of another electron
(CHCC) while the other Auger process involves the
transition of a heavy hole to a spin—orbit split-off sub-
band (CHHS). In the first order of perturbation theory
in terms of electron—€lectron interaction, both Auger
processes are threshold ones (except for semiconduc-
torsinwhich the spin—orbit splitting constant is close to
the band gap) and the Auger recombination rate has an
exponential temperature dependence [1].

Unlike homogeneous semiconductors, in hetero-
structures the quasi-momentum component normal to
the interface is not conserved which leads to the
appearance of a nonthreshold mechanism for Auger
recombination [2]. This mechanism has been studied
fairly comprehensively in quantum-well heterostruc-
tures [3-5]. Nonradioactive recombination processesin
narrow-band semiconductors and in heterostructures
control the lifetimes of nonequilibrium carriers when
their concentration is high. In addition, Auger recombi-
nation processes strongly influence the characteristics
of optoelectronic devices and in particular, the thresh-
old currents of heterolasers. No detailed analysis has
yet been made of Auger recombination mechanismsfor
quantum wires. The aim of the present study isto make
a theoretical analysis of Auger recombination mecha-
nisms of nonequilibrium carriers in semiconducting
guantum wires.

In order to describe the spectrum and wave func-
tions of the carriers in a quantum wire, we use the
model of a cylindrical rectangular quantum well of
finite depth for electrons in the conduction band and
holesin the valence band. It was shown in [5] that three
Auger recombination mechanisms exist in rectangular
planar quantum wells, i.e., threshold, quasi-threshold,
and nonthreshold mechanisms. In the present study we
show that the quasi-threshold mechanism is also
present in quantum wires and is converted into a three-
dimensional threshold process in the limit of an infi-
nite-radius wire.! A fundamental difference compared
with the situation in quantum wells is observed for the
nonthreshold mechanism of Auger recombination. A
guantum wire has two channelsfor nonthreshold Auger
recombination: (1) transfer of alarge quasi-momentum
to an excited carrier (as for planar quantum wells);
(2) transfer of large angular momentum to this carrier.
This last process is the only nonthreshold mechanism
of Auger recombination in quantum dots [6]. The two
nonthreshold Auger recombination mechanisms have
different dependences on the heterobarrier height for
electrons and holes, and also on the wire radius. The
rates of the nonthreshold and quasi-threshold Auger
recombination processes are power functions of tem-
perature which makes Auger recombination in quan-
tum-wire heterostructures more effective than that in
homogeneous semiconductors.

LUnlike quantum wells, the threshold Auger recombination pro-
cess in quantum wire is naturally considered as a constituent part
of the quasi-threshold Auger process.
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2. FUNDAMENTAL EQUATIONS

In order to analyze recombination processes we
need to know the wave equations of the carriers. The
wave equations and the carrier spectrum in narrow-gap
[11-V semiconductors are most accurately described
using the four-band Kane model.

2.1. Kane Equations

For most I11-V semiconductors the wave functions
of electrons in the conduction band at the center of the

Brillouin zone are accurately described by the rg rep-

resentation and in the valence band by the I'; and g

representations. The first two are doubly degenerate
and the third is fourfold degenerate. The basis wave
functions of the conduction band and the valence band
are usualy taken in the form of eigenfunctions of the
angular momentum [7, 8] but for the case of cylindrical
symmetry it is natural to select adifferent basis[9]:

Is tClls L Clp. 1 Qp, 40

1
lp_ 1 Qlp_ tOllp, 1 Qlp, +O

where

Ip.0= 1/.4/2|(p, +ip,)0]
Ip_0= 1/,2|(p,—ip,)J

and [sland |p,L] |py L) o Lare s- and p-type Bloch func-
tions with angular momenta of 0 and 1, respectively.
The first functions describe the state of the conduction
band and the second ones describe the valence band at
the I' point. The arrows indicate the direction of spin.
This choice corresponds to basis functions for which
the projections of the quasi-momentum and angular
momentum on the wire axis have particular values cor-
responding to the symmetry of a cylindrical wire. In
this basis, the dependence of the Bloch amplitudes on
the z coordinate (the z axis is parallel to the wire axis)
and the axial angle hasasimpleform. The carrier wave
function Y may be expressed in the form

P = YgstH yipd

where s and y are spinors. We write the Kane equa
tions in differential form which allows integration
across the interface [5]:

(E,+8—E)W,—ifiDy = 0,
2

: h ~
—Ew—iAyOYs + 5 DIy L]

N

)

#0 ~ -0 . _
+Z—mOa—Xk(Yl—2\12)6—)(1(“!+'33(5"‘\!J = 0.
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Here y is the Kane matrix element [9] having the
dimensions of velocity, y; and y, = y; aregeneraized
Luttinger parameters[9], & = Ay, /3, Ay, isthe spin—orbit
splitting constant, E; isthe band gap, m, isthefree elec-
tron mass, and ¢ = (g, 0y, 0,) are the Pauli matrices. If
the heavy-hole mass m, describing the interaction with
higher bandsisintroduced phenomenol ogically instead
of the Luttinger parameters, the equations (2) yield
those obtained in [10]. It can be confirmed that the
equations (2) do not differ from those usually used in
the literature [8—11]. In the first equation in the system
(2) for the electrons we neglect the term containing the
heavy massfor the electrons[12]. Using the probability
flux density conservation law, we can obtain boundary
conditions for the envelopes of the wave functions at
the interface [5]. In the approximation y, , Y, = const,
assuming that the effective mass of the heavy holesis
much greater than the electron mass, we can obtain the
continuity condition for the following functions:

dy, 1.
v, d—p, m lelII, (3)

where

2y2

m- = Eg_—E +mg (V1 + 4Y2).

2.2. Carrier Spectra
in a Homogeneous Semiconductor

By Fourier transforming the Kane equations (2), we
can obtain the spectra for the electrons and three hole
branches[5]:

(@) heavy holes

R
Eh -_ —Z_rnk,
where

my" = my (V1—2Y2),

(b) light holes and spin-split-off holes

35 KK, 4 -

E o= —E—T(m|l+mhl)
(4)

ﬁ2k2 i 2

i/\/262+E§_T(mll_mhl)Ev

(c) electrons

4 +%2+%(2Eg+36) + (E, + 38)E,

K =
E,+¢+20

- hzyz
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(kisthe quasi-momentum of the carriers). Herethe hole
energy E ismeasured from the edge of the valence band
and the electron energy € is measured from the bottom
of the conduction band.

2.3. Wave Functions
in a Homogeneous Semiconductor

In cylindrical coordinates the wave functions of
heavy holes obtained from the Kane equations (2) in
the basis (1) may be expressed in the form

Whni(p, 9, 2) = Hy

0
0
~20Jp_an(kyp)e ™ ¥
X | Kydm_pa(kp)e™ 2?7, ©
0
—KpJm+ 3/2(khp)ei(m+ ¥2)0

_«/ékth—uz(khp)ei(m_m)(ﬁ

WP, @ 2) = H,
0

0
—Kndm_z2(knp)€ M IP?

0 iqz (6)
Kndm-+ so(kp)e ™
i(m+3/2)@

—2i q‘Jm+ ]JZ(khp)e
0

2Ky I 12(Knp) €MDY

where J,,, are mth-order Bessel functions, H; and H, are
normalization constants, g and k;, are the projections of
the quasi-momentum parallel and perpendicular to the
axial axis, and mis the projection of the total momen-
tum on the axial axis which has haf-integer values.
Inside the quantum wires the wave functions have the
form of alinear combination of (5) and (6). If a heavy
hole is localized, above the barrier its wave function is
similar to (5) and (6) except that the Bessel function J,,,
should be replaced by the Macdonald function K, with

ki, replaced by ik,
For light and spin-orbit split-off holes we can write:
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vil(p, @ 2) = A

_/\/éh k|2+ ? i(m-—
LARCTAN 5 olkp) €22

g
0

—ki(1+N)) In_ga(Kyp)€ M
x| 2iadn ua(kp)e ™"
Ki(Ai =1) I 1o(kp) € ™A
0
21035 _1p(kyp)e M H?

2K\ Jms 1o(Kpp) €M YR

iqz (7)

and
Vi (P, 9, 2) = A,

20K + o)y
E,—E

I alkp) €70

0
Ki(Ai=1)Im-1a(kp)e ™1 ()
20Ny 12(kp)e ™A
Ki(1+A) I ga(Kyp) €™ 327
_’\/éki)\i‘]m—ﬂz(khp)ei(m_l/z)(p
V2035 1a(Kyp) €A

where i = I, s corresponds to light and spin-split-off
holes, A, and A, are normalization constants, and A; =

SI(E + 43 — 13K + cp)/2my).

The el ectron wave functions are exactly the same as
the wave functions for light and spin-orbit split-off
holes except that the substitution E — Ej + € must be
made.

2.4, Carrier Satesin a Quantum Wre

Since, in the selected basis, the projections of the
momentum and the angular momentum of the carriers
on the z axis have specific values, the variables z, p, and
@in equation (2) are separated. Hence, the eigenstates
of the carriers in a quantum wire are determined by a
dispersion equation which has a radia dependence of
thewave functionsfor certain values of g and m. Unlike
quantum wells [5], in a quantum wire the states cannot
be separated in terms of parity even for heavy holes so
that the dispersion equations are cumbersome. For
heavy holes this equation has the form

Km_z2(KpR) _ Km+12(KhR)
M 20(kaR)  Jie 12(KnR) U
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|j<m+3/2(K R) Km 12(KnR)
D‘]m+3/2(th) Jm ]JZ(th)D

_ B( m— 3/2(KhR)_
hkh Jm 3/2(th)

9
Km_12(KnR) ®

K
" Im-22(knR) U

_K Km+ ]./Z(KhR)Ij
"Jnev2(keR) O

Km+3/2(KhR)
*th I 2a(KnR)

Here Risthe wire radius, and k;, and K, are the moduli
of the quasi-momentum components normal to the
interface in the well and in the barrier region, respec-
tively. The quasi-momenta are uniquely interrelated by
the dispersion law. In the limit of an infinitely wide or
deep well we can abtain a simplified dispersion equa-
tion for the heavy holes:

1 3n(6R) _ na(6R) 0 477

B (kR 0, (R 07 G2

(10)

For light holes we derive the following dispersion
equation:

2 _m_%ﬂz"‘ng_ [2;\|—152
a r~nl[k|2+q2D (oA —10

[ e2hiact, ormf G + T
_[KIEQN kIGT”D[k +q%

(11)

< Kiz-12(KR) Jj74 12(KR)
Dsz—uz(k| R) K+ 12(K|R)

Kiz+12(KiR) Jj,_12(K R) D}
Jiz+12(KR) sz—1/2(K|R)D

The dispersion equation for the electronsin the con-
duction band is slightly simpler since it is divided into
two equations (this separation does not occur in quan-
tum wells[5]):

S

~2
_ Ac—le
= Ke—=

Z

m-12(KeR) Im- 32(KeR)
I+ 12(keR)

m—]JZ(KcR)Km+3/2(KcR)
Kﬁw ]./Z(KCR)

(12)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

381

or

m+ﬂ2(k R)Jm_32(K:R)
In-12(kR)

it e
m+ 1/2(KCR) Km—3/2(KcR)

~2
- Ac—lJK
©z K2 _12(KcR)

where € isthe electron energy measured from the edge
of the conduction band inside the wire,

o
A = —————,
¢ E,+20+%€

(13)

€’ + € (2E, + 38) + (E, + 30)E,
€+E,+25 ’

A and Z arethe same values but in the region below the
barrier. The wave functions corresponding to equation
(12) have an even-valued projection of the orbital
moment of the Bloch envelopes on the z axis while in
the case (13) this projection has an odd value. The fol-
lowing calculations of the matrix elements will be
made assuming that an electron localized in awireisin
the size-quantization ground level whose energy is
determined from:

Ao — 1K (KR)
Z KO(KCR).

" Ae—13;(k:R) _
Z JokR) " C

(14)

3. MATRIX ELEMENT
OF AUGER RECOMBINATION

3.1. Auger Recombination Probability

In the limits of the first order of perturbation theory
in terms of electron—electron interaction the Auger
recombination probability per unit timeis given by

211
W ¢ = 7{|Mfi|26(5f —g).

In this case the matrix element of the transition has the
form:

(15

Mn

<'~IJf(r1- M2 Vi, Vo) | ————

oo| 1= 2|

Pi(ry, 1y Vi, Vy)

> (16)

wherer; and r, arethe carrier coordinates, v, andv, are
the spin variables, eisthe electron charge, and k., isthe
rf permittivity of the semiconductor [1]. Allowing for
the antisymmetrization of the wave functions, the

2|t was shown in [5] that allowance for the mapping potential as a
correction to the Coulomb potential introduces negligibly small
corrections to the matrix element and the Auger recombination
rate.
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matrix element of the Auger transition may be
expressed in the form

Mg = M| =My, 17)
where
<UJ3(r1, V)W4(r,, V,) ———i—-—-
Keo|l1 = 1]
XWq(ry, V) Wa(ro,, V2)>-
&2 (18)

<w3(r1, VWA 5 v5)| — &

ool 1= 2|

X e (0 Vo) ol v1)>.

In accordance with [5], when the condition Ay, > T is
satisfied in heterostructures (which holds for most I11—
V semiconductors) the mixing of spin-split-off holes
with heavy holesis negligible, and mixing of light and
heavy holesisinsignificant when m, < m,. Under these
conditions we can use the generally accepted terminol-
ogy for Auger recombination processes in homoge-
neous semiconductors. For simplicity here we shall
mainly confine our analysisto the CHCC Auger recom-
bination process. When the condition E; — A, > T is
satisfied, which is the case for most |11-V semiconduc-
tors, al the qualitative conclusions will also hold for
the CHHS process.

3.2. Auger Recombination Mechanisms
in Quantum Wres

The carrier wave functions are the eigenfunctions of
the projections of the quasi-momentum and angular
momentum operators on the z axis. Consequently, the
matrix element of the Auger recombination automati-
cally satisfies the momentum and angular momentum
conservation laws and in the cylindrical coordinates p,
@, zhasthe form

5% 00 2n 21

M, = Ke_oo{pldpljo’pzdpz-[ d(leO’ do,

@) +id(z,-2)

_r2|

lm(<01

(19)

Idzlj dz2

X (R (P1)R3(P1)) (R (P2)R4(P2)),

where R;, R,, R3, and R, are the radial components of
the particle wave functions and

%m =m,—
A=0-0z = 0s—0Q

mg = my—m,
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are the imparted axial projections of the angular
momentum and the quasi-momentum. The matrix ele-
ment M,, is obtained from M, by transposing the sub-
scripts 1 and 2 of the wave functions R, and R,. The
function R, corresponds to a localized carrier and R,
corresponds to a carrier in the excited state; a recom-
bining heavy hole—electron pair corresponds to the
wave functions R, and R5. For the CHCC process R,
and R, correspond to electrons in the conduction band
whereasin the description of the CHHS process R; cor-
respondsto aheavy hole and R, to a spin-orbit split-off
hole.

Fourier transforming the Coulomb potential with
respect to the coordinates p and ¢, we obtain

|mq)+|qz

Id(pIdz|r1

D4T[I m(qpl) Km(qu)
D4T[I m(qu) Km(qpl)

(where |, is a modified mth-order Bessel function).
Since the heavy-hole massislarge (m, > m,), its wave
function decays rapidly below the barrier compared
with the electron wave function and the below-barrier
region of overlap of the heavy-hole and electron wave
functions can be neglected. It should be noted that this
by no means implies that the problem can be solved
using the approximation of an unbounded potential bar-
rier for the heavy hole, since its energy levels are
obtained from the exact boundary conditions (3). As
noted above, we shall also assume that the recombining
electron is in the size-quantization ground level. This
assumption is justified even for fairly broad quantum
wires because of the comparatively low electron mass.
Under these conditions the matrix element hastheform

(20)
P1= Py,

P> P2

R

4ne

M, dp;RZ (P1)Ra(p1) Z

[alna4n
n=sp

P1
X [ PdPKw(AP) 1 (AP) I, (KaP) I, (K1P)
(21)

R
+ 8up8an [ PAP1 (A1) Kin(A4P) Jim, (KaP) Im, (KaP)
Py

[

+ bln b4n-[pdp| m(qpl) Km(qp)Jm4n(K4p)‘]mm(Klp)i|a

R

where n corresponds to the number of the basis func-
tion and allowing for the spin has eight values, a, are
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the factors of the Bessel functionsfor theradial compo-
nents of the wave functions:

Ry (p) = 08nJm, (Kip), P=R
nth) = %Janmm(Klp)l pP>R,
< (o) < PEIn k), p<R
ntP) = %34n~]m4n(K4p)’ pP>R.

In the matrix element (21) we can identify two dif-
ferent contributions. This first is associated with dis-
continuities of the wave functions and their derivatives
a the heterojunction (at the point p = R. The process
determined by this contribution corresponds to scatter-
ing at the heterobarrier. For the case of asingle barrier
this scattering leads to the appearance of a nonthresh-
old Auger recombination channel [2] and a similar sit-
uation occurs in quantum wells [3-5]. The rate of the
nonthreshold Auger recombination process tends to
zero in the limit of an infinite-radius wire. The second
contribution in (21) is associated with scattering at the
short-range Coulomb potential [5]. In the CHCC Auger
recombination process the electron is excited either to
the continuous or the discrete part of the spectrum cor-
responding to € = E,. In the first case, the electron
either acquires a large quasi-momentum perpendicular
to the interface or has alarge projection of the angular
momentum on the z axis. In the second case, the elec-
tron acquires a large quasi-momentum directed along
theaxisof thewire. Thislast processisclearly athresh-
old one since it requires the hole to have the same
guasi-momentum. In quantum wells only the transition
to the discrete spectrum corresponds to the threshold
process [5] but this statement does not hold for quan-
tum wires. On transition to the continuous spectrum
with increasing angular momentum the threshold is not
lifted. For this reason it is meaningless to isolate the
threshold process and thisis more conveniently consid-
ered as a congtituent part of the quasi-threshold pro-
cess. Thus, separating the nonthreshold and quasi-
threshold mechanisms of Auger recombination in
guantum wires, we write the matrix element for Auger
recombination in the form

M, = MO+ M@, (22)
where M® and M®@ are the nonthreshold and quasi-
threshold matrix elements, respectively. In the limit of
alarge-radiuswire, the quasi-threshold Auger recombi-
nation mechanism is converted to the threshold mecha
nism.

3.3. Matrix Element
of the Nonthreshold Auger Process

The nonthreshold Auger process involves scattering
of carriers a the heterojunction. The corresponding
matrix element is determined by the discontinuities of
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the wave functions and their derivatives a p = R
Detailed calculations of the nonthreshold matrix ele-
ment are given in Appendix A where the following
result is obtained:

gme’
————-Ris(R)Ri(R)

Ko(Q™ + k)

M© =

O 3V +V, <\VAN
X CRK - 1(aR)| = | + MK(aR) 7250 (23)
0 clil

4k,

R

><J’(R’;(r>)R3(p))lm(qp)pdp-

0

The first term in braces is proportional to q and corre-
sponds to the nonthreshold process in a quantum well
[5], the second term is proportional to m and corre-
sponds to the nonthreshold Auger recombination chan-
nel in quantum dots [6]. It can be seen from (23) that
the two contributions to M@ have different depen-
dences on the barrier height for electronsin the conduc-
tion band and holes in the valence band.

3.4. Matrix Element
of the Quasi-Threshold Auger Process

The quasi-threshold process is associated with the
confinement of the region of overlap of the wave func-
tions within the volume of the quantum wire. In accor-
dance with the Heisenberg uncertainty principle, this
has the result that the d-function in the quasi-momen-
tum conservation law is replaced by a function which
tends to it in the limit R — co. Calculations of the
quasi-threshold matrix element are given in Appendix
B; the final expression for M@ hasthe form

2
411e

Ko(Q” +K3)
R (24)

X_[(R’z*(p)Rs(p))(RI(p)R4(p))pdp-

M@ =

In the limit R — oo and subject to the condition ki,
k, < ks, k, thismatrix element becomes proportional to
o(k, — k3), i.e., the quasi-threshold process is converted
to the threshold Auger recombination process. In fact,
the quasi-threshold matrix element is proportional to
the integral of four Bessel functions:

R

M® O [olkiP) Iokz0) In(ksp) In(ksp) PP (25)
0

Assuming that ks, k, > kj, k,, this integral can be
expanded as a series in terms of the primitive
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Jn(ksp)Jm(ksp). Retaining thefirst term of the series, we
obtain

M@ 10— 3(k;R) Jo(koR) (ka1 (KsR)
-k (26)
X In(KaR) — kg Im(ksR) Im-1(KsR)).

For large R the Bessel functions can be replaced by
their asymptotic expressions for alarge argument:

2 ™
Jn(2) = «/n:zCOS%_T + EB

Substituting this expression into (26), we finally obtain
sin(k,—k3)R

ky—ks
In the limit R —» oo this expression squared gives a

d-function multiplied by the radius of the quantum
wire:

(27)

M@ O (28)

sin(k, —ks) R?

TR
— —0(k, —k3).
(k4—k3)2 2 ( 4 3)

4. AUGER RECOMBINATION COEFFICIENT

In order to calculate the Auger recombination coef-
ficient in the first order of perturbation theory, the tran-
sition probabilities (15) should be averaged over the
initial states and summed over the final ones:

3
G = 7” Y DM fo(1-f)(1- 1)

Ky Ko kg, Ky
xd(E;+ E,—E;—E,).

Here f;, f, are the carrier distribution functions in the
initial state, and f; and f, are thosein the final state, and

[M2Cs the sum of the squares of the matrix elements of
the Auger transition over the spin variables of theinitial
and final states. The contributions to the Auger recom-
bination rate from the quasi-threshold and nonthresh-
old processes cannot be separated because interference
takes place between them. For small wire radii this
interference is particularly strong because both pro-
cesses are nonthreshold ones [5]. For large-radius
quantum wires the interference between M® and M®@
can be neglected because unlike nonthreshold pro-
cesses, the main quasi-threshold transitions involve
heavy holes having a high longitudina quasi-momen-
tum or angular momentum. Taking the above reasoning
into account, it is clear that neglecting interference
gives an amost accurate result for large-radius wires
and an order-of-magnitude result for thin wires. The
Auger recombination rate thus obtained has correct
dependences on the quantum wire parameters (radius,
barrier heights for holes and electrons) and on the tem-
perature.

(29)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

DOGONKIN et al.

We introduce the Auger recombination coefficient C
which isrelated to the rate G by

G = Cn’p,

where n and p are the one-dimensional concentrations
of electrons and holes. Neglecting interference between
the contributions of the various processes, we write

c=c®+c?, (30)
where the coefficients CY and C@ correspond to non-
threshold and quasi-threshold Auger processes having
the matrix elements M, and M., respectively.

An expression for the nonthreshold Auger recombi-
nation coefficient may be obtained by substituting (23)
into (29), which gives

24e4h3y4 F (Asol Eg)

2 5 5
Ko Eg R

C.=

K°J4(k.R)
(Jo(k R) + J5(k:R) + K3(K.R) + K3(k.R))*

5 3VC+VVT+ m’ [%TD keq
22 !
48y 1 g'RPL4Eq] Ho? + k3%, (q)

where

(31)

(L+x/3)(L+X) 1+7x/9+X/6

P00 = @203 (1702 17 w4426 |

2E 1+A0,/2E,
Ke(a) = 2y21+A I3E,

The angular brackets denote averaging over the heavy-
hole distribution function. For a Boltzmann distribu-
tion, which isusually valid for holes, thisaveraging has
the form

Df (qhv kmn)D
. mn qh
dg, f (d, mn)expB 0
Zr;'!‘ QT 0
where
T 0 k2 0O
Z = quf expG—30
o U agrQd

nisthelevel number of the holes, misthe projection of
the angular momentum, k. and K, are the quasi-
momenta of a ground-state electron above and below
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the barrier, perpendicular to the interface; gy isthe ther-
mal momentum of the heavy holes:

a4 = }2th
T ﬁ ’

and k., is the quasi-momentum corresponding to the
size-quantization level of the holes which for an infi-
nitely deep quantum well and heavy holes has the
value:

kmn = R/ymnv

wherey,,, is the nth root of the Bessel function J,..

For the coefficient of the quasi-threshold Auger pro-
cess we have

C.= Ge4h3y4F(AsolEg)
2775 T 5 . o5
Ko Eg R
KCIA(K.R)

(Jo(k R) + Ji(k:R) + K3(kR) + Ki(kcR))”

(32)

< K; snz(kf—kh)R>
(g + Kok (ke(a) —kn)? [

Inthelimit of aninfinite-radiuswire, the expression for
the coefficient of the gquasi-threshold Auger recombina-
tion process yields that for the Auger recombination
coefficient in a homogeneous semiconductor. Assum-
ing that the size-quantization levels of the carriers
merge into the continuous spectrum and integrating
over them, we obtain

512 4
7R’ _»16A/§n eiL
Ko

(33)

F(ASO/EQ)

52412 12 32
Eq T m,

0 Ewo
oT0o

where E, is the threshold energy of the CHCC process
in a homogeneous semiconductor; in the Kane model
Ewn = (2m/m,)E,. Note that for broad wells we need to
take into account not only the process with ki = k;, +
k. + K, but another three processes corresponding to
Ke = Kn + Kep — Kooy K = Ky —Keg + Koo, @nd ke = ki —key —
K,. Expression (33) may be compared with the well-
known Gel’mont result [13] obtained for the Auger
:‘jecombi nation coefficient in a homogeneous semicon-
uctor:

— 6/\/2 5/2€ h 1 th|:|

exp (34)
KS Es/zTuz 1/2 3/2 oTo
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Fig. 1. Temperature dependence of the coefficient of Auger
recombination for the CHCC process for two mechanisms

of Auger recombination: nonthreshold (C;T°R?, dashed
curve) and quasi-threshold (C,mR?, dotted curve) for athin
wire (of radius R = 50 A). The solid curve gives the total
Auger recombination coefficient ((Cq + CZ)TlZR).

A small differencein the numerical coefficient is attrib-
uted to the assumption Ay, > E; made in [13].

5. DISCUSSION OF RESULTS

An analysis of Auger recombination processes in
guantum-wire semiconductor structures has shown that
two different mechanisms exist: nonthreshold and
quasi-threshold Auger recombination. The nonthresh-
old process has two channel sinvolving scattering of the
longitudinal component of the quasi-momentum and
the angular momentum. The first channel is similar to
the nonthreshold Auger process in quantum wells,
while the second is similar to the nonthreshold Auger
recombination channel in quantum dots. The coeffi-
cientsfor these channels have different dependences on
the barrier heights for electrons and holes. This factor
particularly impedes the suppression of Auger recom-
bination in type 2 quantum-wire semiconducting struc-
tures unlike quantum-well structures [14]. In quantum
wells the threshold CHCC Auger recombination pro-
cessinvolved the transition of an excited electron to the
discrete spectrum. For wires, as we have shown, there
is also athreshold process involving an electron transi-
tion to the continuous spectrum. For this reason in
wires it is meaningless to separate the quasi-threshold
and threshold processes into two separate processes.

In order to analyze the Auger recombination coeffi-
cients we used atypical InGaAsP heterostructure with
band gap E;=1¢€V.

It can be seen from Figs. 1 and 2 that the coefficient
C, for nonthreshold Auger recombination is a weak
function of temperature for narrow quantum wires and
decreases with temperature for broad wires. However,
the quasi-threshold Auger recombination coefficient C,
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Fig. 2. Temperature dependence of the coefficient of Auger recombination for the CHCC process for two mechanisms of Auger
recombination: nonthreshold (C;T°R*, dashed curve) and quasi-threshold (C,m°R?, dotted curve) for broad wires with R = 150 (a)

and R = 250 (b). The solid curve gives the total Auger recombination coefficient ((C; + C2)T[2R4).

C, cm®s

10729¢

10—30 -

10—31 )
400
R, A
Fig. 3. Dependence of the coefficient of Auger recombina
tion for the nonthreshold (ClT[2R4, dashed curve) and quasi-
threshold (CZT12R4, dotted curve) processes on the radius of
the quantum wire at T = 300 K. The solid curve gives the
total Auger recombination coefficient ((C; + C,)T™°R*) and

the horizontal dot-dash line gives the three-dimensional
coefficient of the CHCC process.

1 1 1
100 200 300

C, cm%s

10728 5:

1 0_29 L L )
0 100 400

T,K
Fig. 4. Temperature dependence of the total Auger recombi-
nation coefficient for quantum wires of various radii.

200 300
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increases with temperature. For thin wires C, isaso a
weak function of temperature (Fig. 1). As the wire
radius R increases, the dependence of C, on tempera
ture becomes stronger and approaches the threshold
(exponential) dependences in bulk semiconductors
(Fig. 2). The quantitative relationship between C, and
C, aso changes. C; decreases more rapidly with
increasing R compared with C, so that the effective

three-dimensional coefficient Cip, = C,(TiR?)? vanishes

for R —= o, Whereas C5p = C,(TiR?)? approaches the

bulk coefficient of Auger recombination Cyp (Fig. 3).
For thin wires, the Auger coefficients of the quasi-
threshold and nonthreshold processes are considerably
higher than the three-dimensional coefficient Cyp rela
tiveto the square of the area of the cylindrical cross sec-
tion of the wire ((1R?)?). The Auger recombination
coefficient is a nonmonotonic function of the wire
radius over a wide range of temperature (Fig. 4). For
narrow wires the Auger coefficient is initialy small
because of the small overlap of the wave functions of
electrons and holesin bound states. Asthe radius of the
wire increases, the influence of the heterobarriers on
the Auger recombination processes diminishes and the
threshold nature of these processes becomes apparent.
Thus, for large-radius wires the Auger recombination
coefficient decreases to the value corresponding to the
three-dimensional Auger coefficient of a homogeneous
semiconductor.

It follows from thisanalysis that the Auger recombi-
nation mechanisms in quantum wires are broadly simi-
lar to those in quantum wells [5] and only differ quan-
titatively.

For homogeneous semiconductors, the first order of
perturbation theory in terms of interelectron interaction
is inadequate to calculate the Auger recombination
coefficient. Thisis because the threshold Auger recom-
bination process is strongly influenced by electron—
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phonon and electron—electron relaxation processes,
which partially remove the Auger recombination
threshold. However, the first order of perturbation the-
ory gives a qualitatively correct result for semiconduc-
tor structures with quantum wires and quantum wells,
since the influence of the heterobarriers on the Auger
recombination processes is more important than the
relaxation processes if the characteristic sizes of the
heterostructure are smaller than the mean free path of
the carriers[15, 16].
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APPENDIX

A. Calculation of the Nonthreshold Matrix Element

The nonthreshold matrix element may be written in
the form

M® = 4te
Ko

R (35
X Ipldpllm(qpl)Rz(pl)Rs(pl)J“%
0

where

R
JW = z ay, a4nJ'pdpKm(qp)3m4q(k4p)3mm(klp)
n=sp 0 (36)

00

+ by, b4y j PdPK(ap) I, (K4P) Kmm(Klp)}
R

n corresponds to the number of the basis function and
taking into account the spin has eight values. Since
k, > k,; for the nonthreshold process, the integrals can
be expanded as a series in terms of the primitive

Ki(aP) I, (kep). Retaining only linear terms with
respect to VJ/E; and V,/E, (V. and V, are the barrier
heights for the electrons and holes, respectively), we
expand (36) as a series in terms of g and m. The
assumption ((V,, V,) < E; usudly holds for a broad
class of heterostructures. Subject to these assumptions
we can write

IW = [FiRulr—[FiRelr + [FiRidr  (37)
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Here the subscripts number the particle and the basis
state (s, p) and the brackets denote a discontinuity of
the function at the point p = R. The primitive of the

product Km(qp)erm (ksp) Of order n is denoted by Fj.
The component p in the basis (1) has the form F, =

|—2F 5. F ,_. Substituting into (37) the specific form of
the wave functions (7), we obtain (23).

B. Calculation
of the Quasi-Threshold Matrix Element

The quasi-threshold matrix element for Auger
recombination has the form

4Tre

M® = R% (P1)Rs(p1)

P1

x> alnam[ JpdpK(apy)

n=sp

+10(0P) I, (KaP) I, (KeP)

(38)

[

+ J’ pdpl(ap,) Km(qp)JmAW(k4p)Jm1n(k1p)}-

Py

If the condition k; + g2 > K; is satisfied, we can
assume that at least one of the functions J,(k,p), |,(ap)
varies rapidly compared with Jy(k;p). It is then easy to
show that the first nonvanishing term of the expansion

in terms of the parameter k,/(K + q?)Y2 gives
R

4me’ *
a4stldle > (P1)R3(p1)

M@ =

% 2p_12‘]0(klpl)[Km(qpl)(q| m-1(0P1) In(K4P2)
K;+q

4

=Kyl m(Ap1) I 1(k4p1)_ m(qpl)‘]m(k4p1)) (39)

+ Im(qpl)(qu_l(qpl)Jm(k4p1) + K Kn(apy)
X Jn_1(Kepy) — m(qpl)Jm(k4p1)]

Using the relationship

K@) m-1(01) + Kin_1(aP2) ! m(P2) = % (40)

(which can easily be obtained by differentiating its | eft-
hand side), we obtain expression (23) for the matrix
element.
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Centersof Charge Nonuniformity in Absor ption Spectra
of Lanthanum Manganites
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Abstract—In order to study the microscopic nature of the phase separation in lanthanum manganites, experi-
mental investigations were made of the optical, electrical, and magnetic properties of La; _sMnO; and
Lag ¢Srg1MnO; lanthanum manganite single crystals. The infrared absorption spectra revealed two bands at
0.14 eV and 0.35 eV whose intensity was sensitive to the magnetic order. The different temperature dependence
of the electrical resistivity (semiconducting) and the transmission (metallic) below the Curie ferromagnetic
temperature indicates that an insulator—metal transition takes place in various regions of the insulating matrix,
i.e., phase separation occurs. Characteristic features of the properties and the nature of the phase separation in

these compounds can be explained using amodel of polar (hole[MnO§ ]y and electron [MnOg~ 1;7) pseudo-
Jahn—Teller clusters which form centers of charge nonuniformity in the crystal. © 2000 MAIK “ Nauka/Inter-

periodica” .

1. INTRODUCTION

Lanthanum manganites are attracting interest because
of the colossal magnetoresistance observed in these mate-
rias. The characteristic features of the properties of man-
ganites depend on the concentration of Mn** ions formed
by doping LaMnO; with divalent alkaline-earth ions
(Ca, Ba, Sr) or asaresult of intrinsic defects such as a
lanthanum deficit LaMnO; [1, 2]. It has been sug-
gested [3, 4] that increasing the doping level to the per-
colation threshold is accompanied by phase separation,
i.e., the formation of conducting ferromagnetic regions
in the insulating antiferromagnetic matrix. Methods
used to study phase separation in lanthanum mangan-
ites, such as NMR [5] or neutron scattering [6] provide
information on the magnetic state of the material. The
electronic aspect is aso of interest, i.e., studying the
conductivity of the conducting regions and the insul at-
ing matrix. This information is provided by jointly
studying the optical and €electrical properties. The
absorption of light in the carrier interaction regionin an
La _,CaMnO; polycrystal with x = 0.1 reveas an
insulator—metal transition which takes place in various
regions of the crystal, whereas the temperature depen-
dence of the electrical resistivity reveals no such transi-
tion [7]. This observation provides direct evidence of
electronic phase separation. At low dopant concentra-
tions, optical methods can be used to identify various
localized centers and to study the nucleation of the
phase separation process.

The aim of the present paper isto study the electronic
structure and the microscopic nature of the phase separa-
tion using data on the optica, eectrica, and magnetic
properties of two single crystas: lanthanum manganite
containing only intrinsc vacancies and strontium-doped
(10%) lanthanum manganite.

The optical conductivity spectra obtained by process-
ing the reflection spectra using the Kramers—Kronig
method are usually used for highly absorbing materials. It
has been shown that for La,qSry;MnO; the reflection
gpectra of the polished and cleaved single crystals differ
substantialy [8]. In particular, damage to the surface dur-
ing palishing leadsto areduction in the Drude weight and
therefore yields incorrect conclusions on the carrier
parameters. In the present study we used a direct method
of measuring the absorption spectraof 40 umthick single
crystals. In this case, the contribution from the dam-
aged surface was negligible. Apart from [9], the litera-
ture contains no data on the absorption spectra of lan-
thanum manganite single crystals.

2. EXPERIMENTAL METHODS

Single crystals of LayoMnO; and (L&ygSro1)oeMNO;
(formulas by weight) were prepared by zone refining
using radiative heating. The weights were selected
bearing in mind the characteristic features of the prep-
aration technology for crystals having real composi-
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Fig. 1. Dependences of the magnetization on the magnetic
field at various temperatures for LMO (&) and LSMO (b)
single crystals.

tions close to LaMnO; (LMO) and LagygSry;MnO;
(LSMO).

A structural analysis was made for powders using
automatic DRON x-ray diffractometers fitted with a
vacuum chamber for the temperature investigations
(77-370 K) and using monochromatic K, Cr radiation.

The absorption spectra of the lanthanum manganites
were studied using an automatic IKS-21 spectrometer in
the 0.09-0.9 eV energy range and an MDR-4 monochro-
mator in the 1.0-3.6 eV range. Temperature measure-
ments of the spectrawere madeintherange80-293 K and
the magnetic field was varied up to 8 kOe.

The temperature dependence of the dc electrical
resistivity was measured by afour-probe method using
Indium contacts prepared by ultrasonic soldering.

The magnetic measurements were made using an
MPMS-5XL magnetometer (Quantum Design).

3. RESULTS OF MEASUREMENTS

Structural analyses of an LMO single crystal show
that at room temperature and below this compound has
an orthorhombic structure. At 127 K atransition takes
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place within the orthorhombic structure, which is
accompanied by an abrupt decrease in volume (0.5%).
The structure of an (Lag¢Sry1)o9MNO; (LSMO) single
crystal at room temperature is also orthorhombic.
A transition from the orthorhombic to the pseudo-
rhombic modification takes place at 100 K [10].

Thefield dependences of the specific magnetization
o plottedin Fig. 1 reveal substantial differences between
the magnetic properties of LMO and LSMO. For LMO,
linear dependences o(H) are observed over awide range
of magnetic fields and at temperatures below 140 K
some remanent magnetization is observed. This behav-
ior indicates that the magnetism in LMO is predomi-
nantly antiferromagnetic with a ferromagnetic contri-
bution. The ferromagnetic contribution can be treated
in several ways. One possible explanation is the pres-
ence of a canted spin structure in the homogeneous crys-
tal. Another explanation is the existence of magnetic het-
erogeneity, i.e., ferromagnetic regionsin an antiferromag-
netic matrix. Similar a(H) curves for the iodine-doped
degenerate magnetic semiconductor EuTe are taken asthe
clearest evidence of magnetic heterogeneity or phase sep-
aration [3]. It isalso possible for ferromagnetic regions
to exist in amatrix with a canted spin structure. Thisis
confirmed by neutron scattering experiments in lightly
doped manganites [6]. At high temperatures the depen-
dence X(T) (x = o/H is the magnetic susceptibility) for
LMO begins to depart from the Curie-Weiss law at
T < 260 K in aweak magnetic field of 20 Oe.

Unlike the curves for LMO, the a(H) curves for
LSMO aretypical of aferromagnet. The Curie temper-
ature of LSMO determined from the ac susceptibility
peak is 159 K. For both samples, in magnetic fields up
to 50 kOe at low temperatures differences are observed
in the magnetizations during cooling with and without
amagnetic field, i.e., indications of spin-glass behavior
are detected. These differences disappear at tempera-
tures above the structural transition temperature. Thus,
data on the dependences o(H) for LM O and the change
in the magnetic state of the samples during coolingin a
strong magnetic field (50 kOe) indicate that the sam-
ples are magnetically heterogeneous, with LMO being
predominantly antiferromagnetic and LSMO predomi-
nantly ferromagnetic.

The room-temperature electrical resistivity p of the
Sr-doped crystal is an order of magnitude lower than
the crystal containing Lavacancies (Fig. 2). The curves
of p(T) for LMO and LSMO revea significant differ-
ences. For LMO in the temperature range 130-260 K
the curve of p(T) has a nonmonotonic complex profile
and increases steeply at temperatures below the struc-
tura transition temperature (T, = 127 K). Note that the
dependence p(T) is accurately reproduced in repeated
measurements. The p(T) curve for LSMO is smoother.
The resitivity increases during cooling to To = 159 K,
in the range 125-159 K the p(T) curve has a plateau,
and as the temperature drops further, the resistivity
increases again. The structural transition from the
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Fig. 2. Temperature dependences of the electrical resistivity and transmission at 0.14 €V for (&) LMO and (b) LSMO single crystals.

orthorhombic to a pseudo-cubic lattice at T; = 100 K
introduces a significant singularity into p(T) against a
background of increasing resistivity, which is observed
as anarrow plateau.

The absorption spectra of LMO and LSMO single
crystals are shown in Figs. 3 and 4. A common feature

1500

1000

500

Fig. 3. Absorption spectra of an LMO single crystal at 80
and 295 K. The insets show the spectra in the low-energy
(Ieft) and high-energy (right) ranges.
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of the spectraisthe presence of an absorption band hav-
ing a complex structure near 0.12-0.16 eV (left insets
to Figs. 3 and 4). At high energies (right inset to Fig. 3)
an absorption band at 1.75 eV is clearly observed for
LSMO. The energy of this band in LMO is clearly
lower and its intensity is higher than that in LSMO.

1600

1200

800
295 K
400 BOK
0 N N [ N N N
1 2 3 E, eV
O 1 1 1 1 1 1 1 1 1 1 1 1 1
01 02 03 04 05 06 07
E, eV

Fig. 4. Absorption spectraof an LSMO single crystal at var-
ious temperatures. The insets show the spectra in the low-
energy (left) and high-energy (right) ranges.
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Fig. 5. Temperature dependences of the transmission of
LMOsinglecrystalsat 0.6 eV (1) and LSMO singlecrystals
at 0.3 eV inafield of 8 kOe (3) and without afield (2).

(Appreciable absorption prevented us from determin-
ing the position of the band peak.)

The main difference between the spectra of the two
crystals is the different temperature variation of the
spectra in the energy range 0.2-0.8 eV. For the LMO
single crystal (Fig. 3) cooling shifts the edge of the
absorption band at approximately 1.5 eV toward higher
energies (blue shift) which is typical of ordinary semi-
conductors. The temperature dependence of the intensity
of the transmitted light (transmission) at 0.6 eV plotted
inFig. 5 (curve 1) ismonotonic. A similar dependenceis
observed at all energiesin the range 0.3-0.8 eV.

The absorption of an LSMO single crystal in the
range 0.09-0.6 eV decreases during cooling from room
temperature to 180 K and then increases again as the
temperature drops further. This exchange of ablue shift
for ared one has aready been observed by us [9] for
L&y oSrp1MnO; single crystals. Figure 6 shows the dif-
ferences between the absorption spectra at different
temperatures and the absorption at 180 K which corre-
sponds to the minimum absorption (highest transmis-
sion) AK = K(T) —K (180 K). It can be seen that the largest
change in the spectra with temperature is observed at
energies around 0.35 eV and 0.13 eV. It can be postu-
lated that there is an absorption band at 0.35 €V whose
intensity has a strong nonmonotonic temperature
dependence, but this is not resolved in the spectra
because of the high absorption coefficient. An optical
conductivity band with a similar increase in intensity
below T was observed at 0.4 eV for an La;gSr,sMnO,
polycrystal [11]. We note that in [11] no data are given
on the band at energies around 0.14 eV. Figure 5 shows
temperature dependences of the transmission at 0.3 eV
without a magnetic field and in afield of 8 kOe for an
LSMO single crystal (curves 2 and 3). Unlike the
monotonic dependence of the LMO transmission, the
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Fig. 6. Differences between the absorption spectra AK =
K(T) — K (180 K) for LSMO single crystals at various tem-
peratures.

transmission of LSMO decreases from temperatures
dightly above T... The magnetic field actsin the same way
as adrop in temperature, as in the case described in [9].
The strongest dependence of the transmission on the mag-
netic field is observed at the Curie temperature. The nega-
tive magnetotransmission (I(H) —I(H =0))/I((H=0) ina
field of 8 kOe at T is 25%.

We shall now study the region of the low-energy
band. Figures 2a and 2b show the temperature depen-
dences of the transmission at 0.14 €V for both single
crystals compared with the temperature dependences of
the electrical resistivity. The energy 0.14 eV corre-
sponds to the region where light interacts with the car-
riers, which can be seen most clearly from the LMO
spectrum (inset to Fig. 3). For this sample the absorp-
tion band at 0.14 €V is positioned against a background
of increasing absorption with decreasing energy which
istypical of the interaction with free carriers. Note that
light begins to interact with phonons at 0.09 eV [12],
i.e., outside the range under study. The transmission of
the LMO crystal increases as the temperature drops to
approximately 150 K (dlightly above T.) and then
decreases. This behavior is also observed for the trans-
mission of LSMO, which increases asfar as 180 K and
then decreases. Except for a region of nonmonotonic
p(T), the dependences of the transmission and p(T) for
LSMO and LMO crystals during cooling to ~T. are
broadly similar, which is usual for semiconductors.
Below T, however, p and the transmission have oppo-
site temperature dependences.

Note that the temperature dependences of the trans-
mission at 0.14 eV (Fig. 2) and 0.3 eV (Fig. 5) for an
LSMO crystal are exactly the same. Figure 7 gives the
temperature dependence of the thermo-emf for an
LSMO single crystal. In the paramagnetic region the
positive thermo-emf increases with decreasing temper-
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ature, reaches a broad maximum around 185 K, i.e.,
above T, and then decreases again. A changeinsignis
observed at 137 K.

4. DISCUSSION

The optica conductivity (optical absorption) spectra
of trangition-metal oxides have some common features. In
the middle infrared bands corresponding to localized
sates, so-cdled middle infrared (MIR) bands, are
observed. As aresult of doping with nonisovalent ions,
some redistribution of the spectral density from the
high-energy range (charge-transfer transitions) to the
low-energy range (range of MIR bands and the Drude
contribution) is observed in the optical conductivity
spectra. Thisis manifest most clearly in the spectra of
copper-oxide-based high-temperature superconducting
compounds [13]. Studies of lanthanum manganites
doped with various divalent ions reveal similar changes
in the spectra[8, 14]. The existence of MIR bands and
redistribution of the spectral density are common fea-
tures of strongly correlated systems[15]. Despite many
years of studying MIR bands, for example, in high-tem-
perature superconducting compounds, there is no com-
mon viewpoint on the nature of these bands. The exist-
ence of local centers at high carrier concentrations cre-
ated by doping cannot be explained using the single-
electron band model. The most acceptable methods of
solving the problems associated with the multielectron
nature of the problem are cluster methods. A polar cen-
ter phase model based on the cluster approach [16] can
successfully explain the properties of copper—oxygen
high-temperature superconductors and copper oxides.
The basic assumptions of this model can be applied to
lanthanum manganites [15].

In terms of the model [15] lanthanum manganites
are considered as unstable systems toward the dispro-
portionation reaction

2MnOg” —= [MnOg ],7 + [MNOg” 151

involving the formation of polar hole [Mnog_] ot and

electron [M nOéo_] 7 pseudo-Jahn—Teller centers char-
acterized by a “local boson”, i.e., a pair of electrons
bound in a completely occupied molecular shell. Tran-

sitionsin the majority [Mnog_]JT clustersform the fun-
damental absorption band while transitions in the hole
and electron centers correspond to the MIR bands. The
MIR bands owe their origin to the strong correlation
effect when an additional hole (electron) is introduced
into the majority cluster, which lowers the energy of a
charge-transfer transition. The energy states of the
polar centers of lanthanum manganites are determined
by the charge, spin, and orbital degrees of freedom. The

M nog‘]ﬂ and [M nOéO_]JT clusters, which formally

correspond to Mn* and Mn?* ions, are essentialy
Jahn—Teller magnetic polarons.
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Fig. 7. Temperature dependence of the thermo-emf of an
LSMO single crystal.

In this model the redistribution of the spectra
weight in the optical conductivity spectra observed as
the degree of doping increases is attributed to the for-
mation of electron and hole clusters by majority matrix
clusters. The disproportionation reaction approach has
been used by other authors, for example, to explain the
thermo-emf results in La _,CaMnO; [17] and the
simultaneous structural and metal-insulator transitions
inYNIiO; [18]. Hole and electron clusters form centers
of charge nonuniformity which can have a complex
structure and contain different numbers of clusters. The
nucleation of these clustersis caused by local potential
nonuniformities formed as aresult of nonisovalent sub-
stitution or vacancy formation. The disproportionation
reaction in lanthanum manganites can be accompanied
by static or dynamic phase separation of a classical
and/or quantum nature [15].

Theresults present here can be explained in terms of
this model. In the spectral range under study three
absorption bands are observed. The high-energy band
with apeak at 1.75 eV in LSMO, and aso present in
LMO but shifted toward lower energies, is possibly

attributed to an egl (M n3+)—eg,2 (Mn®) transition between
states split by Jahn—Teller interaction. The optical tran-
sition is allowed because of the strong hybridization of
&, States with O2p states. Strontium doping suppresses
static Jahn—Teller distortions and reduces the intensity
of this band compared with that in LMO. Charge-trans-

fer transitions in Mnoz_ clusters begin at energies
higher than 3 eV.

The MIR bands observed at 0.14 eV and 0.35 eV are
probably attributable to trangitionsin polar (hole and el ec-
tron) centers. The difference between the local potentials
when trivalent lanthanum is replaced by divalent stron-

No. 2 2000



394

tiumand atriply charged lanthanum vacancy iscreated are
responsible for the different characteristics of the nonuni-
formity centers. As a result, the optica spectrafor LMO
only contain alow-energy band (0.14 eV) whereasthat for
LSMO contains both low-energy (0.14 eV) and high-
energy (0.35 €V) bands. It can be seen from Fig. 4 that
both bands in LSMO are well separated. The fact that
their intensities have the same temperature depen-
dences (Figs. 2 and 5) may indicate that they are
assigned to the same formation, charge nonuniformity
centers.

The results of studying the thermo-emf of lantha-
num manganites with a lanthanum deficit LaMnO,
gives positive values of the thermo-emf for all values of
X [2]. For manganites doped with divalent ions the
thermo-emf can have both polarities. For our LSMO
crystal, the thermo-emf is negative in the ferromagnetic
region, as can be seen from Fig. 7. Assuming that the
polarity of the thermo-emf depends on theratio of hole
and electron centers, a comparison of the spectra with
the thermo-emf data suggests that the low-energy band
(0.14 eV) in the absorption spectrum of both crystalsis

attributed to transitionsin the hole M nog_ center while
the high-energy (0.35 eV) band is assigned to transi-

tionsin the electron M nOéO_ center.

It has been noted that the MIR bands in the optical
spectra of manganites can be considered to be a mani-
festation of magnetic polarons. A characteristic feature of
the spectraof semiconductorswith polaron conductivity is
that phonon replicas are superposed on the “polaron”
bands. The superposition of phonon replicas on the low-
energy absorption band in LMO can be seenintheinset to
Fig. 3. In the theory of electrostatic polarons [19] the
position of the optical conductivity maximum E,
determines the activation energy of polaron mobility
E, Enx = 4E,, and the polaron binding energy E, =
2E,,. For a polaron formed by a hole polar center, the
binding energy is approximately 0.07 eV whereasfor a
polaron formed by an electron center thisis—0.18 V.
The higher binding energy of the e ectrostatic polaron cor-
reponds to a higher-intensity optica conductivity
(absorption) band, asis observed experimentaly, i.e., the
intensity of the band attributed to an electron center issig-
nificantly higher than that assigned to a hole center.

The existence of two type of carrier, mobile holes
(of effective mass 0.6m,) and barely mobile electrons
(of mass 14m,), was established when calculating the
band structure of L&,,Ba,sMnO; manganites[20]. Thisis
condstent with data on the reatively higher binding
energy of “electron” polarons compared with “hole’
polarons.

Note that the absence of a band corresponding to
transitions in an electron center in the LMO spectrum
does not generally imply that these centers are absent.
Optical transitions in the center may be forbidden.
A similar situation was encountered in copper oxide
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CuO, inwhich atransition in the Cu OZ‘ electron center

was only allowed in the presence of strong local distor-
tions caused by ion bombardment of the crystal [21].

The intensity of the absorption band is usually
related to the transition probability and the concentra-
tions of centersin which the transition takes place. The
increase in the intensity of the MIR bands below the
Curie temperature is evidently attributed to an increase
in the number of polarons in the charge nonuniformity
center and/or an increase in the size of this center asa
result of the polarization of the spins of nearest Mn
ions. Jung et al. [11] suggest that for an La;gSr,,sMnO,
sample the increase in the intensity of the optical con-
ductivity band at 0.4 eV at temperatures below T is
caused by the crossover of a small polaron to a large
one. It should be noted that no data on the 0.4 eV band
in the paramagnetic region are given in [11]. Our data
indicate that the intensity of the MIR bands is high at
room temperature, decreases substantially as the tem-
perature drops to the Curie temperature, and then
increases steeply. In general the intensity of the polaron
absorption band reflects the conductivity in the polaron
system.

It can be seen from the inset to Fig. 3 that for LMO
the low-energy MIR band is observed against a back-
ground of increasing absorption at energies below
0.17 eV whichistypical of the interaction of light with
free carriers. Formally fitting the spectrum at T=295 K
using the Drude formula gives good agreement with the
experiment for carrier relaxation times of 5 x 10716 ¢S,
The carrier mobility assuming equal effective mass m,
is obtained as 0.7 cm?/(V s). The existence of a Drude
contribution at room temperature and below, when the
crystal resistivity isrelatively high (Fig. 2), is quite sur-
prising. The Drude contribution, a nonactivation charge
transfer process, is possibly caused by tunneling in the
polaron system, i.e., in the charge nonuniformity cen-
ters. An increase in the number of polarons should
increase the number of tunneling transitions. The tem-
perature dependence of the transmission for LMO at all
energies in the range 0.10-0.17 eV is the same as in
Fig. 2afor 0.14 eV, i.e., the transmission increases with
decreasing temperature asfar as~T and then decreases
below T.. We can postulate that the MIR band and the
Drude contribution have the same temperature depen-
dences. Data obtained previoudly for La, _,CaMnO;
polycrystals at 0.09 eV, far from the 0.14 eV band, had
a similar transmission dependence [22]. The decrease
in the transmission below T was attributed to an insu-
lator—metal transition and its existence in lightly doped
samples (below the percolation threshold) indicated
that this takes place in isolated regions, or droplets. It
was thus demonstrated that electronic phase separation
exists.

In the crystals studied the doping level is far from
the percolation threshold, as can be seen from the temper-
ature dependence of the el ectrical resistivity (Fig. 2). Cen-
ters of charge nonuniformity formed near charged
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defects are distributed some distance apart in the funda-
mental matrix. Thisis responsible for the difference at
T < T¢ in the temperature dependences of the dc elec-
trical resistivity and the optical transmission measured
a 0.14 eV (Fig. 2). At temperatures above T the
behavior of the p(T) curves and the transmission
broadly agrees which reflects the usual semiconducting
dependence of the resistivity of the matrix and the
charge nonuniformity centers. The decrease in the
transmission at T < T can most likely be treated as a
manifestation of an insulator—metal transition in the
charge nonuniformity centers (metal droplets) with the
matrix remaining semiconducting. Below the structural
transition temperature the electrical resistivity of the
crystal increases more rapidly than before the transition
which is evidently caused by additional carrier local-
ization processes in the matrix, possibly as a result of
charge ordering [22]. Thus, the optical data for LMO
and LSMO crystals give an increase in the conductivity
below T in isolated regions of the crystal, i.e., charge
nonuniformity centers, while semiconducting conduc-
tivity isconserved in the matrix, i.e., these dataindicate
electronic phase separation.

The appreciable negative magnetotransmission (25%)
istheoptica analog of the negative magnetoresistance and
provides additional confirmation that the absorption
bands are associated with the carrier system.

The significant nonmonotonicity of the curve p(T)
for LMO (Fig. 2a) at temperatures below 260 K for
which the dependence x(T) also departs from the
Curie-Weiss law, can be explained if we assume that
this LMO crystal contains a set of charge nonunifor-
mity centers of different sizes, possessing different
electrical and magnetic characteristics, and therefore
different paramagnetic—ferromagnetic and metal—insu-
lator transition temperatures. The maximum Curietem-
perature for homogeneous LaMnO; with a large La
deficit (x = 0.8) is 260 K [23]. The electrical resistivity
of an LSMO single crystal is an order of magnitude
lower than that of LMO, i.e., the doping level of LSMO
is higher. The smooth p(T) curve clearly indicates that
as the doping level increases, approaching the percola-
tion threshold, not only does the number of charge non-
uniformity centers increase but their sizes and charac-
teristics become similar.

Returning to the magnetic properties of these crys-
tals, we can postulate that the presence of charge non-
uniformity centersis responsible for the magnetic het-
erogeneity of lanthanum manganites. Polar centers, or
localized states, exist at low temperatures (an optical
conductivity band at 0.4 eV can be seen at 10 K [11])
and they should conserve their spin individuality to
some extent. This may well be the reason for the indi-
cations of spin glass behavior observed at low temper-
aturesin lightly doped lanthanum manganites.
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5. CONCLUSIONS

We haveinvestigated the optical absorption spectra
and the electrical and magnetic characteristics of a
lanthanum manganite single crystal containing lan-
thanum vacancies La;, _sMnO; and a strontium-doped
LaySro1MnO; single crystal. The observed charac-
teristics of the properties are explained using a model

of polar (hole [Mnog_]JT and electron [Mnoéo_]JT

pseudo-Jahn-Teller clusters which form charge non-
uniformity centers. We observed two MIR absorption
bands whose intensity exhibits a strong nonmonotonic
temperature dependence which are an optical “portrait”
of the polar centers. A comparison between the optical,
electrical, and magnetic properties of the crystals indi-
cates that below the ferromagnetic Curie temperature
an insulator—metal transition takes place in the charge
nonuniformity centers while the semiconducting con-
ductivity of the matrix is conserved. The electronic and
magnetic phase separation is attributed to the presence
of charge nonuniformity centers.
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Abstract—An effective Hamiltonian is obtained to describe the maotion of a one-dimensional quantum particle
along an arbitrary plane curve. Calculations are made of the energy levels and the polarization dependence of the
el ectromagnetic wave absorption in a spiraly rolled-up quantum well. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The success achieved in modern nanostructure tech-
nology has made it possible to devel op systems having
fairly complex geometric shapes. Typical examples are
the so-called “quantum rolls’ fabricated using an orig-
inal method developed in [1, 2]. A strained structure
consisting of quantum films of various materials (such
as GaAg/InAs) curls up after being released from the
substrate as aresult of the relaxation of elastic stresses,
as shown schematically in Fig. 1. The two-dimensional
electron gasin one of the layersisthus on acylindrical
surface whaose cross section isfairly accurately approx-
imated by an Archimedes spira: p = L$, wherep and ¢
arecylindrical coordinatesin the plane perpendicular to
the cylinder axis z. By varying the thickness of the lay-
ers and the lattice mismatch of theinitial materias, itis
possible to vary the radius of curvature of this structure
almost continuously between a few tens of angstrom
and afew micron. This system will be called a spirally
rolled-up quantum well. In the present paper we inves-
tigate its electronic properties: the energy spectrum and
the optical absorption in the infrared. We immediately
stress a characteristic feature which distinguishes this
system from planar quantum wells and nanotubes: this
system isinhomogeneousin one of the directions of the
cylindrical surface and is therefore broadly anisotropic
in the XY plane. Thisfactor is observed in the polariza-
tion dependences of the optical absorption.

2. EFFECTIVE ONE-DIMENSIONAL
HAMILTONIAN

Since the complete wave function depends on the z
coordinate as a plane wave, the problem reduces to the
motion of an electron in a planar spira waveguide.
Assuming that the thickness of the initial quantum film
0 is small compared with the longitudinal de Broglie
wavelength (two-dimensional limit), we must assume
that the motion across the waveguide is fast compared

with that along it. We shall use awell-known method of
adiabatic separation of fast and slow degrees of free-
dom and obtain an effective one-dimensiona wave
equation.

We shall first consider the general problem of the
motion of a quantum particle along an arbitrary plane
curve. We write the equation for the curve in the para-
metric form:

r=r(s),

wherer isthe plane vector (X, y) and sisthe arc length
measured from a certain initial point on the curve. We
introduce the new variables h and sinstead of x and y
(Fig. 2) where h is measured along the normal to the
curve so that the unit vectors (h, s, z) form aright triplet
of vectors(&,, e, €,) = 1. The square of alength element
in the new coordinatesis given by

di* = dh”+ HZds”,
Hy = 1+h/R(s).

where R(s) istheradius of curvature. The coordinates h
and s are clearly orthogonal and can be uniquely intro-
duced for fairly small h. This constraint does not play

(D)

Fig. 1. “Quantum roll,” spirally rolled-up film.
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any part in the following analysis since we are inter-
ested intheregion 0 <h <o (inthelimit 8 — 0).

We now write the Schrédinger equation in the new
variables also alowing for a homogeneous magnetic
field paralel to the axis of the cylinder. We take the
symmetric vector-potential gauge: A = [Br]/2. Interms
of thevariables h, s, and zwe obtain

A = :—ZLBh 4 %Br’(s)[ezr(s)],

An = —3Bi(s) [1(s), @

A, =0,

where the dot over the vector indicates a derivative of s
and g, isthe unit vector along the z axis. The condition
divA = 0 has the form

aA An
9s R(s)
The Schrédinger equation (2 = 1) hasthe form:

= 0. 3)

101 68_'6WD 10plov

“2mH,an0 'san 0" H,asCH, as -
4)
ie A0V v, € 7%
+ 80T, A = EW.
mcCH, 9s  "on0" 2mc>
Table1
Bmax
€
2n 4an 61
€1 —0.001877 —0.007305 —0.007306
€ 0.05656 —0.00019 —0.0013
€3 0.1600 0.006223 —0.00005
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At the waveguide boundaries h = 0, h = dthe wave
function vanishes: Y(s, 0) = Y(s, 8) = 0. In accordance
with the adiabatic approximation, we fix s and describe
the motion along the h coordinate by the wave function
of arectangular well with solid walls (in order to elim-
inate the first derivative with respect to h this function

must be multiplied by 1/,/H,). We then make a gauge

transformation which can eliminate the magnetic field
in the limit & — 0. The final form of the complete
wave function is as follows:

Tth

Y(h,s) = f;sfé —expEH—r(s)Er(s)m
e
x exp[i EIAods}x(s).
Here we have )
Ao = Afs h=0)=3Bi () (3)],

S isthearbitrary origin of the arc length and x(s) isthe
adiabatic wave function of thelongitudinal motion. The
equation for this is obtained by the usual procedure:
equation (4) must be averaged over the dominant mode
of the transverse motion (with the weightings Hy). After
fairly cumbersome calculations, assuming everywhere
possiblethat & = 0 we obtain:

_1dx_ 1
8mMR*(s)

2m dsz
where E = E —1%/2m&? is the energy of the longitudinal
motion.

Hence, the adiabatic potential of a one-dimensional
electron on the curve of aline correspondsto attraction
to points of maximum curvature. The magnetic field is
only in phase with the wave function, so that the energy
levels can only depend on the field for closed curves
when W satisfies the periodicity condition (then the
result only contains the magnetic flux across the cir-
cuit). In particular, an electron in aspiral with free ends
does not “sense” the magnetic field perpendicular to its
plane regardless of the number of turns of the spiral (no
captured flux).

X = ExX, (6)

3. NUMERICAL RESULTS
FOR AN ARCHIMEDES SPIRAL. BOUND STATES

The compact form of equation (6) is useful for ana
lyzing the general properties of the energy spectrum.
For instance, it is easy to establish that for an
Archimedes spiral the number of bound states is infi-
nite since the asymptotic form of the adiabatic potential
isa Coulomb one U(s —» ) = 1/16mLs. For a quan-
tum wire bent into a parabola or a hyperboloid we
obtain U ~ 1/s® and U ~ 1/<°, respectively.
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However, because of the complex form of the
dependence R(s), it is more convenient to convert to a
different variable to obtain quantitative results. We
made numerical calculations of the energy levels and
waves functionsfor an Archimedes spiral p =L¢, intro-
ducing the polar angle ¢ as the argument of the wave
function. In the zeroth order with respect to the param-
eter &/L the Schrédinger equation has the form

_ 1 d%,_ 20 dx_2+9¢°+¢*
1+0%dd* (1+¢3)°d0  41+¢%)° (@
= 2mL%E X =é&x.

As the boundary conditions we assume that x van-
ishes at the end points of the spiral,i.e.,at¢p =0and ¢ =
e, the values ¢, = 211, 411, and 611 were selected.
Equation (7) wastransformed to give adifference equa-
tion and the problem was reduced to finding the eigen-
values and eigenvectors of the corresponding matrix.
The bottom of thefirst transverse quantization subband
was taken as the energy origin [see (6)]. The values of
thefirst three energy levelsaregivenin tablefor aspiral
with one, two, and three turns (¢, = 211, 411, and 611).

States|ocalized near the beginning of the spiral have
negative energies; the number of these states naturally
increases with increasing length. For aspiral having the
minimum radius of curvature R;, = L/2 = 50 A the
depth of the ground level is0.7 K.

4. INFRARED ABSORPTION

Let us assume that an electromagnetic wave propa-
gates along the Z axis of the spiral. Transitions between
the level s obtained above are determined by the electric
field component of the wave tangent to the spiral. Quite
clearly, as a result of the nonuniformity of the system
with respect to ¢, it is predicted that the infrared
absorption intensity will have a strong polarization
dependence. The probabilities of transitions between
the three lowest level sw;,, W5, and w,; were calcul ated
numerically. Their dependenceson theangle ¢ between
the electric vector of the wave and the X axis (i.e., the
tangent to the spira at its beginning where ¢ = 0) are plot-
ted in Fig. 3 for athree-turn spiral.
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Fig. 3.

Note that for each transition there is a direction of
polarization for which no absorption occurs. In classi-
cal termsthisimpliesthat the work of the external field
performed on an electron in different parts of the spiral
is compensated.
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Abstract—In semiconductors, high-frequency conductivity is caused by polarization reversal of the collective
states of apair of impurity atoms under the action of the random electric fields of al the impurities. A Coulomb
correlation which appreciably increases the conductivity is established as a result of the statistical distribution
of the particles over four levels of the diatomic system. The relaxation absorption and the permittivity of the
entire pair system are calculated allowing for these statistics. © 2000 MAIK “ Nauka/Interperiodica” .

At low temperatures, a semiconductor containing
donor and acceptor impuritiesis adisordered systemin
which all the electronic states are localized. Drift of
electrons from majority to minority carriers creates
empty sites among the mgjority carriers to which elec-
trons hop from occupied majority impurities. In this
way hopping conduction takes place in compensated
semiconductors. In astatic electric field an electron can
cover macroscopic distances, having made alarge num-
ber of hops. This is only possible when an enormous
cluster of mutually bound states is formed in the sys-
tem. If the electric field varies harmonically with time
at high frequency w, the analysis can be confined to a
single electron hop over adistance considerably greater
than the hopping length in astatic field. At this hopping
distance a dipole moment appears, which varies in
phase with the alternating electric field which excitesit.
The polarization of the entire sampleis produced by the
additive contribution of al the pairs. Allowance for
relaxation processes leads to some delay of this polar-
ization relative to the alternating field and thus leads to
absorption of this field. The theory of this relaxation
absorption developed in the sixties was reviewed by
Efros and Shklovskii [1].

An electron situated in a charge state at an isolated
pair is exposed to the action of random electric fields
from other impurities, so that this electron has a large
energy spread. An electron positioned at a site having
the coordinate r ; hasthe energy @, and an electron with
the coordinater, hasthe energy ¢,. These energiesvary
widely and differ from one another. In addition, thereis
the overlap energy of the states which, at large dis-
tances, depends exponentially on the distance between
theatomsinthepairr =r,—r, r=|r|:

J(r) = Jexp(—r/a), (D)

where aisthe radius of the localized state. If both sites
having the coordinatesr, and r, are charged, we should

have Coulomb repulsion. The complete Hamiltonian of
the system has the form

H = (plaIal + (Pza;az
2 @

+ + + +
+J(r) (g, +aay) + ﬁa1ala2a21

where a; and a, are the electron annihilation operators

at points1and 2, a, and a, are the electron creation

operators at these points, and k isthe permittivity of the
semiconductor.

We know that the Hamiltonian without the last term
is diagonalized by the linear transformation

o, = a,cosb +a,sing,
0, = —a,Sn0 + a,cosH,

tanf = J(r)2 , (3)
25550

as aresult of which we obtain the mixed energies of the
single-electron states:

2
“’1*"’2#9’1;“’% +I0. @
Applying the transformation (3) to the complete Hamil-
tonian (2) shows that thisis also diagonalized and has
the simple form:
2
H = E,o;0,+ E2a§a2+%afa1a§a2. (5)

Efros and Shklovskii drew attention to the fact that
the Hamiltonian (5) has four energy levels. the single-
electron levels (4) are supplemented by a zero level

1063-7761/00/9002-0400$20.00 © 2000 MAIK “Nauka/Interperiodica’
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with no electrons and a two-electron level having the
energy

2 2
e

e
E3=E1+E2+E=(Pl (Pz"'kr (6)

In order to find the equilibrium statistical distribution of
a diatomic system, we require al the energy levels.
According to [2], the equilibrium occupation numbers

0 .
ng aregiven by

n{ = A™exp[(u—Eq)/T]. )

Here [ isthe chemical potential of the electron system
and T is the temperature in energy units. The normal-
ization factor A is given by

A = 1+exp[(L—E,)/T] + exp[(L-E,)/T]

€S)
+ exp[(2u—Ey)/T].

As the frequency increases, relaxation absorption is
supplemented by another absorption process, i.e., reso-
nant absorption caused by the transition of an electron
between levels having the energies E; and E, provided
that

E,—E, =hw 9)

The concept of a Coulomb correl ation was encountered
in the resonant absorption theory developed by Shk-
lovskii and Efros[2]. The Coulomb correlation is a sta-
tistical effect and may be perceived in formulas (7) and
(8). Since the energy E; isincreased as a result of the
Coulomb repulsion energy, this reduces the occupation
probability n;. Asaresult of the common normalization
factor, the occupation numbers n, , are higher than the
occupation numbers of a four-level system of
uncharged particles. This is the Coulomb correlation.
Note that the indirect influence of the Coulomb repul-
sion of two electrons on the occupation numbers of the
single-electron statesin which no direct Coulomb inter-
action takes place, is manifest in the Coulomb correla-
tion.

The resonant absorption is proportional to the dif-

ference between the occupation numbers nf - ng . Tak-

ing into account (9), this difference may be assumed to
depend only on one energy E;:

= oPrie 1 enfi]
" (10)
+[81_E_:_El_ﬁw%ﬂ§ ,
ng = nfexp(—ﬁoo/T). (11)
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At low temperatures we find Zw > T, n, = 0, and the
occupation number n, differs appreciably from the sin-
gle-particle Fermi distribution: this number is one for
energies E; between p and p — €%/(kr) — 7w and zero
outside this interval. Thus, the Coulomb correlation
determines the energy interval €/(kr) which contrib-
utes to the resonant absorption and may appreciably
exceed the energy interval of the order zw used in the
theory, which neglects the Coulomb correlation [2].

The Coulomb correlation significantly increases the
magnitude of the relaxation absorption. However, no
systematic theory of the relaxation absorption of afour-
level system has yet been constructed. The aim of the
present study is to construct such a theory in order to
correct some of the results of the earlier two-level the-
ory [1], particularly for high frequencies. Calculations
of the contribution of soft pairs to the permittivity will
also be presented.

An external aternating electric field E(t) can be
incorporated very easily in the Hamiltonian (2). To do
this we replace the energy @ by g, = @ —eE(t) - r; in
expression (2), we then diagonalize and obtain the
energies E; inwhich q is replaced by ;, which takes
into account the influence of the electric field on the
energy levels of a soft pair. The nonequilibrium occu-
pation numbers are determined by the kinetic equa
tions, in which we only alow for transitions within a
single pair:

d_r:jt(t) r_ ny(t) —= n2(t) =0,

dny(t) , (12)
2 —
ot = n2(t) = n () = 0.

Thetransition probabilities are determined by the inter-
action of localized electrons with phonons [3]:

1 _ 0aar
T VP (e

1. -
= =N(E;—E,),
To

— S
Eig
TO

(13)

Rl I

1 1 = =
1o NGB+,
- TO[(2 1) +1]

N(E) = [exp(E/T) — 1] is the Planck distribution func-
tion and the probability v,, and the exponent s are
determined by the electron—phonon coupling mecha-
nism (s = 1 for the deformation mechanism and s=-1
for the piezoelectric mechanism) [3]. The transition
probabilities are necessarily proportional to the square
of the overlap integral so that the transition probability
has an exponentia dependence on the coordinates
which is written explicitly by usin formula (13). The
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time dependence of the occupation numbers ni(t) is
determined by the dependence of the energies E; onthe
electric field.

We shall solve alinear problem for the electric field
so that we can take this in the complex form E(t) =
Eexp(—wt). Linearizing the equations (12) for on, =

ni(t) — ni0 we obtain

-0 2/t
on, —on, = .
B T S L
CEEMT) o 1 1.1

11 '
T T 1, T,

The denominator (14) containsthetotal relaxation time
of both levelswhich is the characteristic frequency dis-
persion of the occupation numbers.

Thetotal dipole moment of the pair d, nonlinearized
with respect to the electric field, is given by

g =& (Wmt) [n,() = ny(O)].
2 (Wo—Wy)?+ 4379

The second factor in thisformulais associated with the
difference between the noda states and the electron

(15

statesin the pair. It isequal to cos?8, and isthe projec-

tion of the pair states on the nodal states, where 8 isthe
angle [see formula (3)] which depends on the total

energies E; and thus on the electric field.

When the dipole moment is linearized, two terms
appear. Thefirst, “equilibrium” term appears when the
second factor in formula (15) islinearized and we keep
the occupation numbersin it in equilibrium. In the sec-
ond, “nonequilibrium” term we only allow for the elec-
tric field in the nonequilibrium occupation numbers. In
order to find the electric current, we must differentiate
the dipole moment with respect to time which, for us, is
equivalent to multiplying (15) by —iw. Average expres-
sions for the complex dipole moment and electric cur-
rent are obtained after multiplying the individual con-
tribution of a single pair by the density of states of the
random energies g(¢,) and g(¢,) and integrating over al
values of the random energies and over all coordinates.
Thereal part of the electric current determinesthe elec-
trical conductivity and the real part of the dipole
moment determines the dielectric susceptibility and the
imaginary part of the electrical conductivity which dif-
fers from this by the factor w. The equilibrium term
only contributes to the susceptibility. In the simple
model of an amorphous semiconductor [1] the density
of statesis constant.
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The complete electrical conductivity o of the soft
pairsis given by

2egId rr Id(pl

. (16)
- Wl
y Id(Pz ((Pz2 (Pl) e 1 nf.
w L(G-g) +a3(N] (@ 1)
Here d isthe spacial dimension (2 or 3).

Formula (16) for the high-frequency electrical con-
ductivity istransformed differently for relatively low or
high frequencies since in each case different spacings
between the particles forming the soft pair are signifi-
cantintheintegral. For low frequenciesthe dependence

on the spacingsis determined by the relaxation denom-
inator which isolates the characteri stic spacings

fo = 2I w
The other coordinate dependence in the integrand asso-
ciated with the overlap energy can be neglected. Hence,
the classical case of low frequencies is determined by
theinequalities

J J Foy_ J
= > = <
=5 eXpD 20 TJ 1.

Converting from the energies @to the sum and differ-
ence variables, we can easily take the integral over the
sum variable. For d = 2 the electrical conductivity is
given by

(17)

Wt
W’ + 1T’

[2cosh 2 /costh(p BD}
e [ .2 cp
X[ZkrT+ Ina:oshz_l_+ cosh BD}

Herewe have B = exp[-€Y/krT]. Novv to W|th|n logarith-
mic accuracy we take the integral over the coordinate:

) -1
o= nzezgzarf)ooj’ d(p[4cosh 2 /cosh[iZT me}
0

o = 2me’ g J’drr J'd(p

(18)

(19)
2
X [2k In%osh >T /cosh BwD}
Herewe have B, =B(r,). Ford=3 the expression con-

tains the additional factor 4r /3. The function in the
integrand in (19) is the energy distribution function in
the subsystem of two single-particle levels belonging to
afour-level system. In the studies made by Efros[1, 4]
this function was taken from the theory of two-level
systemswith asingle electron and the author attempted
to find the number of these, allowing partly for the
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existence of four levels. As aresult, an expression was
put forward for the distribution function

0e0._ 290 0€ . 90
fEb7r = HL6cosh 55 CkrT 270

which differs from expression (19). However, in the

most interesting case of a strong Coulomb correlation

2
e

kr,T
these expressions are functionally the same and only

differ by afactor of two. The electrical conductivity is
given by

(20)

>1,

2 4
o= Ee—gza(or2
4 Kk @
At high temperatures when the Coulomb corréelation is

insignificant we have

(21)

o= 14 €g’awTr.

16 g w*

Formula (19) describes a gradual change in the fre-
guency dependence from (21) to (22).

We shall now analyze the quantum case achieved
when the inequality the opposite of the second inequal-
ity from (17) is satisfied. In this case, the relaxation
time in the denominator can be neglected so that the
electrical conductivity becomes independent of fre-
guency. Theintegral over the coordinates is now deter-
mined by the coordinate dependence of the overlap
energy which over distancesr = aln(2J/T) decreasesto
levels of the order of T. Pairs having a shoulder of the
order of r; are soft and their contribution to the high-
frequency eectrical conductivity is summed.

Theéelectrical conductivity depends on the electron—
phonon interaction mechanism. We consider the case
d =2; for d = 3we need to add the corresponding factor
4r+/3. When the Coulomb corrélation is significant,

elkry> T,

(22)

ne4gzvphar$T3w xots
o= > J'dX - ,
16kJ ) sinhx

and when the Coulomb correlation is insignificant we
have

(23)

2 2 3.-4%
_megvaryT 3*s

Y .! sinh(x/2)’

In the two-dimensional case the soft pairs interact
with each other and it is meaningful to calculate their
noneguilibrium contribution to the dielectric suscepti-
bility or the proportional imaginary electrical conduc-
tivity. However, in the quantum case the imaginary
electrical conductivity is much smaller than the read
part so that this calculation isonly made in the classical
case. We note adifferencein the calculations of therea

(24)
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and imaginary parts of the nonequilibrium electrical
conductivity. For the imaginary electrical conductivity
the integral over the coordinates is logarithimically
large. However, sincethisistheintegral of the power of
the logarithm, apart from the large logarithmic factor
the denominator also contains a number equal to the
power of r,, which appears in the result. This substan-
tially reduces the final expression. In the Efros article
[4] this factor was omitted in the calculations of the
imaginary part of the electrical conductivity. If the Cou-
lomb correlation is significant we have

4 2 3
e g wr,
3k

In this same article [4] Efros attempted to allow for
both the Coulomb correlation and the Coulomb gap in
the density of single-particle states. In our view, thisis
not necessary. Using two-particle statistics shows that
the electrical conduction process is collective and all
the Coulomb interaction is taken into account in the

distribution (7). The single-particle Coulomb gap has
no relevance to this process.

Finally we consider the equilibrium dipole moment
and the related imaginary part of the electrical conduc-
tivity. This dipole moment is not associated with relax-
ation and has no analog in the real part of the electrical
conductivity. In this case, the integral over the coordi-
nates may be determined by the overlap energy and
therefore by the distance r+. It is calculated as in the
guantum case of electrical conduction. If the Coulomb
correlation is significant, this part of the imaginary
electrical conductivity given by

—Imo = (25

4 2 3

e g wry
k )
isadded asaterm to theimaginary part of the electrical

conductivity (25) and its value is completely compara-
ble to this.

—Imo = (26)
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Abstract—Experimental estimates are made of absorption cross sectionsfor forbidden optical transitionsfrom
the ground state to long-lived excited states of P, As, Sb, In, and Gaimpurities in silicon and Te impuritiesin
gallium phosphide. The results can be used to predict the possibility of long-wavelength stimulated emission
being excited as a result of the population inversion of long-lived impurity states in these materials. © 2000

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In a series of studies (see [1, 2] and the literature
cited therein) the present authors have established that
in semiconductors having a complex band structure
(diamond, silicon, germanium, and gallium phosphide)
some simple donor and acceptor impurities have deep
excited statesin which the lifetimes t* of electronsand
holes are many orders of magnitude greater than the
free carrier lifetimes 1. These states are split off from
the ground states by valley—orbit or spin—orbit interac-
tions and have the same parity as the impurity ground
states. Hence, dipole optical transitions between long-
lived excited and ground states (1, 2, and 5inFig. 1) are
forbidden. When semiconductors doped with these
impurities are subjected to impurity photoexcitation,
carriers accumulate in long-lived excited states during
the cascade relaxation process. In silicon at low tem-
peratures a significant buildup of carriers occurs, even
under the action of the room-temperature background
radiation present in optical experiments. In particular,
the filling of excited states with this background leads
to the appearance of long-wavelength absorption bands
attributed to their photoionization (transitions 3, 4, and
6 in Fig. 1). It is predicted that the long lifetimes ™ ~
1023 sin silicon and GaP can be used to achieve popu-
lation inversion of long-lived states and to excite stim-
ulated infrared emission. However, an important factor
here is that the probabilities of radiative transitions
from these states to the ground state are not too low.
These probabilities can be estimated from the optical
absorption cross sections o for transitions from the
ground to split-off states. This cross section is only
known for Bi donor impuritiesin silicon (o ~ 10716 cm?
[3]) for which no electrons accumulate in long-lived
excited states [1]. The present study shows that for
other impurities the absorption cross sections for for-
bidden transitions were considerably lower.

2. EXPERIMENT

Absorption was studied using an LAFS-1000 Fou-
rier spectrometer. The samples were placed in the
helium bath of a cryostat with silicon windows. The
transmission spectra were recorded using photoresis-
tors positioned behind the samples in the cryostat. The
absorption coefficient k was determined by normalizing
the transmission spectra to the photodetector response
spectraand the sampl e thickness. We used Ge photode-
tectors doped with Sb or Zn, or an Si photodetector
doped with B which possessed high sensitivity in the
9-40, 32-50, and 45-70 meV ranges, respectively. We
note that the results show good agreement in the
regions where the sensitivities of the various photode-
tectors overlap. The intensity of the room-temperature
background radiation passing through the cryostat win-
dows and reaching the samples and the photodetectors
was much higher than the intensity of the spectrometer
radiation. Thus, the background determined the con-
centrations of nonequilibrium carriers in different
states and this caused additional absorption. The

C
5 1S(I'y) :
1S(I'3)
1S(I's) LS(T)
1l 12 6
1S(I'y)

Vv

Fig. 1. Optica transitions involving long-lived excited
states in semiconductors with a complex band structure.
Excitation of electrons from the 1§ ;) donor ground state

to the following states: 1—1('5), 2—1(3); to the con-
duction band C from the states: 3—11§[5), 4—19T3).
Excitation of holes from the acceptor ground state 15("g) to
state 5—1"7); 6—from the 15";) state to the valence
band V.
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absorption cross sections for some impurities could
only be determined in highly doped (~10'" cm™3) crys-
tals using samples 1-4 cm thick.

3. RESULTS AND DISCUSSION

Figure 2 gives spectral dependences of the absorp-
tion coefficient k of silicon doped with P and As donor
impurities. Also plotted are results for Bi impurities
from [3]. It can be seen that the spectra exhibit sharp
peaksat 11.7 and 12.8 meV for Pimpuritiesand at 21.1
and 22.5 meV for As impurities. These values corre-
sponds to the energies of forbidden optical transitions
from the nondegenerate ground state of the donors
15,) to the triply degenerate 1S('s) and doubly
degenerate 19(I";) excited states split off by valley—
orbit interaction [4]. The absorption cross sections o
determined from Fig. 2 for transitions between the
19,)) and 19T ;) states are 1028 and 2.5 x 10718 cm?,
respectively, for Pand Asimpurities. It can also be seen
from Fig. 2 that the spectrum of silicon doped with a
lower concentration of As has a stepped absorption
band in the energy range 32-38 meV, which corre-
sponds to the ionization of long-lived excited states
filled with background radiation (transitions 3 and 4 in
Fig. 1[1]). At high concentrations the absorption in this
band becomestoo strong and only theinitia part of this
step can berecorded. In the long-wavel ength part of the
spectrum Fig. 2 also shows additional absorption which
depends weakly on energy and is evidently attributable
to the formation of D~ centers [5]. We were unable to
determine the cross section o for Sb because of the lack
of sufficiently large silicon samples highly doped with
this impurity. The spectra of the samples investigated
revealed no significant characteristics higher than the
noise level in the 9-13 meV range which corresponds
to the predicted energy of the forbidden transitions for
Sb impurities. From this it follows that o does not
exceed 10718 cm?,

These results show that the intracenter absorption
cross sections for forbidden transitions of P, As, and Bi
donor impuritiesin silicon increase substantially as the
valley—orbit splitting of the 1S state increases. The
magnitude of this splitting is related to the difference
between thereal potential of the donor impurity and the
potential of apoint electric charge. This difference par-
tialy lifts the degeneracy of the 1S state and possibly
determines the contribution of weak interactions
accompanied by emission for which, unlike dipole
interactions, parity-conserving optical electronic tran-
sitions are allowed.

The forbidden optical absorption cross sections for
transitionsin silicon from the doubly degenerate accep-
tor ground state 19" g) to the long-lived nondegenerate
excited state 1§"-) split off by spin—orbit interaction
were substantially lower than those for donors. For B
acceptor impurities, the energy for excitation of a hole
to this state and its ionization energy are amost the
same (23 meV [1, 4]). Thus, it isimpossible to isolate
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Fig. 2. Spectral dependences of the absorption coefficientsk
of silicon doped with various concentrations of donors: 1—

P N =8x 10% cm™; 2—As, N = 5 x 10'6 cm™3; 3—As,
N =2 x 10 em3; 4—Bi, N = 10 cm™3 (from [3]).

k, cm™!

10 20 30 40 50
hv, meV

Fig. 3. Spectral dependences of the absorption coefficientsk
of silicon doped with various concentrations N of acceptors:

1—In, N =7 x 10 cm™3: 2—Ga, N=2 x 10Y7 cm3.

the contribution of selective excitation against the
strong absorption background caused by the ionization
of an excited state filled by the background. Figure 3
shows the absorption spectra of silicon doped with In
and Ga. In the case of In, according to [6], absorption
associated with a forbidden transition should be pre-
dicted at energies of 43-44 meV. However, no signifi-
cant characteristics appear in this spectral range. From
thisit follows that the forbidden transition cross section
for In impurities does not exceed 10 cm?. For Ga
impurities in silicon the energy position of the 19" )
level is unknown although it may be estimated from
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Fig. 4. Spectral dependence of the absorption coefficient k
of gallium phosphide doped with Te to a concentration of

4 x 10 cm™3. The photoresistors used for recording were:
1—Ge[Sh]; 2—Ge[Zn].

Fig. 3. In fact, Fig. 3 shows a stepped absorption band
which begins at around 48 meV. This absorption known
for various other impurities in silicon [1] is naturaly
attributed to ionization of the 1§I",) state (transitions 6
in Fig. 1) filled with background radiation. Note that
unlike B and In, for Ga impurities in silicon the long-
lived excited state is not observed in the microwave
hopping photoconductivity [1]. An appreciable buildup
of holesin this state isimpeded by the rapid relaxation
of the excitation asaresult of the emission of an optical
phonon whose energy is close to that of the higher 2I'g
state [4]. Nevertheless, some relatively wesk filling of
the 19;) state may occur as a result of the cascade
relaxation of the excitation. Then, since the energies of
the Ga ground state (74 meV [4]) and the edge of the
absorption step (48 meV) are known, the appearance of
forbidden absorption should be predicted at around
26 meV. It can be seen from Fig. 3 that no significant
characteristics are observed in this spectral range. From
this we can conclude that for Ga impurities in silicon
o<10®cm?

The energy spectrum of Te donor impuritiesin GaP
has been investigated in various studies (see [ 7] and the
literature cited therein). This spectrum is similar to the
spectrum of simple donors in silicon athough the
strong lattice absorption, including bands of residual
radiation in the range 40-50 meV [8], makesit very diffi-
cult to obtain reliable results. According to [ 7], theioniza-
tion energy of the 19",) ground stateis90.5 meV and the
19(I" ;) excited state is split off from the ground state by
40.7 meV, i.e., it fallswithin the region of strong lattice
absorption. A state having this energy can hardly be
long-lived since it can undergo rapid relaxation as a
result of optical phonon emission. The 19 5) state can
belong-lived (1* =8 ms[2]) if itsexcitation energy lies
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outside the region of the residual radiation. Figure 4
gives the spectral dependence of the absorption coeffi-
cient of a0.375 mm thick GaP wafer doped with Te. At
35.1 meV the spectrum exhibits a characteristic peak
which can naturally be assigned to atransition from the
ground to the 1T 5) excited state. The absorption cross
section corresponding to this cross section isthen close
to 1.5 x 107" cm?. It can also be seen from Fig. 4 that
this peak is observed against a background of strong
continuous absorption which can probably be attrib-
uted to the excitation of short-wavelength acoustic
phonons [3]. This factor may prove an obstacle for the
amplification of stimulated emission.

4. CONCLUSIONS

These experimental results can be used to assessthe
possihility of exciting stimulated infrared emission asa
result of the population inversion of long-lived excited
states. Silicon highly doped with As may prove the
most useful material since the forbidden selective
absorption in this material has a comparatively high
intensity and substantially exceeds the background
(Fig. 2). Estimates made using the well-known Einstein
relationships show that the radiative lifetime of the
19(I"5) excited state may becloseto 1 s(for T ~0.5ms
[1]) and the active-medium gain for a population inver-
sion of 10" cm=3isof the order of 0.1 cm™. For aradi-
ation quantum yield of around 1072 it is quite possible
for long-wavel ength stimulated infrared emission to be
excited in high-Q resonators.
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